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The Cremona group

Serge Cantat

ABSTRACT. We survey a few results concerning groups of birational transformations. The
emphasis is on the Cremona group in two variables and methods coming from geometric
group theory.
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1. An introduction based on examples

1.1. Cremona groups and groups of birational transformations. Let k be a field
and n be a positive integer. The Cremona group Crn(k) is the group of k-automorphisms
of k(X1, . . . ,Xn), the k-algebra of rational functions in n independent variables. Given n
rational functions Fi ∈ k(X1, . . . ,Xn) there is a unique endomorphism of this algebra that
maps Xi onto Fi . This endomorphism is an automorphism of k(X1, . . . ,Xn) if, and only if
the rational transformation

f (X1, . . . ,Xn) = (F1, . . . ,Fn)
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102 SERGE CANTAT

is a birational transformation of the affine space An
k, i.e. an element of the group of bi-

rational transformations Bir(An
k). This correspondence identifies Crn(k) with the group

Bir(An
k).

Compactify An
k into the projective space Pn

k, and denote by [x1 : . . . : xn+1] a system
of homogeneous coordinates with Xi = xi/xn+1. Every birational transformation of the
affine space corresponds to a unique birational transformation of the projective space, and
vice versa. Geometrically, one restricts elements of Bir(Pn

k) to the Zariski open subset An
k

(resp. one extends elements of Bir(An
k) to the compactification Pn

k). In terms of formulas,
a rational transformation f of An

k which is defined by rational fractions Fi, as above, gives
rise to a rational transformation of the projective space which is defined by homogeneous
polynomials fi in the xi: To obtain the fi one just needs to homogenize the Fi and to
multiply them by the lowest common multiple of their denominators. For instance, the
birational transformation

h(X1,X2) = (X1/X2,X2 +17)
of A2

k corresponds to the birational transformation

h[x1 : x2 : x3] = [x1x3 : (x2 +17x3)x2 : x3x2].

To sum up, one gets three incarnations of the same group,

(1) Crn(k) = Bir(An
k) = Bir(Pn

k).

Moreover, every birational transformation f of Pn
k can be written as

(2) f [x1 : . . . : xn+1] = [ f1 : . . . : fn+1]

where the fi are homogeneous polynomials in the variables xi, of the same degree d, and
without common factor of positive degree. This degree d is the degree of f . Birational
transformations of degree 1 are linear projective transformations: They form the subgroup

(3) PGLn+1(k) = Aut(Pn
k)⊂ Bir(Pn

k)

of automorphisms of the projective space.
More generally, two groups of transformations are naturally associated to any given

variety Y : The group Aut(Y ) of its (regular) automorphisms, and the group Bir(Y ) of
its birational transformations. If M is a complex manifold, one can consider its group
of holomorphic diffeomorphisms and its group of bi-meromorphic transformations. They
coincide with the aforementionned groups Aut(M) and Bir(M) when M is the complex
manifold determined by a (smooth) complex projective variety.

1.2. Examples, indeterminacy points, and dynamics. The group of automorphisms
of Pn

k is the group PGLn+1(k) of linear projective transformations. In dimension 1, Cr1(k)
is equal to PGL2(k), because a rational transformation f (X1) ∈ k(X1) is invertible if and
only if its degree is equal to 1.

1.2.1. Monomial transformations. The multiplicative group Gn
m of dimension n can

be identified to the Zariski open subset (A1
k \{0})n of Pn

k. Thus, Crn(k) contains the group
of all algebraic automorphisms of the group Gn

m i.e. the group of monomial transforma-
tions GLn(Z).

A first example is given by the monomial transformation of the plane (X1,X2) �→
(1/X1,1/X2). It is denoted by σ2 in what follows; it can be written as

(4) σ2[x1 : x2 : x3] = [x2x3 : x3x1 : x1x2]

in homogeneous coordinates, and is therefore an involution of degree 2. By definition, σ2
is the standard quadratic involution.
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A second example is given by a(X1,X2) = (X2
1 X2,X1X2). If k is the field of complex

numbers C, this transformation a preserves the 2-dimensional real torus

T := {(X1,X2) ∈ C∗; |X1|= |X2|= 1}
and induces a diffeomorphism of T . This torus is uniformized by the plane R2, with cov-
ering map (t1, t2) �→ (exp(2π

√
−1t1),exp(2π

√
−1t2)), and the birational transformation a

is covered by the linear transformation A(t1, t2) = (2t1 + t2, t1 + t2) of R2. The dynamics of
a is quite rich, as explained in [27]. The linear transformation A has two eigenvalues,

λA =
3+

√
5

2
,

1
λA

=
3−

√
5

2
,

with λA > 1, and the affine lines which are parallel to the eigenline for λA (resp. for λ−1
A )

give rise to a linear foliation of the torus T whose leaves are uniformly expanded under the
dynamics of a (resp. uniformly contracted). Periodic points of a|T : T → T correspond to
rational points (t1, t2) ∈ Q×Q and form a dense subset of T ; on the other hand, there are
points whose orbit is dense in T , and points whose orbit is dense in a Cantor subset of T .
The action of a on T preserves the Lebesgue measure and acts ergodically with respect to
it.

1.2.2. Indeterminacy points. Birational transformations may have some indetermi-
nacy points. The set of indeterminacy points of a birational transformation of a smooth
projective variety Y is a Zariski closed subset of co-dimension ≥ 2, and is therefore a finite
set when dim(Y ) = 2. For example, σ2 is not defined at the three points [1 : 0 : 0], [0 : 1 : 0],
and [0 : 0 : 1].

Consider the involution of the projective space which is defined by

σ3[x1 : x2 : x3 : x4] =

[
1
x1

:
1
x2

:
1
x3

:
1
x4

]
= [x2x3x4 : x1x3x4 : x1x2x4 : x1x2x3 ].

Let Δ denote the tetrahedron with faces {xi = 0}, 1 ≤ i ≤ 4, and vertices [1 : 0 : 0 : 0], . . .,
[0 : 0 : 0 : 1]. The transformation σ3 blows down each face of Δ on the opposite vertex.
Blow up these four vertices, to get a new projective variety Y together with a birational
morphism π : Y → P3

k. Then, σ3 lifts to a birational transformation σ̂3 = π−1 ◦σ3 ◦π of Y ;
this birational transformation does not contract any hypersurface but it has indeterminacies
along the strict transforms of the edges Li j = {xi = x j = 0}, i �= j, of the tetrahedron Δ.

Now, fix a field k of characteristic 0, and consider the birational transformation of
the plane which is defined by g(X1,X2) = (X1 + 1,X1X2 + 1). The line {X1 = 0} is con-
tracted to the point (1,1). The forward orbit of this point is the sequence gn(1,1) = (n,yn)
with yn+1 = nyn + 1; since yn grows faster than (n− 1)!, one easily checks that this orbit
(gn(1,1))n≥0 is Zariski dense.1 Thus, the indeterminacy points of the iterates of g form
a Zariski dense set. Similarly, each vertical line {X1 = −m}, m ∈ Z+, is contracted by
some iterate gm of g. With these remarks in mind, one can show that there is no birational
mapping π : X ��� P2

k such π◦g◦π−1 becomes a regular automorphisms of (a non-empty
Zariski open subset of) X . See also Remark 5.5 for other examples of this type.

1.2.3. Hénon mappings. The group Aut(An
k) of polynomial automorphisms of the

affine spaceAn
k is contained in the Cremona group Crn(k). In particular, all transformations

(X1, . . . ,Xn) �→ (X1 +P(X2, . . . ,Xn),X2, . . . ,Xn),

1Another argument works as follows. Assume that this orbit is contained in a curve C, and fix an irreducible
component D of C. The strict transform of D under the action of g intersects D infinitely many times, and must
therefore coı̈ncide with D. One checks that this is impossible by writing down an equation for D.
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104 SERGE CANTAT

with P in k[X2, . . . ,Xn], are contained in Crn(k). This shows that Crn(k) is “infinite dimen-
sional” when n ≥ 2.

A striking example of automorphism is furnished by the Hénon mapping

(5) ha,c(X1,X2) = (X2 +X2
1 + c,aX1),

for a ∈ k∗ and c ∈ k. When a = 0, ha,c is not invertible: The plane is mapped into the
line {X2 = 0} and, on this line, h0,c maps X1 to X2

1 + c. The dynamics of h0,c on this
line coincides with the dynamics of the upmost studied transformation z �→ z2 + c , which,
for k = C, provides interesting examples of Julia sets (see [114]). For a ∈ C∗, the main
features of the dynamics of h0,c survive in the dynamical properties of the automorphism
ha,c : A2

C → A2
C, such as positive topological entropy and the existence of infinitely many

periodic points [8].

1.3. Subgroups of Cremona groups. Birational transformations are simple objects,
since they are determined by a finite set of data, namely the coefficients of the homoge-
neous polynomials defining them. On the other hand, they may exhibit very rich dynamical
behaviors, as shown by the previous examples. Another illustration of the beauty of Crn(k)
comes from the study of its subgroups.

1.3.1. Mapping class groups. Let Γ be a group which is generated by a finite number
of elements γi, 1 ≤ i ≤ k. Consider the space RΓ of all homomorphisms from Γ to SL2(k):
It is an algebraic variety over k of dimension at most 3k. The group SL2(k) acts on RΓ by
conjugacy; the quotient space RΓ//SL2(k), in the sense of geometric invariant theory, is
an algebraic variety. The group of all automorphisms of Γ acts on RΓ by pre-composition.
This determines an action of the outer automorphism group Out(Γ) by regular tranfor-
mations on RΓ//SL2(k). (Out(Γ) is the quotient of Aut(Γ) by the subgroup of all inner
automorphisms.)

There are examples for which this construction provides an embedding of Out(Γ) in
the group of automorphisms of RΓ//SL2(k). Fundamental groups of closed orientable
surfaces of genus g ≥ 3 or free groups Fg with g ≥ 2 provide such examples. Thus, the
mapping class groups Mod(g) and the outer automorphism groups Out(Fg) embed into
groups of birational transformations [3, 108].

1.3.2. Analytic diffeomorphisms of the plane. Consider the group Bir∞(P2
R) of all el-

ements f of Bir(P2
R) such that f and f−1 have no real indeterminacy point: Over C, inde-

terminacy points come in complex conjugate pairs. Based on the work of Lukackiı, Kollár
and Mangolte observed that Bir∞(P2

R) determines a dense subgroup in the group of diffeo-
morphisms of P2(R) of class C ∞ (see [98] for stronger results). A similar result holds if
we replace the projective plane by other rational surfaces, for instance by the sphere S2

R.
This implies that all dynamical features that can be observed for diffeomorphisms of P2(R)
(resp. of S2(R)) and are stable under small perturbations are realized in the dynamics of
birational transformations. For instance, there are elements f ∈ Bir∞(P2

R) with a horse-
shoe in P

2(R) (see [97], Chapter 2.5.c for the definition of horse-shoes, and Chapter 18.2
for their stability). And there are elements of Bir∞(S2

R) which are not conjugate to a linear
projective transformation in Bir(S2

R) but exhibit a simple, north-south dynamics: There is
one repulsive fixed point, one attracting fixed point, and all orbits in the complement of the
two fixed points go from the first to the second as time flows from −∞ to +∞ (see [97],
Chapter 1.6).

1.3.3. Groups of birational transformations. One says that a group Γ is linear if there
is a field k, a positive integer n, and an embedding of Γ into GLn(k). Similarly, we shall
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say that Γ is a group of birational transformations over the field k if there is a projective
variety Yk, and an embedding of Γ into Bir(Yk). The following properties are obvious.

(1) Linear groups are groups of birational transformations.
(2) The product of two groups of birational transformations over k is a group of

birational transformations over k.
(3) Any subgroup of a group of birational transformations is also a group of bira-

tional transformations.

In certain cases, one may want to specify further properties: If Γ acts faithfully by birational
transformations on a variety of dimension d over a field of characteristic p, we shall say
that Γ is a group of birational transformations in dimension at most d in characteristic p.
For instance,

(4) Every finite group is a group of birational transformations in dimension 1 and
characteristic 0. (see [85], Theorem 6’)

(5) The mapping class group Mod(g) of a closed, orientable surface of genus g ≥ 3
and the group Out(Fg) are groups of birational transformations in dimension
≤ 6g, but Out(Fg) is not linear if g ≥ 4 (see [3, 78, 107]).

1.4. Aims and scope. This survey is organized in three main chapters. The leitmo-
tiv is to compare groups of birational transformations, for instance Cremona groups, to
classical Lie groups and to groups of diffeomorphisms of smooth compact manifolds.

We first look at the groups Bir(X) as (infinite dimensional) analogues of algebraic
groups (see Sections 2 to 3). Then, we focus on recent results on groups of birational
transformations of surfaces, with an emphasis on the most interesting example Cr2(k) (see
Sections 4 to 7). The last chapters review several open problems concerning groups of
birational transformations in dimension > 2.

There are several geometrical aspects of the theory which are not described at all, in-
cluding classical features such as the geometry of homaloidal nets and the Noether-Fano
inequality, as well as more recent developments like the Sarkisov program and the geom-
etry of birationally rigid varieties. The lectures notes [70] and the books [49, 68, 99] are
good introductions to these topics. Dynamical properties of birational transformations are
also not discussed; this would require a much longer report [37, 89].

–I–
Algebraic subgroups and generators

2. Algebraic subgroups of Crn(k)

In this first part, the main emphasis is on the Zariski topology of the Cremona group
and the structure of its algebraic subgroups. We compare Crn(k) to linear algebraic groups:
If Crn(k) were such a group, what kind of linear group would it be ?

2.1. Zariski topology (see [20, 131]). Let B be an irreducible algebraic variety. A
family of birational transformations of Pn

k parametrized by B is, by definition, a birational
transformation f of B×Pn

k such that (i) f determines an isomorphism between two open
subsets U and V of B×P

n
k such that the first projection maps both U and V surjectively

onto B, and (ii)
f (b,x) = (b, p2( f (b,x)))

Licensed to AMS. 
License or copyright may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



106 SERGE CANTAT

where p2 is the second projection; thus, each fb := p2( f (b, ·)) is a birational transformation
of Pn

k. The map b �→ fb is called a morphism from the parameter space B to the Cremona
group Crn(k).

