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A calculus for the moduli space of curves

Rahul Pandharipande

ABSTRACT. I survey the recent advances in the study of tautological classes
on the moduli spaces of curves. After discussing the Faber-Zagier relations
on the moduli spaces of nonsingular curves and the kappa rings of the moduli
spaces of curves of compact type, I present Pixton’s proposal for a complete
calculus of tautological classes on the moduli spaces of stable curves. Several
open questions are discussed. An effort has been made to condense a great
deal of mathematics into as few pages as possible with the hope that the reader
will follow through to the end.

1. Introduction

The moduli space M, of complete nonsingular curves of genus g admits a
compactification
M, C M,
by stable curves. Mumford, in Towards an enumerative geometry of the moduli
space of curves (published in 1983), writes:

The goal of this paper is to formulate and to begin an exploration of
the enumerative geometry of the set of all curves of arbitrary genus
g. By this we mean setting up a Chow ring for the moduli space M,
and its compactification ﬂg, defining what seem to be the most
important classes in this ring and calculating the class of some geo-
metrically important loci in ﬂg in terms of these classes. We take

as a model for this the enumerative geometry of the Grassmannians.
[65]

Mumford’s most important classes are now termed tautological classes. He opened
the door to the study of their algebra — a fascinating topic connected to many
areas of modern mathematics.

More than three decades have passed since Mumford’s article. The progress
in our understanding of the intersection theory of the moduli space of curves has
been considerable. Calculations by classical methods of the algebra of tautological
classes on M, for low g by Faber [18], starting in the 80’s and continuing later in
the 90’s with Zagier, have proved to be fundamental. Witten’s conjecture [88] in
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the 90’s relating the integration of the cotangent line classes on the moduli spaces
Mg,n of stable pointed curves to the KAV hierarchy was a marvelous surprise: the
study of the algebra of tautological classes was linked at a basic level to the theory
of integrable hierarchies. The deep role of topology was highlighted in 2007 by
the landmark proof of Madsen and Weiss [59] via homotopy theory of Mumford’s
conjecture on the stable cohomology of M, as g — oo.

Starting in the mid 90’s, there was a swift development of Gromov-Witten
theory. The moduli space ﬂg,n(X ) of stable maps intertwines the geometry of
M, ,, with the geometry of the nonsingular target variety X. Gromov-Witten
theory is based upon the virtual fundamental class [2[3] of the moduli of stable
maps,

- vir _

Myn(0)] € Ad(Myn(X)),
a new algebraic cycl whose properties constrain the algebra of tautological classes
of M, ,, in remarkable ways.

A systematic study of the constraints imposed by Gromov-Witten theory on
the algebra of tautological classes was started? in 2009 in [69] and continued in
[7OL[7T]. Recent progress has culminated in a complete proposal by Pixton [79] for
a calculus of tautological classes on M, ,.

My goal here is to present Pixton’s proposal and survey the rapid advances of
the past 6 years. Several open questions are discussed. An effort has been made to
condense a great deal of mathematics into as few pages as possible with the hope
that the reader will follow through to the end.

2. Tautological classes on M,

2.1. k classes. Let M, be the moduli space of complete nonsingular genus
g > 2 curves over C, and let

(1) m:Cy = M,
be the universal curve. We view M, and C, as nonsingular, quasi-projective,
Deligne-Mumford stacks. However, the orbifold perspective is sufficient for most of
our purposes.
The cotangent line IL to the fibers of the morphism () defines a cotangent line

class,

¥ =ci(L) € AY(Cy) -
The x classes are defined by push-forward,

Kp = T (P"T) € AT(M,) .

The tautological ring

R* (M) C A*(My)

is the Q-subalgebra generated by all of the k classesH There is a canonical quotient
Q[K/h K2, K3, .. ] i> R*(M!]) — 0.

The kernel of ¢ is the ideal of relations among the k classes.

LAll Chow (and cohomology) groups in the paper will be taken with Q-coefficients.

2T have dated Theorems 1-7 presented in the paper (and the surrounding results) by the years
in which the proofs were found. Published versions appear later and in mixed order. The dates
of publication can be found in the bibliography.

3Since ko = 29 — 2 € Q is a multiple of the fundamental class, we need not take ko as a
generator.
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2.2. Motivations. There are two basic motivations for the study of the tau-
tological rings R*(M,). The first is Mumford’s conjecture proven by Madsen and
Weiss [59],

lim H*(M,) = Q[k1, K2, K3, .. .],

g*)OO
determining the stable cohomology of the moduli of curves. While the x classes do
not exhaust H*(M,), there are no other stable classes.

The second motivation comes from a large body of classical calculations on M,
(often related to Brill-Noether theory). The answers invariably lie in the tautolog-
ical ring R*(M,). The study of tautological classes by Mumford [65] was directly
inspired by such algebro-geometric cycle constructions.

2.3. Schubert calculus. The structure of the Chow ring of the Grassmannian
Gr(r,n) of r-dimensional subspaces of C™ is well-known [26] and may be viewed as
a model for the study of the tautological classes on M,.

The Chern classes of the universal subbundle

S — Gr(r,n)
generate the entire Chow ring,
Q[cl(S), R cT(S)] BN A*(Gr(r,n)) — 0.

The kernel of ¢q is expressed in term of the Segre classes of the universal subbundle
as

ker(q) = (sn_r+1(5), R Sn(S)) ,  —=s5(9).

The Schubert calculus for the Grassmannian yields classical formulas for geometric
loci in terms of the generators ¢;(S). The subject is fundamentally connected to
the representation theory of the symmetric group.

A basic goal (expressed in the quotation of Mumford in the Introduction) is to
develop a calculus for tautological classes on the moduli space of curves parallel to
the Schubert calculus for the Grassmannian.

2.4. Cohomology. We may also define a tautological ring
RH*(M,) C H(M,)
generated by the x classes in cohomology. Since there is a natural factoring
Qlk1, K2, K3, - - -] —= R*(My) —= RH*(M,)

via the cycle class map c, algebraic relations among the x classes are also cohomo-
logical relations. Whether or not there exist more cohomological relations is not
yet settled.

Q1. Is the cycle class map R*(M,) — RH*(M,) an isomorphism?

