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Introduction

Classically, arithmetic is the study of rational or integral solutions of Diophan-
tine equations. From a modern standpoint, this is a particular case of the study
of schemes over algebraically nonclosed fields and more general commutative rings.
The geometric viewpoint, dating back to ancient Greece, has been a source of in-
spiration to generations of mathematicians. The guiding principle is that

geometry determines arithmetic.

The tremendous power of this principle has been amply demonstrated in the
works of Faltings on the Mordell conjecture and Wiles on Fermat’s last theorem.

This volume grew out of the 2006 Clay Summer School held at the Mathemati-
sches Institut of the University of Göttingen. The goal of the school was to introduce
participants to the wealth of new techniques and results in arithmetic geometry.
The first three weeks of the school were devoted to three main courses, covering
curves, surfaces and higher-dimensional varieties, respectively; the last week was
dedicated to more advanced topics. An important component of the school was a
seminar focused on computational and algorithmic aspects of arithmetic geometry.
The present proceedings volume reflects this structure.

Curves:

The main geometric invariant of a curve is its genus; the arithmetic is very
different for curves of genus 0, 1 and ≥ 2 respectively. In genus 0, we can answer,
completely and effectively, whether or not a curve contains rational points and how
these points are distributed. The theory of genus 1 curves is one of the richest sub-
jects in mathematics, with spectacular recent theorems, e.g., modularity of elliptic
curves over the rationals, and with many outstanding open questions, such as the
Birch/Swinnerton-Dyer conjecture. In higher genus, the most fundamental result
is the proof of the Mordell conjecture by Faltings, and the most challenging open
question is to give an effective version of this result.

The lecture notes by Darmon cover the following topics:

• Faltings’ proof of the Mordell Conjecture;
• Rational points on modular curves and Mazur’s approach to bounding
them;

• Rational points on Fermat curves and Wiles’ proof of Fermat’s Last The-
orem;

vii



viii INTRODUCTION

• Elliptic curves and the Birch and Swinnerton-Dyer conjecture, following
Gross-Zagier and Kolyvagin.

Contributions by Chapdelaine, Charollois, Dasgupta, Greenberg, Rebolledo, and
Voight discuss more specialised topics that grew out of these lectures, such as

• Generalised Fermat equations (Chapdelaine);
• Merel’s extension of Mazur’s techniques to study rational points on mod-
ular curves over number fields, and the uniform boundedness conjecture
for torsion of elliptic curves (Rebolledo);

• Natural generalisations of Fermat’s Last Theorem due to Kraus and Hal-
berstadt, building on Frey’s approach (Charollois);

• CM points on modular curves and their applications to elliptic curves
(Dasgupta, Voight);

• Shimura curves with a focus on computational aspects (Voight, Green-
berg);

• Stark-Heegner points (Greenberg).

In addition, a paper by Manin treats modular symbols (which play an important
role in Merel’s proof of the uniform boundedness conjecture explained in Rebolledo’s
article) and discusses higher dimensional generalizations.

Surfaces:

The geometry of surfaces over the complex numbers is much more involved, and
their birational classification was a milestone in algebraic geometry. Hassett’s paper
gives a thorough introduction to this classification over nonclosed fields, and its
implications for Diophantine questions like the existence of rational points and weak
approximation. It also touches on geometric descent constructions generalizing
Fermat’s descent (universal torsors) and algebraic approaches to these objects (Cox
rings).

Harari’s paper discusses non-abelian versions of descent, which have yielded
new counterexamples to local-global principles for rational points on surfaces over
number fields. Once rational points exist, one can ask whether they are Zariski
dense and analyze their distribution with respect to heights; these questions are
addressed, for both surfaces and higher-dimensional varieties, in Tschinkel’s survey.

Vioreanu offers tantalizing computational evidence for conjectures about the
algebraic structure of rational points on cubic surfaces. He explores whether all
points can be generated from a small number using elementary geometric opera-
tions.

Higher-dimensional varieties:

Some of the most interesting higher-dimensional varieties from the arithmetic
point of view are low-degree hypersurfaces and varieties closely related to algebraic
groups: toric varieties, homogeneous spaces, and equivariant compactifications of
groups. Here one is interested in existence questions, density of rational points, and
counting points of bounded height. For the last problem, height zeta functions are
an important tool and techniques of harmonic analysis can be profitably employed.
A selection of recent results in this direction appears in the survey of Tschinkel.
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we have a basis (x0, x1, x2) for Γ(D) for which S can be given by
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The symmetry takes (x0 : x1 : x2) to (−x0 : x1 : x2), and the node is at
(x0 : x1 : x2) = (0 : 0 : 1). Our model of X/Q is obtained from the double
cover y2 = S(x0, x1, x2) by blowing up the preimage of this node. In the picture,
the real locus of the sextic curve C : S = 0 is plotted in black in the (x0/x2, x1/x2)
plane; it consists of nine components, together with an isolated point at the node.

A line ` ⊂ P2 is tritangent to C if and only if it lifts to a pair of smooth rational
curves `± on X . Then `+ + `− = D in NS(X ). Orthogonal projection to L ⊗Q
then maps NS(X ) to a lattice L′ containing L with index 2, taking the curves `±
to a pair of vectors ±v = `± − 1

2D ∈ L′ of norm 5/2 that are orthogonal to RL.
Conversely, every such pair comes from a tritangent line. There are 43 such lines;
one of these is x2 = 0, which is the line at infinity in our picture, and the remaining
42 are plotted in green. (Some of the tangency points are not in the picture because
they are either complex conjugate or real but outside the picture frame.)

Each of these lines has the property that the restriction S|` is the square of a
cubic polynomial. The same is true if ` is a line passing through the node of C and
tangent to C at two other points. There are nine such lines, plotted in gray. They
correspond to norm-(5/2) vectors in L′ not orthogonal to RL, up to multiplication
by −1 and translation by RL.

A generic line λ ⊂ P2 meets these 43 + 9 lines in 52 distinct points that lift to
52 pairs of rational points on the genus-2 curve y2 = S|λ. This already improves
on the previous record for an infinite family of genus-2 curves over Q (which was
24 pairs, due to Mestre). We do better yet by exploiting rational curves of higher
degree in P2 on which S restricts to a perfect square.

There are 1240 conics c ⊂ P2 for which S|c is a square; geometrically these
are the conics such that each point in the intersection c ∩ C has even multiplicity
(either the node of C or a point of tangency). Such a conic lifts to a pair of rational
curves c± on X with c+ + c− = 2D. These c± come from vectors c± − D ∈ L
of norm 4 up to translation by RL, except for norm-4 vectors of the form v − v′

with v, v′ ∈ L′ of norm 5/2. The conics c are all rational over Q, because for each
c we can find c′ such that c+ · c′+ is odd. In general the intersections of c with a
generic line λ ⊂ P2 need not be rational, but we can choose λ so as to gain a few
rational points. Most notably, 18 of the conics happen to pass through the point
P0 : (x0 : x1 : x2) = (0 : 1 : 3) on the axis of symmetry x0 = 0 of the sextic C.
These conics are plotted in purple on our picture. If λ is a generic line through P0

then the genus-2 curve y2 = S|λ gains 18 more pairs of points above the second
intersections of λ with the purple conics. We also lose one pair because two of
our 52 tritangent lines pass through P0, but we gain two more pairs by finding two
rational cubic curves κ ⊂ P2 for which S|κ is a square and P0 is the node of κ. This
brings the total to 52+18−1+2 = 71. If c1, c2 are two of the remaining 1222 conics
such that (c1)+ · (c2)+ is odd then we have infinitely many choices (parametrized
by an elliptic curve of positive rank) of lines λ 3 P0 for which each of λ ∩ c1 and
λ ∩ c2 consists of two further rational points, bringing our total to 75. This is the
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current record for the number of pairs of rational points on an infinite family of
genus-2 curves over Q; the previous record, due to Mestre, was 24 pairs.

In another direction, C has the rational point P1 : (x0 : x1 : x2) = (0 : 1 : 0)
(in our picture this is the point at infinity in the horizontal direction). If λ 3 P1

then the genus-2 curve y2 = S|λ has a rational Weierstrass point mapping to P1.
The tangent to P1 is the line of infinity, which is one of our 52 tritangent lines;
but this still leaves 51 pairs of rational points. In fact we get 4 more because four
of our 1240 conics contain P1. These are shown in our picture as red horizontal
parabolas. As before we can get at least 4 more pairs for infinitely many choices
of λ parametrized by an elliptic curve of positive rank. This yields infinitely many
genus-2 curves over Q with a rational Weierstrass point and at least 59 further
pairs of rational points.

References

[Sch08] Matthias Schütt, K3 surfaces with Picard rank 20, 2008, arXiv:0804.1558.
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Abstract. This article surveys a few of the highlights in the arithmetic of
curves: the proof of the Mordell Conjecture, and the more detailed theory
that has developed around the classes of curves most studied until now by
number theorists: modular curves, Fermat curves, and elliptic curves.
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Introduction

Algebraic number theory is first and foremost the study of Diophantine equa-
tions. Such a definition is arguably too narrow for a subject whose scope has
expanded over the years to encompass an ever-growing list of fundamental notions:
number fields and their class groups, abelian varieties, moduli spaces, Galois repre-
sentations, p-divisible groups, modular forms, Shimura varieties, and L-functions,
to name just a few. All of these subjects will be broached (sometimes too briefly,
for reasons having less to do with their relative importance than with limitations of
time, space, and the author’s grasp of the subject) in this survey, which is devoted
to the first nontrivial class of Diophantine equations: those associated to varieties
of dimension one, or algebraic curves.

The term Diophantine equation refers to a system of polynomial equations

2000 Mathematics Subject Classification. Primary 11G30, Secondary 11G05, 11G18, 11G40,
14G05, 14G35.

c©2009 Henri Darmon
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8 HENRI DARMON

(1) X :

⎧⎪⎨
⎪⎩

f1(x1, . . . , xn) = 0
... (with fi ∈ Z[x1, . . . , xn]).

fm(x1, . . . , xn) = 0

Given such a system, one wishes to understand (and, if possible, determine com-
pletely) its set of integer or rational solutions.

Little of the essential features of the question are lost, and much flexibility is
gained, if one replaces the base ring Z by a more general ring O. The prototypical
examples are the ring of integers OK of a number field K, or the ring OK,S of its
S-integers, for a suitable finite set S of primes of OK .

Fix such a base ring O = OK,S from now on, and assume that the polynomials
in (1) have coefficients in O.

If R is any O-algebra, the set of solutions of (1) with coordinates in R is denoted
X(R):

X(R) := {(x1, . . . , xn) ∈ Rn satisfying (1)} .
The functor R �→ X(R) from the category of O-algebras to the category of sets is
representable,

(2) X(R) = HomO(AX , R), where AX = O[x1, . . . , xn]/(f1, . . . , fm).

In this way the system (1) determines the affine scheme X := Spec(AX) over
Spec(O).

When the polynomials in (1) are homogeneous, it is customary to view X as
giving rise to a projective scheme over O. When R is a principal ideal domain, the
set X(R) is a subset of the set Pn−1(R) of n-tuples (x1, . . . , xn) ∈ Rn satisfying
Rx1 + · · ·+Rxn = R, taken modulo the equivalence relation defined by

(x1, . . . , xn) ∼ (x′
1, . . . , x

′
n) if xix

′
j − xjx

′
i = 0, ∀ 1 ≤ i, j ≤ n.

Specifically,

X(R) := {(x1, . . . , xn) ∈ Pn−1(R) satisfying (1)} .
In the projective setting, replacing the base ring O by its fraction field K, and X by
its generic fiber XK—a projective variety over K—does not change the Diophantine
problem. For instance, the natural map X(O) −→ XK(K) is a bijection. So there
is no distinction between the study of integral and rational points on a scheme
whose generic fiber is a projective variety.

Here are some of the basic questions that can be asked about the behaviour of
X(O).

Question 1. What is the cardinality of X(O)? Is it finite, or infinite?

Question 2. If X(O) is finite, can its cardinality be bounded by a quantity
depending in a simple way on X and O?

Question 3. Can X(O) be effectively determined?

The arithmetic complexity of a point P ∈ X(O)—roughly speaking, the amount
of space that would be required to store the coordinates of P on a computer—is
measured by a (logarithmic) height function

h : X(O) −→ R.
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The precise definitions and basic properties of heights are discussed elsewhere in
this volume. Let us just mention that for any real B > 0, the number N(X;B) of
P ∈ X(O) with h(P ) ≤ B is finite, in any reasonable definition of h.

Question 4. When X(O) is infinite, what can be said about the asymptotics
of the function N(X;B) as B −→ ∞?

A related question is concerned with the equidistribution properties of the points
in X(O) (ordered by increasing height), relative to some natural measure on X(R)
or X(C).

An algebraic curve over O is a scheme X (either affine or projective) of relative
dimension one over Spec(O). If its generic fiber is smooth, the set X(C) (relative to
a chosen embedding of O into C, through which C becomes an O-algebra) is a one-
dimensional complex manifold. While a curve is often described by equations like
(1), it is to be viewed up to isomorphism, as an equivalence class of such equations
modulo suitable changes of variables. The main objects we will study are curves
X over Spec(O), and the behaviour of the sets X(R) as R ranges over different
O-algebras.

Remark. The term “integral points on elliptic curves” is often used (particularly by
number theorists) to refer to the integral solutions of an affine Weierstrass equation:

E0 : y2 = x3 + ax+ b

which describes an affine curve over the base ring Z[a, b]. This is an abuse of
terminology, since elliptic curves are always defined as projective varieties by passing
to the projective equation

E : y2z = x3 + axz2 + bz3,

resulting in the addition of the “point at infinity” O := (0, 1, 0) to E0. This passage
is crucial. Note, for instance, that E has the structure of an algebraic group, while
E0 does not. It should be kept in mind that the common usage “integral points on
E” refers to the integral points on the affine curve E0 = E − {O}, which is not an
elliptic curve at all, and that, according to the definitions in standard usage, E(O)
is equal to E(K) because E is projective.

The fundamental trichotomy for curves
Suppose that the curveX is generically smooth, i.e., its generic fiber is a nonsingular
curve over K, so that X(C) has the structure of a smooth Riemann surface. The
set X(C) is (topologically and analytically) identified with

X(C) � S − {P1, . . . , Ps},
where S is a compact Riemann surface (of genus g, say) and P1, . . . , Ps are dis-
tinct points. The invariants g and s, which completely determine the topological
isomorphism class of X(C), can be packaged into the Euler characteristic

χ(X) = 2− 2g − s.

The answers to Questions 1—4 above depend on the sign of χ(X) in an essential
way.

I. Positive Euler characteristic. If χ(X) > 0, then g = 0 and s = 0 or 1.
Therefore X is isomorphic over K̄ either to the projective line P1 or the affine line
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A1. Forms of P1 over K correspond to conics, for which one has the following basic
result.

Theorem 5. Let X be a smooth conic over K. The following are equivalent.

(a) The curve X is isomorphic over K to P1.
(b) The set X(K) is nonempty.
(c) The set X(Kv) is nonempty, for all completions Kv of K.

The equivalence between (a) and (b) follows from the Riemann–Roch theorem:
given a rational point ∞ ∈ X(K), there is a rational function with only a simple
pole at ∞; such a function gives an isomorphism between X and P1 over K. The
equivalence between (b) and (c) is the Hasse–Minkowski theorem, one of the most
basic instances of the so-called local-global principle which is discussed at greater
length elsewhere in this volume.

Remark 6. The proof of the Hasse–Minkowski theorem, which relies on the
geometry of numbers, leads to an upper bound on the smallest height of a point
on X(K), and thus is effective. Attempts to generalise Theorem 5 to higher di-
mensional varieties have led to a rich theory which forms the basis for some of the
articles in this volume.

The case of positive Euler characteristic, for which the basic questions 1—4 are
in some sense well-understood thanks to Theorem 5, will not be treated any further
in these notes.

II. Euler characteristic zero. There are two types of curve with Euler charac-
teristic zero:

• The affine case: g = 0 and s = 2.
• The projective case: g = 1 and s = 0.

The prototypical example of the affine case is when

X = P1 − {0,∞} = Gm.

The set X(O) = O× is an abelian group under multiplication, and X is naturally
equipped with the structure of a commutative group scheme over O. Something
similar happens in the projective case: since X is a curve of genus one, it is isomor-
phic over K either to an elliptic curve, if X(K) 	= ∅, or to a principal homogeneous
space over such a curve. For the following theorem, suppose that X(O) 	= ∅, and
that X can be equipped with the structure of a group scheme over O.

Theorem 7. The group X(O) is finitely generated.

In the affine case, Theorem 7 is essentially Dirichlet’s S-unit theorem, while in
the projective case it corresponds to the Mordell–Weil Theorem that the group of
rational points on an elliptic curve over a number field is finitely generated.

III. Negative Euler characteristic. The theory of curves with negative Euler
characteristic is dominated by the following basic finiteness result.

Theorem 8. If χ(X) < 0, then X(O) is finite.
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In the affine case this is a theorem of Siegel proved in 1929. In the interesting
special case where X = P1 − {0, 1,∞}, the points in X(O) correspond to solutions
of the so-called S-unit equation

u+ v = 1 with u, v ∈ O×.

In the projective case Theorem 8 used to be known as the Mordell Conjecture.
Its proof by Faltings in 1983 represents a significant achievement in the Diophantine
theory of curves.

We now describe the contents of these notes.

Section 1 recalls some preliminary results that are used heavily in later sec-
tions: the main finiteness results of algebraic number theory, and the method of
descent based on unramified coverings and the Chevalley–Weil theorem. Hugo
Chapdelaine’s article [Chaa] in these proceedings further develops these themes by
describing a relatively elementary application of Faltings’ theorem to a Diophan-
tine equation—the generalised Fermat equation xp + yq + zr = 0—that appears to
fall somewhat beyond the scope of the study of algebraic curves, but to which, it
turns out, the “fundamental trichotomy” described in this introduction can still be
applied.

The main goal of Section 2 is to give a survey of Faltings’ proof of the Mordell
Conjecture. In many ways, this section forms the heart of these notes. The ideas in
Section 2 are used to motivate the startlingly diverse array of techniques that arise
in the Diophantine study of curves. These techniques are deployed in subsequent
sections to study several important and illustrative classes of algebraic curves—
specifically, modular curves, Fermat curves, and elliptic curves.

Section 3 focuses on what may appear at first glance to be a rather special
collection of algebraic curves, the so-called modular curves over Q classifying iso-
morphism classes of elliptic curves with extra level structure. Singling out modular
curves for careful study can be justified on (at least) two grounds.

(1) They are the simplest examples of moduli spaces. Classifying the rational
points on modular curves translates into “uniform boundedness” state-
ments for the size of torsion subgroups of elliptic curves over Q, and
therefore leads to nontrivial results concerning rational points on curves
of genus one.

(2) Modular curves are also the simplest examples of Shimura varieties, and
their Jacobians and �-adic cohomology are closely tied to spaces of mod-
ular forms. (It is from this connection that they derive their name.) This
makes it feasible to address finer questions about the rational points on
modular curves, following a line of attack that was initiated by Mazur
[Maz77] in his landmark paper on the Eisenstein ideal.

Section 3 attempts to convey some of the flavour of Mazur’s approach by describing
a simple but illustrative special case of his general results: namely, his proof of
the conjecture, originally due to Ogg, that the size of the torsion subgroup of
elliptic curves over Q is uniformly bounded, by 14. The approach we describe
incorporates an important strengthening due to Merel exploiting progress on the
Birch and Swinnerton-Dyer conjecture that grew out of later work of Gross–Zagier
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and Kolyvagin–Logachev. Marusia Rebolledo’s article [Reb] in these proceedings
takes this development one step further by describing Merel’s proof of the strong
uniform boundedness conjecture over number fields: given d ≥ 1, the modular curves
Y1(p) contain no points of degree d when p is large enough (relative to d).

Section 4 describes the approach initiated by Frey, Serre, and Ribet for reducing
Fermat’s Last Theorem to deep questions about the relationship between elliptic
curves and modular forms. This subject is only lightly touched upon in these
notes. Pierre Charollois’s article in this volume [Chab] describes a technique of
Halberstadt and Kraus that strengthens the “modular approach” to prove a result
on the generalised Fermat equation axp + byp + czp = 0 that is notable for its
generality. This result also suggests that it might be profitable to view the modular
approach as part of a general method, rather than just a serendipitous “trick” for
proving Fermat’s Last Theorem.

Section 5 gives a rapid summary of the author’s second week of lectures at the
Göttingen summer school, devoted largely to curves of genus 1, particularly elliptic
curves. This section is less detailed than the others, partly because it covers topics
that have already been treated elsewhere, notably in [Dar04]. The main topics
that are touched upon (albeit briefly) in Section 5 are:

(1) The collection of Heegner points on a modular elliptic curve, and Kolyva-
gin’s use of them to prove essentially all of the Birch and Swinnerton-Dyer
conjecture for elliptic curves with analytic rank ≤ 1. Kolyvagin’s tech-
niques also supply a crucial ingredient in Merel’s proof of the uniform
boundedness conjecture, further justifying its inclusion as a topic in the
present notes. The article by Samit Dasgupta and John Voight [DV] in
these proceedings describes an application of the theory of Heegner points
to Sylvester’s conjecture on the primes that can be expressed as a sum of
two rational cubes.

(2) Variants of the modular parametrisation which can be used to produce
more general systems of algebraic points on elliptic curves over Q. Such
systems are likely to continue to play an important role in further progress
on the Birch and Swinnerton-Dyer conjecture. A key example is the fact
that many elliptic curves defined over totally real fields are expected to
occur as factors of the Jacobians of Shimura curves attached to certain
quaternion algebras. The articles by John Voight [Voi] and Matthew
Greenberg [Greb] in these proceedings discuss the problem of calculat-
ing with Shimura curves and their associated parametrisations from two
different angles: from the point of view of producing explicit equations
in [Voi], and relying on the Cherednik–Drinfeld p-adic uniformisation in
[Greb].

(3) The theory of Stark–Heegner points, which is meant to generalise classical
Heegner points. Matthew Greenberg’s second article [Grea] in these pro-
ceedings discusses Stark–Heegner points attached to elliptic curves over
imaginary quadratic fields. Proving the existence and basic algebraicity
properties of the points that Greenberg describes how to calculate numer-
ically would lead to significant progress on the Birch and Swinnerton-Dyer
conjecture—at present, there is no elliptic curve that is “genuinely” de-
fined over a quadratic imaginary field for which this conjecture is proved
in even its weakest form.
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1. Preliminaries

1.1. Zero-dimensional varieties. In order to get a good understanding of
algebraic varieties of dimension d + 1, it is useful to understand the totality of
algebraic varieties of dimension d. Such a principle is hardly surprising, since a
(d + 1)-dimensional variety can be expressed as a family of d-dimensional vari-
eties, parametrized by a one-dimensional base. Any discussion of the Diophantine
properties of curves must therefore necessarily begin with a mention of the zero-
dimensional case.

A zero-dimensional variety (of finite type) over a field K is an affine scheme
of the form X = Spec(R), where R is a finite-dimensional commutative K-algebra
without nilpotent elements. Let

n := #X(K̄) = #Hom(R, K̄) = dimK(R),

where K̄ denotes as usual an algebraic closure of the field K. Finding the rational
points on X amounts to solving a degree n polynomial in one variable over K.

An integral model of X over O is an affine scheme of the form Spec(RO), where
RO ⊂ R is an O-algebra satisfying RO ⊗O K = R. Such a model is said to be
smooth if RO is finitely generated as an O-module and RO/p is a ring without
nilpotent elements for all p ∈ Spec(O). The reader can check that X has a smooth
model over Spec(O) if and only if R =

∏
i Li is a product of field extensions Li/K

which are unramified outside of S.
It is of interest to consider the collection of zero-dimensional varieties of fixed

cardinality n which possess a smooth model over Spec(O). The following classical
finiteness result is extremely useful in the study of curves.

Theorem 1.1 (Hermite–Minkowski). Given n and O = OK,S, there are finitely
many isomorphism classes of varieties of cardinality n over K which possess a
smooth model over Spec(O). Equivalently, there are finitely many field extensions
of K of degree at most n which are unramified outside of S.

The proof is explained, for example, in [Szp85], p. 91. In the simplest special
case where K = Q and S = ∅, we mention the following more precise statement:

Theorem 1.2 (Minkowski). Any zero–dimensional variety over Q which has
a smooth model over Spec(Z) is isomorphic to Spec(Qn) for some n ≥ 1. Equiva-
lently, there are no nontrivial everywhere unramified field extensions of Q.

1.2. Etale morphisms and the Chevalley–Weil theorem. If π : X −→ Y
is a nonconstant, finite morphism of projective curves defined over K (or of affine
curves over O = OK,S), then π induces finite-to-one maps πK : X(K) −→ Y (K)
and πO : X(O) −→ Y (O). In particular, if Y (K) is finite, then so is X(K). This
simple principle reduces the study of rational points on a curve X to the often
simpler study of points on the image curve Y . (For instance, the genus of Y is less
than or equal to the genus of X, by the Riemann–Hurwitz formula.) As a historical
illustration, Fermat proved that the equation x4 + y4 = z4 (which corresponds to
a projective curve of genus 3 over Q) has no nontrivial rational points by studying
the integer solutions of the auxiliary equation x4 + y4 = z2 which are primitive in
the sense of [Chaa]. These primitive solutions correspond to rational points on a
curve of genus one (in line with the principles explained in [Chaa]), and Fermat
was able to dispose of these rational points by his method of descent.
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In contrast, the finiteness of X(K) does not imply the finiteness of Y (K) in
general, because the maps πK or πO need not be surjective, and in fact are usually
far from being so. The following weakening of the notion of surjectivity is frequently
useful in practice.

Definition 1.3. The map π : X −→ Y of curves over Spec(OK,S) is said to
be almost surjective if there is a finite extension L of K and a finite set T of primes
of L containing the primes above those in S, such that Y (OK,S) is contained in the
image of πOL,T

.

Definition 1.4. A morphism π : X −→ Y of curves over Spec(OK,S) is said
to be generically étale if it satisfies any of the following equivalent conditions:

(a) The induced map πC : X(C) −→ Y (C) is an unramified covering of
Riemann surfaces;

(b) The map πK : XK −→ YK is an étale morphism of K-varieties on the
generic fibers;

(c) There exists a finite set S′ ⊃ S of primes of K such that the map πOK,S′ :

XOK,S′ → YOK,S′ is a finite étale morphism of schemes over Spec(OK,S′).

The following result, known as the Chevalley–Weil theorem, gives a criterion
for a map π to be almost surjective.

Theorem 1.5 (Chevalley–Weil). If the morphism π is generically étale, then
it is almost surjective.

Proof. Suppose that π is generically étale. By Property (c) in the definition,
we may suitably enlarge S so that the map π becomes étale over Spec(OK,S). If
P belongs to Y (O) = Hom(Spec(O), Y ), let P ∗(X) = π−1(P ) denote the fiber of
π above P . This fiber can be described as a scheme over Spec(O) by viewing P as
a morphism Spec(O) −→ Y , and π−1(P ) as the scheme-theoretic pullback of π to
Spec(O) via P , for which the following diagram is cartesian

P ∗(X) −→ X
↓ ↓

Spec(O)
P−→ Y.

Note that π−1(P ) is a zero-dimensional scheme over Spec(O) of cardinality n =
deg(π), which is smooth because π is étale. By the Hermite–Minkowski theorem
(Theorem 1.1) there are finitely many possibilities for π−1(P ), as P ranges over
Y (O). Hence the compositum L of their fraction fields is a finite extension of K.
Let T denote the set of primes of L above those in S. Then, by construction, Y (O)
is contained in π(X(OL,T )). It follows that π is almost surjective. �

Example 1.6. The Klein and Fermat curves. The quartic curve

(3) Y : x3y + y3z + z3x = 0

studied by Felix Klein is a curve of genus 3 having an automorphism group G =
PSL2(F7) of order 168. By the Hurwitz bound, this is the largest number of
automorphisms a curve of genus 3 may have. (A curve with this property is in fact
unique up to Q̄-isomorphism.) The curve Y is also a model for the modular curve
X(7). (Cf. Section 4.1 for a brief discussion of X(n).) The automorphism group
PSL2(7) arises from the transformations that preserve the fibers of the natural
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projection of Y (7) onto the j-line. In [Hur08], Hurwitz proved that Y has no
nontrivial rational points, as follows: let (x, y, z) be a point on the Klein quartic
with integer coordinates, satisfying gcd(x, y, z) = 1. Although x, y and z have no
common factor, they need not be pairwise coprime; setting

u = gcd(x, y), v = gcd(y, z), w = gcd(z, x),

one sees (after changing the signs of u, v, and/or w if necessary) that

(4) (x, y, z) = (u3w, v3u,w3v) =: π(u, v, w).

Substituting back into the original equation (3) and dividing by u3v3w3, one finds
that (u, v, w) is a rational point on the Fermat curve of degree 7:

X : u7 + v7 + w7 = 0.

Through this argument, Hurwitz showed that the map π : X −→ Y given by (4), a
generically étale map of degree 7, is almost surjective (in fact, surjective) on rational
points. This is a simple special case of Theorem 1.5. Hurwitz then applied Lamé’s
result for the Fermat equation of degree 7 to conclude that the Klein quartic has
no integer solutions except the trivial ones.

Note that this example gives a nontrivial Diophantine relation between mod-
ular curves and Fermat curves. More sophisticated connections between these two
classes of curves are discussed in Section 4.

Example 1.7. Algebraic groups. Recall that O is the ring of S-integers of
a number field K. Let G be any commutative group scheme of finite type over
Spec(O). Then for any integer n ≥ 1, the morphism [n] given by g �→ gn is generi-
cally étale (more precisely, étale over Spec(O[1/n])). Therefore, the Chevalley-Weil
theorem implies that there is a finite extension L of K for which G(O)/nG(O) maps
to the kernel of the natural map G(K)/nG(K) −→ G(L)/nG(L). A standard con-
struction shows that this kernel injects into the finite groupH1(Gal(L/K), G[n](L)),
where G[n](L) is the finite group of n-torsion points on G(L). It follows that
G(O)/nG(O) is finite. (When G = Gm, this statement is a weak form of Dirich-
let’s S-unit theorem, while when G = A is an elliptic curve or an abelian variety,
it is the weak Mordell–Weil theorem asserting that A(K)/nA(K) is finite.)

Example 1.8. It is not hard to exhibit a projective curve X of genus greater
than 1 equipped with a map π : X −→ P1 which is unramified outside {0, 1,∞}.
Examples include

(a) The Fermat curve xn + yn = zn with π(x, y, z) = xn/zn;
(b) The modular curvesX0(n) andX1(n) introduced in Section 3.1, with their

natural maps to the j-line.

One can use the map π to show that Theorem 8 for projective curves (Faltings’
Theorem) implies the case X = P1−{0, 1,∞} over Spec(O) of Theorem 8 (Siegel’s
Theorem).

More generally, a celebrated theorem of Belyi asserts that any projective curve
X/K can be equipped with a morphism π : X −→ P1 which is unramified outside
{0, 1,∞}. (See Hugo Chapdelaine’s article in these proceedings.) This fact has
been exploited by Elkies [Elk91] to prove that the abc conjecture implies Faltings’
theorem.
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Further topic: Hugo Chapdelaine’s article in these proceedings explains how the
discussion of unramified coverings and the Chevalley–Weil Theorem can be adapted
to treat the primitive solutions of the generalised Fermat equation xp+yq +zr = 0.
The reader who has mastered the ideas in Section 1 may skip directly to this article
if so inclined.

2. Faltings’ theorem

This section is devoted to explaining the main ideas in Faltings’ proof of the
Mordell Conjecture (Theorem 8 for projective curves over number fields).

Theorem 2.1 (Faltings). Let X be a smooth projective curve of genus ≥ 2
defined over a number field K. Then X(K) is finite.

The proof will be presented as a series of reductions.

2.1. Prelude: the Shafarevich problem. The first of these reductions, ex-
plained in Section 2.2, reduces Theorem 2.1 to a finiteness conjecture of Shafarevich.
The Shafarevich problem is concerned with the collection of all arithmetic objects
sharing certain common features and having “good reduction” over the ring O of
S-integers of a number field K, taken, of course, up to isomorphism over K. Some
key examples are:

(1) the set Fd(O) of smooth zero-dimensional schemes over Spec(O) of cardi-
nality d;

(2) the set Mg(O) of smooth curves of genus g over Spec(O);
(3) the set Ag(O) of abelian schemes of dimension g over Spec(O);
(4) the set Ig(O) of K-isogeny classes of abelian varieties of dimension g over

Spec(O).

The following question is known as the Shafarevich problem:

Question 2.2. How large are the sets above? Are they finite?

One can also ask what happens for specific values of K and S, the most inter-
esting special case being O = Z (i.e., K = Q and S = ∅).

We now discuss these questions for the various cases listed above:

(1) The set Fd(O) corresponds to the set of étale K-algebras (i.e., products of
separable field extensions) of rank d over K which are unramified outside
S. The finiteness of Fd(O) is just a restatement of the Hermite–Minkowski
Theorem (Theorem 1.1).

(2) The set M0(O) consists of the set of smooth conics over K which have
good reduction outside of S. It admits a cohomological interpretation, via
the exact sequence

0 −→ M0(O) −→ H2(K,±1) −→
⊕
v/∈S

H2(Kv,±1).

The fundamental results of local and global class field theory imply that
M0(O) is finite, and in fact, its order can be evaluated precisely:

#M0(O) = 2#S+r−1,

where r is the number of real places of K. In particular, when K = Q
and S = ∅, then M0(Z) consists of one element, corresponding to the
projective line P1 over Q.
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(3) The set M1(O) can be infinite; in fact, an infinite set of curves of genus
1 which are all isomorphic over K̄ and have good reduction outside of S
can sometimes be found, even if S consists of just one prime of K. (See
[Maz86], p. 241.) On the other hand, a deep conjecture of Shafarevich
and Tate implies that M1(O) is finite if S is empty. Also, if one replaces
M1 by the set E of K-isomorphism classes of elliptic curves, i.e., curves
of genus 1 equipped with a K-rational point, then Shafarevich [Šaf63]
showed that E(O) is always finite.

When g > 1, the following conjecture of Shafarevich can be viewed as a one-
dimensional analogue of the Hermite–Minkowski theorem (Theorem 1.1):

Conjecture 2.3. Let g ≥ 2 be an integer, and let O be the ring of S-integers
of a number field K, for a finite set S of primes of K.

(a) (Shafarevich conjecture for curves). The set Mg(O) is finite, i.e., there
are only finitely many K-isomorphism classes of curves of genus g defined
over K and having good reduction outside of S.

(b) (Shafarevich conjecture for abelian varieties). The set Ag(O) is finite,
i.e., there are only finitely many isomorphism classes of abelian varieties
of dimension g defined over K and having good reduction outside of S.

(c) (Shafarevich conjecture for isogeny classes). The set Ig(O) is finite, i.e.,
there are only finitely many K-isogeny classes of abelian varieties of di-
mension g with good reduction outside of S.

Remark 2.4. It is a deep theorem of Fontaine [Fon85] that the sets A(Z) and
Mg(Z) are empty for g ≥ 2, i.e., there are no abelian varieties, or smooth curves of
genus ≥ 2, over Spec(Z).

2.2. First reduction: the Kodaira–Parshin trick. In [Par68], Parshin
showed that part (a) of Conjecture 2.3 implies Theorem 2.1.

Theorem 2.5. (Kodaira–Parshin). The Shafarevich conjecture for curves im-
plies Mordell’s conjecture.

Sketch of proof. Let X be a curve of genus g > 1 defined over a number
field K. To each point P ∈ X(K) one associates a curve XP and a covering map
φP : XP −→ X with the following properties:

(1) The curve XP and the map φP can be defined over a finite extension K ′

of K which does not depend on P .
(2) The genus g′ of XP (and the degree of φP ) is fixed and in particular does

not depend on P .
(3) The map φP is ramified only over the point P .
(4) The curve XP has good reduction outside a finite set of primes S′ of K ′

which does not depend on P .

For a description of this assignment, see [Maz86], p. 243-244, [FWG+92], p. 191-
197, or [Par68]. The reader should note that one has some leeway in constructing
it, and that different versions appear in the literature.

We will describe one approach here, which consists in considering the embed-
ding X −→ J of X into its Jacobian that sends P to the origin of J , and letting
X̃ be the pullback to X of the multiplication-by-2 map [2] : J −→ J . This map

induces an unramified covering π : X̃ −→ X of degree 22g, and hence the genus
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of X̃ can be calculated explicitly using the Riemann–Hurwitz formula. The fiber
π−1(P ) can be written as

π−1(P ) = P̃ +D,

where P̃ corresponds to the identity element of J , and hence belongs to X̃(K), and
D is an effective divisor of degree 22g−1 defined over K with support disjoint from
P̃ . Let JD be the generalised Jacobian attached to X̃ and D: the group JD(K̄)

is identified with the group of degree zero divisors on X̃ with support outside D,
modulo the subgroup of principal divisors of the form div(f), as f ranges over the
functions satisfying f(D0) = 1, for all degree zero divisors D0 supported on D.
The functor L �→ JD(K̄)GL (where GL := Gal(L̄/L)) on finite extensions of K is
representable by the algebraic group over K denoted JD, which is an extension of
J by a torus T over K of rank (22g − 2). In other words, there is a natural exact
sequence

1 −→ T −→ JD −→ J −→ 1

of commutative algebraic groups over K.
One can embed X̃ −D into JD by sending a point Q to the equivalence class

of the divisor (Q) − (P̃ ). The multiplication-by-2 map [2] on JD induces a map

X0
P −→ X̃ −D, as summarised by the following diagram with Cartesian squares in

which the vertical maps are induced by multiplication by 2:

(5)

JD ←− X0
P

↓ ↓
JD ←− X̃ −D −→ J

↓ ↓
X −→ J.

The closure XP of X0
P has the desired properties 1-4: it is defined over K, and

it follows directly from the Riemann–Hurwitz formula that its genus g′ does not
depend on P . Furthermore, the map X0

P −→ X̃ − D is unramified, and hence
XP −→ X is ramified only over the point P . Finally, if X is smooth over Spec(O),
the curve XP has a smooth model over O′ := O[1/2].

The assignment P �→ XP therefore gives rise to a well-defined map

R1 : X(K) −→ Mg′(O′).

But this assignment is finite-to-one; for otherwise there would be a curve Y and
infinitely many (by property 3) distinct maps φP : Y −→ X. This would contradict
the following geometric finiteness result of De Franchis (cf. [Maz86], p. 227).

Theorem 2.6. If X and Y are curves over any field K, and Y has genus g ≥ 2,
then the set MorK(X,Y ) of K-morphisms from X to Y is finite.

The Shafarevich conjecture for curves, which asserts the finiteness of Mg′(O′),
therefore implies the finiteness of X(K). This completes the proof of Theorem
2.5. �

Remark 2.7. The reader will note that the proof of Theorem 2.5 breaks down
(as it should!) when g = 1, because the set MorK(Y,X) can be (and in fact,
frequently is) infinite when X has genus 1.
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2.3. Second reduction: passing to the Jacobian. The second step in the
proof of the Mordell conjecture consists in observing that the Shafarevich conjecture
for curves would follow from the corresponding statement for abelian varieties.

Proposition 2.8. The Shafarevich conjecture for curves follows from the Sha-
farevich conjecture for abelian varieties.

To prove Proposition 2.8, one studies the map R2 which associates to a curve
X its Jacobian J . If X is smooth over Spec(O), the same is true of J , and hence R2

defines a map Mg(O) −→ Ag(O). Key to Proposition 2.8 is the following corollary
of Torelli’s theorem:

Theorem 2.9. If g ≥ 2, then the map R2 is finite-to-one.

Proof. Torelli’s theorem asserts that a curve X of genus ≥ 2 can be recovered
by the data of its Jacobian J together with the principal polarisation associated
to the Riemann theta-divisor. But a given abelian variety can carry only finitely
many principal polarisations. (See [CS86] for a more detailed exposition of the
Torelli Theorem and surrounding concepts.) �

2.4. Third reduction: passing to isogeny classes. The third, crucial and
more difficult reduction was carried out by Faltings himself.

Theorem 2.10. (Faltings). The Shafarevich conjecture for abelian varieties
follows from the Shafarevich conjecture for isogeny classes.

As one would expect, the proof is based on showing that the natural map
R3 : Ag(O) −→ Ig(O) has finite fibers. This is a consequence of the following key
result:

Theorem 2.11. (Faltings) There are finitely many isomorphism classes of
abelian varieties over K in a given K-isogeny class.

This result is the technical heart of Faltings’ proof, and rests on his theory of
heights on moduli spaces of abelian varieties. Things become somewhat simpler
if we assume that the abelian varieties in the isogeny class are semistable. This
can be assumed without loss of generality because of Grothendieck’s semistable
reduction theorem which asserts that every abelian variety becomes semistable
after a finite extension of the ground field (for instance, one over which the points
of order 3 become rational). For a finite extensionK ′/K, there are finitely many K-
isomorphism classes of abelian varieties that are K ′-isomorphic to a given abelian
variety over K ′, and hence the finiteness of the K-isogeny class follows from that
of any K ′-isogeny class.

Faltings defines a height function (now called the Faltings height) of an abelian
variety. We will not dwell on the definition, but will content ourselves with stating
two of its main finiteness properties:

Theorem 2.12. Let K be a number field and H be a positive constant. There
are finitely many isomorphism classes of g-dimensional abelian varieties over K
with height less than H.

The second finiteness property concerns the behaviour of the Faltings height on
a K-isogeny class. Given a prime �, the �-isogeny class of an abelian variety A is the
set of abelian varieties which are isogenous to A via an isogeny of �-power degree.
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More generally, if M is any finite set of rational primes, two abelian varieties are
said to be M -isogenous if they are related by a K-isogeny whose degree is a product
of primes in M .

Theorem 2.13. If A is a semistable abelian variety over a number field K,
then:

(1) There exists a finite set M of rational primes, depending only on the
isogeny class of A, such that if A −→ B is a K-isogeny of degree not
divisible by the primes in M , then

h(A) = h(B).

(2) For any finite set S of rational primes, the Faltings height is bounded on
S-isogeny classes.

The proof of this theorem relies on deep results of Tate and Raynaud on group
schemes and p-divisible groups; cf. Theorems 2.4 and 2.6 of [Del85].

For more details on the proof of theorems 2.12 and 2.13 see the expositions
[CS86], [FWG+92], [Szp85], [Del85], or [ZP89]. Note that these two theorems
together imply:

Proposition 2.14. Let A be a semistable abelian variety over K, and let M
be as in part 1 of Theorem 2.13.

(1) Up to K-isomorphism, there are finitely many abelian varieties that are
K-isogenous to A via an isogeny of degree not divisible by the primes in
M .

(2) Given any abelian variety B over K and any finite set S of rational
primes, there are finitely many abelian varieties in the S-isogeny class
of B.

Proof of Theorem 2.11: Let φ : A −→ B be a K-isogeny. We can write φ as a
composition of isogenies

A
φo−→ B0

φ1−→ B1,

where φ0 is of degree not divisible by the primes in M , and φ1 is an M -isogeny. By
part 1 of Proposition 2.14, there are finitely many possibilities for φ0 and for B0.
By part 2 of this proposition, for each B0 there are finitely many possibilities for
B1. Theorem 2.11 follows.

2.5. Fourth reduction: from isogeny classes to �-adic representations.
To an abelian variety A over K of dimension g and a prime �, one can associate
the �-adic Tate module and �-adic representations

T�(A) := lim
←−

A[�n], V�(A) := T�(A)⊗Q�,

where the inverse limit is taken with respect to the multiplication-by-� maps. The
Q� vector space V�(A) is 2g-dimensional and is equipped with a Q�-linear action
by two commuting Q�-algebras E and ΠK defined by

E = EndK(A)⊗Q�, ΠK := Z�[[GK ]]⊗Q�.

Here Z�[[GK ]] denotes the profinite group ring lim←−Z�[Gal(L/K)], where the pro-

jective limit is taken over all finite Galois extensions L ⊂ K̄ of K.
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If A and B are K-isogenous abelian varieties, they give rise to �-adic repre-
sentations that are isomorphic as ΠK-modules. In other words, the assignment
A �→ V�(A) yields a map

R4 : Ig(O) −→

⎧⎨
⎩

Isomorphism classes of
2g-dimensional �-adic
representations of ΠK

⎫⎬
⎭ .

The strategy will now consist in showing that R4 has finite fibers, and finally in
describing the image R4 precisely enough to show that it is finite.

We begin by introducing some further notations and recalling some background.
Given a prime v of K, let Iv ⊂ Gv ⊂ GK be the inertia and decomposition sub-
groups of GK attached to v. Note that the groups Gv and Iv are only well-defined
up to conjugation in GK , since they depend on a choice of a prime of K̄ above
v. The quotient Gv/Iv is procyclic with a canonical generator Frobv called the
Frobenius element at v, which induces the automorphism x �→ xNv on the residue
field, where Nv denotes the norm of v (the cardinality of the associated residue
field).

If V is any finite-dimensional Q�-vector space equipped with a continuous ΠK-
action, we say that V is unramified at v if Iv acts trivially on V . When this
happens, the Frobenius element Frobv ∈ Gv/Iv gives an element of GL(V ) which
is well-defined up to conjugation in this group.

The following theorem lists some of the basic properties of V�(A).

Theorem 2.15. Let A be an abelian scheme over Spec(OK,S). The �-adic
Galois representation V�(A) satisfies the following properties:

(1) It is semisimple as a representation of E.
(2) It is unramified at all v /∈ S′ := S ∪ {λ|�}.
(3) (Rationality) If v /∈ S′, then the characteristic polynomial of Frobv has

rational integer coefficients. The complex roots of this polynomial have
absolute value Nv1/2.

(4) (Tate conjecture) The representation V�(A) is semisimple as a represen-
tation of ΠK .

Property (1) follows from the basic theory of duality for abelian varieties, and
properties (2) and (3) were shown by Weil (cf. [Wei48]). Property (4), a particular
case of the Tate conjecture, is one of Faltings’ important contributions. We now
explain how Faltings proved the semisimplicity of V�(A) over ΠK , adapting an idea
used by Tate to prove the corresponding statement over finite fields.

Lemma 2.16. For every ΠK-invariant subspace W in V�(A), there is an element
u ∈ E such that

uV�(A) = W.

Proof. The Z�-module W∞ = W ∩ T�(A) gives rise to a collection of groups
Wn = W∞/�nW∞ ⊂ A[�n] which are defined over K and compatible under the
natural maps A[�n+1] −→ A[�n]. Let

αn : A −→ An := A/Wn,

be the natural isogeny with kernel Wn, and let βn denote the isogeny characterised
by

αnβn = �n, βnαn = �n.
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Note that βn(An[�
n]) = Wn by construction, in light of the first identity above. By

Faltings’ finiteness theorem 2.11, there exists an infinite set I = {n0, n1, . . .} ⊂ Z>0

for which there exist isomorphisms

νi : An0
� Ai

for all i ∈ I. Now define a sequence of K-endomorphisms of A by the rule

ui := βiνiαn0
.

Since EndK(A) ⊗ Z� is compact in the �-adic topology, the sequence (ui) has a
convergent subsequence (ui)i∈J in this topology. Let u denote the limit of such
a subsequence. After eventually refining J further, we can assume that for each
i ∈ J , we have natural maps

u(A[�i]) = ui(A[�i]) −→ βi(Ai[�
i]) = Wi,

with kernel and cokernel bounded independently of i, because they arise from αn0
.

It follows that

u(V�(A)) = W,

as was to be shown. �

Corollary 2.17. The representation V�(A) is a semisimple ΠK-module.

Proof. Let W be a ΠK-stable subspace of V�(A), and let u ∈ E be an element
constructed in Lemma 2.16, satisfying u(V�(A)) = W . Consider the right ideal uE
in the algebra E. Because E is semisimple, this ideal is generated by an idempotent
u0. Note that u0(V�(A)) = W . The subspace ker(u0) is therefore a ΠK-stable
complement of W in V�(A). Hence V�(A) is semisimple over ΠK . �

In conclusion, let RepS(GK , 2g) be the set of isomorphism classes of rational
semisimple �-adic representations of GK of dimension 2g which are unramified out-
side of S. We have shown that R4 maps Ig(O) to RepS(GK , 2g). To complete the
proof of the Mordell conjecture, it remains to show:

(1) The map R4 is finite-to-one.
(2) The set RepS(GK , 2g) is finite.

We will prove the first in the next section, and the second in Section 2.7.

2.6. The isogeny conjecture. The proof of the following deep conjecture of
Tate is a cornerstone of Faltings’ strategy for proving the Mordell conjecture.

Theorem 2.18. (Isogeny conjecture). Let A and B be abelian varieties defined
over a number field K. If V�(A) is isomorphic to V�(B) as a ΠK-module, then the
abelian varieties A and B are isogenous.

In other words, the map R4 is injective.
We first note that Theorem 2.18 can be reduced to the following statement,

known as the Tate conjecture for abelian varieties.

Theorem 2.19. (Tate conjecture). Let A and B be abelian varieties defined
over K. Then the natural map

HomK(A,B)⊗Q� −→ HomΠK
(V�(A), V�(B))

is surjective.
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To see that Theorem 2.19 implies Theorem 2.18, let j : V�(A) � V�(B) be a
ΠK-equivariant isomorphism. By Theorem 2.19, this isomorphism comes from an
element u ∈ HomK(A,B) ⊗ Q�. After multiplying u by some power of �, we can
assume that u belongs to HomK(A,B) ⊗ Z�. Note that HomK(A,B) is dense in
HomK(A,B) ⊗ Z�. Any good enough �-adic approximation to u in HomK(A,B)
gives the desired K-isogeny between A and B. Theorem 2.18 follows.

We next observe that Theorem 2.19 can be reduced to the following special
case:

Theorem 2.20. Let A be an abelian variety over K. The natural map

EndK(A)⊗Q� −→ EndΠK
(V�(A))

is surjective.

The fact that Theorem 2.20 implies Theorem 2.19 can be seen by applying
Theorem 2.20 to the abelian variety A×B, since

EndK(A×B) = EndK(A)⊕HomK(A,B)⊕HomK(B,A)⊕ EndK(B)

and likewise for End(V�(A×B)) = End(V�(A)× V�(B)).

Proof of Theorem 2.20: Let φ be an element of EndΠK
(V�(A)), and let

W = {(x, φ(x)) ∈ V�(A)× V�(A)} ⊂ V�(A×A)

be the graph of φ. Note that W is ΠK-stable. Hence there is an endomorphism
u ∈ EndK(A × A) ⊗ Q� = M2(E) associated to W by Lemma 2.16, satisfying
u(V�(A×A)) = W .

Let E0 = EndE(V�(A)) denote the commutant of E in End(V�(A)). For any
α ∈ E0, the matrix ( α 0

0 α ) with entries in End(V�(A)) commutes with u ∈ M2(E) ⊂
M2(End(V�(A)). It follows that this matrix preserves W = image(u), and hence α
commutes with φ. Since this argument is valid for any α ∈ E0, the endomorphism
φ belongs to the double commutant E00 which is equal to E by the semisimplicity
of V�(A) as a module over E.

2.7. The finiteness principle for rational �-adic representations. Now
that the map R4 has been shown to be injective, it remains to prove that the target
RepS(GK , 2g) is finite. The main theorem of this section is:

Theorem 2.21. (Finiteness principle for rational semisimple �-adic represen-
tations). Let K be a number field and S a finite set of primes of K. Then there are
finitely many isomorphism classes of rational, semisimple �-adic representations of
GK of dimension d which are unramified outside of S.

Remark. The reader will observe that this finiteness principle is close in spirit
to the Hermite–Minkowski theorem: it asserts that there are only finitely many
extensions of K (albeit, of infinite degree) of a certain special kind with bounded
ramification. The proof of Theorem 2.21 will in fact rely crucially on the Hermite–
Minkowski theorem, as well as on the Chebotarev density theorem.

We begin by establishing the following key lemma.

Lemma 2.22. There exists a finite set T of primes of K (depending on S and
d) satisfying the following two properties:

(1) T is disjoint from S� := S ∪ {v|�}.
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(2) Two representations ρ1, ρ2 ∈ RepS(GK , d) are isomorphic if and only if

trace(ρ1(Frobv)) = trace(ρ2(Frobv)), for all v ∈ T.

Proof. Consider the set of all extensions of K of degree ≤ l2d
2

which are
unramified outside S�. By Theorem 1.1 (Hermite–Minkowski), there are finitely
many such extensions, and hence their compositum L is a finite extension of K.
Let T = {v1, . . . vN} be a set of primes of K which are not in S and such that
the Frobenius conjugacy classes Frobvi generate Gal(L/K). The existence of such
a finite set follows from the Chebotarev density theorem. We claim that this set
T satisfies the conclusion of Lemma 2.22. Given ρ1, ρ2 ∈ RepS(GK , d), a choice of
GK-stable Z�-lattices in the underlying representation spaces makes it possible to
view each ρi as a homomorphism from Z�[[GK ]] to Md(Z�). Let

j = ρ1 ⊕ ρ2 : Z�[[GK ]] −→ Md(Z�)×Md(Z�),

and let M denote the image of j. The induced homomorphism

j̄ : GK −→ (M/�M)×

factors through Gal(L/K), since the cardinality of M/�M is at most �2d
2

and j̄ is
unramified outside of S�. It follows that the elements

j̄(Frobv1), . . . , j̄(FrobvN )

generate M/�M . By Nakayama’s lemma, the elements

j(Frobv1), . . . , j(FrobvN )

generate M as a Z�-module.
In particular, if

trace(ρ1(Frobvj )) = trace(ρ2(Frobvj )), for j = 1, . . . , N,

then

M ⊆ ∆ ⊂ Md(Z�)×Md(Z�),

where ∆ = {(A,B) such that trace(A) = trace(B)}. Therefore one has

trace(ρ1(σ)) = trace(ρ2(σ)) for all σ ∈ ΠK .

Hence ρ1 and ρ2 have the same traces. Since they are semisimple, it follows that
they are isomorphic as ΠK-representations. �

Proof of Theorem 2.21. Let T = {v1, . . . , vN} be as in the statement of Lemma
2.22. The assignment

ρ �→ (Tr (ρ(Frobv1)), . . . ,Tr (ρ(FrobvN )))

is injective on RepS(GK , d), and can only assume finitely many values, by the
rationality of ρ. (More precisely, each Tr (Frobvi) is a rational integer of absolute

value ≤ dNv
1/2
i .) Theorem 2.21 follows.
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2.8. A summary of Faltings’ proof. Faltings’ proof of Mordell’s conjecture
is based on a sequence of maps (here X is a curve of genus g defined over K and
having good reduction outside of the finite set S of primes of K):{

K-rational
points on X

}
R1−→

{
Curves of genus g′ over K ′

with good reduction outside S′

}

R2−→

⎧⎨
⎩

Isomorphism classes of semistable
abelian varieties of dimension g′

with good reduction outside S′

⎫⎬
⎭

R3−→

⎧⎨
⎩

Isogeny classes of abelian varieties
of dimension g′

with good reduction outside S′

⎫⎬
⎭

R4−→
{

Rational semisimple �-adic representations
of dimension 2g′ unramified outside S′

�

}
(1) The map R1 is given by Parshin’s construction, and is finite-to-one, by

the geometric theorem of De Franchis.
(2) The map R2 is defined by passing to the Jacobian of a curve, and is

finite-to-one by Torelli’s theorem.
(3) The map R3 is the obvious one, and is finite-to-one, by Faltings’ funda-

mental Theorem 2.11 on finiteness of abelian varieties in a given isogeny
class.

(4) The map R4 is defined by passing to the Tate module, and is one-to-
one, thanks to the Tate conjectures proved by Faltings. The proof of
the Tate conjectures is obtained by combining a strategy of Tate with the
finiteness Theorem 2.11. These ideas are also used to show that the Galois
representations arising in the image of R4 are semisimple.

(5) The last set in this sequence of maps is finite by the finiteness principle for
rational semisimple �-adic representations, which is itself a consequence
of the Chebotarev density theorem and the Hermite–Minkowski theorem.

3. Modular curves and Mazur’s theorem

The first step in the proof of the Mordell conjecture (the Kodaira–Parshin
reduction) consists in transforming a question about rational points on a given curve
into the Shafarevich conjecture. This new Diophantine question is concerned with
the moduli space of curves themselves, to which an array of techniques (notably,
Jacobians, �-adic representations, etc.) can be applied. It is therefore apparent
that the extra structures afforded by moduli spaces are of great help in studying
the Diophantine questions that are associated to them. So it is natural to examine
more closely the simplest class of moduli spaces, which are also curves in their own
right: the modular curves classifying elliptic curves with extra level structure.

3.1. Modular curves. Let p be a prime ≥ 5, and write Z for the ring Z[1/p].
The functor Y1(p) which to any Z-algebra R associates the set of R-isomorphism
classes of pairs (E,P ) where E is an elliptic curve over Spec(R) and P is a point of
order p on ER is representable by a smooth affine scheme over Spec(Z) of relative
dimension one, denoted Y1(p).

The group (Z/pZ)× acts on Y1(p) by the rule t · (E,P ) := (E, tP ), and the
quotient of Y1(p) by this action is an affine scheme Y0(p) over Spec(Z) which is a
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coarse moduli scheme classifying pairs (E,C) consisting of an elliptic curve over R
and a cyclic subgroup scheme C ⊂ E of order p defined over R.

These curves admit analytic descriptions as quotients of the Poincaré upper
half-plane

H = {τ ∈ C, Im(τ ) > 0}
by the action of the following discrete subgroups of SL2(Z):

Γ1(p) =

{(
a b
c d

)
with a− 1 ≡ c ≡ d− 1 ≡ 0 (mod p)

}
,

Γ0(p) =

{(
a b
c d

)
with c ≡ 0 (mod p)

}
.

For example, the curve Y0(1) is identified with Spec(Z[j]), and a birational (singu-
lar, even on the generic fiber) model for Y0(p) over Spec(Z) is given by

Spec(Z[j, j′]/Φp(j, j
′)),

where Φp(x, y) ∈ Z[x, y] is the canonical modular polynomial of bidegree p + 1
satisfying Φp(j(τ ), j(pτ )) = 0, for all τ ∈ H.

A rational point on Y1(p) (resp. on Y0(p)) determines an elliptic curve over Q
with a Q-rational point of order p (resp. a rational subgroup of order p). The main
goal of this section is to explain the proof of the following theorem of Mazur.

Theorem 3.1. If p > 13, then Y1(p)(Q) = ∅.

Remark 3.2. Note that Theorem 3.1 can be viewed as a theorem about curves
in two different ways. Firstly, it asserts that the collection of modular curves Y1(p),
whose genera grow with p, have no rational points once p is large enough—a type of
statement that is similar in flavour to Fermat’s Last Theorem. Secondly, it leads to
the uniform boundedness of the size of the torsion subgroups E(Q)tors as E ranges
over all elliptic curves over Q, and is therefore also a theorem about curves of genus
one.

3.2. Mazur’s criterion. An important role is played in Mazur’s argument
by the compactification X0(p) of the affine curve Y0(p). As a Riemann surface,
X0(p)(C) is obtained by adjoining to Y0(p) a finite set of cusps which are in bijection
with the orbits of Γ0(p) acting on P1(Q) by Möbius transformations. More precisely,
letting H∗ := H ∪ P1(Q), we have

X0(p)(C) = Γ0(p)\H∗ = (Γ0(p)\H) ∪ {0,∞} = Y0(p)(C) ∪ {0,∞}.

The complex structure in a neighbourhood of ∞ is defined by letting q = e2πiτ be
a local parameter at ∞.

The equation for the universal elliptic curve in a formal punctured neighbour-
hood of ∞ is given by the Tate curve

Eq = Z[[q]]×/qZ : y2 + xy = x3 + a(q)x+ b(q) over Z((q)),

where

a(q) = −5

∞∑
n=1

σ3(n)q
n, b(q) = − 1

12

∞∑
n=1

(7σ5(n) + 5σ3(n))q
n.
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(Recall that σk(n) =
∑

d|n dk.) The discriminant of Eq is equal to

∆(Eq) = q
∏
n≥1

(1− qn)24,

and therefore Eq defines an elliptic curve over Z((q)).
The important q-expansion principle asserts that the parameter q is also a

local parameter for the scheme X0(p)Z in a neighborhood of ∞. Thanks to the
q-expansion principle, the completion of the local ring of X0(p)Z at ∞ is identified
with the power series ring Z[[q]]:

ÔX0(p),∞ = Z[[q]].

A basic technique in Mazur’s proof is to study the behaviour of certain maps on
modular curves, via their behaviour in a formal neighbourhood of ∞. The following
definition will be useful.

Definition 3.3. A morphism j : X −→ Y of schemes over Z is a formal
immersion at x ∈ X(Z) if the induced map on completed local rings

j∗ : ÔY,j(x) −→ ÔX,x

is surjective.

Let J0(p) denote the Jacobian of X0(p). It is an abelian variety over Z and is
equipped with an embedding

Φ : X0(p) −→ J0(p)

defined by letting Φ(x) be the class of the degree zero divisor (x)− (∞).
If J�(p) is any quotient of J0(p), let j� : X0(p) −→ J�(p) be the map obtained

by composing Φ with the projection to J�(p). The following criterion of Mazur for
Y1(p)(Q) = ∅ is the main result of this section.

Theorem 3.4. Assume that p > 7. Suppose that there is an abelian variety
quotient J�(p) of J0(p) satisfying the following conditions:

(a) The map j� : X0(p) −→ J�(p) is a formal immersion at ∞.
(b) J�(p)(Q) is finite.

Then Y1(p)(Q) = ∅.

Sketch of proof. Let x̃ be a point in Y1(p)(Q) corresponding to the pair
(E,P ), where E is an elliptic curve over Q and P ∈ E(Q) is of order p. Let E be
the minimal Weierstrass model of E over Z.

The proof is divided into four steps.

Step 1. If E has potentially good reduction at the prime 3, then the special fiber EF3

is either an elliptic curve, or an extension of a finite group of connected components
of cardinality 2a3b by the additive group Ga/F3

. Such a group cannot contain a
point of order p > 7, by the Hasse bound. Hence E has potentially multiplicative
reduction at 3.

Step 2. Let x ∈ X0(p)(Q) be the image of x̃ under the natural map: it corresponds
to the pair (E, 〈P 〉) consisting of the curve E and the cyclic subgroup generated
by P . By Step 1, the point x reduces to one of the cusps 0 or ∞ of X0(p) modulo
3. It can be assumed without loss of generality that x reduces to ∞, by replacing
(E, 〈P 〉) by (E/〈P 〉, E[p]/〈P 〉) otherwise.
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Step 3. Consider the element j�(x) ∈ J�(p)(Q). By step 2 this element belongs to
the formal group J1

� (p)(Q3), which is torsion-free because Q3 is absolutely unram-

ified. It also belongs to J�(p)(Q), which is torsion by assumption. It follows that
j�(x) = 0.

Step 4. We now use the fact that j� is a formal immersion to deduce that x = ∞.
To see this, let Spec(R) be an affine neighborhood of ∞ containing x. The point x
gives rise to a ring homomorphism x : R −→ Z3, which factors through the local
ring ÔX0(p),∞ = Z[[q]], so that x can be viewed as a map Z[[q]] −→ Z3. By step 3,
we have

x ◦ j∗� = ∞◦ j∗� .
It follows that x = ∞, since j∗� was assumed to be surjective, contradicting the

initial assumption that x belongs to Y0(p). �

Mazur’s criterion reduces Theorem 3.1 to the problem of exhibiting a quotient
J�(p) of J0(p) satisfying the conditions of Theorem 3.4.

3.3. The Jacobian J0(p). The fact that makes it possible to analyse the
Jacobian J0(p) precisely, and exhibit a nontrivial quotient of it with finite Mordell–
Weil group, arises from two related ingredients.

(a) Hecke operators. If n is an integer that is not divisible by p, the modular
curve X0(np) is equipped with two maps π1, π2 to X0(p), defined by

π1(E,C) = (E,C[p]), π2(E,C) = (E/C[n], C/C[n]).

The pair (π1, π2) gives rise to an embedding of X0(pn) in the product
X0(p) × X0(p). The image in this product, denoted Tn, is an algebraic
correspondence on X0(p) defined over Q, which gives rise to an endomor-
phism of J0(p) defined over Q. On the level of divisors, Tn is described
by

(6) Tn(E,C) =
∑

E−→E′

(E′, C ′),

where the sum is taken over the cyclic isogenies ϕ : E −→ E′ of degree
n, and C ′ = ϕ(C). Let T denote the subring of EndQ(J0(p)) generated
by the Hecke operators Tn. It is finitely generated (as a ring, and even
as a module) over Z. Our basic approach to constructing J�(p) is to use
the endomorphisms in T to decompose the abelian variety J0(p) (up to
Q-isogeny) into smaller pieces which can then be analysed individually. If
R is any ring, let TR denote the R-algebra T⊗R.

(b) Modular forms. If R is any Z-algebra, let S2(p,R) denote the space of
regular differentials on X0(p)R. Restriction to the formal neighborhood
Spec(R[[q]]) of ∞ ∈ X0(p) gives rise to a map (called the q-expansion
map)

q-exp : S2(p,R) −→ R[[q]]dq.

When R = C, the space S2(p,C) is identified with the vector space of
homomorphic functions f : H −→ C for which
(i) the differential 2πif(τ )dτ is invariant under Γ0(p), i.e.,

f

(
aτ + b

cτ + d

)
= (cτ + d)2f(τ ), for all

(
a b
c d

)
∈ Γ0(p).
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(ii) 2πif(τ )dτ extends to a holomorphic differential on the compactified
modular curve X0(p). In particular, it admits a Fourier expansion of
the form

f(τ ) =
∞∑

n=1

ane
2πinτ ,

so that q-exp(2πif(τ )dτ ) =
∑∞

n=1 anq
n dq

q .

The action of the Hecke operators Tn on J0(p)R induces an action on the
cotangent space S2(p,R), which can be described explicitly on the level of the
q-expansions. For example, if � 	= p is prime,

(7) T�

( ∞∑
n=1

anq
n dq

q

)
=

⎛
⎝∑

�|n
anq

n/� + �

∞∑
n=1

anq
n�

⎞
⎠ dq

q
.

There is an extra Hecke operator Tp defined via an algebraic correspondence

X0(p
2) ⊂ X0(p)×X0(p)

which admits the following simpler formula for its action on q-expansions:

(8) Tp

( ∞∑
n=1

anq
n dq

q

)
=

⎛
⎝∑

p|n
anq

n/p

⎞
⎠ dq

q
.

The definition of T� for � prime can then be extended to all integers n by the
multiplicativity relations implicit in the following identity of formal Dirichlet series:

(9)
∑
n≥1

Tnn
−s = (1− Tpp

−s)−1
∏
� �=p

(1− T��
−s + �1−2s)−1.

In other words,

Tmn = TmTn if gcd(m,n) = 1, T�n+1 = a�T�n − �T�n−1 .

Proposition 3.5. The algebra TQ is a commutative semisimple algebra of
dimension g := dimQ S2(p,Q) = genus(X0(p)).

Sketch. The fact thatTQ is commutative follows from the explicit description
of the operators Tn as correspondences given in (6) (or, if one prefers, from equation
(7) describing its effect on q-expansions). The semisimplicity arises from the fact
that the operators Tn are self-adjoint with respect to the Hermitian pairing on
S2(p,C) (Petersson scalar product) defined by

〈ω1, ω2〉 =
1

2i

∫
Γ0(p)\H

ω1 ∧ ω̄2.

(We mention in passing that in general, the operator T� acting on S2(N,C) need
not be self-adjoint when �|N , but it is self-adjoint when restricted to the space of
so-called newforms. We are using implicitly the fact that S2(p,C) is equal to its
subspace of newforms.) One computes the dimension of TQ by showing that the
bilinear pairing

TQ × S2(p,Q) −→ Q, (T, f) := a1(Tf)

is left and right nondegenerate, and in fact positive definite. The details are left to
the reader (who may also consult Section 2.2 of [Dar04] for more details). �
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As a consequence of Proposition 3.5 and its proof, one has the decomposition

TQ = K1 × · · · ×Kt

of TQ into a product of totally real fields, with
∑t

j=1[Kj : Q] = n. The factors Kj

are indexed by:

(a) The points φ1, . . . , φt of Spec(TQ), viewed as algebra homomorphisms
φj : TQ −→ Q̄ (taken modulo the natural action of GQ = Gal(Q̄/Q)).

(b) The distinct GQ-equivalences classes f1, . . . , ft of eigenforms for T, nor-
malised so that a1(fj) = 1. The q-expansions of these eigenforms are
described by

fj =

∞∑
n=1

φj(Tn)q
n.

The quotient Af attached to f is defined by letting

Af := J0(p)/If , where If := ker(T −→ Kf ).

With these notations, the main result of this section is the following Eichler-
Shimura decomposition, which asserts that J0(p) is isogenous to a product of Q-
simple factors indexed by the (GQ-orbits of) normalised eigenforms fj (j = 1, . . . , t).

Theorem 3.6. The abelian variety J0(p) is Q-isogenous to the product

t∏
i=1

Afi ,

of Q-simple abelian varieties Afi . The varieties Af that occur in this decomposition
have the following properties:

(a) dim(Af ) = [Kf : Q];
(b) The natural image of TQ in EndQ(Af )⊗Q is isomorphic to Kf .

For more details on this decomposition see Chapter 2 of [Dar04].
Thanks to Theorem 3.6, we are reduced to the following question:

Question 3.7. Find a criterion involving the normalised eigenform f for the
quotient Af to have finite Mordell–Weil group.

3.4. The Birch and Swinnerton-Dyer conjecture. The key to bounding
the rank of Af (Q) (and showing that this rank is zero, for a sufficiently large
collection of normalised eigenforms f) lies in studying the so-called Hasse–Weil
L-series attached to Af .

Let A be an abelian variety (of dimension d, say) defined over Q. The Hasse–
Weil L-series of A is most conveniently defined in terms of the �-adic representation
V�(A) that was introduced in Section 2.5. If p 	= � is a prime, the Frobenius
element acts naturally on on the space V�(A)Ip of vectors in V�(A) that are fixed
under the action of the inertia group at p. (Recall that V�(A)Ip = V�(A) if A
has good reduction at p 	= �.) By the rationality of the representation V�(A), the
characteristic polynomial

Fp(T ) := det(1− Frobp|V�(A)IpT )

has integer coefficients. Furthermore, it does not depend on the choice of �, and
can therefore be defined for all p. This makes it possible to define the Hasse–Weil
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L-series as a function of the complex variable s, by the infinite product

L(A, s) =
∏
p

Fp(p
−s)−1.

Using the rationality of the Galois representation V�(f) in the sense of Theorem
2.15, one can show that the infinite product defining L(A, s) converges uniformly
on compact subsets of {s ∈ C|�(s) > 3/2}, and hence defines an analytic function
in this region.

Concerning the behaviour of L(A, s) and its connection to the arithmetic of A
over Q, there are the following two fundamental conjectures:

Conjecture 3.8. The L-series L(A, s) has an analytic continuation to the
entire complex plane and a functional equation of the form

Λ(A, s) := (2π)−dsΓ(s)dNs/2L(A, s) = ±Λ(A, 2− s),

where N is the conductor of A.

In particular, if Conjecture 3.8 is true, the process of analytic continuation
gives meaning to the behaviour of L(A, s) in a neighborhood of the central critical
point s = 1 for the functional equation, and in particular, the order of vanishing of
L(A, s) at s = 1 is defined. The Birch and Swinnerton-Dyer conjecture relates this
order of vanishing to the arithmetic of A over Q:

Conjecture 3.9. If A is an abelian variety over Q, then

rank(A(Q)) = ords=1(L(A, s)).

In particular, A(Q) is finite if L(A, 1) 	= 0.

Both Conjectures 3.8 and 3.9 are far from being proved in general. But much
more is known when A = Af occurs in the Eichler–Shimura decomposition of the
modular Jacobian J0(N), as will be explained in the next section.

3.5. Hecke theory. A newform of level N is a normalised eigenform f =∑
n≥1 anq

n dq
q on Γ0(N) whose associated sequence (an)(n,N)=1 of Fourier coeffi-

cients is different from that of any eigenform g on Γ0(d) with d|N and d 	= N .

To each newform f =
∑

n≥1 anq
n dq

q ∈ S2(N,C), one can associate an L-series

L(f, s) :=

∞∑
n=1

ann
−s.

This L-series enjoys the following properties, which were established by Hecke:

(a) Euler product: It admits the Euler product factorisation given by

L(f, s) =
∏
p�N

(1− app
−s + p1−2s)−1

∏
p|N

(1− app
−s)−1,

as can be seen by applying ϕf to the formal identity (9) expressing the
Hecke operators Tn in terms of the operators T� for � prime.

(b) Integral representation: The L-series L(f, s) can be represented as an
integral transform of the modular form f , by the formula:

(10) Λ(f, s) := (2π)−sΓ(s)Ns/2L(f, s) = Ns/2

∫ ∞

0

f(it)ts−1dt,
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where Γ(s) =
∫∞
0

e−tts−1dt is the Γ-function. In particular, because f
is of rapid decay at the cusps, this integral converges absolutely to an
analytic function of s ∈ C.

(c) Functional equation: The involution w defined on S2(N,C) by the rule

(11) w(f)(τ ) =
1

Nτ2
f

(
−1

Nτ

)

commutes with the Hecke operators and hence preserves its associated
eigenspaces. It follows that for the eigenform f ,

(12) w(f) = εf, where ε = ±1.

The L-series L(f, s) satisfies the functional equation

(13) Λ(f, s) = −Λ(w(f), 2− s) = −εΛ(f, 2− s).

It is a direct calculation to derive this functional equation from the integral
representation of Λ(f, s).

For the next result, we view f as an element of S2(N,Kf ). (Recall that Kf

is the totally real field generated by the Fourier coefficients of f .) Any complex
embedding σ : Kf ↪→ C yields an eigenform fσ with complex coefficients, to which
the Hecke L-function L(fσ, s) may be attached. The following result relates the
L-series of Hasse–Weil and of Hecke.

Theorem 3.10. Let Af be the abelian variety associated to the newform f ∈
S2(N,C) by the Eichler–Shimura construction. Then

L(Af , s) =
∏

σ:Kf−→C

L(fσ, s).

In particular, Conjecture 3.8 holds for Af .

The main ingredient in the proof of Theorem 3.10 is the Eichler–Shimura con-
gruence which relates the Hecke correspondence Tp ⊂ X0(N)2 in characteristic p
to the graph of the Frobenius morphism and its transpose. For more details and
references see Chapter 2 of [Dar04].

Theorem 3.10 reveals that one has better control of the arithmetic of the abelian
varieties Af—Conjecture 3.8 remains open for the general abelian variety A over
Q. In fact, one has the following strong evidence for Conjecture 3.9 for the abelian
varieties Af .

Theorem 3.11. If L(Af , 1) 	= 0, then Af (Q) is finite.

The main ingredients that go into the proof of Theorem 3.11 are

(1) The theory of Heegner points on modular curves;
(2) The theorem of Gross–Zagier expressing the canonical heights of the im-

ages of these points in Af in terms of special values of L-series closely
related to L(f, s);

(3) A theorem of Kolyvagin which relates the system of Heegner points and
the arithmetic of Af over Q.

These ingredients will be discussed in somewhat more detail in Section 5 devoted
to elliptic curves and the Birch and Swinnerton-Dyer conjecture.
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3.6. The winding quotient. The criterion for the finiteness of Af (Q) sup-
plied by Theorem 3.11 allows us to construct a quotient J�(p) which is in some
sense the “largest possible” quotient with finite Mordell–Weil group.

We construct J�(p), following Merel, by letting e0 be the vertical path from
0 to i∞ on H; its image in X0(p) gives an element in the relative homology
H1(X0(p)(C),Z; {cusps}). By a result of Manin–Drinfeld, the element e0 gives
rise to an element e in the rational homology H := H1(X0(p)(C),Q). This element
is referred to as the winding element.

The Hecke algebra T = TQ acts on H by functoriality of correspondences. Let
ef denote the image of e in H/IfH. The integral formula (10) for L(f, s) shows
that

ef 	= 0 if and only if L(f, 1) 	= 0.

Hence it is natural to define

Je(p) := J0(p)/Ie, where Ie := AnnT(e).

Theorem 3.12. The Mordell–Weil group Je(p)(Q) is finite.

Proof. Up to isogeny, Je(p) decomposes as

Je(p) ∼
∏
ef �=0

Af =
∏

L(f,1) �=0

Af .

Theorem 3.11 implies that Af (Q) is finite for all the f that appear in this decom-
position. The theorem follows. �

In order to exploit Mazur’s criterion with J�(p) = Je(p), and thereby prove
Theorem 3.1, it remains to show that the natural map je : X0(p) −→ Je(p) is a
formal immersion at ∞. (So that in particular Je(p) is nontrivial, which is not
clear a priori from its definition!) This is done in the article of Marusia Rebolledo
in these proceedings (cf. Theorem 4 of Section 2.3 of [Reb]). Rebolledo’s article
goes significantly further by showing that the natural map from the d-th symmetric
power X0(p)

(d) of X0(p) sending (P1, . . . , Pd) to the image in J�(p) of the divisor
class (P1) + · · ·+ (Pd)− d(∞) is a formal immersion at (∞, . . . ,∞), as soon as p is
sufficiently large relative to d.

Remark 3.13. Our presentation of Mazur’s argument incorporates an im-
portant simplification due to Merel, which consists in working with the winding
quotient Je(p) whose finiteness is known thanks to Theorem 3.11. At the time
of Mazur’s original proof described in [Maz77], Theorems 3.11 and 3.12 were
not available, and Mazur’s approach worked with the so-called Eisenstein quo-
tient Jeis(p). This quotient contains a rational torsion subgroup of order n =
numerator( p−1

12 ), and one of the key results in [Maz77] is to establish the finite-
ness of Jeis(Q) by an n-descent argument. In Merel’s approach, Mazur’s somewhat
delicate “Eisenstein descent” is in effect replaced by Kolyvagin’s descent based on
Heegner points and the theorem of Gross–Zagier.

3.7. More results and questions. By various refinements of the techniques
discussed above, Mazur was able to classify all possible rational torsion subgroups
of elliptic curves over Q and obtained the following results:
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Theorem 3.14. Let T be the torsion subgroup of the Mordell–Weil group of an
elliptic curve E over Q. Then T is isomorphic to one of the following 15 groups:

Z/mZ for 1 ≤ m ≤ 10 or m = 12,
Z/2mZ× Z/2Z for 1 ≤ m ≤ 4.

For the proof, see [Maz77], p. 156. We note in passing that all possibilities for T
that are not ruled out by Mazur’s theorem do in fact occur infinitely often: the
associated modular curves are of genus 0 and have a rational point.

Mazur’s theorem implies that rational points of order p on elliptic curves cannot
occur for p > 7. One can ask similar questions for rational subgroups. In this
direction, Mazur proved the following result in [Maz78].

Theorem 3.15. Suppose that there is an elliptic curve E over Q with a rational
subgroup of prime order p. Then p ≤ 19 or p = 37, 43, 67, or 163.

The four exceptional values of p in Theorem 3.15 correspond to discriminants
of imaginary quadratic fields of class number one. The corresponding elliptic curves
with complex multiplication can be defined over Q and have a rational subgroup
of order p.

Theorem 3.15 implies that for large enough p, the Galois representation

ρE,p : GQ −→ Aut(E[p])

is always irreducible. One can also ask whether, for large enough p, this Galois
representation is in fact necessarily surjective. The existence of elliptic curves with
complex multiplication, for which ρE,p is never surjective when p ≥ 3, precludes
an affirmative answer to this question. Discarding elliptic curves with complex
multiplication, the following conjecture (which appears in [Ser72], p. 299, §4.3,
phrased more prudently as an open question) can be proposed:

Conjecture 3.16. (Surjectivity conjecture) If E is an elliptic curve over Q
without complex multiplication, and p ≥ 19 is prime, then the Galois representation
associated to E[p] is surjective.

The surjectivity conjecture remains open, more than 30 years after [Maz77].
The hypothetical cases that are the most difficult to dispose of are those where the
image of ρE,p is contained in the normalizer of a Cartan subgroup, particularly a
nonsplit Cartan subgroup.

It is also natural to search for analogues of Theorem 3.14 over number fields
other than Q; a remarkable breakthrough was achieved on this problem by S.
Kamienny and Merel around 1992 ([Kam92], [Mer96]).

Theorem 3.17. Let K be a number field. Then the size of E(K)tors is bounded
by a constant B(K) which depends only on K. In fact, this constant can be made
to depend only on the degree of K over Q.

The proof of this theorem is explained in the article by Marusia Rebolledo
[Reb] in these proceedings.

We finish with a conjecture that can be viewed as a “mod p analogue” of
Theorem 2.18 (Tate’s isogeny conjecture).

Conjecture 3.18. There exists an integer M such that, for all p ≥ M , any
two elliptic curves E1 and E2 over Q are isogenous if and only if E1[p] � E2[p] as
GQ-modules.
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This conjecture appears to be difficult. It is not even clear what the best
value M might be, assuming it exists. (Calculations of Cremona [Cre] based on
his complete tables of elliptic curves over Q of conductor ≤ 30, 000 show that
necessarily M > 13.) We mention Conjecture 3.18 here because it implies strong
results about ternary Diophantine equations analogous to Fermat’s Last Theorem,
thanks to the methods explained in Section 4.

4. Fermat curves

The purpose of this section is to discuss the Fermat curves

Fn : xn + yn = zn,

and the proof of Fermat’s Last Theorem, that these curves have no nontrivial
rational points when n ≥ 3. Fermat’s Last Theorem has the same flavour as
Mazur’s Theorem 3.1, since it determines all of the rational points in a naturally
arising infinite collection of algebraic curves. Although Fermat curves are simpler to
write down as explicit equations, they do not admit a direct moduli interpretation,
and therefore turn out to be harder to analyse than modular curves. In fact, the
eventual solution of Fermat’s Last Theorem is based on an elaborate reduction of
the study of Fermat curves to Diophantine questions about modular curves. In
particular, Theorem 3.1—its statement, as well as some of the techniques used in
its proof—play an essential role in the proof of Fermat’s Last Theorem.

4.1. Motivation for the strategy. Hugo Chapdelaine’s article in these pro-
ceedings discusses the more general problem of classifying the primitive integer
solutions of the generalised Fermat equation

(14) xp + yq + zr = 0,

and sets up a “dictionary” relating⎧⎨
⎩

Strategies for studying
primitive solutions of
xp + yq + zr = 0

⎫⎬
⎭ and

⎧⎨
⎩

Unramified coverings
of P1 − {0, 1,∞}
of signature (p, q, r)

⎫⎬
⎭ .

The idea explained in [Chaa] is that, given an unramified covering

π : X −→ P1 − {0, 1,∞},

one can study (14) by

(1) Attempting to classify the possible fibers of π over the points in

Σp,q,r =

{
ap

cr
, with ap + bq = cr and (a, b, c) primitive

}
⊂ P1(Q).

Since the ramification in these fibers is bounded, there can only be finitely
many, by the Hermite–Minkowski theorem. In particular, the compositum
of these extensions is a finite extension of Q, denoted L.

(2) Understanding the L-rational points on the curve X.

To apply these principles to the classical Fermat equation, one is led to consider
unramified coverings of P1 −{0, 1,∞} of signature (p, p, p). Among such coverings,
one finds:
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(1) the Fermat curve Fp : xp + yp = zp itself, equipped with the natural

projection π : (x, y, z) �→ t = xp

zp of degree p2. For this π, it is clear that
π(Fp(Q)) ⊃ Σp,p,p; but this merely leads to a tautological reformulation
of the original question.

(2) There are many coverings of signature (p, p, p) with solvable Galois groups,
and studying these leads to classical attempts to prove Fermat’s Last
Theorem by factoring xp + yp over the p-th cyclotomic fields. This circle
of ideas led to many interesting questions on cyclotomic fields and their
class groups, but has proved unsuccessful (so far) in settling Fermat’s Last
Theorem.

A third type of covering is obtained from modular curves. These coverings, which
are nonsolvable, arise naturally in light of the strong results obtained in Section 3.

More precisely, let Y (n) be the open modular curve that classifies elliptic curves
with full level n structure, i.e., pairs

(E, ι : Z/nZ× µn −→ E[n])

where ι is an identification which induces an isomorphism

2∧
ι :

2∧
(Z/nZ× µn) = µn �

2∧
(E[n]) = µn.

Over the base Z = Z[1/2], the curve Y (2)Z is identified with

Spec(Z[λ, 1/λ, 1/(λ− 1)]) = (P1 − {0, 1,∞})Z ,
where λ is the parameter that occurs in the Legendre family

Eλ : y2 = x(x− 1)(x− λ).

The natural covering map π : Y (2p) −→ Y (2) is an unramified covering of signature

(p, p, p), with Galois group SL2(Z/pZ)/〈±1〉. Given λ = ap

cp ∈ Σp,p,p, the fiber

π−1(λ) is contained in the field of definition of the field of p-division points of the
elliptic curve

(15) y2 = x(x− 1)(x− ap/cp).

In practice, it is more convenient to work with the closely related Frey curve,

Ea,b,c : y
2 = x(x− ap)(x− cp),

which differs from (15) by a quadratic twist, and replace the study of the fiber of
π at λ with considerations involving the mod p Galois representation

ρa,b,c : GQ −→ Aut(Ea,b,c[p]) � GL2(Z/pZ).

We normalise (a, b, c) so that a ≡ 3 (mod 4) and c is even. (This can always
be done, by permuting a, b and c and changing their signs if necessary.) With this
normalisation, the minimal discriminant, conductor, and j-invariant associated to
Ea,b,c are

(16) ∆ = 2−8(abc)2p, N =
∏
�|abc

�, j =
28(b2p + apcp)3

(abc)2p
.

In particular, the elliptic curve Ea,b,c is semistable: it has either good or (split or
nonsplit) multiplicative reduction at all primes. (The reader may wish to consult
Section 2 of the article by Pierre Charollois in this proceedings volume, which
discusses the local invariants of Frey curves in greater detail.)
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4.2. Galois representations associated to Frey curves. The following
theorem states the main local properties of the Galois representation ρa,b,c.

Theorem 4.1. The representation ρ = ρa,b,c has the following properties.

(a) It is unramified outside 2 and p;
(b) The restriction of ρ to a decomposition group D2 at 2 is of the form

ρa,b,c|D2
=

(
χcycψ κ
0 ψ−1

)
,

where χcyc : GQ2
−→ (Z/pZ)× is the mod p cyclotomic character, and ψ

is an unramified character of order 1 or 2.
(c) The restriction of ρ to Dp comes from the Galois action on the points of

a finite flat group scheme over Zp.

Proof. (a) Let � 	= 2, p be a prime. The analysis of the restriction of ρ = ρa,b,c
to D� can be divided into three cases:

Case 1: The prime � does not divide abc. In that case, it is a prime of good
reduction for Ea,b,c, and the action of D� on Ea,b,c[p] is therefore unramified, by
the criterion of Néron–Ogg–Shafarevich.

Case 2: The prime � divides abc. It is therefore a prime of multiplicative reduction
for Ea,b,c. Hence the curve Ea,b,c, or a twist of it over the unramified quadratic
extension of Q�, is isomorphic to the Tate curve Gm/qZ� over Q�. More precisely,
replacing Ea,b,c by its twist if necessary, we have an identification which respects
the action of GQ�

on both sides:

(17) E(Q̄�) � Q̄×
� /〈q�〉,

where q� ∈ Q×
� is the �-adic Tate period, which is obtained by inverting the power

series with integer coefficients

j =
1

q
+ 744 + 196884q + · · ·

that expresses j in terms of q, to obtain a power series

q = Tate(1/j) = 1/j + · · · ∈ (1/j)Z[[1/j]]×.

In particular, note that, by (16),

(18) ord�(q�) = ord�(1/j) = ord�(∆) ≡ 0 (mod p).

The explicit description of the GQ�
-module E(Q̄�) given by (17) implies that

E(Q̄�)[p] � {ζap q
b/p
� , 0 ≤ a, b ≤ p− 1},

where ζp is a primitive pth root of unity in Q̄×
� . In the basis (ζp, q

1/p
� ) for E[p], the

restriction of ρ = ρa,b,c to D� can be written as

(19) ρ(σ) =

(
χcyc(σ)ψ(σ) κ(σ)

0 ψ−1(σ)

)
,

where χcyc is the p-th cyclotomic character giving the action of D� on the p-th
roots of unity, and ψ is an unramified character of order at most 2 (which is trivial
precisely when E has split multiplicative reduction at �.) Furthermore, the cocycle

κ is unramified, by (18): this is because the extension Q�(ζp, q
1/p
� ) through which

ρa,b,c|GQ�
factors is unramified. Part (a) of Theorem 4.1 follows.



38 HENRI DARMON

(b) When � = 2, the elliptic curve Ea,b,c has multiplicative reduction at 2, and
hence is identified with a Tate curve over Q2. The result then follows from (19)
with � = 2.

(c) When � = p does not divide abc, the Galois representation ρa,b,c arises from the
p-torsion of an elliptic curve with good reduction at p, and hence from a finite flat
group scheme over Zp. In the case where p|abc (which corresponds to what was
known classically as the second case of Fermat’s Last Theorem) one has a similar
conclusion: essentially, the condition ordp(qp) ≡ 0 (mod p) limits the ramification
of ρa,b,c at p and implies that Ea,b,c[p] extends to a finite flat group scheme over
Zp, in spite of the fact that Ea,b,c itself does not have a smooth model over Zp. �

The following theorem gives a global property of the representation ρa,b,c.

Theorem 4.2 (Mazur). The Galois representation ρa,b,c is irreducible.

Proof. This follows (at least when p is large enough) from Theorem 3.15. We
will now give a self-contained proof which rests on the ideas developed in the proof
of Theorem 3.4.

Suppose that ρa,b,c is reducible. Then E = Ea,b,c has a rational subgroup C of
order p, and the pair (E,C) gives rise to a rational point x on the modular curve
X0(p). Let � 	= p be an odd prime that divides abc. Then E has multiplicative
reduction at �. Therefore, the point x reduces to one of the cusps 0 or ∞ of
X0(p) modulo �. It can be assumed without loss of generality that x reduces to
∞, as in Step 2 of the proof of Theorem 3.4. Now recall the natural projection
Φe : J0(p) −→ Je(p) of J0(p) to its winding quotient Je(p), and the resulting map
je : X0(p) −→ Je(p). The element je(x) belongs to the formal group J1

e (p)(Q�),
which is torsion-free, and to Je(p)(Q), which is torsion by Theorem 3.12. Hence
je(x) = 0. We now use the fact that je is a formal immersion to deduce that x = ∞,
as in Step 4 of the proof of Theorem 3.4 (with 3 replaced by �). �

Remark 4.3. The importance of the Diophantine study of modular curves
described in Section 3 in the proof of Fermat’s Last Theorem, via Theorem 4.2,
cannot be overemphasised. It is sometimes underplayed in expositions of Fermat’s
Last Theorem, which tend to focus on the ingredients that were supplied later.

Thanks to Theorems 4.1 and 4.2, Fermat’s Last Theorem is now reduced to
the problem of “classifying” the irreducible two-dimensional mod p representations
satisfying the strong restrictions on ramification imposed by Theorem 4.1—or in
some sense, to make Theorem 1.1 precise for the class of extensions of Q arising
from such representations. The control we have over questions of this type (which
in general seem very hard) arises from the deep and largely conjectural connection
that is predicted to exist between Galois representations and modular forms.

4.3. Modular forms and Galois representations. Let f =
∑

n anq
n be a

newform in S2(N,C). Let Kf denote as before the finite extension of Q generated
by the Fourier coefficients of f , so that f belongs to S2(N,Kf ). The Fourier
coefficients of f belong to the ring Of of integers of Kf . Let p be a prime ideal of
Of and let Kf,p denote the completion of Kf at p.

Theorem 4.4. There exists a Galois representation

ρf,p : GQ −→ GL2(Kf,p)
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such that

(1) The representation ρf,p is unramified outside Np.
(2) The characteristic polynomial of ρf,p(Frob�) is equal to x2 − a�x+ �, for

all primes � not dividing p.
(3) The representation ρf,p is odd, i.e., the image of complex conjugation has

eigenvalues 1 and −1.

Sketch of proof. Let Af be the abelian variety quotient of J0(N) associ-
ated to f by the Eichler–Shimura construction (Theorem 3.6). Its endomorphism
ring EndQ(Af ) contains T/If , which is an order in Kf . In this way, the Galois
representation Vp(Af ) is equipped with an action of Kf ⊗Qp which commutes with
the action of GQ. Let

Vf,p = Vp(Af )⊗Kf
Kf,p.

It is a two-dimensional Kf,p-vector space, equipped with a continuous linear action
of GQ. The fact that it has the desired properties, particularly property (2), is a
consequence of the Eichler–Shimura congruence that was used to prove the equality
of L-series given in Theorem 3.10. See Chapter 2 of [Dar04] for further details and
references. �

4.4. Serre’s conjecture. Modular forms can also be used to construct two-
dimensional representations of GQ over finite fields. More precisely, let Of,p be the
ring of integers of Kf,p. Since GQ is compact and acts continuously on Vf,p, it pre-
serves an Of,p-stable sublattice V

0
f,p ⊂ Vf,p of rank two over Op,p. Let Fp := Of,p/p

be the residue field of Of at p. The action of GQ on the two-dimensional Fp-vector
space Wf,p := V 0

f,p/pV
0
f,p gives rise to a two-dimensional mod p representation

ρ̄f,p : GQ −→ GL2(Fp).

Like its p-adic counterpart, this representation is unramified outside of pN and also
satisfies parts 2 and 3 of Theorem 4.4.

In [Ser87], Serre associated to any two-dimensional Galois representation

(20) ρ : GQ −→ GL2(F)

with coefficients in a finite field F two invariants N(ρ) and k(ρ), called the Serre
conductor and Serre weight of ρ, respectively. The Serre conductor N(ρ) is only
divisible by primes distinct from the characteristic of F at which ρ is ramified. When
ρ = ρ̄f,p arises from a modular form, the Serre conductor N(ρ) always divides (but
is not necessarily equal to) the level N of f . In particular, using parts (a) and (b)
of Theorem 4.1, one can show that

(21) N(ρa,b,c) = 2.

The recipe for defining k(ρ) is somewhat more involved, but depends only on
the restriction of ρ to the decomposition group (in fact, the inertia group) at p.
It will suffice, for the purposes of this survey, to note that when ρ arises from the
p-division points of a finite flat group scheme over Zp, then Serre’s recipe gives
k(ρ) = 2. Hence, by part (c) of Theorem 4.1,

(22) k(ρa,b,c) = 2.

In [Ser87], Serre conjectured that any odd irreducible two-dimensional mod p
Galois representation ρ as in (20) necessarily arises from an appropriate modular
form mod p of weight k(ρ) and level N(ρ). This conjecture has recently been proved
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by Khare and Wintenberger (cf. Theorem 1.2 of [KW]) in the case where N(ρa,b,c)
is odd, and follows in the general case from a similar method, using a result of Kisin
[Kis].

Theorem 4.5. Let ρ be an odd, irreducible two-dimensional mod p representa-
tion of GQ. Then there exists an eigenform f of weight k(ρ) on Γ1(N(ρ)), and a
prime p|p of the field Kf such that ρ is isomorphic to ρ̄f,p as a representation of
GQ.

Proof of Fermat’s Last Theorem. Let (a, b, c) be a primitive nontrivial solution of
Fermat’s equation xp + yp = zp, and consider the Galois representation ρ = ρa,b,c
associated to the p-division points of the associated Frey curve. It follows from
Theorem 4.2 that ρ is an odd, irreducible mod p representation of GQ. Its Serre
conductor and weight are N(ρ) = 2 and k(ρ) = 2 by (21) and (22). Therefore
Theorem 4.5 implies the existence of a nontrivial cusp form in S2(2,C). This leads
to a contradiction, because there are no such cusp forms: the modular curve X0(2)
has genus zero and hence has no regular differentials. This contradiction implies
Fermat’s Last Theorem.

4.5. The Shimura–Taniyama conjecture. Historically, the proof of The-
orem 4.5 by Khare and Wintenberger came almost 10 years after Wiles proved
Fermat’s Last theorem. In essence, Wiles proved enough of Theorem 4.5 to cover
the Galois representations ρa,b,c arising from hypothetical solutions of Fermat’s
equation.

More precisely, the articles [Wil95] and [TW95] proved the following result,
known as the Shimura-Taniyama conjecture for semistable elliptic curves:

Theorem 4.6. Let E be a semistable elliptic curve over Q of conductor N .
Then there is a normalised eigenform f in S2(N,Z) such that Vp(E) is isomorphic
to Vp(Af ).

The proof of this theorem—or even an outline of its main ideas—is beyond
the scope of this survey. For details the reader is invited to consult [DDT94] for
example.

Theorem 4.6 implies that ρa,b,c arises from a modular form in S2(N,C), where
N =

∏
�|abc �. The Serre conjecture (Theorem 4.5) for ρa,b,c then follows from an

earlier theorem of Ribet (which also played an important role in Wiles’ original
approach to proving Theorem Theorem 4.6.)

Theorem 4.7. Suppose that p is odd. Let ρ be an irreducible mod p Galois
representation which arises from a modular form (of some weight and level). Then
it also arises from an eigenform of weight k(ρ) and level N(ρ).

Aside from the fact that it proves Fermat’s Last Theorem, the importance of
Theorem 4.6 can be justified on several other levels.

Firstly, the methods used to prove Theorem 4.6 were subsequently refined in
[BCDT01] to prove the full Shimura–Taniyama conjecture: all elliptic curves over
Q are modular. This result is of great importance in understanding the arithmetic
of elliptic curves over Q, as will be explained in more detail in the next section.

Secondly—and this is a theme that we will not begin to do justice to, because
it falls outside the scope of this survey—Wiles’ method for proving Theorem 4.6
has led to a general, flexible method for establishing relationships between Galois
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representations and modular forms. It was by building on these techniques that
Khare and Wintenberger proved Serre’s conjecture (Theorem 4.5). Over the years,
many other conjectures of this type have been proved building on the proof of The-
orem 4.6: for instance, special cases of Artin’s conjecture relating representations
with finite image to modular forms of weight one (cf. for example [Tay03] and the
references contained therein), and a proof of the Sato–Tate conjecture for elliptic
curves over Q in [Tay], [HSBT], and [CHT].

Closer to the themes that have been developed in this section, we mention a
natural generalisation of Theorem 4.6 concerning abelian varieties of GL2-type. An
abelian variety A over Q is said to be of GL2-type if EndQ(A)⊗Q contains a field
K with [K : Q] = dim(A). The reason for this terminology is that such an A gives
rise, for each prime ideal p of K, to a two-dimensional Galois representation

ρA,p : GQ −→ GL2(Kp)

arising from the action of GQ on Vp(A) ⊗K Kp. The abelian varieties Af arising
from the Eichler-Shimura construction are examples of abelian varieties of GL2-
type. A conjecture of Fontaine and Mazur predicts that all abelian varieties of
GL2-type arise as quotients of Jacobians of modular curves. It can be shown that
this generalisation of the Shimura-Taniyama conjecture follows from Theorem 4.5.
(Cf. for example [Ser87] or the introduction of [Kis].)

4.6. A summary of Wiles’ proof. There are some enlightening parallels to
be drawn between the proof of Fermat’s Last Theorem and Faltings’ proof of the
Mordell conjecture as summarised in Section 2.8. Like Faltings’ proof, the proof of
Fermat’s Last theorem is based on a sequence of maps, resulting in a sequence of
transformations leading from the original problem to questions about other types
of structures, such as Galois representations, and ultimately modular forms. These
reductions are summarised in the diagram below.⎧⎨

⎩
Integer solutions
(a, b, c) of
xp + yp = zp

⎫⎬
⎭ R1−→

⎧⎨
⎩

Semistable elliptic curves
of conductor N = abc
and discriminant 2−8(abc)2p

⎫⎬
⎭

R4−→

⎧⎨
⎩

Irreducible galois representations
ρ : GQ −→ GL2(Fp)
with N(ρ) = 2 and k(ρ) = 2.

⎫⎬
⎭

R5−→
{

Cusp forms in
S2(2,Z/pZ).

}
.

(1) The map R1 is defined via the Frey curve, and is reminiscent of the
Kodaira–Parshin construction of Section 2.2. An important difference
is that the set of primes of bad reduction of the Frey curve associated to
(a, b, c) is not bounded independently of (a, b, c). In fact, the set of primes
of bad reduction for E consists exactly of the primes that divide abc.

(2) The map R4 plays a role analogous to the passage to the �-adic representa-
tions in Faltings’ proof. An important difference here is that we consider
mod p representations (with coefficients in a finite field) rather than p-
adic representations. The justification for doing this is given by Theorem
4.1, which shows that the mod p representation ρ attached to Ea,b,c has
bounded ramification. Note that the corresponding p-adic representation
would be ramified precisely at the primes dividing pabc. It is an exercise
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to show that the map R4 is finite-to-one when p ≥ 7. (Hint: use Faltings’
Theorem 2.1, and the fact that X(p) has genus > 1 when p ≥ 7.) It is
even believed that R4 is injective once p is large enough (cf. Conjecture
3.18), but this assertion is still unproved.

(3) The map R5 is a new ingredient that has no counterpart in Faltings’
proof of Mordell’s conjecture, and exploits the deep “dictionary” that is
expected to exist between Galois representations and modular forms—in
this case, the Serre conjecture proved by Khare and Wintenberger.

(4) The final step in the argument exploits the fact that there are no modular
forms of weight two and level two. This last point may seem like a “lucky
accident” in the proof of Fermat’s Last Theorem. Indeed the presence
of modular forms of higher level presents an obstruction for the method
based on Frey curves to yield results on more general ternary Diophan-
tine equations of Fermat type. However, see the article by Charollois in
this volume [Chab], where a refinement of the techniques described in
this section leads to a strikingly general result on the generalised Fermat
equation axp + byp + czp = 0.

Remark 4.8. One of the consequences of Conjecture 3.18 is that the generalised
Fermat equation axn + byn + czn = 0 (with a, b, c fixed) has no primitive integer
solutions (x, y, z) with xyz 	= 0,±1, once n is large enough. (The reader who
masters the ideas in the article by Pierre Charollois in this proceedings volume will
be able to prove this assertion.)

5. Elliptic curves

After surveying curves of genus > 1, we turn our attention to curves of genus
1. A projective curve of genus 1 over a field K, equipped with a distinguished K-
rational point over that field, is endowed with a natural structure of a commutative
algebraic group over K for which the distinguished element becomes the identity.
Such a curve is called an elliptic curve.

If E is an elliptic curve defined over a number field K, then the Mordell–Weil
Theorem (cf. Theorem 7 of the introduction) asserts that the group E(K) of K-
rational points on E is finitely generated. Let r(E,K) denote the rank of this
finitely generated abelian group. Many of the important questions in the theory
of elliptic curves revolve around calculating this invariant, and understanding its
behaviour as E or K vary.

Question 5.1. Is there an effective algorithm to calculate r(E,K), given E
and K?

Showing that Fermat’s method of descent yields such an effective algorithm is
intimately connected to the Shafarevich–Tate conjecture asserting the finiteness of
the Shafarevich–Tate group LLI(E/K) of E/K.

One can also fix a base field (the most natural, and interesting, case being the
case where K = Q) and ask

Question 5.2. Is the rank r(E,K) unbounded, as E ranges over all elliptic
curves defined over K?

One can also fix an elliptic curve E and enquire about the variation of r(E,K)
as K ranges over different number fields.
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The main tool available at present to study r(E,K) is the relationship between
the rank and the Hasse–Weil L-series predicted by the Birch and Swinnerton-Dyer
conjecture (Conjecture 3.9).

Assume that E is an elliptic curve over Q. Thanks to Theorem 4.6 (and its
extension to all elliptic curves over Q given in [BCDT01]), the Hasse–Weil L-series
L(E, s) is equal to L(f, s) for some newform f of weight two. In particular, L(E, s)
has an analytic continuation to the entire complex plane, and a functional equation.

The main result we will discuss in this section is the following:

Theorem 5.3. Let E be an elliptic curve over Q, and let L(E, s) be its Hasse–
Weil L-series. If r := ords=1L(E, s) ≤ 1, then r(E,Q) = r and LLI(E/Q) is
finite.

5.1. Modular parametrisations. Let E be an elliptic curve over Q of con-
ductor N . Recall the modular curve X0(N) that was introduced in Section 3.1.
The following theorem, which produces a dominant rational map from such a curve
to E, plays a crucial role in the proof of Theorem 5.3.

Theorem 5.4. There exists a nonconstant map of curves over Q

ϕ : X0(N) −→ E.

Proof. By Theorem 4.6, there is a normalised eigenform f in S2(N,Z) satis-
fying L(E, s) = L(f, s). Let Af be the quotient of J0(N) associated to f via the
Eichler–Shimura construction. By assumption, the Galois representations Vp(E)
and Vp(Af ) are isomorphic. Hence the isogeny conjecture (Theorem 2.18) implies
the existence of an isogeny α : Af −→ E defined over Q. Composing such an
isogeny with the natural surjective morphism J0(N) −→ Af gives a nonconstant
map Φ : J0(N) −→ E. The modular parametrisation ϕ is defined by setting
ϕ(x) := Φ((x)− (∞)). �

It is useful to describe briefly how the modular parametrisation ϕ can be com-
puted analytically. The pullback ϕ∗(ωE) is a nonzero rational multiple of the
differential form

ωf := 2πif(τ )dτ =
∞∑

n=1

anq
n dq

q
.

Denote by Λf the collection of periods of ωf (integrals of ωf against smooth closed
one-chains C in X0(N)(C)):

Λf :=

{∫
C

ωf , where ∂C = 0

}
.

It is a lattice in C, and Af (C) � C/Λf . Let us replace E by Af , so that α = 1. It
is suggestive (for later generalisations) to view ϕ as a map

ϕ : Div0(X0(N)) −→ E.

This map is defined on Div0(X0(N)(C)) by the rule

(23) ϕ(∆) :=

∫
C

ωf (mod Λf ),

where the integral is taken over any smooth one-chain C whose boundary is ∆.
The invariant ϕ(∆) ∈ C/Λf is viewed as a point on E(C) via the Weierstrass
uniformisation.
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5.2. Heegner points. Perhaps the most important arithmetic application of
the modular parametrisation arises from the fact that X0(N) is endowed with a
systematic supply of algebraic points defined over abelian extensions of imaginary
quadratic fields—the so-called CM-points. These points correspond, in the moduli
interpretation of X0(N), to pairs (A,C) where A is an elliptic curve whose endo-
morphism ring O = End(A) is an order in a quadratic imaginary field K. Such an
elliptic curve is said to have complex multiplication by K, and the corresponding
points on X0(N) are called CM-points attached to K. Let CM(K) denote the set
of all CM points in X0(N) attached to K. It satisfies the following properties.

(1) The set CM(K) is dense in X0(N)(C) (relative to the Zariski topology,
and also the complex topology).

(2) Let Kab denote the maximal abelian extension of K. Then CM(K) is
contained in X0(N)(Kab).

(3) Analytically, CM(K) = Γ0(N)\(H ∩K).

Definition 5.5. The collection of points

HP(K) := {ϕ(∆)}∆∈Div0(CM(K)) ⊂ E(Kab)

is called the system of Heegner points on E attached to K.

The usefulness of Heegner points arises from two facts:

(1) They can be related to L-series, thanks to the theorem of Gross–Zagier
and its generalisations.

(2) They can be used to bound Mordell–Weil groups and Shafarevich–Tate
groups of elliptic curves, following a descent method that was discovered
by Kolyvagin.

Heegner points and L-series.
For simplicity, suppose that the imaginary quadratic field K satisfies the fol-

lowing so-called Heegner hypothesis:

Hypothesis 5.6. There exists a ideal N of norm N in OK with cyclic quotient.

This hypothesis is used to construct a distinguished element in HP(K). More
precisely, let h denote the class number of K, and let H be its Hilbert class field. By
the theory of complex multiplication, there are precisely h distinct (up to isomor-
phism over C) elliptic curves A1, . . . , Ah having endomorphism ring equal to OK .
The j-invariants of these curves belong to H, and are permuted simply transitively
by the action of Gal(H/K). It is therefore possible to choose A1, . . . , Ah in such a
way that they are defined over H, and permuted by the action of Gal(H/K).

The pairs (Ai, Ai[N ]) (with 1 ≤ i ≤ h) correspond to points Pi in X0(N)(H).
Let

(24) PK := ϕ((P1) + · · ·+ (Ph)− h(∞)) ∈ E(K).

The fact that the point PK has an explicit moduli description makes it possible to
establish some of its key properties. For example, let P̄K denote the image of PK

under complex conjugation. Then it can be shown that

(25) P̄K = wPK (mod E(K)tors),
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where w ∈ {±1} is the negative of the sign in the functional equation for L(E, s) =
L(f, s). (Cf. Chapter 3 of [Dar04].) This provides a simple connection between
the behaviour of PK and the L-series L(E, s).

We note that, in many cases where Hypothesis 5.6 is satisfied (for example,
when all the primes dividing N are split in the quadratic imaginary field K), the
sign in the functional equation for the Hasse–Weil L-series L(E/K, s) is −1, so that
L(E/K, 1) = 0. It then becomes natural to consider the first derivative L′(E/K, 1)
at the central critical point. The following theorem of Gross and Zagier establishes
an explicit link between PK and this quantity.

Theorem 5.7. Let 〈f, f〉 denote the Petersson scalar product of f with itself,
and let h(PK) denote the Néron–Tate canonical height of PK on E(K). There is
an explicit nonzero rational number t such that

(26) L′(E/K, 1) = t · 〈f, f〉 · h(PK).

In particular, the point PK is of infinite order if and only if L′(E/K, 1) 	= 0.

The proof of Theorem 5.7 given in [GZ86] proceeds by a direct calculation in
which both sides of (26) are computed explicitly, compared, and found to be equal.

Remark 5.8. Let Pn be a point in CM(K) corresponding to an elliptic curve
with endomorphism ring equal to the order On of conductor n in K. Such a point
can be defined over the ring class field Hn of K of conductor n, whose Galois group
Gn := Gal(Hn/K) is canonically identified with the class group Pic(On) by class
field theory. If χ : Gn −→ C× is a complex character, one can generalise (24) to
define

(27) Pχ := ϕ

( ∑
σ∈Gn

χ(σ)P σ
n

)
∈ E(Hn)⊗C.

A generalisation of Theorem 5.7 due to S. Zhang (cf. for example [Zha01b],
[Zha01a], [How] and [How07]) relates the height of Pχ to the derivative of the
twisted L-series L(E/K,χ, s) at s = 1.

When L′(E/K, 1) 	= 0, the method of Heegner points gives an efficient method
for producing a point of infinite order in E(K). The following proposition asserts
the existence of many K for which the L-series does not vanish.

Proposition 5.9. Suppose that r := ords=1L(E, s) ≤ 1. Then there exist
infinitely many imaginary quadratic fields K satisfying Hypothesis 5.6 for which

ords=1(L(E/K, s)) = 1.

The proof of this proposition is explained in [MM97].

Heegner points and arithmetic: Kolyvagin’s descent
Theorem 5.7 implies that if L′(E/K, 1) 	= 0, then PK is of infinite order and

hence r(E,K) ≥ 1. The following theorem of Kolyvagin gives a bound in the other
direction as well.

Theorem 5.10 (Kolyvagin). Suppose that PK is of infinite order in E(K).
Then r(E,K) = 1, and LLI(E/K) is finite.
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For a proof of this theorem, see [Gro91] or Chapter 10 of [Dar04]. Let us
just mention here that Kolyvagin’s proof makes essential use of the fact that the
point PK does not come alone, but rather is part of a norm-compatible system of
points in E(Kab) arising from the (infinite) collection of points in HP(K). These
points are used to construct global cohomology classes in H1(K,E[p]) whose local
behaviour can be controlled precisely and related to PK . Under the assumption
that PK is of infinite order, this system of ramified cohomology classes is enough
to bound the p-Selmer group of E/K and show that r(E,K) = 1.

5.3. Proof of Theorem 5.3. We will now explain how the properties of PK

and HP(K) described in the previous section can be combined to prove Theorem
5.3:

Proof of Theorem 5.3. Assume that r ≤ 1. By Proposition 5.9, there is an
imaginary quadratic field K satisfying Hypothesis 5.6, for which

ords=1(L(E/K, s)) = 1.

Fix such a K, and consider the point PK . Since L′(E/K, 1) 	= 0, Theorem 5.7
implies that PK is of infinite order. Theorem 5.10 then shows that

r(E,K) = 1, and LLI(E/K) is finite.

Let E′ denote the quadratic twist of E over K. We then have

1 = r(E,K) = r(E,Q) + r(E′,Q).

To be able to ignore finer phenomena associated to torsion in E(K), it is convenient
to replace PK by its image in E(K)⊗Q. Since E(K)⊗Q is generated by PK , it
follows that

r(E,Q) =

{
0 if P̄K = −PK ,
1 if P̄K = PK .

Theorem 5.3 now follows from (25). �

Remark 5.11. The proof of Theorem 5.3 carries over with only minor changes
when E is replaced by the abelian variety quotient Af attached to an arbitrary
eigenform f of weight 2 on Γ0(N). This is how Theorem 3.11 is proved:

L(Af , 1) 	= 0 =⇒ Af (Q) is finite.

The reader will recall the key role played by this theorem in the proof of Theo-
rem 3.1 and (even more importantly) in Merel’s proof of the uniform boundedness
conjecture for elliptic curves explained in Marusia Rebolledo’s article in these pro-
ceedings.

5.4. Modularity of elliptic curves over totally real fields. Because of
the crucial role played by the system HP(K) in the proof of Theorem 5.3, it is
natural to ask whether such structures are present in more general settings. For
example, we would like to prove analogues of Theorem 5.3 for elliptic curves defined
over number fields other than Q. The class of number fields for which this program
is best understood is the class of totally real fields.

More precisely, let F be a totally real field of degree n, and let E be an elliptic
curve over F , of conductor N . Assume, for simplicity, that F has narrow class
number one, so that in particular the conductor can now be viewed as a totally
positive element of OF rather than just an ideal.
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The group Γ0(N ;OF ) ⊂ SL2(OF ) is defined as the group of matrices that are
upper triangular modulo N . The n distinct real embeddings v1, . . . , vn : F −→ R
of F allow us to view Γ0(N ;OF ) as a subgroup of SL2(R)n. This subgroup acts
discretely on the product Hn, and the analytic quotient Γ0(N ;OF )\Hn represents
the natural generalisation of modular curves to this setting:

(1) This quotient is identified with the complex points of an n-dimensional
algebraic variety Y0(N ;OF ) defined over F . This variety can be com-
pactified by adjoining a finite set of cusps, much as in the setting n = 1
of classical modular curves. A suitable desingularisation of the resulting
projective variety is denoted X0(N ;OF ), and is called a Hilbert modular
variety. Hilbert modular varieties are basic examples of higher dimen-
sional Shimura varieties.

(2) The variety X0(N ;OF ) is equipped with natural Hecke correspondences
Tλ indexed by the prime ideals of OF .

(3) These correspondences induce linear actions on the n-th deRham coho-
mology Hn

dR(X0(N ;OF )), and the eigenvalues of the Hecke operators are
expected to encode the same type of arithmetic information as in the case
where F = Q.

To amplify this last point and make it more precise, we state the following gener-
alisation of the Shimura–Taniyama conjecture to elliptic curves over F :

Conjecture 5.12. Let E be an elliptic curve over F of conductor N . There
exists a closed (in fact, holomorphic) differential form ω ∈ Hn

dR(X0(N ;OF )) satis-
fying

Tλ(ω) = aλ(E)ω,

for all primes λ � N of OF .

Remark 5.13. In some cases, the methods of Wiles for proving the modularity
of elliptic curves over Q have been extended to the setting of elliptic curves over
totally real fields, and many cases of Conjecture 5.12 can be made unconditional.

5.5. Shimura curves. When n > 1, the holomorphic differential form ω
whose existence is predicted by Conjecture 5.12 cannot be used to directly produce
an analogue of the modular parametrisation. In this sense, there is no immediate
generalisation of Theorem 5.4, which plays such a crucial role in the construction
of HP(K) when n = 1.

To extend the notion of Heegner points, it is necessary to introduce another
generalisation of modular curves: the so-called Shimura curves associated to certain
quaternion algebras over F .

A quaternion algebra B over F is said to be almost totally definite if

B ⊗v1 R � M2(R), B ⊗vj R � H, for 2 ≤ j ≤ n.

We can associate to any order R in B a discrete subgroup

Γ := v1(R
×) ⊂ SL2(R),

which acts discretely on H by Möbius transformations. When F = Q and B =
M2(Q) is the split quaternion algebra, one recovers the analytic description of the
modular curves X0(N). Otherwise, the analytic quotient Γ ⊂ H is a compact
Riemann surface which can be identified with the complex points of an algebraic
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curve X possessing a canonical model over F . The curve X can be related (fol-
lowing a construction of Shimura) to the solution of a moduli problem and is also
equipped with a supply CM(K) ⊂ X(Kab) of CM points, associated this time to
any quadratic totally imaginary extension K of F .

An elliptic curve E over F is said to be arithmetically uniformisable if there is
a nonconstant map defined over F , generalising Theorem 5.4,

ϕ : Div0(X) −→ E.

The theory of Jacquet–Langlands gives a precise (partly conjectural) understanding
of the class of elliptic curves that should be arithmetically uniformisable:

Theorem 5.14. Let E be an elliptic curve over F which is not isogenous to
any of its Galois conjugates. Then E is arithmetically uniformisable if

(1) E is modular in the sense of Conjecture 5.12;
(2) E has potentially semistable reduction at a prime of F , or can be defined

over a field F of odd degree.

The collection HP(K) := ϕ(Div0(CM(K))) ⊂ E(Kab), for suitable totally
complex quadratic extensions K/F , can be used to obtain results analogous to
Theorem 5.3 for elliptic curves over totally real fields. See [Zha01b] where general
results in this direction are obtained.

The articles [Voi] and [Greb] in this volume describe Shimura curves and
the associated parametrisations in more detail, from a computational angle. The
article [Voi] discusses explicit equations for Shimura curves of low degree, and
[Greb] explains how to approach the numerical calculation of the systems HP(K)
of Heegner points via p-adic integration of the associated modular forms, exploiting
the theory of p-adic uniformisation of these curves due to Cherednik and Drinfeld.

5.6. Stark–Heegner points. Heegner points arising from Shimura curve
parametrisations do not completely dispel the mystery surrounding the Birch and
Swinnerton-Dyer conjecture for (modular) elliptic curves over totally real fields,
since (even assuming the modularity Conjecture 5.12) there remain elliptic curves
over F that are not arithmetically uniformisable.

The simplest example of such an elliptic curve is one that has everywhere good
reduction over a totally real field F of even degree, and is not isogenous to any of
its Galois conjugates. (More generally, one can also consider any quadratic twist of
such a curve.) For these elliptic curves, there is at present very little evidence for the
Birch and Swinnerton-Dyer conjecture, and in particular the analogue of Theorem
5.3 is still unproved when ords=1L(E/F, s) = 1. (In the case where L(E/F, 1) 	= 0,
see the work of Matteo Longo [Lon06].)

The notion of Stark–Heegner points represents an attempt to remedy this sit-
uation (albeit conjecturally) by exploiting the holomorphic differential n-form ω
whose existence is predicted by Conjecture 5.12 rather than resorting to a Shimura
curve parametrisation. We note that the holomorphic form ω can be written

ω = f(τ1, . . . , τn)dτ1 · · · dτn,
where f is a (holomorphic) Hilbert modular form of parallel weight 2 on Γ0(N),
satisfying, for all matrices

(
a b
c d

)
∈ Γ0(N),

f

(
a1τ1 + b1
c1τ1 + d1

, . . . ,
anτn + bn
cnτn + dn

)
= (c1τ1 + d1)

2 · · · (cnτn + dn)
2f(τ1, . . . , τn).
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We let any unit ε ∈ O×
F act on Hn by the rule:

ε � τj =

{
εjτj if εj > 0;
εj τ̄j if εj < 0.

For any subset S ⊂ {2, . . . , n} of cardinality m, we can then define a closed differ-
ential n-form of type (n −m,m) by choosing a unit ε of O×

F which is negative at
the places of S, and positive at the other embeddings, and setting

ωS = f(ε � τ1, . . . , ε � τn)d(ε � τ1) . . . d(ε � τn).

Finally we set

ωE :=
∑

S⊂{2,...,n}
ωS .

The following conjecture is due to Oda [Oda82].

Conjecture 5.15. The set of periods

Λf :=

{∫
C

ωE for C ∈ Hn(X0(N,F )(C),Z)

}
⊂ C

is a lattice which is commensurable with the period lattice of E1 := v1(E).

Conjecture 5.15 can be used to define a generalisation of the modular parametri-
sation of equation (23). This map is defined on homologically trivial (n− 1)-cycles
on X0(N ;OF )(C) by the rule

(28) ϕ(∆) :=

∫
C

ωE (mod Λf ), where ∂C = ∆.

The interest of this generalisation of (23) is that it is possible to define a collection of
distinguished topological (n− 1)-cycles on which ϕ is conjectured to take algebraic
values.

These cycles, which play the same role that Heegner divisors of degree zero
played in the case where n = 1, are defined in terms of certain quadratic extensions
K of F . Such a quadratic extension is said to be almost totally real if

K ⊗v1 R � C, K ⊗vj R � R⊕R for 2 ≤ j ≤ n.

Let ι : K −→ M2(F ) be an F -algebra embedding, and let K×
1 be the group of

elements whose norm to F is equal to 1. The torus v1(ι(K
×
1 )) acts on H with a

unique fixed point τ1, and ι(K×
1 ) acts on the region {τ1} × Hn−1 without fixed

points. The orbit of any point in this region under the action of ι((K ⊗F R)×1 )
is a real (n − 1)-dimensional manifold Zι ⊂ {τ1} × Hn−1 which is homeomorphic
to Rn−1. The group Gι := ι(K×) ∩ Γ0(N,OF ) is an abelian group of rank n − 1,
corresponding to a finite index subgroup of the group of relative units in K/F .
Consider a fundamental region for the action of Gι on Zι. The image ∆ι of such a
region in the Hilbert modular variety X0(N ;OF ) is a closed (n− 1)-cycle, which is
topologically isomorphic to a real (n− 1)-dimensional torus.

Conjecture 5.16. Assume that ∆ι is homologically trivial. Then the point
ϕ(∆ι) ∈ E1(C) is an algebraic point, and is in fact the image of a point in E(Kab)
under any embedding Kab −→ C extending v1 : F −→ R.
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Remark 5.17. The original formulation of Conjecture 5.16 given in [DL03] was
phrased in terms of group cohomology. The definition of ϕ(∆ι) used in Conjecture
5.16, which suggests an analogy between ϕ and higher Abel-Jacobi maps, was
formulated only later, in [CD08] (in a context where cusp forms are replaced by
Eisenstein series; the elements ϕ(∆ι) can then be related to Stark units). The
equivalence between Conjecture 5.16 and the main conjecture of [DL03] is explained
in [CD08].

Conjecture 5.16 can be formulated more precisely, in a way that makes a pre-
diction about the fields of definition of the points ϕ(∆ι). It is expected that the
system of points

HP(K) := {ϕ(∆ι)}ι:K−→M2(F ),

as ι ranges over all possible embeddings, gives rise to an infinite collection of alge-
braic points in E(Kab) with properties similar to those of the system of Heegner
points defined in Section 5.2. Such a system of points (if its existence, and basic
properties, could be established, a tall order at present!) would lead to a proof of
Theorem 5.3 for all (modular) elliptic curves defined over totally real fields, not
just those that are arithmetically uniformisable.

For more details on Conjecture 5.16, a more precise formulation, and numerical
evidence, see Chapter 8 of [Dar04], or [DL03]. For an explanation of the relation
between Conjecture 5.16 and the conjectures of [DL03], see [CD08].

The Stark-Heegner points attached to Hilbert modular forms that were defined
and studied in [DL03] and [CD08] can be viewed as the basic prototype for the
general notion of Stark-Heegner points. Here are some further variants that have
been explored so far in the literature:

(1) If E is an elliptic curve over Q of conductor N = pM with p � M , a p-
adic analogue of the map ϕ of equation (28)—described in terms of group
cohomology rather than singular cohomology, following the same approach
and in [DL03]—is defined in [Dar01], by viewing E as uniformised by
the “mock Hilbert surface”

Γ0(M ;Z[1/p])\(Hp ×H),

where Hp := Cp−Qp is the p-adic upper half plane, and Γ0(M ;Z[1/p]) is
the group of matrices in SL2(Z[1/p]) which are upper-triangular modulo
M . The resulting map ϕ associates a point in Pι ∈ E(Q̄p) to any embed-
ding ι : K −→ M2(Q) when K is a real quadratic field in which p is inert.
The system {Pι} ⊂ E(Q̄p), as ι ranges over all embeddings of K into
M2(Q), is expected to yield a system of points in E(Kab) with the same
properties as the Heegner points attached to an imaginary quadratic base
field. This construction is not expected to yield new cases of the Birch
and Swinnerton-Dyer over the base field Q—this conjecture is completely
known when ords=1L(E, s) ≤ 1, thanks to Theorem 5.3. However, it
would give new cases of this conjecture over certain abelian extensions
of real quadratic fields, and, more importantly perhaps, it suggests an
explicit analytic construction of class fields of real quadratic fields. For
more details on Stark-Heegner points attached to real quadratic fields, see
[Dar01] or Chapter 9 of [Dar04]. The article [DP06] describes efficient
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algorithms for calculating the points ϕ(∆ι), and uses them to gather nu-
merical evidence for the conjectures of [Dar01], while [BD] provides some
theoretical evidence.

(2) The article [Tri06] formulates and tests numerically a Stark–Heegner con-
struction that leads to conjectural systems of algebraic points on elliptic
curves defined over a quadratic imaginary base field. The details of the
construction of [Tri06] are explained in the article [Grea] by Matt Green-
berg in this proceedings volume. We remark that there is not a single
example of an elliptic curve E genuinely defined over such a field (i.e.,
which is not isogenous to its Galois conjugate) for which Theorem 5.3 (or
even just the Shafarevich–Tate conjecture) has been proved.
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Abstract. We prove a finiteness result about the set of primitive solutions of
the generalized Fermat equation xp + yq = zr when 1/p+ 1/q + 1/r < 1.
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1. The main result

This Chapter gives some finiteness results for the set of primitive solutions of
the generalized Fermat equation

xp + yq = zr(1)

where the exponents p, q, r satisfy the inequality 1/p + 1/q + 1/r < 1. The very
special ‘shape’ of the surface defined by (1) allows us to use some geometry to
reduce its study to the study of non-abelian unramified covers of P1\{0, 1,∞} of
signature (p, q, r) in the sense of Definition 1.1. Therefore the study of the arith-
metic of equation (1) can be transferred to the setting of algebraic curves. The
main ingredients in the proof are a variant of the Chevalley-Weil theorem, and the
finiteness theorems of Hermite-Minkowski and Faltings. This finiteness result for
(1) which was proved in [DG95] can be viewed as an illustrative special case of the
Campana program which was presented in Dan Abramovich’s lecture series at this
summer school.

The author would like to thank Henri Darmon for a careful proofreading of this
article which led to many improvements.

A solution (a, b, c) ∈ Z3 of (1) is called nontrivial if abc �= 0 and primitive if
gcd(a, b, c) = 1. When the exponents p, q and r are pairwise coprime, the following
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exercise shows that (1) has infinitely many nontrivial but not necessarily primitive
solutions.
Exercise 1 Let p, q and r be pairwise coprime. Show that the affine surface defined
by xp + yq = zr in A3

Q is rational, i.e., the quotient field of Q[x, y, z]/(xp + yq − zr)
is purely transcendental of degree 2 over Q.

From now on we are only interested in studying the set of nontrivial primitive
solutions of (1). The study of (1) can be split into three cases:

(1) The spherical case: 1/p+ 1/q + 1/r > 1. The possibilities are {p, q, r} =
{2, 2, k} with k ≥ 2, {2, 3, 3},{2, 3, 4} and {2, 3, 5}.

(2) The Euclidean case: 1/p+1/q+1/r = 1. The possibilities are {p, q, r} =
{3, 3, 3}, {2, 4, 4} and {2, 3, 6}.

(3) The hyperbolic case: 1/p+ 1/q + 1/r < 1.

This division is reminiscent of the classification of algebraic curves which also falls
into 3 cases depending on the genus or the sign of the Euler characteristic. Here is
the main theorem that we wish to prove.

Theorem 1.1. (Darmon, Granville) If 1/p+ 1/q+ 1/r < 1 then (1) has only
finitely many nontrivial primitive solutions.

Note that the statement of this theorem concerns the existence of integral points
on a surface. We would like to reduce the study of integral solutions of (1) to the
study of K-rational points on an auxiliary projective curve X/K where K is a
suitable number field. We consider the map

{Set of nontrivial primitive solutions of equation (1)} → P1(Q) ⊆ P1(C)

(a, b, c) �→ ap

cr
,

which allows us to reduce the study of (1) to the study of certain branched coverings
of P1(C). We define the set

Σp,q,r :=

{
ap

cr
∈ Q : ap + bq = cr, abc �= 0, gcd(a, b, c) = 1

}
⊆ P1(Q).

Exercise 2 Show that #Σp,q,r < ∞ if and only if (1) has finitely many primitive
solutions.

Now let us explain the main ideas of Theorem 1.1.
Proof of Theorem 1.1 We want to show that the set of nontrivial primitive
solutions of (1) is finite. By Exercise 2, it is enough to show that Σp,q,r is finite
when 1/p+ 1/q + 1/r < 1. The proof can be broken into four steps.
First step: The existence of a Galois branched covering.

Definition 1.1. A Galois covering π : X → P1 is said to be of signature (p, q, r)
if its ramification indices above 0, 1 and ∞ are equal to p, q and r respectively, and
if π is unramified everywhere else.

The first stage of the proof consists in constructing a Galois covering of P1

of signature (p, q, r) defined over a suitable number field K and Galois over that
field (The construction of such a cover will be done in detail in Section 2). The
Riemann-Hurwitz formula then determines the genus g(X) of X in terms of the
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degree d of π :

2g(X)− 2 = d(2g(P1(C))− 2) +
d

p
(p− 1) +

d

q
(q − 1) +

d

r
(r − 1)

= d(1− 1/p− 1/q − 1/r).

Since 1− 1/p− 1/q − 1/r > 0 we conclude that g(X) > 1.

Second step: A Chevalley-Weil theorem for branched coverings.
Given t ∈ P1(K), let Lt be the smallest field of definition of the closed points

in π−1(t). As is explained in Section 3, the field Lt is a Galois extension of K
with Galois group isomorphic (non-canonically) to a subgroup of Gal(X/P1). The
Chevalley-Weil theorem for branched coverings (see Theorem 3.2) shows that the
ramification of Lt, for t ∈ Σp,q,r, is bounded independently of t, in light of the
following elementary property of Σp,q,r:

Lemma 1.1. Let t = ap

cr ∈ Σp,q,r; then for all prime numbers � we have

(1) v�(Numerator(t)) ≡ 0 (mod p),
(2) v�(Numerator(t− 1)) ≡ 0 (mod q),
(3) v�(Numerator( 1t )) ≡ 0 (mod r),

where for x ∈ Q, v�(x) stands for the valuation of x at the prime �.

Note that the proof of Lemma 1.1 uses in a crucial way the primitivity of the
solution (a, b, c) corresponding to t = ap

cr and the fact that t− 1 = − bq

cr .
Third step: Hermite-Minkowski.

By the Hermite-Minkowski theorem (cf. Theorem 1.1 in Section 1.1 of [Dar])
the compositum L of all the number fields Lt, for t ∈ Σp,q,r, is a finite extension of
K.
Fourth step: Faltings’ Theorem.

By definition of L we have π−1(Σp,q,r) ⊆ X(L). Since g(X) > 1, we deduce by
Faltings’ theorem that X(L) is a finite set and therefore π−1(Σp,q,r) and Σp,q,r are
also finite sets. This concludes the sketch of the proof of Theorem 1.1. �

Remark 1.1. The conclusion of Theorem 1.1 remains the same if we replace the
equation xp + yq = zr by the more general equation Axp +Byq = Czr for nonzero
fixed integers A,B and C. For a further discussion of the equationAxp+Byq = Czr,
see [DG95].

Remark 1.2. In some special cases, for example when (p, q, r) = (n, n, n) with
n ≥ 3 we know by the work of Wiles and Taylor (see [Wil95] and [TW95]) that
(1) has no nontrivial solutions. Using similar techniques, Darmon and Merel (see
[Dar00] and [DM97]) could also treat the case (p, p, r) where r = 2 or 3 and p is
a prime number larger than or equal to 6− r to conclude that (1) has no nontrivial
primitive solutions.

For the rest of the paper, we would like first to explain in detail the construction
of the auxiliary branched covering (XK , π,P1

K) of signature (p, q, r) above {0, 1,∞}
which was needed in the first step of the proof of Theorem 1.1. Secondly, we would
like to give a more detailed discussion about the variant of the Chevalley-Weil
theorem that we have used to control the ramification of the number field Lt over
K for the special elements t ∈ Σp,q,r. We won’t say anything about Steps 3 and 4,
which are discussed in [Dar]. Sections 2 and 3 are devoted to a discussion of Steps
1 and 2 respectively.



58 HUGO CHAPDELAINE

2. Construction of the branched covering

In this section we will use the theory of Riemann surfaces in order to construct
certain analytic Galois branched coverings over P1(C) unramified outside {0, 1,∞}.

For every triple of integers (p, q, r) with p, q, r ≥ 2 we define the Hecke triangle
group by the abstract presentation

Γp,q,r := 〈γ0, γ1, γ∞|γp
0 = γq

1 = γr
∞ = γ0γ1γ∞ = 1〉.

It is convenient to allow the exponents p, q and r to be infinite, which will be taken
to mean that the order of the corresponding element is infinite.

One has that π1(P
1(C)\{0, 1,∞}) � Γ∞,∞,∞ = 〈l0, l1, l∞|l0l1l∞ = 1〉, which is

isomorphic to the free group on two generators. We have the short exact sequence

1 → Np,q,r → Γ∞,∞,∞
ϕ→ Γp,q,r → 1,

where ϕ(l0) = γ0, ϕ(l1) = γ1 and Np,q,r = ker(ϕ). The universal covering space of
P1(C)\{0, 1,∞}) is the upper half-plane, see for example Theorem 6.4.3 of [Ser92].
Let us denote by

θ : H → P1(C)\{0, 1,∞}(2)

a choice of such a universal covering map. From the theory of covering spaces
one has a (non-canonical) isomorphism between the group of deck transforma-
tions of (2) and the fundamental group of P1(C)\{0, 1,∞}); see for example §80
of [Mun00]. Such an isomorphism allows us to define an action of Γ∞,∞,∞ �
π1(P

1(C)\{0, 1,∞}) on H. From this, one may deduce the following diagram:

H
θ1

��
θ

��

U := H/Np,q,r

θ2

��
P1(C)\{0, 1,∞} � H/Γ∞,∞,∞

where θ1 (resp. θ2) is the covering map induced by the action of Np,q,r on H (resp.
Γ∞,∞,∞/Np,q,r on U).

Note that U is a connected Riemann surface such that π1(U) � Np,q,r and
that θ2 is a Galois covering map with Galois group isomorphic to Γ∞,∞,∞/Np,q,r �
Γp,q,r. One can show that θ2 is of finite degree if and only if 1/p+1/q+1/r > 1 (see
Exercise 4). Since in our setting we work under the assumption that 1/p + 1/q +
1/r < 1 we see that in this case the map θ2 is never of finite degree. The pair (U, θ2)
is universal among all Galois coverings over P1(C)\{0, 1,∞} of signature (p, q, r) in
the following sense: Let π : X → P1(C) be a Galois branched covering unramified
outside {0, 1,∞} with ramification index p above 0, q above 1 and r above ∞. Then

π factors through θ2, i.e., there exists a covering map θ̃2 : U → X\π−1({0, 1,∞})
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which makes the following diagram commutative:

U

θ2

��

˜θ2����������������

X\π−1({0, 1,∞})
π

��������������

P1(C)\{0, 1,∞}

Note that θ̃2 is onto and unramified since all the ramification happens already in
π. Let us assume that π is finite of degree d; then, in this case, X is a compact
Riemann surface. Using the Riemann-Hurwitz formula one gets that

2g(X)− 2 = d(2g(P1(C))− 2) +
d

p
(p− 1) +

d

q
(q − 1) +

d

r
(r − 1)

= d(1− 1/p− 1/q − 1/r).

We thus see that

(1) g(X) = 0 if 1/p+ 1/q + 1/r > 1,
(2) g(X) = 1 if 1/p+ 1/q + 1/r = 1,
(3) g(X) ≥ 2 if 1/p+ 1/q + 1/r < 1.

Again using Theorem 6.4.3 of [Ser92], one may deduce that the universal covering
space of X is P1(C) if 1/p + 1/q + 1/r > 1, C if 1/p + 1/q + 1/r = 1, and H if
1/p+ 1/q + 1/r < 1. This explains the trichotomy for the study of (1).

We would like to give a geometrical realization of the universal pair (U, θ2)
in the case where 1/p + 1/q + 1/r < 1. This will be used to understand the set
of elliptic elements of Γp,q,r (see Exercise 3). Since 1/p + 1/q + 1/r < 1, there
exists a hyperbolic triangle in the Poincaré unit disc with angles π/p, π/q, π/r; see
Figure 1. Let σP be the symmetry with respect to the geodesic passing through

R’

P

Q

R

Q’

π/p

π/q

π/r

Figure 1. Hyperbolic triangle inside the Poincaré disc.
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QR, σQ the symmetry with respect to the geodesic passing through PR and σR the
symmetry with respect to the geodesic passing through PQ. Let γP = σQσR be
the rotation around P with angle 2π

p , γQ = σRσP be the rotation around Q with

angle 2π
q and γR = σPσQ be the rotation around R with angle 2π

r . We have drawn

the image of the triangle PQR under the rotation γP in Figure 1. Since the open
unit disc D(0, 1) is biholomorphic to H we can identify the group 〈γP , γQ, γR〉 as
a subgroup of PSL2(R) � Aut(H). We have an isomorphism between 〈γP , γQ, γR〉
and Γp,q,r given by γP �→ γ0, γQ �→ γ1 and γR �→ γ∞ (prove it by using Figure
1). In particular, we can think of Γp,q,r as a subgroup of PSL2(R). The group
Γp,q,r, when applied to the triangle PQR, gives a ‘half tessellation’ of D(0, 1). A
fundamental domain for the action of Γp,q,r on D(0, 1) is given for example by
the geodesic quadrilateral PQRQ′, where the geodesic RQ′ is identified with the
geodesic RQ and the geodesic PQ with the geodesic PQ′. It thus follows that the
quotient H/Γp,q,r is isomorphic to P1(C). Let

π̃ : H → H/Γp,q,r � P1(C).

Since PSL2(C) acts triply transitively on P1(C) we can assume that π̃(P ) =
0, π̃(Q) = 1 and π̃(R) = ∞. Therefore the Galois branched covering π̃ has sig-
nature (p, q, r) above {0, 1,∞}. Unfortunately π̃ has infinite degree but the next
lemma takes care of this difficulty.
Exercise 3 Define U := H\π̃−1{0, 1,∞}. Show that the map

π̃|U : U → P1(C)\{0, 1,∞}
corresponds to the universal map associated to Galois branched coverings over
P1(C) of signature (p, q, r). It thus gives a geometrical realization of U as the unit
disc minus the vertices of all the Γp,q,r-translates of the triangle PQR. Conclude
that an element γ ∈ Γp,q,r is elliptic if and only if it fixes a vertex of a Γp,q,r-
translate of the triangle PQR. Recall that an elliptic element in PSL2(R) is by
definition a matrix which fixes a point in H.
Exercise 4 Show that Γp,q,r is finite if and only if 1/p+1/q+1/r > 1. Show that
Γp,q,r is infinite and nonabelian if and only if 1/p+ 1/q + 1/r ≤ 1.

Lemma 2.1. There exists a normal subgroup H ≤ Γp,q,r such that [Γp,q,r : H] <
∞ and such that H acts without fixed point, i.e., H contains no elliptic elements.

Remark 2.1. Note that the set of all elliptic elements of Γp,q,r consists of the
union of the conjugacy classes in Γp,q,r of γZ

0 , γ
Z
1 and γZ

∞. Moreover, if H is as in
Lemma 2.1 then the orders of γ0, γ1 and γ∞ in Γp,q,r/H are equal to p, q and r,
respectively.

Proof of lemma 2.1 We follow essentially the proof of Proposition 4.4 of
[Beu04]. Let us construct an abstract group homomorphism of Γp,q,r onto a certain
subgroup of PSL2(C) for which all its matrices have algebraic entries. Consider
the matrices

A =

(
0 −ζ−1

2p

ζ2p ζ2p + ζ−1
2p

)
C =

(
0 ζ−1

2p ζ−1
2q

−ζ2pζ2q ζ2r + ζ−1
2r

)
B = AC−1

where ζn = e2πi/n. One can verify that the orders of A,B and C in PSL2(C) are
p, q and r, respectively. For example, to show that A has order p one can use the
observation that (−1, 1) and (−ζ−1

p , 1) are eigenvectors with eigenvalues ζ2p and
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ζ−1
2p . A similar argument can be used for B and C. We thus have an onto group
homomorphism

ρ : Γp,q,r → 〈A,B,C〉 =: N ⊆ PSL2(R)

given by ρ(γ0) = A−1, ρ(γ1) = B, ρ(γ∞) = C, where R = Z[ζ2p, ζ2q, ζ2r]. Note
that ρ sends an elliptic element of Γp,q,r to an elliptic element of N and all elliptic
elements of N are contained in a conjugacy class of AZ, BZ or CZ. Let π be some

prime ideal of R. Note that A = P
(

ζ2p 0

0 ζ−1
2p

)
P−1 for some matrix P ∈ PSL2(R).

Therefore if A (mod π) ≡ I (mod π) then
(

ζ2p 0

0 ζ−1
2p

)
≡ I (mod π), where I

stands for the identity matrix. This implies that π|(1 − ζ2p). We have a similar
thing for B and C. Let us choose a prime ideal π such that π does not divide 1−ζkn
for 1 ≤ k ≤ n− 1 and n ∈ {p, q, r}. Finally, define the group

H := {g ∈ Γp,q,r|ρ(g) ≡ I (mod π)}.(3)

The group H satisfies the property of Lemma 2.1. �
We can finally define the auxiliary curve that was used in the course of the

proof of Theorem 1.1. Define

X := H/H,

where H is as in Lemma 2.1 and let π be the natural map

π : X → H/Γp,q,r � P1(C).(4)

By construction π is a finite complex analytic Galois branched covering over P1(C)
of signature (p, q, r). Since π has finite degree and P1(C) is compact we deduce
that X is a compact Riemann surface. Note that the complex structure of X is
inherited from the complex structure of H, where some care should be taken in
order to define local charts around fixed points of elliptic elements of Γp,q,r.

There is a dictionary between non singular projective curves over C and com-
pact Riemann surfaces:

Theorem 2.1. Any compact Riemann surface S is algebraic.

Let us sketch a proof of this important result in the special case where S is the
compact Riemann surface X that was previously constructed as a quotient of the
upper half-plane.
Sketch of the proof We will break the proof into three steps.

Step 1: X admits a large supply of non-constant meromorphic functions.
We first show that X admits a large supply of non-constant meromorphic func-

tions in the sense that for every pair of points P,Q ∈ X with P �= Q there exists
a meromorphic function f on X such that f(P ) �= f(Q) (separates points) and for
every P ∈ X there exists a meromorphic function g on X such that g is a local
chart in a small neighborhood of P (separates tangents).

Let G be the preimage of H under the natural projection SL2(R) → PSL2(R).
Note that G is a discrete subgroup of SL2(R) which contains the element −I. For
every pair of points P,Q ∈ H consider the Poincaré series (modular form)

fm(P,Q, z) =
∑
g∈G

rP,Q(gz)j(g, z)
−m(5)
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where m is any fixed even integer larger or equal to 4, rP,Q(z) =
z−P
z−Q , gz = az+b

cz+d

and j(g, z) = (cz+ d) for g =
(
a b
c d

)
∈ G. The infinite sum (5) converges absolutely

since m ≥ 3. Therefore the function fm(P,Q, z) is meromorphic on H and satisfies
the important transformation formula

fm(P,Q, gz) = (cz + d)mfm(P,Q, z) ∀ g =

(
a b
c d

)
∈ G.(6)

Note that when m is odd, the transformation formula (6) applied to the matrix
−I ∈ G implies that fm(P,Q, z) is identically equal to 0. Let P,Q ∈ H be arbitrary
points such that GP and GQ are distinct right orbits. Now choose a third point
R ∈ H such that fm(R,Q, z) does not vanish at z = P (It is easy to see that such
a point R always exists by considering for example the function ω �→ fm(ω,Q, P )).
A simple calculation reveals that the function fm(R,Q, z) has a pole of order one
at every elements of GQ (this uses the fact that m is even). It thus follows that
fm(R,Q, z) is a non-constant meromorphic function on H. Now let us consider the
quotient

Fm(z) =
fm(R,P, z)

fm(R,Q, z)
.

Using (6), one readily sees that Fm(z) descends to a meromorphic function on X.
Moreover, by construction, it has a zero of order one at the point GQ ∈ X and a
pole of order one at the point GP ∈ X. This shows thatX has a set of meromorphic
functions that separates points and tangents.
Step 2: Riemann-Roch.

Let D be a divisor of X and let LD be the locally free OX -module of rank 1
associated to D where for every open set U ⊆ X

LD(U) = {f : U → C : f is meromorphic and div(f) ≥ −D|U }.
Then the famous theorem of Riemann-Roch says

Theorem 2.2. (Riemann-Clebsch-Roch)

dimC H0(X,LD)− dimC H1(X,LD) = deg(D) + 1− g,

where g stands for the genus of X and deg(D) for the degree of the divisor D.

For an elementary proof of Theorem 2.2 which uses only Step 1, see chapter IV
of [Mir95].
Step 3: Construction of a planar parametrization of X.

Proposition 2.1. Let z be a non-constant meromorphic function on X. Then
there exists a meromorphic function f and an irreducible algebraic equation P (z, f)
defined over C such that the map

x �→ (z(x), f(x))

is a conformal bijection of X onto the compact Riemann surface associated to the
irreducible equation P (z, f) = 0.

Proposition 2.1 is a nice application of Riemann-Roch and the analytic contin-
uation principle for germs of holomorphic functions. For a detailed proof, see for
example the discussion on p. 242 of [Jos06]. This concludes the sketch of the proof
of the algebraicity of X. �
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Remark 2.2. Historically, Riemann proved the inequality dimC H0(X,LD) ≤
deg(D) +1 by constructing meromorphic differential forms with prescribed poles
at points appearing in D, see [Rie57]. His construction appealed to the so-called
Dirichlet’s principle which back then was not rigorously proved. An inequality go-
ing in the other direction was proved by Clebsch (see [Cle65]) and then refined
by Roch (see [Roc65]). In general, the construction of non-constant meromorphic
functions (or non-zero meromorphic differential forms) on an abstract compact
complex manifold of dimension one (i.e., a compact Riemann surface) is a highly
non-trivial fact. When the dimension is higher than one, it is the lack of non-
constant meromorphic functions which prevents compact complex manifolds to be
algebraic. In dimension one, the construction of such functions can done abstractly
by the use of harmonic analysis; see for example Section 5.2 of [Jos06]. Note that
in Step 1 of the previous argument, we could get around this non-trivial fact by
taking advantage of the description of X as a certain quotient of H. This allowed us
to define directly Poincaré series which are meromorphic m

2 -fold differential forms.
The idea of constructing meromorphic m

2 -fold differential forms by averaging over
the elements of a Fuchsian group is due to Poincaré. Poincaré was the first one
to announce that for every algebraic curve P (x, y) = 0 (of genus ≥ 2) there exists
two non-constant Fuchsian functions f(z) and g(z) such that P (f(z), g(z)) ≡ 0, see
[Poi82]. Finally, we should mention a more recent way of proving Theorem 2.1 un-
der the additional assumption that the compact Riemann surface S admits a single
non-constant meromorphic function f , i.e., a non-constant holomorphic function
f : S → P1(C). This alternative approach is a special case of a general equivalence
between analytic and algebraic coherent sheaves on smooth projective algebraic
varieties. Very often, this equivalence is quoted under the acronym ‘GAGA princi-
ple’; see Section 6.1 of [Ser92] and [Ser56]. The key point is that this holomorphic
function f : S → P1(C) gives rise to a coherent analytic sheaf F on P1(C) (which
is an algebraic curve) and therefore, by GAGA, F is an algebraic sheaf. From this
we may conclude that S is algebraic.

Now we recall that we have constructed previously a branched covering π :
X → P1(C) of signature (p, q, r). Now, armed with Proposition 2.1, we know that
there exists a meromorphic function f on X and a polynomial P (x, y) ∈ C[x, y]
such that P (π, f) = 0 . Let M be the subfield of C generated by the coefficients
of P (x, y). Note that M is a finitely generated field over Q. In general the field M
will not be an algebraic extension over Q. Nevertheless we have the following key
proposition:

Proposition 2.2. There exists a smooth projective algebraic curve X̃ defined
over a number field K such that the following diagram commutes:

X
g̃ ��

π

��

X̃

π̃����
��

��
�

P1

where g̃ : X(C) → X̃(C) is an isomorphism defined over C and where π̃ is a
branched covering defined over K.

Proposition 2.2 is a direct application of the following general result:
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Theorem 2.3. Let V be an algebraic variety defined over an algebraically
closed field L of characteristic 0, and let L′ be an algebraically closed field extension
of L. Then every covering p : U → V defined over L′ comes from a covering
p′ : U ′ → V defined over L in the sense that there exists a commutative diagram

U
g ��

p

��

U ′

p′
����

��
��

�

V

where g is an isomorphism of varieties defined over L′ and p′ is a covering defined
over L.

Proof See the proof of Theorem 6.3.3 of [Ser92]. �
Let us explain how the existence of f̃ and π̃ follows from Theorem 2.3. Let Y

be the algebraic curve over C defined by X\π−1{0, 1,∞}. Note that π|Y : Y →
P1\{0, 1,∞} is a covering defined over C and that P1\{0, 1,∞} is an algebraic curve
defined over Q (in fact over Q!). From Theorem 2.3, we know that there exists a
covering π′ : Y ′ → P1\{0, 1,∞} defined over Q and an isomorphism g : Y → Y ′

defined over C such that π′ ◦g = π. Let K be the field generated by the coefficients
of the equations defining the algebraic curve Y ′. Note that K is finitely generated
over Q and therefore it is a number field. The open Riemann surfaces Y (C) and

Y ′(C) admit natural compactificationsX and X̃ (just add the deleted points) where

X̃ can be chosen to be defined over K. Finally, note that the map g (resp. π′)

extends uniquely to a map g̃ : X → X̃ defined over C (resp. π̃ : X̃ → P1 defined
over K).

Remark 2.3. Unfortunately, the proof of Theorem 2.3 doesn’t give any control
on the number field K which appears in Proposition 2.2. For a different proof which
gives some control on the number field K, see [Köc04].

Remark 2.4. Note that Proposition 2.2 implies the ‘if part’ of the famous
Belyi’s theorem, which states that a compact Riemann surface X admits a model
over Q if and only if there exists a branched covering π : X → P1(C) which is
unramified outside {0, 1,∞}. Historically, this direction is due to Weil; see [Wei56].
The ‘only if part’ is not really longer to prove, in fact it is shorter. Its proof is
completely algorithmic and is due to Belyi; see [Bel79].

Remark 2.5. In general, for higher dimensional complex varieties one has the
following criterion which characterizes varieties which admit a model over a number
field

Theorem 2.4. (Gonzàlez-Diez) An irreducible complex projective variety X
can be defined over a number field if and only if the family of all its conjugates Xσ,
where σ is any field automorphism of C, contains only finitely many isomorphism
classes of complex projective varieties.

For a proof of this criterion see [GD06].

Combining Theorem 2.1, Proposition 2.2 and our discussion on branched cov-
erings we see that every finite index normal subgroup H ≤ Γp,q,r which contains
no elliptic elements gives rise to an algebraic Galois branched covering over P1 of
signature (p, q, r) defined over a suitable number field K, where the number field
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K depends on H. Such covers turn out to be extremely useful since they can be
used to study the set of integral solutions of (1). From the previous observation
one may deduce the following general principle:

Principle 2.1. There is a dictionary between the distinct strategies for studying
xp + yq = zr and the finite quotients of the Hecke triangle group Γp,q,r.

This principle is slightly imprecise but at least, from the author’s point of view,
has the virtue of being inspiring. We won’t say more about it and we encourage
the reader to look at [Dar04] where Principle 2.1 is explained in greater detail.

3. A Chevalley-Weil theorem for branched coverings

In this section we would like to present a variant of the Chevalley-Weil theorem
that allowed us, during the second step of the proof of Theorem 1.1, to control the
ramification of the field extension Lt over K for the special elements t ∈ Σp,q,r. Let
us first recall the Chevalley-Weil theorem in the context of curves (see also Section
1.2 of [Dar]).

Theorem 3.1. (Chevalley-Weil) Let X and Y be smooth schemes of relative
dimension one defined over the ring of S-integers OL,S of a number field L, where
S is a finite set of places of L. Let f : X → Y be a morphism of schemes defined
over OL,S which is unramified over the generic fiber. Then there exists a finite
extension L′/L such that

f−1(Y (OL,S)) ⊆ X(OL′,S′),

where the set of places S′ extends the set of places of S.

Remark 3.1. In the statement it was important to work with integral models
of X and Y in order to make sense of the notion of integral points, i.e., OL,S-valued
points. In general, the notions of integral points and rational points differ since the
set X(OL,S) could be smaller that the set X(L). For example, consider the affine
curve E defined by the equation y2 − x3 − 73x = 0. By Siegel’s Theorem one has
that #E(Z) < ∞. On the other hand, since the Mordell-Weil group of E/Q has
positive rank, one has that #E(Q) = ∞. However, there is an important situation
where the two notions coincide, namely in the special case where the curve X is
projective.

Remark 3.2. At this point we can’t resist giving a nice application of the
Chevalley-Weil theorem when combined with Faltings’ theorem. Consider the affine
complex curve embedded in A4(C) defined by the zero locus

Z(u+v−1, uw−1, vt−1) = {(u, v, w, t) ∈ A4(C) : u+v−1 = uw−1 = vt−1 = 0}.
It is easy to see that the map

P1(C)\{0, 1,∞} → Z(u+ v − 1, uw − 1, vt− 1)

[u, 1] �→ (u, 1− u, 1/u, 1/(u− 1))

is an isomorphism of complex curves. From this, we deduce that the coordinate
ring of P1(C)\{0, 1,∞} is

C[u,
1

u
,

1

u− 1
] � C[u, v, w, t]/(u+ v − 1, uw − 1, vt− 1).



66 HUGO CHAPDELAINE

Now choose a covering (so unramified)

π : Y (C) → P1(C)\{0, 1,∞}
where Y (C) is an open Riemann surface of genus larger than or equal to 2 (there are
infinitely many possibilities for π). Finally, combining Faltings and Chevalley-Weil
we may conclude that the equation

u+ v = 1

has only finitely many solutions in O×
L,S where L is an arbitrary number field and S

is any finite set of places of L. Historically, Siegel was the first to prove this result.
Of course, he proved it without appealing to Faltings’ theorem.

For the rest of this section we would like to discuss in more detail the variant
of the Chevalley-Weil theorem that was used in the proof of Theorem 1.1. Let
(XK , π,P1

K) be the algebraic Galois branched covering of degree d, with Galois
group G and signature (p, q, r) constructed in Section 2. Let us fix an embedding
of K into C. Since π is defined over K we have a natural action of Gal(C/K) on
all the fibers of π above points t ∈ P1(K). Moreover, for every t ∈ P1(C)\{0, 1,∞},
we have a simply transitive action of G on π−1(t) since π is Galois. We thus get
two group homomorphisms:

ρ1 : Gal(C/K) → Sym(π−1(t)) and ρ2 : G → Sym(π−1(t)).

It is important to know how ρ1 and ρ2 are related. Let us choose a complex
embedding ϕ : X(C) ↪→ PN (C). For every P ∈ X(C) let us denote the image of
P by ϕ by ϕ(P ) = [ϕ0(P ), ϕ1(P ), . . . , ϕN (P )] ∈ PN (C). For t ∈ P1(K)\{0, 1,∞}
define the number field Lt to be the field generated over K by all the coordinates
of ϕ(P ) for all P ∈ π−1(t). Let π−1(t) = {P1, . . . , Pd}. The first thing to notice is
that the number field L′ := K(ϕ(P1)) is equal to Lt. For every i ∈ {1, . . . , d} there
exists an element g ∈ G such that g(ϕ(P1)) = ϕ(Pi). Therefore the coordinates of
ϕ(Pi) can be expressed algebraically in terms of the coordinates of ϕ(P1) so L

′ = Lt.
It thus follows that the action of an element σ ∈ Gal(K/K) on Lt is completely
determined by its action on the coordinates of ϕ(P1). Since σ(ϕ(P1)) = ϕ(Pi)
for a unique i we readily see that every automorphism of Lt/K can be realized
‘algebraically’ by the action of a unique element g ∈ G (G acts simply transitively
on the fibers). We have the following identification

Gal(Lt/K) = {g ∈ G : ∃σ ∈ Gal(K/K) such that σ(ϕ(P1)) = gϕ(P1)} ⊆ G.

We would now like to understand the ramification of Lt over K when t ∈ P1(K).
The morphism π : XK → P1

K induces an inclusion of fieldsK(P1) � K(x) ↪→ K(X),
where x is a variable. Note that K(X)/K(x) is Galois. Let t ∈ K. We define the
specialization of π at t to be the K-algebra map

K � K[x]/(x− t) ↪→ K[X]/(x− t)

where K[X] corresponds to the integral closure of K[x] in K(X). Let

t ∈ P1(K)\{0, 1,∞}.
Since π is unramified at all the points above t we have (x − t)K[X] = p1 · · · pr
where the pi’s are distinct prime ideals of K[X]. We thus find that K[X]/(x− t) �
L1 ⊕ · · · ⊕ Lr, where Li = K[X]/pi. Note that all Li’s are Galois over K with
Galois group D(pi/(x − t)) = {g ∈ G : g(pi) = pi} so that all the Li’s collapse to
the same number field in a fixed algebraic closure of K.
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Exercise 5 Show that Li/K � Lt/K.
In order to understand the ramification of Li over K we need to define the

arithmetic intersection between two points a, b ∈ P1(K) at a prime ideal ℘ of K.

Definition 3.1. Let ℘ be a prime ideal of K and a, b ∈ K ∪ {∞}. We define

I℘(a, b) :=

⎧⎨
⎩

ord℘(a− b) if ord℘(a) ≥ 0, ord℘(b) ≥ 0
ord℘(

1
a − 1

b ) if ord℘(
1
a ) ≥ 0, ord℘(

1
b ) ≥ 0

0 otherwise

where ord℘(0) = ∞ and ord℘(∞) = −∞.

Before stating the Chevalley-Weil theorem for branched coverings we need to
make one more definition.

Definition 3.2. Let X
G→ P1 be a Galois branched covering over C. A Galois

branched covering x : XK
G→ P1

K is called a good model for X
G→ P1 over K if

the primes of OK (when viewed as primes in OK [x]) that ramify in OK [XK ] are
contained in Sbad. The ring OK [XK ] stands for the integral closure of OK [x] in
K(XK) and the set Sbad is the union of the set of primes that divide the order of
G and the set of primes at which two branch points meet.

We can now state in more detail a result due to Beckmann which implies the
‘ramification control’ of L1/K � Lt/K (by Exercise 5), where

K[X]/(x− t) � L1 ⊕ · · · ⊕ Lr(7)

and Lt for t ∈ Σp,q,r is defined as in Step 2 of the proof of Theorem 1.1. We have
the following theorem, which is a special case of Theorem 1.2 of [Bec91].

Theorem 3.2. (Chevalley-Weil for branched coverings) Assume that XK
G→

P1
K is a good model where G = 〈γ0, γ1, γ∞〉 and let L = L1 be as in (7). Then L is

ramified only at the places S = Sbad ∪ St where

Sbad := {℘ is a finite prime of K : ℘|#G}
and

St = {℘ is a finite prime of K : I℘(t, j) > 0 for some j ∈ {0, 1,∞}}.

Moreover, if t meets j ∈ {0, 1,∞} at ℘, i.e., I℘(t, j) > 0 (note that j can at most
meet one of those values) then

I(p/℘) = 〈γI℘(t,j)
j 〉

up to conjugation in G where p is some prime ideal of L above ℘.

The last part of the theorem says basically that the geometric ramification
‘controls’ the arithmetic ramification.

Remark 3.3. In general one cannot always guarantee the existence of a good
model but nevertheless, Theorem 3.2 remains valid if we add to the set Sbad the
finite set of primes that prevent the model to be good.

Using the previous theorem one deduces the following proposition.

Proposition 3.1. Let t ∈ Σp,q,r and ℘ � Sbad then Lt/K is unramified at ℘.
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Proof Since t ∈ Σp,q,r ⊆ P1(C)\{0, 1,∞} we have t = ap

cr for coprime integers

a, c. Moreover t− 1 = − bq

cr for b and c coprime. By Lemma 1.1 we have

I℘(t, 0) ≡ 0 (mod p),

I℘(t, 1) ≡ 0 (mod q),

I℘(t,∞) ≡ 0 (mod r).

Using the last part of Theorem 3.2 we deduce that I(p/℘) = 1. Therefore Lt is
unramified at ℘. �
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Merel’s theorem on the boundedness of the torsion of elliptic
curves

Marusia Rebolledo

Abstract. In this note, we give the key steps of Merel’s proof of the Strong
Uniform Boundedness Conjecture. This proof relies on three fundamental in-
gredients: the geometric approach of Mazur and Kamienny, the innovative
introduction of the winding quotient by Merel, and the use of Manin’s presen-
tation of the homology group of modular curves.

1. Introduction

Interest in elliptic curves dates back at least to Fermat, who introduced his
fundamental method of infinite descent to prove his “Last Theorem” in degree 4.
Poincaré seems to have been the first to conjecture, around 1901, the now famous
theorem of Mordell asserting that the group of rational points of an elliptic curve
over Q is finitely generated. This result was later generalized by Weil to encompass
all abelian varieties over number fields. If E is an elliptic curve over a number field
K, it is therefore known that

E(K) ∼= Zr ⊕ T

as abstract groups, where T = E(K)tors is the finite torsion subgroup of E(K). The
integer r, called the rank, is a subtle invariant about which little is known and which
can be rather hard to compute given E and K. The torsion subgroup, in contrast,
is readily computed in specific instances, and this makes it realistic to ask more
ambitious questions about the variation of E(K)tors with E and K. A fundamental
result in this direction is the theorem of Mazur presented in Chapter 3 of Darmon’s
lecture in this volume, which gives a uniform bound on E(Q)tors as E varies over
all elliptic curves over Q. Kamienny [Kam92] was able to extend Mazur’s result
to quadratic fields, obtaining a bound on E(K)tors for K quadratic that was even
independent ofK itself. This led him to formulate the Strong Uniform Boundedness
Conjecture, asserting that the cardinality of E(K)tors can be bounded above by
a constant which depends only on the degree of K/Q. (The weaker conjecture
asserting that the torsion can be bounded uniformly in the field K is presented as
being ‘a part of the folklore’ by Cassels [Cas66] (p. 264).) Actually, according to
Demjanenko (see [Dem72] and entry MR0302654 in Mathematical Reviews) this

2000 Mathematics Subject Classification. Primary 11G05.

c©2009 Marusia Rebolledo

71



72 MARUSIA REBOLLEDO

conjecture was posed in the 70’s by Shafarevich; his paper proved a result in this
direction. The Strong Uniform Boundedness Conjecture was proved in 1994 by
Merel, building on the methods developed by Mazur and Kamienny.

Theorem 1 (Merel 1994). For all d ∈ Z, d ≥ 1 there exists a constant B(d) ≥ 0
such that for all elliptic curves E over a number field K with [K : Q] = d then

| E(K)tors |≤ B(d).

Merel actually proved the following bound on the prime numbers dividing E(K)tors:

Theorem 2 (Merel - 1994). Let E be an elliptic curve over a number field K
such that [K : Q] = d > 1. Let p be a prime number. If E(K) has a p-torsion point

then p < d3d
2

.

It is then sufficient to conclude for the case d > 1. Mazur and Kamienny [KM95]
have indeed shown that, by work of Faltings and Frey, Theorem 2 implies Theo-
rem 1. The case d = 1 of Theorem 1 has been proved by Mazur [Maz77, Maz78]
in 1976 as explained by Henri Darmon in his lecture. Mazur gives more precisely a
list of all possibilities for the torsion group over Q. It was actually a conjecture of
Levi formulated around 1908. We can mention also that the cases 2 ≤ d ≤ 8 and
9 ≤ d ≤ 14 have been treated respectively by Kamienny and Mazur (see [KM95]),
and Abramovich [Abr95].

The goal of this note is to give the key steps of the proof of Theorem 2.

Remark 1. Oesterlé [Oes] later improved the bound of Theorem 2 to (3d/2+1)2

but we will focus on Merel’s original proof (see Section 3.6 concerning Oesterlé’s
trick).

Remark 2. Unfortunately, the reduction of Theorem 1 to Theorem 2 is not
effective; this explains why the global bound B(d) is not explicit. However, in 1999,
Parent [Par99] gave a bound for the pr-torsion (r ≥ 1, p prime) and thus obtained
a global effective bound for the torsion (later improved by Oesterlé). This bound
is exponential in d. It is conjectured that B(d) can be made polynomial in d.

We will now give the sketch of the proof of Theorem 2. From now on, we
will denote by d ≥ 1, an integer, by p a prime number and write Z = Z[1/p].
Following the traditional approach, Mazur and Kamienny translated the assertion
of the theorem into an assertion about rational points of some modular curves.

2. Mazur’s method

2.1. To a problem on modular curves. We briefly recall that there exist
smooth schemes X0(p) and X1(p) over Z which classify, coarsely and finely re-
spectively, the generalized elliptic curves endowed with a subgroup, respectively a
point, of order p. We refer for instance to Chapter 3 of [Dar] for more details. We
denote by Y0(p) and Y1(p) the respective affine parts of X0(p) and X1(p). We use
the subscript Q for the algebraic curves over Q obtained by taking the generic fiber
of X0(p) or X1(p). We will denote by J0(p) the Néron model over Z of the Jacobian
J0(p)Q of X0(p)Q.

Suppose that E is an elliptic curve over a number field K of degree d ≥ 1
over Q, endowed with a K-rational p-torsion point P. Then (E,P ) defines a point
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x̃ ∈ Y1(p)(K). We can map this point to a point x ∈ Y0(p)(K) through the usual
covering X1(p) −→ X0(p).