Then, one says that a subset S of Crn(k) is closed if its preimage is closed for the
Zariski topology under every morphism B → Crn(k). This defines a topology on Crn(k)
wich is called the Zariski topology. Right and left translations

g �→ g◦h, g �→ h◦g

and the inverse map
g �→ g−1

are homeomorphisms of Crn(k) with respect to the Zariski topology.
Define Crn(k;d)⊂ Crn(k) to be the subset of all birational transformations of degree

d: An element of Crn(k;d) is defined by homogeneous formulas of degree d in the vari-
ables [x0 : . . . : xn] without common factor of positive degree. Let Crn(k;≤ d) be the union
of these sets for all degrees d′ ≤ d. Consider the projective space Poln(k;d) of dimension

r(n,d) = (n+1)
(

n+d
d

)
−1

whose elements are given by (n+ 1)-tuples of homogeneous polynomial functions hi ∈
k[x0, . . . ,xn] of degree d, modulo multiplication by a non-zero common scalar factor; de-
note by Formn(k;d) the subset of Poln(k;d) made of formulas for birational maps, i.e.
n-tuples of polynomial functions (hi)0≤i≤n such that

[x0 : . . . : xn] �→ [h0 : . . . : hn]

is a birational transformation of the projective space (of degree ≤ d). The set Formn(k;d)
is locally closed in Poln(k;d) for the Zariski topology, and there is a natural projection
πn : Formn(k;d)→ Crn(k;≤ d). One can then show that

• If f : B → Crn(k) is a morphism, its image is contained in Crn(k;≤ d) for some
degree d and it can be locally lifted, on affine open subsets Bi ⊂ B, to morphisms
B → Formn(k;d′

i) for some d′
i ≥ d;

• a subset S of Crn(k) is closed if and only if its πn-preimage in Formn(k;d) is
closed for all d ≥ 1;

• for every d ≥ 1, Crn(k;≤ d) is closed in Crn(k);
• the projection Formn(k;d) → Crn(k;≤ d) is surjective, continuous, and closed

for every d ≥ 1 (it is a topological quotient mapping);
• the Zariski topology on the Cremona group is the inductive limit topology of the

topologies of Crn(k;≤ d).
These properties are described in [20]. The following example shows that morphisms
into Crn(k;≤ d) do not always lift to morphisms into Formn(k;d) when the degree of the
formulas varies with the parameter.

EXAMPLE 2.1. A formula like f = [x0R : x1R : x2R], for R a homogeneous polynomial
of degree d − 1 is a non-reduced expression for the identity map; thus, the map from
formulas to actual birational transformations contracts sets of positive dimension (here, a
projective space onto the point {id

P
2
k
}). A family of birational transformations of P2

k of
degree d which depends on a parameter c may degenerate (for certain values ci of c) onto
a non-reduced expression of this type. Assume that the parameter c varies on a smooth
curve D, that the general member of the family has degree d, and that for two distinct
points c1 and c2 the formulas become of type [x0Rci : x1Rci : x2Rci ] with Rc1 and Rc2 two
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homogeneous polynomials which are not proportional. Glue the two points c1 and c2 to
obtain a nodal curve C, the normalization of which is D. Then, for every point of C, one
gets a well defined birational transformation of the plane parametrized by C; but there is
no globally defined morphism from C to the space of homogeneous formulas of degree d
that determines globally these birational transformations: The two branches of C through
its singularity would lead to two distinct expressions at the singular point, one for Rc1 , one
for Rc2 .

An explicit example is described in [20], with C ⊂A
2
k the nodal plane cubic a3 +b3 =

abc and

fa,b,c[x0 : x1 : x2] = [x0P : x1Q : x2P],

where P = ax2
2 + cx0x2 +bx2

0 and Q = ax2
2 +(b+ c)x0x2 +(a+b)x2

0. The family of trans-
formations fa,b,c is globally defined by formulas of degree 3; but each element fa,b,c has
degree ≤ 2 and there is no global parametrization by homogeneous formulas of degree 2.
More precisely,

abP = (a2x2 +b2x0)(bx2 +ax0)

abQ = (a2x2 +b(a+b)x0)(bx2 +ax0)

so that we can factor out the linear term (bx2 + ax0). Thus, fa,b,c is a morphism from C
to Cr2(k) which lifts to a morphism into Form2(k;3), but each fa,b,c is in fact a birational
map of degree ≤ 2 (the degree is indeed equal to 2 if [a : b : c] �= [0 : 0 : 1]). On the other
hand, there is no regular lift to the space of formulas Form2(k;2).2

In some sense, the following example is even worse; it shows that there is no structure
of algebraic variety on Crn(k;≤ d) (see [20]). The sets Crn(k;d) behave well, but the sets
Crn(k;≤ d) don’t.

EXAMPLE 2.2. Consider the variety V that one obtains by removing p = [0 : 1 : 0] and
q = [0 : 0 : 1] from the plane P2

k. Use homogeneous coordinates [a : b : c] for this parameter
space V ⊂ P

2
k. Note that V contains the line L = {b = c} (the two points p and q are not

on this line). Now, consider the family g = ga,b,c of birational transformations defined by

g[x0 : x1 : x2] = [x0(ax2 + cx0) : x1(ax2 +bx0) : x2(ax2 + cx0)],

i.e.

g(x,y) =
(

ay+b
ay+ c

x,y
)

in affine coordinates. One gets a family of birational transformations of degree 2, except
that all points of L are mapped to the identity (one factors out the linear term (ax2 +bx0)).
Thus, as a map from V to Cr2(k;≤ 2), it contracts L to a point, but it is not constant on the
{b = c+ εa}, ε �= 0. This prevents Cr2(k;≤ 2) to be a bona fide algebraic variety!

2Such a lift would be given by

f a,b,c(x0,x1,x2) = (x0(a2x2 +b2x0),x1(a2x2 +b(a+b)x0),x2(a2x2 +b2x0))

modulo multiplication by a function of (a,b,c), but this expression does not correspond to a birational map when
(a,b,c) is the singular point (0,0,0) of C. Details are given in [20].
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2.2. Algebraic subgroups (see [20, 57]). An algebraic subgroup of the Cremona
group is a subgroup G < Crn(k) which is the image of an algebraic group K by a homo-
morphism ρ such that ρ : K → Crn(k) is a morphism with respect to the Zariski topology.
In particular, any algebraic group has bounded degree: It is contained in Crn(k;≤ d) for
some d.

Let G be a subgroup of Crn(k), closed for the Zariski topology, and of bounded degree.
One can then prove that there is an algebraic group K and a morphism ρ : K → Crn(k)
such that ρ is a group homomorphism and ρ is a homeomorphism from K onto its image
G for the Zariski topology; moreover, morphisms B → Crn(k) with values in G correspond
to algebraic morphisms into the algebraic variety K via ρ. Thus, algebraic subgroups
correspond exactly to closed subgroups of bounded degree.

By a theorem of Weil, every subgroup G of bounded degree in Crn(k) can be regu-
larized: There is a projective variety X and a birational mapping π : X ��� Pn

k such that
GX := π−1Gπ is contained in the group of regular automorphisms Aut(X) (see [38] for a
description of Weil theorem and references). Moreover, the identity component Aut(X)0

is a linear algebraic group (because X is rational), and the intersection GX ∩Aut(X)0 has
finite index in GX (see [103]).

Thus, algebraic subgroups of Crn(k) correspond to algebraic groups of automorphisms
of rational varieties X ��� P

n
k.

2.3. Algebraic tori, rank, and an infinite Weyl group.
2.3.1. Linear subgroups. The Cremona group in one variable coincides with the group

of linear projective transformations PGL2(k), and is an algebraic group of dimension 3.
The Cremona group Cr2(k) contains two important algebraic subgroups. The first one

is the group PGL3(k) of automorphisms of P2
k. The second is obtained as follows. Start

with the surface P
1
k ×P

1
k, considered as a smooth quadric in P

3
k; its automorphism group

contains PGL2(k)× PGL2(k). By stereographic projection, the quadric is birationally
equivalent to the plane, so that Bir(P2

k) contains also a copy of PGL2(k)×PGL2(k).
More generally, if V = G/P is a homogeneous variety of dimension n, where G is a

semi-simple algebraic group and P is a parabolic subgroup of G, then V is rational; once a
birational map π : V ��� Pn

k is given, πGπ−1 determines an algebraic subgroup of Crn(k).

EXAMPLE 2.3. An important subgroup of Cr2(k) which is not algebraic is the Jon-
quières group3 Jonq2(k), of all transformations of P1

k ×P1
k that permute the fibers of the

projection onto the first factor. It is isomorphic to the semi-direct product PGL2(k)�
PGL2(k(x)); for example, it contains all transformations (X1,X2) �→ (aX1,Q(X1)X2) with
a in k∗ and Q in k(X1)\{0}, so that its “dimension” is infinite.

2.3.2. Rank and Weyl group. Let k be a field. Let S be a connected semi-simple
algebraic group defined over k. The group S acts on its Lie algebra s by the adjoint rep-
resentation; the k-rank of S is the maximal dimension dimk(A) of a connected algebraic
subgroup A of S which is diagonalizable over k in GL(s). Such a maximal diagonalizable
subgroup is called a maximal torus. For example, the R-rank of SLn(R) is n− 1, and
diagonal matrices form a maximal torus. If k = C and the rank of S is equal to r, the
centralizer of a typical element g ∈ S has dimension r. Thus, the value of the rank reflects
the commutation properties inside S.

THEOREM 2.4 (Enriques, Demazure, [57,73]). Let k be an algebraically closed field,
and Gm be the multiplicative group over k. Let r be an integer. If Gr

m embeds as an

3or the “de Jonquières” group
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algebraic subgroup in Crn(k), then r ≤ n and, if r = n, the embedding is conjugate to an
embedding into the group of diagonal matrices in PGLn+1(k).

In other words, in Crn(k) the group of diagonal matrices Δn plays the role of a max-
imal torus (more precisely, a torus of maximal dimension, see Remark 2.5 below). The
normalizer of Δn in Crn(k) is the semi-direct product of Δn with the group of monomial
transformations GLn(Z), thus

Crn(k) looks like a group of rank n with maximal torus equal to the diagonal group Δn
and an infinite Weyl group isomorphic to GLn(Z).

This property is reflected by the structure of its finite subgroups, as we shall see below.
Nevertheless, for n = 2, we shall explain in Section 4 that Cr2(k) is better understood as a
group of rank 1, and I expect similar rank n−1 phenomena for all dimensions n ≥ 2.

REMARK 2.5. Theorem 2.4 is a bit misleading. If maximal tori are defined in terms
of dimension, then maximal tori in Crn(C) have dimension n and are all conjugate to the
diagonal group. On the other hand, for n ≥ 5, Crn(C) contains tori of dimension n− 3
which are not contained in higher dimensional algebraic tori, and are therefore “maximal”
in terms of inclusion; since they are maximal, they are not conjugate to a subgroup of
PGLn+1(C). This phenomenon has been discovered by Popov; we refer to [14, 121, 122]
for a study of maximal algebraic groups in Crn(C) or Aut(An

C).

2.4. Finite subgroups. The Cremona group Cr1(k) is isomorphic to PGL2(k). Thus,
if G is a finite subgroup of Cr1(k) whose order is prime to the characteristic of k, then G is
cyclic, dihedral, or isomorphic to A4, S4, or A5; if k is algebraically closed, each of these
groups occurs in Cr1(k) in a unique way modulo conjugacy. (here, Am and Sm stand for
the alternating group and the symmetric group on m symbols).

One of the rich and well understood chapters on Cr2(k) concerns the study of its
finite subgroups. While there is still a lot to do regarding fields of positive characteristic
and conjugacy classes of finite groups, there is now a list of all possible finite groups and
maximal algebraic subgroups that can be realized in Cr2(C). We refer to [14, 16, 69, 131]
for details and references, to [124] for finite simple subgroups of Cr3(C), and to [5] for
applications to the notion of essential dimension. In what follows, we only emphasize a
few results.

2.4.1. Rank, and p-elementary subgroups. A finitary version of Theorem 2.4 has been
observed by Beauville in [4] for n = 2.

THEOREM 2.6. Let k be an algebraically closed field. Let p ≥ 5 be a prime number
with p �= char(k). Assume that the abelian group (Z/pZ)r embeds into Cr2(k). Then r ≤ 2
and, if r = 2, the image of (Z/pZ)r is conjugate to a subgroup of the group of diagonal
matrices of PGL3(k).

Prokhorov proved that the rank r of any p-elementary abelian group (Z/pZ)r of
Cr3(C) is bounded from above by 3 if p ≥ 17 (see [123, 125]). One may ask whether
there exists a function n �→ p(n) ∈ Z+ such that p ≤ p(n) if p is prime and (Z/pZ)n+1

embeds in Crn(C). In [130], Serre asks much more precise questions concerning the struc-
ture of finite subgroups of Crn(k). One of them concerns the Jordan property: Does every
finite subgroup G of Crn(C) contain an abelian subgroup of rank ≤ n whose index in G is
bounded by a constant j(n) depending only on the dimension n ? These questions were
answered positively by Prokhorov and Shramov, assuming the so-called Borisov-Alexeev-
Borisov conjecture on the boundedness of families of Fano varieties with terminal singu-
larities (see [126, 127]). Amazingly, a recent preprint of Birkar delivers a proof of this
conjecture (see [13]).
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2.4.2. Finite simple subgroups (see [71,136]). There is one and only one finite, simple
and non-abelian subgroup in Cr1(C), namely A5, the symmetry group of the icosaehdron.

THEOREM 2.7. If G is a finite, simple, non-abelian subgroup of Cr2(C), then G is
isomorphic to one of the groups PSL2(F7), A5, and A6.

• There are two conjugacy classes of subgroups isomorphic to PSL2(F7). First,
PSL2(F7) embeds in PGL3(C), preserving the smooth quartic curve

x3
0x1 + x3

1x2 + x3
2x0 = 0;

then, it also embeds as a group of automorphisms of the double cover of the
plane, ramified along the same quartic curve.

• There are three embeddings of A5 in Cr2(C) up to conjugacy. One in PGL2(C),
one in PGL3(C), and one in the group of automorphisms of the del Pezzo surface
which is obtained by blowing up P2

C at the points [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1],
and [1 : 1 : 1].

• There is a unique copy of A6 up to conjugacy, given by a linear projective action
on P

2
C that preserves the curve

10x3
0x3

1 +9x2x5
0 +9x2x5

1 +27x6
2 = 45x2

0x2
1x2

2 +135x0x1x4
2.

Note that, given an embedding ι : G → Cr2(C), one can twist it by an automorphism
ϕ of G. When G is isomorphic to PSL2(F7) or A6, ι is conjugate to ι◦ϕ in Cr2(C) if and
only if ϕ is an inner automorphism of G; thus, there are 4 distinct embeddings of A6 (resp.
PSL2(F7)) in Cr2(C) up to conjugacy. On the other hand, ι is always conjugate to ι ◦ϕ
when G = A5; thus, A5 has exactly three embeddings in Cr2(C) up to conjugacy.

REMARK 2.8. If G is a finite subgroup of Cr2(k) and the characteristic p of the field
k does not divide the order of G, then G “lifts” in characteristic zero; but there are new
examples of simple subgroups of Cr2(k) if we allow p to divide |G| (see [69] for a classi-
fication).

