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Stability of algebraic varieties and Kähler geometry

Simon K. Donaldson

Abstract. This article is a survey of some developments concerning the exis-
tence of constant scalar curvature Kähler metrics and Kähler-Einstein metrics
on complex projective varieties. We explain the “moment map” point of view
on these questions, and the link with Geometric Invariant Theory and notions
of “stability”. We outline existence results for Fano manifolds and for toric
surfaces.

1. Background

1.1. Kähler metrics. This write-up follows quite closely the author’s three
lectures at the AMS Summer Research Institute. The context for the lectures was
the search for “optimal” Riemannian metrics on compact complex manifolds and
in particular on complex projective manifolds. This is a huge subject and we do
not attempt to cover everything; we focus on situations in which these differen-
tial geometric questions are related to Geometric Invariant Theory and notions of
“stability”. We begin by recalling some standard background. Let X be an n-
dimensional complex manifold. A hermitian metric on X is a Riemannian metric
which is algebraically compatible with the complex structure, in the sense that it
is the real part of a Hermitian form. The imaginary part of the Hermitian form is
skew-symmetric, an exterior 2-form ω. The metric is Kähler if ω is closed. There
are several equivalent definitions. One is that the holonomy of the Riemannian
metric lies in the unitary group—i.e. parallel transport of tangent vectors com-
mutes with multiplication by I. Another is that at each point there is a complex
co-ordinate system in which the metric agrees with the flat metric to first order.
In any case, this Kähler condition is the natural notion of compatibility between
the complex and metric structures and we will always consider Kähler metrics here.
(Kähler geometry can be seen as the intersection of the three branches: complex,
Riemannian and symplectic geometries.)

In local co-ordinates za the Hermitian structure is given by a matrix gab and

ω = i
∑

gabdzadzb. The ∂∂-Lemma states that the metric can be given, locally, by
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a potential φ

gab =
∂2φ

∂za∂zb
,

or, in different notation, ω = i∂∂φ.

Suppose that X is compact and ω0 is a Kähler metric on X. It defines a non-
zero cohomology class [ω0] ∈ H2(X;R). The global version of the ∂∂-Lemma says
that any other Kähler metric ω in the same cohomology class can be represented
by a potential ω = ω0 + i∂∂φ. This has a geometric interpretation in the case
when 2π[ω0] is the first Chern class of a holomorphic line bundle L → X (so X is
a projective algebraic variety, by the Kodaira embedding theorem). Recall that if
h is a Hermitian metric on L there is a unique unitary connection on L compatible
with the complex structure. The form −2πiω0 can then be realised as the curvature
of a reference metric h0 (i.e. the curvature of the compatible connection), and ω
similarly corresponds to a metric eφh0.

Recall that a Riemannian manifold has a curvature tensor Riem. This has a
contraction to the Ricci tensor, which is closely related to the induced volume form.
One geometric characterisation of the Ricci tensor is in terms of the Riemannian
volume form in local geodesic co-ordinates xi

(1) Vol = (1− 1

6

∑
ij

Rijxixj +O(x3))VolEuc.

A further contraction of the Ricci tensor gives the scalar curvature S.
On a Kähler manifold the Ricci tensor is Hermitian, the corresponding 2-form ρ

is closed and represents the class 2πc1(X). In local complex co-ordinates, a formula
for the Ricci form is

ρ = i∂∂log(Vol),

where Vol = det(hab), the volume in local co-ordinates.
We consider four notions of “optimal” metrics.

• If c1(X) is a multiple of the Kähler class, c1 = λ[ω], then we can look for
a Kähler-Einstein metric: ρ = λω.

• In any Kähler class we may seek a constant scalar curvature Kähler
(CSCK) metric. Clearly Kähler-Einstein metrics are CSCK.

• In any Kähler class we may consider the critical points of the Calabi func-
tional ‖Riem‖2L2 . These are called extremal metrics. The Euler-Lagrange
equation is that the gradient of the scalar curvature is a holomorphic
vector field. CSCK metrics are extremal (and on a manifold with no
holomorphic vector fields the converse is true).

• In the case when c1(X) = λ[ω], the Kähler-Ricci soliton equation is that
ρ−λω is the Lie derivative of ω along a holomorphic vector field. Clearly
Kähler-Einstein metrics are solitons.

Extremal metrics and Kähler-Ricci solitons arise naturally when considering
associated evolution equations, for 1-parameter families of metrics. The Calabi
flow is the equation

∂ω

∂t
= i∂∂S(ω),
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while the Kähler-Ricci flow is

∂ω

∂t
= (λω − ρ),

(in the case when c1(X) = λ[ω]). Extremal metrics are fixed points of the Calabi
flow modulo holomorphic automorphisms and likewise for solitons and the Kähler-
Ricci flow.

The basic question we want to address then is the existence of these metrics,
in a given Kähler class on a given complex manifold X. There is ample moti-
vation for studying this problem. Of course a paradigm is the case of complex
dimension 1, where a compact Riemann surface admits a metric of constant Gauss
curvature. This statement can be viewed as a formulation of the uniformisation
theorem for compact Riemann surfaces. In higher dimensions there is a huge lit-
erature and renowned general theorems; notably from the 1970’s the existence of
Kähler-Einstein metrics in the negative case (λ < 0) [6], [69] and the Calabi-Yau
case (λ = 0) [69] . The existence theorems have important consequences for moduli
problems, which we return to in 4.2 below. The over-riding motivation is perhaps
that these existence problems lead to fascinating interactions between Riemannian
geometry, complex (algebraic) geometry, PDE and analysis.

1.2. Geometric Invariant theory, Kempf-Ness, etc. Going back to the
1980’s, it has been realised that there is a general package of ideas relating com-
plex moduli problems, in the setting of Mumford’s Geometric Invariant Theory, to
“metric geometry”. In this subsection we review this and explain why it gives a
conceptual framework for the existence questions in Kähler geometry introduced
above.

LetKc be reductive complex Lie group, the complexification of a compact group
K (for example K = SU(m),Kc = SL(m,C)). Let V be a complex representation
of Kc. Then we have a “complex moduli problem”— to study the set of orbits
of Kc in P(V ). The fundamental difficulty is that the set of all orbits will not
have a good structure—it will not be Hausdorff in the induced topology. The
algebraic approach is to consider the graded ring R of Kc-invariant polynomials on
V . A famous theorem of Hilbert states that this is finitely generated, so Proj(R)
is a projective variety. The points of Proj(R) correspond approximately, but not
exactly to the Kc orbits in P(V ) and we write

Proj(R) = P(V )//Kc.

We say that a nonzero v ∈ V is

• polystable if its Kc-orbit is closed;
• stable if it is polystable and its stabiliser in Kc is finite;
• semi-stable if 0 does not lie in the closure of its Kc-orbit.

These notions pass down to the projectivisation and basic result of Mumford’s
theory [50] is that the points of P(V )//Kc correspond to the polystable orbits.

