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Hall algebras and Donaldson-Thomas invariants

Tom Bridgeland

ABSTRACT. This is a survey article about Hall algebras and their applications
to the study of motivic invariants of moduli spaces of coherent sheaves on
Calabi-Yau threefolds. The ideas presented here are mostly due to Joyce,
Kontsevich, Reineke, Soibelman and Toda.

1. Introduction

Our aim in this article is to give a brief introduction to Hall algebras, and
explain how they can be used to study motivic invariants of moduli spaces of
coherent sheaves on Calabi-Yau threefolds. In particular, we discuss generalized
Donaldson-Thomas (DT) invariants, and the Kontsevich-Soibelman wall-crossing
formula, which describes their behaviour under variations of stability parameters.
Many long and difficult papers have been written on these topics: here we focus on
the most basic aspects of the story, and give pointers to the literature.

We begin our introduction to Hall algebras in Section 2. In this introductory
section we will try to motivate the reader by discussing some of the more concrete
applications. The theory we shall describe applies quite generally to motivic invari-
ants of moduli spaces of sheaves on Calabi-Yau threefolds, but some of the most
striking results relate to curve-counting invariants, and for the sake of definiteness
we will focus on these.

1.1. Motivic invariants. Since the word motivic has rather intimidating con-
notations in general, let us make clear from the start that in this context it simply
refers to invariants of varieties which have the property that

X(X) =x(Y) +x(U),
whenever Y C X is a closed subvariety and U = X \ Y. A good example is the
Euler characteristic: if X is a variety over C we can define

e(X) =) (-1)'dim¢ H'(X™,C) € Z,
icZ
where the cohomology groups are the usual singular cohomology groups of X
equipped with the analytic topology.
Of crucial importance for the theory we shall describe is Behrend’s discovery
[2] of the motivic nature of DT invariants. If M is a fine projective moduli scheme
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parameterizing stable coherent sheaves on a Calabi-Yau threefold X, there is a
corresponding DT invariant [42]

DT(M):/ lez,

defined to be the degree of the virtual fundamental class of M. Behrend proved
that this invariant can also be computed as a weighted Euler characteristic

DT(M) = e(M;v) = Zne ) € Z,
neZ

where v: M — Z is a certain constructible function, depending only on the singu-
larities of the scheme M.

Surprisingly, it turns out that for most of the applications described below one
can equally well consider naive DT (or ‘Euler-Thomas’) invariants

DT"™"¢(M) = e(M) € Z,

and the reader unfamiliar with virtual fundamental classes and the Behrend func-
tion will not miss anything by restricting to this case. Nonetheless, the genuine
invariants are more important for several reasons: they are unchanged by deforma-
tions of X, they have subtle integrality properties, and they are directly relevant
to physics.

1.2. Example: Toda’s flop formula. Let X be a smooth projective Calabi-
Yau threefold over C. We always take this to include the condition that
H'(X,0x)=0.
Fix § € Ho(X,Z) and n € Z and consider the Hilbert scheme
. closed subschemes C C X of dim <1
Hilb(5,n) =

satisfying [C] = 8 and x(O¢) =n
This can be viewed as a fine moduli space for rank one torsion-free sheaves on
X by mapping C' C X to its ideal sheaf Zx (at the level of C-valued points this
identification is easy, see e.g. [8] Lemma 2.2], and for the motivic statements here
this suffices; the full scheme-theoretic isomorphism is covered in [33] Section 2]).
We can consider the corresponding naive DT invariants

DT"*"(8,n) = e(Hilb(8,n)) € Z,

Let us now consider two smooth projective Calabi-Yau threefolds X related

by a flop:
X4 X_
f\/ /
Y

It seems very natural to ask how the DT invariants are affected by this birational
transformation.

THEOREM 1 (Toda, [46]). The expression
3 (. DT™(8,m) 2Py
> (8.my: . ()0 DT(8,m) 2Py
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is the same on both sides of the flop, after making the natural identification
Hy(X,,Z) 2 Hy(X_,7Z)
induced by strict transform of divisors.
The result was extended to genuine DT invariants using a different argument
by Calabrese [9], and Toda’s argument now also applies to this case [43]. In the

case when the flopped curves have normal bundle O(—1)®?2 the result was proved
earlier by Hu and Li [16] using different techniques.

1.3. Example: the DT /PT correspondence. Pandharipande and Thomas
[33] introduced an ‘improved’ version of the moduli space Hilb(3,n) which elimi-
nates the problem of free-roaming points. A stable pair on X is a map
f: Ox - F
of coherent sheaves such that
(a) E is pure of dimension 1, (b) dim supp coker(f) = 0.

Fixing a class 8 € H2(X,Z) and n € Z as before, there is a fine moduli scheme
Pairs(f3,n) parameterizing stable pairs with ch(E) = (0,0,8,n). We can then
consider naive stable pair invariants

PT™V(3,n) = e(Pairs(3,n)) € Z.
Genuine stable pair invariants are obtained by weighting with the Behrend function
as before.

THEOREM 2 (Toda, [44]).

(i) For each § € Ho(X,Z) there is an identity

naive n Zn DTnaivc (67 n) y"
Z PT (/87 n)y = <z naive o
nez Zn20 DT (07 n)y

(ii) This formal power series is the Laurent expansion of a rational function

of y, invariant under y <>y~ '.

These results have since been shown to hold for genuine invariants [6l[43]. Part
(i) had previously been conjectured by Pandharipande and Thomas [33] Sect. 3];
part (ii) then becomes part of the famous MNOP conjectures [32, Conj. 2]. See
also [40] for a generalization of Theorem [2 to arbitrary threefolds.

1.4. General strategy. The basic method for proving the above results (and
many more like them) is taken from Reineke’s work on the cohomology groups
of moduli spaces of quiver representations [35]. One can thus view the whole
subject as a showcase for the way in which techniques pioneered in the world of
representations of quivers can solve important problems in algebraic geometry. The
strategy consists of three steps:

(a) Describe the relevant phenomenon in terms of wall-crossing: a change of
stability condition in an abelian or triangulated category C.

(b) Write down an appropriate identity in the Hall algebra of C.

(c) Apply a ring homomorphism Z: Hall(C) — C,[Ky(C)] to obtain the re-
quired identity of generating functions.

The first two steps are completely general, but the existence of the map Z
(known as the integration map) requires either

Licensed to AMS.
License or copyright may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



78 TOM BRIDGELAND

(i) C is hereditary: Exti (M, N) =0 fori>1, ‘
(ii) C satisfies the CY3 condition: Exts(M, N) = Extd (N, M)*.