There is also a classification, due to Prokhorov [124], of finite simple subgroups of
Cr3(C) up to isomorphism, but a complete list of their conjugacy classes is not available
yet. Besides A5, A6, and PSL2(F7), there are three new players: A7, PSL2(F8), and
PSP4(F3), with respective orders 2520, 504, 25920. See [45–47] for the study of their
conjugacy classes in Cr3(C).

2.5. Closed normal subgroups. Let us assume, for simplicity, that k is algebraically
closed. In dimension n = 1, the Cremona group PGL2(k) is a simple group. As we shall
see in Section 7, Cr2(k) is not simple, and contains many normal subgroups. But J. Blanc
and S. Zimmerman observed that Crn(k) behaves as a simple group if one restricts our
study to closed, normal subgroups.

THEOREM 2.9 ([15, 22]). Let k be an algebraically closed field. Every non-trivial
normal subgroup of Crn(k) which is closed for the Zariski topology coincides with Crn(k).

This result explains why there is no construction from algebraic geometry that pro-
duces interesting normal subgroups in Crn(k).

Assume now that k is a local field; this means that k is a locally compact topological
field with respect to a non-discrete topology. The examples are R, C, and finite extensions
of Qp and Fq((t)). (Here, Qp is the field of p-adic numbers and Fq is a finite field with q
elements) Then, there exists a group-topology on Crn(k) that extends the “transcendental,
euclidean” topology of PGLn+1(k) (see [20]). Blanc and Zimmermann also prove that
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every normal subgroup that is closed for this topology is either trivial or equal to Crn(k)
(see [22]).

3. Generating sets and relations

3.1. Dimension 2. Recall from Example 2.3 that the Jonquières group Jonq2(k) is the
group of birational transformations of P1

k×P
1
k that permute the fibers of the first projection;

we may identify it to the group of birational transformations of P2
k preserving the pencil of

lines through the point [1 : 0 : 0].
The first main result on Cr2(k) is due to Noether and Castelnuovo [43,116]. It exhibits

two sets of generators for Cr2(k).

THEOREM 3.1 (Noether, Castelnuovo). Let k be an algebraically closed field. The
group Cr2(k) is generated by PGL3(k) and the standard quadratic involution σ2. It is also
generated by Jonq2(k) and the involution η(X1,X2) = (X2,X1).

Identify Jonq2(k) to the group of birational transformations of P2
k that preserve the

pencil of lines through the point [1 : 0 : 0], and η to the involution [x1 : x2 : x3] �→ [x2 :
x1 : x3]. With such a choice, η is in PGL3(k) and σ2 is in Jonq2(k). Then, Cr2(k) is the
amalgamated product of Jonq2(k) and PGL3(k) along their intersection, divided by one
more relation, namely σ ◦η = η ◦σ (see [17, 95] and [83, 84] for former presentations of
Cr2(k)). Thus, one knows a presentation of Cr2(k) by generators and relations.

EXAMPLE 3.2. Let k be an algebraically closed field. Consider the set of generators
of Cr2(k) given by σ2 and the group of automorphisms PGL3(k) of P2

k. The following
relations are satisfied

• σ2 ◦ τ = τ◦σ2 for every permutation τ of the three coordinates xi;
• σ2 ◦ a = a−1 ◦σ2 for every diagonal automorphism a[x0 : x1 : x2] = [ux0 : vx1 :

wx2].
• If h is the linear projective transformation h[x1 : x2 : x3] = [x1,x1 − x2,x1 − x3],

then (h◦σ2)
3 is the identity (see [83]).

The first and second list of relations occur in the semi-direct product of the group GL2(Z) of
monomial transformations and the diagonal group Gm(k)×Gm(k) (i.e. in the normalizer
of the maximal torus).

REMARK 3.3. Similarly, Jung’s theorem asserts that the group of polynomial auto-
morphisms of the affine plane is the free product of two of its subgroups, amalgamated
along their intersection (see [101] for example); the two subgroups are the group of affine
transformations, and the group of elementary shears (x,y) �→ (ax,by+ p(x)), with p ∈ k[x].
Note that this result holds for every field k, algebraically closed or not. This is related to
the following geometric fact: If h is a polynomial automorphism of the affine plane, then
h−1 has at most one indeterminacy point in P2(k), this point is the image of a general point
of the line at infinity under the action of h and, as such, is contained in P

2(k); thus, the first
blow-up that is required to resolve the indeterminacy point is defined over k.

Elementary shears are examples of Jonquières transformations, preserving the pencil
of vertical lines x = cst ; one feature of these shears is that there degrees remain bounded
under iteration: If g(x,y) = (ax,by+ p(x)) and p(x) has degree d, then all iterates gn are
shears of degree at most d. This is not typical among Jonquières transformations (see
Section 4.2).
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3.2. Dimension ≥ 3. In dimension 2, the indeterminacy locus of a birational trans-
formation is a finite set, and the curves that appear by blow-up are smooth rational curves.
This simple picture changes dramatically in higher dimension: As we shall see below, for
every smooth irreducible curve C, there is a birational transformation g of P3

k and a surface
X ⊂ P

3
k such that (i) X is birationally equivalent to C ×P1

k and (ii) g contracts X onto a
subset of codimension ≥ 2. This new feature leads to the following result (see [118]).

THEOREM 3.4 (Hudson, Pan). Let n≥ 3 be a natural integer. Let k be an algebraically
closed field. To generate Crn(k), one needs as many algebraic families of generators,
as families of smooth hypersurfaces of Pn−1

k of degree ≥ n+ 2; one cannot generate the
Cremona group by generators of bounded degree.

Obviously, this is loosely stated, and we only present a sketch of the proof (see [34,
118] for details). Let [x] = [x0 : . . . : xn−1] be homogeneous coordinates for Pn−1

k and [y0 : y1]

be homogeneous coordinates for P1
k. Let Y be an irreducible hypersurface of degree d in

P
n−1
k , which is not the plane x0 = 0, and let h be a reduced homogeneous equation for Y .

Define a birational transformation fY of Pn−1
k ×P

1
k by

fY ([x], [y0 : y1]) = ([x], [y0xd
0 : h(x0, . . . ,xn−1)y1]).

The transformation fY preserves the projection onto the first factor Pn−1
k , and acts by linear

projective transformations on the general fibers P
1
k; more precisely, on the fiber over [x],

fY is the projective linear transformation which is determined by the 2 by 2 matrix(
xd

0 0
0 h(x0, . . . ,xn−1)

)
.

This matrix is invertible if and only if x0 �= 0 and h(x) �= 0, and fY contracts the hyper-
surface Y × P1

k to the codimension 2 subset Y ×{[1 : 0]}. Thus, given any irreducible
hypersurface Y in P

n−1
k , one can construct a birational transformation of Pn

k that contracts
a hypersurface which is birationally equivalent to Y ×P

1
k.

On the other hand, one easily checks the following: Let g1, ..., gm be birational trans-
formations of the projective space Pn

k, and let g be the composition g = gm ◦gm−1 ◦ . . .◦g1.
Let X be an irreducible hypersurface of Pn

k. If X is g-exceptional (i.e. g contracts X),
then there is an index i, with 1 ≤ i ≤ m, and a gi-exceptional hypersurface Xi such that X
is birationally equivalent to Xi. More precisely, for some index i, gi−1 ◦ . . . ◦ g1 realizes a
birational isomorphism from X to Xi, and then gi contracts Xi.

Thus, to generate Crn(k), one needs at least as many families of generators as families
of hypersurfaces Y ⊂ P

n−1
k modulo the equivalence relation “Y � Y ′ if and only if Y ×P1

k
is birationally equivalent to Y ′ ×P1

k”. But, if Y and Y ′ are general hypersurfaces of degree
≥ n+2, then Y and Y ′ have general type, and the relation Y � Y ′ implies that Y and Y ′ are
isomorphic.

REMARK 3.5. Given f in the Cremona group Cr3(k), consider the set of irreducible
components {Xi}1≤i≤m of the union of the exceptional loci of f and of its inverse f−1.
Each Xi is birationally equivalent to a product P1

k ×Ci, where Ci is a smooth irreducible
curve. Define g(Xi) as the genus of Ci, and the genus of f as the maximum of the g(Xi),
1 ≤ i ≤ m. Then, the subset of Cr3(k) of all birational transformations f of genus at most
g0 is a subgroup of Cr3(k): In this way, one obtains a filtration of the Cremona group by an
increasing sequence of proper subgroups. See [79,102] for related ideas and complements.
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3.3. Fields which are not algebraically closed. Now, consider the case n = 2, but
with a field which is not algebraically closed; for simplicity, take k=Q, the field of rational
numbers. Given f in Cr2(Q), the indeterminacy locus Ind( f ) of f is a finite subset of
P

2(Q), where Q is a fixed algebraic closure of Q. Fix a number field K, and consider
the set of all f ∈ Cr2(Q) such that each base point of f and f−1 (including infinitesimally
closed points) is defined over K; for instance, if p ∈ P

2(C) is an indeterminacy point of
f−1, then p = [a0 : a1 : a2] with ai in K. This set is a subgroup of Cr2(Q); in this way, we
get an inductive net of subgroups of Cr2(Q). This construction is similar to the filtration
obtained in Remark 3.5 (the degree of the extension K/Q plays the same role as the genus).

More generally, fix a field k together with an algebraic closure k of k; denote by k0
the smallest subfield of k (either Q or Fp). To an element f of Cr2(k), one can associate
the field k f : The smallest field k0 ⊂ k f ⊂ k on which f , f−1 and all their base points are
defined. With this definition, k f may be smaller than k. Then, the field k f◦g is contained
in the extension generated by k f and kg. Thus, k f provides a measure for the arithmetic
complexity of f , and this measure behaves sub-multiplicatively.4

PROPOSITION 3.6. Let k be a field. The Cremona group Cr2(k) is not finitely gener-
ated.

PROOF. Let F be a finite subset of Cr2(k). Let kF ⊂ k be the extension of k0 which
is generated by the fields k f , f ∈ F . Let G be the subgroup of Cr2(k) generated by F .
Then kg ⊂ kF for all elements g of G. Let q(x) be an element of k[x] of degree d, and
consider the Jonquières transformation gq which is defined by

gq[x0 : x1 : x2] = [x0xd
2 : q(x0/x2)x1xd

2 : xd+1
2 ].

Then each root αi of q gives rise to an indeterminacy point [αi : 0 : 1] of g−1
q . Thus, if gq

belongs to the group G then all roots of q are contained in kF . If gq is in G for every q,
then kF is finitely generated and algebraically closed. No such field exists. �

Generating sets and relations for the group Cr2(R) have been found in [21, 94, 128,
140]. For instance, both Cr2(R) and Bir∞(P2(R)) are generated by subsets of Cr2(R;≤ 5);
one can even provide presentations of Cr2(R) by generators and relations.

In [140], Zimmermann describes a striking application of this circle of ideas. She
generates Cr2(R) by PGL3(R), the group of Jonquières transformations Jonq2(R), and a
twisted form of it, namely the group Jonqπ

2(R) of birational transformations of the plane
that permute the fibers of the rational function

π[x1 : x2 : x3] =
x2

2 +(x1 + x3)
2

x2
2 +(x1 − x3)2

.

This group Jonqπ
2(R) is isomorphic to the semi-direct product A�B of the groups A =

R∗
+�Z/2Z and B = SO(x2 + y2 − tz2;R(t)). The elements of B preserve each fiber of π,

acting as rotations along these circles, with an angle of rotation that depends on the circle.
The elements of A permute the circles, the value of the projection π being changed into απ
or α/π for some α ∈ R∗

+. The spinor norm provides a homomorphism from B to the group
R(t)∗/(R(t)∗)2. We may identify R(t)∗/(R(t)∗)2 with the set of polynomial functions
g ∈ R[t] with only simple roots; and to such a function g, we associate the function

ξ(g) : [0,π]→ Z/2Z

4This sub-section follows from a discussion with Jérémy Blanc and Christian Urech, during which Blanc
explained the proof of Proposition 3.6.
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which is defined as follows: for each angle θ ∈ [0,π], ξ(g)(θ) is the number (modulo 2) of
roots of g with argument equal to θ (i.e. z = |z|eθ

√
−1). It turns out that the map g �→ ξ(g)

extends to a homomorphism from Jonqπ
2(R) to the additive group ⊕[0,π]Z/2Z of functions

[0,π]→ Z/2Z with finite support. With her explicit presentation of Cr2(R), Zimmermann
shows that this homomorphism extends to an epimorphism Cr2(R) → ⊕[0,π]Z/2Z, and
then she gets the following result.

THEOREM 3.7 (Zimmermann). The derived subgroup of Cr2(R) coincides with the
normal closure of PGL3(R) in Cr2(R) and is a proper subgroup of Cr2(R), the abelianiza-
tion of Cr2(R) being isomorphic to the additive group ⊕[0,π]Z/2Z of functions f : [0,π]→
Z/2Z with finite support.

We refer to §7 for a different construction of normal subgroups in Cr2(k).
–II–

Dimension 2 and hyperbolic geometry
In the forthcoming sections, namely §4 to §7, we focus on groups of birational trans-

formations of surfaces. The most interesting case is the Cremona group Cr2(k) or, what is
the same, groups of birational transformations of rational surfaces. Indeed, if X is a pro-
jective surface with non-negative Kodaira dimension, then X has a unique minimal model
X0, and Bir(X) coincides with Aut(X0); if the Kodaira dimension of X is negative and X
is not rational, then X is ruled in a unique way, and Bir(X) preserves this ruling. As a
consequence, the focus is on the group Cr2(k).

4. An infinite dimensional hyperbolic space

Most recent results on Cr2(k) are better understood if one explains how Cr2(k) acts by
isometries on an infinite dimensional hyperbolic space H∞(P

2
k). This construction is due

to Manin and Zariski, but it had not been used much until recently.

EXAMPLE 4.1. The standard quadratic involution σ2 maps lines to conics. Thus, it
acts by multiplication by 2 on the Picard group of the plane P2

k (or on the homology group
H2(P

2(C),Z) if k = C). Since σ2 is an involution, the action of σ2
2 on that group is the

identity, not multiplication by 4. This shows that Cr2(k) does not “act” on the Picard
group. The forthcoming construction overcomes this difficulty by blowing up all possible
indeterminacy points.

4.1. The Picard-Manin space.
4.1.1. General construction. Let X be a smooth, irreducible, projective surface. The

Picard group Pic(X) is the quotient of the abelian group of divisors by the subgroup of
principal divisors [91]. The intersection between curves determines a quadratic form on
Pic(X), the so-called intersection form

(6) (C,D) �→C ·D.

The quotient of Pic(X) by the subgroup of divisors E such that E ·D = 0 for all divi-
sor classes D is the Néron-Severi group NS(X). It is a free abelian group and its rank,
the Picard number ρ(X), is finite; when k = C, NS(X) can be identified to H1,1(X ;R)∩
H2(X ;Z). The Hodge index Theorem asserts that the signature of the intersection form is
equal to (1,ρ(X)−1) on NS(X).