If we denote by v1, . . . , vd the embeddings of K into C, we then obtain a point
x = (v1(x), . . . , vd(x)) ∈ X0(p)

(d)(Q). Here we denote by X0(p)
(d) the d-th sym-

metric power of X0(p), that is to say the quotient scheme of X0(p) by the action of
the permutation group Σd. It is a smooth scheme over Z.

2.2. The Mazur and Kamienny strategy. The strategy is almost the same
as in the case d = 1 explained in [Dar] Ch.3. Let AQ denote an abelian variety
quotient of J0(p)Q and A its Néron model over Z. Kamienny’s idea is to approach
the Uniform Boundedness Conjecture by studying the natural morphism

φ
(d)
A : X0(p)

(d) φ(d)

−−→ J0(p) −→ A

defined as follows. Over Q, this morphism is defined as the composition of the
Albanese morphism (Q1, . . . , Qd) �→ [(Q1)+ . . . (Qd)− d(∞)] with the surjection of
J0(p)Q to AQ. It then extends to a morphism from the smooth Z-scheme X0(p)

(d)

to A. For any prime number l 	= p, we denote by φ
(d)
A,Fl

: X0(p)
(d)
Fl

−→ AFl
the

morphism obtained by taking the special fibers at l. Just as in the case d = 1, we
have

Theorem 3 (Mazur-Kamienny). Suppose that

(1) A(Q) is finite;

(2) there exists a prime number l > 2 such that p > (1+ ld/2)2 and φ
(d)
A,Fl

is a

formal immersion at ∞(d)
Fl

.

Then Y1(p)(K) is empty for all number fields K of degree d over Q, i.e., there does
not exist any elliptic curve with a point of order p over any number field of degree
d.

Proof. The proof of this theorem is analogous to the one in the case d = 1.
The principal ingredients of the proof are explained in [Dar] Ch. 3. For a complete
proof, the reader can see [Maz78], [Kam92] or, for a summary, [Edi95]. The
idea is the following: suppose that there exists a number field K of degree d and a
point of Y1(p)(K) and consider the point x ∈ X0(p)

(d)(Q) obtained as explained in
Section 2.1. The condition p > (1 + ld/2)2 of Theorem 3 implies that the section
s of X0(p)

(d) corresponding to x crosses ∞(d) in the fiber at l. Since s 	= ∞(d),

the fact that φ
(d)
A,Fl

is a formal immersion at ∞(d)
Fl

and Condition 1 will then give a
contradiction.

�

We now need an abelian variety AQ quotient of J0(p)Q of rank 0 (see section 3.1)
and a formal immersion criterion (see below).

2.3. Criterion of formal immersion. Recall first that a morphism φ :
X −→ Y of noetherian schemes is a formal immersion at a point x ∈ X which
maps to y ∈ Y if the induced morphism on the formal completed local rings

φ̂ : ÔY,y −→ ÔX,x is surjective. Equivalently, it follows from Nakayama’s lemma
that φ is a formal immersion at x if the two following conditions hold:

(1) the morphism induced on the residue fields k(y) −→ k(x) is an isomor-
phism;
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(2) the morphism induced on the cotangent spaces φ∗ : Coty(Y ) −→ Cotx(X)
is surjective.

The first condition is verified in our situation, so we are now looking for a criterion
to have

φ
(d)
A,Fl

∗
: Cot(AFl

) −→ Cot∞(d)
Fl

(X0(p)
(d)
Fl

)

surjective. For this, we will look in more detail at φ
(d)
A

∗
.

Let R be a Z-algebra. As in [Dar], denote by S2(Γ0(p), R) the regular dif-
ferentials on X0(p)R = X0(p) ×Z R. For R = C, we obtain the vector space of
classical modular forms S2(Γ0(p),C). The q-expansion principle gives an injective
morphism of R-modules

S2(Γ0(p), R) ↪→ R[[q]].

Furthermore, we have an isomorphism between Cot(J0(p)(C)) and S2(Γ0(p),C)
coming from the composition of

(1) the isomorphism H0(J0(p)(C),Ω
1) −→ Cot(J0(p)(C)) which maps a dif-

ferential form to its evaluation at 0 ;

(2) the isomorphism H0(J0(p)(C),Ω
1)

φ∗

−→ H0(X0(p)(C),Ω
1) = S2(Γ0(p),C)

given by Serre duality.

It is a nontrivial fact that this isomorphism Cot(J0(p)(C)) ∼= S2(Γ0(p),C) extends
to an isomorphism over Z (and actually even over Z). Indeed, Grothendieck du-
ality can be applied in this setting instead of Serre duality and we then obtain an
isomorphism: Cot(J0(p)) ∼= S2(Γ0(p), Z) (see [Maz78] 2 e)).

Our next task is to analyze the cotangent bundle Cot∞(d)(X0(p)
(d)). Recall

that q is a formal local parameter of X0(p) at ∞, i.e., ÔX0(p),∞
∼= Z[[q]]. We then

have

ÔX0(p)(d),(∞)(d)
∼= Z[[q1, . . . , qd]]

Σd = Z[[σ1, . . . , σd]]

where for i = 1, . . . , d, qi is a local parameter at ∞ on the ith factor of X0(p)
d

and σ1 = q1 + · · ·+ qd, . . . , σd = q1 · · · qd are the symmetric functions in q1, . . . , qd.
Consequently, Cot∞(d)(X0(p)

(d)) is a free Z-module of rank d with a basis given by
the differential forms (dσ1, . . . , dσd).

We obtain the following diagram:

Cot(J0(p))
φ∗

∼
��

φ(d)∗

��

S2(Γ0(p), Z) �
� q-exp�� Z[[q]]

Cot(X0(p)
(d))

Lemma 1. Let ω ∈ Cot(J0(p)) be such that φ∗(ω) has a q-expansion equal to∑
m≥1 amqm dq

q . Then we have

φ(d)∗(ω) = a1dσ1 − a2dσ2 + · · ·+ (−1)d−1addσd.

Proof. Denote by π : X0(p)
d −→ X0(p)

(d) the canonical map. We have

π∗φ(d)∗(ω) =
d∑

i=1

∑
m≥1

amqmi
dqi
qi

=
∑
m≥1

amm−1dsm
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where sm =
∑d

i=1 q
m
i . Then Newton’s formula

sm − σ1sm−1 + · · ·+ (−1)mmσm = 0

gives m−1dsm = (−1)mdσm for m ∈ {1, . . . , d}. �

We suppose in the sequel that AQ is the quotient of J0(p)Q by an ideal I of the
Hecke algebra T ⊂ End(J0(p)Q), so that there is an induced action of T on A. The
exact sequence

0 → IJ0(p)Q → J0(p)Q → AQ → 0

induces a reverse exact sequence for the cotangent bundles after scalar extension
by Z[1/2]

0 → Cot(AZ[1/2]) → Cot(J0(p)Z[1/2]) → Cot(J0(p)Z[1/2])[I] → 0

where we denote by Cot(J0(p)Z[1/2])[I] the differential forms annihilated by I. This
is due to a specialization lemma of Raynaud (see [Maz78] Proposition 1.1 and
Corollary 1.1).

Let l 	= 2, p be a prime number. We finally have the following diagram in
characteristic l:

Cot(AFl
) � � ��

φ
(d)
A,Fl

∗ �������������
Cot(J0(p)Fl

)
φ∗
Fl

∼
��

φ
(d)
Fl

∗

��

S2(Γ0(p),Fl)
� � q-exp�� Fl[[q]]

Cot∞(d)
Fl

(X0(p)
(d)
Fl

)

This diagram and Lemma 1 give a criterion for φ
(d)
A,Fl

to be a formal immersion

at ∞(d)
Fl

(see Theorem 5 below). Historically, Mazur first showed the following result

which completes the proof of Mazur’s theorem sketched in Section 4 of [Dar] using
for AQ the Eisenstein quotient.

Theorem 4. The morphism φA,Fl
is a formal immersion at ∞Fl

for all prime
numbers l 	= 2, p.

Proof. There is a nonzero ω ∈ Cot(AFl
) such that φ∗

Fl
(ω) ∈ S2(Γ0(p),Fl) is

an eigenform (under the action of the Hecke algebra T). Then by the q-expansion
principle and the injectivities in the above diagram, its q-expansion is not identically
zero (because if it were, φ∗

Fl
(ω) itself would be zero). We deduce that a1(ω) 	= 0:

indeed, if it were, since ω is an eigenform, we should have am(ω) = a1(Tmω) =
λm(ω)a1(ω) = 0 for all m ≥ 1, so ω = 0, which is impossible. It follows that a1(ω)
spans Cot∞Fl

(X0(p)Fl
) ∼= Fl and, by Lemma 1, that φA,Fl

is a formal immersion at
∞Fl

. �

Theorem 5 (Kamienny). The following assertions are equivalent:

(1) φ
(d)
A,Fl

is a formal immersion at ∞(d)
Fl

;

(2) there exist d weight-two cusp forms f1, . . . , fd annihilated by I such that
the vectors (a1(fi), . . . , ad(fi))i=1,...,d are linearly independent mod l;

(3) the images of T1, . . . , Td in T/(lT+ I) are Fl-linearly independent.
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Proof. The equivalence of (1) and (2) follows directly from Lemma 1 since
Cot(A) maps to the forms annihilated by I via the isomorphism φ∗. Condition
(3) is dual to Condition (2) Indeed, the multiplicity one theorem implies that the
pairing

〈 , 〉 : S2(Γ0(p),Z)× T −→ Z
(f, t) �−→ a1(tf)

is perfect and then induces an isomorphism of T-modules between S2(Γ0(p),Z) and
the Z-dual of T. For a more detailed proof of this theorem, see [Kam92] or [Oes]
Sections 3, 4 and 6. �

3. Merel’s proof

3.1. The Winding Quotient. Denote by Je,Q the winding quotient (see
[Dar] Ch. 3) and Je its Néron model over Z. We just recall that Je,Q is the
abelian variety quotient of J0(p)Q by the winding ideal Ie of T.

Considering Theorem 3, we are now looking for a quotient AQ of J0(p)Q by an
ideal I ⊂ T such that A(Q) is finite. Mazur and Kamienny have used the Eisenstein
quotient, which has this property (see [Maz77, Kam92]). Merel’s fundamental
innovation was to use the winding quotient; this quotient is larger and easier to
exploit than the Eisenstein quotient. This was made possible after the works of
Kolyvagin on the Birch and Swinnerton-Dyer conjecture; indeed, it then turned out
that Je(Q) is finite by construction (see [Mer96] or [Dar] for a summary). Actually,
the Birch and Swinnerton-Dyer conjecture predicts that the winding quotient is the
largest quotient of J0(p)Q of rank zero.

Finally, to prove Theorem 2, thanks to Theorems 3 and 5, it suffices to deter-
mine for which prime numbers p the following is true for a prime number l 	= 2
such that p > (1 + ld/2)2:

(�l) the images of T1, . . . , Td in T/(lT+ Ie) are Fl-linearly independent.

3.2. Merel’s strategy. Suppose now that d ≥ 3. Recall that the Hecke al-
gebra T ⊂ End(J0(p)) also acts on the first group of absolute singular homology
H1(X;Z) of the compact Riemann surface X = X0(p)(C) and that Ie is the an-
nihilator of the winding element e ∈ H1(X;Q) (see the article of Darmon in this
volume). Then T ·e is a free T/Ie-module of rank 1. It follows that (�l) is equivalent
to

(�l) the images of T1e, . . . , Tde in Te/lTe are Fl-linearly independent.

As before, the characteristic zero analogous condition

(�) T1e, . . . , Tde are Z-linearly independent in T · e.
is equivalent to φ

(d)
Ie

being a formal immersion at ∞(d)
Q . If (�l) is true for a prime

number l then (�) is true, while the condition (�) implies (�l) for almost all prime
numbers l. Kamienny showed that if (�) is true then there exists a prime number
l < 2(d!)5/2 (depending on p) such that (�l) is true (see [Kam92] Corollary 3.4 and
[Edi95] 4.3 for the precise bound). The heart of Merel’s proof for the boundedness

of the torsion of elliptic curves is then to prove (�) for p > d3d
2

> 2d+1(d!)5d/2 ≥
(1 + (2(d!)5/2)d/2)2.

We will now explain the key steps of this proof omitting the details of the
calculations. For a completed proof, we will refer to [Mer96].
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Consider a fixed prime number p > d3d
2

for d ≥ 3 an integer. To prove that
e, T2e, . . . , Tde are linearly independent, it suffices to prove that so are e, t2e, . . . , tde
where tr = Tr−σ′(r) with σ′(r) the sum of divisors of r coprime to p. These slightly
different Hecke operators tr are more pleasant to work with because they annihilate
the “Eisenstein part” of e and we can then work as if e were equal to the modular
symbol {0,∞} (see section 3.3 for a definition)1.

The idea of the proof is to use the intersection product

• : H1(X;Z)×H1(X;Z) −→ Z.

Suppose indeed that λ1e+λ1t2e+ · · ·+λctce = 0 for 1 ≤ c ≤ d and some λ1, . . . , λc

in Z with λc 	= 0. The strategy is then to find xc ∈ H1(X;Z) such that

i) tce • xc 	= 0 and ii) tre • xc = 0 (1 ≤ r ≤ c− 1).

This will give a contradiction.2

Two key facts make it possible to follow this strategy: first, there is a pre-
sentation of H1(X;Z) by generators and relations due to Manin [Man72] (see the
section 3.3); secondly, a lemma called lemme des cordes by Merel (Proposition 1
below) enables us to compute the intersection product of two such generators. It
suffices then to express tre in terms of Manin’s generators (see 3.4).

3.3. Manin’s symbols. Denote by H the Poincaré upper half-plane. For
α, β ∈ P1(Q), consider the image in Γ0(p)\H of the geodesic path from α to β in H.
Denote by {α, β} its homology class in the homology group H1(X, cusps;Z) relative
to the set cusps of the cusps of X.

Exercise 1. (1) Show that {α, β} is the sum of classes of type {b/d, a/c}
with a, b, c, d ∈ Z such that ad− bc = 1 (hint: use continued fractions).

(2) Show that {b/d, a/c} depends only on the coset Γ0(p)
(
a b
c d

)
.

For a solution of this exercise, see [Man72] for instance.

The preceding results imply that there is a surjective map

ξ : Z[Γ0(p)\SL2(Z)] −→ H1(X, cusps;Z)
Γ0(p) · g �−→ {g · 0, g · ∞} = { b

d ,
a
c } g =

(
a b
c d

)
∈ SL2(Z).

Since there is moreover an isomorphism

Γ0(p)\SL2(Z) −→ P1(Fp)
Γ0(p) ·

(
a b
c d

)
�→ [c : d],

we will simply write ξ(c/d) := ξ(
(
a b
c d

)
).

For k ∈ F×
p we obtain ξ(k) = {0, 1/k} which is an element of H1(X;Z) (seen as

a submodule of H1(X, cusps;Z)) because 0 and 1/k are conjugate modulo Γ0(p).
These elements are generators ofH1(X;Z). The other generators ofH1(X, cusps;Z)
are ξ(0) and ξ(∞) and they verify ξ(0) = −ξ(∞) = {0,∞}.

The following proposition, called lemme des cordes by Merel, gives a method to
compute the intersection product of two Manin symbols in the absolute homology
group. For k ∈ {1, . . . , p− 1}, denote by k∗ the element of {1, . . . , p− 1} such that
kk∗ ≡ −1 (mod p).

1In the relative homology group, the winding element e differs from {0,∞} by an element
which is an eigenvector for all Tn with system of eigenvalues {σ′(n)}n≥1 (up to a constant): this

is what I called the Eisenstein part.
2Actually, for c = 1 the situation will be slightly different because of the Eisenstein part of e.
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k′
∗

-1

k′
k∗

k

Figure 1. Lemme des cordes. Here ξ(k) • ξ(k′) = −1.

Proposition 1 (Merel). Let k, k′ ∈ {1, . . . , p− 1}. Denote by Ck the chord of
the unit circle from e2iπk∗/p to e2iπk/p and similarly for k′. Then

ξ(k) • ξ(k′) = C ′
k ∧ Ck

where Ck′ ∧ Ck is the number of intersections of Ck′ by Ck (equal to 1, 0 or −1
according to the trigonometric orientation of the unit circle).

Proof. See [Mer96] Lemma 4. �

3.4. Two useful formulas. Because of their technical aspect, we will not
reproduce the proofs of the following formulas which appear in Lemmas 2 and 3 of
[Mer96].

We have first a formula for tre (r > 1) in terms of the Manin symbols ξ(k):

Proposition 2 (Merel). Let r < p be a positive integer. Then

tre = −
∑

( u v
w t )∈Xr

ξ(w/t)

where Xr is the set of matrices ( u v
w t ) of determinant r such that 0 < w < t and

u > v ≥ 0.

For r = 1, we can compute directly the intersection of e with a Manin generator:

Proposition 3 (Merel). For any k ∈ {1, . . . , p− 1} we have

(p− 1)e • ξ(k) = k∗ − k

p
(p− 1)− 12S(k, p),

where S(k, p) =
∑p−1

h=0 B̄1(
h
p )B̄1(

kh
p ) is the Dedekind sum and B̄1 the first Bernoulli

polynomial made 1-periodic.

Remark 3. Note that in Proposition 2 the ξ(0) and ξ(∞) terms vanish. This
is not surprising since tre lies in the absolute homology group.

3.5. Conclusion of the proof. We will now explain how Merel put all the
previous ingredients together to obtain the proof of (�) for p large enough.

Suppose that there are integers λ1, . . . , λd such that

λ1e+ λ2t2e+ · · ·+ λdtde = 0.

We will show successively that λi = 0 for all i ∈ {1, . . . , d}, treating the case of λ1

independently.
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(p − 1)/d

l∗

k

l

0

k∗

Figure 2. Case i = 1.

Case i = 1. We look for x1 of the form x1 = ξ(k) for some k such that

i) e • ξ(k) 	= 0 and ii) tre • ξ(k) = 0 (1 < r ≤ d).

Suppose that p > d. By Proposition 2, the condition ii) is equivalent to∑
( u v
w t )∈Xr

ξ(w/t) • ξ(k) = 0 (1 ≤ r ≤ d).

It suffices to find k such that ξ(w/t) • ξ(k) = 0 for all ( u v
w t ) ∈ Xr. That is what

Merel does. Let l ∈ {1, . . . , p−1} such that l ≡ wt−1 (mod p) for some ( u v
w t ) ∈ Xr.

Then l∗ ≡ −tw−1 (mod p). By Remark 3, we can suppose that neither t nor w are
divisible by p.

Exercise 2. Show that l and l∗ are larger than p−1
d .

Applying the lemme des cordes it suffices to find k such that both the complex
numbers e2iπk/p and e2iπk∗/p are in a portion of the circle where e2iπl/p cannot be,
so for instance, by the exercise, such that both k and k∗ lie in [0, p−1

d [. Merel uses
then the following analytic lemma ([Mer96] Lemma 5) to ensure that, provided

p > d3d
2

and k ∈ Z∩] p
10d ,

p
5d + 1[ then k∗ ∈ Z∩] p

2d − 1 − 1
d ,

p−1
d [. (More precisely,

this is already true when p/ log4(p) > d4.)

Lemma 2. Let p be a prime number and a, b ≥ 1 two real numbers. Let A,B ⊂
{1, . . . , p − 1} be two intervals of cardinalities p/a and p/b respectively. If p >
a2b2 log4(p) then there exists k ∈ A such that k∗ ∈ B.

We deduce from the following exercise that condition i) above is also verified

assuming that p > d3d
2

.

Exercise 3. Using the Dedekind’s reciprocity formula

12(S(k, p) + S(p, k)) = −3 +
p

k
+

k

p
+

1

pk

and the inequality |12S(p, k)| ≤ k, show that

e • ξ(k) ≥ p

10d
− 10d− 2

for all k as before.
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q − δ

k∗

q

k
q + δ

q∗

Figure 3. Case i > 1.

Case i > 1. Suppose now that

λ2t2e+ · · ·+ λctce = 0

for some c ≤ d. The method is almost the same as before: we look for xc = ξ(k)
such that

i) tce • ξ(k) 	= 0 and ii) tre • ξ(k) = 0 (2 ≤ r < c).

We remark that in the formulas for tre, r = 2, . . . , c, of Proposition 2, the Manin
symbol ξ(1/c) occurs only in tce and not in tre for r < c. So we will look for k such
that ξ(1/c) • ξ(k) = ±1 and ξ(w/t) • ξ(k) = 0 for all ( u v

w t ) ∈ Xr (r ≤ c) such that
w/t 	= 1/c.

Let q and l in {1, . . . , p − 1} such that q ≡ 1/c (mod p) and l ≡ w/t 	= 1/c
(mod p) for some ( u v

w t ) ∈ Xr (r ≤ c).

Exercise 4. Show that |l − q| ≥ δ, where δ = p−d2

d(d−1) .

By the same analytic lemma as before, it is possible to find k ∈]q, q + δ] such
that k∗ ∈ [q − δ, q[ and q∗ 	∈ [q − δ, q + δ] when p is large enough, more precisely

when p/ log4(p) > Sup(d8, 400d4). By the lemme des cordes, this then forces λc to
be zero.

This finishes the proof of Theorem 2.

3.6. Oesterlé’s variant. As we said in Remark 1, Oesterlé improved Merel’s
bound for the torsion of elliptic curves. For this, Oesterlé proved directly the formal
immersion in positive characteristic:

Proposition 4. Suppose that p/ log4 p ≥ (2d)6. Then for all l ≥ 3, the condi-

tion (�l) is true, that is to say φ
(d)
A,Fl

is a formal immersion at ∞(d)
Fl

.

For d ≥ 33, Theorem 2 with the bound (3d/2 + 1)2 then follows directly from

Theorem 4, since p > (3d/2 + 1)2 implies p/ log4 p ≥ (2d)6 in that case. Oesterlé
studied the cases d < 37 by computations.

Let us give a sketch of proof of Proposition 4. Let T ′
s be defined by Tr =

∑
s|r T

′
s

for all r ≥ 1 and, instead of tr = Tr−σ′(r) (r ≥ 1), consider the following generators
of the Eisenstein ideal I:

I1 = np and Ir =

{
T ′
r − r if p � r

T ′
r if p|r

(r ≥ 2),
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where we denote by np the numerator of (p − 1)/12. We have tr =
∑

s|r,s �=1 Is for

all r > 1.

Proposition 5. If the images of I2e, . . . , I2de in Ie/lIe are Fl-linearly inde-
pendent, then T1e, . . . , Tde are Fl-linearly independent in Te/lTe; that is to say (�l)
is true.

Proof. We have

T ′
2T

′
r =

{
I2r − 2Ir if r is odd

I2r − 3Ir + 2Ir/2 if r is even.

So if I2e, . . . , I2re are linearly independent in Ie/lIe, so are T ′
2e, . . . , T

′
2T

′
2re and,

since T ′
2e = (T2 − 3)e ∈ Ie, we obtain that T ′

1e, . . . , T
′
de are linearly independent

in Te/lTe. But Tr = T ′
r +

∑
s|r,s<r T

′
s so T1e, . . . , Tde are linearly independent in

Te/lTe. �

Moreover, Oesterlé used Proposition 2 and the lemme des cordes to give an
explicit formula for tre • ξ(k) and then for Ire • ξ(k) (which is the unique “r-th
term” of tre • ξ(k)):

(1) Ire • ξ(k) =
[
rk

p

]
−
[
rk∗
p

]
+ vr(k)− vr(k∗) (r ≥ 2, k ∈ {1, . . . , p− 1}),

where vr(k) = #{(a, a′, b, b′) ∈ Z, a, a′, b, b′ ≥ 1, aa′ + bb′ = r, (a, b) = 1, bk ≡ a
(mod p)}. The end of the proof is then mutatis mutandis the same as Merel’s:
using Lemma 2, Oesterlé showed that, when p/ log4(p) > d6, it is possible for each
r ≥ 2 to find k such that Ire • ξ(k) = 1 and Ise • ξ(k) = 0 for s < r. He deduced
that for p/ log4(p) > d6, I2e, . . . , Ide are linearly independent. Applying this for 2d
instead of d and using Proposition 5 gives Proposition 4.

This is how one can obtain Oesterlé’s bound. As we said in Remark 2, the
question of finding a bound growing polynomially in d remains open.

Remark 4. As Merel pointed out to me, the result of Proposition 5 is still
true replacing Ir by tr, (2 ≤ r ≤ 2d). Indeed, a calculation proves that t2Ti ∈
t2i +

∑
1≤j≤i ZTj . Using the results of the section 3.5 case i > 1, it follows that

when p/ log4(p) > Sup(d8, 400d4), (�l) is true for all l ≥ 3. Since p > (3d/2 + 1)2

implies p/ log4(p) > Sup(d8, 400d4) provided that d ≥ 37, it gives Oesterlé’s bound
in that case. The other cases have been studied by Oesterlé.
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Generalized Fermat equations
(d’après Halberstadt-Kraus)

Pierre Charollois

Abstract. In this paper, we summarize the work of Halberstadt and Kraus on generalized
Fermat equations of the shape axn + byn = czn. In particular, we sketch the proof that, for
fixed odd coprime integer coefficients a, b, c, there is a set of primes n of positive density
for which only trivial solutions (x, y, z) occur.
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1. Introduction

Our purpose is to publicize the statement and the proof of the following theorem
[HK02, théorème 2.1]:

Theorem 1.1 (Halberstadt-Kraus (2002)). Let a, b, c be odd pairwise coprime integers.
Then there is a set of primes P = P(a, b, c) of positive density such that if p ∈ P, then the
equation

(1) axp + byp + czp = 0

has only trivial rational solutions (x, y, z) ∈ Q3.

A solution (x, y, z) is called trivial in our context if xyz = 0.
One must point out that before Wiles’s work, even the case a = b = c = 1 was

unknown. Theorem 1.1 exhibits the first infinite family of generalized Fermat equations
having only trivial solutions.

Note that the set of primes P will be given by congruence conditions. These can be
made more precise and explicit for particular choices of triples (a, b, c). For instance, the
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c©2009 Pierre Charollois
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proof of Theorem 1.1 yields the following, providing a partial answer to a question raised
by Serre [Ser87, p.204]:

Theorem 1.2. If p ≥ 7 is a prime number satisfying p � 1 mod 12, the equation

xp + 3yp + 5zp = 0

has only trivial solutions over Q. So does the equation

xp + yp + 15zp = 0.

The proof of these theorems relies crucially on the modularity theorem for elliptic
curves from Wiles and his followers, as well as Ribet’s level-lowering theorem. Another
expository paper on the application of these modular techniques to Diophantine equations
can be found in [Sik07].

It is a pleasure to thank Henri Darmon and Alain Kraus for their help and their support.

2. Preliminary section

In this section, we give some classical necessary preparation for the theorems. Namely,
following the lines of the exposition in section 4 of [Dar], we attach successively three
objects to a hypothetical solution (x, y, z) of (1):

1. A Frey curve E0 whose invariants can be computed.
2. A representation ρ describing the action of Gal(Q̄/Q) on the p-division points of

E0.
3. Corresponding to ρ is a cusp form f of weight 2 for Γ0(N), where N divides the

conductor of E0. We then reduce to the case where f has integer coefficients.

After this preparation, the point is to be able to discard all such modular forms. Halber-
stadt and Kraus manage to do so using their so-called “symplectic criterion” which will be
explained in detail in the last section.

We proceed by contradiction and start from a hypothetical non-trivial solution

(x, y, z) ∈ Q3

of equation (1). Adjusting pth-powers and clearing denominators, we can assume without
loss of generality that x, y, z are coprime integers, and that a, b and c do not contain any
pth-powers.

One can reorder and label the three integers axp, byp and czp by A, B and C respec-
tively so that B is the only even integer among them, and A ≡ ±1 mod 4. By adjusting
the signs of our solution, we are reduced to the case where A ≡ −1 mod 4. To this data
A + B + C = 0 we attach the Frey curve over Q

E0 : Y2 = X(X − A)(X + B).

The computation of its invariants on this model using classical formulae [Sil86, p.46] leads
to:

c̃4 = 16(A2 + AB + B2) and ∆̃ = 16(abc)2(xyz)2p = 16(ABC)2.

If � � 2 is a prime dividing ∆̃, it cannot divide c̃4. Hence E0 is semi-stable outside 2.
To study the reduction of E0 at � = 2, let us change the variables to X′ = 4X and

Y ′ = 8Y + 4X. Assuming that 16 divides B (since we will assume that p ≥ 5, even 32
divides B), one obtains a global minimal Weierstrass equation for E0 over Q. At this point
the minimal discriminant turns out to be

(2) ∆(E0) = 2−8(ABC)2,
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and c4(E0) is odd. Finally, E0 is also semi-stable at � = 2, and thus is semi-stable. Its
conductor is the radical of the discriminant, that is (because 32 divides B)

NE0 =
∏

� prime, �|ABC

�.

Key observation: Notice the factor 2−8 involved in formula (2) for the minimal discrim-
inant. The “minus sign” of the exponent turns out to be crucial in the proof of Theorem
1.1.

The set of p-torsion points E0[p] of E0(Q̄) forms a Fp-vector space of dimension 2.
The absolute Galois group GQ = Gal(Q̄/Q) acts naturally on E0[p]. Thus we obtain a
representation

ρ : GQ → Aut(E0[p]) � GL2(Fp).

If ρ is reducible, then E0 contains a rational subgroup of order p. This cannot be the case
if p ≥ 17 because of the boundedness result of Mazur [Maz77, Th. 8] for the torsion of
elliptic curves over Q. Hence ρ is irreducible if p is large enough. Notice how our original
Diophantine question has been transferred to this new Diophantine problem solved by
Mazur. For more on this result, see [Reb] in this volume. This bound p ≥ 17 is sufficient
for us to prove Theorem 1.1. Nevertheless, a more precise result is given in [Kra97,
Lemma 4] showing that ρ is irreducible as soon as p ≥ 5.

Serre [Ser87] associates to such a representation a conductor N |NE0 . In our context we
have

N = 2 rad(abc) := 2
∏

� prime, �|abc

�.

By the result of Wiles [Wil95], the semi-stable elliptic curve E0 is modular: the func-
tion on the upper half-plane τ �→

∑
n≥1 an(E0)qn belongs to the space S 2(Γ0(NE0 )) of cusp-

idal modular forms of weight 2 on Γ0(NE0 ).
The “lowering the level” Theorem of Ribet [Rib90] ensures that the representation ρ

is then modular: there exists a newform f = q +
∑

n≥2 anqn of weight 2 on Γ0(N) (where N
now depends only on abc and not on (x, y, z) or p) and a place p of Kf = Q(a2, . . . , an, . . .)
above p such that

(3)
i) a� ≡ a�(E0) mod p if � � NE0 p
ii) a� ≡ ±(� + 1) mod p if � | NE0 and � � pN.

In the case of Fermat’s last Theorem, one could show that N = 2 and the previous
results were enough (!) to derive a contradiction since there is no cusp form of weight 2
and this level. In proving Theorem 1.1 and 1.2, Halberstadt and Kraus needed to refute the
existence of such a form using an additional argument.

3. Proof of Theorems 1.1 and 1.2

Let f be the modular form of level N given by the previous construction. Both f and
N do not depend on the solution (x, y, z) nor on p. We first reduce to the case where the
modular form f has coefficients in Z. Otherwise, the finite extension K = Kf of Q has
degree bounded by g = dimQ(S new

2 (Γ0(N)). Let a� � Z for the smallest possible prime �.
Both g and � do not depend on p. We can assume that � does not divide pN because a�
would be 0, ±1. Thus in the previous case i) p divides NK/Q(a� − a�(E0)), while in case ii)
p divides NK/Q(a� ± (� + 1)). The Hasse bound gives |a�(E0)| ≤ 2

√
�, while Weil-Deligne’s

bound shows that |σ(a�)| ≤ 2
√
� for each real embedding σ of K.
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In any case p is bounded by a number depending only on a, b, c. Therefore, choosing
large enough p we can make sure that f has integer coefficients. Under this hypothesis, the
Eichler-Shimura theory provides an elliptic curve E′ over Q of conductor N such that the
Hasse-Weil function of E′ is

∑
ann−s.

For almost all primes �, the congruence relations (3) impose that a� ≡ a�(E0) mod p.
This is enough to show that the Galois modules E[p] and E′[p] are isomorphic. For, if
� � pNE0 the Frobenius element Frob� in Aut(E[p]) has trace (resp. determinant) a� mod
p (resp. � mod p). The same occurs with E′. By the Chebotarev density theorem, this
implies that an element g ∈ GQ has the same characteristic polynomial when it acts on
E[p] or E′[p]. Thus the two representations of GQ in the p-division points of E and E′

have isomorphic semi-simplifications. Our assertion follows since E[p] is irreducible.

At this point, the following key proposition is in order:

Proposition 3.1 ( [KO92], Prop. 2). Let E and E ′ be two elliptic curves over Q with
minimal discriminants ∆ and ∆′, and let p be a prime number.

Assume that the groups of p-torsion points E[p] and E′[p] are isomorphic as GQ-
modules. Assume also that E and E ′ have multiplicative reduction at a common prime
� � p such that p does not divide the valuation v�(∆). Then we have

a) The prime p does not divide v�(∆′).
b) The following conditions are equivalent:

(i) there is a symplectic (viz. compatible with the Weil pairing on E[p] and
E′[p]) isomorphism between these two representations.

(ii) the quotient v�(∆)/v�(∆′) is a square in (Z/pZ)∗.

We postpone the proof of this “symplectic criterion” to the last section. The way it
implies Theorems 1.1 and 1.2 is a bit tricky. Up to isogeny, there is only a finite number of
elliptic curves overQ of conductor N, say E1, . . . , Eh. We label our previous curve E′ = E j

among them, and we want to apply the criterion to the pair (E0, E j).
Recall that E0 has minimal discriminant

∆(E0) = 2−8(abc)2(xyz)2p.

We can assume that |abc| > 2 by Fermat’s last theorem. Now we choose a first prime �1
dividing the odd integer abc, and �2 = 2. If p is large enough, p divides neither v�1 (∆(E0))
nor v2(∆(E0)).

Let us emphasise that we are not going to decide whether or not E j and E0 are sym-
plectically isomorphic. But in both cases, Proposition 3.1.b implies that the product of the
two terms

v�1 (∆(E0))

v�1 (∆(E j))
mod p and

v2(∆(E0))
v2(∆(E j))

mod p

is a square mod p because both terms are simultaneously squares or non-squares.
Equality (2) shows that the numerator of this product is

v�1 (∆(E0))v2(∆(E0)) ≡ 2 v�1 (abc)(−8) mod p

≡ − 16 v�1 (abc) mod p.

Therefore the symplectic criterion implies that the integer nj defined by

nj = −v�1 (abc)v�1 (∆(E j))v2(∆(E j))

has to be a square mod p.
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Hence if p �a,b,c 0 is a prime satisfying

(4)

(
nj

p

)
= −1 for all j = 1, . . . , h,

the equation axp + byp + czp = 0 has no non-trivial solution. It remains to show that these
conditions are simultaneously satisfied on a set of positive density. To do this, let p be a
prime such that

i) −1 is a non-square mod p;
ii) each prime divisor of nj ( j = 1, . . . , h) is a square mod p.

The previous two conditions define a subset of P which has positive density by Cheb-
otarev’s Theorem. Theorem 1.1 follows. �

Proof of Theorem 1.2 (sketch):

Both equations xp + 3yp + 5zp = 0 and xp + yp + 15zp = 0 have coefficients a, b, c
satisfying abc = 15. The existence of a putative non-trivial rational solution with p ≥ 7
leads to cusp forms of level N = 30. There is only one such newform of weight 2. Thus
the Galois module E0[p] has to be isomorphic to E1[p], where E1 is an elliptic curve of
conductor 30, say 30A1 in Cremona’s tables. The minimal discriminant of E1 is

∆(E1) = −24335.

Then we choose �1 = 2 and �2 = 5 to deduce that n1 = −1 must be a square mod p.
But we could also use �2 = 3 and obtain that −3 must be a square mod p.

The only primes p satisfying both conditions are those congruent to 1 mod 12. If we
avoid such primes, there can be no non-trivial solutions. Therefore we obtain the conclu-
sion of Theorem 1.2, at least for p large enough. The lower bound for p can be made
precise using the explicit formulations of [Kra97]. �

4. Proof of the symplectic criterion

We conclude this paper by proving the key Proposition 3.1, following closely the lines
of [KO92]. The proof consists of a local study of E and E′ at the place �, for which the
Tate curve model can be used to make the computations explicit.

Let K = Qnr
� denote the maximal unramified extension of Q�. Both E and E′ having

multiplicative reduction over Q at �, their j-invariant is not an integer in K. We deduce
from [Sil94, Th. V.5.3] that E is uniformized over K by a Tate curve Gm/qZ, where q in K
has valuation e = −v�( j(E)) = v�(∆). The same is true for E′, with a q′ ∈ K of valuation
e′ = v�(∆′).

The given isomorphism and the previous uniformizations combine to provide a
Gal(K̄/K)-module isomorphism Ψ between the p-division points E[p] of K̄∗/qZ and those
E′[p] of K̄∗/q′Z.

Let us describe the effect of GK = Gal(K̄/K) and Ψ on a basis of E[p], following
[Sil94, Prop. 5.6.1]. First note that K contains the p th-roots of unity, and let us fix ζ a
primitive one. Fix also γ ∈ K̄, a p th-root of q. Then {ζqZ, γqZ} forms a basis for E[p]. The
Galois group GK acts transitively on the p conjugates {ζ jγ, 1 ≤ j ≤ p}. Hence there is a
distinguished element σ ∈ GK which satisfies σ(ζ) = ζγ, i.e. whose matrix is

(
1 1
0 1

)
.

As GK fixes ζ, it acts trivially on E[p] iff γ is in K, that is, iff p divides e = v�(q). The
same assertion holds for E′[p] and e′. These two Galois modules are isomorphic and p
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does not divide e by assumption, so we conclude that p cannot divide e′, which is assertion
a). Hence there are integers m and n such that

e′ = ne + mp.

We detail how Ψ acts on our basis. Since q′/(qnlmp) is a unit in K, it has a p th-root
α ∈ K. We obtain a p th-root of q′ by setting γ′ = γnlmα, completing a basis {ζq′Z, γ′q′ Z}
of E′[p].

Observe that for all g ∈ GK , we have Ψ(ζqZ)g = Ψ((ζqZ)g) = Ψ(ζqZ) because Ψ is
compatible with GK . Therefore the matrix of Ψ with respect to the previous basis is upper
triangular, say of the form

(
a b
0 d

)
.

The very definitions of σ and γ′ lead to the identity σ(γ′) = σ(γ)nσ(lmα) = ζnγ′.
Compatibility between Ψ and σ can be written in matrix terms as follows:

(
a b
0 d

) (
1 1
0 1

)
=

(
1 n
0 1

) (
a b
0 d

)
.

Identification of upper right entries shows the intermediate identity

(5) a = nd.

Now we turn to the Weil pairing. It is a bilinear alternate pairing satisfying the follow-
ing identities on E[p] and E′[p] respectively:

B(γqZ, ζqZ) = ζ, B′(γq′Z, ζq′Z) = ζ.

Assuming that Ψ is a symplectic isomorphism, we obtain

ζ = B(γqZ, ζqZ) = B′(Ψ(γqZ), Ψ(ζqZ)) = B′(ζbγdq′Z, ζaq′Z) = ζad.

It follows that ad ≡ 1 mod p, or nd2 ≡ 1 mod p by (5) and n is a square modulo p.
Reciprocally, if n is a square modulo p, there is an integer r such that r2nd2 = 1

mod p. It can be easily checked that the r th-power Ψr defines the required symplectic
isomorphism between the Tate curves, hence E and E′ are symplectically isomorphic. �

5. Limitations of the method

The paper [HK02] presents the symplectic method and two others (called the reduc-
tion method and the decomposition method) to handle the case of different generalized
Fermat equations. Even if Theorem 1.1 is successful, as it solves an infinite family of
Fermat equations, many questions are still open.

For instance, the remaining case p = 1 mod 12 in Theorem 1.2 cannot be settled
using the methods of Halberstadt and Kraus. This would provide a complete answer to the
question raised by Serre.

The authors also mention (Exemple 2.12) the case of the curve

16x7 + 87y7 + 625z7 = 0.

Denote by E0 the corresponding Frey curve and by E1 the elliptic curve 435C2. The
symplectic criterion cannot ensure that ρE0

7 and ρE1
7 are not isomorphic since E0 and E1

have discriminants 3258292(xyz)14 and 3452292 respectively.

Moreover, the aim of their three methods is to show that the set of solutions of some
generalized Fermat equation is trivial. Thus the case of the Diophantine equation axp +

byp + czp = 0 with a + b + c = 0 falls out of their scope because the non-trivial solution
(1, 1, 1) has to be considered.
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Nevertheless, a result in this setting has been obtained in [DM97], providing an opti-
mistic conclusion to this section and to this note:

Theorem 5.1 (Darmon-Merel (1997) [DM97]). Let n ≥ 3 be an arbitrary integer.
Then the equation

xn + yn − 2zn = 0

has no integer solutions (x, y, z) ∈ Z3 with | xyz |> 1.
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Heegner points and Sylvester’s conjecture

Samit Dasgupta and John Voight

Abstract. We consider the classical Diophantine problem of writing positive
integers n as the sum of two rational cubes, i.e. n = x3 + y3 for x, y ∈ Q. A
conjecture attributed to Sylvester asserts that a rational prime p > 3 can be
so expressed if p ≡ 4, 7, 8 (mod 9). The theory of mock Heegner points gives
a method for exhibiting such a pair (x, y) in certain cases. In this article, we

give an expository treatment of this theory, focusing on two main examples:
a theorem of Satgé, which asserts that x3 + y3 = 2p has a solution if p ≡ 2
(mod 9), and a proof sketch that Sylvester’s conjecture is true if p ≡ 4, 7
(mod 9) and 3 is not a cube modulo p.

1. A Diophantine problem

1.1. Sums of rational cubes. We begin with the following simple Diophan-
tine question.

Question. Which positive integers n can be written as the sum of two cubes
of rational numbers?

For n ∈ Z>0, let En denote the (projective nonsingular) curve defined by the
equation x3+y3 = nz3. This curve has the obvious rational point ∞ = (1 : −1 : 0),
and equipped with this point the curve En has the structure of an elliptic curve
over Q. The equation for En can be transformed via the change of variables

(1) X = 12n
z

x+ y
, Y = 36n

x− y

x+ y

to yield the affine Weierstrass equation Y 2 = X3 − 432n2.
We then have the equivalent question: Which curves En have a nontrivial ratio-

nal point? For n not a cube or twice a cube, En(Q)tors = {∞} (see [Sil86, Exercise
10.19]), so also equivalently, which curves En have positive rank rk(En(Q)) > 0?

Examples. Famously, 1729 = 13 + 123 = 93 + 103; also,(
15642626656646177

590736058375050

)3

+

(
−15616184186396177

590736058375050

)3

= 94.
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In each case, these solutions yield generators for the group En(Q). (Note n = 94 =
2 · 47 is a case covered by Satgé’s theorem below, cf. §3.1.)

1.2. Sylvester’s conjecture. We now consider the case n = p ≥ 5 is prime.

Conjecture (Sylvester, Selmer [Sel51]). If p ≡ 4, 7, 8 (mod 9), then p is the
sum of two rational cubes.

Although this conjecture is traditionally attributed to Sylvester (see [Syl79b,
§2] where he considers “classes of numbers that cannot be resolved into the sum or
difference of two rational cubes”), we cannot find a specific reference in his work to
the above statement or one of its kind (see also [Syl79a, Syl80a, Syl80b]).

An explicit 3-descent (as in [Sel51], see also [Sat86]) shows that

rk(Ep(Q)) ≤

⎧⎪⎨
⎪⎩
0, if p ≡ 2, 5 (mod 9);

1, if p ≡ 4, 7, 8 (mod 9);

2, if p ≡ 1 (mod 9).

Hence rk(Ep(Q)) = 0 for p ≡ 2, 5 (mod 9), a statement which can be traced back
to Pépin, Lucas, and Sylvester [Syl79b, Section 2, Title 1].

The sign of the functional equation for the L-series of Ep is

sign(L(Ep/Q, s)) =

{
−1, if p ≡ 4, 7, 8 (mod 9);

+1, otherwise.

(See [Kob02]; this can be derived from the determination of the local root numbers
wp(Ep) = (−3/p) and w3(Ep) = 1 if and only if p ≡ ±1 (mod 9).)

Putting these together, for p ≡ 4, 7, 8 (mod 9), the Birch–Swinnerton-Dyer
(BSD) conjecture predicts that rk(Ep(Q)) = 1.

1.3. A few words on the case p ≡ 1 (mod 9). For p ≡ 1 (mod 9), the
BSD conjecture predicts that rk(Ep(Q)) = 0 or 2, depending on p. This case was
investigated by Rodriguez-Villegas and Zagier [RVZ95].

Define Sp ∈ R by

L(Ep/Q, 1) =
Γ( 13 )

3
√
3

2π 3
√
p

Sp;

then in fact Sp ∈ Z, and conjecturally (BSD) we have Sp = 0 if #Ep(Q) = ∞
and Sp = #X(Ep) otherwise. Rodriguez-Villegas and Zagier give two formulas for
Sp, one of which proves that Sp is a square. They also give an efficient method to
determine whether Sp = 0.

1.4. The case p ≡ 4, 7, 8 (mod 9): an overview. Assume from now on that
p ≡ 4, 7, 8 (mod 9). We can easily verify Sylvester’s conjecture for small primes p.

7 = 23 + (−1)3

13 = (7/3)3 + (2/3)3

17 = (18/7)3 + (−1/7)3

31 = (137/42)3 + (−65/42)3

43 = (7/2)3 + (1/2)3

...
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Again, the BSD conjecture predicts that we should always have that p is the sum
of two cubes. General philosophy predicts that in this situation where Ep has
expected rank 1, one should be able to construct rational nontorsion points on Ep

using the theory of complex multiplication (CM).
In §2, we introduce the construction of Heegner points, which uses the canonical

modular parametrization Φ : X0(N) → Ep where N is the conductor of Ep; this
strategy requires a choice of imaginary quadratic extension K and is therefore not
entirely “natural”. If instead we try to involve the field K = Q(ω), we arrive at a
theory of mock Heegner points. We then choose a fixed modular parametrization
X0(N) → E where E is a designated twist of Ep for each prime p.

In §3, we illustrate one such example, originally due to Satgé. We look at the
parametrization X0(36) → E where E : y2 = x3 + 1 is a twist of the curve E2p.
We show that when p ≡ 2 (mod 9), the equation x3 + y3 = 2p has a solution; the
proof involves a careful analysis of the relevant Galois action using the Shimura
reciprocity law and explicit recognition of modular automorphisms.

In §4, we return to Sylvester’s conjecture, and we sketch a proof that the
conjecture is true if p ≡ 4, 7 (mod 9) and 3 is not a cube modulo p; here, we
employ the parametrization X0(243) → E9. We close with some open questions.

2. Heegner and Mock Heegner points

2.1. Heegner points. The curve Ep has conductor N = 9p2 if p ≡ 7 (mod 9)
and conductor N = 27p2 if p ≡ 4, 8 (mod 9). We have the modular parametrization

Φ : X0(N) → Ep,

from which we may define Heegner points as follows.
Let K = Q(

√
D) be a imaginary quadratic field of discriminant D such that 3

and p split in K; the pair (Ep,K) then satisfies the Heegner hypothesis. Let OK

denote the ring of integers of K, and let N ⊂ OK be a cyclic ideal of norm N .
Then the cyclic N -isogeny

C/OK → C/N−1

defines a CM point P ∈ X0(N)(H), where H is the Hilbert class field of K.
Let Y = TrH/K Φ(P ) ∈ Ep(K) denote the trace, known as a Heegner point.

After adding a torsion point if necessary, we may assume Y ∈ Ep(Q) (see [Dar04,
§3.4], and note Ep(K)tors = Ep[3](K) ∼= Z/3Z.)

2.2. Gross-Zagier formula. The Gross-Zagier formula indicates when we

expect the point Y ∈ Ep(Q) to be nontorsion, i.e. when its canonical height ĥ(Y )
is nonzero.

Theorem (Gross-Zagier formula [Dar04, Theorem 3.20]). We have

ĥ(Y )
.
= L′(Ep/K, 1) = L′(Ep/Q, 1)L(Ep/Q, χK , 1).

Here the symbol
.
= denotes equality up to an explicit nonzero “fudge factor.”

Thus if we choose K such that L(Ep/Q, χK , 1) 
= 0, the BSD conjecture implies

that ĥ(Y ) 
= 0 and hence Y will be nontorsion. Working algebraically, without
making any reference to L-functions, one might hope to prove that Y is nontorsion
directly and unconditionally. But this strategy seems tricky—in particular, no
natural candidate for K presents itself. In the next section we discuss a more
“natural” approach to constructing a nontorsion point on Ep.
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2.3. Mock Heegner points. We consider a variation of the above method
where we construct what are known as mock Heegner points ; this terminology is
due to Monsky [Mon90, p. 46], although Heegner’s original construction can be
described as an example of such “mock” Heegner points.

Consider the field K = Q(
√
−3) = Q(ω), where ω is a primitive cube root of

unity. Note that the elliptic curve En : x3 + y3 = nz3 has CM by OK , given by

[ω](x, y) = (ωx, ωy).

The prime 3 is ramified in K, so the Heegner hypothesis is not satisfied for
the pair (Ep,K). Nevertheless, Heegner-like constructions of points defined by CM
theory may still produce nontorsion points in certain situations.

2.4. Twisting. Notice that

(2) (r/ 3
√
p)3 + (s/ 3

√
p)3 = 1 ⇐⇒ r3 + s3 = p.

The obvious equivalence (2) suggests that to find points on Ep(K), we may identify
Ep as the cubic twist of E1 by 3

√
p. More precisely, let L = K( 3

√
p), and let σ be the

generator of Gal(L/K) satisfying σ( 3
√
p) = ω 3

√
p. The Galois group Gal(K/Q) is

generated by complex conjugation, which we denote by . We have an isomorphism
of groups

Ep(Q) ∼= {(r/ 3
√
p, s/ 3

√
p) ∈ E1(L) : r, s ∈ Q}

= {Y ∈ E1(L) : Y
σ = ω2Y, Y = Y }.

In other words, we look for points on E1(L) with specified behavior under Gal(L/Q).
More generally (see [Sil86, §X.5]), if E/Q is an elliptic curve, then one defines

the set of twists of E to be the set of elliptic curves over Q that become isomorphic
to E over Q, modulo isomorphism over Q. There is a natural bijection between the
set of twists of E and the Galois cohomology group

H1(Q,Aut(E)) := H1(Gal(Q/Q),Aut(EQ)).

In our setting,

Ep(Q) ∼= {Y ∈ E1(L) : Y
σ = ω2Y, Y = Y }

= {Y ∈ E1(L) : Y
τ = cτY for all τ ∈ Gal(L/Q)}(3)

where [cτ ] ∈ H1(Q,Aut(E1)) is the cohomology class represented by the cocycle
cτ := 3

√
p/τ ( 3

√
p). To find a point Y in the set (3), we may take any Q ∈ E1(L) and

consider the twisted trace

Q′ = Q+ ωQσ + ω2Qσ2 ∈ E1(L).

The point Q′ has the property that (Q′)σ = ω2(Q′).
Now suppose that Q′ is nontorsion. Consider then the point Y = Q′ + Q′ in

the set (3); either it will be nontorsion, or else it will be trivial and then instead√
−3Q′ is a nontorsion point in the set (3). Thus, in any case, a nontorsion Q′ will

yield a nontorsion Y .
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2.5. Mock Heegner points on X0(27). To summarize, if we can construct
a point Q ∈ E1(L), then by taking a twisted trace we can construct a (hopefully
nontorsion) point Y ∈ Ep(Q). We look to CM theory to construct the point Q.

We have a modular parametrization

Φ : X0(27)
∼−→ E1 : Y 2 + 9Y = X3 − 27

z → (X,Y ) =

(
η(9z)4

η(3z)η(27z)3
,
η(3z)3

η(27z)3

)
,

where η(z) = q1/24
∏∞

n=1(1− qn) is the Dedekind eta-function and q = exp(2πiz).
In this case, the map Φ is an isomorphism of curves.

The field L = K( 3
√
p) is a cyclic extension of K with conductor

f(L/K) = f =

{
3p, if p ≡ 4, 7 (mod 9);

p, if p ≡ 8 (mod 9).

As L is of dihedral type over Q, it is contained in the ring class field of K of
conductor f , denotedHf . LetOK,f = Z+fOK denote the order ofOK of conductor
f , and let P ∈ X0(27)(Hf ) be defined by a cyclic 27-isogeny between elliptic curves
with CM by OK,f . We define the point Q = TrHf/L Φ(P ) ∈ E1(L) and ask: Is the
point Q nontorsion?

Let us compute an example with p = 7. For an element z in the complex upper
half plane H, denote by 〈z〉 the elliptic curve C/〈1, z〉. We have a cyclic 27-isogeny,
obtained as a chain of 3-isogenies, given by

(4) 〈ωp/3〉 → 〈ωp〉 → 〈(ωp+ 2)/3〉 → 〈(ωp+ 2)/9〉;
this isogeny has conductor 3p. Under the identification Γ0(N)\H ∼= Y0(N), an
element z ∈ H represents the isogeny 〈z〉 → 〈Nz〉. The isogeny in (4) is represented
by the point z = M(ωp/3), where M = ( 2 1

3 2 ) ∈ SL2(Z). In this case, we have

Hf = H3p = K(α) with α = 6
√
−7 = 6

√
7 exp(πi/6). One computes that the point

Φ(z) = P = (X,Y ) ∈ E1(H3p), in Weiestrass coordinates as above, agrees with the
point

X = (−180ω − 90)α5 + (−216ω − 216)α4 + 1
2 (−345ω − 690)α3

− 414α2 + (330ω − 330)α+ 1
2 (1581ω),

Y = (−6210ω + 6210)α5 − 14877ωα4 + (−23760ω − 11880)α3

+ (−28458ω − 28458)α2 + (−22725ω − 45450)α− 54441

to the precision computed. One can then verify computationally that

Q = TrHf/L(P ) = (3ω, 0) ∈ E1(L)

is torsion!
The method we have outlined thus fails in this case; we see similar behavior

for the eight other distinguished cyclic 27-isogenies of conductor 3p, as well as for
other values of p.

3. Satgé’s construction

3.1. Satgé’s construction. Our first attempt at constructing a mock Heeg-
ner point using the parametrization X0(27) → E1 (in §2.5) yielded only torsion
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points on Ep(Q). We now exhibit a similar construction which does work, but not
one which addresses Sylvester’s conjecture.

Theorem (Satgé [Sat87]). If p ≡ 2 (mod 9), then #E2p(Q) = ∞. If p ≡ 5
(mod 9), then #E2p2(Q) = ∞.

Another result in the same vein is the following.

Theorem (Coward [Cow00]). If p ≡ 2 (mod 9), then #E25p(Q) = ∞. If
p ≡ 5 (mod 9), then #E25p2(Q) = ∞.

Our expository treatment of Satgé’s theorem will treat the first case, where
p ≡ 2 (mod 9); see also the undergraduate thesis of Balakrishnan [Bal06]. The
second statement follows similarly. Our proof proceeds different than that of Satgé;
his original proof is phrased instead in the language of modular forms.

3.2. Twisting. Instead of the parametrization X0(27) → E1, we use

Φ : X0(36)
∼−→ E : y2 = x3 + 1.

Over K, the cubic twist of E by 3
√
p is isomorphic to E2p. (Over Q, it is the

sextic twist of E by 6
√
−27p2, given by y2 = x3 − 27p2, which is isomorphic to E2p;

the quadratic twist by
√
−3 yields a curve which is isomorphic over K, as well as

3-isogenous over Q.) The twisting is then given by the group isomorphism

E2p(Q) ∼= {P = (r 3
√
p, s

√
−3) ∈ E(L) : r, s ∈ Q}

= {P ∈ E(L) : P σ = cτP for all τ ∈ Gal(L/Q)}
where [cτ ] ∈ H1(Gal(L/Q),Aut(E)) is represented by the cocycle

cτ :=
τ (β)

β
, where β = 6

√
−27p2.

3.3. From H6p to H3p. From the cyclic 36-isogeny 〈ωp/6〉 → 〈6ωp〉 of con-
ductor 6p, we obtain a point P ∈ E(H6p), where E : y2 = x3 + 1.

We have the following diagram of fields.

H6p = H3p(
3
√
2)

3

H3p

(p+1)/3

L = K( 3
√
p)

3

K

2

Q

As we now describe, it turns out that the trace from H6p to H3p is unnecessary
in the trace from H6p to L. Let

ρ ∈ Gal(H6p/H3p) ⊂ Gal(H6p/K)
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satisfy ρ( 3
√
2) = ω 3

√
2.

Proposition. For P ∈ E(H6p) as defined above, we have

P ρ = P + (0, 1),

where (0, 1) is a 3-torsion point.

This proposition can be proved using the methods we introduce below, and so
is left to the reader. It follows from this proposition that TrH6p/H3p

P = 3P . To
eliminate this factor of 3, we introduce the point

T = (− 3
√
4,−

√
−3) ∈ E[3](H6)

and note that it also satisfies T ρ = T + (0, 1). Thus letting

(5) PT := P − T,

we find (PT )
ρ = PT , so PT ∈ E(H3p).

3.4. From H3p to Q. Define

(6) Q = TrH3p/L PT ∈ E(L).

We now claim that the following equation holds.

Proposition. Let σ ∈ Gal(L/K) satisfy σ( 3
√
p) = ω 3

√
p. Then we have

(7) Qσ = ωQ+ (0,−1).

The point (0,−1) is a 3-torsion point. It follows from equation (7) that the
twisted trace is just

Y := Q+ ω2Qσ + ωQσ2

= 3Q ∈ E(L),

which via twisting corresponds to a point Y ′ ∈ E2p(K).
To conclude the proof of Theorem 3.1, assuming that equation (7) holds, we

need to prove that Y , and hence Y ′, is nontorsion. It suffices to prove that Q is
nontorsion. But Etors(L) = {O, (0,±1)}, and no S in this set satisfies equation (7):
indeed, Sσ = S = ωS, so equation (7) for S would yield the contradiction S =
S+(0,−1). Note that this argument proves not only that the point Y ′ is nontorsion,
but that it is not divisible by 3 in the group E2p(K)/E2p(K)tors.

3.5. The Gal(L/K)-action. We now prove the equation (7). We will in
fact prove an equation for P ∈ E(H6p). We choose a lift of σ ∈ Gal(L/K) to
Gal(H6p/K). Namely, we let ασ = 1 + 2pω and let Iσ = αOK ∩ OK,6p. One can
show directly that under the Artin map

(8) Frob : IK,6p/PZ,6p
∼−→ Gal(H6p/K),

the ideal Iσ corresponds to an element σ ∈ Gal(H3p/K) such that σ( 3
√
p) = ω 3

√
p.

In (8), IK,6p denotes the group of fractional ideals of K that are relatively prime to
6p, and PZ,6p denotes the subgroup generated by principal ideals (α) where α ∈ OK

satisfies α ≡ a (mod 6p) for some a ∈ (Z/6pZ)×.
The equation we will prove is

(9) P σ = ωP + (−1, 0),

from which one can deduce equation (7) using equations (5) and (6). The proof
uses two ingredients: an explicit calculation with the Shimura reciprocity law, and
an explicit identification of this action with a modular automorphism.

We begin with the first of these two steps in the following lemma.
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Lemma. We have P σ = 〈3ωp/2〉 → 〈(2ωp+ 1)/3〉.

Proof. The point P is given by the isogeny 〈ωp/6〉 → 〈6ωp〉. The Shimura
reciprocity law ([Shi71, §6.8]) implies that P σ is given by the isogeny

I−1
σ · 〈ωp/6〉 → I−1

σ · 〈6ωp〉.
An explicit calculation shows that I−1

σ ·〈ωp/6〉 ∼ 〈3ωp/2〉, where ∼ denotes homoth-
ety equivalence. Similarly, we find that I−1

σ 〈6ωp〉 ∼ 〈(2ωp+1)/3〉, thus concluding
the proof. �

We now proceed with the second step. Any element of the normalizer of Γ0(36)
in the group PSL2(R) provides by linear fractional transformations an automor-
phism of Γ0(36)\H∗ = X0(36). The group of such modular automorphisms is
denoted N(Γ0(36)). In the second step of the proof of (9), we find a modular
automorphism M such that M(P ) = P σ. Moreover, since X0(36) is a curve of
genus one, it is easy to determine its automorphism group; we may then identify M
explicitly as an element of this automorphism group to obtain the relation (9). For
more details concerning the results on modular automorphisms used in this section,
see [Ogg80].

We now look for a matrix M in N(Γ0(36)) such that M(P ) = P σ. Let H be the
subgroup of N(Γ0(36)) generated by the Atkin-Lehner involutions w4 =

(
4 −1
36 −8

)
and w9 = ( 9 2

36 9 ), together with the exotic automorphism e = ( 1 0
6 1 ) of order 6—there

exists such an exotic automorphism
(

1 0
N/t 1

)
normalizing Γ0(N) whenever t ∈ Z>0

satisfies t | 24 and t2 | N (see [Ogg80]). The group H is a solvable group of order
#H = 72. One computes directly that M =

(
9 −4
36 −15

)
∈ H satisfies M(P ) = P σ,

using the previous lemma.
Now the matrix M corresponds to an element of Aut(X0(36)), the automor-

phism group of X0(36) as an abstract curve. Via the isomorphism Φ, we may
view X0(36) as the elliptic curve E and hence write M(Z) = aZ + b for some
a ∈ Aut(E) ∼= µ6 and some b ∈ E(K). To determine a and b, we evaluate M on
the cusps. The point ∞ ∈ X0(36) corresponds under Φ to the origin of the elliptic
curve. We find that M(∞) = 1/4, which corresponds to the point Φ(1/4) = (−1, 0).
Thus b = (−1, 0). Similarly, evaluating at the cusp 0, we find that a = ω. Putting
these pieces together, we have P σ = M(P ) = ωP + (−1, 0) as claimed.

3.6. An example with p = 11. We illustrate the method of the preceding
section with p = 11. Beginning with z = ωp/6, we compute P ∈ E(H6p) with
x-coordinate which satisfies

x36 + 462331656ωx35 + 11767817160ω2x34 + 179182057872x33 + 543458657808ωx32

+ · · ·+ 50331648x3 + 1939159514087424ωx2 + 16777216 = 0

to the precision computed.
We next compute PT = P − T ∈ E(H3p), where T = (− 3

√
4,−

√
−3) as above.

The point PT has x-coordinate which satisfies

25x12 + (354ω − 270)x11 + (−5313ω − 3432)x10 + (2376ω + 17578)x9

+ (21879ω − 297)x8 + (−6732ω − 24552)x7 + (−16632ω + 61116)x6

+ (3168ω − 9504)x5 + (−12672ω − 45936)x4 + (−19008ω − 2816)x3

+ (10560ω)x2 + (17664ω − 5376)x+ 10240 = 0.
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The trace Q = TrH3p/L PT ∈ E(L), again to the precision calculated, is the
point

Q =

(
−1849

5776
3
√
11

2
+

645

5776
ω

3
√
11 +

225ω + 225

5776
,

27735ω + 55470

438976
3
√
11

2
+

−9675ω + 9675

438976
3
√
11 +

871202ω + 435601

438976

)
.

We indeed find that the equation Qσ = ωQ+(0, 1) holds as in (7). Finally, the
twisted trace is

Y = 3Q =

(
−767848016929

79297693200
ω

3
√
11,

672808015029320783

11661518761992000

√
−3

)
.

The point Y gives rise to the solution (as in (1))(
684469533791312783

112919729369578740

)3

+

(
−661146496267328783

112919729369578740

)3

= 22,

which is twice a Mordell-Weil generator (17299/9954, 25469/9954).

4. Sylvester’s conjecture, revisited

4.1. A theorem of Elkies: A breakthrough. We now return to the original
question of Sylvester’s conjecture. In 1994, Elkies announced the following result
[Elk94], which remains unpublished.

Theorem (Elkies). If p ≡ 4, 7 (mod 9), then #Ep(Q) = #Ep2(Q) = ∞.

The method of Elkies can be sketched as follows. Write p = ππ ∈ Z[ω], where
π, π ≡ 1 (mod 3). Elkies defines a modular curve X defined over K, and constructs
an explicit modular parametrization

Φ : X → Eπ : x3 + y3 = π

defined over K. He uses the map Φ to define a point on Eπ over K( 3
√
π̄), and twists

to get a point in Ep(K).

4.2. Mock Heegner points, revisited. Using the strategy of mock Heegner
points, we have re-proved the theorem under a further hypothesis on p.

Theorem. If p ≡ 4, 7 (mod 9) and 3 is not a cube modulo p, then #Ep(Q) =
#Ep2(Q) = ∞.

We remark that two-thirds of primes p ≡ 4, 7 (mod 9) have the property that
3 is not a cube modulo p.

We only provide a sketch of the proof. Consider the modular parametrization
Φ : X0(243) → E9 : x3 + y3 = 9; the curve X0(243) = X0(3

5) has genus 19. The
modular automorphism group of X0(243) is isomorphic to Z/3Z×S3, where the S3

factor is generated by
(

28 1/3
−81 1

)
and the Atkin-Lehner involution w243 =

(
0 −1

243 0

)
.

The modular parametrization Φ is exactly the quotient of X0(243) by this S3.
We start with a cyclic 243-isogeny of conductor 9p, which yields a point P ∈

E9(H9p). One can descend the point P ∈ E9(H9p) with a twist by 3
√
3 to a point

Q ∈ E1(H3p). We next consider the trace R = TrH3p/L Q ∈ E1(L). We show that
Rσ = ωR+T where σ( 3

√
p) = 3

√
p and T is a 3-torsion point. Thus R yields a point
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Y ∈ Ep2(K) by twisting. (This depends on the choice of P ; another choice yields
a point on Ep(K).)

Unfortunately, there exist points S ∈ E1(K)tors that satisfy the equation Sσ =
S = ωS + T ! Indeed, in certain cases the point R (equivalently, Y ) is torsion; see
section 4.4 below for a discussion of when we expect R to be torsion. To prove that
the point R is nontorsion when 3 is not a cube modulo p, we instead consider the
reduction of R modulo p. The prime p factors as (pp)3 in L, so we consider the pair

(R mod p, R mod p) ∈ (E1)Fp
× (E1)Fp

∼= E1(Fp)
2.

By an explicit computation with η-products, we are able to show that when 3 is not
a cube modulo p, this reduction is not the image of any torsion point S ∈ E1(L)tors.

4.3. Example. We illustrate our method with p = 7.
The isogeny 〈7ω/9〉 → 〈(7ω− 1)/27〉 is a cyclic 243-isogeny with conductor 63,

which yields a point P = (x, y) ∈ E9(H63) with

x6 − 81x3 + 5184 = 0, y6 + 63y3 + 4536 = 0.

The twist Q = (x, y) ∈ E1(H21) has

x2 + 3ω2x+ 4ω = 0, y6 + 7y3 + 56 = 0.

We again have H21 = K(α) where α6 + 7 = 0; we then recognize

Q = ( 12ω
2α3 − 3

2ω
2,− 1

2α
4 + 1

2α)

to the precision computed. The trace R = TrH21/L Q ∈ E1(L) is then simply

R = (− 3
2

3
√
72, 11

2 ω2),

which yields the solution Y = (11/3,−2/3), i.e.(
11

3

)3

+

(
−2

3

)3

= 72.

4.4. A Gross-Zagier formula. A direct näıve analogue of the Gross-Zagier
formula in this case would state that

ĥ(Y )
.
= L′(E9/K, χ3p, 1),

where χ3p : Gal(H3p/K) → µ3 is the cubic character associated to the fieldK( 3
√
3p).

Since formally

L(E9/K, χ3p, s) = L(Ep/Q, s)L(E3p2/Q, s),

this formula becomes

ĥ(Y )
.
= L′(Ep/Q, 1)L(E3p2/Q, 1).

When 3 is not a cube modulo p, one can prove that rk(E3p2(Q)) = 0 (see [Sat86]),
which motivates the fact that the point Y in our construction is nontorsion in this
case. Furthermore, one can show that 3 is a cube modulo p if and only if either 3
divides #X(E3p2/Q) or rk(E3p2/Q) > 0; the order of this Tate-Shafarevich group
is conjecturally the “algebraic part” of L(E3p2/Q, 1) when this value is non-zero.
Thus the “näıve analogue of Gross-Zagier” combined with the BSD conjecture
suggest the equivalence

Y is divisible by 3 in Ep(K)/Ep(K)tors ⇐⇒ 3 is a cube modulo p.
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The proof sketched in §4.2 yields the forward direction of this implication uncon-
ditionally. It should be possible to prove the converse as well, though we have not
yet attempted to do so.

In our description of Satgé’s construction with p ≡ 2 (mod 9), we constructed
a point on the cubic twist of E2 by 3

√
p, so a direct analogue of Gross-Zagier would

yield

ĥ(Y )
.
= L′(E2p/Q, 1)L(E2p2/Q, 1).

In this case one can prove that rk(E2p2(Q)) = 0 and 3 � #X(E2p2/Q) without extra
conditions. This provides intuition for why Satgé’s construction produces points
that are provably not divisible by 3 (in particular nontorsion) without any extra
condition, whereas our result for p ≡ 4, 7 (mod 9) requires an extra condition.

Question. What is the precise statement of the Gross-Zagier formula in the
cases when the Heegner hypothesis does not hold?

This is the subject of current research by Ben Howard at Boston College. Some
aspect of this new formula (perhaps some extra Euler factors which sometimes
trivially vanish) would have to account for various cases when the mock Heegner
point is torsion even when the derivative of the L-function is not zero. Also, this
formula would have to exhibit a dependence on the choice of CM point—the formula
will in general not depend only on the conductor as in the classical Heegner case.

4.5. The case p ≡ 8 (mod 9). What remains untouched by our discussion
so far is the case p ≡ 8 (mod 9) in Sylvester’s conjecture. In this case, we may
use the parametrization Φ : X0(243) → E3 and a cyclic isogeny of conductor 9p,
corresponding to a point P ∈ E3(H9p).

Adding a torsion point, the point P descends with a twist to a point Q ∈
E1(H3p), and a twisted trace Y ∈ Ep(Q). Here, Gross-Zagier would imply that

ĥ(Y )
.
= L′(E3/K, χ9p, 1) = L′(Ep/Q, 1)L(E9p2/Q, 1).

There seems to be no simple criterion for L(E9p2/Q, 1) 
= 0, though one could hope
to prove an analogue of the formulas of Rodriguez-Villegas and Zagier [RVZ95].

Question. When p ≡ 8 (mod 9), can one prove that the point Y is nontorsion
when L(E9p2/Q, 1) 
= 0, or perhaps at least when 3 does not divide the algebraic
part of L(E9p2/Q, 1)?
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Shimura curve computations

John Voight

Abstract. We introduce Shimura curves first as Riemann surfaces and then
as moduli spaces for certain abelian varieties. We give concrete examples of
these curves and do some explicit computations with them.

1. Introduction: modular curves

We motivate the introduction of Shimura curves by first recalling the definition
of modular curves.

For each N ∈ Z>0, we define the subgroup

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
⊂ SL2(Z).

The group Γ0(N) acts on the completed upper half-plane H∗ = H∪P1(R) by linear
fractional transformations, and the quotient X0(N)C = Γ0(N)\H∗ can be given the
structure of a compact Riemann surface. The curve X0(N)C parametrizes cyclic
N -isogenies between (generalized) elliptic curves and therefore has a model X0(N)Q
defined over Q. On X0(N)Q, we also have CM points, which correspond to isogenies
between elliptic curves which have complex multiplication (CM) by an imaginary
quadratic field K.

Shimura curves arise in generalizing this construction from the matrix ring
M2(Q) to certain quaternion algebras over totally real fields F . A Shimura curve
is the quotient of the upper half-plane H by a discrete, “arithmetic” subgroup of
Aut(H) = PSL2(R). Such a curve also admits a description as a moduli space,
yielding a model defined over a number field, and similarly comes equipped with
CM points.

The study of the classical modular curves has long proved rewarding for math-
ematicians both theoretically and computationally, and an expanding list of con-
jectures have been naturally generalized to the setting of Shimura curves. These
curves, which although at first are only abstractly defined, can also be made very
concrete.

In §2, we briefly review the relevant theory of quaternion algebras and then
define Shimura curves as Riemann surfaces. In §3, we provide a detailed example
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104 JOHN VOIGHT

of a Shimura curve over Q. In §4, we discuss the arithmetic of Shimura curves:
we explain their interpretation as moduli spaces, and define CM points, Atkin-
Lehner quotients, and level structure. Finally, in §5, we illustrate these concepts by
considering the case of Shimura curves arising from triangle groups, in some sense
the “simplest” class, and do some explicit computations with them.

2. Quaternion algebras and complex Shimura curves

2.1. Quaternion algebras. We refer to [Vig80] as a reference for this sec-
tion.

As in the introduction, we look again at SL2(Z) ⊂ M2(Q): we have taken the
group of elements of determinant 1 with integral entries in the Q-algebra M2(Q).
The algebras akin to M2(Q) are quaternion algebras.

Let F be a field with charF �= 2. A quaternion algebra over F is a central
simple F -algebra of dimension 4. Equivalently, an F -algebra B is a quaternion
algebra if and only if there exist α, β ∈ B which generate B as an F -algebra such
that

α2 = a, β2 = b, βα = −αβ

for some a, b ∈ F ∗. We denote this algebra by B =

(
a, b

F

)
.

Example. As examples of quaternion algebras, we have the ring of 2 × 2-

matrices over F , or M2(F ) ∼=
(
1, 1

F

)
, and the division ring H =

(
−1,−1

R

)
of

Hamiltonians.

From now on, let B denote a quaternion algebra over F . There is a unique
anti-involution : B → B, called conjugation, with the property that αα ∈ F for
all α ∈ B. The map nrd(α) = αα is known as the reduced norm.

Example. If B =

(
a, b

F

)
, and θ = x+ yα+ zβ + wαβ, then

θ = x− yα − zβ − wαβ, and nrd(θ) = x2 − ay2 − bz2 + abw2.

From now on, let F be a number field. Let v be a noncomplex place of F , and
let Fv denote the completion of F at v. If Bv = B ⊗F Fv is a division ring, we
say that B is ramified at v; otherwise Bv

∼= M2(Fv) and we say B is split at v.
The number of places v where B is ramified is finite and of even cardinality; their
product is the discriminant disc(B) of B. Two quaternion algebras B,B′ over F
are isomorphic (as F -algebras) if and only if disc(B) = disc(B′).

Let ZF denote the ring of integers of F . An order of B is a subring O ⊂ B
(containing 1) which is a ZF -submodule satisfying FO = B. A maximal order is an
order which is maximal under inclusion. Maximal orders are not unique—but we
mention that in our situation (where B has at least one unramified infinite place,
see the next section), a maximal order in B is unique up to conjugation.

2.2. Shimura curves as Riemann surfaces. Let O ⊂ B be a maximal
order. We then define the group analogous to SL2(Z), namely the group of units
of O of norm 1:

O∗
1 = {γ ∈ O : nrd(γ) = 1}.
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In order to obtain a discrete subgroup of PSL2(R) (see [Kat92, Theorem 5.3.4]),
we insist that F is a totally real (number) field and that B is split at exactly one
real place, so that

B ↪→ B ⊗Q R ∼= M2(R)×H[F :Q]−1.

We denote by ι∞ : B ↪→ M2(R) the projection onto the first factor.
We then define the group

ΓB(1) = ι∞(O∗
1/{±1}) ⊂ PSL2(R).

The quotient XB(1)C = ΓB(1)\H can be given the structure of a Riemann surface
[Kat92, §5.2] and is known as a Shimura curve.

From now on, we assume that B �∼= M2(Q), so that we avoid the (classical)
case of modular curves; it then follows that B is a division ring and, unlike the
case for modular curves, the Riemann surface XB(1)C is already compact [Kat92,
Theorem 5.4.1].

3. Example

We now make this theory concrete by considering an extended example.
We take F = Q and the quaternion algebra B over Q with disc(B) = 6, i.e. B

is ramified at the primes 2 and 3, and unramified at all other places, including ∞.

Explicitly, we may take B =

(
−1, 3

Q

)
, so that α, β ∈ B satisfy

α2 = −1, β2 = 3, βα = −αβ.

We find the maximal order

O = Z⊕ Zα⊕ Zβ ⊕ Zδ where δ = (1 + α+ β + αβ)/2,

and we have an embedding

ι∞ : B → M2(R)

α, β �→
(
0 −1
1 0

)
,

(√
3 0

0 −
√
3

)
.

With respect to this embedding, we compute a fundamental domain D for the
action of ΓB(1) = ι∞(O∗

1/{±1}) as follows. (For an alternate presentation, see
[AB04, §5.5.2] or [KV03, §5.1].)

0 1

i

γ1

γ2

γ3

γ4

(2−
√
3)i
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The elements

γ1 = α, γ2 = α+ δ, γ3 = 2α+ αβ, γ4 = 1 + α− β + δ

are known as side-pairing elements ; they yield the presentation

ΓB(1) ∼= 〈γ1, . . . , γ4 | γ2
1 = γ3

2 = γ2
3 = γ3

4 = γ4γ3γ2γ1 = 1〉.

One can compute the area µ(D) of the above fundamental domain D by trian-
gulation, but we also have the formula (see [Elk98, §2.2])

µ(D) = µ(XB(1)) =
π

3

∏
p|disc(B)

(p− 1) =
2π

3
.

The group ΓB(1) then tessellates H as follows.

0 1

(The algorithm for drawing hyperbolic polygons is due to Verrill [Ver06].)
The genus g of X can be computed by the Riemann-Hurwitz formula as

2g − 2 =
µ(XB(1))

2π
−
∑
q

eq

(
1− 1

q

)
,

where eq is the number of (conjugacy classes of) elliptic points of order q. From
the presentation for ΓB(1) above, we can see directly that e2 = e3 = 2 and hence

2g − 2 = 1/3− 2(1− 1/2)− 2(1− 1/3) = −2

so g = 0. Alternatively, we can compute the number of these elements by the
formulas

e2 =
∏

p|disc(B)

(
1−

(
−4

p

))
= 2, e3 =

∏
p|disc(B)

(
1−

(
−3

p

))
= 2.

Since the genus of X is zero, we have a map XB(1)C → P1
C.
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4. Arithmetic of Shimura curves

4.1. Shimura curves as moduli spaces. Just as with modular curves,
Shimura curves are in fact moduli spaces, and this moduli description yields a
model for XB(1)C which is defined over a number field.

In the case F = Q, the curve XB(1) is a coarse moduli space for pairs (A, ι),
where:

• A is an abelian surface, and
• ι : O ↪→ End(A) is an embedding.

We say that such an A has quaternionic multiplication (QM) by O. The involution
on O induces via ι an involution on End(A), and there is a unique principal

polarization on A which is compatible with this involution, then identified with the
Rosati involution.

If F �= Q, the moduli description is more complicated: since B is then neither
totally definite nor totally indefinite, it follows from the classification of endomor-
phism algebras of abelian varieties over C (see [Mum70, Theorem 21.3]) that we
cannot have End(A)⊗Z Q ∼= B. Instead, one must choose an imaginary quadratic
extension K of F , as in [Zha01, §1.1.2], and consider a moduli problem over K.
For simplicity, we assume from now on that F has narrow class number 1: under
this hypothesis, we have a natural choice, namely K = F (

√
−d), where d is a to-

tally positive generator for the discriminant disc(B). One may then think of the
objects parametrized by a Shimura curve XB(1)F as “abelian varieties with QM
by O”—the precise meaning of this phrase will be neglected here.

It then follows from this moduli description that there exists a canonical model
XB(1)F for XB(1)C defined over F , a theorem due to Shimura [Shi67] and Deligne
[Del71].

4.2. Example: Models. The model XB(1)Q over Q for our Shimura curve
with disc(B) = 6 is given by the conic

XB(1)Q : x2 + y2 + 3z2 = 0,

a result attributed to Ihara [Kur79, p. 279].
This identification can be made quite explicit, a computation due to Baba-

Granath [BG08]. For k ∈ Z≥0, we denote by Mk(Γ) the space of holomorphic
weight k modular forms for the group Γ = ΓB(1), namely, the space of holomorphic
maps f : H → C such that

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all γ =
(
a b
c d

)
∈ Γ. Using an elementary formula due to Shimura, we compute

the dimension of Mk(Γ):

dimC M4(Γ) = dimC M6(Γ) = 1, dimC M12(Γ) = 3.

From this, one can show that there exist normalized hk ∈ Mk(Γ) for k = 4, 6, 12
such that

h2
12 + 3h4

6 + h6
4 = 0,

which realizes the map XB(1)C → XB(1)Q.
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4.3. CM points. On the modular curves X0(N), we have CM points arising
from elliptic curves with extra endomorphisms. These points are defined over ring
class extensions H of an imaginary quadratic field K, and the Shimura reciprocity
law describes explicitly the action of Gal(H/K) on them. In a similar way, on the
Shimura curveXB(1) we have CM points which correspond to abelian varieties with
extra endomorphisms. Let K ⊃ F be a totally imaginary quadratic extension which
splits B, i.e. B ⊗F K ∼= M2(K); the field K splits B if and only if there exists an
embedding ιK : K ↪→ B, and the map ιK is concretely given by an element µ ∈ O
such that ZF [µ] = ZK . Let z = zD be the fixed point of ι∞(µ) in H; we then
say z is a CM point on XB(1)C. When F = Q, CM points on XB(1) correspond
to abelian surfaces A with endomorphism algebra End(A) ⊗Z Q ∼= M2(K); the
interpretation is again more subtle when F �= Q, but there one may think of these
points as similarly having “extra endomorphisms”.

On the model XB(1)F , these points are defined over the Hilbert class field H of
K (or more generally, ring class extensions), and one has also a Shimura reciprocity
law; see [Shi67] for a discussion and proof.

4.4. Example: CM points. The following computation can be found in
Elkies [Elk98, §3.4] and Baba-Granath [BG08, §3.3].

We return to the example from §2, with F = Q. Let K = Q(
√
−19), and

ZK = Z[(1 +
√
−19)/2]. We have #Cl(ZK) = 1, and the elliptic curve E = C/ZK

with CM by ZK has j-invariant −963.
The genus 2 curve C defined by

C : y2 = 2t6 − 3(1 + 9
√
−19)t4 − 3(1− 9

√
−19)t2 + 2

has Jacobian J(C) ∼= E × E, and End(J(C)) ∼= M2(ZK). This curve C “cor-
responds” to the moduli point [C] = (32 : 27 : 13

√
−19) on the Shimura curve

XB(1) : x2+3y2+z2 = 0. (The field of moduli of the point [C] is Q, but Q is not a
field of definition for C; the automorphism group of C is Aut(C) ∼= Z/2Z×Z/2Z.)

4.5. Atkin-Lehner involutions. Shimura curves also possess natural invo-
lutions, just like modular curves. The normalizer

N(O) = {α ∈ B∗/F ∗ : αO = Oα, nrd(α) is totally positive}

acts via ι∞ as automorphisms of XB(1)F , and generates a subgroup

W ∼=
∏

p|disc(B)

Z/2Z = (Z/2Z)e.

The elements of W are known as Atkin-Lehner involutions. Letting ΓB∗(1) =
ι∞(N(O)), we see that the curve XB∗(1) = ΓB∗(1)\H is the quotient of XB(1) by
W .

When F = Q, these involutions have a natural moduli interpretation. Recall
that the curve XB(1) parametrizes pairs (A, ι), where A is an abelian surface (over
C, say) with QM by O specified by an embedding ι : O ↪→ End(A). But there may
be more than one such embedding ι for a given A, even up to isomorphism: for
each divisor m | disc(B), we can “twist” ι by m to obtain a new pair (A, ιm). All
such twists arise in this way (see [Rot04, §3]), and therefore the quotient XB∗(1)
of XB(1) by W parametrizes abelian surfaces A which can be given the structure
ι of QM by O, without a particular choice of ι.
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4.6. Example: Atkin-Lehner quotient. The two Atkin-Lehner involutions
w2, w3 act on XB(1)Q : x2 + y2 + 3z2 = 0 by

w2(x : y : z) = (x : −y : z), w3(x : y : z) = (−x : y : z).

The quotients are therefore

X �� X〈w2〉 = P1 X �� X〈w3〉 = P1

(x : y : z)
� �� (x : z) (x : y : z)

� �� (y : z).

and the quotient by the full group W = 〈w2, w3〉 can be given by

j : X �� XW = P1

(x : y : z) � �� (16y2 : 9x2),

under our normalization. Our moduli point [C] corresponding to K with discrimi-
nant −19 was [C] = (32 : 27 : 13

√
−19), and so we find j([C]) = 81/64 = 34/26.

4.7. Level structure: congruence subgroups. Having defined the group
ΓB(1) which replaces PSL2(Z), we now introduce the curves analogous to the
modular curves. Let N be an ideal of ZF that is coprime to the discriminant of B,
and let ZF,N be the completion of ZF at N; then there exists an embedding

ιN : O ↪→ O⊗ZF
ZF,N

∼= M2(ZF,N).

We define

ΓB
0 (N) = {ι∞(γ) : γ ∈ O∗

1 , ιN(γ) is upper triangular modulo N}/{±1}
and we again obtain a Riemann surface XB

0 (N)C = ΓB
0 (N)\H.

In a similar way, for F = Q, the curves XB
0 (N)C parametrize cyclic N -isogenies

between abelian surfaces with QM by O. For any F , one can also show that the
curve XB

0 (N)C admits a model over a number field.

5. Triangle groups

5.1. The (2, 4, 6)-triangle group. Recall from §4.5 that the group

ΓB∗(1) = {ι∞(α) : α ∈ B∗/F ∗, αO = Oα, nrd(α) is totally positive}
realizes the space XB∗(1) = ΓB∗(1)\H. The quotient

ΓB∗(1)

ΓB(1)
∼=

∏
p|disc(B)

Z/2Z,

arises from elements whose reduced norm divides disc(B) = 6.
We can see the group ΓB∗(1) again explicitly: it has a presentation

ΓB∗(1) ∼= 〈s2, s4, s6 | s22 = s44 = s66 = s6s4s2 = 1〉
where

s2 = −1 + 2α− β + 2δ, s4 = −1 + α, s6 = −2 + α+ δ

have nrd(s2) = 6, nrd(s4) = 2, nrd(s6) = 3, respectively. This group ΓB∗(1)
is known as a (2, 4, 6)-triangle group; a fundamental domain D for ΓB∗(1) is the
union of a fundamental triangle, a hyperbolic triangle with angles π/2, π/4, π/6
with vertices at the fixed points of s2, s4, s6, respectively, together with its image
in the reflection in the geodesic connecting any two of the vertices.

We can visualize the (2, 4, 6)-triangle group ΓB∗(1) inside ΓB(1) as follows.
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0 1

5.2. Cocompact arithmetic triangle groups. More generally, for p, q, r ∈
Z≥2 with 1/p + 1/q + 1/r < 1, we may define the (p, q, r)-triangle group similarly
as the group with presentation

〈sp, sq, sr | spp = sqq = srr = srsqsp = 1〉.
By work of Takeuchi [Tak77], there are exactly 18 quaternion algebras B (up to
isomorphism), defined over one of 13 totally real fields F , that give rise to such
a cocompact arithmetic triangle group ΓB∗(1). Already these contain a number of
curves worthwhile of study. (In this light, we could consider the classical SL2(Z)
to be a (2, 3,∞)-triangle group, though we still exclude this case in our discussion.)

Each of these “simplest” Shimura curves has genus zero, so we have a map
j : XB∗(1) → P1

C. (In fact, one can show that the canonical model provided by
Shimura and Deligne for XB∗(1)C over F is already P1

F .) We normalize this map
by taking the images of the elliptic fixed points zp, zq, zr of sp, sq, sr, respectively,
to be 0, 1,∞.

5.3. Explicit computation of CM points. To summarize, from cocompact
arithmetic triangle groups associated with certain quaternion algebras B over to-
tally real fields F we obtain Riemann surfaces XB∗(1) of genus 0 together with a
map j : XB∗(1) → P1

C. There are CM points of arithmetic interest which we would
like to compute.

Theorem ([Voi06]). There exists an algorithm that, given a totally imaginary
quadratic field K ⊃ F , computes the CM point j(z) ∈ P1(C) associated to K to
arbitrary precision, as well as all of its conjugates by the group Gal(H/K).

One can then recognize the value j as an algebraic number by considering the
polynomial defined by its conjugates.

5.4. Second example. We now give an example where F �= Q. Let F be the
totally real subfield of Q(ζ9), where ζ9 is a primitive ninth root of unity. We have

ZF = Z[b], where b = −(ζ9 + 1/ζ9). We take B =

(
−3, b

F

)
, i.e. B is generated by

α, β with

α2 = −3, β2 = b, βα = −αβ.

Here, we have disc(B) = ZF , i.e. B is ramified at no finite place and at exactly

two of the three real places. We fix the isomorphism ι∞ : B⊗F R
∼−→ M2(R), given

explicitly as

α �→
(

0 3
−1 0

)
, β �→

(√
b 0

0 −
√
b

)
.
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We next compute a maximal order O = ZF ⊕ ZF ζ ⊕ ZF η ⊕ ZFω, where

ζ = − 1
2b+

1
6 (2b

2 − b− 4)α

η = − 1
2bβ + 1

6 (2b
2 − b− 4)αβ

ω = −b+ 1
3 (b

2 − 1)α− bβ + 1
3 (b

2 − 1)αβ.

By work of Takeuchi [Tak77], we know that ΓB(1) = ΓB∗(1) is a triangle group
with signature (p, q, r) = (2, 3, 9). Explicitly, we find the generators

s2 = b+ ω − 2η, s3 = −1 + (b2 − 3)ζ + (−2b2 + 6)ω + (b2 + b− 3)η, s9 = −ζ

which satisfy the relations s22 = s33 = s99 = s2s3s9 = 1. The fixed points of these
elements are

z2 = 0.395526 . . . i, z3 = −0.153515 . . .+ 0.364518 . . . i, z9 = i,

and they form the vertices of a fundamental triangle.

0 1

Each triangle in the above figure is a fundamental domain formed by the union
of two such fundamental triangles.

5.5. CM points. As an example, we first take K = F (
√
−2) with class num-

ber 3. We find µ ∈ O satisfying µ2 + 2 = 0, so ZF [µ] = ZK has discriminant −8;
explicitly,

µ = (−b2 − b+ 1) + (−2b2 + 2)ζ + (2b2 − b− 5)ω + (−b2 + b+ 1)η.

We obtain the CM point j(z) = 17137.9737 . . . as well as its Galois conjugates
0.5834 . . .± 0.4516 . . . i, which yields the minimal polynomial for j = j(z)

j3 − 1096905
64 j2 + 41938476081

2097152 j − 9781803409
1048576 = 0

to the precision computed (300 digits). Note that

9781803409
1048576 = 727121992

220 .
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We verify that K(j) = H = K(c), where c3 − 3c+ 10 = 0.
Larger examples can be computed, including over ring class extensions. Con-

sider the field K = F (
√
−5) with discriminant disc(K/F ) = −20. We consider the

order ZK,f ⊂ K of conductor f = b− 1; note that NF/Q(b− 1) = 3.
The CM point z has j = j(z) which satisfies a polynomial of degree 14 =

#Cl(ZK,f ), with N(j) equal to

−7181278163417924874971216192259122699274512100792138592170992

2845989926997199
.

The extension K(j) = K(c) is generated by an element c which satisfies

c14 − c13 − 2c12 + 19c11 − 37c10 − 122c9 + 251c8 + 211c7

− 589c6 + 470c5 − 41c4 − 73c3 + 22c2 + 11c+ 1 = 0.
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Computing Heegner points arising from
Shimura curve parametrizations

Matthew Greenberg

Abstract. Let E be an elliptic curve defined over Q or over a real quadratic
field which is uniformized by the Jacobian of a Shimura curve X. We discuss a
p-adic analytic algorithm for computing certain Heegner points on E – images
under the above uniformization of degree zero CM-divisors on X.

1. Heegner points

1.1. Modular parametrizations. Let E/Q be an elliptic curve of conductor
N . By the modularity theorem of Wiles et. al., we have a holomorphic modular
parametrization

ΦN : X0(N)(C) −→ E(C),

where the Riemann surfaceX0(N)(C) is the quotient of the extended complex upper
half-plane H by the standard congruence subgroup Γ0(N) of level N . Assume that
ΦN (∞) is the zero element of E(C). Let P ∈ X0(N)(C) and let τ ∈ H be any lift
of P . Then

(1.1) ΦN (P ) = W
(∫ τ

∞
2πifE(z)dz

)
= W

(∑
n≥1

an(fE)

n
e2πinτ

)

where W is the Weierstrass parametrization of E, fE ∈ S2(N) is the normalized
newform attached to E and an(fE) is the n-th Fourier coefficient of fE .

1.2. CM-points. For the purposes of this talk, a quadratic order (resp. an
imaginary quadratic order) O is a subring of a quadratic number field (resp. an
imaginary quadratic number field) K such that K = QO.

The Riemann surface X0(N)(C) may be identified with the complex-valued
points of a curve X0(N) defined over Q. This curve is in fact a moduli space —
X0(N) classifies isogenies P = (A → A′) of elliptic curves whose kernel is cyclic of
order N . We will call a point P ∈ X0(N)(C) a CM-point, and say that P has CM
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by the quadratic order O, if both A and A′ have CM by O. In this case, the theory
of complex multiplication says that

P ∈ X0(N)(HO), where HO = ring class field attached to O.

1.3. The classical Heegner hypothesis. Let O ⊂ K be an imaginary qua-
dratic order of discriminant prime to N .

Lemma 1.1 ([Dar04, Proposition 3.8]). The following are equivalent:

(1) There exists a point on X0(N) with CM by O.
(2) All primes � dividing N split in K.

Conditions (1) and (2) are know as the Heegner hypothesis. Thus, when the
Heegner hypothesis is satisfied, the above construction yields a systematic supply of
algebraic points on E defined over specific class fields of K. Due to the importance
of Heegner points to the arithmetic theory of elliptic curves (see [Dar] or [Dar04,
Chapter 3]), it is natural to desire an analogous construction of algebraic points
defined over class fields of imaginary quadratic fields which do not necessarily satisfy
this stringent hypothesis, as well as methods to compute such points in practice.
Such a generalization requires admitting uniformizations of E by certain Shimura
curves.

2. Shimura-Heegner points

2.1. Shimura curve parametrizations (over Q). Assume thatN is square-
free and let N = N+N− be a factorization of N such that N− has an even number
of prime factors. Let C be the unique quaternion algebra over Q ramified precisely
at N−. (For basic definitions related to quaternion algebras, see [Voi, §1.2] or the
comprehensive [Vig80].) Fix an identification ι∞ of C ⊗Q R with M2(R). Let S
be an Eichler order in C of level N+ and set

ΓC(S) = {ι∞(s) : s ∈ S, det ι∞(s) = 1}/{±1} ⊂ PSL2(R).

The group ΓC(S) acts discontinuously on H with quotient denoted XC(S)(C).

Example 2.1. If N− = 1, then C ∼= M2(Q) and S may be taken to be

R0(N) :=

{(
a b
c d

)
∈ M2(Z) : N

+ divides c

}
.

In this case, the group ΓC(S) is the usual congruence subgroup Γ0(N). It is known
that XC(S)(C) is compact if and only if N− �= 1.

Example 2.2. Suppose p ≡ 3 (mod 4), N+ = 1 and N− = 2p. Then the

quaternion algebra C is that which Voight denotes

(
−1, p

Q

)
in [Voi]. The Eichler

order S is simply a maximal order in C and is unique up to conjugation by C∗.

A space of modular forms S2(Γ
C(S)), complete with Hecke action, can be

defined as in the classical case N− = 1. By the modularity of E and the Jacquet-
Langlands correspondence, there exists an eigenform gE ∈ S2(Γ

C(S)) with system
of Hecke eigenvalues {ap(gE)} = {ap(E)}, as well as a map

ΦN+,N− : Div0 H → JacXC(S)(C) → E(C)
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given by

(τ ′)− (τ ) 	→ W
(∫ τ ′

τ

gE(z)dz
)
,

where W is the Weierstrass parametrization of E(C). If N− = 1, then we are in
the situation of §1.1 and ΦN+,N− is induced by the map ΦN .

2.2. CM-points.

Theorem 2.3 (Shimura). XC(S)(C) is the set of complex points of a curve
XC(S) defined over Q. This curve classifies abelian surfaces with “level N+-
structure” whose endomorphism rings contain S.

(For a discussion of this moduli problem, see [Zha01, Chapter 1].)
Let O ⊂ K be an imaginary quadratic order. We say a point P in XC(S)(C)

has CM by O if it corresponds to an abelian surface whose endomorphism ring
contains O as a subring commuting with S. Let CM(O) denote the set of such
points P . The map from JacXC(S)(C) to E(C) induced by ΦN+,N− is also defined
over Q, so

ΦN+,N−(Div0 CM(O)) ⊂ E(HO).

We will call these points on E Shimura-Heegner points.

2.3. The Shimura-Heegner hypothesis. Let O ⊂ K an imaginary qua-
dratic order whose discriminant is prime to N .

Lemma 2.4. The following are equivalent

(1) The set CM(O) is nonempty.
(2) All primes � dividing N+ (resp. N−) are split (resp. inert) in K.

Call conditions (1) and (2) are the Shimura-Heegner hypothesis. If the Shimura-
Heegner hypothesis is satisfied for the maximal order O of K, call (N+, N−,K) a
Shimura-Heegner triple. (This is not standard terminology and is in force in this
paragraph only.) For a given imaginary quadratic field K of discriminant prime to
N , there exists a factorization N = N+N− such that (N+, N−,K) is a Shimura-
Heegner triple if and only if the sign in the functional equation of L(E/K, s) is
−1. Thus, we have a Heegner-point type construction available exactly when the
Birch and Swinnerton-Dyer conjecture predicts that the rank of E(K) is positive
for reasons of parity.

2.4. Elliptic curves over real quadratic fields. The phenomenon of el-
liptic curves being parametrized by Shimura curves generalizes to certain elliptic
curves defined over totally real fields. For simplicity, let F be a real quadratic field
with infinite places σ1 and σ2, and let p be a finite prime of F . (The much more
mysterious case of imaginary quadratic base fields will be discussed in [Gre].) Let
C be the quaternion F -algebra ramified at p and σ1 and let S be a maximal order
of C. Fix an isomorphism

ισ2
: C ⊗σ2

R → M2(R),

and let
ΓC(S) = {ισ2

(s) : s ∈ S, det ισ2
(s) = 1}/{±1} ⊂ PSL2(R).

As before, ΓC(S) acts discontinuously on H. The quotient Γ\H is a compact
Riemann surface which admits a description as the complex points of a Shimura
curve X, as well as a corresponding CM-theory.
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Let f ∈ S2(p) be a Hilbert modular newform with rational Hecke eigenvalues.
Then the Jacquet-Langlands correspondence together with an Eichler-Shimura con-
struction implies the existence of an elliptic curve E/F parametrized by the Ja-
cobian variety J of X whose L-function matches that of f . Again, we want to
compute the images on E of degree zero CM divisors on J , which we also call
Shimura-Heegner points.

3. Computing Heegner and Shimura-Heegner points

The classical Heegner points may be efficiently computed using formula (1.1).
The quantities an(fE) can be computed using the formula

ap(fE) = p+ 1−#Ẽ(Fp),

(where p is a prime and Ẽ is the reduction of E modulo p) in conjunction with the
Euler product for L(fE , s). For details and a complexity analysis, see [Elk94].

The following questions remain: How do we efficiently compute ΦN+,N− , and
hence Shimura-Heegner points, when N− �= 1? The computability of the modular
parametrization ΦN of (1.1) relies on the Fourier expansion of fE . When N− �= 1,
such an expansion is not available. How about when E is defined over a real
quadratic field?

In his article in this volume [Voi], John Voight discussed efficient methods for
computing CM-points on certain Shimura curves. Unfortunately (for our purposes),
the curves that he discussed were all of genus zero, and hence cannot parametrize
elliptic curves.

N. Elkies [Elk98] has also developed methods for performing these computa-
tions in certain cases using archimedean analysis and explicit presentations of the
groups ΓC(S). His methods are in fact related to those of Voight.

We present an approach based on p-adic analysis. Our main tools are the
Cherednik-Drinfeld theorem, p-adic integration and the theory of rigid-analytic
automorphic forms on definite quaternion algebras.

4. p-adic integration and uniformization

4.1. The Cherednik-Drinfeld interchange of invariants. Let E/Q be an
elliptic curve of conductor N = N+N− and suppose that p is a prime dividing N−.
(In particular, N− �= 1.) Let B be the quaternion algebra ramified at the primes
dividing N−/p, together with the place at infinity. (We interchange the roles of
the places p and infinity — hence the title of this subsection.) Let R be an Eichler
Z-order in B of level N+p.

Example 4.1. In the situation of Example 2.2, B is the algebra of Hamilton’s

quaternions, denoted

(
−1,−1

Q

)
in [Voi].

Since B is split at p, we may choose an isomorphism

ιp : Bp := B ⊗Q Qp −→ M2(Qp)

such that ιp induces an isomorphism of Rp := R⊗Z Zp with

R0(pZp) :=

{(
a b
c d

)
∈ M2(Zp) : p divides c

}
.
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4.2. The p-adic uniformization theorem.

Definition 4.2 (Multiplicative integral). Let

• Bn be the standard decomposition of P1(Qp) into pn+pn−1 balls of radius
p−n,

• µ be a Z-valued measure on P1(Qp), and
• f be a continuous, nonvanishing function on P1(Qp).

Define

×
∫
P1(Qp)

f(x)dµ(x) = lim
n→∞

∏
U∈Bn

f(tU )
µ(U),

where tU is any point of U .

In his lecture on p-adic uniformization [Dar], Darmon constructs a Z-valued
distribution µE on P1(Qp) (i.e. a finitely additive, Z-valued function on the compact-
open subsets of P1(Qp)) which is invariant under the groupR[1/p]∗1 of units inR[1/p]
of reduced norm 1. (The group B∗

p acts via ιp on the projective line P1(Qp) and
hence on its compact-open subsets.) Let

Hp := P1(Cp)− P1(Qp)

be the p-adic upper half-plane and let

Tate : C∗
p → E(Cp)

be the Tate parametrization of E.

Theorem 4.3 (p-adic uniformization of E).

(1) (Cherednik-Drinfeld) There is a canonical surjective map

CD : Hp −→ XC(S)(Cp).

(2) (Bertolini-Darmon) The map CD satisfies

ΦN+,N−
(
(CD(τ ′))− (CD(τ ))

)
= Tate

(
×
∫
P1(Qp)

(x− τ ′

x− τ

)
dµE(x)

)
.

Furthermore, one may explicitly describe CD−1(CM(O)) ⊂ Hp.

4.3. Some details. In this subsection, we briefly indicate how the map CD
is constructed and we identify the set CD−1(CM(O)) ⊂ Hp. Let

ΓB(R[1/p]) = {ιp(r) : r ∈ R[1/p], det ιp(r) = 1}/{±1} ⊂ PSL2(Qp).

The group ΓB(R[1/p]) acts discontinuously onHp and the quotient ΓB(R[1/p])\Hp,
has the structure of a rigid-analytic curve. To prove (1) of Theorem 4.3, Cherednik
and Drinfeld show that there is a canonical rigid-analytic isomorphism

CD : ΓB(R[1/p])\Hp −→ XC(S)Cp
.

Let O ⊂ K be an imaginary quadratic order satisfying the Shimura-Heegner
hypothesis. Call an embedding ψ of O[1/p] into R[1/p] optimal if it does not extend
to an embedding of a larger Z[1/p]-order in K and denote by Ep(O) the set of all
such optimal embeddings. The Shimura-Heegner hypothesis guarantees that Ep(O)
is nonempty. For each ψ ∈ Ep(O), the group O[1/p]∗ acts on Hp via the composite
ιp ◦ ψ with a unique fixed point τψ ∈ Hp satisfying

α

(
τψ
1

)
= ψ(α)

(
τψ
1

)



120 MATTHEW GREENBERG

for all α ∈ O[1/p]∗. Let Hp(O) be the set of all such τψ. It can be shown
(see [BD96]) that

Hp(O) = CD−1(CM(O)).

Set

(4.1) J(τ, τ ′) = ×
∫
P1(Qp)

(
x− τ ′

x− τ

)
dµE(x).

By statement (2) of Theorem 4.3, the points Tate(J(τ, τ ′)) for τ, τ ′ ∈ Hp(O) are
Shimura-Heegner points on E defined over the ring class field HO attached to O.
Slightly more generally, we are interested in the image of an arbitrary element
d ∈ Div0 Hp(O) in E(HO). Suppose d has the form

d =
n∑

i=1

((τ ′i)− (τi)).

For later use, we introduce the notation

×
∫
d

ωµE
=

n∏
i=1

J(τi, τ
′
i).

Thus we have

ΦN+,N−(d) = Tate

(
×
∫
d

ωµE

)
.

Not only can we describe the Shimura-Heegner points analytically, but also the
action of GalHO/K on them: One can show (see [Gro87, §3.2]) that the class
group PicO acts freely on the set Hp(O). Let

rec : PicO −→ GalHO/K.

be the map induced by the reciprocity homomorphism of class field theory.

Theorem 4.4 (Shimura’s reciprocity law). Let τ, τ ′ ∈ Hp(O). Then for all
α ∈ PicO, we have

ΦN+,N−((τ ′α)− (τα)) = ΦN+,N−((τ ′)− (τ ))recα.

We utilize Shimura’s reciprocity extensively in performing our computations.
Summing up this section, we have seen that to compute Shimura-Heegner points

p-adically, it suffices to be able to compute p-adic integrals of the form (4.1).

5. Computing p-adic integrals

5.1. The naive approach. It is natural to attempt to evaluate J(τ, τ ′) from
the definition, i.e. by evaluating the “Riemann products” defining the multiplicative
integral (see Definition 4.2). One can show that we do not lose generality by
assuming that the reductions of the points τ and τ ′ lie in P1(Fp)− P1(Fp), and for
the rest of the talk we shall work under this assumption. In this case, it is not hard
to show that

J(τ, τ ′) ≡∗
∏

U∈BN

(
tU − τ ′

tU − τ

)µ(U)

(mod pN ),

where x ≡∗ y (mod pN ) means x/y − 1 ≡ 0 (mod pN ). Unfortunately, the size of
BN is pN +pN−1 — exponential in N . Thus, the naive approach does not facilitate
the calculation of (4.1) to high accuracy.
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5.2. Outline of the method. In this subsection, we give a sketch of our
alternate method for computing (4.1), and hence Shimura-Heegner points. For
complete details, see [Gre06].

First, we observe that the Teichmüller representative of J(τ, τ ′) is the same as
that of

p−1∏
a=0

(
a− τ ′

a− τ

)µ(a+pZp)

,

an easily computed quantity. Consequently, it is sufficient to compute log J(τ, τ ′),
where “log” denotes the (standard) branch of the p-adic logarithm satisfying log p =
0.

For simplicity, we assume that there is some i ∈ R[1/p]∗1 such that ιp(i) =(
0 −1
1 0

)
. This is easy to arrange if B is the algebra of Hamilton’s quaternions, for

instance. Write

log J(τ, τ ′) =
∑

a∈P1(Fp)

log Ja(τ, τ
′), where

Ja(τ, τ
′) = ×

∫
ba

(
x− τ ′

x− τ

)
dµE(x),

and ba is the standard residue disk around a. Let

J∞(τ ) = ×
∫
b0

(1 + τx)dµE(x),

Ja(τ ) = ×
∫
ba

(x− τ )dµE(x), 0 ≤ a ≤ p− 1.

Then for each a ∈ P1(Fp), we have

Ja(τ, τ
′) = Ja(τ

′)/J(τ ).

(To prove the above for a = ∞, we use the above assumption on the existence of
i.)

Straightforward manipulations (see [DP06, §1.3]) show that the expansions

log J∞(τ ) =
∑
n≥1

(−1)n

n
τnω(0, n),(5.1)

log Ja(τ ) =
∑
n≥1

1

n(a− τ )n
ω(a, n), 0 ≤ a ≤ p− 1.(5.2)

are valid, where (following the notation of [DP06]),

ω(a, n) =

∫
ba

(x− a)ndµE(x), 0 ≤ a ≤ p− 1.

Let

(5.3) M ′ = max{n : ordp(p
n/n) < M}, M ′′ = M +

⌊ logM ′

log p

⌋
.

Examining formulas (5.1), (5.2), and (5.3), it is easy to deduce the following:

Proposition 5.1. To compute log J(τ, τ ′) to a precision of p−M , it suffices to
compute the data

(5.4) ω(a, n) (mod pM
′′
), 0 ≤ a ≤ p− 1, 0 ≤ n ≤ M ′.
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Theorem 5.2. The data (5.4) may be computed in O(M3p3 logM) operations
on integers of size on the order of pM .

Theorem 5.2 is proved in detail in [Gre06, Proposition 7]. The idea is to re-
late the moments ω(a, n) to certain automorphic forms on the definite quaternion
algebra B. We show that the data (5.4) is encoded in a natural way in an automor-

phic form ΦM ′′
taking values in a module of “approximate distributions” on Zp.

ΦM ′′
is characterized by a finite amount of data and can be represented nicely on a

computer. The form ΦM ′′
is the M ′′-th term in a sequence of approximations Φn.

The transition from the n-th approximation Φn to the (n + 1)-st Φn+1 proceeds
by an application of the Hecke operator Up, a process which can be carried out
algorithmically. Each of the M ′′ required applications of the Up operator requires

O(M2p3 logM) operations on elements of Z/pM
′′
Z. The running-time estimate of

Theorem 5.2 follows from the fact that M ′′ ≈ M .

6. Sample computations

Example 6.1. Let E/Q be the curve

E : y2 + xy + y = x3 + x2 − 70x− 279 (38B2)

of conductor N = 38 = 2 · 19. Taking N− = N and p = 19 as in Example 4.1, we
have that B is the algebra of Hamilton’s quaternions. Consider the maximal order
O = Z[ξ] ⊂ K = Q(ξ), where

ξ =
1 +

√
−195

2
.

Both 2 and 19 are inert in K, so the Shimura-Heegner hypothesis is satisfied. One
may compute that

PicO = Z/2Z⊕ Z/2Z, HO = K(
√
−3,

√
5)

Let χ1, χ2, χ3 be the characters of PicO of exact order 2. Assume these
characters are indexed so that the fields corresponding to χ1, χ2, and χ3 are K(u),
K(v), and K(w), respectively, where

u =
1 +

√
−15

2
, v =

1 +
√
5

2
w =

1 +
√
65

2
.

We remark that K(u, v, w) is the Hilbert class field of K. Choose an optimal
embedding of O into the maximal order of B and let τ ∈ Hp(O) be its fixed point.
Define degree 0 CM divisors

di =
∑

α∈PicO
χi(α)τ

α, i = 1, 2, 3.

(Note that this makes sense as χ takes values in {1,−1}.) Define a degree 0 divisor
corresponding to the trivial character by

d0 =
∑

α∈PicO
((3 + 1− T3)τ )

α,

where T3 is the usual Hecke operator. Set

Pi = Tate

(
×
∫
di

ωµE

)
, i = 0, 1, 2, 3.
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We computed 19-adic approximations to the Pi ∈ E(K19) modulo 1940. These
approximations were recognized as the global points

P0 = (−4610/39, (−277799ξ + 228034)/1521),

P1 = (25/12,−94/9u+ 265/72),

P2 = (10,−11v),

P3 = (1928695/2548, (−2397574904w + 1023044339)/463736).

But how do we recognize 19-adic approximations as points with algebraic co-
ordinates? We represent a generic element 19au + 19bvξ ∈ K19 with u, v ∈ Z∗

19

as the quadruple (a, u (mod 1940), b, v (mod 1940)). Thus, to recognize such an
approximation as an element of K, it suffices to be able to recognize an approx-
imation to an element of Z∗

19 as a rational number. This is accomplished using
lattice reduction techniques as in [DP06]. These ideas allowed us to recognize the
coordinates of P0 as elements of K. The coordinates x(P1) and y(P1) should be
rational over K(u), not over K itself. Let σ be a generator of GalK(u)/K. Using
Shimura reciprocity, we can compute approximations to x(P1)

σ and y(P1)
σ in K19.

If x(P1) = u+ v
√
−15 with u, v ∈ K, then

u =
1

2
(x(P1) + x(P1)

σ), v =
1

2
√
−15

(x(P1)− x(P1)
σ).

Fixing an embedding of K(u) into K19, we may compute approximations to u and
v as elements of K19 and then attempt to recognize them as elements of K as
described above. The coordinate y(P1), as well as the coordinates of P2 and P3,
were identified in the same way.

We remark that, for this example, the computation of the data (5.4) to a
precision of 40 19-adic digits took approximately one minute.

Example 6.2. Let

ω =
1 +

√
5

2
, F = Q(ω),

and consider the elliptic curve

E : y2 + xy + ωy = x3 − (ω + 1)x2 − (30ω + 45)x− (11ω + 117).

of conductor (3 − 5ω) =: p. (We have (31) = pp̄.) In this case, the definite
quaternion algebra B which comes into play is the base change to F of the Q-
algebra of Hamilton’s quaternions.

Consider the CM-field K = F (
√
2ω − 15) with maximal order O. PicO ∼=

Z/8Z and thus has a unique character χ of exact order 2 with corresponding field
K(

√
−13ω + 2). Choose a base point τ ∈ Hp(O) and a define a divisor

dχ =
∑

α∈PicO
χ(α)τα

and a point

Pχ = Tate

(
×
∫
dχ

ωµE

)

associated to χ. (Again, this makes sense as χ takes values in {1,−1}.)
Using the techniques described above, the point Pχ was recognized as the global

point
(x, y) ∈ E(F (

√
−13ω + 2)), where
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x = 1/501689727224078580×
(−20489329712955302181ω+

1590697243182535465)

y = 1/794580338951539798133856600×
(−24307562136394751979713438023ω

− 52244062542753980406680036861)

×
√
−13ω + 2

+ 1/1003379454448157160×
(19987639985731223601ω

− 1590697243182535465).

Our computations were all carried out using the Magma computer algebra system.
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The arithmetic of elliptic curves
over imaginary quadratic fields

and Stark-Heegner points

Matthew Greenberg

Abstract. Heegner points are crucial to our understanding of the arithmetic
of elliptic curves over Q as well as over totally real fields. In this note, we
describe a conjectural construction due to Trifković of analogues of Heegner
points for elliptic curves defined over imaginary quadratic fields. We expect
these points to enrich our understanding of the arithmetic of such curves.

1. Introduction

A large proportion of research into the arithmetic of elliptic curves is devoted
to the understanding of Mordell-Weil groups — groups of points on elliptic curves
rational over number fields. Many questions regarding the structure of Mordell-
Weil groups, most famously the conjecture of Birch and Swinnerton-Dyer (BSD),
remain open. Much of what we do know about these groups (e.g. BSD for elliptic
curves over Q of analytic rank at most one) is due to the existence of a systematic
construction of points — so-called Heegner points — of Mordell-Weil groups in
towers of number fields. In appropriate situations, these Heegner points govern the
behaviour of Mordell-Weil groups in a very strong way.

Heegner points on an elliptic curve E are, by definition, the images of CM
points under modular parametrizations of E: dominant morphisms from modular
or Shimura curves to E. In particular, for Heegner points to exist, E needs to admit
a modular parametrization in the first place, a condition only reasonable to expect
in any kind of generality if E can be defined over a totally real field. Due to the
absolutely crucial role played by Heegner points in the study of Mordell-Weil groups,
it is extremely natural to desire a generalization of the Heegner point construction
to elliptic curves which do not necessarily admit modular parametrizations. In this
article, we present such a generalization, due to Trifković [Tri06], in the case of
elliptic curves defined over imaginary quadratic fields.

Trifković’s work is based on Darmon’s construction of Stark-Heegner points on
elliptic curves defined over Q — analogues of Heegner points which are conjectured

2000 Mathematics Subject Classification. Primary 11G05, Secondary 11F11, 11F67, 11G40.
Key words and phrases. elliptic curves, modular forms, imaginary quadratic fields, Stark-
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to be rational over ring class fields of real quadratic fields. Although Darmon’s con-
struction makes essential use of the modular forms attached to elliptic curves over
Q, the modular parametrizations are not explicitly involved.1 It is this characteris-
tic which raises the prospect of generalizing the Stark-Heegner point construction to
base fields other than totally real ones where, although modular parametrizations
are not expected to be available, the elliptic curves in question are still expected to
be “modular.”

The central role played by rational points in the arithmetic of elliptic curves is
summed up beautifully by the following lines from the abstract of [BMSW07]:

“Rational points on elliptic curves are the gems of arithmetic:
they are, to Diophantine geometry, what units in rings of inte-
gers are to algebraic number theory, what algebraic cycles are to
algebraic geometry. A rational point in just the right context, at
one place in the theory, can inhibit and control — thanks to the
ideas of Kolyvagin — the existence of rational points and other
mathematical structures elsewhere.”

This article is divided into three main parts. First, we will define modular forms
and modular symbols relative to an imaginary quadratic base field and state some
fundamental results concerning these. Armed with these notions, we will describe
Trifković’s Stark-Heegner point construction and state his conjectures concerning
their algebricity. In the last part, we shall discuss issues related to the computation
of these points in practice.

The author would like to sincerely thank the anonymous referee for numerous
insightful suggestions which led to significant improvements in this article.

2. Modular forms for imaginary quadratic fields

2.1. Upper half-space. In addition to [Tri06], some good references for this
section are [Byg98, Cre84, Cre, CW94, Lin05]. Reference [Byg98] in particular
is extremely detailed and contains a wealth of background material. Let F be an
imaginary quadratic field of discriminant D with maximal order OF , and assume
that OF is a principal ideal domain. Fix an ideal N of OF . In analogy with the
classical situation, define

H = GL2(C)/C
∗ · SU2

and call H the upper half-space. The group GL2(C) admits a decomposition
GL2(C) = BKZ, where

B =

{(
t z
0 1

)
:

z ∈ C
t ∈ R>0

}
, K = SU2, and Z = C∗,

mirroring the analogous decomposition of GL+
2 (R) where

B =

{(
y x
0 1

)
:

x ∈ R
y ∈ R>0

}
, K = SO2, and Z = R∗,

Projecting onto the B-coordinate, we have an identification

H ∼= {(z, t) : z ∈ C, t ∈ R>0}.

1S. Dasgupta [Das05] has shown how to explicitly lift the Stark-Heegner points on E to an
appropriate modular Jacobian.
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The action of GL2(C) on H takes the form

(2.1)

(
a b
c d

)
(z, t) =

1

|cz + d|2 + |ct|2
(
(az + b)(cz + d) + ac̄t, |ad− bc|t

)
The upper half-spaceH is equipped with a GL2(C)-invariant Euclidean metric given
by

ds2 =
dzdz̄ + dt2

t2
.

Let H∗ be the disjoint union of H with P1(F ). (Note that, although this is not
reflected in the notation, the set H∗ depends on the field F .) Extend the topology
of H to H∗ by declaring sets of the form

Uh = {(z, t) ∈ H : t > h} ∪ {∞},

as well as their translates by elements of GL2(F ), to be open. The action of

Γ0(N ) :=

{(
a b
c d

)
∈ GL2(OF ) : c ∈ N

}
.

extends naturally to H∗, so we may consider the quotient

X0(N ) := Γ0(N )\H∗.

We assume that Γ0(N ) has no elements of finite order, in which case X0(N ) is a
smooth 3-manifold. (See [Kur78] for details on dealing with the situation where
Γ0(N ) contains elements of finite order.) The points Γ0(N )\P1(F ) are called the
cusps of X0(N ).

2.2. Modular forms on the upper half space.

Definition 2.1. A modular form of weight 2 for Γ0(N ) is a Γ0(N )-invariant
harmonic differential form on H. If it descends to a harmonic differential form on
X0(N ), then we call it a cusp form.

We denote the set of modular (resp. cusp) forms of weight two for Γ0(N ) by M2(N )
(resp. S2(N )). Consider the basis of smooth differential 1-forms on H given by

ω = (ω1, ω2, ω3)
t = (−dz/t, dt/t, dz̄/t)t.

and let f = (f1, f2, f3)
t be a vector of smooth functions on H.

Lemma 2.2.

(1) The differential form f · ω is Γ0(N )-invariant if and only if

f(z, t) = (f |γ)(z, t) := J(γ, (z, t))f(γ(z, t))

for all γ ∈ Γ0(N ), where

J(γ, (z, t)) =
1

|r|2 + |s|2

⎛
⎜⎜⎝
r2∆ −2rs∆ s2∆

rs̄ |r|2 − |s|2 −r̄s

s2∆ 2rs∆ r2∆

⎞
⎟⎟⎠ ,

∆ = det γ, r = cz + d s = c̄t.
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(2) The differential form f · ω is harmonic if and only if the following partial
differential equations are satisfied:

∂f1
∂z̄

+
∂f3
∂z

= 0

∂f2
∂z

+
∂f1
∂t

− t−1f1 = 0

∂f2
∂z̄

− ∂f3
∂t

+ t−1f3 = 0

t

2

∂f2
∂t

− f2 − 2t
∂f1
∂z̄

= 0

If f ·ω is a modular (resp. cusp) form, then we shall call f a modular (resp. cusp)
form too.

2.3. Fourier expansions and cusp forms. Suppose that f satisfies f |γ = f
for all γ ∈ Γ0(N ). This implies that J(

(
1 α
0 1

)
, (z, t)) is the identity matrix for all

α ∈ OF , so for each fixed t, the function fi(z, t) is periodic with respect to the
lattice OF ⊂ C. Let g(z) be any function with this property and let

ψ : C −→ S1, ψ(z) = e2πi(z+z̄)

be the standard unitary character of the additive group of C. Then g admits a
Fourier expansion of the form

g(z) =
∑
χ

bg(χ)χ(z),

where χ varies over the unitary characters of C which are trivial on OF . But each
of these characters has the form

z �→ ψ(αz) for some α ∈ d
−1
F =

1√
D
OF .

Thus, the expansion of g takes the form

g(z) =
∑

α∈OF

cg(α)ψ

(
αz√
D

)
.

It follows that for each α ∈ OF there is a vector-valued function

cf (α, t) = (c1(α, t), c2(α, t), c3(α, t))

of t such that

f(z, t) =
∑

α∈OF

cf (α, t)ψ

(
αz√
D

)
.

One may verify that if ε ∈ O∗
F and γ = ( ε 0

0 1 ), then cf |γ(α, t) = cf (εα, t). Therefore,
as f |γ = γ, we have cf (εα, t) = cf (α, t) for all ε ∈ O∗

F and all α ∈ O. Consequently,
recalling that we assume OF to be a PID, we may rewrite the above sum as a sum
over ideals of OF :

f(z, t) = cf (0, t) +
∑

0�(α)⊂OF

cf (α, t)
∑
ε∈O∗

F

ψ

(
εαz√
D

)
.

Lemma 2.3. If cf |γ(0, t) = 0 for each γ ∈ GL2(OF ), then f is a cusp form on
Γ0(N ).
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The harmonicity of f ·ω implies that the components of cf (α, t) are of a special
form.

Definition 2.4. For i = 0, 1, let Ki(t) denote the solution to the differential
equation

d2Ki

dt2
+

1

t

dKi

dt
−

(
1 +

1

t2i

)
Ki = 0

which decreases rapidly at infinity (see [Byg98, Ch. 4]). The functions Ki are
called Bessel functions.

Set

K(t) =

(
− i

2
K1(t),K0(t),

i

2
K1(t)

)
.

It can be shown that for each α ∈ OF there is a constant cf (α) such that

cf (α, t) = cf (α)t
2K

(
4π|α|t√

|D|

)
,

so the Fourier expansion of f takes the form

f(z, t) =
∑

α∈OF

cf (α)t
2K

(
4π|α|t√

|D|

)
ψ

(
αz√
D

)
.

2.4. Hecke operators. The vector space M2(N ) admits an action of certain
Hecke operators. Let λ (resp. π) be a prime element of OF prime to (resp. dividing)
N . Then operators Tλ and Uπ are defined by the “usual” formulas:

f |Tλ =
∑

α mod λ

f
∣∣∣ (1 α

0 λ

)
+ f

∣∣∣ (λ 0
0 1

)
,

f |Uπ =
∑

α mod π

f
∣∣∣ (1 α

0 π

)
.

The effect of the Hecke operators on Fourier coefficients is given by the familiar
formulas:

cf |Tλ
(α) =

{
cf (λα) + Norm(λ)cf (α/λ) if λ|α,
cf (λα) if λ � α

,

cf |Uπ
(α) = cf (πα).

It follows that the operators Tλ and Uπ depend only on the ideals (λ) and (π),
respectively.

The Hecke operators generate a commutative subalgebra of EndM2(N ) which
preserves S2(N ). If f ∈ S2(N ) is an eigenform for all the Hecke operators and is
normalized so that cf (1) = 1, then f |Tλ = cf (λ)f and f |Uπ = cf (π)f . A notion
of newform may be defined, and an Atkin-Lehner theory developed, in a manner
analogous to that employed in the classical case (i.e. over Q).
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2.5. L-functions and Shimura-Taniyama. Let f ∈ S2(N ) be a normalized
newform and define

L(f, s) =
∑

(0)�a⊂OF

cf (a) Norm(a)−s,

where the sum is over nonzero ideals of OF .

Theorem 2.5. The series defining L(f, s) converges in the right half-plane
	s > 3/2. It admits an Euler product, analytic continuation to the whole complex
plane, and satisfies a functional equation relating its values at s and 2− s.

The analogue of the Shimura-Taniyama conjecture in this context is:

Conjecture 2.6. There is a one-to-one correspondence between normalized
cuspidal newforms f ∈ S2(N ) with rational Hecke-eigenvalues and isogeny classes
of elliptic curves E/F which do not have complex multiplication by an order in F .
If f corresponds to E, then

L(f, s) = L(E, s).

Remark 2.7. If case that E has CM by an order in F , then E corresponds to
an Eisensein series on Γ0(N ) rather than to a cusp form.

Remark 2.8. In the classical case (i.e. over Q), the Eichler-Shimura construc-
tion attaches both a Galois representation and an elliptic curve to a newform g.
In many cases, Richard Taylor has succeeded in constructing Galois representa-
tions attached to modular forms over imaginary quadratic fields by relating them
to holomorphic Siegel modular forms. This allows him to use algebro-geometric
methods to locate the desired Galois representations in the 
-adic cohomology of
these varieties. His construction does not, however, give a construction of an elliptic
curve associated to the form g. If one has a prospective elliptic curve E in mind,
though, one can use the Faltings-Serre method to show that the Galois represen-
tation attached to g is that arising from the Galois action on the Tate module of
E.

Remark 2.9. In [Tri06, p. 432], the analogue of the Shimura-Taniyama con-
jecture is phrased in terms of plusforms. Trifković’s plusform condition is always
satisfied for the modular forms in this paper since we require them to be invariant
with respect to a congruence subgroup of GL2(OF ) whereas Trifković asks only for
invariance with respect to a conguence subgroup of SL2(OF ).

3. Modular symbols and mixed period integrals

Let f ∈ S2(N ) be a Hecke-eigenform where N ∈ OF . Suppose further that N
has the form πM, where π is a prime element of OF (lying over the rational prime
p, say) and π � M. Let Fπ be the completion of F at the ideal (π) and let OF,π be
its ring of integers.

Proposition 3.1 ([Kur78]). There exists a unique positive real number Ωf ∈
R such that {∫ s

r

f · ω : r, s cusps

}
= ΩfZ.
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We call the quantity Ωf the period of f . Using this definition of the period,
Darmon’s mixed period integral formalism (see [Dar01] or [Dar]) extends easily
to our setting: Let

Γ̃ =

{(
a b
c d

)
∈ GL2(OF [1/π]) : c ∈ M

}
.

The group GL2(Fπ) acts from the left on P1(Fπ) by fractional linear transfor-
mations. We call a subset B of P1(Fπ) a ball if it is of the form σOF,π for some

σ ∈ GL2(Fπ). By the strong approximation theorem, the group Γ̃ acts transitively
on the set B of these balls.

A Z-valued distribution on P1(Fπ) is, by definition, a finitely additive, Z-valued
function on B. We shall denote the set of such by DZ(P

1(Fπ)). If µ ∈ DZ(P
1(Fπ))

and ϕ is a nonvanishing, continuous, Cp-valued function on P1(Fπ), we define the
multiplicative integral

×
∫
P1(Fπ)

ϕ(x)dµ(x) = lim
U

∏
U∈U

ϕ(xU )
µ(U) ∈ C∗

p,

where U varies over increasingly fine covers of P1(Fπ) by pairwise disjoint balls,
and xU is any point in U . (Note that since we are exponentiating by the values of
µ, it is essential that µ is Z-valued.)

Let cf (π) = ±1 be the Uπ-eigenvalue of f and define a DZ(P
1(Fπ))-valued

modular symbol

F : P1(F )× P1(F ) → DZ(P
1(Fπ))

by the rule

F{r → s}(σOF,π) =
cf (π)

ordπ det σ

Ωf

∫ s

r

(f |σ−1) · ω.

That F{r → s} is finitely additive follows from the fact that f is a Uπ-eigenform.
By Proposition 3.1, the distributions F{r → s} are all Z-valued.

Let Hπ denote the π-adic upper half-plane P1(Cp)−P1(Fπ). For cusps r, s and
points τ, τ ′ ∈ Hπ, define the mixed period integral

×
∫ τ ′

τ

∫ s

r

f = ×
∫
P1(Fp)

(
x− τ ′

x− τ

)
dF{r → s}(x) ∈ C∗

p.

Trifković conjectures that, up to certain π-adic periods, the above mixed period
integral map be written as a quotient of two indefinite integrals (defined below).
Let E/F be a representative of the isogeny class of elliptic curves associated to f by
Conjecture 2.6. Then E has multiplicative reduction over Fπ and therefore a Tate
uniformization over Cp, where p is the rational prime below π.

Conjecture 3.2. There exists a lattice Λ ⊂ C∗
p commensurable with the Tate

lattice of E and a function

(3.1) Hπ × P1(F )× P1(F ) → Cp, written (τ, r, s) �→ ×
∫ τ∫ s

r

f,

such that

(1) ×
∫ γτ∫ γs

γr

f = ×
∫ τ∫ s

r

f for all γ ∈ Γ̃ and all cusps r, s,

(2) ×
∫ τ∫ s

r

f ××
∫ τ∫ t

s

f = ×
∫ τ∫ t

r

f for all cusps r, s, t,
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(3) ×
∫ τ ′

τ

∫ s

r

f = ×
∫ τ ′∫ s

r

f
/

×
∫ τ∫ s

r

f in C∗
p/Λ.

Since the Tate lattices of isogenous elliptic curves are commensurable, the above
conjecture does not depend on our choice of representative E of the isogeny class
of elliptic curves associated to f . We refer to the function in (3.1) as an indefinite
integral.

4. Stark-Heegner points

Let K/F be a quadratic extension in which (π) is inert and all prime ideals
dividingM are split (this is the analogue of the Heegner hypothesis in our situation)
and let O be a OF [1/π]-order in K of conductor prime to M. Let

R =

{(
a b
c d

)
∈ M2(OF ) : M divides c

}
.

We say that an embedding ψ : K → M2(F ) of F -algebras is (O, R)-optimal if
ψ(K) ∩ R = ψ(O). Let E(O, R) be the set of such embeddings. The conditions
that the primes dividing M split in K and that the conductor of O is prime to
M guarantee that E(O, R) is nonempty. The group Γ̃ of units in R acts natu-
rally on E(O, R) by conjugation. Moreover, there is a natural free action of PicO
on E(O, R)/Γ̃ which partitions E(O, R)/Γ̃ into 2ω(M)#PicO orbits, where ω(M)
denotes the number of prime factors of M. (For details, see [Tri06, §3.2].)

For each ψ ∈ E(O, R), there is a unique τψ ∈ Hπ such that

ψ(α)

(
τψ
1

)
= α

(
τψ
1

)
for all α ∈ K∗. As (π) is inert in K/F , the point τψ actually lies in Hπ. Note that

if ψ and ψ′ are Γ̃-conjugate, then the corresponding fixed points τ and τ ′ in Hπ are
in the same Γ̃-orbit.

Fix a generator γ of O∗
K , a cusp r, and a positive integer t such that Λt is

contained in the Tate lattice of E. To an optimal embedding ψ ∈ E(O, R), we
associate the period Jψ ∈ C∗

p/Λ defined by

(4.1) Jψ = ×
∫ τψ

∫ ψ(γ)r

r

f

and the point

Pψ = Tate(J t
ψ) ∈ E(Cp).

By the Γ̃-invariance property of the indefinite integral (property (1) of Conjec-

ture 3.2), the period Jψ and the point Pψ depends only on the Γ̃-conjugacy class of
ψ. We call Pψ the Stark-Heegner point attached to the optimal embedding ψ. Let
HO be the ring class field associated to the order O and let

rec : PicO → GalHO/K

be the isomorphism induced by the reciprocity map of class field theory.

Conjecture 4.1 (Trifković). The point Pψ belongs to E(HO). The Galois
action on Pψ is described by

(Pψ)
rec(a) = Pψa .



IMAGINARY QUADRATIC FIELDS 133

We expect the analogues of the formula of Gross-Zagier and the theorem of
Kolyvagin to hold in this context: Assuming Conjecture 4.1, we may let

PK = TraceHO/K Pψ =
∑

a∈PicO
Pψa ∈ E(K).

Let 〈·, ·〉 denote the canonical height pairing on E(K).

Conjecture 4.2. There is an explicit nonzero fudge factor α such that

L′(E/K, 1) = α〈PK , PK〉.

In particular, L′(E/K, 1) = 0 if and only if PK is nontorsion.

Conjecture 4.3. Suppose that the point PK has infinite order in E(K). Then
rankE(K) = 1.

Armed with suitable nonvanishing results for twists of the L-function of E,
Conjectures 4.2 and 4.3 should imply BSD for elliptic curves over F of analytic
rank at most one. For a sketch of this argument, see [Dar04, §3.9].

5. Computing Stark-Heegner points

In the absence of proofs for the above conjectures, some numerical evidence
supporting them is most desirable. Trifković provides this in abundance in the
case where OF is a Euclidean domain and the conductor of E is prime. In order to
compute Jψ in this case, Trifković, following Darmon and Green [DG02], begins by
producing a candidate for the indefinite integral. Since OF is a Euclidean domain,
we may use Manin’s continued fraction algorithm to write an arbitrary degree zero
divisor (s)− (r) on P1(F ) as

(s)− (r) = [(s)− (t1)] + [(t1)− (t2)] + · · ·+ [(tn−1)− (tn)] + [(tn)− (r)],

where each pair in square brackets is a pair of adjacent cusps. (Two elements
(a : b) and (c : d) of P1(F ) are called adjacent if ad − bc = 1.) Therefore, by the
“path-multiplicativity” of the indefinite integral (property (2) of Conjecture 3.2),

we may assume that r and s are adjacent cusps. All adjacent pairs of cusps are Γ̃ =
PSL2(OF [1/π])-equivalent. (Note that Γ̃ = PSL2(OF [1/π]) because the conductor
of E is assumed to be prime.) Therefore, by property (1) of Conjecture 3.2, we
have reduced the computation of Jψ to that of integrals of the form

×
∫ τ∫ ∞

0

f.

Similar manipulations using the properties of the indefinite integral give the identity

×
∫ τ∫ ∞

0

f = ×
∫ τ−1

1− 1
τ

∫ ∞

0

f = ×
∫
P1(Qp)

(
x− (τ − 1)

x− (1− 1/τ )

)
dF{0 → ∞}(x).

Thus, we have reduced the calculation to that of multiplicative integrals of the form

×
∫
P1(Qp)

(
x− τ

x− τ ′

)
dµ(x),

where τ, τ ′ ∈ Hπ and µ is a measure on P1(Fπ). The ideas used in the computation
of such integrals are the same as those discussed in [Gre].
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We conclude with a numerical example taken from [Tri06, §1.3.2]. Let F =
Q(α) where α = (1 +

√
−3)/2 and consider the elliptic curve

E : y2 + xy = x3 + (α+ 1)x2 + αx.

The curve E has prime conductor (π) of norm 73, where π = α+ 8. The Mordell-
Weil group E(F ) is cyclic of order 6 generated by the point (−1, 1). Let K = F (β)
where β2 = 2α + 21. Then (π) is inert in the quadratic extension K of F . Let
ψ be an (OK ,M2(OF [1/π]))-optimal embedding of K into M2(F ). As the class
number of K is one, we expect the Stark-Heegner point Pψ to be rational over
K = HOK

. An approximation to Pψ module π30 was recognized as the global point
(x, y) ∈ E(K), where

x =
1259988

127165927
α+

126090782

127165927

y =

(
2903147975024

31646131095439
α+

11037094266063

31646131095439

)
β

+
629994

127165927
α+

63045391

127165927
.
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Lectures on Modular Symbols

Yuri I. Manin

Abstract. In these lecture notes, written for the Clay Mathematics Insti-
tute Summer School “Arithmetic Geometry”, Göttingen 2006, I review some
classical and more recent results about modular symbols for SL(2), includ-
ing arithmetic motivations and applications, an iterated version of modular
symbols, and relations with the “non–commutative boundary” of the modular

tower for elliptic curves.

1. Introduction: arithmetic functions and Dirichlet series

1.1. Arithmetic functions. Many basic questions of number theory involve
the behavior of arithmetic functions, i.e. sequences of integers {an |n ≥ 1} defined
in terms of divisors of n, or numbers of solutions of a congruence modulo n, etc.
After having chosen such a function, one might ask for example:

(i) Is {an |n ≥ 1} multiplicative, that is, does amn = aman for (m,n) = 1?

(ii) What is the asymptotic behavior of
∑

n≤N an as N → ∞?

(iii) Can one give a “formula” for an if initially it was introduced only by a
computational prescription, such as an := the number of representations of n as a
sum of four squares?

A very universal machinery for studying such questions consists in introducing
a generating series for an depending on a complex parameter, and studying the
analytic and algebraic properties of this series.

Two classes of series that are used most often are the Fourier series

f(z) :=
∞∑

n=1

ane
2πinz (1.1)

and the Dirichlet series

Lf (s) =
∞∑

n=1

ann
−s. (1.2)

In full generality, they must be considered as formal series; however, if an does not
grow too fast, e.g. is bounded by a polynomial in n, then (1.1) converges in the
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upper half-plane H := {z ∈ C | Im z > 0}, whereas (1.2) converges in some right
half plane Re s > D.

1.2. Mellin transform and modularity. Some of the properties of {an} are
directly encoded in the generating Dirichlet series. For example, multiplicativity of
{an} translates into the existence of an Euler product over primes p:

Lf (s) =
∏
p

Lf,p(s), Lf,p(s) :=

∞∑
n=1

apnp−ns. (1.3)

Hence the Dirichlet series for the logarithmic derivative of such a function carries
information about the values of an restricted to powers of primes. This idea leads
to famous “explicit formulas” expressing partial sums of apn ’s via poles of the
logarithmic derivative of Lf (s) i.e. essentially zeroes of Lf (s). Applied to the
simplest multiplicative sequence an = 1 for all n, this formalism produces the
classical relationship between primes and zeroes of Riemann’s zeta.

It turns out, however, that to establish the necessary analytic properties of
Lf (s) such as the analytic continuation in s and a functional equation, and generally
even the existence of an Euler product, one should focus first upon the Fourier series
f(z). The main reason for this is that interesting functions f(z) more often than not
possess, besides the obvious periodicity under z �→ z+1, additional symmetries, for
example, a simple behavior with respect to the substitution z �→ −z−1. This is the

case for f(z) =
∑

n≥1 e
2πin2z (or the more symmetric

∑
n∈Z e2πin

2z) corresponding

to Lf (s) = ζ(2s).

The transformations z �→ z + 1 and z �→ −z−1 together generate the full
modular group PSL(2,Z) of fractional linear transformations of H, and Fourier
series of various modular forms with respect to this group and its subgroups of
finite index generate a vast supply of most interesting arithmetic functions.

The basic relation between f(z) and Lf (s) allowing one to translate analytic
properties of f(z) into those of Lf (s) is the integral Mellin transform

Λf (s) :=

∫ i∞

0

f(z)
(z
i

)s dz

z
. (1.4)

Here the s–th power in the integrand is interpreted as the branch of the exponential
function which takes real values for real s and imaginary z. Convergence at i∞
is usually automatic whereas convergence at 0 is justified by a functional equation
(possibly after disposing of a controlled singularity).

Whenever we can integrate termwise using (1.1) (for large Re s), an easy cal-
culation shows that

Λf (s) = (2π)−sΓ(s)Lf(s). (1.5)

A functional equation for f(z) with respect to z �→ −z−1 (or more generally, z �→
−(Nz)−1 for some N) then leads formally to a functional equation of Riemann type
connecting Λf (s) with Λf (1 − s) or Λf (D − s) for an appropriate D defining the
critical strip 0 ≤ Re s ≤ D for Lf (s).

This is a very classical story, which acquired its final shape in the work of
Hecke in the 1920’s and 30’s. More modern insights concern the role of Γ–factors
as Euler factors at arithmetic infinity, and most important, the universality of this
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picture and the existence of its vast generalizations crystallized in the Taniyama–
Weil conjecture and the so-called Langlands program. This involves, in particular,
consideration of much more general arithmetic groups than PSL(2) as modular
groups.

We will not discuss this vast development in these lectures and focus upon the
classical modular group and related modular symbols. For some generalizations,
see [AB90], [AR79].

2. Classical modular symbols and Shimura integrals

2.1. Modular symbols as integrals. Since we are interested in Mellin trans-
forms of the form (1.4) where f(z) has an appropriate modular behavior with re-
spect to a subgroup of PSL(2,Z), we must keep track of similar integrals taken
over PSL(2,Z)–images of the upper semi–axis as well. The latter are geodesics
connecting two cusps in the partial compactification H := H ∪P1(Q).

Roughly speaking, the classical modular symbols are linear functionals (spanned
by)

{α, β} : f �→
∫ β

α

f(z)zs−1dz, α, β ∈ P1(Q)

on appropriate spaces of 1–forms f(z)zs−1dz. To be more precise, we must recall
the following definitions.

The group of real matrices with positive determinant GL+(2,R) acts on H
by fractional linear transformations z �→ [g]z. Let j(g, z) := cz + d where (c, d)
is the lower row of g. Then we have, for any function f on H and homogeneous
polynomial P (X,Y ) of degree k − 2,

g∗[f(z)P (z, 1) dz] := f([g]z)P ([g]z, 1) d([g]z)

= f([g]z) (j(g, z))−kP (az + b, cz + d) det g dz (2.1)

where (a, b) is the upper row of g. From the definition it is clear that the diagonal
matrices act identically so that we have in fact an action of PGL+(2,R).

This action induces for any integer k ≥ 2 the weight k action of GL+(2,R) on
functions on H. In the literature one finds two different normalizations of such an
action. They differ by a determinantal twist and therefore coincide on SL(2,R)
and the modular group. For example, in [Mer94] and [Man06] the action

f |[g]k(z) := f([g]z) j(g, z)−k (det g)k/2 (2.2)

is used.

A holomorphic function f(z) on H is a modular form of weight k for a group
Γ ⊂ SL(2,R) if f |[γ ]k(z) = f(z) for all γ ∈ Γ and f(z) is finite at cusps.

Such a form is called a cusp form if it vanishes at cusps.

Let Sk(Γ) be the space of cusp forms of weight k. Denote by Shk(Γ) the space
of 1–forms on the complex upper half plane H of the form f(z)P (z, 1) dz where
f ∈ Sk(Γ), and P = P (X,Y ) runs over homogeneous polynomials of degree k−2 in
two variables. Thus, the space Shk(Γ) is spanned by 1–forms of cusp modular type
with integral Mellin arguments in the critical strip in the terminology of [Man06],
Def. 2.1.1, and 3.3 below.
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We will now describe the space of classical modular symbols MSk(Γ) as the
space of linear functionals on Sk(Γ) spanned by the Shimura integrals

f(z) �→
∫ β

α

f(z)zm−1dz; 1 ≤ m ≤ k − 1; α, β ∈ P1(Q). (2.3)

Three descriptions of MSk(Γ) are known:

(i) Combinatorial (Shimura-Eichler-Manin): generators and relations.

(ii) Geometric (Shokurov): MSk(Γ) can be identified with a (part of) the middle
homology of the Kuga–Sato variety M (k).

(iii) Cohomological (Shimura): The dual space toMSk(Γ) can be identified with
the cuspidal group cohomology H1(Γ,Wk−2)cusp, with coefficients in the (k−2)-nd
symmetric power of the basic representation of SL(2).

We give some details below.

2.2. Combinatorial modular symbols. In this description, MSk(Γ) ap-
pears as an explicit subquotient of the space Wk−2 ⊗ C, where Wk−2 consists of
polynomial forms P (X,Y ) of degree k − 2 of two variables, and C is the space of
formal linear combinations of pairs of cusps {α, β} ∈ P1(Q). Coefficients of these
linear combinations can be Q, R or C, as in the theory of Hodge structures.

Each element of the form P ⊗ {α, β} produces a linear functional

f �→
∫ α

β

f(z)P (z, 1)dz.

This is extended to all of Wk−2 ⊗ C by linearity.

Denote by C the quotient of C by the subspace generated by sums {α, β} +

{β, γ} + {γ, α}. Since
∫ α

β
+
∫ β

γ
+
∫ γ

α
= 0, our linear functional (Shimura integral)

descends to Wk−2 ⊗C. We will still denote by P ⊗ {α, β} the class of this element
in C.

The group GL+(2,Q) acts from the left on Wk−2 by (notation as in (2.1))

(gP )(X,Y ) := P (bX − dY,−cX + aY ),

and on C by g{α, β} := {gα, gβ}. Hence it acts on the tensor product. A change of
variable formula then shows that the Shimura integral restricted to Sk(Γ) vanishes
on the subspace ofWk−2⊗C spanned by P⊗{α, β}−gP⊗{gα, gβ} for all P ∈ Wk−2,
g ∈ Γ.

Denote by MSk(Γ) the quotient of Wk−2 ⊗ C by the latter subspace.

The subspace of cuspidal modular symbols MSk(Γ)cusp is defined by the follow-
ing construction. Consider the space B freely spanned by P1(Q). Define the space
Bk(Γ) as the quotient ofWk−2⊗B by the subspace generated by P⊗{α}−gP⊗{gα}
for all g ∈ Γ. There is a well-defined boundary map MSk(Γ) → Bk(Γ) induced by
P ⊗ {α, β} �→ P ⊗ {α} − P ⊗ {β}. Its kernel is denoted MSk(Γ)cusp.

By construction, any (real) modular symbol in MSk(Γ)cusp defines a C–valued

functional
∫
on Sk(Γ) and in fact even on Sk(Γ)⊕ Sk(Γ).

The first result of the theory is:
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Theorem (Shimura).
∫

is an isomorphism of MSk(Γ)cusp with the dual

space of Sk(Γ)⊕ Sk(Γ).

2.3. Geometric modular symbols. Let Γ(k) be the semidirect product Γ�
(Zk−2 × Zk−2) acting on H ×Ck−2 via

(γ; n,m) (z, ζ) := ([γ]z; j(γ, z)−1(ζ + zn+m))

where n = (n1, . . . , nk−2), m = (m1, . . . ,mk−2), ζ = (ζ1, . . . , ζk−2), and nz =
(n1z, . . . , nk−2z).

If f(z) is a Γ–invariant cusp form of weight k, then

f(z)dz ∧ dζ1 ∧ · · · ∧ dζk−2

is a Γ(k)–invariant holomorphic volume form on H × Ck−2. Hence one can push
it down to a Zariski open smooth subset of the quotient Γ(k) \ (H × Ck−2). An
appropriate smooth compactification M (k) of this subset is called a Kuga–Sato
variety, cf. [Sho76],[Sho80b],[Sho80a].

Denote by ωf the image of this form on M (k). Notice that it depends only on
f , not on any Mellin argument. The latter can be accommodated in the structure
of (relative) cycles in M (k), so that integrating ωf over such cycles we obtain the
respective Shimura integrals.

Concretely, let α, β ∈ P1(Q) be two cusps in H and let p be a geodesic joining
α to β. Fix (ni) and (mi) as above. Construct a cubic singular cell p× (0, 1)k−2 →
H×Ck−2: (z, (ti)) �→ (z, (ti(zni+mi))). Take the Sk−2–symmetrization of this cell
and push down the result to the Kuga–Sato variety. We will get a relative (modulo
fibers of M (k) over cusps) cycle whose homology class is Shokurov’s higher modular
symbol {α, β; n,m}Γ. One easily sees that

∫ β

α

f(z)
k−2∏
i=1

(niz +mi) dz =

∫
{α,β;n,m}Γ

ωf .

The singular cube (0, 1)k−2 may also be replaced by an evident singular simplex.

Theorem (Shokurov). (i) The map f �→ ωf is an isomorphism Sk(Γ) →
H0(M (k),Ωk−1

M(k)).

(ii) The homology subspace spanned by Shokurov modular symbols with van-
ishing boundary is canonically isomorphic to the space of cuspidal combinatorial
modular symbols.

2.4. Cohomological modular symbols. In this description, the space dual
to MSk(Γ) is identified with the group cohomology H1(Γ,Wk−2).

A bridge between the geometric and the cohomological descriptions is furnished
by the identification of H1(Γ,Wk−2)cusp with the cohomology of a local system on

M1,1, namely H1
! (M1,1, Sym

k−2R1π∗Q).
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2.5. Some arithmetic applications. The formalism sketched above allows
one to get some quite precise information about two classes of number–theoretic
objects: coefficients of modular forms and their periods, which are essentially values
of their Mellin transforms at integer points of the critical strip. For illustration, we
give two examples taken from [Man72] and [Man73].

Example 1. Let

Φ(z) := e2πiz
∞∏

n=1

(1− e2πniz)24 =
∞∑

n=1

τ (n)e2πniz.

The coefficients τ (n) form a multiplicative sequence. This follows from the fact
that Φ(z) is the (essentially unique) cusp form of weight 12 with respect to the full
modular group; hence in particular it is an eigenform for all Hecke operators, which
ensures multiplicativity.

The formalism of modular symbols leads to an expression for τ (n) through
representations of n by an indefinite quadratic form. Namely, we have

τ (n) =
∑
d/n

d11 +
∑

n=∆∆′+δδ′

691

18
(∆8δ2 −∆2δ8) +

691

6
(∆6δ4 −∆4δ6). (2.4)

The second summation is taken over the following set of solutions: we require that
∆ > δ > 0 and either ∆′ > δ′ > 0, or ∆/n,∆′ = n/∆, δ′ = 0, 0 < δ/∆ ≤ 1/2.

Periods of Φ(z) are Shimura integrals

rk(Φ) :=

∫ i∞

0

Φ(z)zkdz, 0 ≤ k ≤ 10− w

that is, via Mellin transform,

rk(Φ) =
k!ik+1

(2π)k+1
LΦ(k + 1).

The invariance of Φ(z)(dz)6 with respect to z �→ −z−1 shows that

rk(Φ) = rk(Φ)(−1)k+1r10−k(Φ).

Finally, the formalism of modular symbols allows one to establish that the Q–space
spanned by periods is at most two–dimensional. More precisely,

(r0 : r2 : r4) = (1 : − 691

22 · 34 · 5 :
691

23 · 32 · 5 · 7), (r1 : r3 : r5) = (1 : − 52

24 · 3 :
5

22 · 3).

Example 2: a non–commutative reciprocity law. Here we start with a cusp form
of weight two

F (z) := e2πiz
∞∏

n=1

(1− e2πniz)2(1− e22πniz)2 =
∞∑

n=1

λne
2πniz

with respect to the subgroup Γ0(11) of Γ.

The Mellin transform of this form can be identified with the Weil zeta function
of the elliptic modular curve Γ0(11) \H defined over Q. From this it follows that
for any prime p �= 2, 11, we can characterize 1− λp + p as the number of solutions
of the congruence

y2 + y ≡ x3 − x2 − 10x− 20mod p (2.5)

(including the infinite solution).
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On the other hand, the formalism of modular symbols allows one to write for
this number an expression having the same structure as (2.4):

1− λp + p =
∑

p=∆∆′+δδ′

y11(∆, δ). (2.6)

This time, however, y11(∆, δ) is not a polynomial: it depends only on (∆ : δ)mod 11:
for the values of the latter 0,∞,±1,±2,±3,±4,±5mod 11, the values of y11 are
respectively 2,−2, 0, 10, 5,−5,−10.

Thus, we have connected solutions modulo p of the equation (2.5) “depending
on 11” as its conductor with solutions modulo 11 of the equation p = ∆∆′ +
δδ′ depending on p. This justifies the name “non–commutative reciprocity law”
suggested for (2.6) and its generalizations in [Man72].

Such formulas can be used to make more explicit the exact arithmetic content
of special cases of the very general and therefore somewhat abstruse Langlands
formalism.

Proofs of formulas for coefficients such as (2.4), (2.6) consist of two steps. For
simplicity, we will illustrate this for the case of weight two cusp form f(z) which is
an eigenform with respect to a Hecke operator Tn so that Tnf = anf. We integrate
this identity, say, from 0 to i∞ and get∫ ∞

0

Tnfdz = an

∫ i∞

0

fdz.

Now, use the explicit definition of the Hecke operator Tn on the left hand side
and make a change of variables. We will get a sum of modular symbols. Using
a continued fraction trick and a lemma initially proved by Heilbronn, we finally
reduce the left hand side to a sum over solutions of n = ∆∆′ + δδ′.

2.6. Relations with noncommutative geometry and a real analog of p–
adic integration. The role of the upper half-plane in our constructions is of course
explained by the fact that it parametrizes elliptic curves: complex tori C/〈1, τ 〉,
τ ∈ H. The action of the modular group extends to this family, and the respective
quotient is a non–complete algebraic variety. The cusps τ ∈ P1(Q) can be added
to compactify this quotient by degenerate elliptic curves. However, for irrational
values θ ∈ R \Q, the quotient C/〈1, θ〉 = C∗/(e2πiθ) is a “bad” topological group,
and the common wisdom is that it is best represented by a non–commutative space,
(a version of) the quantum torus Tθ.

Tori Tθ are parametrized by θ ∈ R. However, if one considers only tori mod-
ulo Morita equivalence, then they are parametrized by PGL (2,Z) \ P1(R). Set–
theoretically, PGL (2,Z) \ P1(R) = the set of equivalence classes of α ∈ [0, 1)
modulo the relation

α ≡ β ⇔ ∃n0, n1 ∀n > 0, kn+n0
(α) = kn+n1

(β).

Here kn(α) are successive components of the continued fraction of α.

Thus, we can imagine an “invisible boundary” of the modular tower supporting
a family of non–commutative spaces, the phantom of the classical modular family.
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This viewpoint was discussed in [MM02], see also [Mar05], and in particular
the Gauss problem on the distribution of continued fractions and its generalizations
were treated as a measure theory on the “non–commutative modular curves”.

We will describe here one result of this study, which produces an “∞–adic ana-
logue” of the theory of p–adic integration used to construct p–adic Mellin transforms
of cusp forms in [Man73].

Fix a prime number N > 0 and put G0 = Γ0(N). We will assume that the
genus of XG0

= X0(N) is ≥ 1. Consider a Γ0(N)–invariant differential ω = f(z)dz
on H such that f(z) is a cusp eigenform of weight two for all Hecke operators

and denote by L
(N)
f (s) (resp. ζ(N)(s)) its Mellin transform (resp. Riemann’s zeta)

with omitted Euler N–factor. More precisely, the coefficients of L
(N)
f (s) are Hecke

eigenvalues of f .

For α ∈ (0, 1), denote by pn(α)/qn(α) the n–th convergent of α.

Theorem. We have for Re t > 0:∫ 1

0

dα
∞∑

n=0

qn+1(α) + qn(α)

qn+1(α)1+t

∫ qn(α)/qn+1(α)

0

f(z) dz =

[
ζ(1 + t)

ζ(2 + t)
−

L
(N)
f (2 + t)

ζ(N)(2 + t)2

] ∫ i∞

0

f(z) dz. (2.7)

If
∫ i∞
0

f(z) dz �= 0, we can read (2.7) as an expression for L
(N)
f (s) which has striking

structural similarities to the p–adic Mellin integral. In particular, both formulas
involve a construction of a measure out of modular symbols, on (0, 1) and on Z∗

p

respectively.

The proof of (2.7) given in [MM02] combines an old lemma by P. Lévy with
the continued fractions trick alluded to above.

The Theorem above does not involve directly the non–commutative geometry
of the invisible boundary. However, it was shown in [MM02], Sec. 4, and [Mar05],
Sec. 6 of Ch. 4, that modular symbols themselves can be identified with specific
elements in the K–theory of this space, giving additional weight to the geometric
intuition behind this picture.

3. Iterated modular symbols

3.1. Multiple zeta values and iterated integrals. The theory of iterated
modular symbols (cf. [Man06], [Man05]) is a simultaneous generalization of two
constructions–of classical modular symbols and of multiple zeta values–and is an
elaboration of a special case of Chen’s iterated integrals theory ([Che77]) in a
holomorphic setting.

Multiple zeta values are the numbers given by the k–multiple Dirichlet series

ζ(m1, . . . ,mk) =
∑

0<n1<···<nk

1

nm1
1 · · ·nmk

k

(3.1)
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which converge for all integermi ≥ 1 andmk > 1, or equivalently by them–multiple
iterated integrals, m = m1 + · · ·+mk,

ζ(m1, . . . ,mk) =

∫ 1

0

dz1
z1

∫ z1

0

dz2
z2

∫ z2

0

· · ·
∫ zmk−1

0

dzmk

1− zmk

· · · (3.2)

where the sequence of differential forms in the iterated integral consists of consec-

utive subsequences of the form
dz

z
, . . . ,

dz

z
,

dz

1− z
of lengths mk,mk−1, . . . ,m1.

Easy combinatorial considerations allow one to express in two different ways
products ζ(l1, . . . , lj) ·ζ(m1, . . . ,mk) as linear combinations of multiple zeta values.

If one uses for this the integral representation (3.2), one gets a sum over shuf-
fles which enumerate the simplices of highest dimension occurring in the natural
simplicial decomposition of the product of two integration simplices.

If one uses instead (3.1), one gets sums over shuffles with repetitions which
enumerate some simplices of lower dimension as well.

These relations and their consequences are called double shuffle relations. Both
types of relations can be succinctly written down in terms of formal series on free
noncommuting generators. One can include in these relations regularized multi-
ple zeta values for arguments where the convergence of (3.1), (3.2) fails. A clear
and systematic exposition of these results can be found in [Del01] and [Rac00],
[Rac02].

In fact, the formal generating series for (regularized) iterated integrals (3.2)
appeared in the famous Drinfeld paper [Dri90], essentially as the Drinfeld asso-
ciator, and more relations for multiple zeta values were implicitly deduced there.
The question about interdependence of (double) shuffle and associator relations
does not seem to be settled at the moment of writing this: cf. [Rac04]. The
problem of completeness of these systems of relations is equivalent to some difficult
transcendence questions.

Multiple zeta values are interesting, because they and their generalizations
appear in many different contexts involving mixed Tate motives ([DG05], [Ter02]),
deformation quantization ([Kon99]), knot invariants, etc.

In order to make contact with modular symbols, notice first that the differen-

tials
dz

z
,

dz

1− z
span the space of meromorphic differential forms with no more than

logarithmic singularities at points {0, 1,∞} of P1(C). We can identify

(P1(C), {0, 1,∞}) ∼= Γ0(4) \ (H, cusps).

Then
dz

z
,

dz

1− z
lift to Eisenstein series of weight two for Γ0(4) ⊂ SL(2,Z).

In the general theory sketched below, Γ0(4) is replaced by an arbitrary (congru-
ence) subgroup Γ of SL(2,Z), Eisenstein series of weight two are replaced by (cusp
form + Eisenstein series) with respect to Γ, multiplied by zs−1dz for appropriate
s. (We mostly focus on cusp forms; in the presence of logarithmic singularities, the
necessary regularization procedure is described for weight two in Sec. 3.6.)

Finally, ordinary integrals along geodesics connecting two cusps are replaced
by iterated integrals.
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3.2. Formalism of iterated integrals. We will work on a Riemann surface,
and study general iterated integrals of holomorphic 1–forms. We will show that
if one replaces a simple integral not by an individual iterated integral but by a
generating series of all such integrals, then the usual properties like additivity and
variable change formula reappear in a multiplicative/noncommutative version.

Let X be a connected complex Riemann surface, and ωV := (ωv | v ∈ V ) a
family of holomorphic 1–forms indexed by a finite set V . Denote by AV := (Av | v ∈
V ) free associative formal variables, commuting with complex numbers, functions,
and differentials on X, and put

Ω :=
∑
v∈V

Avωv.

Consider the total iterated integral of Ω along a piecewise smooth path γ : [0, 1] →
U ⊂ X:

Jγ(Ω) := 1 +

∞∑
n=1

∫ 1

0

γ∗(Ω)(t1)

∫ t1

0

γ∗(Ω)(t2) · · ·
∫ tn−1

0

γ∗(Ω)(tn) ∈ C〈〈AV 〉〉

taken over the simplex 0 < tn < · · · < t1 < 1. If γ, γ′ with the same ends are
homotopic then Jγ(Ω) = Jγ′(Ω). Fixing implicitly such a homotopy class, we can
use another notation: zi = γ(ti) ∈ X, a = γ(0), z = γ(1),

Jz
a (Ω) := 1 +

∞∑
n=1

∫ z

a

Ω(z1)

∫ z1

a

Ω(z2) · · ·
∫ zn−1

a

Ω(zn) .

If U ⊂ X is connected and simply connected, this is an unambiguously defined
element ofOX(U)〈〈AV 〉〉. Otherwise it is a multivalued function of z in this domain.

Proposition. (i) Jz
a (Ω) as a function of z satisfies the equation

dJz
a (Ω) = Ω(z) Jz

a(Ω).

In other words, Jz
a (Ω) is a horizontal (multi)section of the flat connection ∇Ω :=

d− lΩ on OX〈〈AV 〉〉, where lΩ is the operator of left multiplication by Ω.

(ii) If U is a simply connected neighborhood of a, Jz
a (Ω) is the only horizontal

section with initial condition Ja
a = 1. Any other horizontal section Kz can be

uniquely written in the form CJz
a (Ω), C ∈ C〈〈AV 〉〉. In particular, for any b ∈ U ,

Jz
b (Ω) = Jz

a (Ω)J
a
b (Ω).

Corollary. Let γ be a closed oriented contractible contour in U , a1, . . . , an
points along this contour (cyclically) ordered compatibly with orientation. Then

Ja1
a2
(Ω)Ja2

a3
(Ω) · · ·Jan−1

an
(Ω)Jan

a1
(Ω) = 1. (3.3)

Formula (3.3) is the multiplicative version of the additivity of simple integrals
with respect to the join of integration paths.

Proposition. Consider the comultiplication

∆ : C〈〈AV 〉〉 → C〈〈AV 〉〉⊗̂CC〈〈AV 〉〉, ∆(Av) = Av ⊗ 1 + 1⊗Av

and extend it to the series with coefficients C(X) and Ω1(X). Then

∆(Jz
a (ωV )) = Jz

a (ωV )⊗̂OX
Jz
a (ωV ) . (3.4)
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Claim 1. The identity (3.4) encodes all shuffle relations between the iterated
integrals of the forms ωv.

Claim 2. The identity (3.4) is equivalent to the fact that log Jz
a (ωV ) can be

expressed as a series in commutators (of arbitrary length) of the variables Av.

Formula (3.4) expresses the group–like property of Jz
a (Ω). It is a multiplicative

version of the additivity of a simple integral as a functional of the integration form.

Functorality. Let g : X → X be an automorphism such that g∗ maps
into itself the linear space spanned by ωv: g∗(ωv) =

∑
u gvuωu. Define g∗(Au) =∑

v Avgvu . Then we have

Jgz
ga (ωV ) = g∗(J

z
a (ωV )) . (3.5)

Formula (3.5) is a multiplicative version of the variable change formula.

3.3. Iterated integrals on the upper half–plane and total Mellin trans-
form. A 1–form ω on H will be called a form of modular type if it can be rep-
resented as f(z)zs−1dz, where s is a complex number and f(z) is a modular form
of some weight with respect to a finite index subgroup Γ of the modular group
SL(2,Z).

The modular form f(z) is then well defined and called the associated modular
form (to ω), and the number s is called the Mellin argument of ω.

ω is called a form of cusp modular type if the associated f(z) is a cusp form.

Let f1, . . . , fk be a finite sequence of cusp forms with respect to Γ, ωj(z) :=
fj(z) z

sj−1dz. The iterated Mellin transform of (fj) is

M(f1, . . . , fk; s1, . . . , sk) := I0i∞(ω1, . . . , ωk) =

∫ 0

i∞
ω1(z1)

∫ z1

i∞
ω2(z2) · · ·

∫ zn−1

i∞
ωn(zn).

Let fV = (fv | v ∈ V ) be a finite family of cusp forms with respect to Γ, sV =

(sv | v ∈ V ) a finite family of complex numbers, ωV = (ωv), where ωv(z) :=
fv(z) z

sv−1dz. The total Mellin transform of fV is

TM(fV ; sV ) := J0
i∞(ωV ) =

1 +
∞∑

n=1

∑
(v1,...,vn)∈V n

Av1 . . . Avn M(fv1 , . . . , fvn ; sv1 , . . . , svn).

Theorem. Assume that the space spanned by fv(z) is stable with respect to
gN : z �→ −1/Nz. Let kv be the weight of fv(z), and kV = (kv). Then

TM(fV ; sV ) = gN∗(TM(fV ; kV − sV ))
−1

for an appropriate linear transformation gN∗ of the formal variables Av.
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3.4. Iterated Shimura integrals and non–commutative cohomology.
Let G be a group, N a group with left action of G by group automorphisms:
(g, n) �→ gn. Cocycles with coefficients in N are defined as Z1(G,N) := {u :
G → N |u(g1g2) = u(g1) g1u(g2) }. Two cocycles are cohomologous, u′ ∼ u, iff for
some n ∈ N and all g ∈ G, we have u′(g) = nu(g) (gn)−1. The cohomology set is
H1(G,N) := Z1(G,N)/(∼). It is endowed with a marked point: the class of trivial
cocycles u(g) = n−1 · gn.

We will apply this formalism to iterated Shimura integrals. The role of G will
be played by a group G = PΓ ⊂ PSL(2,Z) where Γ ⊂ SL(2,Z).

To define coefficients, choose as above a family of Shimura differentials ωv =
fv(z)z

mv−1dz, where fv form a basis of ⊕iS(ki,Γ), and for a fixed weight, mv runs
over all critical integers for this weight. The forms ωv span a PΓ–invariant space.
Put Ω :=

∑
v∈V Avωv. The role of N will be played by Π := the group of group–like

elements of (1+
∑

v∈V AvC〈〈Av〉〉)∗. The left action of PΓ on Π is the functorality
action g∗.

Theorem. (i) For any a ∈ H, the map PΓ → Π : γ �→ Ja
γa(Ω) is a noncom-

mutative 1–cocycle ζa in Z1(PΓ,Π).

