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Some fundamental groups in arithmetic geometry

Hélene Esnault

ABSTRACT. We report on Deligne’s finiteness theorem for ¢-adic representa-
tions on smooth varieties defined over a finite field, on its crystalline version,
and on how the geometric étale fundamental group of a smooth projective
variety defined over a field of positive characteristic controls crystals on the
infinitesimal site and should control those on the crystalline site.

1. Acknowledgments

We thank the organizers of the 2015 Summer research Institute on Algebraic
Geometry for the invitation to give a series of three plenary lectures on “Some
Fundamental Groups in Arithmetic Geometry”.

My understanding of the mathematics presented here has been influenced in
an important way by discussions and joint work on the topic with many mathe-
maticians. I thank them all, notably T. Abe, Y. André, J.-B. Bost, B. Bhatt, J.
de Jong, P. Deligne, V. Drinfeld, E. Hrushovski, M. Kerz, L. Kindler, A. Langer,
1 V. Mehta, T. Saito, A. Shiho, V. Srinivas, Y. Varshavsky. I also thank the two
referees for a thorough reading and for remarks.

2. Deligne’s conjectures: f-adic theory

The classical Hermite-Minkowski theorem asserts that there are finitely many
numbers fields with bounded discriminant. In this section we present Deligne’s
program aiming at showing an analog finiteness theorem on complex varieties for
variations of Hodge structures and on varieties over finite fields for ¢-adic sheaves.

THEOREM 2.1 (Deligne, [Del84], Thm. 0.5.). Let X be a complex smooth
connected variety, let r,w be natural numbers with r # 0. Then there are finitely
many rank r Q-local systems which are definable over Z and are direct factors of a
Q-variation of polarizable pure Hodge structure of weight w.

The inspiration for this finiteness theorem in Hodge theory comes from Falt-
ings’s finiteness theorem [Fal83| Cor. p.344] for abelian schemes, that is in weight
w = 1. We refer e.g. to [Catldl Section 2] for the notion of a variation of Hodge
structure. In particular, as it is regular singular at infinity, the analog of the dis-
criminant appearing in Hermite-Minkowski’s theorem is just the reduced divisor at
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infinity in a good normal crossings compactification X — X. This explains why it
is enough to fix X and no multiplicities along the components of X \ X.

On the other hand, for varieties defined over finite fields Iy, in ¢-adic theory, ¢
prime to g, one has the following finiteness theorem.

THEOREM 2.2 (Deligne, [EK12], Thm. 2.1, [Esnl7], Thm. 3.1). Let X be
a normal separated scheme of finite type defined over a finite field Fy, let 0 # r
be a natural number. Let D C X be an effective Cartier divisor of a normal
compactification X with support X \ X. Then there are finitely many isomorphism
classes of irreducible Weil (resp. étale) rank v lisse Qp-sheaves with ramification
bounded by D, up to twist with Weil (resp. étale) characters of F,. The number
does not depend on the choice of £.

We refer to [Del80 Section 1.1] for ¢-adic sheaves and to [Del80) 1.1.7] for Weil
sheaves, also to [EK11l, Notations|. Here ‘ramification bounded by D’ means that
the Swan conductor on the pull-back of the sheaf on any smooth curve mapping
non-trivially to X is bounded by the pull-back of D (see [EK12], Definition 3.6]).
One could formulate the finiteness theorem by replacing this notion by the one
used by Drinfeld in [Dril2l Thm. 2.5 (ii)], counting the isomorphism classes of
the sheaves which become tame on a given finite étale cover X’ — X. That this
assumption is stronger is proved in [EK12| Proof of Prop. 3.9].

Deligne’s proof relies on Lafforgue’s main theorem which in particular implies
Theorem 2.2l over a smooth curve ([Laf02, Thm. VII.6]). The whole question, how
to reduce to curves, is geometric. Some of the key ideas of the proof go back to
Wiesend ([Wie06] and [Wie07]).

The chronology is a bit intricate. First Deligne gave a direct proof of 2.3l This
can be understood as a corollary of Theorem which itself was proved later (see
[EK12| Thm. 8.2] for the deduction).

COROLLARY 2.3 (Deligne, [Dell2], Thm. 3.1, Deligne’s conjecture (ii) in
[Del80], 1.2.10). Given a lisse étale Qq-sheaf V with determinant of finite or-
der, the subfield of Q; spanned by the coefficients of the minimal polynomials of the
Frobenii F,, at closed points x € |X| acting on Vz is a number field.