If π : X ′ → X is a birational morphism, the pull-back map π∗ is an injective homomor-
phism from NS(X) to NS(X ′) that preserves the intersection form; NS(X ′) decomposes as

Licensed to AMS. 
License or copyright may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



THE CREMONA GROUP 115

the orthogonal sum of π∗NS(X) and the subspace generated by classes of curves contracted
by π, on which the intersection form is negative definite.

If π1 : X1 → X and π2 : X2 →X are two birational morphisms, there is a third birational
morphism π3 : X3 → X that “covers” π1 and π2, meaning that π3 ◦ π−1

1 and π3 ◦ π−1
2 are

morphisms; informally, one can obtain X3 from X by blowing-up all points that are blown-
up either by π1 or by π2 (blowing up more points, one gets several choices for X3).

One can therefore define the direct limit of the groups NS(X ′), where π : X ′ → X runs
over the set of all birational morphisms onto X . This limit

(7) Z(X) := lim
π : X ′→X

NS(X ′)

is the Picard-Manin space of X . It is an infinite dimensional free abelian group. The
intersection forms on NS(X ′) determine a quadratic form on Z(X), the signature of which
is equal to (1,∞). By construction, NS(X) embeds naturally as a proper subspace of Z(X),
and the intersection form is negative definite on the infinite dimensional space NS(X)⊥.

EXAMPLE 4.2. The group Pic(P2
k) is generated by the class e0 of a line. Blow-up

one point q1 of the plane, to get a morphism π1 : X1 → P2
k. Then, Pic(X1) is a free abelian

group of rank 2, generated by the class e1 of the exceptional divisor Eq1 , and by the pull-
back of e0 under π1 (still denoted e0 in what follows). After n blow-ups Xi → Xi−1 of points
qi ∈ Xi−1 one obtains

(8) Pic(Xn) = Ze0 ⊕Ze1 ⊕ . . .⊕Zen

where e0 (resp. ei) is the class of the total transform of a line (resp. of the exceptional
divisor Eqi ) by the composite morphism Xn → P

2
k (resp. Xn → Xi). The direct sum decom-

position (8) is orthogonal with respect to the intersection form. More precisely,

(9) e0 · e0 = 1, ei · ei =−1 ∀1 ≤ i ≤ n, and ei · e j = 0 ∀0 ≤ i �= j ≤ n.

In particular, Pic(X) = NS(X) for rational surfaces. Taking limits, one sees that the Picard-
Manin space Z(P2

k) is a direct sum Z(P2
k) = Ze0 ⊕

⊕
q Zeq where q runs over all possible

points that can be blown-up (including infinitely near points). More precisely, q runs over
the so-called bubble space B(X) of X (see [18, 68, 109]).

4.1.2. Minkowski spaces. This paragraph is a parenthesis on the geometry of Minkow-
ski spaces and their isometries.

Standard Minkowski spaces. Let H be a real Hilbert space of dimension m+1 (m
can be infinite). Fix a unit vector e0 of H and a Hilbert basis (ei)i∈I of the orthogonal
complement of e0. Define a new scalar product on H by

(10) 〈u|u′〉m = a0a′0 −∑
i∈I

aia′i

for every pair u = a0e0 +∑i aiei, u′ = a′0e0 +∑i a′iei of vectors. In other words, we just
change the sign of the scalar product on e⊥0 . Define Hm to be the connected component of
the hyperboloid

(11) {u ∈ H | 〈u|u〉m = 1}

that contains e0, and let distm be the distance on Hm defined by (see [11, 92])

(12) cosh(distm(u,u′)) = 〈u|u′〉m.
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FIGURE 1. Three types of isometries (from left to right): Elliptic, parabolic,
and loxodromic. Elliptic isometries preserve a point in Hm and act as a rotation
on the orthogonal complement. Parabolic isometries fix an isotropic vector v; the
orthogonal complement of Rv contains it, and is tangent to the isotropic cone.
Loxodromic isometries dilate an isotropic line, contract another one, and act as
a rotation on the intersection of the planes tangent to the isotropic cone along
those lines (see also Figure 2 below).

The metric space (Hm,distm) is a Riemannian, simply-connected, and complete space of
dimension m with constant sectional curvature −1; these properties uniquely characterize
it up to isometry.5

The projection of Hm into the projective space P(H ) is one-to-one onto its image.
In homogeneous coordinates, its image is the ball a2

0 > ∑i a2
i , and the boundary is the

sphere obtained by projection of the isotropic cone a2
0 = ∑i a2

i . In what follows, Hm is
identified with its image in P(H ) and its boundary is denoted by ∂Hm; hence, boundary
points correspond to isotropic lines in the space H (for the scalar product 〈·|·〉m).

Isometries.Denote by O1,m(R) the group of linear transformations of H preserving
the scalar product 〈·|·〉m. The group of isometries Isom(Hm) coincides with the index 2
subgroup O+

1,m(R) of O(H ) that preserves the chosen sheet Hm of the hyperboloid {u ∈
H | 〈u|u〉m = 1}. This group acts transitively on Hm, and on its unit tangent bundle.

If h∈O+
1,m(R) is an isometry of Hm and v∈H is an eigenvector of h with eigenvalue λ,

then either |λ|= 1 or v is isotropic. Moreover, since Hm is homeomorphic to a ball, h has at
least one eigenvector v in Hm∪∂Hm. Thus, there are three types of isometries [29]: Elliptic
isometries have a fixed point u in Hm; parabolic isometries have no fixed point in Hm but
they fix a vector v in the isotropic cone; loxodromic (also called hyperbolic) isometries
have an isotropic eigenvector v with eigenvalue λ> 1. They satisfy the following additional
properties (see [29]).

(1) An isometry h is elliptic if and only if it fixes a point u in Hm. Since 〈·|·〉m
is negative definite on the orthogonal complement u⊥, the linear transformation h fixes
pointwise the line Ru and acts by rotation on u⊥ with respect to 〈·|·〉m.

(2) An isometry h is parabolic if it is not elliptic and fixes a vector v in the isotropic
cone. The line Rv is uniquely determined by the parabolic isometry h. If z is a point of

5The Riemannian structure is defined as follows. If u is an element of Hm, the tangent space TuHm is the
affine space through u that is parallel to u⊥, where u⊥ is the orthogonal complement of Ru with respect to 〈·|·〉m;
since 〈u|u〉m = 1, the form 〈·|·〉m is negative definite on u⊥, and its opposite defines a positive scalar product on
TuHm; this family of scalar products determines a Riemannian metric, and the associated distance coincides with
distm (see [11]).
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Hm, there is an increasing sequence of integers mi such that hmi(z) converges towards the
boundary point v.

(3) An isometry h is loxodromic if and only if h has an eigenvector v+h with eigenvalue
λ > 1. Such an eigenvector is unique up to scalar multiplication, and there is another,
unique, isotropic eigenline Rv−h corresponding to an eigenvalue < 1; this eigenvalue is
equal to 1/λ. If u is an element of Hm,

1
λn hn(u)−→ 〈u|v−h 〉m

〈v+h |v
−
h 〉m

v+h

as n goes to +∞, and
1

λ−n hn(u)−→ 〈u|v+h 〉m

〈v+h |v
−
h 〉m

v−h

as n goes to −∞. On the orthogonal complement of Rv+h ⊕Rv−h , h acts as a rotation with
respect to 〈·|·〉m. The boundary points determined by v+h and v−h are the two fixed points of
h in H∞ ∪∂H∞: The first one is an attracting fixed point, the second is repulsive.

Moreover, h ∈ Isom(H∞) is loxodromic if and only if its translation length

(13) L(h) = inf{dist(x,h(x)) | x ∈H∞}
is positive. In that case, λ = exp(L(h)) is the largest eigenvalue of h and dist(x,hn(x))
grows like nL(h) as n goes to +∞ for every point x in Hm. The set of points u with
L(h) = dist(u,h(u)) is the geodesic line whose endpoints are the boundary points given by
v+h and v−h : By definition, this line is called the axis of h.

When h is elliptic or parabolic, the translation length vanishes (there is a point u in Hm
with L(h) = dist(u,h(u)) if h is elliptic, but no such point exists if h is parabolic).

REMARK 4.3. If h is loxodromic and preserves a geodesic subspace W of Hm (i.e. the
intersection of Hm with a vector subspace of H ), then W contains the axis of W (because
the attracting fixed points v+h and v−h are automatically contained in the boundary of W ). In
particular, the translation length of h on Hm is equal to the translation length of h on W .

4.1.3. The hyperbolic space H∞(X). Let us come back to the geometry of Z(X),
where X is a projective surface. Fix an ample class e0 in NS(X) ⊂ Z(X). Denote by
Z(X ,R) and NS(X ,R) the tensor products Z(X)⊗Z R and NS(X)⊗Z R. Elements of
Z(X ,R) are finite sums uX +∑i aiei where uX is an element of NS(X ,R), each ei is the
class of an exceptional divisor, and the coefficients ai are real numbers. Allowing infinite
sums ∑i aiei with ∑i a2

i <+∞, one gets a new space Z(X), on which the intersection form
extends continuously [24, 35].

The set of vectors u in Z(X) such that u ·u = 1 is a hyperboloı̈d. The subset

(14) H∞(X) = {u ∈ Z(X) | u ·u = 1 and u · e0 > 0}
is the sheet of that hyperboloid containing ample classes of NS(X ,R). With the distance
dist(·, ·) defined by

(15) coshdist(u,u′) = u ·u′,
H∞(X) is isometric to a hyperbolic space H∞, as described in the previous paragraph (see
[11, 48, 88]). Thus, starting with any projective surface X , one gets a natural hyperbolic
space H∞(X)�H∞.

We denote by ∂H∞(X) the boundary of H∞(X) (viewed as the set of lines in the
isotropic cone of Z(X), or as a sphere in P(Z(X))). We denote by Isom(Z(X)) the group
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FIGURE 2. For a loxodromic isometry, there are two invariant isotropic lines,
one corresponding to the eigenvalue λ> 1, the other to 1/λ. The plane generated
by these two lines cuts the hyperbolic space onto a geodesic: This geodesic is
the axis of the isometry. The hyperplanes which are tangent to the isotropic
cone along these eigenlines are invariant, and the action on their intersection is a
rotation, preserving a negative definite quadratic form.

of isometries of Z(X) with respect to the intersection form, and by Isom(H∞(X)) the sub-
group that preserves H∞(X).

4.1.4. Action of Bir(X) on Z(X) and H∞(X) (following Y. Manin, see [109]). Given
f ∈ Bir(X), there is a birational morphism π : X ′ → X , obtained by blowing up indetermi-
nacy points of f , such that f lifts to a morphism f ′ : X ′ → X (see [91]). By pull back, the
transformation f ′ determines an isometry ( f ′)∗ from Z(X) to Z(X ′): Identifying Z(X) to
Z(X ′) by π∗, we obtain an isometry f ∗ of Z(X). Since all points of X have been blown-up
to define Z(X), birational transformations behave as regular automorphisms on Z(X), and
one can show that the map f �→ f∗ = ( f−1)∗ is a homomorphism from Bir(X) to the group
Isom(Z(X)); hence, after completion, Bir(X) acts on H∞(X) by isometries.

THEOREM 4.4 (Manin, [109]). Let X be a projective surface defined over an alge-
braically closed field k. The homomorphism f �→ f∗ is an injective homomorphism from
Bir(X) to the group of isometries of Z(X) with respect to its intersection form. It preserves
H∞(X), acting faithfully by isometries on this hyperbolic space.

If k is not algebraically closed, one embeds Bir(Xk) in Bir(Xk) for some algebraic
closure k of k, and the theorem applies to Bir(Xk). If k is countable one needs only
countably many blow-ups to define Z(Xk); then H∞(Xk) is a hypersurface in a separable
Hilbert space. A similar phenomenon occurs when one studies a countable subgroup Γ
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of Bir(Xk), because one only needs to blow-up the base points of the elements of Γ. On
the other hand, to apply this construction for the study of Cr2(C), one needs uncountably
many blow-ups.

4.2. Types and degree growth. Since Bir(X) acts faithfully on H∞(X), there are
three types of birational transformations: Elliptic, parabolic, and loxodromic, according
to the type of the associated isometry of H∞(X). We now describe how each type can be
characterized in algebro-geometric terms.

Let h ∈ NS(X ,R) be an ample class with self-intersection 1. Define the degree of f
with respect to the polarization h by

(16) degh( f ) = f∗(h) ·h = cosh(dist(h, f∗h)).

For instance, if f is an element of Bir(P2
k), and h = e0 is the class of a line, then degh( f )

is the degree of f , as defined in §1.1. More precisely, if f has degree d, the image of a
general line by f is a curve of degree d which goes through the base points qi of f−1 with
certain multiplicities ai, and

f∗e0 = de0 −∑
i

aiei

where ei is the class corresponding to the exceptional divisor that one gets when blowing
up the point qi. Then, the intersection f∗(e0) ·e0 = dege0

( f ) is equal to d, because e0 ·ei = 0
for i �= 0.

If the translation length L( f∗) is positive, we know that the distance dist( f n
∗ (x),x)

grows like nL( f∗) for every x ∈ H∞(X) (see Section 4.1.2). Since cosh(dist(u,v)) = u · v,
this property gives the following lemma.

LEMMA 4.5. The sequence degh( f n)1/n converges towards a real number λ( f ) ≥ 1,
called the dynamical degree of f ; its logarithm log(λ( f )) is the translation length L( f∗)
of the isometry f∗.

Consequently, λ( f ) does not depend on the polarization and is invariant under conju-
gacy. In particular, f is loxodromic if and only if λ( f ) > 1, if and only if the sequence
degh( f n) grows exponentially fast.

Elliptic and parabolic transformations are also classified in terms of degree growth.
Say that a sequence of real numbers (dn)n≥0 grows linearly (resp. quadratically) if n/c ≤
dn ≤ cn (resp. n2/c ≤ dn ≤ cn2) for some c > 0.

THEOREM 4.6 (Gizatullin, Cantat, Diller and Favre, see [31, 32, 63, 82]). Let X be a
projective surface, defined over an algebraically closed field k, and h be a polarization of
X. Let f be a birational transformation of X.

• f is elliptic if and only if the sequence degh( f n) is bounded. In this case, there
exists a birational map φ : Y ��� X and an integer k ≥ 1 such that φ−1 ◦ f ◦ φ
is an automorphism of Y and φ−1 ◦ f k ◦φ is in the connected component of the
identity of the group Aut(Y ).

• f is parabolic if and only if the sequence degh( f n) grows linearly or quadrati-
cally with n. If f is parabolic, there exists a birational map ψ : Y ��� X and a
fibration π : Y → B onto a curve B such that ψ−1 ◦ f ◦ψ permutes the fibers of
π. The fibration is rational if the growth is linear, and elliptic (or quasi-elliptic if
char(k) ∈ {2,3}) if the growth is quadratic.