Now introduce “metric geometry” by fixing a K-invariant Hermitian metric on
V . The beautiful and elementary observation of Kempf and Ness [43] is that a
point v ∈ V \ {0} is polystable if and only if its Kc-orbit contains a point which
minimises the norm within the orbit, and this minimiser is unique up to the action
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of K. Semistability is characterised by the property that the norm functional has
a strictly positive lower bound.

Given a non-zero point v ∈ V the function Fv(g) = log |g(v)| on Kc is preserved
by left multiplication by K so descends to a function

Fv : Kc/K → R.

The manifold Kc/K is a symmetric space of negative curvature. The stability or
semi-stability of v depends on whether Fv attains a minimum or is bounded below.
An important general property is that Fv is convex along geodesics in Kc/K. This
gives the uniqueness property and also shows that any critical point of the norm
functional on an orbit is a minimum. There is a map

μ : V → Lie(K)∗

(the dual of the Lie algebra) defined by the first order variation of the norm. That
is, for v in V and ξ in Lie(K)

d

dt
|t=0 (| exp(iξ)v|) = 〈μ(v), ξ〉.

The map μ his homogeneous of degree 2 so μP(v) = |v|−2μ(v) factors through P(V )
Then we have

P(V )//Kc = μ−1
P (0)/K.

The Hilbert-Mumford numerical criterion gives a practical way to detect sta-
bility. For simplicity suppose that the Kc-orbit of v is free. Let λ : C∗ → Kc be
a non-trivial 1-parameter subgroup. Then λ(t)v has a Laurent expansion about
t = 0. Let −w(λ, v) ∈ Z be the order of the leading term in this expansion. Then v
is stable if and only if w(λ, v) > 0 for all λ and semi-stable if weak inequality holds.

We will illustrate these ideas with two simple examples.

Example 1. Take K = SU(2),Kc = SL(2,C) and let V = U⊗d be the d-
fold tensor product of the standard 2-dimensional representation U = C2. Restrict
attention to the subset W ⊂ V \ {0} of non-zero decomposable tensors. Thus the
projectivisation of W can be identified with the d-fold product (CP1)d. One finds
that for u1, . . . ud in P1

μP(u1, . . . , ud) =

d∑
i=1

m(ui),

where m : CP1 → Lie K = R3 is the standard embedding of CP1 as the unit 2-
sphere. Thus μ−1

P (0) is identified with the configurations of d ordered points on the
sphere which have centre of mass at 0. The Hilbert-Mumford criterion shows that
a configuration (u1, . . . , ud) is polystable if either no point occurs with multiplicity
≥ d/2 or if d is even and there are distinct points each of multiplicity d/2. For
example when d = 4 one has P(W )//Kc = CP1 with the equivalence defined by
the cross-ratio. The stability discussion corresponds to the fact that one can define
the cross-ratio of a quadruple with for configurations with multiplicity 2, but not 3.

Example 2. Take K = U(n),Kc = GL(n,C) and let V = End(Cn) be the
adjoint representation. Using the standard identification of the Lie algebra and
its dual, one finds that μ(A) = i[A,A∗], where A∗ denotes the usual adjoint. So
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μ−1(0) consists of the “normal” matrices, which commute with their adjoints. On
the complex side, the polystable points are the diagonalisable matrices and the
identification P(V )//Kc = μ−1

P (0)/K boils down to the familiar facts that normal
matrices are diagonalisable and conversely a diagonalisable matrix is conjugate to
a normal one (just map the eigenvectors to an orthonormal basis).

The discussion above is in finite dimensions but many examples (often going un-
der the general heading of the “Kobayashi-Hitchin correspondence”) are understood
of differential geometric problems which can be viewed as an infinite-dimensional
versions of this set-up. A key step in this is a symplectic geometry point of view.
In the setting above, we focus on the action of K on the projectivisation P(V ), pre-
serving the standard Fubini-Study metric and the corresponding symplectic form
ωFS . Then the map μP : P(V ) → Lie(K)∗ appears as the “moment map” for the
action. That is, for each ξ ∈ Lie(K) the component 〈μP( ), ξ〉 is a Hamiltonian
function for the 1-parameter subgroup generated by ξ. One can then recover the
norm function F on Kc/K from μ by integration. From this point of view the
essential ingredients are:

• A complex manifold P with a Kähler form Ω.
• A group G with an isometric holomorphic action on P.
• A moment map μ : P → Lie(G)∗.
• A complexified group Gc ⊃ G and an extension of the action to a holo-
morphic action of Gc on P.

Given such as set-up we can ask for a useful definition of “polystable points” in
P and try to establish a correspondence between the resulting complex quotient
P//Gc and the symplectic quotient μ−1(0)/G. If P is compact (in particular finite-
dimensional) and the cohomology class 2π[Ω] is integral we are almost back in
the previous case, because we can embed P in projective space by the Kodaira
embedding theorem, but this formulation allows us to consider infinite-dimensional
situations of a fundamentally different nature.

The first example of this kind is due to Atiyah and Bott [4]. Let E → Σ be
a (trivial) C∞-complex vector bundle over a compact Riemann surface. Let A be
the set of ∂-operators on E: an infinite dimensional complex affine space. There
is a group Gc of bundle automorphisms of E and the orbits of Gc in A correspond
to isomorphism classes of holomorphic vector bundles. Now fix a Hermitian metric
on E. We get a subgroup G ⊂ Gc of unitary automorphisms. Points in A can be
viewed as unitary connections on E. Tangent vectors to A are 1-forms with values
in the bundle EndE and there is a symplectic form given by

Ω(a, b) =

∫
Σ

Tr(a ∧ b),

which is a Kähler form with respect to the complex structure. The moment map is
given by the curvature of the connection so μ−1(0)/G consists of the equivalences
classes of flat unitary connections.

The case when the bundle E has rank one is a piece of classical theory. In that
case one has an identification A/Gc = μ−1(0)/G which is the statement that any
holomorphic line bundle of degree 0 has a unique compatible flat unitary structure.
This amounts to solving a linear PDE and the notion of stability does not enter.
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The statement can be viewed as the identification of the Jacobian with the torus
H1(Σ;R)/H1(Σ,Z).

For bundles of higher rank the situation is more interesting. On the one hand,
Mumford gave a definition of a stable bundle E → Σ. He was lead to this by em-
bedding the moduli problem for bundles in a linear set-up of the kind we considered
above. The numerical criterion which emerged is that a bundle E (of degree 0, for
simplicity) is defined to be stable if all proper sub-bundles E′ ⊂ E have strictly
negative degree. Then a polystable bundle (of degree 0) is a direct sum of stable
bundles (each of degree 0). Taking this as the definition of a polystable point in
A, the identification A//Gc = μ−1(0)/G is true and amounts to the 1965 theorem
of Narasimhan and Seshadri [52]: a bundle admits a flat unitary connection if and
only if it is polystable.

There are many other examples in this vein, and a large literature. These
include the Hermitian Yang-Mills equation for bundles over higher dimensional base
manifolds, “pairs” consisting of a bundle with a holomorphic section and “parabolic
structures” along a divisor in the base. In each case a necessary and sufficient
condition for the existence of some differential geometric structure is given by an
algebro-geometric stability condition, involving a numerical criterion. A point to
emphasise is that, while there is a commmon conceptual framework to the results,
this framework does not in itself provide proofs. In the prototype finite-dimensional
case of Kempf and Ness the proof is elementary because we can minimise the norm
functional over a compact set, but this compactness is lost in infinite dimensions.
The statements bear on the solubility of nonlinear PDE and the proofs require
detailed analysis in each case.