Calculations (discussed in Section B3] below) show the answer to question Q1 is
affirmative at least for g < 24.
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3. Faber-Zagier relations on M,

3.1. Conjecture and proof. Guided by low genus calculations and deep in-
sight, Faber and Zagier conjectured in 2000 a remarkable set of relations among
the k classes in R*(M,) for all g.

The first proof [TOL[71] of the Faber-Zagier conjecture (Theorem [I] of Section
B2) was given in 2010 via a geometric construction involving the virtual class of
the moduli space of stable quotients [60][1 Since then, a proof [72] in RH*(M,)
via Witten’s 3-spin class was found in 2013, and a second proof [40,42] in R*(M,)
via the virtual class of the moduli space of stable maps to P! was found in 2014.

3.2. Formulas. To write the Faber-Zagier relations, we will require the fol-
lowing notation. Let the variable set

P = { p1,P3,P4. D6, 07, P9, P10, - - - }

be indexed by positive integers not congruent to 2 modulo 3. Define the series

Dl

\I/(t,p):(1+tp3+t2p6+t3p9+...)2%

=0

= (6i) 6it1,
t 2 (7— ’
+ (p1 +tpsa +t°pr + )Z%(Si)!(%)!(ii—l

Since ¥ has constant term 1, we may take the logarithm. Define the constants
CF%(o) by the formula

log(¥) =" " Cf(0) t"p° .

o r=0

The above sum is over all partitionsﬁ o of size |o| which avoid parts congruent
to 2 modulo 3. The empty partition is included in the sum. Following standard
conventions, to the partition

o=1m3"4n. ..

we associate the monomial p? = py'ps®py* ---. Let
oo
,YFZ _ Z Z CTFZ(U) Krtrpa )
o r=0

For a series © € Q[x][[t, p]] in the variables k;, t, and p;, let [©]ypo denote the
coefficient of ¢"p? (which is a polynomial in the k;).

THEOREM 1 (P.-Pixton 2010). In R*(M,), the Faber-Zagier relation

[eXp(_’YFZ)} tdpoe 0

holds when d > %ﬂal and g=d+|o|+1 mod 2.

4The first relations obtained by virtual localization [32] on the moduli space of stable quo-
tients can be found in [60] Section 8]. See also [89] for a study of properties of the relations of
[60], Section 8§].

5All parts of a partition are positive (a condition satisfied by the empty partition).
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The dependence upon the genus g in the Faber-Zagier relations of Theorem []
occurs in the inequality, the modulo 2 restriction, and via kg = 29 — 2. For a given
genus ¢ and codimension 7, Theorem [l provides only finitely many relations. While
not immediately clear from the definition, the Q-linear span of the Faber-Zagier
relations determines an ideal in Q[k1, ko, K3, . . .], see [T1], Section 6].

3.3. Gorenstein property. The ring R*(M,) is generated over Q by the
classes
K1 K2, R g S R*(Mg) )
as conjectured by Faber [18] and proven by Morita [64] in RH*(M,) and Ionel [38]
in R*(M,). By Boldsen’s results [7], there are no relations among the « classes of
degree less than or equal to | %]. Looijenga’s results [58] established the following

nonvanishing and vanishing conjectures of Faber [18]:
(2) Rg_2(Mg) =Q, R>g_2(M9) =0.

The proportionalities in R9~2(M,) of monomials in the x classes are known via

Hodge integral evaluations [18,19,31]. The generation, nonvanishing, vanishing,

and proportionality results were all conjectured by Faber in 90s and proven by 2005.
For g < 24, the Faber-Zagier relations yieldd a Gorenstein ring,

@[K/la K2, K3, .. ]
FZ-relations
with socle in codimension g — 2. By the Gorenstein property, the pairing

Ri7(M,) x ng:£27d(Mg) - RIQIEQ(Mg) =Q

is nondegenerate for 0 < d < g — 2. The nondegeneracy of the pairing forbids
additional relations, so

REZ (Mg) =

Fz(Mg) = R*(M,).
For g < 24, the Q-linear span of the Faber-Zagier relations is the kernel of

Q[Kl, Ko, K3, .. ] i> R*(Mq) —0

and the cycle class map R*(M,) -~ RH* (M) of question Q1 is an isomorphism.
However, the Faber-Zagier relations in genus 24 do not yield a Gorenstein ring
with socle in dimension 22! There are too few relations in codimension 12,

dimg R|1:% (Maq) = dimg R,lzg (Mag) + 1.

Calculations show the Gorenstein property continues to fail (to an increasingly
greater extent) as g increases above 24.

Q2. Do the Faber-Zagier relations span the ideal of relations among the k classes
in R*(My) for all g?

While question Q2 is completely open, a negative answer would be surprising
since many different mathematical approaches have failed to find relations outside
of the Faber-Zagier span [18|[401[701[72][82][87]. Moreover, the Gorenstein property
for the algebra of tautological classes has been proven to fail for the moduli space
Mgfg of curves of compact type and the moduli space ﬂggo of stable curves in

6All the calculations discussed in Section [3:3 concerning the Faber-Zagier relations are by
computer and were undertaken by C. Faber in the period 1991-2011 with continually improving
methods. The discovery of the failure of Rf, (Ma24) to be Gorenstein came in 2009 during a visit
to Lisbon.
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464 RAHUL PANDHARIPANDE

[74l[78]. So there appears to be no compelling reason to believe the Gorenstein
property holds for Moy.

3.4. Hypergeometric series. The main actors in the Faber-Zagier relations
are the series

= (60)!
Alt) = 2(35)!()22’)!“

o (6D 6i+1,
BE#) = ;(3i)!(2i)!6i—1t'

The functions A and B are related by the following fundamental identity observed
first by Pixton [79]:

(3) A(—)B(t) + A(t)B(—t) = —2.

The hypergeometric differential equation satisfied by A, written in the variable

z = 288t, is
5 d? d 5
The function B is determined by A and the differential equation
5 dA z
32 T4 (S -1)A=B.

In the proofs of the Faber-Zagier relations, geometric sources for the series A and
B were found. The two approaches [40L71] in R*(M,) both find the series in
the Frobenius geometry associated to P!. In the proof of [72] in RH*(M,), the
functions A and B appear in the R-matrix of the Frobenius manifold associated to
3-spin curves.