• f is loxodromic if and only if degh( f n) grows exponentially fast with n: There is
a constant bh( f )> 0 such that degh( f n) = bh( f )λ( f )n +O(1).
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We refer to [19] for a more precise description of the degree growth in the parabolic
case.

REMARK 4.7. If f is parabolic, the push forward of the fibration π : Y → B by the
conjugacy ψ is the unique f -invariant pencil of curves. If the characteristic of k is 0, this
pencil is the unique f -invariant (singular) algebraic foliation on X [39].

EXAMPLE 4.8. All transformations (X ,Y ) �→ (X ,Q(X)Y ) with Q ∈ k(X) of degree
≥ 1 provide parabolic transformations of P2

k with linear degree growth.

EXAMPLE 4.9. Assume k = C. Let ι be a square root of −1 (resp. a non-trivial cubic
root of 1) and E be the elliptic curve C/Z[ι]. The linear action of the group GL2(Z[ι]) on
the complex plane C2 preserves the lattice Z[ι]×Z[ι]; this leads to an action of GL2(Z[ι])
by regular automorphisms on the abelian surface X = E ×E. This action commutes to
m(x,y) = (ιx, ιy); this provides a homomorphism from PGL2(Z[ι]) to the group of auto-
morphisms of X/m. Since X/m is a rational surface, one gets an embedding of PGL2(Z[ι])
into the Cremona group Cr2(C).

Apply this construction to the linear transformation (x,y) �→ (x+ y,y) of C2: It de-
termines an automorphism f of the abelian surface X = E ×E (resp. a birational trans-
formation f of X/m or P2

C) such that degh( f n) grows quadratically. Similarly, starting
with a linear transformation in GL2(Z[ι]) whose spectral radius is α, one gets a birational
transformation of the plane whose dynamical degree is α2. An example is given by the
matrix (

1 1
1 0

)
.

Its spectral radius is the golden mean (1+
√

5)/2. One obtains a birational transformation
of the plane with dynamical degree (3+

√
5)/2 (one easily checks that it is not conjugate

to the monomial example of Section 1.2.1).

4.3. Analogy with the mapping class group of a closed, orientable surface.
4.3.1. The mapping class group. Let g ≥ 2 be an integer, and Mod(g) be the mapping

class group of the closed orientable surface Σ of genus g. Elements of Mod(g) are isotopy
classes of orientation preserving homeomorphisms of Σ.

The three main examples of isotopy classes ϕ ∈ Mod(g) are represented by (1) fi-
nite order homeomorphisms, (2) Dehn (multi)-twists, and (3) pseudo-Anosov homeomor-
phisms. Nielsen-Thurston classification of elements ϕ ∈ Mod(g) tells us that an element
which is not pseudo-Anosov has a positive iterate ϕn that preserves the homotopy class
of an essential loop; one can then cut the surface along that loop to reduce the topological
complexity of the pair (Σ,ϕ). In a finite number of steps, one ends up with a decomposition
of every isotopy class ϕ into pieces of type (1), (2) and (3) (see [37, 75]).

The mapping class group acts isometrically on the complex of curves and on the Te-
ichmüller space of Σ, and there is a nice analogy between those actions and the action of
Cr2(k) on H∞(P

2
k).

4.3.2. Pseudo-Anosov, versus loxodromic. To a pseudo-Anosov mapping class, one
associates a dilatation factor λ(ϕ): Given any pair of non-trivial homotopy classes of sim-
ple closed curves c and c′ on Σ, the intersection numbers ϕn(c) · c′ grow like cstλ(ϕ)n as
n goes to +∞ (here c · c′ is the minimum number of intersection points of curves C and
C′ in the homotopy classes c and c′). A similar property is satisfied by every loxodromic
element f of Bir(X): If e and e′ are points on H∞(X) which are determined in NS(X) by

e =C/
√

C ·C, e′ =C′/
√

C′ ·C′,
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for two curves C and C′ with positive self-intersection, then f n
∗ (e) · e′ grows like cstλ( f )n.

Also, every pseudo-Anosov class ϕ is represented by a pseudo-Anosov homeomor-
phism Φ : Σ→ Σ; such a homeomorphism preserves two singular foliations on Σ, one being
uniformly contracted, the other uniformly dilated. Those foliations are geometric objects
which, in Thurston compactification, correspond to fixed points of ϕ on the boundary of
the Teichmüller space.

Similarly, given a loxodromic element f in Cr2(C), the fixed points of f∗ on the bound-
ary of H∞(X) correspond to closed positive currents which are multiplied by λ( f )±1 under
the action of f . Those currents are analogous to the invariant foliations of a pseudo-Anosov
homeomorphism: They have laminar properties (a weak form of foliated structure). We
refer to [6,7,35,37,62,72,76] for this analogy and for dynamical properties of loxodromic
birational transformations.

4.3.3. Jonquières, Halphen, and Dehn twists. Recall from Remark 4.7 that a para-
bolic transformation f of a projective surface X preserves a unique pencil of curves on X ;
this pencil is birationally equivalent to a rational or a genus 1 fibration on some model X ′

of X . The type of the fiber is related to the degree growth of f : It is rational if the degree
growth is linear, and has genus 1 if the growth is quadratic. These two types of parabolic
transformations are respectively called Jonquières twists6 and Halphen twists.

This is justified by the analogy with Dehn (multi-)twists ϕ ∈ Mod(g) and by the fol-
lowing two facts (they concern the case X = P

2
k, f ∈ Cr2(k), and k algebraically closed):

• If the degree-growth is linear, the invariant pencil of f can be transformed into a
pencil of lines by an element of Cr2(k); hence, after conjugacy, f becomes an element of
the Jonquières group Jonq2(k).

• If the degree-growth is quadratic, the f -invariant pencil can be transformed in a
Halphen pencil [67, 96]. Halphen pencils are constructed as follows. Start with a smooth
cubic curve C ⊂ P2

k and fix the group law on C with origin at an inflexion point. Choose 9
points on this curve whose sum s is a torsion point of order m for the group law on C. Then,
the linear system of curves of degree 3m going through these 9 points with multiplicity m
form a pencil of curves of genus 1. Blowing-up these 9 base points, one gets a rational
surface with a Halphen fibration.

5. The Cremona group is thin

In this paragraph, we continue our description of the Cremona group Cr2(k) as a group
of isometries of an infinite dimensional group H∞. One of the leitmotives is to show that
this group of isometries is a thin subgroup of the group of all isometries.

5.1. Cremona isometries. Each element f of Cr2(k) acts isometrically on H∞(P
2
k).

(1) The isometry f∗ preserves the “lattice” Z(P2
k) of Z(P2

k). For instance, the base
point e0 (the class of a line in P

2
k) is mapped to a finite sum

f∗e0 = de0 −∑
i

aiei

where each ai is a positive integer, d is the degree of f , and the ei are the classes
of the exceptional divisors corresponding to the base points of f−1.

More precisely, the linear system of all lines in P
2
k is mapped by f to a linear system of

curves of degree d = deg( f ); this linear system is, by definition, the homaloidal net of f−1.
Its base points (including infinitely near base points), form a finite set of points qi, with

6or “de Jonquières” twists
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multiplicities ai; the classes ei in the previous formula are the classes e(qi) of the blow-ups
of the qi. For example, the homaloidal net of the standard quadratic involution σ2 is the net
of conics through the three points q1 = [1 : 0 : 0], q2 = [0 : 1 : 0], q3 = [0 : 0 : 1]. We have

(σ2)∗e0 = 2e0 − e(q1)− e(q2)− e(q3).

Another invariant structure is given by the canonical form. Recall that the canonical
class of P2

k blown up in m points q1, . . ., qm is equal to −3e0−∑ j e(q j). Taking intersection
products, one gets a linear form ω∞ : Z(P2

k)→ Z, defined by

ω∞ : a0e0 −∑
j

a je j �→ −3a0 +∑
j

a j.

This form does not extend to the completion Z(P2
k) (because there are �2 sequences which

are not �1).

(2) The isometric action of Cr2(k) on Z(P2
k) preserves the integral linear form ω∞.

The following equalities, which we shall refer to as Noether equalities, follow from the
fact that f∗ is an isometry that preserves ω∞: If f∗e0 = de0 −∑i aiei, then

d2 = 1+∑
i

a2
i(17)

3d−3 = ∑
i

ai.(18)

These relations impose interesting conditions on the isometries defined by birational trans-
formations of the plane.

LEMMA 5.1 (Noether inequality). Let f be an element of Cr2(k) of degree d ≥ 2,
and let a1, . . ., ak be the multiplicities of the base-points of f−1.

(3) The following equality is satisfied.

(d−1)(a1 +a2 +a3 − (d+1)) = (a1 −a3)(d−1−a1)+(a2 −a3)(d−1−a2)

+ ∑
4≤i≤k

ai(a3 −ai).

(3’) For every pair of indices i, j with 1 ≤ i < j ≤ k, we have ai +a j ≤ d.
(3”) Ordering the ai in decreasing order, i.e. a1 ≥ a2 ≥ a3 ≥ a4 ≥ . . ., we have

a1 +a2 +a3 ≥ d +1.

5.2. Noether Castelnuovo theorem. One way to state Noether-Castelnuovo theo-
rem, is to say that Cr2(k) is generated by the family of standard quadratic involutions, i.e.
by the elements g◦σ2 ◦g−1 with g in Aut(P2

k) = PGL3(k) (with k algebraically closed).
To understand the isometry (σ2)∗, denote by q1, q2, and q3 the base points of σ2, and

by X the surface which is obtained by blowing up these three points. On X , σ2 lifts to an
automorphism σ̂2. The Néron-Severi group of X is the lattice of rank 4 generated by the
classes e0, coming from the class of a line in P2

k, and the classes ei = e(qi) given by the
three exceptional divisors. The action of σ̂2 on NS(X) is given by

(σ̂2)∗e0 = 2e0 − e1 − e2 − e3

(σ̂2)∗e1 = e0 − e2 − e3

(σ̂2)∗e2 = e0 − e3 − e1

(σ̂2)∗e3 = e0 − e1 − e2.
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Thus, on NS(X), (σ̂2)∗ coincides with the reflexion with respect to the (−2)-class u =
e0 − e1 − e2 − e3:

(σ̂2)∗(x) = x+ 〈x|u〉
for all x in NS(X). The class u is mapped to its opposite, and the set of fixed points is
the hyperplane of vectors x = ∑i aiei with a0 = a1 + a2 + a3. Note that the class u is not
effective, precisely because the three points q1, q2, and q3 are not on a line.

Then, blow up all points of X (including infinitely near points) to construct a basis of
Z(P2

k), namely
Z(P2

k) = NS(X)⊕
⊕

p∈B(X)

Ze(p)

where B(X) is the set of points that one blows up (see Example 4.2 and [18, 68]). The
isometry (σ2)∗ of Z(P2

k) acts on NS(X) as the reflexion (σ̂2)∗ and permutes each vector
e(p) with e(σ2(p)). Thus, the fixed point set of (σ2)∗ in H∞(P

2
k) is quite small: It is

defined by infinitely many equalities, namely a0 = a1 +a2 +a3, and ap = aσ2(p) for every
p ∈ B(X).

A naive approach to the proof that standard quadratic involutions generate Cr2(k)
works as follows. Consider an element f in Cr2(k), with f∗(e0) = de0−∑aie(qi). Assume
that the multiplicities are decreasing, i.e. ai ≥ ai+1, and apply Noether inequality to deduce
a1 +a2 +a3 ≥ d+1. Since k is algebraically closed, the base points qi are defined over k.
Assume that the base points q1, q2 and q3 are non-collinear points of P2(k) and denote by σ
a quadratic involutions with base points q1, q2 and q3. Then (σ◦ f )∗e0 = (2d− (a1 +a2 +
a3))e0 + ... and one sees that the degree e0 · (σ◦ f )∗e0 = 2d− (a1 +a2 +a3) is strictly less
than d. Thus, in a finite number of steps, one expect to reach a birational transformation of
degree 1, i.e. an element of PGL3(k). Of course, the difficulty arises from the fact that the
dominating base points q1, q2 and q3 may include infinitesimally near points.

5.3. Dynamical degrees, automorphisms, spectral gaps. Let us come back to the
study of birational transformations of arbitrary projective surfaces X . If g is an auto-
morphism of X , g already acts by isometry on NS(X ,R) for the intersection form; thus,
the dynamical degree λ(g) is equal to the spectral radius of the linear transformation
g∗ : NS(X)→ NS(X). This shows that λ(g) is an algebraic number because g∗ preserves
the integral structure of NS(X).

REMARK 5.2. As explained in the introduction of Chapter II, a projective surface with
non-negative Kodaira dimension has a unique minimal model, on which every birational
transformation is an automorphism. On such a surface, all dynamical degrees are algebraic
integers, the degree of which is bounded from above by the Picard number of the minimal
model. In fact, their degree is bounded by 24 because surfaces with positive Kodaira
dimension have no automorphism with dynamical degree > 1 and minimal surfaces with
vanishing Kodaira dimension have Picard number at most 24 (see [18]).

A birational transformation of a surface is algebraically stable if the action f∗ of
f on the Néron-Severi group satisfies ( f∗)n = ( f n)∗ for all n ≥ 1. This property fails
exactly when there is a curve E in the surface X such that f maps E to a point q (i.e. the
strict transform is equal to q) and the forward orbit of q contains an indeterminacy point
q′ = f m(q) of f . If this occurs, one can blow up the orbit of q between q and q′; such a
modification decreases the number of base points of f . Thus, in a finite number of steps,
one reaches a model of X on which f becomes algebraically stable. The precise statement
that one gets is the following theorem; it is proved in [63].
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THEOREM 5.3 (Diller-Favre, [63]). Let k be an algebraically closed field. Let X be a
projective surface and f be a birational transformation of X, both defined over k. There
exists a birational morphism π : Y → X such that fY := π−1 ◦ f ◦π is algebraically stable.

For example, if f = σ2 is the standard quadratic involution, one just needs to blow up
its three indeterminacy points. If h is a Hénon automorphism of the affine plane, then h
determines an algebraically stable birational transformation of P2

k.
Once f is algebraically stable, the dynamical degree arises as an eigenvalue of f∗ on

the Néron-Severi group and, as such, is an algebraic integer.
A Pisot number is a real algebraic integer α > 1, all of whose conjugates α′ �= α

have modulus < 1. A Salem number is a real algebraic integer β > 1 such that 1/β is
a conjugate of β, all other conjugates have modulus 1, and there is at least one conjugate
β′ on the unit circle. With such a definition, quadratic units α > 1 are Pisot numbers
(and are not Salem numbers). The set of Pisot numbers is countable, closed, and contains
accumulation points (the smallest one being the golden mean); the smallest Pisot number
is the root λP � 1.3247 of t3 = t + 1. Salem numbers are not well understood yet; the
smallest known Salem number is the Lehmer number λL � 1.1762, a root of t10 + t9 − t7 −
t6 − t5 − t4 − t3 + t + 1 = 0, and the existence of Salem numbers between 1 and λL is an
open problem.