Hall algebras and an example of a Hall algebra identity will be introduced
in Section 2. Integration maps are discussed in Section 3. The most basic wall-
crossing identity, resulting from the existence and uniqueness of Harder-Narasimhan
filtrations, will be discussed in Section 4. The application of the above general
strategy to Theorems [Il and 2] will be explained in Section 5.

1.5. Some history. It is worth noting the following pieces of pre-history
which provided essential ideas for the results described here.

(1) Computation of the Betti numbers of moduli spaces of semistable bundles
on curves using the Harder-Narasimhan stratification (Harder-Narasimhan
[14], Atiyah-Bott [1]).

(2) Wall-crossing behavior of moduli spaces with parameters, e.g. work of
Thaddeus [41] on moduli of stable pairs on curves.

(3) Use of derived categories and changes of t-structure to increase the flexi-
bility of wall-crossing techniques, e.g. threefold flops [4].

(4) Systematic use of Hall algebras: Reineke’s calculation of Betti numbers of
moduli spaces of representations of quivers [35].

(5) Behrend’s interpretation of Donaldson-Thomas invariants as weighted Eu-
ler characteristics [2].

The credit for the development of motivic Hall algebras as a tool for studying
moduli spaces of sheaves on Calabi-Yau threefolds is due jointly to Joyce and to
Kontsevich and Soibelman. Joyce introduced motivic Hall algebras in a long series
of papers [I7H22]. He used this framework to define generalizations of the naive
Donaldson-Thomas invariants considered above, which apply to moduli stacks con-
taining strictly semistable sheaves. He also worked out the wall-crossing formula
for these invariants and proved a very deep no-poles theorem. Kontsevich and
Soibelman [27] constructed an alternative theory which incorporates motivic van-
ishing cycles, and therefore applies to genuine DT invaraints and motivic versions
thereof. They also produced a more conceptual statement of the wall-crossing for-
mula. Some of their work was conjectural and is still being developed today. Joyce
and Song [24] later showed how to directly incorporate the Behrend function into
Joyce’s framework, and so obtain rigorous results on DT invariants.

Notes. There are quite a few survey articles on the topics covered here. For a
survey of curve-counting invariants we recommend [34]. Joyce [23] and Kontsevich-
Soibelman [28] produced surveys of their work in this area. Toda [45] also wrote a
survey of wall-crossing techniques in DT theory.

2. Hall algebras

The aim of this section is to introduce the idea of a Hall algebra in general, and
introduce the particular kind ‘motivic Hall algebras’ which will be important for
our applications to moduli spaces. As a warm-up we begin by discussing finitary
Hall algebras. From our point-of-view these are rather simplified models, but one
of the important features of this subject is that ‘back-of-the-envelope’ calculations
can be easily made in the finitary case before being generalized to the more realistic
motivic setting.
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2.1. Finitary Hall algebras. Suppose that A is an essentially small abelian
category satisfying the following strong finiteness conditions:

(i) Every object has only finitely many subobjects.
(i) All groups Ext’y(E, F) are finite.
Of course these conditions are never satisfied for categories of coherent sheaves
but there are nonetheless plenty of examples: let A be any finite dimensional algebra

over a finite field £k = F,, and take A = mod(A) to be the category of finite
dimensional left A-modules.

DEFINITION 2.1. The finitary Hall algebra of A is defined to be the set of all
complex-valued functions on isomorphism classes of A

Halltty {f (Obj(A) /=) — (C},
equipped with a convolution product coming from short exact sequences:
(fi* f2)(B) = Y _ fi(A)- fo(B/A).
ACB

This is an associative, but usually non-commutative, unital algebra. We also define
a subalgebra

(1) Hallgy (A) C Hallg, (A),
consisting of functions with finite support.

Before going further the reader should prove that the Hall product indeed gives
an associative multiplication, and that multiple products are given by the formula

(oo fu) (M) = > Fr(My /M) -+ fu(My /M, ).

0=MoCM;C---CMp,=M

Finally one should check that the the characteristic function §y of the zero object
is the multiplicative unit.

For each object E € A we consider an element 6z € Hallgy (A) which is the
characteristic function of the isomorphism class of F, and the closely related element

ke = |Aut(E)|- 0p € Hallgy (A).
The following Lemma was first proved by Riedtmann.
LEMMA 2.2. For any objects A,C € A we have an identity

|EXt CABl
A Re = Z THom(C, A)] P

where Ext*(C, A)p C Ext'(C, A) denotes the subset of extensions whose middle
term is isomorphic to B.

PrOOF. This is another very good exercise. See [38] Lemma 1.2]. O
One more piece of notation: we define an element 64 € Hallfﬁy(/l) by setting
dA(E)=1 forall Fe A
This should not be confused with the identity element 1 = §¢ € Hallféy (A).
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2.2. Example: category of vector spaces. Let A = Vecty, be the category
of finite dimensional vector spaces over F,. Let

5, € Hallgy (A)

denote the characteristic function of vector spaces of dimension n. The definition
immediately gives

On % 0m = | Grpntm (Fg)| - Ontm-
The number of F,-valued points of the Grassmannian appearing here is easily com-
puted: it is the g-binomial coefficient

(anrm_l)_“(qurl_l)i n+m
(¢"—1)---(¢g—1) _< n >q'

It then follows that there is an isomorphism of algebras

| Grnﬂt+m (Fq) | =

qn/2 g
(" =1)--(¢g=1)
where the factor ¢™/2 is inserted for later convenience. This is in fact a first ex-
ample of an integration map: in this special case it is an isomorphism, because
the isomorphism class of an object of A is completely determined by its numerical

invariant n € Zx¢.
The isomorphism Z maps the element 6 4 = Zn>0 6n to the series

n/2.
q x
Eq(z) = Z
Sl =1)--(g—1)
This series is known as the quantum dilogarithm [1T1[251[26], because if we view ¢
as a variable, then
1 T
logE, () = —— - —
(") (¢—1) n%:l n?

as ¢ — 17. This identity will be very important later: it gives rise to the multiple
cover formula in Donaldson-Thomas theory.

