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Foreword

The year 2005 marked the 150th anniversary of the death of Gauss as well as
the 200th anniversary of the birth of Dirichlet, who became Gauss’s successor at
Göttingen. In honor of these occasions, a conference was held in Göttingen from
June 20 to June 24, 2005. These are the proceedings of this conference.

In view of the enormous impact both Gauss and Dirichlet had on large areas of
mathematics, anything even approaching a comprehensive representation of their
influence in the form of a moderately sized conference seemed untenable. Thus it
was decided to concentrate on one subject, analytic number theory, that could be
adequately represented and where their influence was profound. Indeed, Dirichlet
is known as the father of analytic number theory. The result was a broadly based
international gathering of leading number theorists who reported on recent advances
in both classical analytic number theory as well as in related parts of number theory
and algebraic geometry. It is our hope that the legacy of Gauss and Dirichlet in
modern analytic number theory is apparent in these proceedings.

We are grateful to the American Institute of Mathematics and the Clay Math-
ematics Institute for their support.

William Duke and Yuri Tschinkel

November 2006
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2 JÜRGEN ELSTRODT

Introduction

The great advances of mathematics in Germany during the first half of the nine-
teenth century are to a predominantly large extent associated with the pioneering
work of C.F. Gauß (1777–1855), C.G.J. Jacobi (1804–1851), and G. Lejeune Dirich-
let (1805–1859). In fact, virtually all leading German mathematicians of the second
half of the nineteenth century were their disciples, or disciples of their disciples. This
holds true to a special degree for Jacobi and Dirichlet, who most successfully intro-
duced a new level of teaching strongly oriented to their current research whereas
Gauß had “a real dislike” of teaching — at least at the poor level which was pre-
dominant when Gauß started his career. The leading role of German mathematics
in the second half of the nineteenth century and even up to the fateful year 1933
would have been unthinkable without the foundations laid by Gauß, Jacobi, and
Dirichlet. But whereas Gauß and Jacobi have been honoured by detailed biogra-
phies (e.g. [Du], [Koe]), a similar account of Dirichlet’s life and work is still a
desideratum repeatedly deplored. In particular, there exist in English only a few,
mostly rather brief, articles on Dirichlet, some of which are unfortunately marred
by erroneous statements. The present account is intended as a first attempt to
remedy this situation.

1. Family Background and School Education

Johann Peter Gustav Lejeune Dirichlet, to give him his full name, was born in
Düren (approximately halfway between Cologne and Aachen (= Aix-la-Chapelle))
on February 13, 1805. He was the seventh1 and last child of Johann Arnold Lejeune
Dirichlet (1762–1837) and his wife Anna Elisabeth, née Lindner (1768–1868(?)).
Dirichlet’s father was a postmaster, merchant, and city councillor in Düren. The
official name of his profession was commissaire de poste. After 1807 the entire
region of the left bank of the Rhine was under French rule as a result of the wars
with revolutionary France and of the Napoleonic Wars. Hence the members of the
Dirichlet family were French citizens at the time of Dirichlet’s birth. After the
final defeat of Napoléon Bonaparte at Waterloo and the ensuing reorganization of
Europe at the Congress of Vienna (1814–1815), a large region of the left bank of
the Rhine including Bonn, Cologne, Aachen and Düren came under Prussian rule,
and the Dirichlet family became Prussian citizens.

Since the name “Lejeune Dirichlet” looks quite unusual for a German family we
briefly explain its origin2: Dirichlet’s grandfather Antoine Lejeune Dirichlet (1711–
1784) was born in Verviers (near Liège, Belgium) and settled in Düren, where he
got married to a daughter of a Düren family. It was his father who first went
under the name “Lejeune Dirichlet” (meaning “the young Dirichlet”) in order to
differentiate from his father, who had the same first name. The name “Dirichlet” (or
“Derichelette”) means “from Richelette” after a little town in Belgium. We mention
this since it has been purported erroneously that Dirichlet was a descendant of a

1Hensel [H.1], vol. 1, p. 349 says that Dirichlet’s parents had 11 children. Possibly this
number includes children which died in infancy.

2For many more details on Dirichlet’s ancestors see [BuJZ].



THE LIFE AND WORK OF GUSTAV LEJEUNE DIRICHLET (1805–1859) 3

French Huguenot family. This was not the case as the Dirichlet family was Roman
Catholic.

The spelling of the name “Lejeune Dirichlet” is not quite uniform: Dirichlet himself
wrote his name “Gustav Lejeune Dirichlet” without a hyphen between the two parts
of his proper name. The birth-place of Dirichlet in Düren, Weierstraße 11, is marked
with a memorial tablet.

Kummer [Ku] and Hensel [H.1], vol. 1 inform us that Dirichlet’s parents gave their
highly gifted son a very careful upbringing. This beyond doubt would not have been
an easy matter for them, since they were by no means well off. Dirichlet’s school
and university education took place during a period of far-reaching reorganization
of the Prussian educational system. His school and university education, however,
show strong features of the pre-reform era, when formal prescriptions hardly existed.
Dirichlet first attended an elementary school, and when this became insufficient, a
private school. There he also got instruction in Latin as a preparation for the sec-
ondary school (Gymnasium), where the study of the ancient languages constituted
an essential part of the training. Dirichlet’s inclination for mathematics became
apparent very early. He was not yet 12 years of age when he used his pocket money
to buy books on mathematics, and when he was told that he could not understand
them, he responded, anyhow that he would read them until he understood them.

At first, Dirichlet’s parents wanted their son to become a merchant. When he
uttered a strong dislike of this plan and said he wanted to study, his parents gave
in, and sent him to the Gymnasium in Bonn in 1817. There the 12-year-old boy
was entrusted to the care and supervision of Peter Joseph Elvenich (1796–1886), a
brilliant student of ancient languages and philosophy, who was acquainted with the
Dirichlet family ([Sc.1]). Elvenich did not have much to supervise, for Dirichlet
was a diligent and good pupil with pleasant manners, who rapidly won the favour
of everybody who had something to do with him. For this trait we have lifelong
numerous witnesses of renowned contemporaries such as A. von Humboldt (1769–
1859), C.F. Gauß, C.G.J. Jacobi, Fanny Hensel née Mendelssohn Bartholdy (1805–
1847), Felix Mendelssohn Bartholdy (1809–1847), K.A. Varnhagen von Ense (1785–
1858), B. Riemann (1826–1866), R. Dedekind (1831–1916). Without neglecting his
other subjects, Dirichlet showed a special interest in mathematics and history, in
particular in the then recent history following the French Revolution. It may be
assumed that Dirichlet’s later free and liberal political views can be traced back to
these early studies and to his later stay in the house of General Foy in Paris (see
sect. 3).

After two years Dirichlet changed to the Jesuiter-Gymnasium in Cologne. Elvenich
became a philologist at the Gymnasium in Koblenz. Later he was promoted to
professorships at the Universities of Bonn and Breslau, and informed Dirichlet
during his stay in Bonn about the state of affairs with Dirichlet’s doctor’s diploma.
In Cologne, Dirichlet had mathematics lessons with Georg Simon Ohm (1789–1854),
well known for his discovery of Ohm’s Law (1826); after him the unit of electric
resistance got its name. In 1843 Ohm discovered that pure tones are described by
purely sinusoidal oscillations. This finding opened the way for the application of
Fourier analysis to acoustics. Dirichlet made rapid progress in mathematics under
Ohm’s guidance and by his diligent private study of mathematical treatises, such
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that he acquired an unusually broad knowledge even at this early age. He attended
the Gymnasium in Cologne for only one year, starting in winter 1820, and then
left with a school-leaving certificate. It has been asserted that Dirichlet passed
the Abitur examination, but a check of the documents revealed that this was not
the case ([Sc.1]). The regulations for the Abitur examination demanded that the
candidate must be able to carry on a conversation in Latin, which was the lingua
franca of the learned world for centuries. Since Dirichlet attended the Gymnasium
just for three years, he most probably would have had problems in satisfying this
crucial condition. Moreover he did not need the Abitur to study mathematics,
which is what he aspired to. Nevertheless, his lacking the ability to speak Latin
caused him much trouble during his career as we will see later. In any case, Dirichlet
left the Gymnasium at the unusually early age of 16 years with a school-leaving
certificate but without an Abitur examination.

His parents now wanted him to study law in order to secure a good living to their
son. Dirichlet declared his willingness to devote himself to this bread-and-butter-
education during daytime – but then he would study mathematics at night. After
this his parents were wise enough to give in and gave their son their permission to
study mathematics.

2. Study in Paris

Around 1820 the conditions to study mathematics in Germany were fairly bad
for students really deeply interested in the subject ([Lo]). The only world-famous
mathematician was C.F. Gauß in Göttingen, but he held a chair for astronomy
and was first and foremost Director of the Sternwarte, and almost all his courses
were devoted to astronomy, geodesy, and applied mathematics (see the list in [Du],
p. 405 ff.). Moreover, Gauß did not like teaching – at least not on the low level
which was customary at that time. On the contrary, the conditions in France
were infinitely better. Eminent scientists such as P.-S. Laplace (1749–1827), A.-M.
Legendre (1752–1833), J. Fourier (1768–1830), S.-D. Poisson (1781–1840), A.-L.
Cauchy (1789–1857) were active in Paris, making the capital of France the world
capital of mathematics. Hensel ([H.1], vol. 1, p. 351) informs us that Dirichlet’s
parents still had friendly relations with some families in Paris since the time of the
French rule, and they let their son go to Paris in May 1822 to study mathematics.
Dirichlet studied at the Collège de France and at the Faculté des Sciences, where
he attended lectures of noted professors such as S.F. Lacroix (1765–1843), J.-B.
Biot (1774–1862), J.N.P. Hachette (1769–1834), and L.B. Francœur (1773–1849).
He also asked for permission to attend lectures as a guest student at the famous
École Polytechnique. But the Prussian chargé d’affaires in Paris refused to ask for
such a permission without the special authorization from the Prussian minister of
religious, educational, and medical affairs, Karl Freiherr von Stein zum Altenstein
(1770–1840). The 17-year-old student Dirichlet from a little provincial Rhenisch
town had no chance to procure such an authorization.

More details about Dirichlet’s courses are apparently not known. We do know that
Dirichlet, besides his courses, devoted himself to a deep private study of Gauß’
masterpiece Disquisitiones arithmeticae. At Dirichlet’s request his mother had pro-
cured a copy of the Disquisitiones for him and sent to Paris in November 1822
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(communication by G. Schubring, Bielefeld). There is no doubt that the study
of Gauß’ magnum opus left a lasting impression on Dirichlet which was of no less
importance than the impression left by his courses. We know that Dirichlet studied
the Disquisitiones arithmeticae several times during his lifetime, and we may safely
assume that he was the first German mathematician who fully mastered this unique
work. He never put his copy on his shelf, but always kept it on his desk. Sartorius
von Waltershausen ([Sa], p. 21) says, that he had his copy with him on all his
travels like some clergymen who always carry their prayer-book with themselves.

After one year of quiet life in seclusion devoted to his studies, Dirichlet’s exterior
life underwent a fundamental change in the summer of 1823. The General M.S.
Foy (1775–1825) was looking for a private tutor to teach his children the German
language and literature. The general was a highly cultured brilliant man and famous
war hero, who held leading positions for 20 years during the wars of the French
Republic and Napoléon Bonaparte. He had gained enormous popularity because of
the circumspection with which he avoided unnecessary heavy losses. In 1819 Foy
was elected into the Chamber of Deputies where he led the opposition and most
energetically attacked the extreme royalistic and clerical policy of the majority,
which voted in favour of the Bourbons. By the good offices of Larchet de Charmont,
an old companion in arms of General Foy and friend of Dirichlet’s parents, Dirichlet
was recommended to the Foy family and got the job with a good salary, so that he
no longer had to depend on his parents’ financial support. The teaching duties were
a modest burden, leaving Dirichlet enough time for his studies. In addition, with
Dirichlet’s help, Mme Foy brushed up her German, and, conversely, she helped him
to get rid of his German accent when speaking French. Dirichlet was treated like
a member of the Foy family and felt very much at ease in this fortunate position.
The house of General Foy was a meeting-point of many celebrities of the French
capital, and this enabled Dirichlet to gain self-assurance in his social bearing, which
was of notable importance for his further life.

Dirichlet soon became acquainted with his academic teachers. His first work of
academic character was a French translation of a paper by J.A. Eytelwein (1764–
1848), member of the Royal Academy of Sciences in Berlin, on hydrodynamics
([Ey]). Dirichlet’s teacher Hachette used this translation when he gave a report on
this work to the Parisian Société Philomatique in May 1823, and he published a
review in the Bulletin des Sciences par la Société Philomatique de Paris, 1823, pp.
113–115. The translation was printed in 1825 ([Ey]), and Dirichlet sent a copy to
the Academy of Sciences in Berlin in 1826 ([Bi.8], p. 41).

Dirichlet’s first own scientific work entitled Mémoire sur l’impossibilité de quelques
équations indéterminées du cinquième degré ([D.1], pp. 1–20 and pp. 21–46)
instantly gained him high scientific recognition. This work is closely related to
Fermat’s Last Theorem of 1637, which claims that the equation

xn + yn = zn

cannot be solved in integers x, y, z all different from zero whenever n ≥ 3 is a
natural number. This topic was somehow in the air, since the French Academy
of Sciences had offered a prize for a proof of this conjecture; the solution was to
be submitted before January, 1818. In fact, we know that Wilhelm Olbers (1758–
1840) had drawn Gauß’ attention to this prize question, hoping that Gauß would
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be awarded the prize, a gold medal worth 3000 Francs ([O.1] pp. 626–627). At that
time the insolubility of Fermat’s equation in non-zero integers had been proved only
for two exponents n, namely for n = 4 by Fermat himself, and for n = 3 by Euler.
Since it suffices to prove the assertion for n = 4 and for all odd primes n = p ≥ 3,
the problem was open for all primes p ≥ 5. Dirichlet attacked the case p = 5 and
from the outset considered more generally the problem of solubility of the equation

x5 ± y5 = Az5

in integers, where A is a fixed integer. He proved for many special values of A, e.g.
for A = 4 and for A = 16, that this equation admits no non-trivial solutions in
integers. For the Fermat equation itself, Dirichlet showed that for any hypothetical
non-trivial primitive integral solution x, y, z, one of the numbers must be divisible
by 5, and he deduced a contradiction under the assumption that this number is
additionally even. The “odd case” remained open at first.

Dirichlet submitted his paper to the French Academy of Sciences and got permission
to lecture on his work to the members of the Academy. This must be considered a
sensational event since the speaker was at that time a 20-year-old German student,
who had not yet published anything and did not even have any degree. Dirichlet
gave his lecture on June 11, 1825, and already one week later Lacroix and Legendre
gave a very favourable report on his paper, such that the Academy decided to have
it printed in the Recueil des Mémoires des Savans étrangers. However, the intended
publication never materialized. Dirichlet himself had his work printed in 1825, and
published it later on in more detailed form in the third volume of Crelle’s Journal
which — fortune favoured him — was founded just in time in 1826.

After that Legendre settled the aforementioned “odd case”, and Dirichlet also sub-
sequently treated this case by his methods. This solved the case n = 5 completely.
Dirichlet had made the first significant contribution to Fermat’s claim more than 50
years after Euler, and this immediately established his reputation as an excellent
mathematician. Seven years later he also proved that Fermat’s equation for the
exponent 14 admits no non-trivial integral solution. (The case n = 7 was settled
only in 1840 by G. Lamé (1795–1870).) A remarkable point of Dirichlet’s work
on Fermat’s problem is that his proofs are based on considerations in quadratic
fields, that is, in Z[

√
5] for n = 5, and Z[

√
−7] for n = 14. He apparently spent

much more thought on the problem since he proved to be well-acquainted with the
difficulties of the matter when in 1843 E. Kummer (1810–1893) gave him a manu-
script containing an alleged general proof of Fermat’s claim. Dirichlet returned the
manuscript remarking that this would indeed be a valid proof, if Kummer had not
only shown the factorization of any integer in the underlying cyclotomic field into a
product of irreducible elements, but also the uniqueness of the factorization, which,
however, does not hold true. Here and in Gauß’ second installment on biquadratic
residues we discern the beginnings of algebraic number theory.

The lecture to the Academy brought Dirichlet into closer contact with several
renowned académiciens, notably with Fourier and Poisson, who aroused his in-
terest in mathematical physics. The acquaintance with Fourier and the study of
his Théorie analytique de la chaleur clearly gave him the impetus for his later
epoch-making work on Fourier series (see sect. 8).



THE LIFE AND WORK OF GUSTAV LEJEUNE DIRICHLET (1805–1859) 7

3. Entering the Prussian Civil Service

By 1807 Alexander von Humboldt (1769–1859) was living in Paris working almost
single-handedly on the 36 lavishly illustrated volumes on the scientific evaluation
of his 1799–1804 research expedition with A. Bonpland (1773–1858) to South and
Central America. This expedition had earned him enormous world-wide fame, and
he became a corresponding member of the French Academy in 1804 and a foreign
member in 1810. Von Humboldt took an exceedingly broad interest in the natural
sciences and beyond that, and he made generous good use of his fame to support
young talents in any kind of art or science, sometimes even out of his own pocket.
Around 1825 he was about to complete his great work and to return to Berlin
as gentleman of the bedchamber of the Prussian King Friedrich Wilhelm III, who
wanted to have such a luminary of science at his court.

On Fourier’s and Poisson’s recommendation Dirichlet came into contact with A.
von Humboldt. For Dirichlet the search for a permanent position had become an
urgent matter in 1825–1826, since General Foy died in November 1825, and the job
as a private teacher would come to an end soon. J. Liouville (1809–1882) later said
repeatedly that his friend Dirichlet would have stayed in Paris if it had been possible
to find even a modestly paid position for him ([T], first part, p. 48, footnote). Even
on the occasion of his first visit to A. von Humboldt, Dirichlet expressed his desire
for an appointment in his homeland Prussia. Von Humboldt supported him in this
plan and offered his help at once. It was his declared aim to make Berlin a centre
of research in mathematics and the natural sciences ([Bi.5]).

With von Humboldt’s help, the application to Berlin was contrived in a most
promising way: On May 14, 1826, Dirichlet wrote a letter of application to the
Prussian Minister von Altenstein and added a reprint of his memoir on the Fermat
problem and a letter of recommendation of von Humboldt to his old friend von
Altenstein. Dirichlet also sent copies of his memoir on the Fermat problem and
of his translation of Eytelwein’s work to the Academy in Berlin together with a
letter of recommendation of A. von Humboldt, obviously hoping for support by the
academicians Eytelwein and the astronomer J.F. Encke (1791–1865), a student of
Gauß, and secretary to the Academy. Third, on May 28, 1826, Dirichlet sent a copy
of his memoir on the Fermat problem with an accompanying letter to C.F. Gauß
in Göttingen, explaining his situation and asking Gauß to submit his judgement
to one of his correspondents in Berlin. Since only very few people were sufficiently
acquainted with the subject of the paper, Dirichlet was concerned that his work
might be underestimated in Berlin. (The letter is published in [D.2], p. 373–374.)
He also enclosed a letter of recommendation by Gauß’ acquaintance A. von Hum-
boldt to the effect that in the opinion of Fourier and Poisson the young Dirichlet
had a most brilliant talent and proceeded on the best Eulerian paths. And von
Humboldt expressly asked Gauß for support of Dirichlet by means of his renown
([Bi.6], p. 28–29).

Now the matter proceeded smoothly: Gauß wrote to Encke that Dirichlet showed
excellent talent, Encke wrote to a leading official in the ministry to the effect that,
to the best of his knowledge, Gauß never had uttered such a high opinion on a
scientist. After Encke had informed Gauß about the promising state of affairs, Gauß



8 JÜRGEN ELSTRODT

wrote on September 13, 1826, in an almost fatherly tone to Dirichlet, expressing
his satisfaction to have evidence “from a letter received from the secretary of the
Academy in Berlin, that we may hope that you soon will be offered an appropriate
position in your homeland” ([D.2], pp. 375–376; [G.1], pp. 514–515).

Dirichlet returned to Düren in order to await the course of events. Before his
return he had a meeting in Paris which might have left lasting traces in the history
of mathematics. On October 24, 1826, N.H. Abel (1802–1829) wrote from Paris
to his teacher and friend B.M. Holmboe (1795–1850), that he had met “Herrn Le-
jeune Dirichlet, a Prussian, who visited me the other day, since he considered me as
a compatriot. He is a very sagacious mathematician. Simultaneously with Legendre
he proved the insolubility of the equation

x5 + y5 = z5

in integers and other nice things” ([A], French text p. 45 and Norwegian text p.
41). The meeting between Abel and Dirichlet might have been the beginning of
a long friendship between fellow mathematicians, since in those days plans were
being made for a polytechnic institute in Berlin, and Abel, Dirichlet, Jacobi, and
the geometer J. Steiner (1796–1863) were under consideration as leading members
of the staff. These plans, however, never materialized. Abel died early in 1829
just two days before Crelle sent his final message, that Abel definitely would be
called to Berlin. Abel and Dirichlet never met after their brief encounter in Paris.
Before that tragic end A.L. Crelle (1780–1855) had made every effort to create a
position for Abel in Berlin, and he had been quite optimistic about this project
until July, 1828, when he wrote to Abel the devastating news that the plan could
not be carried out at that time, since a new competitor “had fallen out of the sky”
([A], French text, p. 66, Norwegian text, p. 55). It has been conjectured that
Dirichlet was the new competitor, whose name was unknown to Abel, but recent
investigations by G. Schubring (Bielefeld) show that this is not true.

In response to his application Minister von Altenstein offered Dirichlet a teaching
position at the University of Breslau (Silesia, now Wroc�law, Poland) with an op-
portunity for a Habilitation (qualification examination for lecturing at a university)
and a modest annual salary of 400 talers, which was the usual starting salary of an
associate professor at that time. (This was not too bad an offer for a 21-year-old
young man without any final examination.) Von Altenstein wanted Dirichlet to
move to Breslau just a few weeks later since there was a vacancy. He added, if
Dirichlet had not yet passed the doctoral examination, he might send an applica-
tion to the philosophical faculty of the University of Bonn which would grant him
all facilities consistent with the rules ([Sc.1]).

The awarding of the doctorate, however, took more time than von Altenstein and
Dirichlet had anticipated. The usual procedure was impossible for several formal
reasons: Dirichlet had not studied at a Prussian university; his thesis, the memoir
on the Fermat problem, was not written in Latin, and Dirichlet lacked experience in
speaking Latin fluently and so was unable to give the required public disputation
in Latin. A promotion in absentia was likewise impossible, since Minister von
Altenstein had forbidden this kind of procedure in order to raise the level of the
doctorates. To circumvent these formal problems some professors in Bonn suggested
the conferment of the degree of honorary doctor. This suggestion was opposed by



THE LIFE AND WORK OF GUSTAV LEJEUNE DIRICHLET (1805–1859) 9

other members of the faculty distrustful of this way of undermining the usual rules.
The discussions dragged along, but in the end the faculty voted unanimously. On
February 24, 1827, Dirichlet’s old friend Elvenich, at that time associate professor
in Bonn, informed him about the happy ending, and a few days later Dirichlet
obtained his doctor’s diploma.