We now return to our main theme of existence problems for Kähler metrics.
These can, to some extent, be fitted into the conceptual framework sketched above
[28], [29]. Let (M,ω) be a compact symplectic manifold and let G be the group
of “exact” symplectomorphisms. The Lie algebra of G is the space of Hamiltonian
functions on M , modulo constants. (If H1(M ;R) = 0 then the exactness condition
is vacuous.)

Let J be the space of almost-complex structures compatible with ω. Then
certainly G acts on J . Tangent vectors to J at a given almost-complex structure
J0 can be identified with sections of the complex vector bundle s2(TM) (using
the almost complex structure J0). As such, the tangent space acquires a complex
structure and this makes J , at least formally, into an infinite-dimensional complex
manifold. Similarly, the natural L2 metric on these tensor fields gives J a Kähler
structure. For our purposes, we are interested in the G-invariant subset Jint ⊂
J of integrable almost complex structures. This is, formally, a complex analytic
subvariety of J and the possible singularities are not relevant to this discussion. So
in sum we get an action of G on an infinite dimensional Kähler space (Jint,Ω) and
we can ask for a moment map for this action. Calculation reveals that this moment
map is simply the scalar curvature μ(J) = S(ω, J) of the metric induced by ω and
J [38]. More precisely, we use the pairing between functions modulo constants and
S given by

f �→
∫
M

f(S − Ŝ)
ωn

n!
,
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where Ŝ is the average value of S (which is a topological quantity determined by
[ω] and c1(M)). So the zeros of the moment map are Kähler metrics of constant
scalar curvature.

We now encounter the fundamental difficulty that there is no complexification
Gc of the symplectomorphism group G. However we have an equivalence relation
on Jint given by J1 ∼ J2 if (M,J1), (M,J2) are isomorphic complex manifolds.
The equivalence classes can be interpreted as the orbits of the (nonexistent) group
Gc. To explain this briefly, consider for simplicity the case when (M,J, ω) has
no automorphisms, so the G-orbit of J is free. Let O ⊂ J be the equivalence
class of J , as defined above. Then one finds that the tangent bundle of O can be
trivialised as O×H where H is the space of complex valued functions on M modulo
constants. Thus H has a Lie algebra structure, regarded as the complexification of
Lie(G), with the bracket given by the complexified Poisson bracket { , }. Under
the trivialisation, any element η ∈ H defines a vector field Vη on O and one has

[Vη1
, Vη2

] = V{η1,η2}.

If O were a finite-dimensional manifold this would lead to a Lie group structure,
with the Vη the left-invariant vector fields, but the relevant integration results fail
in infinite dimensions. But we could say that O behaves like a group orbit for the
purposes of any infinitesimal calculation. In essence, the Hamiltonian functions
which make up the Lie algebra of G complexify to Kähler potentials. (A detailed
development of this point of view is given in [29].)

By a theorem of Moser, the symplectic structures defined by different Kähler
metrics on a complex manifold in a given cohomology class are all equivalent. Thus,
given the interpretation above of the equivalence classes in Jint as “complex orbits”,
the question of the existence of a constant scalar curvature metric in a given Kähler
class becomes precisely our “standard question” of finding a zero of the moment
map in a complex orbit, which we expect to be related to a notion of stability.

Taking a slightly different point of view, fix a complex manifold X and let H
be the space of Kähler metrics in a given cohomology class. In the formal picture
above this is viewed as Gc/G. and indeed H does have the structure of an infinite
dimensional symmetric space of negative curvature, defined by the Mabuchi metric
[49]. This is exactly analogous to the standard finite-dimensional case, when Kc/K
has such a structure. For an infinitesimal variation δω = i∂∂(δφ) (normalised so
that the integral of δφ is zero) we set:

‖δω‖2ω =

∫
X

(δφ)2
ωn

n!
.

Thus δω is viewed as a tangent vector of H at ω and this formula defines a Rie-
mannian metric on H. The functional on H analogous to the Kemp-Ness function
log |v| is the Mabuchi functional [48]. It can be defined by its infinitesimal variation

δF =

∫
X

δφ(S − Ŝ)
ωn

n!
,

where S is the scalar curvature and Ŝ is the average of S over X. So a critical point
of F is exactly a CSCK metric.

While we will not go into detail here, similar things hold for the other equations
(extremal, Kahler-Einstein, Kahler-Ricci soliton). In the general context of a Kähler
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manifold P with moment map μ : A → Lie(K)∗ we suppose that the Lie algebra K
has an invariant bilinear form, so we can identify it with its dual. So μ(x) is now
thought of as an element of the Lie algebra and the derivative of the action gives a
vector field Vμ(x) on P. Then we can consider points x ∈ P such that Vμ(x)(x) = 0.
These are the analogues, in the general context, of extremal metrics. For example
in the case of configurations of d points on the sphere the condition becomes that
the configuration has the form of a point p taken with some multiplicity r and the
antipodal point −p taken with multiplicity d− r. There is a similar interpretation
of the Calabi flow as the gradient flow of the function |μ|2, as studied in the finite
dimensional situation by Kirwan [44]. Kähler-Einstein metrics can be regarded as
special cases of constant scalar curvature ones. (An integral identity shows that
when c1(X) = λ[ω] any CSCK metric is Kähler-Einstein.) They can also be fitted
into the general framework by using a different Kähler structure on Jint [35] with
another important functional, the Ding functional, taking the place of the Mabuchi
functional. In this set-up, Kähler-Ricci solitons and the Kahler-Ricci flow play
similar roles to the extremal metrics and the Calabi flow.

We now introduce a crucial notion in the theory, the Futaki invariant [40].
Initially we define this for a Kähler manifold X with an S1 action.

Differential geometric approach. Consider an S1-invariant metric ω in the
given Kähler class. The S1 action is generated by a Hamiltonian function H. The
Futaki invariant is defined to be

(2) Fut =

∫
X

H(S − Ŝ)
ωn

n!
.

It does not depend on the choice of metric ω. In particular, if the Futaki invari-
ant is not zero there can be no CSCK metric. Extremal metrics are the appropriate
generalisation of CSCK to the case of manifolds with non-trivial automorphisms
and non-zero Futaki invariant.

Algebro-geometric approach. Assume that the Kähler class corresponds to
an integral polarisation so we have an ample line bundle L → X with c1(L) = 2π[ω]
and fix a lift of the S1-action to L.

Let dk = dimH0(X,Lk). For large k it is given by the Hilbert polynomial,
of degree n. There is an induced S1-action on H0(X,Lk): let wk be the weight
of the action on the highest exterior power. For large k it is given by a Hilbert
polynomial, of degree n+ 1 (as explained in [32] for example).

Set F (k) = wk

kdk
so for large k we have an expansion

F (k) = F0 + k−1F1 + k−2F2 + . . . .