T: Hallfty(/l) — C[CCL I((Sn) =

n

e Cll«]].

n

+0(1),

2.3. Quotient identity. The beauty of the Hall algebra construction is the
way that it allows one to turn categorical statements into algebraic identities. As
we shall see in Sections[. 4 and [L.5] (which can also be read now), this is the basis for
the Kontsevich-Soibelman wall-crossing formula. Here we give a different example,
which is the basis of our approach to Theorems [I] and

Let A be an abelian category satisfying the finiteness assumptions as above,
and let us also fix an object P € A. Introduce elements

§h € Hall{, (A), Quot’ € Hallg, (A),
by defining, for any object F € A,
64(E) = |Homu(P, E)|, Quot(E)=|Hom} (P, E)|,

where Hom (P, E) C Hom 4 (P, E) is the subset of surjective maps. The following
is a variant of [10, Lemma 5.1].

LEMMA 2.3. There is an identity
65 = Quot!y x 54
in the Hall algebra Hallg, (A).
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PRrROOF. Evaluating on an object E € A gives

|Hom(P, E)| = > |Hom; (P, A)| -1,
ACE

which holds because every map f: P — FE factors uniquely via its image. ([l

It is a fun exercise to apply this result in the case when A = Vecty and P = k9,
to obtain an identity involving the quantum dilogarithm E,(x).

2.4. Hall algebras in general. A given abelian category A may have many
different flavours of Hall algebra associated to it: finitary Hall algebras, Hall alge-
bras of constructible functions, motivic Hall algebras, cohomological Hall algebras,
etc. In this section we shall make some general (and intentionally vague) remarks
relevant to any of these: our point-of-view is that the different types of Hall algebra
should be thought of as different ways to take the ‘cohomology’ of the moduli stack
of objects of A.

For definiteness we take A to be the category of coherent sheaves on a smooth
projective variety X. Consider the stack M of objects of A, and the stack M®) of
short exact sequences in A. There is a diagram of morphisms of stacks

(2) MxM &9 pm@ by
where the morphisms a, b, ¢ take a short exact sequence in A to its constituent

objects, as in the following diagram.

0—+-A—B—-C—=0

(4,0) B

It is fairly easy to see that the morphism (q, ¢) is of finite type, but not representable,
whereas b is representable but only locally of finite type. Moreover

(i) The fibre of (a,c) over (4,C) € M x M is the quotient stack
[Ext (C, A)/ Homx (C, A)].
(ii) The fibre of b over B € M is the Quot scheme Quotx (B).

The idea now is to apply a suitable ‘cohomology theory’ to our stacks and use
the correspondence (2]) to obtain a product operation

m: H* (M) @ H* (M) —s H*(M).

The crucial associativity property follows from the existence of certain Cartesian
squares involving stacks of two-step filtrations. See [7, Section 4] for an explanation
of this.

By a ‘cohomology theory’ here, we simply mean a rule that assigns a vector
space to each stack in such a way that

(a) For every morphism of stacks f: X — Y, there should exist functorial
maps
o HY(Y)—> H(X), f«:H(X)— H(Y),
when f is of finite type or representable respectively, and satisfying base-
change around all suitable 2-Cartesian squares.
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(b) Given two stacks X and Y, there should exist functorial Kiinneth maps
H (X)® H(Y) - H*(X xY).

We shall see examples of such ‘cohomology theories’ below. Note that the
maps in the diagram (2]) will not usually be smooth, which makes applying familiar
cohomology theories such as singular cohomology problematic. It seems likely that
hidden smoothness results in derived algebraic geometry will be important in future
developments.

2.5. Grothendieck groups. The Grothendieck group K (Var/C) is defined
to be the free abelian group on the set of isomorphism classes of complex varieties,
modulo the scissor relations

[(X]~ Y]+ U],

whenever Y C X is a closed subvariety and U = X \ Y. Cartesian product of
varieties gives K (Var /C) the structure of a commutative ring:

(X]-[Y] = [X x VY]

One can of course define Grothendieck rings of complex schemes in the same
way. However if one allows arbitrary schemes over C, an Eilenberg swindle argument
using the decomposition

Z x Spec(C) = (Z x Spec(C)) |_|Spec(C

will force the ring to be trivial. On the other hand, if one restricts to schemes of
finite type over C, the result will be isomorphic to K(Var /C), because any such
scheme has a stratification by varieties.

One can similarly consider relative Grothendieck groups of schemes. Thus given
a base scheme S over C we define K (Var /S) to be the free abelian group on the
set of isomorphism classes of S-schemes f: X — S, where X is assumed to be of
finite type over C, modulo relations

X Ls~ vy L g4 oL 9,

for Y € X a closed subscheme and U = X \ Y. Fibre product over S gives a
ring structure as before. Given a map of schemes ¢: S — T there is a group
homomorphism

¢ K(Var /S) — K(Var /T), [f: X = S]—[pof: X =T
If the map ¢ is of finite type we also get a ring homomorphism
¢*: K(Var /T) — K(Var /S), [¢g:Y =>T|—[gxrS:Y xp S — 5]
There is an obvious Kiinneth type map
[f: X =8¢ Y >T)—[fxg: X xY = SxT].

Together these maps satisfy the basic properties of a ‘cohomology theory’ referred
to in Section [2.4] (although ‘homology theory’ would perhaps be a more appropriate
term in this context).
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2.6. Motivic Hall algebra. The motivic Hall algebra is defined by taking
the ‘cohomology theory’ which assigns to a stack S the relative Grothendieck ring
of stacks over S. From now on, all stacks will be assumed to locally of finite type
over C with affine diagonal.

Given a stack S we define the relative Grothendieck group K (St /S) to be the
free abelian group on the set of isomorphism classes of S-stacks f: X — S, where
X is assumed to be of finite type over C, modulo relations

X L s~y s v L g,
for Y C X a closed substack and U = X \ Y. These relative Grothendieck groups
have functorial properties exactly as in the last section.
The motivic Hall algebra is defined to be the relative Grothendieck group

Hall,ot (A) := K(St /M),
with product defined by the correspondence (). Explicitly we have

[Yl f1 M] % [}/2 f2 M] _ [Z boh M]’

where h is defined by the Cartesian square

AL V¢ Ry V'

(3) l l(w)

Yl X Y2 M) M x M
Thus, to a first approximation, an element of the Hall algebra is a family of objects
of A over some base stack Y, and the Hall product of two such families is given by
taking their universal extension.

One remaining problem is how to define a larger Hall algebra Hall) , (A) anal-
ogous to the algebra Hallf/t\y(A) in the finitary case. This is important because one
would like to consider stacks f: & — M which are not of finite type, such as the
open substack of semistable objects with respect to some stability condition. As
explained above, we cannot simply drop the finite type condition since this will lead
to the trivial algebra.