Because of the delay Dirichlet could not resume his teaching duties in Breslau
in the winter term 1826–27. In addition, a delicate serious point still had to be
settled clandstinely by the ministry. In those days Central and Eastern Europe
were under the harsh rule of the Holy Alliance (1815), the Carlsbad Decrees (1819)
were carried out meticulously, and alleged “demagogues” were to be prosecuted
(1819). The Prussian chargé d’affaires in Paris received a letter from the ministry
in Berlin asking if anything arousing political suspicion could be found out about
the applicant, since there had been rumours that Dirichlet had lived in the house
of the deceased General Foy, a fierce enemy of the government. The chargé checked
the matter, and reported that nothing was known to the detriment of Dirichlet’s
views and actions, and that he apparently had lived only for his science.

4. Habilitation and Professorship in Breslau

In the course of the Prussian reforms following the Napoleonic Wars several uni-
versities were founded under the guidance of Wilhelm von Humboldt (1767–1835),
Alexander von Humboldt’s elder brother, namely, the Universities of Berlin (1810),
Breslau (1811), and Bonn (1818), and the General Military School was founded in
Berlin in 1810, on the initiative of the Prussian General G.J.D. von Scharnhorst
(1755–1813). During his career Dirichlet had to do with all these institutions. We
have already mentioned the honorary doctorate from Bonn.

In spring 1827, Dirichlet moved from Düren to Breslau in order to assume his
appointment. On the long journey there he made a major detour via Göttingen to
meet Gauß in person (March 18, 1827), and via Berlin. In a letter to his mother
Dirichlet says that Gauß received him in a very friendly manner. Likewise, from a
letter of Gauß to Olbers ([O.2], p. 479), we know that Gauß too was very much
pleased to meet Dirichlet in person, and he expresses his great satisfaction that
his recommendation had apparently helped Dirichlet to acquire his appointment.
Gauß also tells something about the topics of the conversation, and he says that
he was surprised to learn from Dirichlet, that his (i.e., Gauß’) judgement on many
mathematical matters completely agreed with Fourier’s, notably on the foundations
of geometry.

For Dirichlet, the first task in Breslau was to habilitate (qualify as a university
lecturer). According to the rules in force he had
a) to give a trial lecture,
b) to write a thesis (Habilitationsschrift) in Latin, and
c) to defend his thesis in a public disputation to be held in Latin.
Conditions a) and b) caused no serious trouble, but Dirichlet had difficulties to
meet condition c) because of his inability to speak Latin fluently. Hence he wrote to
Minister von Altenstein asking for dispensation from the disputation. The minister
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granted permission — very much to the displeasure of some members of the faculty
([Bi.1]).

To meet condition a), Dirichlet gave a trial lecture on Lambert’s proof of the irra-
tionality of the number π. In compliance with condition b), he wrote a thesis on
the following number theoretic problem (see [D.1], pp. 45–62): Let x, b be integers,
b not a square of an integer, and expand

(x +
√

b)n = U + V
√

b ,

where U and V are integers. The problem is to determine the linear forms con-
taining the primes dividing V , when the variable x assumes all positive or negative
integral values coprime with b. This problem is solved in two cases, viz.
(i) if n is an odd prime,
(ii) if n is a power of 2.
The results are illustrated on special examples. Of notable interest is the introduc-
tion in which Dirichlet considers examples from the theory of biquadratic residues
and refers to his great work on biquadratic residues, which was to appear in Crelle’s
Journal at that time.

The thesis was printed early in 1828, and sent to von Altenstein, and in response
Dirichlet was promoted to the rank of associate professor. A. von Humboldt added
the promise to arrange Dirichlet’s transfer to Berlin as soon as possible. According
to Hensel ([H.1], vol. 1, p. 354) Dirichlet did not feel at ease in Breslau, since he
did not like the widespread provincial cliquishness. Clearly, he missed the exchange
of views with qualified researchers which he had enjoyed in Paris. On the other
hand, there were colleagues in Breslau who held Dirichlet in high esteem, as becomes
evident from a letter of Dirichlet’s colleague H. Steffens (1773–1845) to the ministry
([Bi.1], p. 30): Steffens pointed out that Dirichlet generally was highly thought of,
because of his thorough knowledge, and well liked, because of his great modesty.
Moreover he wrote that his colleague — like the great Gauß in Göttingen — did
not have many students, but those in the audience, who were seriously occupied
with mathematics, knew how to estimate Dirichlet and how to make good use of
him.

From the scientific point of view Dirichlet’s time in Breslau proved to be quite
successful. In April 1825, Gauß had published a first brief announcement — as he
was used to doing — of his researches on biquadratic residues ([G.1], pp. 165–168).
Recall that an integer a is called a biquadratic residue modulo the odd prime p, p � a,
if and only if the congruence x4 ≡ a mod p admits an integral solution. To whet
his readers’ appetite, Gauß communicated his results on the biquadratic character
of the numbers ±2. The full-length publication of his first installment appeared in
print only in 1828 ([G.1], 65–92). It is well possible, though not reliably known,
that Gauß talked to Dirichlet during the latter’s visit to Göttingen about his recent
work on biquadratic residues. In any case he did write in his very first letter of
September 13, 1826, to Dirichlet about his plan to write three memoirs on this
topic ([D.2], pp. 375–376; [G.1], pp. 514–515).

It is known that Gauß’ announcement immediately aroused the keen interest of
both Dirichlet and Jacobi, who was professor in Königsberg (East Prussia; now
Kaliningrad, Russia) at that time. They both tried to find their own proofs of
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Gauß’ results, and they both discovered plenty of new results in the realm of higher
power residues. A report on Jacobi’s findings is contained in [J.2] amongst the
correspondence with Gauß. Dirichlet discovered remarkably simple proofs of Gauß’
results on the biquadratic character of ±2, and he even answered the question as
to when an odd prime q is a biquadratic residue modulo the odd prime p, p �= q.
To achieve the biquadratic reciprocity law, only one further step had to be taken
which, however, became possible only some years later, when Gauß, in his second
installment of 1832, introduced complex numbers, his Gaussian integers, into the
realm of number theory ([G.1], pp. 169–178, 93–148, 313–385; [R]). This was
Gauß’ last long paper on number theory, and a very important one, helping to
open the gate to algebraic number theory. The first printed proof of the biquadratic
reciprocity law was published only in 1844 by G. Eisenstein (1823–1852; see [Ei],
vol. 1, pp. 141–163); Jacobi had already given a proof in his lectures in Königsberg
somewhat earlier.

Dirichlet succeeded with some crucial steps of his work on biquadratic residues on
a brief vacation in Dresden, seven months after his visit to Gauß. Fully aware
of the importance of his investigation, he immediately sent his findings in a long
sealed letter to Encke in Berlin to secure his priority, and shortly thereafter he
nicely described the fascinating history of his discovery in a letter of October 28,
1827, to his mother ([R], p. 19). In this letter he also expressed his high hopes to
expect much from his new work for his further promotion and his desired transfer
to Berlin. His results were published in the memoir Recherches sur les diviseurs
premiers d’une classe de formules du quatrième degré ([D.1], pp. 61–98). Upon
publication of this work he sent an offprint with an accompanying letter (published
in [D.2], pp. 376–378) to Gauß, who in turn expressed his appreciation of Dirichlet’s
work, announced his second installment, and communicated some results carrying
on the last lines of his first installment in a most surprising manner ([D.2], pp.
378–380; [G.1], pp. 516–518).

The subject of biquadratic residues was always in Dirichlet’s thought up to the
end of his life. In a letter of January 21, 1857, to Moritz Abraham Stern (1807–
1894), Gauß’ first doctoral student, who in 1859 became the first Jewish professor
in Germany who did not convert to Christianity, he gave a completely elementary
proof of the criterion for the biquadratic character of the number 2 ([D.2], p. 261
f.).

Having read Dirichlet’s article, F.W. Bessel (1784–1846), the famous astronomer
and colleague of Jacobi in Königsberg, enthusiastically wrote to A. von Humboldt
on April 14, 1828: “... who could have imagined that this genius would succeed in
reducing something appearing so difficult to such simple considerations. The name
Lagrange could stand at the top of the memoir, and nobody would realize the
incorrectness” ([Bi.2], pp. 91–92). This praise came just in time for von Humboldt
to arrange Dirichlet’s transfer to Berlin. Dirichlet’s period of activity in Breslau was
quite brief; Sturm [St] mentions that he lectured in Breslau only for two semesters,
Kummer says three semesters.
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5. Transfer to Berlin and Marriage

Aiming at Dirichlet’s transfer to Berlin, A. von Humboldt sent copies of Bessel’s
enthusiastic letter to Minister von Altenstein and to Major J.M. von Radowitz
(1797–1853), at that time teacher at the Military School in Berlin. At the same
time Fourier tried to bring Dirichlet back to Paris, since he considered Dirichlet to
be the right candidate to occupy a leading role in the French Academy. (It does
not seem to be known, however, whether Fourier really had an offer of a definite
position for Dirichlet.) Dirichlet chose Berlin, at that time a medium-sized city
with 240 000 inhabitants, with dirty streets, without pavements, without street
lightning, without a sewage system, without public water supply, but with many
beautiful gardens.

A. von Humboldt recommended Dirichlet to Major von Radowitz and to the min-
ister of war for a vacant post at the Military School. At first there were some
reservations to installing a young man just 23 years of age for the instruction of
officers. Hence Dirichlet was first employed on probation only. At the same time
he was granted leave for one year from his duties in Breslau. During this time
his salary was paid further on from Breslau; in addition he received 600 talers per
year from the Military School. The trial period was successful, and the leave from
Breslau was extended twice, so that he never went back there.

From the very beginning, Dirichlet also had applied for permission to give lectures at
the University of Berlin, and in 1831 he was formally transferred to the philosophical
faculty of the University of Berlin with the further duty to teach at the Military
School. There were, however, strange formal oddities about his legal status at the
University of Berlin which will be dealt with in sect. 7.

In the same year 1831 he was elected to the Royal Academy of Sciences in Berlin,
and upon confirmation by the king, the election became effective in 1832. At that
time the 27-year-old Dirichlet was the youngest member of the Academy.

Shortly after Dirichlet’s move to Berlin, a most prestigious scientific event orga-
nized by A. von Humboldt was held there, the seventh assembly of the German
Association of Scientists and Physicians (September 18–26, 1828). More than 600
participants from Germany and abroad attended the meeting, Felix Mendelssohn
Bartholdy composed a ceremonial music, the poet Rellstab wrote a special poem,
a stage design by Schinkel for the aria of the Queen of the Night in Mozart’s Magic
Flute was used for decoration, with the names of famous scientists written in the
firmament. A great gala dinner for all participants and special invited guests with
the king attending was held at von Humboldt’s expense. Gauß took part in the
meeting and lived as a special guest in von Humboldt’s house. Dirichlet was invited
by von Humboldt jointly with Gauß, Charles Babbage (1792–1871) and the officers
von Radowitz and K. von Müffing (1775–1851) as a step towards employment at
the Military School. Another participant of the conference was the young physicist
Wilhelm Weber (1804–1891), at that time associate professor at the University of
Halle. Gauß got to know Weber at this assembly, and in 1831 he arranged Weber’s
call to Göttingen, where they both started their famous joint work on the investi-
gation of electromagnetism. The stimulating atmosphere in Berlin was compared
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by Gauß in a letter to his former student C.L. Gerling (1788–1864) in Marburg “to
a move from atmospheric air to oxygen”.

The following years were the happiest in Dirichlet’s life both from the professional
and the private point of view. Once more it was A. von Humboldt who established
also the private relationship. At that time great salons were held in Berlin, where
people active in art, science, humanities, politics, military affairs, economics, etc.
met regularly, say, once per week. A. von Humboldt introduced Dirichlet to the
house of Abraham Mendelssohn Bartholdy (1776–1835) (son of the legendary Moses
Mendelssohn (1729–1786)) and his wife Lea, née Salomon (1777–1842), which was
a unique meeting point of the cultured Berlin. The Mendelssohn family lived in
a baroque palace erected in 1735, with a two-storied main building, side-wings, a
large garden hall holding up to 300 persons, and a huge garden of approximately
3 hectares (almost 10 acres) size. (The premises were sold in 1851 to the Prussian
state and the house became the seat of the Upper Chamber of the Prussian Par-
liament. In 1904 a new building was erected, which successively housed the Upper
Chamber of the Prussian Parliament, the Prussian Council of State, the Cabinet of
the GDR, and presently the German Bundesrat.) There is much to be told about
the Mendelssohn family which has to be omitted here; for more information see the
recent wonderful book by T. Lackmann [Lac]. Every Sunday morning famous Sun-
day concerts were given in the Mendelssohn garden hall with the four highly gifted
Mendelssohn children performing. These were the pianist and composer Fanny
(1805–1847), later married to the painter Wilhelm Hensel (1794–1861), the musi-
cal prodigy, brilliant pianist and composer Felix (1809–1847), the musically gifted
Rebecka (1811–1858), and the cellist Paul (1812–1874), who later carried out the
family’s banking operations. Sunday concerts started at 11 o’clock and lasted for 4
hours with a break for conversation and refreshments in between. Wilhelm Hensel
made portraits of the guests — more than 1000 portraits came into being this way,
a unique document of the cultural history of that time.

From the very beginning, Dirichlet took an interest in Rebecka, and although she
had many suitors, she decided for Dirichlet. Lackmann ([Lac]) characterizes Re-
becka as the linguistically most gifted, wittiest, and politically most receptive of
the four children. She experienced the radical changes during the first half of the
nineteeth century more consciously and critically than her siblings. These traits
are clearly discernible also from her letters quoted by her nephew Sebastian Hensel
([H.1], [H.2]). The engagement to Dirichlet took place in November 1831. Af-
ter the wedding in May 1832, the young married couple moved into a flat in the
parental house, Leipziger Str. 3, and after the Italian journey (1843–1845), the
Dirichlet family moved to Leipziger Platz 18.

In 1832 Dirichlet’s life could have taken quite a different course. Gauß planned to
nominate Dirichlet as a successor to his deceased colleague, the mathematician B.F.
Thibaut (1775–1832). When Gauß learnt about Dirichlet’s marriage, he cancelled
this plan, since he assumed that Dirichlet would not be willing to leave Berlin.
The triumvirate Gauß, Dirichlet, and Weber would have given Göttingen a unique
constellation in mathematics and natural sciences not to be found anywhere else in
the world.
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Dirichlet was notoriously lazy about letter writing. He obviously preferred to set-
tle matters by directly contacting people. On July 2, 1833, the first child, the
son Walter, was born to the Dirichlet family. Grandfather Abraham Mendelssohn
Bartholdy got the happy news on a buisiness trip in London. In a letter he congrat-
ulated Rebecka and continued resentfully: “I don’t congratulate Dirichlet, at least
not in writing, since he had the heart not to write me a single word, even on this
occasion; at least he could have written: 2 + 1 = 3” ([H.1], vol. 1, pp. 340–341).
(Walter Dirichlet became a well-known politician later and member of the German
Reichstag 1881–1887; see [Ah.1], 2. Teil, p. 51.)

The Mendelssohn family is closely related with many artists and scientists of whom
we but mention some prominent mathematicians: The renowned number theo-
rist Ernst Eduard Kummer was married to Rebecka’s cousin Ottilie Mendelssohn
(1819–1848) and hence was Dirichlet’s cousin. He later became Dirichlet’s succes-
sor at the University of Berlin and at the Military School, when Dirichlet left for
Göttingen. The function theorist Hermann Amandus Schwarz (1843–1921), after
whom Schwarz’ Lemma and the Cauchy–Schwarz Inequality are named, was mar-
ried to Kummer’s daughter Marie Elisabeth, and hence was Kummer’s son-in-law.
The analyst Heinrich Eduard Heine (1821–1881), after whom the Heine–Borel The-
orem got its name, was a brother of Albertine Mendelssohn Bartholdy, née Heine,
wife of Rebecka’s brother Paul. Kurt Hensel (1861–1941), discoverer of the p-adic
numbers and for many years editor of Crelle’s Journal, was a son of Sebastian
Hensel (1830–1898) and his wife Julie, née Adelson; Sebastian Hensel was the only
child of Fanny and Wilhelm Hensel, and hence a nephew of the Dirichlets. Kurt
and Gertrud (née Hahn) Hensel’s daughter Ruth Therese was married to the profes-
sor of law Franz Haymann, and the noted function theorist Walter Hayman (born
1926) is an offspring of this married couple. The noted group theorist and num-
ber theorist Robert Remak (1888– some unknown day after 1942 when he met his
death in Auschwitz) was a nephew of Kurt and Gertrud Hensel. The philosopher
and logician Leonard Nelson (1882–1927) was a great-great-grandson of Gustav and
Rebecka Lejeune Dirichlet.

6. Teaching at the Military School

When Dirichlet began teaching at the Military School on October 1, 1828, he first
worked as a coach for the course of F.T. Poselger (1771–1838). It is a curious coinci-
dence that Georg Simon Ohm, Dirichlet’s mathematics teacher at the Gymnasium
in Cologne, simultaneously also worked as a coach for the course of his brother, the
mathematician Martin Ohm (1792–1872), who was professor at the University of
Berlin. Dirichlet’s regular teaching started one year later, on October 1, 1829. The
course went on for three years and then started anew. Its content was essentially
elementary and practical in nature, starting in the first year with the theory of
equations (up to polynomial equations of the fourth degree), elementary theory of
series, some stereometry and descriptive geometry. This was followed in the second
year by some trigonometry, the theory of conics, more stereometry and analytical
geometry of three-dimensional space. The third year was devoted to mechanics, hy-
dromechanics, mathematical geography and geodesy. At first, the differential and
integral calculus was not included in the curriculum, but some years later Dirichlet
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succeeded in raising the level of instruction by introducing so-called higher analysis
and its applications to problems of mechanics into the program. Subsequently, this
change became permanent and was adhered to even when Dirichlet left his post
([Lam]). Altogether he taught for 27 years at the Military School, from his trans-
fer to Berlin in 1828 to his move to Göttingen in 1855, with two breaks during his
Italian journey (1843–1845) and after the March Revolution of 1848 in Berlin, when
the Military School was closed down for some time, causing Dirichlet a sizable loss
of his income.

During the first years Dirichlet really enjoyed his position at the Military School.
He proved to be an excellent teacher, whose courses were very much appreciated
by his audience, and he liked consorting with the young officers, who were almost
of his own age. His refined manners impressed the officers, and he invited them for
stimulating evening parties in the course of which he usually formed the centre of
conversation. Over the years, however, he got tired of repeating the same curricu-
lum every three years. Moreover, he urgently needed more time for his research;
together with his lectures at the university his teaching load typically was around
18 hours per week.

When the Military School was reopened after the 1848 revolution, a new reactionary
spirit had emerged among the officers, who as a rule belonged to the nobility. This
was quite opposed to Dirichlet’s own very liberal convictions. His desire to quit
the post at the Military School grew, but he needed a compensation for his loss
in income from that position, since his payment at the University of Berlin was
rather modest. When the Prussian ministry was overly reluctant to comply with
his wishes, he accepted the most prestigious call to Göttingen as a successor to
Gauß in 1855.

7. Dirichlet as a Professor at the University of Berlin

From the very beginning Dirichlet applied for permission to give lectures at the
University of Berlin. The minister approved his application and communicated this
decision to the philosophical faculty. But the faculty protested, since Dirichlet was
neither habilitated nor appointed professor, whence the instruction of the minister
was against the rules. In his response the minister showed himself conciliatory
and said he would leave it to the faculty to demand from Dirichlet an appropriate
achievement for his Habilitation. Thereupon the dean of the philosphical faculty
offered a reasonable solution: He suggested that the faculty would consider Dirichlet
— in view of his merits — as Professor designatus, with the right to give lectures.
To satisfy the formalities of a Habilitation, he only requested Dirichlet

a) to distribute a written program in Latin, and
b) to give a lecture in Latin in the large lecture-hall.

This seemed to be a generous solution. Dirichlet was well able to compose texts in
Latin as he had proved in Breslau with his Habilitationsschrift. He could prepare
his lecture in writing and just read it — this did not seem to take great pains.
But quite unexpectedly he gave the lecture only with enormous reluctance. It
took Dirichlet almost 23 years to give it. The lecture was entitled De formarum
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binarium secundi gradus compositione (“On the composition of binary quadratic
forms”; [D.2], pp. 105–114) and comprises less than 8 printed pages. On the title
page Dirichlet is referred to as Phil. Doct. Prof. Publ. Ord. Design. The reasons
for the unbelievable delay are given in a letter to the dean H.W. Dove (1803–1879)
of November 10, 1850, quoted in [Bi.1], p. 43. In the meantime Dirichlet was
transferred for long as an associate professor to the University of Berlin in 1831,
and he was even advanced to the rank of full professor in 1839, but in the faculty
he still remained Professor designatus up to his Habilitation in 1851. This meant
that it was only in 1851 that he had equal rights in the faculty; before that time
he was, e.g. not entitled to write reports on doctoral dissertations nor could he
influence Habilitationen — obviously a strange situation since Dirichlet was by far
the most competent mathematician on the faculty.

We have several reports of eye-witnesses about Dirichlet’s lectures and his social life.
After his participation in the assembly of the German Association of Scientists and
Physicians, Wilhelm Weber started a research stay in Berlin beginning in October,
1828. Following the advice of A. von Humboldt, he attended Dirichlet’s lectures on
Fourier’s theory of heat. The eager student became an intimate friend of Dirichlet’s,
who later played a vital role in the negotiations leading to Dirichlet’s move to
Göttingen (see sect. 12). We quote some lines of the physicist Heinrich Weber
(1839–1928), nephew of Wilhelm Weber, not to be confused with the mathematician
Heinrich Weber (1842–1913), which give some impression on the social life of his
uncle in Berlin ([Web], pp. 14–15): “After the lectures which were given three
times per week from 12 to 1 o’clock there used to be a walk in which Dirichlet often
took part, and in the afternoon it became eventually common practice to go to the
coffee-house ‘Dirichlet’. ‘After the lecture every time one of us invites the others
without further ado to have coffee at Dirichlet’s, where we show up at 2 or 3 o’clock
and stay quite cheerfully up to 6 o’clock’3”.

During his first years in Berlin Dirichlet had only rather few students, numbers
varying typically between 5 and 10. Some lectures could not even be given at all
for lack of students. This is not surprising since Dirichlet generally gave lectures
on what were considered to be “higher” topics, whereas the great majority of the
students preferred the lectures of Dirichlet’s colleagues, which were not so demand-
ing and more oriented towards the final examination. Before long, however, the
situation changed, Dirichlet’s reputation as an excellent teacher became generally
known, and audiences comprised typically between 20 and 40 students, which was
quite a large audience at that time.

Although Dirichlet was not on the face of it a brilliant speaker like Jacobi, the great
clarity of his thought, his striving for perfection, the self-confidence with which he
elaborated on the most complicated matters, and his thoughtful remarks fascinated
his students. Whereas mere computations played a major role in the lectures of
most of his contemporaries, in Dirichlet’s lectures the mathematical argument came
to the fore. In this regard Minkowski [Mi] speaks “of the other Dirichlet Principle
to overcome the problems with a minimum of blind computation and a maximum
of penetrating thought”, and from that time on he dates “the modern times in the
history of mathematics”.