3.5. Descendents. The series A appears in the asymptotic expansion of the
Airy function related to the Witten-Kontsevich theory of descendent integration
over the moduli space of stable curves.

Let M, , be the moduli space of stable genus g curves with n marked points.
The cotangent line at the i*" marking defines a line bundle

Li — M!]ﬂl
with first Chern class
i = c1(Ly) € AH (M) -
The descendent integrals are defined by

(4) <Tk17—k2 .. -Tk">g = /m w’flw];? .. '(/)5” .

g,m

The bracket (@) vanishes unless the dimension constraint

39—3+n:§n:ki
i=1

is satisfied. The associated generating series in the variables {t;};>0 is
1
]:(to,tl,...)z Z E Z <Tlek2-'-Tkn>gtk1tk2-~-tkn-

9>0,n>1 " k1,..,kn>0
2g—24+n>0

Licensed to AMS.
License or copyright may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



A CALCULUS FOR THE MODULI SPACE OF CURVES 465

Witten [88] conjectured
0*F
Iz
is a solution of the KdV hierarchy. The first equations of the hierarchy are

u

Ug, = Uy + 1_2u;cac9ca

1 1
U, = —ulu, + — (2ugUgr + WUgge) +

2 12

%uwxwxw )

where we have identified = here with ¢y. Together with the (elementary) string
equation,
OF ~~, OF
o = Z i+l + 2
dtg pard ot; 2
Witten’s conjecture uniquely determines the series F. The conjecture was proven
by Kontsevich [50]. See [46l[6366] for other proofs.

A basic relationship between the descendent integrals and the A series is derived
via Kontsevich’s matrix integral in [8]50]:

)\73
(5) eXp(f)|ti:_(2i_1)!l/\—21‘,—1 - A (-g) .
For example, the terms of exp(F) which contribute to the A= coefficient are:

= S R A YR

1440 (A8
.7 288

6! A3
= 3 (‘@) -

The result is the A™3 term of A (—QT_;).

Q3. Is the descendent evaluation (Bl) related to the occurrence of the A series in
the relations among tautological classes?

Question Q3 was first raised in [8] where the many appearances of the A and
B series related to the moduli spaces of curves are surveyed.

3.6. Markings. The algebra of tautological classes may also be studied on
the moduli spaces

Tt n
Mg, MY, C

of pointed curves lying over M, . Here, M,,, is the moduli space of nonsingular
curves with distinct markings, /\/lgtn is the moduli of curves with rational tails, and
Cy is the nt? fiber product of the universal curve

m:Cg = My
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In addition to the k classes, there are cotangent line classes 1; at the markings
and diagonal classes. The full algebra of tautological classes will be considered in

Section 5.8

4. r classes on M,

4.1. Compact type. A connected nodal curve C' is of compact type if the
dual graph of C is a tree (or, equivalently, if the Jacobian of C' is compact). The
moduli space /\/lf]tn of curves of compact type lies in between the moduli spaces of
nonsingular and stable curves

Mg, C M

o C Mg

The algebra of x classes on M;tn is remarkably well-behaved. The structure

is simpler and better understood than for M,. Of course, the full algebra of
tautological classes on M¢', contains more than the & classes (and will be discussed

in Section 5.8).

4.2. k classes. The definition of the x classes on M, is easily extended to the
moduli of stable curves. Let

™ Mg,n+1 — ﬂg,n
be the universal curve viewed as the (n + 1)-pointed space, and let
Un1 = e1(Lnt1) € A' (Mg nia)

be the Chern class of the cotangent line at the last marking. The « classes are

= ma(U) € A(Myn), 120
The simplest is ko which equals 2g — 2 + n times the unit in A°(M,_,).

The restriction of x, € A"(M,) to M, via the inclusion
M, C M,

agrees with the definition of x, € A"(My) of Section 2Tl The  classes on M¢',
are defined via restriction from Mgm.

Define the & ring for curves of compact type,

K (Mg,) € AT (ME,),

to be the Q-subalgebra generated by the k classes. Of course, the k rings are graded
by degree.

4.3. Basic results. The ring £*(MS',) is generated over Q by the classes
K1,K2y .. s Rg 14|n] € /f*(./\/l;tn) )

If n > 0, there are no relations of degree less than or equal to g — 1+ [§]. In
n*(./\/l;t), there are no relations of degree less than g — 1 (whether degree g — 1
relations can occur is not known). The proofs of the above generation and freeness
results can be found in [69].

The nonvanishing and vanishing results for £*(M¢',),

R MEL) = Q, R ME) =0,

parallel to ([2)) for the x classes on M, were proven in [21134]. The proportionalities
in k29737 (MS',) of the monomials in the & classes are determined by Hodge
integral evaluations [191[201[31].
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4.4. Universality. A new and surprising feature about the s rings in the
compact type case is the following universality result proven in [69]. There appears
to be no parallel for M,.

THEOREM 2 (P. 2009). Let g > 0 and n > 0, then the assignment Kk; — K;
extends to a ring isomorphism

L: H*(M_gt—l,n-fQ) = H*(Mgt,n) .

In other words, the relations among the « classes in the above cases are genus
independent! By composing the isomorphisms ¢ of Theorem 2, we obtain isomor-
phisms

LiRT (M8f2g+n) =N (M(c;fn)
so long as n > 0. Hence, universality reduces all questions about the & rings to genus
0. Calculations of the relations, bases, and Betti numbers of the ring x*(MS',~)
are obtained in [69] using the genus 0 reduction.

Let P(d) be the set of partitions of d, and let

P(d,k) C P(d)
be the set of partitions of d into at most k parts. Let |P(d, k)| be the cardinality.
To a partition with positive parts p = (p1,...,p¢) in P(d, k), we associate a k

monomial by
_ d ct
Kp = Kp, ** Kp, € K (Mg’n) .

THEOREM 3 (P. 2009). For n >0, a Q-basis of k(M) is given by
{kp | PEP(d,29—2+n—4d) }.
The Betti number calculation,
dimg k(M) = |P(d,29 —2+n—d)|,
is implied by Theorem [3l

Q4. Is there a representation theoretic formula for the multiplication of k* (Mgtn)
i the basis of Theorem Bl?