The Futaki invariant is the co-efficient F1.

The equivalence of the differential geometric and algebro-geometric definitions
comes from the equivariant Riemann-Roch formula. The algebro-geometric view-
point has the advantage that it extends immediately to the case whenX is a singular
variety, or even a scheme.
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1.3. The YTD conjecture. This is the analogue of the Kobayashi-Hitchin
conjecture for the case of CSCK metrics and to formulate it we need to specify the
notion of stability which is called K-stability.

Fix (X,L) as above. We consider equivariant degenerations (or test configura-
tions) L → X → C. Here

• π : X → C is a flat family with π−1(1) = X;
• the line bundle L → X is ample on the fibres and the restriction of L to
π−1(1) is isomorphic to some power Lm;

• there is a C∗-action on the whole set-up.

We define the Futaki invariant of a degeneration X to be the invariant we
defined above for the central fibre π−1(0), polarised by the restriction of L, and we
say that (X,L) is K-stable if Fut(X ) > 0 for all non-trivial test configurations X
as above. There are some technicalities in the precise definition of “non-trivial”, as
pointed out by Li and Xu [47]. One can require that the total space X be normal
and that X is not the product X ×C.

Then the (so-called) YTD conjecture is that (X,L) admits a CSCK metric if
and only if it is K-stable.

Remarks.

(1) It would fit better with the terminology used in 1.2 above to call this
“K-polystability”, as is done by some authors.

(2) In the case of Fano manifolds and Kähler-Einstein metrics a version of
this conjecture was proposed by Yau around 1990.

(3) The definition of K-stability (again in the Kähler-Einstein situation), for
the case when the central fibre is smooth or mildly singular was given by
Tian in 1996 [67].

(4) The statement of the conjecture can be extended to include the case of
extremal metrics [62].

(5) The “easy” side of the conjecture is generally seen as the fact that CSCK
implies K-stability and the results here are here are relatively complete.
Donaldson proved that CSCK implies K-semistability [32] and this was
refined to K-stability by Stoppa[61], assuming that the automorphism
group is finite (i.e. H0(TX) = 0). In the Fano case the complete re-
sult was proved by Berman (with an extension to the singular case) [8].
Similarly there are complete results on the uniqueness of CSCK metrics
(modulo holomorphic automorphisms). For Kähler-Einstein metrics this
was proved by Bando and Maubuchi [7]. In the CSCK case, uniqueness
would follow immediately from the convexity of the Mabuchi functional
if one knew that any two metrics could be joined by a smooth geodesic.
While this is known not to be exactly true, variants of the argument can
be made to work. This was done by Chen [19] in the case when c1 < 0,
by Donaldson in the projective case using a finite dimensional approxima-
tion and assuming that H0(TX) = 0 [30] and by Chen-Tian [21]. The
most complete and decisive results have been obtained by Berman and
Berndtsson [9]; see also [12], [24].

(6) The “correct” conjecture may be a little different (see 4.3 below).
(7) There is a circle of ideas and results relating K-stability to the better-

established notions in algebraic geometry of Chow stability and Hilbert
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stability. These proceed via projective embeddings X → P(H0(Lk)∗) =
PNk and applying Geomtric Invariant theory to the action of SL(Nk +
1,C) on the appropriate Chow variety and Hilbert scheme. As k → ∞
there are asymptotic relations, connected to the subject of geometric quan-
tisation, between these finite-dimensional pictures and the infinite dimen-
sional picture. For example it can be proved in this way if X has a CSCK
metric and finite automorphism group then it is Chow stable for suffi-
ciently large k [30]. But we will not go into this aspect in detail here.

We will now attempt to motivate, informally, the definition of K-stability and
hence the YTD conjecture. From one point of view, we know that a CSCK metric
corresponds to a critical point (in fact minimum) of the Mabuchi functional) F on
the space H of Kähler metrics. Very roughly:

• we expect that if there is no minimum then a minimising sequence will
tend to a “point at infinity” in H;

• there should be a numerical criterion which tells us which of the points at
infinity are “destabilising” i.e. whether the functional F decreases as we
approach that point at infinity.

In this vein the YTD conjecture can be thought of saying that the relevant
points at infinity are “algebro-geometric objects”, in fact the central fibres of test
configurations, and that the sign of the Futaki invariant gives the appropriate nu-
merical criterion. But we emphasise that this is just a motivating picture, which
does not in itself make any progress towards a proof. “Points at infinity” in H have
no a priori meaning and H is not even locally compact.

From another point of view, we can compare with the finite dimensional sit-
uation where we have the Hilbert-Mumford criterion for stability in terms of 1-
parameter subgroups λ : C∗ → Kc and the resulting weight w(λ, v). This can be
described as follows. We consider the action of the 1-parameter subgroup on the
point [v] in the projective space P(V ). This has a well-defined limit

p = lim
t→0

λ(t)[v],

which is a fixed point of the λ action on P(V ). There is no loss of generality in
assuming that λ is the complexification of a circle subgroup of K, with generator
ξ ∈ Lie(K). Then we have the formula

(3) w(λ, v) = 〈μ(p), ξ〉,
where ξ ∈ Lie(Kc) is the generator of λ. In fact this is the weight of the action of λ
on the fibre of the tautological line bundle over p. Now we try to take this over to
the case of the action of G on Jint, so we consider a circle subgroup of G generated
by a Hamiltonian H. A fixed point in Jint corresponds to a Kähler structure with
a circle action, and the formula (3) goes over to the formula (2) for the Futaki
invariant in the smooth case. The YTD conjecture can then be viewed as positing

(1) Test configurations can be thought as corresponding (at least roughly) to
1-parameter subgroups in Gc.

(2) We allow singular central fibres, so actually we move outside the space
Jint, as we have defined it.

(3) With these understandings the analogue of the Hilbert-Mumford criterion
for the existence of the zero of the moment map is true.
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With regard to the first item, recall that in the finite-dimensional situation
the geodesics in the symmetric space Kc/K correspond to analytic 1-parameter
subgroups in Kc which are the complexification of 1-parameter subgroups in K. So
one can attempt to make sense of 1-parameter subgroups in Gc as geodesic rays in
the space of metrics H. This geodesic equation makes perfectly good sense: it is a
version of the homogeneous complex Monge-Ampère equation and various results
in the direction of item (1) have been established, beginning with Phong and Sturm
[56].

2. Proofs of cases of the YTD conjecture

2.1. Initial discussion. The YTD conjecture, for general polarised manifolds
(X,L) remains a conjecture—and one which does not seem likely to be established
in the near future. The constant scalar curvature equation is a 4th. order non
linear PDE and the existence theory is very limited at present. There are results
on small deformations by Székelyhidi [63] and others. There are other results of
an asymptotic nature considering blow-ups and fibred manifolds. In the first case
one considers a set of points in a CSCK manifold and the existence problem for
metrics on the blow-up, in a Kähler class where all the exceptional fibres are small
[5]. (Combining this blow-up theory with other results, Shu showed that in each
deformation class of Kähler surfaces there is a manifold admitting an extremal
metric [58].) In the second case, one considers a vector bundle E → X over a
CSCK manifold and metrics on the projectivisation P(E), in a Kähler class where
the fibres are small. The CSCK equations are then related to the Hermitian Yang-
Mills equation and the K-stability of P(E) to the stability of E [42], [57]. There
are also results for other fibred manifolds [37].