(ii) The cohomology class of ζa in H1(PΓ,Π) does not depend on the choice of
a and is called the noncommutative modular symbol.

(iii) This cohomology class belongs to the cuspidal subset H1(PΓ,Π)cusp con-
sisting of those cohomology classes whose restriction on all stabilizers of Γ–cusps is
trivial.

Using the non–commutative Shapiro Lemma, we can reduce the general case
to that of PSL(2,Z).

Shapiro Lemma. Let G ⊂ H be a subgroup, N a left G–group, NH :=
MapG (N,H) with pointwise multiplication and left action of G, (g∗φ)(h) := φ(hg).
There is a canonical isomorphism of pointed sets:

H1(G,N) = H1(H,NH).

In the notation as above, we apply it to the case

G := PΓ, H := PSL(2,Z), N := Π, Π0 := NH .

It is well known that H = PSL(2,Z) is a free product of two subgroups Z2

and Z3 generated respectively by

σ =

(
0 −1
1 0

)
, τ =

(
0 −1
1 −1

)
.

Theorem. (i) An iterated Shimura cocycle restricted to (σ, τ ) belongs to the
set

{ (X,Y ) ∈ Π0 ×Π0 |X · σ∗X = 1, Y · τ∗Y · τ2∗Y = 1 }.
(ii) The cohomology relation between cocycles translates as

(X,Y ) ∼ (m−1Xσ∗(m),m−1Y τ∗(m)).

(iii) The cuspidal part of the cohomology is generated by the pairs

{ (X,Y ) | ∃Z, X · σ∗Y = Z−1(στ )∗Z }.
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3.5. Iterated Shimura integrals as multiple Dirichlet series. Start with
the family of 1–forms on H:

ωv(z) =

∞∑
n=1

cv,ne
2πinzzmv−1dz, cv,n ∈ C , mv ∈ Z, mv ≥ 1; cv,n = O(nC).

Put
L(z;ωvk , . . . , ωv1 ; jk, . . . , j1) :=

(2πiz)jk
∑

n1,...,nk≥1

cv1,n1
· · · cvk,nk

e2πi(n1+···+nk)z

n
mv1

+j0−j1
1 (n1 + n2)

mv2
+j1−j2 · · · (n1 + · · ·+ nk)

mvk
+jk−1−jk

.

Exponentials ensure absolute convergence for any z with Im z > 0. Formal substi-
tution z = 0 may lead to divergence.

Theorem. For any k ≥ 1, (v1, . . . , vk) ∈ V k, and Im z > 0 we have

(2πi)mv1
+···+mvk Izi∞(ωvk , . . . , ωv1) =

(−1)
∑k

i=1(mvi
−1)

mv1
−1∑

j1=0

mv2
−1+j1∑

j2=0

· · ·
mvk

−1+jk−1∑
jk=0

(−1)jk ×

(mv1 − 1)!(mv2 − 1 + j1)! · · · (mvk − 1 + jk−1)!

j1!j2! · · · jk!
L(z;ωvk , . . . , ωv1 ; jk, . . . , j1) .

Proposition. Assume that ωV as above is a basis of a space of 1-forms in-
variant with respect to gN . Then

J0
i∞(ωV ) = (gN∗(J

i√
N

i∞ (ωV )))
−1J

i√
N

i∞ (ωV ) . (3.6)

Replacing the coefficients of the formal series in the r.h.s of (3.6) by their
(convergent) representations via multiple Dirichlet series with exponents we get
such representations for I0i∞(ωvk , . . . , ωv1) and avoid divergences at z = 0.

The multiple Dirichlet series generated by Shimura integrals as above do not
form, however, a closed system with respect to multiplication, so that we cannot
deduce an analog of shuffle relations with repetitions valid for multiple zeta values.
If we complete the family of such series using a combinatorial trick described in
[Man06], then representation of such series as iterated integrals will involve more
general 1–forms than we have been considering up to now. This subject deserves a
further study.

3.6. Differentials with logarithmic singularities at the endpoints of
integration. We will now assume, as in the initial Drinfeld setting, that the in-
tegration limits of the iterated integral are logarithmic singularities of the form
Ω. Generally, they diverge and must be regularized. The dependence on the reg-
ularization can be described as a version of Deligne’s choice of the “base point at
infinity”.

Let a = a fixed point of the Riemann surface, z a variable point. Put rv,a :=
resa ωv, Ra := resa Ω =

∑
v rv,aAv . Denote by ta a local parameter at a, and by

log ta a local branch of the logarithm real on ta ∈ R+. Finally, put t
Ra
a := eRalog ta .
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Definition. A local solution to dJz = Ω(z)Jz is called normalized at a (with
respect to a choice of ta) if it is of the form J = K · tRa

a , where K is a holomorphic
section in a neighborhood of a and K(a) = 1.

Claim. (i) The normalized solution exists and is unique.

(ii) It depends only on the tangent vector ∂/∂ta |a.
(iii) If J ′

a = K ′(t′a)
Ra is normalized with respect to t′a, and τa := dt′a/dta |a,

then J ′
a = Ja · τRa

a .

Now, having chosen (a, ta), (b, tb), a 1–form Ω =
∑

Avωv with at most loga-
rithmic singularities at a, b, and a (homotopy class of) path(s) from a to b avoiding
other singularities of Ω, we construct the normalized solutions Ja, Jb analytically
continued along γ and the scattering operator

J̃a
b = J−1

a Jb ∈ C〈〈AV 〉〉 .

Its coefficients (as power series in (Av)), by definition, are regularized iterated

integrals of (ωv). It turns out that J̃
a
b satisfy the general properties of the iterated

integrals summarized in 3.2.

Example: Drinfeld’s associator. Let X = P1(C), V = {0, 1},

ω0 =
1

2πi

dz

z
, ω1 =

1

2πi

dz

z − 1
.

Then

Ω = A0ω0 +A1ω1

has poles at 0, 1,∞ with residues A0/2πi, A1/2πi, −(A0+A1)/2πi respectively. Put

t0 = z, t1 = 1− z. Then J̃1
0 in our notation is the Drinfeld associator φKZ(A0, A1).

Example: modular generalization of multiple zeta values. Let Γ be
a congruence subgroup of the modular group, (fv) := a basis of Eisenstein series
of weight 2 wrt Γ, {ωv = push forward of fv(z)dz} : 1–forms with logarithmic
singularities at cusps on XΓ. The space of such forms has the maximal possible
dimension, because the difference of any two cusps has finite order in the Jacobian
(cf. [Elk90]).

Regularized iterated integrals of Eisenstein series of weight two along geodesics
between cusps provide a modular generalization of multiple zeta values.
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Abstract. This paper is based on lectures given at the Clay Summer School
on Arithmetic Geometry in July 2006.

These notes offer an introduction to the birational geometry of algebraic sur-
faces, emphasizing the aspects useful for arithmetic. The first three sections are
explicitly devoted to birational questions, with a special focus on rational surfaces.
We explain the special rôle these play in the larger classification theory. The ge-
ometry of rational ruled surfaces and Del Pezzo surfaces is studied in substantial
detail. We extend this theory to geometrically rational surfaces over non-closed
fields, enumerating the minimal surfaces and describing their geometric properties.
This gives essentially the complete classification of rational surfaces up to birational
equivalence.

The final two sections focus on singular Del Pezzo surfaces, universal torsors,
and their algebraic realizations through Cox rings. Current techniques for count-
ing rational points (on rational surfaces over number fields) often work better for
singular surfaces than for smooth surfaces. The actual enumeration of the rational
points often boils down to counting integral points on the universal torsor. Uni-
versal torsors were first employed in the (ongoing) search for effective criteria for
when rational surfaces over number fields admit rational points.

It might seem that these last two topics are far removed from birational ge-
ometry, at least the classical formulation for surfaces. However, singularities and
finite-generation questions play a central rôle in the minimal model program. And
the challenges arising from working over non-closed fields help highlight structural
characteristics of this program that usually are only apparent over C in higher
dimensions. Indeed, these notes may be regarded as an arithmetically motivated
introduction to modern birational geometry.

In general, the prerequisites for these notes are a good understanding of alge-
braic geometry at the level of Hartshorne [Har77]. Some general understanding
of descent is needed to appreciate the applications to non-closed fields. Readers
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interested in applications to positive characteristic would benefit from some expo-
sure to étale cohomology at the level of Milne [Mil80]. There is one place where
we do not fully observe these prerequisites: The discussion of the Cone Theorem
is not self-contained although we do sketch the main ideas. Thankfully, a number
of books ([CKM88], [KM98], [Rei97], [Kol96],[Mat02]) give good introductory
accounts of this important topic.

Finally, we should indicate how this account relates to others in the literature.
The general approach taken to the geometry of surfaces over algebraically closed
fields owes much to Beauville’s book [Bea96] and Reid’s lecture notes [Rei97].
The extensions to non-closed fields draw from Kollár’s book [Kol96]. Readers
interested in details of the Galois action on the lines of a Del Pezzo surface and its
implications for arithmetic should consult Manin’s classic book [Man74] and the
more recent survey [MT86]. The books [CKM88, KM98, Mat02] offer a good
introduction to modern birational geometry; [Laz04] has a comprehensive account
of linear series. We have made no effort to explain how universal torsors and Cox
rings are used for the descent of rational points; the recent book of Skorobogatov
[Sko01] does a fine job covering this material.

I am grateful to Anthony Várilly-Alvarado, Michael Joyce, Ambrus Pál, and
other members of the summer school for helpful comments.

1. Rational surfaces over algebraically closed fields

Let k be an algebraically closed field. Throughout, a variety will designate an
integral separated scheme of finite type over k.

1.1. Classical example: Cubic surfaces. Here a cubic surface means a
smooth cubic hypersurface X ⊂ P3. We recall a well-known construction for such
surfaces:

Let p1, . . . , p6 ∈ P2 be points in the projective plane in general position, i.e.,

• the points are distinct;
• no three of the points are collinear;
• the six points do not lie on a plane conic.

Consider the vector space of homogeneous cubics vanishing at these points; it is an
exercise to show this has dimension four

Ip1,...,p6
(3) = 〈F0, F1, F2, F3〉

and has no additional basepoints.
The resulting linear series gives a rational map

ρ : P2 ��� P3

[x0, x1, x2] �→ [F0, F1, F2, F3]

that is not well-defined at p1, . . . , p6. Consider the blow-up

β : X := Blp1,...,p6
P2 → P2

with exceptional divisors
E1, . . . , E6.

Blowing up the base scheme of a linear series resolves its indeterminacy, so we
obtain a morphism

j : X → P3
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with j = ρ ◦ β.

Proposition 1.1. The morphism j gives a closed embedding of X in P3.

We leave the proof as an exercise.
Given this, we may describe the image of j quite easily. The first step is to

analyze the Picard group Pic(X) and its associated intersection form

Pic(X)× Pic(X) → Z
(D1, D2) �→ D1 ·D2

.

We recall what happens to the intersection form under blow-ups. Let β : Y → P
be the blow-up of a smooth surface at a point, with exceptional divisor E. Then
we have an orthogonal direct-sum decomposition

Pic(Y ) = Pic(P )⊕⊥ ZE, E · E = E2 = −1,

where the inclusion Pic(P ) ↪→ Pic(Y ) is induced by β∗.
Returning to our particular situation, we have

Pic(X) = ZL⊕ ZE1 ⊕ · · · ⊕ ZE6.

Here L is the pullback of the hyperplane from P2 with L2 = L ·L = 1 and L ·Ea = 0
for each a. We also have Ea · Eb = 0 for a 	= b.

Since j is induced by the linear series of cubics with simple basepoints at
p1, . . . , p6, we have

j∗OP3(1) = OX(3L− E1 − · · · − E6)

so that
deg(j(X)) = (3L− E1 − · · · − E6)

2 = 9− 6 = 3.

This proves that the image is a smooth cubic surface. The images of the exceptional
divisors E1, . . . , E6 have degree

Ei · (3L− E1 − · · · − E6) = 1

and thus are lines on our cubic surface.

Proposition 1.2. The cubic surface j(X) ⊂ P3 contains the following 27 lines:

• the exceptional curves Ea;
• proper transforms of lines through pa and pb, with class L− Ea − Eb;
• proper transforms of conics through five basepoints pa, pb, pc, pd, pe, with
class 2L− Ea − Eb − Ec − Ed − Ee.

This beautiful analysis leaves open a number of classification questions:

(1) Does every cubic surface arise as the blow-up of P2 in six points in general
linear position?

(2) Are there exactly 27 lines on a cubic surface?

To address these, we introduce some general geometric definitions:

Definition 1.3. Let Y be a smooth projective surface with canonical class KY ,
i.e., the divisor class associated with the differential two-forms Ω2

Y =
∧2 Ω1

Y . We
say that Y is a Del Pezzo surface if −KY is ample, i.e., there exists an embedding
Y ⊂ PN such that OPN (1)|Y = OY (−rKY ) for some r > 0.

Note that if Y is Del Pezzo then K2
Y > 0.
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Remark 1.4. Let X ⊂ P3 be a cubic surface and H the hyperplane class on
P3. Adjunction

KX = (KP3 +X)|X = (−4H + 3H)|X = −H|X
implies that any cubic surface is a Del Pezzo surface.

Definition 1.5. Let Y be a smooth projective surface. A (−1)-curve is a
smooth rational curve E ⊂ Y with E2 = −1.

Of course, exceptional divisors are the main examples. We also have the fol-
lowing characterization.

Proposition 1.6. Let Y be a smooth projective surface. Let E ⊂ Y be an
irreducible curve with

E2 < 0, KY · E < 0.

Then E is a (−1)-curve. In particular, on a Del Pezzo surface every irreducible
curve with E2 < 0 is a (−1)-curve.

Proof. Let pa(E) denote the arithmetic genus of E. Since E is an irreducible
curve we know that pa(E) ≥ 0 with equality if and only if E � P1. Combining this
with the adjunction formula, we obtain

−2 ≤ 2pa(E)− 2 = E · (KY + E).

Thus E2 = −1, KY · E = −1, and E is a smooth rational curve. �

Remark 1.7. The lines on a cubic surface are precisely its (−1)-curves. Indeed,
if � ⊂ X is a line then the genus formula gives

−2 = 2g(�)− 2 = �2 +KX · � = �2 − 1.

Suppose then that

� = aL− b1E1 − · · · − b6E6

is a line on a cubic surface. Then the following equations must be satisfied

1 = −KX · � = 3a− b1 − b2 − b3 − b4 − b5 − b6
−1 = �2 = a2 − b21 − b22 − b23 − b24 − b25 − b26

and these can be solved explicitly. There are precisely 27 solutions; see Exer-
cise 1.1.6 and [Man74, 26.2], especially for the connection with root systems. Thus
the cubic surfaces arising as blow-ups of P2 in six points in general position have
precisely 27 lines.

We extend this analysis to all smooth cubic surfaces:

Theorem 1.8. Let P19 = P(Sym3(k4)) parametrize all cubic surfaces and let

Z = {(X, �) : X cubic surface, � ⊂ X line } ⊂ P19 ×G(1, 3)

denote the incidence correspondence. Let U ⊂ P19 denote the locus of smooth cubic
surfaces and

π1 : ZU := Z ×P19 U → U

the projection. Then π1 is a finite étale morphism.

Since U is connected the degree of π1 is constant, and we conclude

Corollary 1.9. Every smooth cubic surface has 27 lines.
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Proof. (cf. [Mum95, p. 173 ff.]) We claim that Z is proper and irreducible
of dimension 19: Each line � is contained in a 20− 4 = 16-dimensional linear series
of cubic surfaces, so the projection Z → G(1, 3) is a P15 bundle. Consequently, π1

is a proper morphism. In particular, for each one-parameter family of lines in cubic
surfaces (Xt, �t), the flat limit

lim
t→0

(Xt, �t)

is also a line in a cubic surface.
Let N�/X denote the normal bundle of a line � in a smooth cubic surface X.

We have N�/X � OP1(−1) so that

h0(N�/X) = h1(N�/X) = 0.

Recall that H0(N�/X) (resp. H1(N�/X)) is the tangent space (resp. obstruction
space) of the scheme of lines on X at �. It follows then that ZU is smooth of relative
dimension zero over U , i.e., π1 is étale. Furthermore, proper étale morphisms are
finite. �

One further piece of information can be extracted from this result: The inter-
sections of the 27 lines are constant over all the cubic surfaces. This means that
every cubic surface X contains a pair (and even a sextuple!) of pairwise disjoint
lines (cf. Exercise 1.1.3).

Proposition 1.10. Let X be a smooth cubic surface containing disjoint lines
E1 and E2. Let �1, . . . , �5 denote the lines in X meeting E1 and E2. There is a
birational morphism

ϕ : X → P1 × P1

x �→ (pE1
(x), pE2

(x))

where pEi
: P3 ��� P1 is projection from Ei. This contracts �1, . . . , �5 to distinct

points q1, . . . , q5 ∈ P1 × P1 satisfying the following genericity conditions:

• no pair of them lie on a ruling of P1 × P1;
• no four of them lie on a curve of bidegree (1, 1);

The inverse ϕ−1 is given by the linear system of forms of bidegree (2, 2) through
q1, . . . , q5.

We leave this as an exercise.

Corollary 1.11. Every smooth cubic surface is isomorphic to P2 blown up at
six points.

Proof. We first verify that Blq1,...,q5P
1 × P1 is isomorphic to P2 blown up at

six points. Indeed, we can realize P1 × P1 as a smooth quadric Q ⊂ P3, so that the
fibers of each projection are lines on Q. Let q ∈ Q be any point and R1 and R2 the
two rulings passing though q. Projection from q

pq : Q ��� P2

lifts to a morphism
BlqQ → P2

contracting the proper transforms of R1 and R2. �
Before concluding, we draw two morals from this story:

• (−1)-curves govern much of the geometry of a Del Pezzo surface;
• classifying (−1)-curves is a crucial step in classifying the surfaces.
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Exercises.

Exercise 1.1.1. Show that six distinct points on the plane impose independent
conditions on cubics if no four of the points are collinear. Show that the resulting
linear system has base scheme equal to these six points.

Exercise 1.1.2. Give a careful proof of Proposition 1.1.

Exercise 1.1.3. Verify that the 27 curves described in Proposition 1.2 are in
fact lines on the cubic surface. Check that each of these has self-intersection −1.
Show that

(1) each line is intersected by ten other lines;
(2) any pair of disjoint lines is intersected by five lines;
(3) each line is contained in a collection of six pairwise disjoint lines.

Exercise 1.1.4. Prove Proposition 1.10.

Exercise 1.1.5. Let X be a smooth cubic surface. Show that the intersection
form on K⊥

X ⊂ Pic(X) is isomorphic to

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6
ρ1 −2 1 0 0 0 0
ρ2 1 −2 1 0 0 0
ρ3 0 1 −2 1 0 1
ρ4 0 0 1 −2 1 0
ρ5 0 0 0 1 −2 0
ρ6 0 0 1 0 0 −2

.

Up to sign, this is the Cartan matrix associated to the root system E6.

Exercise 1.1.6. Consider a line on a cubic surface � ⊂ X, and the associated
class λ = 3� + KX ∈ K⊥

X . Verify that λ2 = −12 and λ · η ≡ 0 (mod 3) for each
η ∈ K⊥

X ⊂ Pic(X). Deduce that there are a finite number of lines on a cubic
surface.

1.2. The structure of birational morphisms of surfaces. Our first task
is to show that all (−1)-curves arise as exceptional curves of blow-ups:

Theorem 1.12 (Castelnuovo contraction criterion). [Har77, V.5.7] Let X be
a smooth projective surface and E ⊂ X a (−1)-curve. Then there exists a smooth
projective surface Y and a morphism β : X → Y contracting E to a point y ∈ Y ,
so that X is isomorphic to BlyY . Each morphism ψ : X → Z contracting E admits
a factorization

ψ : X
β→ Y → Z.

Proof. (Sketch) Let H be a very ample divisor on X such that

H1(X,OX(H)) = 0.

Set L = OX(H+(H ·E)E) so that L|E � OE . For each n > 0 we have the inclusion

OX(nH) ↪→ Ln = OX(nH + n(H · E)E)

which is an isomorphism away from E. Thus the sections in the image of

Γ(X,OX(nH)) ↪→ Γ(X,Ln)

induce an embedding of X \ E.
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We claim that L is globally generated, so we have a morphism

β : X → Y := Proj(
⊕
n≥0

Γ(X,Ln)).

Since L|E is trivial, β necessarily contracts E to a point; β is an isomorphism away
from E.

Here is the idea: Since L|E is globally generated, it suffices to show that the
restriction

Γ(X,L) → Γ(E,L|E) � Γ(P1,OP1)

is surjective. Taking the long exact sequence associated to

0 → L(−E) → L → L|E → 0,

we are reduced to showing that H1(X,L(−E)) = 0. Indeed, we can show induc-
tively that H1(X,OX(H + aE)) = 0 for a = 1, . . . , H · E − 1: The exact sequence

0 → OX(H + (a− 1)E) → OX(H + aE) → OE(H · E − a) → 0

expresses OX(H + aE) as an extension of sheaves with vanishing H1.
The trickiest bit is to check that Y is smooth and β is the blow-up of a point

of Y . The necessary local computation can be found in [Bea96, II.17] or [Har77,
pp. 415].

For the factorization step, the standard isomorphism

Pic(X) = β∗Pic(Y )⊕ ZE

identifies β∗Pic(Y ) with line bundles on X restricting to zero along E. Moreover,
the induced map

Γ(Y,M′) → Γ(X, β∗M′)

is an isomorphism. Suppose that M is very ample on Z so that ψ is induced by
certain sections of ψ∗M. However, M = β∗M′ for some M′ on Y and the relevant
sections of ψ∗M come from sections of M′. �

Theorem 1.13. Let φ : X → Y be a birational morphism of smooth projective
surfaces. Then there exists a factorization

X = X0
β1→ X1 → · · · → Xr−1

βr→ Xr = Y

where each βj is a blow-up of a point on Xj. (If φ is an isomorphism we take
X0 = Xr.)

Proof. We assume φ is not an isomorphism. Hence it is ramified and the
induced map

φ∗Ω2
Y → Ω2

X

is not an isomorphism. Since these sheaves are invertible, we can therefore write

φ∗Ω2
Y = Ω2

X(−(m1E1 + · · ·+mrEr)),

where the Ei are irreducible φ-exceptional curves, i.e., φ contracts Ei to a point in
Y . Since φ∗KY |Ei

is trivial we have φ∗KY ·Ei = 0. The multiplicity mi is positive
because φ is ramified along Ei. In divisorial notation, we obtain the discrepancy
formula:

(1.1) KX = φ∗KY +
∑

miEi, mi > 0.
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By the Hodge index theorem [Har77, V.1.9], the intersection form on

Λ = ZE1 + · · ·+ ZEr

is negative definite, so in particular each E2
i < 0. We claim that KX · Ei < 0 for

some i; then Proposition 1.6 guarantees that Ei is a (−1)-curve.
We know that

(
∑

miEi)
2 =

∑
i

miEj · (
∑
j

mjEj) =
∑
i

miEi ·KX

is negative, because the intersection form on Λ is negative definite. Hence some
Ei ·KX must be negative.

Using the Castelnuovo criterion we contract Ei

X = X0 → X1,

so that X0 is the blow-up of X1 at a point. Moreover, φ factors through X1.
This factorization process terminates because the exceptional locus of φ has a finite
number of irreducible components. �

Definition 1.14. A smooth projective surface X is minimal if every birational
morphism φ : X → Y to a smooth variety is an isomorphism.

Theorem 1.13 says that X is minimal if and only if it has no (−1)-curves.

Exercises.

Exercise 1.2.1. Let X be the blow-up of P2 at [0, 0, 1], [0, 1, 0], [1, 0, 0]. Realize
X in P2 × P2 ⊂ P8 using the bihomogeneous equations

x0y0 = x1y1 = x2y2.

Verify that the proper transforms of the lines x0 = 0, x1 = 0, x2 = 0 are (−1)-curves
and write down explicit linear series contracting each one individually.

Exercise 1.2.2. LetX be a cubic surface, realized as P2 blown up at six points.
Describe a basepoint-free linear series on X contracting the six curves

2L− Ea − Eb − Ec − Ed − Ee.

What is the image of the corresponding morphism X → Y ?

1.3. Relative minimality and ruled surfaces. Let f : X → B denote a
dominant morphism from a smooth projective surface to a variety. We say that X
is minimal relative to f if there exists no commutative diagram

X
φ−→ Y

↘ ↙
B

where φ is birational and Y is smooth. In analogy to Theorem 1.13, X is minimal
relative to f if and only if there are no (−1)-curves in the fibers of f .

A ruled surface is a morphism f : X → B from a smooth projective surface to
a smooth curve whose generic fiber is rational; it is minimal if it is minimal relative
to f . If f is smooth then each fiber is isomorphic to P1; in this case, f : X → B is
called a P1-bundle.
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Proposition 1.15. Let X be a smooth projective surface and f : X → B a
P1-bundle. Then each b ∈ B admits an étale-open neighborhood U → B and an
isomorphism:

X ×B U
∼→ P1 × U

↘ ↙
U

Proof. Since f is smooth it admits a multisection M ⊂ X with f |M un-
branched over b; let U ⊂ M denote the open set where f is unramified. The pull-
back g : X ′ := X×BM → M admits the canonical diagonal section Σ. Consider the
direct images of OX′(Σ). Cohomology and base change implies that R1g∗OX′(Σ)
is trivial and E := g∗OX′(Σ) has rank two. Under these conditions cohomology
commutes with base change, so a fiber-by-fiber analysis shows that

g∗g∗OX′(Σ) → OX′(Σ)

is surjective and the induced morphism

X ′ → P(E)
is an isomorphism over M . �

Theorem 1.16. Let f : X → B be a minimal ruled surface. Then X is a
P1-bundle over B.

Before proving this, we’ll require a preliminary result.

Lemma 1.17. Let F denote the class of a fiber of f . Consider a fiber of f
with irreducible components E1, . . . , Er. Then we have E2

i < 0 and F · Ei = 0 for
each i and KX · Ei < 0 for some i. In particular, each reducible fiber contains a
(−1)-curve.

Proof. Each fiber of f is numerically equivalent to F , i.e., has the same
intersection numbers with curves in X. Since these fibers are generally disjoint
from the Ei, we have F · Ei = 0 for each i and F · F = 0.

Express F =
∑r

i=1 miEi where mi > 0 is the multiplicity of the fiber along Ei.
Note that F is connected, e.g., by Stein factorization. Thus each Ei meets some
Ej and

Ei ·
∑
j �=i

mjEj = Ei · (F −miEi) > 0.

It follows that Ei · Ei < 0.
Finally, KX · F = −2 by adjunction, so KX · Ei < 0 for some index. �
Proof. (Theorem 1.16)
The key point is to show that the fibers of f are all isomorphic to P1. Since f is

a dominant morphism from a nonsingular surface to a nonsingular curve, it is flat
with fibers of arithmetic genus zero. Each fiber is a Cartier divisor on X and thus
has no embedded points. Under the assumptions of Theorem 1.16, each fiber of f
is irreducible. We also have that each fiber has multiplicity one. Indeed, writing
F = mE we have

−2 = KX · F = mKX · E
som = 1, 2. However, ifm = 2 then adjunction yields 2g(E)−2 = E2+KXE = −1,
which is absurd. Thus each fiber of f is isomorphic to P1, and in particular f is
smooth. �
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We record one additional fact for future reference, whose proof is left as an
exercise:

Proposition 1.18. Let E1, . . . , Er be the components of a fiber of a ruled
surface; let F denote the class of the fiber. The induced intersection form on

(ZE1 + · · ·+ ZEr)/ZF

is negative definite and unimodular.

We now pursue a finer analysis of the structure of ruled surfaces.

Proposition 1.19. Let C be a variety defined over a field K such that CK̄ �
P1
K̄
. Then there exists a closed embedding C ↪→ P2 as a plane conic. There is a

quadratic extension K ′/K such that CK′ � P1
K′ .

We leave the proof as an exercise.
We apply Proposition 1.19 in the case where K is the function field of the base

B and C is the generic fiber f :

C ⊂ X
f◦ ↓ ↓ f

Spec(k(B)) → B

The Tsen-Lang theorem says that every quadratic form in ≥ 3 variables over
k(B) represents zero, so C(k(B)) 	= ∅. Each rational point corresponds to a section
Spec(k(B)) → C of f◦, and thus to a rational map from B to X. Since X is proper,
this extends uniquely to a section s : B → X of f . We have proven the following:

Proposition 1.20. Let f : X → B be a ruled surface. There exists a section
s : B → X of f .

Combining this with the argument for Proposition 1.15, we obtain

Corollary 1.21 (Classification of ruled surfaces). Every minimal ruled surface
f : X → B is isomorphic to P(E) for some rank-two vector bundle E on B.

Combining this with Grothendieck’s classification of vector bundles on P1 gives:

Corollary 1.22. Every ruled surface f : X → P1, minimal relative to f , is
isomorphic to a Hirzebruch surface

Fd := P(OP1 ⊕OP1(−d)), d ≥ 0.

In particular, ruled surfaces over P1 are rational.

See Exercise 1.3.3 for more details of the argument.

Exercises.

Exercise 1.3.1. Prove Proposition 1.19. Hint: Note that Ω1
C is an invertible

sheaf on C defined over K and coincides with OP1(−2) over CK̄ . Use the sections
of the dual (Ω1

C)
∗ to embed C.

Exercise 1.3.2. Prove Proposition 1.18. Hint: Use the mechanism of the proof
of Theorem 1.16.
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Exercise 1.3.3. Give a detailed proof for Corollary 1.22. For the classification
assertion, show that each vector bundle E on P1 decomposes as

E �
r⊕

i=1

OP1(ai), a1 ≤ a2 ≤ · · · ≤ ar.

To establish rationality, exhibit a nonempty open subset U ⊂ P1 such that E|U �
O⊕r

U .

Exercise 1.3.4. For each d ≥ 0, show there exists a diagram

Y
β

↙
γ

↘
Fd Fd+1

where β (resp. γ) is the blow-up of Fd (resp. Fd+1) at a suitable point.

2. Effective cones and classification

From the modern point of view, the presence of (−1)-curves is controlled by
how the effective cone and the canonical class interact. In this section, we de-
velop technical tools for analyzing this interaction. We continue to work over an
algebraically closed field k.

2.1. Cones of curves and divisors. Let X be a smooth projective complex
variety, N1(X,Z) ⊂ H2(X,Z) the sublattice generated by homology classes of alge-
braic curves in X, and N1(X,Z) ⊂ H2(X,Z) the Néron-Severi group parametrizing
homology classes of divisors in X.

We can extend these definitions to fields of positive characteristic: Consider
the Chow group of dimension (resp. codimension) one cycles in X; two cycles
are numerically equivalent if their intersections with any divisor (resp. curve) are
equal. We define N1(X,Z) (resp. N1(X,Z)) as the quotient of the corresponding
Chow group by the cycles numerically equivalent to zero. The rank of N1(X,Z)
is bounded by the second (étale) Betti number of X; see [Mil80, V.3.28] for the
surface case.

Definition 2.1. A Cartier divisor D on a variety X is nef (numerically even-
tually free or numerically effective) if D · C ≥ 0 for each curve C ⊂ X.

Here is the main example: A Cartier divisor D is semiample if ND is basepoint-
free for some N ∈ N. Since ND remains basepoint-free when restricted to curves
C ⊂ X, we have D · C = degD|C ≥ 0.

We have the monoid of effective curves

NE1(X,Z) = {[D] ∈ N1(X,Z) : D effective sum of curves }
and the associated closed cone

NE1(X) = smallest closed cone containing NE1(X,Z) ⊂ N1(X,R),

as well as the monoid of effective divisors

NE1(X,Z) = {[D] ∈ N1(X,Z) : D effective divisor }
and the associated cone of pseudo-effective divisors

NE
1
(X) = smallest closed cone containing NE1(X,Z) ⊂ N1(X,R).
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We also have the nef cone NM
1
(X) ⊂ N1(X,R) and NM1

◦(X) its interior. Note

that NM
1
(X) and NE1(X) are dual in the sense that

NM
1
(X) = {D ∈ N1(X,R) : D · C ≥ 0 for each C ∈ NE1(X)}.

These cones are governed by the following general results:

Theorem 2.2. Let X be a proper variety and D a Cartier divisor on X.

(1) (Nakai criterion) D is ample if and only if Ddim(Z) ·Z > 0 for each closed
subvariety Z ⊂ X.

(2) (Kleiman criterion) Assume X is projective. Then D is ample if and only
if D ∈ NM1

◦(X), i.e., D ·C > 0 for each nonzero class C in the closure of
the cone of curves on X.

It is not difficult to verify that an ample divisor necessarily satisfies these condi-
tions; we leave this as an exercise. We refer the reader to [KM98, §1.5] for proofs
that these conditions are sufficient in general and to [Har77, §V.1] for Nakai’s
criterion in the special case of smooth projective surfaces.

Theorem 2.3. Let X be a smooth projective variety. A divisor D ∈ N1(X,Z)

lies in the pseudoeffective cone NE
1
(X) if and only if, for each ample H and rational

ε > 0, some multiple of D + εH is effective. It lies in the interior

NE1
◦(X) ⊂ NE

1
(X)

if and only if there exists an N � 0 so that

ND = A+ E

where A is ample and E is effective. Such divisors are said to be big.

Proof. First, any divisor of the form H +E is in the interior of the pseudoef-
fective cone. If B is an arbitrary divisor then nH+B is very ample for some n > 0,
and n(H + E) +B is effective.

Conversely, let D lie in the interior of NE
1
(X). Consider

D −NM1
◦(X) ⊂ N1(X,R),

i.e., the cone of anti-ample divisor classes translated so that the vertex is at D.
Note that the ample cone of X is open, so we can pick a

B ∈ N1(X,Q) ∩ (D −NM1
◦(X))

and m > 0 so that E := mB is an effective divisor. Express

B = D − tA

for A ample and t ∈ Q>0. Thus

D =
1

m
E + tA

and clearing denominators gives the desired result.

If D is not in NE
1
(X) then, for each H ample, there exists an ε > 0 so that

D + εH is not effective. Conversely, if D ∈ NE
1
(X) then D + εH ∈ NE1

◦(X) and
we can write

N(D + εH) = A+ E

where N � 0, A is ample, and E is effective. �
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Corollary 2.4. Let X be a smooth projective surface. A nef divisor D is big
if and only if D2 > 0. Indeed, any divisor D (not necessarily nef) such that D2 > 0
and D ·H > 0 for some ample divisor H is big.

In fact, the analogous statement is true in all dimensions [KM98, 2.61].

Proof. If D is big then we can express D = A + E, where A is an ample
Q-divisor and E is an effective Q-divisor. We expand

D2 = D · (A+ E) ≥ D ·A = A ·A+A · E > 0.

Conversely, if D2 > 0 then the Riemann-Roch formula implies either

h0(OX(mD)) ≥ D2

2
m2, m � 0,

or

h2(OX(mD)) ≥ D2

2
m2, m � 0.

The latter possibility would imply KX − mD is effective for m � 0, which is
incompatible with D being nef. (Actually, we only need that D ·H > 0 for some
ample divisor H.) Given A very ample, a straightforward dimension count shows
that h0(OX(mD − A)) remains positive for m � 0, i.e., that D can be expressed
as a sum of an ample and an effective divisor. �

Exercises.

Exercise 2.1.1. Let X denote the blow-up of P2 at a point. Give examples of
big divisors D on X with D2 < 0.

Exercise 2.1.2. Let X be a smooth projective variety. Verify that the con-
ditions of the Nakai and Kleiman criteria are necessary for a divisor to be ample.
When X is a surface, deduce the sufficiency of the Kleiman criterion from the Nakai
criterion.

Exercise 2.1.3. The volume of a Cartier divisor D on an n-dimensional pro-
jective variety X is defined [Laz04, 2.2.31] as

vol(D) = lim sup
m→∞

h0(X,OX(mD))/(mn/n!).

When X is a smooth surface, show that D is big if and only if vol(D) > 0.

2.2. Examples of effective cones of surfaces. For surfaces that are ob-
tained by blowing up the plane β : X → P2, we write L for the pullback of the line
class on P2 and E1, E2, . . . for the exceptional curves.

(1) Let f1 and f2 denote the rulings of X = P1 × P1, so that Pic(X) =
Zf1 + Zf2. Then we have

NE1(X) = {a1f1 + a2f2 : a1, a2 ≥ 0}
and

NE◦
1(X) = {a1f1 + a2f2 : a1, a2 > 0}.

(2) If X is P2 blown up at one point then

NE1(X) = {aE + b(L− E) : a, b ≥ 0}.
(3) If X is P2 blown up at two points then

NE1(X) = {a1E1 + a2E2 + b(L− E1 − E2) : a1, a2, b ≥ 0}.
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(4) If X is P2 blown up at three non-collinear points then

NE1(X) = 〈L− E1 − E2, L− E1 − E3, L− E2 − E3, E1, E2, E3〉 ,

i.e., the cone generated by the designated divisors.
(5) If X is a cubic surface with lines �1, . . . , �27 then

NE1(X) = 〈�1, . . . , �27〉 .

We describe a technique for verifying these claims, using the crucial fact that

curves and divisors coincide on surfaces, i.e., NE1(X) = NE
1
(X). To decide

whether a collection of irreducible curves Γ = {C1, . . . , CN} generates NE1(X),
it suffices to

• Compute a set of generators Ξ for the dual cone 〈Γ〉∗; there are computer
programs like PORTA [CL97] and Polymake [GJ00] which can extract
Ξ from Γ.

• Check that each Ai ∈ Ξ can be written Ai =
∑

mijCj ,mij ≥ 0.

Here is why this works: If D is effective then we can write

D = M + F, F =
∑
j

njCj , nj ≥ 0,

where M is effective with no support at C1, . . . , CN . (Here F is the portion of the
fixed part of D supported in Γ.) In particular, M ·Cj ≥ 0 for each j, i.e., M ∈ 〈Γ〉∗.
But then M =

∑
i aiAi with ai ≥ 0. Thus we have

M =
∑
ij

aimijCj

and D is an effective sum of the Cj .

Example 2.5. For X = Blp1,p2
P2 take Γ = {E1, E2, L − E1 − E2}, which

generates a simplicial cone. The dual generators are

Ξ = {L− E1, L− E2, L}

and we can write

L− E1 = (L− E1 − E2) + E2, L− E2 = (L− E1 − E2) + E1,
L = (L− E1 − E2) + E1 + E2.

It follows that Γ generates NE1(X).

Exercises.

Exercise 2.2.1. Verify each of our claims about the generators of the effective
cone.

2.3. Extremal rays. We’ll need the following general notion from convex
geometry:

Definition 2.6. Given a closed cone C ⊂ Rn, an element R ∈ C generates an
extremal ray if for each representation

R = D1 +D2, D1, D2 ∈ C

we have D1, D2 ∈ R≥0R.
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We will conflate the element R and the ray R≥0R. For a polyhedral cone, i.e.,
one generated by a finite number of elements

C = 〈C1, . . . , CN 〉 = R≥0C1 + · · ·+ R≥0CN ,

the extremal rays correspond to the irredundant generators. On the other hand,
for the cone over the unit circle

{(x, y, z) : x2 + y2 − z2 ≤ 0} ⊂ R3

each point of the circle yields an extremal ray.
Our main examples of extremal rays are (−1)-curves:

Proposition 2.7. Let X be a smooth projective surface and E a (−1)-curve.
Then E is extremal in NE1(X).

If β : X → Y is the blow-down of E then

β∗NE1(X) = NE1(Y ),

hence faces of NE1(Y ) correspond to faces of NE1(X) containing E.

Proof. If we could express E = D1+D2 with D1, D2 ∈ NE1(X) not in R≥0E,
then

0 = β∗D1 + β∗D2

for nonzero β∗Di ∈ NE1(Y ). This contradicts the fact that NE1(Y ) is strongly
convex, i.e., that the origin is extremal.

The inclusion

β∗NE1(X) ⊂ NE1(Y )

is clear because the image of an effective divisor is effective. On the other hand,
suppose that D is effective on Y . Since Y is nonsingular, D is a Cartier divisor and
β∗D is a well-defined effective Cartier divisor. The projection formula β∗β

∗D = D
shows that D ∈ β∗NE1(X). �

Corollary 2.8. Let X be Del Pezzo and β : X → Y a blow-down morphism.
Then Y is Del Pezzo.

Proof. Indeed, we have the discrepancy formula

β∗KY = KX − E,

where E is the exceptional curve. Since −KX is positive on NE1(X) \ {0}, −KY is
positive on NE1(Y ) \ {0}. A direct argument that −KY is ample can be extracted
from the proof of the Castelnuovo Contraction Criterion (Theorem 1.12). �

Definition 2.9. Let X be a smooth projective surface. The positive cone C
denotes the component of

{D : D2 > 0} ⊂ N1(X,R)

containing the hyperplane class. (The Hodge index theorem implies this has two
connected components.) Let C denote its closure.

We can formulate a more general version of Proposition 2.7, which complements
Theorem 2.3 and Corollary 2.4:
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Proposition 2.10. [Kol96, II.4] Let X be a smooth projective surface. Then
each irreducible curve D with D2 ≤ 0 lies in the boundary ∂NE1(X). Furthermore,

(2.1) NE1(X) = C +
∑
D

R≥0D

where the sum is taken over irreducible curves D with D2 < 0.

Proof. Corollary 2.4 implies NE1(X) ⊃ C, and NE1(X) ⊃ C +
∑

D R≥0D
follows immediately. It remains to establish the reverse inclusion.

First, suppose that D is irreducible with D2 ≤ 0. Let H be a very ample divisor
of X. Then for each rational ε > 0 we claim that D− εH fails to be in the effective
cone. Indeed, if D − εH were effective then it could be expressed as a nonnegative
linear combination of irreducible curves, some different from D,

D − εH ≡ c0D +
∑
j

cjDj , c0 ∈ [0, 1), cj > 0.

Regrouping terms, for some ε′ > 0 we obtain

D − ε′H ≡
∑
j

c′jDj , c′j > 0.

However, this contradicts the fact that

D · (D − ε′H) < 0.

For D irreducible with D2 < 0 consider the closed cone

V =
〈
z ∈ NE1(X) : z ·D ≥ 0

〉
⊂ NE1(X),

which contains all effective divisors without support along D. Thus NE1(X) is
the smallest convex cone containing V and D. Since D 	∈ V , it follows that D is
extremal in NE1(X).

Conversely, suppose that Z is extremal with Z2 < 0. There is necessarily some
irreducible curve C such that C · Z < 0. Let Zi denote a sequence of effective
Q-divisors approaching Z. Since Zi · C < 0 for i � 0, we must have that C2 < 0.
Moreover C appears in Zi with coefficient ci and c = lim ci > 0. Thus Z − cC is
pseudoeffective and C ∈ R≥0Z by extremality. �

For special classes of surfaces, the negative extremal rays are necessarily (−1)-
curves or (−2)-curves, i.e., smooth rational curves with self-intersection −2:

Corollary 2.11. [Kol96, II.4.14] Suppose X is a smooth projective surface
with −KX nef. Then the sum in expression (2.1) can be taken over D with D2 = −1
or −2 and D � P1.

Proof. Since KX ·D ≤ 0 and D2 < 0 then the adjunction formula

2g(D)− 2 = D2 +KX ·D
allows only the possibilities listed. �

Exercises.

Exercise 2.3.1. Classify extremal rays and describe decomposition (2.1) for:

• P2 blown up at two points or three non-collinear points;
• the Hirzebruch surfaces Fd.
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2.4. Structural results on the cone of curves I. The closed cone of ef-
fective curves has a very nice structure in the region where the canonical class fails
to be nef. There are two different approaches to these structural results. The first
emphasizes vanishing theorems (for higher cohomology) on line bundles and the
resulting implications for linear series, e.g., basepoint-freeness. You can find details
of this approach in references such as [Rei97, D] and [CKM88]. One significant
disadvantage is that the reliance on Kodaira-type vanishing makes generalization
to positive characteristic problematic. The second approach emphasizes the geo-
metric properties of the curves themselves, especially the bend-and-break technique
of Mori. This approach is taken in Mori’s original papers, as well as in [Kol96,
II.4,III.1].

Since both approaches are important for applications, we will sketch the key
elements of each, referring to the literature for complete arguments.

Theorem 2.12 (Cone Theorem). [Rei97, D.3.2] [KM98, Thm. 3.7] [CKM88,
4.7] Let X be a smooth projective surface with canonical class KX . There exists a
countable collection of Ri ∈ NE1(X) ∩N1(X,Z) with KX ·Ri < 0 such that

NE1(X) = NE1(X)KX≥0 +
∑
i

R≥0Ri,

where the first term is the intersection of NE1(X) with the halfplane {v ∈ N1(X,R) :
v ·KX ≥ 0}. Given any ample divisor H and ε > 0, there exists a finite number of
Ri satisfying (KX + εH) ·Ri ≤ 0.

Corollary 2.13. Let X be a Del Pezzo surface. Then NE1(X) is a finite
rational polyhedral cone.

What’s even more remarkable is that the extremal rays can be interpreted geomet-
rically. The following theorem should be understood as a far-reaching extension of
the Castelnuovo contraction criterion (Theorem 1.12):

Theorem 2.14 (Contraction Theorem). [Rei97, D.4] [KM98, Theorem 3.7]
Let X be a smooth projective surface and R a generator of an extremal ray with
KX · R < 0. There exists a morphism φ : X → Y to a smooth projective variety,
with the following properties:

(1) φ∗R = 0 and φ contracts those curves with classes in the ray R≥0R;
(2) φ has relative Picard rank one and Pic(Y ) can be identified with R⊥ ⊂

Pic(X).

Proof. The proofs of Theorems 2.12 and 2.14 are intertwined. We can only
offer a sketch of the arguments required. Some of these work only in characteristic
zero, but we will make clear which ones.

Suppose we want to analyze the part of the effective cone along which KX

is negative. Fix an ample divisor H, which is necessarily positive along NE1(X).
Which divisors τKX +H, τ ∈ [0, 1], are nef? Consider the nef threshold

t = sup{τ ∈ R : τKX +H nef },
i.e., (tKX+H)⊥ is a supporting hyperplane of NE1(X) provided tKX+H is nonzero.
If we choose H suitably general, we can assume this hyperplane meets NE1(X) in
an extremal ray. (Of course, for special H it might cut out a higher-dimensional
face.)
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effective curves
closed cone of

orthogonal complement to H

orthogonal complement to KX

Xorthogonal complement to tK  +H

Figure 1. Finding a supporting hyperplane of the cone of curves
(drawn in the projectivization of N1(X,R))

The first step is the rationality of the nef threshold. The most straightforward
proof [Rei97, D.3.1] uses the Riemann-Roch formula and Kodaira vanishing, and
thus is valid only in characteristic zero:

Lemma 2.15 (Rationality). The nef threshold is rational.

Thus the KX -negative extremal rays of the cone of effective curves are de-
termined by linear inequalities with rational coefficients. These rays here can be
chosen to be integral.

The second step is to show that the (Q-)divisor D := tKX +H is semiample.
Then the resulting morphism φ : X → Y will contract precisely the extremal rays
in the face supported by the hyperplane (tKX +H)⊥, which gives the contraction
theorem.

Lemma 2.16 (Basepoint-freeness). Let D be a nef Q-divisor such that D =
tKX +H for H ample and t > 0. Then D is semiample.

Proof. Since D is nef we have D2 ≥ 0. If D2 > 0 then the Nakai criterion
(Theorem 2.2) implies D is ample unless there exists an irreducible curve E with
D · E = 0. The Hodge index theorem implies E2 < 0. Since KX · E < 0, Propo-
sition 1.6 implies that E is a (−1)-curve. The desired contraction exists by the
Castelnuovo Criterion (Theorem 1.12).

Now suppose D2 = 0. If D is numerically equivalent to zero then −KX is
ample. In this situation, D is semiample if and only if it is torsion, which is a
consequence of the following lemma.

Lemma 2.17. Suppose that X is a smooth projective surface and −KX is nef
and big, e.g., X is a Del Pezzo surface. Then

• H2(X,OX) = 0 and Pic(X) is smooth;
• H1(X,OX) = 0 and the identity component of Pic(X) is trivial.

Proof. Since some positive multiple of −KX is effective, no positive multiple
of KX is effective. Thus

h2(X,OX) = h0(X,OX(KX)) = 0

and Pic(X) is smooth. The identity component has dimension q = h1(X,OX).
Let bi(X) denote the ith Betti number ofX; in positive characteristic, we define

these using étale cohomology [Mil80]. Recall the formulas [Mil80, III.4.18,V.3.12]



RATIONAL SURFACES OVER NONCLOSED FIELDS 173

b1(X) = 2q and

c2(X) = χ(X) = b0(X)− b1(X) + b2(X)− b3(X) + b4(X) = 2− 4q + b2(X).

Noether’s formula
12χ(OX) = c1(X)2 + c2(X)

and the fact that c1(X)2 = K2
X > 0 imply

12(1− q) > 2− 4q + b2(X).

Consequently
10 > 8q + b2(X)

and thus q = 0 or q = b2(X) = 1. To exclude the last case, observe that if the iden-
tity component of the Picard group is positive dimensional then so is the Albanese
variety. (Indeed, these abelian varieties are dual to each other.) Furthermore, the
Albanese map X → Alb(X) [Lan59, II.3] is a dominating morphism to an elliptic
curve. The classes of a fiber and the pullback of an ample divisor from the Albanese
are necessarily independent; thus b2(X) ≥ 2. �

We return to the proof of Lemma 2.16. If D is not numerically trivial then
KX ·D < 0 and Riemann-Roch imply that h0(X,OX(mD)) grows at least linearly
in m. And since Corollary 2.4 ensures that D is not big, h0(OX(mD)) cannot be
a quadratic function of m. Decompose D into a moving and a fixed part

D = M + F, M2 ≥ 0, M · F ≥ 0.

Note that D · F = M · F + F 2 ≥ 0 (since D is nef), M2 = 0 (as M is not big), and
F 2 ≤ 0 (since F is not big). On the other hand,

0 = D2 = 2M · F + F 2 ≥ M · F
so M · F = 0 and F 2 = 0 as well. The Hodge index theorem implies that M
and F are proportional in the Néron-Severi group, provided they are numerically
nontrivial. In particular, if F 	= 0 then KX · F < 0 and h0(F,OX(mF )) grows
linearly in m, contradicting the fact that F is fixed. Thus D = M is moving with
perhaps isolated basepoints, the number of which is bounded by M2 = 0. We
conclude that D is basepoint-free. �

This completes the proof of Theorem 2.14.

Remark 2.18. This argument yields another result we shall use later: Let X
be a smooth projective surface with −KX nef and big. Assume that D is a nef line
bundle on X with D2 = 0. Then D is semiample.

The third step is to bound the denominator of the nef threshold (cf. [Rei97,
D.3.1] and [CKM88, 12.12]):

Lemma 2.19 (Bounding denominators). Assume the nef threshold is rational.
Then its denominator is ≤ 3.

Proof. Again, the argument is a case-by-case analysis of D = tKX + H. If
D2 > 0 then D is orthogonal to a (−1)-curve and t ∈ Z. If D is numerically trivial
then −KX is ample and Lemma 2.17 implies χ(OX) = 1. Express −KX = rL,
where L is a primitive ample divisor and r ∈ N. It suffices to show that r ≤ 3.
Noether’s formula and the argument for Lemma 2.17 give

12 = r2L2 + c2(X) = r2L2 + 2 + b2(X)
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so the only possibilities are r = 1, 2, 3.
It remains to consider the situation where D2 = 0 but D 	≡ 0. As we’ve seen,

D ·KX < 0 in this case. Furthermore, t′KX +H is never effective for t′ > t. Here
we claim 2t ∈ N. Otherwise, there exist m,n ∈ N with m � 0 such that

mt = n+ α, 1/2 < α < 1.

Thus nKX +mH is ample, Γ(OX(−nKX −mH)) = 0, and

H2(OX((n+ 1)KX +mH)) = 0

by Serre duality. We deduce

h0(OX((n+ 1)KX +mH)) = χ(OX) + 1
2 ((n+ 1)KX +mH) · (nKX +mH)

= χ(OX) + 1
2 (−α(1− α)K2

X +m(1− 2α)D ·KX +m2D2)
= constant +m · positive number

which is positive for m sufficiently large. Thus mH + (n + 1)KX is effective, a
contradiction. �

To complete the proof of Theorem 2.12, we show that theKX -negative extremal
rays have no accumulation points and for any ample H there are finitely many such
rays in the region (KX + εH) ≤ 0. Let H1, . . . , Hd denote ample divisors forming
a basis for the Néron-Severi group such that

H = a1H1 + · · ·+ adHd, a1, . . . , ad ∈ Q>0.

Let tj denote the nef threshold of Hj . Consider the local coordinate functions

bj(γ) =
Hj · γ

−KX · γ
on the open subset of P(N1(X,R)) where KX 	= 0. For KX -negative extremal rays,
bj ≥ tj ; Lemmas 2.15 and 2.19 imply these are rational numbers with denominators
dividing six. It follows that these rays have no accumulation points. The extremal
rays with (NKX +H) ·Ri ≤ 0 for some N ∈ N have coordinates satisfying

a1b1 + · · ·+ adbd ≤ N.

Since the aj and bj are positive rational numbers with bounded denominators, there
are at most finitely many possibilities. �

The structure of the contraction morphism φ : X → Y depends on the inter-
section properties of irreducible curves E generating our extremal ray:
Case E2 < 0: Proposition 1.6 ensures E is a (−1)-curve and φ is the blow-down
of E.
Case E2 = 0: By adjunction, E � P1 and φ : X → Y fibers X over a curve with
generic fiber P1. The extremality implies all fibers are irreducible and reduced, thus
every fiber of φ is a projective line and we have a minimal ruled surface.
Case E2 > 0: Corollary 2.4 implies E is big. Since f contracts E and all its
deformations, φ is constant. Thus Pic(X) = Z and X is Del Pezzo.

Since the first case cannot occur when X is minimal, we obtain:

Corollary 2.20. Let X be a minimal smooth projective surface. Then one of
the following conditions holds:

• KX is nef;
• X is a P1-bundle over a curve B;
• X is Del Pezzo with Pic(X) = Z.
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In the first instance, X is the unique minimal smooth projective surface in its
birational equivalence class.

Proof. We only have to establish uniqueness: Let X ′ be another minimal
smooth projective surface birational to X. Choose a factorization

Y
φ′

↙
φ

↘
X ′ X

where Y is smooth projective and the morphisms are birational. Indeed, φ and φ′

are sequences of contractions of (−1)-curves (see Theorem 1.13). Express KY =
φ∗KX + F where F is an effective divisor with support equal to the exceptional
locus of φ. If E ⊂ Y is a (−1)-curve contracted by φ′ then

−1 = KY · E ≥ F · E
as KX is nef. Thus E is contained in the support of F and is contracted by φ′.
Since each φ′-exceptional divisor is φ-exceptional, we have a factorization

φ : Y → X ′ → X.

Since X ′ is minimal, it must equal X. �
Remark 2.21 (Relative version). Given a morphism f : X → B to a variety,

we can also consider the relative cone of effective curves

NE1(f : X → B) = {D ∈ NE1(X) : f∗D = 0}.
When B is smooth, this is the intersection of NE1(X) with the orthogonal com-
plement to f∗Pic(B). The Cone Theorem 2.12 describes its structure in the region
where the canonical divisor KX is negative. There is a relative version of the
Contraction Theorem giving contractions over B

X
φ−→ Y

↘ ↙
B

.

The classification of ruled surfaces (Theorem 1.16) is a prime example.

Exercises.

Exercise 2.4.1. Let X be a smooth projective surface with KX nef. Show
that X is not rational.

Exercise 2.4.2. Let p1, . . . , p8 ∈ P2 be general points. Let p0 be the last
basepoint of the pencil of cubic curves containing these points. Show that X =
Blp0,p1,...,p8

P2 has an infinite number of (−1)-curves.
Hints: Let E0, . . . , E8 denote the exceptional divisors. Consider the elliptic

fibration
η : X → P1

induced by the linear series |f | with f = −KX = 3L − E0 − · · · − E8. Verify that
sections of η are all (−1)-curves. Designate E0 as the zero section of η and let
σi : P1 → X, i = 1, . . . , 8 denote the sections associated with E1, . . . , E8. Given
sections σ, σ′ : P1 → X we have

[(σ + σ′)(P1)] = [σ(P1)] + [σ′(P1)]− [E0] + w(σ, σ′)[f ]
w(σ, σ′) = −[σ(P1)− E0] · [σ′(P1)− E0].
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Use this to analyze m1σ1 + · · ·+m8σ8.

2.5. Structural results on the cone of curves II. Our discussion of the
Cone and Contraction Theorems is missing one crucial element: We have not shown
that the extremal rays are generated by classes of rational curves on X. Another
issue is that we cited arguments for the rationality of extremal rays relying on
vanishing theorems; these do not readily extend to positive characteristic. These
gaps can be filled using Mori’s ‘bend-and-break’ technique:

Theorem 2.22 (Bend-and-break). [Kol96, II.5.14] Let X be a smooth projec-
tive variety, C a smooth projective curve, and f : C → X a morphism. Let M be
a nef R-divisor. Assume that −KX · C > 0. Then for each x ∈ f(C) there is a
rational curve x ∈ Dx ⊂ X such that

M ·Dx ≤ 2 dim(X)
M · C

−KX · C , −KX ·Dx ≤ dim(X) + 1.

This is a deep result that we will not prove here. The main idea is to use the
fact that the anticanonical class is negative to show that f admits deformations
ft : C → X whose images still contain x. This strategy works beautifully provided
C has genus zero, but in higher genus it is necessary to reduce modulo p and
precompose f with the Frobenius map. Then we consider limits of ft(C) ⊂ X as
t → 0; these necessarily contain rational curves x ∈ D′ ⊂ X. We can iterate this
strategy until we obtain a rational curve Dx � x with fairly small anticanonical
degree, i.e., −KX ·Dx ≤ dim(X) + 1.

We still have not mentioned the rôle of the divisor M . This is crucial in
applications to the cone of curves:

Theorem 2.23 (Cone Theorem bis). [Kol96, III.1.2] Let X be a smooth projec-
tive surface with canonical class KX . There exists a countable collection of rational
curves Li ⊂ X with 0 < −KX · Li ≤ 3 such that

(2.2) NE1(X) = NE1(X)KX≥0 +
∑
i

R≥0[Li].

Given any ample divisor H and ε > 0, there exists a finite number of Li satisfying
(KX + εH) · Li ≤ 0.

Proof. We offer a sketch proof following [Kol96]: Let M be an R-divisor
corresponding to a supporting hyperplane of a KX -negative extremal ray R ∈
NE1(X). Thus M · R = 0 and M · γ > 0 for γ ∈ NE1(X) with γ 	∈ R≥0R; in
particular, M is a nef R-divisor. We show that M is a supporting hyperplane of
the closure W of the cone associated to the right-hand side of (2.2). (We refer the
reader to [Kol96, III.1] for the argument that the right-hand side of (2.2) defines
a closed cone.)

Assume this is not the case. Rescaling M if necessary, we may assume that
M ·D ≥ 1. for each irreducible curve D ⊂ X with [D] ∈ W . Consider the functional

φ : N1(X,R)KX<0 → R
γ �→ −M · γ/KX · γ

which is nonnegative on NE1(X)KX<0 and positive away from R≥0R. Choose a
sequence of effective curves with real coefficients approaching R

Ci =
∑
j

aijCij , aij > 0, lim
i→∞

Ci = R.
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For each i, there exists an index j such that KX ·Cij < 0 and φ(Cij) ≤ φ(Ci). And
we have limi→∞ φ(Ci) = φ(R) = 0.

On the other hand, bend-and-break yields rational curves Li such that
−KX · Li ≤ 3 and

M · Li ≤ 4φ(Cij) < 4φ(Ci).

The left-hand side is bounded from below by 1 while the right-hand side approaches
zero, so we obtain a contradiction. �

2.6. Classification of surfaces.

Theorem 2.24. If X is a Del Pezzo surface with Pic(X) = Z then X � P2.

Proof. Our argument follows [Kol96, III.3.7]. We first offer a short proof in
characteristic zero: Let L be a line bundle generating Pic(X) with L · KX < 0.
Lemma 2.17 ensures that H1(OX) = H2(OX) = 0, so by Hodge theory we have
b1(X) = 0 and b2(X) = 1. Poincaré duality then implies L · L = 1. Noether’s
formula

12χ(OX) = c21(X) + c2(X)

implies c21(X) = K2
X = 9. We conclude that KX = −3L and χ(L) = 3. Since

h2(X,L) = h0(X,KX − L) = 0, we have h0(X,L) ≥ 3. Moreover, the members
of the corresponding linear series are integral curves of genus zero, i.e., P1’s. A
straightforward inductive argument shows that L is basepoint-free and thus induces
a degree-one morphism X → P2, i.e., X � P2.

We only used characteristic zero to show that KX = −3L. Suppose then that
KX = −rL for some r ∈ N, where L is a generator of Pic(X). We have already
seen in the proof of Lemma 2.19 that r = 1, 2, 3. If r = 2 then

2g(L)− 2 = L2 +KXL = −L2

so L2 = 2 and g(L) = 0; Riemann-Roch then gives χ(X,L) = 4. Arguing as
above, L is basepoint-free and defines a morphism φ : X → Pn for n ≥ 3. The
image is a quadric surface or a plane, and the latter possibility would contradict
nondegeneracy. However, a quadric surface cannot be a rank-one Del Pezzo surface.

Finally, suppose that r = 1. The Cone Theorem (Theorem 2.23) implies the
existence of a rational curve f : P1 → X with deg f∗(−KX) = deg f∗L ≤ 3. We
have f∗[P

1] = mL for some m ∈ N with mL2 ≤ 3, and consequently K2
X ≤ 3. Since

every curve in X has positive self-intersection, we can deduce a contradiction from
the following fact:

Lemma 2.25. Let Y be a Del Pezzo surface with K2
Y ≤ 4. Then Y contains a

(−1)-curve.

Such curves C are called lines because −KY · C = 1.
There are two general approaches to this. The most direct (see [Kol96, III.3.6]

or Exercise 2.6.2) is to express Y as a hypersurface in a suitable weighted projective
space, i.e., as a cubic surface in P3 (when K2

Y = 3), a quartic surface in P(1, 1, 1, 2)
(when K2

Y = 2), or as a sextic surface in P(1, 1, 2, 3) (when K2
Y = 1). Proving

this entails a fair amount of ad hoc analysis of linear series. Another approach
(cf. [Isk79]) involves showing that Y lifts to characteristic zero and using the
classification tools available there. �
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Theorem 2.26 (Castelnuovo’s Criterion). [Bea96, V.6] [Kol96, III.2.4] Let
X be a smooth projective minimal surface. Then X is rational if and only if

q(X) = h1(OX) = 0, P2(X) := h0(X,OX(2KX)) = 0.

Proof. The necessity of the numerical conditions is clear, as P2(X) and q(X)
are birational invariants of smooth projective varieties. For sufficiency, we may
assume that X is minimal and falls into one of the three categories of Proposi-
tion 2.20. The third case (where X is Del Pezzo with Pic(X) = Z) is rational by
Theorem 2.24. In the second case (whereX is ruled over a curve B), the assumption
q(X) = 0 implies that B has genus zero. Corollary 1.22 yields that X is rational.
Finally, suppose that KX is nef, so in particular K2

X ≥ 0. We know that KX is not
effective; if Γ(X,OX(KX)) 	= 0 then Γ(X,OX(2KX)) 	= 0. Thus

χ(OX) = h0(OX)− h1(OX) + h2(OX) = 1

and

χ(OX(−KX)) = K2
X + 1 ≥ 1.

Since h2(OX(−KX)) = h0(OX(2KX)) = 0 we conclude h0(OX(−KX)) > 0, i.e.,
−KX is effective. As KX is nef, the only possibility is KX trivial, a contradiction.

�

Corollary 2.27. Del Pezzo surfaces are rational.

Proof. Let X be a Del Pezzo surface. Since −KX is ample we have that
P2(X) = 0. Lemma 2.17 gives h1(OX) = 0. �

Corollary 2.28. Each Del Pezzo surface X is isomorphic to one of the fol-
lowing:

• P1 × P1;
• a blow-up of P2 at eight or fewer points.

Proof. By Corollary 2.8, we just need to show that minimal Del Pezzo surfaces
X are either P2 or P1 × P1. Our previous analysis implies X is P2 or a Hirzebruch
surface Fd. But then X contains a rational curve of self-intersection −d, so d = 0, 1
by Proposition 1.6. �

Remark 2.29. The classification of complex surfaces goes back to the work of
Castelnuovo and Enriques in the late 19th and early 20th centuries. The extension
to positive characteristic is largely due to Zariski, who first proved the Castelnuovo
rationality criterion in this context [Zar58a, Zar58b].

Exercises.

Exercise 2.6.1. Suppose that X is a surface such that KX is not nef and
Pic(X) has rank at least three. Then X contains a (−1)-curve.

Exercise 2.6.2. Let Y be a Del Pezzo surface with K2
Y = 3 (resp. K2

Y = 4).
Show that −KY is very ample and the image under |−KY | is a cubic surface (resp.
complete intersection of two quadric hypersurfaces.) Conclude that Y contains a
line (cf. Corollary 1.9).
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3. Classifying surfaces over non-closed fields

Let k be a perfect field with algebraic closure k̄ and Galois group G = Gal(k̄/k).
Let X be a smooth projective surface over k so that

X̄ = Xk̄ = X ×Spec(k) Spec(k̄)

is connected. We use Pic(X) to denote line bundles on X defined over k.

3.1. Minimal surfaces.

Definition 3.1. A smooth projective surface X over k is minimal if any bira-
tional morphism over k to a smooth surface

φ : X → Y

is an isomorphism.

Theorem 3.2. X is minimal if and only if X̄ admits no Galois-invariant col-
lection of pairwise disjoint (−1)-curves.

Proof. Suppose X is not minimal and admits a birational morphism φ : X →
Y . By Theorem 1.13, X̄ admits a (−1)-curve E contracted by φ. Since φ is
birational there are only a finite number of such curves, so let E1, . . . , Er denote
the curves in the Galois orbit of E. As we saw in the proof of Theorem 1.13, the
intersection form on ZE1 + · · ·+ ZEr is negative definite, thus the matrix(

E2
i EiEj

EiEj E2
j

)
, i 	= j,

has positive determinant. It follows that Ei · Ej < 1, which gives the disjointness.
Conversely, let E1, . . . , Er denote a Galois-invariant collection of pairwise dis-

joint (−1)-curves. Let H be an ample divisor on X. Since H ·Ei = H ·Ej for each
i, j, the divisor

H ′ = H +

r∑
j=1

(H · Ei)Ei

is also Galois-invariant. We just take Y = Proj(
⊕

n≥0 Γ(X,nH ′)), as in the proof
of Theorem 1.12. �

Remark 3.3 (Galois-invariant classes versus divisors defined over k). Not every
element L ∈ Pic(X̄)G comes from a line bundle defined over k. Applying the
Hochschild-Serre spectral sequence [Mil80, III.2.20], we find

H1(X,O∗
X) = ker

(
H0

GH
1(X̄,O∗

X̄)
d01
2−→ H2

GH
0(X̄,O∗

X̄)

)
which yields

Pic(X) = ker

(
Pic(X̄)G

d01
2−→ Br(k)

)
.

Since Br(k) is torsion, some power NL with N > 0 is defined.
On the other hand, when X(k) 	= ∅ the homomorphism d012 is trivial. In-

deed, the spectral sequence shows that the image of d012 lies in the kernel of the
homomorphism

s∗ : Br(k) → Br(X) = H2(X,O∗
X)
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induced by the structure map s : X → Spec(k). Each rational point x : Spec(k) →
X induces x∗ : Br(X) → Br(k), a left-inverse of s∗. Thus s∗ is injective and d012 is
trivial. (See [CTS87] for a comprehensive discussion.)

Example 3.4. Suppose we have a cubic surface X with six conjugate disjoint
lines E1, . . . , E6. Does it follow that X is the blow-up of P2 at six conjugate points?

The divisor class −KX + E1 + · · ·+ E6 = 3L is definitely defined over k. The
corresponding linear series gives a morphism

X → Y ⊂ P9

blowing down E1, . . . , E6; here Ȳ � P2
k̄
is embedded via the cubic Veronese em-

bedding. This is an example of a Brauer-Severi variety, i.e., a variety Y such that

Ȳ � P
dim(Y )

k̄
. Moreover, the invariant class

L ∈ Pic(X̄)G

comes from Pic(X) if and only if Y � P2
k. A diagram-chase shows that d012 (L) ∈

Br(k) vanishes if and only if [Y ] ∈ Br(k) is trivial.

Exercises.

Exercise 3.1.1. Let Y be a Brauer-Severi surface. Show there exists a smooth
cubic surface X admitting a birational morphism φ : X → Y . Hint: A generic
vector field on Y vanishes at three Galois-conjugate points. Blow up along two
such collections of points.

Exercise 3.1.2 (Degree seven Del Pezzo surfaces). Let X be a surface such
that X̄ � Blp1,p2

(P2). Show there exists a birational morphism X → P2, obtained
by blowing up a pair of Galois-conjugate points.

Exercise 3.1.3 (Some degree eight Del Pezzo surfaces). Let X be a surface
such that X̄ � Blp(P

2). Show that X is isomorphic to Blp(P
2) over k.

Exercise 3.1.4 (Degree five Del Pezzo surfaces). [Sko93] [SD72] Let X be a
surface such that X̄ � Blp1,p2,p3,p4

(P2), where the points are distinct and no three
are collinear.

(1) Show that the four points are projectively equivalent to

[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1]

over k̄.
(2) Show that sections of −KX embed X as a quintic surface in P5.
(3) Show that this surface is cut out by five quadrics. Hint: It suffices to

verify this on passage to k̄.
(4) Choose generic Q0, Q1, Q2 ∈ IX(2). Verify that

Q0 ∩Q1 ∩Q2 = X ∪W,

where W̄ is isomorphic to BlpP
2.

(5) Using Exercise 3.1.3, show that the exceptional divisor E ⊂ W is defined
over k and intersects X in one point.

Conclude that X(k) 	= ∅.
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Figure 2. Degenerate fibers of a conic bundle

3.2. Conic bundles. Our treatment owes a great deal to Iskovskikh [Isk79].

Definition 3.5. A conic bundle is a dominant morphism f : X → C from a
smooth projective minimal surface X to a smooth curve, so that the generic fiber
is a smooth curve of genus zero.

Of course, over an algebraically closed field this is the same as a minimal ruled
surface. However, without the Tsen-Lang Theorem we cannot construct a section
of f defined over k.

Proposition 1.19 does still apply: It guarantees that each smooth fiber of f is
a plane conic and splits over a quadratic extension. It follows that there exists a
bisection of f , i.e., an irreducible curve D ⊂ C so that f |D : D → C has degree
two. Indeed, intersect the generic fiber (realized as a plane conic) with a line and
take the closure in X.

Theorem 3.6. Let f : X → C be a conic bundle. Then any reducible fibers of
X̄ → C̄ consist of two (−1)-curves intersecting in one point, conjugate under the
Galois action.

Proof. Suppose F is a reducible fiber of X̄; designate the field of definition
of f(F ) ∈ C by k1 ⊃ k. The existence of a reducible fiber guarantees that X̄ is not
relatively minimal and F contains a (−1)-curve (Theorem 1.16). Let E1, . . . , Er be
the Galois-orbit under the action of Gal(k̄1/k1); the Ei are not pairwise disjoint by
minimality (Theorem 3.2).

We claim that the only combinatorial possibility is r = 2, E1 · E2 = 1, and
E2

1 = E2
2 = −1. Write T = E1 ∪ · · · ∪ Er and set n = Ei · (

∑
j �=iEj), i.e., the

number of points of intersection of each component with the other components.
We can compute the arithmetic genus using

2pa(T )− 2 = −2r + rn.

Since F has arithmetic genus zero pa(T ) ≤ 0 and n = 1, i.e., each connected
component of T consists of two (−1)-curves meeting at one point. Reordering
indices if needed, let E1 ∪ E2 denote one of these components.
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By Proposition 1.18, if E1, . . . , Er+s are the irreducible components of F then
the intersection form on

(
r+s⊕
j=1

ZEj)/ZF

is negative definite. However, we have (E1 + E2)
2 = −1 + 2− 1 = 0 so necessarily

F = E1 + E2. This proves the claim and the result. �

We have seen (Proposition 1.19) that the generic fiber of f : X → C admits
a natural realization as a smooth plane conic. This is obtained using sections of
the dual to the differential one-forms. We can extend this over all of C using the
relative dualizing sheaf

ωf = Ω2
X ⊗ (f∗Ω1

C)
−1.

We have natural homomorphisms

Ω1
f−1(p) → ωf−1(p) = ωf |f−1(p),

where the first arrow is an isomorphism wherever f is smooth.

Corollary 3.7 (Conic bundles really are conic bundles). Let f : X → C be a
conic bundle with relative dualizing sheaf ωf . Then we have an embedding over C

X
j
↪→ P(f∗ω

−1
f )

↘ ↙
C

realizing each fiber of X as a plane conic.

Proof. We use the classification of fibers in Theorem 3.6. For the smooth
fibers, the anticanonical embedding has already been discussed in Proposition 1.19.
For the reducible fibers, the anticanonical sheaf is very ample, realizing the fiber as
a union of two distinct lines in P2.

Thus for each p ∈ C, ω−1
f |f−1(p) is very ample and has no higher cohomology.

Cohomology and base change gives that f∗ω
−1
f is locally free of rank three and has

cohomology commuting with base extension. Thus we obtain a closed embedding
over C

j : X ↪→ P(f∗ω
−1
f )

in a P2-bundle over C. �

Definition 3.8. A rational conic bundle is a conic bundle f : X → C over a
curve of genus zero.

3.3. Analysis of Néron-Severi lattices. We analyze the Néron-Severi group
of rational conic bundles f : X → P1. Note that KX is defined over the base field.

Theorem 3.6 and Corollary 1.22 imply that X̄ is a blow-up of a Hirzebruch
surface at r points in distinct fibers:

X̄ −→ Fd

↘ ↙
P1

.

The corresponding reducible fibers of X̄ → P1 are denoted

E1 ∪ E′
1, E2 ∪ E′

2, . . . , Er ∪ E′
r,
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so that Ei + E′
i = F for each i.

There are a number of natural lattices to consider. We have the relative Néron-
Severi lattice

N1(X̄ → P1,Z) = {D ∈ N1(X̄,Z) : f∗D = 0} = ZF + ZE1 + · · ·+ ZEr,

the quotient lattice

N1(X̄ → P1,Z)/ZF = (ZE1 + ZE2 + · · ·+ ZEr + ZF )/ZF

with matrix
E1 E2 . . . Er

E1 −1 0 . . . 0
E2 0 −1 . . . 0
...

...
...

. . .
...

Er 0 0 . . . −1

,

and the image Λ of the orthogonal complement K⊥
X . This is generated by

ρ1 = E′
1 − E2, ρ2 = E1 − E2, ρ3 = E2 − E3, . . . , ρr = Er−1 − Er

with intersection matrix

ρ1 ρ2 ρ3 ρ4 . . . ρr−1 ρr
ρ1 −2 0 1 0 . . . 0 0

ρ2 0 −2 1 0
. . .

. . .
...

ρ3 1 1 −2 1
. . .

. . .
...

ρ4 0 0 1 −2
. . .

. . . 0
...

...
. . .

. . .
. . .

. . . 1 0

ρr−1 0
. . .

. . .
. . . 1 −2 1

ρr 0 . . . . . . 0 0 1 −2

Up to sign, this is the Cartan matrix associated to the root system Dr.
Recall the traditional description of Dr: Consider

Zr = Ze1 + · · ·+ Zer

with the standard pairing ei · ej = δij . Consider the index two sublattice

M = {m1e1 + · · ·+mrer : m1 + . . .+mr ≡ 0 (mod 2)} ⊂ Zr

with generators

{−e1 − e2, e1 − e2, e2 − e3, . . . , er−1 − er}.
The Weyl group W (Dr) acts on M via reflections associated to the roots {±ei±ej}.
It can be identified with signed r× r permutation matrices with determinant equal
to the sign of the permutation. It is thus a semidirect product

W (Dr) = (Z/2Z)r−1 �Sr,

where the first group should be interpreted as the diagonal matrices with entries
±1 and determinant 1 and the second group as the permutation matrices. Each
element ofW (Dr) is thus classified by the induced permutation of signed coordinate
vectors

{e1, e′1 = −e1, . . . , er, e
′
r = −er}.
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Identifying Ei with ei and E′
i with e′i, we obtain isomorphisms of lattices

M � −Λ
↓ ↓

Zr � −N1(f : X̄ → P1,Z)/ZF

where the vertical arrows are inclusions of index-two subgroups. The Galois action
of G = Gal(k̄/k) on Pic(X̄) induces actions on both Λ and N1(X̄ → P1,Z)/ZF . It
is worthwhile to compare these to the action of W (Dr) on M and Zr.

Exercises.

Exercise 3.3.1. Let φ : X → Y be a birational extremal contraction of smooth
projective surfaces, i.e., a contraction of a collection of pairwise disjoint (−1)-curves.
Show that

Λ = K⊥
X ∩N1(φ : X̄ → Ȳ ,Z)

is isomorphic to the lattice

Zρ1 + · · ·+ Zρr−1

with intersections

ρi · ρj =

⎧⎪⎨
⎪⎩
−2 if i = j

1 if |i− j| = 1

0 if |i− j| > 1

.

This is the Cartan matrix for Ar−1. Interpret the action of the Weyl group
W (Ar−1) � Sr in terms of the geometry of φ.

3.4. Classification of minimal rational surfaces over general fields.
This is due to Manin [Man66] and Iskovskikh [Isk79]; another proof can be found
in [Kol96, III.2].

Theorem 3.9. Let X be a smooth projective minimal surface with X̄ rational.
Then X is one of the following:

• P2;
• X ⊂ P3 a smooth quadric with Pic(X) = Z;
• a Del Pezzo surface with Pic(X) = ZKX ;
• a conic bundle f : X → C over a rational curve, with Pic(X) � Z⊕ Z.

Notice that the third case includes Brauer-Severi surfaces.
Thus if Y is a smooth projective rational surface over k then there exists a

birational morphism φ : Y → X defined over k, where X is one of the surfaces
listed in Theorem 3.9.

Proof. Since X̄ is rational KX̄ cannot be nef (Exercise 2.4.1), and there exists
an irreducible curve L ⊂ X̄ such that KX̄ · L < 0. In particular, NE1(X̄) admits
KX̄ -negative extremal rays. By the Cone Theorem 2.23, elements of NE1(X̄) can
be expressed as

(3.1) C +
∑

ai[Li], ai > 0,

where C ∈ NE1(X̄) satisfies C ·KX̄ ≥ 0 and the Li are rational curves generating
KX̄ -negative extremal rays. Of course, the Galois group G acts on Pic(X̄) and on
the KX̄ -negative extremal rays. Thus for elements of NE1(X̄) the two parts of (3.1)
can be taken to be G-invariant.
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Let NE1(X̄)G denote the closure of the Galois-invariant effective cone in the
real vector space spanned by Galois-invariant curve classes. Since NE1(X̄)G has
KX -negative curves, it necessarily admits a KX -negative extremal ray Z. This
need not be extremal in NE1(X̄), but it does lie in some face of that cone, which
we analyze. Since Z is extremal and KX -negative, it must be proportional to the
average over the orbit of a single extremal ray of X̄:

Z = aE, E =

n∑
j=1

Lj , Lj = gjL, gj ∈ G.

In other words, the minimal face of NE1(X̄) containing Z is spanned by the Galois
orbit of one extremal ray.

Assume first that Pic(X) � Z, generated by some ample divisor H defined over
k. Then −KX = rH for some positive integer r and X is Del Pezzo. When r > 1
we necessarily have X̄ � P2 or P1×P1 by Corollary 2.28. In the first instance, X is
a Brauer-Severi surface with a line H defined over the ground field; thus Γ(OX(H))
gives an isomorphism X � P2. This is the first case of the theorem. In the second
instance, the line bundle OP1×P1(1, 1) is defined over the ground field. Its global
sections give an embedding X ↪→ P3 whose image is a quadric surface. This is the
second case of the theorem. Finally, if −KX generates Pic(X) then we are in the
third case of the theorem.

Now assume that Pic(X) has higher rank, so in particular E ∈ ∂NE1(X̄)G. It
follows that E2 ≤ 0. Indeed, if E2 > 0 then E is big by Corollary 2.4 and thus lies
in the interior of the effective cone by Theorem 2.3. (And there are some extremal
L whose Galois orbits do not lie in any proper face of the cone of curves.)

Suppose now that E2 < 0, which implies that L2 < 0. As before, Proposi-
tion 1.6 implies L is a (−1)-curve. Furthermore, L ∩ Lj = ∅ when L 	= Lj ; indeed,
if the Galois conjugates were nondisjoint then their sum would have nonnegative
self-intersection. Theorem 3.2 implies that X is not minimal, a contradiction.

Suppose next that E2 = 0. If L2 < 0 then we would still have that L is a
(−1)-curve. Since E2 = 0 each curve meets precisely one of its Galois conjugates,
transversely at one point. Thus the orbit of L decomposes as

{L1, L
′
1}, {L2, L

′
2}, . . . , {Lr, L

′
r},

where Li ·L′
i = 1 and all other pairs of (−1)-curves are disjoint. Write Fi = Li+L′

i

so that Fi · Fm = 0 for each i,m = 1, . . . , r; the Hodge index theorem implies that
F1 = F2 = . . . = Fr and E = rFi for each i. Contracting E (or equivalently,
L1, L

′
1, . . . , L

′
r) gives a morphism

f : X → C

whose generic fibers are smooth conics and with r > 0 degenerate fibers consisting
of reducible singular conics. This is the conic bundle case of the theorem.

Finally, suppose that E2 = 0 and L2 = 0. Then each Galois conjugate of L
is necessarily disjoint from L, so the Hodge index theorem argument above shows
that [L] is Galois-invariant. Contracting L gives a conic bundle f : X → C without
degenerate fibers. �

Remark 3.10. This almost completes the birational classification of rational
surfaces. It remains to enumerate birational equivalences among the surfaces listed
in Theorem 3.9. This enumeration can be found in [MT86, 3.1.1, 3.3.2]
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Exercises.

Exercise 3.4.1. To get a feeling for the difficulties involved, show that if X is
minimal then X̄ 	= Blp1,...,p9

P2. Specify a Galois action on Pic(X̄), in particular,
a finite group acting linearly, preserving the intersection form, and fixing KX .
Consider the orbits of the (−1)-curves under this action. Convince yourself there
is an orbit consisting of either

• disjoint (−1)-curves; or
• r disjoint pairs of (−1)-curves, with each pair meeting transversely at one
point.

3.5. An application: Rational points over function fields. Our next re-
sult is due to Manin and Colliot-Thélène [CT87]. For more context and discussion,
see [Kol96, IV.6]:

Theorem 3.11. Let B be a smooth curve over C with function field k = C(B).
Suppose that X is a smooth projective surface over k with X̄ rational. Then X(k) 	=
∅.

Of course, this result can be obtained from the Graber-Harris-Starr Theorem
[GHS03]. However, we will present it using our classification techniques.

Proof. We first reduce to the case where X is minimal. Suppose we have a
birational morphism φ : X → Y to a smooth projective surface. We can factor φ
as a sequence

X = X0 → X1 → X2 → · · · → Xr = Y

where each intermediate morphism is the blow-up of a Galois-orbit of points.
Suppose x ∈ Xi(k) is a rational point. If x is contained in the center of the

blow-up βi : Xi−1 → Xi then the exceptional divisor E ⊂ Xi−1 is rational over k
and isomorphic to P1. It follows that E(k) 	= ∅ and Xi−1(k) 	= ∅. If x is disjoint
from the center of Xi−1 → Xi then x lies in the open subset U ⊂ Xi−1 over which
βi is an isomorphism. Thus β−1

i (x) is a rational point of Xi.
We consider the minimal cases one by one. The case X = P2 is straightforward.

The case of a quadric surface Q ⊂ P3 follows from the Tsen-Lang Theorem.
We address the cases of Del Pezzo surfaces of degree d = K2

X . Del Pezzo
surfaces with certain degrees always have rational points. We assume without
proof standard results on anticanonical linear series |−KX | and embeddings of X
in projective space:

d = 7 There is no minimal Del Pezzo surface in this degree—see Exercise 3.1.2.
d = 8 (X̄ � BlpP

2) There is no minimal Del Pezzo surface of the type—see
Exercise 3.1.3.

d = 5 X always has a rational point—see Exercise 3.1.4.
d = 1 X̄ � Blp1,...,p8

P2 in this case and

−KX̄ = 3L− E1 − · · · − E8.

In this situation, |−KX | is the pencil of cubics Ct, t ∈ P1, passing through
p1, . . . , p8. The base locus of this pencil on P2 consists of nine points, i.e.,
p1, . . . , p8 and one additional point p0. The basis locus of |−KX | on X
is just the point p0. Since −KX is defined over k, the unique basepoint
p0 ∈ X(k).
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We address the remaining cases using the classification results of §2.6. Since
k = C(B), we can use the following variant of the Tsen-Lang Theorem:

Theorem 3.12. Let k be the function field of a curve defined over an alge-
braically closed field. Let F1, . . . , Fr ∈ k[x0, . . . , xn] be nonconstant weighted homo-
geneous polynomials, with weighted degrees satisfying

deg(F1) + · · ·+ deg(Fr) ≤ n.

Then the system F1 = · · · = Fr = 0 admits a nontrivial solution over k.

d = 3 Here X is a cubic surface in P3 and the result follows from Tsen-Lang.
d = 9 X is a Brauer-Severi surface. However, Exercise 3.1.1 allows us to blow

up X to obtain a cubic surface, which has rational points by the previous
case. (The reader knowledgeable in central simple algebras can prove
Br(C(B)) = 0 using properties of the reduced norm.)

d = 4 Here X is a complete intersection of two quadrics in P4 and our variant
of the Tsen-Lang Theorem applies.

d = 2 Here |−KX | induces a morphism

X → P2

of degree two, branched over a quartic plane curve. It follows that X is
a hypersurface of degree four in the weighted projective space P(2, 1, 1, 1)
of the form w2 = f(x, y, z). An application of the Tsen-Lang Theorem
gives our result.

d = 6 It suffices to show there exists a quadratic extension k′/k over which ratio-
nal points are dense on X. Then after blowing up two suitable conjugate
points we obtain a degree-four Del Pezzo surface, which has a rational
point.

From our analysis of the effective cone of X in §2.2, there are two nef
divisors L,L′ ∈ Pic(X̄) so that

L2 = (L′)2 = 1,−KX · L = −KX · L′ = 3.

Indeed, we take L′ = 2L−E1−E2−E3. Their sections induce morphisms

φ, φ′ : X̄ → P2

blowing down triples of disjoint (−1)-curves. Let k′/k be a quadratic
extension over which L and L′ are Gal(k̄′/k′) invariant. Then Xk′ is a
blow-up of a Brauer-Severi variety Y over k′ at three conjugate points.
The d = 9 case shows that Y (and hence Xk′) has lots of k′-rational
points.

For the conic bundle case we apply the Tsen-Lang theorem twice. First, we
show that C(k) 	= ∅ so C � P1. Taking a generic t ∈ P1(k) so that Xt := f−1(t) is
a smooth conic, a second application gives Xt(k) 	= ∅. �

Exercises.

Exercise 3.5.1. LetX be a degree-one Del Pezzo surface over an arbitrary field
k. Give a complete proof that X(k) 	= ∅, based on the sketch above. Challenge:
When can you show that |X(k)| > 1?

4. Singular surfaces

In this section, we work over an algebraically closed field.
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Figure 3. Four general lines in the plane

4.1. Cubic surfaces revisited: the Cayley cubic. In §1.1, we constructed
smooth cubic surfaces by blowing up six points in general position on the plane.
What happens when we relax this assumption?

Consider configurations of six points obtained as pairwise intersections of four
general lines in the plane. Given four lines in general position, we can choose
coordinates to put them in the standard form:

�0 = {x0 = 0}, �1 = {x1 = 0}, �2 = {x2 = 0}, �3 = {x0 + x1 + x2 = 0}.
The intersection points are denoted pij = �i ∩ �j for 0 ≤ i < j ≤ 3.

The points p01, . . . , p23 still impose independent conditions on homogeneous
cubics in x0, . . . , x3, i.e.,

Ip01,...,p23
= 〈y0, y1, y2, y3〉

where
y0 = x1x2(x0 + x1 + x2) y1 = x0x2(x0 + x1 + x2)
y2 = x0x1(x0 + x1 + x2) y3 = −x0x1x2

.

These satisfy the relation

y0y1y2 + y1y2y3 + y2y3y0 + y3y0y1 = 0;

the resulting cubic surface S ⊂ P3 is called the Cayley cubic surface in honor of
Arthur Cayley, who classified singular cubic surfaces [Cay69].

Here are some of its geometric properties:

• S has ordinary double points at

s0 = [1, 0, 0, 0], s1 = [0, 1, 0, 0], s2 = [0, 0, 1, 0], s3 = [0, 0, 0, 1].
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Figure 4. Some lines on the Cayley cubic

It is the unique cubic surface with this configuration of singularities, up
to projective equivalence.

• S contains nine lines, i.e., the lines mij , i, j = 0, . . . , 3 spanned by si and
sj , as well as the lines

{y0 + y3 = y1 + y2 = 0}, {y0 + y1 = y2 + y3 = 0}, {y0 + y2 = y1 + y3 = 0}.
• The birational map

[y0, y1, y2, y3] : P
2 ∼��� S

factors as
X

β

↙
σ

↘
P2 S

where β is the blow-up of p01, . . . , p23 and σ is the blow-up of s0, . . . , s3.
The exceptional divisors of β are the proper transforms Eij of the mij ;
the exceptional divisors of σ are the proper transforms �′i of the �i.

• Express

Pic(X) = ZL⊕ ZE01 ⊕ · · · ⊕ ZE23

where L is the pullback of the hyperplane class of P2 via β. The canonical
class is

KX = −3L+ E01 + E02 + E03 + E12 + E13 + E23

and the proper transforms of the lines are

�′0 = L− E01 − E02 − E03, �′1 = L− E01 − E12 − E13, . . .

We have KX · �′j = 0 and (�′j)
2 = −2 for each j, i.e., the exceptional

divisors of the resolution σ are (−2)-curves.
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4.2. Why consider singular cubic surfaces?
Reason 1: Reduction modulo primes
Let X = {F (y0, y1, y2, y3) = 0} ⊂ P3 be a smooth cubic surface defined over Q;
we may assume that F ∈ Z[y0, y1, y2, y3] and the greatest common divisor of the
coefficients of F is 1. Consider the integral model

π : X = {F = 0} ⊂ P3
Z → Spec(Z),

which is flat and projective over Spec(Z). For each prime p, we have Xp = X
(mod p), i.e., the fiber of X over p ∈ Spec(Z). If p divides the discriminant of F
then Xp will have singularities. These singular fibers have a strong influence on the
rational points of X.
Reason 1′: Degenerate fibers of families
This is the function-field analog of the previous situation. Let B be a complex
curve and

π : X → B

a family of cubic surfaces, e.g., a pencil

{sF (y0, y1, y2, y3) + tG(y0, y1, y2, y3) = 0} ⊂ P3
y0,y1,y2,y3

× P1
s,t

with π being projection onto the second factor. At least some of the fibers Xb =
π−1(b), b ∈ B must be singular.
Reason 2: Counting rational points
Proving asymptotics for the number of rational points of bounded heights on singu-
lar cubic surfaces is often easier than the case of smooth cubic surfaces. Examples
include toric cubic surfaces [dlB98, Fou98, HBM99, Sal98]

y30 = y1y2y3,

the Cayley cubic surface [HB03], the ‘E6 cubic surface’ [dlBBD07]

y1y
2
2 + y2y

2
0 + y33 = 0;

and a ‘D4 cubic surface’ [Bro06]

y1y2y3 = y4(y1 + y2 + y3)
2.

4.3. What are ‘good’ singularities? Let S be a normal surface. A reso-
lution of singularities σ : X → S is a birational proper morphism from a smooth
surface. Abhyankar proved the existence of resolutions of surface singularities in
arbitrary characteristic [Abh56]. A resolution σ : X → S is minimal if there exists
no nontrivial factorization

X
φ→ Y → S

with Y smooth. This is equivalent to

• there are no (−1)-curves in the fibers of σ; or
• KX is nef relative to σ.

A relative analog of Corollary 2.20 (see Remark 2.21) implies that minimal resolu-
tions of singularities are unique, in the case of surfaces.

Recall that if φ : X → Y is a birational morphism of smooth projective surfaces
then (cf. Equation 1.1):

KX = φ∗KY +
∑
i

miEi, mi > 0.

The following definition represents a weakening of this condition:
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Definition 4.1. Suppose that S is a normal surface with a unique singularity
p; assume thatKS is a Q-Cartier divisor at p. (This is the case when S is a complete
intersection in some neighborhood of p). Then p ∈ S is a canonical singularity if,
for each resolution of singularities σ : X → S we have

KX = σ∗KS +
∑
i

miEi, mi ≥ 0,

where the Ei are exceptional divisors of σ.

Note here that a priori the mi ∈ Q; however, the classification of these singu-
larities shows a posteriori that the mi ∈ Z.

Proposition 4.2. Suppose that (S, p) is a canonical singularity. A resolution
of singularities σ : X → S is minimal if and only if each mi = 0, i.e., KX = σ∗KS.
In this case, each σ-exceptional curve is a (−2)-curve, i.e., a nonsingular rational
curve E with E2 = −2.

Proof. (⇐) Suppose that mi = 0 for each i. Then KX · Ei = 0 for each
σ-exceptional divisor. The Hodge index theorem implies that the σ-exceptional
divisors have negative self-intersection, i.e., E2

i < 0. The adjunction formula implies
that E2

i = −2 and Ei is a nonsingular curve of arithmetic genus zero.
(⇒) Assume that σ is minimal, i.e., the fibers of σ contain no (−1)-curves.

Suppose that KX 	= σ∗KS so that some mi 	= 0. It follows that (
∑

i miEi)
2 < 0

and thus (
∑

i miEi) ·Ej < 0 for some σ-exceptional curve Ej . Consequently E2
j < 0

and KXEj < 0, so Ej is a (−1)-curve by Proposition 1.6. �

Proposition 4.2 suggests the following variation on this definition

Definition 4.3. A normal surface S has Du Val singularities if it admits a
resolution σ : X → S such that KX · E = 0 for each σ-exceptional divisor E.

Patrick Du Val first classified surface singularities in terms of their discrepancies
(or in his terminology, the ‘conditions they impose on adjunction’) in [DV34]. This
definition is a priori more general than the class of canonical singularities: We do
not insist that KS is Q-Cartier. However, we shall see later (Remark 4.7) that Du
Val singularities are canonical.

Exercises.

Exercise 4.3.1. We give an example of a surface with ‘bad’ singularities. Sup-
pose that p1, . . . , p4 ∈ � ⊂ P2 are distinct points lying on a line �. Consider

β : X := Blp1,...,p4
P2 → P2

and let �̃ denote the proper transform of �, L the pullback of the hyperplane class
via β, and E1, . . . , E4 the exceptional divisors. Verify that

a. The divisor 4L−E1−E2−E3−E4 is basepoint-free and yields a morphism
φ : X → P10.

b. If Y is the image of X under φ, show that φ : X → Y is an isomorphism
over X \ �̃ and contracts �̃ to a point y ∈ Y .

c. Show that Y is normal at y and the canonical class KY is Q-Cartier.
Compute the divisor φ∗KY .

e. Show that y ∈ Y is not a Du Val singularity.
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4.4. Singular Del Pezzo surfaces.

Definition 4.4. A singular Del Pezzo surface is a projective surface S with
Du Val singularities such that −KS is ample.

If σ : X → S is a minimal resolution of a singular Del Pezzo surface then
σ∗KS = KX , i.e., −KX is semiample.

Here is one good source of singular Del Pezzo surfaces. Suppose X is a smooth
projective surface with −KX nef and big. It has the following properties:

• (−KX)2 > 0;
• Any irreducible curve E with KX · E = 0 is a (−2)-curve.
• There are a finite number of (−2)-curves on X.

The first statement is a particular case of Corollary 2.4. The second is contained in
the proof of Proposition 4.2. The third follows from the fact that K⊥

X is negative
definite, and thus has a finite number of vectors of self-intersection −2.

Theorem 4.5. Let X be a smooth projective surface with −KX nef and big.
Then each nef divisor D on X is semiample.

Corollary 4.6. Let X be a smooth projective surface with −KX nef and
big. Then −KX is semiample. In particular, there exists a birational morphism
σ : X → S to a singular Del Pezzo surface with σ∗KS = KX .

Proof. Remark 2.18 addresses this in the special case where D is not big, i.e.,
when D2 = 0. Thus we may assume that D2 > 0.

The Nakai criterion (Theorem 2.2) implies that D is ample unless D ·E = 0 for
some irreducible curve E ⊂ X. The Hodge index theorem implies that each such
curve satisfies E2 < 0. Since −KX · E ≥ 0, the only possibilities are (−1)-curves
(see Proposition 1.6) or (−2)-curves (see Proposition 4.2). In either case E � P1.

Suppose X admits (−1)-curves as above. We can apply the Castelnuovo con-
traction criterion (Theorem 1.12) to obtain a birational morphism β : X → Y
such that Y admits a big and nef divisor M on Y with β∗M = D and the only
curves orthogonal to M are (−2)-curves. Furthermore, −KY remains nef and big
(cf. Corollary 2.8).

Let E1, . . . , Er denote the (−2)-curves orthogonal toM . We exhibit a birational
morphism to a singular projective variety σ : Y → S contracting precisely these
curves. Such a contraction exists for more general reasons [Rei97, 4.15] [Art62,
2.3] but we will sketch an argument in our situation.

We essentially copy the proof of the Castelnuovo Criterion. Let H be a very
ample line bundle on Y such that each positive multiple nH has no higher co-
homology. Write di = H · Ei for i = 1, . . . , r. Since the intersection matrix of
ZE1 + · · · + ZEr is negative definite, there exist positive integers n and b1, . . . , br
such that

nH · Ei = −(b1E1 + · · ·+ brEr) · Ei

for each i. Let B = b1E1 + · · ·+ brEr so that L := nH + B is orthogonal to each
Ei.

The adjunction formula implies that each effective divisor A supported on
E1 ∪ · · · ∪ Er has nonpositive arithmetic genus; a straightforward induction gives
H1(OA) = 0 as well. Here it is crucial that KY ·Ei = 0 for each i; it is not enough
to assume that each component of the exceptional locus is rational. Thus we have
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OY (L)|B � OB, i.e., an isomorphism of invertible sheaves, not just an equality of
degrees. We obtain the exact sequence

0 → OY (nH) → OY (L) → OB → 0.

Our vanishing assumption show that

Γ(Y,OY (L)) � Γ(Y,OB),

i.e., for each point of B there is a section of OY (L) nonvanishing at that point.
The sections of OY (L) induce an embedding away from E1 ∪ · · · ∪ Er, so OY (L)
is globally generated and induces a morphism σ : Y → S contracting precisely
E1, . . . , Er. In particular, OY (L) is the pullback of an ample line bundle on S via
σ.

To complete the argument, we show there exists a Cartier divisor N on S such
that σ∗N is a positive multiple of M . Repeating the previous argument for M+mL
withm � 0, we get the same contraction σ : Y → S. Here the argument shows that
mL+M is the pullback of an ample line bundle from S. It follows that M = σ∗N
for some Cartier divisor N on X.

Finally, N is ample on S by the Nakai criterion, as we have contracted all the
curves along which it is nonpositive. �

Remark 4.7. A variation on this argument shows that Du Val singularities are
canonical. Suppose that σ : Y → S is a minimal resolution of Du Val singularities.
The canonical class KY is nef relative to σ and thus globally generated relative to
σ. We obtain a factorization

Y → ProjS

⎛
⎝⊕

n≥0

σ∗OY (nKY )

⎞
⎠ �→ S.

Since � is a bijective morphism of normal surfaces, it is an isomorphism. However,
the canonical divisor of the intermediate surface is Q-Cartier by construction.

Remark 4.8. Suppose the base field is algebraically closed of characteristic
zero. There do exist smooth projective rational surfaces admitting nef divisors that
are not semiample [Zar62, §2]. Thus the assumption that −KX be nef and big
in Theorem 4.5 is necessary. (See Exercise 4.4.1 below and [Laz04, 2.3] for more
discussion.)

We record one last consequence of Theorem 4.5, an extension of Corollary 2.13:

Proposition 4.9. Let X be a smooth projective surface with −KX nef and
big. Then NE1(X) is a finite rational polyhedral cone, generated by (−2)-curves
and KX-negative extremal rational curves.

Proof. Apply Proposition 2.10 and Corollary 2.11: NE1(X) is generated by
the nonnegative cone C, along with the (−1)-curves and (−2)-curves. The Hodge
index theorem implies that KX is negative on C \ {0}, so any extremal rays of
NE1(X) arising from C are necessarily KX -negative.

The Cone Theorem 2.23 implies that the KX -negative part of the effective
cone is generated by curves Li with −KX · Li ≤ 3. Theorem 4.5 gives that −KX

is semiample and induces σ : X → S. Thus there are at most a finite number
of classes [Li] arising as KX -negative extremal rays. Indeed, the curves in S with
anticanonical degree ≤ 3 are parametrized by a scheme of finite type, as the curves
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in projective space of bounded degree are parameterized by a Hilbert scheme of
finite type. We see in particular that X admits a finite number of (−1)-curves.

Clearly, there are a finite number of (−2)-curves, as these are all σ-exceptional.
Thus NE1(X) admits a finite number of extremal rays, with the desired interpre-
tations. �

Exercises.

Exercise 4.4.1. Assume the base field is of characteristic zero.
Let C ⊂ P2 denote a smooth cubic plane curve and H the hyperplane class on

P2. Choose points p1, . . . , p9 ∈ C such that the divisors p1 + · · ·+ p9 and H|C are
linearly independent over Q. Consider the blow-up

X := Blp1,...,p9
P2 β→ P2

with exceptional curves E1, . . . , E9. Show that D = −KX = 3β∗H −E1 − · · · −E9

is nef but not semiample.
Now choose points q1, . . . , q12 ∈ C such that q1+ · · ·+ q12 and H|C are linearly

independent. Consider the blow-up

Y := Blq1,...,q12P
2 γ→ P2

with exceptional curves F1, . . . , F12. Show that D′ = 4γ∗H − F1 − · · · − F12 is nef
but not semiample. Indeed, demonstrate that for each n > 0 the divisor nD′ has
the proper transform of C as a fixed component.

4.5. Classification of Du Val singularities. Suppose that σ : X → S is a
minimal resolution of a Du Val surface singularity p ∈ S. Consider the intersection
numbers of the irreducible components E1, . . . , Er of σ−1(p), which we put into a
symmetric matrix (Ei · Ej)i,j=1,...,r. This has the following properties:

• (Ei · Ej) is negative definite, by the Hodge index theorem;
• E2

i = −2 for each i, by Proposition 4.2;
• Ei · Ej = 0, 1 for each i 	= j; indeed, if Ei · Ej > 1 then (Ei + Ej)

2 > 0;
• we cannot express

{E1, . . . , Er} = {Ea1
, . . . , Eas

} ∪ {Eb1 , . . . , Ebr−s
}

with Eal
· Ebm = 0 for each l,m; this is because σ−1(p) is connected.

Matrices of this type occur throughout mathematics, especially in the classi-
fication of the simple root systems via Dynkin diagrams/Cartan matrices in Lie
theory. We cannot dwell too much on these interactions, except to refer the reader
to some of the literature on this beautiful theory [Bri71, Dur79, SB01]. We list
the possible matrices that can arise [FH91, 21.2]. First, we have the infinite series

Ar

r ≥ 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 . . . . . . 0

1 −2 1
. . .

. . .
...

0 1 −2
. . .

. . .
...

...
. . .

. . .
. . . 1 0

...
. . .

. . . 1 −2 1
0 . . . . . . 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ei · Ei =

⎧⎪⎨
⎪⎩
−2 if i = j

1 if |i− j| = 1

0 otherwise
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Dr

r ≥ 4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 1 0 . . . 0 0

0 −2 1 0
. . .

. . .
...

1 1 −2 1
. . .

. . .
...

0 0 1 −2
. . .

. . . 0
...

. . .
. . .

. . .
. . . 1 0

0
. . .

. . .
. . . 1 −2 1

0 . . . . . . 0 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ei · Ei =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 if i = j

1 if |i− j| = 1,

i, j ≥ 3

or if {i, j}
= {1, 3}, {2, 3}

0 otherwise

and then the exceptional lattices

E6

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 0 0
1 −2 0 0 0 1
0 0 −2 1 0 0
0 0 1 −2 0 1
0 0 0 0 −2 1
0 1 0 1 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎠

E7

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 0 0 0
1 −2 1 0 0 0 0
0 1 −2 0 0 0 1
0 0 0 −2 1 0 0
0 0 0 1 −2 0 1
0 0 0 0 0 −2 1
0 0 1 0 1 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

E8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 0 0 0 1
0 0 0 0 −2 1 0 0
0 0 0 0 1 −2 0 1
0 0 0 0 0 0 −2 1
0 0 0 1 0 1 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Remarkably, in characteristic zero there is a unique singularity associated to
each of these matrices.

Proposition 4.10. Assume that the base field is algebraically closed of char-
acteristic zero. Then, up to analytic isomorphism, there is a unique Du Val surface
singularity associated to each Cartan matrix enumerated above:

Ar, r ≥ 1 z2 = x2 + yr+1

Dr, r ≥ 4 z2 = y(x2 + yr−2)
E6 z2 = x3 + y4

E7 z2 = y(x3 + y2)
E8 z2 = x3 + y5

For a modern proof of this, we refer the reader to [KM98, §4.2]. It turns out
that these singularities are also related to the class of ‘simple’ hypersurface singu-
larities, which can be independently classified [AGZV85]. There are a multitude
of classical characterizations of Du Val singularities [Dur79].
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Example 4.11. The Cayley cubic surface has four A1 singularities. The toric
cubic surface

y30 = y1y2y3

has three A2 singularities at [0, 1, 0, 0],[0, 0, 1, 0], and [0, 0, 0, 1].

5. Cox rings and universal torsors

We work over an algebraically closed field k unless specified otherwise.

5.1. Universal torsors. Universal torsors are an important tool in higher-
dimensional arithmetic geometry. They play a fundamental rôle in the modern
theory of descent for rational varieties [CTS87]. They are also an important tech-
nique and conceptual tool for counting rational points of bounded height [Sal98].

Let X be a smooth projective variety. Assume that Pic(X) is a free abelian
group of rank r, generated by the line bundles L1, . . . , Lr on X. Let TX =
Hom(Pic(X),Gm) denote the Néron-Severi torus ofX, i.e., the torus with character
group Hom(TX ,Gm) = Pic(X).

Definition 5.1. [CTS87] The universal torsor over X

TX → U
↓
X

is a principal homogeneous space overX with structure group TX with the following
universal property: Given a line bundle L on X, if λL : TX → Gm = GL1 denotes
the corresponding character then the line bundle VλL

associated to U equals L. In
other words, if U is given by a cocycle {τij} ∈ H1(X,TX) then L is given by the
cocycle {λL(τij)} ∈ H1(X,Gm).

Constructing U is straightforward in some sense: Choose L1, . . . , Lr freely gen-
erating Pic(X) and write

Pi = L−1
i \ 0X ⊂ L−1

i

for the complement of the zero-section. This is a Gm-principal bundle arising from
L−1
i . Then we can take

U = P1 ×X · · · ×X Pr

and TX -action

TX × U → U
(t; s1, . . . , sr) �→ (λ−L1

(t)s1, . . . , λ−Lr
(t)sr)

where si is a local section of Pi and λL is the character associated with L.
However, for arithmetic applications it is important to have a more concrete

presentation of the universal torsor.

Example 5.2. Consider the case X = Pn. The standard quotient presentation

Pn = (An+1 \ 0)/Gm

can be interpreted as an identification:

OPn(−1) \ 0Pn
∼→ An+1 \ 0

↘ ↙
Pn
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In other words, we regard OPn(−1) as the ‘universal line’ over Pn. Since OPn(−1)
generates Pic(Pn), we have

U = OPn(−1) \ 0Pn = An+1 \ 0,
equivariant with respect to the action of Gm = TPn . Note that we can regard

An+1 = Spec

(⊕
N∈Z

Γ(Pn,OPn(N))

)
.

More generally, the universal torsor

TPm×Pn → U
↓

Pm × Pn

can be identified with

Am+n+2
x0,...,xm,y0,...,yn

\ ({x0 = · · · = xm = 0} ∪ {y0 = · · · = yn = 0}) .
Here the torus acts by the rule

(t1, t2) · (x0, . . . , xm, y0, . . . , yn) = (t1x0, . . . , t1xm, t2y0, . . . , t2yn).

Decomposing the polynomial ring under this action, we can regard

Am+n+2 = Spec

⎛
⎝ ⊕

N1,N2∈Z

Γ(Pm × Pn,OPm×Pn(N1, N2))

⎞
⎠ .

Exercises.

Exercise 5.1.1. Realize the universal torsor over X = P1 × P1 × P1 as an
explicit open subset U ⊂ A8. Describe the action of TX on U .

5.2. Universal torsors over nonclosed fields. We can only offer a brief
summary here; we refer the reader to [CTS87] and [Sko01] for details and arith-
metic applications.

Let k be a perfect field with absolute Galois group G. Suppose that X is
defined over k and X̄ satisfies the assumptions made in §5.1. The Galois action
on Pic(X̄) allows us to define the torus TX over k. Precisely, the action induces a
representation on the character group

� : G → Aut(Hom(TX̄ ,Gm)) = Aut(Pic(X̄)),

which gives the descent data for TX . A universal torsor over X is a principal
homogeneous space

TX → U
↓
X

defined over k, such that the universal property is satisfied on passage to the alge-
braic closure.

Note our use of the indefinite article: Over a nonclosed field, a variety may
have more than one universal torsor. Indeed, since any universal torsor U comes
with a TX -action over X, given a cocycle η ∈ H1

G(TX̄) we can twist to obtain

TX → Uη

↓
X,
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another universal torsor over k. However, if the Galois action on Pic(X̄) is trivial
then

H1
G(TX̄) = H1

G(G
r
m) = 0

by Hilbert’s Theorem 90. Here the universal torsor is unique whenever it exists.
On the other hand, there may be obstructions to descending a universal torsor

over X̄ to the field k. These reside in H2
G(TX̄); indeed, the situation is analogous

to the descent obstruction for line bundles discussed in Remark 3.3. Whenever
X(k) 	= ∅ this obstruction vanishes [CTS87, 2.2.8], which makes universal torsors
an important tool for deciding whether X has rational points.

5.3. Cox rings. Let X be a normal projective variety such that the Weil
divisor class group is freely generated by D1, . . . , Dr.

Definition 5.3. The Cox ring of X is defined as

Cox(X) =
⊕

(n1,...,nr)∈Zr

Γ(X,OX(n1D1 + · · ·+ nrDr))

with multiplication

Γ(X,OX(m1D1 + · · ·+mrDr))× Γ(X,OX(n1D1 + · · ·+ nrDr)) →
Γ(X,OX((m1 + n1)D1 + · · ·+ (mr + nr)Dr))

defined by (s, t) �→ st.

Example 5.4. We start with the eponymous example [Cox95]: Let X be a
projective toric variety of dimension n

Gn
m ×X → X.

Let D1, . . . , Dd denote the boundary divisors, i.e., the irreducible components of
the complement of the dense open torus orbit. Let si ∈ Γ(X,OX(Di)) denote the
canonical section, i.e., the one associated with the inclusion

OX ↪→ OX(Di).

(Actually, si is canonical up to a nonzero scalar.) Recall that

• each effective divisor D on X can be expressed as a nonnegative linear
combination

D ≡ n1D1 + · · ·+ ndDd, n1, . . . , nd ≥ 0;

• the canonical section s of OX(D) admits a unique expression

s = f(s1, . . . , sd)

where f is a polynomial over k in d variables.

Thus the Cox ring of X is a polynomial ring

Cox(X) � k[s1, . . . , sd]

with generators indexed by the boundary divisors.

We list some basic properties of the Cox ring of a smooth projective variety.
We continue to assume that D1, . . . , Dr are divisors freely generating Pic(X).
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• Cox(X) is graded by Pic(X), i.e.,

Cox(X) �
⊕

L∈Pic(X)

Cox(X)L, Cox(X)L � Γ(X,L).

Indeed, for a unique choice of (n1, . . . , nr) ∈ Zr we have an isomorphism

L � OX(n1D1 + · · ·+ nrDr).

• Cox(X) has a natural action by TX via the rule

(t1, . . . , tr) · s = tn1
1 · · · tnr

r s

when s ∈ Γ(X,OX(n1D1 + · · ·+ nrDr)).
• The nonzero graded pieces of Cox(X) are indexed by NE1(X,Z). If

Cox(X) is finitely generated then NE
1
(X) is a finitely generated ratio-

nal polyhedral cone.

5.4. Two theorems. We start with a general result:

Proposition 5.5. Let X be a projective variety and A1, . . . , Ar semiample
Cartier divisors on X. Then the ring

(5.1)
⊕

n1,...,nr≥0

Γ(OX(n1A1 + · · ·+ nrAr))

is finitely generated.

Proof. (based on [HK00, 2.8], with suggestions from A. Várilly-Alvarado) It
suffices to show that for some positive N ∈ N the ring⊕

n1,...,nr≥0

Γ(OX(N(n1A1 + · · ·+ nrAr)))

is finitely generated. Indeed, the full ring is integral over this subring, so our result
follows by finiteness of integral closure. Since A1, . . . , Ar are semiample, there exists
an N > 0 such that NA1, . . . , NAr are globally generated. Thus we may assume
that A1, . . . , Ar are globally generated.

We first consider the special case r = 1. We obtain a morphism

φ : X → Pm := P(Γ(OX(A1))
∗),

with φ∗OPm(1) = OX(A1). This admits a Stein factorization

X
f→ Y

g→ Pm

with g finite and f having connected fibers, so in particular f∗OX = OY . Further-
more, g∗OPm(1) is ample on Y and thus⊕

n≥0

Γ(Y, g∗OPm(n))

is finitely generated. The projection formula gives

g∗Γ(Y, g∗OPm(n))
∼→ Γ(X,OX(nA1))

for each n ∈ N, so ⊕
n≥0

Γ(X,OX(nA1))

is also finitely generated.
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Now suppose r is arbitrary. Consider the vector bundle

V = A1 ⊕ · · · ⊕Ar

and the associated projective bundle

π : P(V ∗) → X.

We have the tautological quotient bundle

π∗V � OP(V ∗)(1);

since V is globally generated (being the direct sum of globally generated line bun-
dles), OP(V ∗)(1) is semiample. In particular, the ring

(5.2)
⊕
n≥0

Γ(P(V ∗),OP(V ∗)(n))

is finitely generated.
The tautological quotient induces

Symnπ∗V � OP(V ∗)(n),

and taking direct images via the projection formula we obtain

SymnV
∼→ π∗OP(V ∗)(n)

and

Γ(X, SymnV ) = Γ(P(V ∗),OP(V ∗)(n)).

Since (5.2) is finitely generated, the algebra⊕
n≥0

Γ(X, SymnV )

is finitely generated as well. Using the decomposition

SymnV =
⊕

n1+···+nr=n
n1,...,nr≥0

OX(n1A1 + · · ·+ nrAr),

we conclude that (5.1) is finitely generated. �

Remark 5.6 (due to A. Várilly-Alvarado). If A1 and A2 are ample then there
exists an N ∈ N such that the multiplication maps

Γ(X,OX(Nm1A1))⊗ Γ(X,OX(Nm2A2)) → Γ(X,OX(N(m1A1 +m2A2)))

are surjective for each m1,m2 ≥ 0. However, this fails for semiample divisors.
Let h : X → P1×P1 be a double cover branched over a smooth curve of bidegree

(2d, 2d); composing with the projections yield morphisms gi : X → P1, i = 1, 2, with
connected fibers. Let f1 and f2 be the fibers of P1×P1; take A1 and A2 to be their
preimages on X. Then we have

Γ(X,OX(mA1)) = Γ(P1,OP1(m))

for each m ≥ 0, i.e., sections of

Γ(X,OX(m1A1))⊗ Γ(X,OX(m2A2))

are obtained via pullback from sections of Γ(P1 × P1,OP1×P1(m1,m2)). Since
m1A1 +m2A2 is very ample on X for suitable m1,m2 � 0, we conclude that

Γ(X,OX(m1A1))⊗ Γ(X,OX(m2A2)) → Γ(X,OX(m1A1 +m2A2))
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cannot be surjective. Indeed, the decomposable sections cannot separate points in
a fiber of h.

Theorem 5.7. Suppose X is a smooth projective variety with Pic(X) free of
finite rank. Assume that Cox(X) is finitely generated. Then the universal torsor
admits an embedding

ι : U ↪→ Spec(Cox(X))

that is equivariant under the action of the Néron-Severi torus TX .

Proof. First, we construct the morphism ι. Again, let D1, . . . , Dr denote divi-
sors freely generating the divisor class group of X. The cone of effective divisors of
X is finite rational polyhedral and strictly convex, so we can choose D1, . . . , Dr such
that each effective divisor on X can be written as a nonnegative linear combination
of D1, . . . , Dr. (Of course, the Di themselves need not be effective.)

Let L1, . . . , Lr designate the line bundles associated to the invertible sheaves
OX(D1), . . . ,OX(Dr). Writing Pi = L−1

i \ 0X we have

U = P1 ×X · · · ×X Pr ⊂ L−1
1 ×X · · · ×X L−1

r

which we interpret as the natural inclusion of

SpecX

⎛
⎝ ⊕

(n1,...,nr)∈Zr

OX(n1D1 + · · ·+ nrDr)

⎞
⎠

into

SpecX

⎛
⎝ ⊕

n1,...,nr≥0

OX(n1D1 + · · ·+ nrDr)

⎞
⎠ .

For each (n1, . . . , nr) ∈ Zr
≥0, we have

Γ(X,OX(n1D1 + · · ·+ nrDr))⊗OX → OX(n1D1 + · · ·+ nrDr)

which induces

SpecX

(⊕
(n1,...,nr)∈Zr

≥0
OX(n1D1 + · · ·+ nrDr)

)
−→

SpecX

(⊕
(n1,...,nr)∈Zr

≥0
Γ(OX(n1D1 + · · ·+ nrDr))⊗OX

)
.

Since each effective divisor is a nonnegative sum of the Di, the target is isomorphic
to X × Spec(Cox(X)). Thus we get a morphism

U → X × Spec(Cox(X))
↘ ↙

X

and composing with the projection yields

ι : U → Spec(Cox(X)).

Our construction is clearly equivariant with respect to the actions of TX .
We prove ι is an open embedding. First, observe that Spec(Cox(X)) is normal,

i.e., Cox(X) is integrally closed in its fraction field. Since X is normal,⊕
n1,...,nr≥0

OX(n1D1 + · · ·+ nrDr)

is a sheaf of integrally-closed domains, whose global sections form an integrally
closed domain (cf, [Har77, Ex. 5.14(a)]). Furthermore, Cox(X) is even a UFD
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[EKW04, Cor. 1.2]; this should not be surprising, as every effective divisor D on
X naturally yields a principal divisor on Spec(Cox(X)), namely, the locus where
the associated section s ∈ Γ(X,OX(D)) ⊂ Cox(X) vanishes.

We next exhibit a finitely-generated TX -invariant subalgebra

R ⊂ Cox(X)

such that the induced morphism

j : U
ι→ Spec(Cox(X)) → Spec(R)

is an open embedding. Choose ample divisors A1, . . . , Ar freely generating Pic(X).
(Since being ample is an open condition, we can certainly produce these.) For each
ample Ai, we obtain an embedding

X ↪→ P(wi)

into a weighted projective space, where the weights

wi = (wi1, . . . , wij(i))

index the degrees of a minimal set of homogeneous generators for the graded ring

xi1, . . . , xij(i) ∈
⊕
N≥0

Γ(X,OX(NAi)).

Take products to obtain

X ↪→
r∏

i=1

P(wi)

and let R denote the multihomogeneous coordinate ring of X, i.e., the quotient of
the polynomial ring in the xij by the multihomogeneous polynomials cutting out
X. We can then identify

U = Spec(R)−
r⋃

i=1

{xi1 = · · · = xij(i) = 0}.

Thus we have a diagram

U
ι→ V := Spec(Cox(X))

j ↓ ↓
j(U) ⊂ W := Spec(R)

with V normal and j an open embedding. Let U ′ ⊂ V denote the pre-image of
j(U) in V . The induced morphism

β : U ′ → j(U) � U

is a birational morphism from a normal variety with a section, induced by ι ◦ j−1.
Any such morphism is an isomorphism. Indeed, the composed morphism

U ′ β→ U
ι→ U ′

agrees with the identity on a dense subset of U ′, hence is the identity. Thus β and
ι are inverses of each other. �

Theorem 5.8. Let X be a smooth projective surface with −KX nef and big.
Then Cox(X) is finitely generated.
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Proof. Proposition 4.9 implies that NE1(X) is a finite rational polyhedral
cone admitting a finite number of (−1)- and (−2)-curves. Thus the nef cone of X
takes the form

〈A1, . . . , Ar〉
where the Ai are nef divisors. Theorem 4.5 guarantees that each Ai is semiample.
Consider the subring of the Cox ring

Cox′(X) :=
⊕

D∈〈A1,...,Ar〉
Γ(X,OX(D))

which is finitely generated by Proposition 5.5.
We next set up some notation, relying on the fact that −KX is semiample with

associated contraction σ : X → S (Corollary 4.6). Let E1, . . . , Er denote the (−2)-
curves on X, i.e., the curves contracted by σ. Let F1, . . . , Fs denote the (−1)-curves
on X. Choose generators ηi ∈ Γ(OX(Ei)) and ξi ∈ Γ(OX(Fi)), which are unique
up to scalars. We regard these as elements of Cox(X).

Lemma 5.9. Let D be an effective divisor on X. Express

(5.3) D = M + F

where F is the fixed part and M is the moving part. Then the support of F consists
of (−1)- and (−2)-curves.

Proof. Suppose that the fixed part of F contains an irreducible component
C that is not a (−1)- or (−2)-curve. It follows that C2 ≥ 0. Since C is effective,
we have

h2(OX(C)) = h0(OX(KX − C)) = 0.

Otherwise, n(KX − C) would be effective for each n ≥ 0, which contradicts our
assumption that −KX is big. The Hodge index theorem implies −KX · C > 0, so
Riemann-Roch implies h0(OX(C)) > 1, which means that C is not fixed. �

We interpret this via the Cox ring: Each homogeneous element t ∈ Cox(X)
can be identified with an effective divisor D = {t = 0}. Expression (5.3) translates
into t = m · f , where m ∈ Cox′(X) and

f = ηa1
1 · · · ηar

r ξb11 · · · ξbss , a1, . . . , ar, b1, . . . , bs ∈ N.

It follows then that

Cox(X) = Cox′(X)[η1, . . . , ηr, ξ1, . . . , ξs]

which completes our proof. �

Remark 5.10. We make a few observations on the significance of Theorem 5.8
and recent generalizations.

• Hu and Keel [HK00] showed that smooth projective varieties with finitely
generated Cox rings behave extremely well from the standpoint of bira-
tional geometry. Indeed, they designate such varietiesMori Dream Spaces.

• Shokurov [Sho96, §6] demonstrated how a robust version of the log mini-
mal model program would imply that many classes of varieties have finitely
generated Cox rings. For example, he established that log Fano threefolds
over fields of characteristic zero have this property. These are a natural
generalization of the singular Del Pezzo surfaces discussed here.
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• As an application of their proof of the existence of minimal models for
varieties of log general type (over fields of characteristic zero), Birkar,
Cascini, Hacon, and McKernan proved that log Fano varieties of arbitrary
dimension have finitely generated Cox rings [BCHM06, 1.3.1].

Exercises. Suppose D is an effective divisor on a smooth projective surface
X. Consider the graded ring

R(D) :=
⊕
m≥0

Γ(X,OX(mD)).

In the classic paper [Zar62], Zariski analyzed when this ring is finitely generated.

Exercise 5.4.1. Recall the notation of the second half of Exercise 4.4.1. Show
that R(D′) is not finitely generated.

Exercise 5.4.2. AssumeD admits a Zariski decomposition [Zar62, 7.7] [Laz04,
2.3.19], i.e.,

(5.4) D = P +N

where P and N are Q-divisors with the following properties:

• P is nef;
• N is effective with support

supp(N) = {Ci}
generating a negative definite (or trivial) sublattice of the Néron-Severi
group;

• P · Ci = 0 for each Ci ∈ supp(N).

Deduce that

• for each n ≥ 0 the map

Γ(X,OX(nD − �nN�)) ↪→ Γ(OX(nD))

is an isomorphism;
• Γ(X,OX(nP )) � Γ(OX(nD)) for n ≥ 0 such that nN is integral.

If −KX is nef and big, deduce also that

• P is semiample;
• supp(N) ⊂ {E1, . . . , Er, F1, . . . , Fs}, the union of the (−1)- and (−2)-
curves on X.

Hint: The second assertion is a corollary of the first. To prove this, note that any
divisor A with

nD − �nN� ≺ A � nD

intersects some component in supp(N) negatively, and thus has that component in
its fixed part.

Exercise 5.4.3. Let X be the Hirzebruch surface F2, Σ the class of a section
at infinity, f the class of a fiber:

Σ f
Σ 2 1
f 1 0

This admits a unique (−2)-curve E = Σ− 2f .
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• Show that Cox(X) � k[η, f0, f∞, t] where

Γ(OX(E)) = kη, Γ(OX(f)) = kf0 + kf∞,

and
Γ(OX(Σ)) = kηf2

0 + kηf0f∞ + kηf2
∞ + kt.

• Show that the Zariski decomposition of the divisor D = Σ− f is

D = P +N, P =
1

2
Σ, N =

1

2
E.

Verify that the fixed part of nD for n ≥ 0 is �nN� = �n/2�E.

5.5. More Cox rings of Del Pezzo surfaces. For blow-ups β : X → P2, we
write L for the pullback of the line class on P2 and E1, E2, . . . for the exceptional
curves.

Example 5.11 (Degree Six Del Pezzo Surfaces). Let X be isomorphic to P2

blown up at three non-collinear points, which can be taken to be p1 = [1, 0, 0],
p2 = [0, 1, 0], and p3 = [0, 0, 1]. This is a toric variety under the action of the
diagonal torus. We have seen in §2.2 that NE1(X) is generated by the (−1)-curves:

{E1, E2, E3, E12, E13, E23}
where Eij is the proper transform of the line joining pi and pj with class L−Ei−Ej .
Here we have (cf. [BP04, 3.1]):

Cox(X) = k[η1, η2, η3, η12, η13, η23].

Example 5.12 (Degree Five Del Pezzo Surfaces). This example is due to
Skorobogatov [Sko93] (see also [BP04, 4.1]). Suppose that X is isomorphic to
P2 blown up at four points in linear general position, which can be taken to be
p1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1], and p4 = [1, 1, 1]. Let Ei, i = 1, . . . , 4
denote the exceptional curves and Eij the proper transforms of the lines joining pi,
with class Eij = L − Ei − Ej . Skorobogatov shows there exist normalizations of
the generators ηi5 ∈ Γ(OX(Ei)) and ηij ∈ Γ(OX(Eij)) such that

Cox(X) = k[η12, . . . , η45]/ 〈P1, P2, P3, P4, P5〉
where each Pi is a Plücker relation

Pi = ηjkηlm − ηjlηkm + ηjmηkl, {i, j, k, l,m} = {1, 2, 3, 4, 5}, j < k < l < m.

More geometrically, Cox(X) is the projective coordinate ring of the Grassmannian
G(1, 4) ⊂ P9.

Example 5.13 (E6 cubic surface). See [HT04, §3] for more details. Let S ⊂ P3

denote the (unique) cubic surface with a singularity of type E6

S = {(w, x, y, z) : xy2 + yw2 + z3 = 0} ⊂ P3

and σ : X → S its minimal resolution of singularities. Let E1, . . . , E6 denote
the exceptional curves of σ and � ⊂ X the proper transform of the unique line
{y = z = 0} ⊂ S. The effective cone here is simplicially generated by (−1)- and
(−2)-curves

NE1(X) = 〈�, E1, E2, E3, E4, E5, E6〉
but the corresponding elements ξ�, ξ1, . . . , ξ6 ∈ Cox(X) do not suffice to generate
it. In this case, for a suitable ordering of the Ei we have

Cox(X) � k[ξ1, ..., ξ6, ξ�, τ1, τ2, τ�]/〈τ�ξ3� ξ24ξ5 + τ22 ξ2 + τ31 ξ
2
1ξ3〉.
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We mention some other significant results:

• Batyrev and Popov [BP04] showed that the Cox ring of a Del Pezzo
surface X of degree d = 2, 3, 4, 5, 6 is generated by sections associated
with (−1)-curves on X. They show the relations (up to radical) are given
by quadratic expressions analogous to the Plücker-type relations above.
Furthermore, they conjectured that these quadratic relations actually gen-
erate the ideal of all relations.

• The Batyrev-Popov conjecture was proven for Del Pezzo surfaces of degree
d ≥ 4 and cubic surfaces without Eckardt points by Stillman, Testa, and
Velasco [STV07]. Derenthal [Der06a] has also made significant contri-
butions to our understanding of the relations in the Cox ring.

• Laface and Velasco [LV07] established the Batyrev-Popov conjecture when
d ≥ 2. Sturmfels and Xu [SX08] and Testa, Várilly-Alvarado, and Velasco
[TVAV08] address Del Pezzo surfaces of degree one.

• For d = 2, 3, 4, 5 the affine variety Spec(Cox(X)) can be related to ho-
mogeneous spaces G/P , where G is a simply-connected algebraic group
associated to the root system arising from K⊥

X ⊂ N1(S,Z) (cf. §3.3.) Here
P is the maximal parabolic subgroup associated to a representation of G
naturally connected with the (−1)-curves on X. (This generalized the re-
lation discussed between Grassmannians and Cox rings of degree-five Del
Pezzos.) See [SS07] and [Der07] for details, as well as [Pop01] for the
case of degree four.

• There are numerous examples of singular Del Pezzo surfaces (like the E6

cubic surface) whose Cox rings admit a single relation. These are classified
in [Der06b].

Exercises.

Exercise 5.5.1. LetX be the blow-up of P2 at three collinear points. Compute
generators and relations for Cox(X). Hint: You can find the answer in [Has04].
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Non-abelian descent

David Harari

Abstract. These notes are the written version of three one hour talks pre-
sented at the 2006 Clay summer school in Goettingen. They address the appli-
cation of the technique of non-abelian descent for rational points to bielliptic
and Enriques surfaces.

For any field k of characteristic zero, we fix an algebraic closure k̄ of k and we
set Γ := Gal (k̄/k) (we will sometimes write Γk for Γ if several fields are involved).
The group Γ is the inverse limit of the groups Gal (L/k) when L runs over all finite
Galois extensions of k. If k is a number field, we let Ωk denote the set of all places
of k, and kv the completion of k at v.

1. Review of non-abelian cohomology

In this section k is any field of characteristic zero. The main reference for the
non-abelian cohomology of groups is Serre’s book [Ser94], chapter I.5.

Let G be an algebraic group over k (all k-groups are assumed to be linear, but
not necessarily connected), and set G = G×k k̄.

Examples :

• G finite (defining G is the same as giving the abstract finite group G(k̄),
equipped with a continuous action of Γ for the profinite topology on Γ
and the discrete topology on G(k̄)), e.g., Z/n (cyclic group of order n
with trivial Galois action), µn (group of nth-roots of unity in k̄ with the
natural Galois action).

• G can be a k-torus (this means that G is isomorphic to some power of the
multiplicative group Gm), e.g., the 1-dimensional torus R1

K/kGm defined

by the affine equation x2 − ay2 = 1, where a ∈ k∗ is a constant and
K := k(

√
a). More generally, if L is a finite extension of k with k-basis

(ω1, ..., ωr), the (r−1) dimensional torus R1
L/kGm is defined by the affine

equation

NL/k(x1ω1 + · · ·+ xrωr) = 1

where x1, ..., xr are the variables.
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• G = PGLn (it is semi-simple and adjoint, that is, the center is trivial),
G = SLn (it is semi-simple and simply connected).

• G = O(q) (orthogonal group of a quadratic form q); this group is not
connected, there is an exact sequence of k-groups

1 → SO(q) → O(q) → Z/2 → 0

If the rank of q is at least 3, then SO(q) is semi-simple (but not simply
connected : its universal covering is Spin(q)); if q = 〈1,−a〉 is of rank 2,
then SO(q) is just the torus R1

K/kGm with K = k(
√
a).

We define the group H0(k,G) = H0(Γ, G(k̄)) = G(k). For example H0(Q, µn)
is trivial if n is odd. The Galois cohomology set H1(k,G) = H1(Γ, G(k̄)) is the
quotient of the set of 1-cocycles Z1(k,G) by an equivalence relation defined as
follows. The set Z1(k,G) consists of continuous maps f : Γ → G(k̄) satisfying the
cocycle condition

f(γ1γ2) = f(γ1) ·γ1f(γ2)

for each γ1, γ2 ∈ Γ. Two cocycles f, g are equivalent if there exists b ∈ G(k̄) such
that f(γ) = b−1g(γ)γb for every γ ∈ Γ. There is no canonical group structure on
H1(k,G) if G is not commutative, but there is a distinguished element (denoted
0), namely, the class of the trivial cocycle. Therefore H1(k,G) is a pointed set.

Remark: The continuity assumption implies that

H1(k,G) = lim−→
L

H1(Gal (L/K), G(L))

where L runs over the finite Galois extensions of k.

Other definition of H1(k,G). It is also possible to define H1(k,G) as the set
of isomorphism classes of principal homogeneous spaces (p.h.s.) of G over k. By
definition such a p.h.s. is a non-empty set A, equipped with a left action of Γ and
a simply-transitive right action of G(k̄), such that the compatibility formula

γ(x.g) = γ(x) · γ(g)

holds for every γ ∈ Γ, x ∈ A, g ∈ G(k̄).

The correspondence between the two definitions goes as follows :
Let γ �→ cγ be a cocycle in Z1(k,G). Then define A as the p.h.s. with underlying

set G(k̄), but the twisted action of Γ defined by γ(x) = cγ ·γx (and G(k̄) acts on
the right on A). One checks that cohomologous cocycles give isomorphic p.h.s.

Conversely if A is a p.h.s. of G over k, choose a point x0 ∈ A; then for each
γ ∈ Γ, there exists a unique cγ ∈ G(k̄) such that γ(x0) = x0 · cγ . This defines a
cocycle in Z1(k,G), and the cohomology class of this cocycle does not depend on
x0; moreover isomorphic p.h.s. also give cohomologous cocycles.

Remark: In the case we consider, any p.h.s. A is representable by the k-variety
X defined as the quotient of G ×k k̄ by the action of Γ corresponding to A (the
quotient exists because a group variety is quasi-projective). The k-variety X is a
k-form of G := G ×k k̄ (that is X � G), and the p.h.s. A is trivial iff X(k) �= ∅;
the latter is also equivalent to the existence of x0 ∈ A such that γ(x0) = x0 for all
γ ∈ Γ.

Properties of H1(k,G).
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• The set H1(k,G) is covariant in G (easy with the cocycle definition), and
in k (it is contravariant in Spec k): if k ⊂ L is an inclusion of fields, then
there is a map H1(k,G) → H1(L,G), induced by the map X �→ X ×k L
from isomorphism classes of k-p.h.s. to isomorphism classes of L-p.h.s.

• If

1 → G1 → G2 → G3 → 1

is an exact sequence of k-groups (this means that the sequence of groups
1 → G1(k̄) → G2(k̄) → G3(k̄) → 1 is exact), then there is an exact
sequence of pointed sets

1 → G1(k) → G2(k) → G3(k) → H1(k,G1) → H1(k,G2) → H1(k,G3).

In the special case when G1 is central in G2, this sequence can be extended
with a map H1(k,G3) → H2(k,G1), but this map is not a morphism of
groups in general, even if G1 and G3 are abelian.

Remark: “Exact sequence” of pointed sets means that the image of a map is
the kernel of the following map; it can happen that a map has trivial kernel but is
not injective.

Examples.

• By Hilbert’s Theorem 90, we have H1(k,GLn) = H1(k, SLn) = 0.
• If T is a non-split torus, it can happen that H1(k, T ) �= 0. For example
if T = R1

K/kGm, we have H1(k, T ) = k∗/NK∗; to see this, write T

as the kernel of the norm map RK/kGm → Gm (where RK/k stands for
Weil’s restriction), and use Hilbert’s Theorem 90 (by Shapiro’s lemma, the
cohomology group H1(k,RK/kGm) is isomorphic to H1(K,Gm) (hence

it is zero) because (RK/kGm)(k̄) is the Galois module induced by k̄∗ and
the inclusion ΓK → Γk).

• Suppose G is a semi-simple, connected and simply connected group. Then
H1(k,G) = 0 when k is a p-adic field. For a number field k, the natural
map

H1(k,G) →
⊕
v∈ΩR

H1(kv, G)

is an isomorphism (Kneser/Harder/Chernousov). These are special cases
of “Serre’s conjecture II” (see [Ser94], III.3).

• The exact sequence 1 → Gm → GLn → PGLn → 1 is central. It induces
an exact sequence

1 → H1(k,PGLn) → H2(k,Gm) = Br k

Actually the theory of central simple algebras implies that the map from
H1(k,PGLn) to the Brauer group Br k is injective, its image is a subset
of the n-torsion (Br k)[n], and the union of the images of H1(k,PGLn) in
Br k is the whole Br k. By class field theory, the image of H1(k,PGLn) is
the whole (Br k)[n] when k is a p-adic field or a number field, but not in
general.
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2. Extension to étale cohomology

A reference for this section is Skorobogatov’s book [Sko01], I.5. See also
[HS02], section 4.

Let X be an algebraic k-variety. The cohomology set H1(X,G) is defined using
Čech cocycles for the étale topology. As in the case X = Spec k, the pointed set
H1(X,G) classifies isomorphism classes of (right) X-torsors (i.e. p.h.s.) under G.
Namely, such a torsor is a k-variety Y equipped with a faithfully flat morphism
f : Y → X and a right action of G on Y , such that G(k̄) acts simply transitively
on Yx̄ := f−1(x̄) for each geometric point x̄ ∈ X(k̄).

The functorial properties of H1(X,G) are as in the case X = Spec k, and there
is also the same behaviour relative to short exact sequences of k-groups (simply
replacing k by X). In particular the class [Y ] of a torsor Y in H1(X,G) is zero
iff Y is isomorphic to the trivial torsor X ×k G iff the morphism f : Y → X
has an X-section. If X ′ → X is a morphism of k-varieties, it induces a map
H1(X,G) → H1(X ′, G), which maps [Y ] to [Y ×X X ′]. A morphism of k-groups
G → H induces a map H1(X,G) → H1(X,H), such that the image of [Y ] is the
class of the contracted product Y ×G H, which is defined as the quotient of Y ×G
by the diagonal action

(y, g) · h := (y · h, h−1g)

of H.

Let m ∈ X(k) and [Y ] ∈ H1(X,G). The k-morphism Spec k → X corre-
sponding to m induces an evaluation map [Y ] �→ [Y ](m) ∈ H1(k,G), and we have
[Y ](m) = 0 iff the fibre Ym of the torsor Y → X has a k-point. More generally, for
every cocycle c ∈ Z1(k,G), the equality [Y ](m) = [c] holds iff [Y c](m) = 0, where
Y c is the twisted torsor of Y by c: it is an X-torsor under the twisted group Gc.
The group Gc is an inner form of G: namely, G

c
= G and the new Galois action on

Gc is given by γ(g) = cγ
γgc−1

γ for every γ ∈ Γ and g ∈ Gc(k̄) = G(k̄); the torsor Y c

is isomorphic to Y over k̄, but the Galois action on Y c is twisted via the formula

γ(y) =γy · c−1
γ

If G is abelian, then Gc = G and [Y c] = [Y ] − [c] in the abelian group H1(X,G).
We obtain the obvious (albeit important) descent statement:

Proposition 2.1. Let f : Y → X be a torsor under a k-group G. For each
c ∈ Z1(k,G), let f c : Y c → X be the corresponding twisted torsor. Then

X(k) =
⋃

[c]∈H1(k,G)

f c(Y c(k))

From now on we assume that k is a number field. Let X be a smooth variety
such that X(kv) �= ∅ for every completion kv of k. Let X(Ak) be the set of adelic
points of X; if X is projective this set is just

∏
v∈Ωk

X(kv). Let f : Y → X be a
torsor under a k-algebraic group G, and define

X(Ak))
f =

⋃
[c]∈H1(k,G)

f c(Y c(Ak))

In other words X(Ak)
f is the subset of X(Ak) consisting of those points (Pv) such

that the evaluation [Y ](Pv) ∈
∏

v∈Ωk
H1(kv, G) belongs to the diagonal image of

H1(k,G). In particular X(k) ⊂ X(Ak)
f , hence the condition X(Ak)

f = ∅ is an
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obstruction to the Hasse principle, the descent obstruction associated to the torsor
f : Y → X (or to the cohomology class [Y ] ∈ H1(X,G)).

Remark: This construction is not interesting if G is semi-simple and simply
connected, or if G is a split torus. Indeed, in these cases we have H1(k,G) = 0 for
every field k, hence X(Ak)

f = X(Ak).

Theorem 2.2 ([HS02], Th. 4.7). Assume further that X is projective. Then

X(Ak)
f contains the closure X(k) of X(k) in X(Ak).

This theorem is a consequence of the so-called Borel-Serre theorem in Galois
cohomology ([Ser94], III.4). If X is projective and X(Ak)

f �= X(Ak), we obtain
a descent obstruction to weak approximation.

A natural question is to compare these descent obstructions to the so-called
Brauer-Manin obstruction. Let X be a smooth and geometrically integral k-variety
and BrX = H2(X,Gm) its Brauer group (if X is the spectrum of a field F , then
BrX is just the classical Brauer group BrF of the field F ). The reciprocity law in
global class field theory yields an exact sequence

0 −→ Br k −→
⊕
v∈Ωk

Br kv

∑

v jv−→ Q/Z −→ 0

where jv : Br kv → Q/Z is the local invariant. Therefore, the set X(k) is a subset
of the subset

X(Ak)
Br := {(Pv) ∈ X(Ak), ∀α ∈ BrX,

∑
v∈Ωk

jv(α(Pv)) = 0}

In particular the conditionX(Ak)
Br = ∅ implies thatX(k) = ∅. This is the Brauer-

Manin obstruction to the Hasse principle. IfX is assumed to be projective, then the
set X(Ak)

Br contains X(k) ([CTS87], III.1) and the condition X(Ak)
Br �= X(Ak)

is the Brauer-Manin obstruction to weak approximation.

Special cases. a) The theory of descent developed by Colliot-Thélène and San-
suc [CTS87] (refined by Skorobogatov) implies that the Brauer-Manin obstruction
associated to Br 1X := ker[BrX → BrX] corresponds to considering all descent
obstructions associated to groups G of multiplicative type (i.e. commutative linear
groups whose connected component of 1 is a torus), see [HS02], Theorem 4.9.

b) There are examples of Brauer-Manin obstructions associated to “transcen-
dental” elements (that is, elements that do not vanish in BrX) of BrX ([Har96],
[Wit04]); they correspond to descent obstructions related to G = PGLn ([HS02],
Th. 4.10). This uses the exact sequence H1(X,GLn) → H1(X,PGLn) → BrX,
and a theorem of Gabber (cf. [dJ05]) saying that BrX is the union of the images
of H1(X,PGLn) in BrX.

c) For G finite and non-commutative, the descent obstruction can refine the
Brauer-Manin obstruction, that is, the set X(Ak)

Br can be strictly bigger than
X(Ak)

f . An example of this situation will be explained in the next section.

3. Bielliptic surfaces

3.1. First properties of bielliptic surfaces. Geometrically (that is, over
k̄), a bielliptic surface is the quotient of the product E1 ×E2 of two elliptic curves
by the free action of a finite group F (there are 7 possibilities for F , see for example
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[Bea78], VI.20). We shall say that a k-varietyX is a bielliptic surface ifX := X×kk̄
is a bielliptic surface. Then the geometric invariants of X are H2(X,OX) = 0 and
dimH1(X,OX) = 1. In particular the geometric Brauer group BrX is finite by
Grothendieck’s results ([Gro68]).

In these notes, we will restrict ourselves to the case F = Z/2. We consider
a bielliptic surface X over k, equipped with an étale covering Y with group Z/2,
such that Y is the product of two elliptic curves. In particular there is an exact
sequence associated to the geometric étale fundamental groups

1 → π1(Y ) → π1(X) → Z/2 → 1.

Unlike π1(Y ), π1(X) is not abelian. Indeed π1(Y ) is isomorphic to Ẑ4 and π1(X)ab

is of rank 2 because dimH1(X,OX) = 1.
Bielliptic surfaces were used by Colliot-Thélène, Skorobogatov and Swinnerton-

Dyer ([CTSSD97]) to disprove a conjecture of Mazur. Then Skorobogatov ex-
ploited the properties of these surfaces to give the first counterexample to the
Hasse principle not accounted for by the Brauer-Manin obstruction. In the next
subsection, we will summarize his construction.

3.2. Skorobogatov’s construction. The reference for this subsection is the
paper [Sko99].

Theorem 3.1 (Skorobogatov, 1997). There exists a bielliptic surface X over
k = Q such that X(Q) = ∅ but X(AQ)Br �= ∅.

The idea is as follows. Skorobogatov constructs a tower of coverings

Y ′ = C ′ ×D → Y = C ×D
f→ X

where C and D are curves of genus one with D(Q) �= ∅ (but C(Q) = ∅), with the
following properties. The map C ′ → C makes C ′ into a torsor under the finite
k-group E[2] consisting of 2-torsion points of an elliptic curve E, such that C ′ itself
is a k-torsor under E. The class [C ′] ∈ H1(k,E) is an element of order exactly
4 in the Tate-Shafarevich group X(E). Recall that by definition X(E) is the
subgroup of H1(k,E) corresponding to elements whose restriction to H1(kv, E) is
zero for every place v of k. In particular C ′ has points in every completion of k but
C ′(k) = ∅.

Now the proof of Theorem 3.1 essentially breaks into two steps.

a) Under some assumptions (mainly the fact that E(k) has no points of order
exactly 2), prove that (f ′)∗(BrX) ⊂ π∗(BrD), where f ′ is the map Y ′ → X and π
the projection Y ′ → D. This relies on careful computations of BrX � E[2] (hence
(BrX)Γ = 0) and of NSX. Then it is very easy to construct points in X(Ak)

Br : it
is sufficient to take the projection (Qv) of ((Pv), R) ∈ Y ′(Ak), where R ∈ D(k) and
(Pv) ∈ C ′(Ak)); indeed for α ∈ BrX such that (f ′)∗(α) = π∗(β) with β ∈ BrD,
we have ∑

v∈Ωk

jv(α(Qv)) =
∑
v∈Ωk

β(D)

(by functoriality) and β(D) = 0 because D is a rational point.

b) Prove that X(k) �= ∅. This uses a descent argument. Only Y and the twist
Y − of Y by (−1) ∈ H1(Q,Z/2) = Q∗/Q∗2 have points everywhere locally. Then
one shows by a direct computation that Y (Q) = Y −(Q) = ∅.
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3.3. Interpretation in terms of non-abelian torsors. In [Sko99] Sko-
robogatov explains his counterexample by an “iterated version” of the Brauer-
Manin obstruction. Namely, he shows that all twisted torsors Y c of Y → X satisfy
Y c(Ak)

Br = ∅. This implies Y c(k) = ∅, hence X(k) = ∅ by Proposition 2.1.

Actually (see [HS02], subsection 5.1 for a complete description of the situation)
the emptyness of Y (Ak)

Br corresponds to a descent obstruction associated to a
torsor g : Z → Y under a finite abelian k-group (which is a k-form of E[4]). The
composite map h = f ◦ g makes Z a torsor over X, but its structural group G is
not abelian (G is a semi-direct product E[4]� Z/2). We have X(Ak)

h = ∅, which
shows that the descent obstruction associated to a finite and non-abelian group can
refine the Brauer-Manin obstruction. The situation is different for commutative
groups or linear connected groups (see [Har02], Th. 2).

More generally, the fact that the geometric étale fundamental group π1(X) is
not abelian is often crucial to construct counterexamples as above. Here is a general
statement about weak approximation:

Theorem 3.2 ([Har00]). Let X be a smooth, projective and geometrically
integral k-variety with X(k) �= ∅. Assume that H2(X,OX) = 0 and that π1(X) is
not abelian. Assume further that the Albanese map (over k̄) is flat with connected

and reduced fibres. Then the closure X(k) of X(k) in X(Ak) is strictly smaller
than X(Ak)

Br .

The condition on the Albanese map is technical (anyway it holds as soon as
H1(X,OX) = 0, or dimH1(X,OX) = 1 and dimX ≥ 2), the important point here
being dimX > dimH1(X,OX).

For example, the theorem applies to any bielliptic surface. It works also for
some étale quotients of abelian varieties (in higher dimension), and for some elliptic
surfaces, as well as for certain general type surfaces. Nevertheless, constructing a
similar counterexample to the Hasse principle for a variety of general type remains
an open problem.

The idea to prove Theorem 3.2 is that the conditions on H1 and H2 mean
that the set X(Ak)

Br is sufficiently big. Then the condition on π1(X) yields a
descent obstruction (associated to a finite and non-abelian group) for some points
in X(Ak)

Br .

The theorem does not apply to Enriques surfaces (the geometric fundamental
group is Z/2). However we will see in the next sections that using torsors under an
extension of Z/2 by a torus, it is still possible to refine the Brauer-Manin obstruction
for such surfaces.

4. Composition of two torsors

From now on we follow the paper [HS05]. Our goal is to construct an Enriques
surface X over k and a torsor f : Z → X under a linear algebraic group G such that
X(Ak)

Br is not a subset of X(Ak)
f (in particular the Brauer-Manin obstruction

to weak approximation is not the only one). As mentioned before, the group G has
to be non-connected and non-commutative. Since we are going to define G as an
extension, it is necessary to know that under certain conditions, the composition
of two torsors is still a torsor. That is the aim of this section.
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Let Z → Y be a torsor under a k-torus T . Colliot-Thélène and Sansuc defined
the notion of type of the torsor Y : it is an element of HomΓ(T̂ ,PicY ), where T̂ is
the Galois module of characters of T = T×k k̄. To define the type, observe that each

element χ of T̂ = Hom(T ,Gm) induces a pushout χ∗([Z]) ∈ H1(Y ,Gm) = PicY of

the class [Z] ∈ H1(Y , T ); we obtain a homomorphism T̂ → PicY , which is clearly
Γ-equivariant: this is the type of the torsor Z. When PicY is torsion-free and T

is the Néron-Severi torus of Y (that is, T̂ is isomorphic to PicY ), Colliot-Thélène
and Sansuc also defined universal torsors as torsors whose type λ is an isomorphism
PicY → PicY (see for example [Sko01], (2.22) for more details).

Proposition 4.1 ([HS05]). Let X be a smooth, projective, geometrically in-
tegral k-variety. Let f : Y → X be a torsor under a finite k-group H, and let
p : Z → Y be a torsor under a k-torus T . Assume that the image Imλ ⊂ PicY of
the type λ of Z is H(k̄)-invariant (e.g. Z universal). Then there exist a k-group G
(extension of H by T ) such that f ◦ p : Z → X makes Z an X-torsor under G.

The special case of this proposition we are interested in is whenX is an Enriques
surface. In this case (assuming X(k) �= ∅), we have a Z/2-torsor f : Y → X, where
Y is a K3 surface, and a universal torsor Z → Y under the Néron-Severi torus of
Y . We obtain a torsor g : Z → X under a linear k-group G and an exact sequence

1 → T → G → Z/2 → 1

It can be shown ([HS05], page 9, example 3) that the group G is commutative if
and only if the map f∗ : PicX → PicY is surjective; this is the “generic” situation,
but not the one we are going to consider for our construction.

5. A family of Enriques surfaces of Kummer type

The main theorem is the following.

Theorem 5.1 ([HS05]). There exist an Enriques surface X over k = Q, a
torsor g : Z → X under a linear group G, and an adelic point (Pv) ∈ X(Ak)
such that (Pv) ∈ X(Ak)

Br but (Pv) �∈ X(Ak)
g. In particular the Brauer-Manin

obstruction to weak approximation is not the only one for X.

It is likely that there exists an Enriques surface X such that X(Ak)
Br �= ∅ and

X(k) = ∅ (via a descent obstruction associated to a torsor as in Theorem 5.1), but
no such example is known.

Let us explain briefly the construction leading to Theorem 5.1. We start with
genus one projective curves D1, D2 given by affine equations

y21 = d1(x
2 − a)(x2 − ab2)

y22 = d2(t
2 − a)(t2 − ac2)

where b, c, d1, d2 are constant elements of k∗, and a is a non-square element of k∗.
We also demand that b, c are not ±1. Note that the Jacobian varieties E1, E2 of D1,
D2 have all 2-torsion points defined over k. Let Y be the Kummer surface defined
as the minimal desingularization of (D1 ×D2)/(−1), where (−1) is the involution
induced by multiplication by −1 on D1 and D2. Namely, the K3 surface Y is a
minimal smooth and projective model of the affine variety

y2 = d(x2 − a)(x2 − ab2)(t2 − a)(t2 − ac2)
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where d = d1d2. It is equipped with the fixed-point-free involution σ : (x, t, y) �→
(−x,−t,−y), and the quotient X = Y/σ is an Enriques surface (the associated
morphism Y → X will be denoted f).

Under very mild conditions on the constants a, b, c, d1, d2, we obtain that the
elliptic curves E1 and E2 are not k̄-isogenous (one just has to check that the modular
invariant j1 of E1 is not integral over Z[j2], where j2 is the modular invariant of
E2). From this we deduce the following important fact:

Proposition 5.2. There exist 24 lines on Y , defined over L = k(
√
a), such

that:
a) PicY is generated by the classes of these 24 lines.
b) The action of the Enriques involution σ on the 24 lines coincides with the

action of Gal (L/k).

The property b) is especially interesting, because it simplifies computations of
group cohomology related to X. For example we can now show the following result:

Proposition 5.3. Let Br 1X = ker[BrX → BrX]. Then f∗(Br 1X) consists
of constants (i.e. elements of Im [Br k → BrY ]).

Proof: We have Br 1X/Br k = H1(k,PicX) (cf. [Sko01], Corollary 2.3.9). The
image of this group inH1(k,PicY ) = Br 1Y/Br k factors throughH1(k,PicX/tors)
because PicY is torsion-free. Thus it is sufficient to prove that H1(k,PicX/tors) =
0. The Hochschild-Serre spectral sequence associated to f̄ : Y → X yields an exact
sequence

0 → Z/2 → PicX → (PicY )σ → 0

(here we are using H2(Z/2, k̄∗) = Ĥ0(Z/2, k̄∗) = 0). Therefore PicX/tors =
(PicY )σ is a lattice with trivial Galois action because the Galois action on PicY
coincides with the action of σ thanks to Proposition 5.2. It follows that

H1(k,PicX/tors) = 0.

Since X is a projective surface satisfying H2(X,OX) = 0 and NSX = Z/2,
Grothendieck’s results [Gro68] imply that BrX = Z/2. The most difficult part in
[HS05] consists of proving that the non-trivial element of BrX does not come from
an element of BrX, which means BrX = Br 1X. This holds as soon as neither −d
nor −ad is a square in k∗. Using Proposition 5.3 and functoriality, we obtain

Proposition 5.4. Assume that neither −d nor −ad is a square in k∗. Then
the projection on X of every adelic point (Nv) ∈ Y (Ak) belongs to X(Ak)

Br .

The end of the proof of Theorem 5.1 consists of finding an adelic point (Nv)
on Y such that (Nv) �∈ Y (Ak)

p, where p : Z → Y is a universal torsor. This is
possible for example for k = Q, a = 5, b = 13, c = 2, d = 1. Using Prop 4.1, we
obtain a torsor g : Z → X under a group G by composing p with f : Y → X.
The group G is an extension of Z/2 by a torus, but it is not commutative. Finally
a Galois cohomology computation (sort of non-commutative “diagram-chasing”)
shows that the property (Nv) �∈ Y (Ak)

p implies that (Mv) := f(Nv) does not
belong to X(Ak)

g, although it is an element of X(Ak)
Br by Proposition 5.4.
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Remark: Actually, instead of working with a universal torsor it is easier to
work with a torsor of another type (satisfying the assumptions of Proposition 4.1),
which is associated to the 1-dimensional torus R1

L/kGm. Then G is a k-form of an

orthogonal group O2.

6. A summary of results, conjectures, and questions

The following summarizes what is known, what should be true, and what is
completely unknown about the Hasse principle and weak approximation on surfaces.
Notice that for geometrically simply connected varieties, descent obstructions as-
sociated to linear groups cannot refine the Brauer-Manin obstruction because of
[Har02], Th.2.

• Rational surfaces: it has been conjectured by Colliot-Thélène and Sansuc
that the Brauer-Manin obstruction to the Hasse principle and weak ap-
proximation is the only one. Several significant cases are known (Châtelet
surfaces, conic bundles with at most 5 degenerate fibres [CTSSD87a,
CTSSD87b], [CT90], [SS91]).

• Abelian surfaces (with finite Tate-Shafarevich group): The Brauer-Manin
obstruction to the Hasse principle is the only one, and the same results
holds for weak approximation if archimedean places are not taken into
account ([Man71], [Wan96]).

• Bielliptic surfaces: The Brauer-Manin obstruction to the Hasse princi-
ple is not the only one ([Sko99]), and similarly for weak approxima-
tion ([Har00]). The descent obstruction (associated to a finite non-
commutative group) can refine the Brauer-Manin obstruction.

• K3 surfaces: since a K3 surface is geometrically simply connected, de-
scent obstructions do not refine Brauer-Manin obstruction according to
[Har02], Th. 2. (but “transcendental” obstructions can play a role, see
[Wit04]). I have no clear idea whether the Brauer-Manin obstruction
should be the only one (neither for Hasse principle nor for weak approxi-
mation).

• Enriques surfaces: The descent obstruction (associated to a non-connected
linear group) can refine the Brauer-Manin obstruction, which is not the
only one for weak approximation ([HS05]). It is likely (but not known)
that the same should hold for the Hasse principle.

• Elliptic surfaces with Kodaira dimension 1: the Brauer-Manin obstruction
is not the only one for weak approximation, because of descent obstruc-
tions associated to finite non-commutative groups ([Har00]). The same
should hold for the Hasse principle.

• General type surfaces: the situation is the same as for elliptic surfaces
with Kodaira dimension 1.
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[Har02] David Harari, Groupes algébriques et points rationnels, Math. Ann. 322 (2002),
no. 4, 811–826. MR MR1905103 (2003e:14038)

[HS02] D. Harari and A. N. Skorobogatov, Non-abelian cohomology and rational points,
Compositio Math. 130 (2002), no. 3, 241–273. MR 1887115 (2003b:11056)

[HS05] , Non-abelian descent and the arithmetic of Enriques surfaces, Int. Math.
Res. Not. (2005), no. 52, 3203–3228. MR 2186792 (2006m:14031)

[Man71] Yu. I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne, Actes
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Mordell-Weil Problem for Cubic Surfaces, Numerical
Evidence

Bogdan G. Vioreanu

Abstract. Let V be a plane smooth cubic curve over a finitely generated
field k. The Mordell-Weil theorem for V states that there is a finite subset
P ⊂ V (k) such that the whole V (k) can be obtained from P by drawing secants
and tangents through pairs of previously constructed points and consecutively
adding their new intersection points with V. In this paper we present numerical
data regarding the analogous statement for cubic surfaces. For the surfaces
examined, we also test Manin’s conjecture relating the asymptotics of rational
points of bounded height on a Fano variety with the rank of the Picard group
of the surface.

1. Introduction

Let V be a smooth cubic surface over a field k in P3. If x, y, z ∈ V (k) are three
points (with multiplicities) lying on a line in P3 not belonging to V, we write x =
y ◦ z. Thus ◦ is a partial and multivalued composition law on V (k). Note that x◦x
is defined as the set of points in the intersection of V (k) with the tangent plane at
x. If x does not lie on a line, this is a cubic curve C(x) with double point x ∈ V (k).
This whole set must be considered as the domain of the multivalued expression
x◦x, because geometrically all its points can be obtained by drawing tangents with
k-rational direction to x. This means that an important source for generating new
rational points on the cubic surface will be doubling the points that were already
generated. The analogue of the Mordell-Weil theorem for cubic surfaces states that
(V (k), ◦) is finitely generated, i.e., there is a finite subset P ⊂ V (k) such that the
whole V (k) can be obtained from P by drawing secants and tangent planes through
pairs of (not necessarily distinct) previously constructed points, and consecutively
adding their new intersection points with V. By drawing secants we can add only
one rational point to P, while tangent sections give us an infinite number of points
that can be generated, by the note above. For a more thorough discussion of
various versions of finite generation cf. [KM01]. Note that, by Theorem 11.7 of
[Man86], finite generation of (V (k), ◦) implies that the universal quasi-group of
(V (k), ◦), as defined in [Man86], chapter II, is finite and has 2n3m elements for
some n,m ∈ Z≥0.
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In the following, we present the procedure we used to test whether (V (Q), ◦) is
finitely generated, and the results we obtained for thirteen diagonal cubic surfaces,
six of them having the rank of their Picard group equal to 1, and seven of them
mentioned in [PT01], illustrating the cases of surfaces with ranks 2 and 3 of the
Picard group. We also bring numerical evidence supporting Manin’s conjecture
for the asymptotics of rational points of bounded height on a Fano variety. Note
that John Slater and Sir Peter Swinnerton-Dyer have proved in [SP98] a one-sided
estimate for the conjecture in the case when V contains two rational skew lines.
All the computations were done using the Magma computer algebra system (cf.
[BCP97].)

2. Description of the procedure

Let ax3+by3+cz3+du3 = 0, where a, b, c, d are nonzero integers, be a diagonal
cubic surface. Using a program due to Dan Bernstein (see [Ber01]), we find all
rational points on this surface up to height H = 105 or H = 1.5 · 105, where the
height of a rational point P = (x : y : z : u), with x, y, z, u ∈ Z and gcd(x, y, z, u) =
1 is defined as

hmax(P ) := max{|x| , |y| , |z| , |u|} .
We consider also another height function hsum : V (Q) −→ R+ defined by

hsum(P ) := |x|+ |y|+ |z|+ |u| .
Note that a rational point P can be uniquely written in the above form up to
a sign change of the coordinates. So, if we assume, in addition, that the first
nonzero coordinate of P is positive, then there is a unique such ‘canonical’ form
corresponding to each point P. We order the rational points by increasing hsum.
If there are two or more points having the same height hsum, then we order them
lexicographically according to their coordinates in the canonical form. This defines
a total order on the set of rational points. We will write P < Q if P precedes Q in
the sorted list, and use the number of a point in this list as its name. We will also
refer to this number as the index of a rational point.

We will use the hmax height function only to study the asymptotics of the
number of rational points on a cubic surface, while for the ordering of the points
and in the implementation of the main function we will use hsum.

For testing whether a given set of rational points is generating, we use the
procedure Test Generating Set (TGS), which is described below.

The procedure implements essentially a descent method. Given an index bound
n and a set of points GeneratedSet that is presumably generating, we perform
the following iterative process. In one iteration of loop, we consider all points
in the range {1, . . . , n} that are not in GeneratedSet and test whether they can
be decomposed as x ◦ y, with x, y ∈ GeneratedSet. Every point that can be
decomposed in such a way is added to the GeneratedSet and at the end of the
loop, the procedure is reiterated. As now GeneratedSet is bigger, there may be
additional points in the range {1, . . . , n} that can be generated because we can
choose the points x, y for a possible decomposition from a bigger set. The procedure
is repeated until GeneratedSet stabilizes, i.e., until some iteration of the loop does
not add any new points to the GeneratedSet.

In order to avoid repeating some operations of composing points, we use the
additional variablesOldGeneratedSet, JustAdded andDecomp. OldGeneratedSet
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stores the value of GeneratedSet at the beginning of the iteration of the loop.
At the end of the preceding loop, a number of points will have been added to
GeneratedSet. These points are stored in the set variable JustAdded. During an
iteration of the loop, we store in Decomp decompositions of the type i = j ◦ k,
with i, j, k ≤ n, i, k /∈ GeneratedSet and j ∈ GeneratedSet. These are the only
decompositions that we could further use. Indeed, if, at some point, k was added
to GeneratedSet, then by searching in Decomp, we would find the decomposition
j ◦k of i and we would add i to GeneratedSet without performing any composition
of points (which requires multiplications, so is computationally expensive) because
we know, by the way we constructed Decomp, that j ∈ GeneratedSet already.

Receiving as input the parameters GeneratedSet (a set of points in V (Q) that
is assumed to be generating), and n (the index bound for the points used in the
decompositions), the TGS procedure does the following:

(1) Set Decomp = ∅, OldGeneratedSet = ∅.
(2) Set JustAdded = GeneratedSet \OldGeneratedSet,

OldGeneratedSet = GeneratedSet.
(3) If JustAdded = ∅, return GeneratedSet.
(4) For every point i ∈ {1, 2, . . . , n} \GeneratedSet do:

search in Decomp for decompositions of i as x◦y with y ∈ JustAdded
if such a decomposition exists, add i to GeneratedSet
else for every point j in JustAdded do:

k = i ◦ j
if k ∈ JustAdded

add i to GeneratedSet
break

else if k ≤ n add the decomposition (j ◦ k) of i to Decomp
end for

end for.
(5) Go to step 2.

Let us explain in more detail the way the algorithm works. Suppose that
an iteration of the outer loop has just finished, and we are in step 2. We set
JustAdded = GeneratedSet\OldGeneratedSet and test whether this is the empty
set. If this is so, then during the last iteration we could not generate any new points,
so the maximum set of points that can be generated is the current GeneratedSet.
If JustAdded is not empty, then during the last iteration we found a number of
new points that could be generated and added them to GeneratedSet (these are the
elements of JustAdded), so there is hope of generating other points. We consider a
point i /∈ GeneratedSet. Since we have already tested during the previous iteration
whether we could decompose i as x ◦ y, with x, y ∈ OldGeneratedSet, all we have
to check now is whether we can write i = x ◦ y for x ∈ JustAdded and either
y ∈ OldGeneratedSet or y ∈ JustAdded. At the previous iterations of the loop
all compositions of i with points in OldGeneratedSet that could further be used
(i.e., compositions whose result is not bigger than n) were stored in Decomp, so
we can check for the first possibility by searching in the vector Decomp. Since
by construction we only store in Decomp decompositions of the type x ◦ y, with
x ∈ GeneratedSet, all we have to check in the beginning of step 4 is whether
y ∈ JustAdded–we are sure that x ∈ GeneratedSet. In order to check for the second
possibility, we have to compose i with every point j ∈ JustAdded. If the result k of
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the composition is in JustAdded, then we can write x as a composition of two points
in JustAdded, so we add i to GeneratedSet. If the result k /∈ JustAdded, but could
be further used (i.e., k ≤ n), then we store the corresponding decomposition j ◦ k
of i in Decomp. The ‘out of bounds’ compositions, i.e., such that i ◦ j > n, are
implicitly remembered in the process (in the sense that they are done only once.)