Question Q4 appears directly parallel to questions in the Schubert calculus.
Recent progress on Q4 has been made by Setayesh [83] who has found a formula
involving the combinatorics of partitions.

Theorems 2] and Bl for the x rings in the compact type case require at least
1 marked point. In the unmarked case, half of the universality still holds. The
assignment x; — k; extends to a surjection

Ly A*(M(C)fzg) — H*(M;t) .
However, a nontrivial kernel is possible. The first kernel occurs in genus g = 5.

Q5. What is the kernel of K*(Mg'y,) = K*(MS')?

In genus 5, the kernel of 15 is related to Getzler’s relation in Mm, see [69]
for a discussion. A complete answer to Q5 will likely involve sequences of special
relations in the tautological ring

7Q5 is perhaps the narrowest question discussed in the paper, but I am very curious to know
the answer.
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The proofs of Theorems [2] and [B] were obtained in [69] by studying the virtual
class of the moduli space of stable quotients [60]. The results were precursors to
the proof [TOL[7I] of the Faber-Zagier relations via the moduli of stable quotients.

5. Relations. A natural question to ask is whether x relations in the com-
pact type case can be put in a form parallel to Theorem 1. An answer has been
found by Pixton [80] Section 3.4].

We define a set of relations as follows. Let

p={pi,p2p3 ...}

be a variable set indexed by all positive integers. Let

U(t,p) = (1+tps+t2pa+t7ps+...) > (2i — I ¢
=0

+ (p1 +tps +t2ps +...),

where (20 — 1)l = (22—), as usual. Define the constants CF (o) by the formula
oe() = 3" CElo) v
o r=0

Here, o denotes any partition with positive parts. Let

ZZCPU tv" o

o r=0

THEOREM 4 (Pixton 2013). In k*(MS',), the relation
[exp(—'yp)]tdpa =0
holds when d > w.

Theorems 2] and [3] determine the complete set of relations among the x classes
in the n > 0 case. Using Theorems 2] and B Pixton [80] has proven that the
Q-linear span of the relations of Theorem @ is the complete set in the n > 0 case.

5. Pixton’s relations on M, ,

5.1. Overview. Tautological classes on the moduli space ﬂg » of stable curves
are obtained from k classes, 9 classes, and the classes of boundary strata (indexed
by stable graphs) E‘ Decorated stable graphs provide a language for describing all
tautological classes. A parallel role is played by the language of partitions in the
Schubert calculus of the Grassmannian. After a brief discussion of stable graphs in
Section [5.2] the algebra of tautological classes

R*(Mgn) C A" (Mgn)

is defined in Section (.3l o
The main recent advance is the set of relations in R*(M, ,,) found by Pixton.
Pixton’s relations [79] were conjectured in 2012 and first proven [72] to hold in

8 A study of the algebra of & classes can also be pursued on ﬂg,n, see [151[16].
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RH*(M,,,) in 2013 using Witten’s 3-spin clasd] and the Givental-Teleman clas-
sification of Cohomological Field Theories [86]. Shortly afterwards (also in 2013),
Janda [39] found a proof in R*(M,,,) using a mix of virtual localization [32] and
R-matrix techniques for the equivariant stable quotients theory of P'. His argu-
ment combined elements of the Chow results of [TOL[7I] and the CohFT methods
of [72]. A second proof in Chow via the equivariant Gromov-Witten theory of P
was found by Janda [42] in 2015.

Pixton has further conjectured that all relations among tautological classes
are obtained from his set. The claim is open and is perhaps the most important

question in the subject. Pixton’s relations for R*(M, ) specialize to the Faber-
Zagier relations when restricted to the moduli space M, of nonsingular curves.

5.2. Boundary strata. The boundary strata of the moduli space M, , pa-
rameterizing complex structures on curves of fized topological type correspond to
stable graphs. The idea here is simple, but the notation requires some care.

A stable graph T" consists of the data

I'=(V,H,L, g:V—Zs, v:H—=V, t:H— H)

which satisfies the following properties:

(i) V is a vertex set with a genus function g : V — Zxq,
(ii) H is a half-edge set equipped with a vertex assignment

v:H—>V

and an involution ¢ : H — H,

(iii) E, the edge set, is defined by the 2-cycles of ¢ in H (self-edges at vertices
are permitted),

(iv) L, the set of legs, is defined by the fixed points of ¢ and is endowed with
a bijective correspondence with the set of markings

L+ {1,...,n},

(v) the pair (V,E) defines a connected graph,
(vi) for each vertex v, the stability condition holds:

2g(v) —2 +n(v) > 0,
where n(v) is the valence of I" at v including both edges and legs.

An automorphism of I" consists of automorphisms of the sets V and H which leave
invariant the structures g, ¢, and v (and hence respect E and L). Let Aut(I") denote
the automorphism group of T'.

The genus of a stable graph I' is defined by

g(l) = g(v) + (D).
veV

A boundary stratum of the moduli space M, ,, naturally determines a stable graph
of genus g with n legs by considering the dual graph of a generic pointed curve
parameterized by the stratum.

9Tautological relations obtained from Witten’s r-spin class for higher r are studied in [73].
By Janda’s result [41], the relations of [73] are contained in Pixton’s set.
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To each stable graph I', we associate the moduli space

HF = H Mg(v),n(v)-

vEV

Let m, denote the projection from Mr to Mg(v),n(v) associated to the vertex wv.
There is a canonical morphism

(6) gl—‘ : mf‘ — m!],n

with imag@ equal to the closure of the boundary stratum associated to the graph
I'. To construct &r, a family of stable pointed curves over Mr is required. Such
a family is easily defined by attaching the pull-backs of the universal families over
each of the Mg(v),n(v) along the sections corresponding to half-edges. Let

[[] € A" (My,n)

denote the push-forward under &ér of the fﬂdamental class of Mr.
Two examples of boundary strata in Ms 3 and their associated stable graphs
are given in the following diagram.

Let ® and be the stable graphs in the first and second cases in the diagram. The
moduli space Mg in the first case is

M074 X M2’3

with |Aut(®)| = 2. The nontrivial automorphism arises from switching the edges.
The moduli space Mg in the second case is

Miax Moz x Mia

~

with |Aut(®)| = 2. The nontrivial automorphism arises from switching the half-
edges on the self-edge.