Using this in an essential way, Drinfeld proved the existence of f-adic com-
panions on smooth quasi-projective varieties defined over a finite field [Dril2]
Thm. 1.1], which is part (v) of the conjecture [Del80] 1.2.10]. Then, using Drin-
feld’s theorem in an essential way, Deligne proved Theorem 2. 2lunder the additional
assumption that X is smooth. Finally, a simple reduction of the problem to the
smooth locus of X enables one to extend the finiteness theorem to the case where
X is normal ([Esnl7, Thm. 3.1]).

Fixing a good compactification X < X, with a strict normal crossings divisor
at infinity, then a curve C, complete intersection of ample divisors in X in good
position, fulfils the Lefschetz theorem on topological fundamental groups, that is
the homomorphism

mP(C = X N C) = 1P (X)
is surjective. In particular, this reduces Theorem 2] to the case where X is of
dimension 1. However, for X of dimension > 2 in characteristic p > 0, there is no
Lefschetz theorem. Thus Theorem does not obviously reduce to dimension 1.
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All one has at disposal are two kinds of Lefschetz theorems, one for reducing all
tame coverings of X to one well chosen curve, one for reducing one specific object
(¢-adic representation or given Galois cover) to one curve adapted to this object.

THEOREM 2.4 (Drinfeld, [Dril2], Prop. C.2, [EK15], Section 6). Let X D X
be a projective normal geometrically connected compactification of a smooth scheme
of finite type X defined over a field k, let ¥ C X be a closed subset of codimension
> 2 such that (X \ ¥) and (X \ £) N (X \ X) are smooth. Let C C X\ X be a
smooth projective curve, complete intersection of ample divisors, meeting X \ X
transversally. Then the restriction to C = CNX of any finite étale connected cover
of X \ X, which is tame along (X \ ¥) N (X \ X), is connected. In particular, the
homomorphism on the tame fundamental groups i (C) — wi(X) is surjective.

An important point is that one does not need a good compactification for
Drinfeld’s theorem. If one has one, one can enhance the theorem to a complete
version of the Lefschetz theorems under the Lefschetz conditions Lef(X,Y) (for-
mal sections along Y of vector bundles lift to an open neighbourhood of Y') and
under the effective Lefschetz conditions Lef f(X,Y) (formal bundles along Y lift
to an open neighbourhood of Y) (see [EK15, Thm 2.5], and [SGAZ2| X.2,p.90] for
Grothendieck’s Lefschetz and effective Lefschetz conditions). Using Theorem [24]
together with the existence alterations [dJ97], one can prove Theorem 2:2] with the
stronger assumption on the ramification being killed by one fixed finite étale cover
X' — X purely geometrically, without using the existence of ¢-adic companions
(see |[Esnl7, Thm. 1.4]).

For non-tame ¢-adic sheaves or covers, only a much weaker version of the Lef-
schetz theorems is available.

THEOREM 2.5 (see e.g. [EK12|, Prop. B.1, Lem. B.2). Let X be a smooth
quasi-projective variety defined over Fy, let S C | X| be a finite set of closed points.
1) LetV be an irreducible Qo- Weil or -étale lisse sheaf, then there is a smooth
curve C — X with S C |C|, such that V¢ is irreducible.
2) Let H C m1(X) be an open normal subgroup, then there is a smooth curve
C — X with S C |C|, such that the homomorphism m1(C) — w1 (X)/H is
surjective.

Nonetheless, it has the important following consequences.

CoROLLARY 2.6. (Drinfeld [Dril2], Thm. 1.1, Deligne’s conjecture (v) in
[Del80] 1.2.10)
1) IfV is an irreducible Weil sheaf, such that det(V') is of finite order, then
V' has weight 0.
2) IfV is an irreducible Weil lisse Qq-sheaf with determinant of finite order,
and o : Qp — Qy is an isomorphism for £’ a prime number different from
p, there is an irreducible Weil lisse Qg -sheaf V,,, called the o-companion

of V', with determinant of finite order, such that the characteristic polyno-
mials fv € Qut], fv, € Qu[t] of the local Frobenii F,, satisfy fv, = o(fv).