3Quotation from a family letter of W. Weber of November 21, 1828.
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Dirichlet prepared his lectures carefully and spoke without notes. When he could
not finish a longer development, he jotted down the last formula on a slip of paper,
which he drew out of his pocket at the beginning of the next lecture to continue the
argument. A vivid description of his lecturing habits was given by Karl Emil Gruhl
(1833–1917), who attended his lectures in Berlin (1853–1855) and who later became
a leading official in the Prussian ministry of education (see [Sc.2]). An admiring
description of Dirichlet’s teaching has been passed on to us by Thomas Archer Hirst
(1830–1892), who was awarded a doctor’s degree in Marburg, Germany, in 1852,
and after that studied with Dirichlet and Steiner in Berlin. In Hirst’s diary we
find the following entry of October 31, 1852 ([GW], p. 623): “Dirichlet cannot
be surpassed for richness of material and clear insight into it: as a speaker he has
no advantages — there is nothing like fluency about him, and yet a clear eye and
understanding make it dispensable: without an effort you would not notice his
hesitating speech. What is peculiar in him, he never sees his audience — when he
does not use the blackboard at which time his back is turned to us, he sits at the
high desk facing us, puts his spectacles up on his forehead, leans his head on both
hands, and keeps his eyes, when not covered with his hands, mostly shut. He uses
no notes, inside his hands he sees an imaginary calculation, and reads it out to us
— that we understand it as well as if we too saw it. I like that kind of lecturing.”
— After Hirst called on Dirichlet and was “met with a very hearty reception”, he
noted in his diary on October 13, 1852 ([GW], p. 622): “He is a rather tall, lanky-
looking man, with moustache and beard about to turn grey (perhaps 45 years old),
with a somewhat harsh voice and rather deaf: it was early, he was unwashed, and
unshaved (what of him required shaving), with his ‘Schlafrock’, slippers, cup of
coffee and cigar ... I thought, as we sat each at an end of the sofa, and the smoke
of our cigars carried question and answer to and fro, and intermingled in graceful
curves before it rose to the ceiling and mixed with the common atmospheric air, ‘If
all be well, we will smoke our friendly cigar together many a time yet, good-natured
Lejeune Dirichlet’.”

The topics of Dirichlet’s lectures were mainly chosen from various areas of number
theory, foundations of analysis (including infinite series, applications of integral
calculus), and mathematical physics. He was the first university teacher in Germany
to give lectures on his favourite subject, number theory, and on the application of
analytical techniques to number theory; 23 of his lectures were devoted to these
topics ([Bi.1]; [Bi.8], p. 47).

Most importantly, the lectures of Jacobi in Königsberg and Dirichlet in Berlin
gave the impetus for a general rise of the level of mathematical instruction in
Germany, which ultimately led to the very high standards of university mathematics
in Germany in the second half of the nineteenth century and beyond that up to 1933.
Jacobi even established a kind of “Königsberg school” of mathematics principally
dedicated to the investigation of the theory of elliptic functions. The foundation of
the first mathematical seminar in Germany in Königsberg (1834) was an important
event in his teaching activities. Dirichlet was less extroverted; from 1834 onwards
he conducted a kind of private mathematical seminar in his house which was not
even mentioned in the university calendar. The aim of this private seminar was to
give his students an opportunity to practice their oral presentation and their skill
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in solving problems. For a full-length account on the development of the study of
mathematics at German universities during the nineteenth century see Lorey [Lo].

A large number of mathematicians received formative impressions from Dirichlet
by his lectures or by personal contacts. Without striving for a complete list we
mention the names of P. Bachmann (1837–1920), the author of numerous books
on number theory, G. Bauer (1820–1907), professor in Munich, C.W. Borchardt
(1817–1880), Crelle’s successor as editor of Crelle’s Journal, M. Cantor (1829–
1920), a leading German historian of mathematics of his time, E.B. Christoffel
(1829–1900), known for his work on differential geometry, R. Dedekind (1831–1916),
noted for his truly fundamental work on algebra and algebraic number theory, G.
Eisenstein (1823–1852), noted for his profound work on number theory and elliptic
functions, A. Enneper (1830–1885), known for his work on the theory of surfaces and
elliptic functions, E. Heine (1821–1881), after whom the Heine–Borel Theorem got
its name, L. Kronecker (1823–1891), the editor of Dirichlet’s collected works, who
jointly with Kummer and Weierstraß made Berlin a world centre of mathematics
in the second half of the nineteenth century, E.E. Kummer (1810–1893), one of the
most important number theorists of the nineteenth century and not only Dirichlet’s
successor in his chair in Berlin but also the author of the important obituary [Ku]
on Dirichlet, R. Lipschitz (1832–1903), noted for his work on analysis and number
theory, B. Riemann (1826–1866), one of the greatest mathematicians of the 19th
century and Dirichlet’s successor in Göttingen, E. Schering (1833–1897), editor of
the first edition of the first 6 volumes of Gauß’ collected works, H. Schröter (1829–
1892), professor in Breslau, L. von Seidel (1821–1896), professor in Munich, who
introduced the notion of uniform convergence, J. Weingarten (1836–1910), who
advanced the theory of surfaces.

Dirichlet’s lectures had a lasting effect even beyond the grave, although he did
not prepare notes. After his death several of his former students published books
based on his lectures: In 1904 G. Arendt (1832–1915) edited Dirichlet’s lectures on
definite integrals following his 1854 Berlin lectures ([D.7]). As early as 1871 G.F.
Meyer (1834–1905) had published the 1858 Göttingen lectures on the same topic
([MG]), but his account does not follow Dirichlet’s lectures as closely as Arendt
does. The lectures on “forces inversely proportional to the square of the distance”
were published by F. Grube (1835–1893) in 1876 ([Gr]). Here one may read how
Dirichlet himself explained what Riemann later called “Dirichlet’s Principle”. And
last but not least, there are Dirichlet’s lectures on number theory in the masterly
edition of R. Dedekind, who over the years enlarged his own additions to a pioneer-
ing exposition of the foundations of algebraic number theory based on the concept
of ideal.

8. Mathematical Works

In spite of his heavy teaching load, Dirichlet achieved research results of the highest
quality during his years in Berlin. When A. von Humboldt asked Gauß in 1845 for
a proposal of a candidate for the order pour le mérite, Gauß did “not neglect to
nominate Professor Dirichlet in Berlin. The same has — as far as I know — not
yet published a big work, and also his individual memoirs do not yet comprise a big
volume. But they are jewels, and one does not weigh jewels on a grocer’s scales”
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([Bi.6], p. 88)4. We quote a few highlights of Dirichlet’s œuvre showing him at the
peak of his creative power.

A. Fourier Series. The question whether or not an “arbitrary” 2π-periodic
function on the real line can be expanded into a trigonometric series

a0

2
+

∞∑
n=1

(an cos nx + bn sinnx)

was the subject of controversal discussions among the great analysts of the eigh-
teenth century, such as L. Euler, J. d’Alembert, D. Bernoulli, J. Lagrange. Fourier
himself did not settle this problem, though he and his predecessors knew that such
an expansion exists in many interesting cases. Dirichlet was the first mathemati-
cian to prove rigorously for a fairly wide class of functions that such an expansion is
possible. His justly famous memoir on this topic is entitled Sur la convergence des
séries trigonométriques qui servent à représenter une fonction arbitraire entre des
limites données (1829) ([D.1], pp. 117–132). He points out in this work that some
restriction on the behaviour of the function in question is necessary for a positive
solution to the problem, since, e.g. the notion of integral “ne signifie quelque chose”
for the (Dirichlet) function

f(x) =
{

c for x ∈ Q ,
d for x ∈ R \ Q ,

whenever c, d ∈ R, c �= d ([D.1], p. 132). An extended version of his work appeared
in 1837 in German ([D.1], pp. 133–160; [D.4]). We comment on this German
version since it contains various issues of general interest. Before dealing with
his main problem, Dirichlet clarifies some points which nowadays belong to any
introductory course on real analysis, but which were by far not equally commonplace
at that time. This refers first of all to the notion of function. In Euler’s Introductio
in analysin infinitorum the notion of function is circumscribed somewhat tentatively
by means of “analytical expressions”, but in his book on differential calculus his
notion of function is so wide “as to comprise all manners by which one magnitude
may be determined by another one”. This very wide concept, however, was not
generally accepted. But then Fourier in his Théorie analytique de la chaleur (1822)
advanced the opinion that also any non-connected curve may be represented by a
trigonometric series, and he formulated a corresponding general notion of function.
Dirichlet follows Fourier in his 1837 memoir: “If to any x there corresponds a single
finite y, namely in such a way that, when x continuously runs through the interval
from a to b, y = f(x) likewise varies little by little, then y is called a continuous
... function of x. Yet it is not necessary that y in this whole interval depend on
x according to the same law; one need not even think of a dependence expressible
in terms of mathematical operations” ([D.1], p. 135). This definition suffices for
Dirichlet since he only considers piecewise continuous functions.

Then Dirichlet defines the integral for a continuous function on [a, b] as the limit of
decomposition sums for equidistant decompositions, when the number of interme-
diate points tends to infinity. Since his paper is written for a manual of physics, he
does not formally prove the existence of this limit, but in his lectures [D.7] he fully

4At that time Dirichlet was not yet awarded the order. He got it in 1855 after Gauß’ death,

and thus became successor to Gauß also as a recipient of this extraordinary honour.
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proves the existence by means of the uniform continuity of a continuous function on
a closed interval, which he calls a “fundamental property of continuous functions”
(loc. cit., p. 7).

He then tentatively approaches the development into a trigonometric series by
means of discretization. This makes the final result plausible, but leaves the crucial
limit process unproved. Hence he starts anew in the same way customary today:
Given the piecewise continuous5 2π-periodic function f : R → R, he forms the
(Euler-)Fourier coefficients

ak :=
1
π

∫ π

−π

f(t) cos kt dt (k ≥ 0) ,

bk :=
1
π

∫ π

−π

f(t) sin kt dt (k ≥ 1) ,

and transforms the partial sum

sn(x) :=
a0

2
+

n∑
k=1

(ak cos kx + bk sin kx)

(n ≥ 0) into an integral, nowadays known as Dirichlet’s Integral,

sn(x) =
1
2π

∫ π

−π

f(t)
sin(2n + 1) t−x

2

sin t−x
2

dt .

The pioneering progress of Dirichlet’s work now is to find a precise simple sufficient
condition implying

lim
n→∞

sn(x) =
1
2
(f(x + 0) + f(x − 0)) ,

namely, this limit relation holds whenever f is piecewise continuous and piecewise
monotone in a neighbourhood of x. A crucial role in Dirichlet’s argument is played
by a preliminary version of what is now known as the Riemann–Lebesgue Lemma
and by a mean-value theorem for integrals.

Using the same method Dirichlet also proves the expansion of an “arbitrary” func-
tion depending on two angles into a series of spherical functions ([D.1], pp. 283–
306). The main trick of this paper is a transformation of the partial sum into an
integral of the shape of Dirichlet’s Integral.

A characteristic feature of Dirichlet’s work is his skilful application of analysis to
questions of number theory, which made him the founder of analytic number theory
([Sh]). This trait of his work appears for the first time in his paper Über eine neue
Anwendung bestimmter Integrale auf die Summation endlicher oder unendlicher
Reihen (1835) (On a new application of definite integrals to the summation of
finite or infinite series, [D.1], pp. 237–256; shortened French translation in [D.1],
pp. 257–270). Applying his result on the limiting behaviour of Dirichlet’s Integral
for n tending to infinity, he computes the Gaussian Sums in a most lucid way,
and he uses the latter result to give an ingenious proof of the quadratic reciprocity
theorem. (Recall that Gauß himself published 6 different proofs of his theorema
fundamentale, the law of quadratic reciprocity (see [G.2]).)

5finitely many pieces in [0, 2π]
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B. Dirichlet’s Theorem on Primes in Arithmetical Progressions. Di-
richlet’s mastery in the application of analysis to number theory manifests itself
most impressively in his proof of the theorem on an infinitude of primes in any
arithmetic progression of the form (a+km)k≥1, where a and m are coprime natural
numbers. In order to explain why this theorem is of special interest, Dirichlet gives
the following typical example ([D.1], p. 309): The law of quadratic reciprocity
implies that the congruence x2+7 ≡ 0 ( mod p) is solvable precisely for those primes
p different from 2 and 7 which are of the form 7k + 1, 7k + 2, or 7k + 4 for some
natural number k. But the law of quadratic reciprocity gives no information at all
about the existence of primes in any of these arithmetic progressions.

Dirichlet’s theorem on primes in arithmetic progressions was first published in Ger-
man in 1837 (see [D.1], pp. 307–312 and pp. 313–342); a French translation was
published in Liouville’s Journal, but not included in Dirichlet’s collected papers
(see [D.2], p. 421). In this work, Dirichlet again utilizes the opportunity to clarify
some points of general interest which were not commonplace at that time. Prior
to his introduction of the L-series he explains the “essential difference” which “ex-
ists between two kinds of infinite series. If one considers instead of each term its
absolute value, or, if it is complex, its modulus, two cases may occur. Either one
may find a finite magnitude exceeding any finite sum of arbitrarily many of these
absolute values or moduli, or this condition is not satisfied by any finite number
however large. In the first case, the series always converges and has a unique def-
inite sum irrespective of the order of the terms, no matter if these proceed in one
dimension or if they proceed in two or more dimensions forming a so-called double
series or multiple series. In the second case, the series may still be convergent, but
this property as well as the sum will depend in an essential way on the order of
the terms. Whenever convergence occurs for a certain order it may fail for another
order, or, if this is not the case, the sum of the series may be quite a different one”
([D.1], p. 318).

The crucial new tools enabling Dirichlet to prove his theorem are the L-series which
nowadays bear his name. In the original work these series were introduced by means
of suitable primitive roots and roots of unity, which are the values of the characters.
This makes the representation somewhat lengthy and technical (see e.g. [Lan], vol.
I, p. 391 ff. or [N.2], p. 51 ff.). For the sake of conciseness we use the modern
language of characters: By definition, a Dirichlet character mod m is a homomor-
phism χ : (Z/mZ)× → S1, where (Z/mZ)× denotes the group of prime residue
classes mod m and S1 the unit circle in C. To any such χ corresponds a map (by
abuse of notation likewise denoted by the same letter) χ : Z → C such that
a) χ(n) = 0 if and only if (m, n) > 1,
b) χ(kn) = χ(k)χ(n) for all k, n ∈ Z,
c) χ(n) = χ(k) whenever k ≡ n (mod m),
namely, χ(n) := χ(n + mZ) if (m, n) = 1.
The set of Dirichlet characters modm is a multiplicative group isomorphic to
(Z/mZ)× with the so-called principal character χ0 as neutral element. To any
such χ Dirichlet associates an L-series

L(s, χ) :=
∞∑

n=1

χ(n)
ns

(s > 1) ,
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and expands it into an Euler product

L(s, χ) =
∏
p

(1 − χ(p)p−s)−1 ,

where the product extends over all primes p. He then defines the logarithm

log L(s, χ) =
∑

p

∞∑
k=1

1
k

χ(p)k

pks
(s > 1)

and uses it to sift the primes in the progression (a + km)k≥1 by means of a sum-
mation over all φ(m) Dirichlet characters χ mod m:

1
φ(m)

∑
χ

χ(a) log L(s, χ) =
∑

k≥1,p

pk≡a (mod m)

1
kpks

=
∑

p≡a (mod m)

1
ps

+ R(s) .(1)

Here, R(s) is the contribution of the terms with k ≥ 2 which converges absolutely
for s > 1

2 . For χ �= χ0 the series L(s, χ) even converges for s > 0 and is continuous
in s. Dirichlet’s great discovery now is that

(2) L(1, χ) �= 0 for χ �= χ0 .

Combining this with the simple observation that L(s, χ0) → ∞ as s → 1 + 0,
formula (1) yields ∑

p≡a mod m

1
ps

−→ ∞ for s → 1 + 0

which gives the desired result. To be precise, in his 1837 paper Dirichlet proved
(2) only for prime numbers m, but he pointed out that in the original draft of his
paper he also proved (2) for arbitrary natural numbers m by means of “indirect
and rather complicated considerations. Later I convinced myself that the same aim
may be achieved by a different method in a much shorter way” ([D.1], p. 342). By
this he means his class number formula which makes the non-vanishing of L(1, χ)
obvious (see section C).

Dirichlet’s theorem on primes in arithmetic progressions holds analogously for Z[i]
instead of Z. This was shown by Dirichlet himself in another paper in 1841 ([D.1],
pp. 503–508 and pp. 509–532).

C. Dirichlet’s Class Number Formula. On September 10, 1838, C.G.J.
Jacobi wrote to his brother Moritz Hermann Jacobi (1801–1874), a renowned physi-
cist in St. Petersburg, with unreserved admiration: “Applying Fourier series to
number theory, Dirichlet has recently found results touching the utmost of human
acumen” ([Ah.2], p. 47). This remark goes back to a letter of Dirichlet’s to Jacobi
on his research on the determination of the class number of binary quadratic forms
with fixed determinant. Dirichlet first sketched his results on this topic and on the
mean value of certain arithmetic functions in 1838 in an article in Crelle’s Journal
([D.1], pp. 357–374) and elaborated on the matter in full detail in a very long
memoir of 1839–1840, likewise in Crelle’s Journal ([D.1], pp. 411–496; [D.3]).
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Following Gauß, Dirichlet considered quadratic forms

ax2 + 2bxy + cy2

with even middle coefficient 2b. This entails a large number of cases such that the
class number formula finally appears in 8 different versions, 4 for positive and 4
for negative determinants. Later on Kronecker found out that the matter can be
dealt with much more concisely if one considers from the very beginning forms of
the shape

(3) f(x, y) := ax2 + bxy + cy2 .

He published only a brief outline of the necessary modifications in the framework
of his investigations on elliptic functions ([Kr], pp. 371–375); an exposition of
book-length was subsequently given by de Seguier ([Se]).

For simplicity, we follow Kronecker’s approach and consider quadratic forms of the
type (3) with integral coefficients a, b, c and discriminant D = b2 − 4ac assuming
that D is not the square of an integer. The crucial question is whether or not an
integer n can be represented by the form (3) by attributing suitable integral values
to x, y. This question admits no simple answer as long as we consider an individual
form f .

The substitution (
x

y

)
�−→

(
α β
γ δ

) (
x

y

)
with

(
α β
γ δ

)
∈ SL2(Z)

transforms f into a so-called (properly) equivalent form

f ′(x, y) = a′x2 + b′xy + c′y2

which evidently has the same discriminant and represents the same integers. Hence
the problem of representation needs to be solved only for a representative system
of the finitely many equivalence classes of binary forms of fixed discriminant D.
Associated with each form f is its group of automorphs containing all matrices(

α β
γ δ

)
∈ SL2(Z) transforming f into itself. The really interesting quantity now is

the number R(n, f) of representations of n by f which are inequivalent with respect
to the natural action of the group of automorphs. Then R(n, f) turns out to be
finite, but still there is no simple formula for this quantity.

Define now f to be primitive if (a, b, c) = 1. Forms equivalent to primitive ones
are primitive. Denote by f1, . . . , fh a representative system of primitive binary
quadratic forms of discriminant D, where h = h(D) is called the class number. For
D < 0 we tacitly assume that f1, . . . , fh are positive definite. Moreover we assume
that D is a fundamental discriminant, that is, D is an integer satisfying either

(i) D ≡ 1 (mod 4), D square-free, or
(ii) D ≡ 0 (mod 4), D

4 ≡ 2 or 3 (mod 4), D
4 square-free.

Then there is the simple formula
h∑

j=1

R(n, fj) =
∑
m |n

(
D

m

)
(n �= 0) ,
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where
(

D
·
)

is the so-called Kronecker symbol, an extension of the familiar Legendre
symbol ([Z], p. 38). The law of quadratic reciprocity implies that n �→

(
D
n

)
is a

so-called primitive Dirichlet character mod |D|. It is known that any primitive real
Dirichlet character is one of the characters

(
D
·
)

for some fundamental discriminant
D. In terms of generating functions the last sum formula means, supposing that
D < 0,

h∑
j=1

∑
(x,y) �=(0,0)

(fj(x, y))−s = wζ(s)L
(

s,

(
D

·

))

with w = 2, 4 or 6 as D < −4, D = −4 or D = −3, respectively. Using geometric
considerations, Dirichlet deduces by a limiting process the first of his class number
formulae

(4) h(D) =




w
√
|D|

2π
L

(
1,

(
D

·

))
if D < 0 ,

√
D

log ε0
L

(
1,

(
D

·

))
if D > 0 .

In the second formula, ε0 = 1
2 (t0+u0

√
D) denotes the fundamental solution of Pell’s

equation t2 − Du2 = 4 (with t0, u0 > 0 minimal). The case D > 0 is decidedly
more difficult than the case D < 0 because of the more difficult description of the
(infinite) group of automorphs in terms of the solutions of Pell’s equation. Formula
(4) continues to hold even if D is a general discriminant ([Z], p. 73 f.). The class
number being positive and finite, Dirichlet was able to conclude the non-vanishing
of L(1, χ) (in the crucial case of a real character) mentioned above.

Using Gauß sums Dirichlet was moreover able to compute the values of the L-series
in (4) in a simple closed form. This yields

h(D) =




− w

2|D|

|D|−1∑
n=1

(
D

n

)
n for D < 0 ,

− 1
log ε0

D−1∑
n=1

(
D

n

)
log sin

πn

D
for D > 0 ,

where D again is a fundamental discriminant.

Kronecker’s version of the theory of binary quadratic forms has the great advantage
of laying the bridge to the theory of quadratic fields: Whenever D is a fundamental
discriminant, the classes of binary quadratic forms of discriminant D correspond
bijectively to the equivalence classes (in the narrow sense) of ideals in Q(

√
D).

Hence Dirichlet’s class number formula may be understood as a formula for the
ideal class number of Q(

√
D), and the gate to the class number formula for arbitrary

number fields opens up.

Special cases of Dirichlet’s class number formula were already observed by Jacobi in
1832 ([J.1], pp. 240–244 and pp. 260–262). Jacobi considered the forms x2 + py2,
where p ≡ 3 (mod 4) is a prime number, and computing both sides of the class
number formula, he stated the coincidence for p = 7, . . . , 103 and noted that p = 3
is an exceptional case. Only after Gauß’ death did it become known from his papers
that he had known the class number formula already for some time. Gauß’ notes
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are published in [G.1], pp. 269–291 with commentaries by Dedekind (ibid., pp.
292–303); see also Bachmann’s report [Ba.3], pp. 51–53. In a letter to Dirichlet of
November 2, 1838, Gauß deeply regretted that unfortunate circumstances had not
allowed him to elaborate on his theory of class numbers of quadratic forms which
he possessed as early as 1801 ([Bi.9], p. 165).