10The degree of &r is |Aut(T)|.
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5.3. Strata algebra. Let S}, be the Q-algebra of x and 1) classes supported

on the strata of Mg,n. A Q-basis of Sy, is given by isomorphism classes of pairs

[T, 7] where T is a stable graph corresponding to a stratum of the moduli space,
Mr — Mgﬂl s

and v is a product of k and 1) classes on Mp. The s classes are associated to
the vertices, and the 1) classes are associated to the half-edges. The only condition
imposed is that the degrees of the x and 9 classes associated to a vertex v € V(I)
together do not exceed the dimension 3g(v) — 3 4+ n(v) of the moduli space at v.
For the graph & associated to a stratum of ﬂg,g, in the diagram, let vg and v
denote the vertices of genus 0 and 2 respectively. Let the left edge consist of the
two half edges hg — ho where hg is incident to vy and hso is incident to vy. Then,

(7) (@, k1 [vo] ke lva] Wi, 1]
is an example of such a pair. The codimension of the pair () is
8=2+6,

2 for the nodes of ® and 6 for the x and v classes.
The strata algebra S} ,, is graded by codimension

39—3+n

* _ d
ng - @ Sg,n
d=0

and carries a product for which the natural push-forward map

(8) Sgn = AT (My,n)

is a ring homomorphism, see [72] Section 0.3] for a detailed discussion.
The image of () is, by definition, the tautological m’n
R*(Mgn) C A" (M) -
Hence, we have a quotient
Sy N R*(Myn) — 0.

The ideal of tautological relations is the kernel of g.
In the strata algebra, the basis elements [I', 7] are treated formally. In the case
(g,m) = (0,4), we have

dimg Sy, =1, dimgS;, =8.
Let I'y be the unique graph of genus 0 with 4 markings and a single vertex v. Then
[Te, 1] € 88)4
is a basis. In codimension 1, the 5 possibilities for v on I'y yield the pairs
o, k1], Lo, t1], [Ca, 2], e tis], [Ta,tha] € Sgy-
In addition, there are 3 pairs
123,41, T2, 1), Ciaps,1] € Soy

M Our definition here follows the Appendix of [33]. See [22] Section 1] for a more intrinsic
approach.
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where the underlying graphs have 2 vertices (and correspond to the usual boundary
strata). The kernel

Spa — R'(Mo,)
is 7 dimensional and contains the basic linear equivalence of the three boundary
divisors of
Moy 2P,
see [4752] for a study of R*(My ).
The first geometrically interesting relationd was found in genus 1 by Getzler

[28] in 1996. Soon after, several low genus relations were determined. Below is a
tautological relation in codimension 2 on M 3 found in [6] in 1998.

Pixton’s set puts order to the chaos of strata classes and coefficients which appear
in the above relation (and in all the other relationd!] found in the period after
Getzler’s discovery).

5.4. Vertex, leg, and edge factors. Pixton’s relations are determined by a
set

P = {Rg a}

of elements RZ,A € 87, associated to the data

® g,n € Z>o in the stable range 2g —2+n > 0,
e A= (ay,...,ay), a; €{0,1},

e dc ZZQ satisfying d > %

The elements Rg 4 are expressed as sums over stable graphs of genus g with n legs.
Before writing the formula for Rg! 4, a few definitions are required.

12 A proof of Getzler’s relation in Chow was given later in [67].

13The strata classes in the genus 2 relation of the diagram have been represented by their
topological type instead of their associated dual graph. The genera of the components are under-
lined. The red marked points are unlabeled. Each picture represents the sum of the 6 possible
labelings of the markings. The diagram (taken from [6]) was typeset by P. Belorousski.

MFor example, see [30,48l49] for further relations in genus 2 and 3.
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Definitions of Hy and H;. The hypergeometric series A and B of Section [3.4]
enter Pixton’s relations in following form:

Ho(T) = A(-T) = i %(—TY =1—60T 4 277207° — - - -,

(6i)!  6i+1
< (20)!(30)! 60 — 1

(=T)" =1+ 84T — 327607 + - - - .

=

Definition of x(f). Let f(T) be a power series with vanishing constant and linear

terms,
F(T) e T*Q[TY] -
For each M, ,,, we define
) SN =3 oo (F W) Fnm)) € A* (M),

m>0
where p,, is the forgetful map
Pm - Mg,n+m — ﬂg,n .
By the vanishing in degrees 0 and 1 of f, the sum (@) is finite.

Definitions of G4, and (,. Let G, ,, be the (finite) set of stable graphs of genus
g with n legs (up to isomorphism). Let I' € G, ,. For each vertex v € V, we
introduce an auxiliary variable ¢, and impose the conditions

Cv(v’ = Cv’Cva Cg =1.

The variables ¢, will be responsible for keeping track of a local parity condition at
each vertex.

The formula for Rg_’ 4 is a sum over Gy ,. The summand corresponding to
I' € Gy, is a product of vertex, leg, and edge factors:

e Forv eV, let k, = (T — THy((,T)).

e Forl e L, let H = CSEZ)HGL (Q}(l)d)l), where v(l) € V is the vertex to which
the leg is assigned.

e For e € E| let
_ C/ + C// _ HO(C/’IZJ/)CI/Hl(C//w//) _ C/Hl(é'/,l/}/)HO(C//,lp//)
Q/J/_’_w//
— (6OCICN _ 84) + [32760(</w/ + (//w//) _ 27720((/,(/)// + C//w/)] + e

A,

where (', (" are the (-variables assigned to the vertices adjacent to the
edge e and 1)’,1)" are the 1)-classes corresponding to the half-edges.

The numerator of A, is divisible by the denominator due to the identit
Ho(T)H1(=T) + Ho(=T)H:(T) = 2.
Certainly, A, is symmetric in the half-edges.

15The identity is equivalent to (3).
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5.5. Pixton’s relations P. Let A = (a1,...,a,) € {0,1}". Let
es?,
be the degree d component of the strata algebra class
1 1 X
2wy [ [ TITT o] € i

where the products are taken over all vertices, all legs, and all edges of the graph I.
The subscript [, ¢5”)~" indicates the coefficient of the monomial [T, ¢5™ " after
the product inside the brackets is expanded. In fact,

Ri =0eS8],

unless the parity constraint

gzd—i—l—i—Zai mod 2
i=1
holds.
We denote by P the set of classes Rg_’ 4 where

>4 -T2t L+ 30
3
By the following result, Pixton’s set P consists of tautological relations.