The following result, contained in [18], is a manifestation of Hodge index theorem.
Its proof depends deeply on [63, 111–113].

THEOREM 5.4. Let X be a projective surface, defined over an algebraically closed
field k. Let f be a birational transformation of X with dynamical degree λ( f ) > 1. Then
λ( f ) is either a Pisot number or a Salem number and

(a) if λ( f ) is a Salem number, then there exists a birational map ψ : Y ��� X which
conjugates f to an automorphism of Y ;

(b) if f is conjugate to an automorphism, as in (a), λ( f ) is either a quadratic integer
or a Salem number.

Moreover, λ( f )≥ λL, where λL is the Lehmer number and there are examples of birational
transformations of the complex projective plane (resp. of some complex K3 surfaces) such
that λ( f ) = λL.

Define the dynamical spectrum of the surface X by

Λ(Xk) = {λ(h) | h ∈ Bir(Xk)} .

Theorem 5.4 implies that Λ(Xk) is contained in the union of {1}, the set of Pisot numbers,
and the set of Salem numbers. Moreover, there is a spectral gap: Λ(Xk) does not intersect
the open interval (1,λL). This spectral gap corresponds to an important geometric property
of the action of Bir(X) on the hyperbolic space H∞(X): If an element f of Bir(X) is
loxodromic, its translation length is bounded from below by the uniform constant log(λL).

REMARK 5.5. Consider a birational transformation g of the plane P
2
k for which λ(g)

is a natural integer ≥ 2. The dynamical degree of the Hénon map (X1,X2) �→ (X2 +Xd
1 ,X2)

is equal to d. Then, g can not be regularized: There is no birational change of coordinates
X ��� P

2
k which conjugates g to a regular automorphism of a projective surface X ; this

would contradict Assertion (b) in Theorem 5.4. We refer to [28,44] for different arguments
leading to birational transformations which are not regularizable.
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5.4. Dynamical degrees, well ordered sets of algebraic numbers. Consider a lox-
odromic element of Cr2(k); recall that the degree deg( f ) can be seen as the degree of the
homogeneous formulas defining f : P2

k → P2
k and as the intersection f∗(e0) · e0.

The inequality λ( f ) ≤ deg( f ) is always satisfied, because the sequence deg( f n) is
submultiplicative, and λ( f ) is the limit of deg( f n)1/n. Moreover, λ( f ) is invariant under
conjugacy: λ(g f g−1) = λ( f ) for all g ∈ Cr2(k). Thus, if one defines the minimal degree
in the conjugacy class by

mcdeg( f ) = min{deg(g f g−1) | g ∈ Cr2(k)}
one gets the inequality

λ( f )≤mcdeg( f )
for all f ∈ Cr2(k).

THEOREM 5.6 (see [18]). Let k be an algebraically closed field. Let f be a birational
transformation of the plane P

2
k. If λ( f ) ≥ 106 then mcdeg( f ) ≤ 4700λ( f )5. If λ( f ) > 1,

then mcdeg( f )≤ cosh(110+345log(λ( f ))).

In geometric terms, if f is a loxodromic element of Cr2(k), one can conjugate f to f ′

in Cr2(k) to get

(19) L( f ′)≤ dist(e0, f ′∗e0)≤ 110+345L( f ′)

(where L( f ′), the translation length of f ′∗, is equal to L( f ) and log(λ( f ))). Let us explain
the meaning of this statement. Denote by Ax( f ) the axis of f∗: By definition, Ax( f ) ⊂
H∞(P

2
k) is the geodesic line whose endpoints are the two fixed points of f∗ on the boundary

∂H∞(P
2
k); it coincides with the intersection of H∞(P

2
k) with the plane generated by the

isotropic lines which are invariant under the action of f∗ (one is multiplied by λ( f ), the
other by 1/λ( f )). Denote by e f the projection of the base point e0 on Ax( f ); the geodesic
segment [e0,e f ] is orthogonal to Ax( f ), and its length δ( f ) is the distance from e0 to Ax( f ).
The isometry f∗ maps e f to a point of Ax( f ) such that dist(e f , f∗e f ) = L( f ) = log(λ( f )).
The geodesic segment [e0,e f ] is mapped to a geodesic segment [ f∗e0, f∗e f ]: It is orthogonal
to Ax( f∗), and its length is equal to δ( f ). Thus,

dist(e0, f∗e0)≤ 2δ( f )+L( f ).

To get the Inequality (19), we just need to prove that f can be conjugate to an element
f ′ with an explicit bound on δ( f ′) (that depends on L( f )). Noether-Castelnuovo theorem
leads to a similar problem: Starting with an element f in Cr2(k), one tries to compose it
with a quadratic involution to decrease dist( f∗e0,e0), and then to repeat this process and
decrease this distance all the way down to 0 (see Section 5.2). Here, one decreases the
distance from e0 to the axis of f by changing f into a conjugate element of Cr2(k).

Let us describe a consequence of Theorem 5.6. Given a sequence ( fn) of loxodromic
birational transformations of the plane, one gets a sequence of algebraic numbers λ( fn).
Assume that this sequence is strictly decreasing, hence bounded. The sequence ( fn) can
be replaced by a sequence ( f ′n) such that the degree of f ′n is uniformly bounded and fn is
conjugate to f ′n for all n. Let d be a degree such that infinitely many of the f ′n have degree
d: One gets a sequence ( f ′n) in the algebraic set Cr2(k;d). It has been proved by Xie (see
[138]) that the function

g �→ λ(g)
is lower semi-continuous with respect to the Zariski topology on Cr2(k;d) (resp. along
any algebraic family gt of birational transformations). The sequence λ( f ′n) decreases with
n, and the sets {g ∈ Cr2(k;d)| λ(g) ≤ λ( f ′n)} are Zariski closed; hence, the noetherian
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property implies that the sequence λ( f ′n) = λ( fn) is finite. This argument is detailed in
[18], and leads to the following result.

THEOREM 5.7. Let k be an algebraically closed field. The set of dynamical degrees
of all birational transformations of P2

k is a well ordered set: Every strictly decreasing
sequence of dynamical degrees is finite. If k is uncountable, this set is closed.

In particular, given any dynamical degree λ, there is a small interval ]λ,λ+ε] that does
not contain any dynamical degree. A similar result holds if one replaces P2

k by all projective
surfaces, all of them taken together, over arbitrary fields, because dynamical degrees are
algebraic integers of degree at most 24 on non-rational surfaces (see Remark 5.2).

6. Finitely generated subgroups

According to Sections 4.1 and 4.2, Cr2(k) acts by isometries on an infinite dimen-
sional hyperbolic space, and there is a powerful dictionary between the classification of
isometries and the classification of birational maps in terms of degree growth and invari-
ant fibrations. In this section, we explain how this dictionary can be used to describe the
algebraic structure of Cr2(k) and its subgroups.

6.1. Tits Alternative. A group G satisfies Tits alternative if the following property
holds for every finitely generated subgroup Γ of G: Either Γ contains a finite index solvable
subgroup or Γ contains a free non-abelian subgroup (i.e. a copy of the free group Fr, with
r ≥ 2). Tits alternative holds for the linear groups GLn(k) (see [134]), but not for the group
of C ∞-diffeomorphisms of the circle S1 (see [26], [81]). If G satisfies Tits alternative, it
does not contain groups with intermediate growth, because solvable groups have either
polynomial or exponential growth.

The main technique to prove that a group contains a non-abelian free group is the
ping-pong lemma. Let g1 and g2 be two bijections of a set S. Assume that S contains
two non-empty disjoint subsets S1 and S2 such that gm

1 (S2) ⊂ S1 and gm
2 (S1) ⊂ S2 for all

m ∈ Z \ {0}. Then, according to the ping-pong lemma, the group of transformations of S
generated by g1 and g2 is a free group on two generators [53]. The proof is as follows.
If w = w(a,b) is a reduced word that represents a non-trivial element in the free group
F2 = 〈a,b〉, one needs to prove that w(g1,g2) is a non-trivial transformation of S; for this,
one conjugates w with a power of g1 to assume that w(g1,g2) starts and ends with a power
of g1; writing

w(g1,g2) = gln
1 gmn

2 . . .gm1
2 gl0

1 ,

one checks that gl0
1 maps S2 into S1, then gm1

2 gl0
1 maps S2 into S2, ..., and w maps S2 into S1;

this proves that w(g1,g2) is non-trivial because S2 is disjoint from S1.
Now, consider a group Γ that acts on a hyperbolic space H∞ and contains two lox-

odromic isometries h1 and h2 whose fixed points in ∂H∞ form two disjoint pairs. Take
disjoint neighborhoods Si ⊂ H∞ of the fixed point sets of hi, i = 1,2. Then, the ping-
pong lemma applies to sufficiently high powers g1 = hn

1 and g2 = hn
2, and produce a free

subgroup of Γ.
This strategy can be used for Bir(X), acting by isometries on H∞(X). The difficulty

resides in the study of subgroups that do not contain any ping-pong pair of loxodromic
isometries; Theorem 4.6 comes in help to deal with this situation, and leads to the following
result.

THEOREM 6.1 ([35]). If X is a projective surface over a field k, the group Bir(X)
satisfies Tits alternative.
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Moreover, solvable subgroups of Bir(X) which are generated by finitely many ele-
ments are well understood: Up to finite index, such a group preserves an algebraic foliation
(defined over the algebraic closure of k), or is abelian (see [36] and [61]). This is analo-
gous to the fact that every solvable subgroup in GLn(k) contains a finite index subgroup
that preserves a full flag in kn (if k is algebraically closed).

If M is a projective variety (resp. a compact Kähler manifold), its group of automor-
phisms satisfies also the Tits alternative [35, 64].7

QUESTION 6.2. Does Crn(k) satisfy Tits alternative for all n ≥ 3 ? Does Tits alterna-
tive holds for Bir(M), for all projective varieties M ?

Would the answer be yes, one would obtain a proof of Tits alternative for subgroups
of Bir(M): This includes linear groups, mapping class groups of surfaces, and Out(Fg) for
all g ≥ 1 (see §1.3.1; see [12] for Tits alternative in this context). The first open case for
Question 6.2 concerns the group of polynomial automorphisms of the affine space A3

k.

6.2. Rank one phenomena. As explained in §2.3, the Cremona group Cr2(k) be-
haves like an algebraic group of rank 2, with a maximal torus given by the group of diag-
onal matrices in PGL3(k). On the other hand, typical elements of degree d ≥ 2 in Cr2(C)
are loxodromic (not elliptic) and, as such, cannot be conjugate to elements of this maximal
torus. This suggests that Cr2(k) has rank 1 from the point of view of its typical elements.
The following statement provides a strong version of this principle.

THEOREM 6.3 ([18, 35]). Let k be a field. Let X be a projective surface over k and f
be a loxodromic element of Bir(X). Then, the infinite cyclic subgroup of Bir(X) generated
by f has finite index in the centralizer {g ∈ Bir(X) | g◦ f = f ◦g}.

SKETCH OF PROOF FOR X = P2
k (SEE [18, 35]). If g commutes to f , the isometry g∗

of H∞(P
2
k) preserves the axis of f∗ and its two endpoints. Consider the homomorphism

which maps the centralizer of f to the group of isometries of Ax( f ); view it as a homo-
morphism into the group of translations R of the line. Since the translation lengths are
bounded from below by log(λL) and every discrete subgroup of R is trivial or cyclic, the
image of this homomorphism is a cyclic group; its kernel K is made of elliptic elements h
fixing all points of Ax( f ) and commuting to f . Let e f be the projection of e0 on the axis
of f ; then dist(h∗e0,e0) ≤ 2dist(e0,e f ) because K fixes e f . Thus, the group K is a group
of birational transformations of bounded degree.

Section 2.2 shows that one can conjugate K to a group of automorphisms of a rational
surface Y , and that Aut(Y )0 ∩K becomes a finite index subgroup of K. The Zariski closure
of this group in Aut(Y )0 is a linear algebraic group G that commutes to f (where f is
viewed as a birational transformation of Y ); if this group is infinite, it contains a one-
dimensional abelian group that commutes to f and whose orbits form a pencil of curves
in Y : This contradicts the fact that f does not preserve any pencil of curves (such a pencil
would give a fixed point of f∗ in Z(P2

k) with non-negative self intersection, contradicting
the loxodromic behaviour of f∗). �

Another rank one phenomenum comes from the rigidity of rank 2 subgroups of Cr2(k).
Let G be a real, almost simple, linear algebraic group and Γ be a lattice in G, i.e. a discrete
subgroup such that G/Γ has finite Haar volume. When the R-rank of G is at least 2,

7The proof is simple: The action of Aut(M) on the cohomology of M is a linear representation, and Tits
theorem can be applied to its image; its kernel is a Lie group with finitely many components, and Tits theorem
can again be applied to it. There is a mistake in the proof of Lemma 6.1 of [35]; this has been corrected in [64]
and [36].
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Γ inherits its main algebraic properties from G (see [110] and Section 8.1 below). For
instance, Γ has Kazhdan property (T), according to which every representation of Γ by
unitary motions on a Hilbert space has a global fixed point.

THEOREM 6.4 (Déserti, Cantat, [35, 58]). Let k be an algebraically closed field and
X be a projective surface over k. Let Γ be a countable group with Kazhdan property (T).
If ρ : Γ → Bir(X) is a homomorphism with infinite image, then ρ is conjugate to a homo-
morphism into PGL3(k) by a birational map ψ : X ��� P

2
k.

SKETCH OF PROOF. The first step is based on a fixed point property: If a group Γ with
Kazhdan property (T) acts by isometries on a hyperbolic space H∞, then Γ has a fixed point
and, as a consequence, all its orbits have bounded diameter (see [54]). Apply this to the
action of Bir(X) on H∞(X) to deduce that a subgroup of Bir(X) with Kazhdan property (T)
has bounded degree (with respect to any given polarization of X). Consequently, there
is a birational map π : Y ��� X that conjugates Γ to a subgroup ΓY of Aut(Y ) such that
Aut(Y )0∩ΓY has finite index in ΓY . The last step is based on the classification of algebraic
groups of transformations of surfaces, and the fact that every subgroup of SL2(k) with
Kazhdan property (T) is finite; this leads to the following statement, which concludes
the proof: If Aut(Y )0 contains an infinite group with Kazhdan property (T), the surface
Y must be isomorphic to the projective plane P

2
k (and then ΓY becomes a subgroup of

PGL3(k)). �

In [58–60], Déserti draws several algebraic consequences of this result; for instance,
she can list all abstract automorphisms of Cr2(C)

COROLLARY 6.5. The group of automorphisms of Cr2(C) (as an abstract group) is
the semi-direct product of Cr2(C) (acting by conjugacy), and the group Aut(C;+, ·) of
automorphisms of the field C (acting on the coefficients of the polynomial formulas defining
the elements of Cr2(C)).