The usual solution is rather messy and context-dependent (see e.g. [6l, Sections
5.2-5.3]) , and we do not explain it here: the basic idea is to consider the decompo-
sition M = | |, M, according to Chern character, and impose the condition that
each f~1(M,) is of finite type, together with restrictions on which of the f~1(M,)
are allowed to be non-empty.

2.7. Motivic quotient identity. We now give a rough example of a motivic
Hall algebra identity, and explain the sort of reasoning that is required to prove
it. We take A = Coh(X) to be the category of coherent sheaves on a complex
projective variety X, and look for a version of the identity of Lemma [Z3] in the
case that P = Ox.

Introduce a stack M© parameterizing sheaves E € Coh(X) equipped with a
section Ox — E. Note that the Hilbert scheme is an open substack

Hilb ¢ M€

corresponding to surjective sections. The analogue of the element 67 is the obvious
morphism f: M® — M forgetting the section. The analogue of Quot” is the
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induced map f: Hilb — M. Finally, the analogue of the element 1 4 is the identity
map M — M.

The following result should be taken with a pinch of salt. In particular, we
work in an unspecified completion Hall’) , (A). Rigorous results of a similar kind
can be found in [6] Section 6].

THEOREM 3. There is an identity
MO L M) = [Hilb L5 M)« (M 2 M,

in some suitable completion Hall)) , (A).

Sketch proof. The product on the RHS is defined by the Cartesian square

T s M@ LM

| Jies

Hilb x M 290 A M

The points of the stack 7 over a scheme S are therefore diagrams

OSXX

l s
¥
y

0—>AT>B7>C—>O

of S-flat sheaves on S x X, with ~ surjective. Sending such a diagram to the map
¢ defines a morphism of stacks

¢: T = M°

commuting with the required maps to M. This map ¢ is not an isomorphism
of stacks, but it does induce an equivalence on C-valued points, because if S =
Spec(C), every map § factors uniquely via its image: this is the same argument we
used in the finitary case. It follows from this that we can stratify the stack M© by
locally-closed substacks such that ¢ is an isomorphism over each piece. This then
gives the required identity

T - M) = [MC L M|

in the Grothendieck group K (St /M). O

Notes. The Hall product seems to have been first discovered by Steinitz [39]
in 1901 and rediscovered by P. Hall [12] in 1959. In both cases the category A was
the category of finite abelian p-groups. The next step was taken by Ringel [36]
who constructed positive parts of quantized enveloping algebras of simple Lie al-
gebras, using Hall algebras of categories of quiver representations over finite fields.
Lusztig [30L3T1] used Hall algebras of constructible functions in characteristic zero
to prove his famous results on canonical bases of quantized enveloping algebras.
Schiffmann’s lecture notes [371[38] cover these developments and much more. Mo-
tivic Hall algebras as described above were first introduced by Joyce [T9120122], see
also Toén [47, Section 3.3.3], and featured prominently in the work of Kontsevich
and Soibelman [27]. The survey article [7] covers the basics of this theory.
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3. Integration map

We have seen in the last section an example of how a basic categorical truth can
be translated into an algebraic identity in the Hall algebra, and we will see other
important examples below. These identities, while rather aesthetically pleasing,
are not usually particularly useful in and of themselves, because the motivic Hall
algebra is such a huge and mysterious ring. What makes the theory powerful and
applicable is the existence, in certain cases, of ring homomorphisms from the Hall
algebra to much more concrete skew-polynomial rings. These homomorphisms go
under the name of ‘integration maps’, since they involve integrating a cohomology
class over the moduli space.

3.1. The virtual Poincaré invariant. We start by stating the basic prop-
erties of the virtual Poincaré invariant constructed by Joyce [21] Sections 4.1-4.2].
This is an algebra homomorphism

xe: K(St/C) — Q(1),
uniquely defined by the following two properties:
(i) If V is a smooth, projective variety then

xe(V) =Y dime H/(V*™,C) - (1) € Z[t].
(ii) If V is a variety with an action of GL(n) then
xe([V/ GL(n)]) = x¢(V)/x:(GL(n)).

The existence of a virtual Poincaré polynomial for finite-type schemes over C
follows from the existence of Deligne’s mixed Hodge structure on the cohomology
groups (see for example [I5]). A different proof relying on weak factorization can
be given using the presentation of the Grothendieck group due to Bittner [3]. The
extension to stacks follows from Kresch’s result [29] that any finite type stack over
C with affine stabilizers has a stratification by global quotient stacks [V/ GL(n)].

REMARKS 3.1.
(a) If V is a variety then

}eri xt(V)=e(V) €Z,
but when V' is a stack this limit need not exist, since
Xe(GL(n)) = "= . (2 = 1) (t* = 1) --- (2" — 1).

Often in the theory we shall describe one can construct invariants which
are rational functions in ¢. It is then an important and subtle question
to determine the behaviour of these invariants as t — 1. This relates to
the question of whether the corresponding elements of the motivic Hall
algebra can be represented by varieties rather than stacks.

(b) If a variety V is defined over Z, and is cellular in the sense that it has a
stratification by affine spaces, then

|V(Fq)| = Xt(V)\t:\/a,

just because both sides are motivic and agree on A*. In fact this equality
holds whenever |V (F,)| is a polynomial in ¢ [15], Appendix]. Thus, setting
g = t%, one can expect to compare point counts over F, in the finitary
world with Poincaré invariants in the motivic world.
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3.2. Grothendieck group and charge lattice. Let A be an abelian cate-
gory. From now on we shall assume that A is linear over a field k, and Ext-finite,
in the sense that for all objects A, B € A

dim; @) Ext/y (A, B) < oc.
i€Z
The most important invariant of such a category is the Euler form
X(—, —): Ko(.A) X Ko(.A) — Z7
defined by the alternating sum
X(E,F) =Y (~1)" dim; Ext’(E, F).
i€Z
It is often convenient to fix a group homomorphism

ch: K()(.A) — N

to a free abelian group N of finite rank. We refer to N as the charge lattice, and ch
as the character map. We shall always assume that this data satisfies the following
two properties:

(i) The Euler form descends to a bilinear form x(—,—): N x N — Z.
(ii) The character ch(E) is locally constant in families.

Note that there is then a decomposition
M= | | M,
aeN
into open and closed substacks, and this induces a grading
Hallmor (A) = @D K (St /M,).
aEN
EXAMPLES 3.2.
(a) When A = Rep(Q) is the category of finite-dimensional representations
of a quiver @), we can take the dimension vector
d: Ko(A) — 2.
(b) If X is a smooth complex projective variety we can take
ch: Ko(A) - N =im(ch) C H"(X,Q),
to be the Chern character. The Riemann-Roch theorem shows that the

Euler form descends to V.