In another great memoir ([D.1], pp. 533–618), Dirichlet extends the theory of
quadratic forms and his class number formula to the ring of Gaussian integers Z[i].
He draws attention to the fact that in this case the formula for the class number
depends on the division of the lemniscate in the same way as it depends on the
division of the circle in the case of rational integral forms with positive determinant
(i.e., with negative discriminant; see [D.1], pp. 538, 613, 621). Moreover, he
promised that the details were to appear in the second part of his memoir, which
however never came out.

Comparing the class numbers in the complex and the real domains Dirichlet con-
cluded that

H(D) = ξh(D)h(−D)

where D is a rational integral non-square determinant (in Dirichlet’s notation of
quadratic forms), H(D) is the complex class number, and h(D), h(−D) are the real
ones. The constant ξ equals 2 whenever Pell’s equation t2 − Du2 = −1 admits
a solution in rational integers, and ξ = 1 otherwise. For Dirichlet, “this result
... is one of the most beautiful theorems on complex integers and all the more
surprising since in the theory of rational integers there seems to be no connection
between forms of opposite determinants” ([D.1], p. 508 and p. 618). This result
of Dirichlet’s has been the starting point of vast extensions (see e.g. [Ba.2], [H],
[He], No. 8, [K.4], [MC], [Si], [Wei]).

D. Dirichlet’s Unit Theorem. An algebraic integer is, by definition, a zero
of a monic polynomial with integral coefficients. This concept was introduced by
Dirichlet in a letter to Liouville ([D.1], pp. 619–623), but his notion of what Hilbert
later called the ring of algebraic integers in a number field remained somewhat
imperfect, since for an algebraic integer ϑ he considered only the set Z[ϑ] as the
ring of integers of Q(ϑ). Notwithstanding this minor imperfection, he succeeded in
determining the structure of the unit group of this ring in his poineering memoir
Zur Theorie der complexen Einheiten (On the theory of complex units, [D.1], pp.
639–644). His somewhat sketchy account was later carried out in detail by his
student Bachmann in the latter’s Habilitationsschrift in Breslau ([Ba.1]; see also
[Ba.2]).

In the more familiar modern notation, the unit theorem describes the structure of
the group of units as follows: Let K be an algebraic number field with r1 real and
2r2 complex (non-real) embeddings and ring of integers oK . Then the group of
units of oK is equal to the direct product of the (finite cyclic) group E(K) of roots
of unity contained in K and a free abelian group of rank r := r1 + r2 − 1. This
means: There exist r “fundamental units” η1, . . . , ηr and a primitive d-th root of
unity ζ (d = |E(K)|) such that every unit ε ∈ oK is obtained precisely once in the
form

ε = ζkηn1
1 · . . . · ηnr

r
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with 0 ≤ k ≤ d−1, n1, . . . , nr ∈ Z. This result is one of the basic pillars of algebraic
number theory.

In Dirichlet’s approach the ring Z[ϑ] is of finite index in the ring of all algebraic
integers (in the modern sense), and the same holds for the corresponding groups of
units. Hence the rank r does not depend on the choice of the generating element ϑ
of the field K = Q(ϑ). (Note that Z[ϑ] depends on that choice.)

An important special case of the unit theorem, namely the case ϑ =
√

D (D > 1
a square-free integer), was known before. In this case the determination of the
units comes down to Pell’s equation, and one first encounters the phenomenon that
all units are obtained by forming all integral powers of a fundamental unit and
multiplying these by ±1. Dirichlet himself extended this result to the case when
ϑ satisfies a cubic equation ([D.1], pp. 625–632) before he dealt with the general
case.

According to C.G.J. Jacobi the unit theorem is “one of the most important, but one
of the thorniest of the science of number theory” ([J.3], p. 312, footnote, [N.1],
p. 123, [Sm], p. 99). Kummer remarks that Dirichlet found the idea of proof
when listening to the Easter Music in the Sistine Chapel during his Italian journey
(1843–1845; see [D.2], p. 343).

A special feature of Dirichlet’s work is his admirable combination of surprisingly
simple observations with penetrating thought which led him to deep results. A
striking example of such a simple observation is the so-called Dirichlet box principle
(also called drawer principle or pigeon-hole principle), which states that whenever
more than n objects are distributed in n boxes, then there will be at least one box
containing two objects. Dirichlet gave an amazing application of this most obvious
principle in a brief paper ([D.1], pp. 633–638), in which he proves the follow-
ing generalization of a well-known theorem on rational approximation of irrational
numbers: Suppose that the real numbers α1, . . . , αm are such that 1, α1, . . . , αm are
linearly independent over Q. Then there exist infinitely many integral (m+1)-tuples
(x0, x1, . . . , xm) such that (x1, . . . , xm) �= (0, . . . , 0) and

|x0 + x1α1 + . . . + xmαm| < ( max
1≤j≤m

|xj |)−m .

Dirichlet’s proof: Let n be a natural number, and let x1, . . . , xm independently
assume all 2n+1 integral values −n,−n+1, . . . , 0, . . . , n−1, n. This gives (2n+1)m

fractional parts {x1α1 + . . . + xmαm} in the half open unit interval [0, 1[. Divide
[0, 1[ into (2n)m half-open subintervals of equal length (2n)−m. Then two of the
aforementioned points belong to the same subinterval. Forming the difference of
the corresponding Z-linear combinations, one obtains integers x0, x1, . . . , xm, such
that x1, . . . , xm are of absolute value at most 2n and not all zero and such that

|x0 + x1α1 + . . . + xmαm| < (2n)−m .

Since n was arbitrary, the assertion follows. As Dirichlet points out, the approxi-
mation theorem quoted above is crucial in the proof of the unit theorem because
it implies that r independent units can be found. The easier part of the theorem,
namely that the free rank of the group of units is at most r, is considered obvious
by Dirichlet.
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E. Dirichlet’s Principle. We pass over Dirichlet’s valuable work on definite
integrals and on mathematical physics in silence ([Bu]), but cannot neglect men-
tioning the so-called Dirichlet Principle, since it played a very important role in the
history of analysis (see [Mo]). Dirichlet’s Problem concerns the following problem:
Given a (say, bounded) domain G ⊂ R3 and a continuous real-valued function f
on the (say, smooth) boundary ∂G of G, find a real-valued continuous function u,
defined on the closure G of G, such that u is twice continuously differentiable on G
and satisfies Laplace’s equation

∆u = 0 on G

and such that u | ∂G = f . Dirichlet’s Principle gives a deceptively simple method
of how to solve this problem: Find a function v : G → R, continuous on G and
continuously differentiable on G, such that v | ∂G = f and such that Dirichlet’s
integral ∫

G

(v2
x + v2

y + v2
z) dx dy dz

assumes its minimum value. Then v solves the problem.

Dirichlet’s name was attributed to this principle by Riemann in his epoch-making
memoir on Abelian functions (1857), although Riemann was well aware of the fact
that the method already had been used by Gauß in 1839. Likewise, W. Thomson
(Lord Kelvin of Largs, 1824–1907) made use of this principle in 1847 as was also
known to Riemann. Nevertheless he named the principle after Dirichlet, “because
Professor Dirichlet informed me that he had been using this method in his lectures
(since the beginning of the 1840’s (if I’m not mistaken))” ([EU], p. 278).

Riemann used the two-dimensional version of Dirichlet’s Principle in a most liberal
way. He applied it not only to plane domains but also to quite arbitrary domains
on Riemann surfaces. He did not restrict to sufficiently smooth functions, but
admitted singularities, e.g. logarithmic singularities, in order to prove his existence
theorems for functions and differentials on Riemann surfaces. As Riemann already
pointed out in his doctoral thesis (1851), this method “opens the way to investigate
certain functions of a complex variable independently of an [analytic] expression
for them”, that is, to give existence proofs for certain functions without giving an
analytic expression for them ([EU], p. 283).

From today’s point of view the näıve use of Dirichlet’s principle is open to serious
doubt, since it is by no means clear that there exists a function v satisfying the
boundary condition for which the infimum value of Dirichlet’s integral is actually
attained. This led to serious criticism of the method in the second half of the nine-
teenth century discrediting the principle. It must have been a great relief to many
mathematicians when D. Hilbert (1862–1943) around the turn of the 20th century
proved a precise version of Dirichlet’s Principle which was sufficiently general to
allow for the usual function-theoretic applications.

There are only a few brief notes on the calculus of probability, the theory of errors
and the method of least squares in Dirichlet’s collected works. However, a consid-
erable number of unpublished sources on these subjects have survived which have
been evaluated in [F].
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9. Friendship with Jacobi

Dirichlet and C.G.J. Jacobi got to know each other in 1829, soon after Dirichlet’s
move to Berlin, during a trip to Halle, and from there jointly with W. Weber to
Thuringia. At that time Jacobi held a professorship in Königsberg, but he used
to visit his family in Potsdam near Berlin, and he and Dirichlet made good use
of these occasions to see each other and exchange views on mathematical matters.
During their lives they held each other in highest esteem, although their characters
were quite different. Jacobi was extroverted, vivid, witty, sometimes quite blunt;
Dirichlet was more introvert, reserved, refined, and charming. In the preface to
his tables Canon arithmeticus of 1839, Jacobi thanks Dirichlet for his help. He
might have extended his thanks to the Dirichlet family. To check the half a million
numbers, also Dirichlet’s wife and mother, who after the death of her husband in
1837 lived in Dirichlet’s house, helped with the time-consuming computations (see
[Ah.2], p. 57).

When Jacobi fell severely ill with diabetes mellitus, Dirichlet travelled to Königsberg
for 16 days, assisted his friend, and “developed an eagerness never seen at him
before”, as Jacobi wrote to his brother Moritz Hermann ([Ah.2], p. 99). Dirichlet
got a history of illness from Jacobi’s physician, showed it to the personal physician
of King Friedrich Wilhelm IV, who agreed to the treatment, and recommended
a stay in the milder climate of Italy during wintertime for further recovery. The
matter was immediately brought to the King’s attention by the indefatigable A.
von Humboldt, and His Majesty on the spot granted a generous support of 2000
talers towards the travel expenses.

Jacobi was happy to have his doctoral student Borchardt, who just had passed his
examination, as a companion, and even happier to learn that Dirichlet with his
family also would spend the entire winter in Italy to stengthen the nerves of his
wife. Steiner, too, had health problems, and also travelled to Italy. They were
accompanied by the Swiss teacher L. Schläfli (1814–1895), who was a genius in
languages and helped as an interpreter and in return got mathematical instruction
from Dirichlet and Steiner, so that he later became a renowned mathematician.
Noteworthy events and encounters during the travel are recorded in the letters in
[Ah.2] and [H.1]. A special highlight was the audience of Dirichlet and Jacobi
with Pope Gregory XVI on December 28, 1843 (see [Koe], p. 317 f.).

In June 1844, Jacobi returned to Germany and got the “transfer to the Academy
of Sciences in Berlin with a salary of 3000 talers and the permission, without obli-
gation, to give lectures at the university” ([P], p. 27). Dirichlet had to apply twice
for a prolongation of his leave because of serious illness. Jacobi proved to be a real
friend and took Dirichlet’s place at the Military School and at the university and
thus helped him to avoid heavy financial losses. In spring 1845 Dirichlet returned
to Berlin. His family could follow him only a few months later under somewhat
dramatic circumstances with the help of the Hensel family, since in February 1845
Dirichlet’s daughter Flora was born in Florence.

In the following years, the contacts between Dirichlet and Jacobi became even
closer; they met each other virtually every day. Dirichlet’s mathematical rigour
was legendary already among his contemporaries. When in 1846 he received a
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most prestigious call from the University of Heidelberg, Jacobi furnished A. von
Humboldt with arguments by means of which the minister should be prompted
to improve upon Dirichlet’s conditions in order to keep him in Berlin. Jacobi
explained (see [P], p. 99): “In science, Dirichlet has two features which constitute
his speciality. He alone, not myself, not Cauchy, not Gauß knows what a perfectly
rigorous mathematical proof is. When Gauß says he has proved something, it is
highly probable to me, when Cauchy says it, one may bet as much pro as con,
when Dirichlet says it, it is certain; I prefer not at all to go into such subtleties.
Second, Dirichlet has created a new branch of mathematics, the application of the
infinite series, which Fourier introduced into the theory of heat, to the investigation
of the properties of the prime numbers... Dirichlet has preferred to occupy himself
mainly with such topics, which offer the greatest difficulties ...” In spite of several
increases, Dirichlet was still not yet paid the regular salary of a full professor in
1846; his annual payment was 800 talers plus his income from the Military School.
After the call to Heidelberg the sum was increasesd by 700 talers to 1500 talers
per year, and Dirichlet stayed in Berlin — with the teaching load at the Military
School unchanged.

10. Friendship with Liouville

Joseph Liouville (1809–1882) was one of the leading French mathematicians of his
time. He began his studies at the École Polytechnique when Dirichlet was about
to leave Paris and so they had no opportunity to become acquainted with each
other during their student days. In 1833 Liouville began to submit his papers to
Crelle. This brought him into contact with mathematics in Germany and made
him aware of the insufficient publication facilities in his native country. Hence,
in 1835, he decided to create a new French mathematical journal, the Journal de
Mathématiques Pures et Appliquées, in short, Liouville’s Journal. At that time,
he was only a 26-year-old répétiteur (coach). The journal proved to be a lasting
success. Liouville directed it single-handedly for almost 40 years — the journal
enjoys a high reputation to this day.

In summer 1839 Dirichlet was on vacation in Paris, and he and Liouville were
invited for dinner by Cauchy. It was probably on this occasion that they made
each other’s acquaintance, which soon developed into a devoted friendship. After
his return to Berlin, Dirichlet saw to it that Liouville was elected a corresponding
member6 of the Academy of Sciences in Berlin, and he sent a letter to Liouville
suggesting that they should enter into a scientific correspondence ([Lü], p. 59 ff.).
Liouville willingly agreed; part of the correspondence was published later ([T]).
Moreover, during the following years, Liouville saw to it that French translations of
many of Dirichlet’s papers were published in his journal. Contrary to Kronecker’s
initial plans, not all of these translations were printed in [D.1], [D.2]; the missing
items are listed in [D.2], pp. 421–422.

The friendship of the two men was deepened and extended to the families during
Dirichlet’s visits to Liouville’s home in Toul in fall of 1853 and in March 1856, when
Dirichlet utilized the opportunity to attend a meeting of the French Academy of

6He became an external member in 1876.
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Sciences in the capacity of a foreign member to which he had been elected in 1854.
On the occasion of the second visit, Mme Liouville bought a dress for Mrs Dirichlet,
“la fameuse robe qui fait toujours l’admiration de la société de Gœttingue”, as
Dirichlet wrote in his letter of thanks ([T], Suite, p. 52).

Mme de Blignières, a daughter of Liouville, remembered an amusing story about
the long discussions between Dirichlet and her father ([T], p. 47, footnote): Both
of them had a lot of say; how was it possible to limit the speaking time fairly?
Liouville could not bear lamps, he lighted his room by wax and tallow candles. To
measure the time of the speakers, they returned to an old method that probably
can be traced back at least to medieval times: They pinned a certain number of
pins into one of the candles at even distances. Between two pins the speaker had
the privilege not to be interrupted. When the last pin fell, the two geometers went
to bed.

11. Vicissitudes of Life

After the deaths of Abraham Mendelssohn Bartholdy in 1835 and his wife Lea in
1842, the Mendelssohn house was first conducted as before by Fanny Hensel, with
Sunday music and close contacts among the families of the siblings, with friends
and acquaintances. Then came the catastrophic year 1847: Fanny died completely
unexpectedly of a stroke, and her brother Felix, deeply shocked by her premature
death, died shortly thereafter also of a stroke. Sebastian Hensel, the under-age son
of Fanny and Wilhelm Hensel, was adopted by the Dirichlet family. To him we owe
interesting first-hand descriptions of the Mendelssohn and Dirichlet families ([H.1],
[H.2]).

Then came the March Revolution of 1848 with its deep political impact. King
Friedrich Wilhelm IV proved to be unable to handle the situation, the army was
withdrawn, and a civic guard organized the protection of public institutions. Rie-
mann, at that time a student in Berlin, stood guard in front of the Royal Castle
of Berlin. Dirichlet with an old rifle guarded the palace of the Prince of Prussia,
a brother to the King, who had fled (in fear of the guillotine); he later succeeded
the King, when the latter’s mental disease worsened, and ultimately became the
German Kaiser Wilhelm I in 1871.

After the revolution the reactionary circles took the revolutionaries and other people
with a liberal way of thinking severely to task: Jacobi suffered massive pressure, the
conservative press published a list of liberal professors: “The red contingent of the
staff is constituted by the names ...” (there follow 17 names, including Dirichlet,
Jacobi, Virchow; see [Ah.2], p. 219). The Dirichlet family not only had a liberal
way of thinking, they also acted accordingly. In 1850 Rebecka Dirichlet helped the
revolutionary Carl Schurz, who had come incognito, to free the revolutionary G.
Kinkel from jail in Spandau ([Lac], pp. 244–245). Schurz and Kinkel escaped to
England; Schurz later became a leading politician in the USA.

The general feeling at the Military School changed considerably. Immediately after
the revolution the school was closed down for some time, causing a considerable
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loss in income for Dirichlet. When it was reopened, a reactionary spirit had spread
among the officers, and Dirichlet no longer felt at ease there.

A highlight in those strained times was the participation of Dirichlet and Jacobi
in the celebration of the fiftieth anniversary jubilee of the doctorate of Gauß in
Göttingen in 1849. Jacobi gave an interesting account of this event in a letter to
his brother ([Ah.2], pp. 227–228); for a general account see [Du], pp. 275–279.
Gauß was in an elated mood at that festivity and he was about to light his pipe with
a pipe-light of the original manuscript of his Disquisitiones arithmeticae. Dirichlet
was horrified, rescued the paper, and treasured it for the rest of his life. After his
death the sheet was found among his papers.

The year 1851 again proved to be a catastrophic one: Jacobi died quite unexpect-
edly of smallpox the very same day, that little Felix, a son of Felix Mendelssohn
Bartholdy, was buried. The terrible shock of these events can be felt from Rebecka’s
letter to Sebastian Hensel ([H.2], pp. 133–134). On July 1, 1952, Dirichlet gave a
most moving memorial speech to the Academy of Sciences in Berlin in honour of
his great colleague and intimate friend Carl Gustav Jacob Jacobi ([D.5]).

12. Dirichlet in Göttingen

When Gauß died on February 23, 1855, the University of Göttingen unanimously
wanted to win Dirichlet as his successor. It is said that Dirichlet would have stayed
in Berlin, if His Majesty would not want him to leave, if his salary would be raised
and if he would be exempted from his teaching duties at the Military School ([Bi.7],
p. 121, footnote 3). Moreover it is said that Dirichlet had declared his willingness
to accept the call to Göttingen and that he did not want to revise his decision
thereafter. Göttingen acted faster and more efficiently than the slow bureaucracy
in Berlin. The course of events is recorded with some regret by Rebecka Dirichlet
in a letter of April 4, 1855, to Sebastian Hensel ([H.2], p. 187): “Historically
recorded, ... the little Weber came from Göttingen as an extraordinarily authorized
person to conclude the matter. Paul [Mendelssohn Barthody, Rebecka’s brother]
and [G.] Magnus [1802–1870, physicist in Berlin] strongly advised that Dirichlet
should make use of the call in the manner of professors, since nobody dared to
approach the minister before the call was available in black and white; however,
Dirichlet did not want this, and I could not persuade him with good conscience to
do so.”

In a very short time, Rebecka rented a flat in Göttingen, Gotmarstraße 1, part
of a large house which still exists, and the Dirichlet family moved with their two
younger children, Ernst and Flora, to Göttingen. Rebecka could write to Sebastian
Hensel: “Dirichlet is contentissimo” ([H.2], p. 189). One year later, the Dirichlet
family bought the house in Mühlenstraße 1, which still exists and bears a memorial
tablet. The house and the garden (again with a pavillon) are described in the
diaries of the Secret Legation Councillor K.A. Varnhagen von Ense (1785–1858), a
friend of the Dirichlets’, who visited them in Göttingen. Rebecka tried to renew
the old glory of the Mendelssohn house with big parties of up to 60–70 persons,
plenty of music with the outstanding violinist Joseph Joachim and the renowned
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pianist Clara Schumann performing — and with Dedekind playing waltzes on the
piano for dancing.

Dirichlet rapidly felt very much at home in Göttingen and got into fruitful con-
tact with the younger generation, notably with R. Dedekind and B. Riemann (at
that time assistant to W. Weber), who both had achieved their doctor’s degree
and Habilitation under Gauß. They both were deeply grateful to Dirichlet for the
stimulance and assistance he gave them. This can be deduced from several of
Dedekind’s letters to members of his family (e.g. [Sch], p. 35): “Most useful for
me is my contact with Dirichlet almost every day from whom I really start learning
properly; he is always constantly kind to me, tells me frankly which gaps I have
to fill in, and immediately gives me instructions and the means to do so.” And
in another letter (ibid., p. 37) we read the almost prophetic words: “Moreover, I
have much contact with my excellent colleague Riemann, who is beyond doubt af-
ter or even with Dirichlet the most profound of the living mathematicians and will
soon be recognized as such, when his modesty allows him to publish certain things,
which, however, temporarily will be understandable only to few.” Comparing, e.g.
Dedekind’s doctoral thesis with his later pioneering deep work one may well appre-
ciate his remark, that Dirichlet “made a new human being” of him ([Lo], p. 83).
Dedekind attended all of Dirichlet’s lectures in Göttingen, although he already was
a Privatdozent, who at the same time gave the presumably first lectures on Galois
theory in the history of mathematics. Clearly, Dedekind was the ideal editor for
Dirichlet’s lectures on number theory ([D.6]).

Riemann already had studied with Dirichlet in Berlin 1847–1849, before he returned
to Göttingen to finish his thesis, a crucial part of which was based on Dirichlet’s
Principle. Already in 1852 Dirichlet had spent some time in Göttingen, and Rie-
mann was happy to have an occasion to look through his thesis with him and to have
an extended discussion with him on his Habilitationsschrift on trigonometric series
in the course of which Riemann got a lot of most valuable hints. When Dirichlet
was called to Göttingen, he could provide the small sum of 200 talers payment per
year for Riemann which was increased to 300 talers in 1857, when Riemann was
advanced to the rank of associate professor.

There can be no doubt that the first years in Göttingen were a happy time for
Dirichlet. He was a highly esteemed professor, his teaching load was much less
than in Berlin, leaving him more time for research, and he could gather around him
a devoted circle of excellent students. Unfortunately, the results of his research of
his later years have been almost completely lost. Dirichlet had a fantastic power
of concentration and an excellent memory, which allowed him to work at any time
and any place without pen and paper. Only when a work was fully carried out in
his mind, did he most carefully write it up for publication. Unfortunately, fate did
not allow him to write up the last fruits of his thought, about which we have only
little knowledge (see [D.2], p. 343 f. and p. 420).