There are now several proofs of this result. It would be interesting to decide whether
this statement holds for all algebraically closed fields k (in place of C). Since all proofs
depend on Noether-Castelnuovo theorem; they do not extend to higher dimension (see [38],
[100, 133] for partial results).

7. Small cancellation and normal subgroups

Small cancellation theory is a technique which, starting with a presentation of a group
by generators and relations, can be used to prove that the group is large. Assume that the
group G is given by a finite symmetric set of generators gi and a finite set of relations
Ri, each of them being a word in the gi. Enlarge the set of relators in order to satisfy the
following property: If R is one of the relators and R ends by the letter gi, then giRg−1

i is also
an element of our finite set of relators. Under this assumption, a typical small cancellation
property assumes that two relators cannot coincide (as words in the gi) on a piece that
occupies at least 1/6 of their length; under such an assumption, the group G is large (it
contains a non abelian free group). In particular, in the free group generated by the letters
gi, the normal subgroup generated by the Ri is rather small. Thus, small cancellation theory
can also be seen as a mean to show that a normal subgroup is a proper subgroup.

The first application of this technique to groups of algebraic transformations is due
to Danilov (see [52]). He considered the group Aut1(A2

k) of polynomial automorphisms
of the affine plane with jacobian determinant 1. This group is the amalgamated product
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of the group of special affine transformations of the plane with the group of elementary
auromorphisms

(X1,X2) �→ (aX1,a−1X2 + p(X1))

with a∈ k∗ and p(t)∈ k[t]; the amalgamation is along their intersection. As such, Aut1(A2
k)

acts on a tree by automorphisms (see [129]), and a version of small cancellation theory can
be applied to construct many normal subgroups in Aut1(A2

k). Thus, Aut1(A2
k) is not sim-

ple.
Since then, small cancellation theory has made huge progresses, with more geometric,

less combinatorial versions. In particular, the work of Gromov, Olshanskii and Delzant on
small cancellation and hyperbolic groups led to techniques that can now be applied to the
Cremona group Cr2(k). We refer to [90] and [50] for recent geometric viewpoints on small
cancellation.

7.1. Rigidity, tightness, axes. Let G be a group of isometries of H∞. Let L be a
geodesic line in H∞. The line L is rigid under the action of G if every element h ∈ G that
does not move L too much fixes L. To give a precise definition, one needs to measure the
deplacement of L under the action of an isometry h. Say that two geodesic lines L and L′

are (ε, �)-close if the diameter of the set

{x ∈ L | dist(x,L′)≤ ε}
is larger than �. The precise notion of rigidity is: L is (ε, �)-rigid if, for every h ∈ G,
h(L) = L if and only if h(L) is (ε, �)-close to L; L is rigid if it is (ε, �)-rigid for some pair
of positive numbers (ε, �) (this pair depends on L and G). In other words, if a geodesic line
L is rigid for the action of the group G, the orbit G(L) forms a discrete set in the space of
geodesic lines.

Fix a loxodromic element g ∈ G. Consider the stabilizer of its axis:

Stab(Ax(g)) = {h ∈ G | h(Ax(g)) = Ax(g)}.
Say that g is tight if its axis is rigid and every element h of Stab(Ax(g)) satisfies

h◦g◦h−1 = g or g−1.

An element of the Cremona group Cr2(k) is tight (resp. has a rigid axis) if if it is tight
(resp. its axis is rigid) with respect to the action of Cr2(k) by isometries on H∞(P

2
k).

These notions are directly related to the study of the stabilizer of Ax(g), and the fol-
lowing examples show that this stabilizer may be large.

EXAMPLE 7.1. Consider the group of monomial transformations in two variables; this
group is isomorphic to GL2(Z). To a matrix

M =

(
a b
c d

)
with det(M) =±1 corresponds a monomial transformation fM: In affine coordinates,

fM(x,y) = (xayb,xcyd).

The dynamical degree λ( fM) is equal to max{|α|, |β|}, where α and β are the eigenvalues
of M. Thus, λ( fM) > 1 if and only if ad − bc = 1 and |a+ d| > 2 or ad − bc = −1 and
a+d �= 0. Assuming that fM is loxodromic, we shall prove that fM is not tight.

The monomial group GL2(Z) normalizes the group of diagonal transformations: If
t(x,y) = (ux,vy) then

(20) fM ◦ t ◦ f−1
M (x,y) = (uavbx,ucvdy) = t ′(x,y)
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where t ′ is obtained from t by the monomial action of GL2(Z) on Gm ×Gm.
The indeterminacy points of monomial transformations are contained in the vertices

[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] of the triangle whose edges are the coordinate axis. Blow-up
these three points to get a new surface X1, and consider the total transform of the triangle:
One gets a hexagon of rational curves in X1. The group of monomial transformations
lifts to a group of birational transformations of X1 with indeterminacy points located on
the 6 vertices of this hexagon. The group of diagonal transformations lifts to a subgroup
of Aut(X1)

0. One can iterate this process, blowing-up the vertices of the hexagon, etc.
The limit of the Néron-Severi groups along this sequence of surfaces Xn+1 → Xn gives
a subspace of Z(P2

k) which is invariant under the action of the monomial group GL2(Z)
and is fixed pointwise by the diagonal group Gm(k)×Gm(k). Intersect this space with
H∞(P

2
k) and denote by H∞(toric) its metric completion: One gets a totally geodesic, infinite

dimensional subspace of H∞(P
2
k). The axis of every loxodromic element of GL2(Z) is

contained in H∞(toric) and is fixed pointwise under the action of Gm(k)×Gm(k).
On the other hand, the Equation (20) implies that t ◦ fM ◦t−1 = t ′′ ◦ fM where t ′′(x,y) =

(u1−av−bx,u−cv1−dy). Thus, fM is not tight (as soon as k∗ contains elements v with vb �= 1).

EXAMPLE 7.2 (see [105, 132]). A similar example works for the additive group in
place of the multiplicative group when the characteristic p of the field k is positive. For
instance, the Hénon mapping h(x,y) = (xp − y,x) conjugates the translation s(x,y) = (x+
u,y+ v) to

h◦ s◦h−1 = (x+up − v,x+u).

The dynamical degree of h is equal to p, and h normalizes the additive group Ga(k)×
Ga(k) (acting by translations).

The normalizer of the additive group in Cr2(k) coincides with the subgroup of ele-
ments f ∈ Aut(A2

k) which are given in affine coordinates by formulas of type

f (x,y) = (a(x)+b(y),c(x)+d(y))

with a(t), b(t), c(t), d(t) polynomial functions of type ∑i qit pi
. Another way to state the

same result is as follows. Denote by A the ring of linearized polynomials in one variable,
i.e. polynomials in the Frobenius endomorphism z �→ zp of k. This is a non-commutative
ring. Then, every 2 by 2 matrix with coefficients in A which is invertible over A deter-
mines an algebraic automorphism of Ga(k)×Ga(k), and every algebraic automorphism
of Ga(k)×Ga(k) is of this type. Thus, GL2(A) plays the same role as GL2(Z) in the
previous example.

Base points of elements of GL2(A) are above the line at infinity of the affine plane
and are all fixed by Ga(k)×Ga(k). Thus, again, the group Ga(k)×Ga(k) acts trivially
on a hyperbolic subspace of H∞(P

2
k) that contains the axis of every loxodromic element of

GL2(A).

THEOREM 7.3 ([40, 105, 132]). Let k be an algebraically closed field, and g be a
loxodromic element of Cr2(k).

(1) The axis of g is rigid.
(2) The cyclic subgroup gZ has finite index in the stabilizer of Ax(g) in Cr2(k), if

and only if there exists a non-trivial iterate gn of g which is tight.
(3) If the index of gZ in Stab(Ax(g)) is infinite, one of the following possibilities

occurs:
• g is conjugate to a monomial transformation;
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• g is conjugate to a polynomial automorphism of the affine plane A2
k that

normalizes the group of translations (x,y) �→ (x+u,y+v), (u,v) ∈ k2 (this case
does not occur if char(k) = 0).

REMARK 7.4. Let N be a subgroup of Cr2(k) that contains at least one loxodromic
element. Assume that there exists a short exact sequence 1 → S → N → Q → 1 where S
is infinite and contains only elliptic elements. Then N is conjugate to a subgroup of the
group GL2(Z)�Gm(k)2 or GL2(A)�Ga(k)2, as in the previous examples. This statement
is equivalent to Property (3). (see the appendix of [56] and [132])

REMARK 7.5. Tightness is equivalent to another property which appeared in the study
of the mapping class group Mod(g) of a closed surface (see [50], and references therein).
Consider a group G acting by isometries on H∞ and a loxodromic element g in G. One says
that g is “wpd” (for “weakly properly discontinuous”) if ∀D ≥ 0, ∀x ∈ H∞, there exists a
positive integer N such that the set

S(D,x;N) = {h ∈ G | dist(h(x),x)≤ D, dist(h(gN(x)),gN(x))≤ D}
is finite. To test this property, one can fix the starting point x; for instance, one can fix x on
the axis of g.

When one studies the action of the Cremona group Cr2(k) on H∞(P
2
k), the axis of

every loxodromic element is rigid and the stabilizer of the axis Ax(g) is virtually cyclic if
and only if some positive iterate of g is tight (see Theorem 7.3). It follows that for N large,
the set S(D,x;N) is contained in the stabilizer of the axis Ax(g), and g is wpd if and only
if some positive iterate gm of g is tight. Thus, tightness (for gm, for some m �= 0) can be
replaced by the wpd property when one studies the Cremona group in 2 variables.

7.2. Normal subgroups. Let us pursue the comparison between groups of birational
transformations and groups of diffeomorphisms. If M is a connected compact manifold
and Diff∞

0 (M) denotes the group of infinitely differentiable diffeomorphisms of M which
are isotopic to the identity, then Diff∞

0 (M) is a simple group: It does not contain any normal
subgroup except {IdM} and the group Diff∞

0 (M) itself (see [1]). One can show that Cr2(C)
is “connected” (see [15]); hence, there is no need to rule out connected components as for
diffeomorphisms. Enriques conjectured in 1894 that Cr2(C) is a simple group (see [74]),
and this is indeed true from the point of view of its algebraic subgroups (see § 2.5 and [15]).
On the other hand, as an abstract group, Cr2(k) is far from being simple:

THEOREM 7.6 (Cantat and Lamy, [40], Shepherd-Barron [132], Lonjou [105]). For
every field k, the Cremona group Cr2(k) is not simple.

The proof relies on ideas coming from small cancellation theory and the geometry
of hyperbolic groups in the sense of Gromov, as in [55]; the idea is that, starting with a
tight element g in Cr2(k), the relations generated by the conjugates of a large iterate gn of
g satisfy a small cancellation property, so that the normal subgroup generated by gn is a
proper subgroup of Cr2(k). We refer to [50] for a recent survey on this topic. Applied to
the action of the Cremona group on the hyperbolic space H∞(P

2
k), the precise result that

one obtains is the following.

THEOREM 7.7 ([40, 51]). Let g be a loxodromic element of Cr2(k). If g is a tight
element of Cr2(k) and n is large enough, the normal subgroup of Cr2(k) generated by the
n-th iterate gn:

• does not contain any element h �= id whose translation length is less than L(g),
• is a free group.
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As a consequence, to prove that Cr2(k) is not simple one needs to construct a tight
element in Cr2(k) (recall that the definition of tightness depends on the group, so that
being tight in Cr2(k) is not the same as being tight in Cr2(k′) if k′ is an extension of
k). According to Theorem 7.3, one just needs to produce an element of Cr2(k) which
is not conjugate to a monomial transformation or to an automorphism of the affine plane
that normalizes the group of translations. This has been done for algebraically closed
fields in [40], for finite fields in [132], and for arbitrary fields in [105].8 For instance,
very general elements of Cr2(C;2) are tight; this implies that Cr2(C) contains uncountably
many distinct normal subgroups.

The examples of tight elements given by Lonjou are Hénon mappings h(x,y) =
(y,yn − x), with a degree n which is not divisible by the characteristic of k. By Déserti’s
theorem, the group of automorphisms of Cr2(C) is generated by inner automorphisms and
the action of Aut(C,+, ·). Since h is defined over Z, the normal subgroup generated by hm

is a characteristic subgroup of Cr2(C).

COROLLARY 7.8. The Cremona group Cr2(C) contains infinitely many characteristic
subgroups.

The same strategy is used in various contexts, as in the recent proof, by Dahmani,
Guirardel and Osin, that high powers of pseudo-Anosov elements generate strict, non-
trivial, normal subgroups in mapping class groups. Applied to the Cremona group, their
techniques lead to the following statement.

THEOREM 7.9 (Dahmani, Guirardel, and Osin, [40, 51, 105]). Let k be a field. The
Cremona group Cr2(k) is sub-quotient universal: Every countable group can be embedded
in a quotient group of Cr2(k).

REMARK 7.10. Being sub-quotient universal, while surprising at first sight, is a com-
mon feature of hyperbolic groups [55,117]. For instance, SL2(Z) is sub-quotient universal
[106]. We refer to [50] for a unified viewpoint on small cancellation theory that includes
the study of mapping class groups Mod(g) and the Cremona groups Cr2(k).

–III–
Higher dimensions, subgroups, and growths

Our understanding of groups of birational transformations in dimension ≥ 3 is far less
satisfactory than in dimension 2. In this last part, we focus on two open problems: The
first one has been solved in many cases, with a wealth of different methods, and we hope
that these methods may be useful for other questions; the second one, while much simpler
to describe, requires new ideas.

8. Zimmer program

8.1. Groups of diffeomorphisms. Consider a compact, connected manifold M (of
class C ∞). Denote by Diff∞

0 (M) the group of smooth diffeomorphisms of M which are
isotopic to the identity. This group determines M. Indeed, Filipkiewicz proved that ev-
ery “abstract” isomorphism between Diff∞

0 (M) and Diff∞
0 (M

′) is a conjugacy by a dif-
feomorphism ϕ : M → M′; moreover, Hurtado proved that the existence of an embedding
Diff∞(M)→ Diff∞(M′) forces the inequality dim(M) ≤ dim(M′) (see [1, 77, 93], and the
references of these articles).

8Note that Theorem 7.3 has been proved several years after [40], so that the existence of tight elements in
Cr2(k) could not rely on it.
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By the work of Mather, Herman, Thurston and Epstein, the group Diff∞
0 (M) is simple

(see [1]). One way to understand it better is to compare it to classical, (almost) simple,
real linear groups, such as SLn(R) or SOp,q(R). Starting with a classical result concerning
Lie groups, one may ask to what extent such a result holds in the context of groups of
diffeomorphisms.