Using the vector Decomp of course implies a trade off between space and speed,
but we considered the latter to be more important. Even with Decomp, the compu-
tations for TGS for bounds n in the range of 105 last for several days and sometimes
even weeks on an Intel Pentium IV processor with 2.26 GHz.

Before we proceed with the presentation of the results, let us provide an esti-
mate of the height of the composition of two rational points. Here by h we mean
either hmax or hsum since the estimation of the asymptotics does not depend on the
choice of the height function.

Lemma 2.1. Let V : ax3 + by3 + cz3 + du3 = 0 be a diagonal cubic surface,
where a, b, c, d are nonzero integers, and let K := max{|a| , |b| , |c| , |d|}. If A1 and
A2 are two distinct points in V (Q) that do not lie on a line in V , then

h(A1 ◦A2) = O(K · h(A1)
2 · h(A2)

2) .

Proof: Let A1 = (x1 : y1 : z1 : u1), A2 = (x2 : y2 : z2 : u2) be in canonical form.
Then one can check that

A1 ◦A2 = (αx1 − βx2 : αy1 − βy2 : αz1 − βz2 : αu1 − βu2) ,

where

α = ax1x
2
2 + by1y

2
2 + cz1z

2
2 + du1u

2
2 ∈ Z ,

β = ax2
1x2 + by21y2 + cz21z2 + du2

1u2 ∈ Z .

Since the above coordinates of A1◦A2 are integers, the conclusion follows. This up-
per bound cannot be improved because, in most cases, the formula given represents
A1 ◦A2 in canonical form (up to a sign change of the coordinates).

Concerning the doubling of points, if A ∈ V (Q) is a rational point not lying
on a line in V , then there is no upper bound for the height of the points in A ◦ A
(since there are infinitely many such points). On the other hand, there can be many
points of small height in A ◦A, especially if A has small height.

3. Results

Listed below are the thirteen diagonal cubic surfaces that were tested for finite
generation, ordered according to the ranks of their Picard groups:

Rank 1 Picard group:

(1) x3 + 2y3 + 3z3 + 4u3 = 0.

(2) x3 + 2y3 + 3z3 + 5u3 = 0.

(3) 17x3 + 18y3 + 19z3 + 20u3 = 0.

(4) 4x3 + 5y3 + 6z3 + 7u3 = 0.

(5) 9x3 + 10y3 + 11z3 + 12u3 = 0.

(6) x3 + 5y3 + 6z3 + 10u3 = 0.

Rank 2 Picard group:
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(7) x3 + y3 + 2z3 + 4u3 = 0.

(8) x3 + y3 + 5z3 + 25u3 = 0.

(9) x3 + y3 + 3z3 + 9u3 = 0.

Rank 3 Picard group:

(10) x3 + y3 + 2z3 + 2u3 = 0.

(11) x3 + y3 + 5z3 + 5u3 = 0.

(12) x3 + y3 + 7z3 + 7u3 = 0.

(13) 2x3 + 2y3 + 3z3 + 3u3 = 0.

The first six cubic surfaces illustrate the case of Picard group of rank 1. The
third surface was considered as an example of a diagonal cubic surface with bigger
coefficients. The lack of success in finding a generating set for this surface (as
opposed to all the other surfaces examined by that point) motivated the study of the
surfaces 4–5, which have coefficients of intermediate value between the coefficients
of the first, successful surface, and the third, problematic one. Surface 6 is aimed
to illustrate the case of surfaces with ‘random’ coefficients. The remaining seven
surfaces were taken from [PT01] as examples of cubic surfaces with the ranks of
the Picard group 2 and 3.

In order to find a suitable generating set G to begin with, we tested several
small sets for finite generation up to a small index n (n = 100, or n = 1000). We
observed that, if the set G generates more than 80% − 90% of the first n points
for a small n, then this is a good indicator that the set G will generate roughly
the same percentage of all points up to a much bigger index bound N (which we
took to be either 5 · 104 or 105). We chose the initial small sets to be the set of
points of indices {1, 2, 3, 4}. If this did not yield a large enough percentage of points
generated, we would enlarge the initial set to G = {1, 2, 3, 4, 5}, and continue this
way. Generally, we were ‘lucky’, in the sense that a few tries would provide us with
a good generating set G (a set G that generates most of the first n points.) Then
we would eliminate from G the ‘superfluous’ points, i.e., the points that could be
obtained by composing other points in G. This is the reason for which, for example,
the first surface has G = {3} instead of G = {1, 2, 3, 4}: the points of indices 1, 2
and 4 lie in the tangent plane at the point of index 3.

At first, the only exception was the surface 3, which represents, at least com-
putationally, a problem. Having added the surfaces 4–5, we noticed that it is hard
to find a generating set using this naive method for these surfaces as well.

The generating sets we found are given in Table 1; these are listed both as sets
of indices and as sets of rational points. Here, and in all subsequent tables, the
label ‘S’ stands for ‘surface’.

Before we go on and list the results we obtained using the TestGeneratingSet
procedure, let us provide an indication of the asymptotics of the number of points
on each cubic surface up to some height H. Note that, as we used Dan Bernstein’s
program to find rational points on the diagonal cubic surfaces, here ‘height’ refers to
hmax. The asymptotics of the number of points seems to be related to the percentage
of points that can be generated up to some height. For the last seven surfaces, we
did not take into consideration the points on the trivial rational lines, i.e., points
of the type (x : −x : y : −y), except for the point (1 : −1 : 0 : 0) on the surfaces 7–9
and the points (1 : −1 : 0 : 0), (0 : 0 : 1 : −1), (1 : −1 : 1 : −1) and (1 : −1 : −1 : 1)
on the surfaces 10–13, which we need for finite generation.
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Table 1. Generating sets

S G as set of indices G as set of points

1 {3} { (1 : −1 : −1 : 1) }
2 {1, 2, 4} { (0 : 1 : 1 : −1), (1 : 1 : −1 : 0), (2 : −2 : 1 : 1) }
6 {2} { (1 : −1 : −1 : 1) }
7 {3} { (1 : −1 : −1 : 1) }
8 {1, 2} { (1 : −1 : 0 : 0), (1 : 4 : −2 : −1) }
9 {1, 2, 4} { (1 : −1 : 0 : 0), (1 : 2 : 0 : −1), (1 : 2 : −3 : 2) }
10 {5, 6} { (1 : −1 : −1 : 1), (1 : −1 : 1 : −1) }
11 {3, 4} { (1 : −1 : −1 : 1), (1 : −1 : 1 : −1) }
12 {1, 2, 5, 6} { (0 : 0 : 1 : −1), (1 : −1 : 0 : 0), (1 : −1 : −1 : 1),

(1 : −1 : 1 : −1) }
13 {1, 2, 3, 4, 5} { (0 : 0 : 1 : −1), (1 : −1 : 0 : 0), (1 : −1 : −1 : 1),

(1 : −1 : 1 : −1), (3 : −6 : 1 : 5) }

Table 2. Data on points of bounded height

S Number of points up to height
100 200 500 1000 2000 5000 10000 20000 50000 100000

1 77 163 436 906 1827 4408 8754 17332 43280 86329
2 180 358 855 1683 3244 8097 16436 32704 82581 166825
3 16 25 62 117 204 502 1055 2084 5479 10840
4 37 78 206 414 778 1937 3877 7756 19701 39433
5 37 67 165 310 595 1580 3148 6257 15499 31134
6 55 120 316 646 1285 3131 6397 12753 32072 64102
7 196 458 1308 2746 6004 16758 35958 75984 205284 433526
8 142 292 766 1734 3872 10892 23338 49608 135128 286040
9 200 438 1270 2768 6200 17434 37018 78980 215626 455164
10 666 1630 5410 12870 29926 89218 205198 465226 1364810 3051198
11 412 1012 3328 7964 18676 56412 131512 299776 881774 1976482
12 702 1870 6010 14130 33156 100580 228696 520700 1526532 3420784
13 384 1052 3196 7752 18400 56348 130476 298860 876776 1966160

Table 2 includes intermediate results of the number of points up to different
height limits. These results seem to confirm Manin’s conjecture relating the asymp-
totics of rational points of bounded height on a Fano variety with the rank of the
Picard group of the surface (see [FMT89]:)

#{P ∈ V (Q) : h(P ) < H} ∼ CH logrkPic(V )−1 H

for H −→ ∞, where h is an anticanonical height on V .
For the surfaces with rank of the Picard group equal to 1 we computed, ad-

ditionally, the number of rational points up to slightly greater height limits, as
summarized in Table 3 (‘-’ means ‘not computed’.)

Relevant to our claim that these results seem to confirm Manin’s conjecture
are the graphs (Figures 1, 2, and 3) based on the tables above. In all graphs,

we plotted the number of points up to height H divided by H logrkPic(V )−1 H for
various values of H. The conjecture would be verified if the plotted points would
become arbitrarily close, in the limit, to a line parallel to the Ox axis, of equation
y = C, where C is the constant predicted by Manin’s conjecture. For a conjecture
about the value of this constant, see [PT01].
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Table 3. Additional data for surfaces with Picard group of rank one

S Number of points up to height
150000 200000 250000 300000

1 129473 − − −
2 250286 − − −
3 16123 21627 27026 32507
4 59100 78498 − −
5 46436 61958 77518 93079
6 96065 − − −
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Figure 1. Surfaces with Picard group of rank 1

In the remaining, by ‘height’ we mean hsum.
Note that for the surfaces with rank of the Picard group equal to two, most of

the points are ‘doubled’, i.e., if (x : y : z : u) is a point on the cubic surface, then so
is (y : x : z : u), while for the surfaces with rank of the Picard group equal to three,
most of the points are ‘quadrupled’, i.e., if (x : y : z : u) is a point on the cubic
surface, then so are (y : x : z : u), (x : y : u : z) and (y : x : u : z). In the following
we list the results which were obtained using the TestGeneratingSet procedure. The
generating sets used are the ones enumerated above, while the index bounds and the
corresponding height bounds are given in the third and second columns of Table 4.
‘# iter’ is the number of iterations of the outer loop of the procedure, and the
‘first bad point’ refers to the point of smallest index that could not be generated
by the procedure. For example, the first line in the table reads “The procedure
TestGeneratingSet called for surface 1, with index bound 100 corresponding to the
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Figure 2. Surfaces with Picard group of rank 2
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Figure 3. Surfaces with Picard group of rank 3

height bound 317, and initial generating set G = {3} (or G = { (1 : −1 : −1 : 1) }),
generates 74 rational points, which represents 74.0% of the first 100 points, in
4 iterations of the outer loop. The point of smallest height which could not be
generated has index 30 and height 86.”
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Table 4. Statistics on the points generated by our potential gen-
erating set

Surface Height Index # points % points # iter First bad point
bound bound generated generated Index Height

1 317 100 74 74.0 4 30 86
1 617 200 160 80.0 9 30 86
1 1, 443 500 463 92.6 16 42 130
1 2, 788 1, 000 923 92.3 15 255 788
1 5, 574 2, 000 1, 859 93.0 14 543 1, 541
1 14, 456 5, 000 4, 747 94.9 15 1, 145 3, 192
1 29, 074 10, 000 9, 462 94.6 14 1, 593 4, 423
1 58, 775 20, 000 18, 957 94.8 14 3, 633 10, 322
1 147, 343 50, 000 47, 418 94.8 13 8, 522 24, 677
1 296, 822 100, 000 94, 910 94.9 13 8, 522 24, 677
2 150 100 97 97.0 7 85 124
2 282 200 196 98.0 9 90 134
2 703 500 483 96.6 8 258 364
2 1, 477 1, 000 973 97.3 9 358 511
2 3, 020 2, 000 1931 96.6 9 625 943
2 7, 663 5, 000 4, 813 96.3 10 1, 040 1, 542
2 15, 405 10, 000 9, 659 96.6 11 1, 775 2, 656
2 30, 651 20, 000 19, 259 96.3 11 4, 262 6, 539
2 75, 845 50, 000 48, 181 96.3 11 10, 073 15, 539
2 151, 171 100, 000 96, 477 96.5 12 15, 223 23, 243
6 388 100 86 86.0 5 49 209
6 762 200 176 88.0 5 49 209
6 1, 864 500 468 93.6 10 169 641
6 3, 687 1, 000 937 93.7 11 181 688
6 7, 557 2, 000 1, 867 93.3 11 513 1, 926
6 18, 976 5, 000 4, 677 93.6 11 1, 078 3, 984
6 37, 612 10, 000 9, 410 94.1 11 2, 271 8, 661
6 74, 617 20, 000 18, 963 94.8 11 2, 662 10, 125
6 186, 532 50, 000 47, 436 94.9 12 6, 373 24, 068
7 129 100 100 100.0 6 − −
7 245 200 194 97.0 6 127 167
7 538 500 490 98.0 8 304 376
7 980 1, 000 990 99.0 7 550 612
7 1, 889 2, 000 1, 984 99.2 7 1, 022 992
7 4, 230 5, 000 4, 974 99.5 7 2, 620 2, 401
7 7, 974 10, 000 9, 934 99.3 8 5, 610 4, 707
7 14, 775 20, 000 19, 934 99.7 8 7, 512 6, 222
7 34, 339 50, 000 49, 880 99.8 7 19, 666 14, 554
7 64, 682 100, 000 99, 812 99.8 8 38, 212 26, 672
7 94, 215 150, 000 149, 744 99.8 9 38, 212 26, 672
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Table 5. Statistics on the points generated by our potential gen-
erating set, contd.

Surface Height Index # points % points # iter First bad point
bound bound generated generated Index Height

8 172 100 81 81.0 6 42 78
8 316 200 170 85.0 8 56 104
8 750 500 488 97.6 9 152 234
8 1, 412 1, 000 988 98.8 8 516 774
8 2, 484 2, 000 1, 960 98.0 8 516 774
8 5, 632 5, 000 4, 922 98.4 9 1, 855 2, 322
8 10, 354 10, 000 9, 874 98.7 8 3, 708 4, 296
8 19, 444 20, 000 19, 836 99.2 8 6, 852 7, 538
8 44, 750 50, 000 49, 720 99.4 8 16, 058 15, 812
8 84, 436 100, 000 99, 626 99.6 9 32, 420 30, 072
9 114 100 48 48.0 4 8 24
9 242 200 198 99.0 9 126 146
9 522 500 484 96.8 9 318 346
9 978 1, 000 956 95.6 11 379 414
9 1, 822 2, 000 1, 968 98.4 9 781 770
9 3, 878 5, 000 4, 954 99.1 9 1, 602 1, 472
9 7, 254 10, 000 9, 936 99.4 9 3, 728 3, 046
9 13, 610 20, 000 19, 908 99.5 9 10, 420 7, 522
9 31, 320 50, 000 49, 806 99.6 8 21, 142 14, 342
9 58, 852 100, 000 99, 778 99.8 9 32, 036 20, 884

10 61 100 92 92.0 3 79 51
10 91 200 200 100.0 3 − −
10 214 500 496 99.2 5 419 184
10 358 1, 000 980 98.0 6 651 255
10 612 2, 000 1, 996 99.8 5 1, 791 554
10 1, 225 5, 000 4, 940 98.8 5 2, 259 674
10 2, 143 10, 000 9, 916 99.2 6 3, 675 976
10 3, 806 20, 000 19, 852 99.3 6 5, 779 1, 396
10 8, 020 50, 000 49, 732 99.5 7 20, 870 3, 949
11 94 100 89 89.0 5 61 56
11 144 200 184 92.0 5 61 56
11 274 500 492 98.4 6 257 174
11 474 1, 000 988 98.8 6 757 382
11 802 2, 000 1, 960 98.0 6 1, 177 528
11 1, 688 5, 000 4, 924 98.5 7 1, 495 642
11 2, 882 10, 000 9, 888 98.9 8 3, 873 1, 386
11 5, 100 20, 000 19, 732 98.7 9 6, 207 2, 004
11 10, 880 50, 000 49, 544 99.1 9 11, 737 3, 308
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Table 6. Statistics on the points generated by our potential gen-
erating set, contd.

Surface Height Index # points % points # iter First bad point
bound bound generated generated Index Height

12 48 100 96 96.0 4 95 46
12 92 200 192 96.0 4 95 46
12 186 500 476 95.2 5 223 106
12 286 1, 000 956 95.6 6 223 106
12 484 2, 000 1, 969 98.5 5 964 284
12 1, 014 5, 000 4, 911 98.2 6 2, 315 548
12 1, 740 10, 000 9, 880 98.8 6 3, 486 764
12 3, 066 20, 000 19, 832 99.2 7 4, 030 856
12 6, 514 50, 000 49, 532 99.1 7 16, 064 2, 578
13 106 100 96 96.0 4 41 75
13 167 200 196 98.0 5 169 153
13 316 500 484 96.8 6 169 153
13 515 1, 000 980 98.0 6 572 360
13 910 2, 000 1, 944 97.2 6 860 465
13 1, 885 5, 000 4, 896 97.9 7 1, 937 897
13 3, 310 10, 000 9, 780 97.8 7 3, 102 1, 323
13 5, 727 20, 000 19, 672 98.4 7 4, 785 1, 816
13 12, 139 50, 000 48, 256 96.5 8 8, 202 2, 805

Note that, in general, when using a greater index bound we found that the ‘first
bad point’ changed (i.e., another point of greater height and index became the ‘first
bad point’), meaning that using stepping stones of bigger height typically fills up
the gaps obtained when using a lower index bound. This is a good indicator that
if we continue increasing the index (and thus the height) bounds, we will gradually
generate all the points up to bigger and bigger heights.

Let us see now what happens with the ‘problematic surfaces’ 3–5. The data is
displayed in Table 7. Unfortunately, any try of finding a generating set to begin
with, that finds ‘first bad points’ of increasing height, and that generates a percent-
age of points similar to the ones obtained for the ‘good’ surfaces was not successful.
Not even a ‘brute force’ approach like considering the initial GeneratedSet to be,
say, the first 100 or 1000 points does not yield satisfactory results. The results
are better for the surfaces 4–5 than for the surface 3, with the biggest coefficients,
but still very ‘bad’. In Table 7 we provide an illustration of the behavior of these
surfaces when starting with the GeneratedSet = {1, 2, . . . , 10}.

These results seem to support either that {1, 2, . . . , 10} is not a generating set
for any of the three surfaces, or that the stepping stones needed to fill up the gaps
(i.e., the rational points needed to decompose the ‘first bad points’) have very big
heights. Although the percentages of generated points obtained for the surfaces 4–5
are slightly better than the percentages for the surface 3, they still become smaller
and smaller as the index bound limit (and so also the height) grow. But the most
important negative indicator is that ‘the first bad point’ never changes.
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Table 7. Statistics for the ‘problematic surfaces’

Surface Height Index # points % points # iter First bad point
bound bound generated generated Index Height

3 2, 161 100 17 17.0 2 13 203
3 5, 495 200 24 12.0 2 13 203
3 13, 429 500 35 7.0 2 13 203
3 25, 874 1, 000 49 4.9 2 13 203
3 51, 663 2, 000 81 4.1 2 13 203
3 124, 062 5, 000 154 3.1 2 13 203
3 251, 103 10, 000 274 2.7 2 13 203
3 505, 619 20, 000 429 2.1 2 13 203
4 658 100 26 26.0 1 12 50
4 1, 345 200 50 25.0 2 12 50
4 3, 307 500 102 20.4 2 12 50
4 6, 774 1, 000 172 17.2 3 12 50
4 13, 772 2, 000 284 14.2 3 12 50
4 34, 552 5, 000 487 9.7 3 12 50
4 68, 425 10, 000 781 7.8 3 12 50
4 135, 691 20, 000 1, 222 6.1 4 12 50
5 844 100 19 19.0 1 13 103
5 1, 691 200 26 13.0 2 13 103
5 4, 394 500 51 10.2 2 13 103
5 8, 780 1, 000 80 8.0 2 13 103
5 16, 962 2, 000 119 6.0 2 13 103
5 43, 224 5, 000 216 4.3 2 13 103
5 87, 176 10, 000 338 3.4 3 13 103
5 174, 128 20, 000 538 2.7 3 13 103

In order to make progress, we introduced another approach to finding a gen-
erating set for the surfaces 3–5, based on the idea of ‘throwing in’ (adding to the
Generated Set) the first bad points if they cannot be generated by decomposition.
Our aim is to obtain, after adding sufficiently many ‘first bad points’, a set of points
that generates a stable (or even better, increasing) percentage of points for increas-
ing index bounds, and a ‘changing first bad point’ behavior, i.e., applying the TGS
procedure to increasing index bounds would result in finding ‘first bad points’ of
increasing heights.

We implement this new approach in the following way. We apply the TGS
procedure to a (small) generating set and an index bound of 1000. We obtain a
‘first bad point’ that unfortunately stays the same when increasing the index bound
(as observed when using our first approach). We apply again the TGS procedure
to the initial generating set and this first bad point, with an index bound of 1000.
We obtain another ‘first bad point’, of bigger index and height than the initial one.
We add this point to our generating set (which now contains also the initial ‘first
bad point’) and continue this way. We stop when we have added sufficiently many
‘first bad points’ to our initial set so that this new, bigger generating set fulfills the
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two objectives mentioned above. Once we have obtained such a set, we stop adding
points to our generating set and just increase the index bounds to make sure the
percentage of generated points is indeed stable or increasing, and that the height
of the ‘first bad point’ grows as the index bound is increased.

For example, for surface 4, we start with Generated Set = {1, 2, . . . , 10}. We
obtain the first bad point 12, which is stable–stays the same even if we increase the
index bound. We add it to the Generated Set and call again the TGS procedure.
We obtain more points, and another first bad point. We add this new bad point to
the Generated Set and continue this way, gradually filling the holes. At first we kept
the index bound constant, until we obtained a reasonable percentage of generated
points. Then we tested whether the ‘first bad point’ changes when increasing the
index bound and keeping the initial Generated Set constant (i.e., we stopped filling
the holes, and just increased the index bound.) For surfaces 4 and 5 this approach
seems reasonably successful, as reflected in Tables 8 and 9.

Unfortunately, for surface 3 this approach does not seem to work. After adding
many more ‘first bad points’ to the initial generating set than for the surfaces 4–5,
we still did not obtain a ‘good’ generating set, as illustrated in Table 10.

Since this process was too slow, we tried ‘throwing’ in our Generated Set not
only the first bad point, but the first 10 bad points at every step (see Table 11).

This was again too slow, so we started inserting the first 20 bad points to our
Generated Set (see Table 12).

Next we present other statistical data.
It seems that the percentage of points on a surface that can be strongly decom-

posed (a point x is strongly decomposable if it has a decomposition x = y ◦ z with
y, z < x) up to some index N is approximately constant for various values of N .
This suggests that this percentage may be an invariant for the surface.

It seems likely that if this percentage is bigger then TestGeneratingSet will
generate more points (up to some index), using a suitable GeneratedSet. This is
confirmed if we study the first two surfaces. Surface 1 has roughly N

8 points that
are not strongly decomposable up to the index N (for N ≥ 1000), while the surface
2 has only ∼ N

11 such points; and indeed, if we compare the results of TGS for the
two surfaces, we notice that TGS for the surface 2 generates more points (up to the
same index) than TGS for the surface 1. Also, note that the percentage of points
that are strongly decomposable for the surface 3 is very small (approximately 10%.)
This may be one of the explanations for our lack of success with this surface.

4. Conclusion

The theory surrounding the Mordell-Weil problem for cubic surfaces seems
not very well developed, mainly because of the difficulties caused by the lack of a
group structure on the operation of composing points. In this paper we presented
numerical data for thirteen diagonal cubic surfaces, in the hope of developing some
intuition on a possible finiteness conjecture (first mentioned by Manin, cf. [Man86]
and [Man97]). For each of the surfaces, we tried to find a generating set. A naive
method gave positive results for ten of the surfaces, while a more rigorous method
was needed to obtain similar (but not as positive) results for two of the other
surfaces. For these surfaces, the numerical data suggest that they might be indeed
finitely generated. The remaining surface resisted both methods. We cannot say,
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Table 8. Analysis of surface 4 using ‘TGS’ procedure

Surface Height Index # points % points # iter First bad point
bound bound generated generated Index Height

4 6, 774 1, 000 172 17.2 3 12 50
4 6, 774 1, 000 177 17.7 3 13 55
4 6, 774 1, 000 194 19.4 4 14 63
4 6, 774 1, 000 210 21.0 4 15 73
4 6, 774 1, 000 218 21.8 4 20 107
4 6, 774 1, 000 230 23.0 4 21 108
4 6, 774 1, 000 237 23.7 4 22 110
4 6, 774 1, 000 249 24.9 5 23 125
4 6, 774 1, 000 268 26.8 6 25 179
4 6, 774 1, 000 282 28.2 6 27 193
4 6, 774 1, 000 296 29.6 6 28 199
4 6, 774 1, 000 325 32.5 13 32 215
4 6, 774 1, 000 328 32.8 13 35 249
4 6, 774 1, 000 335 33.5 13 37 262
4 6, 774 1, 000 338 33.8 13 43 297
4 6, 774 1, 000 342 34.2 13 49 317
4 6, 774 1, 000 349 34.9 13 52 329
4 6, 774 1, 000 351 35.1 13 58 370
4 6, 774 1, 000 353 35.3 13 62 396
4 6, 774 1, 000 360 36.0 13 66 413
4 6, 774 1, 000 372 37.2 13 69 438
4 6, 774 1, 000 394 39.4 18 73 467
4 6, 774 1, 000 400 40.0 18 76 487
4 34, 552 5, 000 1, 331 26.6 38 89 570
4 68, 425 10, 000 2, 769 27.7 50 92 611
4 135, 691 20, 000 6, 365 31.8 53 189 1, 230
4 204, 042 30, 000 10, 142 33.8 50 233 1, 605
4 271, 092 40, 000 14, 403 36.0 45 324 2, 115
4 339, 994 50, 000 18, 409 36.8 51 352 2, 387

however, whether this means that the surface is not finitely generated, or that this
is just a sign of the limits of the methods used.
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Table 9. Analysis of surface 5 using ‘TGS’ procedure

Surface Height Index # points % points # iter First bad point
bound bound generated generated Index Height

5 8, 780 1, 000 80 8.0 2 13 103
5 8, 780 1, 000 87 8.7 3 14 111
5 8, 780 1, 000 100 10.0 3 15 112
5 8, 780 1, 000 114 11.4 6 16 122
5 8, 780 1, 000 142 14.2 8 17 125
5 8, 780 1, 000 149 14.9 8 18 126
5 8, 780 1, 000 157 15.7 8 19 127
5 8, 780 1, 000 170 17.0 8 21 150
5 8, 780 1, 000 175 17.5 8 23 168
5 8, 780 1, 000 177 17.7 8 25 177
5 8, 780 1, 000 207 20.7 16 27 188
5 8, 780 1, 000 211 21.1 16 28 190
5 8, 780 1, 000 219 21.9 16 32 211
5 8, 780 1, 000 223 22.3 16 37 276
5 8, 780 1, 000 230 23.0 16 39 298
5 8, 780 1, 000 232 23.2 16 44 350
5 8, 780 1, 000 236 23.6 16 45 363
5 8, 780 1, 000 237 23.7 16 46 367
5 8, 780 1, 000 242 24.2 16 47 369
5 8, 780 1, 000 268 26.8 16 56 427
5 8, 780 1, 000 276 27.6 16 57 431
5 8, 780 1, 000 282 28.2 16 59 445
5 8, 780 1, 000 311 31.1 16 60 464
5 8, 780 1, 000 313 31.3 16 62 487
5 8, 780 1, 000 319 31.9 16 66 581
5 8, 780 1, 000 337 33.7 16 68 595
5 8, 780 1, 000 339 33.9 16 69 602
5 8, 780 1, 000 347 34.7 16 75 631
5 8, 780 1, 000 356 35.6 16 76 637
5 8, 780 1, 000 365 36.5 16 84 695
5 8, 780 1, 000 369 36.9 16 87 719
5 8, 780 1, 000 380 38.0 16 88 733
5 8, 780 1, 000 385 38.5 16 91 745
5 8, 780 1, 000 390 39.0 16 93 771
5 8, 780 1, 000 409 40.9 16 96 801
5 8, 780 1, 000 413 41.3 16 103 862
5 43, 224 5, 000 1, 881 37.6 29 118 1, 015
5 87, 176 10, 000 3, 650 36.5 32 145 1, 197
5 174, 128 20, 000 7, 236 36.2 37 295 2, 554
5 262, 052 30, 000 11, 367 37.9 44 325 2, 774
5 349, 121 40, 000 15, 842 39.6 44 461 3, 988
5 437, 046 50, 000 20, 103 40.2 35 461 3, 988
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Table 10. Surface 3 remains problematic after adding the ‘first
bad point’ at every step

Surface Height Index # points % points # iter First bad point
bound bound generated generated Index Height

3 25, 874 1, 000 49 4.9 2 13 203
3 25, 874 1, 000 52 5.2 2 14 248
3 25, 874 1, 000 54 5.4 2 15 260
3 25, 874 1, 000 57 5.7 2 16 264
3 25, 874 1, 000 60 6.0 2 18 335
3 25, 874 1, 000 62 6.2 2 19 337
3 25, 874 1, 000 64 6.4 2 20 383
3 25, 874 1, 000 66 6.6 2 21 413
3 25, 874 1, 000 67 6.7 2 22 433
3 25, 874 1, 000 69 6.9 2 23 434
3 25, 874 1, 000 71 7.1 2 26 526
3 25, 874 1, 000 73 7.3 2 27 573
3 25, 874 1, 000 76 7.6 2 28 605
3 25, 874 1, 000 77 7.7 2 29 630
3 25, 874 1, 000 78 7.8 2 31 699
3 25, 874 1, 000 80 8.0 2 32 711
3 25, 874 1, 000 82 8.2 2 35 754
3 25, 874 1, 000 85 8.5 2 36 772
3 25, 874 1, 000 86 8.6 2 37 775
3 25, 874 1, 000 88 8.8 2 39 808
3 25, 874 1, 000 90 9.0 2 40 819
3 25, 874 1, 000 93 9.3 2 41 853
3 25, 874 1, 000 95 9.5 2 42 868
3 25, 874 1, 000 98 9.8 2 43 872
3 25, 874 1, 000 99 9.9 2 44 895
3 25, 874 1, 000 100 10.0 2 45 895
3 25, 874 1, 000 106 10.6 3 48 1, 021
3 25, 874 1, 000 108 10.8 3 49 1, 032
3 25, 874 1, 000 109 10.9 3 50 1, 042
3 25, 874 1, 000 110 11.0 3 51 1, 061
3 25, 874 1, 000 111 11.1 3 52 1, 062
3 25, 874 1, 000 112 11.2 3 53 1, 079
3 25, 874 1, 000 113 11.3 3 54 1, 097
3 25, 874 1, 000 116 11.6 3 55 1, 120
3 25, 874 1, 000 117 11.7 3 56 1, 131
3 25, 874 1, 000 118 11.8 3 58 1, 226
3 25, 874 1, 000 120 12.0 3 59 1, 270
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Table 11. Or the first ten bad points

Surface Height Index # points % points # iter First bad point
bound bound generated generated Index Height

3 25, 874 1, 000 137 13.7 3 69 1, 496
3 25, 874 1, 000 151 15.1 3 82 1, 741
3 25, 874 1, 000 164 16.4 3 95 2, 110
3 25, 874 1, 000 177 17.7 2 107 2, 458
3 25, 874 1, 000 187 18.7 2 118 2, 753
3 25, 874 1, 000 207 20.7 5 134 3, 039
3 25, 874 1, 000 220 22.0 5 146 3, 391
3 25, 874 1, 000 233 23.3 5 160 3, 928
3 25, 874 1, 000 243 24.3 5 174 4, 686
3 25, 874 1, 000 255 25.5 5 184 4, 865
3 25, 874 1, 000 268 26.8 5 197 5, 257

Table 12. Or even the first twenty bad points

Surface Height Index # points % points # iter First bad point
bound bound generated generated Index Height

3 25,874 1,000 301 30.1 5 226 6,309
3 25,874 1,000 325 32.5 5 248 6,811
3 25,874 1,000 347 34.7 5 269 7,255
3 25,874 1,000 367 36.7 5 290 7,873
3 25,874 1,000 388 38.8 5 314 8,592
3 25,874 1,000 409 40.9 5 338 9,134
3 25,874 1,000 434 43.4 5 359 9,673
3 51,663 2,000 536 26.8 5 359 9,673
3 124,062 5,000 734 14.7 5 359 9,673
3 251,103 10,000 985 9.9 5 359 9,673
3 505,619 20,000 1,298 6.5 7 359 9,673



Higher-Dimensional 
Varieties





Clay Mathematics Proceedings
Volume 8, 2009

Algebraic varieties with many rational points

Yuri Tschinkel

Abstract. We survey rational points on higher-dimensional algebraic vari-
eties, addressing questions about existence, density, and distribution with re-
spect to heights. Key examples for existence and density problems include
hypersurfaces, complete intersections, and K3 surfaces. For varieties closely
related to linear algebraic groups, e.g., equivariant compactifications of groups
and homogeneous spaces, questions concerning the asymptotic distribution of
points of bounded height are closely related to adelic harmonic analysis on the
groups. On the other hand, analytic techniques lead naturally to investiga-
tions of global geometric invariants of the underlying varieties, studied in the
context of the minimal model program.
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Introduction

Let f ∈ Z[t, x1, . . . , xn] be a polynomial with coefficients in the integers. Con-
sider

f(t, x1, . . . , xn) = 0,

as an equation in the unknowns t, x1, . . . , xn or as an algebraic family of equations in
x1, . . . , xn parametrized by t. We are interested in integer solutions: their existence
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and distribution. Sometimes the emphasis is on individual equations, e.g.,

xn + yn = zn,

sometimes we want to understand a typical equation, i.e., a general equation in some
family. To draw inspiration (and techniques) from different branches of algebra
it is necessary to consider solutions with values in other rings and fields, most
importantly, finite fields Fq, finite extensions of Q, or the function fields Fp(t) and
C(t). While there is a wealth of ad hoc elementary tricks to deal with individual
equations, and deep theories focusing on their visible or hidden symmetries, our
primary approach here will be via geometry.

Basic geometric objects are the affine space An and the projective space Pn =(
An+1 \ 0

)
/Gm, the quotient by the diagonal action of the multiplicative group.

Concretely, affine algebraic varieties Xaff ⊂ An are defined by systems of polyno-
mial equations with coefficients in some base ring R; their solutions with values
in R, Xaff(R), are called R-integral points. Projective varieties are defined by ho-
mogeneous equations, and Xproj(R) = Xproj(F ), the F -rational points on Xproj,
where F is the fraction field of R. The geometric advantages of working with “com-
pact” projective varieties translate to important technical advantages in the study
of equations, and the theory of rational points is currently much better developed.

The sets of rational points X(F ) reflect on the one hand the geometric and
algebraic complexity of X (e.g., the dimension of X), and on the other hand the
structure of the ground field F (e.g., its topology, analytic structure). It is im-
portant to consider the variation of X(F ′), as F ′ runs over extensions of F , either
algebraic extensions or completions. It is also important to study projective and
birational invariants of X, its birational models, automorphisms, fibration struc-
tures, deformations. Each point of view contributes its own set of techniques, and
it is the interaction of ideas from a diverse set of mathematical cultures that makes
the subject so appealing and vibrant.

The focus in these notes will be on smooth projective varieties X defined over
Q, with many Q-rational points. Main examples are varieties Q-birational to Pn

and hypersurfaces in Pn of low degree. We will study the relationship between the
global geometry of X over C and the distribution of rational points in the Zariski
topology and with respect to heights. Here are the problems we face:

• Existence of solutions: local obstructions, the Hasse principle, global ob-
structions;
• Density in various topologies: Zariski density, weak approximation;
• Distribution with respect to heights: bounds on smallest points, asymp-
totics.

Here is the road map of the paper. Section 1 contains a summary of basic
terms from complex algebraic geometry: main invariants of algebraic varieties,
classification schemes, and examples most relevant to arithmetic in dimension ≥ 2.
Section 2 is devoted to the existence of rational and integral points, including
aspects of decidability, effectivity, local and global obstructions. In Section 3 we
discuss Lang’s conjecture and its converse, focusing on varieties with nontrivial
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endomorphisms and fibration structures. Section 4 introduces heights, counting
functions, and height zeta functions. We explain conjectures of Batyrev, Manin,
Peyre and their refinements. The remaining sections are devoted to geometric and
analytic techniques employed in the proof of these conjectures: universal torsors,
harmonic analysis on adelic groups, p-adic integration and “estimates”.

Acknowledgments. I am very grateful to V. Batyrev, F. Bogomolov, U. Deren-
thal, A. Chambert-Loir, J. Franke, J. Harris, B. Hassett, A. Kresch, Yu. Manin,
E. Peyre, J. Shalika, M. Strauch and R. Takloo-Bighash for the many hours of
listening and sharing their ideas. Partial support was provided by National Science
Foundation Grants 0554280 and 0602333.

1. Geometry background

We discuss basic notions and techniques of algebraic geometry that are com-
monly encountered by number theorists. For most of this section, F is an al-
gebraically closed field of characteristic zero. Geometry over algebraically closed
fields of positive characteristic, e.g., algebraic closure of a finite field, differs in sev-
eral aspects: difficulties arising from inseparable morphisms, “unexpected” maps
between algebraic varieties, additional symmetries, lack (at present) of resolution of
singularities. Geometry over nonclosed fields, especially number fields, introduces
new phenomena: varieties may have forms, not all constructions descend to the
ground field, parameter counts do not suffice. In practice, it is “equivariant geom-
etry for finite groups”, with Galois symmetries acting on all geometric invariants
and special loci. The case of surfaces is addressed in detail in [Has].

1.1. Basic invariants. LetX be a smooth projective algebraic variety over F .
Over ground fields of characteristic zero we can pass to a resolution of singularities
and replace any algebraic variety by a smooth projective model. We seek to isolate
invariants of X that are most relevant for arithmetic investigations.

There are two natural types of invariants: birational invariants, i.e., invariants
of the function field F (X), and projective geometry invariants, i.e., those arising
from a concrete representation of X as a subvariety of Pn. Examples are the
dimension dim(X), defined as the transcendence degree of F (X) over F , and the
degree of X in the given projective embedding. For hypersurfaces Xf ⊂ Pn the
degree is simply the degree of the defining homogeneous polynomial. In general, it
is defined via the Hilbert function of the homogeneous ideal, or geometrically, as the
number of intersection points with a general hyperplane of codimension dim(X).

The degree alone is not a sensitive indicator of the complexity of the variety:
Veronese embeddings of P1 ↪→ Pn exhibit it as a curve of degree n. In general, we
may want to consider all possible projective embeddings of a variety X. Two such
embeddings can be “composed” via the Segre embedding Pn × Pm → PN , where
N = nm+n+m. For example, we have the standard embedding P1×P1 ↪→ P3, with
image a smooth quadric. In this way, projective embeddings of X form a “monoid”;
the corresponding abelian group is the Picard group Pic(X). Alternatively, it is the
group of isomorphism classes of line bundles on X. Cohomologically, in the Zariski
(or étale) topology,

Pic(X) = H1(X,Gm),
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where Gm is the sheaf of invertible functions. Yet another description is

Pic(X) = Div(X)/ (C(X)∗/C∗) ,

where Div(X) is the free abelian group generated by codimension one subvarieties of
X, and C(X)∗ is the multiplicative group of rational functions ofX, each f ∈ C(X)∗

giving rise to a principal divisor div(f) (divisor of zeroes and poles of f). Sometimes
it is convenient to identify divisors with their classes in Pic(X). Note that Pic is

a contravariant functor: a morphism X̃ → X induces a homomorphism of abelian
groups Pic(X)→ Pic(X̃). There is an exact sequence

1→ Pic0(X)→ Pic(X)→ NS(X)→ 1,

where the subgroup Pic0(X) can be endowed with the structure of a connected pro-
jective algebraic variety. The finitely generated group NS(X) is called the Néron-
Severi group of X. In most applications in this paper, Pic0(X) is trivial.

Given a projective variety X ⊂ Pn, via an explicit system of homogeneous
equations, we can easily write down at least one divisor on X, a hyperplane section
L in this embedding. Another divisor, the divisor of zeroes of a differential form of
top degree on X, can also be computed from the equations. Its class KX ∈ Pic(X),

i.e., the class of the line bundle Ω
dim(X)
X , is called the canonical class. In general, it is

not known how to write down effectively divisors whose classes are not proportional
to linear combinations of KX and L. This can be done for some varieties over Q,
e.g., smooth cubic surfaces in X3 ⊂ P3 (see Section 1.9), but already for smooth
quartics X4 ⊂ P3 it is unknown how to compute even the rank of NS(X) (for some
partial results in this direction, see Section 1.10).

Elements in Pic(X) corresponding to projective embeddings generate the ample
cone Λample(X) ⊂ Pic(X)R := Pic(X)⊗ R; ample divisors arise as hyperplane sec-
tions of X in a projective embedding. The closure Λnef(X) of Λample(X) in Pic(X)R
is called the nef cone. An effective divisor is a sum with nonnegative coefficients
of irreducible subvarieties of codimension one. Their classes span the effective cone
Λeff(X); divisors arising as hyperplane sections of projective embeddings of some
Zariski open subset of X form the interior of Λeff(X). These cones and their com-
binatorial structure encode important geometric information. For example, for all
divisors D ∈ Λnef(X) and all curves C ⊂ X, the intersection number D · C ≥ 0
[Kle66]. Divisors on the boundary of Λample(X) give rise to fibration structures
on X; we will discuss this in more detail in Section 1.4.

Example 1.1.1. Let X be a smooth projective variety, Y ⊂ X a smooth subva-
riety and π : X̃ = BlY (X)→ X the blowup of X in Y , i.e., the complement in X̃
of the exceptional divisor E := π−1(Y ) is isomorphic to X \ Y , and E itself can be
identified with the projectivized normal cone to X at Y . Then

Pic(X̃) � Pic(X)⊕ ZE

and
KX̃ = π∗(KX) +O((codim(Y )− 1)E)

(see [Har77, Exercise 8.5]). Note that

π∗(Λeff(X)) ⊂ Λeff(X̃),

but that pullbacks of ample divisors are not necessarily ample.
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Example 1.1.2. Let X ⊂ Pn be a smooth hypersurface of dimension ≥ 3 and
degree d. Then Pic(X) = NS(X) = ZL, generated by the class of the hyperplane
section, and

Λample(X) = Λeff(X) = R≥0L.

The canonical class is

KX = −(n+ 1− d)L.

Example 1.1.3. If X is a smooth cubic surface over an algebraically closed
field, then Pic(X) = Z7. The anticanonical class is proportional to the sum of 27
exceptional curves (lines):

−KX =
1

9
(D1 + · · ·+D27).

The effective cone Λeff(X) ⊂ Pic(X)R is spanned by the classes of the lines.
On the other hand, the effective cone of a minimal resolution of the singular

cubic surface

x0x
2
3 + x2

1x3 + x3
2 = 0

is a simplicial cone (in R7) [HT04].

Example 1.1.4. Let G be a connected solvable linear algebraic group, e.g., the
additive group G = Ga, an algebraic torus G = Gd

m or the group of upper triangular
matrices. Let X be an equivariant compactification of G, i.e., there is a morphism
G × X → X extending the action G × G → G of G on itself. Using equivariant
resolution of singularities, if necessary, we may assume that X is smooth projective
and that the boundary

X \G = D =
⋃
i∈I

Di, with Di irreducible,

is a divisor with normal crossings. Every divisor D on X is equivalent to a divisor
with support in the boundary since it can be “moved” there by the action of G (see
e.g. [CLT02, Proposition 1.1]. Thus Pic(X) is generated by the components Di,
and the relations are given by functions with zeroes and poles supported in D, i.e.,
by the characters X∗(G). We have an exact sequence

(1.1) 0→ X
∗(G)→

⊕
i∈I

ZDi
π−→ Pic(X)→ 0

The cone of effective divisors Λeff(X) ⊂ Pic(X)R is the image of the simplicial cone⊕
i∈I R≥0Di under the projection π. The anticanonical class is

−KX =
⊕
i∈I

κiDi, with κi ≥ 1, for all i.

For unipotent G one has κi ≥ 2, for all i [HT99].

For higher-dimensional varieties without extra symmetries, the computation
of the ample and effective cones, and of the position of KX with respect to these
cones, is a difficult problem. A sample of recent papers on this subject is: [CS06],
[Far06], [FG03], [Cas07], [HT03], [HT02a], [GKM02]. However, we have the
following fundamental result (see also Section 1.4):
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Theorem 1.1.5. Let X be a smooth projective variety with −KX ∈ Λample(X).
Then Λnef(X) is a finitely generated rational cone. If −KX is big and nef then
Λeff(X) is finitely generated.

Finite generation of the nef cone goes back to Mori (see [CKM88] for an intro-
duction). The result concerning Λeff(X) has been proved in [Bat92] in dimension
≤ 3, and in higher dimensions in [BCHM06] (see also [Ara05], [Leh08]).

1.2. Classification schemes. In some arithmetic investigations (e.g., Zariski
density or rational points) we rely mostly on birational properties of X; in others
(e.g., asymptotics of points of bounded height), we need to work in a fixed projective
embedding.

Among birational invariants, the most important are those arising from a com-
parison of X with a projective space:

(1) rationality: there exists a birational isomorphism X ∼ Pn, i.e., an isomor-
phism of function fields F (X) = F (Pn), for some n ∈ N;

(2) unirationality: there exists a dominant map Pn ��� X;
(3) rational connectedness: for general x1, x2 ∈ X(F ) there exists a morphism

f : P1 → X such that x1, x2 ∈ f(P1).

It is easy to see that

(1)⇒ (2)⇒ (3).

Over algebraically closed ground fields, these properties are equivalent in dimension
two, but (may) diverge in higher dimensions: there are examples with (1) �= (2) but
so far no examples with (2) �= (3). Finer classifications result when the ground field
F is not assumed to be algebraically closed, e.g., there exist unirational but not
rational cubic surfaces over nonclosed fields. The first unirational but not rational
threefolds over C were constructed in [IM71] and [CG72]. The approach of [IM71]
was to study the group Bir(X) of birational automorphisms of X; finiteness of
Bir(X), i.e., birational rigidity, implies nonrationality.

Interesting unirational varieties arise as quotients V/G, where V = An is a
representation space for a faithful action of a linear algebraic group G. For ex-
ample, the moduli space M0,n of n points on P1 is birational to (P1)n/PGL2.
Moduli spaces of degree d hypersurfaces X ⊂ Pn are naturally isomorphic to
P(Symd(An+1))/PGLn+1. Rationality of V/G is known as Noether’s problem. It
has a positive solution for G being the symmetric group Sn, the group PGL2

[Kat82], [BK85], and in many other cases [SB89], [SB88]. Counterexamples for
some finite G were constructed in [Sal84], [Bog87]; nonrationality is detected by
the unramified Brauer group, Brun(V/G), closely related to the Brauer group of the
function field Br(F (V/G)) = H2

ét(F (V/G),Gm).
Now we turn to invariants arising from projective geometry, i.e., ample line

bundles on X. For smooth curves C, an important invariant is the genus g(C) :=
dim(H0(C,KC)). In higher dimensions, one considers the Kodaira dimension

(1.2) κ(X) := lim sup
log(dim(H0(X,nKX)))

log(n)
,
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and the related graded canonical section ring

(1.3) R(X,KX) =
⊕
n≥0

H0(X,nKX).

A fundamental theorem is that this ring is finitely generated [BCHM06].
A very rough classification of smooth algebraic varieties is based on the position

of the anticanonical class with respect to the cone of ample divisors. Numerically,
this is reflected in the value of the Kodaira dimension. There are three main cases:

• Fano: −KX ample, with κ(X) = −∞;
• general type: KX ample, κ(X) = dim(X);
• intermediate type, e.g., κ(X) = 0.

The qualitative behavior of rational points on X mirrors this classification (see
Section 3). In our arithmetic applications we will mostly encounter Fano varieties
and varieties of intermediate type.

For curves, this classification can be read off from the genus: curves of genus 0
are of Fano type, of genus 1 of intermediate type, and of genus ≥ 2 of general type.
Other examples of varieties in each group are:

• Fano: Pn, smooth degree d hypersurfaces Xd ⊂ Pn, with d ≤ n;
• general type: hypersurfaces Xd ⊂ Pn, with d ≥ n + 2, moduli spaces of
curves of high genus and abelian varieties of high dimension;
• intermediate type: abelian varieties, Calabi-Yau varieties.

There are only finitely many families of smooth Fano varieties in each dimension
[KMM92]. On the other hand, the universe of varieties of general type is boundless
and there are many open classification questions already in dimension 2.

In finer classification schemes such as the Minimal Model Program (MMP)
it is important to take into account fibration structures and mild singularities (see
[KMM87] and [Cam04]). Analogously, in many arithmetic questions, the passage
to fibrations is inevitable (see Section 4.14). These often arise from the section rings

(1.4) R(X,L) =
⊕
n≥0

H0(X,nL).

Consequently, one considers the Iitaka dimension

(1.5) κ(X,L) := lim sup
log(dim(H0(X,nL)))

log(n)
.

Finally, a pair (X,D), where X is smooth projective and D is an effective divisor in
X, gives rise to another set of invariants: the log Kodaira dimension κ(X,KX +D)
and the log canonical ring R(X,KX +D), whose finite generation is also known in
many cases [BCHM06]. Again, one distinguishes

• log Fano: κ(X,−(KX +D)) = dim(X);
• log general type: κ(X,KX +D) = dim(X);
• log intermediate type: none of the above.

This classification has consequences for the study of integral points on the open
variety X \D.
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1.3. Singularities. Assume that X is normal and Q-Cartier, i.e., there exists
an integer m such that mKX is a Cartier divisor. Let X̃ be a normal variety
and f : X̃ → X a proper birational morphism. Denote by E an irreducible f -
exceptional divisor and by e its generic point. Let g = 0 be a local equation of E.
Locally, we can write

f∗(generator of O(mKX)) = gmd(E)(dy1 ∧ · · · ∧ dyn)
m

for some d(E) ∈ Q such that md(E) ∈ Z. If, in addition, KX̃ is a line bundle (e.g.,

X̃ is smooth), then mKX̃ is linearly equivalent to

f∗(mKX) +
∑
i

m · d(Ei)Ei; Ei exceptional,

and numerically

KX̃ ∼ f∗(KX) +
∑
i

d(Ei)Ei.

The number d(E) is called the discrepancy of X at the exceptional divisor E. The
discrepancy discr(X) of X is

discr(X) := inf{d(E) | all f, E}
If X is smooth then discr(X) = 1. In general (see e.g., [Kol92, Proposition 1.9]),

discr(X) ∈ {−∞} ∪ [−1, 1].

Definition 1.3.1. The singularities of X are called

• terminal if discr(X) > 0 and
• canonical if discr(X) ≥ 0.

It is essential to remember that terminal ⇒ smooth in codimension 2 and that
for surfaces, canonical means Du Val singularities.

Canonical isolated singularities on surfaces are classified via Dynkin diagrams:
Let f : X̃ → X be the minimal desingularization. Then the submodule in Pic(X̃)
spanned by the classes of exceptional curves (with the restriction of the intersec-
tion form) is isomorphic to the root lattice of the corresponding Dynkin diagram
(exceptional curves give simple roots).

On surfaces, canonical singularities don’t influence the expected asymptotics
for rational points on the complement to all exceptional curves: for (singular) Del
Pezzo surfaces X we still expect an asymptotic of points of bounded anticanonical
height of the shape B log(B)9−d, where d is the degree of X, just like in the smooth
case (see Section 4.10). This fails when the singularities are worse than canonical.

Example 1.3.2. Let w = (w0, . . . , wn) ∈ Nn, with gcd(w0, . . . , wn) = 1 and let

X = X(w) = P(w0, . . . , wn)

be a weighted projective space, i.e., we have a quotient map

(An+1 \ 0) Gm−→ X,

where the torus Gm acts by

λ · (x0, . . . , xn+1) �→ (λw0x0, . . . , λ
wnxn).
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For w = (1, . . . , 1) it is the usual projective space, e.g., P2 = P(1, 1, 1). The
weighted projective plane P(1, 1, 2) has a canonical singularity and the singularity
of P(1, 1,m), with m ≥ 3, is worse than canonical.

For a discussion of singularities on general weighted projective spaces and so
called fake weighted projective spaces see, e.g., [Kas08].

1.4. Minimal Model Program. Here we recall basic notions from the Min-
imal Model Program (MMP) (see [CKM88], [KM98], [KMM87], [Mat02] for
more details). The starting point is the following fundamental theorem due to Mori
[Mor82]:

Theorem 1.4.1. Let X be a smooth Fano variety of dimension n. Then through
every geometric point of X there passes a rational curve of −KX -degree ≤ n+ 1.

These rational curves move in families. Their specializations are rational curves,
which may move again, and again, until one arrives at “rigid” rational curves.

Theorem 1.4.2 (Cone theorem). Let X be a smooth Fano variety. Then the
closure of the cone of (equivalence classes of) effective curves in H2(X,R) is finitely
generated by classes of rational curves.

The generating rational curves are called extremal rays; they correspond to
codimension-1 faces of the dual cone of nef divisors. Mori’s Minimal Model Program
links the convex geometry of the nef cone Λnef(X) with birational transformations
of X. Pick a divisor D on the face dual to an extremal ray [C]. It is not ample
anymore, but it still defines a map

X → Proj(R(X,D)),

which contracts the curve C to a point. The map is one of the following:

• a fibration over a base of smaller dimension, and the restriction of D to a
general fiber proportional to the anticanonical class of the fiber, which is
a (possibly singular) Fano variety,
• a birational map contracting a divisor,
• a contraction of a subvariety in codimension ≥ 2 (a small contraction).

The image could be singular, as in Example 1.3.2, and one of the most difficult
issues of MMP was to develop a framework which allows one to maneuver between
birational models with singularities in a restricted class, while keeping track of the
modifications of the Mori cone of curves. In arithmetic applications, for example
proofs of the existence of rational points as in, e.g., [CTSSD87a], [CTSSD87b],
[CTS89], one relies on the fibration method and descent, applied to some auxiliary
varieties. Finding the “right” fibration is an art. Mori’s theory gives a systematic
approach to these questions.

A variant of Mori’s theory, the Fujita program, analyzes fibrations arising from
divisors on the boundary of the effective cone Λeff(X). This theory turns up in the
analysis of height zeta functions in Section 6 (see also Section 4.13).

Let X be smooth projective with Pic(X) = NS(X) and a finitely generated
effective cone Λeff(X). For a line bundle L on X define

(1.6) a(L) := min(a | aL+KX ∈ Λeff(X)).
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We will also need the notion of the geometric hypersurface of linear growth:

(1.7) Σgeom
X := {L ∈ NS(X)R | a(L) = 1}

Let b(L) be the maximal codimension of a face of Λeff(X) containing a(L)L+KX .
In particular,

a(−KX) = 1 and b(−KX) = rkPic(X).

These invariants arise in Manin’s conjecture in Section 4.10 and the analysis of
analytic properties of height zeta functions in Section 6.1.

1.5. Campana’s program. Recently, Campana developed a new approach
to classification of algebraic varieties with the goal of formulating necessary and
sufficient conditions for potential density of rational points, i.e., Zariski density after
a finite extension of the ground field. The key notions are: the core of an algebraic
variety and special varieties. Special varieties include Fano varieties and Calabi–Yau
varieties. They are conjectured to have a potentially dense set of rational points.
This program is explained in [Abr].

1.6. Cox rings. Again, we assume that X is a smooth projective variety with
Pic(X) = NS(X). Examples are Fano varieties, equivariant compactifications of
algebraic groups and holomorphic symplectic varieties. Fix line bundles L1, . . . , Lr

whose classes generate Pic(X). For ν = (ν1, . . . , νr) ∈ Zr we put

Lν := Lν1
1 ⊗ · · · ⊗ Lνr

r .

The Cox ring is the multigraded section ring

Cox(X) :=
⊕
ν∈Zr

H0(X,Lν).

The nonzero graded pieces of Cox(X) are in bijection with effective divisors of
X. The key issue is finite generation of this ring. This has been proved under
quite general assumptions in [BCHM06, Corollary 1.1.9]. Assume that Cox(X) is
finitely generated. Then both Λeff(X) and Λnef(X) are finitely generated polyhedral
(see [HK00, Proposition 2.9]). Other important facts are:

• X is a toric variety if and only if Cox(X) is a polynomial ring [Cox95],
[HK00, Corollary 2.10]; Cox rings of some equivariant compactifications
of other semi-simple groups are computed in [Bri07];
• Cox(X) is multigraded for NS(X), in particular, it carries a natural action
of the dual torus TNS (see Section 6.6 for details on the duality between
lattices and algebraic tori).

1.7. Universal torsors. We continue to work over an algebraically closed
field. Let G be a linear algebraic group and X an algebraic variety. A G-torsor
over X is a principal G-bundle π : TX → X. Basic examples are GLn-torsors;
they arise from vector bundles over X. For instance, each line bundle L gives
rise to a GL1 = Gm-torsor over X. Up to isomorphism, G-torsors are classified
by H1

ét(X,G); line bundles are classified by H1
ét(X,Gm) = Pic(X). When G is

commutative, H1
ét(X,G) is a group.
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Let G = Gr
m be an algebraic torus and X∗(G) = Zr its character lattice.

A G-torsor over an algebraic variety X is determined, up to isomorphism, by a
homomorphism

(1.8) χ : X∗(G)→ Pic(X).

Assume that Pic(X) = NS(X) = Zr and that χ is in fact an isomorphism. The
arising G-torsors are called universal. The introduction of universal torsors is moti-
vated by the fact that over nonclosed fields they “untwist” the action of the Galois
group on the Picard group of X (see Sections 1.13 and 2.5). The “extra dimensions”
and “extra symmetries” provided by the torsor add crucial freedom in the analysis
of the geometry and arithmetic of the underlying variety. Examples of applications
to rational points will be presented in Sections 2.5 and 5. This explains the surge
of interest in explicit equations for universal torsors, the study of their geometry:
singularities and fibration structures.

Assume that Cox(X) is finitely generated. Then Spec (Cox(X)) contains a
universal torsor TX of X as an open subset. More precisely, let

T X := Spec (Cox(X)).

Fix an ample class Lν ∈ Pic(X) and let χν ∈ X∗(TNS) be the corresponding char-
acter. Then

X = Proj(
⊕
n≥0

H0(X,O(nLν))) = T X//TNS,

the geometric invariant theory quotient linearized by χν . The unstable locus is

Zν := {t ∈ T X | f(t) = 0 ∀f ∈ Cox(X)nν , n > 0}

Let Wν be the set of t ∈ TX such that the orbit of t is not closed in TX \Zν , or such
that t has a positive-dimensional stabilizer. Geometric invariant theory implies that

T X \Wν =: TX → X

is a geometric quotient, i.e., TX is a TNS-torsor over X.

1.8. Hypersurfaces. We now turn from the general theory to specific vari-
eties. Let X = Xf ⊂ Pn be a smooth hypersurface of degree d. We have already
described some of its invariants in Example 1.1.2, at least when dim(X) ≥ 3. In
particular, in this case Pic(X) � Z and TNS = Gm. The universal torsor is the
hypersurface in An+1 \ 0 given by the vanishing of the defining polynomial f .

In dimension two, there are more possibilities. The most interesting cases are
d = 2, 3, and 4. A quadric X2 is isomorphic to P1 × P1 and has Picard group
Pic(X2) � Z ⊕ Z. A cubic has Picard group of rank 7. These are examples of
Del Pezzo surfaces discussed in Section 1.9 and extensively in [Has]. They are
birational to P2. A smooth quartic X4 ⊂ P3 is an example of a K3 surface (see
Section 1.10). We have Pic(X4) = Zr, with r between 1 and 20. They are not
rational and, in general, do not admit nontrivial fibrations.

Cubic and quartic surfaces have a rich geometric structure, with large “hidden”
symmetries. This translates into many intricate arithmetic issues.
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1.9. Del Pezzo surfaces. A smooth projective surface X with ample anti-
canonical class is called a Del Pezzo surface. Standard examples are P2 and P1×P1.
Over algebraically closed ground fields, all other Del Pezzo surfaces Xr are obtained
as blowups of P2 in r ≤ 8 points in general position (e.g., no three on a line, no 6
on a conic). The number d = 9 − r is the anticanonical degree of Xr. Del Pezzo
surfaces of low degree admit the following realizations:

• d = 4: intersection of two quadrics in P4;
• d = 3: hypersurface of degree 3 in P3;
• d = 2: hypersurface of degree 4 in the weighted projective space P(1, 1, 1, 2)
given by

w2 = f4(x, y, z), with f irreducible, deg(f4) = 4.

• d = 1: hypersurface of degree 6 in P(1, 1, 2, 3) given by

w2 = t3 + f4(x, y)t+ f6(x, y), with deg(fi) = i.

Visually and mathematically most appealing are, perhaps, the cubic surfaces with
d = 3. Note that for d = 1, the anticanonical linear series has one base point, in
particular, X8(F ) �= ∅, over F , even when F is not algebraically closed.

Let us compute the geometric invariants of a Del Pezzo surface of degree d,
expanding Example 1.1.3. Since Pic(P2) = ZL, the hyperplane class, we have

Pic(Xr) = ZL⊕ ZE1 ⊕ · · · ⊕ ZEr,

where Ei are the full preimages of the blown-up points. The canonical class is
computed as in Example 1.1.1,

KXr
= −3L+ (E1 + · · ·+ Er).

The intersection pairing defines a quadratic form on Pic(Xr), with L2 = 1, L ·Ei =
0, Ei · Ej = 0, for i �= j, and E2

j = −1. Let Wr be the subgroup of GLr+1(Z) of
elements preserving KXr

and the intersection pairing. For r ≥ 2 there are other
classes with square −1, e.g., preimages of lines passing through two points, conics
through five points:

L− (Ei + Ej), 2L− (E1 + · · ·+ E5), etc.

The classes whose intersection withKXr
is also −1 are called (classes of) exceptional

curves; these curves are lines in the anticanonical embedding. Their number n(r)
can be found in the table below. We have

−KXr
= cr

n(r)∑
j=1

Ej ,

the sum over all exceptional curves, where cr ∈ Q can be easily computed, e.g.,
c6 = 1/9. The effective cone is spanned by the n(r) classes of exceptional curves,
and the nef cone is the cone dual to Λeff(Xr) with respect to the intersection pairing
on Pic(Xr). Put

(1.9) α(Xr) := vol (Λnef(Xr) ∩ {C | (−KXr
, C) = 1}) .

This “volume” of the nef cone has been computed in [Der07a]:
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r 1 2 3 4 5 6 7 8
n(r) 1 3 6 10 16 27 56 240
α(Xr) 1/6 1/24 1/72 1/144 1/180 1/120 1/30 1

Given a Del Pezzo surface over a number field, the equations of the lines can
be written down explicitly. This is easy for the diagonal cubic surface

x3
0 + x3

1 + x3
2 + x3

3 = 0.

Writing

x3
i + x3

j =

3∏
r=1

(xi + ζr3xj) = x3
� + x3

k =

3∏
r=1

(x� + ζr3xk) = 0,

with i, j, k, l ∈ [0, . . . , 3], and permuting indices we get all 27 lines. In general,
equations for the lines can be obtained by solving the corresponding equations on
the Grassmannian of lines.

Degenerations of Del Pezzo surfaces are also interesting and important. Typi-
cally, they arise as special fibers of fibrations, and their analysis is unavoidable in
the theory of models over rings such as Z, or C[t]. A classification of singular Del
Pezzo surfaces can be found in [BW79], [DP80]. Models of Del Pezzo surfaces
over curves are discussed in [Cor96]. Volumes of nef cones of singular Del Pezzo
surfaces are computed in [DJT08].

We turn to Cox rings of Del Pezzo surfaces. Smooth Del Pezzo surfaces of degree
d ≥ 6 are toric and their Cox rings are polynomial rings on 12− d generators. The
generators and relations of the Cox rings of Del Pezzo surfaces have been computed
[BP04], [Der06], [STV07], [TVAV08], [SX08]. For r ∈ {4, 5, 6, 7} the generators
are the nonzero sections from exceptional curves and the relations are induced by
fibration structures on Xr (rulings). In degree 1 two extra generators are needed,
the independent sections of H0(X8,−KX8

).
It was known for a long time that the (affine cone over the) Grassmannian

Gr(2, 5) is a universal torsor for the unique (smooth) degree 5 Del Pezzo surface
(this was used in [SD72] and [Sko93] to prove that every Del Pezzo surface of
degree 5 has a rational point). Batyrev conjectured that universal torsors of other
Del Pezzo surfaces should embed into (affine cones over) other Grassmannians, and
this is why:

One of the most remarkable facts of the theory of Del Pezzo surfaces is the
“hidden” symmetry of the collection of exceptional curves in the Picard lattice.
Indeed, for r = 3, 4, 5, . . . , 8, the group Wr is the Weyl group of a root system:

(1.10) Rr ∈ {A1 × A2,A4,D5,E6,E7,E8},

and the root lattice itself is the orthogonal to KXr
in Pic(Xr), the primitive Picard

group. Let Gr be the simply-connected Lie group with the corresponding root sys-
tem. The embedding Pic(Xr−1) ↪→ Pic(Xr) induces an embedding of root lattices
Rr−1 ↪→ Rr, and identifies a unique simple root αr in the set of simple roots of
Rr, as the complement of the simple roots from Rr−1. This defines a parabolic
subgroup Pr ⊂ Gr (see Section 6.4). Batyrev’s conjecture was that the flag variety
Pr\Gr contains a universal torsor of Xr.
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Recent work on Cox rings of Del Pezzo surfaces established this geometric
connection between smooth Del Pezzo surfaces and Lie groups with root systems of
the corresponding type: r = 5 was treated in [Pop01] and r = 6, 7 in [Der07b], via
explicit manipulations with defining equations. The papers [SS07] and [SS08] give
conceptual, representation-theoretic proofs of these results. It would be important
to extend this to singular Del Pezzo surfaces.

Example 1.9.1 (Degree four). Here are some examples of singular degree four
Del Pezzo surfaces X = {Q0 = 0} ∩ {Q = 0} ⊂ P4, where Q0 = x0x1 + x2

2 and Q

is given in the table below. Let X̃ be the minimal desingularization of X. In all
cases below the Cox ring is given by

Cox(X̃) = F [η1, . . . , η9]/(f)

with one relation f [Der07b]. Note that the Cox ring of a smooth degree 4 Del
Pezzo surface has 16 generators and 20 relations (see Example 5.3.2).

Singularities Q f
3A1 x2(x1 + x2) + x3x4 η4η5 + η1η6η7 + η8η9

A1 + A3 x2
3 + x4x2 + x2

0 η6η9 + η7η8 + η1η3η
2
4η

3
5

A3 x2
3 + x4x2 + (x0 + x1)

2 η5η9 + η1η
2
4η7 + η3η

2
6η8

D4 x2
3 + x4x1 + x2

0 η3η
2
5η8 + η4η

2
6η9 + η2η

2
7

D5 x1x2 + x0x4 + x2
3 η3η

2
7 + η2η

2
6η9 + η4η

2
5η

2
8 .

Example 1.9.2 (Cubics). Here are some singular cubic surfaces X ⊂ P3, given
by the vanishing of the corresponding cubic form:

4A1 x0x1x2 + x1x2x3 + x2x3x0 + x3x0x1

2A1 + A2 x0x1x2 = x2
3(x1 + x2 + x3)

2A1 + A3 x0x1x2 = x2
3(x1 + x2)

A1 + 2A2 x0x1x2 = x1x
2
3 + x3

3

A1 + A3 x0x1x2 = (x1 + x2)(x
2
3 − x2

1)
A1 + A4 x0x1x2 = x2

3x2 + x3x
2
1

A1 + A5 x0x1x2 = x3
1 − x2

3x2

3A2 x0x1x2 = x3
3

A4 x0x1x2 = x3
2 − x3x

2
1 + x2

3x2

A5 x3
3 = x3

1 + x0x
2
3 − x2

2x3

D4 x1x2x3 = x0(x1 + x2 + x3)
2

D5 x0x
2
1 + x1x

2
3 + x2

2x3

E6 x3
3 = x1(x1x0 + x2

2).

Further examples of Cox rings of singular Del Pezzo surfaces can be found in
[Der06] and [DT07]. In practice, most geometric questions are easier for smooth
surfaces, while most arithmetic questions turn out to be easier in the singular case.
For a survey of arithmetic problems on rational surfaces, see Sections 2.4 and 3.4,
as well as [MT86].
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Example 1.9.3. In some applications, torsors for subtori of TNS are also used.
Let X be the diagonal cubic surface

x3
0 + x3

1 + x3
2 + x3

3 = 0.

The following equations were derived in [CTKS87]:

TX :=

{
x11x12x13 + x21x22x23 + x31x32x33 = 0
x11x21x31 + x12x22x32 + x13x23x33 = 0

}
⊂ P8.

This is a torsor for G = G4
m.

1.10. K3 surfaces. Let X be a smooth projective surface with trivial canoni-
cal class. There are two possibilities: X could be an abelian surface or a K3 surface.
In the latter case, X is simply-connected and h1(X,OX) = 0. The Picard group
Pic(X) of a K3 surface X is a torsion-free Z-module of rank ≤ 20 and the intersec-
tion form on Pic(X) is even, i.e., the square of every class is an even integer. K3
surfaces of with polarizations of small degree can be realized as complete intersec-
tions in projective space. The most common examples are K3 surfaces of degree 2,
given explicitly as double covers X → P2 ramified in a curve of degree 6; or quartic
surfaces X ⊂ P3.

Example 1.10.1. The Fermat quartic

x4 + y4 + z4 + w4 = 0

has Picard rank 20 over Q(
√
−1). The surface X given by

xy3 + yz3 + zx3 + w4 = 0

has Pic(XQ) = Z20 (see [Ino78] for more explicit examples). All such K3 surfaces
are classified in [Sch08].

The surface

w(x3 + y3 + z3 + x2z + xw2) = 3x2y2 + 4x2yz + x2z2 + xy2z + xyz2 + y2z2

has geometric Picard rank 1, i.e., Pic(XQ̄) = Z [vL07].

Other interesting examples arise from abelian surfaces as follows: Let

ι : A → A
a �→ −a

be the standard involution. Its fixed points are the 2-torsion points of A. The
quotient A/ι has 16 singularities (the images of the fixed points). The minimal
resolution of these singularities is a K3 surface, called a Kummer surface. There are
several other finite group actions on abelian surfaces such that a similar construction
results in a K3 surface, a generalized Kummer surface (see [Kat87]).

The nef cone of a polarized K3 surface (X, g) admits the following character-
ization: h is ample if and only if (h,C) > 0 for each class C with (g, C) > 0
and (C,C) ≥ −2. The Torelli theorem implies an intrinsic description of automor-
phisms: every automorphism of H2(X,Z) preserving the intersection pairing and
the nef cone arises from an automorphism of X. There is an extensive literature
devoted to the classification of possible automorphism groups [Nik81], [Dol08].
These automorphisms give examples of interesting algebraic dynamical systems
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[McM02], [Can01]; they can be used to propagate rational points and curves
[BT00], and to define canonical heights [Sil91], [Kaw08].

1.11. Threefolds. The classification of smooth Fano threefolds was a major
achievement completed in the works of Iskovskikh [Isk79], [IP99a], and Mori–
Mukai [MM86]. There are more than 100 families. Among them, for example,
cubics X3 ⊂ P4, quartics X4 ⊂ P4 or double covers of W2 → P3, ramified in a
surface of degree 6. Many of these varieties, including the above examples, are
not rational. Unirationality of cubics can be seen directly by projecting from a
line on X3. The nonrationality of cubics was proved in [CG72] using intermediate
Jacobians. Nonrationality of quartics was proved by establishing birational rigidity,
i.e., showing triviality of the group of birational automorphisms, via an analysis of
maximal singularities of such maps [IM71]. This technique has been substantially
generalized in recent years (see [Isk01], [Puk98], [Puk07], [Che05]). Some quartic
threefolds are also unirational, e.g., the diagonal, Fermat type, quartic

4∑
i=0

x4
i = 0.

It is expected that the general quartic is not unirational. However, it admits an
elliptic fibration: fix a line l ∈ X4 ⊂ P4 and consider a plane in P4 containing this
line, the residual plane curve has degree three and genus 1. A general double cover
W2 does not admit an elliptic or abelian fibration, even birationally [CP07].

1.12. Holomorphic symplectic varieties. Let X be a smooth projective
simply-connected variety. It is called holomorphic symplectic if it carries a unique,
modulo constants, nondegenerate holomorphic two-form. Typical examples are K3
surfacesX and their Hilbert schemes X [n] of zero-dimensional length-n subschemes.
Another example is the variety of lines of a smooth cubic fourfold; it is deformation
equivalent to X [2] of a K3 surface [BD85].

These varieties are interesting for the following reasons:

• The symplectic forms allows one to define a quadratic form on Pic(X),
the Beauville–Bogomolov form. The symmetries of the lattice carry rich
geometric information.
• There is a Torelli theorem, connecting the symmetries of the cohomology
lattice with symmetries of the variety.
• there is a conjectural characterization of the ample cone and of abelian
fibration structures, at least in dimension 4 [HT01].

Using this structure as a compass, one can find a plethora of examples with (La-
grangian) abelian fibrations over Pn or with infinite endomorphisms, resp. birational
automorphisms, which are interesting for arithmetic and algebraic dynamics.

1.13. Nonclosed fields. There is a lot to say: F -rationality, F -unirationality,
Galois actions on Pic(XF̄ ), Br(XF̄ ), algebraic points, special loci, descent of Galois-
invariant structures to the ground field etc. Here we touch on just one aspect: the
effective computation of the Picard group as a Galois module, for Del Pezzo and
K3 surfaces.
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Let X = Xr be a Del Pezzo surface over F . A splitting field is a normal
extension of the ground field over which each exceptional curve is defined. The
action of the Galois group Γ factors through a subgroup of the group of symmetries
of the exceptional curves, i.e., Wr. In our arithmetic applications we need to know

• Pic(X) as a Galois module, more specifically, the Galois cohomology

H1(Γ,Pic(XF̄ )) = Br(X)/Br(F );

this group is an obstruction to F -rationality, and also a source of obstruc-
tions to the Hasse principle and weak approximation (see Section 2.4);
• the effective cone Λeff(XF ).

For Del Pezzo surfaces, the possible values of H1(Γ,Pic(XF̄ )) have been computed
[SD93], [KST89], [Ura96], [Cor07]. This information alone does not suffice.
The effective Chebotarev theorem [LO77] implies that, given equations defining a
Del Pezzo surface, the Galois action on the exceptional curves, i.e., the image of
the Galois group in the Weyl group Wr, can be computed in principle. The cone
Λeff(XF ) is spanned by the Galois orbits on these curves.

It would be useful to have a Magma implementation of an algorithm computing
the Galois representation on Pic(X), for X a Del Pezzo surface over Q.

Example 1.13.1. The Picard group may be smaller over nonclosed fields: for
X/Q given by

x3
0 + x3

1 + x3
2 + x3

3 = 0

Pic(XQ) = Z4. It has a basis e1, e2, e3, e4 such that Λeff(X) is spanned by

e2, e3, 3e1 − 2e3 − e4, 2e1 − e2 − e3 − e4, e1 − e4,

4e1 − 2e2 − 2e3 − e4, e1 − e2, 2e1 − 2e2 − e4, 2e1 − e3

(see [PT01]).

Example 1.13.2 (Maximal Galois action). Let X/Q be the cubic surface

x3 + 2xy2 + 11y3 + 3xz2 + 5y2w + 7zw2 = 0.

Then the Galois group acting on the 27 lines is W(E6) [EJ08a] (see [Eke90],
[Ern94], [VAZ08], and [Zar08], for more examples).

No algorithms for computing even the rank, or the geometric rank, of a K3
surface over a number field are known at present. There are infinitely many possi-
bilities for the Galois action on the Picard lattice.

Example 1.13.3. Let X be a K3 surface over a number field Q. Fix a model X
over Z. For primes p of good reduction we have an injection

Pic(XQ̄) ↪→ Pic(XF̄p
).

The rank of Pic(XF̄p
) is always even. In some examples, it can be computed by

counting points over Fpr , for several r, and by using the Weil conjectures.
This local information can sometimes be used to determine the rank of Pic(XQ̄).

Let p, q be distinct primes of good reduction such that the corresponding local ranks
are ≤ 2 and the discriminants of the lattices Pic(XF̄p

), Pic(XF̄q
) do not differ by

a square of a rational number. Then the rank of Pic(XQ̄) equals 1. This idea has
been used in [vL07].



260 YURI TSCHINKEL

2. Existence of points

2.1. Projective spaces and their forms. Let F be a field and F̄ an alge-
braic closure of F . A projective space over F has many rational points: they are
dense in the Zariski topology and in the adelic topology. Varieties F -birational to
a projective space inherit these properties.

Over nonclosed fields F , projective spaces have forms, the so-called Brauer–
Severi varieties. These are isomorphic to Pn over F̄ but not necessarily over F .
They can be classified via the nonabelian cohomology group H1(F,Aut(Pn)), where
Aut(Pn) = PGLn+1 is the group of algebraic automorphisms of Pn. The basic
example is a conic C ⊂ P2, e.g.,

(2.1) ax2 + by2 + cz2 = 0,

with a, b, c square-free and pairwise coprime. It is easy to verify solvability of this
equation in R and modulo p, for all primes p. Legendre proved that (2.1) has
primitive solutions in Z if and only if it has nontrivial solutions in R and modulo
powers of p, for all primes p. This is an instance of a local-to-global principle that
will be discussed in Section 2.4.

Checking solvability modulo p is a finite problem which gives a finite proce-
dure to verify solvability in Z. Actually, the proof of Legendre’s theorem provides
effective bounds for the size of the smallest solution, e.g.,

max(|x|, |y|, |z|) ≤ 2abc

(see [Kne59] for a sharper bound), which gives another approach to checking
solvability—try all x, y, z ∈ N subject to the inequality. If C(Q) �= ∅, then the
conic is Q-isomorphic to P1: draw lines through a Q-point in C.

One could also ask about the number N(B) of triples of nonzero coprime square-
free integers

(a, b, c) ∈ Z3, max(|a|, |b|, |c|) ≤ B

such that Equation (2.1) has a nontrivial solution. It is [Guo95]:

N(B) =
9

7Γ( 32 )
3

∏
p

(
1− 1

p

)3/2 (
1 +

3

2p

)
B

log(B)3/2
(1 + o(1)), B→∞.

I am not aware of a conceptual algebro-geometric interpretation of this density.
In general, forms of Pn over number fields satisfy the local-to-global principle.

Moreover, Brauer–Severi varieties with at least one F -rational point are split over
F , i.e., isomorphic to Pn over F . It would be useful to have a routine (in Magma) that
would check efficiently whether or not a Brauer–Severi variety of small dimension
over Q, presented by explicit equations, is split, and to find the smallest solution.
The frequency of split fibers in families of Brauer–Severi varieties is studied in
[Ser90].

2.2. Hypersurfaces. Algebraically, the simplest examples of varieties are hy-
persurfaces, defined by a single homogeneous equation f(x) = 0. Many classical
Diophantine problems reduce to the study of rational points on hypersurfaces. Be-
low we give two proofs and one heuristic argument to motivate the idea that hy-
persurfaces of low degree should have many rational points.
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Theorem 2.2.1. [Che35], [War35] Let X = Xf ⊂ Pn be a hypersurface over
a finite field F given by the equation f(x) = 0. If deg(f) ≤ n then X(F ) �= ∅.

Proof. We reproduce a textbook argument [BS66], for F = Fp.
Step 1. Consider the δ-function

p−1∑
x=1

xd =

{
−1 mod p if p− 1 | d
0 mod p if p− 1 � d

Step 2. Apply it to a (not necessarily homogeneous) polynomial φ ∈ Fp[x0, . . . , xn],
with deg(φ) ≤ n(p− 1). Then∑

x0,...,xn

φ(x0, . . . , xn) ≡ 0 mod p.

Indeed, for monomials, we have∑
x0,...,xn

xd1
1 · · ·xdn

n =
∏

(
∑

x
dj

j ), with d0 + · · ·+ dn ≤ n(p− 1).

For some j, we have 0 ≤ dj < p− 1.

Step 3. For φ(x) = 1− f(x)p−1 we have deg(φ) ≤ deg(f) · (p− 1). Then

N(f) := #{x | f(x) = 0} =
∑

x0,...,xn

φ(x) ≡ 0 mod p,

since deg(f) ≤ n.

Step 4. The equation f(x) = 0 has a trivial solution. It follows that

N(f) > 1 and Xf (Fp) �= ∅.
�

A far-reaching generalization is the following theorem.

Theorem 2.2.2. [Esn03] If X is a smooth Fano variety over a finite field Fq

then
X(Fq) �= ∅.

Now we pass to the case in which F = Q. Given a form f ∈ Z[x0, . . . , xn],
homogeneous of degree d, we ask how many solutions x = (x0, . . . , xn) ∈ Zn+1 to the
equation f(x) = 0 should we expect? Primitive solutions with gcd(x0, . . . , xn) = 1,
up to diagonal multiplication with ±1, are in bijection with rational points on the
hypersurface Xf ⊂ Pn. We have |f(x)| = O(Bd), for ‖x‖ := maxj(|xj |) ≤ B.
We may argue that f takes values 0, 1, 2, . . . with equal probability, so that the
probability of f(x) = 0 is B−d. There are Bn+1 “events” with ‖x‖ ≤ B. In
conclusion, we expect Bn+1−d solutions with ‖x‖ ≤ B. There are three cases:

• n + 1 < d: as B → ∞ we should have fewer and fewer solutions, and,
eventually, none!
• n+1− d = 0: this is the stable regime, we get no information in the limit

B→∞;
• n+ 1− d > 0: the expected number of solutions grows.
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We will see many instances when this heuristic reasoning fails. However, it is
reasonable, as a first approximation, at least when

n+ 1− d� 0.

Diagonal hypersurfaces have attracted the attention of computational number
theorists (see http://euler.free.fr). A sample is given below:

Example 2.2.3.

• There are no rational points (with non-zero coordinates) on the Fano 5-

fold x6
0 =
∑6

j=1 x
6
j with height ≤ 2.6 · 106.

• There are 12 (up to signs and permutations) rational points on x6
0 =∑7

j=1 x
6
j of height ≤ 105 (with non-zero coordinates).

• The number of rational points (up to signs, permutations and with non-

zero coordinates) on the Fano 5-fold x6
0 + x6

1 =
∑6

j=2 x
6
j of height ≤ 104

(resp. 2 · 104, 3 · 104) is 12 (resp. 33, 57).

Clearly, it is difficult to generate solutions when n − d is small. On the other
hand, we have the following theorem:

Theorem 2.2.4. [Bir62] If n ≥ (deg(f)−1) ·2deg(f), and f is smooth then the
number N(f,B) of solutions x = (xi) with max(|xi|) ≤ B is

N(f,B) =
∏
p

τp · τ∞Bn+1−d(1 + 0(1)), as B→∞,

where τp, τ∞ are the p-adic, resp. real, densities. The Euler product converges
provided local solutions exist for all p and in R.

We sketch the method of a proof of this result in Section 4.6.

Now we assume that X = Xf is a hypersurface over a function field in one
variable F = C(t). We have

Theorem 2.2.5. If deg(f) ≤ n then Xf (C(t)) �= ∅.

Proof. It suffices to count parameters: Insert xj = xj(t) ∈ C[t], of degree e,
into

f =
∑
J

fJx
J = 0,

with |J | = deg(f). This gives a system of e · deg(f) + const equations in e(n + 1)
variables. This system is solvable for e� 0, provided deg(f) ≤ n. �

2.3. Decidability. Hilbert’s 10th problem has a negative solution: there is no
algorithm to decide whether a or not a Diophantine equation is solvable in integers
(see [Mat00], [Mat06]). In fact, there exist Diophantine equations

ft(x1, . . . , xn) = f(t, x1, . . . , xn)

such that the set of t ∈ Z with the property that ft has infinitely many primitive
solutions (x1, . . . , xn) is algorithmically random [Cha94]1.

1The author’s abstract: “One normally thinks that everything that is true is true for a reason. I’ve

found mathematical truths that are true for no reason at all. These mathematical truths are beyond the power
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There are many results concerning undecidability of general Diophantine equa-
tions over other rings and fields (for a recent survey, see [Poo08b]). The case of
rational points, over a number field, is open; even for a cubic surface we cannot
decide, at present, whether or not there are rational points.

2.4. Obstructions. As we have just said, there is no hope of finding an algo-
rithm which would determine the solvability of a Diophantine equation in integers,
i.e., there is no algorithm to test for the existence of integral points on quasi-
projective varieties. The corresponding question for homogeneous equations, i.e.,
for rational points, is still open. It is reasonable to expect that at least for cer-
tain classes of algebraic varieties, for example, for Del Pezzo surfaces, the existence
question can be answered. In this section we survey some recent results in this
direction.

Let XB be a scheme over a base scheme B. We are looking for obstructions
to the existence of points X(B), i.e., sections of the structure morphism X → B.
Each morphism B′ → B gives rise to a base-change diagram, and each section
x : B → X provides a section x′ : B′ → XB′ .

X

��

XB′��

��

X XB′��

B B′�� B

x

��

B′��

x′

��

This gives rise to a local obstruction, since it is sometimes easier to check that
XB′(B′) = ∅. In practice, B could be a curve and B′ a cover, or an analytic
neighborhood of a point on B. In the number-theoretic context, B = Spec (F ) and
B′ = Spec (Fv), where v is a valuation of the number field F and Fv the v-adic
completion of F . One says that the local-global principle, or the Hasse principle,
holds, if the existence of F -rational points is implied by the existence of v-adic
points in all completions.

Example 2.4.1. The Hasse principle holds for:

(1) smooth quadrics X2 ⊂ Pn;
(2) Brauer–Severi varieties;
(3) Del Pezzo surfaces of degree ≥ 5;
(4) Châtelet surfaces y2 − az2 = f(x0, x1), where f is an irreducible polyno-

mial of degree ≤ 4 [CTSSD87b];
(5) hypersurfaces Xd ⊂ Pn, for n� d (see Theorem 2.2.4).

The Hasse principle may fail for cubic curves, e.g.,

3x3 + 4y3 + 5z3 = 0.

of mathematical reasoning because they are accidental and random. Using software written in Mathematica that

runs on an IBM RS/6000 workstation, I constructed a perverse 200-page algebraic equation with a parameter

t and 17,000 unknowns. For each whole-number value of the parameter t, we ask whether this equation has a

finite or an infinite number of whole number solutions. The answers escape the power of mathematical reason

because they are completely random and accidental.”
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In topology, there is a classical obstruction theory to the existence of sections.
An adaptation to algebraic geometry is formulated as follows: Let C be a contravari-
ant functor from the category of schemes over a base scheme B to the category of
abelian groups. Applying the functor C to the diagrams above, we have

C(X) �� C(XB′) C(X) ��

x

��

C(XB′)

x′

��
C(B) ��

��

C(B′)

��

C(B) �� C(B′)

If for all sections x′, the image of x′ in C(B′) is nontrivial in the cokernel of the
map C(B) → C(B′), then we have a problem, i.e., an obstruction to the existence
of B-points on X. So far, this is still a version of a local obstruction. However, a
global obstruction may arise, when we vary B′.

We are interested in the case when B = Spec (F ), for a number field F , with
B′ ranging over all completions Fv. A global obstruction is possible whenever the
map

C(Spec (F ))→
∏
v

C(Spec (Fv))

has a nontrivial cokernel. What are sensible choices for C? Basic contravariant
functors on schemes are C(−) := Hi

ét(−,Gm). For i = 1, we get the Picard functor,
introduced in Section 1.1. However, by Hilbert’s theorem 90,

H1
ét(F,Gm) := H1

ét(Spec (F ),Gm) = 0,

for all fields F , and this won’t generate an obstruction. For i = 2, we get the
(cohomological) Brauer group Br(X) = H2

ét(X,Gm), classifying sheaves of central
simple algebras over X, modulo equivalence (see [Mil80, Chapter 4]). By class
class field theory, we have an exact sequence

(2.2) 0→ Br(F )→
⊕
v

Br(Fv)
∑

v invv−→ Q/Z→ 0,

where invv : Br(Fv)→ Q/Z is the local invariant. We apply it to the diagram and
obtain

Br(XF ) ��

x

��

⊕
v Br(XFv

)

(xv)v

��
0 �� Br(F ) ��⊕

v Br(Fv)

∑

v invv �� Q/Z �� 0,

Define

(2.3) X(AF )
Br :=

⋂
A∈Br(X)

{(xv)v ∈ X(AF ) |
∑
v

inv(A(xv)) = 0}.

Let X(F ) be the closure of X(F ) in X(AF ), in the adelic topology. One says that

X satisfies weak approximation over F if X(F ) = X(AF ). We have

X(F ) ⊂ X(F ) ⊆ X(AF )
Br ⊆ X(AF ).
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From this we derive the Brauer–Manin obstruction to the Hasse principle and weak
approximation:

• if X(AF ) �= ∅ but X(AF )
Br = ∅ then X(F ) = ∅, i.e., the Hasse principle

fails;
• if X(AF ) �= X(AF )

Br then weak approximation fails.

Del Pezzo surfaces of degree ≥ 5 satisfy the Hasse principle and weak approxi-
mation. Arithmetically most interesting are Del Pezzo surfaces of degree 4, 3, and
2: these may fail the Hasse principle:

• deg = 4: z2 + w2 = (x2 − 2y2)(3y2 − x2) [Isk71];
• deg = 3: 5x3 + 12y3 + 9z3 + 10w3 = 0 [CG66];
• deg = 2: w2 = 2x4 − 3y4 − 6z4 [KT04a].

One says that the Brauer–Manin obstruction to the existence of rational points
is the only one if X(AF )

Br �= ∅ implies that X(F ) �= ∅. This holds for:
(1) certain curves of genus ≥ 2 (see, e.g., [Sto07]);
(2) principal homogeneous spaces for connected linear algebraic groups over

F [San81];
(3) Del Pezzo surfaces of degree ≥ 3 admitting a conic bundle structure de-

fined over the ground field F ;
(4) conjecturally(!), for all geometrically rational surfaces.

However, the Brauer–Manin obstruction is not the only one, in general. Here is
a heuristic argument: a smooth hypersurface in P4 has trivial Br(X)/Br(F ). It is
easy to satisfy local local conditions, so that for a positive proportion of hypersur-
faces one has X(AF ) �= ∅ (see [PV04]). Consider X of very large degree. Lang’s
philosophy (see Conjecture 3.1.1) predicts that there are very few rational points
over any finite extension of the ground field. Why should there be points over F?
This was made precise in [SW95]. The first unconditional result in this direc-
tion was [Sko99]: there exist surfaces X with empty Brauer–Manin obstructions

and étale covers X̃ which acquire new Brauer group elements producing nontrivial
obstructions on X̃ and a posteriori on X. These type of “multiple-descent”, non-
abelian, obstructions were systematically studied in [HS05], [HS02], [Sko01] (see
also [Har], and [Pey05], [Har04]).

Insufficiency of these nonabelian obstructions for threefolds was established in
[Poo08a]. The counterexample is a fibration φ : X → C, defined over Q, such
that

• C is a curve of genus ≥ 2 with C(Q) �= ∅ (e.g., a Fermat curve);
• every fiber Xc, for c ∈ C(Q), is the counterexample

z2 + w2 = (x2 − 2y2)(3y2 − x2)

from [Isk71], i.e., Xc(AQ) �= ∅, and Xc(Q) = ∅;
• Br(X) � Br(C), and the same holds for any base change under an étale

map C̃ → C.

Then X̃(AQ)
Br �= ∅, for every étale cover X̃ → X, while X(Q) = ∅.

2.5. Descent. Let T be an algebraic torus, considered as a group scheme, and
X a smooth projective variety over a number field F . We assume that Pic(XF̄ ) =
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NS(XF̄ ). The F -isomorphisms classes of T -torsors

π : T → X

are parametrized by H1
ét(X,T ). A rational point x ∈ X(F ) gives rise to the spe-

cialization homomorphism

σx : H1
ét(X,T )→ H1

ét(F, T ),

with image a finite set. Thus the partition:

(2.4) X(F ) =
⋃

τ∈H1
ét(F,T )

πτ (Tτ (F )),

exhibiting Tτ as descent varieties.
We now consider the Γ = Gal(F̄ /F )-module NS(XF̄ ) and the dual torus TNS.

The classifying map in Equation 1.8 is now

χ : H1(X,TNS)→ HomΓ(NS(XF̄ ),Pic(XF̄ )),

a TNS-torsor T is called universal if χ([T ]) = Id (it may not exist over the ground
field F ). The set of forms of a universal torsor T can be viewed is a principal
homogeneous space under H1

ét(F, T ). The main reasons for working with universal
torsors, rather than other torsors are:

• the Brauer–Manin obstruction on X translates to local obstructions on
universal torsors, i.e.,

X(AF )
Br =

⋃
τ∈H1

ét(F,T )

πτ (Tτ (AF ));

• the Brauer–Manin obstruction on universal torsors vanishes.

The foundations of the theory are in [CTS87] and in the book [Sko01].

2.6. Effectivity. In light of the discussion in Section 2.3 it is important to
know whether or not the Brauer–Manin obstruction can be computed, effectively in
terms of the coefficients of the defining equations. There is an extensive literature
on such computations for curves (see the recent papers [Fly04], [BBFL07] and ref-
erences therein) and for surfaces (e.g., [CTKS87], [BSD04], [Cor07], [KT04b]).

Effective computability of the Brauer-Manin obstruction for all Del Pezzo sur-
faces over number fields has been proved in [KT08]. The main steps are as follows:

(1) Computation of the equations of the exceptional curves and of the action
of the Galois group Γ of a splitting field on these curves as in Section 1.13.
One obtains the exact sequence of Γ-modules

0→ Relations→ ⊕ZEj → Pic(X)→ 0.

(2) We have

Br(X)/Br(F ) = H1(Γ,Pic(X)).

Using the equations for exceptional curves and functions realizing relations
between the curves classes in the Picard group one can compute explicitly
Azumaya algebras {Ai} representing the classes of Br(X)/Br(F ).

(3) The local points X(Fv) can be effectively decomposed into a finite union
of subsets such that each Ai is constant on each of these subsets. This
step uses an effective version of the arithmetic Hilbert Nullstellensatz.
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(4) The last step, the computation of local invariants is also effective.

3. Density of points

3.1. Lang’s conjecture. One of the main principles underlying arithmetic
geometry is the expectation that the trichotomy in the classification of algebraic
varieties via the Kodaira dimension in Section 1.2 has an arithmetic manifestation.
The broadly accepted form of this is

Conjecture 3.1.1 (Lang’s conjecture). Let X be a variety of general type,
i.e., a smooth projective variety with ample canonical class, defined over a number
field F . Then X(F ) is not Zariski dense.

What about a converse? The obvious necessary condition for Zariski density
of rational points, granted Conjecture 3.1.1, is that X does not dominate a variety
of general type. This condition is not enough, as was shown in [CTSSD97]: there
exist surfaces that do not dominate curves of general type but which have étale
covers dominating curves of general type. By the Chevalley–Weil theorem (see,
e.g., [Abr] in this volume), these covers would have a dense set of rational points,
over some finite extension of the ground field, contradicting Conjecture 3.1.1.

As a first approximation, one expects that rational points are potentially dense
on Fano varieties, on rationally connected varieties, and on Calabi–Yau varieties.
Campana formulated precise conjectures characterizing varieties with potentially
dense rational points via the notion of special varieties (see Section 1.5). In the
following sections we survey techniques for proving density of rational points and
provide representative examples illustrating these. For a detailed discussion of
geometric aspects related to potential density see [Abr], and [Has03].

3.2. Zariski density over fixed fields. Here we address Zariski density of
rational points in the “unstable” situation, when the density of points is governed
by subtle number-theoretical properties, rather than geometric considerations. We
have the following fundamental result:

Theorem 3.2.1. Let C be a smooth curve of genus g = g(C) over a number
field F . Then

• if g = 0 and C(F ) �= ∅ then C(F ) is Zariski dense;
• if g = 1 and C(F ) �= ∅ then C(F ) is an abelian group (the Mordell-Weil
group) and there is a constant cF (independent of C) bounding the order of
the torsion subgroup C(F )tors of C(F ) [Maz77], [Mer96]; in particular,
if there is an F -rational point of infinite order then C(F ) is Zariski dense;

• if g ≥ 2 then C(F ) is finite [Fal83], [Fal91].

In higher dimensions we have:

Theorem 3.2.2. Let X be an algebraic variety over a number field F . Assume
that X(F ) �= ∅ and that X is one of the following

• X is a Del Pezzo surface of degree 2 and has a point on the complement
to the exceptional curves;
• X is a Del Pezzo surface of degree ≥ 3;
• X is a Brauer-Severi variety.
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Then X(F ) is Zariski dense.

The proof of the first two claims can be found in [Man86].

Remark 3.2.3. Let X/F be a Del Pezzo surface of degree 1 (it always contains
an F -rational point, the base point of the anticanonical linear series) or a conic
bundle X → P1, with X(F ) �= ∅. It is unknown whether or not X(F ) is Zariski
dense.

Theorem 3.2.4. [Elk88] Let X ⊂ P3 be the quartic K3 surface given by

(3.1) x4
0 + x4

1 + x4
2 = x4

3.

Then X(Q) is Zariski dense.

The trivial solutions (1 : 0 : 0 : 1) etc are easily seen. The smallest nontrivial
solution is

(95 800, 217 519, 414 560, 422 481).

Geometrically, over Q̄, the surface given by (3.1) is a Kummer surface, with many
elliptic fibrations.

Example 3.2.5. [EJ06] Let X ⊂ P3 be the quartic given by

x4 + 2y4 = z4 + 4t4.

The obvious Q-rational points are given by y = t = 0 and x = ±z. The next
smallest solution is

14848014 + 2 · 12031204 = 11694074 + 4 · 11575204.

It is unknown whether or not X(Q) is Zariski dense.

3.3. Potential density: techniques. Here is a (short) list of possible strate-
gies to propagate points:

• use the group of automorphisms Aut(X), if it is infinite;

• try to find a dominant map X̃ → X where X̃ satisfies potential density
(for example, try to prove unirationality);

• try to find a fibration structure X → B where the fibers satisfy potential
density in some uniform way (that is, the field extensions needed to insure
potential density of the fibers Vb can be uniformly controlled).

In particular, it is important for us keep track of minimal conditions which
would insure Zariski density of points on varieties.

Example 3.3.1. Let π : X → P1 be a conic bundle, defined over a field F .
Then rational points on X are potentially dense. Indeed, by Tsen’s theorem, π has
a section s : P1 → X (which is defined over some finite extension F ′/F ), each fiber
has an F ′-rational point and it suffices to apply Theorem 3.2.1. Potential density
for conic bundles over higher-dimensional bases is an open problem.

If X is an abelian variety then there exists a finite extension F ′/F and a point
P ∈ X(F ′) such that the cyclic subgroup of X(F ′) generated by P is Zariski dense
(see, e.g., [HT00b, Proposition 3.1]).
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Example 3.3.2. If π : X → P1 is a Jacobian nonisotrivial elliptic fibration (π
admits a section and the j-invariant is nonconstant), then potential density follows
from a strong form of the Birch/Swinnerton-Dyer conjecture [GM97], [Man95].
The key problem is to control the variation of the root number (the sign of the
functional equation of the L-functions of the elliptic curve) (see [GM97]).

On the other hand, rational points on certain elliptic fibrations with multiple
fibers are not potentially dense [CTSSD97].

Example 3.3.3. One geometric approach to Zariski density of rational points
on (certain) elliptic fibration can be summarized as follows:

Case 1. Let π : X → B be a Jacobian elliptic fibration and e : B → X its
zero-section. Suppose that we have another section s which is nontorsion in the
Mordell-Weil group of X(F (B)). Then a specialization argument implies that the
restriction of the section to infinitely many fibers of π gives a nontorsion point in
the Mordell-Weil group of the corresponding fiber (see [Ser89], 11.1). In particular,
X(F ) is Zariski dense, provided B(F ) is Zariski dense in B.

Case 2. Suppose that π : X → B is an elliptic fibration with a multisection M
(an irreducible curve surjecting onto the base B). After a base changeX×BM →M
the elliptic fibration acquires the identity section Id (the image of the diagonal under
M ×B M → V ×B M) and a (rational) section

τM := d Id− Tr(M ×B M),

where d is the degree of π : M → B and Tr(M×BM) is obtained (over the generic
point) by summing all the points of M ×B M . We will say that M is nontorsion if
τM is nontorsion.

If M is nontorsion and if M(F ) is Zariski dense then the same holds for X(F )
(see [BT99]).

Remark 3.3.4. Similar arguments work for abelian fibrations [HT00c]. The
difficulty here is to formulate some simple geometric conditions ensuring that a
(multi)section leads to points which are not only of infinite order in the Mordell-Weil
groups of the corresponding fibers, but in fact generate Zariski dense subgroups.

3.4. Potential density for surfaces. By Theorem 3.2.1, potential density
holds for curves of genus g ≤ 1. It holds for surfaces which become rational after a
finite extension of the ground field, e.g., for all Del Pezzo surfaces. The classification
theory in dimension 2 gives us a list of surfaces of Kodaira dimension 0:

• abelian surfaces;
• bielliptic surfaces;
• Enriques surfaces;
• K3 surfaces.

Potential density for the first two classes follows from Theorem 3.2.2. The
classification of Enriques surfaces X implies that either Aut(X) is infinite or X is

dominated by a K3 surface X̃ with Aut(X̃) infinite [Kon86]. Thus we are reduced
to the study of K3 surfaces.
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Theorem 3.4.1. [BT00] Let X be a K3 surface over any field of characteristic
zero. If X is elliptic or admits an infinite group of automorphisms then rational
points on X are potentially dense.

Sketch of the proof. One needs to find sufficiently nondegenerate rational
or elliptic multisections of the elliptic fibration X → P1. These are produced using
deformation theory. One starts with special K3 surfaces which have rational curves
Ct ⊂ Xt in the desired homology class (for example, Kummer surfaces) and then
deforms the pair. This deformation technique has to be applied to twists of the
original elliptic surface. �

Example 3.4.2. A smooth hypersurface X ⊂ P1 × P1 × P1 of bi-degree (2, 2, 2)
is a K3 surface with Aut(X) infinite.

Example 3.4.3. Every smooth quartic surface S4 ⊂ P3 which contains a line
is an elliptic K3 surface. Indeed, let M be this line and assume that both S4 and
M are defined over a number field F . Consider the 1-parameter family of planes
P2
t ⊂ P3 containing M . The residual curve in the intersection P2

t ∩ S4 is a plane
cubic intersecting M in 3 points. This gives a fibration π : S4 → P1 with a rational
tri-section M .

To apply the strategy of Section 6.1 we need to ensure that M is nontorsion. A
sufficient condition, satisfied for generic quartics S4, is that the restriction of π to
M ramifies in a smooth fiber of π : X → P1. Under this condition X(F ) is Zariski
dense.

Theorem 3.4.4. [HT00a] Let X ⊂ P3 be a quartic K3 surface containing a
line defined over a field F . If X is general, then X(F ) is Zariski dense. In all
cases, there exists a finite extension F ′/F such that X(F ′) is Zariski dense.

Theorem 3.4.5. [BT00] Let X be an elliptic K3 surface over a field F . Then
rational points are potentially dense.

Are there K3 surfaces X over Q with geometric Picard number 1, X(Q) �= ∅
and X(Q) not Zariski dense?

3.5. Potential density in dimension ≥ 3. Potential density holds for uni-
rational varieties. Classification of (smooth) Fano threefolds and the detailed study
of occurring families implies unirationality for all but three cases:

• X4: quartics in P4;
• V1: double covers of a cone over the Veronese surface in P5 ramified in a

surface of degree 6;
• W2: double covers of P3 ramified in a surface of degree 6.

We now sketch the proof of potential density for quartics from [HT00a]; the
case of V1 is treated by similar techniques in [BT99].

The threefold X4 contains a 1-parameter family of lines. Choose a line M
(defined over some extension of the ground field, if necessary) and consider the
1-parameter family of hyperplanes P3

t ⊂ P4 containing M . The generic hyperplane
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section St := P3
t ∩X4 is a quartic surface with a line. Now we would like to argue

as in Example 3.4.3. We need to make sure that M is nontorsion in St for a dense
set of t ∈ P1. This will be the case for general X4 and M . The analysis of all
exceptional cases requires care.

Remark 3.5.1. It would be interesting to have further (nontrivial) examples of
birationally rigid Fano varieties with Zariski dense sets of rational points. Examples
of Calabi–Yau varieties over function fields of curves, with geometric Picard number
one and dense sets of rational points have been constructed in [HT08b]; little is
known over number fields.

Theorem 3.5.2. [HT00c] Let X be a K3 surface over a field F , of degree
2(n− 1). Then rational points on X [n] are potentially dense.

The proof relies on the existence of an abelian fibration

Y := X [n] → Pn,

with a nontorsion multisection which has a potentially dense set of rational points.
Numerically, such fibrations are predicted by square-zero classes in the Picard group
Pic(Y ), with respect to the Beauville–Bogomolov form (see Section 1.12). Geomet-
rically, the fibration is the degree n Jacobian fibration associated to hyperplane
sections of X.

Theorem 3.5.3. [AV08] Let Y be the Fano variety of lines on a general cubic
fourfold X3 ⊂ P5 over a field of characteristic zero. Then rational points on Y are
potentially dense.

Sketch of proof. The key tool is a rational endomorphism φ : Y → Y ana-
lyzed in [Voi04]: let l on X3 ⊂ P5 be a general line and P2

l ⊂ P5 the unique plane
everywhere tangent to l,

P2
l ∩X = 2l+ l

′.

Let [l] ∈ Y be the corresponding point and put φ([l]) := [l′], where l′ is the residual
line in X3.

Generically, one can expect that the orbit {φn([l])}n∈N is Zariski dense in Y .
This was proved by Amerik and Campana in [AC08], over uncountable ground
fields. Over countable fields, one faces the difficulty that the countably many
exceptional loci could cover all algebraic points of Y . Amerik and Voisin were
able to overcome this obstacle over number fields. Rather than proving density of
{φn([l])}n∈N they find surfaces Σ ⊂ Y , birational to abelian surfaces, whose orbits
are dense in Y . The main effort goes into showing that one can choose sufficiently
general Σ defined over Q̄, provided that Y is sufficiently general and still defined over
a number field. In particular, Y has geometric Picard number one. A case-by-case
geometric analysis excludes the possibility that the Zariski closure of {φn(Σ)}n∈N

is a proper subvariety of F . �

Theorem 3.5.4. [HT08a] Let Y be the variety of lines of a cubic fourfold
X3 ⊂ P5 which contains a cubic scroll T . Assume that the hyperplane section of
X3 containing T has exactly 6 double points in linear general position and that X3
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does not contain a plane. If X3 and T are defined over a field F then Y (F ) is
Zariski dense.

Remark 3.5.5. In higher dimensions, (smooth) hypersurfaces Xd ⊂ Pn of
degree d represent a major challenge. The circle method works well when

n� 2d

while the geometric methods for proving unirationality require at least a super-
exponential growth of n (see [HMP98] for a construction of a unirational para-
metrization).

3.6. Approximation. Let X be smooth and projective. Assume that X(F )
is dense in each X(Fv). A natural question is whether or not X(F ) is dense in
the adeles X(AF ). This weak approximation may be obstructed globally, by the
Brauer–Manin obstruction, as explained in Section 2.4. There are examples of
such obstructions for Del Pezzo surfaces in degree ≤ 4, for conic bundles over P2

[Har96], and for K3 surfaces as in the following example.

Example 3.6.1. [Wit04] Let E → P1 be the elliptic fibration given by

y2 = x(x− g)(x− h) where g(t) = 3(t− 1)3(t+ 3) and h = g(−t).
Its minimal proper regular model X is an elliptic K3 surface that fails weak approx-
imation. The obstruction comes from transcendental classes in the Brauer group
of X.

The theory is parallel to the theory of the Brauer–Manin obstruction to the
Hasse principle, up to a certain point. The principal new feature is:

Theorem 3.6.2. [Min89] Let X be a smooth projective variety over a number
field with a nontrivial geometric fundamental group. Then weak approximation fails
for X.

This applies to Enriques surfaces [HS05].

Of particular interest are varieties which are unirational over the ground field F ,
e.g., cubic surfaces with an F -rational point. Other natural examples are quotients
V/G, where G is a group and V a G-representation, discussed in Section 1.2.

4. Counting problems

Here we consider projective algebraic varieties X ⊂ Pn defined over a num-
ber field F . We assume that X(F ) is Zariski dense. We seek to understand the
distribution of rational points with respect to heights.

4.1. Heights. First we assume that F = Q. Then we can define a height of
integral (respectively rational) points on the affine (respectively projective) space
as follows

Haffine : An(Z) = Zn → R≥0

x = (x1, . . . , xn) �→ ‖x‖ = maxj(|xj |)
H : Pn(Q) = (Zn+1

prim \ 0)/± → R>0

x = (x0, . . . , xn) �→ ‖x‖ = maxj(|xj |).
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Here Zn+1
prim are the primitive vectors. This induces heights on points of subvarieties

of affine or projective spaces. In some problems it is useful to work with alternative

norms, e.g.,
√∑

x2
j instead of maxj(|xj |). Such choices are referred to as a change

of metrization. A more conceptual definition of heights and adelic metrizations is
given in Section 4.8

4.2. Counting functions. For a subvariety X ⊂ Pn put

N(X,B) := #{x ∈ X(Q) |H(x) ≤ B}.
What can be said about

N(X,B), for B→∞ ?

Main questions here concern:

• (uniform) upper bounds,
• asymptotic formulas,
• geometric interpretation of the asymptotics.

By the very definition, N(X,B) depends on the projective embedding of X. For
X = Pn over Q, with the standard embedding via the line bundle O(1), we get

N(Pn,B) =
1

ζ(n+ 1)
· τ∞ · Bn+1(1 + o(1)), B→∞,

where τ∞ is the volume of the unit ball with respect to the metrization of O(1).
But we may also consider the Veronese re-embedding

Pn → PN

x �→ xI , |I| = d,

e.g.,
P1 → P2,

(x0 : x1) �→ (x2
0 : x0x1 : x2

1).

The image y0y2 = y21 has ∼ B points of height ≤ B. Similarly, the number of
rational points on height ≤ B in the O(d)-embedding of Pn will be about B(n+1)/d.

More generally, if F/Q is a finite extension, put

Pn(F ) → R>0

x �→
∏

v max(|xj |v).

Theorem 4.2.1. [Sch79]
(4.1)

N(Pn(F ),B) =
hFRF (n+ 1)r1+r2−1

wF ζF (n+ 1)

(
2r1(2π)r2√
disc(F )

)n+1

Bn+1(1 + o(1)), B→∞

where

• hF is the class number of F ;
• RF the regulator;
• r1 (resp. r2) the number of real (resp. pairs of complex) embeddings of F ;
• disc(F ) the discriminant;
• wF the number of roots of 1 in F ;
• ζF the zeta function of F .
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With this starting point, one may try to prove asymptotic formulas of similar
precision for arbitrary projective algebraic varieties X, at least under some natural
geometric conditions. This program was initiated in [FMT89] and it has rapidly
grown in recent years.

4.3. Upper bounds. A first step in understanding growth rates of rational
points of bounded height is to obtain uniform upper and lower bounds, with effective
control of error terms. Results of this type are quite valuable in arguments using
fibration structures. Here is a sample:

• [BP89], [Pil96]: Let X ⊂ A2 be a geometrically irreducible affine curve.
Then

#{x ∈ X(Z) |Haffine(x) ≤ B} �deg(X) B
1

deg(X) log(B)2deg(X)+3.

• [EV05]: Let X ⊂ P2 be a geometrically irreducible curve of genus ≥ 1.
Then there is a δ > 0 such that

N(X(Q),B)�deg(X),δ B
2

deg(X)
−δ.

Fibering and using estimates for lower dimensional varieties, one has:

Theorem 4.3.1. [Pil95] Let X ⊂ Pn be a geometrically irreducible variety,
and ε > 0. Then

N(X(Q),B)�deg(X),dim(X),ε B
dim(X)+ 1

deg(X)
+ε

The next breakthrough was accomplished in [HB02]; further refinements com-
bined with algebro-geometric tools lead to

Theorem 4.3.2 ([BHBS06], [Sal07]). Let X ⊂ Pn be a geometrically irre-
ducible variety, and ε > 0. Then

N(X(Q),B)�deg(X),dim(X),ε

⎧⎪⎨
⎪⎩

B
dim(X)− 3

4+
5

3
√

3
+ε

deg(X) = 3

B
dim(X)− 2

3+
3

2
√

deg(X)
+ε

deg(X) = 4, 5
Bdim(X)+ε deg(X) ≥ 6

A survey of results on upper bounds, with detailed proofs, is in [HB06].

4.4. Lower bounds. Let X be a projective variety over a number field F and
let L be a very ample line bundle on X. This gives an embedding X ↪→ Pn. We fix
a height H on Pn(F ) and consider the counting function

N(X(F ), L,B) := #{x ∈ X(F ) |HL(x) ≤ B},

with respect to the induced height HL (see Section 4.8 for more explanations on
heights).

Lemma 4.4.1. Let X be a smooth Fano variety over a number field F and
Y := BlZ(X) a blowup in a smooth subvariety Z = ZF of codimension ≥ 2. If
N(X◦(F ),−KX ,B)� B1, for all dense Zariski open X◦ ⊂ X then the same holds
for Y :

N(Y ◦(F ),−KY ,B)� B1.
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Proof. Let π : Y → X be the blowup. We have

−KY = π∗(−KX)−D

with supp(D) ⊂ E, the exceptional divisor. It remains to use the fact that HD(x)
is uniformly bounded from below on (X \ D)(F ) (see, e.g., [BG06, Proposition
2.3.9]), so that

N(π−1(X◦)(F ),−KY ,B) ≥ c · N(X◦(F ),−KX ,B),

for some constant c > 0 and an appropriate Zariski open X◦ ⊂ X. �

In particular, split Del Pezzo surfaces Xr satisfy the lower bound of Conjec-
ture 4.10.1

N(Xr(F ),−KXr
,B)� B1.

Finer lower bounds, in some nonsplit cases have been proved in [SSD98]:

N(X◦
6 (F ),−KX6

,B)� B1 log(B)r−1,

provided the cubic surface X6 has at least two skew lines defined over F . This
gives support to Conjecture 4.10.2. The following theorem gives evidence for Con-
jecture 4.10.1 in dimension 3.

Theorem 4.4.2. [Man93] Let X be a Fano threefold over a number field F0.
For every Zariski open subset X◦ ⊂ X there exists a finite extension F/F0 such
that

N(X(F ),−KX ,B)� B1.

This relies on the classification of Fano threefolds (cf. [IP99b], [MM82],
[MM86]). One case was missing from the classification when [Man93] was pub-
lished; the Fano threefold obtained as a blowup of P1 × P1 × P1 in a curve of
tri-degree (1, 1, 3) [MM03]. Lemma 4.4.1 proves the expected lower bound in this
case as well. An open question is whether or not one can choose the extension F
independently of X◦.

4.5. Finer issues. At the next level of precision we need to take into account
more refined arithmetic and geometric data. Specifically, we need to analyze the
possible sources of failure of the heuristic N(B) ∼ Bn+1−d in Section 2.2:

• Local or global obstructions : as in
x2
0 + x2

1 + x2
2 = 0 or x3

0 + 4x3
1 + 10x3

2 + 25x3
3 = 0;

• Singularities : the surface x2
1x

2
2 + x2

2x
2
3 + x2

3x
2
1 = x0x1x2x3 has ∼ B3/2

points of height ≤ B, on every Zariski open subset, too many!
• Accumulating subvarieties : On x3

0 + x3
1 + x3

2 + x3
3 = 0 there are ∼ B2

points on Q-lines and and provably O(B4/3+ε) points in the complement
[HB97]. The expectation is B log(B)3, over Q. Similar effects persist in
higher dimensions. A quartic X4 ⊂ P4 contains a 1-parameter family of
lines, each contributing ∼ B2 to the asymptotic, while the expectation is
∼ B. Lines on a cubic X3 ⊂ P4 are parametrized by a surface, which is of
general type. We expect ∼ B2 points of height ≤ B on the cubic threefold,
and on each line. In [BG06, Theorem 11.10.11] it is shown that

Nlines(B) = cB2(1 + o(1)), as B→∞,
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where the count is over F -rational points on lines defined over F , and the
constant c is a convergent sum of leading terms of contributions from each
line of the type (4.1). In particular, each line contributes a positive density
to the main term. On the other hand, one expects the same asymptotic
∼ B2 on the complement of the lines, with the leading term a product
of local densities. How to reconcile this? The forced compromise is to
discard such accumulating subvarieties and to hope that for some Zariski
open subset X◦ ⊂ X, the asymptotic of points of bounded height does
reflect the geometry of X, rather than the geometry of its subvarieties.

These finer issues are particularly striking in the case of K3 surfaces. They
may have local and global obstructions to the existence of rational points, they
may fail the heuristic asymptotic, and they may have accumulating subvarieties,
even infinitely many:

Conjecture 4.5.1. (see [BM90]) Let X be a K3 surface over a number field
F . Let L be a polarization, ε > 0 and Y = Y (ε, L) be the union of all F -rational
curves C ⊂ X (i.e., curves that are isomorphic to P1 over F ) that have L-degree
≤ 2/ε. Then

N(X,L,B) = N(Y, L,B) +O(Bε), as B →∞.

Theorem 4.5.2. [McK00] Let X → P1×P1 be a double cover ramified over a
curve of bidegree (4, 4). Then there exists an open cone Λ ⊂ Λample(X) such that
for every L ∈ Λ there exists a δ > 0 such that

N(X,L,B) = N(Y, L,B) +O(B2/d−δ), as B→∞,

where d is the minimal L-degree of a rational curve on X and Y is the union of all
F -rational curves of degree d.

This theorem exhibits the first layer of an arithmetic stratification predicted in
Conjecture 4.5.1.

4.6. The circle method. Let f ∈ Z[x0, . . . , xn] be a homogeneous polyno-
mial of degree d such that the hypersurface Xf ⊂ Pn is nonsingular. Let

Nf (B) := #{x ∈ Zn | f(x) = 0, ‖x‖ ≤ B}
be the counting function. In this section we sketch a proof of the following

Theorem 4.6.1. [Bir62] Assume that n ≥ 2d(d+ 1). Then

(4.2) Nf (B) = Θ · Bn+1−d(1 + o(1)) B→∞,

where

Θ =
∏
p

τp · τ∞ > 0,

provided f(x) = 0 is solvable in Zp, for all p, and in R.

The constants τp and τ∞ admit an interpretation as local densities; these are
explained in a more conceptual framework in Section 4.12.

Substantial efforts have been put into reducing the number of variables, espe-
cially for low degrees. Another direction is the extension of the method to systems
of equations [Sch85] or to more general number fields [Ski97].
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Figure 1. Oscillations of S(α)

We now outline the main steps of the proof of the asymptotic formula 4.2. The
first is the introduction of a “delta”-function: for x ∈ Z we have∫ 1

0

e2πiαxdα =

{
0 if x �= 0,
1 otherwise.

Now we can write

(4.3) Nf (B) =

∫ 1

0

S(α) dα,

where

S(α) :=
∑

x∈Zn+1, ‖x‖≤B

e2πiαf(x).

The function S(α) is wildly oscillating (see Figure 1), with peaks at α = a/q, for
small q. Indeed, the probability that f(x) is divisible by q is higher for small q,
and each such term contributes 1 to S(α). The idea of the circle method is to
establish the asymptotic of the integral in equation 4.3, for B→ ∞, by extracting
the contributions of α close to rational numbers a/q with small q, and finding
appropriate bounds for integrals over the remaining intervals.
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More precisely, one introduces the major arcs

M :=
⋃

(a,q)=1, q≤B∆

Ma,q,

where ∆ > 0 is a parameter to be specified, and

Ma,q :=

{
α |
∣∣∣∣α− a

q

∣∣∣∣ ≤ B−d+δ

}
.

The minor arcs are the complement:

m := [0, 1] \M.

The goal is to prove the bound

(4.4)

∫
m

S(α) dα = O(Bn+1−d−ε), for some ε > 0,

and the asymptotic

(4.5)

∫
M

S(α) dα =
∏
p

τp · τ∞ · Bn+1−d(1 + o(1)) for B→∞.

Remark 4.6.2. Modern refinements employ “smoothed out” intervals, i.e., the
delta function of an interval in the major arcs is replaced by a smooth bell curve
with support in this interval. In Fourier analysis, “rough edges” translate into bad
bounds on the dual side, and should be avoided. An implementation of this idea,
leading to savings in the number of variables, can be found in [HB83].

There are various approaches to proving upper bounds in equation 4.4; most
are a variant or refinement of Weyl’s bounds (1916) [Wey16]. Weyl considered the
following exponential sums:

s(α) :=
∑

0≤x≤B

e2πiαx
d

.

The main observation is that |s(α)| is “small”, when |α − a/q| is “large”. This is
easy to see when d = 1; summing the geometric series we get

|s(α)| =
∣∣∣∣1− e2πiα(B+1)

1− e2πiα

∣∣∣∣� 1

〈〈α〉〉 ,

where 〈〈α〉〉 is the distance to the nearest integer. In general, Weyl’s differencing
technique is applied to reduce the degree, to eventually arrive at a geometric series.

We turn to major arcs. Let

α =
a

q
+ β

with β very small, and getting smaller as a function of B. Here we will assume that
|β| ≤ B−d+δ′ , for some small δ′ > 0. We put x = qy + z, with z the corresponding
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residue class modulo q, and obtain

S(α) =
∑

x∈Zn+1, ‖x‖≤B

e2πi
a
q f(x)e2πiβf(x)

=
∑

‖x‖≤B

e2πi
a
q f(qy+z)e2πiβf(x)

=
∑
z

e2πi
a
q f(z)(

∑
‖y‖≤B/q

e2πiβf(x))

=
∑
z

e2πi
a
q f(z)

∫
‖y‖≤B/q

e2πiβf(x) dy

=
∑
z

e2πi
a
q f(z)

qn+1

∫
‖x‖≤B

e2πiβf(x) dx,

where dy = qn+1dx. The passage
∑
�→
∫
is justified for our choice of small β—the

difference will be absorbed in the error term in (4.2). We have obtained∫ 1

0

S(α) dα =
∑
a,q

∑
z

e2πi
a
q f(z)

qn+1
·
∫
|β|≤B−d+δ

∫
‖x‖≤B

e2πiβf(x) dxdβ,

modulo a negligible error. We first deal with the integral on the right, called the
singular integral. Put β′ = βBd and x′ = x/B. The change of variables leads to∫
|β|≤ 1

Bd−δ

dβ

∫
‖x‖≤B

e2πiβB
df( x

B )Bn+1 d(
x

B
) = Bn+1−d

∫
|β′|≤Bδ

∫
‖x′‖≤1

e2πiβ
′f(x′)d(x′).

We see the appearance of the main term Bn+1−d and the density

τ∞ :=

∫ 1

0

dβ′
∫
‖x‖≤1

e2πiβ
′f(x′) dx′.

Now we analyze the singular series

τQ :=
∑
a,q

∑
z

e2πi
a
q f(z)

qn+1
,

where the outer sum runs over positive coprime integers a, q, a < q and q < Q,
and the inner sum over residue classes z ∈ (Z/q)n+1. This sum has the following
properties:

(1) multiplicativity in q; in particular we have

τ :=
∏
p

(
∞∑
i=0

A(pi)),

with τQ → τ , for Q→∞, (with small error term);
(2) and

k∑
i=0

A(pi)

pi(n+1)
=

�(f, pk)

pkn
,

where

�(f, pk) := #{ z mod pk | f(z) = 0 mod pk }.
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Here, a discrete version of equation (4.3) comes into play:

#{solutions mod pk} = 1

pk

pk−1∑
a=0

∑
z

e
2πi

af(z)

pk .

However, our sums run over a with (a, p) = 1. A rearranging of terms leads to

�(f, pk)

pkn
=

k∑
i=0

∑
(a,pk)=pi

∑
z

1

pk(n+1)
e
2πi a

pk
f(z)

=

k∑
i=0

∑
( a

pi
,pk−i)=1

∑
z

1

pk(n+1)
e
2πi a/pi

pk−i f(z) · p(n+1)i

=

k∑
i=0

1

p(n+1)(k−i)

∑
(a,pk−i)=1

∑
z

e
2πi a

pk−i f(z)

=

k∑
i=0

1

p(n+1)(k−i)
·A(pk−i).

In conclusion,

(4.6) τ =
∏
p

τp, where τp = lim
k→∞

�(f, pk)

pnk
.

As soon as there is at least one (nonsingular) solution f(z) = 0 mod p, τp �= 0,
and in fact, for almost all p,

�(f, pk)

pkn
=

�(f, p)

pn
,

by Hensel’s lemma. Moreover, if τp �= 0 for all p, the Euler product in equation
(4.6) converges.

Let us illustrate this in the example of Fermat type equations

f(x) = a0x
d
0 + · · ·+ anx

d
n = 0.

Using properties of Jacobi sums one can show that∣∣∣∣�(f, p)pn
− 1

∣∣∣∣ ≤ c

p(n+1)/2
,

for some c > 0. The corresponding Euler product∏
p

�(f, p)

pn
�
∏
p

(
1 +

c

p(n+1)/2

)

is convergent.
Some historical background: the circle method was firmly established in the

series of papers of Hardy and Littlewood Partitio numerorum. They comment: “A
method of great power and wide scope, applicable to almost any problem concerning
the decomposition of integers into parts of a particular kind, and to many against
which it is difficult to suggest any other obvious method of attack.”
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4.7. Function fields: heuristics. Here we present Batyrev’s heuristic argu-
ments from 1987, which lead to Conjecture 4.10.4. In the function field case, when
F = Fq(C), for some curve C, F -rational points on a projective variety X/F corre-
spond to sections C → X , where X is amodel ofX over C. Points of bounded height
correspond to sections of bounded degree with respect to an ample line bundle L
over X . Deformation theory allows one to compute the dimension of moduli spaces
of sections of fixed degree. The analytic properties of the associated generating
series lead to a heuristic asymptotic formula.

Let p be a prime and put q = pn. Let Λ be a convex n-dimensional cone in Rn

with vertex at 0. Let

f1, f2 : Rn → R

be two linear functions such that

• fi(Z
n) ⊂ Z;

• f2(x) > 0 for all x ∈ Λ \ {0};
• there exists an x ∈ Λ \ {0} such that f1(x) > 0.

For each λ ∈ Zn ∩ Λ let Mλ be a set of cardinality

|Mλ| := qmax(0,f1(λ)),

and put M = ∪λMλ. Let

ϕ(m) := qf2(λ), for m ∈Mλ.

Then the series

Φ(s) =
∑

λ∈Λ∩Zn

|Mλ|
qsf2(λ)

converges for

�(s) > a := max
x∈Λ

(f1(x)/f2(x)) > 0.

What happens around s = a? Choose an ε > 0 and decompose the cone

Λ := Λ+
ε ∪ Λ−

ε ,

where
Λ+
ε := {x ∈ Λ | f1(x)/f2(x) ≥ a− ε}

Λ−
ε := {x ∈ Λ | f1(x)/f2(x) < a− ε}

Therefore,

Φ(s) = Φ+
ε +Φ−

ε ,

where Φ−
ε converges absolutely for �(s) > a− ε.

Now we make some assumptions concerning Λ: suppose that for all ε ∈ Q>0,
the cone Λ+

ε is a rational finitely generated polyhedral cone. Then

Λa
ε := {x | f1(x)/f2(x) = a}

is a face of Λ+
ε , and thus also finitely generated polyhedral.

Lemma 4.7.1. There exists a function Gε(s), holomorphic for �(s) > a − ε,
such that

Φε(s) =
Gε(s)

(s− a)b
,

where b is the dimension of the face Λa
ε .
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Proof. For y ∈ Q>0 we put

P (y) := {x |x ∈ Λ, f2(x) = y}.
Consider the expansion

Φ(s) =
∑
y∈N

∑
λ∈P (y)∩Zn

qf1(λ)−sf2(λ).

Replacing by the integral, we obtain (with w = yz)

=

∫ ∞

0

dy

(∫
P (y)

qf1(w)−sf2(w)dw

)

=

∫ ∞

0

dy

(∫
P (1)

yn−1q(f1(z)−sf2(z))ydz

)

=

∫
P (1)

dz

∫ ∞

0

yn−1q(f1(z)−s)ydy

=

∫
P (1)

dz
1

(s− f1(z))n

∫ ∞

0

un−1q−udu

=
Γ(n)

(log(q))n

∫
P (1)

1

(s− f1(z))n
dz.

(4.7)

It is already clear that we get a singularity at s = max(f1(z)) on P (1), which is a.
In general, let f be a linear function and

Φ(s) :=

∫
∆

(s− f(x))−ndΩ

where ∆ is a polytope of dimension n− 1. Then Φ is a rational function in s, with
an asymptotic at s = a given by

volf,a
(b− 1)!

(n− 1)!
(s− a)−b,

where ∆f,a is the polytope ∆ ∩ {f(x) = a}, volf,a is its volume and b = 1 +
dim(∆f,a). �

Let C be a curve of genus g over the finite field Fq and F its function field.
Let X be a variety over Fq of dimension n. Then V := X × C is a variety over F .
Every F -rational point x of V gives rise to a section x̃ of the map V → C. We have
a pairing

A1(V )×An(V )→ Z

between the groups of (numerical) equivalence classes of codimension 1-cycles and
codimension n-cycles. We have

An(V ) = An(X)⊗A1(C)⊕An−1(X)⊗A0(C)

and
A1(V ) = A1(X)⊕ Z,

L = (LX , �),
−KV = (−KX , 2− 2g).
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Assume that L is a very ample line bundle on V . Then

q(L,x̃)

is the height of the point x with respect to L. The height zeta function takes the
form (cf. Section 4.9)

Z(s) =
∑

x∈V (F )

q−(L,x̃)s

=
∑

y∈An(X)

Ñ(q)q−[(LX ,y)+�]s,

where
Ñ(q) := #{x ∈ V (F ) | cl(x) = y}.

We proceed to give some heuristic(!) bound on Ñ(q). The cycles in a given class y
are parametrized by an algebraic variety My and

dim(My(x̃)) ≥ χ(NV |x̃)

(the Euler characteristic of the normal bundle). More precisely, the local ring on
the moduli space is the quotient of a power series ring with h0(NV |x̃) generators by

h1(NV |x̃) relations. Our main heuristic assumption is that

Ñ(q) = qdim(My) ∼ qχ(NV |x̃),

modulo smaller order terms. This assumption fails, for example, for points con-
tained in “exceptional” (accumulating) subvarieties.

By the short exact sequence

0→ Tx̃ → TV |x̃ → NV |x̃ → 0

we have

χ(TV |x̃) = (−KV , x̃) + (n+ 1)χ(Ox̃),

χ(NV |x̃) = (−KX , cl(x)) + nχ(Ox̃)

From now on we consider a modified height zeta function

Zmod(s) :=
∑

qχ(NV |x̃)−(L,x̃)s.

We observe that its analytic properties are determined by the ratio between two
linear functions

(−KX , ·) and (L, ·).
The relevant cone Λ is the cone spanned by classes of (maximally moving) effective
curves. The finite generation of this cone for Fano varieties is one of the main results
of Mori’s theory. Applying the Tauberian theorem 6.1.4 to Zmod(s) we obtain the
heuristic formula:

N(X◦, L,B) = cBa(log(B))b−1(1 + o(1)),

where
a = a(Λ, L) = max

z∈Λ
((−KX , z)/(L, z))

and b = b(Λ, L) is the dimension of the face of the cone where this maximum is
achieved.
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4.8. Metrizations of line bundles. In this section we discuss a refined the-
ory of height functions, based on the notion of an adelically metrized line bundle.

Let F be a number field and disc(F ) the discriminant of F (over Q). The set of
places of F will be denoted by Val(F ). We shall write v|∞ if v is archimedean and
v �∞ if v is nonarchimedean. For any place v of F we denote by Fv the completion
of F at v and by ov the ring of v-adic integers (for v �∞). Let qv be the cardinality
of the residue field Fv of Fv for nonarchimedean valuations. The local absolute
value | · |v on Fv is the multiplier of the Haar measure, i.e., d(axv) = |a|vdxv for
some Haar measure dxv on Fv. We denote by A = AF =

∏′
v Fv the adele ring of

F . We have the product formula∏
v∈Val(F )

|a|v = 1, for all a ∈ F ∗.

Definition 4.8.1. Let X be an algebraic variety over F and L a line bundle
on X. A v-adic metric on L is a family (‖ · ‖x)x∈X(Fv) of v-adic Banach norms
on the fibers Lx such that for all Zariski open subsets X◦ ⊂ X and every section
f ∈ H0(X◦, L) the map

X◦(Fv)→ R, x �→ ‖f‖x,
is continuous in the v-adic topology on X◦(Fv).

Example 4.8.2. Assume that L is generated by global sections. Choose a basis
(fj)j∈[0,...,n] of H

0(X,L) (over F ). If f is a section such that f(x) �= 0 then define

‖f‖x := max
0≤j≤n

(
| fj
f
(x)|v
)−1

,

otherwise ‖0‖x := 0. This defines a v-adic metric on L. Of course, this metric
depends on the choice of (fj)j∈[0,...,n].

Definition 4.8.3. Assume that L is generated by global sections. An adelic
metric on L is a collection of v-adic metrics, for every v ∈ Val(F ), such that for all
but finitely many v ∈ Val(F ) the v-adic metric on L is defined by means of some
fixed basis (fj)j∈[0,...,n] of H

0(X,L).

We shall write ‖ · ‖A := (‖ · ‖v) for an adelic metric on L and call a pair
L = (L, ‖ · ‖A) an adelically metrized line bundle. Metrizations extend naturally
to tensor products and duals of metrized line bundles, which allows one to define
adelic metrizations on arbitrary line bundles L (on projective X): represent L as
L = L1 ⊗ L−1

2 with very ample L1 and L2. Assume that L1, L2 are adelically
metrized. An adelic metrization of L is any metrization which for all but finitely
many v is induced from the metrizations on L1, L2.

Definition 4.8.4. Let L = (L, ‖ · ‖A) be an adelically metrized line bundle on
X and f an F -rational section of L. Let X◦ ⊂ X be the maximal Zariski open
subset of X where f is defined and does not vanish. For all x = (xv)v ∈ X◦(A) we
define the local

HL,f,v(xv) := ‖f‖−1
xv

and the global height function

HL(x) :=
∏

v∈Val(F )

HL,f,v(xv).
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By the product formula, the restriction of the global height to X◦(F ) does not
depend on the choice of f.

Example 4.8.5. For X = P1 = (x0 : x1) one has Pic(X) = Z, spanned by the
class L = [(1 : 0)]. For x = x0/x1 ∈ Ga(A) and f = x1 we define

HL,f,v(x) = max(1, |x|v).
The restriction of HL =

∏
v HL,f,v to Ga(F ) ⊂ P1 is the usual height on P1 (with

respect to the usual metrization of L = O(1)).

Example 4.8.6. Let X be an equivariant compactification of a unipotent group
G and L a very ample line bundle on X. The space H0(X,L), a representation
space for G, has a unique G-invariant section f, modulo scalars. Indeed, if we had
two nonproportional sections, their quotient would be a character of G, which is
trivial.

Fix such a section. We have f(gv) �= 0, for all gv ∈ G(Fv). Put

HL,f,v(gv) = ‖f(gv)‖−1
v and HL,f =

∏
v

HL,f,v.

By the product formula, the global height is independent of the choice of f.

4.9. Height zeta functions. Let X be an algebraic variety over a global
field F , L = (L, ‖ · ‖A) an adelically metrized ample line bundle on X, HL a height
function associated to L, X◦ a subvariety of X, aX◦(L) the abscissa of convergence
of the height zeta function

Z(X◦,L, s) :=
∑

x∈X◦(F )

HL(x)
−s.

Proposition 4.9.1.

(1) The value of aX◦(L) depends only on the class of L in NS(X).
(2) Either 0 ≤ aX◦(L) < ∞, or aX◦(L) = −∞, the latter possibility corre-

sponding to the case of finite X◦(F ). If aX◦(L) > 0 for one ample L then
this is so for every ample L.

(3) aX◦(Lm) = 1
maX◦(L). In general, aX◦(L) extends uniquely to a continu-

ous function on Λnef(X)◦, which is inverse linear on each half-line unless
it identically vanishes.

Proof. All statements follow directly from the standard properties of heights.
In particular,

aX◦(L) ≤ a(Pn(F ),O(m)) =
n+ 1

m
for some n,m. If Z(X◦,L, s) converges at some negative s, then it must be a finite
sum. Since for two ample heights H,H′ we have

cHm < H′ < c′Hn, c, c′,m, n > 0,

the value of a can only be simultaneously positive or zero. Finally, if L and L′ are
close in the (real) topology of NS(V )R, then L−L′ is a linear combination of ample
classes with small coefficients, and so aX◦(L) is close to aX◦(L′). �

By Property (1) of Proposition 4.9.1, we may write aX◦(L) = aX◦(L).
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Example 4.9.2. For an abelian variety X and ample line bundle L we have

HL(x) = exp(q(x) + l(x) +O(1)),

where q is a positive definite quadratic form on X(F )⊗Q and l is a linear form. It
follows that aX(L) = 0, although X(F ) may well be Zariski dense in X. Also

N(X,L,B) = c log(B)r/2(1 + o(1)),

where r = rkX(F ). Hence, for a = 0, the power of log(B) in principle cannot be
calculated geometrically: it depends on the arithmetic of X and F . The hope is
that for a > 0 the situation is more stable.

Definition 4.9.3. The arithmetic hypersurface of linear growth is

Σarith
X◦ := {L ∈ NS(X)R | aX◦(L) = 1}.

Proposition 4.9.4.

• If aX◦(L) > 0 for some L, then Σarith
X◦ is nonempty and intersects each

half-line in Λeff(X)◦ in exactly one point.
• Σ<

X◦ := {L | aX◦(L) < 1} is convex.

Proof. The first statement is clear. The second follows from the Hölder in-
equality: if

0 < σ, σ′ ≤ 1 and σ + σ′ = 1

then

H−σ
L (x)H−σ′

L′ (x) ≤ σHL(x)
−1 + σ′HL′(x)−1

so that from L,L′ ∈ Σ<
X◦ it follows that σL+ σ′L′ ∈ Σ<

X◦ . �

When rkNS(X) = 1, ΣX◦ is either empty, or consists of one point. Schanuel’s
theorem 4.2.1 implies that for Pn(F ), this point is the anticanonical class.

Definition 4.9.5. A subvariety Y � X◦ ⊂ X is called point accumulating, or
simply accumulating (in X◦ with respect to L), if

aX◦(L) = aY (L) > aX◦\Y (L).

It is called weakly accumulating if

aX◦(L) = aY (L) = aX◦\Y (L).

Example 4.9.6. If we blow up an F -point of an abelian variety X, the excep-
tional divisor will be an accumulating subvariety in the resulting variety, although
to prove this we must analyze the height with respect to the exceptional divisor,
which is not quite obvious.

If X := Pn1 × · · · × Pnk , with nj > 0, then every fiber of a partial projection is
weakly accumulating with respect to the anticanonical class.

The role of accumulating subvarieties is different for various classes of varieties,
but we will generally try to pinpoint them in a geometric way. For example, on Fano
varieties we need to remove the −KX -accumulating subvarieties to ensure stable
effects, e.g., the linear growth conjecture. Weakly accumulating subvarieties some-
times allow one to obtain lower bounds for the growth rate of X(F ) by analyzing
subvarieties of smaller dimension (as in Theorem 4.4.2).
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4.10. Manin’s conjecture. The following picture emerged from the analy-
sis of examples such as Pn, flag varieties, complete intersections of small degree
[FMT89], [BM90].

Let X be a smooth projective variety with ample anticanonical class over a
number field F0. The conjectures below describe the asymptotic of rational points
of bounded height in a stable situation, i.e., after a sufficiently large finite extension
F/F0 and passing to a sufficiently small Zariski dense subset X◦ ⊂ X.

Conjecture 4.10.1 (Linear growth conjecture). One has

(4.8) B1 � N(X◦(F ),−KX ,B)� B1+ε.

Conjecture 4.10.2 (The power of log).

(4.9) N(X◦(F ),−KX ,B) � B1 log(B)r−1,

where r = rkPic(XF ).

Conjecture 4.10.3 (General polarizations / linear growth). Every smooth
projective X with −KX ∈ Λbig(X) has a dense Zariski open subset X◦ such that

Σarith
X◦ = Σgeom

X ,

(see Definitions 4.9.3, (1.7)).

The next level of precision requires that Λeff(X) is a finitely generated polyhe-
dral cone. By Theorem 1.1.5, this holds when X is Fano.

Conjecture 4.10.4 (General polarizations / power of log). For all sufficiently
small Zariski open subsets X◦ ⊂ X and very ample L one has

(4.10) N(X◦(F ), L,B) � Ba(L) log(B)b(L)−1, B→∞,

where a(L), b(L) are the constants defined in Section 1.4.

4.11. Counterexamples. Presently, no counterexamples to Conjecture 4.10.1
are known. However, Conjecture 4.10.2 fails in dimension 3. The geometric reason
for this failure comes from Mori fiber spaces, more specifically from “unexpected”
jumps in the rank of the Picard group in fibrations.

Let X ⊂ Pn be a smooth hypersurface. We know, by Lefschetz, that Pic(X) =
Pic(Pn) = Z, for n ≥ 4. However, this may fail when X has dimension 2. Moreover,
the variation of the rank of the Picard group in a family of surfacesXt over a number
field F may be nontrivial, even when geometrically, i.e., over the algebraic closure
F̄ of F , the rank is constant.

The following example appeared in [BT96b]: consider a hypersurface X ⊂
P3
x × P3

y given by a form of bidegree (1,3):

3∑
j=0

xjy
3
j = 0.

By Lefschetz, the Picard group Pic(X) = Z2, with the basis of hyperplane sections
of P3

x, resp. P
3
y, and the anticanonical class is computed as in Example 1.1.2

−KX = (3, 1).
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Projection onto P3
y exhibitsX as a P2-fibration over P3. The second Mori fiber space

structure on X is given by projection to P3
x, with fibers diagonal cubic surfaces.

The restriction of −KX to each (smooth) fiber Xx is the anticanonical class of the
fiber.

The rank rkPic(Xx) varies between 1 and 7. For example, if F contains
√
−3,

then rkPic(Xx) = 7 whenever all xj are cubes in F . The lower bounds in Section 4.4
show that

N(X◦
x,−KXx

,B) � B log(B)6

for all such fibers, all dense Zariski open subsets X◦
x and all F . On the other hand,

Conjecture 4.10.2 implies that

N(X◦,−KX ,B) � B log(B),

for some Zariski open X◦ ⊂ X, over a sufficiently large number field F . How-
ever, every Zariski open subset X◦ ⊂ X intersects infinitely many fibers Xx with
rkPic(Xx) = 7 in a dense Zariski open subset. This is a contradiction.

4.12. Peyre’s refinement. The refinement concerns the conjectured asymp-
totic formula (4.9). Fix a metrization of −KX = (−KX , ‖ · ‖A). The expectation is
that

N(X◦(F ),−KX ,B) = c(−KX) · B1 log(B)r−1(1 + o(1)), as B→∞,

with r = rkPic(X). Peyre’s achievement was to give a conceptual interpretation of
the constant c(−KX) [Pey95]. Here we explain the key steps of his construction.

Let F be a number field and Fv its v-adic completion. Let X be a smooth
algebraic variety over F of dimension d equipped with an adelically metrized line
bundle K = KX = (KX , ‖ · ‖A). Fix a point x ∈ X(Fv) and let x1, . . . , xd be local
analytic coordinates in an analytic neighborhood Ux of x giving a homeomorphism

φ : Ux
∼−→ F d

v .

Let dy1∧· · ·∧dyd be the standard differential form on F d
v and f := φ∗(dy1∧· · ·∧dyd)

its pullback to Ux. Note that f is a local section of the canonical sheaf KX and that
a v-adic metric ‖ · ‖v on KX gives rise to a norm ‖f(u)‖v ∈ R>0, for each u ∈ Ux.
Let dµv = dy1 · · · dyd be the standard Haar measure, normalized by∫

od
v

dµv =
1

dv
d/2

,

where dv is the local different (which equals 1 for almost all v).
Define the local v-adic measure ω̃K,v on Ux via∫

W

ω̃K,v =

∫
φ(W )

‖f(φ−1(y))‖vdµv,

for every open W ⊂ Ux. This local measure glues to a measure ω̃K,v on X(Fv).
Let X be a model of X over the integers oF and let v be a place of good

reduction. Let Fv = ov/mv be the corresponding finite field and put qv = #Fv.
Since X is projective, we have

πv : X(Fv) = X (ov)→ X (Fv).
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We have∫
X(Fv)

ω̃K,v =
∑

x̄v∈X(Fv)

∫
π−1
v (x̄v)

ω̃K,v

=
X(Fv)

qdv

= 1 +
Trv(H

2d−1
ét (XF̄v

))
√
qv

+
Trv(H

2d−2
ét (XF̄v

))

qv
+ · · ·+ 1

qdv
,

where Trv is the trace of the v-Frobenius on the �-adic cohomology of X. Trying to
integrate the product measure over X(A) is problematic, since the Euler product

∏
v

X(Fv)

qdv

diverges. In all examples of interest to us, the cohomology group H2d−1
ét (XF̄v

,Q�)
vanishes. For instance, this holds if the anticanonical class is ample. Still the
product diverges, since the 1/qv term does not vanish, for projective X. There is
a standard regularization procedure: Choose a finite set S ⊂ Val(F ), including all
v | ∞ and all places of bad reduction. Put

λv =

{
Lv(1,Pic(XQ̄)) v /∈ S

1 v ∈ S
,

where Lv(s,Pic(XQ̄)) is the local factor of the Artin L-function associated to the Ga-
lois representation on the geometric Picard group. Define the regularized Tamagawa
measure

ωK,v := λ−1
v ω̃K,v.

Write

ωK := L∗S(1,Pic(XQ̄))|disc(F )|−d/2
∏
v

ωK,v,

where

L∗S(1,Pic(XQ̄)) := lim
s→1

(s− 1)rL∗S(s,Pic(XQ̄))

and r is the rank of Pic(XF ), and define

(4.11) τ (−KX) :=

∫
X(F )

ωK.

Example 4.12.1. Let G be a linear algebraic group over F . It carries an F -
rational d-form ω, where d = dim(G). This form is unique, modulo multiplication
by nonzero constants. Fixing ω, we obtain an isomorphism KX � OG, the structure
sheaf, which carries a natural adelic metrization (‖ · ‖A).

Let (A,Λ) be a pair consisting of a lattice and a strictly convex (closed) cone
in AR: Λ ∩ −Λ = 0. Let (Ǎ, Λ̌) be the pair consisting of the dual lattice and the
dual cone defined by

Λ̌ := {λ̌ ∈ ǍR | 〈λ′, λ̌〉 ≥ 0, ∀λ′ ∈ Λ}.
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The lattice Ǎ determines the normalization of the Lebesgue measure dǎ on ǍR

(covolume =1). For a ∈ AC define

(4.12) XΛ(a) :=

∫
Λ̌

e−〈a,ǎ〉dǎ.

The integral converges absolutely and uniformly for �(a) in compacts contained in
the interior Λ◦ of Λ.

Definition 4.12.2. Assume that X is smooth, NS(X) = Pic(X) and that
−KX is in the interior of Λeff(X). We define

α(X) := XΛeff (X)(−KX).

Remark 4.12.3. This constant measures the volume of the polytope obtained
by intersecting the affine hyperplane (−KX , ·) = 1 with the dual to the cone of
effective divisors Λeff(X) in the dual to the Néron-Severi group. The explicit deter-
mination of α(X) can be a serious problem. For Del Pezzo surfaces, these volumes
are given in Section 1.9. For example, let X be the moduli space M̄0,6. The dual to
the cone Λeff(X) has 3905 generators (in a 16-dimensional vector space), forming
25 orbits under the action of the symmetric group S6 [HT02b].

Conjecture 4.12.4 (Leading constant). Let X be a Fano variety over F with
an adelically metrized anticanonical line bundle −KX = (−KX , ‖ · ‖A). Assume
that X(F ) is Zariski dense. Then there exists a Zariski open subset X◦ ⊂ X such
that

(4.13) N(X◦(F ),−KX ,B) = c(−KX)B1 log(B)r−1(1 + o(1)),

where r = rkPic(XF ) and

(4.14) c(−KX) = c(X,−KX) = α(X)β(X)τ (−KX),

with β(X) := #Br(X)/Br(F ) (considered in Section 2.4), and τ (−KX) the constant
defined in equation 4.11.

4.13. General polarizations. I follow closely the exposition in [BT98]. Let
E be a finite Galois extension of a number field F such that all of the follow-
ing constructions are defined over E. Let (X◦,L) be a smooth quasi-projective
d-dimensional variety together with a metrized very ample line bundle L which

embeds X◦ in some projective space Pn. We denote by X
L
the normalization of

the projective closure of X ⊂ Pn. In general, X
L
is singular. We will introduce

several notions relying on a resolution of singularities

ρ : X → X
L
.

Naturally, the defined objects will be independent of the choice of the resolution.
For a convex cone Λ ⊂ NS(X)R we define

a(Λ,L) := a(Λ, ρ∗L).
We will always assume that a(Λeff(X),L) > 0.

Definition 4.13.1. A pair (X◦,L) is called primitive if there exists a resolution
of singularities

ρ : X → X
L
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such that a(Λeff(X),L) ∈ Q>0 and for some k ∈ N

((ρ∗L)⊗a(Λeff(X),L) ⊗KX)⊗k = O(D),

where D is a rigid effective divisor (i.e., h0(X,O(νD)) = 1 for all ν � 0).

Example 4.13.2. of a primitive pair: (X,−KX), where X is a smooth projective
variety with −KX a metrized very ample anticanonical line bundle.

Let k ∈ N be such that a(Λ,L)k ∈ N and consider

R(Λ,L) :=
⊕
ν≥0

H0(X, (((ρ∗L)a(Λ,L) ⊗KX)⊗k)⊗ν).

In both cases (Λ = Λample or Λ = Λeff ) it is expected that R(Λ,L) is finitely
generated and that we have a fibration

π = πL : X → Y L,

where Y L = Proj(R(Λ,L)). For Λ = Λeff(X) the generic fiber of π is expected to
be a primitive variety in the sense of Definition 4.13.1. More precisely, there should
be a diagram:

ρ : X → X
L ⊃ X

↓
Y L

such that:
• dim(Y L) < dim(X);
• there exists a Zariski open U ⊂ Y L such that for all y ∈ U(C) the pair

(Xy,Ly) is primitive (here Xy = π−1(y) ∩X and Ly is the restriction of L to Xy);
• for all y ∈ U(C) we have a(Λeff(X),L) = a(Λeff(Xy),Ly);
• For all k ∈ N such that a(Λeff(X),L)k ∈ N the vector bundle

Lk := R0π∗(((ρ
∗L)⊗a(Λeff(X),L) ⊗KX)⊗k)

is in fact an ample line bundle on Y L.
Such a fibration will be called an L-primitive fibration. A variety may admit

several primitive fibrations.

Example 4.13.3. Let X ⊂ Pn
1 × Pn

2 (n ≥ 2) be a hypersurface given by a bi-
homogeneous form of bi-degree (d1, d2). Both projections X → Pn

1 and X → Pn
2

are L-primitive, for appropriate L. In particular, for n = 3 and (d1, d2) = (1, 3)
there are two distinct −KX -primitive fibrations: one onto a point and another onto
P3
1.

4.14. Tamagawa numbers. For smooth projective Fano varieties X with an
adelically metrized anticanonical line bundle Peyre defined in [Pey95] a Tamagawa
number, generalizing the classical construction for linear algebraic groups (see Sec-
tion 4.12). We need to further generalize this to primitive pairs.

Abbreviate a(L) = a(Λeff(X),L) and let (X,L) be a primitive pair such that

O(D) := ((ρ∗L)⊗a(L) ⊗KX)⊗k,
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where k is such that a(L)k ∈ N and D is a rigid effective divisor as in Defini-
tion 4.13.1. Choose an F -rational section g ∈ H0(X,O(D)); it is unique up to
multiplication by F ∗. Choose local analytic coordinates x1,v, . . . , xd,v in a neigh-
borhood Ux of x ∈ X(Fv). In Ux the section g has a representation

g = fka(L)(dx1,v ∧ · · · ∧ dxd,v)
k,

where f is a local section of L. This defines a local v-adic measure in Ux by

ωL,g,v := ‖f‖a(L)
xv

dx1,v · · · dxd,v,

where dx1,v · · · dxd,v is the Haar measure on F d
v normalized by vol(odv) = 1. A

standard argument shows that ωL,g,v glues to a v-adic measure on X(Fv). The
restriction of this measure to X(Fv) does not depend on the choice of the resolution

ρ : X → X
L
. Thus we have a measure on X(Fv).

Denote by (Dj)j∈J the irreducible components of the support of D and by

Pic(X,L) := Pic(X \
⋃
j∈J

Dj).

The Galois group Γ acts on Pic(X,L). Let S be a finite set of places of bad reduction
for the data (ρ,Dj , etc.), including the archimedean places. Put λv = 1 for v ∈ S,
λv = Lv(1,Pic(X,L)) for v �∈ S and

ωL := L∗S(1,Pic(X,L))|disc(F )|−d/2
∏
v

λ−1
v ωL,g,v.

(Here Lv is the local factor of the Artin L-function associated to the Γ-module
Pic(X,L) and L∗S(1,Pic(X,L)) is the residue at s = 1 of the partial Artin L-
function.) By the product formula, the measure does not depend on the choice
of the F -rational section g. Define

τ (X,L) :=
∫
X(F )

ωL,

where X(F ) ⊂ X(A) is the closure of X(F ) in the direct product topology. The
convergence of the Euler product follows from

h1(X,OX) = h2(X,OX) = 0.

We have a homomorphism

ρ̃ : Pic(X)R → Pic(X,L)R
and we denote by

Λeff(X,L) := ρ̃(Λeff(X)) ⊂ Pic(X,L)R.

Definition 4.14.1. Let (X,L) be a primitive pair as above. Define

c(X,L) := α(X,L)β(X,L)τ (X,L),

where

α(X,L) := XΛeff (X,L)(ρ̃(−KX)) and β(X,L) := |H1(Γ,Pic(X,L))|.
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If (X,L) is not primitive then some Zariski open subset U ⊂ X admits a
primitive fibration: there is a diagram

X → X
L

↓
Y L

such that for all y ∈ Y L(F ) the pair (Uy,Ly) is primitive. Then

(4.15) c(U,L) :=
∑
y∈Y 0

c(Uy,Ly),

where the right side is a possibly infinite, conjecturally(!) convergent sum over the
subset Y 0 ⊂ Y L(F ) of all those fibers Uy where

a(L) = a(Ly) and b(L) = rkPic(X,L)Γ = rkPic(Xy,Ly)
Γ.

In Section 6 we will see that even if we start with pairs (X,L) where X is a
smooth projective variety and L is a very ample adelically metrized line bundle
on X we still need to consider singular varieties arising as fibers of L-primitive
fibrations.

It is expected that the invariants of L-primitive fibrations defined above are
related to asymptotics of rational points of bounded L-height:

Conjecture 4.14.2 (Leading constant / General polarizations). Let X be a
Fano variety over a number field F with an adelically metrized very ample line
bundle L = (L, ‖ · ‖A). Assume that X(F ) is Zariski dense. Then there exists a
Zariski open subset X◦ ⊂ X such that

(4.16) N(X◦(F ),L,B) = c(X◦,L)Ba(L) log(B)b(L)−1(1 + o(1)).

Note that the same variety X may admit several L-primitive fibrations (see
Section 4.11). Presumably, there are only finitely many isomorphism types of such
fibrations on a given X, at least when X is a Fano variety. Then the recipe would be
to consider fibrations with maximal (a(L), b(L)), ordered lexicographically. In Sec-
tion 6 we will see many examples of polarized varieties satisfying Conjecture 4.14.2.

4.15. Tamagawa number as a height. Why does the right side of For-
mula (4.15) converge? The natural idea is to interpret it as a height zeta function,
i.e., to think of the Tamagawa numbers of the fibers of an L-primitive fibration as
“heights”. One problem with this guess is that the “functorial” properties of these
notions under field extensions are quite different: Let Uy be a fiber defined over the
ground field. The local and global heights of the point on the base y ∈ Y ◦ don’t
change under extensions. The local Tamagawa factors of Uy, however, take into
account information about Fq-points of Uy, i.e., the density

τv = #Uy(Fqv )/q
dim(Uy)
v ,

for almost all v, which may vary nontrivially.
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In the absence of conclusive arguments, let us look at examples. For x ∈ P3(Q),
let Xx ⊂ P3 be the diagonal cubic surface fibration

(4.17) x0y
3
0 + x1y

3
1 + x2y

3
2 + x3y

3
3 = 0,

considered in Section 4.11. Let H : P3(Q) → R>0 be the standard height as in
Section 4.1.

Theorem 4.15.1. [EJ08b] For all ε > 0 there exists a c = c(ε) such that

1

τ (Xx)
≥ cH

(
1

x0
: · · · : 1

x3

)1/3−ε

In particular, we have the following fundamental finiteness property: for B > 0
there are finitely many x ∈ P3(Q) such that τ (Sx) > B.

A similar result holds for 3 dimensional quartics.

Theorem 4.15.2. [EJ07] Let Xx be the family of quartic threefolds

x0y
4
0 + x1y

4
1 + x2y

4
2 + x3y

4
3 + x4y

4
4 = 0,

with x0 < 0 and x1, . . . , x4 > 0, xi ∈ Z. For all ε > 0 there exists a c = c(ε) such
that

1

τ (Xx)
≥ cH

(
1

x0
: · · · : 1

x4

)1/4−ε

.

4.16. Smallest points. Let X ⊂ Pn be a smooth Fano variety over a number
field F . What is the smallest height

m = m(X(F )) := min{H(x)}
of an F -rational points on X? For a general discussion concerning bounds of solu-
tions of Diophantine equations in terms of the height of the equation, see [Mas02].
A sample result in this direction is [Pit71], [NP89]: Let

(4.18)
n∑

i=0

xiy
d
i = 0,

with d odd and let x = (x0, . . . , xn) ∈ Zn+1 be a vector with nonzero coordinates.
For n � d (e.g., n = 2d + 1) and any ε > 0 there exists a constant c such that
(4.18) has a solution y with

n∑
i=0

|xiy
d
i | < c

∏
|xi|d+ε.

For d ≥ 12, one can work with n� 4d2 log(d). There have been a several improve-
ments of this result for specific values of d, e.g. [Cas55], [Die03] for quadrics and
[Bak89], [Brü94] for d = 3.

In our setup, the expectation

N(X◦(F ),−KX ,B) = αβτ (−KX)B1 log(B)r−1(1 + o(1)),

where r = rkPic(X), and the hope that the points are equidistributed with respect
to the height leads to the guess that m(X) is inversely related to τ (−KX), rather
than the height of the defining equations. Figure 2 shows the distribution of smallest
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Figure 2. Smallest height of a rational point versus the
Tamagawa number

points in comparison with the Tamagawa number on a sample of smooth quartic
threefolds of the form

x0y
4 = x1y

4
1 + y42 + y43 + y44 , x0, x1 = 1, . . . , 1000.

On the other hand, there is the following result:

Theorem 4.16.1. [EJ07], [EJ08b] Let Xx ⊂ P4 be the quartic threefold given
by

xy40 = y41 + y42 + y43 + y44 , a ∈ N.

Then there is no c > 0 such that

m(Xx(Q)) ≤ c

τ (−KXx
)
, ∀x ∈ Z.

Let Xx ⊂ P3 be the cubic surface given by

xy30 + 4y31 + 2y32 + y33 = 0, x ∈ N.

Assume the Generalized Riemann Hypothesis. Then there is no c > 0 such that

m(Xx(Q)) ≤ c

τ (−KXx
)
, ∀x ∈ Z.
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It may still be the case that

m(X(F )) ≤ c(ε)

τ (−KX)1+ε
.

5. Counting points via universal torsors

5.1. The formalism. We explain the basic elements of the point counting
technique on universal torsors developed in [Pey04], [Sal98]. The prototype is the
projective space:

An+1 \ {0} Gm−→ Pn.

The bound H(x) ≤ B translates to a bound on An+1(Z), it remains to replace the
lattice point count on An+1(Z) by the volume of the domain. The coprimality on
the coordinates leads to the product of local densities formula

N(B) =
1

2

1

ζ(n+ 1)
· τ∞ · Bn+1(1 + o(1)), B→∞,

where τ∞ is the volume of the unit ball with respect to the norm at infinity.
The lift of points in Pn(Q) to primitive integral vectors in Zn+1 \0, modulo ±1

admits a generalization to the context of torsors

TX
TNS−→ X.

Points in X(Q) can be lifted to certain integral points on TX , uniquely, modulo the
action of TNS(Z) (the analog of the action by ±1). The height bound on X(Q) lifts
to a bound on TX(Z). The issue then is to prove, for B→∞, that

# lattice points � volume of the domain .

The setup for the generalization is as follows. Let X be a smooth projective
variety over a number field F . We assume that

• Hi(X,OX) = 0, for i = 1, 2;
• Pic(XF̄ ) = NS(XF̄ ) is torsion-free;
• Λeff(X) is a finitely generated rational cone;
• −KX is in the interior of Λeff(X);
• X(F ) is Zariski dense;
• there is a Zariski open subset without strongly or weakly accumulating
subvarieties;
• all universal torsors over X satisfy the Hasse principle and weak approxi-
mation.

For simplicity of exposition we will ignore the Galois actions and assume that
NS(XF ) = NS(XF̄ ). Fix a line bundle L on X and consider the map

Z → NS(X)
1 �→ [L]

By duality, we get a homomorphism φL : TNS → Gm and the diagram

T
ψL ��

��

L∗

��
X X
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compatible with the TNS-action (where L∗ = L \ 0). Fix a point t0 ∈ T (F ) and an
adelic metrization L = (L, ‖ · ‖v) of L. For each v, we get a map

HL,T ,v : T (Fv) −→ R>0

tv �→ ‖ψL(t)‖v/‖ψL(t0)‖v

Fix an adelic height system H =
∏

v Hv onX as in Section 4.8, i.e., a basis L1, . . . , Lr

of Pic(X) and adelic metrizations of these line bundles. This determines compatible
adelic metrizations on all L ∈ Pic(X). Define

THv
(ov) := {t ∈ T (Fv) |HL,T ,v(t) ≤ 1 ∀L ∈ Λeff(X)}.

Let

TH(A) :=
∏
v

T (Fv)

be the restricted product with respect to the collection

{THv
(ov)}v.

This space does not depend on the choice of the points t0 or on the choice of adelic
metrizations.

The next step is the definition of local Tamagawa measures on T (Fv), whose
product becomes a global Tamagawa measure on TH(A). The main insight is that

• locally, in the v-adic topology, T (Fv) = X(Fv)× TNS(Fv);
• both factors carry a local Tamagawa measure (defined by the metrizations
of the corresponding canonical line bundles);
• the regularizing factor (needed to globalize the measure to the adeles, see
Equation 4.11) on X(Fv) is λv = Lv(1,Pic(XF̄ ), for almost all v, and the
regularizing factor on TNS(Fv) is λ

−1
v ;

• the regularizing factors cancel and the product measure is integrable over
the adelic space TH(AF ).

One chooses a fundamental domain for the action of units TNS(o)/W (where W
is the group of torsion elements), establishes a bijection between the set of rational
points X(F ) and certain integral points on T (integral with respect to the unstable
locus for the action of TNS) in this domain and compares a lattice point count,
over these integral points, with the adelic integral, over the space TH(A). If the
difference between these counts goes into the error term, then Conjecture 4.12.4
holds.

The following sections explain concrete realizations of this formalism: examples
of universal torsors and counting problems on them.

5.2. Toric Del Pezzo surfaces. A toric surface is an equivariant compact-
ification of the two-dimensional algebraic torus G2

m. Notation and terminology
regarding general toric varieties are explained in Section 6.6. Universal torsors of
toric varieties admit a natural embedding into affine space (see Section 1.6).

Example 5.2.1. Let X = BlY (P
2) be the blowup of the projective plane in the

subscheme

Y := (1 : 0 : 0) ∪ (0 : 1 : 0) ∪ (0 : 0 : 1),
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a toric Del Pezzo surface of degree 6. We can realize it as a subvariety X ⊂
P1
x × P1

y × P1
z given by x0y0z0 = x1y1z1. The anticanonical height is given by

max(|x0|, |x1|)×max(|y0|, |y1|)×max(|z0|, |z1|).
There are six exceptional curves: the preimages of the 3 points and the strict
transforms of lines joining two of these points.

Example 5.2.2 (Degree four). There are 3 toric Del Pezzo surfaces of degree 4,
given by X = {Q0 = 0} ∩ {Q = 0} ⊂ P4, with Q0 = x0x1 + x2

2 and Q as in the
table below.

Singularities Q
4A1 x3x4 + x2

2

2A1 + A2 x1x2 + x3x4

2A1 + A3 x2
0 + x3x4

Example 5.2.3 (Degree three). The unique toric cubic surface X is given by

xyz = w3.

The corresponding fan is spanned in Z2 by (1, 1), (1,−2), (−2, 1). Let X◦ = G2
m ⊂

X be the complement to the lines, i.e., the locus with w �= 0. The lines correspond to
the three vectors spanning the fan. The universal torsor of the minimal resolution of
singularities X̃ of X admits an embedding into A9, with coordinates corresponding
to exceptional curves on X̃. The preimage of X◦ in A9 is the complement to the
coordinate hyperplanes. The asymptotic

N(X◦(F ),B) = cB1 log(B)6(1 + o(1)), B→∞,

has been established in [BT98] using harmonic analysis (see Section 6.6) and in
[HBM99], [Fou98], [dlB01] using the torsor approach.

Example 5.2.4. The toric quartic surface

x2yz = w4

is given by the fan (2,−1), (0, 1), (−2,−1). Let X◦ be the complement to w = 0.
One has

N(X◦(F ),B) = c B1 log(B)5(1 + o(1)), B→∞,

with an explicit constant c > 0 (see Section 6.6). This is more than suggested by
the naive heuristic in Section 2.2.

The torsor approach has been successfully implemented for toric varieties over
Q in [Sal98] and [dlB01].