When the lectures of the summer semester of the year 1858 had come to an end,
Dirichlet made a journey to Montreux (Switzerland) in order to prepare a memorial
speech on Gauß, to be held at the Göttingen Society of Sciences, and to write up a
work on hydrodynamics. (At Dirichlet’s request, the latter work was prepared for
publication by Dedekind later; see [D.2], pp. 263–301.) At Montreux he suffered
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a heart attack and returned to Göttingen mortally ill. Thanks to good care he
seemed to recover. Then, on December 1, 1858, Rebecka died all of a sudden and
completely unexpectedly of a stroke. Everybody suspected that Dirichlet would
not for long survive this turn of fate. Sebastian Hensel visited his uncle for the
last time on Christmas 1858 and wrote down his feelings later ([H.2], p. 311 f.):
“Dirichlet’s condition was hopeless, he knew precisely how things were going for
him, but he faced death calmly, which was edifying to observe. And now the poor
Grandmother! Her misery ... to lose also her last surviving child, ... was terrible to
observe. It was obvious that Flora, the only child still in the house, could not stay
there. I took her to Prussia ...” Dirichlet died on May 5, 1859, one day earlier than
his faithful friend Alexander von Humboldt, who died on May 6, 1859, in his 90th
year of life. The tomb of Rebecka and Gustav Lejeune Dirichlet in Göttingen still
exists and will soon be in good condition again, when the 2006 restorative work is
finished. Dirichlet’s mother survived her son for 10 more years and died only in
her 100th year of age. Wilhelm Weber took over the guardianship of Dirichlet’s
under-age children ([Web], p. 98).

The Academy of Sciences in Berlin honoured Dirichlet by a formal memorial speech
delivered by Kummer on July 5, 1860 ([Ku]). Moreover, the Academy ordered the
edition of Dirichlet’s collected works. The first volume was edited by L. Kronecker
and appeared in 1889 ([D.1]). After Kronecker’s death, the editing of the second
volume was completed by L. Fuchs and it appeared in 1897 ([D.2]).

Conclusion

Henry John Stephen Smith (1826–1883), Dublin-born Savilian Professor of Geom-
etry in the University of Oxford, was known among his contemporaries as the most
distinguished scholar of his day at Oxford. In 1858 Smith started to write a report
on the theory of numbers beginning with the investigations of P. de Fermat and
ending with the then (1865) latest results of Kummer, Kronecker, and Hurwitz.
The six parts of Smith’s report appeared over the period of 1859 to 1865 and are
very instructive to read today ([Sm]). When he prepared the first part of his re-
port, Smith got the sad news of Dirichlet’s death, and he could not help adding the
following footnote to his text ([Sm], p. 72) appreciating Dirichlet’s great service to
number theory: “The death of this eminent geometer in the present year (May 5,
1859) is an irreparable loss to the science of arithmetic. His original investigations
have probably contributed more to its advancement than those of any other writer
since the time of Gauss, if, at least, we estimate results rather by their importance
than by their number. He has also applied himself (in several of his memoirs) to give
an elementary character to arithmetical theories which, as they appear in the work
of Gauss, are tedious and obscure; and he has done much to popularize the theory
of numbers among mathematicians — a service which is impossible to appreciate
too highly.”

Acknowledgement. The author thanks Prof. Dr. S.J. Patterson (Göttingen) for
his improvements on the text.
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An overview of Manin’s conjecture for del Pezzo surfaces

T.D. Browning

Abstract. This paper surveys recent progress towards the Manin conjecture

for (singular and non-singular) del Pezzo surfaces. To illustrate some of the
techniques available, an upper bound of the expected order of magnitude is

established for a singular del Pezzo surface of degree four.

1. Introduction

A fundamental theme in mathematics is the study of integer or rational points
on algebraic varieties. Let V ⊂ Pn be a projective variety that is cut out by a finite
system of homogeneous equations defined over Q. Then there are a number of basic
questions that can be asked about the set V (Q) := V ∩ Pn(Q) of rational points
on V : when is V (Q) non-empty? how large is V (Q) when it is non-empty? This
paper aims to survey the second question, for a large class of varieties V for which
one expects V (Q) to be Zariski dense in V .

To make sense of this it is convenient to define the height of a projective rational
point x = [x0, . . . , xn] ∈ Pn(Q) to be H(x) := ‖x‖, for any norm ‖ · ‖ on Rn+1,
provided that x = (x0, . . . , xn) ∈ Zn+1 and gcd(x0, . . . , xn) = 1. Throughout
this work we shall work with the height metrized by the choice of norm |x| :=
max0�i�n |xi|. Given a suitable Zariski open subset U ⊆ V , the goal is then to
study the quantity

(1) NU,H(B) := #{x ∈ U(Q) : H(x) � B},

as B → ∞. It is natural to question whether the asymptotic behaviour of NU,H(B)
can be related to the geometry of V , for suitable open subsets U ⊆ V . Around 1989
Manin initiated a program to do exactly this for varieties with ample anticanonical
divisor [FMT89]. Suppose for simplicity that V ⊂ Pn is a non-singular complete
intersection, with V = W1 ∩ · · · ∩Wt for hypersurfaces Wi ⊂ Pn of degree di. Since
V is assumed to be Fano, its Picard group is a finitely generated free Z-module, and
we denote its rank by ρV . In this setting the Manin conjecture takes the following
shape [BM90, Conjecture C ′].
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Conjecture A. Suppose that d1 + · · · + dt � n. Then there exists a Zariski
open subset U ⊆ V and a non-negative constant cV,H such that

(2) NU,H(B) = cV,HBn+1−d1−···−dt(log B)ρV −1
(
1 + o(1)

)
,

as B → ∞.

It should be noted that there exist heuristic arguments supporting the value
of the exponents of B and log B appearing in the conjecture [SD04, §8]. The
constant cV,H has also received a conjectural interpretation at the hands of Peyre
[Pey95], and this has been generalised to cover certain other cases by Batyrev and
Tschinkel [BT98b], and Salberger [Sal98]. In fact whenever we refer to the Manin
conjecture we shall henceforth mean that the value of the constant cV,H should agree
with the prediction of Peyre et al. With this in mind, the Manin conjecture can be
extended to cover certain other Fano varieties V which are not necessarily complete
intersections, nor non-singular. For the former one simply takes the exponent of B
to be the infimum of numbers a/b ∈ Q such that b > 0 and aH + bKV is linearly
equivalent to an effective divisor, where KV ∈ Div(V ) is a canonical divisor and
H ∈ Div(V ) is a hyperplane section. For the latter, if V has only rational double
points one may apply the conjecture to a minimal desingularisation Ṽ of V , and
then use the functoriality of heights. A discussion of these more general versions
of the conjecture can be found in the survey of Tschinkel [Tsc03]. The purpose of
this note is to give an overview of our progress in the case that V is a suitable Fano
variety of dimension 2.

Let d � 3. A non-singular surface S ⊂ Pd of degree d, with very ample
anticanonical divisor −KS , is known as a del Pezzo surface of degree d. Their
geometry has been expounded by Manin [Man86], for example. It is well-known
that such surfaces S arise either as the quadratic Veronese embedding of a quadric
in P3, which is a del Pezzo surface of degree 8 in P8 (isomorphic to P1 × P1), or as
the blow-up of P2 at 9− d points in general position, in which case the degree of S
satisfies 3 � d � 9. Apart from a brief mention in the final section of this paper,
we shall say nothing about del Pezzo surfaces of degree 1 or 2 in this work. The
arithmetic of such surfaces remains largely elusive.

We proceed under the assumption that 3 � d � 9. In terms of the expected
asymptotic formula for NU,H(B) for a suitable open subset U ⊆ S, the exponent
of B is 1, and the exponent of log B is at most 9 − d, since the geometric Picard
group Pic(S ⊗Q Q) has rank 10 − d. An old result of Segre ensures that the set
S(Q) of rational points on S is Zariski dense as soon as it is non-empty. Moreover,
S may contain certain so-called accumulating subvarieties that can dominate the
behaviour of the counting function NS,H(B). These are the possible lines contained
in S, whose configuration is intimately related to the configuration of points in the
plane that are blown-up to obtain S. Now it is an easy exercise to check that

NP1,H(B) =
12
π2

B2
(
1 + o(1)

)
,

as B → ∞, so that NV,H(B) 	V B2 for any geometrically integral surface V ⊂ Pn

that contains a line defined over Q. However, if U ⊆ V is defined to be the Zariski
open subset formed by deleting all of the lines from V then it follows from combining
an estimate of Heath-Brown [HB02, Theorem 6] with a simple birational projection
argument, that NU,H(B) = oV (B2).
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Returning to the setting of del Pezzo surfaces S ⊂ Pd of degree d, it turns out
that there are no accumulating subvarieties when d = 9, or when d = 8 and S is
isomorphic to P1 ×P1, in which case we study NS,H(B). When 3 � d � 7, or when
d = 8 and S is not isomorphic to P1×P1, there are a finite number of accumulating
subvarieties, equal to the lines in S. In these cases we study NU,H(B) for the open
subset U formed by deleting all of the lines from S. We now proceed to review the
progress that has been made towards the Manin conjecture for del Pezzo surfaces
of degree d � 3. In doing so we have split our discussion according to the degree
of the surface. It will become apparent that the problem of estimating NU,H(B)
becomes harder as the degree decreases.

1.1. Del Pezzo surfaces of degree � 5. It turns out that the non-singular
del Pezzo surfaces S of degree d � 6 are toric, in the sense that they contain the
torus G2

m as a dense open subset, whose natural action on itself extends to all of S.
Thus the Manin conjecture for such surfaces is a special case of the more general
work due to Batyrev and Tschinkel [BT98a], that establishes this conjecture for
all toric varieties. One may compare this result with the work of de la Bretèche
[dlB01] and Salberger [Sal98], who both establish the conjecture for toric varieties
defined over Q, and also the work of Peyre [Pey95], who handles a number of
special cases.

For non-singular del Pezzo surfaces S ⊂ P5 of degree 5, the situation is rather
less satisfactory. In fact there are very few instances for which the Manin conjecture
has been established. The most significant of these is due to de la Bretèche [dlB02],
who has proved the conjecture when the 10 lines are all defined over Q. In such
cases we say that the surface is split over Q. Let S0 be the surface obtained by
blowing up P2 along the four points

p1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1], p4 = [1, 1, 1],

and let U0 ⊂ S0 denote the corresponding open subset formed by deleting the lines
from S0. Then Pic(S0) has rank 5, since S0 is split over Q, and de la Bretèche
obtains the following result.

Theorem 1. Let B � 3. Then there exists a constant c0 > 0 such that

NU0,H(B) = c0B(log B)4
(
1 + O

( 1
log log B

))
.

We shall return to the proof of this result below. The other major achievement
in the setting of quintic del Pezzo surfaces is a result of de la Bretèche and Fouvry
[dlBF04]. Here the Manin conjecture is established for the surface obtained by
blowing up P2 along four points in general position, two of which are defined over
Q and two of which are conjugate over Q(i). In related work, Browning [Bro03b]
has obtained upper bounds for NU,H(B) that agree with the Manin prediction for
several other del Pezzo surfaces of degree 5.

1.2. Del Pezzo surfaces of degree 4. A quartic del Pezzo surface S ⊂ P4,
that is defined over Q, can be recognised as the zero locus of a suitable pair of
quadratic forms Q1, Q2 ∈ Z[x0, . . . , x4]. Then S = Proj(Q[x0, . . . , x4]/(Q1, Q2)) is
the complete intersection of the hypersurfaces Q1 = 0 and Q2 = 0 in P4. When S
is non-singular (2) predicts the existence of a constant cS,H � 0 such that

(3) NU,H(B) = cS,HB(log B)ρS−1
(
1 + o(1)

)
,
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as B → ∞, where ρS = rkPic(S) � 6 and U ⊂ S is obtained by deleting the
16 lines from S. In this setting the best result available is due to Salberger. In
work communicated at the conference Higher dimensional varieties and rational
points at Budapest in 2001, he establishes the estimate NU,H(B) = Oε,S(B1+ε) for
any ε > 0, provided that the surface contains a conic defined over Q. In fact an
examination of Salberger’s approach, which is based upon fibering the surface into
a family of conics, reveals that one can replace the factor Bε by (log B)A for a large
constant A. It would be more interesting to find examples of surfaces S for which
the exponent A could be reduced to the expected quantity ρS − 1.

It emerges that much more can be said if one permits S to contain isolated
singularities. For the remainder of this section let S ⊂ P4 be a geometrically integral
intersection of two quadric hypersurfaces, which has only isolated singularities and
is not a cone. Then S contains only rational double points (see Wall [Wal80], for
example), thereby ensuring that there exists a unique minimal desingularisation
π : S̃ → S of the surface, such that K

eS = π∗KS . In particular it follows that the
asymptotic formula (3) is still expected to hold, with ρS now taken to be the rank of
the Picard group of S̃, and U ⊂ S obtained by deleting all of the lines from S. The
classification of such surfaces S is rather classical, and can be found in the work of
Hodge and Pedoe [HP52, Book IV, §XIII.11], for example. It turns out that up to
isomorphism over Q, there are 15 possible singularity types for S, each categorised
by the extended Dynkin diagram. This is the Dynkin diagram that describes the
intersection behaviour of the exceptional divisors and the transforms of the lines on
the minimal desingularisation S̃ of S. Of course, if one is interested in a classification
over the ground field Q, then many more singularity types can occur (see Lipman
[Lip69], for example). Over Q, Coray and Tsfasman [CT88, Proposition 6.1]
have calculated the extended Dynkin diagrams for all of the 15 types, and this
information allows us to write down a list of surfaces S = Proj(Q[x]/(Q1, Q2)) that
typify each possibility, together with their singularity type and the number of lines
that they contain. The author is grateful to Ulrich Derenthal for helping to prepare
the following table.

type Q1(x) Q2(x) # lines singularity
i x0x1 + x2x3 x0x3 + x1x2 + x2x4 + x3x4 12 A1

ii x0x1 + x2x3 x0x3 + x1x2 + x2x4 + x2
4 9 2A1

iii x0x1 + x2
2 x0x2 + x1x2 + x3x4 8 2A1

iv x0x1 + x2x3 x2x3 + x4(x0 + x1 + x2 − x3) 8 A2

v x0x1 + x2
2 x1x2 + x2

2 + x3x4 6 3A1

vi x0x1 + x2x3 x2
1 + x2

2 + x3x4 6 A1 + A2

vii x0x1 + x2x3 x1x3 + x2
2 + x2

4 5 A3

viii x0x1 + x2
2 (x0 + x1)2 + x2x4 + x2

3 4 A3

ix x0x1 + x2
2 x2

2 + x3x4 4 4A1

x x0x1 + x2
2 x1x2 + x3x4 4 2A1 + A2

xi x0x1 + x2
2 x2

0 + x2x4 + x2
3 3 A1 + A3

xii x0x1 + x2x3 x0x4 + x1x3 + x2
2 3 A4

xiii x0x1 + x2
2 x2

0 + x1x4 + x2
3 2 D4

xiv x0x1 + x2
2 x2

0 + x3x4 2 2A1 + A3

xv x0x1 + x2
2 x0x4 + x1x2 + x2

3 1 D5
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Apart from the surfaces of type vi, vii, viii, xi or xiii, which contain
lines defined over Q(i), each surface in the table is split over Q. Let S̃ denote
the minimal desingularisation of any surface S from the table, and let ρS denote
the rank of the Picard group of S̃. Then it is natural to try and establish (3) for
such surfaces S. Several of the surfaces are actually special cases of varieties for
which the Manin conjecture is already known to hold. Thus we have seen above
that it has been established for toric varieties, and it can be checked that the
surfaces representing types ix, x, xiv are all equivariant compactifications of G2

m,
and so are toric. Hence (3) holds for these particular surfaces. Similarly it has
been shown by Chambert-Loir and Tschinkel [CLT02] that the Manin conjecture
is true for equivariant compactifications of vector groups. Although identifying
such surfaces in the table is not entirely routine, it transpires that the D5 surface
representing type xv is an equivariant compactification of G2

a. Salberger has raised
the question of whether there exist singular del Pezzo surfaces of degree 4 that arise
as equivariant compactifications of Ga × Gm, but that are not already equivariant
compactifications of G2

a or G2
m. This is a natural class of varieties that does not

seem to have been studied yet, but for which the existing technology is likely to
prove useful.

Let us consider the type xv surface

S1 = {[x0, . . . , x4] ∈ P4 : x0x1 + x2
2 = x0x4 + x1x2 + x2

3 = 0},
in more detail. Now we have already seen that (3) holds for S1. Nonetheless, de la
Bretèche and Browning [dlBBa] have made an exhaustive study of S1, partly in an
attempt to lay down a template for the treatment of other surfaces in the table. In
doing so several new features have been revealed. For s ∈ C such that 
e(s) > 1,
let

(4) ZU,H(s) :=
∑

x∈U(Q)

H(x)−s

denote the corresponding height zeta function, where U = U1 denotes the open
subset formed by deleting the unique line x0 = x2 = x3 = 0 from S1. The ana-
lytic properties of ZU1,H(s) are intimately related to the asymptotic behaviour of
the counting function NU1,H(B), and it is relatively straightforward to translate
between them. For σ ∈ R, let Hσ denote the half-plane {s ∈ C : 
e(s) > σ}. Then
with this notation in mind we have the following result [dlBBa, Theorem 1].

Theorem 2. There exists a constant α ∈ R and a function F (s) that is mero-
morphic on H9/10, with a single pole of order 6 at s = 1, such that

ZU1,H(s) = F (s) + α(s − 1)−1

for s ∈ H1. In particular ZU1,H(s) has an analytic continuation to H9/10.

It should be highlighted that there exist remarkably precise descriptions of α
and F (s) in the theorem. An application of Perron’s formula enables one to deduce
a corresponding asymptotic formula for NU1,H(B) that verifies (3), with ρS1 = 6.
Actually one is led to the much stronger statement that there exists a polynomial
f of degree 5 such that for any δ ∈ (0, 1/12) we have

(5) NU,H(B) = Bf(log B) + O(B1−δ),

with U = U1, in which the leading coefficient of f agrees with Peyre’s prediction.
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No explicit use is made of the fact that S1 is an equivariant compactification
of G2

a in the proof of Theorem 2, and this renders the method applicable to other
surfaces in the list that are not of this type. For example, in further work de la
Bretèche and Browning [dlBBb] have also established the Manin conjecture for
the D4 surface

S2 = {[x0, . . . , x4] ∈ P4 : x0x1 + x2
2 = x2

0 + x1x4 + x2
3 = 0},

which represents the type xiii surface in the table. As indicated above, this
surface is not split over Q, and it transpires that Pic(S̃2) has rank 4. In fact S̃2 has
singularity type C3 over Q, in the sense of Lipman [Lip69, §24], which becomes
a D4 singularity over Q. Building on the techniques developed in the proof of
Theorem 2, a result of the same quality is obtained for the corresponding height
zeta function ZU2,H(s), and this leads to an estimate of the shape (5) for any
δ ∈ (0, 3/32), with U = U2 and deg f = 3.

One of the aims of this survey is to give an overview of the various ideas
and techniques that have been used to study the surfaces S1, S2 above. We shall
illustrate the basic method by giving a simplified analysis of a new example from
the table. Let us consider the 3A1 surface

(6) S3 = {[x0, . . . , x4] ∈ P4 : x0x1 + x2
2 = x1x2 + x2

2 + x3x4 = 0},
which represents the type v surface in the table, and is neither toric nor an equivari-
ant compactification of G2

a. The surface has singularities at the points [1, 0, 0, 0, 0],
[0, 0, 0, 1, 0] and [0, 0, 0, 0, 1], and contains precisely 6 lines

xi = x2 = xj = 0, x0 + x2 = x1 + x2 = xj = 0,

where i ∈ {0, 1} and j ∈ {3, 4}. Since S3 is split over Q, one finds that the expected
exponent of log B in (3) is ρS3 − 1 = 5. We shall establish the following result.

Theorem 3. We have NU3,H(B) = O
(
B(log B)5

)
.

As pointed out to the author by de la Bretèche, it is possible to establish
a corresponding lower bound NU3,H(B) 	 B(log B)5, using little more than the
most basic estimates for integers restricted to lie in fixed congruence classes. In
fact, with more work, it ought even to be possible to obtain an asymptotic formula
for NU3,H(B). In the interests of brevity, however, we have chosen to pursue neither
of these problems here.

1.3. Del Pezzo surfaces of degree 3. The del Pezzo surfaces S ⊂ P3 of
degree 3 are readily recognised as the geometrically integral cubic surfaces in P3,
which are not ruled by lines. Given such a surface S defined over Q, we may always
find an absolutely irreducible cubic form C(x) ∈ Z[x0, x1, x2, x3] such that S =
Proj(Q[x]/(C)). Let us begin by considering the situation for non-singular cubic
surfaces. In this setting U ⊂ S is taken to be the open subset formed by deleting
the famous 27 lines from S. Although Peyre and Tschinkel [PT01a, PT01b]
have provided ample numerical evidence for the validity of the Manin conjecture
for diagonal non-singular cubic surfaces, we are unfortunately still rather far away
from proving it. The best upper bound available is NU,H(B) = Oε,S(B4/3+ε), due
to Heath-Brown [HB97]. This applies when the surface S contains 3 coplanar lines
defined over Q, and in particular to the Fermat cubic surface x3

0 + x3
1 = x3

2 + x3
3.

The problem of proving lower bounds is somewhat easier. Under the assumption
that S contains a pair of skew lines defined over Q, Slater and Swinnerton-Dyer
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[SSD98] have shown that NU,H(B) 	S B(log B)ρS−1, as predicted by the Manin
conjecture. This does not apply to the Fermat cubic surface, however, since the
only skew lines contained in this surface are defined over Q(

√
−3). It would be

interesting to extend the work of Slater and Swinnerton-Dyer to cover such cases.
Much as in the previous section, it turns out that far better estimates are

available for singular cubic surfaces. The classification of such surfaces is a well-
established subject, and essentially goes back to the work of Cayley [Cay69] and
Schläfli [Sch64] over a century ago. A contemporary classification of singular cubic
surfaces, using the terminology of modern classification theory, has since been given
by Bruce and Wall [BW79]. As in the previous section, the Manin conjecture is
already known to hold for several of these surfaces by virtue of the fact that they
are equivariant compactifications of G2

a, or toric. An example of the latter is given
by the 3A2 surface

(7) S4 = {[x0, x1, x2, x3] ∈ P3 : x3
0 = x1x2x3}.

A number of authors have studied this surface, including de la Bretèche [dlB98],
Fouvry [Fou98], and Heath-Brown and Moroz [HBM99]. Of the asymptotic for-
mulae obtained, the most impressive is the first. This consists of an estimate like
(5) for any δ ∈ (0, 1/8), with U = U4 ⊂ S4 and deg f = 6. The next surface to have
received serious attention is the Cayley cubic surface

(8) S5 = {[x0, x1, x2, x3] ∈ P3 : x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3 = 0},
of singularity type 4A1. This contains 9 lines, all of which are defined over Q, and
Heath-Brown [HB03] has shown that there exist absolute constants A1, A2 > 0
such that

A1B(log B)6 � NU5,H(B) � A2B(log B)6,
where U5 ⊂ S5 is the usual open subset. An estimate of precisely the same form
has also been obtained by Browning [Bro06] for the D4 surface

S6 = {[x0, x1, x2, x3] ∈ P3 : x1x2x3 = x0(x1 + x2 + x3)2}.
In both cases the corresponding Picard group has rank 7, so that the exponents of
B and log B agree with Manin’s prediction.