THEOREM 5 (Janda 2013). Ewvery element RZ,A € P lies in the kernel of the
homomorphism

q:8;, — A* (M) -

5.6. Pixton’s relations P. The set P is extended to a larger set
PCP
of tautological relations by the following construction.

The first step is to define a tautological relation Rg Ao € Sg
the data

», associated to

g,n € Z>¢ in the stable range 2g — 2 +n > 0,

A= (a1,...,an), a; € Z>o, a; =0 or 1 mod 3,

e o is a partition of size |o| with parts o; =0 or 1 mod 3,

. . g—1+>"1 | ai+|o]
d € Z>p satistying d > =——==t———.

Let B = (b1,...,bn,bpt1,...,bnte) be the unique vector satisfying
b; =a; d3 1<j<
by €{0,1} and {74 MO =J =M
bj=0j—n, mod3 n+1<j5<n+/,
where £ is the length of 0. Let

n n+4 n+4
~ a; —b; Oi_p —bi 1+§: 1 b;
d = d_E J J E Jj—n J

, 3 , 3 ”

Jj=1 j=n+1
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Pixton’s definitiod of RY € Sg,n is

9,A,0
n a b, n+L o b
(2‘ .73 J 1+ J*'g J
Ryao=pe | Ry - [[¥; IT ¥ ;
Jj=1 j=n+1

where Rg) g € Sg’n 4¢ is in the set P and py, is push-forward by the map forgetting
the last ¢ markings,
Pes S e = Sgn-

By Theorem [ Ri g is a tautological relation. Therefore, Rgﬁ 4,0 1 also a tauto-
logical relation.
When A = (), the relations Rg’g € 55,0 yield, after restriction to
M, C Mg,

the Faber-Zagier relations of Theorem
Pixton’s set P is obtained by taking the closure of the extended set of classes

d d g— 143" ai +|o|
(10) { Ry a0 €Sgn 3

under push-forward by all boundary maps: add to the set (I0) all classes in S,
which are obtained from a stable graph

I'e Gy

d >

with a class RZEZ; Aw),0(v) placed on a single vertex v € V(I') and any product of

tautological classes placed on the other vertices of I'. By Theorem [B every class in
P determines a tautological relation.
The subset P lying in a fixed Sg)n is effectively computable. By the dimension
restriction
g—14+>"  ai+ o]
3 )
lie in P. The closure process by boundary push-forward

d>
d
g,A,0 _
is again finite because of the dimension restriction. Hence, the Q-linear span of P

. d . . . o .
in §; ,, is generated by a finite list of explicit classes.

Why stop at P? Why not consider the closure with respect to further push-
forwards and pull-backs via the standard boundary and forgetful maps? Pixton
[791/80] has proven the set P is closed under all these further operations

only finitely many R

Q6. Do Pizton’s relations P span the ideal of relations among the tautological

classes in R*(My ) for all g and n?

160ur conventions here differ from [79] by a global sign.
17The relation RZ -4 is trivial unless the parity condition

n
gzd+|a|+1+2ai mod 2
i=1
holds.
18From Pixton’s results, the most efficient definition of the Q-linear span of P is as the
smallest set of ideals
{Ig»"l - S;,n }

which contains P and is closed under the natural boundary and forgetful operations.
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5.7. Pixton’s conjecture. Pixton has conjectured an affirmative answer to
question Q6. The evidence for Pixton’s conjecture is (at least) the following:

(i) All the previously found relations occur in P. The theory in genus 0
is straightforward (and explained in [72] Section 3.6]). Modulo simpler
relations, Getzler’s genus 1 relation is

2 2
Ria1,1,1) €Sia-

Pixton’s conjecture is trud for g € {0,1} and all n. The genus 2 relation
displayed in Section [£.3]is

2 2
R3,1,11) €523

modulo simpler relations.

(ii) Computer calculations of Pixton’s relations for low (g, n) often yield Goren-
stein rings (forbidding further relations). However, just as in the Faber-
Zagier case, Pixton’s relations do not always yield Gorenstein rings.

(iii) Janda [41] has proven that a wide class of semisimple Cohomological Field
Theories (including higher projective spaces and r-spin curves) will not
yield relations outside of P.

Question Q6 has not been investigated as extensively as question Q2 for the Faber-
Zagier relations since the moduli spaces of stable curves are computationally more
difficult to handle. However, the failure to find additional x relations in R*(M,)
may also be viewed as supporting Q6 by the restriction property.

Pixton’s proposal provides an effective calculus of tautological classes on the
moduli spaces Hgyn of stable curves. With an affirmative answer to Q6, Pixton’s
calculus provides a complete answer. Perhaps a reformulation of the set P in a more
directly algebraic setting will eventually be found. How the subject will develop
depends very much on the answer to Q6.

Even a few years ago, a calculus for the moduli space of curves seemed far out
of reach. Pixton’s proposal has led to a striking change of outlook.

5.8. Nomnsingular and compact type curves. The moduli spaces
(11) Mg, My, M C Mgy
are all open subsets. The algebras of tautological classed®d

R (Mgn) C A" (Mga), R*(My,) C A"(Mg,,), R*(Mg,) C A"(Mg,,)

are defined in each case as the image of the respective restriction of

R (Mgn) C A" (Mgn) .-
A basic question here concerns the extension of tautological relations over the
boundary.

Q7. Does every tautological relation in R*(Mg ), R* (MY ), and R*(MS,,) arise

from the restriction of a tautological relation in R*(Mg.,)?