The situations mentioned above are all of a perturbative nature and the proofs
are based on implicit function theorems. Beyond this there are two main cases
where stability enters in an essential way and where the YTD conjecture has been
established: toric surfaces and Fano manifolds. We will discuss these in the next
two subsections.

2.2. Toric manifolds. We consider a polarised toric manifold (X,L) of com-
plex dimension n. Thus the complex torus T c = (C∗)n acts on (X,L) and there is
a dense, free, open orbit in X. This data defines a convex polytope P ⊂ Rn, which
is the convex hull of a finite set of integral points and which satisfied the “Delzant
condition”. Conversely, any such polytope yields a polarised toric manifold. This
correspondence can be developed in many ways. In terms of Kähler geometry, we
consider Kähler metrics on X which are invariant under the real torus T = (S1)n.
Restricted to the open orbit, such a metric is given by a Kähler potential which
can be viewed as a convex function on T c/T = Rn. The Legendre transform of
this function is then a convex function u on P . This approach was developed by
Guillemin [41] and Abreu [1] and corresponds exactly to the toric case of that de-
scribed in 1.2 above. The manifold X is regarded as a compactification of intP ×T
with the fixed symplectic form

∑
dxadθa where xa are standard co-ordinates on

Rn and θa are standard angular co-ordinates on T . Then the convex function u
defines a complex structure on X, specified by saying that the complex 1-forms

dθa + i
∑

b uabdx
b have type (1, 0). Here uab denotes the second derivative ∂2u

∂xa∂xb .
The function u is required to satisfy certain boundary conditions on ∂P—roughly
speaking, u should behave like d log d where d is the distance to the boundary.
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These boundary conditions mean that the complex structure extends smoothly to
the compact manifold X. While these complex structures—for different symplec-
tic potentials u—are different they are all isomorphic. The relation between the
two points of view, fixing either the complex structure or the symplectic structure,
becomes the classical Legendre transform for convex functions.

Each codimension-1 face of P lies in a hyperplane which contains an integer
lattice. This lattice defines a Lebesgue measure on the hyperplane. Putting these
together, we get a natural measure dσ on ∂P . A crucial object in the theory is
then the linear functional L on functions f on P ,

Lf =

∫
∂P

fdσ −A

∫
P

fdμ.

Here the real number A is Vol(∂P, dσ)/Vol(P, dμ), so that L vanishes on the con-
stant functions. The restriction of L to the linear functions defines the Futaki
invariant of (X,L) and we can only have a constant scalar curvature metric if this
vanishes, which we now assume. That is, we assume that the centre of mass of
(∂P, dσ) coincides with the centre of mass of (P, dμ).

The metric defined by a convex function u is

(4)
∑

uabdx
adxb + uabdθadθb,

where
(
uab

)
is the inverse of the Hessian matrix (uab). The scalar curvature is

(5) S = −1

2

∑
ab

∂2uab

∂xa∂xb
.

If we have a constant scalar curvature metric then the constant is A/2, so the
problem is to solve the fourth order nonlinear PDE

(6)
∑
ab

∂2uab

∂xa∂xb
= −A

for a convex function u satisfying the boundary conditions and with this given A.
This has a variational formulation. We set

(7) F(u) = −
∫
P

log det (uab) + L(u),

which is just the Mabuchi functional in this context. Then the PDE problem is to
find a minimum of the functional F over all convex functions on P .

We now turn to algebraic geometry. Suppose that f is a convex rational
piecewise-linear function, i.e. f = maxλi where {λi} are a finite collection of
affine-linear functions with rational co-efficients. Thus f defines a decomposition
of P into convex rational polytopes, on each of which f is affine-linear. Define
Q ⊂ P × R to be {(x, y) : y ≥ f(x)}. This is a convex polytope which corre-
sponds to an (n+ 1)-dimensional toric variety X . This yields a degeneration of X
in which the central fibre is typically reducible: the components of the central fibre
correspond to the pieces in the decomposition of P . For example if we take n = 1,
P = [−1, 1] ⊂ R and f(x) = |x| then we get the degeneration of CP1, embedded
as a smooth conic in CP2, into a pair of lines.

Now the Futaki invariant of such a degeneration X is just L(f). So we say that
(X,L) is toric K-stable if L(f) ≥ 0 for all such rational piecewise-linear functions
f , with equality if and only f is affine-linear. The YTD conjecture in this case

Licensed to AMS. 
License or copyright may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



STABILITY OF ALGEBRAIC VARIETIES AND KÄHLER GEOMETRY 211

is the conjecture that this is the necessary and sufficient condition for solving the
PDE problem (6). (In fact there is a significant technical difficulty here, in showing
that for toric manifolds toric K-stability is equivalent to K-stability as previously
defined—a priori the manifold could be de-stabilised by a degeneration which is not
compatible with the toric structure. This was resolved recently—for toric actions—
by work of Codogni and Stoppa [24])

Some part of the connection between the PDE problem and the stability con-
dition can be seen as follows. Suppose that there is a PL convex function f with
L(f) < 0. Then we choose a smooth convex function f̃ with L(f̃) < 0 and, given

some reference potential u0, we consider the 1-parameter family us = u0+ sf̃ . The
fact that f̃ is convex means that for us is a symplectic potential for all s ≥ 0. The
slow growth of the logarithmic term in (7) means that

(8) F(us) ∼ sL(f̃)

as s → ∞. In particular the functional F is not bounded below and there can be no
minimum. This fits in with the general heuristic picture we outlined in 1.3 above.
The metric on the space of torus-invariant Kähler metrics is flat and the geodesics
are exactly the linear paths like us.

We note that for toric Fano manifolds the existence problem for Kähler-Einstein,
metrics and more generally Kähler-Ricci soliton metrics, was completely solved by
Wang and Zhu [68]. It is also possible to verify that the appropriate stability
conditions are satisfied in this situation.

The toric version of the YTD conjecture in the case of toric surfaces, n = 2,
was confirmed in a series of papers culminating in [33]. The strategy of proof was a
continuity method. Suppose that we have any polytope P (not necessarily having
the Delezant property, or satisfying any rationality condition) with a measure ∂σ
on the boundary. Then we can define the linear functional L and set up the PDE
problem for a function u. We introduce the stability condition, that L(f) ≥ 0 for
all convex functions f , with equality if and only if f is affine-linear. Then part of
the work is to show that in the case of a pair (P, dσ) arising from a toric surface
this notion coincides with that defined before. That is, a destabilising function f
can be taken to be piecewise linear and rational. With this alternative definition in
place one can consider 1-parameter families (Pt, dσt) and the main task is to show
that if the stability condition holds for all t in a closed interval [0, 1] and if there
is a solution u(t) for t < 1 then in fact there is a solution for t = 1. This requires
many steps. One set of arguments culminate in a uniform bound

(9) ‖u(t)‖L∞ ≤ C

for all t < 1. From this we get a weak limit u(1) (initially from a subsequence
ti → 1) and the problem is to show that this is smooth, strictly convex and satisfies
the boundary conditions. This requires further estimates. For example a relatively
simple estimate gives a uniform lower bound

(10) det
(
u
(t)
ab

)
≥ ε > 0.