In 1) and 2), V and V, are in fact étale by [Del80, Thm. 1.3.1]. Deligne’s
finiteness Theorem for rank 1 sheaves can be proven directly.

THEOREM 2.7 (Kerz-Saito, [KS14], Thm. 1.1). Let X be a smooth quasi-
projective variety over a perfect field k, let X C X be a projective compactification
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with simple normal crossings at infinity, let D be an effective divisor with support
in X \ X. Define m3*(X, D) by the condition that a character x : m1(X) — Q/Z
factors through 73 (X, D) if and only if the Artin conductor of x pulled-back to
any curve C — X is bounded by the pull-back of D via C — X, where C is a
compactification of C, smooth along C'\ C. Then the full package of the Lefschetz
theorems holds:

For a sufficiently ample divisor i : Y C X in good position with respect to X \ X,
the homomorphism

iy : (Y, Y N D) = (X, D)
is an isomorphism if dim'Y > 2, and is surjective if dim'Y =1, where Y =Y NX.
In particular, if k =F,, then

Ker (" (X, D) — 73" (k))
s finite.

Theorem 2.7 implies the rank 1 case of Deligne’s finiteness Theorem 2.2 in case
one has a good compactification. In fact, one does not need the full package, only
that if C is a complete intersection curve of such hypersurfaces Y as in the theorem,
then

7(C,C N D) — 7i(X, D)
is surjective. So far, one does not have tools to understand a version of this for the
whole fundamental group, which would explain Theorem in general.

3. Deligne’s conjectures: crystalline theory

Let X be a smooth geometrically connected scheme of finite type over a perfect
field k of characteristic p > 0, W := W (k) be the ring of Witt vectors, K = Frac(WW)
be its field of fractions. We refer to [ES15| Section 1] for the following presentation.

One defines the crystalline sites X/W,, as PD-thickenings (U — T/W,,0),
where the coverings come from U C X Zariski open. The crystalline site X/W is
then the 2-inductive limit of the X/W,,, see [BOT8, Ch. 7,p. 7-22]. The category
of crystals Crys(X/W) is the category of sheaves of Ox y-modules of finite pre-
sentation, with transition maps being isomorphisms. It is W-linear. The category
of isocrystals Crys(X/W)g is its Q-linearisation. It is K-linear, tannakian.

The absolute Frobenius F acts on Crys(X/W)g. The largest full subcate-
gory Conv(X/K) C Crys(X/W)g on which every object is F'*°-divisible is the
K-tannakian subcategory of convergent isocrystals (Berthelot-Ogus) (Ogus defines
the site of enlargements from X /W, then convergent isocrystals are crystals on it
of Ox,k-modules of finite presentation).

We introduce various categories of F-isocrystals. One defines the category F'-
Conv(X/K) of convergent F-isocrystals as pairs (£, ®) where £ € Conv(X/K) and

& : F*€ 5 £ is a K-linear isomorphism. Its is a Q,-linear tannakian category. The
category F-Overconv(X/K) of overconvergent F-isocrystals, defined analytically by
Berthelot in ([Ber96, 2.3.6, 2.3.7] (see also [LeS07, p. 288]), has a more algebraic
description due to Kedlaya. It consists of those convergent F-isocrystals £ which
have unipotent local monodromy after alteration in the sense of Kedlaya ([Ked04l,
Introduction], [Ked07, Introduction and Section 3.2]). It is a Q,-linear category,
fully embedded in F-Conv(X/K) ([Ked04, Thm. 1.1]). We shall just need that if
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X is proper, then Kedlaya’s full embedding is an equivalence, and that the group
of extensions of the trivial object by itself in this category is Hrlig(X/K), the first
rigid cohomology group.

When £ is a finite field Fy, ¢ = p®, one defines Fg, = F*-Overconv(X/K)
by the same formulae as before, but now F* acts instead of F. It is a K-linear
category. Fixing an algebraic closure Q, of Q,, one defines F-Overconv(X/K )Qp

as itsi@p—linearization. It is called is the category of overconvergent F'-isocrystals
over Q,. See [Abel3l 1.4.11, 4.1.2].