19The proof uses the Gorenstein property of the tautological rings R*(Mo,,) and R* (M1 »).
The Gorenstein property is clear in g = 0 since

R*(Mo,n) = H*(Mo,n)

and is proven in g = 1 in [75].
20See [91[10L37,441[841[85] for various directions in the study of these tautological rings.
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If the answers to Q6 and Q7 are both affirmative, then the Pixton calculus
determines the tautological rings in all the nonsingular and compact type cases

Im.
The n'" fiber product Cy of the universal curve
m:Cq = M,
is mot an open set of qu However, there is a proper surjection
./\/l;tm - Cy -
The tautological ring R*(Cy') is defined?] as the image of R*(M§,,) under e,. If the

answers to Q6 and Q7 are both affirmative, then Pixton’s calculus also determines
R*(CM).
g

5.9. Further directions. o
5.9.1. Symmetries. The symmetric group ¥, acts naturally on M, , by per-

muting the n markings. Since both S, and R*(M, ) carry induced %,,-representa-
tions and

q:8;,—~ R* (My.n)
is a morphism of 3,,-representations, the ideal of tautological relations also carries
an induced X,,-representation.
Pixton’s relations interact in interesting ways with the 3,-action. For g > 0,

Pixton proves [79], Proposition 2] that the new relationd?d in 53’71 are generated by
Yn-invariant tautological relations. For example, both Getzler’s relation and the
genus 2 relation displayed in Section [5.3] are new and invariant.

The symmetric group acts on the entire cohomology H*(M, ). For g < 2,
the symmetric group representations are well understood [4}23][24][27|[29][76],
and there is significant progress [5] in genus 3. Constraints on the ¥,-action on
R*(My,,,) are proven in [22] Section 4] and show certain cohomology classes can
not be tautological.

5.9.2. Push-forward relations. A tautological relation in S ,, yields a universal
equation for the genus < g Gromov-Witten theory of every target variety X [51].
However, in genus 1, such tautological relations do not appear to be enough to prove
the Virasoro constraints [17] for arbitrary targets [56]. Can any further universal
equations in Gromov-Witten theory be found in the geometry of the moduli spaces
of curves?

An idea to find further universal equations in Gromov-Witten theory using
push-forwards is the following. Consider the gluing map,

d: mgg — mg.:,_l s

with image equal to the divisor Ay C Mg of curves with a nonseparating node.
Elements of the kernel

5* : R* (M%Q) — R*“(ﬂgﬂ)

21For another definition of R* (CF) and further study of the relationship with R*(MY ), see
[77).

22The new relations are those which do not lie in the Q-span of relations coming from lower
genus, lower marking number, or lower codimension.
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yield universal equations for the genus < g+ 1 Gromov-Witten theory of targets X
with no genus g + 1 terms. Hence, elements of ker(d,) yields universal equations
for genus < g Gromov-Witten theory.

To formalize the notion of a push-forward relation, consider the composition

* * (A A . * AA
9,2 R (Mg,2) — R Jr1(-/\/194-1)'
We have ker(q) C ker(d, o ¢). The gluing map ¢ lifts to

5:85, St
and we also have ker(8) C ker(6, o ¢). The subspace

ker(q) + ker(8) C ker(d, o q)
yields relations in Gromov-Witten theory already captured before considering 0.
A push-forward relation is a nonzero element of

ker(d. o q)

ker(q) + ker(d)

Push-forward relations yield universal constraints in Gromov-Witten theory which
appear to go beyond the constraints obtained from tautological relations in Sy ,,.

Are there any push-forward relations? Possible candidates were found in [57].
Let r be even and satisfy 2 < r < g — 1. Define

Xg,r = Z (_1)a[1—1.7¢¢11¢l27] € S;,%Jrr'

a+b=2g+r

Here, T'y is the unique graph with no edges. By [57, Theorem 2],
5*(](X977’) =0.

Moreover, the results of [57] show

Xgr ¢ ker(q) and xg, ¢ ker(d),

but whether x, , ever avoids the sum ker(q) + ker(d) is open.

Pixton’s relations can be used to search for push-forward relations (via sev-
eral related constructions) which have the possibility of producing new universal
Gromov-Witten equations. What role such relations will play in Gromov-Witten
theory is not yet known.

6. Double ramification cycles

6.1. Overview. Curves of genus ¢ which admit a map to P! with specified
ramification profile y over 0 € P* and v over oo € P! define a double ramification
cycle DR, (u, v) on the moduli space of curves. The restriction of the double rami-
fication cycle to the moduli space of nonsingular curves is a classical topic related
to the linear equivalence of divisors.

The cycle DRy(u,v) on the moduli space of stable curves is defined via the
virtual fundamental class of the moduli space of stable maps to rubber. An explicit
formula for DR, (u, v) in the tautological ring, conjectured by Pixton [81] in 2014
and proven in [43] in 2015, is presented here. Pixton’s double ramification formula
expresses the cycle as a sum over stable graphs (corresponding to strata classes)
with summands given by a product of leg and edge factors. The result shows how
the calculus of tautological classes works in practice.

Licensed to AMS.
License or copyright may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



A CALCULUS FOR THE MODULI SPACE OF CURVES 479

6.2. Moduli of relative stable maps. Let u = (u1,...,Hyy)) and v =
(V1,...,Vw)) be partitions of equal size,

£(p) £(v)

D mi= Vi
i=1 j=1

Let C be a genus g curve. We consider maps
f:C—P

with ramification profiles 1 over 0 € P! and v over oo € P!. Two such maps
cLip, cLp

are declared equivalent if f and fdiffer by a reparametrization of the target which
keeps both 0 and oo € P! fixed.

A natural compact moduli space of such maps f arises in Gromov-Witten
theory. Let

Mg(]Pla,u'vV)N

be the moduli space of stable relative maps to rubber with ramification profiles
and v. In the moduli of relative stable maps, f may degenerate in several ways:
the domain C may acquire nodes, f may be constant on irreducible components of
C, and the target P! may degenerate. The first two phenomena are illustrated in
the following diagram.
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We refer the reader to [53H55] for the basic definitions of relative Gromov-Witten
theory and the foundational development.

6.3. Double ramification cycles. There is a natural morphism
p: My(Ph, ,v)~ = Mg o)

forgetting everything except the marked domain curve. The double ramification
cycle is the push-forward of the virtual fundamental clasd?]

vir

DRg(Mv”) = Px mg(Pl,u, V)N} S Ag(Mg,E(u)Jré(V)) .

Eliashberg asked in 2001: what is the formula for DRy (p,v)? As a first step, the
double ramification cycle was proven to lie in the tautological ring in [21] in 2005,

DRg(/La V) € Rg(Mg7f(u)+f(V)) .