One of the special features of dimension 2 is that such a lower bound on the Monge-
Ampère function gives a strict convexity property of u—this fails in higher dimen-
sions. In general, the estimates near the boundary are particularly difficult.
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All of these results, for toric surfaces, have been extended to extremal metrics
by B. Chen, A-M Li and L. Sheng [17]. The extremal equation in this setting is
the same equation (6) but now with A an affine-linear function on Rn.

The underlying reason why the differential geometric theory works simply in
the toric case is in that the group of symplectomorphisms which commute with the
torus action is abelian. In the world of symplectic manifolds with group actions
there is a larger class of “multiplicity free” manifolds having this property. These
roughly correspond to “reductive varieties” in algebraic geometry. Much of the
theory discussed above can be extended to this situation[3], [34]. Recently Chen
Han, Li, Lian and Sheng have extended their analytical results to establish a version
of the YTD conjecture for a class of these manifolds, in the rank 2 case [18]. A
comprehensive treatment of the Fano case has been achieved by Delcroix [26].

To understand the existence proofs, it is important to understand what happens
when the stability condition fails. Suppose then that the pair (P1, dσ1) corresponds
to a K-semistable surface X, so that there is a non-trivial convex function f with
L(f) = 0. One can show that f can be taken to have the form max(0, λ), where λ is
affine linear; so the resulting decomposition of P1 has just two pieces P = P+∪P−.
This corresponds to a degeneration where the central fibre has two components
Y + ∪D Y −. Now suppose that this pair is embedded in a 1-parameter family as
above, where the stability condition holds for t < 1. The uniform estimate(9) will
then fail. The analytical result suggest that we can normalise u(t) in two different
ways

u
(t)
+ = u(t) + c+t f , u

(t)
− = u(t) + c−t f,

for c±t ∈ R, so that u
(t)
± converge over P± to limits u

(1)
± , and that these limits

define complete CSCK metrics on the non-compact surfaces Y ± \D. Transverse to
the divisor D, the picture should be modelled on the well-known degeneration of a
family of hyperbolic Riemann surfaces into a pair of cusps. (We can suppose that
the boundary between P+, P− is a line x1 = constant. Then the second derivative
of ut

11 becomes very large and one sees from the formula (4) that the metric becomes
large in the x1 direction and small in the θ1 direction.)

3. Kähler-Einstein metrics on Fano manifolds

3.1. Initial discussion. In this section we discuss the proof of the Yau (or
YTD) conjecture in the case of Fano manifolds by Chen, Donaldson and Sun [20].
That is:

Theorem. A Fano manifold X admits a Kähler-Einstein metric if and only if
(X,K−1

X ) is K-stable.

We should emphasise again that there are many earlier results, of Siu [59],
Nadel[51], Tian [66] and others, proving that particular Fano manifolds are Kähler-
Einstein, using the theory of the α-invariant and log canonical threshold.

The equation we want to solve is ρ = ω where ρ is the Ricci form. There are
at least three strategies to attack this PDE problem.
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(1) The continuity method: For a parameter s ∈ [0, 1] and some fixed
positive closed form ρ0 try to solve

ρ = sω + (1− s)ρ0,

and hope to solve up to s = 1 to get the Kähler-Einstein metric.
(2) Kähler-Ricci flow: With any initial condition there is a solution of the

flow equation
∂ω

∂t
= ω − ρ,

defined for all t > 0. We hope to obtain a Kähler-Einstein metric as the
limit when t → ∞.

(3) Cone singularities: Fix a smooth divisor D ∈ | − pKX | for some p.
For β ∈ (0, 1] we try to find a Kähler-Einstein metric with a cone angle
2πβ transverse to D and hope to solve up to β = 1 to get a smooth
Kähler-Einstein metric.

These have obvious similarities in spirit and also in the more technical aspects—
the crucial thing is to obtain the appropriate limit which will of course involve using
the stability condition (of course the same holds for the toric case discussed in the
previous section).

Approach (3) was the one taken by Chen, Donaldson, Sun. Subsequently other
proofs were given by Datar and Székelyhidi [65], [25] using approach (1) and by
Chen and Wang [23] and Chen, Sun and Wang [22] using approach (2). In the
unstable case, Chen, Sun and Wang show that the flow converges to a Ricci soliton
metric on a (possibly singular) variety. They show that this variety is a degeneration
of the central fibre of a destabilising test configuration. These other proofs have
the advantage that they are compatible with group actions and lead to explicit new
examples of manifolds admitting Kähler-Einstein metrics. (For torus actions, this
can now also be handled using the result of Codogni and Stoppa [24] mentioned
before.) We should also mention that there is now another proof (of a slightly
different result) due to Berman, Boucksom, Jonsson [10] which uses very different
ideas.

In all three strategies (1), (2), (3) , the crucial thing is to be able to take a limit
of the metrics in our approximating scheme and to show that this limit is an algebro-
geometric object. The foundation for this is the existence of a deep convergence
theory for Riemannian metrics given suitable control of the Ricci tensor. This is
what makes the Kähler-Einstein problem more tractable than the general CSCK
one. In the next two subsections we will outline some of the main ideas involved.

3.2. Gromov-Hausdorff convergence. Let A,B be compact metric spaces.
The Gromov-Hausdorff distance dGH(A,B) can be defined by saying that for δ > 0
we have dGH(A,B) ≤ δ if there is a metric on A�B extending the given metrics on
A,B and such that A and B are δ−dense. A fundamental theorem of Gromov runs
as follows. Suppose C,D > 0 are given and (Mi, gi) is a sequence of Riemannian
manifolds of fixed dimension m and with

• Ricci(Mi, gi) ≥ C;
• Diam(Mi, gi) ≤ D.

Then there is a subsequence which converges, in the sense of dGH , to some limiting
metric space.
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The Ricci curvature enters the proof through volume comparison. For simplicity
suppose C = 0. Bishop’s Theorem states that for a point p in a compact manifold
M with Ricci ≥ 0 the ratio

Vol(Bp(r))

rm

is a decreasing function of r. This is a strong global form of the infinitesimal relation
(1). The consequence here is that if the volume of M is V and the diameter is ≤ D
then

(11) Vol(Bp(r)) ≥
V

Dm
rm.

Now a packing argument shows that for any ε > 0 there is a fixed computable
number N(ε) (determined by V and D), such that M can be covered by N(ε) balls
of radius ε. Applying this to the Mi, the construction of the subsequence and the
Gromov-Hausdorff limit follows from an elementary argument. (Take a sequence of
approximations to the Mi by finite sets and use the fact that any bounded sequence
of real numbers has a convergent subsequence along with a “diagonal argument”.)