With those notations at hand, one can formulate the general hope. For smooth
geometrically irreducible schemes of finite type X defined over a finite field F,
there should be an analogy between

i) irreducible objects in F-Overconv(X/K)g, with determinant of finite or-
der;

ii) irreducible lisse Q-sheaves with determinant of finite order.
Upon bounding ramification at infinity in i) and ii), the analogy should extend to
irreducible Q-variations of polarisable pure Hodge structures definable over Z over
complex varieties. Of course, since there are many categories of isocrystals, one may
wonder why those particular ones are the right analogs. The best demonstration is
clearly Abe’s Theorem Bl But already before the theorem was known, one knew
that isocrystals have slopes (a topic not discussed here) and that those isocrystals
which come from the variation of crystalline cohomology of the fibers of a smooth
projective family have pure slope parts which are convergent subisocrystals. How-
ever, the lisse Qp-sheaves computing the variation of the f-adic cohomology of the
fibers tend to be irreducible if the geometric variation of the family is big, e.g. if
the family is the universal family on a moduli space.

THEOREM 3.1 (Abe, [Abel3], Thm. 4.3.1). Let X be a smooth curve defined
over a finite field F,. Then

1) an irreducible object in F-Overconv(X/K)g, with determinant of finite
order is t-pure of weight 0;

2) an irreducible lisse Qq- étale sheaf with determinant of finite order has
a companion which is an irreducible overconvergent F'-isocrystal over @p
with determinant of finite order; vice-versa, an irreducible overconvergent
F-isocrystal over Q, with determinant of finite order has a companion
which is an irreducible lisse Qq- étale sheaf with determinant of finite
order.

Here ¢ is a fixed isomorphism ¢ : Qp — C, and ¢-pure means that the Frobenii
at all closed points x of X act on the fiber F, in

F—Overconv(z /Frac(W (k(z)))q, = F'—Conv(z/Frac(W (k(z)))q,
of the object &£ in F*-Overconv(X/K)g, with eigenvalues of complex absolute value

q®/? for a fixed real number w called the weight. (Similarly, ;-mixed means that &
is filtered in F-Overconv(X/K)g, such that the associated graded gré in a sum of
t-pure objects. See [AC13| Defn. 2.1.3].)

Deligne’s program [Del80, 1.2.10] in higher dimension on the crystalline side
is not yet achieved. However, a Lefschetz theorem such as Theorem for over-
convergent F-isocrystals over @, has been proven.
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THEOREM 3.2 (Abe-Esnault, [AE16], Thm. 0.1). Let X be a smooth connected
quasi-projective variety defined over F,. Let M be an irreducible overconvergent F -
isocrystal. Then there is a open dense subscheme U — X such that for any finite
set S C U of closed points, there is a smooth irreducible curve C — X such that
S C C and such that M|c is irreducible.

This implies the following.

1) M is t-pure of weight 0 ([Abel3| Thm. 4.2.2]);

2) Corollary 2-3remains true with V replaced by M, that is there is a number
field containing all the coefficients of all local eigenpolynomials ([AE16]
1.5]) at closed points (JAE16], Lem. 4.1]);

3) M has f-adic companions which are irreducible Q-lisse sheaves (JAEL6],
Thm. 4.3]);

4) There is a crystalline version Theorem Let X be a smooth connected
quasi-projective variety defined over Fy, (r, D) be as in Theorem 2.2, o
be a field isomorphism from Qp to Qp for some prime number ¢ different
from p. Then there are finitely many isomorphism classes of irreducible
overconvergent F-isocrystals, up to twist with rank 1 isocrystals on Fy,
such that the o-companion (which by 3) is an irreducible Q,-lisse sheaf)
has ramification bounded by D.

We note that in an ‘unstable preprint’ posted on his webpage, unstable in the
author’s terminology, Kedlaya uses weights to deduce 1) and 2) as well as the part
of 3) concerning the existence of ¢-adic companions. The properties of being lisse
and irreducible seems to be inaccessible without the Lefschetz theorem

We also mention [Kos15, Thm. 1.2] in which a weak analog to Theorem
is proven: if X is a smooth geometrically connected variety defined over a finite
field, then an absolutely semi-simple unit-root overconvergent F'-isocrystal in F-
Overconv(X/K)g, is isotrivial. The point is that such an object necessarily is
locally isotrivial at infinity, which reduces the problem to the case of X smooth
projective, thus by the standard Lefschetz theorem to the curve case. One then ap-
plies Abe’s theorem [Abel3l Thm. 4.1] which reduces the statement to Lafforgue’s
theorem [Laf02, Thm. VIL.6]).