5.3. Torsors over Del Pezzo surfaces.

Example 5.3.1. A quartic Del Pezzo surface X with two singularities of type
A1 can be realized as a blow-up of the following points

p1 = (0 : 0 : 1)
p2 = (1 : 0 : 0)
p3 = (0 : 1 : 0)
p4 = (1 : 0 : 1)
p5 = (0 : 1 : 1)
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in P2 = (x0 : x1 : x2). The anticanonical line bundle embeds X into P4:

(x2
0x1 : x0x

2
1 : x0x1x2 : x0x2(x0 + x1 − x2) : x1x2(x0 + x1 − x2)).

The Picard group is spanned by

Pic(X) = 〈L,E1, · · · , E5〉
and Λeff(X) by

E1, · · · , E5

L− E2 − E3, L− E3 − E4, L− E4 − E5, L− E2 − E5

L− E1 − E3 − E5, L− E1 − E2 − E4.

The universal torsor embeds into the affine variety

(23)(3)− (1)(124)(4) + (25)(5) = 0
(23)(2)− (1)(135)(5) + (34)(4) = 0
(124)(1)(2)− (34)(3) + (45)(5) = 0
(25)(2)− (135)(1)(3) + (45)(4) = 0

(23)(45) + (34)(25)− (1)2(124)(135) = 0.

(with variables labeled by the corresponding exceptional curves). The complement
to the coordinate hyperplanes is a torsor over the complement of the lines on X.
Introducing additional variables

(24)′ := (1)(124), (35)′ := (1)(135)

we see that the above equations define a P1-bundle over a codimension one subva-
riety of the (affine cone over the) Grassmannian Gr(2, 5).

We need to estimate the number of 11-tuples of nonzero integers, satisfying the
equations above and subject to the inequalities

|(135)(124)(23)(1)(2)(3)| ≤ B
|(135)(124)(34)(1)(3)(4)| ≤ B

· · ·
By symmetry, we can assume that |(2)| ≥ |(4)| and write (2) = (2)′(4) + r2. Now
we weaken the first inequality to

|(135)(124)(23)(1)(4)(2)′(3)| ≤ B.

There are O(B log(B)6) 7-tuples of integers satisfying this inequality.

Step 1. Use equation (23)(3) − (1)(124)(4) + (25)(5) to reconstruct (25), (5)
with ambiguity O(log(B)).

Step 2. Use (25)(2) − (135)(1)(3) + (45)(4) = 0 to reconstruct the residue r2
modulo (4). Notice that (25) and (4) are “almost” coprime since the corresponding
exceptional curves are disjoint.

Step 3. Reconstruct (2) and (45).

Step 4. Use (23)(2)− (1)(135)(5) + (34)(4) to reconstruct (34).
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In conclusion, if X◦ ⊂ X is the complement to the exceptional curves then

N(X◦,−KX ,B) = O(B log(B)7).

We expect that
N(X◦,−KX ,B) = cB log(B)5(1 + o(1))

as B →∞, where c is the constant defined in Section 4.12.

Example 5.3.2. The universal torsor of a smooth quartic Del Pezzo surface,
given as a blow-up of the five points

p1 = (1 : 0 : 0)
p2 = (0 : 1 : 0)
p3 = (0 : 0 : 1)
p4 = (1 : 1 : 1)
p5 = (1 : a2 : a3),

assumed to be in general position, is given by the vanishing of polynomials in A16

on the left side of the table below. The right side shows the homogeneous forms
defining the D5-Grassmannian in its Plücker embedding into P15.

(14)(23) +(12)(34) −(13)(24) (00)(05) − (12)(34) + (13)(24) − (14)(23)
(00)(05) +a3(a2−1)(12)(34) −a2(a3−1)(13)(24)

(23)(03) +(24)(04) −(12)(01) (12)(01) − (23)(03) + (24)(04) − (25)(05)
a2(23)(03) +(25)(05) −(12)(01)

(12)(35) −(13)(25) +(15)(23) (00)(04) − (12)(35) + (13)(25) − (15)(23)
(a2−1)(12)(35) +(00)(04) −(a3−1)(13)(25)

(12)(45) +(14)(25) −(15)(24) (00)(03) − (12)(45) + (14)(25) − (15)(24)
(00)(03) +a3(14)(25) −(15)(24)

(13)(45) +(14)(35) −(15)(34) (00)(02) − (13)(45) + (14)(35) − (15)(34)
(00)(02) +a2(14)(35) −(15)(34)

(23)(45) +(24)(35) −(25)(34) (00)(01) − (23)(45) + (24)(35) − 25)(34)
(00)(01) +a2(24)(35) −a3(25)(34)

(04)(34) +(02)(23) −(01)(13) (13)(01) − (23)(02) + (34)(04) + 35)(05)
(05)(35) +a3(02)(23) −(01)(13)

(a2−1)(03)(34) +(05)(45) −(a3−1)(02)(24) (14)(01) − (24)(02) + (34)(03) − (45)(05)
(03)(34) +(01)(14) −(02)(24)

(04)(14) +(03)(13) −(02)(12) (12)(02) − (13)(03) + (14)(04) − (15)(05)
(05)(15) +a2(03)(13) −a3(02)(12)

a3(02)(25) −a2(03)(35) −(01)(15) (15)(01) − (25)(02) + (35)(03) − (45)(04)
(a3−1)(02)(25) −(a2−1)(03)(35) −(04)(45)

Connection to the D5-Grassmannian

Example 5.3.3. The Cayley cubic is the unique cubic hypersurface in X ⊂ P3

with 4 double points (A1-singularities), the maximal number of double points on a
cubic surface. It can be given by the equation

y0y1y2 + y0y1y3 + y0y2y3 + y1y2y3 = 0.

The double points correspond to

(1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 1 : 0), (0 : 0 : 0 : 1).
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It can be realized as the blow-up of P2 = (x1 : x2 : x3) in the points

q1 = (1 : 0 : 0), q2 = (0 : 1 : 0), q3 = (0 : 0 : 1), q4 = (1 : −1 : 0), q5 = (1 : 0 : −1), q6 = (0 : 1 : −1)

The points lie on a rigid configuration of 7 lines

x1 = 0 (12)(13)(14)(1)
x2 = 0 (12)(23)(24)(2)
x3 = 0 (13)(23)(34)(3)

x4 = x1 + x2 + x3 = 0 (14)(24)(34)(4)
x1 + x3 = 0 (13)(24)(13, 24)
x2 + x3 = 0 (23)(14)(14, 23)
x1 + x2 = 0 (12)(34)(12, 34).

The proper transform of the line xj is the (−2)-curve corresponding to (j). The
curves corresponding to (ij), (ij, kl) are (−1)-curves. The accumulating subvarieties
are exceptional curves. The (anticanonical) embedding X ↪→ P3 is given by the
linear system

s1 = x1x2x3

s2 = x2x3x4

s3 = x1x3x4

s4 = x1x2x4

The counting problem is: estimate

N(B) = #{(x1, x2, x3) ∈ Z3
prim/±, | max

i
(|si|)/ gcd(si) ≤ B},

subject to the conditions

xi �= 0 (i = 1, . . . , 3), xj + xi �= 0 (1 ≤ i < j ≤ 3), x1 + x2 + x3 �= 0.

We expect ∼ B log(B)6 solutions. After dividing the coordinates by their gcd, we
obtain

s′1 = (1)(2)(3)(12)(13)(23)
s′2 = (2)(3)(4)(23)(24)(34)
s′3 = (1)(3)(4)(13)(14)(34)
s′4 = (1)(2)(4)(12)(14)(24)

These are special sections in the anticanonical series; other decomposable sections
are (1)(2)(12)2(12, 34) and (12, 34)(13, 24)(14, 23), for example. Here we use the
same notation (i), (ij) etc. for the variables on the universal torsor as for exceptional

curves on the minimal resolution X̃ of X. The conic bundles on X produce the
following affine equations for the universal torsor:

I (1)(13)(14) + (2)(23)(24) = (34)(12, 34)
II (1)(12)(14) + (3)(23)(34) = (24)(13, 24)
III (2)(12)(24) + (3)(13)(34) = (14)(14, 23)
IV −(3)(13)(23) + (4)(14)(24) = (12)(12, 34)
V −(2)(12)(23) + (4)(14)(34) = (13)(13, 24)
VI −(1)(12)(1) + (4)(24)(34) = (23)(14, 23)

VII (2)(4)(24)2 + (1)(3)(13)2 = (12, 34)(14, 23)

VIII −(1)(2)(12)2 + (3)(4)(34)2 = (13, 24)(14, 23)

IX (1)(4)(14)2 − (2)(3)(23)2 = (12, 34)(13, 24)

The counting problem is to estimate the number of 13-tuples of nonzero integers,
satisfying the equations above and subject to the inequality maxi{|s′i|} ≤ B. Heath-
Brown proved in [HB03] that there exist constants 0 < c < c′ such that

cB log(B)6 ≤ N(B) ≤ c′B log(B)6.
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Figure 3. The 5332 rational points of height ≤ 100 on

x0x1x2 = x2
3(x1 + x2)

Example 5.3.4 (The 2A2 + A3 cubic surface). The equation

x0x1x2 = x2
3(x1 + x2)

defines a cubic surface X with singularities of indicated type. It contains 5 lines.
The Cox ring has the following presentation [Der07b]:

Cox(X) = F [η1, . . . , η10]/(η4η
2
6η10 + η1η2η

2
7 + η8η9).

The figure shows some rational points on this surface. 2 The expected asymptotic

N(X◦(Q),B) = cB1 log(B)6(1 + o(1))

on the complement of the 5 lines has not yet been proved.

5.4. Torsors over the Segre cubic threefold. In this section we work over
Q. The threefold X = M̄0,6 can be realized as the blow-up of P3 in the points

x0 x1 x2 x3

q1 1 0 0 0
q2 0 1 0 0
q3 0 0 1 0
q4 0 0 0 1
q5 1 1 1 1

and in the proper transforms of lines joining two of these points. The Segre cubic is
given as the image of X in P4 under the linear system 2L−(E1+ · · ·+E5) (quadrics

2 I am grateful to U. Derenthal for allowing me to include it here.
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passing through the 5 points):

s1 = (x2 − x3)x1

s2 = x3(x0 − x1)
s3 = x0(x1 − x3)
s4 = (x0 − x1)x2

s5 = (x1 − x2)(x0 − x3)

It can be realized in P5 = (y0 : · · · : y5) as

S3 := {
5∑

i=0

y3i =
5∑

i=0

yi = 0}

(exhibiting the S6-symmetry.) It contains 15 planes, given by the S6-orbit of

y0 + y3 = y1 + y4 = y3 + y5 = 0,

and 10 singular double points, given by the S6-orbit of

(1 : 1 : 1 : −1 : −1 : −1).
This is the maximal number of nodes on a cubic threefold and S3 is the unique cubic
with this property. The hyperplane sections S3 ∩ {yi = 0} are Clebsch diagonal
cubic surfaces (unique cubic surfaces with S5 as symmetry group. The hyperplane
sections S3 ∩ {yi − yj = 0} are Cayley cubic surfaces (see Example 5.3.3). The
geometry and symmetry of these and similar varieties are described in detail in
[Hun96]. The counting problem on S3 is: find the number N(B) of all 4-tuples of
(x0, x1, x2, x3) ∈ Z4/± such that

• gcd(x0, x1, x2, x3) = 1;
• maxj=1,...,5(|sj |)/| gcd(s1, . . . , s5) ≤ B;
• xi �= 0 and xi − xj �= 0 for all i, j �= i.

The last condition is excluding rational points contained in accumulating subvari-
eties (there are B3 rational points on planes P2 ⊂ P4, with respect to the O(1)-
height). The second condition is the bound on the height.

First we need to determine

a(L) = inf{a | aL+KX ∈ Λeff(X)},
where L is the line bundle giving the map to P4. We claim that a(L) = 2. This
follows from the fact that ∑

i,j

(ij)

is on the boundary of Λeff(X) (where (ij) is the class in Pic(X) of the preimage in
X of the line lij ⊂ P4 through qi, qj .

Therefore, we expect
N(B) = O(B2+ε)

as B → ∞. In fact, it was shown in [BT98] that b(L) = 6. Consequently, one
expects

N(B) = cB2 log(B)5(1 + o(1)), as B→∞.
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Remark 5.4.1. The difficult part is to keep track of gcd(s1, . . . , s5). Indeed, if
we knew that this gcd = 1 we could easily prove the bound O(B2+ε) by observing
that there are O(B1+ε) pairs of (positive) integers (x2−x3, x1) (resp. (x0−x1, x2))
satisfying (x2− x3)x1 ≤ B (resp. (x0 − x1)x2 ≤ B). Then we could reconstruct the
quadruple

(x2 − x3, x1, x0 − x1, x2)

and consequently

(x0, x1, x2, x3)

up to O(B2+ε).

Thus it is necessary to introduce gcd between xj , etc. Again, we use the
symbols (i), (ij), (ijk) for variables on the torsor for X corresponding to the classes
of the preimages of points, lines, planes resp. Once we fix a point (x0, x1, x2, x3) ∈
Z4 (such that gcd(x0, x1, x2, x3) = 1), the values of these coordinates over the
corresponding point on X can be expressed as greatest common divisors. For
example, we can write

x3 = (123)(12)(13)(23)(1)(2)(3),

a product of integers (neglecting the sign of x3; in the torsor language, we are
looking at the orbit of TNS(Z)). Here is a self-explanatory list:

(123) x3 (12) x2, x3

(124) x2 (13) x1, x3

(125) x2 − x3 (14) x1, x2

(134) x1 (15) x1 − x3, x1 − x2

(135) x1 − x3 (23) x3, x0 − x3

(145) x1 − x2 (24) x2, x0

(234) x0 (25) x3 − x2, x0 − x3

(235) x0 − x3 (34) x1, x0

(245) x0 − x2 (35) x1 − x3, x0 − x1

(345) x0 − x1 (45) x1 − x2, x0 − x1.

After dividing sj by the gcd, we get

s′1 = (125)(134)(12)(15)(25)(13)(14)(34)(1)
s′2 = (123)(245)(12)(13)(23)(24)(25)(45)(2)
s′3 = (234)(135)(23)(24)(34)(13)(15)(35)(3)
s′4 = (345)(124)(34)(35)(45)(12)(14)(24)(4)
s′5 = (145)(235)(14)(15)(45)(23)(35)(25)(5)

(note the symmetry with respect to the permutation (12345)). We claim that
gcd(s′1, . . . , s

′
5) = 1. One can check this directly using the definition of the (i), (ij),

and (ijk) as gcd’s. For example, let us check that nontrivial divisors d �= 1 of (1)
cannot divide any other s′j . Such a d must divide (123) or (12) or (13) (see s′2).
Assume it divides (12). Then it doesn’t divide (13), (14) and (15) (the correspond-
ing divisors are disjoint). Therefore, d divides (135) (by s′3) and (235) (by s′5).
Contradiction (indeed, (135) and (235) correspond to disjoint divisors). Assume
that d divides (123). Then it has to divide either (13) or (15) (from s′3) and either
(12) or (14) (from s′4). Contradiction.
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The integers (i), (ij), (ijk) satisfy a system of relations (these are equations for
the torsor induced from fibrations of M̄0,6 over P1):

I x0 x1 x0 − x1
II x0 x2 x0 − x2
III x0 x3 x0 − x3
IV x1 x2 x1 − x2
V x1 x3 x1 − x3
VI x2 x3 x2 − x3
VII x0 − x1 x0 − x2 x1 − x2
VIII x0 − x1 x0 − x3 x1 − x3
IX x1 − x2 x1 − x3 x2 − x3
X x2 − x3 x0 − x3 x0 − x2

which translates to

I (234)(23)(24)(2) − (134)(13)(14)(1) = (345)(45)(35)(5)
II (234)(23)(34)(3) − (124)(12)(14)(1) = (245)(25)(45)(5)
III (234)(24)(34)(4) − (123)(12)(13)(1) = (235)(25)(35)(5)
IV (134)(13)(34)(3) − (124)(12)(24)(2) = (145)(15)(45)(5)
V (134)(14)(34)(4) − (123)(12)(23)(2) = (135)(15)(35)(5)
VI (124)(14)(24)(4) − (123)(13)(23)(3) = (125)(15)(25)(5)
VII (345)(34)(35)(3) − (245)(24)(25)(2) = −(145)(14)(15)(1)
VIII (345)(34)(45)(4) − (235)(23)(25)(2) = −(135)(13)(15)(1)
IX (145)(14)(45)(4) − (135)(13)(35)(3) = −(125)(12)(25)(2)
X (125)(12)(15)(1) + (235)(23)(35)(3) = −(245)(24)(45)(4)

The counting problem now becomes: find all 25-tuples of nonzero integers
satisfying the equations I−X and the inequality max(|s′j |) ≤ B.

Remark 5.4.2. Note the analogy to the case of M̄0,5 (the unique split Del
Pezzo surface of degree 5): the variety defined by the above equations is the Grass-
mannian Gr(2, 6) (in its Plücker embedding into P24).

In [VW95] it is shown that there exist constants c, c′ > 0 such that

cB2 log(B)5 ≤ N(B) ≤ c′B2 log(B)5.

This uses a different (an intermediate) torsor over X—the determinantal variety
given by

det(xij)3×3 = 0.

Theorem 5.4.3. [dlB07]

N(B) =
1

24
τ∞
∏
p

τp · B2 log(B)5
(
1 +O

((log logB)1/3

(logB)1/3

))
,

where τ∞ is the real density of points on X, and

τp =
(
1− 1

p

)6(
1 +

6

p
+

6

p2
+

1

p3

)
is the p-adic density of points.

The proof of this result uses the Grassmannian Gr(2, 6).
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5.5. Flag varieties and torsors. We have seen that for a Del Pezzo surface
of degree 5 and for the Segre cubic threefold the universal torsors are flag varieties;
and that lifting the count of rational points to these flag varieties yields the expected
asymptotic results.

More generally, let G be a semi-simple algebraic group, P ⊂ G a parabolic
subgroup. The flag variety P\G admits an action by any subtorus of the maximal
torus in G on the right. Choosing a linearization for this action and passing to the
quotient we obtain a plethora of examples of nonhomogeneous varieties X whose
torsors carry additional symmetries. These may be helpful in the counting rational
points on X.

Example 5.5.1. A flag variety for the group G2 is the quadric hypersurface

v1u1 + v2u2 + v3u3 + z2 = 0,

where the torus G2
m ⊂ G2 acts as

vj �→ λjvj , j = 1, 2 v3 �→ (λ1λ2)
−1v3

uj �→ λ−1
j uj , j = 1, 2 u3 �→ λ1λ2u3.

The quotient by G2
m is a subvariety in the weighted projective space

P(1, 2, 2, 2, 3, 3) = (z : x1 : x2 : x3 : y1 : y2)

with the equations

x0 + x1 + x2 + z2 = 0 and x1x2x3 = y1y2.

6. Analytic approaches to height zeta functions

Consider the variety X ⊂ P5 over Q given by

x0x1 − x2x3 + x4x5 = 0.

It is visibly a quadric hypersurface and we could apply the circle method as in
Section 4.6. It is also the Grassmannian variety Gr(2, 4) and an equivariant com-
pactification of G4

a. We could count rational points on X taking advantage of any
of the underlying structures. In this section we explain counting strategies based
on group actions and harmonic analysis.

6.1. Tools from analysis. Here we collect technical results from complex
and harmonic analysis which will be used in the treatment of height zeta functions.

For U ⊂ Rn let

TU := {s ∈ Cn | �(s) ∈ U}
be the tube domain over U .

Theorem 6.1.1 (Convexity principle). Let U ⊂ Rn be a connected open subset
and Ū the convex envelope of U , i.e., the smallest convex open set containing U .
Let Z(s) be a function holomorphic in TU . Then Z(s) is holomorphic in TŪ .

Theorem 6.1.2 (Phragmen-Lindelöf principle). Let φ be a holomorphic func-
tion for �(s) ∈ [σ1, σ2]. Assume that in this domain φ satisfies the following bounds

• |φ(s)| = O(eε|t|), for all ε > 0;
• |φ(σ1 + it)| = O(|t|k1) and |φ(σ2 + it) = |O(|t|k2).
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Then, for all σ ∈ [σ1, σ2] one has

|φ(σ + it)| = O(|t|k), where
k − k1
σ − σ1

=
k2 − k1
σ2 − σ1

.

Using the functional equation and known bounds for Γ(s) in vertical strips one
derives the convexity bounds,

(6.1) |ζ(1
2
+ it)| = O(|t|1/4+ε), ∀ε > 0,

and

(6.2)

∣∣∣∣ (s− 1)

s
ζ(s+ it)

∣∣∣∣ = O(|t|ε) for �(s) > 1− δ,

for some sufficiently small δ = δ(ε) > 0. More generally, we have the following
bound for growth rates of Hecke L-functions:

Proposition 6.1.3. For all ε > 0 there exists a δ > 0 such that

(6.3) |L(s, χ)| � (1 + |�(χ)|+ |�(s)|)ε, for �(s) > 1− δ,

for all nontrivial unramified characters χ of Gm(AF )/Gm(F ), i.e., χv is trivial on
G(ov), for all v �∞. Here

�(χ) ∈

⎛
⎝⊕

v|∞
Gm(Fv)/Gm(ov)

⎞
⎠

1

� Rr1+r2−1,

with r1, r2 the number of real, resp. pairs of complex embeddings of F .

Theorem 6.1.4 (Tauberian theorem). Let {λn} be an increasing sequence of
positive real numbers, with limn→∞ λn = ∞. Let {an} be another sequence of
positive real numbers and put

Z(s) :=
∑
n≥1

an
λs
n

.

Assume that this series converges absolutely and uniformly to a holomorphic func-
tion in the tube domain T>a ⊂ C, for some a > 0, and that it admits a representa-
tion

Z(s) =
h(s)

(s− a)b
,

where h is holomorphic in T>a−ε, for some ε > 0, with h(a) = c > 0, and b ∈ N.
Then

N(B) :=
∑
λn≤B

an =
c

a(b− 1)!
Ba log(B)b−1(1 + o(1)), for B→∞.

A frequently employed result is:

Theorem 6.1.5 (Poisson formula). Let G be a locally compact abelian group

with Haar measure dg and H ⊂ G a closed subgroup. Let Ĝ be the Pontryagin dual
of G, i.e., the group of continuous homomorphisms

χ : G→ S1 ⊂ C∗
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into the unit circle (characters). Let f : G→ C be a function satisfying some mild
assumptions (integrability, continuity) and let

f̂(χ) :=

∫
G

f(g) · χ(g) dg

be its Fourier transform. Then there exist Haar measures dh on H and dh⊥ on
H⊥, the subgroup of characters trivial on H, such that

(6.4)

∫
H

f dh =

∫
H⊥

f̂ dh⊥.

A standard application is to H = Z ⊂ R = G. In this case H⊥ = H = Z, and
the formula reads ∑

n∈Z

f(n) =
∑
n∈Z

f̂(n).

This is a powerful identity which is used, e.g., to prove the functional equation
and meromorphic continuation of the Riemann zeta function. We will apply Equa-
tion (6.4) in the case when G is the group of adelic points of an algebraic torus
or an additive group, and H is the subgroup of rational points. This will allow
us to establish a meromorphic continuation of height zeta functions for equivariant
compactifications of these groups.

Another application of the Poisson formula arises as follows: Let A be a lattice
and Λ a convex cone in AR. Let dǎ be the Lebesgue measure on the dual space ǍR

normalized by the dual lattice Ǎ. Let

XΛ(s) :=

∫
Λ̌

e−〈s,ǎ〉dǎ, �(s) ∈ Λ◦.

be the Laplace transform of the set-theoretic characteristic function of the dual
cone Λ̌; it was introduced in Section 4.12. The function XΛ is holomorphic for �(s)
contained in the interior Λ◦ of Λ.

Let π : A → Ã be a homomorphism of lattices, with finite cokernel A′

and kernel B ⊂ A, inducing a surjection Λ → Λ̃. Normalize the measure db by
vol(BR/B) = 1. Then

(6.5) XΛ̃(π(s)) =
1

(2π)k−k̃

1

|A′|

∫
BR

XΛ(s+ ib) db.

In particular,

XΛ(s) =
1

(2π)d

∫
MR

n∏
j=1

1

(sj + imj)
dm.

6.2. Compactifications of groups and homogeneous spaces. As already
mentioned in Section 3, an easy way to generate examples of algebraic varieties
with many rational points is to use actions of algebraic groups. Here we discuss the
geometric properties of groups and their compactifications.

Let G be a linear algebraic group over a field F , and

� : G→ PGLn+1
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an algebraic representation over F . Let x ∈ Pn(F ) be a point. The orbit �(G) ·x ⊂
Pn inherits rational points from G(F ). Let H ⊂ G be the stabilizer of x. In general,
we have an exact sequence

1→ H(F )→ G(F )→ G/H(F )→ H1(F,H)→ · · ·

We will only consider examples when (G/H)(F ) = G(F )/H(F ).
By construction, the Zariski closure X of �(G) · x is geometrically isomorphic

to an equivariant compactification of the homogeneous space G/H. We have a
dictionary

(�, x ∈ Pn)⇔
{

equivariant compactification X ⊃ G/H,
G-linearized very ample line bundle L on X.

Representations of semi-simple groups do not deform, and can be characterized
by combinatorial data: lattices, polytopes, etc. Note, however, that the choice
of the initial point x ∈ Pn can still give rise to moduli. On the other hand, the
classification of representations of unipotent groups is a wild problem, already for
G = G2

a. In this case, understanding the moduli of representations of a fixed
dimension is equivalent to classifying pairs of commuting matrices, up to conjugacy
(see [GP69]).

6.3. Basic principles. Here we explain some common features in the study
of height zeta functions of compactifications of groups and homogeneous spaces.

In all examples, we have Pic(X) = NS(X), a torsion-free abelian group. Choose
a basis of Pic(X) consisting of very ample line bundles L1, . . . , Lr and metrizations
Lj = (Lj , ‖ · ‖A). We obtain a height system:

HLj
: X(F )→ R>0, for j = 1, . . . , r,

which can be extended to Pic(X)C, by linearity:

(6.6)
H : X(F )× Pic(X)C → R>0,

(x, s) �→
∏r

j=1 HLj
(x)sj ,

where s :=
∑r

j=1 sjLj . For each j, the 1-parameter zeta function

Z(X,Lj , s) =
∑

x∈X(F )

HLj
(x)−s

converges absolutely to a holomorphic function, for �(s)� 0. It follows that

Z(X, s) :=
∑

x∈X(F )

H(x, s)−1

converges absolutely to a holomorphic function for �(s) contained some cone in
Pic(X)R.

Step 1. One introduces a generalized height pairing

(6.7) H =
∏
v

Hv : G(A)× Pic(X)C → C,
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such that the restriction of H to G(F )×Pic(X) coincides with the pairing in (6.6).
Since X is projective, the height zeta function

(6.8) Z(g, s) = Z(X, g, s) :=
∑

γ∈G(F )

H(γg, s)−1

converges to a function which is continuous in g and holomorphic in s for �(s)
contained in some cone Λ ⊂ Pic(X)R. The standard height zeta function is obtained
by setting g = e, the identity in G(A). Our goal is to obtain a meromorphic
continuation to the tube domain T over an open neighborhood of [−KX ] = κ ∈
Pic(X)R and to identify the poles of Z in this domain.

Step 2. It turns out that

Z(g, s) ∈ L2(G(F )\G(A)),

for �(s) � 0. This is immediate in the cocompact case, e.g., for G unipotent or
semi-simple anisotropic, and requires an argument in other cases. The L2-space
decomposes into unitary irreducible representations for the natural action of G(A).
We get a formal identity

(6.9) Z(g, s) =
∑
�

Z�(g, s),

where the summation is over all irreducible unitary representations (�,H�) of G(A)
occurring in the right regular representation of G(A) in L2(G(F )\G(A)).

Step 3. In many cases, the leading pole of Z(g, s) arises from the trivial repre-
sentation, i.e., from the integral

(6.10)

∫
G(AF )

H(g, s)−1dg =
∏
v

∫
G(Fv)

Hv(gv, s)
−1dgv,

where dgv is a Haar measure on G(Fv). To simplify the exposition we assume that

X \G = D =
⋃
i∈I

Di,

where D is a divisor with normal crossings whose components Di are geometrically
irreducible.

We choose integral models for X and Di and observe

G(Fv) ⊂ X(Fv)
∼−→ X(ov)→ X(Fq) =

⊔
I⊂I

D◦
I (Fq),

where
DI :=

⋂
i∈I

Di, D◦
I := DI \

⋃
I′�I

DI′ .

For almost all v, we have

(6.11)

∫
G(Fv)

Hv(gv, s)
−1dgv = τv(G)−1

(∑
I⊂I

#D◦
I (Fq)

qdim(X)

∏
i∈I

q − 1

qsi−κi+1 − 1

)
,

where τv(G) is the local Tamagawa number of G and κi is the order of the pole of the
(unique modulo constants) top-degree differential form on G along Di. The height
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integrals are geometric versions of Igusa’s integrals. They are closely related to
“motivic” integrals of Batyrev, Kontsevich, Denef and Loeser (see [DL98], [DL99],
and [DL01]).

This allows one to regularize explicitly the adelic integral (6.10). For example,
for unipotent G we have

(6.12)

∫
G(AF )

H(g, s)−1dg =
∏
i

ζF (si − κi + 1) · Φ(s),

with Φ(s) holomorphic and absolutely bounded for �(si) > κi − δ, for all i.

Step 4. Next, one has to identify the leading poles of Z�(g, s), and to obtain
bounds which are sufficiently uniform in � to yield a meromorphic continuation
of the right side of (6.9). This is nontrivial already for abelian groups G (see
Section 6.5 for the case when G = Gn

a). Moreover, will need to show pointwise
convergence of the series, as a function of g ∈ G(A).

For G abelian, e.g., an algebraic torus, all unitary representation have dimen-
sion one, and equation (6.9) is nothing but the usual Fourier expansion of a “pe-
riodic” function. The adelic Fourier coefficient is an Euler product, and the local
integrals can be evaluated explicitly.

For other groups, it is important to have a manageable parametrization of
representations occurring on the right side of the spectral expansion. For example,
for unipotent groups such a representation is provided by Kirillov’s orbit method
(see Section 6.7). For semi-simple groups one has to appeal to Langlands’ theory
of automorphic representations.

6.4. Generalized flag varieties. The case of generalized flag varieties X =
P\G has been treated in [FMT89]. Here we will assume that G is a split semi-
simple simply connected linear algebraic group over a number field F , and P a
parabolic subgroup containing a Borel subgroup P0 with a Levi decomposition
P0 = S0U0. Restriction of characters gives a homomorphism X∗(P )→ X∗(P0). Let
π : G→ X = P\G be the canonical projection. We have an action of P on G×A1

via p · (g, a) �→ (pg, λ(p)−1a). The quotient

Lλ := P\(G× A1)

is a line bundle on X and the assignment λ �→ Lλ gives an isomorphism

X∗(P )→ Pic(X).

The anticanonical class is given by

−KX = 2ρP ,

the sum of roots of S0 occurring in the unipotent radical of P . Let ∆0 be the
basis of positive roots of the root system Φ(S0, G) determined by P0. These are
labeled by vertices of the Dynkin diagram of G. Let ∆P

0 be the subset of roots
orthogonal to X∗(P ), with respect to the Weyl group invariant intersection form
〈 , 〉 on X∗(P0), and

∆P := ∆0 \∆P
0 .
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The cone of effective divisors Λeff(X) = Λnef(X) is the (closure of the) positive
Weyl chamber, i.e.,

Λeff(X) = {λ ∈ X
∗(P )R | 〈λ, α〉 ≥ 0 for all α ∈ ∆P }.

Fix a maximal compact subgroup KG =
∏

v KG,v ⊂ G(AF ) such that

G(AF ) = P0(AF )KG.

For g = pk, p = (pv)v ∈ P (AF ) and k = (kv)v ∈ KG put

HP (g) :=
∏
v

HP,v(gv) with 〈λ,HP,v(gv)〉 = log(|λ(pv)|).

This defines an adelically metrized line bundle L = Lλ = (Lλ, ‖ · ‖A) on X by

(6.13) HL(x) = e−〈λ,HP (γ)〉, with x = π(γ).

The Eisenstein series

(6.14) EG
P (sλ− ρP , g) :=

∑
γ∈P (F )\G(F )

e〈sλ,HP (γg)〉

specializes to the height zeta function

Z(sλ) = Z(X, sλ) =
∑

x∈X(F )

HLλ
(x)−s = EG

P (sλ− ρP , 1G).

Its analytic properties have been established in [Lan76] (see also [God95] or
[MW94, IV, 1.8]); they confirm the conjectures formulated in Section 4.12. The
case of function fields is considered in [LY02].

6.5. Additive groups. Let X be an equivariant compactification of an addi-
tive group G = Gn

a . For example, any blowup X = BlY (P
n), with Y ⊂ Pn−1 ⊂ Pn,

can be equipped with a structure of an equivariant compactification of Gn
a . In

particular, the Hilbert schemes of all algebraic subvarieties of Pn−1 appear in the
moduli of equivariant compactifications X as above. Some features of the geom-
etry of such compactifications have been explored in [HT99]. The analysis of
height zeta functions has to capture this geometric complexity. In this section we
present an approach to height zeta functions developed in [CLT00a], [CLT00b],
and [CLT02].

The Poisson formula yields

(6.15) Z(s) =
∑

γ∈G(F )

H(γ, s)−1 =

∫
G(AF )

H(g, s)−1dg +
∑
ψ �=ψ0

Ĥ(ψ, s),

where the sum runs over all nontrivial characters ψ ∈ (G(AF )/G(F ))∗ and

(6.16) Ĥ(ψ, s) =

∫
G(AF )

H(g, s)−1ψ(g)dg

is the Fourier transform, with an appropriately normalized Haar measure dg.

Example 6.5.1. The simplest case is G = Ga = A1 ⊂ P1, over F = Q, with the
standard height

Hp(x) = max(1, |x|p), H∞(x) =
√

1 + x2.
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We have

(6.17) Z(s) =
∑
x∈Q

H(x)−s =

∫
AQ

H(x)−sdx+
∑
ψ �=ψ0

Ĥ(ψ, s).

The local Haar measure dxp is normalized by vol(Zp) = 1 so that

vol(|x|p = pj) = pj(1− 1

p
).

We have ∫
Qp

Hp(x)
−sdxp =

∫
Zp

Hp(x)
−sdxp +

∑
j≥1

∫
|x|p=pj

Hp(x)
−sdxp

= 1 +
∑
j≥1

p−jsvol(|x|p = pj) =
1− p−s

1− p−(s−1)∫
R

(1 + x2)−s/2dx =
Γ((s− 1)/2)

Γ(s/2)
.

Now we analyze the contributions from nontrivial characters. Each such char-
acter ψ decomposes as a product of local characters, defined as follows:

ψp = ψp,ap
: xp �→ e2πiap·xp , ap ∈ Qp,

ψ∞ = ψ∞,a∞ : x �→ e2πia∞·x, a∞ ∈ R.

A character is unramified at p if it is trivial on Zp, i.e., ap ∈ Zp. Then ψ = ψa, with
a ∈ AQ. A character ψ = ψa is unramified for all p iff a ∈ Z. Pontryagin duality

identifies Q̂p = Qp, R̂ = R, and (AQ/Q)∗ = Q.
Since Hp is invariant under the translation action by Zp, the local Fourier

transform Ĥp(ψap
, s) vanishes unless ψp is unramified at p. In particular, only

unramified characters are present in the expansion (6.17), i.e., we may assume that
ψ = ψa with a ∈ Z \ 0. For p � a, we compute

Ĥp(s, ψa) = 1 +
∑
j≥1

p−sj

∫
|x|p=pj

ψa(xp) dxp = 1− p−s.

Putting it all together we obtain

Z(s) =
ζ(s− 1)

ζ(s)
· Γ((s− 1)/2)

Γ(s/2)

+
∑
a∈Z

∏
p�a

1

ζp(s)
·
∏
p|a

Ĥp(xp)
−sdxp ·

∫
R

(1 + x2)−s/2 · e2πiaxdx

For �(s) > 2− δ, we have the upper bounds

|
∏
p|a

Ĥp(xp)
−sdxp| � |

∏
p|a

∫
Qp

Hp(xp)
−sdxp � |a|ε(6.18)

|
∫
R

(1 + x2)−s/2 · e2πiaxdx| �N
1

(1 + |a|)N , for any N ∈ N,(6.19)

where the second inequality is proved via repeated integration by parts.
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Combining these bounds we establish a meromorphic continuation of the right
side of Equation (6.17) and thus of Z(s). It has an isolated pole at s = 2 (corre-
sponding to −KX = 2L ∈ Z = Pic(P1)). The leading coefficient at this pole is the
Tamagawa number defined by Peyre.

Now we turn to the general case. We have seen in Example 1.1.4 that:

• Pic(X) =
⊕

i ZDi;
• −KX =

∑
i κiDi, with κi ≥ 2;

• Λeff(X) =
⊕

i R≥0Di.

For each irreducible boundary divisor we let fi be the unique, modulo scalars,
G-invariant section of H0(X,O(Di)). Local and global heights are given as in
Definition 4.8.4:

HDi,v(x) := ‖fi(x)‖−1
v and HDi

(x) =
∏
v

HDi,v(x).

A key fact is that the local heights are invariant under the action of a compact
subgroup KG,v ⊂ G(Fv), v �∞, with KG,v = G(ov), for almost all such v. We get
a height pairing:

H : G(AF )× Pic(X)C → C
(x,
∑

i siDi) �→
∏

i HDi
(x)si

The main term in (6.15) is computed in (6.12); its analytic properties, i.e., loca-
tion and order of poles, leading constants at these poles, are in accordance with
Conjectures in Section 4.10.

We now analyze the “error terms” in equation (6.15), i.e., the contributions
from nontrivial characters. A character of Gn

a(AF ) is determined by a “linear
form” 〈a, ·〉 = fa, on Gn

a , which gives a rational function fa ∈ F (X)∗. We have

div(fa) = Ea −
∑
i∈I

di(fa)Di

with di ≥ 0, for all i. Put

I0(a) := {i | di(fa) = 0}.

Only the trivial character has I0 = I. The computation of local integrals in (6.16)

is easier at places of good reduction of fa. The contribution to Ĥ(ψa, s) from
nonarchimedean places of bad reduction S(a) ⊂ Val(F ) admits an a priori bound,
replacing the integrand by its absolute value. Iterated integration by parts at
archimedean places allows one to establish [CLT02, Corollary 10.5]:

Ĥ(ψa, s) =
∏

i∈I0(a)

ζF (si − κi + 1) · Φa(s),

with Φa(s) holomorphic for �(si) > κi − 1/2 + ε, ε > 0, and bounded by

c(ε,N)(1 + ‖s‖)N ′
(1 + ‖a‖∞)−N N,N ′ ∈ N.

We have

Ĥ(ψa, s) = 0,
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unless ψa is trivial on KG,f :=
∏

v�∞ KG,v. Thus only unramified characters ψa,

i.e., with a in a lattice, contribute to the Poisson formula 6.15. One obtains

Z(s) =
∫
G(AF )

H(g, s)−1dg +
∑

I0�I
∑

ψa :I0(a)=I Ĥ(ψa, s)

=
∏

i∈I ζF (si − κi + 1) · Φ(s) +
∑

I�I
∏

i∈I ζF (si − κi + 1) · Φ̃I(s),

where Φ(s) and Φ̃I(s) are holomorphic in s and admit bounds in vertical strips.
Restricting to the line s(−KX) shows that the pole of highest order is contributed
by the first term, i.e., by the trivial character. The leading coefficient at this pole
is the adelic height integral; matching of local measures proves Conjecture 4.12.4.
Consider the restriction to lines sL, for other L in the interior of Λeff(X). Let
I correspond to the face of Λeff(X) which does not contain a(L)L + KX in its
interior. The poles of Z(sL) are at the predicted value s = a(L), of order ≤ b(L).
They arise from those characters ψa which have I ⊆ I0(a). These characters form
a subgroup of the group of characters of G(AF )/G(F ). To show that the sum of
the coefficients at these poles does not vanish one applies the Poisson formula (6.4)
to this subgroup: ∑

ψa,I⊆I0(a)

Ĥ(ψa, sL) =

∫
Ker

H(g, sL)−1dg,

where Ker is the common kernel of these characters. One can identify

Ker = (G/GI)(F ) ·GI(AF ),

where GI ⊂ G is the subgroup defined by the vanishing of the linear forms 〈a, ·〉.
The geometric interpretation of this sum, and of the leading coefficient at the pole,
leads to the formalism developed in Section 4.14, specifically to Equation (4.15).
In particular, Conjecture 4.14.2 holds.

6.6. Toric varieties. Analytic properties of height zeta functions of toric va-
rieties have been established in [BT95], [BT98], and [BT96a].

An algebraic torus is a linear algebraic group T over a field F such that

TE � Gd
m,E

for some finite Galois extension E/F . Such an extension is called a splitting field
of T . A torus is split if T � Gd

m,F . The group of algebraic characters

M := X
∗(T ) = Hom(T,E∗)

is a torsion-free Γ := Gal(E/F )-module. The standard notation for its dual, the
cocharacters, is N := X∗(T ). There is an equivalence of categories:⎧⎨
⎩

d-dimensional integral
Γ-representations,
up to equivalence

⎫⎬
⎭⇔

⎧⎨
⎩

d-dimensional
algebraic tori, split over E,
up to isomorphism

⎫⎬
⎭ .

The local and global theory of tori can be summarized as follows: The local Galois
groups Γv := Gal(Ew/Fv) ⊂ Γ act on M . Put

Mv := MΓv v �∞, resp. Mv := MΓv ⊗ R v | ∞,
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and let Nv be the dual groups. Write KT,v ⊂ T (Fv) for the maximal compact
subgroup (after choosing an integral model, KT,v = T (ov), the group of ov-valued
points of T , for almost all v). Then

(6.20) T (Fv)/KT,v ↪→ Nv = NΓv ,

and this map is an isomorphism for v unramified in E/F . Adelically, we have

T (AF ) ⊃ T 1(AF ) = {t |
∏
v

|m(tv)|v = 1 ∀m ∈MΓ}

and

T (F ) ↪→ T 1(AF ).

Theorem 6.6.1. We have

• T (AF )/T
1(AF ) = NΓ

R ;
• T 1(AF )/T (F ) is compact;
• KT ∩ T (F ) is finite;
• the homomorphisms (T (AF )/KT · T (F ))

∗ →
⊕

v|∞ Mv⊗R has finite ker-

nel and image a direct sum of a lattice with MΓ
R .

Over algebraically closed fields, complete toric varieties, i.e., equivariant com-
pactifications of algebraic tori, are described and classified by a combinatorial struc-
ture (M,N,Σ), where Σ = {σ} is a fan, i.e., a collection of strictly convex cones in
NR such that

(1) 0 ∈ σ for all σ ∈ Σ;
(2) NR =

⋃
σ∈Σ σ;

(3) every face τ ⊂ σ is in Σ;
(4) σ ∩ σ′ ∈ Σ and is face of σ, σ′.

A fan Σ is called regular if the generators of every σ ∈ Σ form part of a basis of
N . In this case, the corresponding toric variety XΣ is smooth. The toric variety is
constructed as follows:

XΣ :=
⋃
σ

Uσ where Uσ := Spec(F [M ∩ σ̌]),

and σ̌ ⊂MR is the cone dual to σ ⊂ NR. The fan Σ encodes all geometric informa-
tion about XΣ. For example, 1-dimensional generators e1, . . . , en of Σ correspond
to boundary divisors D1, . . . , Dn, i.e., the irreducible components of XΣ \T . There
is an explicit criterion for projectivity and a description of the cohomology ring,
cellular structure, etc.

Over nonclosed ground fields F one has to account for the action of the Galois
group of a splitting field E/F . The necessary modifications can be described as
follows. The Galois group Γ acts on M,N,Σ. A fan Σ is called Γ-invariant if
γ · σ ∈ Σ, for all γ ∈ Γ, σ ∈ Σ. If Σ is a complete regular Γ-invariant fan such that,
over the splitting field, the resulting toric variety XΣ,E is projective, then it can be
descended to a complete algebraic variety XΣ,F over the ground field F such that

XΣ,E � XΣ,F ⊗Spec(F ) Spec(E),

as E-varieties with Γ-action. Let PL(Σ) be the group of piecewise linear Z-valued
functions ϕ on Σ. An element ϕ ∈ PL(Σ) is determined by a collection of linear
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functions {mσ,ϕ}σ∈Σ ⊂M , i.e., by its values sj := ϕ(ej), j = 1, . . . , n, and we may
write ϕ = ϕs, with s = (s1, . . . , sn). Note that, over a splitting field E,

PL(Σ) � PicT (XΣ)

the group of isomorphism classes of T -linearized line bundles on XΣ. We have an
exact sequence of Γ-modules

0→M → PL(Σ)
π−→ Pic(XΣ)→ 0

which leads to

0→MΓ → PL(Σ)Γ
π−→ Pic(XΣ)

Γ → H1(Γ,M)→ 0

This reflects the fact that every divisor is equivalent to a linear combination of
boundary divisors D1, . . . , Dn, and ϕ is determined by its values on e1, . . . , en;
relations come from characters of T (see Example 1.1.4). The cone of effective
divisors is given by:

Λeff(XΣ) = π(R≥0D1 + · · ·+ R≥0Dn)

and the anticanonical class is

−KΣ = π(D1 + · · ·+Dn).

Example 6.6.2. Consider the simplest toric variety P1 = {(x0 : x1)}, an equi-
variant compactification of Gm. We have three distinguished Zariski open subsets:

• P1 ⊃ Gm = Spec(F [x, x−1]) = Spec(F [xZ])
• P1 ⊃ A1 = Spec(F [x]) = Spec(F [xZ≥0 ]),
• P1 ⊃ A1 = Spec(F [x−1]) = Spec(F [xZ≤0 ])

They correspond to the semigroups:

Z− dual to 0, Z≥0 − dual to Z≥0, Z≤0 − dual to Z≤0.

The local heights can be defined combinatorially, via the introduced explicit charts:
on

Hv(x) :=

{
|x0

x1
|v if |x0|v ≥ |x1|v

|x1

x0
|v otherwise.

As usual,

H(x) :=
∏
v

Hv(x).

In general, for ϕ ∈ PL(Σ)Γ, L = Lϕ and x = (xv)v ∈ T (Fv) define

HL,v(xv) = HΣ,v(xv, ϕ) := qϕ(x̄v)
v , HΣ(x, ϕ) :=

∏
v

HΣ,v(x, ϕ),

where x̄v is the image of xv under the homomorphism (6.20), with qv = e, for v | ∞.
One can check that these formulas define an adelic metrization on the T -linearized
line bundle L = Lϕ. More generally, for t = (tv)v ∈ T (AF ) one can define the
t-twisted adelic metrization L(t) of L = (L, ‖ · ‖) via
(6.21) HL(t),v = HΣ,v(xvtv).

The product formula implies that

HL(t) = HL, for t ∈ T (F ).
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Th height pairing HΣ : T (AF )× PL(Σ)ΓC → C has the following properties:

• its restriction to T (F )× PL(Σ)ΓC descends to a well-defined pairing

T (F )× Pic(XΣ)
Γ
C → C;

• it is KT,v-invariant, for all v.

The height zeta function

ZΣ(s) :=
∑

x∈T (F )

HΣ(x, ϕs)
−1

can be analyzed via the Poisson formula (6.4)

(6.22) ZΣ(s) :=

∫
(T (AF )/KT ·T (F ))∗

ĤΣ(χ, s) dχ,

where

ĤΣ(χ, s) :=

∫
T (AF )

HΣ(x, ϕs)
−1χ(x) dx,

and the Haar measure is normalized by KT . As before, the Fourier transform van-
ishes for characters χ which are nontrivial on KT . The integral converges absolutely
for �(sj) > 1 (for all j), and the goal is to obtain its meromorphic continuation to
the left of this domain.

Example 6.6.3. Consider the projective line P1 over Q. We have

0→M → PL(Σ)→ Pic(P1)→ 0

with M = Z and PL(Σ) = Z2. The Fourier transforms of local heights can be
computed as follows:

Ĥp(χm, s) = 1 +
∑
n≥1

p−s1−im +
∑
n≥1

p−s1+im =
ζp(s1 + im)ζp(s2 − im)

ζp(s1 + s2)
,

Ĥ∞(χm, s) =

∫ ∞

0

e(−s1−im)xdx+

∫ ∞

0

e(−s2+im)xdx =
1

s1 + im
+

1

s2 − im
.

We obtain

Z(P1, s1, s2) =

∫
R

ζ(s1 + im)ζ(s2 − im) ·
(

1

s1 + im
+

1

s2 − im

)
dm.

The integral converges for �(s1),�(s2) > 1, absolutely and uniformly on compact
subsets. It remains to establish its meromorphic continuation. This can be achieved
by shifting the contour of integration and computing the resulting residues.

It is helpful to compare this approach with the analysis of P1 as an additive
variety in Example 6.5.1.

The Fourier transforms of local height functions ĤΣ,v(χv,−s) in the case of Gd
m

over Q are given by:∑d
k=1

∑
σ∈Σ(k)(−1)k

∏
ej∈σ

1

1−q
−(sj+i〈ej,mv〉)
v

v �∞,

∑
σ∈Σ(d)

∏
ej∈σ

1
(sj+i〈ej ,mv〉) v | ∞.
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where (mv)v are the local components of the character χ = χm. The general case
of nonsplit tori over number fields requires more care. We have an exact sequence
of Γ-modules:

0→M → PL(Σ)→ Pic(XΣ)→ 0,

with PL(Σ) a permutation module. Duality gives a sequence of groups:

0→ TPic(AF )→ TPL(AF )→ T (AF ),

with

TPL(AF ) =

k∏
j=1

RFj/FGm(AF ) (restriction of scalars).

We get a map

(6.23)
(T (AF )/KT · T (F ))

∗ →
∏k

j=1

(
Gm(AFj

)/Gm(Fj)
)∗

χ �→ (χ1, . . . , χk)

This map has finite kernel, denoted by Ker(T ). Assembling local computations, we
have

(6.24) ĤΣ(χ, s) =

∏k
j=1 L(sj , χj)

QΣ(χ, s)
ζΣ,∞(s, χ),

where QΣ(χ, s) bounded uniformly in χ, in compact subsets in �(sj) > 1/2 + δ,
δ > 0, and

|ζΣ,∞(s, χ)| � 1

(1 + ‖m‖∞)d+1
· 1

(1 + ‖χ‖∞)d′+1
.

This implies that

(6.25) ZΣ(s) =

∫
MΓ

R

fΣ(s+ im)dm,

where

fΣ(s) :=
∑

χ∈(T 1(AF )/KT ·T (F ))∗

ĤΣ(χ, s)

We have

(1) (s1 − 1) . . . (sk − 1)fΣ(s) is holomorphic for �(sj) > 1− δ;
(2) fΣ satisfies growth conditions in vertical strips (this follows by applying

the Phragmen-Lindelöf principle 6.1.2 to bound L-functions appearing in
equation (6.24));

(3) limsj→1 fΣ(s) = c(fΣ) �= 0.

The integral (6.25) resembles the integral representation (6.5) for XΛeff
(s− 1) (de-

fined in Equation 4.12). A technical theorem allows one to compute this integral
via iterated residues, in the neighborhood of �(s) = (1, . . . , 1). The Convexity
Principle 6.1.1 implies a meromorphic continuation of ZΣ(s) to a tubular neighbor-
hood of the shifted cone Λeff(XΣ). The restriction Z(s(−KΣ)) of the height zeta
function to the line through the anticanonical class has a pole at s = 1 of order
rkPic(XΣ)

Γ with leading coefficient α(XΣ) · c(fΣ(0)) (see Definition 4.12.2). The



320 YURI TSCHINKEL

identification of the factors β and τ in Equation (4.14) requires an application of
the Poisson formula to the kernel Ker(T ) from (6.23). One has⋂

χ∈Ker(T )

Ker(χ) = T (F ) ⊂ T (AF ),

the closure of T (F ) in the direct product topology. Converting the integral and
matching the measures yields

c(fΣ(0)) =
∑

χ∈Ker(T )

Ĥ(χ, s) =

∫
T (F )

H(g, s)−1dg = β(X) ·
∫
XΣ(F )

ωKΣ
,

proving Conjecture 4.12.4. Other line bundles require a version of the technical the-
orem above, and yet another application of Poisson formula, leading to L-primitive
fibrations discussed in Section 4.13.

6.7. Unipotent groups. Let X ⊃ G be an equivariant compactification of a
unipotent group over a number field F and

X \G = D =
⋃
i∈I

Di.

Throughout, we will assume that G acts on X on both sides, i.e., that X is a
compactification of G×G/G, or a bi-equivariant compactification. We also assume
that D is a divisor with normal crossings and its components Di are geometrically
irreducible. The main geometric invariants of X have been computed in Exam-
ple 1.1.4: The Picard group is freely generated by the classes of Di, the effective
cone is simplicial, and the anticanonical class is the sum of boundary components
with nonnegative coefficients.

Local and global heights have been defined in Example 4.8.6:

HDi,v(x) := ‖fi(x)‖−1
v and HDi

(x) =
∏
v

HDi,v(x),

where fi is the unique G-invariant section of H0(X,Di). We get a height pairing:

H : G(AF )× Pic(X)C → C

as in Section 6.3. The bi-equivariance of X implies that H is invariant under the
action on both sides of a compact open subgroup K of the finite adeles. Moreover,
we can arrange that Hv is smooth in gv for archimedean v.

The height zeta function

Z(s, g) :=
∑

γ∈G(F )

H(s, g)−1

is holomorphic in s, for �(s) � 0. As a function of g it is continuous and in
L2(G(F )\G(AF )), for these s. We proceed to analyze its spectral decomposition.
We get a formal identity

(6.26) Z(s; g) =
∑
�

Z�(s; g),

where the sum is over all irreducible unitary representations (�,H�) of G(AF ) oc-
curring in the right regular representation of G(AF ) in L2(G(F )\G(AF )). They are
parametrized by F -rational orbits O = O� under the coadjoint action of G on the
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dual of its Lie algebra g∗. The relevant orbits are integral—there exists a lattice
in g∗(F ) such that Z�(s; g) = 0 unless the intersection of O with this lattice is
nonempty. The pole of highest order is contributed by the trivial representation
and integrality ensures that this representation is “isolated”.

Let � be an integral representation as above. It has the following explicit
realization: There exists an F -rational subgroup M ⊂ G such that

� = IndGM (ψ),

where ψ is a certain character of M(AF ). In particular, for the trivial represen-
tation, M = G and ψ is the trivial character. Further, there exists a finite set of
valuations S = S� such that dim(�v) = 1 for v /∈ S and consequently

(6.27) Z�(s; g
′) = ZS(s; g′) · ZS(s; g

′).

It turns out that

ZS(s; g′) :=
∏
v/∈S

∫
M(Fv)

Hv(s; gvg
′
v)

−1ψ(gv) dgv,

with an appropriately normalized Haar measure dgv on M(Fv). The function ZS

is the projection of Z to
⊗

v∈S �v.

The first key result is the explicit computation of height integrals∫
M(Fv)

Hv(s; gvg
′
v)

−1ψ(gv) dgv

for almost all v. This has been done in [CLT02] for equivariant compactifications
of additive groups Gn

a (see Section 6.5); the same approach works here too. The
contribution from the trivial representation can be computed using the formula of
Denef-Loeser, as in (6.12):∫

G(AF )

H(s; g)−1dg =
∏
i

ζF (si − κi + 1) · Φ(s),

where Φ(s) is holomorphic in

T := {s | �(si) > κi − ε ∀i}.
(Recall that −KX =

∑
i κiDi.) As in the case of additive groups in Section 6.5,

this term gives the “correct” pole at −KX . The analysis of 1-dimensional repre-
sentations, with M = G, is similar to the additive case. New difficulties arise from
infinite-dimensional � on the right side of the expansion (6.26).

Next we need to estimate dim(�v) and the local integrals for nonarchimedean
v ∈ S�. The key result here is that the contribution to the Euler product from
these places is a holomorphic function which can be bounded from above by a
polynomial in the coordinates of �, for s ∈ T. The uniform convergence of the
spectral expansion comes from estimates at the archimedean places: for every (left
or right) G-invariant differential operator ∂ (and s ∈ T) there exists a constant c(∂)
such that

(6.28)

∫
G(Fv)

|∂Hv(s; gv)
−1dgv|v ≤ c(∂).
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Let v be real. It is known that �v can be modeled in L2(Rr), where 2r = dim(O).
More precisely, there exists an isometry

j : (πv, L
2(Rr))→ (�v,Hv)

(an analog of the Θ-distribution). Moreover, the universal enveloping algebra U(g)
surjects onto the Weyl algebra of differential operators with polynomial coefficients
acting on the smooth vectors C∞(Rr) ⊂ L2(Rr). In particular, we can find an
operator ∆ acting as the (r-dimensional) harmonic oscillator

r∏
j=1

(
∂2

∂x2
j

− ajx
2
j

)
,

with aj > 0. We choose an orthonormal basis of L2(Rr) consisting of ∆-eigenfunc-
tions {ω̃λ} (which are well-known) and analyze∫

G(Fv)

Hv(s; gv)
−1ωλ(gv)dgv,

where ωλ = j−1(ω̃λ). Using integration by parts we find that for s ∈ T and any
N ∈ N there is a constant c(N,∆) such that this integral is bounded by

(6.29) (1 + |λ|)−Nc(N,∆).

This estimate suffices to conclude that for each � the function ZS�
is holomorphic

in T.

Now the issue is to prove the convergence of the sum in (6.26). Using any
element ∂ ∈ U(g) acting in H� by a scalar λ(∂) �= 0 (for example, any element in
the center of U(g)) we can improve the bound (6.29) to

(1 + |λ|)−N1λ(∂)−N2c(N1, N2,∆, ∂)

(for any N1, N2 ∈ N). However, we have to ensure the uniformity of such estimates
over the set of all �. This relies on a parametrization of coadjoint orbits. There is
a finite set {Σd} of “packets” of coadjoint orbits, each parametrized by a locally
closed subvariety Zd ⊂ g∗, and for each d a finite set of F -rational polynomials
{Pd,r} on g∗ such that the restriction of each Pd,r to Zd is invariant under the
coadjoint action. Consequently, the corresponding derivatives

∂d,r ∈ U(g)

act in H� by multiplication by the scalar

λ�,r = Pd,r(O).
There is a similar uniform construction of the “harmonic oscillator” ∆d for each d.
Combining the resulting estimates we obtain the uniform convergence of the right
hand side in (6.26).

The last technical point is to prove that both expressions (6.8) and (6.26) for
Z(s; g) define continuous functions on G(F )\G(AF ). Then (6.9) gives the desired
meromorphic continuation of Z(s; e). See [ST04] for details in the case when G is
the Heisenberg group.
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Background material on representation theory of unipotent groups can be found
in the books [CG66], [Dix96] and the papers [Moo65], [Kir99].

6.8. Homogeneous spaces. Recall the setup of Section 6.2: G is an algebraic
group acting on PGLn+1, X

◦ the G-orbit through a point x0 ∈ Pn(F ) and X the
Zariski closure of X◦ in Pn. Let H be the stabilizer of x0 so that X◦ = H\G.
Thus X ⊂ Pn is an equivariant compactification of the homogeneous space X◦. Let
L = O(1) be the line bundle onX arising as a hyperplane section in this embedding.

Theorem 6.8.1. [GO08] Assume that

• G is a connected simply connected semisimple F -group;
• H is a semisimple maximal connected F -subgroup of G;
• for all but finitely many places v, G(Fv) acts transitively on X◦(Fv).

Then there exists a constant c > 0 such that

N(B) = c · Ba log(B)b−1(1 + o(1)), B→∞.

Here a = a(L) and b = b(L) are the constants defined in Section 1.4.

The main effort goes into establishing the asymptotic comparison

vol{x ∈ X◦(AF ) | H(x) ≤ B} � #{x ∈ X◦(F ) | H(x) ≤ B},
using techniques from ergodic theory. The identification of the constants a, b, c from
the adelic volume follows by applying a Tauberian theory to the height integral as
in Step 3 of Section 6.3.

The group case, i.e.,

X◦ = G×G/G,

has been treated in [STBT07] using spectral methods and in [GMO06] using
adelic mixing. See also [Oh08] for a comprehensive survey of applications of ergodic
theory to counting problems.

6.9. Fiber bundles. Let T be an algebraic torus with a left actionX×T → X
on a smooth projective variety X. Let PicT (X) be the group of isomorphism classes
of T -linearized line bundles on X. Let T → W be a T -torsor over a smooth
projective base W . One can form a twisted product

Y := X ×T T ,
as the quotient of X × T by the induced action (x, θ)t �→ (xt, t−1θ). This is a
locally trivial fibration over W with fibers isomorphic to X. Interesting examples
of such varieties arise when T → W is a universal torsor and X is an equivariant
compactification of T . In this case, Y is a compactification of T and, following the
approach in Section 5, we can expect to see connections between arithmetic and
geometric properties of Y and W .

Here is a version of this construction combining varieties treated in Sections 6.4
and 6.6: let G be a semi-simple algebraic group, P ⊂ G a parabolic subgroup and
η : P → T a homomorphism to an algebraic torus. Let X be an equivariant
compactification of T . Consider the twisted product

Y := X ×P G,
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i.e., the quotient of X ×G by the P -action

(x, g)p �→ (xη(p), p−1g).

This is a locally trivial fiber bundle over W := P\G with fibers X. When P is the
Borel subgroup of G, T = P/U the maximal torus, X a smooth equivariant com-
pactification of T , and η : P → T the canonical projection, one obtains equivariant
compactifications of G/U , the so-called horospherical varieties.

The geometric properties of Y can be read off from the invariants of X, W and
η (see [ST99], [CLT01]):

• there is an exact sequence

0→ X
∗(T )

η∗

−→ PicT (X)⊕ X
∗(P )→ Pic(Y )→ 0;

• Λeff(Y ) is the image of ΛT
eff(X)⊕ Λeff(W ) under the natural projection;

• the anticanonical class KY is the image of (−KX ,−KW ).

Recall that X∗(P ) is a finite-index subgroup of Pic(W ). Let π : Y → W
denote the projection and LW , resp. L, a line bundle on W , resp. a T -linearized
line bundle on X. For L ∈ PicT (X) let LY be its image in Pic(Y ). There is an
exact sequence

0→ Pic(W )
π∗
−→ Pic(T )→ Pic(X)→ 0.

Let (x, g) ∈ π−1(y) ∈ X×G, with g = pk, p ∈ P (AF ), k ∈ KG. One can define
an adelic metrization of LY (see [ST99, Section 4.3]) such that

(6.30) HLY (y) = HL(η(p))(x),

where L(η(p)) is the twisted adelic metrization of the T -linearized line bundle L on
X defined in Section 6.6. Consider the height zeta function

Z(Y,LY ⊗ LW , s) =
∑

γ∈P (F )\G(F )

HLW
(γ)−s

∑
x∈π−1(γ)

HLY
(x)−s.

The key property (6.30) implies that∑
x∈π−1(γ)

HLY
(x)−s = Z(X,L(η(pγ)), s).

Combining this with the Poisson formula 6.22, one obtains, at least formally

(6.31) Z(Y ◦,LY ⊗ LW , s) =

∫
(T (AF )/KT ·T (F ))∗

ĤΣ(χ, s) · EG
P (s

′, χ ◦ η) dχ,

where (s, s′) ∈ PicT (X)C⊕X∗(P )C, Y
◦ = T×P G, and EG

P (s
′, χ◦η) is the Eisenstein

series (6.14). Analytic properties of the integral on the right side of (6.31) are
established following the approach in Section 6.6. Uniform bounds of the shape

|EG
P (s

′, χ ◦ η)| � (1 + ‖�(s′)‖+ ‖χ‖)ε,

for �(s′) close to 2ρ, follow from Theorem 6.1.2, combined with Proposition 6.1.3.

Theorem 6.9.1. [ST99] Conjecture 4.14.2 holds for Y = X ×P G.
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Similar constructions can be carried out with parabolic subgroups P1, . . . , Pr in
groups G1, . . . , Gr, and homomorphisms ηr : Pi → Gi−1, leading to Bott-Samelson
varieties

Y = P1\G1 ×P2 G2 × . . .×Pr \Gr,

which arise as desingularizations of Schubert varieties. Results concerning ana-
lytic properties of corresponding height zeta functions can be found in [Str98] and
[Str01].
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[dlB07] , Répartition des points rationnels sur la cubique de Segre, Proc. Lond. Math.
Soc. (3) 95 (2007), no. 1, 69–155. MR 2329549 (2008f:11041)

[Dol08] I. V. Dolgachev, Reflection groups in algebraic geometry, Bull. Amer. Math. Soc.
(N.S.) 45 (2008), no. 1, 1–60 (electronic). MR 2358376

[DP80] M. Demazure and H. Pinkham (eds.), Séminaire sur les Singularités des Surfaces,
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de l’Écriture. [A paraphrase of Scripture]. MR 1261867 (95d:11067)
[Nik81] V. V. Nikulin, Quotient-groups of groups of automorphisms of hyperbolic forms by

subgroups generated by 2-reflections. Algebro-geometric applications, Current prob-
lems in mathematics, Vol. 18, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn.
Informatsii, Moscow, 1981, pp. 3–114. MR 633160 (83c:10030)

[NP89] T. Nadesalingam and J. Pitman, Bounds for solutions of simultaneous diagonal
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Abstract. We introduce some of the ideas and tools of birational geometry
which play a role in conjectures by Bombieri, Lang, Vojta and Campana on
the relationship between arithmetic and geometry. After a brief discussion of
geometry and arithmetic on curves in Section 0, we discuss Kodaira dimen-
sion of a variety and its conjectural relationship with arithmetic properties in

Section 1. In Section 2 we outline Campana’s approach aiming for a more
solid conjectural relationship with arithmetic through the core map. Section
3 outlines the minimal model program and discusses its current status. In
Section 4 we review Vojta’s conjectures and their relationship to Campana’s
conjectures and to the abc conjecture of Masser-Oesterlé.
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Introduction

When thinking about the course “birational geometry for number theorists” I so
näıvely agreed to give at the Göttingen summer school, I could not avoid imagining
the spirit of the late Serge Lang, not so quietly beseeching one to do things right,
keeping the theorems functorial with respect to ideas, and definitions natural. But
most important is the fundamental tenet of Diophantine geometry, for which Lang
was one of the strongest and loudest advocates, which was so aptly summarized in
the introduction of Hindry-Silverman [HS00]:

GEOMETRY DETERMINES ARITHMETIC.
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To make sense of this, largely conjectural, epithet, it is good to have some loose
background in birational geometry, which I will try to provide. For the arithmetic
motivation I will explain conjectures of Bombieri, Lang and Vojta, and new and
exciting versions of those due to Campana. In fact, I imagine Lang would insist
(strongly, as only he could) that Campana’s conjectures most urgently need further
investigation, and indeed in some sense they form the centerpiece of these notes.

Birational geometry is undergoing revolutionary developments these very days:
large portions of the minimal model program were solved soon after the Göttingen
lectures [BCHM06], and it seems likely that more is to come. Also, a number
of people seem to have made new inroads into the long standing resolution of
singularities problem. I am not able to report on the latter, but I will give a brief
account of the minimal model program as it seems to stand at this point in time.

Our convention: a variety over k is an absolutely reduced and irreducible scheme
of finite type over k.

Acknowledgements: I thank the CMI and the organizers for inviting me, I
thank the colleagues and students at Brown for their patience with my ill prepared
preliminary lectures and numerous suggestions, I thank F. Campana for a number of
inspiring discussions, H.-H. Tseng and H. Ulfarsson for a number of good comments,
and L. Caporaso for the notes of her MSRI lecture [Cap], to which my lecture
plans grew increasingly close. The treatment of the minimal model program is
influenced by lectures of Ch. Hacon and J. McKernan and discussions with them.
Many thanks are due to the referee who caught a large number of errors and made
numerous suggestions. Of course all remaining errors are entirely my responsibility.
Anything new is partially supported by the NSF grants DMS-0301695 and DMS-
0603284.

0. Geometry and arithmetic of curves

The arithmetic of algebraic curves is one area where basic relationships between
geometry and arithmetic are known, rather than conjectured. Much of the material
here is covered in Darmon’s lectures of this summer school.

0.1. Closed curves. Consider a smooth projective algebraic curve C defined
over a number field k. We are interested in a qualitative relationship between its
arithmetic and geometric properties.

We have three basic facts:
0.1.1. A curve of genus 0 becomes rational after at most a quadratic extension

k′ of k, in which case its set of rational points C(k′) is infinite (and therefore dense
in the Zariski topology).

0.1.2. A curve of genus 1 has a rational point after a finite extension k′ of k
(though the degree is not a priori bounded), and has positive Mordell–Weil rank
after a further quadratic extension k′′/k′, in which case again its set of rational
points C(k′′) is infinite (and therefore dense in the Zariski topology).

We can immediately introduce the following definition:

Definition 0.1.3. Let X be an algebraic variety defined over k. We say that
rational points on X are potentially dense if there is a finite extension k′/k such
that the set X(k′) is dense in Xk′ in the Zariski topology.

Thus rational points on a curve of genus 0 or 1 are potentially dense.
Finally we have
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Theorem 0.1.4 (Faltings, 1983). Let C be an algebraic curve of genus > 1
over a number field k. Then C(k) is finite.

See, e.g. [Fal83, HS00].
In other words, rational points on a curve C of genus g are potentially dense if

and only if g ≤ 1.
0.1.5. So far there isn’t much birational geometry involved, because we have

the old theorem:

Theorem 0.1.6. A smooth algebraic curve is uniquely determined by its func-
tion field.

But this is an opportunity to introduce a tool: on the curve C we have a
canonical divisor class KC , such that OC(KC) = Ω1

C , the sheaf of differentials, also
known by the notation ωC—the dualizing sheaf. We have:

(1) degKC = 2g − 2 = −χtop(CC), where χtop(CC) is the topological Euler
characteristic of the complex Riemann surface CC.

(2) dimH0(C,OC(KC)) = g.

For future discussion, the first property will be useful. We can now summarize,
following [HS00]:

0.1.7.

Degree of KC rational points

2g − 2 ≤ 0 potentially dense
2g − 2 > 0 finite

0.2. Open curves.
0.2.1. Consider a smooth quasi-projective algebraic curve C defined over a

number field k. It has a unique smooth projective completion C ⊂ C, and the
complement is a finite set Σ = C � C. Thinking of Σ as a reduced divisor of some
degree n, a natural line bundle to consider is OC(KC + Σ) � ωO(Σ), the sheaf
of differentials with logarithmic poles on Σ, whose degree is again −χtop(C) =
2g − 2 + n. The sign of 2g − 2 + n again serves as the geometric invariant to
consider.

0.2.2. Consider for example the affine line. Rational points on the affine line
are not much more interesting than those on P1. But we can also consider the
behavior of integral points, where interesting results do arise. However, what does
one mean by integral points on A1? The key is that integral points are an invariant
of an “integral model” of A1 over Z.

0.2.3. Consider the ring of integers Ok and a finite set S ⊂ SpecOk of finite
primes. One can associate to it the ring Ok,S of S-integers, of elements in K which
are in O℘ for any prime ℘ �∈ S.

Now consider a model of C over Ok,S , namely a scheme C of finite type over
Ok,S with an isomorphism of the generic fiber Ck � C. It is often useful to start

with a model C of C, and take C = C � Σ, where Σ is the closure of Σ in C.
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Spec kSpecOk,S

Σ

x

x

CC

Now it is clear how to define integral points: an S-integral point on C is simply
an element of C(Ok,S), in other words, a section of C → Spec(Ok,S). This is related
to rational points on a proper curve as follows:

0.2.4. If Σ = ∅, and the model chosen is proper, the notions of integral and
rational points agree, because of the valuative criterion for properness.

Exercise 0.2.5. Prove this!

We have the following facts:
0.2.6. If C is rational and n ≤ 2, then after possibly enlarging k and S, any

integral model of C has an infinite collection of integral points.

Exercise 0.2.7. Prove this!

On the other hand, we have:

Theorem 0.2.8 (Siegel’s Theorem). If n ≥ 3, or if g > 0 and n > 0, then for
any integral model C of C, the set of integral points C(Ok,S) is finite.

A good generalization of Definition 0.1.3 is the following:

Definition 0.2.9. Let X be an algebraic variety defined over k with a model
X over Ok,S . We say that integral points on X are potentially dense if there is a
finite extension k′/k, and an enlargement S′ of the set of places in k′ over S, such
that the set X (Ok′,S′) is dense in Xk′ in the Zariski topology.

We can apply this definition in the case of a curve C and generalize 0.1.7, as
in [HS00], as follows:

0.2.10.

degree of KC +Σ integral points

2g − 2 + n ≤ 0 potentially dense
2g − 2 + n > 0 finite

0.2.11. One lesson we must remember from this discussion is that

For open varieties we use integral points on integral models.

0.3. Faltings implies Siegel. Siegel’s theorem was proven years before Falt-
ings’s theorem. Yet it is instructive, especially in the later parts of these notes, to
give the following argument showing that Faltings’s theorem implies Siegel’s.

Theorem 0.3.1 (Hermite-Minkowski, see [HS00] page 264). Let k be a number
field, S ⊂ SpecOk,S a finite set of finite places, and d a positive integer. Then there
are only finitely many extensions k′/k of degree ≤ d unramified outside S.
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From which one can deduce

Theorem 0.3.2 (Chevalley-Weil, see [HS00] page 292). Let π : X → Y be a
finite étale morphism of schemes over Ok,S. Then there is a finite extension k′/k,
with S′ lying over S, such that π−1Y(Ok,S) ⊂ X (Ok′,S′).

On the geometric side we have an old topological result

Theorem 0.3.3. If C is an open curve with 2g − 2 + n > 0 and n > 0, defined
over k, there is a finite extension k′/k and a finite unramified covering D → C,
such that g(D) > 1.

Exercise 0.3.4. Combine these theorems to obtain a proof of Siegel’s theorem
assuming Faltings’s theorem.

This is discussed in Darmon’s lectures, as well as [HS00].
0.3.5. Our lesson this time is that

Rational and integral points can be controlled in finite étale covers.

0.4. Function field case. There is an old and distinguished tradition of com-
paring results over number fields with results over function fields. To avoid compli-
cations I will concentrate on function fields of characteristic 0, and consider closed
curves only.

0.4.1. If K is the function field of a complex variety B, then a variety X/K
is the generic fiber of a scheme X/B, and a K-rational point P ∈ X(K) can be
thought of as a rational section of X → B. If B is a smooth curve and X → B is
proper, then again a K-rational point P ∈ X(K) is equivalent to a regular section
B → X .

Exercise 0.4.2. Make sense of this (i.e., prove this)!

0.4.3. The notion of integral points is similarly defined using sections. When
dimB > 1 there is an intermediate notion of properly rational points: a K-rational
point p of X is a properly rational point of X/B if the closure B′ of p in X maps
properly to B.

Consider now C/K a curve. Of course it is possible that C is, or is birationally
equivalent to, C0 × B, in which case we have plenty of constant sections coming
from C0(C), corresponding to constant points in C(K). But that is almost all there
is:

Theorem 0.4.4 (Manin [Man63], Grauert [Gra65]). Let k be a field of char-
acteristic 0, let K be a regular extension of k, and C/K a smooth curve. Assume
g(C) > 1. If C(K) is infinite, then there is a curve C0/k with (C0)K � C, such
that C(K)� C0(k) is finite.

Exercise 0.4.5. What does this mean for constant curves C0 ×B in terms of
maps from C0 to B?

Working inductively on transcendence degree, and using Faltings’s Theorem,
we obtain:

Theorem 0.4.6. Let C be a curve of genus > 1 over a field k finitely generated
over Q. Then the set of k-rational points C(k) is finite.

Exercise 0.4.7. Prove this, using previous results as given!

See [Sam66], [MS02] for appropriate statements in positive characteristics.
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1. Kodaira dimension

1.1. Iitaka dimension. Consider now a smooth, projective variety X of di-
mension d over a field k of characteristic 0. We seek an analogue of the sign of
2g − 2 in this case. The approach is by counting sections of the canonical line

bundle OX(KX) =
∧d

Ω1
X . Iitaka’s book [Iit82] is a good reference.

Theorem 1.1.1. Let L be a line bundle on X. Assume h0(X,Ln) does not
vanish for all positive integers n. Then there is a unique integer κ = κ(X,L) with
0 ≤ κ ≤ d such that

lim sup
n→∞

h0(X,Ln)

nκ

exists and is nonzero.

Definition 1.1.2. (1) The integer κ(X,L) in the theorem is called the
Iitaka dimension of (X,L).

(2) In the special case L = OX(KX) we write κ(X) := κ(X,L) and call κ(X)
the Kodaira dimension of X.

(3) It is customary to set κ(X,L) to be either −1 or −∞ if h0(X,Ln) vanishes
for all positive integers n. It is safest to say in this case that the Iitaka
dimension is negative. I will use −∞.

We will see an algebraic justification for the −1 convention immediately in
Proposition 1.1.3, and a geometric justification for the more commonly used −∞
in Paragraph 1.2.7.

An algebraically meaningful presentation of the Iitaka dimension is the follow-
ing:

Proposition 1.1.3. Consider the algebra of sections

R(X,L) :=
⊕
n≥0

H0(X,Ln).

Then, with the −1 convention,

tr. degR(X,L) = κ(X,L) + 1.

Definition 1.1.4. We say that a property holds for a sufficiently high and
divisible n if there exists n0 > 0 such that the property holds for every positive
multiple of n0.

A geometric meaning of κ(X,L) is given by the following:

Proposition 1.1.5. Assume κ(X,L) ≥ 0. Then for sufficiently high and di-
visible n, the dimension of the image of the rational map φLn : X ��� PH0(X,Ln)
is precisely κ(X,L).

Even more precise is:

Proposition 1.1.6. There is n0 > 0 such that the image φLn(X) is birational
to φLn0 (X) for all n > 0 divisible by n0.

Definition 1.1.7.

(1) The birational equivalence class of the variety φLn0 (X) is denoted by
I(X,L).

(2) The rational map X → I(X,L) is called the Iitaka fibration of (X,L).
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(3) In case L is the canonical bundle ωX , this map is simply called the Iitaka
fibration of X, written X → I(X)

The following notion is important:

Definition 1.1.8. The variety X is said to be of general type of κ(X) = dimX.

Remark 1.1.9. The name is not as informative as one could wish. It comes
from the observation that surfaces not of general type can be nicely classified,
whereas there is a whole zoo of surfaces of general type.

Exercise 1.1.10. Prove Proposition 1.1.6:

(1) Show that if n, d > 0 and H0(X,Ln) �= 0 then there is a dominant rational
map φLnd(X) ��� φLn(X) such that the following diagram is commuta-
tive:

X
φ
Lnd

�����

φLn
���

�
�

�
� φLnd(X)

��
�
�
�

φLn(X).

(2) Conclude that dimφLn(X) is a constant κ for sufficiently high and divis-
ible n.

(3) Suppose n > 0 satisfies κ := dimφLn(X). Show that for any d > 0, the
function field of φLnd(X) is algebraic over the function field φLn(X).

(4) Recall that for any variety X, any subfield L of K(X) containing k is
finitely generated. Apply this to the algebraic closure of φLn(X) in K(X)
to complete the proof of the proposition.

For details see [Iit82].

Exercise 1.1.11. Use Proposition 1.1.6 to prove Theorem 1.1.1.

1.2. Properties and examples of the Kodaira dimension.

Exercise 1.2.1. Show that κ(Pn) = −∞. Show that κ(A) = 0 for an abelian
variety A.

1.2.2. Curves:

Exercise. Let C be a smooth projective curve and L a line bundle. Prove
that

κ(C,L) =

⎧⎪⎨
⎪⎩
1 if degC L > 0,

0 if L is torsion, and

< 0 otherwise.

In particular,

κ(C) =

⎧⎪⎨
⎪⎩
1 if g > 1,

0 if g = 1, and

< 0 if g = 0.

1.2.3. Birational invariance:

Exercise. Let X ′ ��� X be a birational map of smooth projective varieties.
Show that the spaces H0(X,OX(mKX)) and H0(X ′,OX′(mKX′)) are canonically
isomorphic. Deduce that κ(X) = κ(X ′).

(See [Har77], Chapter II, Theorem 8.19).
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1.2.4. Generically finite dominant maps.

Exercise. Let f : X ′ → X be a generically finite dominant map of smooth
projective varieties.

Show that κ(X ′) ≥ κ(X).

1.2.5. Finite étale maps.

Exercise. Let f : X ′ → X be a finite étale map of smooth projective varieties.
Show that κ(X ′) = κ(X).

1.2.6. Field extensions:

Exercise. Let k′/k be a field extension, X a variety over k with line bundle
L, and Xk′ , Lk′ the result of base change.

Show that κ(X,L) = κ(Xk′ , Lk′). In particular κ(X) = κ(Xk′).

1.2.7. Products.

Exercise. Show that, with the −∞ convention,

κ(X1 ×X2, L1 � L2) = κ(X1, L1) + κ(X2, L2).

Deduce that κ(X1 ×X2) = κ(X1) + κ(X2).

This so-called “easy additivity” of the Kodaira dimension is the main reason
for the −∞ convention.

1.2.8. Fibrations. The following is subtle and difficult:

Theorem (Siu’s theorem on deformation invariance of plurigenera [Siu98,
Siu02]). Let X → B be a smooth projective morphism with connected geometric
fibers, and m a positive integer. Then for closed points b ∈ B, the dimension
h0(Xb,O(mKXb

)) is independent of b ∈ B. In particular κ(Xb) is independent of
the closed point b ∈ B.

Exercise 1.2.9. Let X → B be a morphism of smooth projective varieties
with connected geometric fibers. Let b ∈ B be such that X → B is smooth over b,
and let ηB ∈ B be the generic point.

Use “cohomology and base change” and Siu’s theorem to deduce that

κ(Xb) = κ(XηB
).

Definition 1.2.10. The Kodaira defect of X is δ(X) = dim(X)− κ(X).

Exercise 1.2.11. Let X → B be a morphism of smooth projective varieties
with connected geometric fibers. Show that the Kodaira defects satisfy δ(X) ≥
δ(XηB

). Equivalently κ(X) ≤ dim(B) + κ(XηB
).

We remark that before Siu’s deformation invariance theorem was proven, a
weaker and more technical result, yet still very useful, saying that the Kodaira
dimension is constant on “very general fibers” was used.

Exercise 1.2.12. Let Y → B be a morphism of smooth projective varieties
with connected geometric fibers, and Y → X a generically finite map. Show that
δ(X) ≥ δ(YηB

). In other words, κ(X) ≤ κ(YηB
) + dimB.

This so-called “easy subadditivity” has many useful consequences.
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Definition 1.2.13. We say that X is uniruled if there is a variety B of dimen-
sion dimX − 1 and a dominant rational map B × P1 ��� X.

Exercise 1.2.14. If X is uniruled, show that κ(X) = −∞.

The converse is an important conjecture, sometimes known as the (−∞)-
Conjecture. It is a consequence of the “good minimal model” conjecture:

Conjecture 1.2.15. Assume X is not uniruled. Then κ(X) ≥ 0.

Exercise 1.2.16. If X is covered by a family of elliptic curves, show that
κ(X) ≤ dimX − 1.

1.2.17. Surfaces. Surfaces of Kodaira dimension < 2 are “completely classi-
fied”. Some of these you can place in the following table using what you have
learned so far. In the following description we give a representative of the bira-
tional class of each type:

κ description

−∞ ruled surfaces: P2 or P1 × C
0 a. abelian surfaces

b. bielliptic surfaces
k. K3 surfaces
e. Enriques surfaces

1 all other elliptic surfaces

1.2.18. Iitaka’s program. Here is a central conjecture of birational geometry:

Conjecture (Iitaka). Let X → B be a surjective morphism of smooth projec-
tive varieties. Then

κ(X) ≥ κ(B) + κ(XηB
).

1.2.19. Major progress on this conjecture was made through the years by sev-
eral geometers, including Fujita [Fuj78], Kawamata [Kaw85], Viehweg [Vie82]
and Kollár [Kol87]. The key, which makes this conjecture plausible, is the semi-
positivity properties of the relative dualizing sheaf ωX/B , which originate from work
of Arakelov and rely on deep Hodge theoretic arguments.

Two results will be important for these lectures.

Theorem 1.2.20 (Kawamata). Iitaka’s conjecture follows from the Minimal
Model Program: if XηB

has a good minimal model then κ(X) ≥ κ(B) + κ(XηB
).

Theorem 1.2.21 (Viehweg). Iitaka’s conjecture holds in case B is of general
type, namely:

Let X → B be a surjective morphism of smooth projective varieties, and assume
κ(B) = dimB. Then κ(X) = dim(B) + κ(XηB

).

Note that equality here is forced by the easy subadditivity inequality: κ(X) ≤
dim(B) + κ(XηB

) always holds.

Exercise 1.2.22. Let X,B1, B2 be smooth projective varieties. Suppose X →
B1 ×B2 is generically finite to its image, and assume both X → Bi surjective.

(1) Assume B1, B2 are of general type. Use Viehweg’s theorem and the Ko-
daira defect inequality to conclude that X is of general type. (Hint for
a key step: construct a subvariety of general type V ⊂ B1, such that
X ×B1

V → B2 is generically finite and surjective.)



344 DAN ABRAMOVICH

(2) Assume κ(B1), κ(B2) ≥ 0. Show that if Iitaka’s conjecture holds true,
then κ(X) ≥ 0.

Exercise 1.2.23. Let X be a smooth projective variety. Using the previous
exercise, show that there is a dominant rational map

LX : X ��� L(X)

such that

(1) L(X) is of general type, and
(2) the map is universal: if g : X ��� Z is a dominant rational map with Z of

general type, there is a unique rational map L(g) : L(X) ��� Z such that
the following diagram commutes:

X
LX �����

g
���

�
�

�
� L(X)

L(g)

��
�
�
�

Z.

I call the map LX the Lang map of X, and L(X) the Lang variety of X.

1.3. Uniruled varieties and rationally connected fibrations.
1.3.1. Uniruled varieties. For simplicity let us assume here that k is alge-

braically closed.
As indicated above, a variety X is said to be uniruled if there is a (d − 1)-

dimensional variety B and a dominant rational map B × P1 ��� X. Instead of
B × P1 one can take any variety Y → B whose generic fiber is a curve of genus
0. As discussed above, if X is uniruled then κ(X) = −∞. The converse is the
important (−∞)-Conjecture 1.2.15.

A natural question is, can one “take all these rational curves out of the picture?”
The answer is yes, in the best possible sense.

Definition 1.3.2. A smooth projective variety P is said to be rationally con-
nected if through any two points x, y ∈ P there is a morphism from a rational curve
C → P having x and y in its image.

There are various equivalent ways to characterize rationally connected varieties.

Theorem 1.3.3 (Campana [Cam92], Kollár-Miyaoka-Mori [KMM92]). Let
P be a smooth projective variety. The following are equivalent:

(1) P is rationally connected.
(2) Any two points are connected by a chain of rational curves.
(3) For any finite set of points S ⊂ P , there is a morphism from a rational

curve C → P having S in its image.
(4) There is a “very free” rational curve on P—if dimP > 2 this means there

is a rational curve C ⊂ P such that the normal bundle NC⊂P is ample.

Key properties:

Theorem 1.3.4 ([Cam92, KMM92]). Let X and X ′ be smooth projective
varieties, with X rationally connected.

(1) If X ��� X ′ is a dominant rational map (in particular when X and X ′

are birationally equivalent) then X ′ is rationally connected.
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(2) If X ′ is deformation-equivalent to X then X ′ is rationally connected.
(3) If X ′ = Xk′ where k′/k is an algebraically closed field extension, then X ′

is rationally connected if and only if X is.

Exercise 1.3.5. A variety is unirational if it is a dominant image of Pn. Show
that every unirational variety is rationally connected.

On the other hand, one expects the following:

Conjecture 1.3.6 (Kollár). There is a rationally connected threefold which is
not unirational. There should also exist some hypersurface of degree n in Pn, n ≥ 4
which is not unirational.

Rational connectedness often arises when there is some negativity of differential
forms, as in the following statement. A smooth projective variety X is Fano if its
anti-canonical divisor is ample. We have the following:

Theorem 1.3.7 (Kollár-Miyaoka-Mori, Campana). A Fano variety is rationally
connected.

Conjecture 1.3.8 (Kollár-Miyaoka-Mori, Campana).

(1) A variety X is rationally connected if and only if

H0(X, (Ω1
X)⊗n) = 0

for every positive integer n.
(2) A variety X is rationally connected if and only if every positive dimen-

sional dominant image X ��� Z has κ(Z) = −∞.

This conjecture follows from the minimal model program; see Conjecture 3.4.3
and 3.4.4.

Now we can break any variety X into a rationally connected fiber over a
nonuniruled base:

Theorem 1.3.9 (Campana, Kollár-Miyaoka-Mori, Graber-Harris-Starr). Let
X be a smooth projective variety. There is a birational morphism X ′ → X, a
variety Z(X), and a dominant morphism X ′ → Z(X) with connected fibers, such
that

(1) The general fiber of X ′ → Z(X) is rationally connected, and
(2) Z(X) is not uniruled.

Moreover, X ′ → X is an isomorphism in a neighborhood of the general fiber of
X ′ → Z(X).

The existence of a fibration containing “most” rational curves was proven in
the original papers by Campana and Kollár-Miyaoka-Mori. The crucial fact that
Z(X) is not uniruled was proven by Graber, Harris and Starr in [GHS03].

1.3.10. The rational map rX : X ��� Z(X) is called the maximally rationally
connected fibration of X (or MRC fibration of X) and Z(X), which is well defined
up to birational equivalence, is called the MRC quotient of X.

1.3.11. The MRC fibration has the universal property of being “final” for dom-
inant rational maps X → B with rationally connected fibers.

One can construct similar fibrations with a similar universal property for maps
with fibers havingH0(Xb, (Ω

1
Xb

)⊗n) = 0, or for fibers having no dominant morphism
to positive dimensional varieties of nonnegative Kodaira dimension. Conjecturally
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these agree with rX . Also conjecturally, assuming Iitaka’s conjecture, there exists
X ��� Z ′ which is initial for maps to varieties of non-negative Kodaira dimension.
This conjecturally will also agree with rX . All these conjectures would follow from
the “good minimal model” conjecture.

1.3.12. Arithmetic, finally. The set of rational points on a rational curve is
Zariski-dense. The following is a natural extension:

Conjecture 1.3.13 (Campana). Let P be a rationally connected variety over
a number field k. Then rational points on P are potentially dense.

This conjecture and its sister 1.4.2 below was implicit in works of many, in-
cluding Bogomolov, Colliot-Thélène, Harris, Hassett, Tschinkel.

1.4. Geometry and arithmetic of the Iitaka fibration. We now want to
understand the geometry and arithmetic of varieties such as Z(X), i.e., non-uniruled
varieties. In view of Conjecture 1.2.15, we focus on the case κ(X) ≥ 0.

So let X satisfy κ(X) ≥ 0, and consider the Iitaka fibration X ��� I(X). The
next proposition follows from easy subadditivity and Siu’s theorem:

Proposition 1.4.1. Let F be a general fiber of X ��� I(X). Then κ(F ) = 0.

Conjecture 1.4.2 (Campana). Let F be a variety over a number field k sat-
isfying κ(F ) = 0. Then rational points on F are potentially dense.

Exercise 1.4.3. Recall the Lang map in 1.2.23. Assuming Conjecture 1.2.15,
show that L(X) is the result of applying MRC fibrations and Iitaka fibrations,
alternating between the former and the latter, until the result stabilizes.

1.5. Lang’s conjecture. In this section we let k be a number field, or any
field which is finitely generated over Q.

A highly inspiring conjecture in Diophantine geometry is the following:

Conjecture (Lang’s conjecture, weak form). Let X be a smooth projective
variety of general type over k. Then X(k) is not Zariski-dense in X.

In fact, motivated by analogy with conjectures on the Kobayashi pseudo-metric
of a variety of general type, Lang even proposed the following:

Conjecture (Lang’s geometric conjecture). Let X be a smooth complex pro-
jective variety of general type. There is a Zariski-closed proper subset S(X) ⊂ X,
whose irreducible components are not of general type, and such that every irreducible
subset T ⊂ X not of general type is contained in S(X).

The notation “S(X)” stands for “the special subvariety of X”. It is not hard
to see that S(X) is defined over any field of definition of X. The two conjectures
combine to give:

Conjecture (Lang’s conjecture, strong form). Let X be a smooth projec-
tive variety of general type over k. Then for any finite extension k′/k, the set
(X � S(X))(k′) is finite.

Here is a simple consequence:

Proposition 1.5.1. Assume Lang’s conjecture holds true. Let X be a smooth
projective variety over a number field k. Assume there is a dominant rational
map X → Z, such that Z is a positive dimensional variety of general type (i.e.,
dimL(X) > 0). Then X(k) is not Zariski-dense in X.
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1.6. Uniformity of rational points. Lang’s conjecture can be investigated
whenever one has a variety of general type around. By considering certain subvari-
eties of the moduli space Mg,n of curves of genus g with n distinct points on them,
rather surprising and inspiring implications on the arithmetic of curves arise. This
is the subject of the work [CHM97] of L. Caporaso, J. Harris and B. Mazur. Here
are their key results:

Theorem 1.6.1. Assume that the weak Lang’s conjecture holds true. Let k be
as above, and let g > 1 be an integer. Then there exists an integer N(k, g) such
that for every algebraic curve C of genus g over k we have

#C(k) ≤ N(k, g).

Theorem 1.6.2. Assume that the strong Lang’s conjecture holds true. Let
g > 1 be an integer. Then there exists an integer N(g) such that for every finitely
generated field k there are, up to isomorphism, only finitely many algebraic curves
C of genus g over k with #C(k) > N(g).

Further results along these lines, involving higher dimensional varieties and
involving stronger results on curves can be found in [Has96], [Abr95], [Pac97],
[AV96], [Abr97]. For instance, P. Pacelli’s result in [Pac97] says that the number
N(k, g) can be replaced for number fields by N(d, g), where d = [k : Q].

The reader may decide whether this shows the great power of the conjectures or
their unlikelihood. I prefer to be agnostic and rely on the conjectures for inspiration.

1.7. The search for an arithmetic dichotomy. As demonstrated in table
0.1.7, potential density of rational points on curves is dictated by geometry. Lang’s
conjecture carves out a class of higher dimensional varieties for which rational points
are, conjecturally, not potentially dense. Can this be extended to a dichotomy as
we have for curves?

One can naturally wonder—is the Kodaira dimension itself enough for deter-
mining potential density of points? Or else, maybe just the nonexistence of a map
to a positive dimensional variety of general type?

1.7.1. Rational points on surfaces. The following table, which I copied from a
lecture of L. Caporaso [Cap], describes what is known about surfaces.

Caporaso’s table: rational points on surfaces

Kodaira dimension X(k) potentially dense X(k) never dense

κ = −∞ P2 P1 × C (g(C) ≥ 2)

κ = 0 E × E, many others none known
κ = 1 many examples E × C (g(C) ≥ 2)

κ = 2 none known many examples

The bottom row is the subject of Lang’s conjecture, and the κ = 0 row is the
subject of Conjecture 1.4.2.

1.7.2. Failure of the dichotomy using κ(X). The first clear lesson we learn from
this is, as Caporaso aptly put it in her lecture, that

Diophantine geometry is not governed by the Kodaira dimension.

On the top row we see that clearly: on a ruled surface over a curve of genus
≥ 2, rational points can never be dense by Faltings’s theorem. So it behaves very
differently from a rational surface.
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Even if one insists on working with varieties of non-negative Kodaira dimension,
the κ = 1 row gives us trouble.

Exercise. Take a Lefschetz pencil of cubic curves in P2, parametrized by t,
and assume that it has two sections s1, s2 whose difference is not torsion on the
generic fiber. We use s1 as the origin.

(1) Show that the dualizing sheaf of the total space S is OS(−[F ]), where F
is a fiber.

(2) Show that the relative dualizing sheaf is OS([F ]). Take the base change
t = s3. We still have two sections, still denoted s1, s2, such that the
difference is not torsion. We view s1 as origin.

Show that the relative dualizing sheaf of the new surfaceX isOX(3[F ])
and its dualizing sheaf is OX([F ]). Conclude that the resulting surface X
has Kodaira dimension 1.

(3) For any rational point p on P1 where the section s2 of X → P1 is not
torsion, the fiber has a dense set of rational points.

In characteristic 0 it can be shown that the set of such points is dense.
For instance, by Mazur’s theorem the rational torsion points have order
at most 12, and therefore they lie on finitely many points of intersection
of s2 with the locus of torsion points of order ≤ 12.

(4) Conclude that X has a dense set of rational points.

1.7.3. Failure of the dichotomy using the Lang map. The examples given above
still allow for a possible dichotomy based on the existence of a nontrivial map to a
variety of general type. But the following example, which fits in the right column on
row κ = 1, shows this doesn’t work either. The example is due to Colliot-Thélène,
Skorobogatov and Swinnerton-Dyer [CTSSD97].

Example. Let C be a curve with an involution φ : C → C, such that the
quotient is rational. Consider an elliptic curve E with a 2-torsion point a, and
consider the fixed-point free action of Z/2Z on Y = E × C given by

(x, y) 
→ (x+ a, φ(y)).

Let the quotient of Y by the involution be X. Then L(X) is trivial, though
rational points on X are not potentially dense by Chevalley-Weil and Faltings.

In the next section we address a conjectural approach to a dichotomy—due to
F. Campana—which has a chance to work.

1.8. Logarithmic Kodaira dimension and the Lang-Vojta conjectures.
We now briefly turn our attention to open varieties, following the lesson in section
0.2.11.

Let X be a smooth projective variety, D a reduced normal crossings divisor.
We can consider the quasiprojective variety X = X �D.

The logarithmic Kodaira dimension of X is defined to be the Iitaka dimension
κ(X) := κ(X,KX + D). We say that X is of logarithmic general type if κ(X) =
dimX.

It can be easily shown that κ(X) is independent of the completion X ⊂ X, as
long as X is smooth and D is a normal crossings divisor. More invariance properties
can be discussed, but will take us too far afield.
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Now to arithmetic: suppose X is a model of X over Ok,S . We can consider
integral points X (OL,SL

) for any finite extension L/k and enlargement SL of the
set of places over S.

The Lang-Vojta conjecture is the following:

Conjecture 1.8.1. If X is of logarithmic general type, then integral points are
not potentially dense on X, i.e., X (OL,SL

) is not Zariski-dense for any L, SL.

1.8.2. In case X = X is already projective, the Lang-Vojta conjecture reduces
to Lang’s conjecture: X is simply a variety of general type, integral points on X
are the same as rational points, and Lang’s conjecture asserts that X(k) is not
Zariski-dense in X.

1.8.3. The Lang-Vojta conjecture turns out to be a particular case of a more
precise and more refined conjecture of Vojta, which will be discussed in a later
section.

2. Campana’s program

For this section one important road sign is

THIS SITE IS UNDER CONSTRUCTION
DANGER! HEAVY EQUIPMENT CROSSING

A quick search on the web shows close to the top a number of web sites deriding
the idea of “site under construction”. Evidently these people have never engaged
in research!

2.0.1. Campana’s program is a new method of breaking algebraic varieties into
“pieces” which builds upon Iitaka’s program, but, by using a particular structure
on varieties which I will call “Campana constellations” enables one to get closer
to a classification which is compatible with arithmetic properties. There is in fact
an underlying more refined structure which I call “firmament” for the Campana
constellation, which might be the more fundamental structure to study. I believe
it truly does say something about rational points.

2.0.2. The term “constellation” is inspired by Aluffi’s celestial [Alu07], which
is in turn inspired by Hironaka.

Campana used the term “orbifold”, in analogy to orbifolds used in geometry,
but the analogy breaks down very early on. A suggested replacement “orbifold pair”
still does not make me too happy. Also, “Campana pair” is a term which Campana
himself is not comfortable using, nor could he shorten it to just “pair”, which is
insufficient. I was told by Campana that he would be happy to use “constellations”
if the term catches on.

2.1. One-dimensional Campana constellations.
2.1.1. The two key examples: elliptic surfaces. Let us inspect again Caporaso’s

table of surfaces, and concentrate on κ = 1. We have in 1.7.2 and 1.7.3 two
examples, say S1 → P1 and S2 → P1 of elliptic surfaces of Kodaira dimension 1
fibered over P1. But their arithmetic behavior is very different.

Campana asked the question: is there an underlying structure on the base P1

from which we can deduce this difference of behavior?
The key point is that the example in 1.7.3 has 2g + 2 double fibers lying over

a divisor D ⊂ P1. This means that the elliptic surface S2 → P1 can be lifted
to S2 → P, where P is the orbifold structure P1(

√
D) on P1 obtained by taking
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the square root of D. Following the ideas of Darmon and Granville in [DG95],
one should consider the canonical divisor class KP of P, viewed as a divisor with
rational coefficients on P1, namely KP1 + (1− 1/2)D. In general, when one has an
m-fold fiber over a divisor D, one wants to take D with coefficient (1− 1/m).

Darmon and Granville prove, using Chevalley-Weil and Faltings, that such an
orbifold P has potentially dense set of integral points if and only if the Kodaira
dimension κ(P) = κ(P,KP) < 1. And the image of a rational point on S2 is
an integral point on P. This fully explains our example: since integral points on
P = P1(

√
D) are not Zariski-dense, and since rational points on S2 map to integral

points on P, rational points on S2 are not dense.
2.1.2. The multiplicity divisor. What should we declare the structure to be

when we have a fiber that looks like x2y3 = 0, i.e. has two components of multi-
plicities 2 and 3? Here Campana departs from the classical orbifold picture: the
highest classical orbifold to which the fibration lifts has no new structure lying un-
der such a fiber, because gcd(2, 3) = 1. Campana makes a key observation that a
rich and interesting classification theory arises if one instead considers min(2, 3) = 2
as the basis of the structure.

Definition 2.1.3 (Campana). Consider a dominant morphism f : X → Y with
X,Y smooth and dimY = 1. Define a divisor with rational coefficients ∆f =

∑
δpp

on Y as follows: assume the divisor f∗p on X decomposes as f∗p =
∑

miCi, where
Ci are the distinct irreducible components of the fiber taken with reduced structure.
Then set

δp = 1− 1

mp
, where mp = min

i
mi.

Definition 2.1.4 (Campana).

(1) A Campana constellation curve (Y/∆) is a pair consisting of a curve Y
along with a divisor ∆ =

∑
δpp with rational coefficients, where each δp

is of the form δp = 1− 1/mp for some integer mp.
(2) The Campana constellation base of f : X → Y is the structure pair

consisting of Y with the divisor ∆f defined above, denoted (Y/∆f ).

The word used by Campana is orbifold, but as I have argued, the analogy with
orbifolds is shattered in this very definition.

The suggested terminology “constellation” will become better justified and
much more laden with meaning when we consider Y of higher dimension.

Campana’s definition deliberately does not distinguish between the structure
coming from a fiber of type x2 = 0 and one of type x2y3 = 0. We will see later a
way to resurrect the difference to some extent using the notion of firmament, from
which a Campana constellation hangs.

Definition 2.1.5 (Campana). The Kodaira dimension of a Campana constel-
lation curve (Y/∆) is defined as the following Iitaka dimension:

κ ( (Y/∆) ) = κ(Y,KY +∆).

We say that (Y/∆) is of general type if it has Kodaira dimension 1. We say that it
is special if it is not of general type.

Exercise 2.1.6. Classify special Campana constellation curves over C. See
[Cam05] for a detailed discussion.
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2.1.7. Models and integral points. Now to arithmetic. As we learned in Lesson
0.2.11, when dealing with a variety with a structure given by a divisor, we need
to speak about integral points on an integral model of the structure. Thus let Y
be an integral model of Y , proper over Ok,S , and denote by ∆̃ the closure of ∆.
As above we assume that ∆ is the union of integral points of Y , denoted zi, and
for simplicity let us assume that they are disjoint (we can always achieve this by
enlarging S). It turns out that there is more than one natural notion to consider
in our theory - soft and firm. The firm notion will be introduced when firmaments
are considered.

Definition. A k-rational point x on Y , considered as an integral point of Y ,

is said to be a soft S-integral point on (Y/∆̃) if for any integral point z in ∆̃, and
any nonzero prime ℘ ⊂ Ok,S such that the reductions coincide, x℘ = z℘, we have

mult℘(x ∩ z) ≥ mp.

Spec k

x

x

Y

z

℘

Y

A key property of this definition is:

Proposition 2.1.8. Assume f : X → Y extends to a good model f̃ : X → Y.

Then the image of a rational point on X is a soft S-integral point on (Y/∆̃f ).

So rational points on X can be investigated using integral points on a model
of Y . This makes the following very much relevant:

Conjecture 2.1.9 (Campana). Suppose the Campana constellation curve
(Y/∆) is of general type. Then the set of soft S-integral point on any model Y
is not Zariski-dense.

This conjecture is not likely to follow readily from Faltings’s theorem, as the
following example suggests.

Example 2.1.10. Let n ≥ 4 be an integer. Let Y � P1 and ∆ the divisor
supported at 0, 1 and ∞ with all multiplicities equal to (n− 1)/n. Then (Y/∆) is
of general type.

Using the same as a model over SpecZ, we see that a point y on Y is a soft inte-
gral point on (Y/∆) if at every prime where y reduces to 0, 1 or ∞, the multiplicity
of this reduction is at least n.

Considering a triple a, b, c of relatively prime integers with aN + bN = cN , the
point (aN : cN ) on Y is a soft integral point as soon as N ≥ n.

It follows that Campana’s conjecture 2.1.9 implies asymptotic Fermat over any
number field.
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It also seems that the conjecture does not follow readily from any of the meth-
ods surrounding Wiles’s proof of Fermat. As we’ll see in the last section, the
conjecture does follow from the abc conjecture (which implies asymptotic Fermat).
In particular we have the following theorem in the function field case.

Theorem 2.1.11 (Campana). Let B be a complex algebraic curve, and K its
function field, and let S ⊂ B be a finite set of closed points. Let (Y/∆) be a
Campana constellation curve of general type defined over the function field K. Then
the set of non-constant soft S-integral points on any model Y → B is not Zariski-
dense.

2.1.12. Some examples.

(1) Consider f : A2 → A1 given by t = x2. The constellation base has
∆ = 1/2 (0), where (0) is the origin on A1. Sections of OY (K + ∆) are
generated by dt, sections of OY (2(K +∆)) by (dt)2/t, and sections of
OY (3(K +∆)) by (dt)3/t.

(2) The same structure occurs for f : A2 → A1 given by t = x2y3 and
f : A2 → A1 given by t = x2y2.

(3) For f : A2 → A1 given by t = x2y the constellation base is trivial.
(4) for f : A2 → A1 given by t = x3y4, we get ∆ = 2/3 (0). Again sections of

OY (2(K +∆)) are generated by (dt)2/t, but sections of OY (3(K +∆))
are generated by (dt)3/t2.

2.2. Higher dimensional Campana constellations. We turn now to the
analogous situation of f : X → Y with higher dimensional Y .

One seeks to define objects, say Campana constellations (Y/∆), in analogy to
the case of curves, which in some sense should help us understand the geometry
and arithmetic of plain varieties mapping to them.

Ideally, these objects should form a category extending the category of varieties,
at least with some interesting class of morphisms. Ideally these objects should have
a good notion of differential forms which fits into the standard theory of birational
geometry, for instance having well-behaved Kodaira dimension. Ideally there should
be a notion of integral points on (Y/∆) which says something about rational points
of a “plain” variety X whenever X maps to (Y/∆).

The theory we describe in this section, which is due to Campana in all but
some details, relies on divisorial data. We will describe a category of objects, called
Campana constellations, which at the moment only allows dominant morphisms.
This means that we do not have a satisfactory description of integral points, since
integral points are sections, and sections are not dominant morphisms. The theory
of firmaments aims at resolving this problem.

Unfortunately, points on Y are no longer divisors. And divisors on Y are not
quite sufficient to describe codimension > 1 behavior. Campana resolves this by
considering all birational models of Y separately. This brings him to define various
invariants, such as Kodaira dimension, depending on a morphism X → Y rather
than of the structure (Y/∆) itself. I prefer to put all this data together using the
notion of a b-divisor, introduced by Shokurov [Sho03], based on ideas by Zariski
[Zar44]. I was also inspired by Aluffi’s [Alu07]. The main advantage is that all
invariants will be defined directly on the level of (Y/∆). This structure has the
disadvantage that it is not obviously computable in finite or combinatorial terms.
It turns out that it is—this again will be addressed using firmaments.
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Definition 2.2.1. Let k be a field and Y a variety over k. A rank 1 discrete
valuation on the function field K = K(Y ) over k is a surjective group homomorphism
ν : K× → Z, sending k× to 0, satisfying

ν(x+ y) ≥ min(ν(x), ν(y))

with equality unless ν(x) = ν(y). We define ν(0) = +∞.
The valuation ring of ν is defined as

Rν =
{
x ∈ K

∣∣ ν(x) ≥ 0
}
.

Denote Yν = SpecRν , and its unique closed point by sν .
A rank 1 discrete valuation ν is divisorial if there is a birational model Y ′ of Y

and an irreducible divisor D′ ⊂ Y ′ such that for all nonzero x ∈ K(Y ) = K(Y ′) we
have

ν(x) = multD′ x.

In this case we say ν has divisorial center D′ in Y ′.

Definition 2.2.2. A b-divisor ∆ on Y is an expression of the form

∆ =
∑
ν

cν · ν,

a possibly infinite sum over divisorial valuations of K(Y ) with rational coefficients,
which satisfies the following finiteness condition:

• for each birational model Y ′ there are only finitely many ν with divisorial
center on Y ′ having cν �= 0.

A b-divisor is of orbifold type if for each ν there is a positive integer mν such
that cν = 1− 1/mν .

Before we continue, here is an analogue of the strict transform of a divisor:

Definition 2.2.3. Let Y be a variety, X a reduced scheme, and let f : X → Y
be a morphism. Consider an integral scheme Y ′ with generic point η, a dominant

morphism Y ′ → Y , and the pullback X ×Y Y ′ → Y ′. The main part ˜X ×Y Y ′ of
X ×Y Y ′ is the closure of the generic fiber X ×Y η inside X ×Y Y ′.

Here is a higher dimensional analogue of the divisor underlying the constellation
curve of a morphism X → Y :

Definition 2.2.4. Let Y be a variety, X a reduced scheme, and let f : X → Y
be a morphism, surjective on each irreducible component of X. For each divisorial
valuation ν on K(Y ) consider f ′ : X ′

ν → Yν , where X ′
ν is a desingularization of the

main part of the pullback X ×Y Yν . Write f ′∗sν =
∑

miCi. Define

δν = 1− 1

mν
with mν = min

i
mi.

The Campana b-divisor on Y associated to a dominant map f : X → Y is
defined to be the b-divisor

∆f =
∑

δνν.

Exercise 2.2.5. The definition is independent of the choice of desingularization
X ′

ν .

This makes the b-divisor ∆f invariant under proper birational transformations
on X and Y . In particular the notion makes sense for a dominant rational map f .
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Definition 2.2.6. (1) A Campana constellation (Y/∆) consists of a va-
riety Y with a b-divisor ∆ such that, locally in the étale topology on Y ,
there is f : X → Y with ∆ = ∆f .

(2) The Campana constellation base of a morphism X → Y as above is
(Y/∆f ).

(3) The trivial constellation on Y is given by the zero b-divisor.
(4) For each birational model Y ′, define the Y ′-divisorial part of ∆:

∆Y ′ =
∑

ν with divisorial support on Y ′

δνν.

The definition of a constellation feels a bit unsatisfactory because it requires,
at least locally, the existence of a morphism f . But using the notion of firmament,
especially toroidal firmament, we will make this structure more combinatorial, in
such a way that the existence of f is automatic.

2.2.7. Here’s why I like the word “constellation”: think of a divisorial valua-
tion ν as a sort of “generalized point” on Y . Putting δν > 0 suggests viewing a
“star” at that point. Replacing Y by higher and higher models Y ′ is analogous to
using stronger and stronger telescopes to view farther stars deeper into space. The
picture I have in my mind is somewhat reminiscent of the astrological meaning of
“constellation”, not as just one group of stars, but rather as the arrangement of the
entire heavens at the time the “baby” X → Y is born. But hopefully it is better
grounded in reality.

We now consider morphisms. For constellations we work only with dominant
morphisms.

Definition 2.2.8. (1) Let (X/∆X) be a Campana constellation, and f :
X → Y a proper dominant morphism. The constellation base (Y,∆f,∆X

)
is defined as follows: for each divisorial valuation ν of Y and each divisorial
valuation µ of X with center D dominating the center E of ν, let

mµ/ν = mµ ·multD(f∗E).

Define

mν = min
µ/ν

mµ/ν and δν = 1− 1

mν
.

Then set as before

∆f,∆X
=

∑
ν

δνν.

(2) Let (X/∆X) and (Y/∆Y ) be Campana constellations and f : X → Y a
dominant morphism. Then f is said to be a constellation morphism if for
every divisorial valuation ν on Y and any µ/ν we have mν ≤ mµ/ν , where
as above mµ/ν = mµ · multD(f∗E). When f is proper this just means
∆Y ≤ ∆f,∆X

.

Now to differential forms:

Definition 2.2.9. A rational m-canonical differential ω on Y is said to be
regular on (Y/∆) if for every divisorial valuation ν on K(Y ), the polar multiplicity
of ω at ν satisfies

(ω)∞,ν ≤ mδν .

In other words, ω is a section of OY ′(m(KY ′ +∆Y ′)) on every birational model Y ′.
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The Kodaira dimension κ( (Y/∆) ) is defined using the ring of regular m-
canonical differentials on (Y/∆).

Exercise 2.2.10. This is a birational invariant: if Y and Y ′ are proper and
have the same function field, then κ( (Y/∆) ) = κ( (Y ′/∆) ).

Theorem 2.2.11 (Campana [Cam04] Section 1.3). There is a birational model
Y ′ with ∆Y ′ a normal crossings divisor such that

κ( (Y/∆) ) = κ(Y ′,KY ′ +∆Y ′),

and moreover the algebra of regular pluricanonical differentials on (Y/∆) agrees
with the algebra of sections

⊕
m≥0 H

0(Y ′,OY ′(m(KY ′ +∆Y ′))).

Campana calls such a model admissible. This is proven using Bogomolov
sheaves, an important notion which is a bit far afield for the present discussion.
The formalism of firmaments, especially toroidal firmaments, allows one to give a
combinatorial proof of this result.

We remark that this theorem means that the new and ground-breaking finite
generation theorem of [BCHM06] applies, so the algebra of regular pluricanonical
differentials on (Y/∆) is finitely generated.

It is not difficult to see that any birational model lying over an admissible
model is also admissible.

Definition 2.2.12. A Campana constellation (Y/∆) is said to be of general
type if κ( (Y/∆) ) = dimY .

A Campana constellation (X/∆) is said to be special if there is no dominant
morphism (X/∆) → (Y/∆′) where (Y/∆′) is of general type.

Definition 2.2.13. Let f : X → Y be a dominant morphism of varieties
and (X/∆) a Campana constellation, with ∆ =

∑
δνν. The generic fiber of f :

(X/∆) → Y is the Campana constellation (Xη,∆η), where Xη is the generic fiber
of f : X → Y , and

∆η =
∑

ν|f∗K(Y )×=0

δνν,

namely the part of the b-divisor ∆ supported on the generic fiber.

Definition 2.2.14. (1) Given a Campana constellation (X/∆X), a dom-
inant morphism f : X → Y is special if its generic fiber is special.

(1’) In particular, considering X with trivial constellation, a dominant mor-
phism f : X → Y is special if its generic fiber is special as a variety with
trivial constellation.

(2) Given a Campana constellation (X/∆X), a proper dominant morphism
f : X → Y is said to have general type base if (Y/∆f,∆X

) is of general
type.

(2’) In particular, considering X with trivial constellation, a proper dominant
morphism f : X → Y is said to have general type base if (Y/∆f ) is of
general type.

Here is the main classification theorem of Campana:

Theorem 2.2.15 (Campana). Let (X/∆X) be a Campana constellation on a
projective variety X. There exists a dominant rational map c : X ��� C(X), unique
up to birational equivalence, such that
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(1) the map c has special generic fiber, and
(2) the Campana constellation base (C(X)/∆c,∆X

) is of general type.

This map is final for (1) and initial for (2).

This is the Campana core map of (X/∆X), the constellation (C(X)/∆c,∆X
)

being the core of (X/∆X). The key case is when X has the trivial constellation,
and then c : X ��� (C(X)/∆c) is the Campana core map of X and (C(X)/∆c)
the core of X.

2.2.16. More examples of constellation bases. The following is a collection of
examples which I find useful to keep in mind. The stated rules for the constellation
bases are explained below in 2.2.17.

(1) Consider f : A2 → A2 given by s = x2; t = y. We want to describe the
constellation base. Clearly on Y = A2, the divisor ∆Y = 1/2 (s = 0). But
what should the multiplicity be for a divisor on some blowup of Y ?

The point is that X → Y is toric, and ∆ can be described using toric
geometry. Indeed, the multiplicity at a divisorial valuation ν is precisely
dictated by the value of ν(s), with a simple rule: if ν(s) is even, we have
mν = 1 so δν = 0, otherwise mν = 2 and δν = 1/2. Regular pluricanonical
differentials are generated by (ds ∧ dt)2/s.

(2) Consider now f : A2 → A2 given by s = x2; t = y2. The rule this time:
mν = 1 and δν = 0 if and only if both ν(s) and ν(t) are even, otherwise
mν = 2 and δν = 1/2. Regular pluricanonical differentials are generated
by (ds ∧ dt)2/st.

(3) f : A2 � A2 → A2 given by s = x2
1; t = y1 and s = x2; t = y22 The rule

this time: mν = 1 and δν = 0 if and only if either ν(s) or ν(t) is even,
otherwise mν = 2 and δν = 1/2. Regular pluricanonical differentials are
generated by ds ∧ dt.

(4) f : X → A2 given by the singular cover SpecC[s, t,
√
st]. The rule: mν = 1

and δν = 0 if and only if either ν(s) + ν(t) is even, otherwise mν =
2 and δν = 1/2. Regular pluricanonical differentials are generated by
(ds ∧ dt)2/st.

(5) f : A3 → A2 given by s = x2y3; t = z. The rule: mν = 1 and δν = 0 if
and only if either ν(s) = 0 or ν(s) ≥ 2, otherwise mν = 2 and δν = 1/2.
Regular pluricanonical differentials are generated by (ds ∧ dt)2/s.

2.2.17. Where does the rule come from? When we have a toric map of affine
toric varieties, we have a map of cones fσ : σX → σY . Inside these cones we have
lattices NX and NY - I am considering only the part of the lattice lying in the
closed cone, so it is only a monoid, not a group. The map fσ maps NX into a
sub-monoid Γ ⊂ NY . Each rank-1 discrete valuation ν of Y has a corresponding
point nν ∈ NY , calculated by the value of ν on the monomials of Y : in the case of
A2 this point is simply (ν(s), ν(t)). The rule is: mν is the minimal positive integer
such that

mν · nν ∈ Γ.

These toric examples form the basis for defining firmaments later on.
2.2.18. Rational points and the question of integral points. Campana made the

following bold conjecture:



BIRATIONAL GEOMETRY FOR NUMBER THEORISTS 357

Conjecture 2.2.19 (Campana). Let X/k be a variety over a number field.
Then rational points are potentially dense on X if and only if X is special, i.e., if
and only if the core of X is a point.

It is natural to seek a good definition of integral points on a Campana constel-
lation and translate the non-special case of the conjecture above to a conjecture on
integral points on Campana constellations of general type.

The following definition covers part of the ground. It seems natural, yet it is
not satisfactory as it is quite restrictive. It is also not clear how these points behave
in morphisms. We’ll be able to go a bit further with firmaments.

Definition 2.2.20. Let (Y/∆) be a Campana constellation over a number field
k, and assume it is admissible as in Theorem 2.2.11 and the discussion therein.
Write as usual ∆Y =

∑
(1− 1/mi)∆i for the part of ∆ with divisorial support on

Y . Assume given a model (Y , ∆̃Y ) of (Y,∆Y ) over Ok,S , such that Y is smooth

and ∆̃Y a horizontal normal crossings divisor. Write Y0 = Y �∆Y .
Consider y ∈ Y0(K). We say that y is a soft S-integral point on (Y/∆) if for

any prime ℘ where the Zariski closure ȳ of y reduces to ∆̃ we have∑ 1

mi
mult℘ ∆̃i · ȳ ≥ 1.

2.3. Bogomolov vs. Campana: some remarks about their philoso-
phies. Let us take a step back and reconsider what we are doing. After all, we
are trying to learn something about the geometry of a variety X from the data of
dominant morphisms X → Y it admits to other varieties. And somehow the effect
of such a map is encoded not only in the geometry of Y but in some extra structure.

Campana’s approach involves introducing a new category of objects, which I
call Campana constellations. For any dominant f : X → Y , this maps leaves an
indelible mark, namely a constellation, on the target Y , and you learn about X by
studying the constellations onto which it maps.

There is an approach which is technically closely related but philosophically
diametrically opposed, due to Bogomolov. Bogomolov suggests that since our object
of study is X, we need to look for the indelible mark f : X → Y leaves on X itself.
Bogomolov proposes to use what has come to be called a Bogomolov sheaf: let
d = dimY and consider the saturated image Fm of f∗ωm

Y in SymmΩd
X . These form

a sheaf of algebras
⊕

m≥0 Fm, and it is said to be of general type if the algebra of
sections has dimension d + 1. Bogomolov suggests that such sheaves should have
an important role in the arithmetic and geometric properties of X.

Even if one prefers Bogomolov’s approach, I think the achievement of Cam-
pana’s Theorem 2.2.15 is remarkable and cannot be ignored. For example, it seems
that the preprint [Lu02] attempted to develop a theory based entirely on Bogo-
molov sheaves, but the author could not resist veering towards statements such as
Theorem 2.2.15.

So let us take a closer look at what we have been doing with Campana’s ap-
proach.

In essence, what we are trying to capture is a structure on Y that measures a
sort of equivalence class of dominant maps X → Y . In some sense, the structure
should measure to what extent the map X → Y has a section, perhaps locally and
up to proper birational maps, or perhaps on a suitable choice of discrete valuation
rings. There are some reasonable properties this should satisfy:
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• It should be local on Y .
• It should be invariant under modifications of X.
• It should behave well under birational modifications of Y .
• There should be a good notion of morphism of such structures, at least
on the level of dominant maps.

So far, our notion of constellation satisfies all of the above. We defined constel-
lations in terms of divisorial valuations, which live on the function field of Y , and
automatically behave well under birational maps. In fact I modified Campana’s
original definition, which relied on the divisor ∆Y , by introducing ∆ precisely for
this purpose. One seems to lose in the category of computability, though not so
much if one can characterise and find admissible models. The definition was made
precisely to guarantee that if S is the spectrum of a complete discrete valuation
ring with algebraically closed residue field, and S → Y is dominant, then the map
lifts to S → (Y/∆) if, and only if, it lifts to S → X.

But consider the following desirable properties, which are not yet achieved:

• The structure should be invariant under smooth maps on X.
• In some sense it should be recovered from an open covering of X.
• It should be computable.
• There should be a notion of morphisms, good enough to work with non-
dominant maps and integral points.

It seems that Campana constellations are wonderfully suited for purposes of
birational classification. Still they seem to lack some subtle information necessary
to have these last properties, such as good definitions of non-dominant morphisms
and integral points—at least I have not been successful in doing this directly on
constellations in a satisfactory manner. For these purposes I propose the notion of
firmaments. At this point I can achieve these desired properties under extenuating
circumstances, which at least enables one to state meaningful questions. It is very
much possible that at the end a simpler formalism will be discovered, and the whole
notion of firmaments will be redundant.

2.4. Firmaments supporting constellations and integral points. The
material in this section is very much incomplete as many details are missing and
many questions are yet unanswered.

2.4.1. Firmaments: valuative definition. Let me first define the notion of fir-
maments in a way that seems to make things a bit more complicated than con-
stellations, and where it is not clear that any additional desired properties are
achieved.

The underlying structure is still a datum attached to every divisorial valuation
ν of Y . The datum is a subset Γν ⊂ N, and the sole requirement on each individual
Γν is that

• Γν is the union of finitely many non-zero additive submonoids of N.

and the structure is considered trivial if Γν = N.
There is an additional requirement, namely that this should come locally from

a map X → Y , in the way described below.

Definition 2.4.2. Let Y be a variety, X a reduced scheme, and let f : X → Y
be a morphism, surjective on each irreducible component of X. For each divisorial
valuation ν on K(Y ) consider f ′ : X ′

ν → Yν , where X ′
ν is a normal-crossings desin-

gularization of the main part of the pullback X×Y Yν . Write Fν for the fiber of X ′
ν
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over sν . For each point x ∈ Fν , assume that the components of Fν passing through
x have multiplicities m1, . . . ,mk, generating a submonoid

Γx
ν := 〈m1, . . . ,mk〉 ⊂ N.

Define

Γν =
⋃

x∈Fν

Γx
ν .

Definition 2.4.3. A firmament Γ on Y is an assignment

ν 
→ Γν ⊂ N

which, locally in the étale topology of Y , comes from a morphism X → Y as above.

This condition requiring a local description, which seems harmless, is actually
crucial for the properties of firmaments.

A firmament supports a unique constellation:

Definition 2.4.4. Let Γ be a firmament. The multiplicity of the divisorial
valuation ν is defined as mν = min(Γν � {0}). The constellation hanging by Γ is

∆Γ =
∑(

1− 1

mν

)
ν.

2.4.5. Note that, according to the definition above, every firmament supports
a unique constellation, though a constellation can be supported by more than one
firmament. Depending on one’s background, this might agree or disagree with the
primitive cosmology of one’s culture. Think of it this way: as we said before,
the word “constellation” refers to the entire “heavens”, visible through stronger
and stronger telescopes Y ′. The word “firmament” refers to an overarching solid
structure supporting the heavens, but solid as it may be, it is entirely imaginary
and certainly not unique.

2.4.6. Toroidal formalism. I wish to convince the reader that this extra struc-
ture I piled on top of constellations actually makes things better. For this purpose
I need to discuss a toroidal point of view.

In fact the right foundation to use seems to be that of logarithmic structures,
rather than toroidal geometry. For the longest time I stuck with toroidal geome-
try because the book [Bou15] had not been written. As [Ogu] and [GR09] are
becoming available my excuses are running out, but I’ll leave the translation work
for the future.

Definition 2.4.7 ([KKMSD73], [Kat94], [AK00]). (1) A toroidal em-
bedding U ⊂ X is the data of a variety X and a dense open set U with
complement a Weil divisor D = X � U , such that locally in the étale,
or analytic, topology, or formally, near every point, U ⊂ X admits an
isomorphism with (a neighborhood of a point in) T ⊂ V , with T a torus
and V a toric variety. (It is sometimes convenient to refer to the toroidal
structure using the divisor: (X,D).)

(2) Let UX ⊂ X and UY ⊂ Y be toroidal embeddings, then a dominant
morphism f : X → Y is said to be toroidal if étale locally near every
point of X there is a toric chart for X near x and a toric chart for Y near
f(x), such that on these charts f becomes a torus-equivariant morphism
of toric varieties.
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2.4.8. The cone complex. Recall that, to a toroidal embedding U ⊂ X we can
attach an integral polyhedral cone complex ΣX , consisting of strictly convex cones,
attached to each other along faces, and in each cone σ a finitely generated, unit
free integral saturated monoid Nσ ⊂ σ generating σ as a real cone.

Note that I am departing from usual terminology, by taking Nσ to be the part
of the lattice lying in the cone, rather than the associated group. Note also that
in [KKMSD73], [Kat94] the monoid Mσ dual to Nσ is used. While the use of
Mσ is natural from the point of view of logarithmic structures, all the action with
firmaments happens on its dual Nσ, so I use it instead.

2.4.9. Valuation rings and the cone complex. The complex ΣX can be pieced
together using the toric charts, where the picture is well known: for a toric variety
V , cones correspond to toric affine opens Vσ, and the lattice Nσ is the monoid of
one-parameter subgroups of the corresponding torus having a limit point in Vσ; it
is dual to the lattice of effective toric Cartier divisors Mσ, which is the quotient of
the lattice of regular monomials M̃σ by the unit monomials.

For our purposes it is convenient to recall the characterization of toric cones
using valuations given in [KKMSD73]: let R be a discrete valuation ring with
valuation ν, special point sR and generic point ηR; let φ : SpecR → X be a
morphism such that φ(ηR) ⊂ U and φ(sR) lying in a stratum having chart V =

Spec k[M̃σ]. One associates to φ the point nφ in Nσ given by the rule

n(m) = ν(φ∗m) ∀m ∈ M.

In case R = Rν is a valuation ring of Y , I’ll call this point nν . One can indeed
give a coherent picture including the case φ(ηR) �⊂ U , but I won’t discuss this here
and delay it for future treatment if one is called for. (It is however important for
giving a complete picture of the category and a complete picture of the arithmetic
structure.).

2.4.10. Functoriality. Given toroidal embeddings UX ⊂ X and UY ⊂ Y and
a morphism f : X → Y carrying UX into UY (but not necessarily toroidal) the
description above functorially associates a polyhedral morphism fΣ : ΣX → ΣY

which is integral, that is, fΣ(Nσ) ⊂ Nτ whenever fΣ(σ) ⊂ τ .
2.4.11. Toroidalizing a morphism. While most morphisms are not toroidal, we

have the following:

Theorem (Abramovich-Karu). Let f : X → Y be a dominant morphism of
varieties. Then there exist modifications X ′ → X and Y ′ → Y and toroidal struc-
tures UX′ ⊂ X ′, UY ′ ⊂ Y ′ such that the resulting rational map f ′ : X ′ → Y ′ is a
toroidal morphism:

UX′

��

� � �� X ′ ��

f ′

��

X

f

��

UY ′
� � �� Y ′ �� Y

Furthermore, f ′ can be chosen flat.

We now define toroidal firmaments, and give an alternative definition of firma-
ments in general:

Definition 2.4.12. A toroidal firmament on a toroidal embedding U ⊂ X with
complex Σ is a finite collection Γ = {Γi

σ ⊂ Nσ}, where
• each Γi

σ ⊂ Nσ is a finitely generate submonoid, not necessarily saturated,
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• each Γi
σ generates the corresponding σ as a cone,

• the collection is closed under restrictions to faces, i.e., for each Γi
σ and

each τ ≺ σ there is j with Γi
σ ∩ τ = Γj

τ , and
• it is irredundant, in the sense that Γi

σ �⊂ Γj
σ for different i, j.

A morphism from a toroidal firmament ΓX on a toroidal embedding UX ⊂ X
to ΓY on UY ⊂ Y is a morphism f : X → Y with f(UX) ⊂ UY such that for each
σ in ΣX and each i, and if fΣ(σ) ⊂ τ , we have fΣ(Γ

i
σ) ⊂ Γj

τ for some j.
We say that the toroidal firmament ΓX is induced by f : X → Y from ΓY if

for each σ ∈ ΣX and τ ∈ ΣY such that fΣ(σ) ⊂ τ , we have Γi
σ = f−1

Σ Γi
τ ∩Nσ.

Given a proper birational equivalence φ : X1 ��� X2, then two toroidal fir-
maments ΓX1

and ΓX2
are said to be equivalent if there is a toroidal embedding

U3 ⊂ X3, and a commutative diagram

X3

f1

����
��

��
�� f2

���
��

��
��

�

X1
φ

��������� X2,

where fi are modifications sending U3 to Ui, such that the two toroidal firmaments
on X3 induced by fi from ΓXi

are identical.
A firmament on an arbitrary X is the same as an equivalence class represented

by a modification X ′ → X with a toroidal embedding U ′ ⊂ X ′ and a toroidal
firmament Γ on ΣX′ . A morphism of firmaments is a morphism of varieties which
becomes a morphism of toroidal firmaments on some toroidal model.

The trivial firmament is defined by Γσ = Nσ for all σ in Σ.

For the discussion below one can in fact replace Γ by the union of the Γi
σ, but

I am not convinced that makes things better.

Definition 2.4.13. (1) Let f : X → Y be a flat toroidal morphism of
toroidal embeddings. The base firmament Γf associated to X → Y is
defined by the images Γτ

σ = fΣ(Nτ ) for each cone τ ∈ ΣX over σ ∈ ΣY . We
make this collection irredundant by taking the sub-collection of maximal
elements.

(2) Let f : X → Y be a dominant morphism of varieties. The base firmament
of f is represented by any Γf ′ , where f ′ : X ′ → Y ′ is a flat toroidal
birational model of f .

(3) If X is reducible, decomposed as X = ∪Xi, but f : Xi → Y is dominant
for all i, we define the base firmament by the (maximal elements of) the
union of all the firmaments associated to Xi → Y .

2.4.14. Equivalence of definitions. Given a firmament in the new definition,
given a toroidal model and given a divisorial valuation ν, we have a corresponding
point nν ∈ Nσ. We define

Γν = {k ∈ N|knν ∈ Γi for some i}.

This gives a firmament in the valuative definition.
Conversely, a firmament in the valuative definition has finitely many étale charts

Yi → Y where the firmament comes from Xi → Yi. One can toroidalize each
Xi → Yi simultaneously over some toroidal structure U ⊂ Y , and take the base
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toroidal firmament, associated �Xi → Y . This gives a firmament in the “new”
sense on Y .

One can show that the two procedures are inverse to each other. Again I’ll
leave this for a later treatment.

This shows in particular that any firmament supports a unique constellation,
thus allowing us access to the differential invariants of constellations.

2.4.15. Examples revisited. We can now revisit our examples of base constel-
lations in the one dimensional and higher dimensional cases, and recast them in
terms of firmaments. It then becomes evident that the rules we used to calculate
the constellations are simply the combinatorial data of firmaments!

(1) f : A2 → A1 given by t = x2: τ = R≥0;Nτ = N;Γ = {2N}.

(2) f : A2 → A1 given by t = x2y: Γ = {N}, the trivial structure.

(3) f : A2 → A1 given by t = x2y2: Γ = {2N}. Supported constellation:
∆ = D0/2

(4) f : A2 → A1 given by t = x2y3: Γ = {2N+ 3N}. Supported constellation:
∆ = D0/2. Note: this is the same constellation as before, but hanging by
different firmaments.

(5) f : A2 → A1 given by t = x3y4: Γ = {3N + 4N}. Note: even Γ � {0} is
not saturated in its associated group.

(6) f : A2 → A2 given by s = x2; t = y: Γ = {2N× N}.
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(7) f : A2 → A2 given by s = x2; t = y2: Γ = {2N× 2N}.

(8) f : A2 � A2 → A2 given by s = x2
1; t = y1 and s = x2; t = y22 : Γ =

{2N × N,N × 2N}. Note: more than one semigroup. ∆Y = 0, but on
blowup the exceptional gets 1/2.

(9) f : X → A2 given by SpecC[s, t,
√
st]: Γ = {〈(2, 0), (1, 1), (0, 2)〉}.

(10) f : A3 → A2 given by s = x2y3; t = z: Γ = {(2N+ 3N)× N}.
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2.4.16. Arithmetic. We have learned our lesson—for arithmetic we need to talk
about integral points on integral models. I’ll restrict to the toroidal case, leaving
the general situation to future work.

Definition. An S-integral model of a toroidal firmament Γ on Y consists of
an integral toroidal model Y ′ of Y ′.

Definition 2.4.17. Consider a toroidal firmament Γ on Y/k, and a rational
point y such that the firmament is trivial in a neighborhood of y. Let Y be a
toroidal S-integral model.

Then y is a firm integral point of Y with respect to Γ if the section SpecOk,S →
Y is a morphism of firmaments, when SpecOk,S is endowed with the trivial firma-
ment.

Explicitly, at each prime ℘ ∈ SpecOk,S where y reduces to a stratum with cone
σ, consider the associated point ny℘

∈ Nσ. Then y is firmly S-integral if for every

℘ we have ny℘
∈ Γi

σ for some i.

Theorem 2.4.18. Let f : X → Y be a proper dominant morphism of varieties
over k. There exists a toroidal birational model X ′ → Y ′ and an integral model
Y ′ such that image of a rational point on X ′ is a firm S-integral point on Y ′ with
respect to Γf .

In fact, at least after throwing a few small primes into the trash-bin S, a point
is S-integral on Y ′ with respect to Γf if and only if locally in the étale topology on
Y ′ it lifts to a rational point on X. This is the motivation for the definition.

The following statements are due at least in spirit to Campana.

Conjecture 2.4.19. Let (Y/∆) be a smooth projective Campana constella-
tion supported by firmament Γ. Then points on Y integral with respect to Γ are
potentially dense if and only if (Y/∆) is special.

Note that this conjecture implies Conjecture 2.2.19: assume this conjecture
holds true. Let X be a smooth projective variety. Then rational points are poten-
tially dense if and only if X is special.

3. The minimal model program

For the “quick and easy” introduction to the minimal model program see
[Deb01]. For a more detailed treatment starting from surfaces see [Mat02]. For
a full treatment up to 1999 see [KM98].

The minimal model program has a beautiful beginning, a rather technical main
body of work from the 80s and 90s, and quite an exciting present. In the present
account I will skip the technical main body of work.
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3.1. Cone of curves.
3.1.1. Groups of divisors and curves modulo numerical equivalence. Let X be

a smooth complex projective variety.
We denote by N1(X) the image of Pic(X) → H2(X,Z)/torsion ⊂ H2(X,Q).

This is the group of Cartier divisors modulo numerical equivalence.
We denote by N1(X) the subgroup of H2(X,Q) generated by the fundamen-

tal classes of curves. This is the group of algebraic 1-cycles modulo numerical
equivalence.

The intersection pairing restricts to N1(X) × N1(X) → Z, which over Q is a
perfect pairing.

3.1.2. Cones of divisors and of curves. Denote by Amp(X) ⊂ N1(X)Q the
cone generated by classes of ample divisors. We denote by NEF(X) the closure of
Amp(X) ⊂ N1(X)R, called the nef cone of X.

Denote by NE(X) ⊂ N1(X)Q the cone generated by classes of curves. We
denote its closure by NE(X). The class of a curve C in NE(X) is denoted [C].

Theorem 3.1.3 (Kleiman). The class [D] of a Cartier divisor is in the closed
cone NEF(X) if and only if [D] · [C] ≥ 0 for every algebraic curve C ⊂ X.

In other words, the cones NE(X) and NEF(X) are dual to each other.

3.2. Bend and break. For any divisor D on X which is not numerically
equivalent to 0, the subset

(D ≤ 0) := {v ∈ NE(X)|v ·D ≤ 0}

is a half-space. The minimal model program starts with the observation that this
set is especially important when D = KX . In fact, in the case of surfaces, (KX ≤
0)∩NE(X) is a subcone generated by (−1)-curves, which suggests that it must say
something in higher dimensions. Indeed, as it turns out, it is in general a nice cone
generated by so-called “extremal rays”, represented by rational curves [C] which
can be contracted in something like a (−1) contraction.

Suppose again X is a smooth, projective variety with KX not nef. Our first
goal is to show that there is some rational curve C with KX · C < 0.

The idea is to take an arbitrary curve on X, and to show, using deformation
theory, that it has to “move around a lot”—it has so many deformations that
eventually it has to break, unless it is already the rational curve we were looking
for.

3.2.1. Breaking curves. The key to showing that a curve breaks is the following:

Lemma 3.2.2. Suppose C is a projective curve of genus > 0 with a point p ∈ C,
suppose B is a one dimensional affine curve, f : C × B → X a nonconstant
morphism such that {p}×B → X is constant. Then, in the closure of f(C×B) ⊂ X,
there is a rational curve passing through f(p).

In genus 0 a little more will be needed:

Lemma 3.2.3. Suppose C is a projective curve of genus 0 with points p1, p2 ∈ C,
suppose B is a one dimensional affine curve, f : C × B → X a morphism such
that {pi} × B → X is constant, i = 1, 2, and the image is two-dimensional. Then
the class [f(C)] ∈ NE(X) is “reducible”: there are effective curves C1, C2 passing
through p1, p2 respectively, such that [C1] + [C2] = [C].
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3.2.4. Some deformation theory. We need to understand deformations of a map
f : C → X fixing a point or two. The key is that the tangent space of the moduli
space of such maps—the deformation space—can be computed cohomologically, and
the number of equations of the deformation space is also bounded cohomologically.

Lemma 3.2.5. The tangent space of the deformation space of f : C → X fixing
points p1, . . . , pn is

H0
(
C, f∗TX(−

∑
pi)

)
.

The obstructions lie in the next cohomology group:

H1
(
C, f∗TX(−

∑
pi)

)
.

The dimension of the deformation space is bounded below:

dimDef(f : C → X, p1, . . . , pn) ≥ χ
(
C, f∗TX(−

∑
pi)

)
= −(KX · C) + (1− g(C)− n) dimX

3.2.6. Rational curves. Let us consider the case where C is rational. Suppose
we have such a rational curve inside X with −(KX ·C) ≥ dimX+2, and we consider
deformations fixing n = 2 of its points. Then −(KX ·C) + (1− g(C)−2) dimX =
−(KX ·C)− dimX ≥ 2. Since C is inside X, the only ways f : C → X can deform
is either by the 1-parameter group of automorphisms, or, beyond 1-parameter, go
outside the image of C, and we get an image of dimension at least 2. So the
rational curve must break, and one of the resulting components C1 is a curve with
−(KX · C1) < −(KX · C).

Suppose for a moment −KX is ample, so its intersection number with an effec-
tive curve is positive. In this case the process can only stop once we have a curve
C∞ with

0 < −(KX · C∞) ≤ dimX + 1.

Note that this is optimal—the canonical line bundle on Pr has degree r+1 on any
line.

3.2.7. Higher genus. If X is any projective variety with KX not nef, then there
is some curve C with KX · C < 0. To be able to break C we need

−(KX · C)− g(C) dimX ≥ 1.

There is apparently a problem: the genus term may offset the positivity of
−(KX · C). One might think of replacing C by a curve covering C, but there is
again a problem: the genus increases in coverings roughly by a factor of the degree
of the cover, and this offsets the increase in −(KX · C). There is one case when
this does not happen, that is in characteristic p we can take the iterated Frobenius
morphism C [m] → C, and the genus of C [m] is g(C). We can apply our bound
and deduce that there is a rational curve C ′ on X. If −KX is ample we also have
0 < −(KX · C ′) ≤ dimX + 1.

But our variety X was a complex projective variety. What do we do now? We
can find a smooth model X of X over some ring R finitely generated over Z, and
for each maximal ideal ℘ ⊂ R the fiber X℘ has a rational curve on it.

How do we deduce that there is a rational curve on the original X? If −KX is
ample, the same is true for −KX , and we deduce that there is a rational curve C℘

on each X℘ such that 0 < −(KX℘
·C℘) ≤ dimX+1. These are parametrized by a
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Hilbert scheme of finite type over R, and therefore this Hilbert scheme has a point
over C, namely there is a rational curve C on X with 0 < −(KX ·C) ≤ dimX+1.

In case −KX is not ample, a more delicate argument is necessary. One fixes
an ample line bundle H on X , and given a curve C on X with −(KX · C) < 0 one
shows that there is a rational curve C ′ on each X℘ with

(H · C ′) ≤ 2 dimX
H · C

−(KX · C)
.

Then one continues with a similar Hilbert scheme argument.

3.3. Cone theorem. Using some additional delicate arguments one proves:

Theorem 3.3.1 (Cone theorem). Let X be a smooth projective variety. There
is a countable collection Ci of rational curves on X with

0 < −(KX · Ci) ≤ dimX + 1,

whose classes [Ci] are discrete in the half space N1(X)KX<0, such that

NE(X) = NE(X)KX≥0 +
∑
i

R≥0 · [Ci].

The rays R≥0 · [Ci] are called extremal rays (or, more precisely, extremal KX -
negative rays) of X.

These extremal rays have a crucial property:

Theorem 3.3.2 (Contraction theorem). Let X be a smooth complex projective
variety and let R = R≥0 · [C] be an extremal KX-negative ray. Then there is a
normal projective variety Z and a surjective morphism cR : X → Z with connected
fibers, unique up to unique isomorphism, such that for an irreducible curve D ⊂ X
we have cR(D) is a point if and only if [D] ∈ R.

This map cR is defined using a base-point-free linear system on X made out of
a combination of an ample sheaf H and KX .

3.4. The minimal model program. If X has an extremal ray which gives
a contraction to a lower dimensional variety Z, then the fibers of cR are rationally
connected and we did learn something important about the structure of X: it is
uniruled.

Otherwise cR : X → Z is birational, but at least we have gotten rid of one
extremal ray - one piece of obstruction for KX to be nef.

One is tempted to apply the contraction theorem repeatedly, replacing X by
Z, until we get to a variety with KX nef. There is a problem: the variety Z is
often singular, and the theorems apply to smooth varieties. All we can say about
Z is that it has somewhat mild singularities: in general it has rational singulari-
ties; if the exceptional locus has codimension 1—the case of a so-called divisorial
contraction—the variety Z has so called terminal singularities. For surfaces, termi-
nal singularities are in fact smooth, and in fact contractions of extremal rays are
just (−1)-contraction, and we eventually are led to a minimal model. But in higher
dimensions singularities do occur.

The good news is that the theorems can be extended, in roughly the same form,
to varieties with terminal singularities. (The methods are very different from what
we have seen and I would rather not go into them.) So as long as we only need to
deal with divisorial contractions, we can continue as in the surface case.
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For non-divisorial contractions—so-called small contractions—we have the fol-
lowing recent major result of Birkar, Cascini, Hacon and McKernan:

Theorem 3.4.1 (Flip Theorem [BCHM06]). Suppose cR : X → Z is a small
extremal contraction on a variety X with terminal singularities. Then there exists
another small contraction c+R : X+ → Z such that X+ has terminal singularities

and KX+ · C > 0 for any curve C contracted by c+R.

The transformation X ��� X+ is known as a flip.
The proof of this theorem goes by way of a spectacular inductive argument,

where proofs of existence of minimal models for varieties of general type, finite gen-
eration of canonical rings, and finiteness of certain minimal models are intertwined.

Conjecture 3.4.2 (Termination Conjecture). Any sequence of flips is finite.

This implies the following:

Conjecture 3.4.3 (Minimal model conjecture). Let X be a smooth projective
variety. Then either X is uniruled, or there is a birational modification X ��� X ′

such that X ′ has only terminal singularities and KX′ is nef

Often one combines this with the following:

Conjecture 3.4.4 (Abundance). Let X be a projective variety with terminal
singularities and KX nef. Then for some integer m > 0, we have H0(X,OX(mKX))
is base-point-free.

The two together are sometimes named “the good minimal model conjecture”.
The result is known for varieties of general type: it follows from the recent

theorem of [BCHM06] on finite generation of canonical rings.
As we have seen in previous sections, this conjecture has a number of far reach-

ing corollaries, including Iitaka’s additivity conjecture and the (−∞)-conjecture.

4. Vojta, Campana and abc

In [Voj87], Paul Vojta started a speculative investigation in Diophantine ge-
ometry motivated by analogy with value distribution theory. His conjectures go in
the same direction as Lang’s—they are concerned with bounding the set of points
on a variety rather than constructing “many” rational points. Many of the actual
proofs in the subject, such as an alternative proof of Faltings’s theorem, use razor-
sharp tools such as Arakelov geometry. But to describe the relevant conjectures it
will suffice to discuss heights from the classical “näıve” point of view. The reader
is encouraged to consult Hindry–Silverman [HS00] for a user–friendly, Arakelov–
free treatment of the theory of heights (including a proof of Faltings’s theorem,
following Bombieri).

A crucial feature of Vojta’s conjectures is that they are not concerned just
with rational points, but with algebraic points of bounded degree. To account for
varying fields of definition, Vojta’s conjecture always has the discriminant of the
field of definition of a point P accounted for.

Vojta’s conjectures are thus much farther-reaching than Lang’s. You might
say, much more outrageous. On the other hand, working with all extensions of a
bounded degree allows for enormous flexibility in using geometric constructions in
the investigation of algebraic points. So, even if one is worried about the validity
of the conjectures, they serve as a wonderful testing ground for our arithmetic
intuition.
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4.1. Heights and related invariants. Consider a point in projective space
P = (x0 : . . . : xr) ∈ Pr, defined over some number field k, with set of places Mk.
Define the näıve height of P to be

H(P ) =
∏

v∈Mk

max(‖x0‖v, . . . , ‖xr‖v).

Here ‖x‖v = |x| for a real v, ‖x‖v = |x|2 for a complex v, and ‖x‖v is normalized
so that ‖p‖ = p−[kv:Qp] otherwise. (If the coordinates can be chosen relatively
prime algebraic integers, then the product is of course a finite product over the
Archimedean places, where everything is as easy as can be expected.)

This height is independent of the homogeneous coordinates chosen, by the
product formula.

To keep things independent of a chosen field of definition, and to replace prod-
ucts by sums, one defines the normalized logarithmic height

h(P ) =
1

[k : Q]
logH(P ).

Now if X is a variety over k with a very ample line bundle L, one can consider
the embedding of X in a suitable Pr via the complete linear system of H0(X,L).
We define the height hL(P ) to be the height of the image point in Pr.

This definition of hL(P ) is not valid for embeddings by incomplete linear sys-
tems, and is not additive in L. But it does satisfy these desired properties “al-
most”: hL(P ) = h(P ) + O(1) if we embed by an incomplete linear system, and
hL⊗L′(P ) = hL(P ) + hL′(P ) for very ample L,L′. This allows us to define

hL(P ) = hA(P )− hB(P )

where A and B are very ample and L ⊗ B = A. The function hL(P ) is now only
well defined as a function on X(k̄) up to O(1).

Consider a finite set of places S containing all Archimedean places.
Let now X be a scheme proper over Ok,S , and D a Cartier divisor.
The counting function of X , D relative to k, S is a function on points of X(k̄)

not lying on D. Suppose P ∈ X(E), which we view again as an S-integral point
of X . Consider a place w of E not lying over S, with residue field κ(w). Then the
restriction of D to P � SpecOE,S is a fractional ideal with some multiplicity nw

at w. We define the counting function as follows:

Nk,S(D,P ) =
1

[E : k]

∑
w∈ME

w�S

nw log |κ(w)|.

A variant of this is the truncated counting function

N
(1)
k,S(D,P ) =

1

[E : k]

∑
w∈ME

w�S

min(1, nw) log |κ(w)|.

Counting functions and truncated counting functions depend on the choice of
S and a model X , but only up to O(1). We’ll thus suppress the subscript S.

One defines the relative logarithmic discriminant of E/k as follows: suppose
the discriminant of a number field k is denoted Dk. Then define
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dk(E) =
1

[E : k]
log |DE | − log |Dk|.

4.2. Vojta’s conjectures.

Conjecture 4.2.1. Let X be a smooth proper variety over a number field k,
D a normal crossings divisor on X, and A an ample line bundle on X. Let r be
a positive integer and ε > 0. Then there is a proper Zariski-closed subset Z ⊂ X
containing D such that

Nk(D,P ) + dk(k(P )) ≥ hKX(D)(P )− εhA(P )−O(1)

for all P ∈ X(k̄)� Z with [k(P ) : k] ≤ r.

In the original conjecture in [Voj87], the discriminant term came with a factor
dimX. By the time of [Voj98] Vojta came to the conclusion that the factor was
not well justified. A seemingly stronger version is

Conjecture 4.2.2. Let X be a smooth proper variety over a number field k,
D a normal crossings divisor on X, and A an ample line bundle on X. Let r be
a positive integer and ε > 0. Then there is a proper Zariski-closed subset Z ⊂ X
containing D such that

N
(1)
k (D,P ) + dk(k(P )) ≥ hKX(D)(P )− εhA(P )−O(1).

but in [Voj98], Vojta shows that the two conjectures are equivalent.

4.3. Vojta and abc. The following discussion is taken from [Voj98], section
2.

The Masser-Oesterlé abc conjecture is the following:

Conjecture 4.3.1. For any ε > 0 there is C > 0 such that for all a, b, c ∈ Z,
with a+ b+ c = 0 and gcd(a, b, c) = 1 we have

max(|a|, |b|, |c|) ≤ C ·
∏
p|abc

p1+ε.

Consider the point P = (a : b : c) ∈ P2. Its height is logmax(|a|, |b|, |c|). Of
course the point lies on the line X defined by x + y + z = 0. If we denote by D
the divisor of xyz = 0, that is the intersection of X with the coordinate axes, and
if we set S = {∞}, then

N
(1)
Q,S(D,P ) =

∑
p|abc

log p.

So the abc conjecture says

h(P ) ≤ (1 + ε)N
(1)
Q,S(D,P ) +O(1),

which, writing 1− ε′ = (1 + ε)−1, is the same as

(1− ε′)h(P ) ≤ N
(1)
Q,S(D,P ) +O(1).

This is applied only to rational points on X, so dQ(Q) = 0. We have KX(D) =
OX(1), and setting A = OX(1) as well we get that abc is equivalent to

N
(1)
Q,S(D,P ) ≥ hKX(D)(P )− ε′hA(P )−O(1),

which is exactly what Vojta’s conjecture predicts in this case.
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Note that the same argument gives the abc conjecture over any fixed number
field.

4.4. abc and Campana. Material in this section follows Campana’s [Cam05].
Let us go back to Campana’s constellation curves. Recall Conjecture 2.1.9, in

particular a Campana constellation curve of general type over a number field is
conjectured to have a finite number of soft S-integral points.

Simple inequalities, along with Faltings’s theorem, allow Campana to reduce
to a finite number of cases, all on P1. The multiplicities mi that occur in these
“minimal” divisors ∆ on P1 are

(2, 3, 7), (2, 4, 5), (3, 3, 4), (2, 2, 2, 3) and (2, 2, 2, 2, 2).

Now one claims that Campana’s conjecture in these cases follows from the abc
conjecture for the number field k. This follows from a simple application of Elkies’s
[Elk91]. It is easiest to verify in case k = Q when ∆ is supported precisely at 3
points, with more points one needs to use Belyi maps (in the function field case one
uses a proven generalization of abc instead).

We may assume ∆ is supported at 0, 1 and ∞. An integral point on (P1/∆) in
this case is a rational point a/c such that a, c are integers, satisfying the following:

• whenever p|a, in fact pn0 |a;
• whenever p|b, in fact pn1 |b; and
• whenever p|c, in fact pn∞ |c,

where b = c− a.
Now if M = max(|a|, |b|, |c|) then

M1/n0+1/n1+1/n∞ ≥ |a|1/n0 |b|1/n1 |c|1/n∞ ,

and by assumption a1/n0 ≥
∏

p|a p, and similarly for b, c. In other words

M1/n0+1/n1+1/n∞ ≥
∏
p|abc

p.

Since, by assumption, 1/n0+1/n1+1/n∞ < 1 we can take any 0 < ε < 1− 1/n0+
1/n1 + 1/n∞, for which the abc conjecture gives M1−ε < C

∏
p|abc p, for some C.

So M1−1/n0+1/n1+1/n∞−ε < C and M is bounded, so there are only finitely many
such points.

4.5. Vojta and Campana. I speculate: Vojta’s higher dimensional conjec-
ture implies the non-special part of Campana’s conjecture 2.2.19, i.e., if X is non-
special its set of rational points is not dense.

The problem is precisely in understanding what happens when a point reduces
to the singular locus of D.
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Jason Michael Starr

Abstract. These notes accompany lectures presented at the Clay Mathe-
matics Institute 2006 Summer School on Arithmetic Geometry. The lectures
summarize some recent progress on existence of rational points of projective
varieties defined over a function field over an algebraically closed field.

1. Introduction

These notes accompany lectures presented at the Clay Mathematics Institute 2006
Summer School on Arithmetic Geometry. They are more complete than the lectures
themselves. Exercises assigned during the lectures are proved as lemmas or propo-
sitions in these notes. Hopefully this makes the notes useful to a wider audience
than the original participants of the summer school.

This report describes some recent progress on questions in the interface between
arithmetic geometry and algebraic geometry. In fact the questions come from arith-
metic geometry: what is known about existence and “abundance” of points on alge-
braic varieties defined over a non-algebraically closed field K. But the answers are
in algebraic geometry, i.e., they apply only when the field K is the function field
of an algebraic variety over an algebraically closed field. For workers in number
theory, such answer are of limited interest. But hopefully the techniques will be of
interest, perhaps as simple analogues for more advanced techniques in arithmetic.
With regards to this hope, the reader is encouraged to look at two articles on the
arithmetic side, [GHMS04a] and [GHMS04b]. Also, of course, the answers have
interesting consequences within algebraic geometry itself.

There are three sections corresponding to the three lectures I delivered in the sum-
mer school. The first lecture proves the classical theorems of Chevalley-Warning
and Tsen-Lang: complete intersections in projective space of sufficiently low degree
defined over finite fields or over function fields always have rational points. These
theorems imply corollaries about the Brauer group and Galois cohomology of these
fields, which are also described.

The second section introduces rationally connected varieties and presents the proof
of Tom Graber, Joe Harris and myself of a conjecture of Kollár, Miyaoka and Mori:
every rationally connected fibration over a curve over an algebraically closed field of

2000 Mathematics Subject Classification. Primary 14G05, Secondary 11G35, 14F22, 14D15.
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characteristic 0 has a section. The proof presented here incorporates simplifications
due to A. J. de Jong. Some effort is made to indicate the changes necessary to prove
A. J. de Jong’s generalization to separably rationally connected fibrations over
curves over fields of arbitrary characteristic. In the course of the proof, we give a
thorough introduction to the “smoothing combs” technique of Kollár, Miyaoka and
Mori and its application to weak approximation for “generic jets” in smooth fibers
of rationally connected fibrations. This has been significantly generalized to weak
approximation for all jets in smooth fibers by Hassett and Tschinkel, cf. [HT06].
Some corollaries of the Kollár-Miyaoka-Mori conjecture to Mumford’s conjecture,
fixed point theorems, and fundamental groups are also described (these were known
to follow before the conjecture was proved).

Finally, the last section hints at the beginnings of a generalization of the Kollár-
Miyaoka-Mori conjecture to higher-dimensional function fields (not just function
fields of curves). A rigorous result in this area is a second proof of A. J. de Jong’s
Period-Index Theorem : for a division algebra D whose center is the function field K
of a surface, the index of D equals the order of [D] in the Brauer group of K. This
also ties together the first and second sections. Historically the primary motivation
for the theorems of Chevalley, Tsen and Lang had to do with Brauer groups and
Galois cohomology. The subject has grown beyond these first steps. But the newer
results do have consequences for Brauer groups and Galois cohomology in much the
same vein as the original results in this subject.

Acknowledgments. I am grateful to the Clay Mathematics Institute for spon-
soring such an enjoyable summer school. I am grateful to Brendan Hassett, Yuri
Tschinkel and A. J. de Jong for useful conversations on the content and exposition
of these notes. And I am especially grateful to the referees whose comments, both
positive and negative, improved this article.

2. The Tsen-Lang theorem

A motivating problem in both arithmetic and geometry is the following.

Problem 2.1. Given a field K and a K-variety X find sufficient, resp. neces-
sary, conditions for existence of a K-point of X.

The problem depends dramatically on the type of K: number field, finite field,
p-adic field, function field over a finite field, or function field over an algebraically
closed field. In arithmetic the number field case is most exciting. However the
geometric case, i.e., the case of a function field over an algebraically closed field, is
typically easier and may suggest approaches and conjectures in the arithmetic case.

Two results, the Chevalley-Warning theorem and Tsen’s theorem, deduce a suffi-
cient condition for existence of K-points by “counting”. More generally, counting
leads to a relative result: the Tsen-Lang theorem that a strong property about ex-
istence of k-points for a field k propagates to a weaker property about K-points for
certain field extensions K/k. The prototype result, both historically and logically,
is a theorem of Chevalley and its generalization by Warning. The counting result
at the heart of the proof is Lagrange’s theorem together with the observation that a
nonzero single-variable polynomial of degree ≤ q− 1 cannot have q distinct zeroes.
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Lemma 2.2. For a finite field K with q elements, the polynomial 1 − xq−1

vanishes on K∗ and xq − x vanishes on all of K. For every integer n ≥ 0, for the
K-algebra homomorphism

evn : K[X0, . . . , Xn] → HomSets(K
n+1,K),

evn(p(X0, . . . , Xn)) = ((a0, . . . , an) �→ p(a0, . . . , an)),

the kernel equals the ideal

In = 〈Xq
0 −X0, . . . , X

q
n −Xn〉.

Finally, the collection (Xq
i − Xi)i=0,...,n is a Gröbner basis with respect to every

monomial order refining the grading of monomials by total order. In particular, for
every p in In some term of p of highest degree is in the ideal 〈Xq

0 , . . . , X
q
n〉.

Proof. Because K∗ is a group of order q − 1, Lagrange’s theorem implies
aq−1 = 1 for every element a of K∗, i.e., 1− xq−1 vanishes on K∗. Multiplying by
x shows that xq − x vanishes on K. Thus the ideal In is at least contained in the
kernel of evn.

Modulo Xq
n −Xn, every element of K[X0, . . . , Xn] is congruent to one of the form

p(X0, . . . , Xn) = pq−1X
q−1
n + · · ·+ p0X

0
n, p0, . . . , pq−1 ∈ K[X0, . . . , Xn−1].

(Of course Kn is defined to be {0} and K[X0, . . . , Xn−1] is defined to be K if n
equals 0.) Since K has q elements and since a nonzero polynomial of degree ≤ q−1
can have at most q−1 distinct zeroes, for every (a0, . . . , an−1) ∈ Kn the polynomial
p(a0, . . . , an−1, Xn) is zero on K if and only if

p0(a0, . . . , an−1) = · · · = pq−1(a0, . . . , an−1).

Thus evn(p) equals 0 if and only if each evn−1(pi) equals 0. In that case, by the
induction hypothesis, each pi is in In−1 (in case n = 0, each pi equals 0). Then,
since In−1K[X0, . . . , Xn] is in In, p is in In. Therefore, by induction on n, the
kernel of evn is precisely In.

Finally, Buchberger’s algorithm applied to the set (Xq
0−X0, . . . , X

q
n−Xn) produces

S-polynomials

Si,j = Xq
j (X

q
i −Xi)−Xq

i (X
q
j −Xj) = Xj(X

q
i −Xi)−Xi(X

q
j −Xj)

which have remainder 0. Therefore this set is a Gröbner basis by Buchberger’s
criterion. �

Theorem 2.3. [Che35],[War35] Let K be a finite field. Let n and r be
positive integers and let F1, . . . , Fr be nonconstant, homogeneous polynomials in
K[X0, . . . , Xn]. If

deg(F1) + · · ·+ deg(Fr) ≤ n

then there exists (a0, . . . , an) ∈ Kn+1 − {0} such that for every i = 1, . . . , r,
Fi(a0, . . . , an) equals 0. Stated differently, the projective scheme V(F1, . . . , Fr) ⊂
Pn
K has a K-point.

Proof. Denote by q the number of elements in K. The polynomial

G(X0, . . . , Xn) = 1−
n∏

i=0

(1−Xq−1
i )
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equals 0 on {0} and equals 1 on Kn+1 − {0}. For the same reason, the polynomial

H(X0, . . . , Xn) = 1−
r∏

j=1

(1− Fj(X0, . . . , Xn)
q−1)

equals 0 on

{(a0, . . . , an) ∈ Kn+1|F1(a0, . . . , an) = · · · = Fr(a0, . . . , an) = 0}

and equals 1 on the complement of this set in Kn+1. Since each Fi is homogeneous,
0 is a common zero of F1, . . . , Fr. Thus the difference G−H equals 1 on

{(a0, . . . , an) ∈ Kn+1 − {0}|F1(a0, . . . , an) = · · · = Fr(a0, . . . , an) = 0}

and equals 0 on the complement of this set in Kn+1. Thus, to prove that F1, . . . , Fr

have a nontrivial common zero, it suffices to prove the polynomial G−H does not
lie in the ideal In.

Since

deg(F1) + · · ·+ deg(Fr) ≤ n,

H has strictly smaller degree than G. Thus the leading term of G − H equals
the leading term of G. There is only one term of G of degree deg(G). Thus, for
every monomial ordering refining the grading by total degree, the leading term of
G equals

(−1)n+1Xq−1
0 Xq−1

1 · · ·Xq−1
n .

This is clearly divisible by none of Xq
i for i = 0, . . . , n, i.e., the leading term of

G − H is not in the ideal 〈Xq
0 , . . . , X

q
n〉. Because (Xq

0 − X0, . . . , X
q
n − Xn) is a

Gröbner basis for In with respect to the monomial order, G−H is not in In. �

On the geometric side, an analogue of Chevalley’s theorem was proved by Tsen, cf.
[Tse33]. This was later generalized independently by Tsen and Lang, cf. [Tse36],
[Lan52]. Lang introduced a definition which simplifies the argument.

Definition 2.4. [Lan52] Let m be a nonnegative integer. A field K is called
Cm, or said to have property Cm, if it satisfies the following. For every positive
integer n and every sequence of positive integers (d1, . . . , dr) satisfying

dm1 + · · ·+ dmr ≤ n,

every sequence (F1, . . . , Fr) of homogeneous polynomials Fi ∈ K[X0, . . . , Xn] with
deg(Fi) = di has a common zero in Kn+1 − {0}.

Remark 2.5. In fact the definition in [Lan52] is a little bit different than this.
For fields having normic forms, Lang proves the definition above is equivalent to
his definition. And the definition above works best with the following results.

With this definition, the statement of the Chevalley-Warning theorem is quite sim-
ple: every finite field has property C1. The next result proves that property Cm is
preserved by algebraic extension.

Lemma 2.6. For every nonnegative integer m, every algebraic extension of a
field with property Cm has property Cm.
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Proof. Let K be a field with property Cm and let L′/K be an algebraic
extension. For every sequence of polynomials (F1, . . . , Fr) as in the definition, the
coefficients generate a finitely generated subextension L/K of L′/K. Thus clearly
it suffices to prove the lemma for finitely generated, algebraic extensions L/K.

Denote by e the finite dimension dimK(L). Because multiplication on L is K-
bilinear, each homogeneous, degree di, polynomial map of L-vector spaces,

Fi : L
⊕(n+1) → L,

is also a homogeneous, degree di, polynomial map of K-vector spaces. Choosing
a K-basis for L and decomposing Fi accordingly, Fi is equivalent to e distinct
homogeneous, degree di, polynomial maps of K-vector spaces,

Fi,j : L
⊕(n+1) → K, j = 1, . . . , e.

The set of common zeroes of the collection of homogeneous polynomial maps
(Fi|i = 1, . . . , r) equals the set of common zeroes of the collection of homogeneous
polynomial functions (Fi,j |i = 1, . . . , r, j = 1, . . . , e). Thus it suffices to prove there
is a nontrivial common zero of all the functions Fi,j .

By hypothesis,
r∑

i=1

deg(Fi)
m is no greater than n.

Thus, also
r∑

i=1

e∑
j=1

deg(Fi,j)
m = e

r∑
i=1

deg(Fi)
m is no greater than en.

Since K has property Cm and since

dimK(L⊕(n+1)), i.e., (n+ 1) dimK(L) = e(n+ 1),

is larger than en, the collection of homogeneous polynomials Fi,j has a common

zero in L⊕(n+1) − {0}. �

The heart of the Tsen-Lang theorem is the following proposition.