3.3. Quantum torus. Given a lattice N = Z®" equipped with an integral
bilinear form (—, —), we define a non-commutative algebra over the field C(¢) by
the rule

Ci[N] = GB C(t) -z, 2% s g =t~ L gt
aeEN
This ring is called the quantum torus algebra for the form (—,—). It is a non-
commutative deformation of the group ring C[N], which can be identified with the
co-ordinate ring of the algebraic torus

T = Homg(N,C*) = (C*)™.
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Choosing a basis (e1, - ,e,) for the group N gives an identification
C[N] = Cl[zi?, -,z

rYn

The basis elements (eq,--- ,e,) span a positive cone N; C N, and we often need
the associated completion

ClNy ]l = Cllarn, - ).

We define the completed quantum torus algebra C,[[N4]] in the same way.

3.4. Integration map: hereditary case. The existence of integration maps
is completely elementary when the category A is hereditary, that is when

Extly(M,N) =0, i> 1.

We first consider the case of finitary Hall algebras, and hence assume that A satisfies
the finiteness conditions of Section 2.1l The following result was first proved by
Reineke [35] Lemma 6.1] in the case of representations of quivers.

LEMMA 3.3. When A is hereditary there is an algebra homomorphism
f(E) h(E
7: Hallg — C¢[N]|= T 75—.0()
a tty(A) t[ ]|t7\/a’ (f) = | ﬁut(E)\ xz )

whose codomain is the quantum torus for the form 2x(—, —), specialised att = \/q.

PROOF. Recall the elements kg = | Aut(E)| - g, and the identity

|EXt CAB|
A X RC = Z|H0mC’A| B

of Lemma Since Z(kg) = ™) the result follows immediately from the

identity

(4) dimy Ext'(C, A) — dimy, Hom(C, A) = —x(C, A),

which is implied by the hereditary assumption. 0
Similar results hold in the motivic case. For example Joyce proved [19] The-

orem 6.1] that when 4 = Rep(Q) is the category of representations of a quiver
without relations, or when A = Coh(X) with X a curve, there is an algebra map

T: Hallpoi(A) = Co[N],  Z([S = Ma]) = x¢(S) - 22,

to the quantum torus algebra for the form 2x(—, —). The basic reason is as for the
previous result: the identity () implies that the fibres of the map (a,c): M®) —
M x M in the crucial diagram (@) have Poincaré invariant ¢t~2X(7) over points in
the substack M, x M,,.

REMARK 3.4. In the hereditary case it is often more convenient to skew-
symmetrise the Euler form by writing

<C¥,ﬁ> = X(av 5) - X(ﬁv Oé).
Twisting the integration map by defining

Z(f) = X(E,E) _f(E) . .ch(E)
() %t Auwt(E)] "
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then gives a ring homomorphism to the quantum torus algebra defined by the form
(—,=). In the finitary case, when A = Vecty, is the category of vector spaces, the
resulting map coincides with that of Section

3.5. Integration map: CYj3 case. Suppose that A = Coh(X) is the cate-
gory of coherent sheaves on a complex projective Calabi-Yau threefold. Note that
the Euler form is skew-symmetric in this case. Kontsevich and Soibelman [27] Sec-
tion 6] construct an algebra map

(5) Z: Hallpot(A) = Ci[N],

whose target is the quantum torus for the Euler form. In fact, much more generally,
Kontsevich and Soibelman define an integration map whose target is a version of
the quantum torus based on a ring of motives, but we shall completely ignore such
generalizations here. The definition of this map involves motivic vanishing cycles,
which are beyond the author’s competence to explain. There are also some technical
problems, for example the existence of orientation data [27, Section 5].

Joyce developed a less ambitious but completely rigorous framework which is
sufficient for applications to classical DT invariants. This was repackaged in [7]
in terms of a morphism of Poisson algebras, which can be thought of as the semi-
classical limit of Kontsevich and Soibelman’s map. In fact, there are two versions
of the story, depending on a choice of sign € € {£1}. The sign +1 leads to naive
DT invariants, whereas —1 gives genuine DT invariants.

We first introduce the semi-classical limit of the algebra C;[N] at ¢ = e: this is
a commutative Poisson algebra

CIN]=EPC 2"

with product and bracket given by

z% 27 = lim (:1:0‘ * x”) = (@) | poty

3
t—e

{z% 27} = lim

(m“*x"*—x”*xo‘
t—e

) e
The next step is to introduce a similar semi-classical limit of the motivic Hall

algebra [7), Section 5]. One first defines a subalgebra of ‘regular’ elements

(6) Hall,g (A) C Hallyot(A).

To a first approximation it is the subspace spanned by the symbols [X — M] in
which X is a scheme, rather than a stack. The limit as ¢t — € can then be taken
exactly as above to give a commutative Poisson algebra called the semi-classical
Hall algebra Hally.(A).
One can now define a morphism of Poisson algebras
(7) I.: Hallg.(A) — C.[N4]
by the formula
S) - x® if e =+1
(1S L M,)) = e(9) - @ te=+L
e(S; f*(v)) -z ife=—1,

where v: M — Z is the Behrend function appearing in the definition of DT invari-
ants.
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When € = 1, the fact that Z, is a Poisson map just requires the identity
X(4,C) = (dimc Ext}y(C, A) — dime Hom4(C, A))

—(dimg¢ Ext}; (4, C) — dimg Hom4 (4, ©)),
which follows from the CY3 assumption. In the case ¢ = —1, one also needs some
identities involving the Behrend function proved by Joyce and Song [24, Theorem
5.11].

Notes. The first occurrence of an integration map is perhaps in Reineke’s
paper [35]. This was generalised to the setting of motivic Hall algebras by Joyce
[19] Section 6]. Joyce also constructed an integration map in the CY3 case that
is a map of Lie algebras. It was Kontsevich and Soibelman’s remarkable insight
[27] that incorporating vanishing cycles could lead to an integration map which
is a homomorphism of algebras. Following this, Joyce and Song [24] were able to
incorporate the Behrend function into Joyce’s Lie algebra map. The interpretation
in terms of semi-classical limits and Poisson algebras can be found in [7].