The final surface to have been studied extensively is the E6 cubic surface

(9) S7 = {[x0, x1, x2, x3] ∈ P3 : x1x
2
2 + x2x

2
0 + x3

3 = 0},
which contains a unique line x2 = x3 = 0. Let U7 ⊂ S7 denote the open subset
formed by deleting the line from S7, and recall the notation (4) for the height zeta
function ZU7,H(s) and that of the half-plane Hσ introduced before Theorem 2. Then
recent work of de la Bretèche, Browning and Derenthal [dlBBD] has succeeded in
establishing the following result.

Theorem 4. There exists a constant α ∈ R and a function F (s) that is mero-
morphic on H9/10, with a single pole of order 7 at s = 1, such that

ZU7,H(s) = F (s) + α(s − 1)−1

for s ∈ H1. In particular ZU7,H(s) has an analytic continuation to H9/10.

As in Theorem 2, the terms α and F (s) have a very explicit description. An
application of Perron’s formula now yields an asymptotic formula of the shape
(5) for any δ ∈ (0, 1/11), with U = U7 and deg f = 6. This too is in complete
agreement with the Manin conjecture. It should be remarked that Michael Joyce
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has independently established the Manin conjecture for S7 in his doctoral thesis at
Brown University, albeit only with a weaker error term of O(B(log B)5).

2. Refinements of the Manin conjecture

The purpose of this section is to consider in what way one might hope to refine
the conjecture of Manin. We have already seen a number of examples in which
asymptotic formulae of the shape (5) hold, and it is very natural to suppose that
this is the case for any (possibly singular) del Pezzo surface S ⊂ Pd of degree d,
where as usual U ⊆ S denotes the open subset formed by deleting any lines from
S, and ρS denotes the rank of the Picard group of S (possibly of S̃). Let us record
this formally here.

Conjecture B. Let S, U, ρS be as above. Then there exists δ > 0, and a
polynomial f ∈ R[x] of degree ρS − 1, such that (5) holds.

The leading coefficient of f should of course agree with the prediction of Peyre
et al. It would be interesting to gain a conjectural understanding of the lower
order coefficients of f , possibly in terms of the geometry of S. At this stage it
seems worth drawing attention to the surprising nature of the constants α that
appear in Theorems 2 and 4, not least because they contribute to the constant
coefficient of f . In both cases we have α = 12

π2 +β, where the first term corresponds
to an isolated conic in the surface, and the second is purely arithmetic in nature
and takes a very complicated shape (see [dlBBa, Eq. (5.25)] and [dlBBD, Eq.
(8.49)]). It arises through the error in approximating certain arithmetic quantities
by real-valued continuous functions, and involves the application of results about
the equidistribution of squares in fixed residue classes.

One might also ask what one expects to be the true order of magnitude of the
error term in (5). This a question that Swinnerton-Dyer has recently addressed
[SD05, Conjecture 2], inspired by comparisons with the explicit formulae from
prime number theory.

Conjecture C. Let S, U, ρS be as above. Then there exist positive constants
θ1, θ2, θ3 < 1 with θ1 < min{θ2, θ3}, a polynomial f ∈ R[x] of degree ρS − 1, a
constant γ ∈ R, and a sequence of γn ∈ C, such for any ε > 0 we have

NU,H(B) = Bf(log B) + γBθ3 + 
e
∑

γnBθ2+itn + Oε(Bθ1+ε).

Here tn ∈ R form a sequence of positive and monotonically increasing numbers,
such that

∑
|γn|2 and

∑
t−2
n are convergent.

In fact Swinnerton-Dyer formulates the conjecture for non-singular cubic sur-
faces, with θ1 < 1

2 = θ2 and γ = 0. There is no reason, however, to expect that it
doesn’t hold more generally, and one might even suppose that the constants θ2, θ3

somehow relate to the nature of the surface singularities. In this context there is
the recent work of de la Bretèche and Swinnerton-Dyer [dlBSD], who have pro-
vided significant evidence for this finer conjecture for the singular cubic surface
(7). Under the Riemann hypothesis and the assumption that the zeros of the Rie-
mann zeta function are all simple, it is shown that the conjecture holds for S4, with
(θ1, θ2, θ3) = ( 4

5 , 13
16 , 9

11 ) and γ �= 0.
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3. Available tools

There are a variety of tools that can be brought to bear upon the problem
of estimating the counting function (1), for appropriate subsets U of projective
algebraic varieties. Most of these are rooted in analytic number theory. When the
dimension of the variety is large compared to its degree, the Hardy–Littlewood circle
method can often be applied successfully (see Davenport [Dav05], for example).
When the variety has a suitable “cellular” structure, techniques involving harmonic
analysis on adelic groups can be employed (see Tschinkel [Tsc02], for example).
We shall say nothing about these methods here, save to observe that outside of the
surfaces covered by the collective work of Batyrev, Chambert-Loir and Tschinkel
[BT98a, CLT02], they do not seem capable of establishing the Manin conjecture
for all del Pezzo surfaces.

In fact we still have no clear vision of which methods are most appropriate, and
it is conceivable that the methods needed to handle the singular del Pezzo surfaces of
low degree are quite different from those needed to handle the non-singular surfaces.
Given our inability to prove the Manin conjecture for a single non-singular del Pezzo
surface of degree 3 or 4, we shall say no more about them here, save to observe that
the sharpest results we have are for examples containing conic bundle structures
over the ground field. Instead we shall concentrate on the situation for singular del
Pezzo surfaces of degree 3 or 4. Disappointing as it may seem, it is hard to imagine
that we will see how to prove Manin’s conjecture for all del Pezzo surfaces without
first attempting to do so for a number of very concrete representative examples. As
a cursory analysis of the proofs of Theorems 2–4 shows, the techniques that have
been successfully applied so far are decidedly ad-hoc. Nonetheless there are a few
salient features that are worthy of amplification, and this will be the focus of the
two subsequent sections.

3.1. The universal torsor. Universal torsors were originally introduced by
Colliot-Thélène and Sansuc [CTS76, CTS87] to aid in the study of the Hasse
principle and weak approximation for rational varieties. Since their inception it
is now well-recognised that they also have a central rôle to play in proofs of the
Manin conjecture for Fano varieties. Let S ⊂ Pd be a del Pezzo surface of degree
d ∈ {3, 4, 5}, and let S̃ denote the minimal desingularisation of S if it is singular,
and S̃ = S otherwise. Let E1, . . . , E10−d ∈ Div(S̃) be generators for the geometric
Picard group of S̃, and let E×

i = Ei \ {zero section}. Working over Q, a universal
torsor above S̃ is given by the action of G10−d

m on the map

π : E×
1 ×

eS · · · ×
eS E×

10−d → S̃.

A proper discussion of universal torsors would take us too far afield at present,
and the reader should consult the survey of Peyre [Pey04] for further details, or
indeed the construction of Hassett and Tschinkel [HT04]. The latter outlines an
alternative approach to universal torsors via the Cox ring. The guiding principle
behind the use of universal torsors is simply that they ought to be arithmetically
simpler than the original variety. The universal torsors that we shall encounter all
have embeddings as open subsets of affine varieties of higher dimension. Moreover,
the general theory ensures that there is a partition of U(Q) — where U ⊂ S is
the usual open subset formed by deleting the lines from S — into a disjoint union
of patches, each of which is in bijection with a suitable set of integral points on a
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universal torsor above S̃. We shall see shortly how one may often use arguments
from elementary number theory to explicitly derive these bijections.

Let us begin by giving a few examples. In the proof of Theorem 1 a passage to
the universal torsor is a crucial first step, and was originally carried out by Salberger
in his unpublished proof of the bound NU0,H(B) = O(B(log B)4), announced in the
Borel seminar at Bern in 1993. Recall the Plücker embedding

zi,jzk,� − zi,kzj,� + zi,�zj,k = 0,

of the Grassmannian Gr(2, 5) ⊂ P9 of 2-dimensional linear subspaces of Q5. Here
(i, j, k, 
) runs through the five vectors formed from elements of the set {1, 2, 3, 4, 5},
with i < j < k < l. It turns out that there is a unique universal torsor π : T0 → S0

above S0, and it is a certain open subset of the affine cone over Gr(2, 5). To
count points of bounded height in U0(Q) it is then enough to count integral points
(zi,j)1�i<j�5 ∈ (Z \ {0})10 on this cone, subject to a number of side conditions. A
thorough account of this particular example, and how it extends to arbitrary del
Pezzo surfaces of degree 5 can be found in the work of Skorobogatov [Sko93]. A
second example is calculated by Hassett and Tschinkel [HT04] for the E6 cubic
surface (9). There it is shown that there is a unique universal torsor above S̃7,
given by the equation

(10) τ�ξ
3
� ξ2

4ξ5 + τ2
2 ξ2 + τ3

1 ξ2
1ξ3 = 0,

for variables τ1, τ2, τ�, ξ1, ξ2, ξ3, ξ�, ξ4, ξ5, ξ6. One of the variables does not explicitly
appear in (10), and the torsor should be thought of as being embedded in A10.
The universal torsors that turn up in the proofs of Theorems 2 and 3 can also be
embedded in affine space via a single equation.

We proceed to carry out explicitly the passage to the universal torsor for the
3A1 surface (6). We shall use N to denote the set of positive integers, and for any
n � 2 we let Zn denote the set of primitive vectors in Zn, by which we mean that
the greatest common divisor of the components should be 1. We may clearly assume
that S3 is defined by the forms Q1(x) = x0x1 − x2

2 and Q2(x) = x2
2 − x1x2 + x3x4.

Now if x ∈ U3(Q) is represented by the vector x ∈ Z5, then x0 · · ·x4 �= 0 and
H(x) = max{|x0|, |x1|, |x3|, |x4|}. Moreover, x0 and x1 must share the same sign.
On taking x0, x1 to both be positive, and noting that x and −x represent the same
point in P4, we deduce that

NU3,H(B) = #
{
x ∈ Z5 : 0 < x0, x1, |x3|, |x4| � B, Q1(x) = Q2(x) = 0

}
.

Let us begin by considering solutions x ∈ Z5 to the equation Q1(x) = 0. There is a
bijection between the set of integers x0, x1, x2 such that x0, x1 > 0 and x0x1 = x2

2,
and the set of x0, x1, x2 such that x0 = z2

0z2, x1 = z2
1z2 and x2 = z0z1z2, for non-

zero integers z0, z1, z2 such that z1, z2 > 0 and gcd(z0, z1) = 1. We now substitute
these values into the equation Q2(x) = 0, in order to obtain

(11) z2
0z2

1z2
2 − z0z

3
1z2

2 + x3x4 = 0.

It follows from the coprimality relation gcd(x0, . . . , x4) = 1 that we also have
gcd(z2, x3, x4) = 1. Now we may conclude from (11) that z0z

2
1z2

2 divides x3x4.
Let us write y1 = gcd(z1, x3, x4) and z1 = y1y

′
1, x3 = y1y

′
3, x4 = y1y

′
4, with

y1, y
′
1, y

′
3, y

′
4 non-zero integers such that y1, y

′
1 > 0 and gcd(y′

1, y
′
3, y

′
4) = 1. Then

z0y
′2
1 z2

2 divides y′
3y

′
4. We now write z0 = y03y04, y

′
3 = y03y3 and y′

4 = y04y4, for
non-zero integers y03, y04, y3, y4. We therefore conclude that y′2

1 z2
2 divides y3y4,
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whence there exist positive integers y13, y14, y23, y24 and non-zero integers y33, y34

such that y′
1 = y13y14, z2 = y23y24, y3 = y2

13y
2
23y33 and y4 = y2

14y
2
24y34. Substituting

these into (11) yields the equation

(12) y03y04 − y1y13y14 + y33y34 = 0.

This equation gives an affine embedding of the unique universal torsor over S̃3,
though we shall not prove it here. We may combine all of the various coprimality
relations above to deduce that

(13) gcd(y13y14y23y24, y13y23y33, y14y24y34) = 1,

and

(14) gcd(y03y04, y13y14) = gcd(y1, y03y04y23y24) = 1.

At this point we may summarize our argument as follows. Let T denote the
set of non-zero integer vectors y = (y1, y03, y04, y13, y14, y23, y24, y33, y34) such that
(12)–(14) all hold, with y1, y13, y14, y23, y24 > 0. Then for any x ∈ Z5 such that
Q1(x) = Q2(x) = 0 and x0, x1, |x3|, |x4| > 0, we have shown that there exists y ∈ T
such that

x0 = y2
03y

2
04y23y24,

x1 = y2
1y2

13y
2
14y23y24,

x2 = y1y03y04y13y14y23y24,
x3 = y1y03y

2
13y

2
23y33,

x4 = y1y04y
2
14y

2
24y34.

Conversely, it is not hard to check that given any y ∈ T the point x given
above will be a solution of the equations Q1(x) = Q2(x) = 0, with x ∈ Z5 and
x0, x1, |x3|, |x4| > 0. Let us define the function Ψ : R9 → R�0, given by

Ψ(y) = max
{

|y2
03y

2
04y23y24|, |y2

1y2
13y

2
14y23y24|,

|y1y03y
2
13y

2
23y33|, |y1y04y

2
14y

2
24y34|

}
.

Then we have established the following result.

Lemma 1. We have NU3,H(B) = #
{
y ∈ T : Ψ(y) � B

}
.

In this section we have given several examples of universal torsors, and we have
ended by demonstrating how elementary number theory can sometimes be used to
calculate their equations with very little trouble. In fact the general machinery of
Colliot-Thélène–Sansuc [CTS76, CTS87], or that of Hassett–Tschinkel [HT04],
essentially provides an algorithm for calculating universal torsors over any singular
del Pezzo surface of degree 3 or 4. It should be stressed, however, that if this
constitutes being given the keys to the city, it does not tell us where in the city the
proof is hidden.

3.2. The next step. The purpose of this section is to overview some of the
techniques that have been developed for counting integral points on the parametriza-
tion that arises out of the passage to the universal torsor, as discussed above. In
the proofs of Theorems 1–4 the torsor equations all take the shape

Aj + Bj + Cj = 0, (1 � j � J),

for monomials Aj , Bj , Cj of various degrees in the appropriate variables. By fixing
some of the variables at the outset, one is then left with the problem of counting in-
teger solutions to a system of Diophantine equations, subject to certain constraints.
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If one is sufficiently clever about which variables to fix first, then one can sometimes
be left with a quantity that we know how to estimate — and crucially — for which
we can control the overall contribution from the error term when it is summed over
the remaining variables.

Let us sketch this phenomenon briefly with the torsor equation (10) that is
used in the proof of Theorem 4. It turns out that the way to proceed here is to
fix all of the variables apart from τ1, τ2, τ�. One may then view the equation as a
congruence

τ2
2 ξ2 ≡ −τ3

1 ξ2
1ξ3 (mod ξ3

� ξ2
4ξ5),

in order to take care of the summation over τ�. This allows us to employ very
standard facts about the number of integer solutions to polynomial congruences
that are restricted to lie in certain regions, and this procedure yields a main term
and an error term which the remaining variables need to be summed over. However,
while the treatment of the main term is relatively routine, the treatment of the error
term presents a much more serious obstacle. We do not have space to discuss it in
any detail, but it is here that the unexpected constant α arises in Theorem 4.

The sort of approach discussed above, and more generally the application of
lattice methods to count solutions to ternary equations, is a very useful one. It
plays a crucial role in the proof of the following result due to Heath-Brown [HB03,
Lemma 3], which forms the next ingredient in our proof of Theorem 3.

Lemma 2. Let K1, . . . , K7 � 1 be given, and let M denote the number of
non-zero solutions m1, . . . , m7 ∈ Z to the equation

m1m2 − m3m4m5 + m6m7 = 0,

subject to the conditions Kk < |mk| � 2Kk for 1 � k � 7, and

(15) gcd(m1m2, m3m4m5) = 1.

Then we have M � K1K2K3K4K5.

For comparison, we note that it is a trivial matter to establish the bound
M �ε (K1K2K3K4K5)1+ε, using standard estimates for the divisor function. Such
a bound would be insufficient for our purposes.

3.3. Completion of the proof of Theorem 3. We are now ready to com-
plete the proof of Theorem 3. We shall begin by estimating the contribution to
NU3,H(B) from the values of y appearing in Lemma 1 that are constrained to lie
in a certain region. Let Y1, Yi3, Yi4 � 1, where throughout this section i denotes a
generic index from the set {0, 1, 2, 3}. Then we write

N = N (Y1, Y03, Y04, Y13, Y14, Y23, Y24, Y33, Y34)

for the total contribution to NU3,H(B) from y satisfying

(16) Y1 � y1 < 2Y1, Yi3 � |yi3| < 2Yi3, Yi4 � |yi4| < 2Yi4.

Clearly it follows from the inequality Ψ(y) � B that N = 0 unless

(17) Y 2
03Y

2
04Y23Y24 � B, Y 2

1 Y 2
13Y

2
14Y23Y24 � B,

and

(18) Y1Y03Y
2
13Y

2
23Y33 � B, Y1Y04Y

2
14Y

2
24Y34 � B.
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In our estimation of NU3,H(B), we may clearly assume without loss of generality
that

(19) Y03Y
2
13Y

2
23Y33 � Y04Y

2
14Y

2
24Y34.

We proceed to show how the equation (12) forces certain constraints upon the
choice of dyadic ranges in (16). There are three basic cases that can occur. Suppose
first that

(20) c2Y03Y04 � Y1Y13Y14,

for an absolute constant c2 > 0. Then it follows from (12) that

(21) Y33Y34 � Y1Y13Y14 � Y33Y34,

provided that c2 is chosen to be sufficiently large. Next, we suppose that

(22) c1Y03Y04 � Y1Y13Y14,

for an absolute constant c1 > 0. Then we may deduce from (12) that

(23) Y33Y34 � Y03Y04 � Y33Y34,

provided that c1 is chosen to be sufficiently small. Let us henceforth assume that
the values of c1, c2 are fixed in such a way that (21) holds, if (20) holds, and (23)
holds, if (22) holds. Finally we are left with the possibility that

(24) c1Y03Y04 � Y1Y13Y14 � c2Y03Y04.

We shall need to treat the cases (20), (22) and (24) separately.
We take mj,k = (yj3, yj4, y1, y13, y14, yk3, yk4) in our application of Lemma 2,

for (j, k) = (0, 3) and (3, 0). In particular the coprimality relation (15) follows from
(12)–(14), and we may conclude that

(25) N � Y1Y13Y14Y23Y24 min{Y03Y04, Y33Y34},

on summing over all of the available y23, y24. It remains to sum this contribution
over the various dyadic intervals Y1, Yi3, Yi4. Suppose for the moment that we are
interested in summing over all possible dyadic intervals X � |x| < 2X, for which
|x| � X . Then there are plainly O(logX ) possible choices for X. In addition to
this basic estimate, we shall make frequent use of the estimate

∑
X Xδ �δ X δ, for

any δ > 0.
We begin by assuming that (20) holds, so that (21) also holds. Then we may

combine (19) with (21) in order to deduce that

Y13 � min

{
Y

1/2
04 Y14Y24Y

1/2
34

Y
1/2
03 Y23Y

1/2
33

,
Y33Y34

Y1Y14

}
� Y

1/4
04 Y

1/2
24 Y

1/4
33 Y

3/4
34

Y
1/2
1 Y

1/4
03 Y

1/2
23

.

We may now apply (25) to obtain∑
Y1,Yi3,Yi4
(20) holds

N �
∑

Y1,Yi3,Yi4
(20) holds

Y1Y03Y04Y13Y14Y23Y24

�
∑

Y03,Y04,Y33,Y34
Y1,Y14,Y23,Y24

Y
1/2
1 Y

3/4
03 Y

5/4
04 Y14Y

1/2
23 Y

3/2
24 Y

1/4
33 Y

3/4
34 .
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But now (18) implies that Y14 � B1/2/(Y 1/2
1 Y

1/2
04 Y24Y

1/2
34 ), and (20) and (21)

together imply that Y03 � Y33Y34/Y04. We therefore deduce that∑
Y1,Yi3,Yi4
(20) holds

N � B1/2
∑

Y03,Y04,Y33
Y1,Y23,Y24,Y34

Y
3/4
03 Y

3/4
04 Y

1/2
23 Y

1/2
24 Y

1/4
33 Y

1/4
34

� B1/2
∑

Y1,Y04,Y33
Y23,Y24,Y34

Y
1/2
23 Y

1/2
24 Y33Y34.

Finally it follows from (17) and (21) that Y33 � B1/2/(Y 1/2
23 Y

1/2
24 Y34), whence∑

Y1,Yi3,Yi4
(20) holds

N � B
∑

Y04,Y13,Y14,Y23,Y34

1 � B(log B)5,

which is satisfactory for the theorem.
Next we suppose that (22) holds, so that (23) also holds. In this case it follows

from (19), together with the inequality Y1Y13Y14 � Y03Y04, that

Y13 � min

{
Y

1/2
04 Y14Y24Y

1/2
34

Y
1/2
03 Y23Y

1/2
33

,
Y03Y04

Y1Y14

}
� Y

1/4
03 Y

3/4
04 Y

1/2
24 Y

1/4
34

Y
1/2
1 Y

1/2
23 Y

1/4
33

.

On combining this with the inequality Y14 � B1/2/(Y 1/2
1 Y

1/2
04 Y24Y

1/2
34 ), that follows

from (18), we may therefore deduce from (25) that∑
Y1,Yi3,Yi4
(22) holds

N �
∑

Y1,Yi3,Yi4
(22) holds

Y1Y13Y14Y23Y24Y33Y34

�
∑

Y1,Y03,Y04,Y33
Y14,Y23,Y24,Y34

Y
1/2
1 Y

1/4
03 Y

3/4
04 Y14Y

1/2
23 Y

3/2
24 Y

3/4
33 Y

5/4
34

� B1/2
∑

Y1,Y03,Y04
Y23,Y24,Y33,Y34

Y
1/4
03 Y

1/4
04 Y

1/2
23 Y

1/2
24 Y

3/4
33 Y

3/4
34 .

Now it follows from (23) that Y33 � Y03Y04/Y34. We may therefore combine this
with the first inequality in (17) to conclude that∑

Y1,Yi3,Yi4
(22) holds

N � B1/2
∑

Y1,Y03,Y04
Y23,Y24,Y34

Y03Y04Y
1/2
23 Y

1/2
24 � B(log B)5,

which is also satisfactory for the theorem.
Finally we suppose that (24) holds. On combining (19) with the fact that

Y33Y34 � Y03Y04, we obtain

Y33 � min
{

Y04Y
2
14Y

2
24Y34

Y03Y 2
13Y

2
23

,
Y03Y04

Y34

}
� Y04Y14Y24

Y13Y23
.