4. Malcev-Grothendieck’s theorem, Gieseker’s conjecture, de Jong’s
conjecture

Let X be a smooth geometrically irreducible scheme of finite type over field k
of characteristic 0. Grothendieck defined the infinitesimal site Xo, ([Gro68]) with
objects U — T where T is an infinitesimal thickening of a Zariski open subscheme
U, and where coverings come from the Us. Crystals are finitely presented crystals on
X . The category is equivalent to the category of bundles on X with an integrable
connection (E,V) or equivalently to the category of Ox-coherent Dx-modules. It
is a k-linear category, which is tannakian.

THEOREM 4.1 (Malcev [Mal40], Grothendieck [Gro70], Thm. 4.2). Let X be
a complex smooth variety. If its étale fundamental group is trivial, then there are
no non-trivial crystals in the infinitesimal site (with regular singularities at infinity
in case X is not projective).
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Here one uses the Riemann-Hilbert correspondence to translate the assertion
on representations of groups which are finitely generated, applied to the topological
fundamental group, to the assertion on crystals in the infinitesimal site. The proof
then just uses that a GL(r, A)-representation, where A is Z-algebra of finite type,
is trivial if and only if it is by restriction to the closed points of Spec(A).

Gieseker [Gie75l p. 8] conjectured that the analog theorem remains true in
characteristic p > 0. Let X be a smooth projective geometrically irreducible va-
riety over a field k£ of characteristic p > 0. One defines X, and crystals as in
characteristic 0. By Katz' theorem [Gie75, Thm. 1.3], which relies on Cartier
descent, it is also equivalent to the category of Frobenius divisible O x-coherent
sheaves, that is infinite sequences (Fy, E1,- -+ , 00,01, -) of bundles E,, on the n-
th Frobenius twist X (™ of X, together with isomorphisms ¢,, between E,, and the
Frobenius pull-back of F,,11. Then Gieseker’s conjecture predicts that Theorem [£.1]
holds in characteristic p > 0. It has been proved in 2010.

THEOREM 4.2 (Esnault-Mehta, [EM10], Thm. 1.1). Let X be a smooth pro-
jective geometrically irreducible variety over a field k of characteristic p > 0. If its
geometric étale fundamental group s trivial, then there are no non-trivial crystals
in the infinitesimal site.

What in the proof replaces the finite generation of the topological fundamental
group is the existence of quasi-projective moduli for stable bundles with vanishing
Chern classes (Langer, [Lan04, Thm. 4.1]). What then replaces the criterion for
triviality is Hrushovski’s theorem on the existence of preperiodic points on dominant
correspondences over finite fields [Hru04]. Varshavsky in [Varl8|] gave a proof of
it in the framework of arithmetic geometry, without using model theory.

One can formulate variants of Gieseker’s conjecture. If X is not proper, then
the theory of regular singular crystals in the infinitesimal site has been developed by
Kindler [Kin15], in such a way that for those objects with a finite Tannaka group,
it coincides with the notion of tame quotient of the étale fundamental group. There
is no good higher ramification theory so far, nor does one have an analog of Theo-
rem [£.2] except for the tame abelian quotient of the geometric fundamental group
(Kindler, [Kin13 Thm. 1.4]), and in the case where X is the smooth locus of a nor-
mal projective variety defined over k = F, (Esnault-Srinivas [ESB15, Thm 1.1]; the
proof uses Bost’s improvement of Grothendieck’s LEF theorem, see [ESB15| Ap-
pendix]).

In 2010, de Jong formulated the corresponding conjecture in the category of
isocrystals. Let X be a smooth projective geometrically irreducible variety over a
perfect field k of characteristic p > 0. If its geometric étale fundamental group is
trivial, then the conjecture predicts that there are no non-trivial isocrystals. As
of today, there is no complete understanding of the conjecture. We now list the
known results concerning it.

One defines N(1) = oo, N(2) = 2,N(3) = 1, N(r) = 1/M(r) where for any
natural number r > 4, M(r) is the maximum of the lower common multiples of a

and b for all choices of natural numbers a,b > 1 with a+b < r. For any torsion-free
coherent sheaf F, one denotes by pimax(F) its maximal slope.