4. Generalized DT invariants

One of the most important aspects of the work of Joyce, and of Kontsevich
and Soibelman, is the generalization of Donaldson-Thomas invariants associated
to moduli spaces of stable sheaves developed in [42] to the case when there exist
strictly semistable objects. The resulting invariants satisfy a wall-crossing formula
which controls their behaviour under change of stability condition. Here we give a
brief outline of these constructions and explain the simplest examples.

4.1. The problem. Let X be a smooth projective Calabi-Yau threefold, and
set A = Coh(X). Fix a polarization of X and a class & € N, and consider the stack

M?**(a) = {E € Coh(X) : E is Gieseker semistable with ch(E) = a}.
We also consider the unions of these stacks given by sheaves of a fixed slope
M?®*(u) = {E € Coh(X) : E is Gieseker semistable of slope u(E) = p}.

Note that we consider the zero object to be semistable of all slopes p.
In the case when « is primitive, and the polarization is general, the stack
M () is a C*-gerbe over its coarse moduli space M**(«), and we can set

DT (q) = e(M*(a)) € Z.

Genuine DT invariants, as defined by Thomas [42], are defined using virtual cycles,
or by a weighted Euler characteristic as before. The problem is then to generalize
these invariants to arbitrary classes @ € N. It turns out that even if one is only
interested in the invariants DT(«a) for primitive «, to understand the behaviour
of these invariants as the polarization ¢ is varied, one in fact needs to treat all «
simultaneously.

For a general class a € N, the moduli stack M*%(a) at least has a well-defined
Poincaré function _

DT () = x, (M*(a)) € Q(t),

which we can view as a kind of naive quantum DT invariant. When « is primitive,
the fact that M™(«) is a C*-gerbe over the coarse moduli space M** (), together
with Remark B1l(a), implies that

DTnaive(a) — }IH% (t2 _ 1) ,q_DTnaive(a) c7Z.
—
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In general however, q-DT™"®(a) has higher-order poles at t = 1, so it is not
immediately clear how to define DT"V*(«).

4.2. The solutions. Joyce [22] worked out how to define invariants
DTnaive (a) c @

for arbitrary classes o € N, and showed that they satisfy a wall-crossing formula as
the polarization is varied. Incorporating the Behrend function into Joyce’s frame-
work leads to generalized DT invariants DT («) € Q also satisfying a wall-crossing
formula [24]. These results rely on a very deep result [20, Theorem 8.7] known as
the no-poles theorem, which implies that the element

(€] log (M () € M]) € Hall,),,(A).

obtained by applying the Taylor expansion of log(1l + z), lies in the subalgebra
Hall3, (A) C Hall)),;(A) discussed above. (Recall that M () includes a compo-

nent corresponding to the zero object). Applying the Poisson integration map (7))
to this element then leads to a generating function

DT, = ;E(q —1)-log ¢-DT,, € C[[N4]]

whose coefficients are the required invariants.
In a different approach, Kontsevich and Soibelman [27] use motivic vanishing
cycles to define genuine quantum DT invariants, which are again rational functions

¢-DT(a) € Q(?).

In fact they do much more: they define motivic invariants lying in the ring K (St /C),
but we shall suppress this extra level of complexity here. Note however that these
results rely on the currently unproven existence of orientation data. In terms of the
map (B, one first considers

q-DT,, = Z([M**(n) € M]) € C,[[N4]],

and sets g-DT(«) to be the coefficient of . Kontsevich and Soibelman [27], Section
7] also formulated a conjecture, closely related to Joyce’s no-poles theorem, which
states that

DT, = (t* — 1) -log ¢-DT,, € C;[[N4]]
should be regular at t = 1. Assuming this, one can recover Joyce’s invariants by
setting t = 1.
Conjugation by the quantum DT generating function give rise to an automor-
phism of the quantum torus algebra

q—S# = Adq—DT(u)(_) S Aut (Ct[[N+H

The no-poles conjecture implies that this automorphism has a well-defined limit at
t = 1 which is the Poisson automorphism

Sy =exp{DT,, -} € Aut C[[N_]].

Geometrically, this can be thought of as the action of the time 1 flow of the Hamil-
tonian vector field generated by the DT generating function DT,.
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4.3. Example: a single spherical bundle. Suppose we are in the simplest
possible situation when there is a unique stable bundle E of slope u, which is
moreover rigid, i.e. satisfies Ext’ (S, S) = 0. Serre duality implies that S is in fact
spherical. The category of semistable sheaves of slope pu is then equivalent to the
category of finite-dimensional vector spaces, so

M () = {E®" :n > 0} = | | BGL(n,C).
n=0
The Kontsevich-Soibelman integration map for this category is closely related to

the ring homomorphism I considered in Section Setting o = ch(E) € N we
can compute

(a) The quantum DT generating function is

qn/2 . pnoe
q_DT;L = Z (qn — 1) . (q — 1) € C(]HN-FHa

n>0

where ¢ = t2. We recognise the quantum dilogarithm E,(z%).
(b) The classical DT generating function is

e ) o e
DT, = lim(* ~ 1) - log B, (2%) = > —
n>1
and we conclude that DT (na) = 1/n?.
(c) The Poisson automorphism S, € Aut C[[N,]] is
x"L(X
(5) 5u(0%) e { 5000 - e = o (0o,
n=1
The right-hand side of this identity (8) should be expanded as a power series
to give an element of C[[N.]]. However we can also view S, as defining a birational
automorphism of the Poisson torus T. Viewed this way, it is the basic example of
a cluster transformation.

4.4. Stability conditions. We shall now move on to discussing the behaviour
of DT invariants under changes of stability parameters. Although the results apply
perfectly well to the context of Gieseker stability, the picture is perhaps clearer for
stability conditions in the sense of [5] which we now review. We fix an abelian
category A throughout.

DEFINITION 4.1. A stability condition on A is a map of groups Z: Ky(A) — C
such that
0£FeA = Z(E)eH,
where H = HUR_ is the semi-closed upper half-plane.

The phase of a nonzero object E € A is
1
¢(E) = ; argZ(E) € (07 1]3
A nonzero object F € A is said to be Z-semistable if
0#ACE = ¢(A) <o(E).

We let P(¢) C A be the full additive subcategory of A consisting of the nonzero
Z-semistable objects of phase ¢, together with the zero objects.

Licensed to AMS.
License or copyright may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



92 TOM BRIDGELAND

Z(E)

FIGURE 1. Central charges and phases

We say that a stability condition Z has the Harder-Narasimhan property if
every object E € A has a filtration
O=FyCF,C---CE,CFE

such that each factor F; = E;/F,;_; is nonzero and Z-semistable and

O(F1) > - > d(Fn).