Proposition 2.7. Let K/k be a function field of a curve, i.e., a finitely gener-
ated, separable field extension of transcendence degree 1. If k has property Cm then
K has property Cm+1.

This is proved in a series of steps. Let n, r and d1, . . . , dr be positive integers such
that

dm+1
1 + · · ·+ dm+1

r ≤ n.

For every collection of homogeneous polynomials

F1, . . . , Fr ∈ K[X0, . . . , Xn], deg(Fi) = di,

the goal is to prove that the collection of homogeneous, degree di, polynomial maps
of K-vector spaces

F1, . . . , Fr : K⊕(n+1) → K

has a common zero. Of course, as in the proof of Lemma 2.6, this is also a collection
of homogeneous polynomial maps of k-vector spaces. Unfortunately both of these
k-vector spaces are infinite dimensional. However, using geometry, these polyno-
mial maps can be realized as the colimits of polynomial maps of finite dimensional
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k-vector spaces. For these maps there is an analogue of the Chevalley-Warning ar-
gument replacing the counting argument by a parameter counting argument which
ultimately follows from the Riemann-Roch theorem for curves. The first step is to
give a projective model of K/k.

Lemma 2.8. For every separable, finitely generated field extension K/k of tran-
scendence degree 1, there exists a smooth, projective, connected curve C over k and
an isomorphism of k-extensions K ∼= k(C). Moreover the pair (C,K ∼= k(C)) is
unique up to unique isomorphism.

Proof. This is essentially the Zariski-Riemann surface of the extension K/k.
For a proof in the case that k is algebraically closed, see [Har77, Theorem I.6.9].
The proof in the general case is similar. �

The isomorphism K ∼= k(C) is useful because the infinite dimensional k-vector
space k(C) has a plethora of naturally-defined finite dimensional subspaces. For
every Cartier divisor D on C, denote by VD the subspace

VD := H0(C,OC(D)) = {f ∈ k(C)|div(f) +D ≥ 0}.
The collection of all Cartier divisors D on C is a partially ordered set, where

D′ ≥ D if and only if D′ −D is effective.

The system of subspaces VD of k(C) is compatible for this partial order, i.e., if
D′ ≥ D then VD′ ⊃ VD. And K is the union of all the subspaces VD, i.e., it is the
colimit of this compatible system of finite dimensional k-vector spaces. Thus for
all k-multilinear algebra operations which commute with colimits, the operation
on k(C) can be understood in terms of its restrictions to the finite dimensional
subspaces k(C). The next lemma makes this more concrete for the polynomial
map F .

Lemma 2.9. Let C be a smooth, projective, connected curve over a field k and
let

Fi ∈ k(C)[X0, . . . , Xn]di
, i = 1, . . . , r

be a collection of polynomials in the spaces k(C)[X0, . . . , Xn]di
of homogeneous,

degree di polynomials. There exists an effective, Cartier divisor P on C and for
every i = 1, . . . , r there exists a global section FC,i of the coherent sheaf

OC(P )[X0, . . . , Xn]di

such that for every i = 1, . . . , r the germ of FC,i at the generic point of C equals
Fi.

Remark 2.10. In particular, for every Cartier divisor D on C and for every
i = 1, . . . , r there is a homogeneous, degree d, polynomial map of k-vector spaces

FC,D,i : V
⊕(n+1)
D → Wdi,P,D, Wdi,P,D := VdiD+P ,

such that for every i = 1, . . . , r the restriction of Fi to V
⊕(n+1)
D equals FC,D,i

considered as a map with target K (rather than the subspace VdD+P ).

Proof. The coefficients of each Fi are rational functions on C. Each such
function has a polar divisor. Since there are only finitely many coefficients of the
finitely many polynomials F1, . . . , Fr, there exists a single effective, Cartier divisor
P on C such that every coefficient is a global section of OC(P ). �
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Because of Lemma 2.9, the original polynomial maps F1, . . . , Fr can be understood
in terms of their restrictions to the subspaces VD. The dimensions of these subspaces
are determined by the Riemann-Roch theorem.

Theorem 2.11 (Riemann-Roch for smooth, projective curves). Let k be a field.
Let C be a smooth, projective, connected curve over k. Denote by ωC/k the sheaf of
relative differentials of C over k and denote by g(C) = genus(C) the unique integer
such that deg(ωC/k) = 2g(C)− 2. For every invertible sheaf L on C,

h0(C,L)− h0(C, ωC ⊗OC
L∨) = deg(L) + 1− g(C).

Remark 2.12. In particular, if deg(L) > deg(ωC) = 2g(C) − 2 so that
ωC ⊗OC

L∨ has negative degree, then h0(C, ωC ⊗OC
L∨) equals zero. And then

h0(C,L) = deg(L) + 1− g(C).

For a Cartier divisor D satisfying

deg(D) > 2g(C)− 2 and for each i = 1, . . . , r, di deg(D) + deg(P ) > 2g(C)− 2,

the Riemann-Roch theorem gives that V
⊕(n+1)
D and Wdi,P,D are finite dimensional

k-vector spaces of respective dimensions,

dimk(V
⊕(n+1)
D ) = (n+ 1)h0(C,OC(D)) = (n+ 1)(deg(D) + 1− g)

and
dimk(Wdi,P,D) = dim(VdiD+P ) = di deg(D) + deg(P ) + 1− g.

In this case, choosing a basis for Wdi,P,D and decomposing

FC,D,i : V
⊕(n+1)
D → Wdi,P,D

into its associated components, there exist dimk(Wdi,P,D) homogeneous, degree d,
polynomial functions

(FC,D,i)j : V
⊕(n+1)
D → k, j = 1, . . . , dimk(Wdi,P,D)

such that a zero of FC,D,i is precisely the same as a common zero of all the functions
(FC,D,i)j .

Proof of Proposition 2.7. By hypothesis, each di and n+ 1−
∑r

i=1 d
m+1
i

are nonzero so that the fractions

2g(C)− 2− deg(P )

di
for each i = 1, . . . , r,

and
(n+ 1−

∑r
i=1 d

m
i )(g − 1) +

∑r
i=1 d

m
i deg(P )

n+ 1−
∑r

i=1 d
m+1
i

are all defined. Let D be an effective, Cartier divisor on C such that

deg(D) > 2g(C)− 2, deg(D) >
2g(C)− 2− deg(P )

di
, i = 1, . . . , r, and

deg(D) >
(n+ 1−

∑r
i=1 d

m
i )(g − 1) +

∑r
i=1 d

m
i deg(P )

n+ 1−
∑r

i=1 d
m+1
i

.

Because deg(D) > 2g(C)− 2, the Riemann-Roch theorem states that

dimk(V
⊕(n+1)
D ) = (n+ 1) dimk(VD) = (n+ 1)(deg(D) + 1− g).



382 JASON MICHAEL STARR

For every i = 1, . . . , r, because di is positive and because deg(D) > (2g(C) − 2 −
deg(P ))/di, also

deg(diD + P ) = di deg(D) + deg(P ) is greater than 2g(C)− 2.

Thus the Riemann-Roch theorem states that

dimk(Wdi,P,D) = dimk(VdiD+P ) = di deg(D) + deg(P ) + 1− g(C).

Thus for the collection of polynomial functions (FC,D,i)j ,

dimk(V
⊕(n+1)
D )−

r∑
i=1

∑
j

deg((FC,D,i)j)
m

equals

(n+ 1)(deg(D) + 1− g)−
r∑

i=1

(di deg(D) + deg(P ) + 1− g(C))dmi =

(n+ 1−
r∑

i=1

dm+1
i ) deg(D)− [(n+ 1−

r∑
i=1

dmi )(g − 1) +
r∑

i=1

dmi deg(P )].

Because

deg(D) >
(n+ 1−

∑r
i=1 d

m
i )(g − 1) +

∑r
i=1 d

m
i deg(P )

n+ 1−
∑r

i=1 d
m+1
i

and because n+ 1−
∑r

i=1 d
m+1
i is positive, also

(n+ 1−
r∑

i=1

dm+1
i ) deg(D) > [(n+ 1−

r∑
i=1

dmi )(g − 1) +
r∑

i=1

dmi deg(P )].

Therefore

dimk(V
⊕(n+1)
D ) is greater than

r∑
i=1

∑
j

deg((Fi,C,D)j)
m.

Because of the inequality above, and because k has property Cm, there is a nontriv-
ial common zero of the collection of homogeneous polynomial functions (FC,D,i)j ,
i = 1, . . . , r, j = 1, . . . , dimk(Wdi,Pi,D). Therefore there is a nontrivial common
zero of the collection of homogeneous polynomial maps FC,D,i, i = 1, . . . , r. By

Lemma 2.9, the image of this nonzero element in K⊕(n+1) is a nonzero element
which is a common zero of the polynomials F1, . . . , Fr. �

Proposition 2.7 is the main step in the proof of the Tsen-Lang theorem.

Theorem 2.13 (The Tsen-Lang Theorem). [Lan52] Let K/k be a field exten-
sion with finite transcendence degree, tr.deg.(K/k) = t. If k has property Cm then
K has property Cm+t.

Proof. The proof of the theorem is by induction on t. When t = 0, i.e.,
when K/k is algebraic, the result follows from Lemma 2.6. Thus assume t > 0 and
the result is known for t − 1. Let (b1, . . . , bt) be a transcendence basis for K/k.
Let Et, resp. Et−1, denote the subfield of K generated by k and b1, . . . , bt, resp.
generated by k and b1, . . . , bt−1. Since Et−1/k has transcendence degree t − 1, by
the induction hypothesis Et−1 has property Cm+t−1. Now Et/Et−1 is a purely
transcendental extension of transcendence degree 1. In particular, it is finitely
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generated and separable. Since Et−1 has property Cm+t−1, by Proposition 2.7 Et

has property Cm+t. Finally by Lemma 2.6 again, since K/Et is algebraic and Et

has property Cm+t, also K has property Cm+t. �

The homogeneous version of the Nullstellensatz implies a field k has property C0

if and only if k is algebraically closed. Thus one corollary of Theorem 2.13 is the
following.

Corollary 2.14. Let k be an algebraically closed field and let K/k be a field
extension of finite transcendence degree t. The field K has property Ct.

In particular, the case t = 1 is historically the first result in this direction.

Corollary 2.15 (Tsen’s theorem). [Tse36] The function field of a curve over
an algebraically closed field has property C1.

Chevalley and Tsen recognized that property C1, which they called quasi-algebraic
closure, has an important consequence for division algebras. Lang recognized that
property C2 also has an important consequence for division algebras, cf. [Lan52,
Theorem 13]. Let K be a field. A division algebra with center K is a K-algebra
D with center K such that every nonzero element of D has a (left-right) inverse.
Although this is not always the case, we will also demand that dimK(D) is finite.

Denote by K the separable closure of K. Every division algebra with center K is
an example of a central simple algebra over K, i.e., a K-algebra A with center K
and dimK(A) finite such that A⊗K K is isomorphic as a K-algebra to the algebra
Matn×n(K) of n × n matrices with entries in K for some positive integer n. In
particular, dimK(A) = n2 for a unique positive integer n. For a division algebra D
with center K, the unique positive integer n is called the index of D.

Let φ : A ⊗K K → Matn×n(K) be an isomorphism of K-algebras. There is an
induced homogeneous, degree n, polynomial map of K-vector spaces

det ◦φ : A → Matn×n(K) → K.

By the Skolem-Noether theorem, every other isomorphism

φ′ : A⊗K K → Matn×n(K)

is of the form conja ◦ φ where a ∈ Matn×n(K) is an invertible element and

conja : Matn×n(K) → Matn×n(K), conja(b) = aba−1

is conjugation by a. But det ◦conja equals det. Thus the map det ◦φ is independent
of the particular choice of φ. Since the Galois group of K/K acts on the polynomial
map through its action on φ, the polynomial map is also Galois invariant. Therefore
there exists a unique homogeneous, degree n, polynomial map of K-vector spaces

NrmA/K : A → K

such that for every isomorphism of K-algebras φ, det ◦φ equals NrmA/K ⊗ 1.

The homogeneous, polynomial map of K-vectors spaces NrmA/K is the reduced
norm of A. It is multiplicative, i.e.,

∀a, b ∈ A, NrmA/K(ab) = NrmA/K(a)NrmA/K(b).
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And the restriction to the centerK is the polynomial map λ �→ λn. These properties
characterize the reduced norm. By the same type of Galois invariance argument as
above, and using Cramer’s rule, an element a of A has a (left and right) inverse if
and only if NrmA/K(a) is nonzero. In particular, if D is a division algebra the only
zero of NrmA/K is a = 0.

Proposition 2.16. Let K be a field

(i) If K has property C1, then the only division algebra with center K is K
itself.

(ii) If K has property C2 then for every division algebra D with center K the
reduced norm map

NrmD/K : D → K

is surjective.

Proof. LetD be a division algebra with centerK. Denote by n the index ofD.
Because Matn×n(K) has dimension n2 as aK-vector space, alsoD has dimension n2

as a K-vector space. If K has property C1, then since the homogeneous polynomial
map NrmD/K has only the trivial zero,

n = deg(NrmD/K) ≥ dimK(D) = n2,

i.e., n = 1. Thus for a fieldK with property C1, the only finite dimensional, division
algebra with center K has dimension 1, i.e., D equals K.

Next suppose that K has property C2. Clearly NrmD/k(0) equals 0. Thus to prove
that

NrmD/K : D → K

is surjective, it suffices to prove that for every nonzero c ∈ K there exists b in D
with NrmD/K(b) = c. Consider the homogeneous, degree n, polynomial map

Fc : D ⊕K → K, (a, λ) �→ NrmD/K(a)− cλn.

Since
dimK(D ⊕K) = n2 + 1 > deg(Fc)

2,

by property C2 the map Fc has a zero (a, λ) �= (0, 0), i.e., NrmD/k(a) = cλn. In
particular, λ must be nonzero since otherwise a is a nonzero element of D with
NrmD/K(a) = 0. But then b = (1/λ)a is an element of D with NrmD/k(b) = c. �

It was later recognized, particularly through the work of Merkurjev and Suslin,
that these properties of division algebras are equivalent to properties of Galois
cohomology. The cohomological dimension of a field K is the smallest integer
cd(K) such that for every Abelian, discrete, torsion Galois module A and for every
integer m > cd(K),

Hm(K/K,A) = {0}.
Theorem 2.17. [Ser02, Proposition 5, §I.3.1], [Sus84, Corollary 24.9] Let K

be a field.

(i) The cohomological dimension of K is ≤ 1 if and only if for every finite
extension L/K, the only division algebra with center L is L itself.

(ii) If K is perfect, the cohomological dimension of K is ≤ 2 if and only if for
every finite extension L/K, for every division algebra D with center L,
the reduced norm map NrmD/L is surjective.
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3. Rationally connected varieties

The theorems of Chevalley-Warning and Tsen-Lang are positive answers to Prob-
lem 2.1 for a certain class of fields. It is natural to ask whether these theorems can
be generalized for such fields.

Problem 3.1. Let r be a nonnegative integer. Give sufficient geometric condi-
tions on a variety such that for every Cr field K (or perhaps every Cr field satisfying
some additional hypotheses) and for every K-variety satisfying the conditions, X
has a K-point.

As with Problem 2.1, this problem is quite vague. Nonetheless there are important
partial answers. One such answer, whose proof was sketched in the lectures of
Hassett in this same Clay Summer School, is the following.

Theorem 3.2. [Man86] [CT87] Let K be a C1 field and let X be a projective
K-variety. If X ⊗K K is birational to P2

K
then X has a K-point.

This begs the question: What (if anything) is the common feature of rational
surfaces and of the varieties occurring in the Chevalley-Warning and Tsen-Lang
theorems, i.e., complete intersections in Pn of hypersurfaces of degrees d1, . . . , dr
with d1 + · · · + dr ≤ n? One answer is rational connectedness. This is a property
that was studied by Kollár-Miyaoka-Mori and Campana, cf. [Kol96].

Definition 3.3. Let k be an algebraically closed field. An integral (thus
nonempty), separated, finite type, k-scheme X is rationally connected, resp. sepa-
rably rationally connected, if there exists an integral, finite type k-scheme M and a
morphism of k-schemes

u : M ×k P1
k → X, (m, t) �→ u(m, t)

such that the induced morphism of k-schemes

u(2) : M ×k P
1
k ×k P1

k → X ×k X, (m, t1, t1) �→ (u(m, t1), u(m, t2))

is surjective, resp. surjective and generically smooth.

In a similar way, X is rationally chain connected, resp. separably rationally chain
connected, if for some integer m ≥ 1, the analogous property holds after replacing
P1
k by the proper, connected, nodal, reducible curve Cm which is a chain of m

smooth rational curves.

Figure 1 shows a rationally connected variety, where every pair of points is contained
in an image u(P1) of the projective line.

The definition of rational connectedness, resp. rational chain connectedness, men-
tions a particular parameter space M . However, using the general theory of Hilbert
schemes, it suffices to check that every pair (x1, x2) of K-points of X ⊗k K is con-
tained in some rational K-curve, resp. a chain of rational K-curves, (not necessarily
from a fixed parameter space) for one sufficiently large, algebraically closed, field
extension K/k, i.e., for an algebraically closed extension K/k such that for every
countable collection of proper closed subvarieties Yi � X, there exists a K-point of
X contained in none of the sets Yi. For instance, K/k is sufficiently large if K is
uncountable or if K/k contains the fraction field k(X)/k as a subextension.
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u(t  )1

u(t  )2

X

Image(u)

Figure 1. Every pair of points in a rationally connected variety
lies in an image of the projective line.

A very closely related property is the existence of a very free rational curve. For a
d-dimensional variety X, a very free rational curve is a morphism

f : P1
k → Xsmooth

into the smooth locus of X such that f∗TX is ample, i.e.,

f∗TX
∼= OP1

k
(a1)⊕ · · · ⊕ OP1

k
(ad), a1, . . . , ad > 0.

Definition 3.4. Let k be a field and let X be a quasi-projective k-scheme.
Denote by Xsmooth the smooth locus of X. The very free locus Xv.f. of X is the
union of the images in Xsmooth of all very free rational curves to Xsmooth ⊗k K
as K/k varies over all algebraically closed extensions. More generally, for a flat,
quasi-projective morphism of schemes,

π : X → B,

denoting by Xπ,smooth the smooth locus of the morphism π, the very free locus
Xπ,v.f. is the union in Xπ,smooth of the images of every very free rational curve in
every geometric fiber of Xπ,smooth over B.

The next theorem explains the relation of these different properties.

Theorem 3.5. [Kol96, §IV.3], [HT06], Unless stated otherwise, all varieties
below are d-dimensional, reduced, irreducible, quasi-projective schemes over an al-
gebraically closed field k.

(0) In characteristic 0, every rationally connected variety is separably ratio-
nally connected.

(i) For every flat, proper morphism π : X → B (not necessarily of quasi-
projective varieties over a field), the subset of B parameterizing points
whose geometric fiber is rationally chain connected is stable under special-
ization. (If one bounds the degree of the chains with respect to a relatively
ample invertible OX -module, then it is a closed subset.)

(ii) The very free locus of a quasi-projective variety is open. More generally,
for every flat, quasi-projective morphism, π : X → B, the subset Xπ,v.f.

of Xπ,smooth is an open subset.
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(iii) The very free locus Xv.f. of a quasi-projective variety is (separably) ratio-
nally connected in the following strong sense. For every positive integer
N , for every positive integer m, and for every positive integer a, for every
collection of distinct closed points t1, . . . , tN ∈ P1

k, for every collection of
closed points x1, . . . , xN ∈ Xv.f., and for every specification of an m-jet of
a smooth curve in X at each point xi, there exists a morphism

f : P1
k → Xv.f.

such that for every i = 1, . . . , N , f is unramified at ti, f(ti) equals xi and
the m-jet of ti in P1

k maps isomorphically to the specified m-jet at xi, and

f∗TX
∼= OP1

k
(a1)⊕ · · · ⊕ OP1

k
(ad), a1, . . . , ad ≥ a.

(iv) Every rational curve in Xsmooth intersecting Xv.f. is contained in Xv.f..
Thus for every smooth, rationally chain connected variety, if X contains
a very free rational curve then Xv.f. equals all of X.

(v) A proper variety X is rationally chain connected if it is generically ratio-
nally chain connected, i.e., if there exists a morphism u as in the definition
such that u(2) is dominant (but not necessarily surjective).

(vi) For the morphism u : M ×k P1
k → X, let l be a closed point of M such

that ul : P
1 → X has image in Xsmooth and such that u(2) is smooth at

(l, t1, t2) for some t1, t2 ∈ P1
k. Then the morphism ul is very free. Thus

an irreducible, quasi-projective variety X contains a very free curve if and
only if there is a separably rationally connected open subset of Xsmooth.
Also, a smooth, quasi-projective variety X in characteristic 0 which is
generically rationally connected contains a very free morphism.

(vii) For a surjective morphism f : X → Y of varieties over an algebraically
closed field, if X is rationally connected, resp. rationally chain connected,
then also Y is rationally connected, resp. rationally chain connected.

(viii) For a birational morphism f : X → Y of proper varieties over an alge-
braically closed field, if Y is rationally connected then X is rationally chain
connected. If the characteristic is zero, then X is rationally connected.

Remark 3.6. Item (ii) is proved in Proposition 3.18. The generic case of Item
(iii), which is all we will need, is proved in Proposition 3.19. The complete result was
proved by Hassett and Tschinkel, [HT06]. Item (iv) follows from Corollary 3.20.
The remaining items are not proved, nor are they used in the proof of the main
theorem. For the most part they are proved by similar arguments; complete proofs
are in [Kol96, §IV.3].

Rational connectedness is analogous to path connectedness in topology, and satisfies
the analogues of many properties of path connectedness. One property of path
connectedness is this: for a fibration of CW complexes, if the base space and the
fibers are path connected, then also the total space is path connected. This led to
two conjectures by Kollár, Miyaoka and Mori.

Conjecture 3.7. [Kol96, Conjecture IV.5.6] Let π : X → B be a surjective
morphism of smooth, projective schemes over an algebraically closed field of char-
acteristic 0. If both B and a general fiber of π are rationally connected, then X is
also rationally connected.
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Conjecture 3.7 is implied by the following conjecture about rationally connected
fibrations over curves.

Conjecture 3.8. [Kol96, Conjecture IV.6.1.1] Let π : X → B be a surjective
morphism of projective schemes over an algebraically closed field of characteristic
0. If B is a smooth curve and if a general fiber of f is rationally connected, then
there exists a morphism s : B → X such that π ◦ s equals IdB, i.e., s is a section of
π.

Our next goal is to prove the following result.

Theorem 3.9. [GHS03] Conjecture 3.8 of Kollár-Miyaoka-Mori is true. Pre-
cisely, let k be an algebraically closed field of characteristic 0 and let π : X → B be
a surjective morphism from a normal, projective k-scheme X to a smooth, projec-
tive, connected k-curve B. If the geometric generic fiber XηB

is a normal, integral
scheme whose smooth locus contains a very free curve, then there exists a morphism
s : B → X such that π ◦ s equals IdB.

This was generalized by A. J. de Jong to the case that k is algebraically closed
of arbitrary characteristic, [dJS03]. The key difference has to do with extensions
of valuation rings in characteristic 0 and in positive characteristic. Given a flat
morphism of smooth schemes in characteristic 0, π : U → B, and given codimension
1 points ηD of U and η∆ of B with π(ηD) = η∆, the induced local homomorphism

of stalks π∗
U : ÔB,η∆

→ ÔU,ηD
, is equivalent to

k(∆) [[t]] → k(D) [[r]] , t �→ urm

for a unit u and a positive integer m, cf. the proof of Lemma 3.24 below. In
particular, it is rigid in the sense that t �→ urm + vrm+1 + . . . is equivalent to
t �→ urm. However, extensions of positive characteristic valuation rings are not
rigid, e.g., t �→ rp + v1r

p+1 is equivalent to t �→ rp + v2r
p+1 only if v1 = v2. But

there is a weak rigidity of local homomorphisms, Krasner’s lemma in the theory of
non-Archimedean valuations. This is a key step in the generalization to positive
characteristic.

Of course when k has characteristic 0, then since X is normal the fiber XηB
is auto-

matically normal. If X is also smooth (which can be achieved thanks to resolution
of singularities in characteristic 0), then also XηB

is smooth. Then the hypothesis
on XηB

is equivalent to rational connectedness.

3.1. Outline of the proof. The proof that follows is based on a proof by T.
Graber, J. Harris and myself (not quite the version we chose to publish) together
with several major simplifications due to A. J. de Jong. The basic idea is to choose
a smooth curve C ⊂ X such that π|C : C → B is finite, and then try to deform
C as a curve in X until it specializes to a reducible curve in X, one component of
which is the image of a section s of π. Here are some definitions that make this
precise.

Definition 3.10. Let πC : C → B be a finite morphism of smooth, projective
k-curves. A linked curve with handle C is a reduced, connected, projective curve
Clink with irreducible components

Clink = C ∪ L1 ∪ · · · ∪ Lm
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together with a morphism

πC,link : Clink → B

such that

(i) πC,link restricts to πC on the component C,
(ii) the restriction of πC,link to each link component Li is a constant morphism

with image bi, where b1, . . . , bm are distinct closed points of B,
(iii) and each link Li is a smooth, rational curve intersecting C in a finite

number of nodes of Clink.

If every link Li intersects C in a single node of Clink, then (Clink, πC,link) is called
a comb and the links Li are called teeth. For combs we will use the notation Ccomb

rather than Clink.

A one-parameter deformation of a linked curve (Clink, πC,link) is a datum of a
smooth, connected, pointed curve (Π, 0) and a projective morphism

(ρ, πC) : C → Π×k B

such that ρ is flat and such that C0 := ρ−1(0) together with the restriction of πC
equals the linked curve (Clink, πC,link).

A one-parameter deformation specializes to a section curve if there exists a closed
point ∞ ∈ Π and an irreducible component Bi of C∞ := ρ−1(∞) such that

(i) C∞ is reduced at the generic point of Bi

(ii) and the restriction of πC to Bi is an isomorphism

πC |Bi
: Bi

∼=−→ B.

Given a linked curve, a one-parameter deformation of the linked curve and a B-
morphism j : Clink → X, an extension of j is an open neighborhood of 0, 0 ∈ N ⊂ B
and a B-morphism

jN : CN → X, CN := ρ−1(N)

restricting to j on C0 = Clink.

Figure 2 shows a linked curve with some links intersecting the handle in more than
1 point. And Figure 3 shows a comb, where every tooth intersects the handle
precisely once.

For the purposes of producing a section, the particular parameter space (Π, 0) of
the one-parameter deformation is irrelevant. Thus, it is allowed to replace the
one-parameter deformation by the new one-parameter deformation obtained from
a finite base change (Π′, 0′) → (Π, 0). The following lemma is straightforward.

Lemma 3.11. Let (Π, 0,∞) together with (ρ, πC) : C → Π ×k B be a one-
parameter deformation of (Clink, πC,link) specializing to a section curve Bi. For
every morphism of 2-pointed, smooth, connected curves

(Π′, 0′,∞′) → (Π, 0,∞),

the base change morphism

Π′ ×Π C → Π′ ×k B

is also a one-parameter deformation of (Clink, πC,link) specializing to the section
curve Bi.
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Figure 2. A linked curve with handle C and some links intersect-
ing C in more than 1 point.

b6b5

b3b1

b2 b4

1L

L2

L3

L4

L5

L6

C

Ccomb

B

Figure 3. A comb is a linked curve where every link, or tooth,
intersects the handle precisely once.

The usefulness of these definitions is the following simple consequence of the valu-
ative criterion of properness.

Lemma 3.12. Let (Clink, πlink) be a linked curve together with a B-morphism
j : Clink → X. If there exists a one-parameter deformation of the linked curve
specializing to a section curve and if there exists an extension of j, then there exists
a section s : B → X of π.

Proof. Let R denote the stalk OC,ηBi
of OC at the generic point ηBi

of Bi.
By the hypotheses on C and Bi, R is a discrete valuation ring with residue field
κ = k(Bi) and fraction field K = k(C). The restriction of jN to the generic point
of C is a B-morphism

jK : SpecK → X.
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Because π : X → B is proper, by the valuative criterion of properness the B-
morphism jK extends to a B-morphism

jR : SpecR → X,

which in turn gives a B-morphism from the residue field Specκ to X, i.e., a rational
B-map

jBi
: Bi ⊃ U → X, U ⊂ Bi a dense, Zariski open.

Finally, because Bi is a smooth curve, the valuative criterion applies once more and
this rational transformation extends to a B-morphism

jBi
: Bi → X.

Because πC |Bi
: Bi → B is an isomorphism, there exists a unique B-morphism

s : B → X

such that jBi
= s ◦ πC|Bi

. The morphism s is a section of π. �

Thus the proof of the theorem breaks into three parts:

(i) find a “good” linked curve j : Clink → X,
(ii) find a one-parameter deformation of the linked curve specializing to a

section curve,
(iii) and find an extension of j to the one-parameter deformation.

The first step in finding j : Clink → X is to form a curve Cinit which is an intersection
ofX with dim(X)−1 general hyperplanes in projective space. By Bertini’s theorem,
if the hyperplanes are sufficiently general, then Cinit will satisfy any reasonable
transversality property. Moreover, there is a technique due to Kollár-Miyaoka-
Mori—the smoothing combs technique—for improving Cinit to another curve C ⊂
X still satisfying the transversality property and also satisfying a positivity property
with respect to the vertical tangent bundle of π : X → B.

Unfortunately, even after such an improvement, there may be no one-parameter
deformation of π|C : C → B specializing to a section curve. However, after attach-
ing sufficiently many link components over general closed points of B, there does
exist a one-parameter deformation of Clink specializing to a section curve. This is
one aspect of the well-known theorem that for a fixed base curve B and for a fixed
degree d, if the number β of branch points is sufficiently large the Hurwitz scheme
of degree d covers of B with β branch points is irreducible. (This was proved by
Hurwitz when g(B) = 0, [Hur91], proved by Richard Hamilton for arbitrary genus
in his thesis, and periodically re-proved ever since, cf. [GHS02].) Because the
general fibers of π : X → B are rationally connected, the inclusion C ⊂ X extends
to a B-morphism j : Clink → X.

Finally the positivity property mentioned above implies j extends to the one-
parameter deformation, at least after base change by a morphism Π′ → Π.

3.2. Hilbert schemes and smoothing combs. The smoothing combs tech-
nique of Kollár-Miyaoka-Mori depends on a result from the deformation theory of
Hilbert schemes. Here is the setup for this result. Let Y → S be a flat, quasi-
projective morphism and let

(ρHilb : Hilb(Y/S) → S,Univ(Y/S) ⊂ Hilb(Y/S)×S T )
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be universal among pairs (ρ : T → S,Z ⊂ T ×S Y ) of an S-scheme T and a closed
subscheme Z ⊂ T ×S Y such that Z → T is proper, flat and finitely presented. In
other words, Hilb(Y/S) is the relative Hilbert scheme of Y over S.

In particular, for every field K the K-valued points of Hilb(Y/S) are naturally in
bijection with pairs (s, Z) of a K-valued point s of S and a closed subscheme Z of
Ys := {s} ×S Y . The closed immersion Z → Ys is a regular embedding if at every
point of Z the stalk of the ideal sheaf IZ/Ys

is generated by a regular sequence

of elements in the stalk of OYs
. In this case the conormal sheaf IZ/Ys

/I2
Z/Ys

is a

locally free OZ-module, and hence also the normal sheaf

NZ/Ys
:= HomOZ

(IZ/Ys
/I2

Z/Ys
,OS)

is a locally free OZ-module. The regular embeddings which arise in the proof of
Theorem 3.9 are precisely closed immersions of at-worst-nodal curves in a smooth
variety.

Proposition 3.13. [Kol96, Thm. I.2.10, Lemma I.2.12.1, Prop. I.2.14.2] If
Z ⊂ Ys is a regular embedding and if h1(Z,NZ/Ys

) equals 0, then Hilb(Y/S) is
smooth over S at (s, Z).

There is a variation of this proposition which is also useful. There is a flag Hilbert
scheme of Y over S, i.e., a universal pair

(ρfHilb : fHilb(Y/S) → S,Univ1(Y/S) ⊂ Univ2(Y/S) ⊂ Hilb(Y/S)×S T )

among all pairs (ρ : T → S,Z1 ⊂ Z2 ⊂ T ×S Y ) of an S-scheme T and a nested
pair of closed subschemes Z1 ⊂ Z2 ⊂ T ×S Y such that for i = 1, 2, the projection
Zi → T is proper, flat and finitely presented. There are obvious forgetful morphisms

Fi : fHilb(Y/S) → Hilb(Y/S), Fi(s, Z1, Z2) = (s, Zi).

Proposition 3.14. Let K be a field and (s, Z1, Z2) a K-point of fHilb(Y/S).
If each closed immersion Z1 ⊂ Z2 and Z2 ⊂ Ys is a regular embedding,

h1(Z2,NZ2/Ys
) = 0, h1(Z1,NZ1/Z2

) = 0,

and
hi(Z2, IZ1/Z2

· NZ2/Y2
) = 0 for i = 1, 2,

then fHilb(Y/S) is smooth over S at (s, Z1, Z2), for each i = 1, 2, Hilb(Y/S) is
smooth over S at (s, Zi), and each forgetful morphism Fi : fHilb(Y/S) → Hilb(Y/S)
is smooth at (s, Z1, Z2).

Proof. Since h1(Z2,NZ2/Ys
) equals 0, Hilb(Y/S) is smooth at (s, Z2) by

Proposition 3.13. It is easy to see that the forgetful morphism F2 is equivalent
to the relative Hilbert scheme Hilb(Univ(Y/S)/Hilb(Y/S)) over Hilb(Y/S). Thus,
applying Proposition 3.13 to this Hilbert scheme, the vanishing of h1(Z1,NZ1/Z2

)
implies F2 is smooth at (s, Z1, Z2). Since a composition of smooth morphisms is
smooth, also fHilb(Y/S) is smooth over S at (s, Z1, Z2). The long exact sequence
of cohomology associated to the short exact sequence

0 −→ IZ1/Z2
· NZ2/Ys

−→ NZ2/Ys
−→ NZ2/Ys

|Z1
−→ 0

implies that h1(Z1,NZ2/Ys
|Z1

) equals h1(Z2,NZ2/Ys
), which is 0. Thus, the long

exact sequence of cohomology associated to

0 −→ NZ1/Z2
−→ NZ1/Ys

−→ NZ2/Ys
|Z1

−→ 0
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implies that h1(Z2,NZ1/Y2
) equals 0. So again by Proposition 3.13, Hilb(Y/S)

is smooth over S at (s, Z1). Finally, F1 is a morphism of smooth S-schemes at
(s, Z1, Z2). Thus, to prove F1 is smooth, it suffices to prove it is surjective on
Zariski tangent vector spaces. This follows from the fact that

h1(Z2, IZ1/Z2
· NZ2/Ys

) = 0.

�

Another ingredient in the smoothing combs technique is a simple result about
elementary transforms of locally free sheaves on a curve: the higher cohomology of
the sheaf becomes zero after applying elementary transforms at sufficiently many
points.

Lemma 3.15. Let C be a projective, at-worst-nodal, connected curve over a field
k and let E be a locally free OC-module.

(i) There exists a short exact sequence of coherent sheaves,

0 → F∨ → E∨ → T → 0

such that T is a torsion sheaf with support in Csmooth and such that
h1(C,F) equals 0.

(ii) Inside the parameter space of torsion quotients q : E∨ � T with support
in Csmooth, denoting

F∨ := Ker(E∨ → T ) and F := HomOC
(F∨,OC),

the subset parameterizing quotients for which h1(C,F) = 0 is an open
subset.

(iii) If h1(C,F) equals 0, then for every short exact sequence of coherent
sheaves

0 → G∨ → E∨ q′−→ S → 0

admitting a morphism r : S → T of torsion sheaves with support in
Csmooth for which q = r ◦ q′, h1(C,G) equals 0.

Proof. (i) By Serre’s vanishing theorem, there exists an effective, ample divi-
sor D in the smooth locus of C such that h1(C, E(D)) equals 0. Define F = E(D),
define E → F to be the obvious morphism E → E(D), and define T to be the
cokernel of F∨ → E∨.

(ii) This follows immediately from the semicontinuity theorem, cf. [Har77, §III.12].
(iii) There exists an injective morphism of coherent sheaves F → G with torsion
cokernel. Because h1(C,F) equals 0 and because h1 of every torsion sheaf is zero,
the long exact sequence of cohomology implies that also h1(C,G) equals 0. �

It is worth noting one interpretation of the sheaf F associated to a torsion quotient
T . Assume that T is isomorphic to a direct sum of skyscraper sheaves at n distinct
points c1, . . . , cn of Csmooth. (Inside the parameter space of torsion quotients, those
with this property form a dense, open subset.) For each point ci, the linear func-
tional E∨|ci � T |ci gives a one-dimensional subspace Homk(T |ci , k) ↪→ E|ci . The
sheaf F is precisely the sheaf of rational sections of E having at worst a simple pole
at each point ci in the direction of this one-dimensional subspace of E|ci . This is
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often called an elementary transform up of E at the point ci in the specified direc-
tion. So Lemma 3.15 says that h1 becomes zero after sufficiently many elementary
transforms up at general points in general directions.

This interpretation is useful because the normal sheaf of a reducible curve can be
understood in terms of elementary transforms up. To be precise, let Y be a k-
scheme, let C be a proper, nodal curve, let C0 be a closed subcurve (i.e., a union of
irreducible components of C), and let j : C → Y be a regular embedding such that
Y is smooth at every node p1, . . . , pn of C which is contained in C0 and which is
not a node of C0. Then j0 : C0 → Y is also a regular embedding and both NC/Y |C0

and NC0/Y are locally free sheaves on C0. For each i, there is a branch Ci of C at
pi other than C0. Denote by TCi,pi

the tangent direction of this branch in TY,pi
.

Lemma 3.16. [GHS03, Lemma 2.6] The restriction NC/Y |C0
equals the sheaf

of rational sections of NC0/Y having at most a simple pole at each point pi in the
normal direction determined by TCi,pi

.

Proof. The restrictions of the sheavesNC/Y |C0
andNC0/Y to the complement

of {p1, . . . , pn} are canonically isomorphic. The lemma states that this canonical
isomorphism is the restriction of an injection NC0/Y ↪→ NC/Y |C0

which identifies
NC/Y |C0

with the sheaf of rational sections, etc. This local assertion can be verified
in a formal neighborhood of each node pi.

Locally near pi, C → Y is formally isomorphic to the union of the two axes in-
side a 2-plane inside an n-plane, i.e., the subscheme of An

k with ideal IC/Y =
〈x1x2, x3, . . . , xn〉. The branch C0 corresponds to just one of the axes, e.g., the
subscheme of An

k with ideal IC0/Y = 〈x2, x3, . . . , xn〉. The tangent direction of the
other branch Ci is spanned by (0, 1, 0, . . . , 0). Thus it is clear that IC/Y /IC0/Y ·IC/Y

is the submodule of IC0/Y /I
2
C0/Y

of elements whose fiber at 0 is contained in the

annihilator of TCi,pi
. Dualizing gives the lemma. �

The final bit of deformation theory needed has to do with deforming nodes. Let C
be a proper, nodal curve and let j : C → Y be a regular embedding. Let p be a
node of C and assume that Y is smooth at p. There are two branches C1 and C2

of C at p (possibly contained in the same irreducible component of C). The sheaf

T := Ext1OC
(ΩC ,OC)

is a skyscraper sheaf supported at p and with fiber canonically identified to

T |p = TC1,p ⊗k TC2,p.

The following lemma is as much definition as lemma.

Lemma 3.17. There exists a quotient of coherent sheaves

NC/Y � T

such that for both i = 1, 2 the quotient NC/Y |Ci
/NCi/Y equals T . A first-order

deformation of C ⊂ Y , i.e., a global section of NC/Y is said to smooth the node
p to first-order if the image of the section in TC1,p ⊗k TC2,p is nonzero. For a
deformation

C ⊂ Π×k Y
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of C ⊂ Y over a smooth pointed curve (Π, 0) (i.e., C0 = C), if the associated
first-order deformation of C ⊂ Y smooths the node p to first-order, then p is not
contained in the closure of the singular locus of the projection,

(Π− {0})×Π C → (Π− {0})
i.e., a general fiber Ct of the deformation smooths the node.

This is a well-known result. A good reference for this result, and many other
results about deformations of singularities, is [Art76], particularly §I.6. Here is a
brief remark on the proof. Because C ⊂ Y is a regular embedding, the conormal
sequence is exact on the left, i.e.,

0 −→ IC/Y /I2
C/Y −→ ΩY |C −→ ΩC −→ 0

is a short exact sequence. Applying global Ext, there is a connecting map

δ : H0(C,NC/Y ) → Ext1OC
(ΩC ,OC).

There is also a local-to-global sequence for global Ext inducing a map

Ext1OC
(ΩC ,OC) → H0(C,Ext1OC

(ΩC ,OC)) = H0(C, T ) = TC1,p ⊗k TC2,p.

The composition of these two maps is precisely the map on global sections associated
to NC/Y → T . The global Ext group is identified with the first-order deformations
of C as an abstract scheme, and the Ext term is identified with the first-order
deformations of the node. It is worth noting that even if the first-order deformation
does not smooth the node, the full deformation C ⊂ Π×k Y may smooth the node
if the total space C is singular at (0, p).

The first result using the smoothing combs technique is the following.

Proposition 3.18. Let Y be a quasi-projective scheme over an algebraically
closed field k. The very free locus Yv.f. is an open subset of Y . More generally, for
a flat, quasi-projective morphism π : Y → B, the relative very free locus Yπ,v.f. is
an open subset of Y .

Let Y be an irreducible, quasi-projective scheme over an algebraically closed field k.
Denote by t1, resp. t2, the closed point of P1

k, t1 = 0, resp. t2 = ∞. Let y1 and y2
be closed points of Yv.f., let a and k be nonnegative integers, and let there be given
curvilinear k-jets in Y at each of y1 and y2. If the given k-jets are general among
all curvilinear k-jets at y1 and y2, then there exists a morphism

f : (P1
k, t1, t2) → (Yv.f., y1, y2)

mapping the k-jet of P1 at ti isomorphically to the given k-jet at yi for i = 1, 2 and
such that

f∗TY
∼= OP1(a1)⊕ · · · ⊕ OP1(an), a1, . . . , an ≥ a.

Proof. In the absolute case, resp. relative case, the very free locus Yv.f., resp.
Yπ,v.f., is defined to be the same as the very free locus of the smooth locus Ysmooth,
resp. Yπ,smooth. Since the smooth locus is open in Y , and since an open subset of
an open subset is an open subset, it suffices to prove the very free locus is open
under the additional hypothesis that Y is smooth, resp. that π is smooth.

By the definition of Yv.f., for each i = 1, 2 there exists a very free morphism

fi : (P
1, 0) → (Yv.f., yi), f∗

i TY
∼= OP1(a1)⊕ · · · ⊕ OP1(an), a1, . . . , an ≥ 1.
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In particular, for each i = 1, 2, h1(P1, f∗
i TY (−0 − ∞)) equals 0, where 0, resp.

∞, is the Cartier divisor of the point 0, resp. ∞, in P1. Since the normal sheaf
of fi is a quotient of f∗

i TY , also h1(P1,Nfi(−0 − ∞)) equals 0. Thus, applying
Proposition 3.14 where Z1 = {0,∞} and Z2 = P1, there exist deformations of the
morphism fi such that fi(0) equals yi and fi(∞) is any point in a nonempty Zariski
open subset of Y . The same argument holds in the relative case.

Next assume that Y is irreducible and quasi-projective. Then the smooth locus
Ysmooth is also irreducible (or empty). Thus, by the same argument as above, a
proof of the second result for smooth varieties implies the second result in general.
Thus assume Y is also smooth.

Since Y is irreducible, the open for i = 1 intersects the open for i = 2. Thus there
exist very free morphisms f1 and f2 such that f1(∞) = f2(∞). Let C be the nodal
curve with two irreducible components C1 and C2 each isomorphic to P1 and with
a single node which, when considered as a point in either C1 or C2, corresponds
to ∞ in P1. Let f : C → Y be the unique morphism whose restriction to each
component Ci equals fi. Denote by

0 −→ N ′
C/Y −→ NC/Y −→ T −→ 0

the short exact sequence coming from Lemma 3.17. Using Lemma 3.16, there is an
exact sequence

0 −→ NC/Y |C1
(−0−∞) −→ N ′

C/Y (−y1 − y2) −→ NC2/Y (−0) −→ 0

and an exact sequence

0 −→ NC1/Y (−0−∞) −→ NC/Y |C1
(−0−∞) −→ κ∞ −→ 0

where κ∞ is the skyscraper sheaf on C1 supported at ∞. Applying the long exact
sequence of cohomology, using that h1(Ci,NCi/Y (−0 − ∞)) equals 0 for i = 1, 2,

and chasing diagrams, this finally gives that h1(C,N ′
C/Y (−y1 − y2)) also equals 0.

This has two consequences. First, this implies h1(C,NC/Y (−y1−y2)) equals 0, and
thus the space of deformations of C containing y1 and y2 is smooth by Proposi-
tion 3.14. And second, the map

H0(C,NC/Y (−y1 − y2)) → TC1,∞ ⊗ TC2,∞

is surjective. Thus there exist first-order deformations of C containing y1 and y2
and smoothing the node at ∞. Since the space of deformations containing y1 and
y2 is smooth, this first-order deformation is the one associated to a one-parameter
deformation

C ⊂ Π×k Y

of [C] over a smooth, pointed curve (Π, 0) (e.g., choose Π to be a general complete
intersection curve in the smooth deformation space containing the given Zariski
tangent vector). By Lemma 3.17, for a general point t of Π, Ct is a smooth,
connected curve containing y1 and y2. Since the arithmetic genus of C is 0, the
arithmetic genus of Ct is also 0, i.e., Ct ∼= P1

k. Let

f1 : P1
k → Ct

be an isomorphism with f1(ti) = yi for i = 1, 2. Because h1(C,NC/Y (−y1 − y2))

equals 0, by the semicontinuity theorem also h1(Ct,NCt/Y (−y1−y2)) equals 0. This
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implies that

f∗
1TY

∼= OP1(a1)⊕ · · · ⊕ OP1(an), for integers a1, . . . , an ≥ 1.

Next, for every integer a, let ga : P1 → P1 be the morphism z �→ za. Then the
composition fa = f1 ◦ g1 is a morphism

fa : (P1
k, t1, t2) → (Yv.f., y1, y2)

with

f∗
aTY = g∗a(f

∗
1TY ) ∼= OP1(a1)⊕ · · · ⊕ OP1(an) for integers a1, . . . , an ≥ a,

namely the new integer ai(fa) equals a · ai(f1). Next, choosing a ≥ 2k + 1, this
implies that

h1(P1, f∗
aTY (−(k + 1)(t1 + t2))) = 0.

Applying Proposition 3.14 with P1 ×k Y in the place of Y , with the graph of fa in
the place of Z2 and with Z1 = (k+1)(t1+ t2) in the place of Z, deformations of fa
map the k-jet of P1 at t1, resp. at t2, isomorphically to a general k-jet at y1, resp.
at y2. �

The following proposition is the strongest generalization of Proposition 3.18 we will
need. It is stated as a theorem about finding new sections of a rationally connected
fibration under the hypothesis that one such section exists. In this sense it may
seem premature (and dangerously close to circular logic), since Theorem 3.9 is not
yet proved. In fact the proposition is used in the proof of Theorem 3.9 not for the
original fibration, but only for a constant fibration

prP1 : P1
k ×k Y → P1

k

which obviously admits sections (constant sections). So there is nothing circular in
the application of the proposition to the proof of Theorem 3.9.

Proposition 3.19 (Generic weak approximation). [KMM92], [HT06] Let B
be a smooth, connected, projective curve over an algebraically closed field k. Let
π : U → B be a smooth, quasi-projective morphism having irreducible geometric
fibers. Assume there exists a section s : B → U mapping the generic point of B
into the very free locus of the generic fiber of π. Let (b1, . . . , bM , b′1, . . . , b

′
M ′) be

distinct closed points of B such that s(bi) is in the very free locus Ubi,v.f. of the
fiber Ubi for each i = 1, . . . ,M . Let k and a be nonnegative integers. For each i,
let xi be a closed point of Ubi,v.f. and let there be given a curvilinear k-jet in U at
xi. Assuming each of these k-jets is a general k-jet at xi, there exists a section
σ : B → U such that

(i) for each i = 1, . . . ,M , σ(bi) equals xi,
(ii) for each i = 1, . . . ,M ′, σ(b′i) equals s(b′i),
(iii) for every invertible OB-module L of degree ≤ a, h1(B,Nσ(B)/U ⊗OB

L∨)
equals 0,

(iv) and σ maps the k-jet of bi in B isomorphically to the given k-jet at xi for
each i.

In fact Hassett and Tschinkel proved much more: the result holds for arbitrary
k-jets transverse to the fibers of π (i.e., for k-jets whose associated Zariski tangent
vector is not contained in a fiber of π). In what follows we only need the “generic”
result, which is all we prove.
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Proof. Denote by Ωπ the locally free sheaf of relative differentials of π, and
denote by Tπ the dual locally free sheaf. Choose a large integer N and enlarge the
set of pairs ((bi, xi))|i=1,...,M to a set ((bi, xi))i=1,...,N having the same properties
above and such that the collection (bi)i=M+1,...,N is a general collection of N −M
points in B (this is possible because for all but finitely many closed points of B,
s(b) is contained in Ub,v.f.). By Proposition 3.18, applied with k = 1, i.e., in the
case that k-jets are simply tangent directions, for every i = 1, . . . , N there exists a
morphism

fi : (P
1, 0,∞) → (Ubi,v.f., s(bi), xi)

such that

f∗
i Tπ

∼= OP1(a1)⊕ · · · ⊕ OP1(an), a1, . . . , an ≥ 1

and the tangent direction of fi(P
1) at s(bi) is a general tangent direction in TUbi

,s(bi).

But of course the tangent space TUbi
,s(bi) equals the normal space Ns(B)/U |s(bi).

Thus the tangent direction of fi(P
1) at s(bi) gives a general normal direction to

s(B) in U at s(bi).

Form the comb j : Ccomb → U with handle s(B) and with each morphism fi
being a tooth Li attached at s(bi). By Lemma 3.16, NCcomb/U |s(B) equals the
sheaf of rational sections of Ns(B)/U having at most a simple pole at each point
s(bi) in a general normal direction at s(bi). Assuming the integer N is suffi-
ciently large, Lemma 3.15 then implies that h1(B, s∗NCcomb/U ) equals 0. More-
over, fixing an auxiliary invertible sheaf M on B of degree g(B) + 1 and applying
Lemma 3.15 to s∗Ns(B)/U (−(b′1+ · · ·+ b′M ′))⊗OB

M∨, for N sufficiently large also

h1(B, s∗NCcomb/U (−(b′1 + · · ·+ b′M ′))⊗OB
M∨) equals 0.

For every i, there is a short exact sequence

0 −→ f∗
i NLi/Ubi

−→ f∗
i NLi/U −→ f∗

i NUbi
/U −→ 0.

Of course the normal sheaf NUbi
/U is just OUbi

since Ubi is a smooth fiber of a

morphism to a curve. Also the tangent direction of s(B) at s(bi) surjects onto the
fiber of NUbi

/U at s(bi). Thus the elementary transform up of NLi/U at s(bi) in

this direction surjects onto the elementary transform up of O1
P at ∞, i.e., it surjects

onto OP1(1). Thus, by Lemma 3.16, there is a short exact sequence

0 −→ f∗
i NLi/Ubi

−→ f∗
i NCcomb/U −→ OP1(1) −→ 0.

Twisting by OP1(−2) and applying the long exact sequence of cohomology associ-
ated to the short exact sequence, h1(P1, f∗

i NCcomb/U (−0−∞)) equals 0. Combined
with the result of the previous paragraph and joining the two types of normal sheaf
via the short exact sequence

0 →
N⊕
i=1

NCcomb/U |Li
(−xi − s(bi)) → NCcomb/U (−(x1+ · · ·+xN )− (b′1 + · · ·+ b′M ′))

→ NCcomb/U |s(B)(−(b′1 + · · ·+ b′M ′)) → 0,

the long exact sequence of cohomology implies both that

h1(Ccomb,NCcomb/U (−(x1 + · · ·+ xN )− (b′1 + · · ·+ b′M ′))) = 0,

and that the map

H0(Ccomb,NCcomb/U (−(x1 + · · ·+ xN )− (b′1 + · · ·+ b′M ′))) →
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H0(B, s∗NCcomb/U (−(b′1 + · · ·+ b′M ′)))

is surjective.

Thus, by Proposition 3.14, the space of deformations of Ccomb containing x1, . . . , xN

and b′1, . . . , b
′
M ′ is smooth. And, by Lemma 3.17, to prove there exists a deformation

smoothing every node of Ccomb, it suffices to prove for every i there exists a section
of s∗NCcomb/U (−(b′1 + · · ·+ b′M ′)) whose image in Ts(B),s(bi) ⊗k TLi,s(bi) is nonzero.
Of course this skyscraper sheaf Ts(bi) is a quotient of the fiber of

s∗NCcomb/U (−(b′1 + · · ·+ b′M ′))

at bi. Thus it suffices to prove for every i that

h1(B, s∗NCcomb/U (−bi − (b′1 + · · ·+ b′M ′))) = 0.

Recall the auxiliary invertible sheaf M of degree g(B) + 1. Because the invertible
sheaf M(−bi) has degree g(B), it is effective, say OB(∆i). Thus there exists an
injective OB-module homomorphism

s∗NCcomb/U (−(b′1 + · · ·+ b′M ′))⊗OB
M∨ ↪→

s∗NCcomb/U (−(b′1 + . . . b′M ′))⊗OB
M∨(∆i) = s∗NCcomb/U (−bi − (b′1 + · · ·+ b′M ′))

with torsion cokernel. Since

h1(B, s∗NCcomb/U (−(b′1 + · · ·+ b′M ′))⊗OB
M∨) = 0,

and since every torsion sheaf has h1 equal to 0, also

h1(B, s∗NCcomb/U (−bi − (b′1 + · · ·+ b′M ′))) = 0

for every i. Therefore there exist a one-parameter family of deformations (Ct)t∈Π

of Ccomb containing each of x1, . . . , xM , containing each of s(b′1), . . . , s(b
′
M ′) and

smoothing every node of Ccomb, i.e., for t general, Ct is smooth.

Because πU maps s(B) to B with degree 1, also πU maps Ct to B with degree
1. Because Ct is smooth, this means the projection Ct → B is an isomorphism.
Therefore there exists a section σt : B → U of πU with image Ct. In particular,
σt(bi) = xi for every i = 1, . . . ,M and σt(b

′
i) = s(b′i) for every i = 1, . . . ,M ′.

Because

h1(Ccomb,NCcomb/U (−(x1 + · · ·+ xN ))) = 0,

by semicontinuity also

h1(B, σ∗
tNσt(B)/U (−(x1 + · · ·+ xN ))) = 0

for t general. In particular, if N ≥ a + g(B), then for every invertible sheaf L of
degree ≤ a, L∨(x1 + · · ·+ xN ) has degree ≥ g(B) and thus is effective, say OB(∆).
Therefore there exists an injective sheaf homomorphism

σ∗
tNσt(B)/U (−(x1 + · · ·+ xN )) ↪→ σ∗

tNσt(B)/U (−(x1 + · · ·+ xN ) + ∆)
= σ∗

tNσt(B)/U ⊗OB
L∨

with torsion cokernel. So, by the same type of argument as above,

h1(B, σ∗
tNσt(B)/U ⊗OB

L∨) = 0

for every invertible sheaf L of degree ≤ a.

Finally, applying the last result when a = (k + 1)(M +M ′) and

L = OB((k + 1)(b1 + · · ·+ bM + b′1 + · · ·+ b′M ′)),
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there exists a section σ : B → U of πU as above and satisfying

h1(B, σ∗Nσ(B)/U (−(k + 1)(b1 + · · ·+ bM + b′1 + · · ·+ b′M ′))) = 0.

Therefore, by Proposition 3.14 once more, for a general deformation of σ(B) con-
taining x1, . . . , xM and s(b′1), . . . , s(b

′
M ′), the k-jet of the curve at each point xi and

s(b′i) is a general curvilinear k-jet in U at that point. �

The main application is to the case when U equals P1 ×k Y where Y is a smooth,
irreducible, quasi-projective k-scheme whose very free locus Yv.f. is nonempty.

Corollary 3.20. Every rational curve in Y intersecting Yv.f. is contained in
Yv.f.. For every integer k, for every integer a, for every collection of distinct, closed
points b1, . . . , bM of P1, for every collection of closed points y1, . . . , yM of Yv.f. (not
necessarily distinct), and for every choice of a curvilinear k-jet in Y at each point yi,
if each k-jet is general among curvilinear k-jets at yi, then there exists a morphism

f : (P1, b1, . . . , bM ) → (Y, y1, . . . , yM )

mapping the k-jet of P1 at bi isomorphically onto the given k-jet at yi and such that

f∗TY
∼= OP1(a1)⊕ · · · ⊕ OP1(an), a1, . . . , an ≥ a.

Proof. Let B = P1, let U = B×kY and let πB be the obvious projection. The
sections of πB are precisely the graphs of morphisms f : P1 → Y . In particular, if
f is a morphism whose image intersects Yv.f., then the section s = (IdB, f) satisfies
the hypotheses of Proposition 3.19. Thus, for every point b′ = b′1 of P1, there exists
a section σ = (IdP1 , φ) with σ(b′) = s(b′) and with h1(B, σ∗Nσ(B)/U (−2)) equal

to 0. In other words, φ : P1
k → Y is a morphism with φ(b′) = f(b′) and with

h1(P1, φ∗TY (−2)) equal to 0. Thus φ is a very free morphism whose image contains
f(b′). Therefore every point in the image of f is contained in the very free locus,
i.e., every rational curve in Y intersecting Yv.f. is contained in Yv.f..

The rest of the corollary is just a straightforward translation of Proposition 3.19 to
this context. �

There is one more result in this direction which is useful. The proof is similar to
the arguments above.

Lemma 3.21. [Kol96, Lemma II.7.10.1] Let Ccomb be a comb with handle C
and teeth L1, . . . , Ln. Let ρ : C → Π be a one-parameter deformation of Ccomb over
a pointed curve (Π, 0) whose general fiber Ct is smooth. Let E be a locally free sheaf
on C. If E|Li

is ample for every i and if h1(C, (E|C) ⊗OC
M) equals 0 for every

invertible OC-module M of degree ≥ n, then h1(Ct, E|Ct
) equals 0 for general t in

Π.

3.3. Ramification issues. The argument sketched in Subsection 3.1 and the
powerful smoothing combs technique from Subsection 3.2 form the core of the
proof of Theorem 3.9. However there is a technical issue complicating matters.
There may be codimension 1 points of X at which the morphism π : X → B is
not smooth. In other words, finitely many scheme-theoretic fibers of π may have
irreducible components occurring with multiplicity ≥ 1. This is a well-known issue
when working with fibrations. Although there are sophisticated ways to deal with
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this (using log structures or Deligne-Mumford stacks), for the purposes of this proof
it suffices to deal with this in a more naive manner.

In fact there may be codimension 0 points of X at which π is not smooth, at least
if k has positive characteristic. The hypotheses in Theorem 3.9 prevent this, but
something slightly weaker suffices. Let B be a smooth k-curve, let X be a reduced,
finite type k-scheme and let π : X → B be a flat morphism. From here on, we
assume the following hypothesis.

Hypothesis 3.22. The geometric generic fiber of π is reduced. Equivalently,
π is smooth at every generic point of X, cf. [Gro67, Proposition 4.6.1]. This
hypothesis is automatic if char(k) equals 0.

Definition 3.23. The good locus of π is the maximal open subscheme U of
X such that U is smooth and such that for every point b of B the reduced scheme
of the fiber π−1(b) ∩ U is smooth. Denote the restriction of π to U by πU . The
morphism π is good if the good locus equals all of X. The log divisor of π is the
Cartier divisor Dπ,log of U given by

Dπ,log :=
∑

b∈B(k)

π∗
U (b)− π∗

U (b)red,

where π∗
U (b)red is the reduced Cartier divisor.

Since the geometric generic fiber of π is reduced, so is the geometric generic fiber
of πU (or else it is empty if U is empty). Thus the sum in the definition of the log
divisor reduces to a sum over those finitely many closed points b of B for which
π∗
U (b) is nonreduced.

Lemma 3.24. The complement of U in X has codimension ≥ 2. If char(k)
equals 0, then the pullback map on relative differentials

π∗
U : π∗

UΩB/k → ΩU/k

factors uniquely through the inclusion

π∗
UΩB/k ↪→ π∗

UΩB/k(Dπ,log)

and the cokernel

Ωπ,log := Coker(π∗
UΩB/k(Dπ,log) → ΩU/k)

is locally free.

Proof. To construct U , first remove the closure of the singular locus of the
geometric generic fiber of π and next remove the singular locus from the reduced
scheme of the finitely many singular fibers. Both of these sets have codimension 2
in X (the first by Hypothesis 3.22).

The proof of the second part uses that char(k) = 0. It can be checked formally
locally near every closed point x of U . Denote by b the image π(x) in B and denote
by D the reduced structure on the irreducible component of π−1(b) containing x.
Since x is in U , D is a smooth Cartier divisor in U . Let r be a defining equation
for D in U and let t be a defining equation for b in B. Near x, π∗(b) = mD+ other

terms. Thus, in ÔU,x,

π∗t = amrm + am+1r
m+1 + · · ·
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where am is a unit. Because char(k) = 0, the power series

u = m
√
am + am+1r + · · ·

is a well-defined unit in ÔU,x. Thus, after replacing r by ur, there exists a regu-

lar system of parameters r, r2, . . . , rn for ÔU,x with respect to which the pullback
homomorphism π∗ is the unique local homomorphism with

π∗t = rm and π∗(dt) = mrm−1dr.

In particular, the pullback homomorphism π∗ on relative differentials locally factors
through π∗ΩB((e−1)D) = π∗ΩB(Dπ,log). Moreover the stalk of the cokernel of the
induced homomorphism is the free module generated by dr2, . . . , drn. �

The locally free quotient Ωπ,log of Ωπ is called the sheaf of log relative differentials.
Of course it equals the torsion-free quotient of Ωπ. But its true importance comes
from the following lemma: given a base change V → B for which the normalized

fiber product ˜U ×B V is smooth over V , the sheaf Ω
Ũ×BV /V

of relative differentials

of ˜U ×B V over V equals the pullback of Ωπ,log. Thus the relative deformation

theory of ˜U ×B V over V is already captured by the sheaf Ωπ,log on U . Before
stating the lemma precisely, there is some setup.

Let

π : U → B, � : V → B

be two good morphisms with respective log divisors Dπ,log and E�,log. Let b be
a closed point of B. Let D be a prime divisor of U in supp(Dπ,log) ∩ π−1(b), and
let E be a prime divisor of V in supp(E�,log) ∩�−1(b). Denote by mD − 1, resp.
mE − 1, the coefficient of D in Dπ,log, resp. the coefficient of E in E�,log. The

normalized fiber product of U and V along D and E is the normalization ˜U ×B V
of U ×B V along D ×{b} E. Denote by

prU : U ×B V → U, prV : U ×B V → V

the two projections, and denote by

p̃rU : ˜U ×B V → U, p̃rV : ˜U ×B V → V

the compositions with the normalization morphism. Denote by Exc the exceptional
locus of the morphism, i.e.,

Exc := (p̃r−1
U (D) ∩ p̃r−1

V (E))reduced.

From this point forward we explicitly assume that char(k) equals 0.

Hypothesis 3.25. The algebraically closed ground field k has characteristic 0.
In particular, this implies Hypothesis 3.22.

The sheaves Ωπ and Ωπ,log agree over a dense open subset of U , namely U −
supp(Dπ,log). Because p̃rV and prV are isomorphic over a dense open subset of V

(namely V − E) also Ωp̃rV agrees with p̃r∗V Ωπ on a dense open subset of ˜U ×B V .

Therefore also Ω� agrees with p̃r∗V Ωπ,log on a dense open subset of ˜U ×B V .
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Lemma 3.26. The morphism

p̃rV : ˜U ×B V → V

is smooth at every point of Exc if and only if mD divides mE. In this case the
reduced normalization equals the blowing up of U ×B V along the closed subscheme
pr−1

U (D)× pr−1
V ((mE/mD)E) and Exc is contained in the maximal open neighbor-

hood of ˜U ×B V on which Ωπ̃ agrees with (p̃rV )
∗Ωπ,log.

Proof. This is proved in much the same way as the second part of Lemma 3.24.
For every closed point x of U and y of V with common image point b = π(x) =

�(y), there exist a regular system of parameters (r, r2, . . . , rn) for ÔU,x, resp.

(s, s2, . . . , sp) for ÔV,y, and a regular parameter t for ÔB,b such that

π∗t = rmD and �∗t = smE ,

and thus,

ÔU×BV,(x,y) = k [[r, r2, . . . , rn, s, s2, . . . , sp]] /〈rmD − smE 〉.
Denoting by m the greatest common factor of mD and mE , the stalk of the nor-
malization equals

k [[u, r, r2, . . . , rn, s, s2, . . . , sp]] /〈r − umE/m, s− umD/m〉.
Thus it is formally smooth as a k [[s, s2, . . . , sp]]-algebra if and only ifmD/m equals 1,
i.e., if and only ifmD dividesmE . In this case it is easy to see that the normalization
is the blowing up at the ideal 〈s, tmE/mD 〉 and it is easy to see that the module
of relative differentials is the free module generated by dr2, . . . , drn, i.e., it is the
pullback of Ωπ,log. �

Having introduced the ideas need to deal with the ramification issues, we now
resume the proof of Theorem 3.9. So from this point on we assume the following.

Hypothesis 3.27. The following hypotheses of Theorem 3.9 hold.

(i) The algebraically closed ground field k has characteristic 0, i.e., Hypoth-
esis 3.25 holds.

(ii) The smooth k-curve B is projective and connected.
(iii) The reduced, finite type k-scheme X is normal and projective.
(iv) And the geometric generic fiber of the flat morphism π : X → B is a

normal, integral scheme whose smooth locus contains a very free curve.

Definition 3.28. A log preflexible curve is a connected, smooth, proper curve
C ⊂ U such that

(i) the generic fiber of C over B is contained in the very free locus of the
generic fiber of U over B,

(ii) πU (C) equals B,
(iii) and every intersection point of C with supp(Dπ,log) is transverse, i.e., the

tangent direction of C at the intersection point is not contained in the
tangent space of supp(Dπ,log).

A linked log preflexible curve is a B-morphism from a linked curve j : Clink → U
such that the handle C is log preflexible and for every link Li the image in B of Li

is disjoint from the image in B of Dπ,log.
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bi
B

Xbi
X

Figure 4. Where a log preflexible curve intersects a reduced, pos-
sibly singular, fiber the map from the curve to B is unramified.

bi

bi
X

B

X

Figure 5. Where a log preflexible curve intersects a nonreduced
fiber—e.g., the middle component has multiplicity 2—the map
from the curve to B is necessarily ramified.

A log preflexible curve C is a log flexible curve if

h1(C, Tπ,log|C) equals 0, where Tπ,log := HomOU
(Ωπ,log,OU ).

A linked log preflexible curve is a linked log flexible curve if

h1(Clink, j
∗Tπ,log) equals 0.

Figure 4 shows a log preflexible curve intersecting a singular, but reduced fiber.
Because the curve is transverse to the fiber, the morphism to B is unramified. On
the other hand, Figure 5 shows a log preflexible curve intersecting a nonreduced
fiber—the middle component has multiplicity 2. Necessarily the map from the
curve to B is ramified.
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Lemma 3.29. There exists a log preflexible curve C. In fact, every intersection
of X with dim(X)− 1 general hyperplanes is a log preflexible curve.

Proof. BecauseX−U has codimension 2 inX, a general complete intersection
curve in X is disjoint from X−U , i.e., it is contained in U . By hypothesis, Uπ,v.f. is
a dense open subset of U and thus a general complete intersection curve intersects
this open. Finally, by Bertini’s theorem a general complete intersection curve in U
is smooth and intersects supp(Dπ,log) transversally. �

An important consequence of the smoothing combs technique is the following result.

Proposition 3.30. There exists a log flexible curve in X. In fact, for every
comb in X with log preflexible handle C and with sufficiently many very free teeth
in fibers of πU attached at general points of C and with general tangent directions,
there exists a one-parameter deformation of the comb whose general member is a
log flexible curve.

Proof. By hypothesis, C intersects the very free locus Uπ,v.f. of the mor-
phism πU . By the same argument as in the proof of Proposition 3.18, Uπ,v.f. is
open. Therefore all but finitely many points of C are contained in Uπ,v.f.. By
Proposition 3.18 applied to 1-jets, i.e., to tangent directions, for each such point
c there exists a very free rational curve in UπU (c) containing c and whose tangent
direction at c is a general tangent direction in UπU (c).

Let Ccomb be a comb obtained by attaching to C a number of teeth L1, . . . , LN as in
the previous paragraph at general points of C (in particular, points where C → B is
unramified) and with general tangent directions in UπU (c). These tangent directions
are the same as normal directions to C in U . By the same argument as in the proof
of Proposition 3.19, if N is sufficiently large there is a one-parameter deformation

C ⊂ Π×k U

of Ccomb such that Ct is smooth for general t in Π. The properties (i), (ii) and (iii)
of Definition 3.28 are all open properties and hold for C0 = Ccomb, thus also hold
for Ct so long as t is general.

For each tooth Li in a fiber Ubi , Tπ,log|Li
equals TUbi

|Li
. Since Li is very free, this

is an ample locally free sheaf. Thus, by Lemma 3.21 with the pullback of Tπ,log

in the place of E , we have that h1(Ct, Tπ,log|Ct
) equals 0 for t a general point of Π.

Therefore, for t a general point of Π, Ct is a log flexible curve. �

Because the fibers of π are rationally connected, every log preflexible curve, resp.
log flexible curve, extends to a linked log preflexible curve, resp. linked log flexible
curve.

Lemma 3.31. For every linked curve Clink such that each point bi = πC,link(Li)
is disjoint from πU (Dπ,log), and for every B-morphism j0 : C → X mapping C
isomorphically to a log preflexible curve, resp. log flexible curve, and mapping
each fiber Cbi into the very free locus Uπ,v.f. of πU , there exists a B-morphism
j : Clink → X which is linked log preflexible, resp. linked log flexible, and restricting
to j0 on C.
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Proof. Let Li be a link of Clink. Let Li intersect C in m points t1, . . . , tm
contained in the fiber over a general point bi of B. Let x1, . . . , xm be the images
j(t1), . . . , j(tm) in Ubi,v.f.. By Corollary 3.20, there exists a morphism

ji : (Li, t1, . . . , tm) → ((Ubi,v.f., x1, . . . , xm)

such that

j∗i TUbi

∼= OP1(a1)⊕ · · · ⊕ OP1(an) for integers a1, . . . , an ≥ m− 1.

Because of this,
h1(Li, j

∗
i TUbi

(−(t1 + · · ·+ tm))) equals 0.

Define j : Clink → U to be the unique morphism restricting to j0 on C and restrict-
ing to ji on each link Li. Because ji(tk) = j0(tk) for every link Li and for every
node tk contained in Li, this morphism is defined. It is clearly log preflexible.

Next assume that j0 is log flexible. The claim is that j is also log flexible. To see
this, consider the short exact sequence

0 −→
⊕
i

j∗i TUbi
(−Cbi) −→ j∗Tπ,log −→ j∗0Tπ,log −→ 0.

By the hypothesis that j0 is log flexible, the third term has vanishing h1. And by
the construction of ji, j

∗
i TUbi

(−Cbi), i.e., j
∗
i TUbi

(−(t1 + · · · + tm)), has vanishing

h1. Thus, by the long exact sequence of cohomology, also h1(Clink, j
∗Tπ,log) equals

0. Therefore j : Clink → U is a linked log flexible curve. �

3.4. Existence of log deformations. There is a definition of one-parameter
deformation that takes the divisor Dπ,log into account. Unfortunately, not every
curve over B admits a log deformation specializing to a section curve, e.g., étale
covers of B are rigid. However, after attaching a sufficient number of links, the
linked curve does admit a log deformation specializing to a section curve.

Definition 3.32. Let (Clink, πC,link) be a linked curve with handle C. Let
DC ⊂ C be an effective, reduced, Cartier divisor contained in the smooth locus of
Clink. A one-parameter log deformation of (Clink, πC,link, DC) is a one-parameter
deformation of (Clink, πC,link),

(ρ, πC) : C → Π×k B

together with an effective Cartier divisor DC ⊂ C such that

(i) the pullback of DC to C0 = Clink equals DC

(ii) and πC(DC) equals πC(DC), i.e., DC is vertical over B.

Lemma 3.33. For every finite morphism of smooth, projective curves πC : C →
B and for every effective, reduced, Cartier divisor DC of C, after attaching suffi-
ciently many links to C over general points of B, there exists a one-parameter log
deformation specializing to a section curve.

Proof. For all sufficiently positive integers e, for a general morphism g : C →
P1 of degree e, the induced morphism (πC , g) : C → B ×k P1 is unramified and
is injective except for finitely many double points, none of which intersects the
image of DC . Denote by Σ → B ×k P1 the blowing up along the finitely many
double points of (πC , g)(C). Then there is a B-morphism h : C → Σ which is an
embedding.
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For each point p of DC , denote by mp the multiplicity of p in the Cartier divisor
π∗
C(πC(p)). Denote by νp : Σ′

p → Σ the mp-fold iterated blowup of Σ first at p,
then at the image of p in the strict transform of h(C), etc. Denote by Ep the final
exceptional divisor of this sequence of blowups. The point of this construction is
that the strict transform of h(C) intersects Ep at p, and Ep occurs with multiplicity
mp in the Cartier divisor Σ′

p ×B {πC(p)}. Denote by ν : Σ′ → Σ the fiber product
over all points p in DC of νp : Σ′

p → Σ. Denote by E the Cartier divisor in Σ′

being the sum over all p of the pullback of Ep from Σ′
p. Denote by πΣ′ : Σ′ → B

the composition of Σ′ → Σ → B ×k P
1 with prB. Denote by h′ : C → Σ′ the strict

transform of h(C). The point of this construction is that E is a Cartier divisor in
Σ′ which is vertical over B and such that h∗E equals DC .

Denote by d the degree of πC and let t1, . . . , td be closed points of P1 such that
the Cartier divisor B ×k {t1, . . . , td} of B ×k P1 is disjoint from all double points
of (πC , g)(C) and disjoint from (πC , g)(D). Denote by T the strict transform of
B×k {t1, . . . , td} in Σ′. Form the invertible sheaf OΣ′(h′(C)− T ) and the pushfor-
ward E := πΣ′,∗OΣ′(h′(C)−T ) on B. Because πΣ′ is flat and becauseOΣ′(h′(C)−T )
is locally free, E is torsion-free. For every point b in B − πC(DC), Σ

′
b is isomorphic

to P1 (via the projection Σ′ → B ×k P1 → P1). And Σ′
b ∩ h′(C) and Σ′

b ∩ T are
divisors of the same degree d. Thus OΣ′(h′(C)−T )|Σ′

b
is isomorphic to OΣ′

b

∼= OP1 .

Therefore E|b is isomorphic to H0(Σ′
b,OΣ′

b
), which is one-dimensional. Therefore E

is an invertible sheaf.

By Riemann-Roch and Serre duality, for every sufficiently large degree, for a gen-
eral effective divisor ∆ on B of that degree, E ⊗OB

OB(∆) is globally generated.
Choose ∆ to be disjoint from πC(DC) and from the image in B of the finitely many
intersection points of h′(C) and T . Since E ⊗OB

OB(∆) is globally generated, there
exists a section which is nonzero at every point of ∆. Of course a nonzero section
of this sheaf (up to scaling) is precisely the same thing as a divisor V on Σ′ such
that

h′(C) + π∗
Σ′∆ ∼ T + V.

For b in B − πC(DC), if the section is nonzero at b then V does not intersect Σ′
b.

The same does not necessarily hold for points b of πC(DC) since b may lie in the
support of R1πΣ′,∗OΣ′(h′(C)−T ). Therefore V is a sum of finitely many irreducible
components of fibers of πΣ′ (possibly with multiplicity) lying over points not in ∆.

The linked curve (Clink, πC,link) is h′(C) + π∗
Σ′∆ together with the restriction of

πΣ′ . Denote by Π the pencil of divisors in Σ′ spanned by the divisors h′(C)+π∗
Σ′∆

and T + V , with these two divisors marked as 0 and ∞ respectively. Denote by
C ⊂ Π×kΣ

′ the corresponding family of divisors. By Bertini’s theorem, the general
member Ct is smooth away from the base locus. Now the only singular points
of h′(C) + π∗

Σ′∆ are the points h′(π−1
C (∆)). Since V does not intersect π∗

Σ′∆,
these singular points are not in the base locus. Since C0 is nonsingular at every
basepoint, the same is true for Ct for t general. Thus a general member Ct is smooth
everywhere.

Define DC to be the pullback to C of the Cartier divisor E in Σ′. Because E is
vertical over B and because h∗E equals DC , the deformation C together with the ef-
fective Cartier divisor DC is a one-parameter log deformation of (Clink, πC,link, DC).
And it specializes at t = ∞ to a union of section curves and vertical curves. �
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3.5. Completion of the proof. We are finally prepared for the proof of
Theorem 3.9.

Proof of Theorem 3.9. By Proposition 3.30, there exists a log flexible curve
j0 : C → U . Denote by DC the reduced scheme of the intersection C ∩Dπ,log. By
Lemma 3.33, after attaching finitely many links to C over the points of a general
divisor ∆ of B, the linked curve Clink together with DC admits a one-parameter
log deformation

(ρ, πC) : C → Π×k B, DC ⊂ C
of (Clink, DC) specializing to a section curve (in fact C∞ is a union of section curves
and vertical curves).

By Proposition 3.18, the relative very free locus Uπ,v.f. is open in U . Thus C∩Uπ,v.f.

is open in C. So its complement is finitely many points in C. Thus a general divisor
∆ is disjoint from the finite set πU (Dπ,log) and from the finite set πC(C−C∩Uπ,v.f.).
Then, by Lemma 3.31, there exists an extension of j0 to a linked log flexible curve

j : Clink → U.

Form the fiber product
UC := C ×πC,B,πU

U.

Since πU is flat, also the projection

prC : UC → C
is flat. Since πC is surjective, the geometric generic fiber of prC equals the geometric
generic fiber of πU , which is integral. Since prC is flat with integral geometric generic
fiber, UC is integral. Define

ν : ŨC → UC

to be the blowing up of UC along the closed subscheme DC ×B Dπ,log. Since UC is

integral, also ŨC is integral, and the composition

ŨC → UC → C → Π

is surjective. Since Π is a smooth curve, the morphism

ρ̃ : ŨC → Π

is flat.

Consider the graph
Γj : Clink = C0 → C0 ×B U = UC,0.

Because the links of Clink do not intersect Dπ,log, the image of Γj is smooth at every
point of intersection with DC ×B Dπ,log. Since ν is birational, Γj gives a rational

transformation from Clink to ŨC,0. Since ν is proper, and since Clink is smooth at
every point of intersection with DC ×B Dπ,log, the valuative criterion of properness
implies this rational transformation is actually a regular morphism

Γ̃j : C0 → ŨC,0.

Clearly this is a section of the projection morphism

prC0
: ŨC,0 → C0.

For every point t in Clink − DC , the morphism πU : U → B is smooth at j(t).
Therefore also UC,0 → C0 is smooth at Γj(t). And since ν is an isomorphism over



ARITHMETIC OVER FUNCTION FIELDS 409

Γj(t), also prC0
: ŨC,0 → C0 is smooth at Γ̃j(t). Also the vertical tangent bundle

equals the pullback of the vertical tangent bundle of πU : U → B, which also equals
Tπ,log (since j(t) is not in Dπ,log).

Let t be a point of DC and let Dt be the unique irreducible component of Dπ,log

containing j(t). Give Dt the reduced structure. Because j0(C) is transverse to Dt

at j0(t), the ramification index mC − 1 of πC : C → B at t equals the ramification
index mD − 1 of πU along Dt. Therefore, by Lemma 3.26, the projection

prC0
: ŨC,0 → C0

is smooth over the preimage of {t}×Dt for every t and the vertical tangent bundle
equals the pullback of Tπ,log. Since Γj(t) is in {t} × Dt, this implies that prC0

is

smooth at every point of the image of Γ̃j and the vertical tangent bundle of prC0

equals the pullback of Tπ,log.

Since Γ̃j is a section with image in the smooth locus of prC0
, the normal sheaf

N equals the restriction of the vertical tangent bundle. Therefore Γ̃∗
jN equals

j∗Tπ,log. Since j : Clink → U is log flexible, h1(Clink, j
∗Tπ,log) equals 0. Therefore,

by Proposition 3.13, the relative Hilbert scheme Hilb(ŨC/Π) is smooth over Π at

the point 0′ := [Image(Γ̃j)]. Thus for a general complete intersection curve Π′

containing 0′, the morphism Π′ → Π is smooth at 0′.

Replace Π′ by the unique irreducible component containing 0′, and then replace
this by its normalization. The result is that Π′ is a smooth, projective, connected

curve together with a morphism Π′ → Hilb(ŨC/Π) so that the induced morphism
Π′ → Π is smooth at 0′. In particular it is flat, so surjective. Let ∞′ denote a
closed point of Π′ mapping to ∞. Then (Π′, 0′,∞′) → (Π, 0,∞) is a flat morphism
of 2-pointed smooth curves. Thus, by Lemma 3.11, the base change Π′ ×Π C is a
one-parameter deformation of Clink over (Π′, 0′,∞′) specializing to a section curve.

Denote by

Z ⊂ Π′ ×Π ŨC

the pullback of the universal closed subscheme Univ(ŨC/Π) by the morphism Π′ →
Hilb(ŨC/Π). The composition with prC is a projective morphism

Z ⊂ Π′ ×Π ŨC → Π′ ×Π C

of flat Π′-schemes. Moreover, the fiber over 0′ ∈ Π′ is an isomorphism since the

projection Γ̃j(Clink) → Clink is an isomorphism. Therefore the morphism is an
isomorphism over N ×Π C for some open neighborhood N of 0′ in Π′. (This is well-
known; a complete proof is given in [dJS03, Lemma 4.7].) Invert this isomorphism
and compose it with the morphism

Π′ ×Π ŨC → ŨC → UC → U.

The result is precisely an extension

jN : N ×Π C → X

of j for the one-parameter deformation Π′ ×Π C. Therefore, by Lemma 3.12, there
exists a section s : B → X of π. �
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3.6. Corollaries. There are a number of consequences of Theorem 3.9 and its
generalization to positive characteristic in [dJS03]. Many of these consequences
were recognized before Conjecture 3.8 was proved.

Corollary 3.34. [Kol96, Conjecture IV.5.6] Conjecture 3.7 is true. More-
over, for every smooth, projective, irreducible variety X over an algebraically closed
field of characteristic 0, there exists a dense open X0 ⊂ X and a projective, smooth
morphism q0 : X0 → Q0 such that every fiber of q0 is rationally connected, and
every projective closure of Q0 is nonuniruled.

Corollary 3.35. [GHS03, Corollary 1.7] The uniruledness conjecture im-
plies Mumford’s conjecture. To be precise, assume that for every smooth, projec-
tive, irreducible variety X over an algebraically closed field k of characteristic 0,
if X is nonuniruled then h0(X,ω⊗n

X ) is nonzero for some n > 0. Then for every
smooth, projective, irreducible variety X over k, if X is not rationally connected
then h0(X,Ω⊗n

X ) is nonzero for some n > 0.

The next corollary is a fixed point theorem. In characteristic 0 it can be proved
using the Atiyah-Bott fixed point theorem. But in positive characteristic it is a new
result. There are examples due to Shioda proving one cannot replace “separably
rationally connected” by “rationally connected”, cf. [Shi74].

Corollary 3.36. [Kol03] Let Y be a smooth, projective, separably rationally
connected variety over a field k and let f : Y → Y be a k-automorphism. If char(k)
is positive, say p, assume in addition that f has finite order n not divisible by p2.
Then the fixed locus of f is nonempty.

Proof. Of course it suffices to prove the case when k is algebraically closed,
since the fixed locus of the base change equals the base change of the fixed locus.
First assume f has finite order n. If n is prime to char(k), let B′ denote P1 and let
Z/nZ act on P1 by multiplication by a primitive nth root of unity. Note that this
action fixes ∞ and has trivial generic stabilizer. If char(k) = p is positive and if
n = pm where m is prime to p, let B′ be the normal, projective completion of the
affine curve

V(ym − (xp − x)) ⊂ A2
k.

Let ζ be a primitive mth root of unity, and let a generator of Z/mZ act by (x, y) �→
(x, ζy). Similarly, let a generator of Z/pZ act by (x, y) �→ (x+ 1, y). Clearly these
actions commute, and thus define an action of Z/nZ on B′. Note this action fixes
the unique point ∞ not in the affine chart above, and the action has trivial generic
stabilizer.

Let Z/nZ act diagonally on Y ×k B′, and let X be the quotient. Also let B be
the quotient of the Z/nZ-action on B′. The projection π : X → B satisfies the
hypotheses of Theorem 3.9 (or its generalization in [dJS03]). Therefore there
exists a section. This is the same as a Z/nZ-equivariant k-morphism f : B′ → Y .
In particular, since ∞ is a fixed point in B′, f(∞) is a fixed point in Y .

Next assume k has characteristic 0. By general limit arguments there exists an
integral, finitely generated Z-algebra R, a ring homomorphism R ↪→ k, a smooth,
projective morphism YR → SpecR whose relative very free locus is all of YR, and
an R-automorphism fR : YR → YR such that the base change YR ⊗R k equals Y
and the base change of fR equals f . The intersection (YR)

fR of the graph of fR and



ARITHMETIC OVER FUNCTION FIELDS 411

the diagonal of YR ×R YR is the fixed subscheme of fR (actually its image under
the diagonal morphism). Since (YR)

fR is a proper scheme over SpecR, the image
in SpecR is a closed subscheme of SpecR. To prove this closed subscheme equals
all of SpecR, and thus contains the image of Spec k, it suffices to prove it contains
a Zariski dense set of closed points.

Choose an f -invariant very ample sheaf, choose a basis for the space of global
sections, and let A be the N ×N matrix with entries in R giving the action of f on
global sections with respect to this basis. The set of maximal ideals in SpecR with
residue field of characteristic p > N is Zariski dense in SpecR. Every invertible
matrix over a characteristic p field with order divisible by p2 has a Jordan block
with eigenvalue 1 and size divisible by p. Thus, since p > N , the finite order of
fR modulo the prime is not divisible by p2. Therefore, by the previous case, the
reduction of fR modulo the prime has nonempty fixed locus. Therefore the original
automorphism f has nonempty fixed locus. �

This fixed point theorem implies that separably rationally connected varieties are
simply connected. When the field k is C, this was first proved by Campana using
analytic methods, cf. the excellent reference by Debarre, [Deb01, Corollary 4.18].

Corollary 3.37 (Campana, Kollár). [Cam91], [Deb03, 3.6] Let X be a
smooth, projective, and separably rationally connected variety over an algebraically
closed field k. The algebraic fundamental group of X is trivial. If k = C, then the
topological fundamental group of X is also trivial.

Kollár has generalized this considerably to prove a result for open subschemes of
rationally connected varieties, cf. [Kol03].

Proof. The full proof is included in the beautiful survey by Debarre, [Deb03,
3.6]. Here is a brief sketch. First of all, for every quasi-projective, (not necessarily
separably) rationally chain connected variety, Campana proved that the algebraic
fundamental group is finite and also the topological fundamental group is finite
when k equals C (so that the topological fundamental group is defined). Thus the

universal cover X̃ → X is finite. Since X is smooth, projective and separably ratio-

nally connected, also X̃ is smooth, projective and separably rationally connected.
If the fundamental group of X is nonzero, then it contains a cyclic subgroup Z/nZ

such that p2 does not divide n. Of course the action of this group on X̃ is fixed-
point-free. But Corollary 3.36 implies there exists a fixed point. Thus X is simply
connected. �

Theorem 3.9 also plays an important role in the proof of a “converse” to that same
theorem.

Theorem 3.38. [GHMS05] Let π : X → B be a surjective morphism of
normal, projective, irreducible varieties over an algebraically closed field k of char-
acteristic zero. Assume that for some sufficiently large, algebraically closed field
extension K/k, for every k-morphism C → B from a smooth, projective, K-curve
to B, the pullback πC : C ×B X → C has a section. Then there exists a closed sub-
variety Y ⊂ X such that the geometric generic fiber of π|Y : Y → B is nonempty,
irreducible and rationally connected.



412 JASON MICHAEL STARR

One corollary of this theorem, in fact the motivation for proving it, was to answer
a question first asked by Serre and left unresolved by Theorem 3.9: could it be
that a smooth, projective variety X over the function field of a curve has a rational
point if it is O-acyclic, i.e., if hi(X,OX) equals 0 for all i > 0? One reason to ask
this is that the corresponding question has a positive answer if “function field” is
replaced by “finite field” thanks to N. Katz’s positive characteristic analogue of the
Atiyah-Bott fixed point theorem, [DK73, Exposé XXII, Corollaire 3.2], recently
generalized by Esnault, [Esn03]. Nonetheless, the answer is negative over function
fields.

Corollary 3.39. [GHMS05] There exists a surjective morphism π : X → B
of smooth, projective varieties over C such that B is a curve and the geometric
generic fiber of π is an Enriques surface, but π has no section. Thus, to guaran-
tee that a fibration over a curve has a section, it is not sufficient to assume the
geometric generic fiber is O-acyclic.

In fact G. Lafon found an explicit morphism π as in Corollary 3.39 where B is P1
C,

or in fact P1
k for any field k with char(k) �= 2, and there does not even exist a power

series section near 0 ∈ P1
k, cf. [Laf04].

4. The Period-Index theorem

Theorem 3.9 is a generalization of Tsen’s theorem, Corollary 2.15, because a suf-
ficiently general complete intersection V(F1, . . . , Fr) ⊂ Pn with d1 + · · · + dr ≤ n
is smooth, projective and separably rationally connected (the proof of this is non-
trivial, as is the specialization argument reducing Tsen’s theorem to the case of
complete intersections which are sufficiently general). Is there a similar generaliza-
tion of the Tsen-Lang theorem?

Joint work with Harris, [HS05], proves that the spaces of rational curves on general
low degree hypersurfaces are rationally connected. This was later generalized in
joint work with A. J. de Jong: complete intersections X = V(F1, . . . , Fr) ⊂ Pn with
d21 + · · ·+ d2r ≤ n+1 are rationally simply connected in the sense that the space of
“good” rational curves in X containing two fixed, general points is itself a rationally
connected variety. This is analogous to simple connectedness in topology: a path
connected topological space is simply connected if the space of paths connecting
two fixed points is itself path connected.

Moreover, de Jong gave a heuristic argument suggesting that for a rationally simply
connected fibration over a surface, the only obstruction to existence of a rational
section is the elementary obstruction. Given a geometrically integral scheme X
defined over a field K, the elementary obstruction to existence of a K-point is
the existence of a Gal(K/K)-invariant splitting of the homomorphism of Abelian
Galois modules,

K
∗
↪→ Frac(X ⊗K K)∗,

where K is the separable closure of K and Frac is the function field. If there exists
a K-point of X, evaluation at this point gives a Galois-invariant splitting. The
elementary obstruction was introduced by Colliot-Thélène and Sansuc, [CTS87].
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Its vanishing implies the vanishing of other known obstructions. In particular, it
implies the vanishing of a Brauer obstruction

δ : Pic(X ⊗K K)Gal(K/K) → Br(K)

measuring whether or not a Galois-invariant invertible sheaf L on X ⊗K K is the
pullback of an invertible sheaf L on X.

At the moment, in order to give a rigorous proof, de Jong’s heuristic argument
requires several additional hypotheses on the rationally simply connected fibration.
One case where the hypotheses hold is when all fibers of the fibration are Grass-
mannian varieties. Although this is very special, it is also quite interesting since it
gives a second proof of de Jong’s period-index theorem.

Theorem 4.1. [dJS05] Let K be the function field of a surface over an al-
gebraically closed field k. Let (X,L) be a pair of a K-scheme and an invertible

OX-module L. If (X ⊗K K,L ⊗K K) is isomorphic to (Grass(r,K
n
),O(1)), then

X has a K-point.

Corollary 4.2 (de Jong’s Period-Index theorem). [dJ04] Let A be a central
simple K-algebra with A ⊗K K ∼= Matn×n(K). Let r < n be an integer such that
r[A] equals 0 in Br(K). Then there exists a left ideal I ⊂ A such that dimK(I) = rn.
In particular, if A = D is a division algebra then [D] has order n in Br(K), i.e.,
the period of D equals the index of D.

Corollary 4.2 follows from Theorem 4.1 by setting X to be the generalized Brauer-
Severi variety parameterizing left ideals in A of rank rn. Since A ⊗K K equals
Matn×n(K), X⊗KK equals Grass(r,K

n
). The Brauer obstruction to the existence

of an invertible sheaf L with L⊗KK ∼= O(1) is precisely the element r[A] in Br(K).

The first reduction is “discriminant avoidance”, i.e., reduction to the case that the
variety X is the generic fiber of a smooth, projective morphism over a smooth,
projective surface. Let T be a quasi-compact, integral scheme and let G be a
smooth, affine group scheme over T whose geometric fibers are reductive.

Lemma 4.3. For every integer c there exists a datum (U,U, TU ) of a projective,
flat T -scheme U with integral geometric fibers, an open subset U of U and a G-torsor
TU over U such that

(i) U is smooth over T ,
(ii) the complement U − U has codimension ≥ c in U ,
(iii) and for every G-torsor TK over an infinite field K over T , there exists a

T -morphism i : SpecK → U and an isomorphism of G-torsors over K,
i∗TU ∼= TK .

The idea is to form the GIT quotient U of a linear action of G on (PN
T ,O(1)). If

the linear representation is “sufficiently large”, then G acts properly and freely on
an open subset V of PN

T of codimension ≥ c. Take U to be the quotient of V . Then

U is smooth over T and U −U has codimension ≥ c. Finally, for every field K over
OT and for every G-torsor TK over K, the twist PN

T ×T TK/G is isomorphic to PN
K .

Thus there exists a K-point. If K is infinite, then the set of K-points is Zariski
dense so that there exists a point in the image of V . This point is only well-defined
up to the action of G, but the associated morphism i : SpecK → U is well-defined.
Chasing definitions, i∗TU is isomorphic to TK .
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Proposition 4.4. Let k be an algebraically closed field of characteristic 0, let
S be a smooth, projective surface over k, let π : X → S be a smooth, projective
morphism, and let L be an invertible OX -module. Let K/k be the fraction field of
S and let X be the generic fiber of π.

(i) If (X ⊗K K,L ⊗K K) is isomorphic to (Grass(r,K
n
),O(1)), then X has

a K-point.
(ii) Item (i) implies Theorem 4.1

The point of this proposition is Item (ii), i.e., to prove Theorem 4.1 it suffices to
assume that X is the generic fiber of a proper and everywhere smooth morphism.
The point is that for every algebraically closed field k, there exists the spectrum of a
DVR, T , whose residue field is k and whose fraction field has characteristic 0. Now
let G be the automorphism group scheme of (Grass(r,On

T ),O(1)). This satisfies

the hypotheses of Lemma 4.3. Taking c = 3, there exists a datum (U,U, TU )
as in Lemma 4.3 such that U − U has codimension ≥ 3. For the original field
K/k, there exists a morphism i : SpecK → U inducing the pair (X,L). Because
tr.deg.(K/k) = 2, the closure of Image(i) in U has dimension ≤ 2. Because U − U
has codimension ≥ 3, there exists a locally closed subscheme S of U such that

(i) S → T is flat,
(ii) the closed fiber S0 of S is irreducible with generic point i(SpecK),
(iii) and the generic fiber Sη of S is a closed subscheme of Uη completely

contained in Uη.

Using specialization arguments, to prove Theorem 4.1 for the restriction of TU
to the generic point of the closed fiber S0, it suffices to prove Theorem 4.1 for
the restriction of TU to the generic point of the geometric generic fiber Sη. By
construction, this satisfies the additional hypotheses in Proposition 4.4.

Thus, assume the additional hypotheses of Proposition 4.4 are satisfied. After
replacing S by the blowing up at the base locus of a Lefschetz pencil of divisors,
and replacing X by its base change, assume there exists a flat, proper morphism
ρ : S → B with smooth, connected generic fiber. Denote by B0 the maximal
open subscheme of B over which ρ is smooth, and denote S0 = B0 ×B S and
X 0 = B0 ×B X . There is a pair

(ρSect : Section(X 0/S0/B0) → B0, σ : Section(X 0/S0/B0)×B0 S0 → X 0)

which is universal among all pairs (T, σT ) of a B0-scheme T and an S0-morphism
σT : T ×B0 S0 → X 0. The universal pair can be constructed in terms of the relative
Hilbert scheme. In Grothendieck’s terminology, it is ΠS0/B0X0, cf. [Gro62, p.
195-13].

There is a relative Picard scheme Pic(S0/B0) of S0 over B0. Associated to the
invertible sheaf L on X 0, there is an invertible sheaf σ∗L on Section(X 0/S0/B0)×B0

S0. This induces an Abel morphism

α : Section(X 0/S0/B0) → Pic(S0/B0).

Of course Pic(S0/B0) breaks up according the relative degree of the line bundle,

Pic(S0/B0) =
⊔
d∈Z

Picd(S0/B0).
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Pulling this back via the Abel morphism gives a decomposition

Section(X 0/S0/B0) =
⊔
d∈Z

Sectiond(X 0/S0/B0)

together with Abel morphisms

αd : Sectiond(X 0/S0/B0) → Picd(S0/B0).

For all d ≥ 0, there are sections of the projection Picd(S0/B0) → B0. The image
of this section is a curve B′

0 isomorphic to the smooth curve B0. If the generic
fiber of αd is a dense open subset of a rationally connected variety, then Theo-
rem 3.9 together with the generic version of weak approximation, Proposition 3.19,
implies there exists a rational section of the restriction of αd over B′

0 (this uses a
slight specialization argument, because the restriction of αd may not be a rationally
connected fibration). Thus it suffices to prove that for d � 0,

(i) the fiber of αd over the geometric generic point of Picd(S0/B0) is not
empty,

(ii) the fiber is also irreducible,
(iii) the fiber is also isomorphic to an open subset of a rationally connected

variety.

Moreover, and this will be important, it suffices to prove there exists a canonically
defined open subschemeW ⊂ Sectiond(X 0/S0/B0) such that (i)–(iii) hold for αd|W .

Note that (i)–(iii) are really statements about the morphism XηB
→ SηB

of fibers
over the geometric generic point of B. Thus, it is again a question about a fibration
over a projective curve, namely the curve C = SηB

over the algebraically closed

field κ = k(B). So Proposition 4.4 (i) follows from the following result.

Proposition 4.5. Let κ be an algebraically closed field of characteristic 0. Let
C be a smooth, projective, connected curve over κ. Let π : XC → C be a smooth,
projective morphism and let L be an invertible sheaf on XC . Assume the geometric

generic fiber of (XC ,L) over C is isomorphic to (Grass(r, κ(C)
n
),O(1)). Then for

d � 0 there exists a canonically defined open subset

Wd ⊂ Sectiond(XC/C/Specκ)

such that the geometric generic fiber of

αd : Wd ↪→ Sectiond(XC/C/Specκ) → Picd(C/Specκ)

satisfies (i), (ii) and (iii) above.

In order to prove Corollary 4.2, it suffices to prove this in the special case that
XC → C is the parameter scheme for rank rn left ideals in an Azumaya algebra A
over C with A⊗OC

κ(C) ∼= Matn×n(κ(C)). An Azumaya algebra over a scheme T
is a coherent OT -algebra which is étale locally isomorphic to Matn×n(OT ) for some
integer n.

Because of Tsen’s theorem, Corollary 2.15, and Proposition 2.16(i), there exists
a locally free OC -module E of rank n such that A ∼= End(E). The locally free
sheaf E is only well-defined up to the operation E �→ E ⊗OC

N , for any invertible
sheaf N . The choice of a locally free sheaf E and an isomorphism of algebras gives
an isomorphism of Sect(XC/C/Specκ) with the parameter scheme of locally free
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quotients E � Q of rank r. To see this, associate to each quotient the left ideal of
endomorphisms that factor as

E � Q φ−→ E
as φ varies over all OC -module homomorphisms. Replacing E by E ⊗OC

N gives a
new isomorphism sending the original quotient to the twist E ⊗OC

N � Q⊗OC
N .

The real effect of this change has to do with the Abel map. Up to a constant
translation by a point of Pic(C/Specκ), which does not change (i)–(iii), the Abel
map is identified with the map sending a quotient to det(Q) in Pic(C/Specκ).
After replacing E by E ⊗OC

N , the constant changes by adding [N⊗r]. Thus, it is
clear that the Abel map really should only be considered as well-defined up to an
additive constant.

If d is sufficiently large, there exist quotients such that Q is stable. Note that
Q is stable if and only if Q ⊗OC

N is stable. Therefore the open subset Wd of
Section(XC/C/Specκ) parameterizing stable quotients is well-defined and canon-
ical. Fix an integer d0. For every integer e, the moduli space of stable, rank r
locally free sheaves on C of degree d0 is isomorphic to the moduli space for degree
d0 + re via the map sending Q to Q(D), where D is any fixed Cartier divisor of
degree e. For each fixed locally free sheaf Q of rank r < n, if e is sufficiently large,
there exists a surjection E � Q(D) for all Cartier divisors of degree e. Because
the moduli space of stable bundles is quasi-compact, it follows that there exists
a single integer e0 such that for every e ≥ e0 and every stable locally free sheaf
Q of rank r and degree d0, for every Cartier divisor D of degree e there exists a
surjection E � Q(D). By the same sort of argument, if e is sufficiently large then
h1(C,HomOC

(E ,Q(D))) equals 0.

Repeating this argument with d0 replaced by each of d0, d0+1, d0+2, . . . , d0+r−1,
there exists an integer d1 such that for every d ≥ d1 (i.e., d = d0 + re, etc.), for
every stable, locally free sheaf Q of rank r and degree d, there exists a surjection

E � Q
and also h1(C,HomOC

(E ,Q)) equals 0. In other words, the forgetful morphism
from the space of quotients E � Q to the space of stable sheaves Q is smooth and
surjective, and the geometric fibers are each isomorphic to an open subset of an
affine space HomOC

(E ,Q). Moreover, the fiber of the Abel map αd is the inverse
image of the space of stable sheaves with fixed determinant. As is well-known, the
moduli space of stable sheaves over C of fixed rank r and fixed determinant is a
unirational variety of dimension (r2−1)(g(C)−1). Thus the fiber of the Abel map
fibers over a rationally connected variety and the fibers are rationally connected.
By Corollary 3.34, it follows that a general fiber of

αd|W : Wd ↪→ Sectiond(XC/C/Specκ) → Picd(C/Specκ)

is isomorphic to an open subset of a rationally connected variety, i.e., (i), (ii) and
(iii) hold. Therefore Corollary 4.2 is true.
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Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II), Dirigé par P. Deligne et
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Galois + Équidistribution = Manin-Mumford

Nicolas Ratazzi et Emmanuel Ullmo

Résumé. Ce texte est une version rédigée du premier exposé donné par le
second auteur durant l’école d’été ”Arithmetic Geometry” à l’université de
Göttingen à l’été 2006. Les exposés avaient pour but de donner une idée de

la preuve récente de la conjecture d’André–Oort sous l’hypothèse de Riemann
généralisée due à Klingler, Yafaev et le second auteur.

1. Introduction

Le texte qui suit est une version rédigée du premier exposé donné par le second
auteur durant l’école d’été ”Arithmetic Geometry” à l’université de Göttingen à
l’été 2006. C’est un plaisir d’avoir l’occasion de remercier les organisateurs pour
leur invitation. Les exposés avaient pour but de donner une idée de la preuve
récente de la conjecture d’André–Oort sous l’hypothèse de Riemann généralisée
due à Klingler, Yafaev et le second auteur [UY06], [KY06].

La conjecture d’André–Oort est un analogue pour les variétés de Shimura de
la conjecture de Manin-Mumford démontré par Raynaud [Ray83]. Il était donc
naturel d’essayer d’adapter la stratégie de preuve de la conjecture d’André-Oort
dans le cas des variétés abéliennes. Le texte qui suit propose cette traduction et
donne donc une démonstration de la conjecture de Manin-Mumford.

Rappelons tout d’abord l’énoncé de la conjecture de Manin-Mumford.

Théorème 1.1. Soient K un corps de nombres, A/K une variété abélienne sur
K et V/K une sous-variété géométriquement irréductible de A. Si V (K) contient
un ensemble de points de torsion dense dans V pour la topologie de Zariski alors V
est un translaté par un point de torsion d’une sous-variété abélienne.

De nombreuses preuves de cette conjecture ont été obtenues. La première
preuve donnée par Raynaud [Ray83] utilise des méthodes p-adiques. Hindry
[Hin88] donne une preuve utilisant la théorie de Galois et l’approximation dio-
phantienne. Hrushovski montre la conjecture en utilisant des idées provenant de la
logique (théorie des modèles des corps). Pink et Roessler [PR02, PR04] donnent
une preuve par des techniques de géométrie algébrique qui s’inspire de la preuve de
Hrushovski. Enfin une preuve utilisant la théorie d’Arakelov via l’équidistribution
des orbites sous Galois des points de petite hauteur d’une conjecture plus forte due
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à Bogomolov est obtenue par Zhang [Zha98] et le deuxième auteur de cette note
[Ull98].

La preuve présentée ici s’inspire des récentes stratégies de preuve de la conjec-
ture d’André-Oort, qui est un analogue dans le cadre des variétés de Shimura de
la conjecture de Manin-Mumford. Dans ce cadre les méthodes galoisiennes dues
à Edixhoven et Yafaev [EY03] se combinent aux méthodes issues de la théorie
ergodique développées par Clozel et le second auteur [CU05]. Cette stratégie est
expliquée de manière générale dans un travail récent de Yafaev et le second auteur
[UY06] et présentée dans un cas particulier simple de la conjecture d’André-Oort
sous l’hypothèse de Riemann dans ce volume [UY].

Dans le cadre des variétés abéliennes nous combinons des résultats galoisiens
dus à Serre à des techniques élémentaires d’équidistribution de sous-variétés abé-
liennes. Les résultats galoisiens utilisés ici sont au centre de la méthode de Hindry et
la preuve donnée ici ne peut qu’être considérée comme une variante de la preuve de
Hindry. Il est notable que la traduction dans le cadre abélien des idées d’Edixhoven
et Yafaev [EY03] donne assez naturellement la preuve de Hindry de la conjecture
de Manin-Mumford et qu’il n’est pas utile d’utiliser les techniques ergodiques dans
ce cadre. Nous ne savons pas si il est possible de s’en dispenser aussi dans une
preuve de la conjecture d’André-Oort.

Nous espérons que la preuve de la conjecture de Manin-Mumford présentée
dans cette note pourra aider le lecteur intéressé par la conjecture d’André-Oort à
comprendre la stratégie mise en oeuvre pour les variétés de Shimura. Pour rendre la
présentation plus agréable et naturelle nous avons utilisé un résultat non publié de
Daniel Bertrand d’effectivité dans le lemme de Poincaré pour les variétés abéliennes.
Nous le remercions pour les notes qu’il a eu la gentillesse de nous transmettre ainsi
que pour la permission de présenter ici ses résultats que nous avons insérés en
appendice.

1.1. Notations et conventions. On dira que V/k est une variété (définie)
sur un corps k si V est un k-schéma de type fini, géométriquement réduit. Si V/k
est une variété définie sur un corps k et si L est une k-algèbre, on notera VL la
variété produit fibré de V et Spec (L) au dessus de Spec (k).

Dans toute la suite, on fixe A/Q une variété abélienne. On se donne K un corps
de nombres sur lequel A est définie ainsi que toutes ses sous-variétés abéliennes (un

tel corps existe et peut-être choisi de degré 3(2 dimA)4 sur un corps de définition
de A, cf. par exemple [MW93] lemma 2.2.). On se donne également un fibré en
droites L très ample sur A/K de sorte à avoir une notion de degré projectif deg
relativement à L.

Si E est un ensemble de points de A(Q), on notera E son adhérence de Zariski
dans A/K. Enfin on notera Ators l’ensemble des points de torsion de A(Q) et, si
V est une sous-variété de A, on notera Vtors l’ensemble V (Q) ∩Ators des points de
torsion de A situés sur V .

Définition 1.1. Soit V/Q une sous-variété irréductible de A. On dit que V est
une variété de torsion s’il existe une sous-variété abélienne B de A et un point de
torsion ξ ∈ Ators tels que V = B + ξ.

Une variété V/K définie sur un corps de nombres K est dite de torsion si VQ

est une réunion de sous-variétés de torsion.
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On utilisera les symboles� et� pour dire inférieur à (respectivement supérieur
à), à une constante ne dépendant que de (A,K,L, V ) près.

2. Effectivité dans le lemme de Poincaré

Supposant connu le lemme de réductibilité de Poincaré, qui affirme que toute
variété abélienne est isogène à un produit de variétés abéliennes simples, nous don-
nons ici une version effective de ce résultat due à Bertrand. Cet énoncé (plus fort
que ce dont nous aurions réellement besoin) permet de présenter les choses de façon
naturelle dans la preuve du résultat principal (cf. la remarque 3.1. du paragraphe
3). Nous en donnons en appendice la preuve, telle qu’on la trouve dans l’appendice
de [Ber].

Proposition 2.1. (Bertrand) Pour toute sous-variété abélienne B de A, il
existe une sous-variété abélienne B′ de A telle que

A = B +B′ et telle que card (B ∩B′) � 1.

3. Preuve du théorème 1.1

Notons

ΣV =
{
X/Q sous-variété de torsion de A | X ⊂ VQ

}
.

Définition 3.1. Une suite (Σn)n∈N de ΣV est générique pour V si pour toute
sous-variété W de VQ, distincte de VQ, l’ensemble {n ∈ N | Σn ⊂ W} est fini.

Soit (Σn)∈N une suite générique pour V (une telle suite existe d’après l’hypo-
thèse faite sur Vtors. En fait il existe même une suite générique constituée de points
de torsion.). Pour tout entier n ∈ N choisissons arbitrairement une représentation

Σn = An + ξn

où An est une sous-variété abélienne de A et ξn un point de torsion de A.

En notant, pour tout n ∈ N, A′
n la variété associée à An par la proposition 2.1,

on voit qu’il existe (an, a
′
n) ∈ An × A′

n de torsion tels que ξn = an + a′n. Quitte à
remplacer ξn par a′n on peut supposer (et nous le ferons dans la suite) que

∀n ∈ N, Σn = An + ξn avec ξn de torsion dans A′
n.

Pour tout entier n ∈ N, on note dn l’ordre du point ξn ainsi obtenu. Deux
situations peuvent alors apparâıtre :

1. La suite (dn)n∈N est bornée. Dans ce cas un argument ergodique va nous
permettre de conclure.

2. La suite (dn)n∈N est non-bornée. Dans ce cas la combinaison d’un ar-
gument galoisien et d’un argument diophantien vont nous permettre de
conclure par un procédé itératif.

Remarque 3.1. Notons que le fait que la suite (dn)n∈N est ou n’est pas bornée ne
dépend pas du choix du point ξn pris dans A′

n (ceci précisément grâce au résultat de
Bertrand). En effet soient ξn et ξ′n deux points de torsion de A′

n, d’ordre respectifs
dn et d′n, tels que Σn = An + ξn = An + ξ′n. On a

ξn − ξ′n ∈ An ∩A′
n.
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En notant C une borne sur le cardinal de An ∩A′
n quand n varie, on constate donc

que
1

C
dn ≤ d′n ≤ Cdn.

Autrement dit avec ce choix de variétés abéliennes (A′
n), les suites (dn) et (d′n)

obtenues sont (ou non) bornées en même temps.

3.1. Cas borné. L’ensemble des points de torsion de A d’ordre borné (par
une constante donnée M) étant fini, on peut, en passant à une sous-suite, supposer
qu’il existe ξ ∈ Ators tel que

∀n ∈ N, Σn = ξ +An.

Soient C une variété abélienne complexe et µC la mesure de Haar sur C(C).

Proposition 3.1. Quitte à extraire une sous-suite, la suite (µAn
)n∈N converge

vaguement vers la mesure µB où B est une sous-variété abélienne de A, contenant
An pour tout n ∈ N.

Démonstration : La preuve de cette proposition est donnée à la section 4. Le lecteur
peut aussi consulter [Ull05] proposition 4.1. �

De cette proposition on déduit que, quitte à extraire une sous-suite, on a

∀n ∈ N, Σn ⊂ ξ +B ⊂ VQ.

Par généricité, ξ+B ne peut être strictement incluse dans VQ, donc V est de torsion,
ce qui conclut. �

3.2. Cas non-borné. La preuve de ce cas utilise essentiellement les outils
développés par Hindry [Hin88]. Ceci étant la stratégie est légèrement différente.

Étant donné un corps de nombres K nous noterons GK le groupe de Galois de K
sur K.

Théorème 3.1. (Serre) Soit A/K une variété abélienne définie sur un corps
de nombres K.

1. Il existe une constante c(A,K) > 0 telle que pour tout point x ∈ Ators

d’ordre n et pour tout entier m premier à n, il existe σ ∈ GK tel que[
mc(A,K)

]
x = σ(x).

2. Pour tout ε > 0 il existe une constante C1(A,K, ε) > 0 telle que pour tout
x ∈ Ators d’ordre n on a

|GK · x| ≥ C1(A,K, ε)n1−ε.

Démonstration : Le point 1. est un théorème difficile de Serre (cf. [Ser00] Théorème
2’ p. 34) dont on peut trouver une preuve dans [Win02] (Théorème 3 paragraphe
2.3) et dans [Ser]. Le second point est un corollaire du premier. En effet, soit x un
point de torsion de A d’ordre n. Par le point 1., il existe une constante c > 0 telle
que pour tout entier m ne divisant pas n, on a [mc]x ∈ GK · x. En particulier, en
notant ϕ(n) l’indicatrice d’Euler de n, on a

|GK · x| ≥
∣∣{xc | x ∈ (Z/nZ)×

}∣∣ = ϕ(n)

|{x ∈ (Z/nZ)× | xc = 1}| .
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On sait que ϕ(n) � n1−ε, il suffit donc de savoir minorer le cardinal de l’ensemble

de x ∈ (Z/nZ)× tels que xc = 1. Écrivons la décomposition de n en facteurs

premiers, n =
∏r

i=1 p
ki

i , et posons pour tout i ≤ r, ni = pki−1
i (pi − 1). En écrivant

la décomposition de (Z/nZ)× en produit de groupes cycliques selon les pi, on voit
que ∣∣{x ∈ (Z/nZ)× | xc = 1

}∣∣ ≤ 2

r∏
i=1

pgcd(c, ni) ≤ 2cr

le facteur 2 étant là pour ne pas avoir d’ennui si 2 intervient dans la décomposition
en facteurs premiers de n. Par ailleurs le nombre r = ω(n) de premiers divisant n
est tel que ω(n) � log n/ log log n. Ainsi cr � nε ce qui permet de conclure. �

Lemme 3.1. (Hindry) Soient n un entier et X/Q une sous-variété irréductible
de A. On a

deg [n]X =
n2 dimX

|Stab(X) ∩ ker[n]| degX.

Démonstration : cf. [Hin88] lemme 6.(ii) ou [DH00] proposition 2.3. �

Lemme 3.2. Soient X/Q une sous-variété irréductible de A et d ≥ 2 un entier.
Si [d]X ⊂ X alors X est de torsion.

Démonstration : C’est une conséquence du calcul du degré précédent. En effet
soient s ∈ N et GX = Stab(X). La variété G0

X est une variété abélienne d’indice
fini |GX : G0

X | dans GX et on a

|Stab(X) ∩ ker[ds]| ≤
∣∣GX : G0

X

∣∣ ∣∣G0
X ∩ ker[ds]

∣∣ = d2s dimG0
X

∣∣GX : G0
X

∣∣ .
Or l’hypothèse nous assure donc que

degX = deg [ds]X ≥ d2s dimX

|GX : G0
X | d2s dimG0

X

degX.

Prenant s assez grand on en déduit que dimX = dimG0
X = dimGX . Or GX =⋂

x∈X X − x, donc X est de la forme G0
X + x où x est un point de A. L’hypothèse

[d]X ⊂ X entraine que [d]X = X et donc que [d−1]x ∈ G0
X . Notamment en notant

B la variété abélienne G0
X , il existe un point ξ de (d − 1)-torsion dans A tel que

X = ξ +B. Donc X est de torsion. �
Soit n ∈ N. On choisit p premier à dn et on pose d = pc(A,K) comme dans le

théorème 3.1 précédent. Considérons l’intersection V 1 := V ∩ [d]V . Si dimV 1 =
dimV on a V 1 = [d]V par irréductibilité de V et donc [d]V ⊂ V . Mais alors le
lemme 3.2 prouve que V est de torsion. Sinon V 1 est de dimension strictement
inférieure à V . Par ailleurs, on a :

Lemme 3.3. La variété Σn est incluse dans V 1
Q
.

Démonstration : On a [d]Σn = [d]An + [d]ξn = An + σ(ξn) par le point 1. du
théorème 3.1. Par ailleurs, An et V sont définie sur K donc

Σn = σ−1 ([d]Σn) ⊂ σ−1 ([d]V ) = [d]V.

Ainsi Σn est bien incluse dans [d]V donc dans V 1
Q
. �

On note désormais V1 une composante K-irréductible de V 1 telle que (V1)Q
contient Σn.
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Lemme 3.4. (Bézout) Soient X et Y deux sous-variétés d’un espace projectif
Pn. En notant Z1, . . . Zr des composantes irréductibles de X ∩ Y , on a

r∑
i=1

degZi ≤ degX · deg Y.

Démonstration : Il s’agit d’un résultat type Bézout que l’on trouve par exemple
dans Fulton [Ful98] Example 8.4.6. �

On va donc calculer un majorant du degré de V1. Pour cela il sufit de savoir
estimer (grossièrement) le degré de [d]V . Ceci est une conséquence immédiate du
lemme 3.1 précédent. On a :

(1) deg [d]X ≤ d2g degX.

Utilisant le lemme 3.4 et l’inégalité (1) on obtient la majoration suivante pour
V1 :

deg V1 � d2g.

Partant de V1 en lieu et place de V et itérant ceci au plus m := dimV −dimΣn

fois on aboutit à l’alternative suivante :

1. ou bien on a construit une variété de torsion contenant strictement Σn,
2. ou bien on a fabriqué une variété Vm telle que Σn est une composante

irréductible de Vm sur Q et vérifiant de plus

(2) deg Vm � dc

pour une certaine constante c ne dépendant que de V .

Si on est dans le cas 2. de l’alternative, alors la variété Vm étant définie sur K
elle contient comme composante la variété

⋃
σ∈Gal(K/K) σ(Σn). Or on a le lemme

suivant :

Lemme 3.5. Avec les notations précédentes on a

O(Σn) := card
{
σ(Σn) |σ ∈ Gal(K/K)

}
� d

1
2
n

degAn
.

Démonstration : Par le point 2. du théorème 3.1 appliqué avec ε = 1
2 on a

Card
(
Gal(K/K) · ξn

)
� d

1
2
n .

Par ailleurs, le point ξn étant choisi dans A′
n, et les variétés An et A′

n étant des
variétés abéliennes sur K, on a

σ(Σn) = Σn ⇐⇒ ξn − σ(ξn) ∈ An ∩A′
n.

La proposition 2.1 bornant le cardinal de An ∩A′
n permet donc de conclure. �

En combinant l’équation 2 et le lemme 3.5, on obtient finalement

d
1
2
n � O(Σn) deg(An) = deg

⎛
⎝ ⋃

σ∈Gal(K/K)

σ(Σn)

⎞
⎠ ≤ deg Vm � dc.

Par le théorème des nombres premiers, on peut prendre d de l’ordre de (log dn)
c(A,K).

Avec un tel choix de d, on voit que pour n assez grand ceci est impossible. C’est
donc que l’on est dans le cas 1. de l’alternative indiquée précédemment.
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3.3. Conclusion. Partant d’une suite Σn, soit l’on est dans le cas borné
auquel cas, la preuve s’arrête immédiatement, soit l’on est dans le cas non-borné.
Dans ce cas, on a vu que l’on peut alors construire une nouvelle suite générique
(Σ′

n)n∈N de sous-variétés de torsion incluses dans V , avec pour tout n � 0

dimΣ′
n ≥ dimΣn + 1.

On réeffectue toute la preuve avec cette nouvelle suite, et au bout d’au plus dimV
étapes on aboutit à la conclusion : V est de torsion. �

4. Preuve de la proposition 3.1

Le but de cette section est de donner la preuve de la proposition 3.1. Cette
preuve élémentaire repose essentiellement sur la théorie des séries de Fourier.

4.1. Le cas plat. Dans cette partie on note G = Qn, Λ = Zn et X = Zn\Rn.
Soit π : R → X la surjection canonique. On dit qu’une sous-variété S de X est
spéciale si elle est de la forme

S = π(H ⊗Q R)

pour un sous-Q-vectoriel H de G. On dispose alors sur X d’une mesure de proba-
bilité µS , (H ⊗ R)-invariante, de support S. On notera alors µ = µX la mesure de
Lebesgue normalisée sur X

On notera par abus de langage de la même manière une fonction sur X et la
fonction Zn-invariante sur Rn correspondante.

On dit qu’une suite de sous-variétés Yn de X est stricte si pour toute sous-
variété spéciale S1,

{n ∈ N, Yn ⊂ S1}
est un ensemble fini.

Proposition 4.1. Soit Tn une suite stricte de sous-variétés spéciales de X.
Soit µn la mesure invariante normalisée de support Tn. Pour toute fonction con-
tinue sur X, on a

(3)

∫
Tn

f dµn −→
∫
X

f dµ.

Pour x ∈ R, on note x sa classe dans Z\R. Pour (k1, . . . , kn), on note χk1,...,kn

le caractère de X défini par

χk1,...,kn
(x1, . . . , xn) = exp(2iπ

n∑
j=1

kjxj).

On obtient ainsi tous les caractères de X. Si χ = χk1,...,kn
pour (k1, . . . , kn)

non tous nuls, on note

Hχ = Hk1,...,kn

le Q-hyperplan de G d’équation
n∑

j=1

kjxj = 0.

Remarquons que Hχ = Hχ′ avec χ = χk1,...,kn
et χ′ = χk′

1,...,k
′
n
si et seulement si il

existe α ∈ Q tel que k′i = αki pour tout i.
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On note alors

Sχ = Sk1,...,kn
= π(Hk1,...,kn

⊗ R)

la sous-variété spéciale maximale associée. De même on note

S̃χ = Hk1,...,kn
⊗ R.

On obtient ainsi toute les sous-variétés spéciales maximales de X. Par ailleurs
la théorie élémentaire des séries de Fourier nous donne

Lemme 4.1. Une suite de mesure νn sur X converge faiblement vers une mesure
ν si et seulement si pour tout caractère de X, on a

(4) νn(χ) −→ ν(χ).

Lemme 4.2. Soit S une variété spéciale et χ un caractère non trivial de X. La
restriction χS de χ à S est un caractère de S et χS = 1 si et seulement si S ⊂ Sχ.

Preuve. La restriction de χ à Sχ est triviale donc si S ⊂ Sχ alors la restriction
de χ à S est triviale.

Réciproquement, on peut écrire S = π(S̃) pour un sous-R-espace vectoriel S̃

de Rn. Soit x = (x1, . . . , xn) ∈ S̃ et χ un caractère trivial sur S. Pour tout t ∈ R

χ(π(tx)) = 1 car tx ∈ S̃. Pour tout t ∈ R on a t
∑n

I=1 kixi ∈ Z. On en déduit que∑n
I=1 kixi = 0 donc que (x1, . . . , xn) ∈ S̃χ. D’ou π(x) ∈ Sχ et donc S ⊂ Sχ.
Preuve de la proposition 4.1. Soit S une variété spéciale et µS sa mesure

invariante normalisée. Pour tout caractère χ de X,
∫
S
χdµS = 1 si la restriction de

χ à S est le caractère trivial 1 et vaut 0 sinon. D’après le lemme 4.2
∫
S
χdµS = 1

si S ⊂ Sχ et 0 sinon.
Soient donc Tn une suite stricte de sous-variétés spéciales de X. et µn la mesure

invariante normalisée de Tn. Soit χ un caractère non trivial de X. Comme Tn est
une suite stricte, pour tout n assez grand (dépendant de χ), Tn n’est pas contenu
dans Sχ. D’après ce qui précède, on voit que pour tout n assez grand on a∫

Tn

χdµn = 0.

on a donc

limn→∞

∫
Tn

χdµn = 0.

On termine la preuve de la proposition 4.1 en utilisant le lemme 4.1.
Une conséquence de la proposition 4.1 est l’énoncé:

Corollaire 4.1. Soit Sn une suite de sous-variétés spéciales de Zn\Rn. En
passant au besoin à une sous-suite, il existe une sous-variété spéciale S contenant
les Sn telle que la suite de mesures canoniques µn de Sn converge faiblement vers
la mesure canonique de S.

Soit E l’ensemble des sous-variétés spéciales contenant une infinité de termes
de la suite. Soit S un élément minimal de E . En passant à une sous-suite on peut
supposer que les Si sont contenus dans S pour tout i. La variété S est de la forme
Zk\Rk et par définition les Sn forment une suite stricte de sous-variétés spéciales
de S. Le résultat se déduit alors de la proposition 4.1.
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4.2. Application aux variétés abéliennes. Soit A = Γ\Cn une variété
abélienne. En identifiant Cn à R2n, on peut appliquer la théorie de la partie
précédente. Les sous-variétés abéliennes sont des sous-variétés spéciales. On obtient
alors la proposition 3.1.

Proposition 4.2. Soit Bn une suite de sous-variétés abéliennes de A. En
passant au besoin à une sous-suite, il existe une sous-variété abélienne B de A, telle
que telle que pour tout n Bn ⊂ B et telle que la suite de mesures µn canoniquement
associées converge vers la mesure µB canoniquement associée à B.

Preuve. On sait déjà qu’il existe une sous-variété spéciale S de A ayant la
propriété du théorème, il faut voir que S est une variété abélienne. Les Bi sont
de la forme Γ ∩ Vi\Vi pour des sous-C espaces vectoriels Vi de Cn. Par ailleurs
S = Γ ∩ V \V pour un R sous-espace vectoriel de Cn = R2n. Comme les Bn

forment une suite stricte de S, S est engendré comme groupe par un nombre fini
des Bi et V est somme d’un nombre fini des Vi. On en déduit que V est muni d’une
structure de C-espace vectoriel donc que B est un tore complexe puis que B est
une sous-variété abélienne de A car d’après ([LB92] p 73) un sous-tore complexe
d’une variété abélienne est une variété abélienne.

5. Appendice : effectivité dans le lemme de Poincaré, selon Bertrand
[Ber]

Nous donnons ici la preuve, reprise de l’appendice de [Ber], de la proposition
2.1. Pour l’énoncé lui-même, voir aussi [LB92], Chap. 5, Exercice 5.

5.1. Rappels. On fixe une Q-algèbre D de dimension finie que l’on suppose
être une algèbre à division, c’est-à-dire munie d’un élément unité 1 et telle que tous
ses éléments non nuls sont inversibles pour la multiplication. Dans notre situation,
avec une variété abélienne simple A, nous utiliserons ceci pour D := End(A) ⊗ Q.
Le centre de D ne jouera pas de rôle.

Définition 5.1. Un anneau O est un ordre dans D si

1. il est de type fini sur Z,
2. il est contenu dans D,
3. il contient 1,
4. O ·Q = D (où O ·Q désigne l’image de l’application naturelle de O ⊗Z Q

dans D).

Définition 5.2. Soit O un ordre dans D. On dit que Λ est un O-réseau si c’est un
O-module à droite de type fini qui est sans Z-torsion.

Donnons maintenant un cas particulier du théorème de Jordan-Zassenhaus (cf.
par exemple [CR81] p.534).

Théorème 5.1. (Jordan-Zassenhaus) Soient D une algèbre à division de di-
mension finie, O un ordre dans D, et V un D-module à droite de rang fini. Il n’existe
qu’un nombre fini de classes d’isomorphismes de O-réseaux L contenus dans V tels
que V = L ·Q.
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5.2. Le résultat de Bertrand.

Lemme 5.1. Soient D une Q-algèbre à division de dimension finie, n ≥ 1 un
entier et O un ordre maximal dans D. Il existe un entier c1 = c1(O, n) > 0 telle
que pour tout sous-O-module à droite L de On, on a :

1. Il existe un sous-O-module libre F de L tel que |L/F | divise c1.
2. Si On/L est sans Z-torsion, alors il existe un sous-O-module libre M de

On tel que L ∩ M = {0} et tel que L + M est d’indice divisant c1 dans
On.

Démonstration : Le module L est de rang fini, m, comme O-module. De plus,
c’est un sous-module de On qui est sans Z-torsion. C’est donc un O-réseau.
Par le théorème de Jordan-Zassenhaus 5.1, il n’y a qu’un nombre fini de classes
d’isomorphismes de sous-O-réseaux M de Dm tels que M ·Q = Dm  L ·Q. Ainsi,
L est isomorphe à un élément M0 appartenant à cette famille, finie de cardinal ne
dépendant que de O et de m ≤ n, de O-réseaux. Pour chaque élément de cette
famille, on choisit un sous-O-module libre d’indice fini et on prend l’image dans L
du sous-module correspondant à M0. On obtient ainsi un sous-O-module libre de
L, d’indice fini borné indépendamment de L. Ceci prouve le 1.

Pour le point 2. : le module On/L est sans Z-torsion donc c’est un O-réseau.
De plus par maximalité de l’ordre O, le O-réseau On/L est un O-module projectif
(cf. [CR81] Theorem 26.12 (ii) p.565). Ainsi L admet un O-réseau supplémentaire
M1 dans On. Par le point 1. , et quitte à remplacer c1 par son carré, on en déduit
un sous-O-module M de M1 comme annoncé. �

Proposition 5.1. (= Proposition 2.1) Il existe un entier c2 = c2(A) > 0 ne
dépendant que de A tel que pour toute sous-variété abélienne B de A, il existe une
sous-variété B′ de A telle que

A = B +B′ et card (B ∩B′) ≤ c2.

Démonstration : Notons tout d’abord que si ϕ : A → Ã est une isogénie de degré

N , l’énoncé sur Ã l’entrâıne sur A, avec c2(A) = c2(Ã)N . D’après le théorème de
réductibilité de Poincaré, on peut donc supposer sans perte de généralité que A est
un produit de puissances de variétés abéliennes deux à deux non isogènes.

En deuxième lieu, notons que si A1 et A2 sont deux variétés abéliennes telles
que Hom(A1, A2) = 0, alors, toute sous-variété abélienne B de A = A1×A2 est de la
forme B1×B2, où B1 et B2 sont les projections de B sur A1 et A2. Par conséquent,
c2(A1×A2) := c2(A1)×c2(A2) convient, et on peut sans perte de généralité supposer
que notre variété abélienne A est une puissance An

0 d’une variété abélienne simple.
Alors, End(A0) est un ordre d’une algèbre à division D, et il existe une variété

abélienne Ã0, isogène à A0, telle End(Ã0) est un ordre maximal O de D.
On peut finalement supposer sans perte de généralité que la variété abélienne

ambiante est de la forme An avec A simple et telle que O := End(A) est un ordre
maximal dans l’algèbre à division D = End(A)⊗Q.

Soit alors B une sous-variété abélienne de An. Elle est isogène à Am avec
m ≤ n. On a On  Hom(A,An). Notons

LB = {f ∈ On | f(A) ⊂ B}  Hom(A,B).

C’est un sous-O-module à droite de On. On peut donc appliquer le point 1. du
lemme 5.1 précédent qui fournit un sous-O-module libre L de LB d’indice divisant
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l’entier c1(A). Par ailleurs, A étant un groupe divisible on voit également sur la
définition de LB que On/LB est sans Z-torsion.

Le point 2. du même lemme 5.1 fournit alors un sous-O-module libre de type
fini M de On tel que M ∩ LB = {0} et tel que LB +M est d’indice divisant c1(A)
dans On. Ainsi L et M sont deux sous-O-modules libres de On tels que L∩M = 0
et L+M est d’indice ≤ c1(A)2 dans On.

Notons {λ1, . . . , λm} une base de L sur O et {µ1, . . . , µr} une base de M sur
O (avec m+ r = n). Considérons de plus l’homomorphisme de Am dans An

λ : Am → An défini par λ(x1, . . . , xm) =

m∑
i=1

λi(xi),

et notons de même µ : Ar → An. On pose B′ := µ(Ar). Quant à l’image de λ, c’est
B elle-même, puisque L étant contenu dans LB, elle est par définition contenue
dans B, tandis que les λi étant linéairement indépendants sur O, sa dimension est
égale à m dim(A) = dim(B).

Considérons maintenant l’endomorphisme de An

(λ, µ) : An → An, (x1, . . . , xn) �→
∑
i=1

λi(xi) +
r∑

i=1

µi(xm+i),

dont l’image est par définition B+B′. Comme les λi, µj sont linéairement indépen-
dants sur O, son image a pour dimension (m + r) dim(A) = dim(An). Il est donc
surjectif et B + B′ = An. D’autre part, L + M est d’indice ν ≤ c1(A)2 dans
On, donc il existe une matrice carrée γ d’ordre n à coefficients dans O telle que
(λ, µ) ◦ γ = νIn. D’après [Dra83] p.131, on a alors aussi γ ◦ (λ, µ) = νIn, de
sorte que le noyau de (λ, µ) est composé de points de torsion d’ordre divisant ν.

Finalement, (λ, µ) est une isogénie de degré borné par ν2n
2dim(A)2 := c2(A). Enfin,

(λ, µ) est la composée des isogénies λ×µ : Am×Ar → B×B′ et + : B×B′ → An,
donc

|B ∩B′| = | ker(+)| ≤ c2(A).

Ainsi, la sous-variété abélienne B′ de la variété ambiante An répond à la question.
�
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[LB92] H. Lange et C. Birkenhake, Complex abelian varieties, Grundlehren der Mathematischen

Wissenschaften, vol. 302, Springer-Verlag, Berlin, 1992. MR 1217487 (94j:14001)
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[Ser] J.-P. Serre, Groupes linéaires modulo p et points d’ordre fini des variétés abéliennes,
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147 (1998), no. 1, 167–179. MR 1609514 (99e:14031)
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Université Paris-Sud, Bâtiment 425, 91405 Orsay Cedex, France

E-mail address: nicolas.ratazzi@math.u-psud.fr
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The André-Oort conjecture for products of modular curves

Emmanuel Ullmo and Andrei Yafaev

Abstract. In this paper we prove (assuming the Generalised Riemann Hy-
pothesis) the André-Oort conjecture for products of modular curves using a
combination of Galois-theoretic and ergodic-theoretic methods.

1. Introduction

The André-Oort conjecture stated below has been recently proved by Klin-
gler, Ullmo and Yafaev (see [UY06] and [KY06]) in full generality assuming the
Generalised Riemann Hypothesis.

Conjecture 1.1 (André-Oort). Let S be a Shimura variety and let Σ be a set
of special points in S. Every irreducible component of the Zariski closure of Σ is a
special (or Hodge type) subvariety of S.

For generalities on this conjecture, in particular for the notions of special points
and subvarieties we refer, for example, to [Yaf07]. The purpose of this note is to
present a proof of this conjecture in the special case where S is a product of an arbi-
trary number of modular curves. It is our hope that this will help in understanding
the strategy used in [UY06] and [KY06], as many of the technical problems oc-
curring in the general case do not present themselves in the case considered in this
paper but all of the main ideas of the proof are conserved. The main result of this
paper is the following.

Theorem 1.2. Assume the GRH for imaginary quadratic fields. Let n ≥ 1 be
an integer and let S be a product of n modular curves. Let Σ be a set of special
points in S. The irreducible components of the Zariski closure of Σ are special
subvarieties.

Note that this case of the conjecture has already been dealt with by Edixhoven
[Edi05] but his strategy does not seem to be easily generalisable as it relies on the
very particular geometric properties of the Shimura variety under consideration. We
also point out that our strategy yields a proof of the Manin-Mumford conjecture as
well (the “abelian counterpart” of the André-Oort conjecture). We refer to [RU]
for details on this.
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The strategy of the proof is based on the following alternative in the geometry
of Shimura varieties. Let S be a Shimura variety and let Zn be a sequence of irre-
ducible special subvarieties of S. Let F be some number field over which S admits
a canonical model. After possibly replacing Zn by a subsequence and assuming the
GRH for CM-fields, at least one of the following cases occurs.

(1) The cardinality of the sets {σ(Zn), σ ∈ Gal(Q/F )} is unbounded as n →
∞ (and therefore Galois-theoretic techniques can be used).

(2) The sequence of probability measures µn canonically associated to Zn

weakly converges to some µZ , the probability measure canonically associ-
ated to a special subvariety Z of S. Moreover, for every n large enough,
Zn is contained in Z.

Which of the two cases occurs depends on the geometric nature of the subva-
rieties Zn.

Let us explain this in more detail in the case considered in this paper. So let
S be a product of n modular curves. We assume that S is (SL2(Z)\H)n = Cn.
Special subvarieties are products of factors which are of one of the following forms:

(1) A special point (equivalently CM point) of some Cm, m ≤ n.
(2) A modular curve Γ\H (for some congruence subgroup of Γ of SL2(Z))

embedded in a product of copies of C.

A special subvariety is called strongly special if it does not have any CM factors.
Sequences of strongly special subvarieties are precisely those for which the second
case of the alternative occurs (this is a consequence of a theorem of Clozel-Ullmo
that we will recall later). The sequences of special subvarieties that do have special
factors are those for which the first case of the alternative occurs.

The strategy of the proof is as follows. For a special subvariety Z, we let
c(ΩZ) be the number of CM factors, therefore c(ΩZ) = 0 means precisely that Z
is strongly special. Let X be a subvariety of S containing a Zariski dense set Σ of
special subvarieties. We can assume (after possibly replacing Σ by a Zariski dense
subset) that c(ΩZ) is constant as Z ranges through Σ; let’s call c(Σ) this number.
If c(Σ) = 0, then X is special by the theorem of Clozel and Ullmo, otherwise
the size of the Galois orbit of Z is unbounded as Z ranges through Σ. Using the
explicit description of the Galois action on special points and a characterisation
of special subvarieties in terms of Hecke correspondences, we show that every Z
with sufficiently large Galois orbit is contained in a special subvariety Z ′ with
c(ΩZ′) < c(ΩZ). Thus we construct a Zariski-dense set Σ′ of special subvarieties
with c(Σ′) < c(Σ). We then reiterate the process with Σ′ instead of Σ. Eventually
we obtain a Zariski dense set of strongly special subvarieties.
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THE ANDRÉ-OORT CONJECTURE FOR PRODUCTS OF MODULAR CURVES 433

2. Preliminaries.

Before we state and prove our main result, we recall some definitions and prove
some preliminary results which will be used in the course of the proof. Let us first
recall the following definition from Edixhoven ([Edi05], definition 1.1).

Definition 2.1. Let I be a finite set of cardinality r. For every i in I, let Γi

be a congruence subgroup of SL2(Z) and S be the product of the XΓi
:= Γi\H for

i ∈ I. A closed irreducible subvariety Z of S is called special (of type Ω = ΩZ)
if I has a partition Ω = (I1, . . . , It) such that Z is a product of subvarieties Zi of
Si =

∏
j∈Ii

Γj\H, each of one of the forms:

(1) Ii is a one-element set and Zi is a CM point.
(2) Zi is the image of H in Si under the map sending τ in H to the image of

(gsτ )s∈Ii in Si, where the gs are some elements of GL2(Q) with positive
determinant.

Given a special subvariety Z of type Ω, we define c(Ω) to be the number of CM
factors. A special subvariety Z is called strongly special if c(Ω) = 0

We now prove a few lemmas that will be used in the course of the proof.

Lemma 2.2. Let Z be a strongly special subvariety of Cn. Then Z is defined
(as an absolutely irreducible subscheme) over an abelian extension L of Q such that
Gal(L/Q) is killed by the multiplication by 2, i.e. for every σ in Gal(L/Q), σ2 = 1.

Proof. This is a consequence of the explicit description of the Galois action on
irreducible components of strongly special subvarieties via a reciprocity law. We
refer to section 2 of [UY06] for details on this.

The inclusion Z ↪→ Cn corresponds to the inclusion of Shimura data

(PGLm
2 ,H±m) ↪→ (PGLn

2 ,H
±n)

for some m ≤ n. This is a consequence of the explicit description of special subvari-
eties of Cn given above. Let ρ : SLm

2 −→ PGLm
2 be the simply connected covering.

Its kernel is killed by 2. Then the reciprocity morphism defining the Galois action
on connected components is a morphism

r : Gal(Q/Q) −→ PGLm
2 (Af )/PGLm

2 (Q)ρ(SLm
2 (Af ))

It is now clear that its image (which is isomorphic to Gal(L/Q)) is killed by 2. �
Using the above lemma we now prove the following.

Lemma 2.3. Let Z = {x1, . . . , xs} × Z ′ be a special subvariety of Cn (Z ′ is a
strongly special subvariety of Cn−s and (x1, . . . , xs) is a special point of Cs). Let
Oxi

be the ring of complex multiplication of the point xi. Let l be a prime splitting
every Oxi

. Let Tl2 be the Hecke correspondence defined by the element of the product
of r copies of GL2(Q)+ which is

(
l2 0
0 1

)
on the first s components and 1 elsewhere.

There exists an element σ of Gal(Q/Q) such that

σ(Z) ⊂ Tl2Z

Proof. Let K be the composite of the fields Kxi
of complex multiplication of the

points xi and let R be the ring Ox1
⊗ · · · ⊗ Oxs

. The ring R is an order in K and
the prime l splits in R. Let τ be the Frobenius element in Gal(Q/K) for a prime
ideal lying over l. The theory of complex multiplication of elliptic curves shows that
τ2(xi) ⊂ Tl2(xi) where Tl2 is the usual Hecke correspondence given by the element
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(
l2 0
0 1

)
of GL2(Q)+. By the lemma above τ2(Z ′) = Z ′. It follows that we can take

σ = τ2. �
As in [Edi05], we will make use of lower bounds for Galois orbits of CM points.

Let Γ be a congruence subgroup of SL2(Z) and x a special point of Γ\H. Let Ox be
the ring of complex multiplication of x (an order in an imaginary quadratic field)
and dx be the absolute value of the discriminant of Ox. Let Z be a special subvariety
of S of type Ω with s = c(Ω) > 0. Let, as in the above lemma, {x1, . . . , xs} be the
set of CM points occurring as a CM factor of Z and let dZ = max1≤i≤sdxi

. In the
following statement and in the rest of this paper, the symbol � stands for “up to
a uniform constant”. We hope that this notation will cause no confusion.

Proposition 2.4. Let 0 < ε < 1/2 be a real number. Let Z be a special
subvariety of type Ω with c(Ω) > 0. The following inequality holds:

|{σ(Z), σ ∈ Gal(Q/Q)}| � d
1
2−ε

Z

Proof. The cardinality of this set is at least that of the Galois orbit of the special
point (x1, . . . , xs) of a product of s modular curves. The lower bound for this
Galois orbit is a consequence of the Brauer-Siegel theorem. We refer to section 5
of [Edi05] for details. �

To finish this section, we state the following consequence of the main theorem
of [CU05] that will be used in a crucial way in the course of our proof.

Theorem 2.5 (Clozel-Ullmo). Let S be a product of modular curves and let Zn

be a sequence of strongly special subvarieties. The sequence Zn is equidistributed in
the following sense. There exists a subsequence Znk

and a strongly special subvari-
ety Z such that the sequence of probability measures µnk

canonically associated to
Znk

weakly converges to µZ , the probability measure canonically associated to Z.
Furthermore, Z contains Znk

for all k large enough.

3. A characterization.

In this section we consider a subvarietyX containing a special subvariety Z with
c(ΩZ) > 0. We prove that if Z is contained in its image by some suitable Hecke
correspondence, then X contains a special subvariety Z ′ containing Z properly.
This is a key ingredient of our proof.

We will make use of the notion of degree of a subvariety V of P1r that we
now recall. The Chow ring of P1r is Z[ε1, . . . , εr] with ε2i = 0. Suppose that V is
irreducible of codimension i. The class [V ] of V in the Chow group CHi(P1r) is

[V ] =
∑
|I|=i

aIεI

where εI is the product of the εi for i in I and aI is the degree of the projection of V
onto the product of copies of P1r indexed by the complement I∨ of I in {1, . . . , r}.
We define the degree of V to be deg(V ) =

∑
I aI . The variety S admits a quasi-

finite morphism to Cr. Let V ′ be a subvariety of S and let V be the closure of
the image of V ′ in P1r. The morphism from V ′ to V is quasi-finite. We define the
degree of V ′ to be deg(V ′) = deg(V )[C(V ′) : C(V )], where C(V ′) and C(V ) denote
the function fields of V ′ and V , respectively. The degree [C(V ′) : C(V )] is at most
the index of the product of the Γi in the product of the SL2(Z).
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Proposition 3.1. Let r ≥ 3 be an integer. Let X be an irreducible hypersur-
face of Cr such that for every I ⊂ {1, . . . , r} of cardinality r − 1, the projections
pI : X −→ C|I| are dominant (in particular generically finite). Let l be a prime. Let
s ≤ r be an integer and let Tl2 be the Hecke correspondence defined by the element
of the product of r copies of GL2(Q)+ which is

(
l2 0
0 1

)
on the first s components and

1 elsewhere.
Suppose that l is larger than deg(X) and 13. Then the variety Tl2X is irre-

ducible.

Proof. Let Y (l2) be Γ(l2)\H where Γ(l2) := ker(SL2(Z) −→ SL2(Z/l
2Z)). Let π

be the quotient map Y (l2)r −→ Cr. Let l be a prime as in the statement above.
The proof of Proposition 4.2 of [Edi05] shows that π−1X is irreducible. As Tl2X
is the image of π−1X by some (other) morphism, Tl2X is irreducible as well. �

We recall (see [Edi05]) that if X is an irreducible subvariety of Cr then a
minimal projection pI for X is given by a subset I ⊂ {1, . . . , r} such that pIX
is a hypersurface of C|I| such that for all subsets I ′ of I with |I ′| = |I| − 1, the
projection pI′X is dominant. We now prove our fundamental characterisation.

Proposition 3.2. Let X be a subvariety of Cr all of whose irreducible compo-
nents have the same minimal projections.

Suppose that every irreducible component Xi of X contains a special subvariety
Zi with s = c(ΩZi

) > 0 independent of i and such that

Zi = {x1, . . . , xs} × Z ′
i

where, as usual, xis are CM points and Z ′
i is strongly special.

Suppose that the first projection of X (or of one of its irreducible components)
is dominant.

Suppose that there exists a prime l greater than 13 and greater than deg(X)
such that

X ⊂ Tl2X

Then X is a direct product X = X1 × X2 of subvarieties of Cs and Cr−s

respectively. Furthermore, the irreducible components of X1 are special. In partic-
ular, each component Xi of X contains a special subvariety Z ′

i containing Zi with
c(ΩZ′

i
) < c(ΩZi

).

Proof. We will use the following lemma.

Lemma 3.3. Let I be a subset of {1, . . . , r} which is minimal for every compo-
nent of X. Then either I is contained in {1, . . . , s} or I is contained in
{s+ 1, . . . , r}. Furthermore, if |I| ≥ 3, then I is contained in {s+ 1, . . . , r}.

Proof. Suppose that |I| ≥ 3. We will show that in this case the intersection
of I with {1, . . . , s} is empty. Suppose it is not and write I = I1

∐
I2 where

I1 is the intersection of I with {1, . . . , s}. Let x2 be a point of pI2X. As I is
minimal, the irreducible components of the subvarieties pIX and pI(TlX) of C|I|

are hypersurfaces. The degree of pIX is at most the degree of X. Proposition 3.1
above shows that for every component Y of pIX, pI(Tl)Y is irreducible, hence
pIX and pITlX have the same number of irreducible components. The inclusion
X ⊂ TlX implies that pIX contains a pITl-orbit. Lemma 4.4 of [Edi05] shows
that the orbits of the usual Hecke correspondence Tl on C are dense. Hence pIX
contains CI1 ×{x2}. It follows that components of pIX are of the form CI1 ×pI2Xi
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(Xi being the components of X) which contradicts the minimality of I (note that
for any i in I1, the projection on (I1 − {i}) ∪ I2 is not dominant).

Suppose now that |I| = 2. We will see that either I is contained in {1, . . . , s}
or in {s+ 1, . . . , r}. Indeed, suppose that I is not contained in one of the two sets.
Let Z be a special subvariety contained in X as in the statement. It follows that
pIZ is of the form {x} ×C where x is some special point. By minimality of I, this
implies that components of pIX are of the form {x}×C. But this again contradicts
the minimality of the set I.

Finally, it can occur that I is a one-element set but then pI(X) is a special
point among {x2, . . . , xs} and hence I is again contained in {1, . . . , s}. �

By Lemma 3.5 of [Edi05], X is a union of components of the intersection of
the p−1

I pIX with I ranging through minimal sets for X. The intersection of the

p−1
I pIX for I contained in {1, . . . , s} is of the form X ′

1 × Cr−s. The intersection
for the I contained in {s+ 1, . . . , r} is of the form Cs × X ′

2. It follows that X is a
union of components of the product X ′

1 ×X ′
2, say X = X1 ×X2.

It remains to see that the components of X1 are special. Fix a component say
X1 = Y1 × Y2 of X.

Let I be a minimal set for Y1. Then I is contained in {1, . . . , s} and the lemma
above shows that either |I| = 2 or |I| = 1. By Proposition 3.6 of [Edi05], it suffices
to show that the closure of the image of every minimal projection pI(Y1) is special.

If |I| = 1, then the projection pIY1 of Y1 is a special point.
Suppose now that |I| = 2. Then (the closure of) pIY1 is an irreducible curve

in C2. Let Y be this curve. Furthermore, the degrees of the two projections of
Y are finite (because I is minimal) and bounded above by deg(X). The proof of
Proposition 4.1 of [Edi05] shows that Y is special.

As every minimal set I for Y1 satisfies |I| ≤ 2 and pIY1 is special, Proposition 3.6
of [Edi05] shows that Y1 is special.

Write Z1 = {x1, . . . , xs}×Z1 where Z1 is a strongly special subvariety of Cr−s.
We now take Z ′

1 = Y1 ×Z1. �

4. Proof of the main theorem.

This section is devoted to the proof of the following theorem, which is the main
result of this note.

Theorem 4.1. Assume the GRH for imaginary quadratic fields. Let X be a
subvariety of a product S of r modular curves containing a Zariski dense set Σ of
special subvarieties. Then the irreducible components of X are special.

We can assume that all the subvarieties in Σ are of the same type Ω. As X
contains a Zariski dense set of special points, X is defined over Q. We replace X by
a (finite) union of its Gal(Q/Q)-conjugates and hence assume that X is irreducible
over Q. If c(Ω) = 0, then X is special by the theorem 2.5. Using Proposition 2.1 of
[EY03], we see that we can (and do) assume that S is the product of r copies of
SL2(Z)\H (this is the fact that the level structure does not matter for the André-
Oort conjecture). We can also assume that the projections of X to every factor are
dominant (simply remove the factors to which X projects as just one, necessarily
special, point).

Let s denote c(Ω). Renumbering the Ii and possibly replacing Σ by a Zariski
dense subset allows us to assume that the cardinality of Ii is one for i = 1, . . . , s
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and the corresponding projection is a CM point. In other words a subvariety Z in
Σ can be written as

Z = {x1, . . . , xs} × Z ′

with Z ′ strongly special (in the product of the Γi\H for i > s). We can also assume
that dZ = dx1

(renumbering the xi). Our main theorem is a consequence of the
following proposition, the proof of which will occupy the rest of this section.

Proposition 4.2. Suppose that c(Ω) > 0, then X contains a Zariski dense set
of special subvarieties of type Ω′ with c(Ω′) < c(Ω).

Lemma 4.3. Assume the GRH for imaginary quadratic fields. Fix an integer
A ≥ 3. As soon as dZ is larger than some absolute constant, there exists a prime l
which is split in every Oxi

and satisfies

(log dZ)
A < l < (log dZ)

A+1

Proof. Let us quickly recall a consequence of the effective Chebotarev theorem
(that assumes the GRH) in the form presented in the section 6 of [Edi05]. We
also use [Edi01] appendix N. Edixhoven shows that for a given real number x >
(log dZ)

3 (and bigger than some absolute constant), the number π(x) of primes
l ≤ x split in every Oxi

satisfies

(1) |π(x)− Li(x)

nK
| ≤

√
x

3nK
(log(dZ) + nK log(dZ))

where nK is the degree of the composite K of the fields of complex multiplication
of the xi. Here Li(x) =

∫ x

2
dt/ log(t). Edixhoven further shows in the appendix N

to [Edi01] that if x is larger than (log dZ)
3, then (log dZ) log(x)/3

√
x < 1/2. Using

this and the facts that Li(x) log(x)/x tends to 1 and (log x)2/
√
x tends to 0 when

x tends to infinity, we deduce that for x ≥ (log dZ)
3 and larger than some absolute

constant
x

3nK log(x)
≤ π(x) ≤ 3x

2nK log(x)

The number of primes we are interested in is

π((log dZ)
A+1)− π((log dZ)

A)

Hence the number of primes l satisfying (log dZ)
A < l < (log dZ)

A+1 is at least

(log dZ)
A

3nK log log(dZ)
(
(log dZ)

A+ 1
− 9

2A
)

which is clearly larger than 1 provided dZ is larger than some absolute constant. �
As Z ranges through Σ, dZ is unbounded because the first projection of X is

dominant and the projection of Σ is Zariski dense (infinite) in C. We can now finish
the proof of Theorem 4.2 and hence of 4.1 by induction.

Using equation (1), we choose a prime l > max(3, deg(X)) split in every Oxi

and satisfying
l < (log dZ)

3

If X is contained in Tl2X, then Proposition 3.2 shows that X contains a special
subvariety Z ′ containing Z with c(ΩZ′) < c(ΩZ).

Suppose now that a geometrically irreducible component X ′ of X is not con-
tained in Tl2X. As both X and Tl2X are defined over Q, either the intersection of
X with Tl2X is proper or X is contained in Tl2X. We make use of the following
lemma.
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Lemma 4.4. Suppose that X is not contained in Tl2X. We can choose a hy-
persurface H in (P1

Q)
r
such that

(1) X is not contained in H but Tl2(X) ⊂ H.
(2) deg(H) � deg(X)l2s.

Proof. Let X be the closure of X in (P1
Q)

r
. Let [X] =

∑
|I|=r−dim(X) aIεI be the

decomposition of the cycle [X] in CHr−dim(X)(P1r). Then

[Tl2(X)] =
∑

|I|=r−dim(X)

(l2 + l)saIεI

We choose H to be a hypersurface such that

[H] =
(
dim(X)! ·

∑
|I|=r−dim(X)

(l2 + l)saI

) ∑
i=1,...,r

εi

As usual, write Z = {x1, . . . , xs} × Z ′. As l splits every Oxi
, Lemma 2.3 implies

that some Galois conjugate of Z is contained in Tl2Z ⊂ Tl2X. By rationality of the
Hecke operator Tl2 we find that Z ⊂ X ∩ Tl2X. Hence Z ⊂ X ∩H. �

Lemma 4.5. Let Y be a Q-component of X ∩ H containing Z.The projection
of Y on the first factor is dominant.

Proof. Suppose that the first projection of Y is not dominant. Then some ge-
ometrically irreducible component of Y is of the form {x1} × Y ′. Therefore, the
image of the first projection of Y contains the Galois orbit of x1. It follows that [Y ]
is divisible by O(x1)ε1, where O(x1) denotes the cardinality of this Galois orbit. It
follows that the degree of Y is at least O(x1). The fact that

O(x1) � d
1
2−ε

Z

contradicts the fact that the degree of H is bounded by a uniform power of log(dZ).
�

We replace X := X1 by X2 := Y , given by the previous lemma. The degree of
X2 is � (log dZ)

A where A is some uniform integer. Using Lemma 4.3 we can find
a prime l2 split in every Oxi

such that

deg(X2) < l2 � (log dZ)
A+1.

We now apply the construction just made recursively. If the inclusion did not
occur at any of the previous stages, then we end up in the following situation.

(1) dim(Xk) = dim(Z) + 1
(2) degXk � (log dZ)

C where C is some uniform integer.

(3) |Gal(Q/Q) · Z| � d
1
2−ε

Z .
(4) Z ⊂ Xk

Using effective Chebotarev, provided dZ is large enough, we can choose lk
splitting the Oxi

’s such that for an absolute constant C

(1) l2s � (log dZ)
C = o(d

1
2−ε

Z ) for a small ε > 0.
(2) lk > deg(Xk).

Then by the lemma 2.3, Z ⊂ Xk ∩ Tl2k
Xk. The inequalities above show that

the intersection Xk ∩ Tl2k
Xk is not proper, hence Xk is contained in Tl2k

Xk and

by 3.2 Xk and therefore X contains a special subvariety Z ′ containing Z with
c(ΩZ′) < c(ΩZ′). This finishes the proof.



THE ANDRÉ-OORT CONJECTURE FOR PRODUCTS OF MODULAR CURVES 439

References
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Moduli of abelian varieties and p-divisible groups

Ching-Li Chai and Frans Oort

Abstract. This is a set of notes for a course we gave in the second week
of August in the 2006 CMI Summer School at Göttingen. Our main topic is
geometry and arithmetic of Ag ⊗ Fp, the moduli space of polarized abelian
varieties of dimension g in positive characteristic. We illustrate properties of
Ag ⊗Fp, and some of the available techniques by treating two topics: ‘Density

of ordinary Hecke orbits’ and ‘A conjecture by Grothendieck on deformations
of p-divisible groups’.
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We present proofs of two recent results. The main point is that the methods
used for these proofs are interesting. The emphasis will be on the various techniques
available.

In characteristic zero we have strong tools at our disposal: besides algebraic-
geometric theories we can use analytic and topological methods. It would seem that
we are at a loss in positive characteristic. However the opposite is true. Phenomena
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occurring only in positive characteristic provide us with strong tools to study mod-
uli spaces. And, as it turns out again and again, several results in characteristic
zero can be derived using reduction modulo p. The discussion of tools in positive
characteristic will be the focus of our notes.

Here is a list of some of the central topics:

• Serre-Tate theory.
• Abelian varieties over finite fields.
• Monodromy: �-adic and p-adic, geometric and arithmetic.
• Dieudonné modules and Newton polygons.
• Theory of Dieudonné modules, Cartier modules and displays.
• Cayley-Hamilton and deformations of p-divisible groups.
• Hilbert modular varieties.
• Purity of the Newton polygon stratification in families of p-divisible
groups.

The strategy is that we have chosen certain central topics, and for those we took
ample time for explanation and for proofs. Besides that we need certain results
which we label as “Black Box”. These are results which we need for our proofs,
which are either fundamental theoretical results (but it would take too much time
to explain their proofs), or lemmas which are computational, important for the
proof, but not very interesting to explain in a course. We hope that we explain well
enough what every relevant statement is. We write:

BB A Black Box, please accept that this result is true.

Th One of the central results, we will explain it.

Extra A result which is interesting but was not discussed in the course.

Notation to be used will be explained in Section 10. In order to be somewhat
complete we will gather related interesting results, questions and conjectures in
Section 11. Part of our general convention is that K denotes a field of characteristic
p > 0, unless otherwise specified, and k denotes an algebraically closed field.

We assume that the reader is familiar with the basic theory of abelian varieties
at the level of Chapter II of [54] and [55], Chapter 6; we consider abelian varieties
over an arbitrary field, and abelian schemes over a base scheme. Alternative ref-
erences: [16], [81]. For the main characters of our play: abelian varieties, moduli
spaces, and p-divisible groups, we give references and definitions in Section 10.

1. Introduction: Hecke orbits, and the Grothendieck conjecture

In this section we discuss the two theorems we are going to consider.

1.1. An abelian variety A of dimension g over a field K ⊃ Fp is said to be
ordinary if

# (A[p](k)) = pg.

More generally, the number f = f(A) such that # (A[p](k)) = pf is called the
p-rank of A. It is a fact that the p-rank of A is at most dim(A); an abelian variety
is ordinary if its p-rank is equal to its dimension. See 10.10 for other equivalent
definitions.

An elliptic curve E over a field K ⊃ Fp is said to be supersingular if it is not or-
dinary; equivalently, E is supersingular if E[p](k) = 0 for any overfield k ⊃ K. This
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terminology stems from Deuring: an elliptic curve in characteristic zero is said to de-
termine a singular j-value if its endomorphism ring over an algebraically closed field
(of characteristic 0) is larger than Z (therefore of rank 2 over Z), while a supersin-
gular elliptic curve E over an algebraically closed field k ⊃ Fp has rkZ(End(E)) = 4.
Since an elliptic curve is non-singular, a better terminology would be “an elliptic
curve with a singular j-invariant”.

We say an abelian variety A of dimension g over a field K is supersingular if
there exists an isogeny A⊗K k ∼ Eg, where E is a supersingular elliptic curve. An
equivalent definition for an abelian variety in characteristic p to be supersingular
is that all of its slopes are equal to 1/2; see 4.38 for the definition of slopes and the
Newton polygon. Supersingular abelian varieties have p-rank zero. For g = 2 one
can show that (supersingular) ⇔ (f = 0), where f is the p-rank. For g > 2 there
exist abelian varieties of p-rank zero which are not supersingular, see 5.22.

Hecke orbits

Definition 1.2. Let A and B be abelian varieties over a field K. Let Γ ⊂ Q be a
subring. A Γ-isogeny from A to B is an element ψ of Hom(A,B)⊗ZΓ which has an
inverse in Hom(B,A)⊗Z Γ, i.e., there exists an element ψ′ ∈ Hom(B,A)⊗Z Γ such
that ψ′ ψ = idA ⊗ 1 in Hom(A,A)⊗Z Γ and ψ ψ′ = idB ⊗ 1 in Hom(B,B)⊗Z Γ.

Remark.

(i) When Γ = Q (resp. Γ = Z(p), resp. Z[1/�]), we say that ψ is a quasi-
isogeny (resp. prime-to-p quasi-isogeny, resp. an �-power quasi-isogeny).
A prime-to-p isogeny (resp. �-power isogeny) is an isogeny which is also a
Z(p)-isogeny (resp. a Z[1/�]-isogeny). Here Z(p) = Q∩Zp is the localization
of Z at the prime ideal (p) = pZ.

(ii) A Q-isogeny ψ (resp. Z(p)-isogeny, resp. Z[1/�]-isogeny) can be realized by
a diagram

A
α←− C

β−→ B ,

where α and β are isogenies such that there exists an integerN ∈ Γ× (resp.
an integer N prime to p, resp. an integer N ∈ �N) such that N ·Ker(α) =
N ·Ker(β) = 0.

Definition 1.3. Let [(A, λ)] = x ∈ Ag(K) be the moduli point of a polarized
abelian variety over a field K.

(i) We say that a point [(B, µ)] = y of Ag is in the Hecke orbit of x if there
exists a field Ω and

a Q-isogeny ϕ : AΩ → BΩ such that ϕ∗(µ) = λ.

Notation: y ∈ H(x). The set H(x) is called the Hecke orbit of x.
(ii) Hecke-prime-to-p-orbits. If in the previous definition moreover ϕ is a Z(p)-

isogeny, we say [(B, µ)] = y is in the Hecke-prime-to-p-orbit of x.
Notation: y ∈ H(p)(x).

(iii) Hecke-�-orbits. Fix a prime number � different from p. We say [(B, µ)] = y
is in the Hecke-�-orbit of x if in the previous definition moreover ϕ is a
Z[1/�]-isogeny.
Notation: y ∈ H�(x).
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(iv) Notation: Suppose that x = [(A, λ)] is a point of Ag,1, i.e., λ is principal.
Write

H(p)
Sp (x) := H(p)(x) ∩Ag,1 , HSp

� (x) := H�(x) ∩Ag,1 (� �= p) .

Remark.

(i) Clearly we have H�(x) ⊆ H(p)(x) ⊆ H(x). Similarly we have

HSp
� (x) ⊆ H(p)

Sp (x) for x ∈ Ag,1.

(ii) Note that y ∈ H(x) is equivalent to requiring the existence of a diagram

(B, µ)
ψ←− (C, ζ)

ϕ−→ (A, λ).

such that ψ∗µ = ζ = ϕ∗λ, where φ and ψ are isogenies, [(B, µ)] = y,
[(A, λ)] = x. If we have such a diagram such that both ψ and ϕ are
Zp-isogenies (resp. Z[1/�]-isogenies), then y ∈ H(p)(x) (resp. y ∈ H�(x).)

(iii) We have given the definition of the so-called Sp2g-Hecke-orbit. One can
also define the (slightly bigger) CSp2g(Z)-Hecke-orbits by the usual Hecke
correspondences, see [28], VII.3, also see 1.7 below.

(iv) The diagram which defines H(x) as above gives representable correspon-
dences between components of the moduli scheme; these correspondences
could be denoted by Sp-Isog, whereas the correspondences considered in
[28], VII.3 could be denoted by CSp-Isog.

1.4. Why are Hecke orbits interesting? Here we work first over Z. A
short answer is that they are manifestations of the Hecke symmetry on Ag. The
Hecke symmetry is a salient feature of the moduli space Ag; methods developed for
studying Hecke orbits have been helpful for understanding the Hecke symmetry.

To explain what the Hecke symmetry is, we will focus on Ag,1, the moduli space
of principally polarized abelian varieties and the prime-to-p power, the projective

system of Ag,1,n over Z[1/n]. The group Sp2g(A
(p)
f ) of finite prime-to-p adelic points

of the symplectic group Sp2g operates on this tower, and induces finite correspon-
dences on Ag,1; these finite correspondences are known as Hecke correspondences.
By the term Hecke symmetry we refer to both the action on the tower of moduli
spaces and the correspondences on Ag,1. The prime-to-p Hecke orbit H(p)(x)∩Ag,1

is exactly the orbit of x under the Hecke correspondences coming from the group

Sp2g(A
(p)
f ). In characteristic 0, the moduli space of g-dimensional principally po-

larized abelian varieties is uniformized by the Siegel upper half space Hg, consisting
of all symmetric g× g matrices in Mg(C) whose imaginary part is positive definite:
Ag,1(C) ∼= Sp2g(Z)\Hg. The group Sp2g(R) operates transitively on Hg, and the
action of the rational elements Sp2g(Q) give a family of algebraic correspondences
on Sp2g(Z)\Hg. These algebraic correspondences are of fundamental importance
for harmonic analysis on arithmetic quotients such as Sp2g(Z)\Hg.

Remark/Exercise 1.5. (Characteristic zero.) The Hecke orbit of a point in the
moduli space Ag ⊗ C in characteristic zero is dense in that moduli space for both
the metric topology and the Zariski topology.