Recall that the real rank of such a linear group is the dimension of a maximal torus,
i.e. the maximal dimension of a closed subgroup which is diagonalizable over R. The
real rank rkR(G) is a good measure of the “complexity” of the group G; for instance,
rkR(G) ≤ rkR(H) if G embeds in H. This is reflected by actions by diffeomorphisms: If
the simple Lie group G acts smoothly and non-trivially on M, then dim(M)≥ rkR(G) (with
equality when M is the projective space of dimension n−1 and G is PSLn(R)).

Lie theory concerns the case of smooth actions of connected Lie groups; Zimmer’s
program proposes to pursue the comparison between Lie groups and groups of diffeo-
morphisms by looking at finitely generated subgroups. The following is an emblematic
conjecture of this program.

CONJECTURE 8.1 (Zimmer conjecture). Let G be a simple Lie group and Γ be a
lattice in G. If Γ acts faithfully on a compact connected manifold M by diffeomorphisms,
then rkR(G)≤ dim(M).

This conjecture has been proved in the case when M is the circle [30, 80], or when the
lattice is not cocompact and the action is by area preserving diffeomorphisms of a compact
surface [119]. (Added in proof: This conjecture has recently been settled by A. Brown,
D. Fisher, and S. Hurtado for co-compact lattices.)

8.2. Groups of algebraic transformations. Groups of automorphisms or birational
transformations can be compared to groups of diffeomorphisms, like Diff∞

0 (M) or linear
algebraic groups, like SLn(k). Such comparisons are useful when looking at affine (resp.
projective) varieties with a large group of automorphisms (resp. birational transforma-
tions); the prototypical example is given by the affine space An

k.

CONJECTURE 8.2 (Zimmer conjecture for birational transformations). Let G be a
simple Lie group and Γ be a lattice in G. If Γ acts faithfully on a projective variety X by
birational transformations, then rkR(G)≤ dim(X).

8.2.1. Regular automorphisms. The same conjecture for actions by regular automor-
phisms is settled in [33, 42] when one looks at automorphisms of complex projective or
compact Kähler manifolds: If Γ is a lattice in a simple Lie group G and Γ acts faithfully
by automorphisms of a compact Kähler manifold X , then rkR(G)≤ dim(X) and in case of
equality X is the projective space Pn

C.
The proof works as follows. The group Aut(X) is a complex Lie group; it may have in-

finitely many connected components, but the connected component of the identity Aut(X)0

is a Lie group whose Lie algebra is the algebra of holomorphic vector fields on X . The
group Aut(X) acts on the cohomology of X , and the kernel K of this action contains
Aut(X)0 as a finite index subgroup (Lieberman’s theorem, see [103]). Let Γ be a lattice
in an almost simple Lie group G, and assume that Γ embeds into Aut(X). Assume, more-
over, that the rank of G is larger than 1, since otherwise the inequality dim(X)≥ rkR(G) is
obvious. Margulis normal subgoup theorem shows that Γ is almost simple: Every normal
subgroup of Γ is finite and central, or co-finite. As a consequence, one can assume (replac-
ing Γ by a finite index subgroup), that (1) Γ embeds into Aut(X)0 or that (2) the action of
Γ on the cohomology of X is faithful. The super-rigidity theorem of Margulis shows that
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homomorphisms from Γ into Lie groups H are built from homomorphisms of G into H (see
[33,110] for precise statements). In case (1), this implies that Aut(X)0 contains a complex
Lie group of rank rkR(G); one can then use Lie theory to conclude that dim(X)≥ rkR(G).
In case (2), one concludes that the action of Γ on the cohomology of H∗(X ;Z) comes from
a linear representation of G into GL(H∗(X ;R)). But this linear representation preserves the
Hodge decomposition, the cup product, the Poincaré duality, etc, because it comes from
the original action of Γ by automorphisms. One can then put together Hodge theory (in
particular the Hodge index theorem) and the theory of linear representations of (almost)
simple Lie groups to get the estimate dim(X)≥ rkR(G)+1. (details are given in [33, 42],
and similar arguments are used in [65, 139]).

It would be nice to adapt such a proof for groups of birational transformations. One
way to do it is to consider the limit Z1(M) of Néron-Severi groups N1(M′) along all bi-
rational morphisms M′ → M (and more generally the limits Zq(M) of all Nq(M′), where
Nq(M′) denotes the space of codimension q cycles modulo numerical equivalence). The
intersection determines a multilinear pairing (see [25], Chapter 4): It provides a geomet-
ric structure on these spaces, with nice properties coming from Hodge index theorem and
Khovanskii-Teyssier inequalities. In dimension 2, this leads to the construction of the
rank one space H∞(X); in higher dimension, one expects phenomena of rank dim(M)−1.
These properties should provide rich constraints on the action of the group Bir(M) on
Z1(M), and prevent large rank lattices from acting properly on such spaces (some kind of
Mostow-Margulis rigidity for actions on those infinite dimensional spaces).

8.2.2. Birational transformations. Zimmer type problems are much harder to study
for groups of birational transformations or groups of automorphisms of non-complete vari-
eties, such as the affine space. Nevertheless, a new technique emerged recently in the study
of non-linear analogues of the Skolem-Mahler-Lech theorem. This classical statement says
that the indices n for which a linear recursive sequence un+k = a1un+k−1+ · · ·akun vanishes
form a finite union of arithmetic sequences in Z+. In other words, when one iterates a lin-
ear transformation B of Ak

C, the set of times n such that the orbit Bn(x0) of a point x0 is
contained in the hyperplane xk = 0 is a finite union of arithmetic progressions. As shown
by Bell and his co-authors, this statement remains true if one replaces B by a polynomial
automorphism f of Ak

C and the hyperplane by any algebraic subvariety of Ak
C (see [9, 10]

for more general statements). These results are based on the following p-adic phenomenon,
which we state only in its simpler version.

THEOREM 8.3 (Bell, Poonen, see [9, 120]). Let p be a prime number, with p ≥ 3. Let
f be a polynomial automorphism of the affine space An

Qp
which is defined by polynomial

formulas with coefficients in Zp. Assume that f coincides with the identity map when one
reduces all coefficients modulo p. Then, there exists a p-adic analytic action Φ : Zp ×
(Zp)

n → (Zp)
n of the abelian group (Zp,+) on the polydisk (Zp)

n ⊂ An(Qp) such that
Φ(m,x) = f m(x) for every m ∈ Z and every x in (Zp)

n.

Here, by p-adic analytic, we mean that Φ(t,x) is given by convergent power series in
the variables t and x = (x1, . . . ,xn) whose coefficients are in Zp. Thus, if f is the identity
map after reduction of its formulas modulo p, then the action of f on the polydisk (Zp)

n

is given by the flow, at time t = 1, of an analytic vector field. Theorem 8.3 is a tool to
replace a discrete group action (like Z, generated by f ) by the action of a continuous group
(like Zp, defined by Φ), at least locally in the p-adic topology. This result turns out to be
useful when, instead of a cyclic group Z, one studies a subgroup Γ ⊂ Aut(An

Qp
) whose

pro-p completion is small (for instance a p-adic Lie group).
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When Γ is a subgroup of Aut(An
C) which is generated by a finite number of elements

fi ∈ Γ, one can replace the field C by the field generated by the coefficients of the formulas
defining the fi; such a finitely generated fields embeds (in many ways) in p-adic fields
Qp. Thus, p-adic methods can be used to study groups of automorphisms and birational
transformations of complex algebraic varieties.

This argument turns out to be quite powerful, and leads to the following statement (see
[41]).

THEOREM 8.4. Let X be an irreducible complex projective variety. Let S < GLn be
an almost simple linear algebraic group over the field of rational numbers Q. Assume
that S(Z) is not co-compact. If a finite index subgroup of S(Z) embeds into Bir(X), then
dim(X)≥ rkR(S). If dim(X) = rkR(S)≥ 2, then S(R) is isogeneous to SLdim(X)+1(R).

In other words, Zimmer conjecture holds for birational actions of lattices which are not
co-compact. For instance, one can take S= SLn in this theorem. Unfortunately, co-compact
lattices are not handled by this theorem, and Conjecture 8.2 is still open for co-compact
lattices.

8.3. Residual finiteness. In the same spirit – comparing groups of rational transfor-
mations to groups of linear transformations – the most basic question that has not been
answered yet is the following one, which parodies Malcev’s and Selberg’s theorems.

QUESTION 8.5. Are finitely generated subgroups of Crn(k) residually finite ? Does
every finitely generated subgroup of Crn(k) contain a torsion free subgroup of finite index ?

Bass and Lubotzky obtained a positive answer to this question when Crn(k) is replaced
by the group of regular automorphisms of an algebraic variety, for instance by Aut(An

k) (see
[3]). The article [41] provides a positive answer for groups with Kazhdan property (T).

9. Growths

9.1. Degree growth. Consider a birational transformation f of a smooth projective
variety X , over a field k. Fix a polarization H of X , and defines the degree of f with respect
to H by

deg1
H( f ) = ( f ∗H) · (Hn−1),

where f ∗(H) is the total transform of H, U ·V is the intersection form, and n is the di-
mension of X . This degree controles the complexity of the operator f ∗ acting on algebraic
hypersurfaces of X . Similarly, for every co-dimension 1 ≤ k ≤ n, one defines a degree in
co-dimension k by

degk
H( f ) = ( f ∗Hk) · (Hn−k).

The degrees behave submultiplicatively: There is a constant A(X ,H) > 0, which depends
only on X and its polarization, such that

degk
H( f ◦g)≤ A(X ;H)degk

H( f )degk
H(g)

for every pair of birational transformations f ,g in Bir(X); moreover, up to a uniform mul-
tiplicative constant, degk

H(·) does not depend on H:

degk
H( f )≤ A′(X ,H,H ′)degk

H ′( f )

for all f in Bir(X). This has been proved by Dinh and Sibony for fields of characteristic 0,
and then by Truong in positive characteristic (see [66], [135], and also [115]).
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Thus, given a birational transformation f of a projective variety X , one gets dim(X)
sequences

m �→ degk
H( f m)

which, up to multiplicative constants, do not depend on H and are invariant under conju-
gacy.

QUESTION 9.1. What type of sequences do we get under this process ? In particular,
what can be said on the growth type of m �→ deg1

H( f m) ?

One can show that there are only countably many possible sequences of the form
(degk

H( f m))m≥0 (see [23, 137]). Moreover, the sequences (degk
H( f m)) are linked together:

For instance, the dynamical degrees

λk( f ) = limsup
m→+∞

(
degk

H( f m)
)1/m

determine a concave sequence k �→ log(λk( f )) and, in particular, one of the λk( f ), with
k > 0, is larger than 1 if and only if all of them are (see the survey [89]).

When X is a surface, there are only 4 possibilities for the sequence deg1
H( f m): It is

bounded, or it grows linearly or quadratically, or it grows exponentially fast. Moreover, the
first three cases have a geometric meaning (see Theorem 4.6). Nothing like that is known
in dimension ≥ 3. Does there exist a polynomial automorphism g of the affine space A

3
C

for which deg1
H(g

m) grows like exp(
√

m) ? Do the results of Lo Bianco in [104] hold for
birational transformations of P3

C ?

9.2. Divisibility and distorsion. Questions related to degree growths are connected
to algebraic properties of (subgroups of) Bir(X). An element f in a group G is distorted
if there is a subgroup Γ of G such that (1) Γ is generated by a finite subset S, (2) f is an
element of Γ, and (3) f m can be written as a word of length �(m) in the elements of S with
lim(�(m)/m) = 0. If a birational transformation f : X ��� X is distorted in Bir(X), then
λk( f ) = 1 for all 0 ≤ k ≤ dim(X). It would be great to classify, or at least to get geometric
constraints on distorted elements in Aut(An

C) and Bir(Pn
C).

One says that an element f of the group G is divisible, if for every m > 0 there is an
element gm in G such that (gm)

m = f . Can we classify divisible elements of Aut(A3
C) ?

9.3. Groups. Given a group Γ in Bir(X), one gets a degree function on Γ, namely

f ∈ Γ �→ deg( f ),

where, for simplicity, deg( f ) stands for deg1
H( f ). Assume that Γ is generated by a finite

symmetric set S, and denote by DΓ,S(m) the maximum of deg( f ) for f in the ball of radius
m in the Cayley graph of Γ:

DΓ,S(m) = max{deg( f ) | ∃l ≤ m,∃s1, . . . ,sl ∈ S, f = s1 ◦ s2 ◦ · · · ◦ sl}.

When Γ is the cyclic group generated by S = { f , f−1}, DΓ,S(m) is the maximum of deg( f l)

for l in between −m and m. Our former questions on the sequence (deg1
H( f m)) can now be

stated for the sequence (DΓ,S(m)). Again, there are only countably many such sequences,
and one would like to know their possible growth types.

This is related to the growth type of Γ, viewed as an abstract, finitely geneated group,
i.e. to the growth of the function

VolS : m �→ VolS(m) = Card{ f ∈ Γ | ∃l ≤ m,∃s1, . . . ,sl ∈ S, f = s1 ◦ s2 ◦ · · · ◦ sl}
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counting the number of elements of the ball of radius m in the Cayley graph of Γ (with re-
spect to S). If a group contains a non abelian free group, then VolS(m) grows exponentially
fast; if the growth is bounded by md for some d > 0, then Γ contains a finite index nilpotent
subgroup [87]; if Γ is solvable, the growth is either polyomial or exponential. In particular,
if G satisfies the Tits alternative, the growth of every finitely generated subgroup of G is
either polynomial or exponential. But there are many groups with intermediate growth, in
between polynomial and exponential (see [2, 53, 86] for instance).

QUESTION 9.2. Does Bir(Pn
C) contain finitely generated subgroups with intermediate

growth ?
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[80] Étienne Ghys, Actions de réseaux sur le cercle (French), Invent. Math. 137 (1999), no. 1, 199–231, DOI
10.1007/s002220050329. MR1703323

[81] Étienne Ghys and Vlad Sergiescu, Sur un groupe remarquable de difféomorphismes du cercle (French),
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[102] Stéphane Lamy, On the genus of birational maps between threefolds, Automorphisms in birational and
affine geometry, Springer Proc. Math. Stat., vol. 79, Springer, Cham, 2014, pp. 141–147, DOI 10.1007/978-
3-319-05681-4 8. MR3229349

[103] David I. Lieberman, Compactness of the Chow scheme: applications to automorphisms and deformations
of Kähler manifolds, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975), Lec-
ture Notes in Math., vol. 670, Springer, Berlin, 1978, pp. 140–186. MR521918

[104] Federico Lo Bianco, Bornes sur les degrés dynamiques d’automorphismes de variétés kählériennes de
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