Existence of such filtrations is a fairly weak condition: for example if A is of fi-
nite length (Artinian and Noetherian) it is automatic. When they exist, Harder-
Narasimhan filtrations are necessarily unique, because the usual argument shows
that if Fy, Fy are Z-semistable then

qb(Fl) > ¢(F2) - HOHlA(Fl,FQ) =0,
and another standard argument then gives uniqueness.
4.5. Wall-crossing identity. Let us consider the wall-crossing formula in
the finitary context. So assume that A4 is an abelian category satisfying the strong

finiteness conditions of Section 2.1l Let us also equip A with a stability condition
Z having the Harder-Narasimhan property. Let

5°(¢) € Hallf) (A)

be the characteristic function of the subcategory P(¢) C .A. We define the element
04 € Hallf?y(.A) as in Section 271l The following crucial result was first proved by
Reineke [35].

LEMMA 4.2. There is an identity

N
sa= 10"
(A
in the Hall algebra Halltﬁy(A), where the product is taken in descending order of
phase.

PROOF. To make sense of the infinite product, we first write §*(¢) = 1 +
0%(¢p) 4+ where 6%(¢) is the characteristic function of the set of nonzero semistable
objects of phase ¢. Then we can rewrite the infinite product as an infinite sum

[0 = [[a+6T@)=1+>" > 65(d1) - %7 (¢n).
PER ¢€ER k21 ¢1>>¢p

Using the formula () for multiple products in the Hall algebra, it is clear that
evaluating the right-hand side on any object M € A produces a sum over the finitely
many filtrations of M, each taken with coefficient 0 or 1. Moreover, a filtration
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has coefficient 1 precisely if its factors are Z-semistable with descending phase.
The identity thus follows from existence and uniqueness of Harder-Narasimhan
filtrations. (]

The left-hand side of the identity of Lemma is independent of the stability
condition Z. Thus given two stability conditions on A we get a wall-crossing formula

(9) [156. 20) = [ 6%(6. 22).
PER PER

If A is moreover hereditary we can then apply the integration map of Lemma [3.3]
to get an identity in the corresponding completed quantum torus algebra C,[[N]].
Considering the automorphisms of C;[[N]] given by conjugation of the two sides
of @), and taking the limit as ¢ — 1, we also obtain an identity in the group of
automorphisms of the Poisson algebra C[[N*]]. We will work through the simplest
non-trivial example of this in the next subsection.

4.6. Example: the A; quiver. Let Q be the Ay quiver: it has two vertices
1 and 2, and a single arrow from 1 to 2. Let A be the abelian category of finite-
dimensional representations of @) over the field £ = F,. This category has exactly
three indecomposable representations, which fit into a short exact sequence

0—SS —F—8S —0.

Here S; and S5 are the simple representations at the vertices 1 and 2 respectively,
and F is the unique indecomposable representation of dimension vector (1,1). We
have N = Ko(A) = Z%? = Z[S1] ® Z[S2]. As in Remark 4] we consider the
skew-symmetrised Euler form
<(m1, nl), (mg, n2)> = MmMaoNn1 — Miny.

The corresponding quantum torus algebra is

Ci[[Ny]] = Cl{xy, x2)) /(o % o1 — 12 - 21 % 3),
and its semi-classical limit at ¢ = 1 is the Poisson algebra

Cl[N4]] =Cllz1, z2]], {z1, 22} =21 - 22.

A stability condition on A is determined by the pair (Z(S1), Z(S2)), so the space
of all such stability conditions is Stab(A) = H?. There is a single wall

W= {Z S Stab(A) : Im Z(SQ)/Z(Sl) € R>O},
where the object E is strictly semistable. The complement of this wall consists of

two chambers: in one F is strictly stable, in the other it is unstable.
The wall-crossing formula in C;[[N]] becomes the identity

Eqg(22) * Eq(x1) = Eq(z1) * Eg(t - 21 % x2) * Eg(x2),

where ¢ = t? as usual. This is known as the pentagon identity for the quantum
dilogarithm: see [26] Section 1] for references. The semi-classical version of the
wall-crossing formula is the cluster identity

Cio,1)°Cr0) = Cr1,0 ©Cany © Croy.-
Co: 2P = 2P - (1 +2%) P e Aut C[[zy, 22]].

It can be viewed in the group of birational automorphisms of (C*)? which preserve
the invariant symplectic form.
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w
Z(E) 2 Z(E)

1
!

Z(S2) \ ; Z(S1) Z(S1) Z(S2)

FE unstable F stable

FIGURE 2. Wall-crossing for the Ay quiver.

Notes. The crucial observation that the existence and uniqueness of Harder-
Narasimhan filtrations leads to an identity in the Hall algebra is due to Reineke [35].
This idea was taken up by Joyce to give a wall-crossing formula for naive Donaldson-
Thomas invariants [22, Theorem 6.28]. Joyce’s formula is combinatorially messy,
although perfectly usable [44][46]. It was Kontsevich and Soibelman [27] who
uncovered the connection with cluster transformations. We recommend Keller’s
article [26] for more on the wall-crossing formula in the context of representations
of quivers.

5. Framed invariants and tilting

It often happens that the invariants in which one is interested relate to objects
of an abelian category equipped with some kind of framing. For example, the
Hilbert scheme parameterizes sheaves E € Coh(X) equipped with a surjective map

fZOX—»E.

One immediate advantage is that the framing data eliminates all stabilizer groups,
so the moduli space is a scheme, and therefore has a well-defined Euler character-
istic. On the other hand it is less obvious how to consider wall-crossing in this
framework: what is the stability condition which we should vary? In fact wall-
crossing can often be achieved in this context by varying the t-structure on the
derived category D’ Coh(X). This has the effect of varying which maps f are
considered to be surjective.

5.1. T-structures and hearts. We recall the definition of a bounded t-
structure. Let D be a triangulated category.

DEFINITION 5.1. A heart A C D is a full subcategory such that:
(a) Hom(A[j], B[k]) =0 for all A,B € Aand j > k.
(b) for every object E € D there is a finite filtration

0=F,—-Fp4y1 - —E, 1 —>E,=FE
with factors F; = Cone(E,;_1 — E;) € A[—j].
In condition (b) the word filtration really means a finite sequence of triangles
o:Fp,1——F,—-—F, .——F,-F

X X
AN AN
AN N
N\ N

Fr, Fy,
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D

All] A A[-1]

F1GURE 3. The ‘film-strip’ picture of a t-structure.