The restriction of DR, (x, v) to the moduli space ./\/l;t o of curves of compact

L) +£(v)
type can be calculated via the geometry of the universal Jacobiand The result is

Hain’s formula [35.[36].

23The expected dimension of Mg (P!, u, v)™ is 3g—3+£(u) +£(v) — g where g is the dimension
of the Jacobian of the domain curve.

24The matching on the moduli space of curves of compact type of the definitions of the double
ramification cycle via the virtual class and the Jacobian geometry is not trivial and is proven in
[1162).
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6.4. Pixton’s formula.
6.4.1. Ramification vector. We place the ramification data in a vector

(:U’la s o), TV _VZ(V)) :
For any vector S = (s1,...,s,) with ), s; = 0, we have
DR,s € RY(M,.,) -

The positive parts of S specify ramification over 0 € P! and the negative parts
specify ramification over co € P!. Free points corresponding to part of S equal to
0 are also permitted.

Pixton [81] conjectured a beautiful formula for DR, s € RY(M,.,) which in-
volves a sum over admissible weightings of stable graphs.

6.4.2. Admissible weightings. Let S = (s1,. .., $») be double ramification data.
Let I' € Gy, be a stable graph of genus g with n legs. An admissible weighting is
a function on the set of half-edges,

w:HI) — Z,

which satisfies:

(ii) Ve € E(T") consisting of the half-edges h(e), h'(e) € H(T),
w(h) +w(h') =0,
A stable graph I', however, may have infinitely many admissible weightings w.
In order to regularize the sum over admissible weightings, Pixton introduced a

regularization parameter
re Z>0 .

An admissible weighting mod r of T is a function,
w:H({T) = {0,...,r — 1},

which satisfie] the conditions of (i-iii) above mod r. Let Wr, be the set of
admissible weightings mod 7 of I'. The set Wr . is finite and can be summed over.
6.4.3. Formula. Let r be a positive integer. We denote by

QY% € RY(My,)

the degree d component of the class

1 n
Z Z \Aut rhl(r) §rs ]:[lexp(sfwhi)

IreGy,, weWr

1 —exp(—w(h)w(h")(Yn + Yrr))
H Y + Y

e=(h,h")EV(T)
For fixed g, S, and d, the class Q € R*(M,.,) is polynomial in r for sufficiently
large r, see [43], Appendix]. We denote by ng g the value at r =0,

d _ dr
ngs - ans r=0"

Hence, Pg g is the constant term.

25For example, for (i), we require w(h;) = s; mod r.
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THEOREM 6 (Janda-P.-Pixton-Zvonkine 2015). For all g > 0 and double ram-
ification data S, o
DRy s =279P) g € RI(M,,,).
When restricted to M¢

g,n?

Theorem [6] recovers Hain’s formula.
The proof of Theorem [f uses the equivariant Gromov-Witten theory of P! with:
e an orbifold BZ,-point at 0 € P!,
e a relative point at oo € P*.
Hence, orbifold GW theory [11[12], relative GW theory [53H55], and the virtual
localization formula [32] all play a role. Over BZ,, Hurwitz-Hodge integrals arise
exactly in the form of [45] and are analysed via Chiodo’s formula [13]. The double
ramification cycle arises over the relative point co € P*.
In addition to conjecturing the formula of Theorem [0 Pixton [81] conjectured
the following vanishing proven in [14].

THEOREM 7 (Clader-Janda 2015). For all g > 0, double ramification data S,
and d > g, .
Plg=0¢€ R (My,).
Clader and Janda further prove that the tautological relations obtained from The-

orem [] are a consequence of Pixton’s set P discussed in Section[5.6l For d < g, the
classes Pg_ g do not yet have a geometric interpretation.

6.5. The Hodge bundle. Let ¢ > 2 and S = (), so u = v = (). Then,
the morphism p from the moduli of stable maps to the moduli of curves is an
isomorphism,

p: M!)(Pla@’@)N ; Mg :
By a study of the obstruction theory,

DRy = (_1)g>‘g € Rg(Mg)a
where A4 is the top Chern class of the Hodge bundle
E— M, .
Pixton’s formula in the S = @ case therefore yields an expression for A\;. By the
analysis of [43] Section 0.5.3], the result is a new and very special formula for A,:
all the strata which appear are supported on

Ao C Mg s
the divisor with a nonseparating node 9 o
In the diagram below, each labeled graph I' describes a moduli space Mr,
a tautological class v, and a natural map
fr‘ : ml" — ﬂg .

The convention in the diagrams is that the labeled graph represents the cycle class

Er(v) = ¢ (I059])
see Section [0.3
26Tn particular, the vanishing -
A2 =0¢€ R*(M,)
is an immediate consequence since A\g|a, = 0.

27The diagrams (taken from [43]) are computed using code written by A. Pixton. The artistic
display is due to F. Janda.
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The formulas for Ay € R?(My) and A3 € R*(M3) are:

Az = 240@ 1152 X

1 1
L+ (g
~ 2016 2016 ~ 5200 T 550

13 1 }
T 30240 —0 " 5760 82944 %Q

More interesting is the formula for Ay € R*(My):

2

w@ 1 w/}_ L __1 L oy
11520 3840 @ T 28300~_® T 35,00, @ " 7,,0__®

1 1 1
a1 _ 2
10200 @ ~ 5350__"® 3840 6 _,®* 5331 "

48384 é 115200@ 960A 100800@/;—?0
! e@a@ . @:\p . e/:tp
57600 16128 89— 16128 @

x odw: - o:ﬁp : crip > o —0
57600 16128 9= 16128 @ 100800 €%
+—23 '& m
100800 50400 16128 115200 € 0__"®

NN ) ¢V . L
276480 ? 725760 138240

43 13 o\%@
1612800 €&==2 ~ 725760

1 1
276480 "C‘% T 7962624 88 '

6.6. Further formulas. Pixton’s formula for the double ramification cycle
was presented here as an example. Several other formulas have been recently studied
(the Chern character of the Verlinde bundle [61], the cycle class of the loci of
holomorphic/meromorphic differentials [25, Appendix]). The form of a summation
over stable graphs Gy, with summands given by a product over vertex, leg, and
edge factors is ubiquitous (and reminiscent of Feynman expansions of integrals in
quantum field theory).
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