While the Gromov-Hausdorff limit is initially just a metric space a lot more is
known about it. Results of Cheeger and Colding [15], Anderson [2] and Cheeger,
Colding and Tian [16] establish that:

• if the Ricci tensors of the Mi also have an upper bound and the volumes
of Mi are bounded below then the limit M∞ is the union R � S where
the regular set R is a C1,α Riemannian manifold and the singular set S is
closed, of Hausdorff codimension ≥ 4;

• at each point of M∞ there exist metric “tangent cones”.

3.3. Gromov-Hausdorff limits, line bundles and algebraic geometry.
To get to the main ideas we discuss a slightly different situation as in [25]. Suppose
that we have a polarised manifold L → X and a Kähler class 2πc1(L), a Hermitian
metric on L and the Kähler form defined by the curvature of this metric. A fun-
damental, but completely elementary , point is that taking a power Lk of the line
bundle corresponds to scaling the metric on X, so distances are scaled by

√
k.

Suppose that we have a sequence of such (Li, Xi, ωi) with a fixed diameter
bound and bounded Ricci curvatures. By Gromov’s Theorem, we can suppose there
is a Gromov-Hausdorff limit Z. The central problem is to relate this to algebraic
geometry. A rough statement expressing this is that Z is homeomorphic to a
normal complex projective variety. There are various more precise statements: for
example (after perhaps taking a subsequence) we can find a fixed k and embeddings
τi : Xi → CPN defined by the sections of Lk

i such that the projective varieties
τi(Xi) ⊂ CPN converge to a normal variety W which is homeomorphic to Z.

The essential difficulty in proving this is to establish a “partial C0-estimate”.
Given a positive Hermitian line bundle L → X and a point p ∈ X we define ρ(p, L)
to be the norm of the evaluation map

evp : H0(X,L) → Lp,

using the standard L2 metric on the sections. The statement that ρ(p, L) > 0 for
all p is the statement that the sections of L define a map

τ : X → P(H0(X,L)∗).

Licensed to AMS. 
License or copyright may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



STABILITY OF ALGEBRAIC VARIETIES AND KÄHLER GEOMETRY 215

A definite lower bound on ρ(p, L) gives metric control of the map τ . The estimate
in question is to show that there is some fixed k0 and a definite lower bound on
ρ(Lk0

i , p) for all p ∈ Xi. This can be thought of as a quantitative form of the
standard Kodaira theory for high powers of a positive line bundle.

The outline of the argument to achieve this is as follows.

• We work near a point q of the Gromov-Hausdorff limit Z. A very small
neighbourhood of q is close to a neighbourhood in a tangent cone C(Y )
(i.e the metric cone over a metric space Y ).

• For a suitable open set U in the regular part of C(Y ) we get approximately
holomorphic and isometric embeddings χi : U → Xi, after rescaling and
for large i.

• Over U , in the regular set of the cone, there is a canonical section σ of
the trivial holomorphic line bundle. It has Gaussian decay:

|σ|2 = e−r2/2,

where r is the distance to the vertex of the cone.
• If we can trivialise (or “approximately trivialise”) the bundle χ∗

i (L
k
i ), for

a suitable k, and if we have a suitable cut-off function β supported in U ,
we can transport βσ to a C∞ “approximately holomorphic” section σ̃ of
Lk
i .

• There is a well-developed “Hörmander technique” for studying the pro-
jection of σ̃ to the holomorphic sections.

The main work goes into the construction of suitable cut-off functions and in
analysing the holonomy of the line bundles. The upshot is that one constructs
sections of Lk

i which are sufficiently controlled to give the required estimate.

3.4. Outline of the main proof (the YTD conjecture for Fano man-
ifolds). Following the approach (3), using Kähler-Einstein metrics with cone sin-
gularities, the programme of work is.

(1) Show that there is a solution for small cone angle.
(2) Show that given one solution the cone angle can be slightly deformed.
(3) Extend the discussion above to metrics with cone singularities to show

that if there is a sequence βi → β∞ > 0 with solutions for each i then we
can take a Gromov-Hausdorff limit which is naturally a normal projective
variety W and is the limit of projective embeddings of X.

(4) If W = X show that there is a solution for the limiting cone angle β∞.
(5) If W �= X, construct a non-trivial test configuration X with central fibre

W .
(6) Show that Fut(X ) ≤ 0.

In item (5) a key step is to establish that the automorphism group of W is
reductive. This is an extension of the standard Matsushima theorem to the singular
case and depends upon sophisticated results from pluripotential theory [14]. Item
(6) follows from an extension of the definition of the Futaki invariant to pairs.

An interesting feature is that this proof shows that to test K-stability for Fano
manifolds it suffices to consider test configurations with normal central fibre. In this
proof the fact emerges from the differential geometry and Riemannian convergence
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theory: it is bound up with the non-collapsing inequality (11). On the algebro-
geometric side this fact was proved (a little earlier) by Li and Xu [47], using results
from the minimal model programme.

4. Concluding discussion

4.1. Examples. A major difficulty in this area is that it usually very hard to
check whether a manifold is K-stable. This is one of the advantages of the toric case,
where the criterion is relatively explicit. The situation for Fano manifolds is much
less satisfactory and there are few interesting examples known. Even in dimension
3, where the Fano manifolds are completely classified, it is not known exactly which
of them are K-stable. This is an outstanding algebro-geometric problem and one
can certainly hope that it will be much better understood by the time of the next
AMS summer algebraic geometry meeting. Among recent developments we note
the work of Ilten and Süss [45] and Delcroix [27]on manifolds with large symmetry
groups and of Fujita and Odaka [39] on a new “δ-invariant” criterion.

There is one interesting class of examples in dimension 3, which go back in this
context to Tian [67]. These occur in the family of Fano 3-folds of type V22 which
can all be embedded in the Grassmannian of 3-planes in C7. More precisely, let
U be a 7-dimensional complex vector space and Π be a 3-dimensional subspace of
Λ2U∗. Then we define a variety XΠ in Gr3(U) to be set of 3-planes P ⊂ U such
that ω|P = 0 for all ω ∈ Π. For generic Π this is a smooth Fano 3-fold, so we have a
family of manifolds parametrised by an open subset Ω ⊂ Gr3(U

∗). The problem is
to identify the set Δ ⊂ Ω of points Π ∈ Ω which define K-unstable manifolds XΠ.

This is an interesting case because it is known that neither Δ nor Ω \ Δ are
empty. We will recall some of the discussion of this from [34]. Take U to be the
irreducible 7-dimension representation s6 of SL(2,C). This is an orthogonal repre-
sentation and the image of the Lie algebra under the action defines a 3-dimensional
subspace Π0 of Λ

2U∗. The corresponding variety X0 = XΠ0
—the Mukai-Umemura

manifold—is smooth and clearly supports an induced SL(2,C)-action. It can be
shown that X0 admits a Kähler-Einstein metric and hence is K-stable.