At

A

FIGURE 4. Tilting a heart A C D at a torsion pair (7,F) C A.

with F; € A[—j].

It would be more standard to say that A C D is the heart of a bounded t-
structure on D. But any such t-structure is determined by its heart. The basic
example is A C DY(A). In analogy with that case we define

HY\(E) = Fj[j] € A.

It follows from the above definition that A is in fact an abelian category. The short
exact sequences in A are precisely the triangles in D all of whose terms lie in A.
Finally, the inclusion functor gives a canonical identification Ko (A) = Ko (D).

5.2. Tilting at torsion pairs. We now explain how to tilt a heart at a torsion
pair [I3]. This is an important method for obtaining new t-structures from old.

DEFINITION 5.2. Let A be an abelian category. A torsion pair (7,F) C Ais a
pair of full subcategories such that:

(a) Homy(T,F)=0for T € T and F € F.
(b) for every object E € A there is a short exact sequence

0 —T —F—F—0
for some pair of objects T'€ T and F € F.

Suppose A C D is a heart, and (7,F) C A a torsion pair. We can define a
new heart A* C D such that an object E € D lies in A* C D precisely if

HY(E)eF, HYE)eT, HY(E)=0 otherwise.

This process is illustrated in Figure @ The heart A is called the right tilt of the
heart A at the torsion pair (7, F). The left tilt is the subcategory A*[1].
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5.3. Examples of tilts. Let us consider the right tilt of the standard heart
A = Coh(X) ¢ D’ Coh(X)
with respect to the torsion pair
T = {F € Coh(X) : dimsupp(E) = 0},
F ={F € Coh(X) : Homx (O, E) =0 for all z € X}.

Thus T consists of zero-dimensional sheaves, and F consists of sheaves with no
zero-dimensional torsion. Note that

Ox € F C At

We claim that the stable pairs moduli space of Section [[L3 is the analogue of the
Hilbert scheme in this tilted context.

LEMMA 5.3. The stable pairs moduli space Pairs(5,n) parameterizes quotients

of Ox in the tilted category A*:

. . ﬁ .
Pairs(8,n) = {quotlents Ox »FEin A Wlth}

ch(E) = (0,0,8,n)
PROOF. Given a short exact sequence in the category A*

0—>J—>OXL>E—>O,

we can take cohomology with respect to the standard heart A C D to get a long
exact sequence in the category A
(10) 0— HY(J) = Ox L5 HY(E) —» HY(J) = 0 — HY(E) — 0.

It follows that £ € AN A* = F and coker(f) = HY(J) € T. This is precisely the
condition that f: Ox — E defines a stable pair.
For the converse, take a stable pair and embed it in a triangle

(11) J— Ox L5 B — J[1].
By definition E € F C A*. The same long exact sequence ([0) then shows that
J € A*. Tt follows that (II)) defines a short exact sequence in AF¥. O

Tilting also allows to give a precise description of the effect of a threefold flop

Xy X_
fx /
Y

on the derived category. Suppose for simplicity that each map fi contracts a single
rational curve C'y. Introduce subcategories

Fir =(0c,(—i))iz1 C Coh(Xy), F_ =(Oc_(—i))iz2 C Coh(X_),

where the angular brackets denote extension-closure. These subcategories turn out
to be torsion-free parts of torsion pairs on the categories Coh(X ) [48]. Moreover,
the equivalence D(X;) = D(X_) constructed in [4] induces an exact equivalence
between the corresponding tilted categories Per™(X./Y). This is illustrated in
Figure [l
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Coh(X4)
X+ R T+ Fi o D¥(X4)
Pert (X4 /Y)
Y l = =
Per™ (X_/Y)
X_ e F_[1] T- F- EE Db(X_)
Coh(X_)

FI1GURE 5. Effect of a flop on the derived category.

5.4. Sketch proof of the DT/PT identity. Comparing the identites of
Theorems [I] and [2] with the tilts described in the last section, one starts to see that
one would like to turn the categorical decompositions coming from torsion pairs
into identities involving generating functions of DT invariants. In this section,
abandoning all pretence at rigour, we shall explain roughly how this works in the
case of Theorem [Il For a rigorous treatment see [6].

Take notation as in the last subsection. For any suitable subcategory C of A,
we consider the elements

e, 08, Quote € Hall , (A),

mot

defined by the stack of objects E of C, the stack of objects E of C equipped with
a section Ox — FE, and the stack of objects E of C equipped with a surjective
map Ox — E, respectively, each of these stacks being considered with the obvious
forgetful map to the stack M of objects of A. We will allow ourselves to similarly
use elements of the motivic Hall algebra of Af, although in reality one can make
all calculations in the algebra Hall)) , (A).

We proceed in three steps:

(i) Every object E € A fits into a unique short exact sequence
0 —T —F—F—0

with T € 7 and F € F. Similarly every E € A" sits in a unique short
exact sequence

0—F —FE—T[-1] —0.
This gives rise to a torsion pair identities

(5_,4:57-*5]:, (5_,4;1:(5]:*67-[,1].
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Applying H°(X, —) to the above short exact sequences gives short exact
sequences of vector spaces: this is due to cohomology vanishing conditions
such as HY(X,F) = 0 for i ¢ {0,1} and HY(X,T) = 0 for i # 0. This
gives rise to further identities

03 = 02 % 6% and 6, = 62 * 0F_y).
(ii) Exactly as in Section [Z7] we have quotient identities
53 = Quot(z %04, 5% = Quot% *0 4, 5? = Quot%g— x0T

On the other hand H°(X,T[-1]) = 0 implies that 5%_1] = 071
Putting all this together gives

Quotfi *07 = Quot?— *07 * Quot% .

(iii) We have restricted to sheaves supported in dimension < 1. The Euler
form is trivial so the quantum torus is commutative. Thus

Z(Quot9) = Z(Quot$) * Z(QuotSy).

Setting t = £1 then gives the required identity
> DT, n)a’y" =Y DT(0,n)y"- > PT(3,n)a"y".
Bn n B,n

Notes. The tilting operation was introduced in [13]. Its application to three-
fold flops was explained by Van den Bergh [48], following work of the author [4].
The approach to Theorem 2 sketched above comes from [6]. A similar proof of
Theorem 1 was given by Calabrese [9]. Toda had previously proved both results for
naive DT invariants [441[46] using Joyce’s wall-crossing formula for rank 1 objects
in the derived category. Following technical advances [43] his results now also apply
to genuine DT invariants.
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