Summing (25) over Y33 first, with min{Y03Y04, Y33Y34} � Y
1/2
03 Y

1/2
04 Y

1/2
33 Y

1/2
34 , we

therefore obtain∑
Y1,Yi3,Yi4
(24) holds

N �
∑

Y1,Y03,Y04,Y13
Y14,Y23,Y24,Y34

Y1Y
1/2
03 Y04Y

1/2
13 Y

3/2
14 Y

1/2
23 Y

3/2
24 Y

1/2
34 .
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But then we may sum over Y03, Y13 satisfying the inequalities in (17), and then Y1

satisfying the second inequality in (18), in order to conclude that∑
Y1,Yi3,Yi4
(24) holds

N � B1/4
∑

Y1,Y04,Y13
Y14,Y23,Y24,Y34

Y1Y
1/2
04 Y

1/2
13 Y

3/2
14 Y

1/4
23 Y

5/4
24 Y

1/2
34

� B1/2
∑

Y1,Y04,Y14
Y23,Y24,Y34

Y
1/2
1 Y

1/2
04 Y14Y24Y

1/2
34 � B(log B)5.

This too is satisfactory for Theorem 3, and thereby completes its proof.

4. Open problems

We close this survey article with a list of five open problems relating to Manin’s
conjecture for del Pezzo surfaces. In order to encourage activity we have deliberately
selected an array of very concrete problems.

(i) Establish (3) for a non-singular del Pezzo surface of degree 4.
The surface x0x1 − x2x3 = x2

0 + x2
1 + x2

2 − x2
3 − 2x2

4 = 0 has Picard group
of rank 5.

(ii) Establish (3) for more singular cubic surfaces.
Can one establish the Manin conjecture for a split singular cubic surface
whose universal torsor has more than one equation? The Cayley cubic
surface (8) is such a surface.

(iii) Break the 4/3-barrier for a non-singular cubic surface.
We have yet to prove an upper bound of the shape NU,H(B) = OS(Bθ),
with θ < 4/3, for a single non-singular cubic surface S ⊂ P3. This seems
to be hardest when the surface doesn’t have a conic bundle structure over
Q. The surface x0x1(x0 + x1) = x2x3(x2 + x3) admits such a structure;
can one break the 4/3-barrier for this example?

(iv) Establish the lower bound NU,H(B) 	 B(log B)3 for the Fermat cubic.
The Fermat cubic x3

0 + x3
1 = x3

2 + x3
3 has Picard group of rank 4.

(v) Better bounds for del Pezzo surfaces of degree 2.
Non-singular del Pezzo surfaces of degree 2 take the shape

t2 = F (x0, x1, x2),

for a non-singular quartic form F . Let N(F ; B) denote the number of
integers t, x0, x1, x2 such that t2 = F (x) and |x| � B. Can one prove
that we always have N(F ; B) = Oε,F (B2+ε)? Such an estimate would be
essentially best possible, as consideration of the form F0(x) = x4

0 +x4
1−x4

2

shows. The best result in this direction is due to Broberg [Bro03a], who
has established the weaker bound N(F ; B) = Oε,F (B9/4+ε). For certain
quartic forms, such as F1(x) = x4

0 +x4
1 +x4

2, the Manin conjecture implies
that one ought to be able to replace the exponent 2+ ε by 1+ ε. Can one
prove that N(F1; B) = O(Bθ) for some θ < 2?
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The density of integral solutions for
pairs of diagonal cubic equations

Jörg Brüdern and Trevor D. Wooley

Abstract. We investigate the number of integral solutions possessed by a

pair of diagonal cubic equations in a large box. Provided that the number
of variables in the system is at least thirteen, and in addition the number of

variables in any non-trivial linear combination of the underlying forms is at
least seven, we obtain a lower bound for the order of magnitude of the number

of integral solutions consistent with the product of local densities associated
with the system.

1. Introduction

This paper is concerned with the solubility in integers of the equations

(1.1) a1x
3
1 + a2x

3
2 + . . . + asx

3
s = b1x

3
1 + b2x

3
2 + . . . + bsx

3
s = 0,

where (ai, bi) ∈ Z2\{0} are fixed coefficients. It is natural to enquire to what extent
the Hasse principle holds for such systems of equations. Cook [C85], refining earlier
work of Davenport and Lewis [DL66], has analysed the local solubility problem
with great care. He showed that when s ≥ 13 and p is a prime number with p �= 7,
then the system (1.1) necessarily possesses a non-trivial solution in Qp. Here, by
non-trivial solution, we mean any solution that differs from the obvious one in
which xj = 0 for 1 ≤ j ≤ s. No such conclusion can be valid for s ≤ 12, for there
may then be local obstructions for any given set of primes p with p ≡ 1 (mod 3);
see [BW06] for an example that illuminates this observation. The 7-adic case,
moreover, is decidedly different. For s ≤ 15 there may be 7-adic obstructions to
the solubility of the system (1.1), and so it is only when s ≥ 16 that the existence
of non-trivial solutions in Q7 is assured. This much was known to Davenport and
Lewis [DL66].

Were the Hasse principle to hold for systems of the shape (1.1), then in view
of the above discussion concerning the local solubility problem, the existence of
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integer solutions to the equations (1.1) would be decided in Q7 alone whenever
s ≥ 13. Under the more stringent hypothesis s ≥ 14, this was confirmed by the
first author [B90], building upon the efforts of Davenport and Lewis [DL66], Cook
[C72], Vaughan [V77] and Baker and Brüdern [BB88] spanning an interval of
more than twenty years. In a recent collaboration [BW06] we have been able to
add the elusive case s = 13, and may therefore enunciate the following conclusion.

Theorem 1. Suppose that s ≥ 13. Then for any choice of coefficients (aj , bj) ∈
Z2 \{0} (1 ≤ j ≤ s), the simultaneous equations (1.1) possess a non-trivial solution
in rational integers if and only if they admit a non-trivial solution in Q7.

Now let Ns(P ) denote the number of solutions of the system (1.1) in rational
integers x1, . . . , xs satisfying the condition |xj | ≤ P (1 ≤ j ≤ s). When s is large,
a näıve application of the philosophy underlying the circle method suggests that
Ns(P ) should be of order P s−6 in size, but in certain cases this may be false even
in the absence of local obstructions. This phenomenon is explained by the failure of
the Hasse principle for certain diagonal cubic forms in four variables. When s ≥ 10
and b1, . . . , bs ∈ Z \ {0}, for example, the simultaneous equations

(1.2) 5x3
1 + 9x3

2 + 10x3
3 + 12x3

4 = b1x
3
1 + b2x

3
2 + . . . + bsx

3
s = 0

have non-trivial (and non-singular) solutions in every p-adic field Qp as well as in R,
yet all solutions in rational integers must satisfy the condition xi = 0 (1 ≤ i ≤ 4).
The latter must hold, in fact, independently of the number of variables. For such
examples, therefore, one has Ns(P ) = o(P s−6) when s ≥ 9, whilst for s ≥ 12 one
may show that Ns(P ) is of order P s−7. For more details, we refer the reader to the
discussion surrounding equation (1.2) of [BW06]. This example also shows that
weak approximation may fail for the system (1.1), even when s is large.

In order to measure the extent to which a system (1.1) may resemble the
pathological example (1.2), we introduce the number q0, which we define by

q0 = min
(c,d)∈Z2\{0}

card{1 ≤ j ≤ s : caj + dbj �= 0}.

This important invariant of the system (1.1) has the property that as q0 becomes
larger, the counting function Ns(P ) behaves more tamely. Note that in the example
(1.2) discussed above one has q0 = 4 whenever s ≥ 8.

Theorem 2. Suppose that s ≥ 13, and that (aj , bj) ∈ Z2 \ {0} (1 ≤ j ≤ s)
satisfy the condition that the system (1.1) admits a non-trivial solution in Q7. Then
whenever q0 ≥ 7, one has Ns(P ) � P s−6.

The conclusion of Theorem 2 was obtained in our recent paper [BW06] for
all cases wherein q0 ≥ s − 5. This much suffices to establish Theorem 1; see §8 of
[BW06] for an account of this deduction. Our main objective in this paper is a
detailed discussion of the cases with 7 ≤ q0 ≤ s−6. We remark that the arguments
of this paper as well as those in [BW06] extend to establish weak approximation for
the system (1.1) when s ≥ 13 and q0 ≥ 7. In the special cases in which s = 13 and
q0 is equal to either 5 or 6, a conditional proof of weak approximation is possible by
invoking recent work of Swinnerton-Dyer [SD01], subject to the as yet unproven
finiteness of the Tate-Shafarevich group for elliptic curves over quadratic fields.
Indeed, equipped with the latter conclusion, for these particular values of q0 one
may relax the condition on s beyond that addressed by Theorem 2. When s = 13
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and q0 ≤ 4, on the other hand, weak approximation fails in general, as we have
already seen in the discussion accompanying the system (1.2).

The critical input into the proof of Theorem 2 is a certain arithmetic variant
of Bessel’s inequality established in [BW06]. We begin in §2 by briefly sketching
the principal ideas underlying this innovation. In §3 we prepare the ground for an
application of the Hardy-Littlewood method, deriving a lower bound for the major
arc contribution in the problem at hand. Some delicate footwork in §4 establishes
a mean value estimate that, in all circumstances save for particularly pathological
situations, leads in §5 to a viable complementary minor arc estimate sufficient to
establish Theorem 2. The latter elusive situations are handled in §6 via an argument
motivated by our recent collaboration [BKW01a] with Kawada, and thereby we
complete the proof of Theorem 2. Finally, in §7, we make some remarks concerning
the extent to which our methods are applicable to systems containing fewer than
13 variables.

Throughout, the letter ε will denote a sufficiently small positive number. We
use � and � to denote Vinogradov’s well-known notation, implicit constants de-
pending at most on ε, unless otherwise indicated. In an effort to simplify our
analysis, we adopt the convention that whenever ε appears in a statement, then we
are implicitly asserting that for each ε > 0 the statement holds for sufficiently large
values of the main parameter. Note that the “value” of ε may consequently change
from statement to statement, and hence also the dependence of implicit constants
on ε. Finally, from time to time we make use of vector notation in order to save
space. Thus, for example, we may abbreviate (c1, . . . , ct) to c.

2. An arithmetic variant of Bessel’s inequality

The major innovation in our earlier paper [BW06] is an arithmetic variant of
Bessel’s inequality that sometimes provides good mean square estimates for Fourier
coefficients averaged over sparse sequences. Since this tool plays a crucial role also
in our current excursion, we briefly sketch the principal ideas. When P and R are
real numbers with 1 ≤ R ≤ P , we define the set of smooth numbers A(P, R) by

A(P, R) = {n ∈ N ∩ [1, P ] : p prime and p|n ⇒ p ≤ R}.

The Fourier coefficients that are to be averaged arise in connection with the smooth
cubic Weyl sum h(α) = h(α; P, R), defined by

(2.1) h(α; P, R) =
∑

x∈A(P,R)

e(αx3),

where here and later we write e(z) for exp(2πiz). The sixth moment of this sum
has played an important role in many applications in recent years, and that at hand
is no exception to the rule. Write ξ = (

√
2833 − 43)/41. Then as a consequence of

the work of the second author [W00], given any positive number ε, there exists a
positive number η = η(ε) with the property that whenever 1 ≤ R ≤ P η, one has

(2.2)
∫ 1

0

|h(α; P, R)|6 dα � P 3+ξ+ε.

We assume henceforth that whenever R appears in a statement, either implicitly
or explicitly, then 1 ≤ R ≤ P η with η a positive number sufficiently small in the
context of the upper bound (2.2).
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The Fourier coefficients over which we intend to average are now defined by

(2.3) ψ(n) =
∫ 1

0

|h(α)|5e(−nα) dα.

An application of Parseval’s identity in combination with conventional circle method
technology readily shows that

∑
n ψ(n)2 is of order P 7. Rather than average ψ(n) in

mean square over all integers, we instead restrict to the sparse sequence consisting
of differences of two cubes, and establish the bound

(2.4)
∑

1≤x,y≤P

ψ(x3 − y3)2 � P 6+ξ+4ε.

Certain contributions to the sum on the left hand side of (2.4) are easily es-
timated. By Hua’s Lemma (see Lemma 2.5 of [V97]) and a consideration of the
underlying Diophantine equations, one has∫ 1

0

|h(α)|4 dα � P 2+ε.

On applying Schwarz’s inequality to (2.3), we therefore deduce from (2.2) that
the estimate ψ(n) = O(P 5/2+ξ/2+ε) holds uniformly in n. We apply this upper
bound with n = 0 in order to show that the terms with x = y contribute at most
O(P 6+ξ+2ε) to the left hand side of (2.4). The integers x and y with 1 ≤ x, y ≤
P and |ψ(x3 − y3)| ≤ P 2+ξ/2+2ε likewise contribute at most O(P 6+ξ+4ε) within
the summation of (2.4). We estimate the contribution of the remaining Fourier
coefficients by dividing into dyadic intervals. When T is a real number with

(2.5) P 2+ξ/2+2ε ≤ T ≤ P 5/2+ξ/2+2ε,

define Z(T ) to be the set of ordered pairs (x, y) ∈ N2 with

(2.6) 1 ≤ x, y ≤ P, x �= y and T ≤ |ψ(x3 − y3)| ≤ 2T,

and write Z(T ) for card(Z(T )). Then on incorporating in addition the contributions
of those terms already estimated, a familiar dissection argument now demonstrates
that there is a number T satisfying (2.5) for which

(2.7)
∑

1≤x,y≤P

ψ(x3 − y3)2 � P 6+ξ+4ε + P εT 2Z(T ).

An upper bound for Z(T ) at this point being all that is required to complete
the proof of the estimate (2.4), we set up a mechanism for deriving such an upper
bound that has its origins in work of Brüdern, Kawada and Wooley [BKW01a]
and Wooley [W02]. Let σ(n) denote the sign of the real number ψ(n) defined in
(2.3), with the convention that σ(n) = 0 when ψ(n) = 0, so that ψ(n) = σ(n)|ψ(n)|.
Then on forming the exponential sum

KT (α) =
∑

(x,y)∈Z(T )

σ(x3 − y3)e(α(y3 − x3)),

we find from (2.3) and (2.6) that
∫ 1

0

|h(α)|5KT (α) dα ≥ TZ(T ).
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An application of Schwarz’s inequality in combination with the upper bound (2.2)
therefore permits us to infer that

(2.8) TZ(T ) � (P 3+ξ+ε)1/2
(∫ 1

0

|h(α)4KT (α)2|dα
)1/2

.

Next, on applying Weyl’s differencing lemma (see, for example, Lemma 2.3 of
[V97]), one finds that for certain non-negative numbers tl, satisfying tl = O(P ε)
for 0 < |l| ≤ P 3, one has

|h(α)|4 � P 3 + P
∑

0<|l|≤P 3

tle(αl).

Consequently, by orthogonality,∫ 1

0

|h(α)4KT (α)2| dα � P 3

∫ 1

0

|KT (α)|2dα + P 1+εKT (0)2

� P ε(P 3Z(T ) + PZ(T )2).

Here we have applied the simple fact that when m is a non-zero integer, the number
of solutions of the Diophantine equation m = x3 − y3 with 1 ≤ x, y ≤ P is at most
O(P ε). Since T ≥ P 2+ξ/2+2ε, the upper bound Z(T ) = O(T−2P 6+ξ+2ε) now
follows from the relation (2.8). On substituting the latter estimate into (2.7), the
desired conclusion (2.4) is now immediate.

Note that in the summation on the left hand side of the estimate (2.4), one may
restrict the summation over the integers x and y to any subset of [1, P ]2 without
affecting the right hand side. Thus, on recalling the definition (2.3), we see that we
have proved the special case a = b = c = d = 1 of the following lemma.

Lemma 3. Let a, b, c, d denote non-zero integers. Then for any subset B of
[1, P ] ∩ Z, one has∫ 1

0

∫ 1

0

|h(aα)h(bβ)|5
∣∣∣∑
x∈B

e((cα + dβ)x3)
∣∣∣2 dα dβ � P 6+ξ+ε.

This lemma is a restatement of Theorem 3 of [BW06]. It transpires that no
great difficulty is encountered when incorporating the coefficients a, b, c, d into the
argument described above; see §3 of [BW06].

We apply Lemma 3 in the cosmetically more general formulation provided by
the following lemma.

Lemma 4. Suppose that ci, di (1 ≤ i ≤ 3) are integers satisfying the condition

(c1d2 − c2d1)(c1d3 − c3d1)(c2d3 − c3d2) �= 0.

Write λj = cjα + djβ (j = 1, 2, 3). Then for any subset B of [1, P ] ∩ Z, one has∫ 1

0

∫ 1

0

|h(λ1)h(λ2)|5
∣∣∣∑
x∈B

e(λ3x
3)

∣∣∣2 dα dβ � P 6+ξ+ε.

Proof. The desired conclusion follows immediately from Lemma 3 on making
a change of variable. The reader may care to compare the situation here with that
occurring in the estimation of the integral J3 in the proof of Theorem 4 of [BW06]
(see §4 of the latter). �
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3. Preparation for the circle method

The next three sections of this paper are devoted to the proof of Theorem 2.
In view of the hypotheses of the theorem together with the discussion following its
statement, we may suppose henceforth that s ≥ 13 and 7 ≤ q0 ≤ s − 6. With the
pairs (aj , bj) ∈ Z2 \ {0} (1 ≤ j ≤ s), we associate both the linear forms

(3.1) Λj = ajα + bjβ (1 ≤ j ≤ s),

and the two linear forms L1(θ) and L2(θ) defined for θ ∈ Rs by

(3.2) L1(θ) =
s∑

j=1

ajθj and L2(θ) =
s∑

j=1

bjθj .

We say that two forms Λi and Λj are equivalent when there exists a non-zero rational
number λ with Λi = λΛj . This notion defines an equivalence relation on the set
{Λ1, Λ2, . . . , Λs}, and we refer to the number of elements in the equivalence class [Λj ]
containing the form Λj as its multiplicity. Suppose that the s forms Λj (1 ≤ j ≤ s)
fall into T equivalence classes, and that the multiplicities of the representatives of
these classes are R1, . . . , RT . By relabelling variables if necessary, there is no loss
in supposing that R1 ≥ R2 ≥ . . . ≥ RT ≥ 1. Further, by our hypothesis that
7 ≤ q0 ≤ s − 6, it is apparent that for any pair (c, d) ∈ Z2 \ {0}, the linear form
cL1(θ) + dL2(θ) necessarily possesses at least 7 non-zero coefficients, and for some
choice (c, d) ∈ Z2 \{0} this linear form has at most s−6 non-zero coefficients. Thus
we may assume without loss of generality that 6 ≤ R1 ≤ s − 7.

We distinguish three cases according to the number of variables and the ar-
rangement of the multiplicities of the forms. We refer to a system (1.1) as being of
type I when T = 2, as being of type II when T = 3 and R3 = 1, and as being of
type III in the remaining cases wherein T ≥ 3 and s−R1 −R2 ≥ 2. The argument
required to address the systems of types I and II is entirely different from that
required for those of type III, and we defer an account of these former situations
to §6 below. Our purpose in the remainder of §3 together with §§4 and 5 is to
establish the conclusion of Theorem 2 for type III systems.

Consider then a type III system (1.1) with s ≥ 13 and 7 ≤ q0 ≤ s − 6, and
consider a fixed subset S of {1, . . . , s} with card(S) = 13. We may suppose that the
13 forms Λj (j ∈ S) fall into t equivalence classes, and that the multiplicities of the
representatives of these classes are r1, . . . , rt. By relabelling variables if necessary,
there is no loss in supposing that r1 ≥ r2 ≥ . . . ≥ rt ≥ 1. The condition R1 ≤ s− 7
ensures that R2 + R3 + · · · + RT ≥ 7. Thus, on recalling the additional conditions
s ≥ 13, T ≥ 3, R1 ≥ 6 and s − R1 − R2 ≥ 2, it is apparent that we may make a
choice for S in such a manner that t ≥ 3, r1 = 6 and 13 − r1 − r2 ≥ 2. We may
therefore suppose that the profile of multiplicities (r1, r2, . . . , rt) satisfies t ≥ 3,
r1 = 6, r2 ≤ 5 and r2 + r3 + · · ·+ rt = 7. But then, in view of our earlier condition
r1 ≥ r2 ≥ . . . ≥ rt ≥ 1, we find that necessarily rt ≤ 3. We now relabel variables
in the system (1.1), and likewise in (3.1) and (3.2), so that the set S becomes
{1, 2, . . . , 13}, and so that Λ1 becomes a form in the first equivalence class counted
by r1, so that Λ2 becomes a form in the second equivalence class counted by r2,
and Λ13 becomes a form in the tth equivalence class counted by rt.

We next make some simplifying transformations that ease the analysis of the
singular integral, and here we follow the pattern of our earlier work [BW06]. First,
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by taking suitable integral linear combinations of the equations (1.1), we may sup-
pose without loss that

(3.3) b1 = a2 = 0 and bi = 0 (8 ≤ i ≤ 12).

Since we may suppose that a1b2 �= 0, the simultaneous equations

(3.4) L1(θ) = L2(θ) = 0

possess a solution θ with θj �= 0 (1 ≤ j ≤ s). Applying the substitution xj →
−xj for those indices j with 1 ≤ j ≤ s for which θj < 0, neither the solubility
of the system (1.1), nor the corresponding function Ns(P ), are affected, yet the
transformed linear system associated with (3.4) has a solution θ with θj > 0 (1 ≤
j ≤ s). In addition, the homogeneity of the system (3.4) ensures that a solution
of the latter type may be chosen with θ ∈ (0, 1)s. We now fix this solution θ,
and fix also ε to be a sufficiently small positive number, and η to be a positive
number sufficiently small in the context of Lemmata 3 and 4 with the property
that θ ∈ (η, 1)s.

At this point we are ready to define the generating functions required in our
application of the circle method. In addition to the smooth Weyl sum h(α) defined
in (2.1) we require also the classical Weyl sum

g(α) =
∑

ηP<x≤P

e(αx3).

On defining the generating functions

(3.5) H(α, β) =
12∏

j=2

h(Λj) and G(α, β) =
s∏

j=13

g(Λj),

we now see from orthogonality that

(3.6) Ns(P ) ≥
∫ 1

0

∫ 1

0

g(Λ1)H(α, β)G(α, β) dαdβ.

We apply the circle method to obtain a lower bound for the integral on the right
hand side of (3.6). In this context, we put Q = (log P )1/100, and when a, b ∈ Z and
q ∈ N, we write

N(q, a, b) = {(α, β) ∈ [0, 1)2 : |α − a/q| ≤ QP−3 and |β − b/q| ≤ QP−3}.

We then define the major arcs N of our Hardy-Littlewood dissection to be the union
of the sets N(q, a, b) with 0 ≤ a, b ≤ q ≤ Q and (q, a, b) = 1. The corresponding set
n of minor arcs are defined by n = [0, 1)2 \ N.

It transpires that the contribution of the major arcs within the integral on the
right hand side of (3.6) is easily estimated by making use of the work from our
previous paper [BW06].