One can use deformation theory to describe explicitly the intersection of Δ with
a neighbourhood of the point [Π0] ∈ Ω. The group SL(2,C) acts on the deformation
space T = H1(TX0) and as a representation of SL(2,C) we have T = s8(C2). For
each small α ∈ T we have a deformation Xα. Then for small α �= 0 the manifold
Xα has a KE metric if and only if α is polystable (in the GIT sense that we defined
in Section 1.2) for the SL(2,C) action. That is, if α is regarded as a section of a
line bundle of degree 8 over CP1 then either:

(1) There is no zero of multiplicity ≥ 4 (the stable case), or
(2) There are two distinct zeros, each of multiplicity 4.

In the second case, there is a C∗-action on the manifold Xα. There is a unique
SL(2,C)-invariant divisor D in the anticanonical linear system | − KX0

|. This
is the variety of tangents to the rational normal curve in P12 = P(s12) and its
normalisation is P1 × P1. The divisor D is homeomorphic to P1 × P1 but has a
cusp singularity along the diagonal. In suitable local co-ordinates (x, y, t) on X0

the divisor D is defined by the equation y2 = x3. The local versal deformation of
this cusp singularity is given by

(12) y2 = x3 + a(t)x+ b(t).
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Globally, a, b are sections of O(8),O(12) respectively over the diagonal P1. This has
the following interpretation, at least at the infinitesimal level. As a representation
of SL(2,C) the deformation space of the pair (X0, D0) is s8 ⊕ s12 with the s8

factor corresponding to the deformations of X0 (the space T above) and s12 to
the deformations of D0 within X0. Then in the description by (a, b) the term
a lies in s8 and b in s12. If a is not stable, with a single zero of multiplicity 4
at the point t = 0 say, we can choose b to have a zero of multiplicity greater
than 6 at t = 0. We get a pair (Xα, Dα) whose orbit under an action of a 1-
parameter subgroup C∗ ⊂ SL(2,C) converges to (X0, D0). This leads to a plausible
conjectural description of the unstable set Δ. Consider the surface singularity at 0
in C3 defined by the equation f = 0 where

f(x, y, t) = y2 − x3 − t4x.

The versal deformation space is the quotient of C[x, y, t] by the ideal generated by f
and the partial derivatives fx, fy, ft, and this has dimension 10. So we expect that
in the 22 dimensional family of K3 surfaces arising from deformations of D0 there
should be a 12 dimensional sub-family with singularities modelled on {f = 0}. The
deformation discussion suggest that these arise as surfaces which lie in unstable
3-folds Xα, with a 6-dimensional linear system of these singular surfaces for each
such Xα. Define Δ′ to be the locus of points Π such that there is an anticanonical
divisor in XΠ which has singularity of the form f = 0. Then it seems plausible that
XΠ is not K-stable if and only if it does not admit a C∗ action and if Π lies in the
closure of Δ′. (We emphasise that the deformation discussion does not establish
anything about the stability for points Π far away from Π0—a priori there could
be quite different kinds of destabilising test configurations.)

4.2. Connections with moduli theory. For manifolds with c1 < 0 the ex-
istence problem for KE metrics is completely understood following Aubin and Yau.
But for canonically polarised singular varieties Odaka showed that K-stability is
equivalent to the stability in the sense of Kollár, Shepherd-Barron and Alexeev
[53], which is formulated in terms of having at worst “semi log canonical” singu-
larities. There is a good generalisation of the notion of a Kähler-Einstein metric
to the case of singular varieties (roughly, a metric on the smooth part defined by a
bounded potential) [11]. Berman and Guenancia show that the existence of such a
metric is equivalent to K-stability [13]. That is, the “YTD conjecture” is non-trivial
and true for canonically polarised varieties.

Now we turn to the Fano case. One can form compactifications of moduli spaces
of K-stable Fano manifolds (as topological spaces) using the the Gromov-Hausorff
topology defined via the Kähler-Einstein metrics. There have been important recent
developments relating these to algebro-geometric approaches.

• Odaka, Spotti and Sun studied the case of surfaces [55].
• Spotti, Sun and Yao extend the existence theory to K-stable Q-Fano va-
rieties. [60].

• Odaka constructed a compactified moduli space of K-stable Q-Fano vari-
eties as an algebraic space [54].

• Li, Wang and Xu show that the moduli space of K-stable Fano manifolds
is quasi-projective (and also construct the compactification as an algebraic
space) [46].
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At the time of writing it seems not to be known if the Gromov-Hausorff compacti-
fication is projective, but one can hope for further developments in this direction.

4.3. The CSCK and extremal cases. Examples suggest that the definition
above of K-stability may not be the correct one for general polarised manifolds.
Székelyhidi has given a modified definition in [64]. Given a polarised variety (X,L)
we write Rk = H0(X,Lk) and form the graded ring R =

⊕
Rk. Then we consider

filtrations

C = F0 ⊂ F1 ⊂ F2 · · · ⊂ R,

such that

• Fi.Fj ⊂ Fi+j ;
• Fi =

⊕
k Fi ∩Rk;

• R =
⋃

i Fi.

The Rees algebra of such a filtration F is the subalgebra of R[t] given by:

Rees(F) =
⊕
i

(FiR)ti.

Székelyhidi observes if the Rees algebra is finitely generated the scheme

ProjC[t]Rees(F)

is a test configuration for (X,L). Conversely a construction of Witt-Nyström de-
fines a filtration from any test configuration. So it is the same to talk about test
configurations as filtrations with finitely generated Rees algebra. Székelyhidi then
extends the definition of the Futaki invariant to general filtrations—not necessarily
with finitely generated Rees algebra. In turn this leads to a new, and more restric-
tive, notion of K-stability. For example in the toric case the vector space Rk has a
standard basis labelled by the lattice points Zn ∩ kP . Given any convex function
f on P we define convex subsets

Pi,k = {x ∈ P : f(x) ≤ i/k}.
and we define a filtration by taking Fi ∩ Rk to be the subspace corresponding to
the lattice points in kPi,k. The Futaki invariant of this filtration is given by the
integral expression L(f) we discussed before.

It seems likely that this definition of Székelyhidi gives the correct formulation
of the YTD conjecture. For example in the toric case in dimension n > 2 it seems
likely that one has to consider general convex functions, not just rational piecewise
linear ones. Perhaps there is a sensible way to define “points at infinity” in the
space of Kähler metrics and a precise relationship between these and filtrations.

We conclude with some remarks about the more differential-geometric and PDE
aspects. Extending the existence theory to general CSCK and extremal metrics
seems very hard at present because there is no analogue of the Riemannian con-
vergence theory based on control of just the scalar curvature. In the Fano case one
is essentially concerned with metrics having a positive lower bound on the Ricci
curvature and this means that “collapsing” cannot occur—the Bishop inequality
gives a lower bound (11) on the volume of any metric ball in terms of its radius.
This is connected with the algebro-geometric fact that it suffices to test stability
by degenerations to normal varieties In general we have to consider such collapsing
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phenomena, as we see already in the toric case. (For example in a sequence of
hyperbolic Riemann surfaces developing a long neck and degenerating into a pair
of cusps, the metric discs in the middle of the neck will have very small area.)
From the algebro-geometric point of view, it is essential to consider degenerations
to non-normal varieties. It seems reasonable to hope for progress in the case of
higher dimensional toric manifolds or for general complex surfaces but there are
many difficulties and important problems for the future.
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