THEOREM 4.3 (Esnault-Shiho). Let X be a smooth projective geometrically
irreducible variety over a perfect field k of characteristic p > 0.
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1) If the abelian quotient of the geometric étale fundamental group of X is
trivial, there are no non-trivial isocrystals which are successive extensions
of rank 1 isocrystals. (J[ES15, Prop. 2.9, Prop. 2.10]).

2) If the geometric étale fundamental group of X is trivial, fimax(y) <
N(r), the irreducible constituents of the Jordan-Hélder filtration of € have
rank < r, and £ itself is either in Conv(X/K) or else each of its irreducible
constituents has a locally free lattice and has rank > r, then & is trivial.
([ES15l Thm. 1.1] and [ES15b, Thm. 1.2]).

Let f :' Y — X be a smooth proper morphism between smooth proper schemes of
finite type.

3) If the geometric étale fundamental group of X is trivial, then all the

Gauf-Manin convergent isocrystals R" f.Oy i are trivial. If k is finite,

f is projective and p > 3, one can drop the properness assumption on X
(|[ES15b, Thm. 1.3, Rmk. 1.4]).

We first discuss 3). Le us assume that & is a finite field. Then the statement
relies on

THEOREM 4.4 (Abe’s Cebotarev’s density theorem, [Abel3], A.3). Let X be
a smooth scheme of finite type defined over a finite field k. If £ and £ are 1-mized
overconvergent F-isocrystals over Q, with the same set of Frobenius eigenvalues on
closed points of X, then the semi-simplifications of £ and &' are isomorphic.

When X is proper or f is projective, the convergent F-isocrystal R" f.Oy k
is an overconvergent F-isocrystal over Q, via the faithful embedding ([Lazl5l
Cor. 5.4]), thus obeys Theorem 4 The Weil conjectures [KMT4, Thm. 1.1],
[CLS98 Cor. 1.3] in the proper case, enable one to conclude that the semi-
simplification of R"f.Oy,k is constant. Forgetting the F-structure, it is thus a
successive extension of the trivial overconvergent isocrystal by itself, thus is trivial,
as the first rigid cohomology of X is controlled by the first ¢-adic cohomology of
X @, k when X is proper or p > 3. The latter is trivial if the geometric fundamen-
tal group is trivial. One can alternatively use the existence of f-adic companions
(JAE16l Thm.4.2]). Over a general field k, the properness assumption on X allows
to compare the statement to the one over finite fields by base change.

We discuss 2). Since the conjecture concerns isocrystals, it is not natural to
try to argue with lattices, that is p-torsion free crystals E in a given isocrystal class
E. Unfortunately, there is at present no other way to do, and indeed, basically
2) is proven by showing that under the given assumptions, the value Ex on X of
a well chosen crystal F in the isocrystal class £ is trivial. Then one studies the
possible liftings modulo p-powers. In order to show triviality of Ex, one applies
Theorem To do so, one has to show the existence of such an Ex which is
semi-stable with vanishing numerical Chern classes, so as to be able to define its
moduli point. If Ex was F'*°-divisible, then one could apply Theorem directly.
This is not the case, even if & € Conv(X/K), that is even if £ is F*-divisible.
Instead, one shows that F®-divisibility is enough to trivialize a moduli point, for
a large enough depending only on X and the rank of £ (JES15| Prop. 3.2]). One
applies this to the Frobenius pull-backs of Ex. For this one needs that they are
semistable as well, and this is the reason for the assumption on umax(ﬂﬁ(). On the
other hand, a Langton type argument guarantees that one finds a crystal E such
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that Ex is semi-stable. The issue is then to show vanishing of the Chern classes of
FEx. It is easy to show that all lattices Ex of a given isocrystal £ have the same
crystalline Chern classes ¢&¥5(€) in H?"(X/W),n > 1, and thus ¢<™*(€) = 0 if
€ € Conv(X/K) ([ES15| Prop. 3.1]). If Ex is locally free as a coherent sheaf, it

is true, but by no means trivial, that ¢'¥5(£) = 0, where £ is the isocrystal class

of E (see [ES15bl Section 2/3]). However, we do not know whether or not any
isocrystal £ admits a lattice E which is locally free (see [ES15c]). This explains
the restriction on the type of isocrystals considered in the theorem.
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