1.6. Hecke orbits of elliptic curves. Consider the moduli point [E] =
j(E) = x ∈ A1,1

∼= A1 of an elliptic curve in characteristic p. Here A1,1 stands for
A1,1 ⊗ Fp. Note that every elliptic curve has a unique principal polarization.
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(1) If E is supersingular H(x)∩A1,1 is a finite set; we conclude that H(x) is
nowhere dense in A1.

Indeed, the supersingular locus in A1,1 is closed, there do exist or-
dinary elliptic curves, and hence that locus is finite; Deuring and Igusa
computed the exact number of geometric points in this locus.

(2) Remark/Exercise. If E is ordinary, its Hecke-�-orbit is dense in A1,1.
There are several ways to prove this. Easy and direct considerations

show that in this case H�(x)∩A1,1 is not finite; note that every component
of A1 has dimension one, and conclude H(x) is dense in A1.

Remark. For elliptic curves we have defined (supersingular) ⇔ (non-ordinary).
For g = 2 one can show that (supersingular) ⇔ (f = 0), where f is the p-rank. For
g > 2 there exist abelian varieties of p-rank zero which are not supersingular, see
5.22.

1.7. A bigger Hecke orbit. We work over Z. We define the notion of CSp-
Hecke orbits on Ag,1. Two K-points [(A, λ)], [(B, µ)] of Ag,1 are in the same CSp-
Hecke orbit (resp. prime-to-p CSp-Hecke orbit, resp. �-power CSp-Hecke orbit) if
there exists an isogeny ϕ : A⊗ k → B ⊗ k and a positive integer n (resp. a positive
integer n which is relatively prime to p, resp. a positive integer which is a power
of �) such that ϕ∗(µ) = n · λ. Such Hecke correspondences are representable by a
morphism Isogg → Ag ×Ag on Ag, also see [28], VII.3.

The set of all such (B, µ) for a fixed x := [(A, λ)] is called the CSp-Hecke

orbit (resp. CSp(A
(p)
f )-Hecke orbit, resp. CSp(Q�)-Hecke orbit) of x, and denoted

HCSp(x) (resp. H(p)
CSp(x), resp. H

CSp
� (x)). Note that

HCSp(x) ⊃ H(p)
CSp(x) ⊃ H

CSp
� (x),

HCSp(x) ⊃ H(x), H(p)
CSp(x) ⊃ H(p)(x) and HCSp

� (x) ⊃ H�(x). This slightly bigger
Hecke orbit will play no role in this paper. However, it is nice to see the relation
between the Hecke orbits defined previously in 1.3, which could be called the Sp-
Hecke orbits and Sp-Hecke correspondences, with the CSp-Hecke orbits and CSp-
Hecke correspondences.

Theorem 1.8. Th (Density of ordinary Hecke orbits) Let [(A, λ)] = x ∈ Ag⊗Fp

be the moduli point of a polarized ordinary abelian variety in characteristic p.

(i) If the polarization λ is separable, then
(
H(p)(x) ∩Ag,1

)Zar
= Ag,1. If

deg(λ) ∈ �N for a prime number � �= p, then (H�(x) ∩ Ag,1)
Zar

= Ag,1.
(ii) From (i) we conclude that H(x) is dense in Ag, with no restriction on the

degree of λ.

See Theorem 9.1. This theorem was proved by Ching-Li Chai in 1995; see [9],
Theorem 2 on page 477. Although CSp-Hecke orbits were used in [9], the same
argument works for Sp-Hecke orbits as well. We present a proof of this theorem;
we follow [9] partly, but also present a new insight which was necessary for solving
the general Hecke orbit problem. This final strategy will provide us with a proof
which seems easier than the one given previously. More information on the general
Hecke orbit problem can be obtained from [10] as long as [13] is not yet available.

Exercise 1.9. (Any characteristic.) Let k be any algebraically closed field (of
any characteristic). Let E be an elliptic curve over k such that End(E) = Z. Let
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� be a prime number different from the characteristic of k. Let E′ be an elliptic
curve such that there exists an isomorphism E′/(Z/�)

k
∼= E. Let λ be the principal

polarization on E, let µ be the pullback of λ to E′, hence µ has degree �2, and let
µ′ = µ/�2, hence µ′ is a principal polarization on E′. Note that [(E′, µ′)] ∈ H(x).
Show that [(E′, µ′)] �∈ HSp(x).

Exercise 1.10. Let E be an elliptic curve in characteristic p which is not super-
singular (hence ordinary); let µ be any polarization on E, and x := [(E, µ)]. Show
HSp(x) is dense in A1.

1.11. (1) Let Isogg,Sp be the moduli space which classifies diagrams of polarized
g-dimensional abelian schemes

(B, µ)
ψ←− (C, ζ)

ϕ−→ (A, λ)

in characteristic p such that ψ∗µ = ζ = ϕ∗λ. Consider a component I of Isogg,Sp
defined by diagrams as in 1.7 with deg(ψ) = b and deg(ϕ) = c. If b is not divisible
by p, the first projection Ag ← I is étale; if c is not divisible by p, the second
projection I → Ag is étale.

(2) Consider Isogordg,Sp ⊂ Isogg,Sp, the largest subscheme (it is locally closed) lying
over the ordinary locus (either in the first projection, or in the second projection,
which is the same).

Exercise. Show that the two projections (Ag)
ord ← Isogordg,Sp → (Ag)

ord are both
surjective, finite and flat.

(3) Extra Let Z be an irreducible component of Isogg,Sp over which the polar-
izations µ, λ are principal, and such that ζ is a multiple of a principal polarization.
Then the projections Ag,1 ← Z → Ag,1 are both surjective and proper. This fol-
lows from [28], VII.4. The previous exercise (2) is easy; the fact (3) here is more
difficult; it uses the computation in [56].

1.12. We explain the reason to focus our attention on Ag,1 ⊗ Fp, the moduli
space of principally polarized abelian varieties in characteristic p.

(1) BB In [56] it has been proved that (Ag)
ord is dense in Ag = Ag ⊗ Fp.

(2) We show that for an ordinary [(A, λ)] = x we have

(H�(z) ∩ Ag,1)
Zar = Ag,1 ∀z ∈ Ag,1 =⇒ (H(x))Zar = Ag.

Work over k. In fact, consider an irreducible component T of Ag. As proved in
[56] there is an ordinary point y = [(B, µ)] ∈ T . By [54], Corollary 1 on page 234,
we see that there is an isogeny (B, µ)→ (A, λ), where λ is a principal polarization.
By 1.11 (2) we see that density of H�(x)∩Ag,1 in Ag,1 implies density of H�(x)∩T
in T .

Therefore, from now on we shall be mainly interested in Hecke orbits in the
principally polarized case.

Theorem 1.13. Extra (Ching-Li Chai and Frans Oort) For any [(A, µ)] = x ∈
Ag ⊗ Fp with ξ = N (A), the Hecke orbit H(x) is dense in the Newton polygon
stratum Wξ(Ag ⊗ Fp).

A proof will be presented in [13]. For a definition of Newton polygon strata
and the fact that they are closed in the moduli space, see 1.19, 1.20. Note that in
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case f(A) ≤ g−2 the �-Hecke orbit is not dense inWξ(Ag⊗Fp). In [68], 6.2 we find
a precise conjectural description of the Zariski closure of H�(x); that conjecture has
now been proven and it implies 1.13.

Lemma 1.14. BB (Chai) Let [(A, λ)] = x ∈ Ag,1. Suppose that A is super-

singular. Then H(p)(x) ∩ Ag,1 is finite, therefore H�(x) ∩ Ag,1 is finite for every
prime number � �= p. Conversely if H�(x)∩Ag,1 is finite for a prime number � �= p,
then x is supersingular.

See [9], Proposition 1 on page 448 for a proof. Note that H(x) equals the whole
supersingular Newton polygon stratum: the prime-to-p Hecke orbit is small, but the
Hecke orbit including p-power quasi-isogenies is large. Lemma 1.14 will be used in
3.22.

A conjecture by Grothendieck

Definition 1.15. p-divisible groups. Let h ∈ Z>0 be a positive integer, and let
S be a base scheme. A p-divisible group of height h over S is an inductive system of
finite, locally free commutative group scheme Gi over S indexed by i ∈ N, satisfying
the following conditions.

(1) The group scheme Gi → S is of rank pih for every i ≥ 0. In particular G0

is the constant trivial group scheme over S.
(2) The subgroup scheme Gi+1[p

i] of pi-torsion points in Gi+1 is equal to Gi

for every i ≥ 0.
(3) For each i ≥ 0, the endomorphism [p]Gi+1

: Gi+1 → Gi+1 of Gi+1 factors
as ιi+1,i ◦ ψi+1,i, where ψi+1,i : Gi+1 → Gi is a faithfully flat homomor-
phism, and ιi+1,i : Gi ↪→ Gi+1 is the inclusion.

Homomorphisms between p-divisible groups are defined by

Hom({Gi}, {Hj}) = lim←−
i

lim−→
j

Hom(Gi, Hj).

A p-divisible group is also called a Barsotti-Tate group. It is clear that one can
generalize the definition of p-divisible groups so that the height is a locally constant
function h : S → Z on the base scheme S. For more information see [38], Section
1. Also see 10.6, and see Section 10 for further information.

In order to being able to handle the isogeny class of A[p∞] we need the notion
of Newton polygons.

1.16. Newton polygons. Suppose we are given integers h, d ∈ Z≥0; here h
= “height”, d = “dimension”. In the case of abelian varieties we will choose h = 2g,
and d = g. A Newton polygon γ (related to h and d) is a polygon γ ⊂ R×R, such
that:

• γ starts at (0, 0) and ends at (h, d);
• γ is lower convex;
• every slope β of γ has the property that 0 ≤ β ≤ 1;
• the breakpoints of γ are in Z× Z; hence β ∈ Q.
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In the above, γ being lower convex means that the region in R2 above γ is a convex
subset of R2, or equivalently, γ is the graph of a piecewise linear continuous function
f : [0, h]→ R such that f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all x, y ∈ [0, h].

Note that a Newton polygon determines (and is determined by) its slope se-
quence

β1, . . . , βh ∈ Q with 0 ≤ β1 ≤ · · · ≤ βh ≤ 1 ↔ ζ.

Remark. (i) The last condition above implies that the multiplicity of any
slope β in a Newton polygon is a multiple of the denominator of β.

(ii) We imposed the condition that all slopes are between 0 and 1 because we
only consider Newton polygons attached to p-divisible groups or abelian
varieties. This condition should be eliminated when one considers Newton
polygons attached to general (iso)crystals.

Sometimes we will give a Newton polygon by data of the form
∑

i (mi, ni),
where mi, ni ∈ Z≥0, with gcd(mi, ni) = 1, and mi/(mi + ni) ≤ mj/(mj + nj) for
i ≤ j. The Newton polygon attached to

∑
i (mi, ni) can be described as follows.

Its height h is given by the formula h =
∑

i (mi + ni), its dimension d is given by
the formula d =

∑
i mi, and the multiplicity of any rational number β as a slope is∑

mi=β(mi+ni)
(mi + ni) . Conversely it is clear that every Newton polygon can be

encoded in a unique way in such a form.

Remark. The Newton polygon of a polynomial. Let g ∈ Qp[T ] be a monic
polynomial of degree h. We are interested in the p-adic values of its zeroes (in
an algebraic closure of Qp). These can be computed by the Newton polygon of
this polynomial. Write g =

∑
j γjT

h−j . Plot the pairs (j, vp(γj)) for 0 ≤ j ≤ h,

where vp is the valuation on Qp with vp(p) = 1. Consider the lower convex hull of
{(j, vp(γj)) | j}. This is a Newton polygon according to the definition above. The
slopes of the sides of this polygon are precisely the p-adic values of the zeroes of g,
ordered in non-decreasing order. (Suggestion: prove this as an exercise.)

Later we will see: a p-divisible group X over a field of characteristic p deter-
mines a Newton polygon. In Section 4 a correct and precise definition will be given.
Isogenous p-divisible groups have the same Newton polygon. Moreover a theorem
by Dieudonné and Manin says that the isogeny class of a p-divisible group over an
algebraically closed field k ⊃ Fp is uniquely determined by its Newton polygon; see
[48], “Classification Theorem” on page 35 and 4.42.

(Incorrect.) Here we indicate what the Newton polygon of a p-divisible group is
(in a slightly incorrect way...). Consider “the Frobenius endomorphism” of X. This
has a “characteristic polynomial”. This polynomial determines a Newton polygon,
which we write as N (X), the Newton polygon of X. For an abelian variety A we
write N (A) instead of N (A[p∞]).
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Well, this “definition” is correct over Fp as ground field. However, over any

other field, F : X → X(p) is not an endomorphism, and the above “construction”
fails. Over a finite field there is a method which repairs this, see 3.8. However we
need the Newton polygon of an abelian variety over an arbitrary field. Please accept
for the time being the “explanation” given above: N (X) is the “Newton polygon
of the Frobenius on X”, which will be made precise later, see Section 4. There is
also a more conceptual way of defining the Newton polygon than the definition in
Section 4: the slopes measures divisibility properties of tensor constructions of the
crystal attached to a p-divisible group; see [40].

Examples. (1) The Newton polygon of Gm[p∞]Fp
has one slope (counting

multiplicity), which is equal to 1. In fact, on Gm the Frobenius endomor-
phism is [p].

(2) The Newton polygon of the constant p-divisible group Qp/Zp
Fp

has one

slope (counting multiplicity), which is equal to 0.
(3) The Newton polygon of an ordinary elliptic curve has two slopes, equal

to 0 and to 1, each with multiplicity one.
(4) The Newton polygon of a supersingular elliptic curve has two slopes, both

equal to 1/2.

1.17. Newton polygons go up under specialization. Grothendieck ob-
served in 1970 that “Newton polygons go up” under specialization. See 1.20, 4.47
for more information. In order to study this and related questions we introduce the
notation of a partial ordering between Newton polygons.

We write ζ1 � ζ2 if ζ1 is “below” ζ2, i.e., if no point of ζ1 is strictly above ζ2:

�������
�
�

�����
�
�
�
�

ζ2
ζ1

ζ1 � ζ2

Note that we use this notation only if Newton polygons with the same endpoints
are considered. A note on convention: we write ≺ instead of �, so we have ζ � ζ
for any Newton polygon ζ.

This notation may seem unnatural. However if ζ1 is strictly below ζ2 the
stratum defined by ζ1 is larger than the stratum defined by ζ2; this explains the
choice for this notation.

1.18. Later in Section 4 we will show that isogenous p-divisible groups have
the same Newton polygon. We will also see in 4.40 that if N (X) is given by
{βi | 1 ≤ i ≤ h} then N (Xt) is given by {1− βh, . . . , 1− β1}.

A Newton polygon ξ, given by the slopes β1 ≤ · · · ≤ βh is called symmetric if
βi = 1 − βh+1−i for all i. We see that X ∼ Xt implies that N (X) is symmetric;
in particular for an abelian variety A we see that N (A) is symmetric. This was
proved over finite fields by Manin, see [48], page 70; for any base field we can use
the duality theorem over any base, see [61], Th. 19.1, also see 10.11.

1.19. If S is a base scheme over Fp, and X → S is a p-divisible group over S
and ζ is a Newton polygon we write

Wζ(S) := {s ∈ S | N (Xs) ≺ ζ} ⊂ S
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and

W0
ζ (S) := {s ∈ S | N (Xs) = ζ} ⊂ S.

Theorem 1.20. BB (Grothendieck and Katz; see [40], 2.3.2)

Wζ(S) ⊂ S is a closed set.

Working over S = Spec(K), where K is a perfect field, Wζ(S) and W0
ζ (S) will

be given the induced reduced scheme structure.
As the set of Newton polygons of a given height is finite we conclude:

W0
ζ (S) ⊂ S is a locally closed set.

Notation. Let ξ be a symmetric Newton polygon. We write Wξ =Wξ(Ag,1⊗Fp).

1.21. We have seen that “Newton polygons go up under specialization”. Does
a kind of converse hold? In 1970 Grothendieck conjectured the converse. In the
appendix of [34] is a letter of Grothendieck to Barsotti, with the following pas-
sage on page 150: “The wishful conjecture I have in mind now is the following:
the necessary conditions . . . that G′ be a specialization of G are also sufficient. In
other words, starting with a BT group G0 = G′, taking its formal modular deforma-
tion . . . we want to know if every sequence of rational numbers satisfying . . . these
numbers occur as the sequence of slopes of a fiber of G as some point of S.”

Theorem 1.22. Th (The Grothendieck Conjecture, Montreal 1970) Let K be
a field of characteristic p, and let X0 be a p-divisible group over K. We write
N (X0) =: β for its Newton polygon. Given a Newton polygon γ “below” β, i.e.,
β ≺ γ, there exists a deformation Xη of X0 such that N (Xη) = γ.

See §8. This was proved by Frans Oort in 2001. For a proof see [20], [65], [66].
We say “Xη is a deformation of X0” if there exists an integral scheme S over

K, with generic point η ∈ S and 0 ∈ S(K), and a p-divisible group X → S such
that X0 = X0 and Xη = Xη.

A (quasi-) polarized version will be given later.
In this paper we record a proof of this theorem, and we will see that this is an

important tool in understanding Newton polygon strata in Ag in characteristic p.
Why is the proof of this theorem difficult? A direct approach seems obvious:

write down deformations of X0, compute Newton polygons of all fibers, and inspect
whether all relevant Newton polygons appear in this way. However, computing the
Newton polygon of a p-divisible group in general is difficult (but see Section 5 on how
to circumvent this in an important special case). Moreover, abstract deformation
theory is easy, but in general Newton polygon strata are “very singular”; in Section
7 we describe how to “move out” of a singular point to a non-singular point of a
Newton polygon stratum. Then, at non-singular points the deformation theory can
be described more easily, see Section 5. By a combination of these two methods we
achieve a proof of the Grothendieck conjecture. Later we will formulate and prove
the analogous “polarized case” of the Grothendieck conjecture, see Section 8.

We see: a direct approach did not work, but the detour via “deformation to
a ≤ 1” plus the results via Cayley-Hamilton gave the essential ingredients for a
proof. Note the analogy of this method with the approach to liftability of abelian
varieties to characteristic zero, as proposed by Mumford, and carried out in [56].
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2. Serre-Tate theory

In this section we explain the deformation theory of abelian varieties and p-
divisible groups. The content can be divided into several parts:

(1) In 2.1 we give the formal definitions of deformation functors for abelian
varieties and p-divisible groups.

(2) In contrast to the deformation theory for general algebraic varieties, the
deformation theory for abelian varieties and p-divisible groups can be
efficiently dealt with by linear algebra, as follows from the crystalline de-
formation theory of Grothendieck-Messing. It says that, over an extension
by an ideal with a divided power structure, deforming abelian varieties or
p-divisible groups is the same as lifting the Hodge filtration. See The-
orem 2.4 for the precise statement, and Theorem 2.11 for the behavior
of the theory under duality. The smoothness of the moduli space Ag,1,n

follows quickly from this theory.
(3) The Serre-Tate theorem: deforming an abelian variety is the same as

deforming its p-divisible group. See Theorem 2.7 for a precise statement.
A consequence is that the deformation space of a polarized abelian variety
admits an natural action by a large p-adic group, see 2.14. In general this
action is poorly understood.

(4) There is one case when the action on the deformation space mentioned
in (3) above is linearized and well-understood. This is the case when the
abelian variety is ordinary. The theory of Serre-Tate coordinates says
that the deformation space of an ordinary abelian variety has a natural
structure as a formal torus. See Theorem 2.19 for the statement. In
this case the action on the local moduli space mentioned in (3) above
preserves the group structure and gives a linear representation on the
character group of the Serre-Tate formal torus. This phenomenon has
important consequences later. A local rigidity result, Theorem 2.26, is
important for the Hecke orbit problem in that it provides an effective
linearization of the Hecke orbit problem. Also, computing the deformation
using the Serre-Tate coordinates is often easy; the reader is encouraged
to try Exercise 2.25.

Here is a list of recommended references.

p-divisible groups: [49], [38].
Crystalline deformation theory: [49], [5].
Serre-Tate Theorem: [49], [41].
Serre-Tate coordinates: [42].

2.1. Deformations of abelian varieties and of p-divisible groups.

Definition. Let K be a perfect field of characteristic p. Denote by W (K) the ring
of p-adic Witt vectors with coordinates in K.
(i) Denote by ArtW (K) the category of Artinian local algebras over W (K). An
object of ArtW (K) is a pair (R, j), where R is an Artinian local algebra and j :
W (K)→ R is a local homomorphism of local rings. A morphism in ArtW (K) from
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(R1, j1) to (R2, j2) is a homomorphism h : R1 → R2 between Artinian local rings
such that h ◦ j1 = j2.
(ii) Denote by ArtK the category of Artinian local K-algebras. An object in
ArtK is a pair (R, j), where R is an Artinian local algebra and j : K → R
is a ring homomorphism. A morphism in Art/K from (R1, j1) to (R2, j2) is a
homomorphism h : R1 → R2 between Artinian local rings such that h ◦ j1 = j2.
Notice that ArtK is a fully faithful subcategory of ArtW (K) .

Definition. Denote by Sets the category whose objects are sets and whose mor-
phisms are maps between sets.

Definition. Let A0 be an abelian variety over a perfect field K ⊃ Fp. The defor-
mation functor of A0 is a functor

Def(A0/W (K)) : ArtW (K) → Sets

defined as follows. For every object (R, j) of ArtW (K), Def(A0/W (K))(R, j) is the
set of isomorphism classes of pairs (A → Spec(R), ε), where A → Spec(R) is an
abelian scheme, and

ε : A×Spec(R) Spec(R/mR)
∼−→ A0 ×Spec(K) Spec(R/mR)

is an isomorphism of abelian varieties over R/mR. Denote by Def(A0/K) the
restriction of the deformation functor Def(A0/W (K)) to the faithful subcategory
ArtK of ArtW (K) .

Definition. Let A0 be an abelian variety over a perfect field K ⊃ Fp, and let λ0

be a polarization on A0. The deformation functor of (A0, λ0) is a functor

Def(A0/W (K)) : ArtW (K) → Sets

defined as follows. For every object (R, ε) of ArtW (K) , Def(A0/W (K))(R, ε) is the
set of isomorphism classes of pairs (A, λ) → Spec(R), ε), where (A, λ) → Spec(R)
is a polarized abelian scheme, and

ε : (A, λ)×Spec(R) Spec(R/mR)
∼−→ (A0, λ0)×Spec(K) Spec(R/mR)

is an isomorphism of polarized abelian varieties over R/mR. Let Def((A0, λ0)/K)
denote the restriction of Def(A0/W (K)) to the faithful subcategory ArtK of
ArtW (K) .

Exercise. Let X0 be a p-divisible group over a perfect field K ⊃ Fp, and let λ0 :
X0 → Xt

0 be a polarization of X0. Define the deformation functor Def(X0/W (K))
for X0 and the deformation functor Def((X0, λ0)/W (K)) imitating the above def-
initions for abelian varieties.

Definition 2.2. Let R be a commutative ring, and let I ⊂ R be an ideal of I.
A divided power structure (a DP structure for short) on I is a collection of maps
γi : I → R, i ∈ N, such that

• γ0(x) = 1 ∀x ∈ I,
• γ1(x) = x ∀x ∈ I,
• γi(x) ∈ I ∀x ∈ I, ∀i ≥ 1,
• γj(x+ y) =

∑
0≤i≤j γi(x)γj−i(y) ∀x, y ∈ I, ∀j ≥ 0,

• γi(ax) = ai ∀a ∈ R, ∀x ∈ I, ∀i ≥ 1,

• γi(x)γj(y) =
(i+j)!
i!j! γi+j(x) ∀i, j ≥ 0, ∀x ∈ I,
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• γi(γj(x)) =
(ij)!
i!(j!)i γij(x) ∀i, j ≥ 1, ∀x ∈ I.

A divided power structure (R, I, (γi)i∈N) as above is locally nilpotent if there exist
n0 ∈ N such that γi(x) = 0 for all i ≥ n0 and all x ∈ I. A locally nilpotent DP
extension of a commutative ringR0 is a locally nilpotent DP structure (R, I, (γi)i∈N)

together with an isomorphism R/I
∼−→ R0.

Remark 2.3.

(i) The basic idea for a divided power structure is that γi(x) should “behave
like” xi/i! and make sense even though dividing by i! is illegitimate. The
reader can easily verify that γi(x) = xi/i! is the unique divided power
structure on (R, I) when R ⊇ Q.

(ii) Given a divided power structure on (R, I) as above, one can define an
exponential homomorphism exp : I → 1 + I ⊂ R× by

exp(x) = 1 +
∑
n≥1

γn(x),

and a logarithmic homomorphism log : (1 + I)→ I by

log(1 + x) =
∑
n≥1

(n− 1)! (−1)n−1 γn(x).

These homomorphisms establish an isomorphism (1 + I)
∼−→ I.

(iii) Let R be a commutative ring with 1, and let I be an ideal of R such that
I2 = (0). Define a DP structure on I by requiring that γi(x) = 0 for all
i ≥ 2 and all x ∈ I. This DP structure on a square-zero ideal I will be
called the trivial DP structure on I.

(iv) The notion of a divided power structure was first introduced in the context
of cohomology of Eilenberg-Mac Lane spaces. Grothendieck realized that
one can use the divided power structure to define the crystalline first
Chern class of line bundles, by analogy with the classical definition in
characteristic 0, thanks to the isomorphism (1 + I)

∼−→ I provided by a
divided power structure. This observation motivated the definition of the
crystalline site based on the notion of divided power structure.

(v) Theorem 2.4 below reduces deformation theory for abelian varieties and p-
divisible groups to linear algebra, provided the augmentation ideal I has a
divided power structure. An extension of a ring R0 by a square-zero ideal
I constitutes a standard “input data” in deformation theory; on (R, I)
we have the trivial divided power structure. So we can feed such input
data into the crystalline deformation theory summarized in Theorem 2.4
below to translate the deformation of an abelian scheme A → Spec(R0)
over a square-zero extension R � R0 into a question about lifting Hodge
filtrations, which is a question in linear algebra.

The statement of the black-boxed Theorem 2.4 below is a bit long. Roughly it
says that attached to any DP-extension (R, I, (γi) of the base of an abelian scheme
(or a p-divisible group) over R/I, we can attach a (covariant) Dieudonné crystal,
which is canonically isomorphic to the first de Rham homology of any lifting over
R of the abelian scheme, if such a lifting exists. Moreover, lifting the abelian
scheme to R is equivalent to lifting the Hodge filtration to the Dieudonné crystal.
Notice that the first de Rham homology of abelian varieties over base schemes in
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characteristic 0 enjoys similar properties, through the Gauss-Manin connection and
the Kodaira-Spencer map.

Theorem 2.4. BB (Grothendieck-Messing) Let X0 → Spec(R0) be an p-divisible
group over a commutative ring R0.

(i) To every locally nilpotent DP extension (R, I, (γi)i∈N) of R0 there is a
functorially attached locally free R-module D(X0)R = D(X0)(R,I,(γi)) of
rank ht(X0). The functor D(X0) is called the covariant Dieudonné crystal
attached to X0.

(ii) Let (R, I, (γi)i∈N) be a locally nilpotent DP extension of R0. Suppose that
X → Spec(R) is a p-divisible group extending X0 → Spec(R0). Then
there is a functorial short exact sequence

0→ Lie(Xt/R)∨ → D(X0)R → Lie(X/R)→ 0 .

Here Lie(X/R) is the tangent space of the p-divisible group X → Spec(R),
which is a projective R-module of rank dim(X/R), and Lie(Xt/R)∨ is the
R-dual of the tangent space of the Serre dual Xt → Spec(R) of X →
Spec(R).

(iii) Let (R, I, (γi)i∈N) be a locally nilpotent DP extension of R0. Suppose that
A→ Spec(R) is an abelian scheme such that there exists an isomorphism

β : A[p∞]×Spec(R) Spec(R0)
∼−→ X0

of p-divisible groups over R0. Then there exists a natural isomorphism

D(X0)R → HDR
1 (A/R) ,

where HDR
1 (A/R) is the first de Rham homology of A→ Spec(R). More-

over the above isomorphism identifies the short exact sequence

0→ Lie(A[p∞]t/R)∨ → D(X0)R → Lie(A[p∞]/R)→ 0

described in (ii) with the Hodge filtration

0→ Lie(At/R)∨ → HDR
1 (A/R)→ Lie(A/R)→ 0

on HDR
1 (A/R).

(iv) Let (R, I, (γi)i∈N) be a locally nilpotent DP extension of R0. Denote by
E the category whose objects are short exact sequences

0→ F → D(X0)R → Q→ 0

such that F and Q are projective R-modules, plus an isomorphism from
the short exact sequence

(0→ F → D(X0)R → Q→ 0)⊗R R0

of projective R0-modules to the short exact sequence

0→ Lie(Xt
0)

∨ → D(X0)R0
→ Lie(X)→ 0

attached to the p-divisible group X0 → Spec(R0) as a special case of (ii)
above. The morphisms in E are maps between diagrams. Then the functor
from the category of p-divisible groups over R lifting X0 to the category
E described in (ii) is an equivalence of categories.

Theorem 2.4 is a summary of the main results in Chapter IV of [49].
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Corollary 2.5. Let X0 be a p-divisible group over a perfect field K ⊃ Fp. Let
d = dim(X0), c = dim(Xt

0). The deformation functor Def(X0/W (K)) of X0 is
representable by a smooth formal scheme over W (K) of dimension cd. In other
words, Def(X0/W (K)) is non-canonically isomorphic to the functor represented by
the formal spectrum Spf (W (K)[[x1, . . . , xcd]]).

Proof. Recall that formal smoothness of Def(X0/W (K)) means that the natural
map

Def(X0/W (K))(R)→ Def(X0/W (K))(R′)

attached to any surjective ring homomorphism R → R′ is surjective, for any Ar-
tinian local rings R,R′ ∈ ArtW (K). To prove this, we may and do assume that

the kernel I of the surjective homomorphism R → R′ satisfies I2 = (0). Apply
Theorem 2.4 to the trivial DP structure on pairs (R, I) with I2 = (0), we see that
Def(X0/W (K)) is formally smooth over W (K). Applying Theorem 2.4 again to
the pair K[t]/(t2), tK[t]/(t2), we see that the dimension of the tangent space of
Def(X0/K) is equal to cd.

2.6. We set up notation for the Serre-Tate Theorem 2.7, which says that de-
forming an abelian variety A0 over a field of characteristic p is the same as deforming
the p-divisible group A0[p

∞] attached to A0. Recall that A0[p
∞] is the inductive

system formed by the pn-torsion subgroup schemes A0[p
n] of A0, where n runs

through positive integers. In view of Theorem 2.4 one can regard the p-divisible
group A0[p

∞] as a refinement of the first homology group of A0.
Let p be a prime number. Let S be a scheme such that p is locally nilpotent in

OS . Let I ⊂ OS be a coherent sheaf of ideals such that I is locally nilpotent. Let
S0 = Spec(OS/I). Denote by AVS the category of abelian schemes over S. Denote
by AVBTS0,S the category whose objects are triples (A0 → S0, X → S, ε), where
A0 → S0 is an abelian scheme over S0, X → S is a p-divisible group over S, and
ε : X ×S S0 → A0[p

∞] is an isomorphism of p-divisible groups. A morphism from
(A0 → S0, X → S, ε) to (A′

0 → S0, X
′ → S, ε′) is a pair (h, f), where h0 : A0 → A′

0

is a homomorphism of abelian schemes over S0, and f : X → X ′ is a homomorphism
of p-divisible groups over S, such that h[p∞] ◦ ε = ε′ ◦ (f ×S S0). Let

GS0,S : AVS → AVBTS0,S

be the functor which sends an abelian scheme A→ S to the triple

((A×S S0, A[p∞], can),

where can is the canonical isomorphism A[p∞]×S S0
∼−→ (A×S S0)[p

∞].

Theorem 2.7. BB (Serre-Tate) Notation and assumptions as in the above para-
graph. The functor GS0,S is an equivalence of categories.

Remark. See [46]. A proof of Theorem 2.7 first appeared in print in [49]. See
also [41].

Corollary 2.8. Let A0 be an abelian variety over a perfect field K. Let

G : Def(A0/W (K))→ Def(A0[p
∞]/W (K))

be the functor which sends any object(
A→ Spec(R), ε : A×Spec(R) Spec(R/mR)

∼−→ A0 ×Spec(k) Spec(R/mR)
)
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in Def(A0/W (K)) to the object

(A[p∞]→ Spec(R), ε[p∞])

ε[p∞] : A[p∞]×Spec(R) Spec(R/mR)
∼−→ A0[p

∞]×Spec(K) Spec(R/mR)

in Def(A0[p
∞]/W (K)). The functor G is an equivalence of categories.

Remark. In words, Corollary 2.8 says that deforming an abelian variety is the
same as deforming its p-divisible group.

Corollary 2.9. Let A0 be a g-dimensional abelian variety over a perfect field K ⊃
Fp. The deformation functor Def(A0/W (K)) of A0 is representable by a smooth
formal scheme over W (K) of relative dimension g2.

Proof. We have Def(A0/W (K)) ∼= Def(A0[p
∞]/W (K)) by Theorem 2.7. Corol-

lary 2.9 follows from Corollary 2.5.

2.10. LetR0 be a commutative ring. Let A0 → Spec(R0) be an abelian scheme.
Let D(A0) := D(A0[p

∞]) be the covariant Dieudonné crystal attached to A0. Let
D(At

0) be the covariant Dieudonné crystal attached to the dual abelian scheme At.
Let D(A0)

∨ be the dual of D(A0), i.e.,

D(A0)
∨
(R,I,(γi))

= HomR(D(A0)R, R)

for any locally nilpotent DP extension (R, I, (γi)i∈N) of R0 = R/I.

Theorem 2.11. BB We have functorial isomorphisms

ϕA0
: D(A0)

∨ ∼−→ D(At
0)

for abelian varieties A0 over K with the following properties.

(1) The composition

D(At
0)

∨ ϕ∨
A0−−−→
∼

(D(A0)
∨)∨ = D(A0)

jA0−−→
∼

D((At
0)

t)

is equal to

−ϕAt
0
: D(At

0)
∨ ∼−→ D((At

0)
t) ,

where the isomorphism DA0

jA0−−→
∼

D((At
0)

t) is induced by the canonical

isomorphism

A0
∼−→ (At

0)
t .

(2) For any locally nilpotent DP extension (R, I, (γi)i∈N) of R0 = R/I and
any lifting A→ Spec(R) of A0 → Spec(R0) to R, the following diagram

0 �� Lie(A/R)∨

∼=
��

�� D(A0)
∨
R

ϕA0

��

�� (Lie(At/R)∨)∨

=

��

�� 0

0 �� Lie((At)t/R)∨ �� D(At
0)R

�� Lie(At/R) �� 0

commutes. Here the bottom horizontal exact sequence is as in 2.4, the
top horizontal sequence is the dual of the short exact sequence in 2.4,
and the left vertical isomorphism is induced by the canonical isomorphism
A

∼−→ (At)t.
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Theorem 2.11 is proved in [5], Chapter 5, §1.
Below are three applications of Theorem 2.4, Theorem 2.7 and Theorem 2.11;

their proofs are left as exercises. The first two, Corollary 2.12 and Corollary 2.13,
are basic properties of the moduli space of polarized abelian varieties. The group
action in Corollary 2.14 is called the action of the local stabilizer subgroup. This
“local symmetry” of the local moduli space will play an important role later in the
proof of the density of ordinary Hecke orbits.

Corollary 2.12. Let (A0, λ0) be a g-dimensional principally polarized abelian vari-
ety over a perfect field K ⊃ Fp. The deformation functor Def((A0, λ)/W (K)) of A0

is representable by a smooth formal scheme over W (K) of dimensional g(g+ 1)/2.

Remark. Corollary 2.12 can be reformulated as follows. Let η0 be a K-rational
symplectic level-n structure on A0, n ≥ 3, (n, p) = 1, and let x0 = [(A0, λ0, η0)] ∈
Ag,1,n(K). The formal completionA/x0

g,1,n of the moduli spaceA/x0

g,1,n → Spec(W (K))

is non-canonically isomorphic to Spf
(
W (K)[[x1, . . . , xg(g+1)/2]]

)
.

Corollary 2.13. Let (A0, λ0) be a polarized abelian variety over a perfect field
K ⊃ F; let deg(λ0) = d2.

(i) The natural map Def((A0, λ0)/W (K))→ Def(A0/W (K)) is represented
by a closed embedding of formal schemes.

(ii) Let n be a positive integer, n ≥ 3, (n, pd) = 1. Let η0 be a K-rational sym-
plectic level-n structure on (A0, λ0). Let x0 = [(A0, λ0, η0)] ∈ Ag,d,n(K).

The formal completion A/x0

g,d,n of the moduli space Ag,d,n → Spec(W (K))
at the closed point x0 is isomorphic to the local deformation space

Def((A0, λ0)/W (K)).

Corollary 2.14. (i) Let A0 be an variety over a perfect field K ⊃ F. There is
a natural action of the profinite group Aut(A0[p

∞]) on the smooth formal scheme
Def(A0/W (K)).

(ii) Let λ0 be a principal polarization on an abelian variety A0 over a perfect
field K. Denote by Aut((A0, λ0)[p

∞]) the closed subgroup of Aut(A0[p
∞]) con-

sisting of all automorphisms of Aut(A[p∞]) compatible with the quasi-polarization
λ0[p

∞]. The natural action in (i) above induces a natural action on the closed
formal subscheme Def(A0, λ0) of Def(A0).

Remark. In the situation of (ii) above, the group Aut(A0, λ0) of polarization-
preserving automorphisms of A0 is finite, while Aut((A0, λ0)[p

∞]) is a compact
p-adic Lie group of positive dimension of positive dimension if dim(A0) > 0.
The group Aut(A0, λ) (resp. Aut((A0, λ0)[p

∞])) operates on Def(A0, λ0) (resp.
Def((A0, λ0)[p

∞])) by “changing the marking”. By Theorem 2.7, we have a natural

isomorphism Def(A0, λ0)
∼−→ Def((A0, λ0)[p

∞]), which is equivariant for the inclu-
sion homomorphism Aut(A0, λ0) ↪→ Aut((A0, λ0)[p

∞]). In other words, the action
of Aut(A0, λ) on Def(A0, λ0) extends to an action by Aut((A0, λ0)[p

∞]).

2.15. Étale and toric p-divisible groups: notation. A p-divisible group
X over a base scheme S is said to be étale (resp. toric) if and only if X[pn] is étale
(resp. of multiplicative type) for every n ≥ 1; see the end of 10.6.
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Remark. Let E → S be an étale p-divisible group, where S is a scheme. The
p-adic Tate module of E, defined by

Tp(E) := lim←−
n

E[pn] ,

is representable by a smooth Zp-sheaf on Sét whose rank is equal to ht(E/S). Here
the rank of E is a locally constant function on the base scheme S. When S is the
spectrum of a field K, Tp(E) “is” a free Zp-module with an action by Gal(Ksep/K);
see 10.5.

Remark. Attached to any toric p-divisible group T → S is its character group

X∗(T ) := Hom(T,Gm[p∞])

and cocharacter group
X∗(T ) := Hom(Gm[p∞], T ) .

The character group of T can be identified with the p-adic Tate module of the
Serre-dual T t of T , and T t is an étale p-divisible group over S. Both X∗(T ) and
X∗(T ) are smooth Zp-sheaves of rank dim(T/S) on Sét, and they are naturally dual
to each other.

Definition 2.16. Let S be either a scheme such that p is locally nilpotent in OS ,
or an adic formal scheme such that p is locally topologically nilpotent in OS . A
p-divisible group X → S is ordinary if X sits in the middle of a short exact sequence

0→ T → X → E → 0

where T (resp. E) is a multiplicative (resp. étale) p-divisible group. Such an exact
sequence is unique up to unique isomorphism.

Remark. Suppose that X is an ordinary p-divisible group over S = Spec(K),
where K is a perfect field K ⊃ Fp. Then there exists a unique splitting of the short
exact sequence 0→ T → X → E → 0 over K.

Proposition 2.17. BB Suppose that S is a scheme over W (K) and p is locally
nilpotent in OS . Let S0 = Spec(OS/pOS), the closed subscheme of S defined by
the ideal pOS of the structure sheaf OS. If X → S is a p-divisible group such that
X ×S S0 is ordinary, then X → S is ordinary.

Proposition 2.17 is a consequence of the rigidity of finite étale group schemes
and commutative finite group schemes of multiplicative type. See SGA3, Exposé
X.

2.18. We set up notation for Theorem 2.19 on the theory of Serre-Tate local
coordinates. Let K ⊃ Fp be a perfect field and let X0 be an ordinary p-divisible
group over K. This means that there is a natural split short exact sequence

0→ T0 → X0 → E0 → 0

where T0 (resp. E0) is a multiplicative (resp. étale) p-divisible group over K. Let

Ti → Spec(W (K)/piW (K)) (resp. Ei → Spec(W (K)/piW (K)) )

be the multiplicative (resp. étale) p-divisible group over Spec(W (K)/piW (K))
which lifts T0 (resp. E0) for each i ≥ 1. Both Ti and Ei are unique up to unique
isomorphism. Taking the limit of Ti[p

n] (resp. Ei[p
i]) as i → ∞, we get a multi-

plicative (resp. étale) BTn-group T∼ → Spec(W (K)) (resp. E∼ → Spec(W (K)))
over W (K).
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Denote by T∧ the formal torus over W (K) attached to T0. More explicitly, it
is the scheme theoretic inductive limit of Ti[p

n] as i and n both go to ∞; see also
10.9 (4) and 10.21. Another equivalent description is that T∧ = X∗(T0) ⊗Zp

G∧
m,

whereG∧
m is the formal completion ofGm → Spec(W (K)) along its unit section, and

X∗(T0) is the étale smooth free Zp-sheaf of rank dim(T0) on the étale site Spec(K)ét,
which is isomorphic to the étale sites

(
Spec(W (K)/piW (K))

)
et

and (SpecW (K))ét
for all i because the étale topology is insensitive to nilpotent extensions.

Theorem 2.19 below says that the deformation space of an ordinary p-divisible
group X0 as above has a natural structure as a formal torus over W (K), whose
dimension is equal to the product of the heights of the étale part E0 and the
multiplicative part T0.

Theorem 2.19. Notation and assumption as above.

(i) Every deformation X → Spec(R) of X0 over an Artinian local W (K)-
algebra R is an ordinary p-divisible group over R. Therefore X sits in the
middle of a short exact sequence

0→ T∼ ×Spec(W (K)) Spec(R)→ X → E∼ ×Spec(W (K)) Spec(R)→ 0 .

(ii) The deformation functor Def(X0/W (K) has a natural structure, via the
Baer sum construction, as a functor from ArtW (K) to the category AbG
of abelian groups. In particular the unit element in Def(X0/W (K)(R)
corresponds to the p-divisible group(

T∼ ×Spec(W (K)) E
∼)×Spec(W (K)) Spec(R)

over R.
(iii) There is a natural isomorphism of functors

Def(X0/W (K))
∼←− HomZp

(Tp(E0), T
∧) = Tp(E0)

∨ ⊗Zp
X∗(T0)⊗Zp

G∧
m

= HomZp

(
Tp(E0)⊗Zp

X∗(T0),G
∧
m

)
.

In other words, the deformation space Def(X0/W (K)) of X0 has a nat-
ural structure as a formal torus over W (K) whose cocharacter group is
isomorphic to the Gal(Kalg/K)-module Tp(E)∨ ⊗Zp

X∗(T0).

Proof. The statement (i) is follows from Proposition 2.17, so is (ii). It remains
to prove (iii).

By étale descent, we may and do assume that K is algebraically closed. By (i),
over any Artinian local W (K)-algebra R, we see that Def(X0/W (K))(R) is the set
of isomorphism classes of extensions of E∼ ×W (K) Spec(R) by T∼ ×W (K) Spec(R).
Write T0 (resp. E0) as a product of a finite number of copies of Gm[p∞] (resp.
Qp/Zp), we only need to verify the statement (iii) in the case when T0 = Gm[p∞]
and E0 = Qp/Zp.

Let R be an Artinian local W (K)-algebra. We have seen that

Def(Qp/Zp,Gm[p∞])(R)

is naturally isomorphic to the inverse limit lim←−n
Ext1Spec(R),Z/pnZ(p

−nZ/Z, µpn),

where the Ext group is computed in the category of sheaves of (Z/pnZ)-modules
for the flat topology on Spec(R). By Kummer theory, we have

Ext1Spec(R),Z/pnZ(p
−nZ/Z, µpn) = R×/(R×)p

n

= (1 +mR)/(1 +mR)
pn

;
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the second equality follows from the hypothesis that K is perfect. One checks that
the map

Ext1Spec(R),Z/pn+1Z(p
−n−1Z/Z, µpn+1)→ Ext1Spec(R),Z/pnZ(p

−nZ/Z, µpn)

obtained by “restriction to the subgroup of [pn]-torsions” corresponds to the natural
surjection

(1 +mR)/(1 +mR)
pn+1 � (1 +mR)/(1 +mR)

pn

.

We know that p ∈ mR and mR is nilpotent. Hence there exists an n0 such that
(1 +mR)

pn

= 1 for all n ≥ n0. Taking the inverse limit as n→∞, we see that the
natural map

1 +mR → lim←−
n

Ext1Spec(R),Z/pnZ(p
−nZ/Z, µpn)

is an isomorphism.

Corollary 2.20. Let K ⊃ Fp be a perfect field, and let A0 be an ordinary abelian
variety. Let Tp(A0) := Tp(A0[p

∞]ét), Tp(A
t
0) := Tp(A

t
0[p

∞]ét). Then

Def(A0/W (K)) ∼= HomZp
(Tp(A0)⊗Zp

Tp(A
t
0),G

∧
m) .

Exercise 2.21. Let R be a commutative ring with 1. Compute

Ext1Spec(R),(Z/nZ)(n
−1Z/Z, µn),

the group of isomorphism classes of extensions of the constant group scheme n−1Z/Z
by µn over Spec(R) in the category of finite flat group schemes over Spec(R) which
are killed by n.

Notation. Let R be an Artinian local W (k)-algebra, where k ⊃ Fp is an alge-
braically closed field. Let X → Spec(R) be an ordinary p-divisible group such that
the closed fiber X0 := X ×Spec(R) Spec(k) is an ordinary p-divisible group over k.
Denote by q(X/R; ·, ·) the Zp-bilinear map

q(X/R; ·, ·) : Tp(X0,ét)× Tp(X
t
0,ét)→ 1 +mR

correspond to the deformationX → Spec(R) of the p-divisible groupX0 as in Corol-
lary 2.20. Here we have used the natural isomorphism X∗(X0,mult) ∼= Tp(X

t
0,ét),

so that the Serre-Tate coordinates for the p-divisible group X → Spec(R) is a Zp-
bilinear map q(X/R; ·, ·) on Tp(X0,ét)×Tp(X

t
0,ét). The abelian group 1+mR ⊂ R×

is regarded as a Zp-module, so “Zp-bilinear” makes sense. Let can : X0
∼−→ (Xt

0)
t

be the canonical isomorphism from X0 to its double Serre dual, and let can∗ :
Tp(X0,ét)

∼−→ Tp((X
t
0)

t
ét) be the isomorphism induced by can.

The relation between the Serre-Tate coordinate q(X/R; ·, ·) of a deformation of
X0 and the Serre-Tate coordinates q(Xt/R; ·, ·) of the Serre dual Xt of X is given
by 2.22. The proof is left as an exercise.

Lemma 2.22. Let X → Spec(R) be an ordinary p-divisible group over an Artinian
local W (k)-algebra R. Then we have

q(X;u, vt) = q(Xt; vt, can∗(u)) ∀u ∈ Tp(X0,ét), ∀v ∈ Tp(X
t
0,ét) .

The same statement holds when the ordinary p-divisible group X → Spec(R) is
replaced by an ordinary abelian scheme A→ Spec(R).

From the functoriality of the construction in 2.19, it is not difficult to verify
the following.
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Proposition 2.23. Let X0, Y0 be ordinary p-divisible groups over a perfect field
K ⊃ F. Let R be an Artinian local ring over W (K). Let X → Spec(R), Y →
Spec(R) be abelian schemes whose closed fibers are X0 and Y0 respectively. Let
q(X/R; ·, ·), q(Y/R; ·, ·) be the Serre-Tate coordinates for X and Y respectively. Let
β : X0 → Y0 be a homomorphism of abelian varieties over k. Then β extends to a
homomorphism from X to Y over Spec(R) if and only if

q(X/R;u, βt(vt)) = q(Y/R;β(u), vt) ∀u ∈ Tp(X0), ∀vt ∈ Tp(Y
t
0 ) .

Corollary 2.24. Let A0 be an ordinary abelian variety over a perfect field K ⊃ Fp.
Let λ0 : A0 → At

0 be a polarization on A0. Then

Def((A0, λ0)/W (K)) ∼= HomZp
(S,Gm

∧) ,

where S is defined as

Tp(A0[p
∞]ét)⊗Zp

Tp(A
t
0[p

∞]ét)
/(

u⊗ Tp(λ0)(v)− v ⊗ Tp(λ0)(u)
)
u,v∈Tp(A[p∞]ét)

.

Exercise 2.25. Notation as in 2.24. Let pe1 , . . . , peg be the elementary divi-
sors of the Zp-linear map Tp(λ0) : Tp(A0[p

∞]ét) → Tp(A
t
0[p

∞]ét), g = dim(A0),
e1 ≤ e2 ≤ · · · ≤ eg. The torsion submodule Storsion of S is isomorphic to⊕

1≤i<j≤g (Zp/p
eiZp) .

Theorem 2.26. BB (local rigidity) Let k ⊃ Fp be an algebraically closed field.
Let

T ∼= ((G∧
m)n = Spf k[[u1, . . . , un]]

be a formal torus, with group law given by

ui �→ ui ⊗ 1 + 1⊗ ui + ui ⊗ ui i = 1, . . . n .

Let X = Homk(G
∧
m, T ) ∼= Zn

p be the cocharacter group of T ; notice that GL(X)
operates naturally on T . Let G ⊂ GL(X ⊗Zp

Qp) ∼= GLn be a reductive linear
algebraic subgroup over Qp. Let Z be an irreducible closed formal subscheme of T
which is stable under the action of an open subgroup U of G(Qp) ∩ GL(X). Then
Z is a formal subtorus of T .

See Theorem 6.6 of [7] for a proof of 2.26; see also [12].

Corollary 2.27. Let x0 = [(A0, λ0, η0)] ∈ Ag,1,n(F) be an F-point of Ag,1,n, where
F is the algebraic closure of Fp. Assume that the abelian variety A0 is ordinary. Let

Z(x0) be the Zariski closure of the prime-to-p Hecke orbit H(p)
Sp2g

(x0) on Ag,1,n. The

formal completion Z(x0)
/x0 of Z(x0) at x0 is a formal subtorus of the Serre-Tate

formal torus A/x0

g,1,n.

Proof. This is immediate from 2.26 and the local stabilizer principle; see 9.5 for
the statement of the local stabilizer principle.

Remark. Corollary 2.27 puts a serious restriction on the Zariski closure Z(x0) of
the Hecke orbit of an ordinary point x0 in Ag,1,n(F). In fact the argument shows
that the formal completion of Z(x0) at any closed point y0 of the smooth ordinary
locus of Zx0

is a formal subtorus of the Serre-Tate torus at y0. This constitutes the
linearization step toward proving that Z(x0) = Ag,1,n. See Proposition 6.14 and
Step 4 of the proof of Theorem 9.2, where Theorem 2.26 plays a crucial role.
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3. The Tate-conjecture: �-adic and p-adic

Most results of this section will not be used directly in our proofs. However,
this is such a beautiful part of mathematics that we wish to tell more than we really
need.
Basic references: [79] and [37]; [78], [19], [62].

3.1. Let A be an abelian variety over a field K of arbitrary characteristic. The
ring End(A) is an algebra over Z, which has no torsion, and which is free of finite
rank as Z-module. We write End0(A) = End(A) ⊗Z Q. Let µ : A → At be a
polarization. An endomorphism x : A → A defines xt : At → At. We define an
anti-involution

† : End0(A)→ End0(A), by xt·µ = µ·x†,

called the Rosati involution; see 10.13. In case µ is a principal polarization the
Rosati involution maps End(A) into itself.

The Rosati involution is positive definite on D := End0(A), meaning that
x �→ Tr(x·x†) is a positive definite quadratic form on End0(A); for references see
Proposition II in 3.10. Such algebras have been classified by Albert, see 10.14.

Definition 3.2. A field L is said to be a CM-field if L is a finite extension of
Q (hence L is a number field), and there is a subfield L0 ⊂ L such that L0/Q is
totally real (i.e., every ψ0 : L0 → C gives ψ0(L0) ⊂ R) and L/L0 is quadratic totally
imaginary (i.e., [L : L0] = 2 and for every ψ : L→ C we have ψ(L) �⊂ R.

Equivalently, L is a CM-field if there exists an element of order 2 in the center
of the Galois group Gal(M/Q) of the Galois closure M of L over Q, which is equal
to the complex conjugation for every archimedean place of M .

Remark. The quadratic extension L/L0 gives an involution ι ∈ Aut(L/L0). For
every embedding ψ : L → C this involution corresponds with the restriction of
complex conjugation on C to ψ(L).

Even more is known about the endomorphism algebra of an abelian variety
over a finite field. Tate showed that

Theorem 3.3. (Tate) An abelian variety over a finite field admits sufficiently
many Complex Multiplications.

This is equivalent with: Let A be a simple abelian variety over a finite field.
Then there is a CM-field of degree 2·dim(A) contained in End0(A).

A proof can be found in [78], [79]; also see 10.17 for a stronger statement.
See 10.15 for the definition of “abelian varieties with sufficiently many Complex
Multiplications”. A consequence of this theorem is the following.

Let A be an abelian variety over F = Fp. Suppose that A is simple, and hence

that End0(A) is a division algebra; this algebra has finite rank over Q; the possible
structures of endomorphism algebras of an abelian variety have been classified by
Albert, see 10.14. In this case

• either A is a supersingular elliptic curve, and D := End0(A) = Qp,∞,
which is the (unique) quaternion algebra central over Q, which is unram-
ified for every finite prime � �= p, i.e., D ⊗Q� is the 2× 2 matrix algebra
over Q�, and D/Q is ramified at p and at ∞; here D is of Albert Type
III(1);
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• or A is not a supersingular elliptic curve; in this case D is of Albert Type
IV(e0, d) with e0·d = g := dim(A).

In particular (to be used later).

Corollary 3.4. Let A be an abelian variety over F := Fp. There exists E =
F1× · · · ×Fr, a product of totally real fields, and an injective homomorphism E ↪→
End0(A) such that dimQ(E) = dim(A).

Examples. (1) E is a supersingular elliptic curve over K = Fq. Then either

D := End0(E) is isomorphic with Qp,∞, or D is an imaginary quadratic
field over Q in which p is not split.

(2) E is a non-supersingular elliptic curve over K = Fq. Then D := End0(E)
is an imaginary quadratic field over Q in which p is split.

(3) If A is simple over K = Fq such that D := End0(A) is commutative, then

D = L = End0(A) is a CM-field of degree 2·dim(A) over Q.
(4) In characteristic zero the endomorphism algebra of a simple abelian variety

which admits smCM is commutative. However in positive characteristic
an Albert Type IV(e0, d) with e0 > 1 can appear. For example, see [79],
page 67: for any prime number p > 0, and for any g > 2 there exists a
simple abelian variety over F such that D = End0(A) is a division algebra
of rank g2 over its center L, which is a quadratic imaginary field over Q.

3.5. Weil numbers and CM-fields.

Definition. Let p be a prime number, n ∈ Z>0; write q = pn. A Weil q-number
is an algebraic integer π such that for every embedding ψ : Q(π)→ C we have

|ψ(π) | =
√
q.

We say that π and π′ are conjugated if there exists an isomorphism Q(π) ∼= Q(π′)
mapping π to π′.
Notation: π ∼ π′. We write W (q) for the set of Weil q-numbers and W (q)/ ∼ for
the set of conjugacy classes of Weil q-numbers.

Proposition 3.6. Let π be a Weil q-number. Then
(I) either for at least one ψ : Q(π)→ C we have ±√q = ψ(π) ∈ R; in this case we
have:
(Ie) n is even,

√
q ∈ Q, and π = +pn/2, or π = −pn/2; or

(Io) n is odd,
√
q ∈ Q(

√
p), and ψ(π) = ±pn/2.

In particular in case (I) we have ψ(π) ∈ R for every ψ.
(II) Or for every ψ : Q(π)→ C we have ψ(π) �∈ R (equivalently: for at least one ψ
we have ψ(π) �∈ R). In case (II) the field Q(π) is a CM-field.

Proof. Exercise.

Remark 3.7. We see a characterization of Weil q-numbers. In case (I) we have
π = ±√q. If π �∈ R:

β := π +
q

π
is totally real,

and π is a zero of

T 2 − β·T + q, with β < 2
√
q.

In this way it is easy to construct Weil q-numbers.
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3.8. Let A be an abelian variety over a finite field K = Fq with q = pn. Let

F : A → A(p) be the relative Frobenius morphism for A. Iterating this Frobenius
map n times, observing there is a canonical identification A(pn) = A, we obtain
(π : A → A) ∈ End(A). If A is simple, the subring Q(π) ⊂ End0(A) is a subfield,
and we can view π as an algebraic integer.

Theorem 3.9. Extra (Weil) Let K = Fq be a finite field, let A be a simple
abelian variety over K. Then π is a Weil q-number.

This is the famous “Weil conjecture” for an abelian variety over a finite field.
See [86], page 70; [87], page 138; [54], Theorem 4 on page 206.

Exercise 3.10. Use Propositions I and II below to prove the following statements,
thereby proving Theorem 3.9.

(i) Suppose that A is a simple abelian variety over a field K, and let L =
Centre(End0(A)). A Rosati involution on D := End0(A) induces the
complex conjugation on L (for every embedding L ↪→ C).

(ii) If moreover K is a finite field, π = πA is a Weil q-number.

Proposition. I. For a simple abelian variety A over K = Fq we have

πA·(πA)
† = q.

Here † : D → D := End0(A) is the Rosati involution attached to a polarization
of A.

One proof can be found in [54], formula (i) on page 206; also see [16], Corollary
19.2 on page 144.

Another proof of (I) can be given by duality. We have(
FA/S : A→ A(p)

)t
= VAt/S : (A(p))t → At ,

where VAt/S is the Verschiebung of the abelian scheme At/S dual to A/S; see 10.24.
From this formula we see that

πAt · (πA)
t = (FAt)n · (VAt)n = pn = q,

where we use the shorthand notation Fn for the n times iterated relative Frobenius
morphism, and the same for V n. See [GM], 5.21, 7.34 and Section 15.

Proposition. II. For any polarized abelian variety A over a field the Rosati in-
volution † : D → D := End0(A) is a positive definite bilinear form on D, i.e., for
any non-zero x ∈ D we have Tr(x·x†) > 0.

See [54], Theorem 1 on page 192, see [16], Theorem 17.3 on page 138.

Remark 3.11. Given π = πA of a simple abelian variety over Fq one can determine

the structure of the division algebra End0(A), see [79], Theorem 1. See 10.17.

Theorem 3.12. Extra (Honda and Tate) By A �→ πA we obtain a bijective map

{abelian varieties simple over Fq}/∼Fq

∼−→ W (q)/ ∼
between the set of Fq-isogeny classes of abelian varieties simple over Fq and the set
of conjugacy classes of Weil q-numbers.

See [79], Theorem 1 on page 96.



MODULI OF ABELIAN VARIETIES 465

3.13. Let π be a Weil q-number. Let Q ⊂ L ⊂ D be the central algebra
determined by π. It is known that

[L : Q] =: e, [D : L] =: d2, 2g := e·d. See 10.12.

As we have seen in Proposition 3.6 there are three possibilities:

(Re) Either π =
√
q ∈ Q, and q = pn with n an even positive integer.

Type III(1), g = 1

In this case π = +pn/2, or π = −pn/2. Hence L = L0 = Q. We see that D/Q
has rank 4, with ramification exactly at ∞ and at p. We obtain g = 1, we have
that A = E is a supersingular elliptic curve, End0(A) is of Type III(1), a definite
quaternion algebra over Q. This algebra was denoted by Deuring as Qp,∞. Note
that “all endomorphisms of E are defined over K”, i.e., for any

∀ K ⊂ K ′ we have End(A) = End(A⊗K ′).

(Ro) Or q = pn with n an odd positive integer, π =
√
q ∈ R /∈ Q.

Type III(2), g = 2

In this case L0 = L = Q(
√
p), a real quadratic field. We see that D ramifies exactly

at the two infinite places with invariants equal to (n/2)·2/(2n) = 1/2. Hence D/L0

is a definite quaternion algebra over L0; it is of Type III(2). We conclude g = 2. If
K ⊂ K ′ is an extension of odd degree we have End(A) = End(A⊗K ′). If K ⊂ K ′

is an extension of even degree, A⊗K ′ is non-simple, it is K ′-isogenous to a product
of two supersingular elliptic curves, and End0(A ⊗ K ′) is a 2 × 2 matrix algebra
over Qp,∞, and

∀K ′ with 2 | [K ′ : K] we have End(A) �= End(A⊗K ′).

(C) For at least one embedding ψ : Q(π)→ C we have ψ(π) �∈ R.

Type IV(e0, d), g := e0·d

In this case all conjugates of ψ(π) are non-real. We can determine [D : L] knowing
all v(π) by 10.17 (3); here d is the greatest common divisor of all denominators of
[Lv : Qp]·v(π)/v(q), for all v | p. This determines 2g := e·d. The endomorphism
algebra is of Type IV(e0, d). For K = Fq ⊂ K ′ = Fqm we have

End(A) = End(A⊗K ′) ⇐⇒ Q(π) = Q(πm).

Exercise 3.14. Let m,n ∈ Z with m > n > 0; write g = m + n and q = pg.
Consider the polynomial T 2 + pnT + pg, and let π be a zero of this polynomial.

(a) Show that π is a pg-Weil number; compute the p-adic values of all conju-
gates of π.

(b) By the previous theorem we see that π defines the isogeny class of an
abelian variety A over Fq. It can be shown that A has dimension g, and
that N (A) = (m,n) + (n,m), see [79], page 98. This gives a proof of a
conjecture of Manin, see 5.21.
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3.15. �-adic monodromy. (Any characteristic.) Let K be a base field, of
any characteristic. Write GK = Gal(Ksep/K). Let � be a prime number, not equal
to char(K). Note that this implies that T�(A) = lim←−j

A[�j ](Ksep) can be considered

as a group isomorphic with (Z�)
2g with a continuous GK-action. See 10.5, 10.8.

Theorem 3.16. Extra (Tate, Faltings, and many others) Suppose K is of finite
type over its prime field. (Any characteristic.) The canonical map

End(A)⊗Z Z�
∼−→ End(T�(A)) ∼= EndGK

((Z�)
2g)

is an isomorphism.

This was conjectured by Tate. In 1966 Tate proved this in case K is a finite
field, see [78]. The case of function fields in characteristic p was proved by Zarhin
and by Mori, see [90], [91], [52]; also see [51], pp. 9/10 and VI.5 (pp. 154-161).

The case K is a number field was open for a long time; it was finally proved
by Faltings in 1983, see [26]. For the case of a function field in characteristic zero,
see [29], Theorem 1 on page 204.

Remark 3.17. Extra The previous result holds over a number field, but the
Tate map need not be an isomorphism for an abelian variety over a local field.

Example. Lubin and Tate, see [47], 3.5; see [63], 14.9. There exists a finite
extension L ⊃ Qp and an abelian variety over L such that

End(A)⊗Z Z� � End(T�(A)).

We give details of a proof of this fact (slightly more general than in the paper by
Lubin and Tate). Choose a prime number p, and choose a supersingular elliptic
curve E0 over K = Fq such that the endomorphism ring R := End(E0) has rank
4 over Z. In that case R is a maximal order in the endomorphism algebra D :=
End0(E0), which is a quaternion division algebra central over Q. Let I be the index
set of all subfields Li of D, and let

Λ :=
⋃
i∈I

(Li ⊗Qp) ⊂ D ⊗Qp.

Claim.

Λ � Dp := D ⊗Qp.

Indeed, the set I is countable, and [Li : Q] ≤ 2 for every i. Hence Λ is a countable
union of 2-dimensional Qp-vector spaces inside Dp

∼= (Qp)
4. The claim follows.

Hence we can choose ψ0 ∈ Rp := R ⊗ Zp such that ψ0 �∈ Λ: first choose ψ′
0

in Dp outside Λ, then multiply with a power of p in order to make ψ0 = pn·ψ′
0

integral.
Consider X0 := E0[p

∞]. The pair (X0, ψ0) can be lifted to characteristic zero,
see [63], Lemma 14.7, hence to (X,ψ) defined over an order in a finite extension L
of Qp. We see that End0(X) = Qp(ψ), which is a quadratic extension of Qp. By
the theorem of Serre and Tate, see 2.7, we derive an elliptic curve E, which is a
lifting of E0, such that E[p∞] = X. Clearly End(E)⊗ Zp ⊂ End(X).

Claim. End(E) = Z.
In fact, if End(E) were bigger, we would have End(E) ⊗ Zp = End(X). Hence
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ψ ∈ End0(E) ⊂ Λ, which is a contradiction. This finishes the proof of the example:

End(E) = Z and dimQp
End0(X) = 2 and End(E)⊗ Zp � End(X).

However, surprise, in the “anabelian situation” of a hyperbolic curve over a
p-adic field, the analogous situation, gives an isomorphism for fundamental groups,
see [50]. We see: the Tate conjecture as in 3.16 does not hold over p-adic fields
but the Grothendieck “anabelian conjecture” is true for hyperbolic curves over p-
adic fields. Grothendieck took care to formulate his conjecture with a number field
as base field, see [75], page 19; we see that this care is necessary for the original
Tate conjecture for abelian varieties, but for hyperbolic curves this condition can
be relaxed.

3.18. We would like to have a p-adic analogue of 3.16. For this purpose it
is convenient to have p-divisible groups instead of Tate �-groups, and in fact the
following theorem now has been proved to be true.

Theorem 3.19. BB (Tate and De Jong) Let R be an integrally closed, Noe-
therian integral domain with field of fractions K (any characteristic). Let X,Y be
p-divisible groups over Spec(R). Let βK : XK → YK be a homomorphism. There
exists (a unique) β : X → Y over Spec(R) extending βK .

This was proved by Tate, under the extra assumption that the characteristic
of K is zero. For the case char(K) = p, see [19], 1.2 and [18], Theorem 2 on page
261.

Theorem 3.20. BB (Tate and De Jong) Let K be a field finitely generated
over Fp. Let A and B be abelian varieties over K. The natural map

Hom(A,B)⊗ Zp
∼−→ Hom(A[p∞], B[p∞])

is an isomorphism.

This was proved by Tate in case K is a finite field; a proof was written up in
[85]. The case of a function field over Fp was proved by Johan de Jong, see [19],
Theorem 2.6. This case follows from the result by Tate and from the proceeding
result 3.19 on extending homomorphisms.

3.21. Ekedahl-Oort strata. BB In [67] a new technique is developed,
which will be used below. We sketch some of the details of that method. We
will only indicate details relevant for the polarized case (and we leave aside the
much easier unpolarized case).

A finite group schemeN (say over a perfect field) for whichN [V ] = Im(FN ) and
N [F ] = Im(VN ) is called a BT1 group scheme (a p-divisible group scheme truncated
at level 1). By a theorem of Kraft, independently observed by Oort, for a given
rank over an algebraically closed field k the number of isomorphism classes of BT1

group schemes is finite, see [43]. For any abelian variety A, the group scheme A[p]
is a BT1 group scheme. A principal polarization λ on A induces a form on A[p],
and the pair (A, λ)[p] is a polarized BT1 group scheme, see [67], Section 9 (there
are subtleties in case p = 2: the form has to be taken, over a perfect field, on the
Dieudonné module of A[p]).
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3.21.1. The number of isomorphism classes of polarized BT1 group schemes
(N, 〈, 〉) over k of a given rank is finite; see the classification in [67], 9.4.

Let ϕ be the isomorphism type of a polarized BT1 group scheme. Consider
Sϕ ⊂ Ag,1, the set of all [(A, λ)] such that (A, λ)[p] geometrically belongs to the
isomorphism class ϕ.

3.21.2. It can be shown that Sϕ is a locally closed set; it is called an EO-
stratum. We obtain Ag,1 =

⊔
ϕ Sϕ, a disjoint union of locally closed sets. This

is a stratification, in the sense that the boundary of a stratum is a union of lower
dimensional strata.

One of the main theorems of this theory is that
3.21.3. The set Sϕ is quasi-affine (i.e., open in an affine scheme) for every ϕ,

see [67], 1.2.
The finite set Φg of such isomorphism types has two partial orderings, see [67],

14.3. One of these, denoted by ϕ ⊂ ϕ′, is defined by the property that Sϕ is
contained in the Zariski closure of Sϕ′ .

3.22. An application. Let x ∈ Ag,1. Let(
HSp

� (x)
)Zar

= (H�(x) ∩ Ag,1)
Zar ⊂ Ag,1

be the Zariski closure of the �-power Hecke orbit of x in Ag,1. This closed set in
Ag,1 contains a supersingular point.

Use 3.21 and the second part of 1.14.

4. Dieudonné modules and Cartier modules

In this section we explain the theory of Cartier modules and Dieudonné mod-
ules. These theories provide equivalence of categories of geometric objects such as
commutative smooth formal groups or p-divisible groups on the one side, and mod-
ules over certain non-commutative rings on the other side. As a result, questions
on commutative smooth formal groups or p-divisible groups, which are apparently
non-linear in nature, are translated into questions in linear algebra over rings. Such
results are essential for any serious computation.

There are many versions and flavors of Dieudonné theory. We explain the
Cartier theory for commutative smooth formal groups over general commutative
rings, and the covariant Dieudonné modules for p-divisible groups over perfect
fields of characteristic p > 0. Since the Cartier theory works over general com-
mutative rings, one can “write down” explicit deformations over complete rings
such as k[[x1, . . . , xn]] or W (k)[[x1, . . . , xn]], something rarely feasible in algebraic
geometry. For our purpose it is those commutative formal groups which are formal
completions of p-divisible groups that are really relevant; see 10.9 for the relation
between such p-divisible formal groups and the connected p-divisible groups.

Remarks on notation:

(i) In the first part of this section, on Cartier theory, R denotes a commutative
ring with 1, or a commutative Z(p)-algebra with 1.

(ii) In this section, we used V and F as elements in the Cartier ring Cartp(R)
or the smaller Dieudonné ring RK ⊂ Cartp(R) for a perfect field K. In
the rest of this article, the notations V and F are used; V corresponds to



MODULI OF ABELIAN VARIETIES 469

the relative Frobenius morphism and F corresponds to the Verschiebung
morphisms for commutative smooth formal groups or p-divisible groups
over K.

A synopsis of Cartier theory. The main theorem of Cartier theory says that
there is an equivalence between the category of commutative smooth formal groups
over R and the category of left modules over a non-commutative ring Cartp(R)
satisfying certain conditions. See 4.27 for a precise statement.

The Cartier ring Cartp(R) plays a crucial role. This is a topological ring which
contains elements V , F and {〈a〉 | a ∈ R}. These elements form a set of topological
generators, in the sense that every element of Cartp(R) has a unique expression as
a convergent sum in the following form∑

m,n≥0

V m〈amn〉Fn ,

with amn ∈ R for all m,n ≥ 0; moreover for each m ∈ N, there exists a constant
Cm > 0 such that amn = 0 for all n ≥ Cm. Every convergent sum as above is an el-
ement of Cartp(R). These topological generators satisfy the following commutation
relations:

• F 〈a〉 = 〈ap〉F for all a ∈ R;
• 〈a〉V = V 〈ap〉 for all a ∈ R;
• 〈a〉 〈b〉 = 〈ab〉 for all a, b ∈ R;
• FV = p;

• V m〈a〉Fm V n〈b〉Fn = pr V m+n−r〈apn−r

bp
m−r〉Fm+n−r for all a, b ∈ R

and all m,n ∈ N, where r = min{m,n}.
Moreover, the ring of p-adic Witt vectors Wp(R) is embedded in Cartp(R) by the
formula

Wp(R) � c = (c0, c1, c2, . . .) �−→
∑
n≥0

V n〈cn〉Fn ∈ Cartp(R) .

The topology of Cartp(R) is given by the decreasing filtration

Filn (Cartp(R)) := V n · Cartp(R) ,

making Cartp(R) a complete and separated topological ring. Under the equiva-
lence of categories mentioned above, a left Cartp(R) module corresponds to a finite
dimensional smooth commutative formal group G over R if and only if

• V : M →M is injective,
• M

∼−→ lim←−n
M/V nM , and

• M/VM is a projective R-module of finite type.

If so, then Lie(G/R) ∼= M/VM , and M is a finitely generated Cartp(R)-module.
See 4.18 for the definition of Cartp(R), 4.19 for the commutation relations in
Cartp(R), and 4.23 for some other properties of R.

References for Cartier theory. We highly recommend [93], where the approach
in §2 of [73] is fully developed. Other references for Cartier theory are [44] and
[36].
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Remarks on Dieudonné theories.
(1) As already mentioned, the effect of a Dieudonné theory for p-divisible groups
(and/or formal groups) is to translate questions for p-divisible groups (and/or for-
mal groups) into questions in linear algebra for modules over suitable rings. A
survey of Dieudonné theories can be found in [6]. The book [24] is a good intro-
duction to the classical contravariant Dieudonné theory over a perfect field K ⊃ Fp.

(2) The covariant Dieudonné theory described in this section is the dual version
of the classical contravariant theory. For a p-divisible group X over a perfect
field K ⊃ Fp, the covariant Dieudonné module D(X) described in Theorem 4.33
is functorially isomorphic to Dclassical(X

t), the classical contravariant Dieudonné
module of the Serre dual Xt of X as defined in [48] and [24].

(3) The Cartier theory is a Dieudonné theory for commutative formal groups. As
explained in 10.9, a p-divisible group X over an Artinian local ring R with residue
characteristic p whose maximal étale quotient is trivial can be recovered from the
formal completion X∧ of X. Such p-divisible groups are called p-divisible formal
groups. Given a p-divisible formal group X over an Artinian local ring R with
residue characteristic p, the formal completion X∧ is a smooth commutative formal
group over R, and the Cartier theory provides us with a module V -flat V -reduced
left Cartp(R)-module Mp(X

∧).

(4) The Cartier module attached to a p-divisible formal group X over a perfect field
K ⊃ Fp is canonically isomorphic to the Dieudonné module D(X); see Theorem 4.33
(2). See also 4.34 for the relation with the Dieudonné crystal attached to X.

(5) Let (R,m) be a complete Noetherian local ring with residue characteristic p.
Suppose that X is a p-divisible group over R such that X ×Spec(R) Spec(R/m) is
a p-divisible formal group. Let X∧ be the formal completion of X, defined as
the scheme-theoretic inductive limit of the finite flat group schemes X[pn]×Spec(R)

Spec(R/mi) over Spec(R/mi) as m and i go to ∞. Then X∧ is a commutative
smooth formal group over R, whose closed fiber is a p-divisible formal group. Con-
versely, suppose that X ′ is a commutative smooth formal group over R whose closed
fiber X0 is the formal completion of a p-divisible formal group X0 over the residue
field R/m. Then for each i > 0, the formal group X ′ ×SpecR Spec(R/mi) is the
formal completion of a p-divisible formal group Xi → Spec(R/mi), uniquely de-
termined up to unique isomorphism. The projective limit of the p-divisible groups
Xi → Spec(R/mi) “is” a p-divisible group X over R whose closed fiber is the p-
divisible formal group X0 over R/m; see 10.21 and 10.9. Notice that the fibers of
X → Spec(R/pR)) may not be p-divisible formal groups; the universal p-divisible
group over the equi-characteristic deformation space of a supersingular elliptic curve
provides an example.

The upshot of the previous paragraph is that we can apply the Cartier theory
to construct and study deformation of p-divisible formal groups. Suppose that R is
a complete Noetherian local ring whose residue field R/m has characteristic p. In
order to produce a deformation over R of a p-divisible formal group X0 over R/m,
it suffices to “write down” a V-flat V-reduced left Cartp(R)-module M such that
the tensor product Cartp(R/m) ⊗Cartp(R) M is isomorphic to the Cartier module
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Mp(X0) attached to X0. This way of explicitly constructing deformations over
rings such as K[[x1, . . . , xN ]] and W (K)[[x1, . . . , xN ]] whose analog in deformation
theory for general algebraic varieties is often intractable, becomes manageable. This
method is essential for Sections 5, 7, 8.

We strongly advise readers with no prior experience with Cartier theory to
accept the synopsis above as a “big black box” and use the materials in 4.1–4.27
as a dictionary only when necessary. Instead, we suggest such readers start with
4.28–4.52, get familiar with the ring Cartp(K) in the case when R = K, a perfect
field of characteristic p, play with some examples of finitely generated modules over
Cartp(K) in conjunction with the theory of covariant Dieudonné modules over per-
fect fields in characteristic p and do some of the exercises. See the Lemma/Exercise
after Def. 4.28 for a concrete definition of the Cartier ring Cartp(K) as the V -adic
completion of the Dieudonné ring RK .

Cartier theory

Definition 4.1. Let R be a commutative ring with 1.

(1) Let NilpR be the category of all nilpotent R-algebras, consisting of all
commutative R-algebras N without unit such that Nn = (0) for some
positive integer n.

(2) A commutative smooth formal group over R is a covariant functor G :
NilpR → Ab from NilpR to the category of all abelian groups such that
the following properties are satisfied:
• G commutes with finite inverse limits;
• G is formally smooth, i.e., every surjectionN1 → N2 in NilpR induces

a surjection G(N1)→ G(N2);
• G commutes with arbitrary direct limits.

(3) The Lie algebra of a commutative smooth formal group G is defined to
be G(N0), where N0 is the object in NilpR whose underlying R-module is
R, and N2

0 = (0).

Remark. Let G be a commutative smooth formal group over R, then G extends
uniquely to a functor G∼ on the category ProNilpR of all filtered projective system
of nilpotent R-algebras which commutes with filtered projective limits. This functor
G∼ is often denoted G by abuse of notation.

Example. Let A be a commutative smooth group scheme of finite presentation
over R. For every nilpotent R-algebra N , denote by R ⊕ N the commutative R-
algebra with multiplication given by

(u1, n1) · (u2, n2) = (u1u2, u1n2 + u2n1 + n1n2) ∀u1, u2 ∈ R ∀n1, n2 ∈ N .

The functor which sends an object N in NilpR to the abelian group

Ker (A(R⊕N)→ A(R))

is a commutative smooth formal group over R, denoted by A∧. Note that the
functor A∧ commutes with arbitrary inductive limits because A does.

Here are two special cases: we have

G∧
a (N) = N and G∧

m(N) = 1 +N ⊂ (R⊕N)×

for all N ∈ Ob(NilpR).
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Definition 4.2. We define a restricted version of the smooth formal group at-
tached to the universal Witt vector group over R, denoted by ΛR, or Λ when the
base ring R is understood.

ΛR(N) = 1 + t R[t]⊗RN ⊂ ((R⊕N)[t])× ∀ N ∈ Ob(NilpR) .

In other words, the elements of Λ(N) consists of all polynomials of the form 1 +
u1 t+ u2 t

2 + · · ·+ ur t
r for some r ≥ 0, where ui ∈ N for i = 1, . . . , r. The group

law of Λ(N) comes from multiplication in the polynomial ring (R ⊕ N)[t] in one
variable t.

Remarks.

(i) The formal group Λ plays the role of a free generator in the category of
(smooth) formal groups; see Theorem 4.4.

(ii) When we want to emphasize that the polynomial 1+
∑

i≥1 ui t
i is regarded

as an element of Λ(N), we denote it by λ(1 +
∑

i≥1 ui t
i).

(iii) Note that the functor N �→ 1+N tR[[t]] ⊂ (R⊕N)[[t]]× is not a commu-
tative smooth formal group because it does not commute with arbitrary
direct limits.

Exercise 4.3. Let R[[X]]+ = X R[[X]] be the set of all formal power series over
R with constant term 0; it is an object in ProNilpR. Show that Λ(R[[X]]+) equals⎧⎨
⎩

∏
m,n≥1

(1− amnX
m tn)

∣∣∣∣∣∣ am,n ∈ R, ∀m ∃Cm > 0 s.t. amn = 0 ∀ n ≥ Cm

⎫⎬
⎭ .

Theorem 4.4. BB Let H : NilpR → Ab be a commutative smooth formal group
over R. Let Λ = ΛR be the functor defined in 4.2. Then the map

YH : Hom(ΛR, H)→ H(R[[X]]+)

which sends each homomorphism α : Λ→ H of group-valued functors to the element

α
R[[X]]+

(1−Xt) ∈ H(R[[X]]+)

is a bijection.

Remark. The formal group Λ is in some sense a free generator of the additive
category of commutative smooth formal groups, a phenomenon reflected in Theo-
rem 4.4.

Definition 4.5. (i) Define Cart(R) to be (End(ΛR))
op, the opposite ring of the

endomorphism ring of the smooth formal group ΛR. According to Theorem 4.4,
for every commutative smooth formal group H : NilpR → Ab, the abelian group
H(R[[X]]+) = Hom(ΛR, H) is a left module over Cart(R).
(ii) We define some special elements of the Cartier ring Cart(R), naturally identified

with Λ(R[[X]]) via the bijection Y = YΛ : End(Λ)
∼−→ Λ(R[[X]]+) in Theorem 4.4.

• Vn := Y −1(1−Xn t) , n ≥ 1,
• Fn := Y −1(1−X tn) , n ≥ 1,
• [c] := Y −1(1− cX t) , c ∈ R.
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Corollary. For every commutative ring with 1 we have

Cart(R) =

⎧⎨
⎩
∑

m,n≥1

Vm [cmn]Fn

∣∣∣∣ cmn ∈ R, ∀m ∃Cm > 0 s.t. cmn = 0 ∀ n ≥ Cm

⎫⎬
⎭ .

Proposition 4.6. BB The following identities hold in Cart(R).

(1) V1 = F1 = 1, Fn Vn = n.
(2) [a] [b] = [ab] for all a, b ∈ R
(3) [c]Vn = Vn [c

n], Fn [c] = [cn]Fn for all c ∈ R, all n ≥ 1.
(4) Vm Vn = Vn Vm = Vmn, Fm Fn = Fn Fm = Fmn for all m,n ≥ 1.
(5) Fn Vm = Vm Fn if (m,n) = 1.
(6) (Vn[a]Fn) · (Vm[b]Fm) = r Vmn

r

[
a

m
r b

n
r

]
Fmn

r
, r = (m,n), for all a, b ∈ R,

m,n ≥ 1.

Definition 4.7. The ring Cart(R) has a natural filtration Fil•Cart(R) by right

ideals, where FiljCart(R) is defined by⎧⎨
⎩
∑
m≥j

∑
n≥1

Vm[amn]Fn | amn ∈ R, ∀m ≥ j, ∃Cm > 0 s.t. amn = 0 if n ≥ Cm

⎫⎬
⎭

for every integer j ≥ 1. The Cartier ring Cart(R) is complete with respect to the

topology given by the above filtration. Moreover each right ideal FiljCart(R) is
open and closed in Cart(R).

Remark. The definition of the Cartier ring gives a functor

R �−→ Cart(R)

from the category of commutative rings with 1 to the category of complete filtered
rings with 1.

Definition 4.8. Let R be a commutative ring with 1.

(1) A V-reduced left Cart(R)-module is a left Cart(R)-module M together
with a separated decreasing filtration of M

M = Fil1M ⊃ Fil2M ⊃ · · · ⊃ FilnM ⊃ Filn+1 ⊃ · · ·
such that each FilnM is an abelian subgroup of M and
(i) (M,Fil•M) is complete with respect to the topology given by the

filtration Fil•M . In other words, the natural map

FilnM → lim←− m≥n (Fil
nM/FilmM)

is a bijection for all n ≥ 1.
(ii) Vm · FilnM ⊂ FilmnM for all m,n ≥ 1.

(iii) The map Vn induces a bijection Vn : M/Fil2M
∼−→ FilnM/Filn+1M

for every n ≥ 1.
(iv) [c] · FilnM ⊂ FilnM for all c ∈ R and all n ≥ 1.
(v) For every m,n ≥ 1, there exists an r ≥ 1 such that Fm · FilrM ⊂

FilnM .
(2) A V-reduced left Cart(R)-module (M,Fil•M) is V-flat if M/Fil2M is a

flat R-module. The R-module M/Fil2M is called the tangent space of
(M,Fil•M).
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Definition 4.9. Let H : NilpR → Ab be a commutative smooth formal group
over R. The abelian group M(H) := H(R[[X]]+) has a natural structure as a
left Cart(R)-module according to Theorem 4.4 The Cart(R)-module M(H) has a
natural filtration, with

FilnM(H) := Ker(H(R[[X]]+)→ H(R[[X]]+/XnR[[X]])) .

We call the pair (M(H),Fil•M(H)) the Cartier module attached to H.

Definition 4.10. Let M be a V-reduced left Cart(R)-module and let Q be a right
Cart(R)-module.

(i) For every integer m ≥ 1, let Qm := AnnQ(Fil
mCart(R)) be the subgroup

of Q consisting of all elements x ∈ Q such that x · FilmCart(R) = (0).
Clearly we have Q1 ⊆ Q2 ⊆ Q3 ⊆ · · ·.

(ii) For each m, r ≥ 1, define Qm �Mr to be the image of Qm ⊗ FilrM in
Q⊗Cart(R) M .

Notice that if r ≥ m and s ≥ m, then Qm �Mr = Qm �Ms. Hence
Qm �Mm ⊆ Qn �Mn if m ≤ n.

(iii) Define the reduced tensor product Q⊗Cart(R)M by

Q⊗Cart(R)M = Q⊗Cart(R) M

/(⋃
m

(Qm �Mm)
)
.

Remark. The reduced tensor product is used to construct the arrow in the “re-
verse direction” in the equivalence of category in 4.11 below.

Theorem 4.11. BB Let R be a commutative ring with 1. There is a canonical
equivalence of categories between the category of smooth commutative formal groups
over R as defined in 4.1 and the category of V-flat V-reduced left Cart(R)-modules,
defined as follows.

{smooth formal groups over R} ∼ �� {V-flat V-reduced left Cart(R)-mod}

G
� �� M(G) = Hom(Λ, G)

Λ⊗Cart(R)M M
���

Recall that M(G) = Hom(Λ, G) is canonically isomorphic to G(X R[[X]]), the
group of all formal curves in the smooth formal group G. The reduced tensor
product Λ⊗Cart(R)M is the functor whose value at any nilpotent R-algebra N is
Λ(N)⊗Cart(R)M .

The Cartier ring Cart(R) contains the ring of universal Witt vectors W∼(R)
as a subring which contains the unit element of Cart(R).

Definition 4.12.

(1) The universal Witt vector group W∼ is defined as the functor from the
category of all commutative algebras with 1 to the category of abelian
groups such that

W∼(R) = 1 + T R[[T ]] ⊂ R[[T ]]×

for every commutative ring R with 1.
When we regard a formal power series 1 +

∑
m≥1 um Tm in R[[T ]] as

an element of W∼(R), we use the notation ω(1 +
∑

m≥1 um Tm). It is
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easy to see that every element of W∼(R) has a unique expression as

ω

⎛
⎝∏

m≥1

(1− am Tm)

⎞
⎠ .

Hence W∼ is isomorphic to SpecZ[x1, x2, x3, . . .] as a scheme; the R-
valued point such that xi �→ ai is denoted by ω(a), where a is short for
(a1, a2, a3, . . .), and ω(a) = ω(

∏
m≥1 (1− am Tm)).

(2) The group scheme W∼ has a natural structure as a ring scheme, such that
multiplication on W∼ is determined by the formula

ω(1− a Tm) · ω(1− b Tn) = ω
((

1− a
n
r b

m
r T

mn
r

)r)
, where r = gcd(m,n) .

(3) There are two families of endomorphisms of the group scheme W∼: Vn

and Fn, n ∈ N≥1. Also, for each commutative ring R with 1 and each
element c ∈ R we have an endomorphism [c] of W∼×SpecZ SpecR. These
operators make W∼(R) a left Cart(R)-module; they are defined as follows

Vn : ω(f(T )) �→ ω(f(Tn)),

Fn : ω(f(T )) �→
∑

ζ∈µn
ω(f(ζ T

1
n )), ( formally )

[c] : ω(f(T )) �→ ω(f(cT )).

The formula for Fn(ω(f(T ))) means that Fn(ω(f(T ))) is defined as the
unique element such that Vn(Fn(ω(f(T )))) =

∑
ζ∈µn

ω(f(ζ T )).

Exercise 4.13. Show that the Cartier module of G∧
m over R is naturally isomor-

phic to W∼(R) as a module over Cart(R).

Proposition 4.14. BB Let R be a commutative ring with 1.

(i) The subset S of Cart(R) consisting of all elements of the form∑
n≥1

Vn[an]Fn , an ∈ R ∀n ≥ 1

forms a subring of Cart(R).
(ii) The injective map

W∼(R) ↪→ Cart(R), ω(a) �→
∑
n≥1

Vn [an]Fn

is an injective homomorphism of rings which sends 1 to 1; its image is
the subring S defined in (i).

Definition 4.15. It is a fact that every prime number � �= p is invertible in
Cart(Z(p)). Define elements εp and εp,n of the Cartier ring Cart(Z(p)) for n ∈ N,
(n, p) = 1 by

εp = εp,1 =
∑

(n,p)=1
n≥1

µ(n)

n
VnFn =

∏
� �=p

� prime

(
1− 1

�
V�F�

)

εp,n =
1

n
VnεpFn

where µ is the Möbius function on N≥1, characterized by the following properties:
µ(mn) = µ(m)µ(n) if (m,n) = 1, and for every prime number � we have µ(�) = −1,
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µ(�i) = 0 if i ≥ 2. For every commutative with 1 over Z(p), the image of εp in
Cart(R) under the canonical ring homomorphism Cart(Z(p)) → Cart(R) is also
denoted by εp.

Exercise 4.16. Let R be a Z(p)-algebra, and let (am)m≥0 be a sequence in R.
Prove the equality

εp

⎛
⎝ω

⎛
⎝∏

m≥1

(1− am Tm)

⎞
⎠
⎞
⎠ = εp

⎛
⎝ω

⎛
⎝∏

n≥0

(1− apn T pn

)

⎞
⎠
⎞
⎠

= ω

⎛
⎝∏

n≥0

E(apn T pn

)

⎞
⎠ ,

in W∼(R), where

E(X) =
∏

(n,p)=1

(1−Xn)
µ(n)
n = exp

⎛
⎝−∑

n≥0

Xpn

pn

⎞
⎠ ∈ 1 +XZ(p)[[X]]

is the inverse of the classical Artin-Hasse exponential.

Proposition 4.17. BB Let R be a commutative Z(p)-algebra with 1. The fol-
lowing equalities hold in Cart(R).

(i) εp
2 = εp.

(ii)
∑

p�n, n≥1

εp,n = 1.

(iii) εpVn = 0, Fnεp = 0 for all n with p � n.
(iv) εp,n

2 = εp,n for all n ≥ 1 with p � n.
(v) εp,n εp,m = 0 for all m �= n with p � mn.
(vi) [c] εp = εp [c] and [c] εp,n = εp,n [c] for all c ∈ R and all n with p � n.
(vii) Fpεp,n = εp,nFp, Vpεp,n = εp,nVp for all n with p � n.

Definition 4.18. Let R be a commutative ring with 1 over Z(p).

(i) Denote by Cartp(R) the subring εpCart(R)εp of Cart(R). Note that εp is
the unit element of Cartp(R).

(ii) Define elements F, V ∈ Cartp(R) by

F = εpFp = Fpεp = εpFpεp , V = εpVp = Vpεp = εpVpεp .

(iii) For every element c ∈ R, denote by 〈c〉 the element

εp[c]εp = εp[c] = [c]εp ∈ Cartp(R).

Exercise 4.19. Prove the following identities in Cartp(R).

(1) F 〈a〉 = 〈ap〉F for all a ∈ R.
(2) 〈a〉V = V 〈ap〉 for all a ∈ R.
(3) 〈a〉 〈b〉 = 〈ab〉 for all a, b ∈ R.
(4) FV = p.
(5) V F = p if and only if p = 0 in R.
(6) Every prime number � �= p is invertible in Cartp(R). The prime number

p is invertible in Cartp(R) if and only if p is invertible in R.

(7) V m〈a〉Fm V n〈b〉Fn = pr V m+n−r〈apn−r

bp
m−r〉Fm+n−r for all a, b ∈ R

and all m,n ∈ N, where r = min{m,n}.
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Definition 4.20. Let R be a commutative Z(p)-algebra with 1. Denote by Λp the
image of εp in Λ. In other words, Λp is the functor from the category NilpR of
nilpotent commutative R-algebras to the category Ab of abelian groups such that

Λp(N) = Λ(N) · εp

for any nilpotent R-algebra N .

Definition 4.21.

(1) Denote by Wp the image of εp, i.e., Wp(R) := εp(W
∼(R)) for every Z(p)-

algebra R. Equivalently, Wp(R) is the intersection of the kernels Ker(F�)
of the operators F� on W∼(R), where � runs through all prime numbers
different from p.

(2) Denote the element

ω(

∞∏
n=0

E(cn T
pn

)) ∈Wp(R)

by ωp(c).
(3) The endomorphism Vp, Fp of the group scheme W∼ induces endomor-

phisms of the group scheme Wp, denoted by V and F respectively.

Remark. The functor Wp has a natural structure as a ring-valued functor induced
from that of W∼; it is represented by the scheme SpecZ(p)[y0, y1, y2, . . . , yn, . . .]
such that the element ωp(c) has coordinates c = (c0, c1, c2, . . .).

Exercise 4.22. Let R be a commutative Z(p)-algebra with 1. Let E(T ) ∈ Z(p)[[T ]]
be the inverse of the Artin-Hasse exponential as in Exer. 4.16.

(i) Prove that for any nilpotent R-algebra N , every element of Λp(N) has a
unique expression as a finite product

m∏
i=0

E(ui t
pi

)

for some m ∈ N, and ui ∈ N for i = 0, 1, . . . ,m.
(ii) Prove that Λp is a smooth commutative formal group over R.
(iii) Prove that every element ofWp(R) can be uniquely expressed as an infinite

product

ω(

∞∏
n=0

E(cn T
pn

)) ∈Wp(R) =: ωp(c) .

(iv) Show that the map from Wp(R) to the product ring
∏∞

0 R defined by

ωp(c) �−→
(
wn(c)

)
n≥0

where wn(c) :=
n∑

i=0

pn−i cp
i

n−i ,

is a ring homomorphism.

Proposition 4.23.

(i) The local Cartier ring Cartp(R) is complete with respect to the decreasing
sequence of right ideals V iCartp(R).
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(ii) Every element of Cartp(R) can be expressed in a unique way as a conver-
gent sum in the form ∑

m,n≥0

V m〈amn〉Fn

with all amn ∈ R, and for each m there exists a constant Cm such that
amn = 0 for all n ≥ Cm.

(iii) The set of all elements of Cartp(R) which can be represented as a conver-
gent sum of the form∑

m≥0

V m〈am〉Fm , am ∈ R

is a subring of Cartp(R). The map

wp(a) �→
∑
m≥0

V m〈am〉Fm a = (a0, a1, a2, . . .), ai ∈ R ∀ i ≥ 0

establishes an isomorphism from the ring of p-adic Witt vectors Wp(R) to
the above subring of Cartp(R).

Exercise 4.24. Prove that Cartp(R) is naturally isomorphic to End(Λp)
op, the

opposite ring of the endomorphism ring of End(Λp).

Definition 4.25. Let R be a commutative Z(p)-algebra.

(i) A V-reduced left Cartp(R)-module M is a left Cartp(R)-module such
that the map V : M → M is injective and the canonical map M →
lim←−
n

(M/V nM) is an isomorphism.

(ii) A V-reduced left Cartp(R)-module M is V-flat if M/VM is a flat R-
module.

Theorem 4.26. Let R be a commutative Z(p)-algebra with 1.

(i) There is an equivalence of categories between the category of V-reduced
left Cart(R)-modules and the category of V-reduced left Cartp(R)-modules,
defined as follows.

{ V-reduced left Cart(R)-mod } ∼ �� { V-reduced left Cartp(R)-mod }

M
� �� εpM

Cart(R)εp⊗̂Cartp(R)Mp Mp
���

(ii) Let M be a V-reduced left Cart(R)-module M , and let Mp be the V-reduced
let Cartp(R)-module Mp attached to M as in (i) above. There is a canon-

ical isomorphism M/Fil2M ∼= Mp/VMp. In particular M is V-flat if and
only if Mp is V-flat. Similarly M is a finitely generated Cart(R)-module
if and only if Mp is a finitely generated Cartp(R)-module.

Theorem 4.27. Let R be a commutative Z(p)-algebra with 1. There is a canonical
equivalence of categories between the category of smooth commutative formal groups
over R as defined in 4.1 and the category of V-flat V-reduced left Cartp(R)-modules,
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defined as follows.

{smooth formal groups over R} ∼ �� {V-flat V-reduced left Cartp(R)-mod}

G
� �� Mp(G) = εp Hom(Λ, G)

Λp⊗Cartp(R)M M
���

Dieudonné modules.

In the rest of this section, K stands for a perfect field of characteristic p > 0. We
have FV = V F = p in Cartp(K). It is well known that the ring of p-adic Witt
vectors W (K) is a complete discrete valuation ring with residue field K, whose
maximal ideal is generated by p. Denote by σ : W (K) → W (K) the Teichmüller
lift of the automorphism x �→ xp of K. With the Witt coordinates we have
σ : (c0, c1, c2, . . .) �→ (cp0, c

p
1, c

p
2, . . .). Denote by L = B(K) the field of fractions of

W (K).

Definition 4.28. Denote by RK the (non-commutative) ring generated by W (K),
F and V , subject to the following relations

F · V = V · F = p, F · x = σx · F, x · V = V · σx ∀x ∈W (K) .

Remark. There is a natural embedding RK ↪→ Cartp(K); we use it to identify
RK as a dense subring of the Cartier ring Cartp(K). For every continuous left
Cartp(K)-module M , the Cartp(K)-module structure on M is determined by the
induced left RK-module structure on M .

Lemma/Exercise.
(i) The ring RK is naturally identified with the ring

W (K)[V, F ] :=

(⊕
i<0

p−iV iW (K)

)⊕⎛
⎝⊕

i≥0

V iW (K)

⎞
⎠ ,

i.e., elements of W (K)[V, F ] are sums of the form
∑

i∈Z aiV
i, where ai ∈ L for all

i ∈ Z, ordp(ai) ≥ max(0,−i) ∀i ∈ Z, and ai = 0 for all but finitely many i’s. The
commutation relation between W (K) and V i is

x · V i = V i · σi

x for all x ∈W (K) and all i ∈ Z .

(ii) The ring Cartp(K) is naturally identified with the set W (K)[[V, F 〉〉 , consisting
of all non-commutative formal power series of the form

∑
i∈Z aiV

i such that ai ∈
L ∀i ∈ Z, ordp(ai) ≥ max(0,−i) ∀i ∈ Z, and ordp(ai) + i→∞ as |i| → ∞.
(iii) Check that the ring structure on W (K)[V, F ] extends to W (K)[[V, F 〉〉 by
continuity. In other words, the inclusion W (K)[V, F ] ↪→ W (K)[[V, F 〉〉 is a ring
homomorphism, and W (K)[V, F ] is dense in W (K)[[V, F 〉〉 with respect to the V -
adic topology on W (K)[[V, F 〉〉 ∼= Cartp(K) . The latter topology on W (K)[[V, F 〉〉
is equivalent to the topology given by the discrete valuation v on W (K)[[V, F 〉〉
defined by

v

(∑
i∈Z

aiV
i

)
= Min {ordp(ai) + i | i ∈ Z} .

Definition 4.29.

(1) A Dieudonné module is a left RK-module M such that M is a free W (K)-
module of finite rank.
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(2) Let M be a Dieudonné module over K. Define the α-rank of M to be the
natural number a(M) = dimK(M/(VM + FM).

Compare with a(G) as defined in 5.4.

Definition 4.30.

(i) For any natural number n ≥ 1 and any scheme S, denote by (Z/nZ)
S
the

constant group scheme over S attached to the finite group Z/nZ. The
scheme underlying (Z/nZ)

S
is the disjoint union of n copies of S, indexed

by the finite group Z/nZ, see 10.22.
(ii) For any natural number n ≥ 1 and any scheme S, denote by µn,S the

kernel of [n] : Gm/S → Gm/S . The group scheme µn,S is finite and locally
free over S of rank n; it is the Cartier dual of (Z/nZ)

S
.

(iii) For any field K ⊃ Fp, define a finite group scheme αp over K to be the
kernel of the endomorphism

Frp : Ga/K = Spec(K[X])→ Ga/K = Spec(K[X])

of Ga over K defined by the K-homomorphism from the K-algebra K[X]
to itself which sends X to Xp. We have αp = Spec(K[X]/(Xp)) as a
scheme. The comultiplication on the coordinate ring of αp is induced by
X �→ X ⊗X.

Proposition 4.31. BB Let X be a p-divisible group over a perfect field K ⊃ Fp.
Then there exists a canonical splitting

X ∼= Xtor ×Spec(K) X�� ×Spec(K) Xét

where Xét is the maximal étale quotient of X, Xmult is the maximal toric p-divisible
subgroup of X, and X�� is a p-divisible group with no non-trivial étale quotient nor
non-trivial multiplicative p-divisible subgroup.

Remark.

(i) The analogous statement for finite group schemes over K can be found in
[48, Chapter 1], from which 4.31 follows. See also [24], [25].

(ii) See 10.9 for a similar statement for p-divisible groups over an Artinian
local ring.

Definition 4.32. Let m,n be non-negative integers such that gcd(m,n) = 1. Let
k ⊃ Fp be an algebraically closed field. Let Gm,n be the p-divisible group whose
Dieudonné module is

D(Gm,n) = RK/RK · (V n − Fm) .

Theorem 4.33. BB

(1) There is an equivalence of categories between the category of p-divisible
groups over K and the category of Dieudonné modules over RK . Denote by
D(X) the covariant Dieudonné module attached to a p-divisible group over
K. This equivalence is compatible with direct product and exactness, i.e.,
short exact sequences correspond under the above equivalence of categories.

(2) Let X be a p-divisible group over K such that X is a p-divisible formal
group in the sense that the maximal étale quotient of X is trivial. Denote
by X∧ the formal group attached to X, i.e., X∧ is the formal completion
of X along the zero section of X. Then there is a canonical isomorphism
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D(X)
∼−→ Mp(X

∧) between the Dieudonné module of X and the Cartier
module of X∧ which is compatible with the actions by F , V and elements
of W (K).

(3) Let X be a p-divisible group over K and D(X) the covariant Dieudonné
module of X. Then ht(X) = rankW (K)(D(X)), and we have a functorial
isomorphism Lie(X) ∼= D(X)/V · D(X).

(4) Let Xt be the Serre-dual of the p-divisible group of X. Then the Dieudonné
module D(Xt) can be described in terms of D(X) as follows. The under-
lying W (K)-module is the linear dual D(X)∨ := HomW (K)(D(X),W (K))
of D(X). The actions of V and F on D(X)∨ are defined as follows:

(V · h)(m) = σ−1

(h(Fm)) , (F · h)(m) = σ(h(Vm))

for all h ∈ D(X)∨ = HomW (K)(D(X),W (K)) and all m ∈ D(X).
(5) A p-divisible group X over K is étale if and only if V : D(X) → D(X)

is bijective, or equivalently, F : D(X) → D(X) is divisible by p. A p-
divisible group X over K is multiplicative if and only if V : D(X) →
D(X) is divisible by p, or equivalently, F : D(X) → D(X) is bijective.
A p-divisible group X over K has no non-trivial étale quotient nor non-
trivial multiplicative p-divisible subgroup if and only if both F and V are
topologically nilpotent on D(X).

Remark 4.34.

(1) See [57] for Theorem 4.33.
(2) When p > 2, the Dieudonné module D(X) attached to a p-divisible group

over K can also be defined in terms of the covariant Dieudonné crystal
attached to X described in 2.4. In short, D(X) “is” D(X/W (K))W (K),
the limit of the “values” of the Dieudonné crystal at the divided power
structures

(W (K)/pmW (K), pW (K)/pmW (K), γ)

as m → ∞, where these are the reductions modulo pm of the natural
DP-structure on (W (K), pW (K)). Recall that the natural DP-structure

on (W (K), pW (K)) is given by γi(x) =
xi

i! ∀x ∈ pW (K); the condition
that p > 2 implies that the induced DP structure on

(W (K)/pmW (K), pW (K)/pmW (K)

is nilpotent.

Proposition 4.35. BB Let X be a p-divisible group over K. We have a natural
isomorphism

HomK(αp, X[p]) ∼= HomW (K) (D(X)∨/(V D(X)∨ + FD(X)∨), B(K)/W (K)) ,

where B(K) = frac(W (K)) is the fraction field of W (K). In particular we have

dimK(HomK(αp, X[p])) = a(D(X)) .

The natural number a(D(X)) of a p-divisible group X over K is zero if and only if
X is an extension of an étale p-divisible group by a multiplicative p-divisible group.

For the notation a(M) see 4.29, and for a(G) see 5.4.

Exercise 4.36.

(i) Prove that ht(Gm,n) = m+ n.
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(ii) Prove that dim(Gm,n) = m.
(iii) Show that G0,1 is isomorphic to the étale p-divisible group Qp/Zp, and

G1,0 is isomorphic to the multiplicative p-divisible group µ∞ = Gm[p∞].
(iv) Show that End(Gm,n) ⊗Zp

Qp is a central division algebra over Qp of

dimension (m + n)2, and compute the Brauer invariant of this central
division algebra.

(iv) Relate Gm,n to Gn,m.
(v) Determine all pairs (m,n) such that End(Gm,n) is the maximal order of

the division algebra End(Gm,n)⊗Zp
Qp.

Theorem 4.37. BB Let k ⊃ Fp be an algebraically closed field. Let X be a
simple p-divisible group over k, i.e., X has no non-trivial quotient p-divisible groups.
Then X is isogenous to Gm,n for a uniquely determined pair of natural numbers
m,n with gcd(m,n) = 1, i.e., there exists a surjective homomorphism X → Gm,n

with finite kernel.

Definition 4.38.

(i) The slope of Gm,n is m/(m + n) with multiplicity m + n. The Newton
polygon of Gm,n is the line segment in the plane from (0, 0) to (m+n,m).
The slope sequence of Gm,n is the sequence (m/(m+ n), . . . ,m/(m+ n))
with m+ n entries.

(ii) Let X be a p-divisible group over a field K ⊃ Fp, and let k be an alge-
braically closed field containing K. Suppose that X is isogenous to

Gm1,n1
×Spec(k) · · · ×Spec(k) Gmr,nr

gcd(mi, ni) = 1 for i = 1, . . . , r, and mi/(mi + ni) ≤ mi+1/(mi+1 + ni+1)
for i = 1, . . . , r − 1. Then the Newton polygon of X is defined by the
data

∑r
i=1(mi, ni). Its slope sequence is the concatenation of the slope

sequence for Gm1,n1
, . . . , Gmr,nr

.

Example. A p-divisible group X over K is étale (resp. multiplicative) if and only
if all of its slopes are equal to 0 (resp. 1).

Exercise 4.39. Suppose that X is a p-divisible group over K such that X is
isogenous to G1,n (resp. Gm,1). Show that X is isomorphic to G1,n (resp. Gm,1).

Exercise 4.40. Let β1 ≤ · · · ≤ βh be the slope sequence of a p-divisible group
over K of height h. Prove that the slope sequence of the Serre dual Xt of X is
1− βh, . . . , 1− β1. (Hint: First show that Gt

m,n
∼= Gn,m.)

Conclusion 4.41. Let K ⊃ Fp be a field, and let k be an algebraically closed field
containing K.

• Any p-divisible group X over K admits an isogeny X ⊗ k ∼
∏

i Gmi,ni
.

• The Newton polygon N (Gm,n) is isoclinic (all slopes are the same) of
height m+ n and slope m/(m+ n).

• In this way the Newton polygon N (X) is determined. Write h = h(X)
for the height of X and d = dim(X) for the dimension of X. The Newton
polygon N (X) ends at (h(X), dim(X)).

• The isogeny class of a p-divisible group over any algebraically closed field k
uniquely determines (and is uniquely determined by) its Newton polygon:

Theorem 4.42. (Dieudonné and Manin, see [48], “Classification theorem” on
page 35)
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{p-divisible groups X over k}/ ∼k
∼−→ {Newton polygon}

In words, p-divisible groups over an algebraically closed field k ⊃ Fp are classified
up to isogeny by their Newton polygons.

Exercise 4.43. Show that there are infinitely many non-isomorphic p-divisible
groups with slope sequence (1/2, 1/2, 1/2, 1/2) (resp. (1/3, 1/3, 1/3, 2/3, 2/3, 2/3)
over any infinite perfect field K ⊃ Fp.

Exercise 4.44. Determine all Newton polygons attached to a p-divisible group of
height 6, and the symmetric Newton polygons among them.

Exercise 4.45. Recall that the set of all Newton polygons is partially ordered;
ζ1 ≺ ζ2 if and only if ζ1, ζ2 have the same end points, and ζ2 lies below ζ1. Show
that this poset is ranked, i.e., any two maximal chains between two elements of this
poset have the same length.

Exercise 4.46. Prove the equivalence of the statements in 10.10 that characterize
ordinary abelian varieties.

Theorem 4.47. BB Let S be a scheme such that p is locally nilpotent in OS . Let
X → S be a p-divisible group over S. Suppose that a point s is a specialization of
a point s′ ∈ S. Let N (Xs) and N (Xs′) be the Newton polygon of the fibers Xs and
Xs′ of X, respectively. Then N (Xs) ≺ N (Xs′), i.e., the Newton polygon N (Xs) of
the specialization lies above (or is equal to) the Newton polygon N (Xs′).

This result first appeared in a letter from Grothendieck to Barsotti dated May
11, 1970; see the Appendix in [34]. See [40], 2.3.2 for the proof of a stronger result,
that the locus in the base scheme S with Newton polygon ≺ ξ is closed for any
Newton polygon ξ; see 1.19, 1.20.

Exercise 4.48.

(i) Construct an example of a specialization of ordinary p-divisible group of
dimension 3 and height 6 to a p-divisible group with slopes 1/3 and 2/3,
using the theory of Cartier modules.

(ii) Construct an example of a non-constant p-divisible group with constant
slope.

4.49. Here is an explicit description of the Newton polygon of an abelian va-
riety A over a finite field Fq ⊃ Fp. We may and do assume that A is simple over
Fq. By Tate’s Theorem 10.17, we know that the abelian variety A is determined by
its q-Frobenius πA up to Fq-rational isogeny. Then the slopes of A are determined
by the p-adic valuations of πA as follows. For every rational number λ ∈ [0, 1], the
multiplicity of the slope λ in the Newton polygon of A is∑

v∈ϕp,λ

[Q(πA)v : Qp]

where ϕp,λ is the finite set consisting of all places v of Q(πA) above p such that
v(πA) = λ · v(q).
Exercise 4.50. Let E be an ordinary elliptic curve over F. Let L = End(E)0.
Show that L is an imaginary quadratic field which is split at p and End(E)⊗ZZp

∼=
Zp × Zp.

Exercise 4.51. Let L be an imaginary quadratic field which is split at p. Let
r, s be positive rational numbers such that gcd(r, s) = 1 and 2r < s. Use Tate’s
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Theorem 10.17 to show that there exists a simple s-dimensional abelian variety A
over a finite field Fq ⊃ Fp such that End(A)0 = L and the slopes of the Newton
polygon of A are r

s and s−r
s .

Exercise 4.52. Let m,n be positive integers with gcd(m,n) = 1, and let h =
m + n. Let D be a central division algebra over Qp of dimension h2 with Brauer
invariant n/h. This means that there exists a homomorphism j : frac(W (Fph))→ D

of Qp-algebras and an element u ∈ D× with ord(u)
ord(p) ≡

n
h (mod Z) such that

u · j(x) · u−1 = j(σ(x)) ∀x ∈W (Fph) .

Here ord denotes the normalized valuation on D, and σ is the canonical lifting of
Frobenius on W (Fph). Changing u by a suitable power of p, we may and do assume

that u, pu−1 ∈ OD, where OD is the maximal order of D.
Let M be the left W (Fph)-module underlying OD, where the left W (Fph)-

module structure is given by left multiplication with elements of j(W (Fph)). Let
F : M → M be the operator z �→ u · z, and let V : M → M be the operator
z �→ pu−1 · z. This makes M a module over the Dieudonné ring RF

ph
.

(1) Show that right multiplication by elements of OD induces an isomorphism

O
opp
D

∼−→ End0RF
ph
(M) .

(2) Show that O
opp
D

∼−→ End0RK
(W (K) ⊗W (F

ph
) M) for every perfect field

K ⊃ Fph .
(3) Show that there exists a W (Fph)-basis of M e0, e1, . . . , eh−1 such that if

we extend e0, e1, . . . , eh−1 to a cyclic sequence (ei)∈Z by the condition that
ei+h = p · ei for all i ∈ Z, we have

F ·ei = ei+n, V ·ei = ei+m, p·ei = ei+m+n, Mm,n := ⊕0≤i<m+n W.·ei.
(4) Show that the p-divisible group Hm,n corresponding to the Dieudonné

module M has dimension m and slope m/h.
(5) Suppose that X is a p-divisible group over a perfect field K ⊃ Fp such that

End0(X) is isomorphic to O
opp
D . Show that K ⊃ Fph and X is isomorphic

to Hm,n ×Spec(F
ph

) Spec(K).

Proposition 4.53. BB

(i) There is an equivalence of categories between the category of finite group
schemes over the perfect base field K and the category of left RK-modules
which are W (K)-modules of finite length. Denote by D(G) the left RK-
module attached to a finite group scheme G over K.

(ii) Suppose that 0 → G → X
β−→ Y → 0 is a short exact sequence, where G

is a finite group scheme over K, and β : X → Y is an isogeny between
p-divisible groups over K. Then we have a natural isomorphism

D(G)
∼−→ Ker

(
D(X)⊗W (K) B(K)/W (K)

β−→ D(Y )⊗W (K) B(K)/W (K)
)

of left RK-modules.

Remark.

(i) We say that D(G) is the covariant Dieudonné module of G, abusing the
terminology, because D(G) is not a free W (K)-module.
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(ii) Proposition 4.53 is a covariant version of the classical contravariant Dieu-
donné theory in [24] and [48]. See also [60].

4.54. Remarks on the operators F and V . For group schemes in char-
acteristic p we have the Frobenius homomorphism, and for commutative group
schemes the Verschiebung; see 10.23, 10.24. Also for Dieudonné modules such
homomorphisms are studied. However, some care has to be taken. In the co-
variant Dieudonné module theory the Frobenius homomorphism on commutative
group schemes corresponds to the operator V on the related modules, and the Ver-
schiebung homomorphism on commutative flat group schemes gives the operator
F on modules; for details see [67], 15.3. In case confusion is possible we write F
(resp. V) for the Frobenius (resp. Verschiebung) homomorphism on group schemes
and V = D(F ) (resp. F = D(V )) for the corresponding operator on modules,

5. Cayley-Hamilton: a conjecture by Manin and the weak
Grothendieck conjecture

Main reference: [65].

5.1. In this section we develop non-commutative generalizations of the Cayley
Hamilton theorem: a matrix F is a zero of its own characteristic polynomial.

Exercise 5.2. Prove the classical Cayley-Hamilton theorem for a matrix over a
commutative ring R: let X be an n×n matrix with entries in R with characteristic
polynomial g(T ) = Det(X−T ·1n) ∈ R[T ]; then the matrix g(X) is the zero matrix.

Here are some suggestions for a proof:

(a) For any commutative ring R, and an n × n matrix X with entries in R
there exists a ring homomorphism h : Z[t1,1, · · · , ti,j , · · · , tn,n] → R such
that the matrix (t) = (ti,j | 1 ≤ i, j ≤ n) is mapped to X.

(b) Let h∼ : R[T ] → Z[tij ][T ] be the ring homomorphism induced by h. Let
G(T ) = Det((t) − T ·1n) ∈ Z[tij ][T ], so that h∼(G) = g. Conclude that
it suffices to prove the statement for a commutative ring that contains
Z[t1,1, . . . , ti,j , . . . , tn,n].

(c) Construct Z[ti,j | 1 ≤ i, j ≤ n] ↪→ C, and apply the classical Cayley-
Hamilton theorem for C (which is a consequence of the theorem of canon-
ical forms). Alternatively, show that the matrix (t) considered over C has
mutually different eigenvalues.

Here are suggestions for a different proof:

(1) Show it suffices to prove this for an algebraically closed field of character-
istic zero.

(2) Show that the classical Cayley-Hamilton theorem holds for a matrix which
is in diagonal form with all diagonal elements mutually different.

(3) Show that the set of all conjugates of matrices as in (2) is Zariski dense
in Mat(n× n). Finish the proof.

5.3. We will develop a useful analog of this Cayley-Hamilton theorem over the
Dieudonné ring. Note that over a non-commutative ring there is no reason that
any straightforward analog of Cayley-Hamilton should be true. However, given
a specific element in a special situation, we construct an operator g(F) which
annihilates that specific element in the Dieudonné module. Warning: In general
g(F) does not annihilate all elements of the Dieudonné module.
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Notation 5.4. Let G be a group scheme over a field K ⊃ Fp. Consider αp =
Ker(F : Ga → Ga). Choose a perfect field L containing K. Note that Hom(αp, GL)
is a right module over End(αp ⊗Fp

L) = L. We define

a(G) = dimL (Hom(αp, GL)) .

Remarks. For any field L we write αp instead of αp⊗Fp
L if no confusion is likely.

The group scheme αp,K over a field K corresponds under 5.7 (in any case) or
by Dieudonné theory (in case K is perfect) to the module K+ with operators F = 0
and V = 0.

If K is not perfect it might happen that

dimK (Hom(αp, G)) < dimL (Hom(αp, GL)) ;

see the Exercise 5.8 below.
However, if L is perfect and L ⊂ L′ is any field extension then

dimL (Hom(αp, GL)) = dimL′ (Hom(αp, GL′)) .

Hence the definition of a(G) is independent of the chosen perfect extension L.

Exercise 5.5.

(i) Let N be a finite group scheme over a perfect field K. Assume that F and
V on N are nilpotent on N , and suppose that a(N) = 1. Show that the
Dieudonné module D(N) is generated by one element over the Dieudonné
ring.

(ii) Let A be an abelian variety over a perfect field K. Assume that the p-
rank of A is zero, and that a(A) = 1. Show that the Dieudonné module
D(A[p∞]) is generated by one element over the Dieudonné ring.

Remark. We will see that if a(X0) = 1, then the Newton polygon stratum
WN (X0)(Def(X0)) in D(X0) is non-singular. See 1.19 and 5.11. Similarly, let
(A, λ) be a principally polarized abelian variety, ξ = N (A). The Newton polygon
stratum Wξ(Ag,1,n) will be shown to be regular at the point (A, λ) (here we work
with a fine moduli scheme: assume n ≥ 3). In the above Wξ(Ag,1,n) denotes
the locus in Ag,1,n with Newton polygon ≺ ξ (i.e., lying above ξ); similarly for
WN (X0)(D(X0)); see 1.19, 5.11.

We see that we can a priori consider a set of points where the Newton polygon
stratum is guaranteed to be non-singular. That is the main result of this section.
Then, in Section 7 we show that such points are dense in both cases considered,
p-divisible groups and principally polarized abelian varieties.

We give an example, with K non-perfect, where dimK (Hom(αp, G)) < a(G);
we see that the condition “L is perfect” is necessary in 5.4 .

5.6. “Dieudonné modules” over non-perfect fields? This is a difficult
topic. However, in one special case statements and results are easy.

p-Lie algebras. Basic reference [25]. We will need this theory only in the com-
mutative case. For more general statements see [25], II.7.
Let K ⊃ Fp be a field. A commutative finite group scheme of height one over K is

a finite commutative group scheme N over K such that (F : N → N (p)) = 0, the
zero map. Denote the category of such objects by GFK .
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A commutative finite dimensional p-Lie algebra M over K is a pair (M, g),
where M is a finite dimensional vector space over K, and g : M → M is a homo-
morphism of additive groups with the property

g(b·x) = bp·g(x).

Denote the category of such objects by LiepK .

Theorem 5.7. BB There is an equivalence of categories

DK : GFK
∼−→ LiepK .

This equivalence commutes with base change. If K is a perfect field this functor
coincides with the Dieudonné module functor: DK = D, and the operator g on
DK(N) corresponds to the operator F on D(N) for every N ∈ Ob(GF)K .

See [25], II.7.4

Exercise.

(i) Classify all commutative group schemes of rank p over k, an algebraically
closed field of characteristic p.

(ii) Classify all commutative group schemes of rank p over a perfect field
K ⊃ Fp.

Remark/Exercise 5.8.

(1) Let K be a non-perfect field, with b ∈ K and p
√
b �∈ K. Let (M, g) be the

commutative finite dimensional p-Lie algebra defined by:

M = K·x⊕K·y ⊕K·z, g(x) = bz, g(y) = z, g(z) = 0.

Let N be the finite group scheme of height one defined by this p-Lie
algebra, i.e., such that DK(N) = (M, g), see 5.6. Show:

dimK (Hom(αp, N)) = 1, dimk

(
Hom(αp, N ×Spec(K) Spec(k))

)
= 2,

where k = kalg ⊃ K.
(2) Let N2 = W2[F ] be the kernel of F : W2 → W2 over Fp; here W2 is the

2-dimensional group scheme of Witt vectors of length 2. In fact one can
define N2 by D(N2) = Fp·r⊕Fp·s, V(r) = 0 = V(s) = F(s) and F(r) = s.

Let L = K( p
√
b). Show that

N �∼=K (αp ⊕W2[F ])⊗K and N ⊗ L ∼=L (αp ⊕W2[F ])⊗ L.

Remark. In [45], I.5 Definition (1.5.1) should be given over a perfect field K. We
thank Chia-Fu Yu for drawing our attention to this flaw.

5.9. We fix integers h ≥ d ≥ 0, and we write c := h− d. We consider Newton
polygons ending at (h, d). For such a Newton polygon β we write

�(β) := {(x, y) ∈ Z× Z | y < d, y < x, (x, y) ≺ β};

here we denote by (x, y) ≺ β the property “(x, y) is on or above β”; we write

dim(ζ) := #(�(ζ)).

Let � = {(x, y) ∈ Z× Z | 0 ≤ y < d, y < x ≤ y + d}.



488 CHING-LI CHAI AND FRANS OORT

Example.

�������
�
�
�
�

�

�

�

�
�
�
�
�

� � � �

� � � � �

� � � � �

� � � � � �

x = y
(h, d)

ζ

ζ = 2× (1, 0) + (2, 1) + (1, 5) =

= 6× 1
6 + 3× 2

3 + 2× 1
1 ; h = 11.

Here dim(ζ) = #(�(ζ)) = 22.

Note that for ρ = d·(1, 0) + c·(0, 1) we have dim(ρ) = dc.

Theorem 5.10. (Newton polygon strata for p-divisible groups) Suppose a(X0) ≤
1. Write D = D(X0). (For notation see 10.21.) For every β � γ = N (X0), the
Newton polygon stratum: Wβ(D) is formally smooth and dim(Wβ(D)) = dim(β).
The strata Wβ(D) are nested as given by the partial ordering on Newton polygons,
i.e.,

Wβ(D) ⊂ Wδ(D) ⇐⇒ �(β) ⊂ �(δ) ⇐⇒ β ≺ δ.

Generically on Wβ(D) the fibers have Newton polygon equal to β.

For the notion “generic” for a p-divisible group over a formal scheme, see 10.21.

5.11. In fact, this can be visualized and made more precise as follows. Choose
variables Tr,s, with 1 ≤ r ≤ d = dim(X0), 1 ≤ s ≤ h = height(X0) and write these
in a diagram

0 · · · 0 −1
Td,h · · · · T1,h

.
...

...
... .

Td,d+2 · · · Ti,d+2 · · · T2,d+2 T1,d+2

Td,d+1 · · · Ti,d+1 · · · · · · T1,d+1

We show that

D∧ = Def(X0) = Spf(k[[Z(x,y) | (x, y) ∈ �]]), Tr,s = Z(s−r,s−1−d).

Moreover, for any β � N (G0) we write

Rβ =
k[[Z(x,y) | (x, y) ∈ �]]

(Z(x,y) ∀(x, y) �∈ �(β))
∼= k[[Z(x,y) | (x, y) ∈ �(β)]].

Claim.

(Spec(Rβ) ⊂ Spec(R)) = (Wβ(D) ⊂ D) .
Clearly this claim proves the theorem. We will give a proof of the claim, and

hence of this theorem by using the theory of displays and the following tools.
Convention. Let d, c be non-negative integers, and let h = c + d. For any

h× h matrix

(a) =

(
A B
C D

)
,

its associated F -matrix is

(F) = (pa) :=

(
A pB
C pD

)
,

where A is a d× d matrix, B is a d× c matrix, C is a c× d matrix and D is a c× c
matrix.
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Definition 5.12. We consider matrices which can appear as F -matrices associated
with a display. Let d, c ∈ Z≥0, and h = d + c. Let W be a ring. We say that a
display matrix (ai,j) of size h × h is in normal form form over W if the F -matrix
is of the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 a1d pa1,d+1 · · · · · · · · · pa1,h
1 0 · · · 0 a2d · · · pai,j · · ·
0 1 · · · 0 a3d 1 ≤ i ≤ d
...

...
. . .

. . .
... d ≤ j ≤ h

0 0 · · · 1 add pad,d+1 · · · · · · · · · pad,h

0 · · · · · · 0 1 0 · · · · · · · · · 0
0 · · · · · · 0 p 0 · · · · · · 0
0 · · · · · · 0 0 p 0 · · · 0

0 · · · · · · 0 0 0
. . . 0 0

0 · · · · · · 0 0 · · · · · · p 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(F)

with ai,j ∈W, a1,h ∈W ∗; i.e., it consists of blocks of sizes (d or c)×(d or c); in the
left hand upper corner, which is of size d× d, there are entries in the last column,
named ai,d, and the entries immediately below the diagonal are equal to 1; the left
and lower block has only one element not equal to zero, and it is 1; the right hand
upper corner is unspecified and its entries are written pai,j ; the right hand lower
corner, which is of size c× c, has only entries immediately below the diagonal, and
they are all equal to p.

Note that if a Dieudonné module M is defined by a matrix in displayed normal
form, then either its p-rank f(M) is maximal, f = d, and this happens if and only
if a1,d is not divisible by p, or f(M) < d, and in that case a(M) = 1. The p-rank
is zero if and only if ai,d ≡ 0 (mod p), ∀1 ≤ i ≤ d.

Lemma 5.13. BB Let M be the Dieudonné module of a p-divisible group G
over k with f(G) = 0. Suppose a(G) = 1. Then there exists a W -basis for M on
which F has a matrix which is in normal form. In this case the entries a1,d, . . . , ad,d
are divisible by p, they can be chosen to be equal to zero.

Lemma 5.14. (of Cayley-Hamilton type) Let L be a field of characteristic p, let
W = W∞(L) be its ring of infinite Witt vectors. Let X be a p-divisible group, with
dim(G) = d, and height(G) = h, with Dieudonné module D(X) = M . Suppose
there is a W -basis of M , such that the display matrix (ai,j) on this base gives an
F-matrix in normal form as in 5.12. We write e = X1 = e1 for the first base
vector. Then for the expression

P :=
d∑

i=1

h∑
j=d

pj−daσ
h−j

i,j Fh+i−j−1

we have

Fh·e = P ·e .

Note that we take powers of F in the σ-linear sense, i.e., if the display matrix is
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(a) =

(
A B
C D

)
whose associated F -matrix is (F) = (pa) =

(
A pB
C pD

)
then Fn is given by the matrix

(Fn) = (pa)·(paσ)· · · · ·(paσ
n−1

).

The exponent h+ i− j − 1 runs from 0 = h+ 1− h− 1 to h− 1 = h+ d− d− 1.
Note that we do not claim that P and Fh have the same effect on all elements

of M .
Proof. Note that F i−1e1 = ei for i ≤ d.
Claim. For d ≤ s < h we have:

FsX =

⎛
⎝ d∑

i=1

s∑
j=d

Fs−jpj−dai,jF i−1

⎞
⎠X + ps−des+1.

This is correct for s = d. The induction step from s to s+ 1 < h follows from

Fes+1 =

(
d∑

i=1

p ai,s+1F
i−1

)
X + pes+2 .

This proves the claim. Computing F(Fh−1X) gives the desired formula.

Proposition 5.15. Let k be an algebraically closed field of characteristic p, let
W = W∞(K) be its ring of infinite Witt vectors. Suppose G is a p-divisible group
over k such that for its Dieudonné module the map F is given by a matrix in
normal form. Let P be the polynomial given in the previous proposition. The
Newton polygon N (G) of this p-divisible group equals the Newton polygon given by
the polynomial P .

Proof. Consider the W [F ]-submodule M ′ ⊂ M generated by X = e1. Note that
M ′ contains X = e1, e2, . . . , ed. Also, it contains Fed, which equals ed+1 plus a
linear combination of the previous ones; hence ed+1 ∈M ′. In the same way we see:
ped+2 ∈ M ′, and p2ed+3 ∈ M ′ and so on. This shows that M ′ ⊂ M =

⊕
i≤h W ·ei

is of finite index. We see that M ′ = W [F ]/W [F ]·(F h−P ). From this we see by the
classification of p-divisible groups up to isogeny, that the result follows by [48], II.1;
also see [24], pp. 82-84. By [24], page 82, Lemma 2 we conclude that the Newton
polygon of M ′ in case of the monic polynomial Fh −

∑m
0 biFm−i is given by the

lower convex hull of the pairs {(i, v(bi)) | i}. Hence the proposition is proved.

Corollary 5.16. We take the notation as above. Suppose that every element
ai,j , 1 ≤ i ≤ c, c ≤ j ≤ h, is either equal to zero, or is a unit in W (k). Let S
be the set of pairs (i, j) with 0 ≤ i ≤ c and c ≤ j ≤ h for which the corresponding
element is non-zero:

(i, j) ∈ S ⇐⇒ ai,j �= 0.

Consider the image T under

S → T ⊂ Z× Z given by (i, j) �→ (j + 1− i, j − c).

Then N (X) is the lower convex hull of the set T ⊂ Z×Z and the point (0, 0); note
that a1,h ∈ W ∗, hence (h, h − c = d) ∈ T . This can be visualized in the following
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diagram (we have pictured the case d ≤ h− d):

ac,h · · · a1,h
. · · · .

ac,2c+2 · · ·
ac,2c+1 . . . a1,2c+1

.
...

...
... .

ac,c+1 · · · ai,c+1 · · · a2,c+1 a1,c+1

ac,c · · · ai,c · · · · · · a1,c

Here the element ac,c is in the plane with coordinates (x = 1, y = 0) and a1,h has
coordinates (x = h, y = h − c = d). One erases the spots where ai,j = 0, and one
leaves the places where ai,j is as unit. The lower convex hull of these points and
(0, 0) (and (h, h− c)) equals N (X).

Theorem 5.10 proves the following statement:

Conjecture. (The weak Grothendieck conjecture) Given Newton polygons β ≺ δ
there exists a family of p-divisible groups over an integral base having δ as Newton
polygon for the generic fiber, and β as Newton polygon for a closed fiber.

However, we will prove a much stronger result later.

5.17. For principally quasi-polarized p-divisible groups and for principally po-
larized abelian varieties we have an analogous method.

5.18. We fix an integer g. For every symmetric Newton polygon ξ of height 2g
we define

!(ξ) = { (x, y) ∈ Z× Z | y < x ≤ g, (x, y) ≺ ξ } ,
and we write

sdim(ξ) := #(!(ξ)).

Define ! by

! = { (x, y) ∈ Z× Z | 0 ≤ y < x ≤ g } .
Example.

�

�

�

�
�

�
�
�
�
�
�
�
�
�

x = y

(g, g)

�����������

� � � �

� � � � � �

� � � � � � � �

� � � � � � �

� � � � � �

� � � � �

� � � �

� � �

� �

�

ξ

dim(Wξ(Ag,1 ⊗ Fp)) = #(!(ξ))

ξ = (5, 1) + (2, 1) + 2·(1, 1) + (1, 2) + (1, 5),

g=11; slopes: {6× 5
6 , 3×

2
3 , 4×

1
2 , 3×

1
3 , 6×

1
6}.

This case: dim(Wξ(Ag,1 ⊗ Fp)) = sdim(ξ) = 48
(see 8.12)

Suppose given a p-divisible group X0 over k of dimension g with a principal
quasi-polarization λ. We write N (X0) = γ; this is a symmetric Newton polygon.
We write D = D(X0, λ) for the universal deformation space; in particular D =
Spec(R), where Def(X0, λ) = Spf(R); see 10.21. For every symmetric Newton
polygon ξ with ξ � γ we define Wξ(D) ⊂ D as the maximal closed, reduced
subscheme of D carrying all fibers with Newton polygon equal to or above ξ; this
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space exists and is closed in D by Grothendieck-Katz, see [40], Theorem 2.3.1 on
page 143. Note that Wρ = D, where ρ = g·((1, 0) + (0, 1)).

Theorem 5.19. (NP-strata for principally quasi-polarized formal groups) Suppose
a(X0) ≤ 1. Write D = D(X0, λ). For every symmetric ξ � γ := N (X0) we
have: Wξ(D) is formally smooth, with dim(Wξ(D)) = sdim(ξ). The strata W ′

ξ :=

Wξ(D) ⊂ D(X0, λ) are nested as given by the partial ordering on symmetric Newton
polygons, i.e.,

W ′
ξ ⊂ W ′

δ ⇐⇒ !(ξ) ⊂ !(δ) ⇐⇒ ξ ≺ δ.

Generically on W ′
ξ the fibers have Newton polygon equal to ξ. We can choose a

coordinate system on D(X0, λ) in which all W ′
ξ are given by linear equations.

Corollary 5.20. Suppose given a principally polarized abelian variety (A0, λ0)
over k with a(A0) ≤ 1. Strata in D(X0, λ0) according to Newton polygons are
exactly as in 5.19. In particular, the fiber above the generic point of W ′

ξ is a

principally polarized abelian scheme over Spec(Bξ) having Newton polygon equal to
ξ.

Proof. (of 5.20, assuming 5.19) We write (A0, λ0)[p
∞] =: (X0, λ0). By Serre-Tate

theory, see [42], Section 1, the formal deformation spaces of (A0, λ0) and of (X0, λ0)
are canonically isomorphic, say (A′, λ) → Spf(R) and (X ′, λ) → Spf(R) and
(A′, λ)[p∞] ∼= (X ′, λ). By Chow-Grothendieck, see [32], III1.5.4 (this is also called
a theorem of “GAGA-type”), the formal polarized abelian scheme is algebraizable,
and we obtain the universal deformation as a polarized abelian scheme (A, λ) →
Spec(R); see 10.21. We consider the generic point of Wξ ⊂ D(X0, λ0) = Spec(R).
The Newton polygon of fibers can be read off from the fibers in (X , λ)→ Spec(R).
This proves that 5.20 follows from 5.19. �

Proof. (of 5.19) The proof of this theorem is analogous to the proof of 5.10. We
use the diagram

−1
Tg,g · · · T1,g

.
... ·

1 Tg,1 · · · T1,1

Here Ti,j , 1 ≤ i, j ≤ g, is written on the place with coordinates (g − i+ j, j − 1).
We use the ring

B :=
k[[Ti,j ; 1 ≤ i, j ≤ g]]

(Tk� − T�k)
, Ti,j = Z(g−i+j,j−1), (g − i+ j, j − 1) ∈ !.

Note that B = k[[Ti,j | 1 ≤ i ≤ j ≤ g]] = k[[Zx,y | (x, y) ∈ !]]. For a symmetric ξ
with ξ � N (X0) we consider

Bξ =
k[[Ti,j ; 1 ≤ i, j ≤ g]]

(Tk� − T�k, and Z(x,y) ∀(x, y) �∈ !(ξ))
∼= k[[Z(x,y) | (x, y) ∈ !(ξ)]].

With these notations, applying 5.14 and 5.16 we finish the proof of 5.19 as we did
in the proof of 5.10 above. �

If the condition a(A0) ≤ 1 in the theorem and corollary above is replaced by
a(A0) = 0 all fibers above this deformation space are ordinary.
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5.21. A conjecture by Manin. Let A be an abelian variety. The Newton
polygon N (A) is symmetric (see 1.18). A conjecture by Manin expects the converse
to hold:

Conjecture. (see [48], page 76, Conjecture 2) For any symmetric Newton polygon
ξ there exists an abelian variety A such that N (A) = ξ.

This was proved in the Honda-Tate theory, see 3.12, 3.14. We sketch a pure
characteristic p proof, see [65], Section 5. It is not difficult to show that there
exists a principally polarized supersingular abelian variety (A0, λ0) with a(A0) =
1, see [65], Section 4; this also follows from [45], 4.9. By 5.19 it follows that
W0

ξ (D(A0, λ0)) is non-empty, which proves the Manin conjecture.

5.22. Let g ∈ Z≥3. There exists an abelian variety in characteristic p which
has p-rank equal to zero, and which is not supersingular. In fact choose ξ =∑

(mi, ni), a symmetric Newton polygon with mi > 0 and ni > 0 for every i and
(mi, ni) �= (1, 1)) for at least one i. For example ξ = (1, g − 1) + (g − 1, 1) or
ξ = (2, 1) + (g − 3)(1, 1) + (1, 2). By the Manin conjecture there exists an abelian
variety A with N (A) = ξ. We see that A is not supersingular, and that the p-rank
f(A) equals zero.

6. Hilbert modular varieties

We discuss Hilbert modular varieties over F in this section. (Recall that F is
the algebraic closure of Fp.) A Hilbert modular variety attached to a totally real
number field F classifies “abelian varieties with real multiplication by OF ”. An
abelian variety A is said to have “real multiplication by OF ” if dim(A) = [F : Q]
and there is an embedding OF ↪→ End(A); the terminology “fake elliptic curve”
was used by some authors. The moduli space of such objects behaves very much
like the modular curve, except that its dimension is equal to [F : Q]. Similar to the
modular curve, a Hilbert modular variety attached to a totally real number field

F has a family of Hecke correspondences coming from the group SL2(F ⊗Q A
(p)
f )

or GL2(A
(p)
f ) depending on the definition one uses. Hilbert modular varieties are

closely related to modular forms for GL2 over totally real fields and the arithmetic
of totally real fields.

Besides their intrinsic interest, Hilbert modular varieties play an essential role
in the Hecke orbit problem for Siegel modular varieties. This connection results
from a special property of Ag,1,n which is not shared by all modular varieties of
PEL type: For every F-point x0 of Ag,1,n, there exists a Hilbert modular varietyM
and an isogeny correspondence R on Ag,1,n such that x0 is contained in the image
of M under the isogeny correspondence R. See 9.10 for a precise formulation, and
also the beginning of §8.

References. [71], [22], [80] Chap X, [23], [31], [88].

Let F1, . . . , Fr be totally real number fields, and let E := F1 × · · · × Fr. Let
OE = OF1

×· · ·×OFr
be the product of the rings of integers of F1, . . . , Fr. Let Li be

an invertible OFi
-module, and let L be the invertible OE-module L = L1×· · ·×Lr.

Definition 6.1. Notation as above. A notion of positivity on an invertible OE-
module L is a union L+ of connected components of L ⊗Q R such that L ⊗Q R is
the disjoint union of L+ and −L+.
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Definition 6.2.

(i) An OE-linear abelian scheme is a pair (A → S, ι), where A → S is an
abelian scheme, and ι : OE → EndS(A) is an injective ring homomorphism
such that ι(1) = IdA. Note that every OE-linear abelian scheme (A→ S, ι)
as above decomposes as a product (A1 → S, ι1) × · · · × (Ar → S, ιr).
Here (Ai, ιi) is an OFi

-linear abelian scheme for i = 1, . . . , r, and A =
A1 ×S · · · ×S Ar.

(ii) An OE-linear abelian scheme (A → S, ι) is said to be of HB-type if
dim(A/S) = dimQ(E).

(iii) An OE-linear polarization of an OE-linear abelian scheme is a polarization
λ : A→ At such that λ ◦ ι(u) = ι(u)t ◦ λ for all u ∈ OE .

Exercise 6.3. Suppose that (A→ S, ι) is an OE-linear abelian scheme, and

(A→ S, ι) = (A1 → S, ι1)× · · · × (Ar → S, ιr)

as in (i). Show that (A1 → S, ι1) is an OFi
-linear abelian scheme of HB-type for

i = 1, . . . , r.

Exercise 6.4. Show that every OE-linear abelian variety of HB-type over a field
admits an OE-linear polarization.

Definition 6.5. Let Ep =
∏s

j=1 Fvj be a product of finite extension fields Fvj of

Qp. Let OEp
=
∏s

j=1 OFvj
be the product of the rings of elements in Fvj which are

integral over Zp.

(i) An OEp
-linear p-divisible group is a pair (X → S, ι), where X → S is

a p-divisible group, and ι : OE ⊗Z Zp → EndS(X) is an injective ring
homomorphism such that ι(1) = IdX . Every (OEp

)-linear p-divisible
group (X → S, ι) decomposes canonically into a product (X → S, ι) =∏s

j=1 (Xj , ιj), where (Xj , ιj) is an OFvj
-linear p-divisible group, defined

to be the image of the idempotent in OEp
corresponding to the factor OFvj

of OEp
.

(ii) An OEp
-linear p-divisible group (X → S, ι) is said to have rank two if

in the decomposition (X → S, ι) =
∏s

j=1 (Xj , ιj) in (i) above we have

ht(Xj/S) = 2 [Fvj : Qp] for all j = 1, . . . , s.
(iii) An OEp

-linear polarization (OE⊗ZZp)-linear p-divisible group (X → S, ι)
is a symmetric isogeny λ : X → Xt such that λ ◦ ι(u) = ι(u)t ◦ λ for all
u ∈ OEp

.
(iv) A rank-two OEp

-linear p-divisible group (X → S, ι) is of HB-type if it
admits an OEp

-linear polarization.

Exercise 6.6. Show that for every OE-linear abelian scheme of HB-type
(A → S, ι), the associated (OE ⊗Z Zp)-linear p-divisible group (A[p∞], ι[p∞]) is
of HB-type.

Definition 6.7. Let E = F1 × · · · × Fr, where F1, . . . , Fr are totally real number
fields. Let OE = OF1

×· · ·×OFr
be the product of the ring of integers of F1, . . . , Fr.

Let k ⊃ Fp be an algebraically closed field as before. Let n ≥ 3 be an integer
such that (n, p) = 1. Let (L,L+) be an invertible OE-module with a notion of
positivity. The Hilbert modular varietyME,L,L+,n over k is a smooth scheme over
k of dimension [E : Q] such that for every k-scheme S the set of S-valued points of
ME,L,L+

, n is the set of isomorphism class of 6-tuples (A→ S, ι,L,L+, λ, η), where
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(i) (A→ S, ι) is an OE-linear abelian scheme of HB-type;
(ii) λ : L → Homsym

OE
(A,At) is an OE-linear homomorphism such that λ(u)

is an OE-linear polarization of A for every u ∈ L ∩ L+, and the homo-
morphism A ⊗OE

L ∼−→ At induced by λ is an isomorphism of abelian
schemes.

(iii) η is an OE-linear level-n structure for A → S, i.e., an OE-linear isomor-
phism from the constant group scheme (OE/nOE)

2
S to A[n].

Remark 6.8. Let (A → S, ι, λ, η) be an OE-linear abelian scheme with polariza-
tion sheaf by (L,L+) and a level-n structure satisfying the condition in (ii) above.
Then the OE-linear polarization λ induces an OE/nOE-linear isomorphism

(OE/nOE) =
2∧
(OE/nOE)

2 ∼−→ L−1D−1
E ⊗Z µn

over S, where DE denotes the invertible OE-module DF1
× · · · ×DFr

. This isomor-
phism is a discrete invariant of the quadruple (A→ S, ι, λ, η). The above invariant
defines a morphism fn from the Hilbert modular variety ME,L,L+,n to the finite
étale scheme ΞE,L,n over k, where the finite étale k-scheme ΞE,L,n is defined by

ΞE,L,n := Isom(OE/nOE ,L−1D−1
E ⊗Z µn). Notice that ΞE,L,n is an (OE/nOE)

×-
torsor; it is constant over k because k is algebraically closed. The morphism fn is
faithfully flat.

Although we defined the Hilbert modular variety ME,L,L+,n over an alge-
braically closed field k ⊃ Fp, we could have defined it over Fp. Then we should

use the étale (OE/nOE)
×-torsor ΞE,L,n := Isom(OE/nOE ,L−1D−1

E ⊗Zµn) over Fp,
and we have a faithfully flat morphism fn :ME,L,L+,n → ΞE,L,n over Fp.

Remark 6.9.

(i) We have followed [22] in the definition of Hilbert modular varieties, except
that E is a product of totally real number fields, rather than a totally real
number field as in [22].

(ii) The product decompositions

OE = OF1
× · · · × OFr

and (L,L+) = (L1,L+
1 )× · · · × (Lr,L+

r )

induce a natural isomorphism

ME,L,L+,n
∼−→MF1,L1,L+

1 ,n × · · · ×MFr,Lr ,L+
r n .

Remark 6.10. The OE-linear homomorphism λ in Def. 6.7 should be thought of
as specifying a family of OE-linear polarizations, instead of only one polarization:
every element u ∈ L ∩ L+ gives a polarization λ(u) on A → S. Notice that
given a point x0 = [(A, ι, λ, η)] in ME,L,L+,n(k), there may not exist an OE-linear
principal polarization on A, because that means that the element of the strict ideal
class group represented by (L,L+) is trivial. However, every point [(A, ι, λ, η)] of
ME,L,L+,n admits an OE-linear polarization of degree prime to p, because there
exists an element u ∈ L+ such that Card(L/OE · u) is not divisible by p. In
[89] and [88] a version of Hilbert modular varieties was defined by specifying a
polarization degree d which is prime to p. The resulting Hilbert modular variety is
not necessarily irreducible over F; rather it is a disjoint union of modular varieties
of the form ME,L,L+,n.

Theorem 6.11. BB Notation as above.
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(i) The modular variety ME,L,L+,n over the algebraically closed field k ⊃ Fp

is normal and is a local complete intersection. Its dimension is equal to
dimQ(E).

(ii) Every fiber of fn :ME,L,L+,n → ΞE,L,n is irreducible.
(iii) The morphism fn is smooth outside a closed subscheme of ME,L,L+,n of

codimension at least two.

Remark.

(i) See [22] for a proof of Theorem 6.11 which uses the arithmetic toroidal
compactification constructed in [71].

(ii) The modular variety ME,L,L+,n is not smooth over k if any one of the
totally real fields Fi is ramified above p.

6.12. Hecke orbits on Hilbert modular varieties. Let E, L and L+ be
as before. Denote by ME,L,L+

∼ the projective system
(
ME,L,L+,n

)
n
of Hilbert

modular varieties over F, where n runs through all positive integers such that n ≥ 3
and gcd(n, p) = 1. It is clear that the profinite group SL2(OE ⊗Z Z∧,(p)) operates
on the tower M∼

E,L,L+ , by pre-composing with the OE-linear level structures. Here

Z∧,(p) =
∏

� 
=p Z�. The transition maps in the projective system are

πmn,n :ME,L,L+,mn →ME,L,L+,n (mn, p) = 1, n ≥ 3,m ≥ 1 .

The map πmn,n is defined by the following construction. Let

[m] : (OE/nOE)
2 → (OE/mnOE)

2

be the injection induced by “multiplication by m”. Given a point (A, ι, λ, η) of
ME,L,L+,mn, the composition η ◦ [m] factors through the inclusion im,n : A[m] ↪→
A[mn] to give a level-n structure η′ such that η ◦ [m] = im,n ◦ η′.

Let Ξ∼
E be the projective system (ΞE,n)n, where n also runs through all positive

integers such that n ≥ 3 and (n, p) = 1. The transition maps are defined similarly.
The maps fn : ME,L,L+,n → ΞE,n define a map f∼ : M∼

E,L,L+ → Ξ∼
E between

projective systems.
It is clear that the profinite group SL2(OE⊗ZZ

∧,(p)) operates on the right of the
tower M∼

E,L,L+ , by pre-composing with the OE-linear level structures. Moreover

this action is compatible with the map f∼ : M∼
E,L,L+ → Ξ∼

E between projective
systems.

The above right action of the compact group SL2(OE⊗ZZ
∧,(p)) on the projective

system M∼
E,L,L+ extends to a right action of SL2(E ⊗Q A

(p)
f ) on M∼

E,L,L+ . Again

this action is compatible with f∼ :M∼
E,L,L+ → Ξ∼

E . This action can be described

as follows. A geometric point of M∼
E,L,L+ is a quadruple (A, ιA, λA, η

∼
A), where

the infinite prime-to-p level structure

η∼A :
∐
� 
=p

(OE [1/�]/OE)
∼−→
∐
� 
=p

A[�∞]

is induced by a compatible system of level-n structures, n running through integers

such that (n, p) = 1 and n ≥ 3. Suppose that we have a γ ∈ SL2(E ⊗Q A
(p)
f ), and

mγ belongs to M2(OE⊗ZZ
∧,(p)), where m is a non-zero integer which is prime to p.

Then the image of the point (A, ιA, λA, η
∼
A) under γ is a quadruple (B, ιB, λB, η

∼
B)

such that there exists an OE-linear prime-to-p isogeny mβ : B → A such that the
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diagram

∐
� 
=p(OE [1/�]/OE)

2 η∼
A ��
∐

� 
=p A[�∞]

∐
� 
=p(OE [1/�]/OE)

2

η∼
B

��

mγ

��

∐
� 
=p B[�∞]

mβ

��

commutes. Note that ιB and λB are determined by the requirement that mβ is
an OE-linear isogeny and m−1 ·mβ respects the polarizations λA and λB. In the
above notation, as the point (A, ιA, λA, η

∼
A) varies, we get a prime-to-p quasi-isogeny

β = m−1 · (mβ) attached to γ, between the universal abelian schemes.

On a fixed level ME,L,L+,n, the action of SL2(E ⊗Q A
(p)
f ) on the projective

system M∼
E,L,L+ induces a family of finite étale correspondences, which will be

called SL2(E ⊗Q A
(p)
f )-Hecke correspondences on ME,L,L+,n, or prime-to-p SL2-

Hecke correspondences for short. Suppose x0 is a geometric point of ME,L,L+,n,
and x∼ is point of M∼

E,L,L+ lifting x0. Then the prime-to-p SL2-Hecke orbit of

x0, denoted H(p)
SL2

(x0), is the image inME,L,L+,n of the orbit SL2(E ⊗Q A
(p)
f ) · x∼

0 .

The set H(p)
SL2

(x0) is countable.

Theorem 6.13. Let x0 = [(A0, ι0, λ0, η0)] ∈ ME,L,L+,n(k) be a closed point of
ME,L,L+,n such that A0 is an ordinary abelian scheme. Let ΣE,p = {℘1, . . . , ℘s} be
the set of all prime ideals of OE containing p. Then we have a natural isomorphism

M/x0

E,L,L+,n
∼=

s∏
j=1

HomZp

(
Tp(A0[℘

∞
j ]ét)⊗(OE⊗Zp)Tp(A

t
0[℘

∞
j ]ét), G

∧
m

)
.

In particular, the formal completion of the Hilbert modular variety ME,L,L+,n at
the ordinary point x0 has a natural structure as a [E : Q]-dimensional (OE ⊗Z Zp)-
linear formal torus, non-canonically isomorphic to (OE ⊗Z Zp)⊗Zp

G∧
m.

Proof. By the Serre-Tate theorem, we have

M/x0

E,L,L+,n
∼=

s∏
j=1

HomOE⊗Zp

(
Tp(A0[℘

∞
j ]ét), A0[℘

∞
j ]∧mult

)
,

where A0[℘
∞
j ]∧mult is the formal torus attached to A0[℘

∞
j ]mult, or equivalently the

formal completion of A0. The character group of the last formal torus is naturally
isomorphic to the p-adic Tate module Tp(A

t
0[℘

∞
j ]ét) attached to the maximal étale

quotient of At
0[℘

∞
j ]ét).

Proposition 6.14. Notation as in 6.13. Assume that k = F, so that

x0 = [(A0, ι0, λ0, η0)] ∈ME,L,L+,n(F)

and A0 is an ordinary OE-linear abelian variety of HB-type over F.

(i) There exist totally imaginary quadratic extensions Ki of Fi, i = 1, . . . , r
such that

End0OE
(A0) ∼= K1 × · · · ×Kr =: K .
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Moreover, for every prime ideal ℘j of OE containing p, we have

EndOE
(A0)⊗OE

OE℘j

∼−→ EndOE℘j
(A0[℘

∞
j ]mult)× EndOE℘j

(A0[℘
∞
j ]ét)

∼= OE℘j
× OE℘j

∼←− OK ⊗OE
OE℘j

.

In particular, the quadratic extension Ki/Fi is split above every place of
Fi above p, for all i = 1, . . . , r.

(ii) Let Hx0
= {u ∈ (OE ⊗ Zp)

× | u · ū = 1} , where u �→ ū denotes the prod-
uct of the complex conjugations on K1, . . . ,Kr. Then both projections

pr1 : Hx0
→

∏
℘∈ΣE,p

(
EndOE℘

(A0[℘
∞
j ]mult)

)× ∼= ∏
℘∈ΣE,p

O×
E℘

and

pr2 : Hx0
→

∏
℘∈ΣE,p

(
EndOE℘

(A0[℘
∞]ét)

)× ∼= ∏
℘∈ΣE,p

O×
E℘

are isomorphisms. Here ΣE,p denotes the set consisting of all prime ideals
of OE which contain p.

(iii) The group Hx0
operates on the (OE⊗ZZp)-linear formal torus M/x0

E,L,L+,n

through the character

Hx0
� t �−→ pr1(t)

2 ∈ (OE ⊗Z Zp)
× .

(iv) Notation as in (ii) above. Let Z be a reduced, irreducible closed formal

subscheme of the formal schemeM/x0

E,L,L+,n which is stable under the nat-

ural action of an open subgroup Ux0
of Hx0

on M/x0

E,L,L+,n. Then there

exists a subset S ⊂ ΣE,p such that

Z =
∏
℘∈S

HomZp

(
Tp(A0[℘

∞]ét)⊗(OE⊗Zp)Tp(A
t
0[℘

∞]ét), G
∧
m

)
Proof. The statement (i) is a consequence of Tate’s theorem on endomorphisms
of abelian varieties over a finite field, see [79]. The statement (ii) follows from
(i). The statement (iii) is immediate from the displayed canonical isomorphism in
Theorem 6.13. It remains to prove (iv).

By Theorem 2.26 and Theorem 6.13, we know that Z is a formal subtorus of
the formal torus

M/x0

E,L,L+,n =
∏

℘∈ΣE,p

HomZp

(
Tp(A0[℘

∞]ét)⊗(OE⊗Zp)Tp(A
t
0[℘

∞]ét), G
∧
m

)
.

Let X∗(Z) be the group of formal cocharacters of the formal torus Z. We know
that X∗(Z) is a Zp-submodule of the cocharacter group∏

℘∈ΣE,p

(Tp(A0[℘
∞]ét))

∨ ⊗(OE⊗Zp)

(
Tp(A

t
0[℘

∞]ét)
)∨

of M/x0

E,L,L+,n, which is co-torsion free. Moreover X∗(Z) is stable under the action

of Hx0
. Denote by O the closed subring of

∏
℘∈ΣE,p

O℘ generated by the image

of the projection pr1 in (ii). Since the image of Hx0
under the projection pr1 is

an open subgroup of
∏

℘∈ΣE,p
O×

℘ , the subring O of
∏

℘∈ΣE,p
O℘ is an order of
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∏
℘∈ΣE,p

O℘. So X∗(Z) ⊗ Q is stable under the action of
∏

℘∈ΣE,p
E℘. It follows

that there exists a subset S ⊂ ΣE,p such that X∗(Z)⊗Zp
Qp is equal to∏

℘∈S

(Tp(A0[℘
∞]ét))

∨ ⊗OE⊗Zp

(
Tp(A

t
0[℘

∞]ét)
)∨

.

Since X∗(Z) is a co-torsion free Zp-submodule of∏
℘∈ΣE,p

(Tp(A0[℘
∞]ét))

∨ ⊗(OE⊗Zp)

(
Tp(A

t
0[℘

∞]ét)
)∨

,

we see that X∗(Z) =
(∏

℘∈S (Tp(A0[℘
∞]ét))

∨ ⊗OE⊗Zp
(Tp(A

t
0[℘

∞]ét))
∨
)
.

Corollary 6.15. Let x0 = [(A0, ι0, λ0, η0)] ∈ ME,L,L+,n(F) be an ordinary F-
point of the Hilbert modular variety ME,L,L+,n as in 6.14. Let Z be a reduced
closed subscheme of ME,L,L+,n such that x0 ∈ Z(F). Assume that Z is stable

under all SL2(A
(p)
f )-Hecke correspondences on ME,L,L+,n(F). Then there exists a

subset Sx0
of the set ΣE,p of prime ideals of OE containing p such that

Z/x0 =
∏
℘∈S

HomZp

(
Tp(A0[℘

∞]ét)⊗(OE⊗Zp)Tp(A
t
0[℘

∞]ét), G
∧
m

)
.

Here Z/x0 is the formal completion of Z at the closed point x0.

Proof. Notation as in 6.14. Recall that K = End0OE
(A0). Denote by UK the

unitary group attached to K; UK is a linear algebraic group over Q such that
UK(Q) = {u ∈ K× | u · ū = 1}. By 6.14 (i), UK(Qp) is isomorphic to (E ⊗Qp)

×.
Denote by UK(Zp) the compact open subgroup of UK(Qp) corresponding to the
subgroup (OE ⊗ Zp)

× ⊂ (OE ⊗ Qp)
×. This group UK(Zp) is isomorphic to the

group Hx0
in 6.14 (ii), via the projection to the first factor in the displayed formula

in 6.14 (i). We have a natural action of UK(Zp) on

Def((A0, ι0, λ0)[p
∞])/F) ∼=M/x0

E,L,L+,n

by the definition of the deformation functor Def((A0, ι0, λ0)[p
∞]).

Denote by UK(Z(p)) the subgroup UK(Q)∩UK(Zp) of UK(Q); in other words
UK(Z(p)) consisting of all elements u ∈ UK(Q) such that u induces an automor-

phism of A0[p
∞]. Since Z is stable under all SL2(A

(p)
f )-Hecke correspondences, the

formal completion Z/x0 at x0 of the subvariety Z ⊂ M/x0

E,L,L+,n is stable under

the natural action of the subgroup UK(Z(p)) of UK(Q). By the weak approxima-
tion theorem for linear algebraic groups (see [70], 7.3, Theorem 7.7 on page 415),

UK(Z(p)) is p-adically dense in UK(Zp). So Z/x0 ⊂M/x0

E,L,L+,n is stable under the

action of UK(Zp) by continuity. We conclude the proof by invoking 6.14 (iii) and
(iv).

Exercise 6.16. Let (A, ι) be an OE-linear abelian variety of HB-type over a perfect
field K ⊃ Fp. Show that Mp((A, ι)[p∞]) is a free (OE ⊗Z Zp)-module of rank two.

Exercise 6.17. Let x = [(A, ι, λ, η)] ∈ ME,L,L+,n(k) be a geometric point of a
Hilbert modular variety ME,L,L+,n, where k ⊃ Fp is an algebraically closed field.
Assume that Lie(A/k) is a free (OE⊗Zk)-module of rank one. Show thatME,L,L+,n

is smooth at x over k.
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Exercise 6.18. Let k ⊃ Fp be an algebraically closed field. Assume that p is
unramified in E, i.e., E ⊗Z Zp is a product of unramified extension of Qp. Show
that Lie(A/k) is a free (OE ⊗Z k)-module of rank one for every geometric point
[(A, ι, λ, η)] ∈ME,L,L+,n(k).

Exercise 6.19. Give an example of a geometric point

x = [(A, ι, λ, η)] ∈ME,L,L+,n(k)

such that Lie(A/k) is not a free (OE ⊗Z k)-module of rank one.

7. Deformations of p-divisible groups to a ≤ 1

Main references: [20], [66].

In this section we will prove and use the following rather technical result.

Theorem 7.1. Th (Deformation to a ≤ 1) Let X0 be a p-divisible group over
a field K. There exists an integral scheme S, a point 0 ∈ S(K) and a p-divisible
group X → S such that the fiber X0 is isomorphic to X0, and for the generic point
η ∈ S we have

N (X0) = N (Xη) and a(Xη) ≤ 1.

See [20], 5.12 and [66], 2.8.

Note that if X0 is ordinary (i.e., every slope of N (X0) is either 1 or 0), there is
not much to prove: a(X0) = 0 = a(Xη); if however X0 is not ordinary, the theorem
says something non-trivial and in that case we end with a(Xη) = 1.

At the end of this section we discuss the quasi-polarized case.

7.2. In this section we prove Theorem 7.1 in case X0 is simple. Surprisingly,
this is the most difficult step. We will see, in Section 8, that once we have the
theorem in this special case, 7.1 and 7.14 will follow without much trouble.

The proof (and the only one we know) of this special case given here is a
combination of general theory, and a computation. We start with one of the tools.

Theorem 7.3. BB (Purity of the Newton polygon stratification) Let S be an
integral scheme, and let X → S be a p-divisible group. Let γ = N (Xη) be the
Newton polygon of the generic fiber. Let S ⊃ D = S 
=γ := {s | N (As) � γ}
(Note that D is closed in S by Grothendieck-Katz.) Then either D is empty or
codim(D ⊂ S) = 1.

We know two proofs of this theorem, and both proofs are non-trivial. See [20],
Theorem 4.1. Also see [82], th. 6.1; this second proof of purity was analyzed and
re-proved [82], [59], [83], [92].

When this result was first announced, it was met by disbelief. Why? If you
follow the proof by Katz, see [40], 2.3.2, you see that D = S 
=γ ⊂ S is given
by “many” defining equations. From that point of view “codimension one” seems
unlikely. In fact it is not known (to our knowledge) whether there exists a scheme
structure on D = S 
=γ such that (D,OD) ⊂ S is a Cartier divisor (locally principal)
(i.e., locally a complete intersection, or locally a set-theoretic complete intersection).



MODULI OF ABELIAN VARIETIES 501

7.4. Minimal p-divisible groups. We define the p-divisible group Hm,n as
in [20], 5.3; also see [69]. See also Exercise 4.52 for another description of Hm,n

when K ⊃ Fpm+n . Let K ⊃ Fp be a perfect field. Let M be a free W (K)-module
of rank m + n, with free generators e0, . . . , em+n−1. Extend e0, . . . , em+n−1 to a
family (ei)i∈Z of elements ofM indexed by Z by the requirement that ei+m+n = p·ei
for all i ∈ Z. Define a σ-linear operator F : M → M and a σ−1-linear operator
V : M →M by

F·ei = ei+n , V·ei = ei+m ∀i ∈ Z .

This is a Dieudonné module, and the p-divisible group, whose covariant Dieudonné
module is M , is denoted Hm,n.

Remark. We see that Hm,n is defined over Fp; for any field L we will write Hm,n

instead of Hm,n ⊗ L if no confusion can occur.

Remark. The p-divisible groupHm,n is the “minimal p-divisible group” with New-
ton polygon equal to δ, the isoclinic Newton polygon of height m + n and slope
m/(m+ n). For properties of minimal p-divisible groups see [69]. Such groups are
of importance in understanding various stratifications of Ag.

Remark. Suppose that the perfect field K contains Fph , where h := m+n. Then
the p-divisible group Hm,n defined above coincides with the one defined in Exercise

4.52; this is clear from 4.52 (3). Moreover End0(Hm,n) is an h2-dimensional central
division algebra over Qp with Brauer invariant m/(m+ n), and End(Hm,n) is the

maximal order of End0(Hm,n). See the paragraph after the statement of [20, 5.4],
where the opposite sign convention for Brauer invariants is used.

With the sign convention used both here and also in 4.52, that End0(Hm,n) has
Brauer invariant m/(m + n) means that there exists an injective Qp-linear ring
homomorphism

j : fracW (Fph) −→ End0(Hm,n)

and an element Φ ∈ End0(Hm,n)
× such that

Φ · j(x) · Φ−1 = j(σ(x)) ∀x ∈ frac(W (Fph))

and
ord(Φ)

ord(p)
=

m

h
(mod Z) .

Let’s compute the Brauer invariant of End0(Hm,n). Let φ be the W (K)-linear
endomorphism of M such that φ(ei) = ei+m for all i = 0, 1, . . . , h− 1. Choose and
fix an integer c such that c·n ≡ 1 (mod h). For every x ∈ W (Fh), let j(x) be the
W (K)-linear endomorphism of M such that

j(x) : ei �→ σci(x) · ei ∀ i = 0, 1, . . . , h− 1 .

It is easy to see that φ (resp. j(x)) commutes with F and V , hence defines an
element Φ ∈ End(Hm,n) (resp. j(x) ∈ End(Hm,n)), and the commutation relation

Φ ◦ j(x) = j(σ(x)) ◦ Φ ∀x ∈W (Fph)

is satisfied. Because φh = pm · IdM , we have h · ord(Φ) = m · ord(p). So the
Brauer invariant of End0(Hm,n) is indeed m/(m+n). See 4.52 (5) for an alternative

proof, where End0(Hm,n) is identified with the opposite algebra Dopp of the central
division algebra D over Qp with Brauer invariant n/(m+ n).
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7.5. The simple case, notation. We follow [20], §5, §6. In order to prove
7.1 in case X0 is simple we fix notations, to be used for the rest of this section. Let
m ≥ n > 0 be relatively prime integers. We will write r = (m − 1)(n − 1)/2. We
write δ for the isoclinic Newton polygon with slope m/(m + n) with multiplicity
m+ n.

We want to understand all p-divisible groups isogenous to H := Hm,n (m and
n will remain fixed).

Lemma 7.6. BB Work over a perfect field K. For every X ∼ H there is an
isogeny ϕ : H → X of degree pr.

A proof of this lemma is not difficult and is left as an Exercise.

7.7. Construction. Consider the functor

S �→ {(ϕ,X) | ϕ : H × S → X, deg(ϕ) = pr}.
from the category of schemes over Fp to the category of sets. This functor is
representable; denote the representing object by (T = Tm,n, HT → G)→ Spec(Fp).
Note, using the lemma, that for any X ∼ H over a perfect field K there exists a
point x ∈ T (K) such that X ∼= Gx.

Discussion. The scheme T = Tm,n constructed above is closely related to
the Rapoport-Zink spaces M = M(Hm,n) in [72], Theorem 2.16, as follows. The
formal schemeM represents a functor on the category Nilp of all W (Fp)-schemes S
such that p is locally nilpotent on S; the valueM(S) for an object S in Nilp is the
set of isomorphism classes (X → S, ρ : Hm,n×Spec(Fp) S → X ×S S), where X → S

is a p-divisible group, S = S ×Spec(W (Fp)) Spec(Fp), and ρ is a quasi-isogeny over

S. From the definition of T we get a morphism f : T →Mr ×Spec(W (Fp)) Spec(Fp),
where Mr is the open-and-closed formal subscheme whose points (X, ρ) have the

property that the degree of the quasi-isogeny ρ is equal to pr. Let Mred

r be the
scheme with the same topological space asMr whose structure sheaf is the quotient
of OM/(p, I) by the nilpotent radical of OM/(p, I), where I is a sheaf of definition
of the formal schemeM. Let T red be the reduced subscheme underlying T , and let

f red : T red →Mred

r be the morphism induced by f . Then Lemma 7.6 and the fact
that End(H)0 is a division algebra imply that f : T (k)→Mr(k) is a bijection for

any algebraically closed field k ⊃ Fp, so f red : T red →Mred

r is an isomorphism.

Theorem 7.8. Th The scheme T is geometrically irreducible of dimension r
over Fp. The set T (a = 1) ⊂ T is open and dense in T .

See [20], Theorem 5.11. Note that 7.1 follows from this theorem in case X0 ∼
Hm,n. We focus on a proof of 7.8.

Remark. Suppose we have proved the case that X0 ∼ Hm,n. Then by duality we
have Xt

0 ∼ Ht
m,n = Hn,m, and this case follows also. Hence it suffices to consider

only the case m ≥ n > 0.

Notational Remark. In this section we will not consider abelian varieties. The
letters A, B, etc. in this section will not be used for abelian varieties. Semi-modules
will only be considered in this section and in later sections these letters again will
be used for abelian varieties.

Definition 7.9. We say that A ⊂ Z is a semi-module or more precisely, an (m,n)-
semi-module, if
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• A is bounded from below, and if
• for every x ∈ A we have a+m, a+ n ∈ A.

We write A = {a1, a2, . . . } with aj < aj+1 ∀j. We say that semi-modules A,B are
equivalent if there exists t ∈ Z such that B = A+ t := {x+ t | x ∈ A}.

We say that A is normalized if:

(1) A ⊂ Z≥0,
(2) a1 < · · · < ar ≤ 2r,
(3) A = {a1, . . . , ar} ∪ [2r,∞);

notation: [y,∞) := Z≥y.

Write At = Z\(2r − 1−A) = {y ∈ Z | 2r − 1− y �∈ A}.
Explanation. For a semi-module A the set Z\A of course is a “(−m,−n)-semi-
module”. Hence {y | y �∈ A} is a semi-module; then normalize.

Example. Write 〈0〉 for the semi-module generated by 0, i.e., consisting of all
integers of the form im+ jn for i, j ≥ 0.

Exercise.

(4) Note that 〈0〉 indeed is normalized. Show that 2r − 1 �∈ 〈0〉.
(5) Show: if A is normalized then At is normalized.
(6) Att = A.
(7) For every B there is a unique normalized A such that A ∼ B.
(8) If A is normalized then: A = 〈0〉 ⇐⇒ 0 ∈ A ⇐⇒ 2r − 1 �∈ A.

7.10. Construction. Work over a perfect field. For every X ∼ Hm,n there
exists a semi-module.

An isogeny X → H gives an inclusion

D(X) ↪→ D(H) = M =
⊕

0≤i<m+n

W.·ei.

Write M (i) = πi·M . Define

B := {j | D(X) ∩M (j) �= D(X) ∩M (j+1)},
i.e., B is the set of values where the filtration induced on D(X) jumps. It is clear
that B is a semi-module. Let A be the unique normalized semi-module equivalent
to B.

Notation. The normalized semi-module constructed in this way will be called the
type of X, denoted by Type(X).

Let A be a normalized semi-module. We denote by UA ⊂ T the set where the
semi-module A is realized:

UA = {t ∈ T | Type(Gt) = A}.
Proposition 7.11.

(1) UA ↪→ T is locally closed, T =
⊔

A UA.
(2) A = 〈0〉 ⇐⇒ a(X) = 1.
(3) U〈0〉 is geometrically irreducible and has dimension r.
(4) If A �= 〈0〉 then every component of UA has dimension strictly less than r.

For a proof see [20], the proof on page 233, and 6.5 and 6.15. The argument is
not very deep but somewhat involved (combinatorics and studying explicit equa-
tions).
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7.12. BB Let Y0 be any p-divisible group over a field K, of dimension d
and let c be the dimension of Y t

0 . The universal deformation space is isomorphic to
Spf(K[[t1, · · · , tcd]]) and the generic fiber of that universal deformation is ordinary;
in this case its Newton polygon ρ has c slopes equal to 1 and d slopes equal to 0.
See 2.5. See [38], 4.8, [20], 5.15.

7.13. We prove 7.8, using 7.3 and 7.11. Note that the Zariski closure
(U〈0〉)

Zar ⊂ T is geometrically irreducible, and has dimension r; we want to show

equality (U〈0〉)
Zar = T . Suppose there would be an irreducible component T ′ of

T not contained in (U〈0〉)
Zar. By 7.11 (3) and (4) we see that dim(T ′) < r. Let

y ∈ T ′, with corresponding p-divisible group Y0.
Consider the formal completion T /y of T at y. Write D = Def(Y0) for the

universal deformation space of Y0. The moduli map T /y → D = Def(Y0) is an
immersion, see [20], 5.19. Let T ′′ ⊂ D be the image of (T ′)/y in D; we conclude
that no irreducible component of T ′′ is contained in any irreducible component of
the image of T /y → D in D, i.e., every component of T ′′ is an component ofWδ(D).
Clearly dim(T ′) = dim(T ′′) < r.

Obvious, but crucial observation. Consider the graph of all Newton poly-
gons

ζ with δ ≺ ζ ≺ ρ.

The longest path in this graph has length ≤ mn− r.
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� �

� �

� �

ρ

δ

ρ∗

m = 3
n = 4
r = 3

mn− r = 9

Proof. Consider the Newton polygon ρ, in this case given by n slopes equal to 0
and m slopes equal to 1. Note that gcd(m,n) = 1, hence the Newton polygon δ
does not contain integral points except its beginning and end points. Consider the
interior of the parallelogram given by ρ and by ρ∗, the upper convex polygon given
by: first m slopes equal to 1 and then n slopes equal to 0. The number of interior
points of this parallelogram equals (m− 1)(n− 1). Half of these are above δ, and
half of these are below δ. Write δ � (i, j) for the property “(i, j) is strictly below
δ”, and (i, j) ≺ ρ for “(i, j) is upon or above ρ”. We see:

# ({(i, j) | δ � (i, j) ≺ ρ}) = (m− 1)(n− 1)/2 + (m+ n− 1) = mn− r.

We use the following fact: If ζ1 � ζ2, then there is an integral point on ζ2 strictly
below ζ1. One can even show that all maximal chains of Newton polygons in the
fact above have the same length, and in fact equal to

# ({(i, j) | δ � (i, j) ≺ ρ}) .
This finishes the proof of the claim.

As dim(Def(Y0)) = mn this observation implies by purity, see 7.3, that every
irreducible component of Wδ(D) had dimension at least r. This is a contradiction
to the assumption of the existence of T ′, i.e., dim(T ′) = dim(T ′′) < r. Hence
(U〈0〉)

Zar = T . This proves Theorem 7.8. Hence we have proved Theorem 7.1 in
the case when X0 is isogenous to Hm,n.
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Theorem 7.14. Th (Deformation to a ≤ 1 in the principally quasi-polarized
case) Let X0 be a p-divisible group over a field K with a principal quasi-polarization
λ0 : X0 → Xt

0. There exists an integral scheme S, a point 0 ∈ S(K) and a princi-
pally quasi-polarized p-divisible group (X , λ)→ S such that there is an isomorphism
(X0, λ0) ∼= (X , λ)0, and for the generic point η ∈ S we have:

N (X0) = N (Xη) and a(Xη) ≤ 1.

See [20], 5.12 and [66], 3.10.

Corollary 7.15. Th (Deformation to a ≤ 1 in the case of principally polarized
abelian varieties) Let (A0, λ0) be a principally polarized abelian variety over K.
There exists an integral scheme S, a point 0 ∈ S(K) and a principally polarized
abelian scheme (A, λ) → S such that there is an isomorphism (A0, λ0) ∼= (A, λ)0,
and for the generic point η ∈ S we have

N (A0) = N (Aη) and a(Xη) ≤ 1.

7.16. The non-principally polarized case. Note that the analog of the
theorem and of the corollary is not correct in general in the non-principally polarized
case. Here is an example, see [39], 6.10, and also see [45], 12.4 and 12.5 where more
examples are given. Consider g = 3, let σ be the supersingular Newton polygon; it
can be proved that for any x ∈ Wσ(A3,p) we have a(Ax) ≥ 2.

We will show that for ξ1 ≺ ξ2 we have in the principally polarized case:

W0
ξ1(Ag,1) =: W 0

ξ1 ⊂ (W 0
ξ2)

Zar = Wξ2 :=Wξ2(Ag,1).

In the non-principally polarized case this inclusion and the equality (W 0
ξ2
)Zar = Wξ2

do not hold in general as is demonstrated by the following example. Let g = 3, and
ξ1 = σ the supersingular Newton polygon, and ξ2 = (2, 1) + (1, 2). Clearly ξ1 ≺ ξ2.
By [39], 6.10, there is a component of Wσ(Ag,p2) of dimension 3; more generally
see [45], Theorem 10.5 (ii) for the case of Wσ(Ag,p[(g−1)2/2]) and components of

dimension equal to g(g − 1)/2. As the p-rank 0 locus in Ag has pure dimension
equal to g(g + 1)/2 + (f − g) = g(g − 1)/2, see [56], Theorem 4.1, this shows the
existence of a polarized supersingular abelian variety (of dimension 3, respectively
of any dimension at least 3) which cannot be deformed to a non-supersingular
abelian variety with p-rank equal to zero.

Many more examples where (W 0
ξ )

Zar �= Wξ follow from [58], Section 3.

8. Proof of the Grothendieck conjecture

Main reference: [66].

Definition 8.1. Extra Let X be a p-divisible group over a base S. A filtration

0 = X(0) ⊂ X(1) ⊂ · · · ⊂ X(s) = X

of X by p-divisible subgroups Xi → S is the slope filtration of X if there exists
rational numbers τ1, τ2, . . . , τs with 1 ≥ τ1 > τ2 > · · · > τs ≥ 0 such that Yi :=
X(i)/X(i−1) is an isoclinic p-divisible group over S with slope τi for i = 1, . . . , s.

Remark. Clearly, if a slope filtration exists, it is unique.
From the Dieudonné-Manin classification it follows that the slope filtration on

X exists if K is perfect.
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By Grothendieck and Zink we know that for every p-divisible group over any
field K the slope filtration exists; see [94], Corollary 13.

In general for a p-divisible group X → S over a base a slope filtration on X/S
does not exists. Even if the Newton polygon is constant in a family, in general the
slope filtration does not exist.

Definition 8.2. We say that 0 = X(0) ⊂ X(1) ⊂ · · · ⊂ X(s) = X is a maximal
filtration of X → S if every geometric fiber of Y (i) := X(i)/X(i−1) for 1 ≤ i ≤ s is
simple and isoclinic of slope τi with τ1 ≥ τ2 ≥ · · · ≥ τs.

Lemma. BB For every X over k a maximal filtration exists.

See [66], 2.2.

Lemma 8.3. BB Let {X(i)
0 } be a p-divisible group X0 with maximal filtration

over k. There exists an integral scheme S and a p-divisible group X/S with a
maximal filtration {X(i)} → S and a closed point 0 ∈ S(k) such that N (Y (i)) is

constant for 1 ≤ i ≤ s, such that {X(i)}0 = {X(i)
0 } and such that for the generic

point η ∈ S we have a(Xη) ≤ 1.

See [66], Section 2. A proof of this lemma uses Theorem 7.8.
In Section 7 we proved 7.8, and obtained as a corollary 7.1 in the case of a

simple p-divisible group. From the previous lemma we derive a proof for Theorem
7.1.

Definition 8.4. We say that a p-divisible groupX0 over a fieldK is a specialization
of a p-divisible group Xη over a field L if there exists an integral scheme S →
Spec(K), a k-rational point 0 ∈ S(K), and X → S such that X0 = X0, and for the
generic point η ∈ S we have L = K(η) and Xη = Xη.

This can be used for p-divisible groups, for abelian schemes, etc.

Proposition 8.5. Let X0 be a specialization of Xη = Y0, and let Y0 be a special-
ization of Yρ. Then X0 is a specialization of Yρ.

Using Theorem 5.10 and Theorem 7.1 along with the proposition above, we derive
a proof of the Grothendieck Conjecture (Theorem 1.22).

Corollary 8.6. (of Theorem 1.22) Let X0 be a p-divisible group, β = N (X0).
Every component of the locus Wβ(Def(X0)) has dimension �(β).

Definition 8.7. Let (X,λ) be a principally polarized p-divisible group over S. We
say that a filtration

0 = X(0) ⊂ X(1) ⊂ · · · ⊂ X(s) = X

of X by p-divisible subgroups X(0), . . . , X(s) over S is a maximal symplectic filtra-
tion of (X,λ) if:

• each quotient Y (i) := X(i)/X(i−1) for i = 1, . . . , s is a p-divisible group
over S,

• every geometric fiber of Y (i) for 1 ≤ i ≤ s is simple of slope τi,
• τ1 ≥ τ2 ≥ · · · ≥ τs, and
• λ : X → Xt induces an isomorphism

λi : Y
(i) → (Y (s+1−i))t for 0 < i ≤ (s+ 1)/2.

Lemma 8.8. For every principally polarized (X,λ) over k there exists a maximal
symplectic filtration.
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See [66], 3.5.

8.9. Using this definition and this lemma, we show the principally polarized
analog 7.15 of 7.14; see [66], Section 3. Hence Corollary 7.15 follows. Using 7.15
and Theorem 5.19 we derive a proof for:

Theorem 8.10. (An analog of the Grothendieck conjecture) Let K ⊃ Fp. Let
(X0, λ0) be a principally quasi-polarized p-divisible group over K. Write N (X0) = ξ
for its Newton polygon. Given a Newton polygon ζ “below” ξ, i.e., ξ ≺ ζ, there
exists a deformation (Xη, λη) of (X0, λ0) such that N (Xη) = ζ.

Corollary 8.11. Let K ⊃ Fp. Let (A0, λ0) be a principally polarized abelian
variety over K. Write N (A0) = ξ for its Newton polygon. Given a Newton polygon
ζ “below” ξ, i.e., ξ ≺ ζ, there exists a deformation (Aη, λη) of (A0, λ0) such that
N (Xη) = ζ.

Corollary 8.12. Let ξ be a symmetric Newton polygon. Every component of the
stratum Wξ =Wξ(Ag,1) has dimension equal to !(ξ).

9. Proof of the density of ordinary Hecke orbits

In this section we give a proof of Theorem 1.8 on the density of ordinary Hecke
orbits, restated as Theorem 9.1 below. To establish Theorem 1.8, we need the
analogous statement for a Hilbert modular variety; see 9.2 for the precise statement.

Here is a list of tools we will use; many have been explained in previous sections.

(i) Serre-Tate coordinates, see §2.
(ii) Local stabilizer principle, see 9.5 and 9.6.
(iii) Local rigidity for group actions on formal tori, see 2.26.
(iv) Consequence of EO stratification, see 9.7.
(iv) Hilbert trick, see 9.10.

The logical structure of the proof of Theorem 1.8 is as follows. We first prove
the density of ordinary Hecke orbits on Hilbert modular varieties. Then we use
the Hilbert trick to show that the Zariski closure of any prime-to-p Hecke orbit on
Ag,1,n contains a hypersymmetric ordinary point. Finally we use the local stabilizer
principle and the local rigidity to conclude the proof of 1.8. Here by a hypersym-
metric ordinary point we just mean that the underlying abelian variety is isogenous
to E×· · ·×E, where E is an ordinary elliptic curve over F; see [15] for the general
notion of hypersymmetric abelian varieties.

The Hilbert trick is based on the following observation. Given an ordinary
point x = [(Ax, λx, ηx)] ∈ Ag,1,n(F), the prime-to-p Hecke orbit of x contains, up to
a possibly inseparable isogeny correspondence, the (image of) the prime-to-p Hecke
orbit of a point h = [(Ay, ιy, λy, ηy)] of a Hilbert modular variety ME,L,L+,m such

that Ay is isogenous to Ax, because End
0(Ax) contains a product E = F1×· · ·×Fr

of totally real fields with [E : Q] = g. So if we can establish the density of the
prime-to-p Hecke orbit of y inME,L,L+,m, then we know that the Zariski closure of
the prime-to-p Hecke orbit of x contains the image of the Hilbert modular variety
ME,L,L+,m in Ag,1,n under a finite isogeny correspondence, i.e., a scheme T over
F and finite F-morphisms g : T → ME,L,L+,m and f : T → Ag,1,n such that
the pullback by g of the universal abelian scheme over ME,L,L+,m is isogenous to
the pullback by f of the universal abelian scheme over Ag,1,n. Since ME,L,L+,m
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contains ordinary hypersymmetric points,
(
H(p)

Sp (x)
)Zar

also contains an ordinary

hypersymmetric point. Then the linearization method afforded by the combination
of the local stabilizer principle and the local rigidity implies that the dimension of(
H(p)

Sp (x)
)Zar

is equal to g(g+1)/2, hence
(
H(p)

Sp (x)
)Zar

= Ag,1,n because Ag,1,n is

geometrically irreducible, see 10.26.
To prove the density of ordinary Hecke orbits on a Hilbert modular variety, the

linearization method is again crucial. Since a Hilbert modular variety ME,L,L+,m

is “small”, there are only a finite number of possibilities as to what (the formal
completion of) the Zariski closure of an ordinary Hecke orbit can be; the possibilities
are indexed by the set of all subsets of prime ideals of OE . To pin down the
number of possibilities down to one, one can use either the consequence of EO-
stratification that the Zariski closure of any Hecke-invariant subvariety of a Hilbert
modular variety contains a supersingular point, or de Jong’s theorem on extending
homomorphisms between p-divisible groups. We follow the first approach here; see
9.11 and [7, §8] for the second approach.

Theorem 9.1. Let n ≥ 3 be an integer prime to p. Let x = [(Ax, λx, ηx)] ∈
Ag,1,n(F) such that Ax is ordinary.

(i) The prime-to-p Sp2g(A
(p)
f )-Hecke orbit of x is dense in the moduli space

Ag,1,n over F for any prime number � �= p, i.e.,

(
H(p)

Sp (x)
)Zar

= Ag,1,n .

(ii) The Sp2g(Q�)-Hecke orbit of x dense in the moduli space Ag,1,n over F ,
i.e., (

HSp
� (x)

)Zar
= Ag,1,n .

Theorem 9.2. Let n ≥ 3 be an integer prime to p. Let E = F1 × · · · × Fr, where
F1, . . . , Fr are totally real number fields. Let L be an invertible OE-module, and let
L+ be a notion of positivity for L. Let y = [(Ay, ιy, λy, ηy)] ∈ ME,L,L+,n(F) be a
point of the Hilbert modular variety ME,L,L+,n such that Ay is ordinary. Then the

SL2(E⊗QA
(p)
f )-Hecke orbit of y on ME,L,L+,n is Zariski dense in ME,L,L+,n over

F.

Proposition 9.3. Let n ≥ 3 be a integer prime to p.

(i) Let x ∈ Ag,1,n(F) be a closed point of Ag,1,n. Let Z(x) be the Zariski

closure of the prime-to-p Hecke orbit H(p)
Sp (x) in Ag,1,n over F. Then

Z(x) is smooth at x over F.
(ii) Let y ∈ ME,L,L+,n(F) be a closed point of a Hilbert modular variety

MF,L,L+,n. Let ZF (y) be the Zariski closure of the prime-to-p Hecke orbit

H(p)
SL2

(y) on MF,L,L+,n over F. Then ZF (y) is smooth at y over F.

Proof. We give the proof of (ii) here. The proof of (i) is similar and left to the
reader.

Because ZF is reduced, there exists a dense open subset U ⊂ ZF which is
smooth over F. This open subset U must contain an element y′ of the dense

subset H(p)
SL2

(y) of ZF , so ZF is smooth over F at y′. Since prime-to-p Hecke



MODULI OF ABELIAN VARIETIES 509

correspondences are defined by schemes over MF,L,L+,n ×Spec(F) MF,L,L+,n such
that both projections to MF,L,L+,n are étale, ZF is smooth at y as well.

Remark.

(i) Proposition 9.3 is an analog of the following well-known fact. Let X be a
reduced scheme over an algebraically closed field k on which an algebraic
group operates transitively. Then X is smooth over k.

(ii) The proof of Proposition 9.3 also shows that all irreducible components of
Z(x) (resp. ZF (y)) have the same dimension: For any non-empty subset
U1 ⊂ ZF (y) and any open subset W1 � y, there exist a non-empty subset
U2 ⊂ U1, an open subset W2 � y and a non-empty étale correspondence
between U2 and W2.

Theorem 9.4. BB Let Z be a reduced closed subscheme of Ag,1,n over F such
that no maximal point of Z is contained in the supersingular locus of Ag,1,n. If Z is
stable under all Sp2g(Q�)-Hecke correspondences on Ag,1,n, then Z is stable under

all Sp2g(A
(p)
f )-Hecke correspondences.

Remark. This is proved in [11, Proposition 4.6].

Local stabilizer principle

Let k ⊃ Fp be an algebraically closed field. Let Z be a reduced closed subscheme
of Ag,1,n over k. Let z = [(Az, λz, ηz)] ∈ Z(k) ⊂ Ag,1,n(k) be a closed point of

Z. Let ∗z be the Rosati involution on End0(Az). Denote by Hz the unitary group
attached to the semisimple algebra with involution (End0(Az), ∗z), defined by

Hz(R) =
{
x ∈ (End0(Az)⊗Q R)× | x · ∗0(x) = ∗0(x) · x = IdAz

}
for any Q-algebra R. Denote by Hz(Zp) the subgroup of Hz(Qp) consisting of all
elements x ∈ Hz(Qp) such that x induces an automorphism of (Az, λz)[p

∞]. De-
note by Hz(Z(p)) the group Hz(Q)∩Hz(Zp), i.e., its elements consist of all elements
x ∈ Hz(Q) such that x induces an automorphism of (Az, λz)[p

∞]. Note that the ac-
tion of Hz(Zp) on Az[p

∞] makes Hz(Zp) a subgroup of Aut((Az, λz)[p
∞]). Denote

by A/z
g,1,n (resp. Z/z) the formal completion of Ag,1,n (resp. Z) at z. The com-

pact p-adic group Aut((Az, λz)[p
∞]) operates naturally on the deformation space

Def ((Az, λz)[p
∞]/k). So we have a natural action of Aut((Az, λz)[p

∞]) on the

formal scheme A/z
g,1,n via the canonical isomorphism

A/z
g,1,n = Def ((Az, λz)/k)

Serre-Tate−−−−−−→
∼

Def ((Az, λz)[p
∞]/k) .

Theorem 9.5. (local stabilizer principle) Notation as above. Suppose that Z is

stable under all Sp2g(A
(p)
f )-Hecke correspondences on Ag,1,n. Then the closed for-

mal subscheme Z/z in A/z
g,1,n is stable under the action of the subgroup Hz(Zp) of

Aut((Az, λz)[p
∞]).

Proof. Consider the projective system A∼
g,1 = lim←−m

Ag,1,m over k, where m runs

through all integers m ≥ 1 which are prime to p. The pro-scheme A∼
g,1 classifies

triples (A→ S, λ, η), where A→ S is an abelian scheme up to prime-to-p isogenies,
λ is a principal polarization of A→ S, and

η : H1(Az,A
(p)
f )

∼−→ H1(A/S,A
(p)
f )
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is a symplectic prime-to-p level structure. Here we have used the first homology
groups of Az attached to the base point z to produce the standard representation

of the symplectic group Sp2g. Take Sz = A/z
g,1,n, let (A/z, λ/z) → A/z

g,1,n be the

restriction of the universal principally polarized abelian scheme to A/z
g,1,n, and let

η/z be the tautological prime-to-p level structure, we get an Sz-point of the tower
A∼

g,1 that lifts Sz ↪→ Ag,1,n.

Let γ be an element of Hz(Z(p)). Let γp (resp. γ(p)) be the image of γ in

the local stabilizer subgroup Hz(Zp) ⊂ Aut((Az, λz)[p
∞]) (resp. in Hz(A

(p)
f ). From

the definition of the action of Aut((Az, λz)[p
∞]) on A/z

g,1,n we have a commutative
diagram

(A/z, λ/z)[p∞]
fγ [p

∞]��

��

(A/z, λ/z)[p∞]

��
A/z

g,1,n

uγ �� A/z
g,1,n

where uγ is the action of γp on A/z
g,1,n and fγ [p

∞] is an isomorphism over uγ whose

fiber over z is equal to γp. Since γp comes from a prime-to-p quasi-isogeny, fγ [p
∞]

extends to a prime-to-p quasi-isogeny fγ over uγ , such that the diagram

A/z
fγ ��

��

A/z

��
A/z

g,1,n

uγ �� A/z
g,1,n

commutes and fγ preserves the polarization λ/z. Clearly the fiber of fγ at z is
equal to γ as a prime-to-p isogeny from Az to itself. From the definition of the

action of the symplectic group Sp(H1(Az,A
(p)
f ), 〈·, ·〉) one sees that uγ coincides

with the action of (γ(p))−1 on A∼
g,1. Since Z is stable under all Sp2g(A

(p)
f )-Hecke

correspondences, we conclude that Z/z is stable under the action of uγ , for every
γ ∈ Hz(Z(p)).

By the weak approximation theorem for linear algebraic groups (see [70], 7.3,
Theorem 7.7 on page 415), Hz(Z(p)) is p-adically dense in Hz(Zp). So Z/z is stable
under the action of Hz(Zp) by the continuity of the action of Aut((Az, λz)[p

∞]).

Remark. The group Hz(Z(p)) can be thought of as the “stabilizer subgroup” at z
inside the family of prime-to-p Hecke correspondences: Every element γ ∈ Hz(Z(p))
gives rise to a prime-to-p Hecke correspondence with z as a fixed point.

We set up notation for the local stabilizer principle for Hilbert modular vari-
eties. Let E = F1× · · ·×Fr, where F1, . . . , Fr are totally real number fields. Let L
be an invertible OE-module, and let L+ be a notion of positivity for L. Let m ≥ 3
be a positive integer which is prime to p. Let Y be a reduced closed subscheme of
ME,L,L+,m over F. Let y = [(Ay, ιy, λy, ηy)] ∈ ME,L,L+,m(F) be a closed point in
Y ⊂ME,L,L+,m. Let ∗y be the Rosati involution attached to λ on the semisimple

algebra End0OE
(Ay) = EndOE

(Ay)⊗OE
E. Denote by Hy the unitary group over Q
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attached to (End0OE
(Ay), ∗y), so

Hy(R) =
{
u ∈

(
End0OE

(Ay)⊗Q R
)× | u · ∗y(u) = ∗y(u) · u = IdAy

}
for every Q-algebra R. Let Hy(Zp) be the subgroup of Hy(Qp) consisting of all el-
ements of Hy(Qp) which induce an automorphism of (Ay[p

∞], ιy[p
∞], λy[p

∞]). De-
note by Hy(Z(p)) the intersection of Hy(Q) and Hy(Zp) inside Hy(Qp), i.e., it consists
of all elements u ∈ Hy(Q) such that u induces an automorphism of (Ay, ιy, λy)[p

∞].
The compact p-adic group Aut((Ay, ιy, λy)[p

∞]) operates naturally on the local
deformation space Def ((Ay, ιy, λy)[p

∞]/k). So we have a natural action of the

compact p-adic group Aut((Ay, ιy, λy)[p
∞]) on the formal scheme M/y

E,L,L+,m via

the canonical isomorphism

M/y
E,L,L+,m = Def ((Ay, ιy, λy)/k)

Serre-Tate−−−−−−→
∼

Def ((Ay, ιy, λy)[p
∞]/k) .

Theorem 9.6. Notation as above. Assume that the closed subscheme

Y ⊂ME,L,L+,m

over F is stable under all SL2(E ⊗Q A
(p)
f )-Hecke correspondences on the Hilbert

modular varietyME,L,L+,m. Then the closed formal subscheme Y /y of M/y
E,L,L+,m

is stable under the action by elements of the subgroup

Hy(Zp) ⊂ Aut(Ay[p
∞], ιy[p

∞], λy[p
∞]).

Proof. The proof of Theorem 9.6 is similar to that of Theorem 9.5, and is already
contained in the proof of Corollary 6.15.

Theorem 9.7. BB Let n ≥ 3 be an integer relatively prime to p. Let � be a
prime number, � �= p.

(i) Every closed subset of Ag,n over F which is stable under all Hecke corre-
spondences on Ag,n coming from Sp2g(Q�) contains a supersingular point.

(ii) Similarly, every closed subset in a Hilbert modular variety ME,L,L+,n

over F which is stable under all SL2(E ⊗ Q�)-Hecke correspondences on
ME,L,L+,n contains a supersingular point.

Remark. Theorem 9.7 follows from the main theorem of [67] and Proposition 9.8
below. See also 3.22.

Proposition 9.8. BB Let k ⊃ Fp be an algebraically closed field. Let � be a
prime number, � �= p. Let n ≥ 3 be an integer prime to p.

(i) Let x = [(Ax, λx, ηx)] ∈ Ag,1,n(k) be a closed point of Ag,1,n. If Ax is

supersingular, then the prime-to-p Hecke orbit H(p)
Sp2g

(x) is finite. Con-

versely, if Ax is not supersingular, then the �-adic Hecke orbit HSp2g

� (x)
is infinite for every prime number � �= p.

(ii) Let y = [(Ay, ιy, λy, ηy)] ∈ ME,L,L+,n(k) be a closed point of a Hilbert
modular variety ME,L,L+,n. If Ay is supersingular, then the prime-to-p

Hecke orbit H(p)
SL2,E

(y) is finite. Conversely, if Ay is not supersingular,

then the v-adic Hecke orbit HSL2,E
v (y) is infinite for every prime ideal ℘v

of OE which does not contain p.

Remark.



512 CHING-LI CHAI AND FRANS OORT

(1) The statement (i) is proved in Proposition 1, p. 448 of [9], see 1.14. The
proof of (ii) is similar. The key to the proof of the second part of (i) is a
bijection

HSp2g

� (x)
∼←−

⎛
⎝Hx(Q) ∩

∏
�′ 
=�

K�

⎞
⎠ \Sp2g(Q�)/K�

where �′ runs through all prime numbers not equal to � or p, Hx is the
unitary group attached to (End0(Ax), ∗x) as in Theorem 9.5. The com-
pact groups K�′ and K� are defined as follows: for every prime number
�′ �= p, K�′ = Sp2g(Z�′) if (�′, n) = 1, and K�′ consists of all elements
u ∈ Sp2g(Z�′) such that u ≡ 1 (mod n) if �′|n. We have an injec-

tion Hx(A
(p)
f ) → Sp2g(A

(p)
f ) as in Theorem 9.5, so that the intersection

Hx(Q) ∩
∏

�′ 
=� K� makes sense. The second part of (i) follows from the
group-theoretic fact that a double coset as above is finite if and only if Hx

is a form of Sp2g.
(2) When the abelian variety Ax in (i) (resp. Ay in (ii)) is ordinary, one

can also use the canonical lifting to W (k) to show that HSp2g

� (x) (resp.

HSL2,E
v (y)) is infinite.

The following irreducibility statement is handy for the proof of Theorem 9.2, be-
cause it shortens the argument and simplifies the logical structure of the proof.

Theorem 9.9. BB Let W be a locally closed subscheme of MF,n over F which

is smooth over F and stable under all SL2(F ⊗ A
(p)
f )-Hecke correspondences. As-

sume that the SL2(F ⊗ A
(p)
f )-Hecke correspondences operate transitively on the set

Π0(W ) of irreducible components of W , and some (hence all) maximal point of W
corresponds to a non-supersingular abelian variety. Then W is irreducible.

Remark. The argument in [11] works in the situation of 9.9. The following ob-
servations may be helpful.

(i) The group SL2(F ⊗ A
(p)
f ) has no proper subgroup of finite index. This

statement can be verified directly without difficulty. It can also be ex-
plained in a more general context: The linear algebraic group ResF/Q(SL2)
over Q is semisimple, connected and simply connected. Therefore every
subgroup of finite index in SL2(F ⊗Q�) is equal to SL2(F ⊗Q�), for every
prime number �.

(ii) The only part of the argument in [11] that needs to be supplemented is
the end of (4.1), where the fact that Sp2g is simple over Q� is used. Let
G� be the image group of the �-adic monodromy ρZ attached to Z. By
definition, G� is a closed subgroup of SL2(F ⊗Q�) =

∏
v|� SL2(Fv), where

v runs through all places of F above �. In the present situation of a Hilbert
modular variety MF , we need to know the fact that the projection of G�

to the factor SL2(Fv) is non-trivial for every place v of F above � and for
every � �= p.

Theorem 9.10. (Hilbert trick) Given x0 ∈ Ag,1,n(F), then there exist

(a) totally real number fields F1, . . . , Fr such that
∑r

i=1[Ei : Q] = g,
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(b) an invertible OE-module L with a notion of positivity L+, i.e., L+ is a
union of connected components of L⊗Q R such that L⊗R is the disjoint
union of L+ with −L+,

(c) a positive integer a and a positive integer m such that (m, p) = 1 and
m ≡ 0 (mod n),

(d) a finite flat morphism g :Mord
E,L,L+,m;a →Mord

E,L,L+,m ,

(e) a finite morphism f :Mord
E,L,L+,m;a → Aord

g,n ,

(f) a point y0 ∈Mord
E,L,L+,m;a(F)

such that the following properties are satisfied.

(i) There exists a projective system Mord,∼
E,L,L+;a of finite étale coverings of

ME,L,L+,m;a on which the group SL2(E ⊗ A
(p)
f ) operates. This action of

SL2(E ⊗ A
(p)
f ) induces Hecke correspondences on Mord

E,L,L+,m;a

(ii) The morphism g is equivariant with respect to Hecke correspondences com-

ing from SL2(E ⊗ A
(p)
f ). In other words, there is an SL2(E ⊗ A

(p)
f )-

equivariant morphism g∼ from the projective system Mord,∼
E,L,L+;a to the

projective system
(
Mord

E,L,L+,md

)
d∈N−pN

which lifts g.

(iii) There exists an injective homomorphism jE : SL2(E⊗QA
(p)
f )→ Sp2g(A

(p)
f )

such that the finite morphism f is Hecke equivariant with respect to jE.
(iv) We have f(y0) = x0.
(v) For every geometric point z ∈Mord

E,m;a, the abelian variety underlying the

fiber over g(z) ∈ Mord
E,m of the universal abelian scheme over Mord

E,m is

isogenous to the abelian variety underlying the fiber over f(z) ∈ Aord
g,n(F)

of the universal abelian scheme over Aord
g,n(F).

Remark. The scheme Mord
E,L,L+,m;a is defined in Step 3 of the proof of Theo-

rem 9.10.

Lemma. Let A be an ordinary abelian variety over F which is simple. Then

(i) K := End0(A) is a totally imaginary quadratic extension of a totally real
number field F ;

(ii) [F : Q] = dim(A);
(iii) F is fixed by the Rosati involution attached to any polarization of A;
(iii) Every place ℘ of F above p splits in K.

Proof. The statements (i)–(iv) are immediate consequences of Tate’s theorem for
abelian varieties over finite fields; see [79].

Lemma. Let K be a CM field, let E := Md(K), and let ∗ be a positive involution
on E which induces the complex conjugation on K. Then there exists a CM field
L which contains K and a K-linear ring homomorphism h : L → E such that
[L : K] = d and h(L) is stable under the involution ∗.
Proof. This is an exercise in algebra. A proof using Hilbert irreducibility can be
found on p. 458 of [9].

Proof of Theorem 9.10 (Hilbert trick).

Step 1. Consider the abelian variety A0 attached to the given point

x0 = [(A0, λ0, η0)] ∈ Aord
g,1,n(F).
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By the two lemmas above there exist totally real number fields F1, . . . , Fr and
an embedding ι0 : E := F1 × · · · × Fr ↪→ End0(A0) such that E is fixed under

the Rosati involution on End0(A0) attached to the principal polarization λ0, and
[E : Q] = g = dim(A0).

The intersection of E with End(A0) is an order O1 of E, so we can regard A0

as an abelian variety with action by O1. We claim that there exists an OE-linear
abelian variety B and an O1-linear isogeny α : B → A0. This claim follows from
a standard “saturation construction” as follows. Let d be the order of the finite
abelian group OE/O1. Since A0 is ordinary, one sees by Tate’s theorem (the case
when K is a finite field in Theorem 3.16) that (d, p) = 1. For every prime divisor
� �= p of d, consider the �-adic Tate module T�(A0) as a lattice inside the free rank
two E-module V�(A0). Then the lattice Λ� generated by OE ·T�(A0) is stable under
the action of OE by construction. The finite set of lattices {Λ� : �|d} defines an
OE-linear abelian variety B and an O1-linear isogeny β0 : A0 → B which is killed
by a power di of d. Let α : B → A0 be the isogeny such that α ◦ β0 = [di]A0

. The
claim is proved.

Step 2. The construction in Step 1 gives us a triple (B,α, ιx0
), where B is an

abelian variety B over F , α : B → Ax is an isogeny over F, and ιB : OE → End(B) is
an injective ring homomorphism such that α−1◦ιx(u)◦α = ιB(u) for every u ∈ OE .
Let LB := Homsym

OE
(B,Bt) be set of all OE-linear symmetric homomorphisms from

B to the dual Bt of B. The set LB has a natural structure as an OE-module. By
Tate’s theorem (the case when K is a finite field in Theorem 3.16, see 10.17) one
sees that LB is an invertible OE-module, and the natural map

λB : B ⊗OE
LB → Bt

is an OE-linear isomorphism. The subset of elements in L which are polarizations
defines a notion of positivity L+ on L such that LB ∩L+

B is the subset of OE-linear
polarizations on (B, ιB).

Step 3. Recall that the Hilbert modular variety ME,L,L+,n classifies (the iso-
morphism class of) all quadruples (A → S, ιA, λA, ηA), where (A → S, ιA) is an
OE-linear abelian schemes, λA : L → Homsym

OE
(A,At) is an injective OE-linear map

such that the resulting morphism L⊗A
∼−→ At is an isomorphism of abelian schemes

and every element of L ∩ L+ gives rise to an OE-linear polarization, and ηA is an
OE-linear level structure on (A, ιA). In the preceding paragraph, if we choose an
OE-linear level-n structure ηB on (B, ιB), then y1 := [(B, ιB, λB, ηB)] is an F-point
of the Hilbert modular variety ME,LB ,L+

B ,n. The element α∗(λ0) is an OE-linear

polarization on B, hence it is equal to λB(µ0) for a unique element µ0 ∈ L ∩ L+.
Choose a positive integer m1 with gcd(m1, p) = 1 and a ∈ N such that Ker(α)

is killed by m1p
a. Let m = m1n. Let (A, ιA, λA, ηA) → Mord

E,L,L+,m be the uni-

versal polarized OE-linear abelian scheme over the ordinary locus Mord
E,L,L+,m of

ME,L,L+,m. Define a scheme Mord
E,L,L+,m;a over Mord

E,L,L+,m by

IsomOE

Mord
E,L,L+,m

(
(B, ιB, λB)[p

a]×Spec(F)Mord
E,L,L+,m, (A, ιA, λA)[p

a]
)
.

In other words Mord
E,L,L+,m;a is the moduli space of OE-linear ordinary abelian va-

rieties with level-mpa structure, where we have used the OE-linear polarized trun-
cated p-divisible group (B, ιB, λB)[p

m] as the “model” for thempa-torsion subgroup
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scheme of the universal abelian scheme over Mord
E,L,L+,m. Let

g :Mord
E,L,L+,m;a →Mord

E,L,L+,m

be the structural morphism of Mord
E,L,L+,m;a, the source of g being an fppf sheaf of

sets on the target of g. Notice that the structural morphism g : Mord
E,L,L+,m;a →

Mord
E,L,L+,m has a natural structure as a torsor over the constant finite flat group

scheme
Aut ((B, ιB, λB)[p

a])×Spec(F)Mord
E,L,L+,m .

We have constructed the finite flat morphism g as promised in Theorem 9.10 (d).
We record some properties of this morphism.

The group Aut (B, ιB , λB)[p
a]) sits in the middle of a short exact sequence

0→ HomOE
(B[pa]ét, B[pa]mult)→ Aut ((B, ιB, λB)[p

a])→ AutOE
(B[pa]ét)→ 0 .

The morphism g :Mord
E,L,L+,m;a →Mord

E,L,L+,m factors as

Mord
E,L,L+,m;a

g1−→Mord,ét
E,L,L+,m;a

g2−→Mord
E,L,L+,m ,

where g1 is defined as the push-forward by the surjection

Aut ((B, ιB, λB)[p
a]) � AutOE

(B[pa]ét)

of the Aut ((B, ιB, λB)[p
a])-torsorMord

E,L,L+,m;a. Note that the morphism g1 is finite

flat and purely inseparable, and Mord,ét
E,L,L+,m;a is integral. Moreover Mord,ét

E,L,L+,m;a

and Mord
E,L,L+,m are irreducible by [74], [23], [71] and [22].

Step 4. Let πn,m : ME,L,L+,m → ME,L,L+,n be the natural projection. Denote
by

A[mpa]→Mord
E,L,L+,m

the kernel of [mpa] on A →Mord
E,L,L+,m, and let g∗A[mpa] →Mord

E,L,L+,m;a be the

pullback of A[mpa] → Mord
E,L,L+,m by g. By construction the OE-linear finite flat

group scheme g∗A[mpa]→Mord
E,L,L+,m;a is constant via a tautological trivialization

ψ : Aut (B, ιB , λB)[p
a])×Spec(F)Mord

E,L,L+,m
∼−→Mord

E,L,L+,m;a

Choose a point y0 ∈Mord
E,L,L+,m;a(F) such that (πn,m ◦ g)(y0) = y1. The fiber over

y0 of g∗A[mpa] → Mord
E,L,L+,m;a is naturally identified with B[mpa]. Let K0 :=

Ker(α : B → A0), and let

K := ψ
(
K0 ×Spec(F)Mord

E,L,L+,m;a →Mord
E,L,L+,m;a

)
,

the subgroup scheme of g∗A[mpa] which corresponds to the constant group K0

under the trivialization ψ. The element µ0 ∈ L ∩ L+ defines a polarization on
the abelian scheme g∗A → Mord

E,L,L+,m;a, the pullback by g of the universal po-

larized OE-linear abelian scheme over A → Mord
E,L,L+,m. The group K is a maxi-

mal totally isotropic subgroup scheme of g∗Ker(λA(µ0)) →Mord
E,L,L+,m;a, because

g∗Ker(λA(µ0)) is constant and K0 is a maximal totally isotropic subgroup scheme
of Ker(λB(µ0)).

Consider the quotient abelian scheme

(A′ →Mord
E,L,L+,m;a) := (g∗A→Mord

E,L,L+,m;a)/K.
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Recall that we have defined an element µ0 ∈ L ∩ L+ in Step 3. The polarization
g∗(λA(µ0)) on the abelian scheme g∗A → Mord

E,L,L+,m;a descends to the quotient

abelian scheme A′ → Mord
E,L,L+,m;a, giving it a principal polarization λA′ . More-

over the n-torsion subgroup scheme A′[n] → Mord
E,L,L+,m;a is constant, as can be

checked easily. Choose a level-n structure ηA′ for A′. The triple (A′, λA′ , ηA′) over
Mord

E,L,L+,m;a defines a morphism f :Mord
E,L,L+,m;a → Aord

g,1,n by the modular defini-

tion of Aord
g,1,n, since every fiber of A′ →Mord

E,L,L+,m;a is ordinary by construction.

We have constructed the morphism f as required in 9.10 (e), and also the point y0
as required in 9.10 (f).

Step 5. So far we have constructed the morphisms g and f as required in Theo-
rem 9.10. To construct the homomorphism jE as required in (iii), one uses the first

homology group V := H1(B,A
(p)
f ), and the symplectic pairing 〈·, ·〉 induced by the

polarization α∗(λ0) = λB(µ0) constructed in Step 3. Notice that V has a natural

structure as a free E ⊗Q A
(p)
f -module of rank two. Also, V is a free A

(p)
f -module

of rank 2g. So we get an embedding jE : SL
E⊗A

(p)
f

(V ) ↪→ Sp
A

(p)
f

(V, 〈·, ·〉). We have

finished the construction of jE .

We define Mord,∼
E,L,L+,a to be the projective system lim←−md

ME,L,L+,md;a, where

d runs through all positive integers which are prime to p. This finishes the last
construction needed for Theorem 9.10.

By construction we have f(y0) = x0, which is statement (iv). The statement (v)
is clear by construction. The statements (i)–(iii) can be verified without difficulty
from the construction.

Proof of Theorem 9.2. (Density of ordinary Hecke orbits in ME,L,L+,n)
Reduction step.

From the product decomposition

ME,L,L+,n =MF1,L1,L+
1 ,n ×Spec(F) · · · ×Spec(F)MFr ,Lr,L+

r ,n

of the Hilbert modular variety ME,L,L+,n, we see that it suffices to prove Theo-
rem 9.2 when r = 1, i.e., E = F1 =: F is a totally real number field. Assume this
is the case from now on.

The rest of the proof is divided into four steps.

Step 1. (Serre-Tate coordinates for Hilbert modular varieties)
Claim. The Serre-Tate local coordinates at a closed ordinary point z ∈Mord

F,L,L+,n

of a Hilbert modular variety MF,L,L+,n admits a canonical decomposition

M/z
F,L,L+,n

∼=
∏

℘∈ΣF,p

Mz
℘ , Mz

℘ = HomOF,℘

(
Tp(Az[℘

∞]ét), e℘ ·A/0
z

)
,

where

• the indexing set ΣF,p is the finite set consisting of all prime ideals of OF

above p,

• the (OF ⊗ Zp)-linear formal torus A
/0
z is the formal completion of the

ordinary abelian variety Az,
• e℘ is the irreducible idempotent in OF ⊗Z Zp so that e℘ · (OF ⊗Z Zp) is
equal to the factor OF℘

of OF ⊗Z Zp.
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Notice that e℘A
/0
z is the formal torus attached to the multiplicative p-divisible

group Az[℘
∞]mult over F.

Proof of Claim. The decomposition OF ⊗ZZp =
∏

℘∈ΣF,p
OF℘

induces a decom-

position of the formal scheme M/z
F,L,L+,n into a product

M/z
F,L,L+,n =

∏
℘∈ΣF,p

Mz
℘

for every closed point z ofMF,L,L+,n: Let (A/R, ι) be an OF -linear abelian scheme
over an Artinian local ring R. Then we have a decomposition

A[p∞] =
∏

℘∈ΣF,p

A[℘∞]

of the p-divisible group attached to A, where each A[℘∞] is a deformation of
A×Spec(R) Spec(R/m) over Spec(R).

If z corresponds to an ordinary abelian variety Az, then Mz
℘ is canonically

isomorphic to the OF,℘-linear formal torus HomOF,℘
(Az[℘

∞]ét, e℘ · A/0
z ), which is

the factor “cut out” in the (OF ⊗Z Zp)-linear formal torus

M/z
F,L,L+,n = HomOF⊗Zp

(
Tp(Az[p

∞], A/0
z

)
by the idempotent e℘ in OF ⊗ Zp. Each factor Mz

℘ in the above decomposition

is a formal torus of dimension [F℘ : Qp], with a natural action by O×
F,℘; it is non-

canonically isomorphic to the O℘-linear formal torus Az
/0.

Step 2. (Linearization)
Claim. For every closed point z ∈ Zord

F (F) in the ordinary locus of ZF , there exists

a non-empty subset Sz ⊂ ΣF,p such that Z
/z
F =

∏
℘∈Sz

Mz
℘, whereMz

℘ is the factor

of the Serre-Tate formal torus M/z
F,L,L+,n corresponding to ℘.

Proof of Claim. The OF -linear abelian variety Az is an ordinary abelian variety
defined over F. Therefore End0OF

(Az) is a totally imaginary quadratic extension
field K of F which is split over every prime ideal ℘ of OF above p, by Tate’s theorem
(the case when K is a finite field in Theorem 3.16). By the local stabilizer principle,

Z
/z
F is stable under the norm-one subgroup U of (OK ⊗Z Zp)

×. Since every prime

℘ of OF above p splits in OK , U is isomorphic to
∏

℘∈ΣF,p
O×

F,℘ through its action

on the (OF ⊗ Zp)-linear formal torus A
/0
z . The factor O×

F,℘ of U operates on the

OF,℘-linear formal torus Mz
℘ through the character t �→ t2, i.e., a typical element

t ∈ U =
∏

℘∈ΣF,p
O×

F,℘ operates on the (OF ⊗ Zp)-linear formal torus M/z
F,L,L+,n

through the element t2 ∈ U = (OF ⊗Zp)
×. The last assertion can be seen through

the formula

M/z
F,L,L+,n = HomOF⊗Zp

(
Tp(Az[p

∞]ét), A/0
z

)
,

because any element t of U
∼−→ OF ⊗ZZp operates via t (resp. t−1) on the (OF ⊗Zp)-

linear formal torus e℘A
/0
z (resp. the (OF ⊗ Zp)-linear p-divisible group Az[p

∞]ét).

The local rigidity theorem 2.26 implies that Z
/z
F is a formal subtorus of the

Serre-Tate formal torus M/z
F . For every ℘ ∈ ΣF,p, let X℘,∗ be the cocharacter

group of the OF℘
-linear formal torus Mz

℘, so that
∏

℘∈ΣF,p
X℘,∗ is the cocharacter

group of the Serre-Tate formal torus M/z
F,L,L+,n. Let Y∗ be the cocharacter group
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of the formal torus Z
/z
F . We know that Y∗ is a co-torsion free Zp-submodule of

the rank-one free
(∏

℘∈ΣF,p
OF,℘

)
-module

∏
℘∈ΣF,p

X℘,∗ , and Y∗ is stable under

multiplication by elements of the subgroup
∏

℘∈ΣF,p
(O×

F,℘)
2 of

∏
℘∈ΣF,p

O×
F,℘. It

is easy to see that the additive subgroup generated by
∏

℘ΣF,p
(O×

F,℘)
2 is equal to∏

℘∈ΣF,p
OF,℘ , i.e., Y∗ is a

(∏
℘∈ΣF,p

OF,℘

)
-submodule of

∏
℘ X℘,∗. Hence there

exists a subset Sz ⊆ ΣF,p such that Y∗ =
∏

℘∈Sz
X℘,∗. Since the prime-to-p Hecke

orbit H(p)
SL2,F

(x) is infinite by 9.8, we have 0 < dim(ZF ) =
∑

℘∈Sz
[F℘ : Qp], hence

Sz �= ∅ for every ordinary point z ∈ ZF (x)(F). We have proved the Claim in Step
2.

Step 3. (Globalization)
Claim. The finite set Sz is independent of the point z, i.e., there exists a subset
S ⊂ ΣF,p such that Sz = ΣF,p for all z ∈ Zord

F (F).
Proof of Claim. Consider the diagonal embedding ∆Z : ZF → ZF ×Spec(F) ZF ,
the diagonal embedding ∆M :MF,n →MF,n ×Spec(F) MF,n, and the map ∆Z,M
from ∆Z to ∆M induced by the inclusion ZF ↪→ ∆M. Let PZ be the formal
completion of ZF×Spec(F)ZF along ∆Z(ZF ), and let PM be the formal completion of
MF,n×Spec(F)MF,n along ∆M(MF,n). The map ∆Z,M induces a closed embedding
iZ,M : PZ ↪→ PM. We regard PZ (resp. PM) as a formal scheme over ZF (resp.
MF,n) via the first projection.

The decomposition OF ⊗Z Zp =
∏

℘∈ΣF,p
OF,℘ induces a fiber product decom-

position

PM =
∏

℘∈ΣF,p

(P℘ →MF,n)

over the base scheme MF,n, where P℘ →MF,n is a smooth formal scheme of rela-
tive dimension [F℘ : Qp] with a natural section δ℘, for every ℘ ∈ ΣF,p, and the for-
mal completion of the fiber of (M℘, δ℘) over any closed point z of the base scheme
MF,n is canonically isomorphic to the formal torus Mz

℘. In fact one can show
that M℘ →MF,n has a natural structure as a formal torus of relative dimension
[F℘ : Qp], with δ℘ as the zero section; we will not need this fact here. Notice that
PZ → ZF is a closed formal subscheme of PM ×MF,n

ZF → ZF . The above con-
sideration globalizes the “pointwise” construction of formal completions at closed
points.

By Proposition 9.9, ZF is irreducible. We conclude from the irreducibility of
ZF that there is a non-empty subset S ⊂ ΣF,p such that the restriction of PZ → ZF

to the ordinary locus Zord
F is equal to the fiber product over Zord

F of formal schemes
P℘ ×MF,n

Zord
F → Zord

F over Zord
F , where ℘ runs through the subset S ⊆ ΣF,p. We

have proved the Claim in Step 3.

Remark.

(i) Without using Proposition 9.9, the above argument shows that for each
irreducible component Z1 of Zord

F , there exists a subset S ⊂ ΣF,p such
that Sz = S for every closed point z ∈ Z1(F).

(ii) There is an alternative proof of the claim that Sz is independent of z:
By Step 2, Zord

F is smooth over F. Consider the relative cotangent sheaf
Ω1

Zord
F /F

, which is a locally free OZord
F

-module. We recall that Ω1
Mord

F,L,L+,n
/F
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has a natural structure as a OF ⊗Z Fp-module, from the Serre-Tate coor-
dinates explained in Step 1. By Step 2, we have

Ω1
Zord

F /F ⊗OZF ,z
O∧

ZF ,z =
∑
℘∈Sz

e℘ · Ω1
Mord

F,L,L+,n
/F ⊗OMord

F,L,L+,n

O∧
ZF ,z

for every z ∈ Zord
F (F), where O∧

ZF ,z is the formal completion of the local

ring of ZF at z. Therefore for each irreducible component Z1 of Z
ord
F there

exists a subset S ⊂ ΣF,p such that

Ω1
Z1/F

=
∑
℘∈S

e℘ · Ω1
Mord

F,L,L+,n
/F ⊗OMord

F,L,L+,n

OZ1/F .

Hence Sz = S for every z ∈ Z1(F). This argument was used in [9]; see
Proposition 5 on p. 473 in loc. cit.

(iii) One advantage of the globalization argument in Step 3 is that it makes
the final Step 4 of the proof of Theorem 9.2 easier, as compared with the
two-page proof of Proposition 7 on p. 474 of [9].

Step 4. We have S = ΣF,p. Therefore ZF =MF,n.
Proof of Step 4.

Notation as in Step 3 above. For every closed point s of ZF , the formal com-

pletion Z
/s
F contains the product

∏
℘∈SMs

℘. By Theorem 9.7, ZF contains a su-

persingular point s0. Consider the formal completion Z∧ := Z
/s0
F , which contains

W∧ :=
∏

℘∈SMs0
℘ , and the generic point ηW∧ of Spec

(
H0(W∧,OW∧)

)
is a maxi-

mal point of Spec
(
H0(Z∧,OZ∧)

)
. The restriction of the universal abelian scheme

to ηW∧ is an ordinary abelian variety. Hence S = ΣF,p, otherwise AηW∧ has slope
1/2 with multiplicity at least 2

∑
℘/∈S [F℘ : Qp]. Theorem 9.2 is proved.

Remark. The proof of Theorem 9.2 can be finished without using Proposition
9.9 as follows. We saw in the Remark after Step 3 that Sz depends only on the
irreducible component of Zord

F which contains z. The argument in Step 4 shows
that at least the subset S ⊂ ΣF,p attached to one irreducible component Z1 of Zord

F

is equal to ΣF,p. So dim(Z1) = dim(MF,L,L+,n) = [F : Q]. Since MF,L,L+,n is
irreducible, we conclude that ZF =MF,L,L+,n.

Proof of Theorem 9.1. (Density of ordinary Hecke orbits in Ag,1,n.)
Reduction step. By Theorem 9.4, the weaker statement 9.1 (i) implies 9.1 (ii).
So it suffices to prove 9.1 (i).

Remark. Our argument can be used to prove (ii) directly without appealing to
Theorem 9.4. But some statements, including the local stabilizer principal for
Hilbert modular varieties, need to be modified.

Step 1. (Hilbert trick)
Given x ∈ Ag,n(F), Apply Theorem 9.10 to produce a finite flat morphism

g :Mord
E,L,L+,m;a →Mord

E,L,L+,m ,

where E is a product of totally real number fields, a finite morphism

f :Mord
E,L,L+,m;a → Ag,n ,

and a point y0 ∈Mord
E,L,L+,m;a(F) such that the following properties are satisfied.
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(i) There exists a projective system Mord,∼
E,L,L+;a of finite étale coverings of

ME,L,L+,m;a on which the group SL2(E ⊗ A
(p)
f ) operates. This action of

SL2(E ⊗ A
(p)
f ) induces Hecke correspondences on Mord

E,L,L+,m;a

(ii) The morphism g is equivariant with respect to Hecke correspondences

coming from SL2(E ⊗ A
(p)
f ). In other words, there is a SL2(E ⊗ A

(p)
f )-

equivariant morphism g∼ from the projective system Mord,∼
E,L,L+,a to the

projective system
(
Mord

E,L,L+,mn

)
n∈N−pN

which lifts g.

(iii) The finite morphism f is Hecke equivariant with respect to an injective
homomorphism

jE : SL2(E ⊗Q A
(p)
f )→ Sp2g(A

(p)
f ) .

(iv) For every geometric point z ∈Mord
E,L,L+,m;a, the abelian variety underlying

the fiber over g(z) ∈ Mord
E,L,L+,m of the universal abelian scheme over

Mord
E,L,L+,m is isogenous to the abelian variety underlying the fiber over

f(z) ∈ Aord
g,n(F) of the universal abelian scheme over Aord

g,n(F).
(v) We have f(y0) = x0.

Let y := g(y0) ∈Mord
E,L,L+,m.

Step 2. Let Zy0
be the Zariski closure of the SL2(E ⊗A

(p)
f )-Hecke orbit of y0 on

Mord
E,L,L+,m;a, and let Zy be the Zariski closure of the SL2(E ⊗ A

(p)
f )-Hecke orbit

on ME,L,L+,m. By Theorem 9.2 we know that Zy =ME,L,L+,m. Since g is finite

flat, we conclude that g(Zy0
) = Zy ∩ Mord

E,L,L+,m = Mord
E,L,L+,m. We know that

f(Zy0
) ⊂ Zx because f is Hecke-equivariant.

Step 3. Let E1 be an ordinary elliptic curve over F. Let y1 be an F-point of
ME,L,L+,m such that Ay1

is isogenous to E1 ⊗Z OE and Ly1
contains an OE-

submodule of finite index in λE1
⊗ OE , where λE1

denotes the canonical principal
polarization on E1. In the above the tensor product E1 ⊗Z OE is taken in the
category of fppf sheaves over F; the tensor product is represented by an abelian
variety isomorphic to the product of g copies of E1, with an action by OE . It is not
difficult to check that such a point y1 exists.

Let z1 be a point of Zy0
such that g(z1) = y1. Such a point y1 exists because

g(Zy0
) = Mord

E,L,L+,m The point x1 = f(z1) is contained in the Zariski closure

Z(x) of the prime-to-p Hecke orbit of x on Ag,n. Moreover Ax1
is isogenous to

the product of g copies of E1 by property (iv) in Step 1. So End0(Ax1
) ∼= Mg(K),

where K = End0(E) is an imaginary quadratic extension field of Q which is split
above p. The local stabilizer principle says that Z(x)/x1 is stable under the natural

action of an open subgroup of SU(End0(Ax1
), λx1

)(Qp) ∼= GLg(Qp).

Step 4. We know that Z(x) is smooth at the ordinary point x over k, so Z(x)/x

is reduced and irreducible. By the local stabilizer principle 9.5, Z(x)/x is stable

under the natural action of the open subgroup Hx of SU(End0(Ax1
), ∗x1

) consisting
of all elements γ ∈ SU(End0(Ax1

), ∗x1
)(Qp) such that γ(Ax1

[p∞]) = Ax1
[p∞]. By

Theorem 2.26, Z(x)/x1 is a formal subtorus of the formal torus A/x1
g,n , which is stable

under the action of an open subgroup of SU(End0(Ax1
, λx1

))(Qp) ∼= GLg(Qp).



MODULI OF ABELIAN VARIETIES 521

Let X∗ be the cocharacter group of the Serre-Tate formal torus A/x1
g,n , and let

Y∗ be the cocharacter group of the formal subtorus Z(x)/x1 . Both X∗ and X∗/Y∗
are free Zp-modules. It is easy to see that the restriction to SLg(Qp) of the linear

action of SU(End0(Ax1
), ∗x1

)(Qp) ∼= GLg(Qp) on X∗ ⊗Z Qp is isomorphic to the
second symmetric product of the standard representation of SLg(Qp). It is well-
known that the latter is an absolutely irreducible representation of SLg(Qp). Since
the prime-to-p Hecke orbit of x is infinite, Y∗ �= (0), hence Y∗ = X∗. In other words

Z(x)/x1 = A/x1
g,n . Hence Z(x) = Ag,n because Ag,n is irreducible.

Remark 9.11. We mentioned at the beginning of this section that there is an
alternative argument for Step 4 of the proof of Theorem 9.2, which uses [19] instead
of Theorem 9.7, and therefore is independent of [67]. We sketch the idea here; see
§8 of [7] for more details.

We keep the notation in Step 3 of the proof of 9.2. Assume that S �= ΣF,p.
Consider the universal OF -linear abelian scheme (A→ Zord

F , ι) and the (OF ⊗Zp)-
linear p-divisible group (A → Zord

F , ι)[p∞] over the base scheme Zord
F , which is

smooth over F. We have a canonical decomposition of X℘ := A[p∞] → Zord
F as

the fiber product over Zord
F of O℘-linear p-divisible groups A[℘∞]→ Zord

F , where ℘
runs through the finite set ΣF,p of all places of F above p. Let X1 → Zord

F (resp.
X2 → Zord

F ) be the fiber product over Zord
F of those X℘’s with ℘ ∈ S (resp. with

℘ /∈ S), so that we have A[p∞] = X1 ×Zord
F

X2.

We know that for every closed point s of Zord
F , the restriction to the formal

completion Z
/s
F of the

(∏
℘/∈S O℘

)
-linear p-divisible group X2 → Zord

F is constant.

This means that X2 → Zord
F is the twist of a constant

(∏
℘/∈S O℘

)
-linear p-divisible

group by a character

χ : πét
1 (Zord

F )→
∏
℘/∈S

O×
℘ .

More precisely, one twists the étale part and toric part of the constant p-divisible
group by χ and χ−1 respectively. Consequently End∏

℘/∈S O℘
(X2) ⊇

∏
℘/∈S(O℘×O℘).

By the main results in [19], we have an isomorphism

EndOF
(A/Zord

F )⊗Z Zp
∼−→ EndOF⊗ZZp

(A[p∞]/Zord
F )

||
End∏

℘∈S O℘
(X1)× End∏

℘/∈S O℘
(X2) .

Since End∏
℘/∈S O℘

(X2) ⊇
∏

℘/∈S(O℘ ×O℘), we conclude that EndOF
(A/Zord

F )⊗Z Q

is either a totally imaginary quadratic extension field of F or a central quaternion
algebra over F . This implies that the abelian scheme A → Zord

F admits smCM
(see §10.15), therefore it is isotrivial. We have arrived at a contradiction because
dim(Zord

F ) > 0 by 9.8. Therefore S = ΣF,p.

10. Notations and some results used

10.1. Abelian varieties. For the definition of an abelian variety and an
abelian scheme, see [54], II.4, [55], 6.1. The dual of an abelian scheme A → S

will be denoted by At → S. We avoid the notation Â as in [55], 6.8 for the dual
abelian scheme, because of possible confusion with the formal completion (of a ring,
of a scheme at a subscheme).
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An isogeny ϕ : A→ B of abelian schemes is a finite, surjective homomorphism.
It follows that Ker(ϕ) is finite and flat over the base, [55], Lemma 6.12. This
defines a dual isogeny ϕt : Bt → At. And see 10.11.

The dimension of an abelian variety we will usually denote by g. If m ∈ Z>1

and A is an abelian variety we write A[m] for the group scheme of m-torsion points.
Note that ifm ∈ Z>0 is invertible on the base scheme S, then A[m] is a group scheme
finite étale over S; if moreover S = Spec(K), in this case it is uniquely determined
by the Galois module A[m](k). See 10.5 for details. If the characteristic p of the
base field divides m, then A[m] is a group scheme which is not reduced.

A divisor D on an abelian scheme A/S defines a morphism ϕD : A → At,
see [54], theorem on page 125, see [55], 6.2. A polarization on an abelian scheme
µ : A→ At is an isogeny such that for every geometric point s ∈ S(Ω) there exists
an ample divisor D on As such that λs = ϕD, see [54], Application 1 on page 60,
and [55], Definition 6.3. Note that a polarization is symmetric in the sense that

(
λ : A→ At

)
=

(
A

κ−→ Att λt

−→ At

)
,

where κ : A→ Att is the canonical isomorphism.
Writing ϕ : (B, µ)→ (A, λ) we mean that ϕ : A→ A and ϕ∗(λ) = µ, i.e.,

µ =

(
B

ϕ−→ A
λ−→ At ϕt

−→ Bt

)
.

10.2. Warning. Most recent papers distinguish between an abelian variety
defined over a field K on the one hand, and A ⊗K K ′ over K ′ � K on the other
hand. The notation End(A) stands for the ring of endomorphisms of A over K.
This is the way Grothendieck taught us to choose our notation.

In pre-Grothendieck literature and in some modern papers there is confusion
between on the one hand A/K and “the same” abelian variety over any extension
field. Often it is not clear what is meant by “a point on A”; the notation EndK(A)
can stand for the “endomorphisms defined over K”, but then sometimes End(A)
can stand for the “endomorphisms defined over K”.

Please adopt the Grothendieck convention that a scheme T → S is what it is,
and any scheme obtained by base extension S′ → S is denoted by T ×S S′ = TS′ ,
etc. For an abelian scheme X → S write End(X) for the endomorphism ring of
X → S (old terminology “endomorphisms defined over S”). Do not write EndT (X)
but End(X ×S T ).

10.3. Moduli spaces. We try to classify isomorphism classes of polarized
abelian varieties (A, µ). This is described by the theory of moduli spaces; see
[55]. In particular see Chapter 5 of this book, where the notions of coarse and fine
moduli scheme are described. We adopt the notation of [55]. By Ag → Spec(Z)
we denote the coarse moduli scheme of polarized abelian varieties of dimension
g. Note that for an algebraically closed field k there is a natural identification of
Ag(k) with the set of isomorphism classes of (A, µ) defined over k, with dim(A) =
g. We write Ag,d for the moduli space of polarized abelian varieties (A, µ) with
deg(µ) = d2. Note that Ag =

⊔
dAg,d. Given positive integers g, d, n, denote by

Ag,d,n → Spec(Z[1/dn]) the moduli space considering polarized abelian varieties
with a symplectic level-n structure; in this case it is assumed that we have chosen
and fixed an isomorphism from the constant group scheme Z/nZ to µn over k, so
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that symplectic level-n structure makes sense. According to these definitions we
have Ag,d,1 = Ag,d ×Spec(Z) Spec(Z[1/d]).

Most of the considerations in this course are over fields of characteristic p.
Working over a field of characteristic p we should write Ag ⊗ Fp for the moduli
space under consideration; however, in case it is clear what the base field K or the
base scheme is, instead we will Ag instead of the notation Ag ⊗ K; we hope this
will not cause confusion.

10.4. The Cartier dual. The group schemes considered will be assumed to
be commutative. If G is a finite abelian group, and S is a scheme, we write GS for
the constant group scheme over S with fiber equal to G.

LetN → S be a finite locally free commutative group scheme. Let Hom(N,Gm)
be the functor on the category of all S-schemes, whose value at any S-scheme T
is HomT (N ×S T,Gm ×Spec(Z) T ). This functor is a sheaf for the fpqc topology,

and is representable by a flat locally free scheme ND over S, see [61], I.2. This
group scheme ND → S is called the Cartier dual of N → S, and it can be described
explicitly as follows. If N = Spec(E)→ S = Spec(R) we write ED := HomR(E,R).
The multiplication map on E gives a comultiplication on ED, and the commutative
comultiplication on E provides ED with the structure of a commutative ring. With
the inverse map they give ED a structure of a commutative and cocommutative
bialgebra over R, and make Spec(ED) into a commutative group scheme. This
commutative group scheme Spec(ED) is naturally isomorphic to the Cartier dual
ND of N . It is a basic fact, easy to prove, that the natural homomorphism N →
(ND)D is an isomorphism for every finite locally free group scheme N → S.

Examples. The constant group schemes Z/nZ and µn := Ker ([n]Gm
) are Cartier

dual to each other, over any base scheme. More generally, a finite commutative
group scheme N → S is étale if and only if its Cartier dual ND → S is of multi-
plicative type, i.e., there exists an étale surjective morphism g : T → S, such that
ND×S T is isomorphic to a direct sum of group schemes µni

for suitable posi-
tive integers ni. The above morphism g : T → S can be chosen to be finite étale
surjective.

For every field K ⊃ Fp, the group scheme αp is self-dual. Recall that αp is the
kernel of the Frobenius endomorphism Frp on Ga.

10.5. Étale finite group schemes as Galois modules. (Any characteris-
tic.) Let K be a field, and let G = Gal(Ksep/K). The main theorem of Galois
theory says that there is an equivalence between the category of finite étale K-
algebras and the category of finite sets with a continuous G-action. Taking group
objects on both sides we arrive at:

Theorem. There is an equivalence between the category of commutative finite étale
group schemes over K and the category of finite continuous G-modules.

See [84], 6.4. Note that an analogous equivalence holds in the case of not
necessarily commutative group schemes.

This is a special case of the following. Let S be a connected scheme, and let
s ∈ S be a geometric base point; let π = π1(S, s). There is an equivalence between
the category of étale finite schemes over S and the category of finite continuous
π-sets. Here π1(S, s) is the algebraic fundamental group defined by Grothendieck
in SGA1; see [33].
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Hence the definition of T�(A) for an abelian variety over a field K with � �=
char(K) can be given as:

T�(A) = lim←−
i

A[�i](Ksep),

considered as a continuous Gal(Ksep/K)-module.

Definition 10.6. Let S be a scheme. A p-divisible group over S is an inductive
system X = (Xn, ιn)n∈N>0

of finite locally free commutative group schemes over
S satisfying the following conditions.

(i) Xn is killed by pn for every n ≥ 1.
(ii) Each homomorphism ιn : Xn → Xn+1 is a closed embedding.
(iii) For each n ≥ 1 the homomorphism [p]

Xn+1
: Xn+1 → Xn+1 factors

through ιn : Xn → Xn+1, such that the resulting homomorphism Xn+1 →
Xn is faithfully flat. In other words there is a faithfully flat homomorphism
πn : Xn+1 → Xn such that such that ιn ◦πn = [p]Xn+1

. Here [p]Xn+1
is the

endomorphism “multiplication by p” on the commutative group scheme
Xn+1.

Sometimes one writes X[pn] for the finite group scheme Xn. Equivalent definitions
can be found in [34, Chapter III] and [49, Chapter I] and [38]; these are basic
references to p-divisible groups.

Some authors use the terminology “Barsotti-Tate group”, a synonym for “p-
divisible group”.

A p-divisible group X = (Xn) over S is said to be étale (resp. toric) if every
Xn is finite étale over S (resp. of multiplicative type over S).

For any p-divisible groupX → S, there is a locally constant function h : S → N,
called the height of X, such that OXn

is a locally free OS-algebra of rank ph for
every n ≥ 1.

Example.

(1) Over any base scheme S we have the constant p-divisible group Qp/Zp

of height 1, defined as the inductive limit of the constant groups p−nZ/Z
over S.

(2) Over any base scheme S, the p-divisible group µp∞ = Gm[p∞] is the
inductive system (µpn)n≥1, where µpn := Ker ([pn]Gm

).
(3) Let A → S be an abelian scheme. For every i we write Gi = A[pi]. The

inductive system Gi ⊂ Gi+s ⊂ A defines a p-divisible group of height 2g.
We shall denote this by X = A[p∞] (although of course “p∞” strictly
speaking is not defined). A homomorphism A → B of abelian schemes
defines a morphism A[p∞]→ B[p∞] of p-divisible groups.

10.7. The Serre dual of a p-divisible group. Let X = (Xn)n∈Z>0
be a

p-divisible group over a scheme S. The Serre dual of X is the p-divisible group
Xt =

(
XD

n

)
n≥1

over S, where XD
n := HomS(Xn,Gm) is the Cartier dual of Xn, the

embedding XD
n → XD

n+1 is the Cartier dual of the faithfully flat homomorphism

πn : Xn+1 → Xn, and the faithfully flat homomorphism XD
n+1 → XD

n is the Cartier
dual of the embedding ιn : Xn → Xn+1.
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As an example, over any base scheme S the p-divisible group µp∞ is the Serre
dual of the constant p-divisible group Qp/Zp, because µpn is the Cartier dual of

p−nZ/Z. Below are some basic properties of Serre duals.

(1) The height of Xt is equal to the height of X.
(2) The Serre dual of a short exact sequence of p-divisible groups is exact.
(3) The Serre dual of Xt is naturally isomorphic to X.
(4) A p-divisible group X = (Xn) is toric if and only if its Serre dual Xt =

(XD
n ) is étale. If this is the case, then the sheaf Hom(X,µp∞) of characters

of X is the projective limit of the étale sheaves XD
n , where the transition

map XD
n+1 → XD

n is the Cartier dual of the embedding ιn : Xn → Xn+1.
(5) Let A → S be an abelian scheme, and let At → S be the dual abelian

scheme. Then the Serre dual of the p-divisible group A[p∞] attached to
the abelian scheme A→ S is the p-divisible group At[p∞] attached to the
dual abelian scheme At → S; see 10.11.

10.8. Discussion. Over any base scheme S (in any characteristic) for an
abelian scheme A → S and for a prime number � invertible in OS one can de-
fine T�(A/S) as follows. For i ∈ Z>0 one chooses Ni := A[�i], regarded as a smooth
étale sheaf of free Z/�iZ-modules of rank 2 dim(A), and we have surjective maps
[�] : Ni+1 → Ni induced by multiplication by �. The projective system of the Ni’s
“is” a smooth étale sheaf of Z�-modules of rank 2 dim(A), called the �-adic Tate
module of A/S, denoted by T�(A/S). Alternatively, we can consider T�(A/S) as a
projective system

T�(A/S) = lim←−
i∈N

A[�i]

of the finite étale group schemes A[�i] over S. This projective system we call
the Tate �-group of A/S. Any geometric fiber of T�(A/S)s̄ is constant, hence the
projective limit of T�(A/S)s̄ is isomorphic to (Z�s

)2g. If S is the spectrum of a field

K, the Tate �-group can be considered as a Gal(Ksep/K)-module on the group Z2g
� ,

see 10.5. One should like to have an analogous concept for this notion in case p is not
invertible on S. This is precisely the role of A[p∞] defined above. Historically a Tate
�-group is defined as a projective system, and the p-divisible group as an inductive
system; it turns out that these are the best ways of handling these concepts (but
the way in which direction to choose the limit is not very important). We see
that the p-divisible group of an abelian variety should be considered as the natural
substitute for the Tate �-group.

In order to carry this analogy further we investigate aspects of T�(A) and
wonder whether these can be carried over to A[p∞] in case of an abelian variety A
in characteristic p. The Tate �-group is a twist of a pro-group scheme defined over
Spec(Z[1/�]). What can be said in analogy about A[p∞] in the case of an abelian
variety A in characteristic p? We will see that up to isogeny A[p∞] is a twist of an
ind-group scheme over Fp; however, “twist” here should be understood not only in
the sense of separable Galois theory, but also using inseparable aspects: the main
idea of Serre-Tate parameters, to be discussed in Section 2.

10.9. Let X be a p-divisible group over an Artinian local ring R whose residue
field is of characteristic p.
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(1) There exists a largest étale quotient p-divisible group Xét of X over R,
such that every homomorphism from X to an étale p-divisible group fac-
tors uniquely through Xét. The kernel of X → Xét is called the neutral
component of X, or the maximal connected p-divisible subgroup of X,
denoted by Xconn.

(2) The Serre dual of the maximal étale quotient Xt
ét of X

t is called the toric
part of X, denoted Xtor. Alternatively, Xtor[p

n] is the maximal subgroup
scheme in X[pn] of multiplicative type, for each n ≥ 1.

(3) We have two short exact sequences of p-divisible groups

0→ Xtor → Xconn → X�� → 0

and
0→ Xconn → X → Xét → 0

over R, where X�� is a p-divisible group over Rdim(A) with trivial étale
quotient and trivial toric part. The closed fiber of the pn-torsion subgroup
X��[p

n] of X�� is unipotent for every n ≥ 1.
(4) The scheme-theoretic inductive limit of Xconn (resp. Xtor) is a finite di-

mensional commutative formal group scheme X∧
conn over R (resp. a fi-

nite dimensional formal torus X∧
tor over R), called the formal completion

of Xconn (resp. Xtor). The endomorphism [pn] on X∧
conn (resp. X∧

tor)
is faithfully flat; its kernel is canonically isomorphic to Xconn[p

n] (resp.
Xtor[p

n]). In particular one can recover the p-divisible groups Xconn (resp.
Xtor) from the smooth formal group X∧

conn (resp. X∧
tor).

(5) If X = A[p∞] is the p-divisible group attached to an abelian scheme A
over R, then X∧

conn is canonically isomorphic to the formal completion of
A along its zero section.

A p-divisible group X over an Artinian local ring R whose maximal étale quotient is
trivial is often said to be connected. Note that X[pn] is connected, or equivalently,
geometrically connected, for every n ≥ 1. The formal completion of a connected p-
divisible group over R is usually called a p-divisible formal group. It is not difficult
to see that a smooth formal group over an Artinian local ring R is a p-divisible
formal group if and only its closed fiber is.

More information about the infinitesimal properties of p-divisible groups can
be found in [49] and [38]. Among other things one can define the Lie algebra of a
p-divisible group X → S when p is locally nilpotent in OS ; it coincides with the Lie
algebra of the formal completion of Xconn when S is the spectrum of an Artinian
local ring.

10.10. The following are equivalent conditions for a g-dimensional abelian va-
riety A over an algebraically closed field k ⊃ Fp; A is said to be ordinary if these
conditions are satisfied.

(1) Card(A[p](k)) = pg, i.e., the p-rank of A is equal to g.
(2) A[pn](k) ∼= Z/pnZ for some positive integer n.
(3) A[pn](k) ∼= Z/pnZ for every positive integer n.
(4) The formal completion A/0 of A along the zero point is a formal torus.
(5) The p-divisible group A[p∞] attached to A is an extension of an étale

p-divisible group of height g by a toric p-divisible group of height g.
(6) The σ-linear endomorphism on H1(A,OA) induced by the absolute Frobe-

nius of A is bijective, where σ is the Frobenius automorphism on k.
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Note that for an ordinary abelian variety A over a field K ⊃ Fp the Galois group
Gal(Ksep/K) acts on A[p]loc and on A[p]ét = A[p]/A[p]loc, and these actions need
not be trivial. Moreover if K is not perfect, the extension

0→ A[p]loc → A[p]→ A[p]ét → 0

need not be split; this is studied extensively in Section 2.
Reminder. It is a general fact that every finite group scheme G over a field K

sits naturally in the middle of a short exact sequence 0→ Gloc → G→ Gét → 0 of
finite group schemes over K, where Gét is étale and Gloc is connected. If the rank
of G is prime to the characteristic of K, then G is étale over K, i.e., Gloc is trivial;
e.g. see [60].

10.11. We recall the statement of a basic duality result for abelian schemes
over an arbitrary base scheme.

Theorem. (Duality theorem for abelian schemes, see [61], Theorem 19.1) Let
ϕ : B → A be an isogeny of abelian schemes. We obtain an exact sequence

0 → Ker(ϕ)D −→ At ϕt

−→ Bt → 0.

An application. Let A be a g-dimensional abelian variety over a field K ⊃ Fp,
and let At be the dual abelian variety of A. Then A[n] and At[n] are dual to
each other for every non-zero integer n. This natural duality pairing identifies the
maximal étale quotient of A[n] (resp. At[n] with the Cartier dual of the maximal
subgroup of At[n] (resp. A[n] of multiplicative type. This implies that the Serre
dual of the p-divisible group A[p∞] is isomorphic to At[p∞]. Since A and At are
isogenous, we deduce that the maximal étale quotient of the p-divisible group A[p∞]
and the maximal toric p-divisible subgroup of A[p∞] have the same height.

10.12. Endomorphism rings. Let A be an abelian variety over a field K,
or more generally, an abelian scheme over a base scheme S. We write End(A)
for the endomorphism ring of A. For every n ∈ Z>0, multiplication by n on A
is an epimorphic morphism of schemes because it is faithfully flat, hence End(A)
is torsion-free. In the case S is connected, End(A) is a free Z-module of finite
rank. We write End0(A) = End(A) ⊗Z Q for the endomorphism algebra of A.
By Wedderburn’s theorem every central simple algebra is a matrix algebra over a
division algebra. If A is K-simple the algebra End0(A) is a division algebra; in that
case we write:

Q ⊂ L0 ⊂ L := Centre(D) ⊂ D = End0(A);

here L0 is a totally real field, and either L = L0 or [L : L0] = 2 and in that case
L is a CM-field. In case A is simple End0(A) is one of the four types in the Albert
classification (see below). We write:

[L0 : Q] = e0, [L : Q] = e, [D : L] = d2.

10.13. Let (A, µ)→ S be a polarized abelian scheme. As µ is an isogeny, there
exist µ′ and n ∈ Z>0 such that µ′·µ = n; think of µ′/n as the inverse of µ. We
define the Rosati involution ϕ �→ ϕ† by

ϕ �→ ϕ† :=
1

n
µ′·ϕt·µ, ϕ ∈ D = End0(A).
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The definition does not depend on the choice of µ′ and n; it can be characterized
by ϕt·µ = µ·ϕ†. This map † : D → D is an anti-involution on D.

The Rosati involution † : D → D is positive definite; for references see Propo-
sition II in 3.10.

Definition. A simple division algebra of finite degree over Q with a positive defi-
nite involution, i.e., an anti-isomorphism of order two which is positive definite, is
called an Albert algebra.

Applications to abelian varieties and the classification have been described by
Albert, [1], [4] [2], [3].

10.14. Albert’s classification. Any Albert algebra belongs to one of the
following types.

Type I(e0) Here L0 = L = D is a totally real field.

Type II(e0) Here d = 2, e = e0, invv(D) = 0 for all infinite v, and D is an
indefinite quaternion algebra over the totally real field L0 = L.

Type III(e0) Here d = 2, e = e0, invv(D) �= 0 for all infinite v, and D is a definite
quaternion algebra over the totally real field L0 = L.

Type IV(e0, d) Here L is a CM-field, [F : Q] = e = 2e0, and [D : L] = d2.

10.15. smCM. We say that an abelian variety X over a field K admits suf-
ficiently many complex multiplications over K, abbreviated by “smCM over K”, if
End0(X) contains a commutative semi-simple subalgebra of rank 2·dim(X) over Q.
Equivalently: for every simple abelian variety Y over K which admits a non-zero
homomorphism to X the algebra End0(Y ) contains a field of degree 2·dim(Y ) over
Q. For other characterizations see [21], page 63, see [53], page 347.

Note that if a simple abelian variety X of dimension g over a field of character-
istic zero admits smCM then its endomorphism algebra L = End0(X) is a CM-field
of degree 2g over Q. We will use the terminology “CM-type” in the case of an
abelian variety X over C which admits smCM, and where the type is given, i.e.,
the action of the endomorphism algebra on the tangent space TX,0

∼= Cg is part of
the data.

Note however that there exist (many) abelian varieties A admitting smCM
(defined over a field of positive characteristic), such that End0(A) is not a field.

By Tate we know that an abelian variety over a finite field admits smCM,
see 10.17. By Grothendieck we know that an abelian variety over an algebraically
closed field k ⊃ Fp which admits smCM is isogenous to an abelian variety defined
over a finite field, see 10.19.

Terminology. Let ϕ ∈ End0(A). Then dϕ is a K-linear endomorphism of the
tangent space. If the base field is K = C, this is just multiplication by a complex
matrix x, and every multiplication by a complex matrix x leaving invariant the
lattice Λ, where A(C) ∼= Cg/Λ, gives rise to an endomorphism of A. If g = 1,
i.e., A is an elliptic curve, and ϕ �∈ Z then x ∈ C and x �∈ R. Therefore an
endomorphism of an elliptic curve over C which is not in Z is sometimes called
“a complex multiplication”. Later this terminology was extended to all abelian
varieties.
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Warning. Sometimes the terminology “an abelian variety with CM” is used, when
one wants to say “admitting smCM”. An elliptic curve E has End(E) � Z if and
only if it admits smCM. Note that it is easy to give an abelian variety A which
“admits CM”, meaning that End(A) � Z, such that A does not admit smCM.
However we will use the terminology “a CM-abelian variety” for an abelian variety
which admits smCM.

Exercise 10.16. Show there exists an abelian variety A over a field k such that
Z � End(A) and such that A does not admit smCM.

Theorem 10.17. (Tate) Let A be an abelian variety over a finite field.
(1) The algebra End0(A) is semi-simple. Suppose A is simple; the center of

End0(A) equals L := Q(πA).
(2) Suppose A is simple; then

2g = [L : Q]·
√
[D : L] ,

where g is the dimension of A. Hence: every abelian variety over a finite field
admits smCM. See 10.15. Moreover we have

fA = (IrrπA
)
√

[D:L]
.

Here fZ is the characteristic polynomial of the Frobenius morphism FrA,Fq
: A →

A, and IrrπA
is the irreducible polynomial over Q of the element πA in the finite

extension L/Q.
(3) Suppose A is simple,

Q ⊂ L := Q(πA) ⊂ D = End0(A).

The central simple algebra D/L

• does not split at every real place of L,
• does split at every finite place not above p,
• and for v | p the invariant of D/L is given by

invv(D/L) =
v(πA)

v(q)
·[Lv : Qp] mod Z,

where Lv is the local field obtained from L by completing at v.

See [78], [79].

Remark 10.18. An abelian variety over a field of characteristic zero which admits
smCM is defined over a number field; e.g. see [77], Proposition 26 on page 109.

Remark 10.19. The converse of Tate’s result 10.17 (2) is almost true. We have
the following theorem of Grothendieck: Let A be an abelian variety over a field K
which admits smCM; then Ak is isogenous to an abelian variety defined over a finite
extension of the prime field, where k = K; see [62].

It is easy to give an example of an abelian variety (over a field of characteristic
p), with smCM which is not defined over a finite field.

Exercise 10.20. Give an example of a simple abelian variety A over a field K
such that A⊗K is not simple.
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10.21. Algebraization.

(1) Suppose we are given a formal p-divisible groupX0 over k withN (X0) = γ
ending at (h, c). We write D∧ = Def(X0) for the universal deformation
space in equal characteristic p. By this we mean the following. Formal
deformation theory of X0 is prorepresentable; we obtain a formal scheme
Spf(R) and a prorepresenting family X ′ → Spf(R). However, “a finite
group scheme over a formal scheme actually is already defined over an
actual scheme”. Indeed, by [17], Lemma 2.4.4 on page 23, we know that
there is an equivalence of categories of p-divisible groups over Spf(R),
respectively over Spec(R). We writeD(X0) = Spec(R), and corresponding
to the pro-universal family X ′ → Spf(R) we have a family X → D(X0).
We will say that X → Spec(R) = D(X0) is the universal deformation of
X0 if the corresponding X ′ → Spf(R) = D∧ = Def(X0) prorepresents the
deformation functor.

Note that for a formal p-divisible group X ′ → Spf(R), where R is
moreover an integral domain, it makes sense to consider “the generic fiber”
of X/Spec(R).

(2) Let A0 be an abelian variety. The deformation functor Def(A0) is prorep-
resentable. We obtain the prorepresenting family A → Spf(R), which is
a formal abelian scheme. If dim(A0) > 1 this family is not algebraizable,
i.e., it does not come from an actual scheme over Spec(R).

(3) Let (A0, µ0) be a polarized abelian variety. The deformation functor
Def(A0, µ0) is prorepresentable. We can use the Chow-Grothendieck theo-
rem, see [32], III1.5.4 (this is also called a theorem of “GAGA-type”): the
formal polarized abelian scheme obtained is algebraizable, and we obtain
the universal deformation as a polarized abelian scheme over D(A0, µ0) =
Spec(R).

The notions mentioned in (1), (2) and (3) will be used without further mention,
assuming the reader to be familiar with the subtle differences between D(−) and
Def(−).

10.22. Fix a prime number p. Base schemes and base fields will be of charac-
teristic p, unless otherwise stated. We write k or Ω for an algebraically closed field.
For the rest of this section we are working in characteristic p.

10.23. The Frobenius morphism. For a scheme S over Fp (i.e., p·1 = 0
in all fibers of OS), we define the absolute Frobenius morphism fr : S → S; if
S = Spec(R) this is given by x �→ xp in R.

For a scheme A → S we define A(p) as the fiber product of A → S
fr←− S.

The morphism fr : A → A factors through A(p). This defines FA : A → A(p), a
morphism over S; this is called the relative Frobenius morphism. If A is a group
scheme over S, the morphism FA : A→ A(p) is a homomorphism of group schemes.
For more details see [35], Exp. VIIA.4. The notation A(p/S) is (maybe) more
correct.

Examples. Suppose A ⊂ An
R is given as the zero set of a polynomial

∑
I aIX

I

(multi-index notation). Then A(p) is the zero set of
∑

I a
p
IX

I , and A → A(p)

is given, on coordinates, by raising these to the power p. Note that if a point
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(x1, · · · , xn) ∈ A then indeed (xp
1, . . . , x

p
n) ∈ A(p), and xi �→ xp

i describes FA : A→
A(p) on points.

Let S = Spec(Fp); for any T → S we have a canonical isomorphism T ∼= T (p).
In this case FT = fr : T → T .

10.24. Verschiebung. Let A be a commutative group scheme flat over a char-
acteristic p base scheme. In [35], Exp. VIIA.4 we find the definition of the “relative
Verschiebung”

VA : A(p) → A; we have: FA·VA = [p]A(p) , VA·FA = [p]A.

In case A is an abelian variety we see that FA is a faithfully flat homomorphism,
and Ker(FA) ⊂ A[p]. In this case we do not need the somewhat tricky construction
of [35], Exp. VIIA.4: since the kernel of the isogeny FA : A → A(p) is killed by
p, we can define VA as the isogeny from A(p) to A such that VA·FA = [p]A, and
the equality FA·VA = [p]A(p) follows from FA·VA·FA = [p]A(p) ·FA because FA is
faithfully flat.

Remark 10.25. We use covariant Dieudonné module theory. The Frobenius on a
group scheme G defines the Verschiebung on D(G); this we denote by V , in order
to avoid possible confusion. In the same way as “D(F ) = V” we have “D(V ) = F”.
See [67], 15.3.

Theorem 10.26. BB (Irreducibility of moduli spaces) Let K be a field, and
consider Ag,1,n ⊗K the moduli space of principally polarized abelian varieties over
K-schemes, where n ∈ Z>0 is prime to the characteristic of K. This moduli scheme
is geometrically irreducible.

For fields of characteristic zero this follows by complex uniformization. For
fields of positive characteristic this was proved by Faltings in 1984, see [27], at
the same time for p > 2 by Chai in his Harvard PhD thesis, see [8]; also see [28],
IV.5.10. For a pure characteristic-p-proof see [67], 1.4.

11. A remark and some questions

11.1. In 1.13 we have seen that the closure of the full Hecke orbit equals the
related Newton polygon stratum. That result finds its origin in the construction of
two foliations, as in [68]: Hecke-prime-to-p actions “move” a point in a central leaf,
and Hecke actions only involving compositions of isogenies with kernel isomorphic
to αp “move” a point in an isogeny leaf, called Hα-actions; as an open Newton
polygon stratum, up to a finite map, is equal to the product of a central leaf and
an isogeny leaf, the result 1.13 for an irreducible component of a Newton polygon
stratum follows if we show that H�(x) is dense in the central leaf passing through
x.

In the case of ordinary abelian varieties the central leaf is the whole open
Newton polygon stratum. As the Newton polygon goes up central leaves get smaller.
Finally, for supersingular points a central leaf is finite (see Lemma 1.14) and an
isogeny leaf of a supersingular point is the whole supersingular locus.

In order to finish a proof of 1.13 one shows that Hecke-α actions act transitively
on the set of geometric components of the supersingular locus, and that any Newton
polygon stratum in Ag,1 which is not supersingular is geometrically irreducible, see
[14].
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11.2. Let D be an Albert algebra; i.e., D is a division algebra, it is of finite
rank over Q, and it has a positive definite anti-involution † : D → D. Suppose a
characteristic is given. There exists a field k of that characteristic, and an abelian
variety A over k such that End0(A) ∼= D, and such that † is the Rosati involution
given by a polarization on A. This was proved by Albert, and by Shimura over
C (see [76], Theorem 5). In general this was proved by Gerritzen [30]; for more
references see [64].

One can ask which possibilities we have for dim(A), once D is given. This
question is completely settled in characteristic zero. From properties of D one can
derive some restrictions on dim(A). However the question which dimensions dim(A)
can appear for a given D in positive characteristic is not yet completely settled.

Also, there is not yet a complete criterion for which endomorphism algebras
can appear in positive characteristic.

11.3. In Section 5, in particular see the proofs of 5.10 and 5.16, we have seen a
natural way of introducing coordinates in the formal completion at a point x where
a ≤ 1 on an (open) Newton polygon stratum:

(Wξ(Ag,1,n))
/x

= Spf(Bξ),

see the proof of 5.19. It would be nice to have a better understanding and inter-
pretation of these “coordinates”.

As in [58] we write

!(ξ; ξ∗) := {(x, y) ∈ Z | (x, y) ≺ ξ, (x, y) � ξ∗, x ≤ g}.
We write

B(ξ;ξ∗) = k[[Zx,y | (x, y) ∈ !(ξ; ξ∗)]].

The inclusion !(ξ; ξ∗) ⊂ !(ξ) defines Bξ � B(ξ;ξ∗) by equating to zero those
elements Zx,y with (x, y) /∈ ∆(ξ; ξ∗). Hence Spf(B(ξ;ξ∗)) ⊂ Spf(Bξ). We also have
the inclusion C(x) ⊂ Wξ(Ag,1,n).

Question. Does the inclusion !(ξ, ξ∗) ⊂ !(ξ) define the inclusion (C(x))/x ⊂
(Wξ(Ag,1,n))

/x?

A positive answer would give more insight in these coordinates, also along a
central leaf, and perhaps a new proof of results in [58].
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shop Bonn 1984 (Bonn, 1984), Lecture Notes in Mathematics, vol. 1111, Springer, Berlin,
1985, pp. 321–383. MR 797429 (87c:14050)

28. G. Faltings and C.-L. Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik
und ihrer Grenzgebiete (3), vol. 22, Springer-Verlag, Berlin, 1990, With an appendix by
David Mumford. MR 1083353 (92d:14036)

29. G. Faltings and G. Wüstholz (eds.), Rational points, Aspects of Mathematics, E6, Friedr.
Vieweg & Sohn, Braunschweig, 1984, Papers from the seminar held at the Max-Planck-Institut
für Mathematik, Bonn, 1983/1984. MR 766568 (87h:14016)

30. L. Gerritzen, On multiplication algebras of Riemann matrices, Math Ann 194 (1971), 109–
122. MR 0288141 (44 #5339)

31. E. Z. Goren and F. Oort, Stratifications of Hilbert modular varieties, J. Algebraic Geom. 9
(2000), no. 1, 111–154. MR 1713522 (2000g:14034)



534 CHING-LI CHAI AND FRANS OORT
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195, Birkhäuser, Basel, 2001, pp. 417–440. MR 1827028 (2002c:14069)

67. , A stratification of a moduli space of abelian varieties, Moduli of abelian varieties
(Texel Island, 1999) (F. Oort C. Faber, G. van der Geer, ed.), Progr. Math., vol. 195,
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1. Introduction

One of the standard ways to compute the cohomology groups of a smooth
complex manifold X is by means of the de Rham theory: the de Rham cohomology
groups

(1.1) H
�

DR(X) = H
�

(X,Ω
�

DR)

are by definition the hypercohomology groups of X with coefficients in the (holo-
morphic) de Rham complex Ω

�

DR, and since, by the Poincaré Lemma, Ω
�

DR is a
resolution of the constant sheaf C, we have H

�

DR(X) ∼= H
�

(X,C). If X is in fact
algebraic, then Ω

�

DR can also be defined algebraically, so that the right-hand side in
(1.1) can be understood in two ways: either as the hypercohomology of an analytic
space, or as the hypercohomology of a scheme equipped with the Zariski topology.
One can show that the resulting groups H

�

DR(X) are the same (for compact X, this
is just the GAGA principle; in the non-compact case this is a difficult but true fact
established by Grothendieck [Gro66]).
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Of course, an algebraic version of the Poincaré Lemma is false, since the Zariski
topology is not fine enough—no matter how small a Zariski neighborhood of a point
one takes, it usually has non-trivial higher de Rham cohomology. However, the

Lemma survives on the formal level: the completion Ω̂
�

DR of the de Rham complex
near a closed point x ∈ X is quasi-isomorphic to C placed in degree 0.

Assume now that our X is a smooth algebraic variety over a perfect field k of
characteristic p > 0. Does the de Rham cohomology still make sense?

The de Rham complex Ω
�

DR itself is well-defined: Ω1 is just the sheaf of Kähler
differentials, which makes sense in any characteristic and comes equipped with
the universal derivation d : OX → Ω1, and Ω

�

DR is its exterior algebra, which is
also well-defined in characteristic p. However, the Poincaré Lemma breaks down
completely—the homology of the de Rham complex remains large even after taking
completion at a closed point.

In degree 0, this is actually very easy to see: for any local function f on X,
we have dfp = pfp−1df = 0, so that all the p-th powers of functions are closed
with respect to the de Rham differential. Since we are in characteristic p, these
powers form a subsheaf of algebras in OX which we denote by Op

X ⊂ OX . This

is a large subsheaf. In fact, if we denote by X(1) the scheme X with Op
X as the

structure sheaf, then X ∼= X(1) as abstract schemes, with the isomorphism given
by the Frobenius map f �→ fp. Fifty years ago P. Cartier proved that in fact all
the functions in OX closed with respect to the de Rham differential are contained
in Op

X , and moreover, one has a similar description in higher degrees: there exist
natural isomorphisms

(1.2) C : H �

DR
∼= Ω

�

X(1) ,

where on the left we have the homology sheaves of the de Rham complex, and
on the right we have the sheaves of differential forms on the scheme X(1). These
isomorphisms are known as Cartier isomorphisms.

The Cartier isomorphism has many applications, but one of the most unex-
pected was discovered in 1987 by P. Deligne and L. Illusie: one can use the Cartier
isomorphism to give a purely algebraic proof of the following purely algebraic state-
ment, which is normally proved by the highly transcendental Hodge Theory.

Theorem 1.1 ([DI87]). Assume given a smooth proper variety X over a field
K of characteristic 0. Then the Hodge-to-de Rham spectral sequence

H
�

(X,Ω
�

) ⇒ H
�

DR(X)

associated to the stupid filtration on the de Rham complex Ω
�

degenerates at the
first term.

The proof of Deligne and Illusie was very strange, because it worked by re-
duction to positive characteristic, where the statement is not true for a general X.
What they proved is that if one imposes two additional conditions on X, then the
Cartier isomorphisms can be combined together into a quasi-isomorphism

(1.3) Ω
�

DR
∼=

⊕
i

Hi
DR[−i] ∼=

⊕
i

Ωi
X(1) [−i]

in the derived category of coherent sheaves on X(1). The degeneration follows from
this immediately for dimension reasons. The additional conditions are:
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(i) X can be lifted to a smooth scheme over W2(k), the ring of second Witt
vectors of the perfect field k (e.g. if k = Z/pZ, X has to be liftable to
Z/p2Z), and

(ii) we have p > dimX.

To deduce Theorem 1.1, one finds by the standard argument a proper smooth model
XR of X defined over a finitely generated subring R ⊂ K, one localizes R so that
it is unramified over Z and all its residue fields have characteristic greater than
dimX, and one deduces that all the special fibers of XR/R satisfy the assumptions
above; hence the differentials in the Hodge-to-de Rham spectral sequence vanish at
all closed points of SpecR, which means they are identically 0 by Nakayama.

The goal of these lectures is to present in a down-to-earth way the results of
two recent papers [Kal05], [Kal08], where the story summarized above has been
largely transferred to the setting of non-commutative geometry.

To explain what I mean by this, let us first recall that a non-commutative
version of differential forms has been known for quite some time now. Namely,
assume given an associative unital algebra A over a field k, and an A-bimodule M .
Then its Hochschild homology HH �(A,M) of A with coefficients in M is defined as

(1.4) HH �(A) = Tor
�

Aopp⊗A(A,M),

where Aopp ⊗A is the tensor product of A and the opposite algebra Aopp, and the
A-bimodule M is treated as a left module over Aopp ⊗ A. Hochschild homology
HH �(A) is the Hochschild homology of A with coefficients in itself.

Assume for a moment that A is in fact commutative, and SpecA is a smooth
algebraic variety over K. Then it has been proved back in 1962 in the paper
[HKR62] that we have canonical isomorphisms HHi(A) ∼= Ωi(A/k) for any i ≥ 0.
Thus for a general A, one can treat Hochschild homology classes as a replacement
for differential forms.

Moreover, in the early 1980s it was discovered by A. Connes [Con83], J.-
L. Loday and D. Quillen [LQ83], and B. Feigin and B. Tsygan [FT83], that the de
Rham differential also makes sense in the general non-commutative setting. Namely,
these authors introduced a new invariant of an associative algebra A called cyclic
homology; cyclic homology, denoted HC �(A), is related to the Hochschild homology
HH �(A) by a spectral sequence

(1.5) HH �(A)[u−1] ⇒ HC �(A),

which in the smooth commutative case reduces to the Hodge-to-de Rham spectral
sequence (here u is a formal parameter of cohomological degree 2, and HH �(A)[u−1]
is shorthand for “polynomials in u−1 with coefficients in HH �(A)”).

It has been conjectured for some time now that the spectral sequence (1.5),
or a version of it, degenerates under appropriate assumptions on A (which imitate
the assumptions of Theorem 1.1). Following [Kal08], we will attack this conjec-
ture by the method of Deligne and Illusie. To do this, we will introduce a certain
non-commutative version of the Cartier isomorphism, or rather, of the “globalized”
isomorphism (1.3) (in the process of doing it, we will need to introduce some con-
ditions on A which precisely generalize the conditions (i), (ii) above). Then we
prove a version of the degeneration conjecture as stated by M. Kontsevich and Ya.
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Soibelman in [KS06] (we will have to impose an additional technical assumption
which, fortunately, is not very drastic).

The paper is organized as follows. In Section 2 we recall the definition of the
cyclic homology and some versions of it needed for the Cartier isomorphism (most
of this material is quite standard; the reader can find good expositions in [Lod98]
or [FT87]). One technical result needed in the main part of the paper has been
separated into Section 3. In Section 4, we construct the Cartier isomorphism for
an algebra A equipped with some additional piece of data which we call the quasi-
Frobenius map. It exists only for special classes of algebras—e.g. for free algebras,
or for the group algebra k[G] of a finite group G—but the construction illustrates
nicely the general idea. In Section 5, we show what to do in the general case. Here
the conditions (i), (ii) emerge, and in a somewhat surprising way—as it turns out,
they essentially come from algebraic topology, and the whole theory has a distinctly
topological flavor. Finally, in Section 6 we show how to apply our generalized
Cartier isomorphism to the Hodge-to-de Rham degeneration. The exposition in
Sections 2-4 is largely self-contained. In the rest of the paper, we switch to a more
descriptive style, with no proofs, and not many precise statements; this part of the
paper should be treated as a companion to [Kal08].

Acknowledgments. This paper is a write-up (actually quite an enlarged
write-up) of two lectures given in Göttingen in August 2006, at a summer school
organized by Yu. Tschinkel and funded by the Clay Institute. I am very grateful
to all concerned for making it happen, and for giving me an opportunity to present
my results. In addition, I would like to mention that a large part of the present
paper is written in overview style; many, if not most, of the things overviewed are
certainly not my results. This especially concerns Section 2, on the one hand, and
Section 6, on the other hand. Given the chosen style, it is difficult to provide ex-
act attributions; however, I should at least mention that I’ve learned much of this
material from A. Beilinson, A. Bondal, M. Kontsevich, B. Toën and B. Tsygan.

2. Cyclic homology package

2.1. Basic definitions. The fastest and most down-to-earth way to define
cyclic homology is by means of an explicit complex. Namely, assume given an
associative unital algebra A over a field k. To compute its Hochschild homology
with coefficients in some bimodule M , one has to find a flat resolution of M . One
such is the bar resolution—it is rather inconvenient in practical computations, but
it is completely canonical, and it exists without any assumptions on A and M .
The terms of this resolution are of the form A⊗n ⊗M , n ≥ 0, and the differential
b′ : A⊗n+1 ⊗M → A⊗n ⊗M is given by

(2.1) b′ =
∑

0≤i≤n

(−1)i id⊗i⊗m⊗ id⊗n−i,

where m : A⊗A → A, m : A⊗M → M are the multiplication maps. Substituting
this resolution into (1.4) gives a complex which computes HH �(A,M); its terms
are also A⊗i ⊗M , but the differential is given by

(2.2) b = b′ + (−1)n+1t,

with the correction term t being equal to

t(a0 ⊗ · · · ⊗ an+1 ⊗m) = a1 ⊗ · · · ⊗ an+1 ⊗ma0



CARTIER ISOMORPHISM AND HODGE THEORY 541

for any a0, . . . , an+1 ∈ A, m ∈ M . Geometrically, one can think of the components
a0, . . . , an−1,m of some tensor in A⊗n⊗M as having been placed at n+1 points on
the unit interval [0, 1], including the endpoints 0, 1 ∈ [0, 1]; then each of the terms
in the differential b′ corresponds to contracting an interval between two neighboring
points and multiplying the components sitting at its endpoints. To visualize the
differential b in a similar way, one has to take n + 1 points placed on the unit
circle S1 instead of the unit interval, including the point 1 ∈ S1, where we put the
component m.

In the case M = A, the terms in the bar complex are just A⊗n+1, n ≥ 0, and
they acquire an additional symmetry: we let τ : A⊗n+1 → A⊗n+1 be the cyclic
permutation multiplied by (−1)n. Note that in spite of the sign change, we have
τn+1 = id, so that it generates an action of the cyclic group Z/(n + 1)Z on every
A⊗n+1. The fundamental fact here is the following.

Lemma 2.1 ([FT87],[Lod98]). For any n, we have

(id−τ ) ◦ b′ = −b ◦ (id−τ ),

(id+τ + · · ·+ τn−1) ◦ b = −b′ ◦ (id+τ + · · ·+ τn)

as maps from A⊗n+1 to A⊗n.

Proof. Denote mi = idi ⊗m ⊗ idn−i : A⊗n+1 → A⊗n, 0 ≤ i ≤ n − 1, so that
b′ = m0 − m1 + · · · + (−1)n−1mn−1, and let mn = t = (−1)n(b − b′). Then we
obviously have

mi+1 ◦ τ = τ ◦mi

for 0 ≤ i ≤ n − 1, and m0 ◦ τ = (−1)nmn. Formally applying these identities, we
conclude that

(2.3)

∑
0≤i≤n

(−1)imi ◦ (id−τ ) =
∑

0≤i≤n

(−1)imi −m0 −
∑

1≤i≤n

(−1)iτ ◦mi−1

= −(id−τ ) ◦
∑

0≤i≤n−1

(−1)imi,

(2.4) b′ ◦ (id+τ + · · ·+ τn) =
∑

0≤i≤n−1

∑
0≤j≤n

(−1)imi ◦ τ j

=
∑

0≤j≤i≤n−1

(−1)iτ j ◦mi−j +
∑

1≤i≤j≤n

(−1)i+nτ j−1 ◦mn+i−j

= −(id+τ + · · ·+ τn−1) ◦ b,

which proves the claim. �
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As a corollary, the following diagram is in fact a bicomplex.

(2.5)

· · · −−−−→ A
id−−−−→ A

0−−−−→ A�⏐⏐b

�⏐⏐b′
�⏐⏐b

· · · −−−−→ A⊗A
id+τ−−−−→ A⊗A

id−τ−−−−→ A⊗A�⏐⏐b

�⏐⏐b′
�⏐⏐b

...
...

...
...�⏐⏐b

�⏐⏐b′
�⏐⏐b

· · · −−−−→ A⊗n id+τ+···+τn−1

−−−−−−−−−−→ A⊗n id−τ−−−−→ A⊗n�⏐⏐b

�⏐⏐b′
�⏐⏐b

...
...

...

Here it is understood that the whole thing extends indefinitely to the left, all the
even-numbered columns are the same, all odd-numbered columns are the same, and
the bicomplex is invariant with respect to the horizontal shift by 2 columns. The
total homology of this bicomplex is called the cyclic homology of the algebra A, and
denoted by HC �(A).

We see right away that the first, the third, and so on column when counting from
the right is the bar complex which computes HH �(A), and the second, the fourth,
and so on column is acyclic (the top term is A, and the rest is the bar resolution
for A). Thus the spectral sequence for this bicomplex has the form given in (1.5)
(modulo obvious renumbering). On the other hand, the rows of the bicomplex are
just the standard 2-periodic complexes which compute the cyclic group homology
H �(Z/nZ, A⊗n) (with respect to the Z/nZ-action on A⊗n given by τ ).

Shifting (2.5) to the right by 2 columns gives the periodicity map

u : HC �+2(A) → HC �(A),

which fits into an exact triangle

(2.6) HH �+2 −−−−→ HC �+2(A) −−−−→ HC �(A) −−−−→ ,

known as the Connes exact sequence. One can also invert the periodicity map—in
other words, extend the bicomplex (2.5) not only to the left, but also to the right.
This gives the periodic cyclic homology HP �(A). Since the bicomplex for HP �(A)
is infinite in both directions, there is a choice involved in taking the total complex:
we can take either the product, or the sum of the terms. We take the product. In
characteristic 0, the sum is actually acyclic (because so is every row).

If A is commutative, X = Spec(A) is smooth, and char k is either 0 or greater
than dimX, then the only non-trivial differential in the Hodge-to-de Rham spectral
sequence (1.5) is the first one, and it is the de Rham differential. Consequently, we
have HP �(A) = H

�

DR(X)((u)) (where as before, u is a formal variable of cohomo-
logical degree 2).

2.2. The p-cyclic complex. All of the above is completely standard; how-
ever, we will also need to use another way to compute HC �(A), which is less
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standard. Namely, fix an integer p ≥ 2, and consider the algebra A⊗p. Let
σ : A⊗p → A⊗p be the cyclic permutation, and let A⊗p

σ be the diagonal A⊗p-
bimodule with the bimodule structure twisted by σ—namely, we let

a · b · c = abσ(c)

for any a, b, c ∈ A⊗p.

Lemma 2.2. We have HH �(A⊗p, A⊗p
σ ) ∼= HH �(A).

Proof. Induction on p. We may compute the tensor product in (1.4) over each of
the factors A in A⊗p in turn; this shows that

HH �(A⊗p, A⊗p
σ ) ∼= Tor

�

(A⊗(p−1))opp⊗A⊗(p−1)

(
A⊗(p−1),Tor

�

Aopp⊗A(A,A⊗p
σ )

)
,

and one checks easily that as long as p ≥ 2, so that A⊗p
σ is flat over Aopp ⊗ A,

ToriAopp⊗A(A,A⊗p
σ ) is naturally isomorphic to A

⊗(p−1)
σ if i = 0, and trivial if i ≥ 1.

�
By virtue of this Lemma, we can use the bar complex for the algebra A⊗p to

compute HH �(A). The resulting complex has terms A⊗pn, n ≥ 0. The differential
b′p : A⊗p(n+2) → A⊗p(n+1) is given by essentially the same formula as (2.1):

b′p =
∑

0≤i≤n

(−1)imp
i =

∑
0≤i≤n

(−1)i id⊗pi ⊗m⊗p ⊗ id⊗p(n−i),

where we decompose A⊗p(n+1) = (A⊗p)
⊗(n+1)

. The correction term tp = mp
n+1

in (2.2) is given by m0 ◦ τ (where, as before, τ : A⊗p(n+2) is the cyclic permu-
tation of order p(n + 2) twisted by a sign). Geometrically, the component mp

i of
the Hochschild differential bp corresponds to contracting simultaneously the i-th,
(i+ p)-th, (i+ 2p)-th, and so on, intervals in the unit circle, divided into p(n+ 2)
intervals by p(n+2) points. On the level of bar complexes, the comparison isomor-
phism HH �(A⊗p, A⊗p

σ ) ∼= HH �(A) of Lemma 2.2 is represented by the map

(2.7) M = m ◦ (id⊗m) ◦ (id⊗2 ⊗m) ◦ · · · ◦ (id⊗pn−2 ⊗m) : A⊗pn → A⊗n;

explicitly, we have

M(a1,1 ⊗ a2,1 ⊗ · · · ⊗ an,1 ⊗ a1,2 ⊗ a2,2 ⊗ · · · ⊗ an,2 ⊗ · · · ⊗ a1,p ⊗ a2,p ⊗ · · · ⊗ an,p)

= a1,1 ⊗ a2,1 ⊗ · · · ⊗ an−1,1 ⊗

⎛
⎝an,1 ·

∏
2≤j≤p

∏
1≤i≤n

ai,j

⎞
⎠

for any a1,1⊗a2,1⊗· · ·⊗an,1⊗a1,2⊗a2,2⊗· · ·⊗an,2⊗· · ·⊗a1,p⊗a2,p⊗· · ·⊗an,p ∈
A⊗pn—in other words, M : A⊗pn → A⊗n leaves the first n− 1 terms in the tensor
product intact and multiplies the remaining pn − n + 1 terms. We leave it to the
interested reader to check explicitly that M ◦ bp = b ◦M .

Lemma 2.3. For any n, we have

(id−τ ) ◦ b′p = −bp ◦ (id−τ ),

(id+τ + · · ·+ τpn−1) ◦ bp = −b′p ◦ (id+τ + · · ·+ τp(n+1)−1)

as maps from A⊗p(n+1) to A⊗pn.
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Proof. One immediately checks that, as in the proof of Lemma 2.1, we have

mp
i+1 ◦ τ = −τ ◦mp

i

for 0 ≤ i ≤ n, and we also have mp
0 ◦ τ = mp

n+1. Then the first equality follows
from (2.3), and (2.4) gives

(id+τ + · · ·+ τn−1) ◦ bp = −b′p ◦ (id+τ + · · ·+ τn)

(note that the proof of these two equalities does not use the fact that τn+1 = id on
A⊗(n+1)). To deduce the second equality of the Lemma, it suffices to notice that

id+τ + · · ·+ τp(n+1)−1 = (id+τ + · · ·+ τn) ◦ (id+σ + · · ·+ σp−1),

and σ commutes with all the maps mp
i . �

Using Lemma 2.3, we can construct a version of the bicomplex (2.5) for p > 1:

(2.8)

· · · −−−−→ A⊗p id+τ+···+τp−1

−−−−−−−−−−→ A⊗p id−τ−−−−→ A⊗p�⏐⏐bp

�⏐⏐b′p

�⏐⏐bp

· · · −−−−→ A⊗2p id+···+τ2p−1

−−−−−−−−→ A⊗2p id−τ−−−−→ A⊗2p�⏐⏐bp

�⏐⏐b′p

�⏐⏐bp

...
...

...
...�⏐⏐bp

�⏐⏐b′p

�⏐⏐bp

· · · −−−−→ A⊗pn id+τ+···+τpn−1

−−−−−−−−−−−→ A⊗pn id−τ−−−−→ A⊗pn�⏐⏐bp

�⏐⏐b′p

�⏐⏐bp

...
...

...

By abuse of notation, we denote the homology of the total complex of this bicomplex
by HC �(A⊗p, A⊗p

σ ). (This is really abusive, since in general one cannot define cyclic
homology with coefficients in a bimodule—unless the bimodule is equipped with
additional structure, such as e.g. in [Kal07], which lies beyond the scope of this
paper.) As for the usual cyclic complex, we have the periodicity map, the Connes
exact sequence, and we can form the periodic cyclic homology HP �(A⊗p, A⊗p

σ ).

2.3. Small categories. Unfortunately, this is as far as the down-to-earth ap-
proach takes us. While it is true that the isomorphism HH �(A⊗p, A⊗p

σ ) ∼= HH �(A)
given in Lemma 2.2 can be extended to an isomorphism

HC �(A⊗p, A⊗p
σ ) ∼= HC �(A),

it is not possible to realize this extended isomorphism by an explicit map of bicom-
plexes. Indeed, already in degree 0 the comparison map M of (2.7) which realized
the isomorphism

HH0(A
⊗p, A⊗p

σ ) → HH0(A)

on the level of bar complexes is given by the multiplication map A⊗p → A, and
to define this multiplication map, one has to break the cyclic symmetry of the
product A⊗p. The best one can obtain is a map between total complexes computing
HC �(A⊗p, A⊗p

σ ) and HC �(A) which preserves the filtration, but not the second
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grading; when one tries to write the map down explicitly, the combinatorics quickly
gets completely out of control.

For this reason, in [Kal05] and [Kal08] one follows [Con83] and uses a more
advanced approach to cyclic homology which is based on the technique of homology
of small categories (see e.g. [Lod98, Section 6]). Namely, for any small category Γ
and any base field k, the category Fun(Γ, k) of functors from Γ to k-vector spaces
is an abelian category, and the direct limit functor lim−→Γ

is right exact. Its derived

functors are called homology functors of the category Γ and denoted by H �(Γ, E)
for any E ∈ Fun(Γ, k). For instance, if Γ is a groupoid with one object with
automorphism group G, then Fun(Γ, k) is the category of k-representations of the
group G; the homology H �(Γ,−) is then tautologically the same as the group
homology H �(G,−). Another example is the category ∆opp, the opposite to the
category ∆ of finite non-empty totally ordered sets. It is not difficult to check that
for any simplicial k-vector E ∈ Fun(∆opp, k), the homology H �(∆opp, E) can be
computed by the standard chain complex of E.

For applications to cyclic homology, one introduces special small categories
Λ∞ and Λp, p ≥ 1. The objects in the category Λ∞ are numbered by the positive
integers and denoted [n], n ≥ 1. For any [n], [m] ∈ Λ∞, the set of maps Λ∞([n], [m])
is the set of all maps f : Z → Z such that

(2.9) f(a) ≤ f(b) whenever a ≤ b, f(a+ n) = f(a) +m,

for any a, b ∈ Z. For any [n] ∈ Λ∞, denote by σ : [n] → [n] the endomorphism
given by f(a) = a + n. Then σ commutes with all maps in Λ∞. The category Λp

has the same objects as Λ∞, and the set of maps is

Λp([n], [m]) = Λ∞([n], [m])/σp

for any [n], [m] ∈ Λp. The category Λ1 is denoted simply by Λ; this is the origi-
nal cyclic category introduced by A. Connes in [Con83]. By definition, we have
projections Λ∞ → Λp and π : Λp → Λ.

If we only consider those maps in (2.9) which send 0 ∈ Z to 0, then the resulting
subcategory in Λ∞ is equivalent to ∆opp. This gives a canonical embedding j :
∆opp → Λ∞, and consequently, embeddings j : ∆opp → Λp.

The category Λp conveniently encodes the maps mp
i and τ between various

tensor powers A⊗pn used in the complex (2.8): mp
i corresponds to the map f ∈

Λp([n+ 1], [n]) given by

f(a(n+ 1) + b) =

{
an+ b, b ≤ i,

an+ b− 1, b > i,

where 0 ≤ b ≤ n, and τ is the map a �→ a + 1, twisted by the sign (alternatively,
one can say that mp

i are obtained from face maps in ∆opp under the embedding
∆opp ⊂ Λp). The relations between these maps which we used in the proof of
Lemma 2.3 are encoded in the composition laws of the category Λp. Thus for
any object E ∈ Fun(Λp, k)—they are called p-cyclic objects—one can form the
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bicomplex of the type (2.8) (or (2.5), for p = 1):

(2.10)

· · · −−−−→ E([1])
id+τ+···+τp−1

−−−−−−−−−−→ E([1])
id−τ−−−−→ E([1])�⏐⏐bp

�⏐⏐b′p

�⏐⏐bp

· · · −−−−→ E([2])
id+···+τ2p−1

−−−−−−−−→ E([2])
id−τ−−−−→ E([2])�⏐⏐bp

�⏐⏐b′p

�⏐⏐bp

...
...

...
...�⏐⏐bp

�⏐⏐b′p

�⏐⏐bp

· · · −−−−→ E([n])
id+τ+···+τpn−1

−−−−−−−−−−−→ E([n])
id−τ−−−−→ E([n])�⏐⏐bp

�⏐⏐b′p

�⏐⏐bp

...
...

...

Just as for the complex (2.8), we have periodicity, the periodic version of the com-
plex, and the Connes exact sequence (2.6) (the role of Hochschild homology is played
by the standard chain complex of the simplicial vector space j∗E ∈ Fun(∆opp, k)).

Lemma 2.4. For any E ∈ Fun(Λp, k), the homology H �(Λp, E) can be computed
by the bicomplex (2.10).

Proof. The homology of the total complex of (2.10) is obviously a homological
functor from Fun(Λp, k) to k (that is, short exact sequences in Fun(Λp, k) give long
exact sequences in homology). Therefore it suffices to prove the claim for a set of
projective generators of the category Fun(Λp, k). For instance, it suffices to consider
all the representable functors En, n ≥ 1—that is, the functors given by

En([m]) = k [Λp([n], [m])] ,

where in the right-hand side we take the k-linear span. Then on one hand, for
general tautological reasons—essentially by the Yoneda Lemma—H �(Λp, En) is k
in degree 0 and 0 in higher degrees. On the other hand, the action of the cyclic
group Z/pmZ generated by τ ∈ Λp([m], [m]) on Λp([n], [m]) is obviously free, and
we have

Λp([n], [m])/τ ∼= ∆opp([n], [m])

—every f : Z → Z can be uniquely decomposed as f = τ j ◦ f0, where 0 ≤ j < pm,
and f0 sends 0 to 0. The rows of the complex (2.10) compute

H �(Z/pmZ, En([m])) ∼= k [∆opp([n], [m])] ,

and the first term in the corresponding spectral sequence is the standard complex for
the simplicial vector space E∆

n ∈ Fun(∆opp, k) represented by [n] ∈ ∆opp. Therefore
this complex computes H �(∆opp, E∆

n ), which is again k. �

The complex (2.5) is the special case of (2.10) for p = 1 and the following
object A# ∈ Fun(Λ, k): we set A#([n]) = A⊗n, where the factors are numbered by
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elements in the set V ([n]) = Z/nZ, and any f ∈ Λ([n], [m]) acts by

A#(f)

⎛
⎝ ⊗

i∈V ([n])

ai

⎞
⎠ =

⊗
j∈V ([m])

∏
i∈f−1(j)

ai,

(if f−1(i) is empty for some i ∈ V ([n]), then the right-hand side involves a product
numbered by the empty set; this is defined to be the unity element 1 ∈ A). To
obtain the complex (2.8), we note that for any p, we have a functor i : Λp → Λ
given by [n] �→ [pn], f �→ f . Then (2.10) applied to i∗A# ∈ Fun(Λp, k) gives (2.8).
By Lemma 2.4 we have

HC �(A) ∼= H �(Λ, k),

HC �(A⊗p, A⊗p
σ ) ∼= H �(Λp, k).

Lemma 2.5 ([Kal08, Lemma 1.12]). For any E ∈ Fun(Λ, k), we have a natural
isomorphism

H �(Λp, i
∗E) ∼= H �(Λ, E),

which is compatible with the periodicity map and with the Connes exact sequence
(2.6). �

Thus HC �(A⊗p, A⊗p
σ ) ∼= HC �(A). The proof of this Lemma is not difficult.

First of all, a canonical comparison map H �(Λp, i
∗E) → H �(Λ, E) exists for tauto-

logical adjunction reasons. Moreover, the periodicity homomorphism for H �(Λp,−)

is induced by the action of a canonical element up ∈ H2(Λp, k) = Ext2(k, k), where
k means the constant functor [n] �→ k from Λp to k. One checks explicitly that
i∗u = up, so that the comparison map is indeed compatible with periodicity, and
then it suffices to prove that the comparison map

H �(∆opp, i∗E) → H �(∆opp, E)

is an isomorphism. When E is of the form A#, this is Lemma 2.2; in general, one
shows that Fun(Λ, k) has a projective generator of the form A#. For details, we
refer the reader to [Kal08].

3. One vanishing result

For our construction of the Cartier map, we will need one vanishing-type re-
sult on periodic cyclic homology in prime characteristic—we want to claim that
the periodic cyclic homology HP �(E) of a p-cyclic object E vanishes under some
assumptions on E.

First, consider the cyclic group Z/npZ for some n, p ≥ 1, with the subgroup
Z/pZ ⊂ Z/pnZ and the quotient Z/nZ = (Z/pnZ)/(Z/pZ). It is well-known that
for any representation V of the group Z/pnZ, we have the Hochschild-Serre spectral
sequence

H �(Z/nZ, H �(Z/pZ, V )) ⇒ H �(Z/pnZ,−).

To see it explicitly, one can compute the homology H �(Z/npZ, V ) by a complex
which is slightly more complicated than the standard one. Namely, write down the
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diagram

(3.1)

id−σ−−−−→ V
dσ−−−−→ V

id−σ−−−−→ V�⏐⏐id−τ

�⏐⏐id−τ

�⏐⏐id−τ

id−σ−−−−→ V
dσ−−−−→ V

id−σ−−−−→ V�⏐⏐dτ

�⏐⏐dτ

�⏐⏐dτ

id−σ−−−−→ V
dσ−−−−→ V

id−σ−−−−→ V�⏐⏐id−τ

�⏐⏐id−τ

�⏐⏐id−τ,

where τ is the generator of Z/pnZ, σ = τn is the generator of Z/pZ ⊂ Z/pnZ,
and dσ = id+σ + · · ·+ σp, dτ = id+τ + · · ·+ τn−1. This is not quite a bicomplex
since the vertical differential squares to id−σ, not to 0; to correct this, we add
to the total differential the term id : V → V of bidegree (−1, 2) in every term in
the columns with odd numbers (when counting from the right). The result is a
filtered complex which computes H �(Z/pnZ, V ), and the Hochschild-Serre spectral
sequence appears as the spectral sequence of the filtered complex (3.1).

One feature which is apparent in the complex (3.1) is that it has two different
periodicity endomorphisms: the endomorphism which shifts the diagram to the left
by two columns (we will denote it by u), and the endomorphism which shifts the
diagram downwards by two rows (we will denote it by u′).

Assume now given a field k and a p-cyclic object E ∈ Fun(Λp, k), and consider
the complex (2.10). Its n-th row is the standard periodic complex which computes
H �(Z/pnZ, E([n])), and we can replace all these complexes by the corresponding
complex (3.1). By virtue of Lemma 2.3, the result is a certain filtered bicomplex of
the form

(3.2)

id−σ−−−−→ C �(E)
id+σ+···+σp−1

−−−−−−−−−−→ C �(E)
id−σ−−−−→ C �(E)�⏐⏐B

�⏐⏐B

�⏐⏐B

id−σ−−−−→ C ′
�(E)

id+σ+···+σp−1

−−−−−−−−−−→ C ′
�(E)

id−σ−−−−→ C ′
�(E)�⏐⏐B

�⏐⏐B

�⏐⏐B

id−σ−−−−→ C �(E)
id+σ+···+σp−1

−−−−−−−−−−→ C �(E)
id−σ−−−−→ C �(E),�⏐⏐B

�⏐⏐B

�⏐⏐B

with id of degree (−1, 2) added to the total differential, where C �(E), resp. C ′
�(E),

is the complex with terms E([n]) and the differential bp, resp. b′p, and B is the
horizontal differential in the complex (2.10) written down for p = 1. The complex
C �(E) computes the Hochschild homology HH �(E), the complex C ′

�(E) is acyclic,
and the whole complex (3.2) computes the cyclic homology HC �(E).

We see that the cyclic homology of the p-cyclic object E actually admits two
periodicity endomorphisms: u and u′. The horizontal endomorphism u is the usual
periodicity map; the vertical map u′ is something new. However, we have the
following.
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Lemma 3.1. In the situation above, assume that p = char k. Then the vertical
periodicity map u′ : HC �(E) → HC �−2(E) is equal to 0.

Sketch of a proof. It might be possible to write explicitly a contracting homotopy
for the map u′, but this is very complicated; instead, we will sketch the “scientific”
proof which uses small categories (for details, see [Kal08]). For any small category
Γ, its cohomology H

�

(Γ, k) is defined as

H
�

(Γ, k) = Ext
�

Fun(Γ,k)(k, k),

where k in the right-hand side is the constant functor. This is an algebra which
obviously acts on H �(Γ, E) for any E ∈ Fun(Γ, k).

The cohomology H
�

(Λ, k) of the cyclic category Λ is the algebra of polyno-
mials in one generator u of degree 2, u ∈ H2(Λ, k); the action of this u on the
cyclic homology HC �(−) is the periodicity map. The same is true for the m-cyclic
categories Λm for all m ≥ 1.

Now, recall that we have a natural functor π : Λp → Λ, so that there are
two natural elements in H2(Λp, k)—the generator u and the preimage π∗(u) of the
generator u ∈ H2(Λ, k). The action of u gives the horizontal periodicity endomor-
phism of the complex (3.2), and the action of π∗(u) gives the vertical periodicity
endomorphism u′. We have to prove that if char k = p, then π∗(u) = 0.

To do this, one uses a version of the Hochschild-Serre spectral sequence asso-
ciated to π—namely, we have a spectral sequence

H
�

(Λ)⊗H
�

(Z/pZ, k) ⇒ H
�

(Λp, k).

If char k = p, then the group cohomology algebra H
�

(Z/pZ, k) is the polynomial
algebra k[u, ε] with two generators: an even generator u ∈ H2(Z/pZ, k) and an odd
generator ε ∈ H1(Z/pZ, k). Since H

�

(Λp, k) = k[u], the second differential d2 in
the spectral sequence must send ε to π∗(u), so that indeed, π∗(u) = 0 in H2(Λp, k).
�

Consider now the version of the complex (3.2) which computes the periodic
cyclic homology HP �(E)—to obtain it, one has to extend the diagram to the
right by periodicity. The rows of the extended diagram then become the stan-
dard complexes which compute the Tate homology Ȟ �(Z/pZ, C �(E)). We remind
the reader that the Tate homology Ȟ �(G,−) is a certain homological functor defined
for any finite group G which combines together homologyH �(G,−) and cohomology
H

�

(G,−), and that for a cyclic group Z/mZ with generator σ, the Tate homology
Ȟ �(Z/mZ,W ) with coefficients in some representation W may be computed by the
2-periodic standard complex

(3.3) · · · d−−−−−→ W
d+−−−−→ W

d−−−−−→ W
d+−−−−→ · · ·

with d+ = id+σ + · · ·+ σm−1 and d− = id−σ.
If W is a free module over the group algebra k[G], then the Tate homology

vanishes in all degrees, Ȟ �(G,W ) = 0. When G = Z/mZ, this means that the
standard complex is acyclic. If m is prime and equal to the characteristic of the
base field k, the converse is also true—Ȟ �(Z/mZ,W ) = 0 if and only if W is
free over k[Z/mZ]. We would like to claim a similar vanishing for Tate homology
Ȟ �(Z/pZ,W �) with coefficients in some complex W � of k[Z/pZ]-modules; however,
this is not possible unless we impose some finiteness conditions on W �.
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Definition 3.2. A complex W � of k[Z/pZ]-modules is effectively finite if it is
chain homotopic to a complex of finite length. A p-cyclic object E ∈ Fun(Λp, k) is
small if its standard complex C �(E) is effectively finite.

Now we can finally state our vanishing result for periodic cyclic homology.

Proposition 3.3. Assume that p = char k. Assume that a p-cyclic object
E ∈ Fun(Λp, k) is small, and that E([n]) is a free k[Z/pZ]-module for every object
[n] ∈ Λp. Then HP �(E) = 0.

Proof. To compute HP �(E), let us use the periodic version of the complex (3.2).
We then have a long exact sequence of cohomology

HP �−1(E) −−−−→ Ȟ �(Z/pZ, C �(E)) −−−−→ HP �(E)
u′

−−−−→ ,

where Ȟ �(Z/pZ, C �(E)) is computed by the total complex of the bicomplex

(3.4)

· · · id+σ+···+σp−1

−−−−−−−−−−→ E([1])
id−σ−−−−→ E([1])

id+σ+···+σp−1

−−−−−−−−−−→ · · ·�⏐⏐bp

�⏐⏐bp

· · · id+σ+···+σp−1

−−−−−−−−−−→ E([2])
id−σ−−−−→ E([2])

id+σ+···+σp−1

−−−−−−−−−−→ · · ·�⏐⏐bp

�⏐⏐bp

...
...�⏐⏐bp

�⏐⏐bp

· · · id+σ+···+σp−1

−−−−−−−−−−→ E([n])
id−σ−−−−→ E([n])

id+σ+···+σp−1

−−−−−−−−−−→ · · ·�⏐⏐bp

�⏐⏐bp

...
...

By Lemma 3.1, the connecting differential in the long exact sequence vanishes, so
that it suffices to prove that Ȟ �(Z/pZ, C �(E)) = 0. Since E([n]) is free, all the rows
of the bicomplex (3.4) are acyclic. But since E is small, C �(E) is effectively finite;
therefore the spectral sequence of the bicomplex (3.4) converges, and we are done.
�

4. Quasi-Frobenius maps

We now fix a perfect base field k of characteristic p > 0, and consider an
associative algebra A over k. We want to construct a cyclic homology version of
the Cartier isomorphism (1.2) for A. In fact, we will construct a version of the
inverse isomorphism C−1; it will be an isomorphism

(4.1) C−1 : HH �(A)((u))(1) −→ HP �(A),

where, as before, HH �(A)((u)) in the left-hand side means “Laurent power series
in one variable u of degree 2 with coefficients in HH �(A)”.

If A is commutative and X = SpecA is smooth, then HH �(A) ∼= Ω
�

(X),
HP �(A) ∼= H

�

DR(X)((u)), and (4.1) is obtained by inverting (1.2) (and repeating the
resulting map infinitely many times, once for every power of the formal variable u).
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It is known that the commutative inverse Cartier map is induced by the Frobenius
isomorphism; thus to generalize it to non-commutative algebras, it is natural to
start the story with the Frobenius map.

At first glance, the story thus started ends immediately: the map a �→ ap is not
an algebra endomorphism of A unless A is commutative (in fact, the map is not
even additive, (x+ y)p �= xp + yp for general non-commuting x and y). So, there is
no Frobenius map in the non-commutative world.

However, to analyze the difficulty, let us decompose the usual Frobenius into
two maps:

A
ϕ−−−−→ A⊗p M−−−−→ A,

where ϕ is given by ϕ(a) = a⊗p, andM is the multiplication map, M(a1⊗· · ·⊗ap) =
a1 · · · ap. The map ϕ is very bad (e.g. not additive), but this is the same both in
the commutative and in the general associative case. It is the map M which creates
the problem: it is an algebra map if and only if A is commutative.

In general, it is not possible to correct M so that it becomes an algebra map.
However, even not being an algebra map, it can be made to act on Hochschild
homology, and we already saw how: we can take the map (2.7) of Subsection 2.2.

As for the very bad map ϕ, fortunately, it turns out that it can be perturbed
quite a bit. In fact, the only property of this map which is essential is the following
one.

Lemma 4.1. Let V be a vector space over k, and let the cyclic group Z/pZ act
on its p-th tensor power V ⊗p by cyclic permutation. Then the map ϕ : V → V ⊗p,
v �→ v⊗p sends V into the kernel of either of the differentials d+, d− of the standard
complex (3.3) and induces an isomorphism

V (1) → Ȟi(Z/pZ, V
⊗p)

both for odd and even degrees i.

Proof. The map ϕ is compatible with the multiplication by scalars, and its image
is σ-invariant, so that it indeed sends V into the kernel of either of the differentials
d−, d+ : V ⊗p → V ⊗p. We claim that it is additive “modulo Im d±”, and that it
induces an isomorphism V (1) ∼= Ker d±/ Im d∓. Indeed, choose a basis in V , so
that V ∼= k[S], the k-linear span of a set S. Then V ⊗p = k[Sp] decomposes as
k[Sp] = k[S]⊕ k[Sp \∆], where S ∼= ∆ ⊂ Sp is the diagonal. This decomposition is
compatible with the differentials d±, which actually vanish on the first summand
k[S]. The map ϕ, accordingly, decomposes as ϕ = ϕ0 ⊕ ϕ1, ϕ0 : V (1) → k[S],
ϕ1 : V (1) → k[Sp \ ∆]. The map ϕ0 is obviously additive and an isomorphism;
therefore it suffices to prove that the second summand of (3.3) is acyclic. Indeed,
since the Z/pZ-action on Sp \∆ is free, we have Ȟ

�

(Z/pZ, k[Sp \∆]) = 0. �

Definition 4.2. A quasi-Frobenius map for an associative unital algebra A
over k is a Z/pZ-equivariant algebra map F : A(1) → A⊗p which induces the
isomorphism Ȟ

�

(Z/pZ, A(1)) → Ȟ
�

(Z/pZ, A⊗p) of Lemma 4.1.

Here the Z/pZ-action on A(1) is trivial, and the algebra structure on A⊗p is
the obvious one (all the p factors commute). We note that since Ȟi(Z/pZ, k) ∼= k
for every i, we have Ȟi(Z/pZ, A(1)) ∼= A(1), so that a quasi-Frobenius map must
be injective. Moreover, since the Tate homology Ȟ

�

(Z/pZ, A⊗p/A(1)) vanishes, the
cokernel of a quasi-Frobenius map must be a free k[Z/pZ]-module.
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In this Section, we will construct a Cartier isomorphism (4.1) for algebras
which admit a quasi-Frobenius map (and satisfy some additional assumptions). In
the interest of full disclosure, we remark right away that quasi-Frobenius maps are
very rare—in fact, we know only two examples:

(i) A is the tensor algebra T
�

V of a k-vector space V—it suffices to give F
on the generators, where it exists by Lemma 4.1.

(ii) A = k[G] is the group algebra of a (discrete) group G—a quasi-Frobenius
map F is induced by the diagonal embedding G ⊂ Gp.

However, the general construction of the Cartier map given in Section 5 will be
essentially the same—it is only the notion of a quasi-Frobenius map that we will
modify.

Proposition 4.3. Assume given an algebra A over k equipped with a quasi-
Frobenius map F : A(1) → A⊗p, and assume that the category A-bimod of A-
bimodules has finite homological dimension. Then there exists a canonical isomor-
phism

ϕ : HH �(A)((u)) ∼= HP �(A).

Proof. Consider the functors i, π : Λp → Λ and the restrictions

π∗A
(1)
# , i∗A# ∈ Fun(Λp, k).

For any [n] ∈ Λp, the quasi-Frobenius map F : A(1) → A⊗p induces a map

F⊗n : π∗A
(1)
# ([n]) = (A(1))⊗n → i∗A#([n]) = A⊗pn.

By the definition of a quasi-Frobenius map, these maps commute with the action
of the maps τ : [n] → [n] and mp

i : [n+1] → [n], 0 ≤ i < n (recall that mp
i = m⊗p

i ).
Moreover, since mp

0 ◦ τ = mp
n+1, F⊗ �

also commutes with mp
n. All in all, the

collection of the tensor power maps F⊗ �

gives a map F# : π∗A
(1)
# → i∗A# of

objects in Fun(Λp, k). We denote by Φ the induced map

Φ = HP �(F#) : HP �(π∗A
(1)
# ) → HP �(Λp, i

∗A#).

By Lemma 2.5, the right-hand side is preciselyHP �(A). As for the left-hand side, we
note that σ is trivial on π∗A#([n]) for every [n] ∈ Λp; therefore the odd horizontal
differentials

id+τ + · · ·+ τpn−1 = (id+τ + · · ·+ τn−1) ◦ (id+σ + · · ·+ σp−1)

= p(id+τ + · · ·+ τn−1) = 0

in (2.10) vanish, and we have

HP �(π∗A
(1)
# ) ∼= HH �(A(1))((u)).

Finally, to show that Φ is an isomorphism, we recall that the quasi-Frobenius map
F is injective, and its cokernel is a free k[Z/pZ]-module. One deduces easily that
the same is true for each tensor power F⊗n; thus F# is injective, and its cokernel
CokerF# is such that CokerF#([n]) is a free k[Z/pZ]-module for any [n] ∈ Λp. To
finish the proof, use the long exact sequence of cohomology and Proposition 3.3.
The only thing left to check is that Proposition 3.3 is applicable—namely, that the
p-cyclic object i∗A# is small in the sense of Definition 3.2.
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To do this, we have to show that the bar complex C �(A⊗p, A⊗p
σ ) which com-

putes HH �(A⊗p, A⊗p
σ ) is effectively finite. It is here that we need to use the as-

sumption of finite homological dimension on the category A-bimod. Indeed, to
compute HH �(A⊗p, A⊗p

σ ), we can choose any projective resolution P p
� of the diag-

onal A⊗p-bimodule A⊗p. In particular, we can take any projective resolution P �

of the diagonal A-bimodule A, and use its p-th power. To obtain the bar complex
C �(A⊗p, A⊗p

σ ), one uses the bar resolution C ′
�(A). However, all these projective

resolutions P � are chain homotopic to each other, so that the resulting complexes
will be also chain homotopic as complexes of k[Z/pZ]-modules. By assumption,
the diagonal A-bimodule A has a projective resolution P � of finite length; using it
gives a complex of finite length which is chain homotopic to C �(A⊗p, A⊗p

σ ), just as
required by Definition 3.2. �

5. Cartier isomorphism in the general case

5.1. Additivization. We now turn to the general case: we assume given a
perfect field k of characteristic p > 0 and an associative k-algebra A, and we want
to construct a Cartier-type isomorphism (4.1) without assuming that A admits a
quasi-Frobenius map in the sense of Definition 4.2.

Consider again the non-additive map ϕ : A → A⊗p, a �→ a⊗p, and let us change
the domain of its definition: instead of A, let ϕ be defined on the k-vector space
k[A] spanned by A (where A is considered as a set). Then ϕ obviously uniquely
extends to a k-linear additive map

(5.1) ϕ : k[A] → A⊗p.

Taking the k-linear span is a functorial operation: setting V �→ k[V ] defines a
functor Spank from the category of k-vector spaces to itself. The functor Spank is
non-additive, but it has a tautological surjective map Spank → Id onto the identity
functor, and one can show that Id is the maximal additive quotient of the functor
Spank. If V = A is an algebra, then Spank(A) is also an algebra, and the tautological
map Spank(A) → A is an algebra map.

We note that in both examples (i), (ii) in Section 4 where an algebraA did admit
a quasi-Frobenius map, what really happened was that the tautological surjective
algebra map Spank(A) → A admitted a splitting s : A → Spank(A); the quasi-
Frobenius map was obtained by composing this splitting map s with the canonical
map (5.1).

Unfortunately, in general the projection Spank(A) → A does not admit a split-
ting (or at least, it is not clear how to construct one). In the general case, we will
modify both sides of the map (5.1) so that splittings will become easier to come by.
To do this, we use the general technique of additivization of non-additive functors
from the category of k-vector spaces to itself.

Consider the small category V = k-Vectfg of finite-dimensional k-vector spaces,
and consider the category Fun(V , k) of all functors from V to the category k-Vect
of all k-vector spaces. This is an abelian category. The category Funadd(V , k) of
all additive functors from V to k-Vect is also abelian (in fact, an additive functor
is completely defined by its value at the one-dimensional vector space k, so that
Funadd(V , k) is equivalent to the category of modules over k ⊗Z k). We have the
full embedding Funadd(V , k) ⊂ Fun(V , k), and it admits a left-adjoint functor—in
other words, for any functor F ∈ Fun(V , k) there is an additive functor Fadd and a
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map F → Fadd which is universal with respect to maps to additive functors. This
“universal additive quotient” is not very interesting. For instance, if F is the p-th
tensor power functor, V �→ V ⊗p, then its universal additive quotient is the trivial
functor V �→ 0.

To obtain a useful version of this procedure, we have to consider the derived
category D(V , k) of the category Fun(V , k) and the full subcategory Dadd(V , k) ⊂
D(V , k) spanned by complexes whose homology object lie in Funadd(V , k).

The category Dadd(V , k) is closed under taking cones, thus triangulated (this
has to be checked, but this is not difficult), and it contains the derived category
of the abelian category Funadd(Funk, k). However, Dadd(V , k) is much larger than
this derived category. In fact, even for the identity functor Id ∈ Funadd(V , k) ⊂
Fun(V , k), the natural map

ExtiFunadd(V,k)(Id, Id) → ExtiFun(V,k)(Id, Id)

is an isomorphism only in degrees 0 and 1. Already in degree 2, there appear
extension classes which cannot be represented by a complex of additive functors.

Nevertheless, it turns out that just as for abelian categories, the full embedding
Dadd(V , k) ⊂ D(V , k) admits a left-adjoint functor. We call it the additivization
functor and denote by Add � : D(V , k) → Dadd(V , k). For any F ∈ Fun(V , k),
Add �(F ) is a complex of functors from V to k with additive homology functors.

The construction of the additivization Add � is relatively technical; we will not
reproduce it here and refer the reader to [Kal08, Section 3]. The end result is
that first, additivization exists, and second, it can be represented explicitly, by
a very elegant “cube construction” introduced fifty years ago by Eilenberg and
MacLane. Namely, to any functor F ∈ Fun(V , k) one associates a complex Q �(F )
of functors from V to k such that the homology of this complex consists of additive
functors, and we have an explicit map F → Q �(F ) which descends to a universal
map in the derived category D(V , k). In fact, the complex Q �(F ) is concentrated
in non-negative homological degrees, and Q0(F ) simply coincides with F , so that
the universal map is the tautological embedding F = Q0(F ) → Q �(F ). Moreover,
assume that the functor F is multiplicative in the following sense: for any V,W ∈ V ,
we have a map

F (V )⊗ F (W ) → F (V ⊗W ),

and these maps are functorial and associative in the obvious sense. Then the
complex Q �(F ) is also multiplicative. In particular, if we are given a multiplicative
functor F and an associative algebra A, then F (A) is an associative algebra; in this
case, Q �(F ) is an associative DG algebra concentrated in non-negative degrees.

5.2. Generalized Cartier map. Consider again the canonical map (5.1).
There are two non-additive functors involved: the k-linear span functor V �→ k[V ],
and the p-th tensor power functor V �→ V ⊗p. Both are multiplicative. We will
denote by Q �(V ) the additivization of the k-linear span, and we will denote by
P �(V ) the additivization of the p-th tensor power. Since additivization is functorial,
the map (5.1) gives a map

ϕ : Q �(V ) → P �(V )

for any finite-dimensional k-vector space V ; if A = V is an associative algebra, then
Q �(A) and P �(A) are associative DG algebras, and ϕ is a DG algebra map. We
will need several small refinements of this construction.
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(i) We extend both Q � and P � to arbitrary vector spaces and arbitrary al-
gebras by taking the limit over all finite-dimensional subspaces.

(ii) The p-th power V ⊗p carries the permutation action of the cyclic group
Z/pZ, and the map (5.1) is Z/pZ-invariant; by the functoriality of the
additivization, P �(V ) also carries an action of Z/pZ, and the map ϕ is
Z/pZ-invariant.

(iii) The map (5.1), while not additive, respects the multiplication by scalars,
up to a Frobenius twist; unfortunately, the additivization procedure ig-
nores this. From now on, we will assume that the perfect field k is actually
finite, so that the group k∗ of scalars is a finite group whose order is co-
prime to p. Then k∗ acts naturally on k[V ], hence also on Q �(V ), and the
map ϕ factors through the space Q �(V ) = Q �(V )k∗ of covariants with
respect to k∗.

The end result: in the case of a general algebra A, our replacement for a quasi-
Frobenius map is the canonical map

(5.2) ϕ : Q �(A)(1) → P �(A),

which is a Z/pZ-invariant DG algebra map. We can now repeat the procedure of
Section 4 replacing a quasi-Frobenius map F with this canonical map ϕ. This gives
a canonical map

(5.3) Φ : HH �(Q �(A)#)
(1)((u)) → HP �(P �(A)#),

where Q �(A)# in the left-hand side is a complex of cyclic objects, and P �(A)# in
the right-hand side is the complex of p-cyclic objects. There is one choice to be
made because both complexes are infinite; we agree to interpret the total complex
which computes HP �(E �) and HH �(E �) for an infinite complex E � of cyclic or p-
cyclic objects as the sum, not the product of the corresponding complexes for the
individual terms HP �(Ei), HH �(Ei).

To understand what (5.3) has to do with the Cartier map (4.1), we need some
information on the structure of DG algebras P �(A) and Q �(A).

The DG algebra P �(A) has the following structure: P0(A) is isomorphic to the
p-th tensor power A⊗p of the algebra A, and all the higher terms Pi(A), i ≥ 1 are
of the form A⊗p ⊗ Wi, where Wi is a certain representation of the cyclic group
Z/pZ. The only thing that will matter to us is that all the representations Wi are
free k[Z/pZ]-modules. Consequently, Pi(A) is free over k[Z/pZ] for all i ≥ 1. For
the proofs, we refer the reader to [Kal08, Subsection 4.1]. As a corollary, we see
that if A is such that A-bimod has finite homological dimension, then we can apply
Proposition 3.3 to all the higher terms in the complex P �(A)# and deduce that the
right-hand of (5.3) is actually isomorphic to HP �(A):

HP �(P �(A)#) ∼= HP �(A).

We note that it is here that it matters how we define the periodic cyclic homology of
an infinite complex (the complex P �(A) is actually acyclic, so, were we to take the
product and not the sum of individual terms, the result would be 0, not HP �(A)).

The structure of the DG algebra Q � is more interesting. As it turns out, the
homology Hi(Q �(A)) of this DG algebra in degree i is isomorphic to A ⊗ St(k)i,
where St(k) � is the dual to the Steenrod algebra known in Algebraic Topology—more
precisely, St(k)∗i is the algebra of stable cohomology operations with coefficients in k
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of degree i. The proof of this is contained in [Kal08, Section 3]; [Kal08, Subsection
3.1] contains a semi-informal discussion of why this should be so, and what is the
topological interpretation of all the constructions in this Section. The topological
part of the story is quite large and well-developed—among other things, it includes
the notions of Topological Hochschild Homology and Topological Cyclic Homology
which have been the focus of much attention in Algebraic Topology in the last fifteen
years. A reader who really wants to understand what is going on should definitely
consult the sources, some of which are indicated in [Kal08]. However, within the
scope of the present lectures, we will leave this subject completely alone. The only
topological fact that we will need is the following description of the Steenrod algebra
in low degrees:

(5.4) Sti(k) =

{
k, i = 0, 1,

0, 1 < i < 2p− 2.

The proof can be easily found in any algebraic topology textbook.
Thus in particular, the 0-th homology of Q �(A) is isomorphic to A itself, so

that we have an augmentation map Q �(A) → A (this is actually induced by the
tautological map Q0(A) = k[A] → A). However, there is also non-trivial homology
in higher degrees. Because of this, the left-hand side of (5.3) is larger than the
left-hand side of (4.1), and the canonical map Φ of (5.3) has no chance of being
an isomorphism (for a topological interpretation of the left-hand side of (5.3), see
[Kal08, Subsection 3.1]).

In order to get an isomorphism (4.1), we have to resort to splittings again, and
it would seem that we gained nothing, since splitting the projection Q �(A) → A
is the same as splitting the projection Q0(A) = k[A]k∗ → A. Fortunately, in the
world of DG algebras we can get away with something less than a full splitting
map. We note the following obvious fact: any quasi-isomorphism f : A � → B � of
DG algebras induces an isomorphism HH �(A �) → HH �(B �) of their Hochschild
homology. Because of this, it suffices to split the projection Q �(A) → A “up to a
quasi-isomorphism”. More precisely, we introduce the following.

Definition 5.1. A DG splitting 〈A �, s〉 of a DG algebra map f : Ã � → A �

is a pair of a DG algebra A � and a DG algebra map s : A � → Ã � such that the
composition f ◦ s : A � → A � is a quasi-isomorphism.

Lemma 5.2. Assume that the associative algebra A is such that A-bimod has fi-
nite homological dimension. For any DG splitting 〈A �, s〉 of the projection Q �(A) →
A, the composition map

Φ ◦ s : HH �(A)(1)((u)) ∼= HH �(A �)(1)((u)) →
→ HH �(Q �(A))(1)((u)) → HP �(P �(A)#) ∼= HP �(A)

is an isomorphism in all degrees.

The proof is not completely trivial but very straightforward; we leave it as an
exercise (or see [Kal08, Subsection 4.1]). By virtue of this lemma, all we have to
do to construct a Cartier-type isomorphism (4.1) is to find a DG splitting of the
projection Q �(A) → A.
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5.3. DG splittings. To construct DG splittings, we use obstruction theory
for DG algebras, which turns out to be pretty much parallel to the usual obstruction
theory for associative algebras. A skeleton theory sufficient for our purposes is given
in [Kal08, Subsection 4.3]. Here are the main points.

(i) Given a DG algebra A � and a DG A �-bimodule M �, one defines Hoch-
schild cohomology HH

�

D(A �,M �) as

HH
�

D(A �,M �) = Ext
�

D(A �,M �),

where A � in the right-hand side is the diagonal A �-bimodule, and Ext
�

D
are the spaces of maps in the “triangulated category of A �-bimodules”—
that is, the derived category of the abelian category of DG A �-bimodules
localized with respect to quasi-isomorphisms. Explicitly, HH

�

(A �,M �)
can be computed by using the bar resolution of the diagonal bimodule
A �. This gives a complex with terms Hom(A⊗n

� ,M �), where n ≥ 0 is
a non-negative integer, and a certain differential δ : Hom(A⊗ �

� ,M �) →
Hom(A⊗ �+1

� ,M �); the groups HH
�

(A �,M �) are computed by the total
complex of the bicomplex

M �

δ−−−−→ Hom(A �,M �)
δ−−−−→ · · · δ−−−−→ Hom(A⊗...

� ,M �)
δ−−−−→ .

(ii) By a square-zero extension of a DG algebra A � by a DG A �-bimodule

we understand a DG algebra Ã � equipped with a surjective map Ã � →
A � whose kernel is identified with M � (in particular, the induced Ã �-

bimodule structure on the kernel factors through the map Ã � → A �).
Then square-zero extensions are classified up to a quasi-isomorphism by
elements in the Hochschild cohomology group HH2

D(A �,M �). A square-
zero extension admits a DG splitting if and only if the corresponding
class in HH2

D(A �,M �) is trivial.

To apply this machinery to the augmentation map Q �(A) → A, we consider the
canonical filtration Q �(A)≥ � on Q �(A) defined, as usual, by

Qi(A)≥j =

⎧⎪⎨
⎪⎩
0, i ≤ j,

Ker d, i = j + 1,

Qi(A), i > j + 1,

where d is the differential in the complex Q �(A). We denote the quotients by
Q �(A)≤j(A) = Q �(A)/Q �(A)≥j , and we note that for any j ≥ 1, Q �(A)≤j is a

square-zero extension of Q �(A)≤j−1 by a DG bimodule quasi-isomorphic to A ⊗
Stj(k)[j] (here Stj(k) is the corresponding term of the dual Steenrod algebra, and
[j] means the degree shift). We use induction on j and construct a collection 〈Aj

�, s〉
of compatible DG splittings of the surjections Q �(A)≤j → A. There are three steps.

Step 1. For j = 0, there is nothing to do: the projection Q �(A)≤0 → A is a
quasi-isomorphism.

Step 2. For j = 1, it tuns out that the projection Q �(A)≤1 → A admits a DG

splitting if and only if the k-algebra A admits a lifting to a flat algebra Ã over
the ring W2(k) of second Witt vectors of the field k. In fact, even more is true:
DG splittings are in some sense in a functorial one-to-one correspondence with
such liftings; the reader will find precise statements and explicit detailed proofs in
[Kal08, Subsection 4.2].
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Step 3. We then proceed by induction. Assume given a DG splitting Aj
�,

s : Aj
� → Q �(A)≤j of the projection Q �(A)≤j → A. Form the “Baer sum” A

j
� of

the map s with the square-zero extension p : Q �(A)≤j+1 → Q �(A)≤j—that is, let

A
j
� ⊂ Q �(A)≤j+1 ⊕Aj

�

be the subalgebra obtained as the kernel of the map

Q �(A)≤j+1 ⊕Aj
�

p⊕(−s)−−−−−→ Q �(A)≤j.

Then A
j
� is a square-zero extension of Aj

� by a DG Aj
�-bimodule Ker p which is

quasi-isomorphic to A ⊗ Stj(k)[j]. Since Aj
� is quasi-isomorphic to A, these are

classified by elements in the Hochschild cohomology group

HH2(Aj
�,Ker p) ∼= HH3+j(A,A)⊗ Stj+1(k).

If j < 2p− 3, this group is trivial by (5.4), so that a DG splitting Aj+1
� exists. In

higher degrees, we have to impose conditions on the algebra A. Here is the end
result.

Proposition 5.3. Assume given an associative algebra A over a finite field k
of characteristic p such that

(i) A lifts to a flat algebra over the ring W2(k) of second Witt vectors, and
(ii) A-bimod has finite homological dimension, and moreover, we have that

HHj(A,A) = 0 whenever j ≥ 2p.

Then there exists a DG splitting A �, s : A � → Q �(A) of the augmentation map
Q �(A) → A.

Proof. Construct a compatible system of DG splittings Aj
� as described above, and

let A � = lim← Aj
�. �

Theorem 5.4. Assume given an associative algebra A over a finite field k of
characteristic p which satisfies the assumptions (i), (ii) of Proposition 5.3. Then
there exists an isomorphism

C−1 : HH �(A)((u))(1) −→ HP �(A),

as in (4.1).

Proof. Combine Proposition 5.3 and Lemma 5.2. �

This is our generalized Cartier map. We note that the conditions (i), (ii) that
we have to impose on the algebra A are completely parallel to the conditions (i),
(ii) on page 539 which appear in the commutative case: (i) is literally the same,
and as for (ii), note that if A is commutative, then the category of A-bimodules is
equivalent to the category of quasicoherent sheaves on X ×X, where X = SpecA.
By a famous theorem of Serre, this category has finite homological dimension if and
only if X is smooth, and this dimension is equal to dim(X ×X) = 2 dimX.
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6. Applications to Hodge Theory

To finish the paper, we return to the original problem discussed in the Introduc-
tion: the degeneration of the Hodge-to-de Rham spectral sequence. On the surface
of it, Theorem 5.4 is strong enough so that one can apply the method of Deligne
and Illusie in the non-commutative setting. However, it has one fault. While in the
commutative case we are dealing with an algebraic variety X, Theorem 5.4 is only
valid for an associative algebra. In particular, were we to try to deduce the clas-
sical Cartier isomorphism (1.2) from Theorem 5.4, we would only get it for affine
algebraic varieties. In itself, it might not be completely meaningless. However, the
commutative Hodge-to-de Rham degeneration is only true for a smooth and proper
algebraic variety X—and a variety of dimension ≥ 1 cannot be proper and affine at
the same time. The general non-commutative degeneration statement also requires
some versions of properness, and in the affine setting, this reduces to requiring that
the algebra A is finite-dimensional over the base field. A degeneration statement
for such algebras, while not as completely trivial as its commutative version, is not,
nevertheless, very exciting.

Fortunately, the way out of this difficulty has been known for some time;
roughly speaking, one should pass to the level of derived categories—after which
all varieties, commutative and non-commutative, proper or not, become essentially
affine.

More precisely, one first notices that Hochschild homology of an associative
algebra A is Morita-invariant—that is, if B is a different associative algebra such
that the category B-mod of B-modules is equivalent to the category A-mod of A-
modules, then HH �(A) ∼= HH �(B). The same is true for cyclic and periodic cyclic
homology, and for Hochschild cohomology HH

�

(A). In fact, B. Keller has shown in
[Kel99] how to construct HC �(A) and HH �(A) starting directly from the abelian
category A-mod, without using the algebra A at all.

Moreover, Morita-invariance holds on the level of derived categories: if there
exists a left-exact functor F : A-mod → B-mod such that its derived functor is
an equivalence of the derived categories D(A-mod) ∼= D(B-mod), then HH �(A) ∼=
HH �(B), and the same is true for HC �(−), HP �(−), and HH

�

(−).
Unfortunately, one cannot recoverHH �(A) and other homological invariants di-

rectly from the derived category D(A-mod) considered as a triangulated category—
the notion of a triangulated category is too weak. One has to fix some “enhance-
ment” of the triangulated category structure. At present, it is not clear what is the
most convenient choice among several competing approaches. In practice, however,
every “natural” way to construct a triangulated category D also allows one to equip
it with all possible enhancements, so that the Hochschild homology HH �(D) and
other homological invariants can be defined.

As long as we work over a fixed field, probably the most convenient of those
“natural” ways is provided by the DG algebra techniques. For every associative
DG algebra A

�

over a field k, one defines HH �(A
�

), HC �(A
�

), HP �(A
�

), and
HH

�

(A
�

) in the obvious way, and one shows that if two DG algebras A
�

, B
�

have
equivalent triangulated categories D(A

�

-mod), D(B
�

-mod) of DG modules, then
all their homological invariants such as HH �(−) are isomorphic. Moreover, the
DG algebra approach is versatile enough to cover the case of non-affine schemes.
Namely, one can show that for every quasiprojective variety X over a field k, there
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exists a DG algebra A
�

over k such that D(A
�

-mod) is equivalent to the derived
category of coherent sheaves on X. Then HH �(A

�

) is the same as the Hochschild
homology of the category of coherent sheaves on X, and the same is true for the
other homological invariants—in particular, if X is smooth, we have

HHi(A
�

) ∼=
⊕
j

Hj(X,Ωi+j
X ),

and HC �(A
�

) is similarly expressed in terms of the de Rham cohomology groups
of X. It is in this sense that all the varieties become affine in the “derived non-
commutative” world. We note that in general, althoughX is the usual commutative
algebraic variety, one cannot ensure that the algebra A

�

which appears in this
construction is also commutative.

Thus for our statement on the Hodge-to-de Rham degeneration, we use the
language of associative DG algebras. The formalism we use is mostly due to B.
Toën; the reader will find a good overview in [TV05, Section 2], and also in B.
Keller’s talk [Kel06] at ICM Madrid.

Definition 6.1. Assume given a DG algebra A
�

over a field k.

(i) A
�

is compact if it is perfect as a complex of k-vector spaces.
(ii) A

�

is smooth if it is perfect as the diagonal DG bimodule over itself.

By definition, a DG B
�

-module M � over a DG algebra B
�

is perfect if it is a
compact object of the triangulated categoryD(B

�

) in the sense of category theory—
that is, we have

Hom(M �, lim
→

N �) = lim
→

Hom(M �, N �)

for any filtered inductive system N � ∈ D(B
�

). It is an easy exercise to check that
compact objects in the category k-Vect are precisely the finite-dimensional vector
spaces, so that a complex of k-vector spaces is perfect if and only if its homology is
trivial outside of a finite range of degrees, and all the non-trivial homology groups
are finite-dimensional k-vector spaces. In general, there is a theorem which says
that a DG module M � is perfect if and only if it is a retract—that is, the image of a
projector—of a DG module M ′

� which becomes a free finitely-generated B
�

-module
if we forget the differential. We refer the reader to [TV05] for exact statements
and proofs. We note only that if a DG algebra A

�

describes an algebraic variety
X—that is, D(A

�

) ∼= D(X)—that A
�

is compact if and only if X is proper, and
A
�

is smooth if and only if X is smooth (for smoothness, one uses Serre’s Theorem
mentioned in the end of Section 5).

Theorem 6.2. Assume given an associative DG algebra A
�

over a field K of
characteristic 0. Assume that A

�

is smooth and compact. Moreover, assume that
A
�

is concentrated in non-negative degrees. Then the Hodge-to-de Rham spectral
sequence

HH �(A
�

)[u] ⇒ HC �(A
�

)

of (1.5) degenerates at first term.

In this theorem, we have to require that A
�

is concentrated in non-negative
degrees. This is unfortunate but inevitable in our approach to the Cartier map,
which in the end boils down to Lemma 4.1—whose statement is obviously incom-
patible with any grading one might wish to put on the vector space V . Thus our
construction of the Cartier isomorphism does not work at all for DG algebras. We
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circumvent this difficulty by passing from DG algebras to cosimplicial algebras—
that is, associative algebras A ∈ Fun(∆,K) in the tensor category Fun(∆,K)—for
which one can construct the Cartier map “pointwise” (it is the passage from DG
to cosimplicial algebras which forces us to require Ai = 0 for negative i). This
occupies the larger part of [Kal08, Subsection 5.2], to which we refer the reader.
Here we will only quote the end result.

Proposition 6.3. Assume given a smooth and compact DG algebra A
�

over
a finite field k of characteristic p = char k. Assume that A

�

is concentrated in
non-negative degrees, and that, moreover,

(i) A
�

can be lifted to a flat DG algebra over the ring W2(k) of second Witt
vectors of the field k, and

(ii) HHi(A,A) = 0 when i ≥ 2p.

Then there exists an isomorphism

C−1 : HH �(A
�

)((u)) ∼= HP �(A
�

),

and the Hodge-to-de Rham spectral sequence (1.5) for the DG algebra A
�

degenerates
at first term.

As in the commutative case of [DI87], degeneration follows immediately from
the existence of the Cartier isomorphism C−1 for dimension reasons. The construc-
tion of the map C−1 essentially repeats what we did in Section 5 in the framework
of cosimplicial algebras, with a lot of technical nuisance because of the need to
ensure the convergence of various spectral sequences, see [Kal08, Subsection 5.3].
To deduce Theorem 6.2, one uses the standard technique of the reduction to pos-
itive characteristic, just as in the commutative case; this is made possible by the
following beautiful theorem due to B. Toën [Toë08].

Theorem 6.4 ([Toë08]). Assume given a smooth and compact DG algebra A
�

over a field K. Then there exists a finitely generated subring R ⊂ K and a DG
algebra A

�

R, smooth and compact over R, such that A
� ∼= A

� ⊗R K.

We note that this result does not require the algebra A
�

to be concentrated in
non-negative degrees. We expect that neither does our Theorem 6.2, but so far, we
could not prove it—the technical difficulties seem to be much too severe.
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