Lemma 5. Suppose that the system (1.1) is of type III with s ≥ 13 and 7 ≤ q0 ≤
s− 6, and possesses a non-trivial 7-adic solution. Then, in the setting described in
the prequel, one has ∫∫

N

g(Λ1)H(α, β)G(α, β) dαdβ � P s−6.
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Proof. Although the formulation of the statements of Lemmata 12 and 13
of [BW06] may appear more restrictive than our present circumstances permit,
an examination of their proofs will confirm that it is sufficient in fact that the
maximum multiplicity of any of Λ1, Λ2, . . . , Λ13 is at most six amongst the latter
forms. Such follows already from the hypotheses of the lemma at hand, and thus
the desired conclusion follows in all essentials from the estimate (7.8) of [BW06]
together with the conclusions of Lemmata 12 and 13 of the latter paper. Note that
in [BW06] the generating functions employed differ slightly from those herein,
in that the exponential sums corresponding to the forms Λ13, . . . , Λs are smooth
Weyl sums rather than the present classical Weyl sums. This deviation, however,
demands at most cosmetic alterations to the argument of §7 of [BW06], and we
spare the reader the details. It should be remarked, though, that it is the reference
to Lemma 13 of [BW06] that calls for the specific construction of the point θ
associated with the equations (3.4). �

4. The auxiliary mean value estimate

The estimate underpinning our earlier work [BW06] takes the shape∫ 1

0

∫ 1

0

|h(Λ1)h(Λ2) . . . h(Λ12)| dα dβ � P 6+ξ+ε,

predicated on the assumption that the maximum multiplicity amongst Λ1, . . . , Λ12

does not exceed 5. In order to make progress on a viable minor arc treatment
in the present situation, we require an analogue of this estimate that permits the
replacement of a smooth Weyl sum by a corresponding classical Weyl sum. In
preparation for this lemma, we recall an elementary observation from our earlier
work, the proof of which is almost self-evident (see Lemma 5 of [BW06]).

Lemma 6. Let k and N be natural numbers, and suppose that B ⊆ Ck is mea-
surable. Let ωi(z) (0 ≤ i ≤ N) be complex-valued functions of B. Then whenever
the functions |ω0(z)ωj(z)N | (1 ≤ j ≤ N) are integrable on B, one has the upper
bound ∫

B

|ω0(z)ω1(z) . . . ωN (z)| dz ≤ N max
1≤j≤N

∫
B

|ω0(z)ωj(z)N |dz.

It is convenient in what follows to abbreviate, for each index l, the expression
|h(Λl)| simply to hl, and likewise |g(Λl)| to gl and |G(α, β)| to G. Furthermore, we
write

(4.1) G0(α, β) =
s∏

j=14

g(Λj),

with the implicit convention that G0(α, β) is identically 1 when s < 14.

Lemma 7. Suppose that the system (1.1) is of type III with s ≥ 13 and 7 ≤
q0 ≤ s − 6. Then in the setting described in §3, one has∫ 1

0

∫ 1

0

|H(α, β)G(α, β)| dαdβ � P s−7+ξ+ε.

Proof. We begin by making some analytic observations that greatly simplify
the combinatorial details of the argument to come. Write L = {Λ2, Λ3, . . . , Λ12},
and suppose that the number of equivalence classes in L is u. By relabelling indices
if necessary, we may suppose that u ≥ 3 and that representatives of these classes
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are Λ̃i ∈ L (1 ≤ i ≤ u). For each index i we denote by si the multiplicity of Λ̃i

amongst the elements of the set L. Then according to the discussion of the previous
section, we may suppose that Λ1 ∈ [Λ̃1], that

(4.2) 1 ≤ su ≤ su−1 ≤ . . . ≤ s1 = 5 and s2 + s3 + · · · + su = 6,

and further that if Λ13 ∈ [Λ̃i] for some index i with 1 ≤ i ≤ u, then in fact

(4.3) Λ13 ∈ [Λ̃u] and 1 ≤ su ≤ 2.

Next, for a given index i with 2 ≤ i ≤ 12, consider the linear forms Λlj (1 ≤ j ≤
si) equivalent to Λi from the set L. Apply Lemma 6 with N = si, with hlj in
place of ωj (1 ≤ j ≤ N), and with ω0 replaced by the product of those hl with
Λl �∈ [Λ̃i] (2 ≤ l ≤ 12), multiplied by G(α, β). Then it is apparent that there is
no loss of generality in supposing that Λlj = Λ̃i (1 ≤ j ≤ si). By repeating this
argument for successive equivalence classes, moreover, we find that a suitable choice
of equivalence class representatives Λ̃l (1 ≤ l ≤ u) yields the bound

(4.4)
∫ 1

0

∫ 1

0

|H(α, β)G(α, β)| dαdβ �
∫ 1

0

∫ 1

0

Gh̃s1
1 h̃s2

2 . . . h̃su
u dα dβ,

where we now take the liberty of abbreviating |h(Λ̃l)| simply to h̃l for each l.
A further simplification is achieved through the use of a device employed in

the proof of Lemma 6 of [BW06]. We begin by considering the situation in which
Λ13 ∈ [Λ̃u]. Let ν be a non-negative integer, and suppose that su−2 = su−1 +ν < 5.
Then we may apply Lemma 6 with N = ν+2, with h̃u−2 in place of ωi (1 ≤ i ≤ ν+1)
and h̃u−1 in place of ωN , and with ω0 set equal to

Gh̃s1
1 h̃s2

2 . . . h̃
su−3
u−3 h̃

su−2−ν−1
u−2 h̃

su−1−1
u−1 h̃su

u .

Here, and in what follows, we interpret the vanishing of any exponent as indicating
that the associated exponential sum is deleted from the product. In this way
we obtain an upper bound of the shape (4.4) in which the exponents su−2 and
su−1 = su−2 − ν are replaced by su−2 + 1 and su−1 − 1, respectively, or else by
su−2 − ν − 1 and su−1 + ν + 1. By relabelling if necessary, we derive an upper
bound of the shape (4.4), subject to the constraints (4.2) and (4.3), wherein either
the parameter su−1 is reduced, or else the parameter u is reduced. By repeating
this process, therefore, we ultimately arrive at a situation in which u = 3 and
su−1 = 6 − su, and then the constraints (4.2) and (4.3) imply that necessarily
(s1, s2, . . . , su) = (5, 6− s3, s3) with s3 = 1 or 2. When Λ13 �∈ [Λ̃u] we may proceed
likewise, but in the above argument su−1 now plays the rôle of su−2, and su that
of su−1, and with concommitant adjustments to the associated indices throughout.
In this second situation we ultimately arrive at a scenario in which u = 3 and
su−1 = 5, and in these circumstances the constraints (4.2) imply that necessarily
(s1, s2, . . . , su) = (5, 5, 1).

On recalling (4.1) and (4.4), and making use of a trivial inequality for |G0(α, β)|,
we may conclude thus far that

(4.5)
∫ 1

0

∫ 1

0

|H(α, β)G(α, β)| dαdβ � P s−13

∫ 1

0

∫ 1

0

g13h̃
s1
1 h̃s2

2 h̃s3
3 dα dβ,
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with (s1, s2, s3) = (5, 5, 1) or (5, 4, 2). We now write

Iij(ψ) =
∫ 1

0

∫ 1

0

h̃5
i h̃

5
jψ

2 dα dβ,

and we observe that an application of Hölder’s inequality yields

(4.6)
∫ 1

0

∫ 1

0

g13h̃
s1
1 h̃s2

2 h̃s3
3 dα dβ ≤ I12(g13)ω1I12(h̃3)ω2I13(h̃2)ω3 ,

where

(ω1, ω2, ω3) =

{
(1/2, 1/2, 0), when s3 = 1,
(1/2, 1/6, 1/3), when s3 = 2.

But Lemma 4 is applicable to each of the mean values I12(g13), I12(h̃3) and I13(h̃2),
and so we see from (4.6) that

∫ 1

0

∫ 1

0

g13h̃
s1
1 h̃s2

2 h̃s3
3 dα dβ � P 6+ξ+ε.

The conclusion of Lemma 7 is now immediate on substituting the latter estimate
into (4.5). �

5. Minor arcs, with some pruning

Equipped with the mean value estimate provided by Lemma 7, an advance
on the minor arc bound complementary to the major arc estimate of Lemma 5 is
feasible by the use of appropriate pruning technology. Here, in certain respects, the
situation is a little more delicate than was the case in our treatment of the analogous
situation in [BW06]. The explanation is to be found in the higher multiplicity of
coefficient ratios permitted in our present discussion, associated with which is a
lower average level of independence amongst the available generating functions.

We begin our account of the minor arcs by defining a set of auxiliary arcs to
be employed in the pruning process. Given a parameter X with 1 ≤ X ≤ P , we
define M(X) to be the set of real numbers α with α ∈ [0, 1) for which there exist
a ∈ Z and q ∈ N satisfying 0 ≤ a ≤ q ≤ X, (a, q) = 1 and |qα − a| ≤ XP−3. We
then define sets of major arcs M = M(P 3/4) and K = M(Q1/4), and write also
m = [0, 1) \ M and k = [0, 1) \ K for the corresponding sets of minor arcs.

Given a measurable set B ⊆ R2, define the mean-value J (B) by

(5.1) J (B) =
∫∫

B

|g(a1α)G(α, β)H(α, β)| dαdβ.

Also, put E = {(α, β) ∈ n : α ∈ M}. Then on recalling the enhanced version of
Weyl’s inequality afforded by Lemma 1 of Vaughan [V86], one finds from Lemma 7
that

(5.2)
J (n) � J (E) + sup

α∈m

|g(a1α)|
∫ 1

0

∫ 1

0

|G(α, β)H(α, β)| dαdβ

� J (E) + P s−6−τ ,

wherein we have written

(5.3) τ = (1/4 − ξ)/3.
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Our aim now is to show that J (E) = o(P s−6), for then it follows from (5.1) and
(5.2) in combination with the conclusion of Lemma 5 that∫ 1

0

∫ 1

0

g(Λ1)G(α, β)H(α, β) dαdβ = J (n) +
∫∫

N

g(Λ1)G(α, β)H(α, β) dαdβ

� P s−6 + o(P s−6).

The conclusion Ns(P ) � P s−6 is now immediate, and this completes the proof of
Theorem 2 for systems (1.1) of type III.

Before proceeding further, we define

(5.4) H0(α, β) =
7∏

j=2

h(Λj) and H1(α) =
12∏

j=8

h(Λj),

wherein we have implicitly made use of the discussion of §3 leading to (3.3) that
permits us to assume that Λj = ajα (8 ≤ j ≤ 12). Also, given α ∈ M we put
E(α) = {β ∈ [0, 1) : (α, β) ∈ E} and write

(5.5) Θ(α) =
∫

E(α)

|G(α, β)H0(α, β)| dβ.

The relation

(5.6) J (E) =
∫

M

|g(a1α)H1(α)|Θ(α) dα,

then follows from (5.1), and it is from here that we launch our pruning argument.

Lemma 8. One has

sup
α∈[0,1)

Θ(α) � P s−9 and sup
α∈K

Θ(α) � P s−9Q−1/72.

Proof. We divide the set E(α) into pieces on which major arc and minor arc
estimates of various types may be employed so as to estimate the integral defining
Θ(α) in (5.5). Let E1(α) denote the set consisting of those values β in E(α) for which
|g(Λ13)| < P 3/4+τ , where τ is defined as in (5.3), and put E2(α) = E(α) \ E1(α).
Then on applying a trivial estimate for those exponential sums g(Λj) with j ≥ 14,
it follows from (3.5) that

(5.7) sup
β∈E1(α)

|G(α, β)| � P s−49/4+τ .

But the discussion of §3 leading to (3.3) ensures that bj �= 0 for 2 ≤ j ≤ 7. By
making use of the mean value estimate (2.2), one therefore obtains the estimate∫ 1

0

|h(Λj)|6 dβ =
∫ 1

0

|h(γ)|6 dγ � P 3+ξ+ε (2 ≤ j ≤ 7),

whence an application of Hölder’s inequality leads from (5.4) to the bound

(5.8)
∫ 1

0

|H0(α, β)| dβ ≤
7∏

j=2

(∫ 1

0

|h(Λj)|6 dβ
)1/6

� P 3+ξ+ε.

Consequently, by combining (5.7) and (5.8) we obtain∫
E1(α)

|G(α, β)H0(α, β)| dβ � P s−9+(ξ−1/4)+τ+ε � P s−9−τ .
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When β ∈ E2(α), on the other hand, one has |g(Λ13)| ≥ P 3/4+τ . Applying the
enhanced version of Weyl’s inequality already cited, we find that the latter can
hold only when Λ13 ∈ M (mod 1). If we now define the set F(α) by

F(α) = {β ∈ [0, 1) : (α, β) ∈ n and Λ13 ∈ M (mod 1)},
and apply a trivial estimate once again for g(Λj) (j ≥ 14), then we may summarise
our deliberations thus far with the estimate

(5.9) Θ(α) � P s−9−τ + P s−13

∫
F(α)

|g(Λ13)H0(α, β)| dβ.

A transparent application of Lemma 6 leads from (5.4) to the upper bound∫
F(α)

|g(Λ13)H0(α, β)|dβ � max
2≤j≤7

∫
F(α)

|g(Λ13)h(Λj)6|dβ.

The conclusion of the lemma will therefore follow from (5.9) provided that we
establish for 2 ≤ j ≤ 7 the two estimates

(5.10) sup
α∈[0,1)

∫
F(α)

|g(Λ13)h(Λj)6| dβ � P 4

and

(5.11) sup
α∈K

∫
F(α)

|g(Λ13)h(Λj)6| dβ � P 4Q−1/72.

We henceforth suppose that j is an index with 2 ≤ j ≤ 7, and we begin by
considering the upper bound (5.10). Given α ∈ [0, 1), we make the change of
variable defined by the substitution b13γ = a13α + b13β. Let M0 be defined by

M0 = {γ ∈ [0, 1) : b13γ ∈ M (mod 1)}.
Then by the periodicity of the integrand modulo 1, the aforementioned change of
variable leads to the upper bound

(5.12)
∫

F(α)

|g(Λ13)h(Λj)6| dβ ≤
(

sup
β∈F(α)

|g(Λ13)|
)1/6

sup
λ∈R

U(λ),

in which we write

(5.13) U(λ) =
∫

M0

|g(b13γ)|5/6|h(bjγ + λ)|6 dγ.

We next examine the first factor on the right hand side of (5.12). Given α ∈ K,
consider a real number β with β ∈ F(α). If it were the case that Λ13 ∈ K (mod 1),
then one would have β = b−1

13 (Λ13 − a13α) ∈ M(Q3/4), whence (α, β) ∈ N (see the
proof of Lemma 10 in §6 of [BW06] for details of a similar argument). But the latter
contradicts the hypothesis β ∈ F(α), in view of the definition of F(α). Thus we
conclude that Λ13 ∈ k (mod 1), and so a standard application of Weyl’s inequality
(see Lemma 2.4 of [V97]) in combination with available major arc estimates (see
Theorem 4.1 and Lemma 4.6 of [V97]) yields the upper bound

(5.14) sup
β∈F(α)

|g(Λ13)| ≤ sup
γ∈k

|g(γ)| � PQ−1/12.

Of course, one has also the trivial upper bound

sup
β∈[0,1)

|g(Λ13)| ≤ P.



PAIRS OF DIAGONAL CUBIC EQUATIONS 69

We therefore deduce from (5.12) that

(5.15)
∫

F(α)

|g(Λ13)h(Λj)6| dβ � P 1/6U−1/72 sup
λ∈R

U(λ),

where U = Q when α ∈ K, and otherwise U = 1.
Next, on considering the underlying Diophantine equations, it follows from

Theorem 2 of Vaughan [V86] that for each λ ∈ R, one has the upper bound∫ 1

0

|h(bjγ + λ)|8 dγ � P 5.

Meanwhile, Lemma 9 of [BW06] yields the estimate

sup
λ∈R

∫
M0

|g(b13γ)|5/2|h(bjγ + λ)|2 dγ � P 3/2.

By applying Hölder’s inequality to the integral on the right hand side of (5.13),
therefore, we obtain

U(λ) ≤
(∫ 1

0

|h(bjγ + λ)|8 dγ
)2/3(∫

M0

|g(b13γ)|5/2|h(bjγ + λ)|2 dγ
)1/3

� (P 5)2/3(P 3/2)1/3.

On substituting the latter estimate into (5.15), we may conclude that∫
F(α)

|g(Λ13)h(Λj)6| dβ � P 4U−1/72,

with U defined as in the sequel to (5.15). The estimates (5.10) and (5.11) that
we seek to establish are then immediate, and in view of our earlier discussion this
suffices already to complete the proof of the lemma. �

We now employ the bounds supplied by Lemma 8 to prune the integral on the
right hand side of (5.6), making use also of an argument similar to that used in the
proof of this lemma. Applying these estimates within the aforementioned equation,
we obtain the bound

(5.16) J (E) � P s−9K(k ∩ M) + P s−9Q−1/72K(K),

where we write

(5.17) K(B) =
∫

B

|g(a1α)H1(α)| dα.

But in view of (5.4), when B ⊆ M, an application of Hölder’s inequality to (5.17)
yields

(5.18) K(B) ≤
12∏

j=8

((
sup
α∈B

|g(a1α)|
)1/58

L14/29
1,j L15/29

2,j

)1/5

,

where for 8 ≤ j ≤ 12 we put

L1,j =
∫

M

|g(a1α)|57/28|h(ajα)|2 dα

and

L2,j =
∫ 1

0

|h(ajα)|39/5 dα.
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The integral L1,j may be estimated by applying Lemma 9 of [BW06], and L2,j via
Theorem 2 of Brüdern and Wooley [BW01]. Thus we have

(5.19) L1,j � P 29/28 and L2,j � P 24/5 (8 ≤ j ≤ 12).

But as in the argument leading to the estimate (5.14) in the proof of Lemma 8, one
has also

(5.20) sup
α∈k

|g(a1α)| � PQ−1/12.

Thus, on making use in addition of the trivial estimate |g(a1α)| ≤ P valid uniformly
in α, and substituting this and the estimates (5.19) and (5.20) into (5.18), we
conclude that

K(k ∩ M) � P 3Q−1/696 and K(K) � P 3.

In this way, we deduce from (5.16) that J (E) � P s−6Q−1/696. The estimate
J (n) � P s−6Q−1/696 is now confirmed by (5.2), so that by the discussion following
that equation, we arrive at the desired lower bound Ns(P ) � P s−6 for the systems
(1.1) of type III under consideration. This completes the proof of Theorem 2 for
the latter systems, and so we may turn our attention in the next section to systems
of types I and II.

6. An exceptional approach to systems of types I and II

Systems of type II split into two almost separate diagonal cubic equations
linked by a single variable. Here we may apply the main ideas from our recent
collaboration with Kawada [BKW01a] in order to show that this linked cubic
variable is almost always simultaneously as often as expected equal both to the
first and to the second residual diagonal cubic. A lower bound for Ns(P ) of the
desired strength follows with ease. Although systems of type I are accessible in a
straightforward fashion to the modern theory of cubic smooth Weyl sums (see, for
example, [V89] and [W00]), we are able to avoid detailed discussion by appealing
to the main result underpinning the analysis of type II systems.

In preparation for the statement of the basic estimate of this section, we require
some notation. When t is a natural number, and c1, . . . , ct are natural numbers, let
Rt(m; c) denote the number of positive integral solutions of the equation

(6.1) c1x
3
1 + c2x

3
2 + · · · + ctx

3
t = m.

In addition, let η be a positive number with (c1 + c2)η < 1/4 sufficiently small in
the context of the estimate (2.2), and put ν = 16(c1 + c2)η. Finally, recall from
(5.3) that τ = (1/4 − ξ)/3 > 10−4.

Theorem 9. Suppose that t is a natural number with t ≥ 6, and let c1, . . . , ct

be natural numbers satisfying (c1, . . . , ct) = 1. Then for each natural number d
there is a positive number ∆, depending at most on c and d, with the property that
the set Et(P ), defined by

Et(P ) = {n ∈ N : νPd−1/3 < n ≤ Pd−1/3 and Rt(dn3; c) < ∆P t−3},
has at most P 1−τ elements.

We note that the conclusion of the theorem for t ≥ 7 is essentially classical,
and indeed one may establish that card(Et(P )) = O(1) under the latter hypothesis.
It is, however, painless to add these additional cases to the primary case t = 6,
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and this permits economies later in this section. Much improvement is possible in
the estimate for card(Et(P )) even when t = 6 (see Brüdern, Kawada and Wooley
[BKW01a] for the ideas necessary to save a relatively large power of P ). Here we
briefly sketch a proof of Theorem 9 that employs a straightforward approach to the
problem.

Proof. Let B ⊆ [0, 1) be a measurable set, and consider a natural number m.
If we define the Fourier coefficient Υt(m; B) by

(6.2) Υt(m; B) =
∫

B

g(c1α)g(c2α)h(c3α)h(c4α) . . . h(ctα)e(−mα) dα,

then it follows from orthogonality that for each m ∈ N, one has

(6.3) Υt(m; [0, 1)) ≤ Rt(m; c).

Recall the definition of the sets of major arcs M and minor arcs m from §5. We ob-
serve that the methods of Wooley [W00] apply to provide the mean value estimate

(6.4)
∫ 1

0

|g(ciα)2h(cjα)4| dα � P 3+ξ+ε (i = 1, 2 and 3 ≤ j ≤ t).

In addition, whenever u is a real number with u ≥ 7.7, it follows from Theorem 2
of Brüdern and Wooley [BW01] that

(6.5)
∫ 1

0

|h(cjα)|u dα � Pu−3 (3 ≤ j ≤ t).

Finally, we define the singular series

St(m) =
∞∑

q=1

q−t

q∑
a=1

(a,q)=1

S1(q, a)S2(q, a) . . . St(q, a)e(−ma/q),

where we write

Si(q, a) =
q∑

r=1

e(ciar3/q) (1 ≤ i ≤ t).

Then in view of (6.5), the presence of two classical Weyl sums within the integral
on the right hand side of (6.2) permits the use of the argument applied by Vaughan
in §5 of [V89] so as to establish that when τ is a positive number sufficiently small
in terms of η, one has

Υt(m; M) = Ct(η; m)St(m)mt/3−1 + O(P t−3(log P )−τ ),

where Ct(η; m) is a non-negative number related to the singular integral. When
ν3P 3 < m ≤ P 3, it follows from Lemma 8.5 of [W91] (see also Lemma 5.4 of
[V89]) that Ct(η; m) � 1, in which the implicit constant depends at most on t,
c and η. The methods of Chapter 4 of [V97] (see, in particular, Theorem 4.5)
show that St(m) � 1 uniformly in m, with an implicit constant depending at most
on t and c. Here it may be worth remarking that a homogenised version of the
representation problem (6.1) defines a diagonal cubic equation in t+1 ≥ 7 variables.
Non-singular p-adic solutions of the latter equation are guaranteed by the work of
Lewis [L57], and the coprimality of the coefficients c1, c2, . . . , ct ensures that a p-
adic solution of the homogenised equation may be found in which the homogenising
variable is equal to 1. Thus the existence of non-singular p-adic solutions for the
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equation (6.1) is assured, and it is this observation that permits us to conclude that
St(m) � 1.

Our discussion thus far permits us to conclude that when ∆ is a positive number
sufficiently small in terms of t, c and η, then for each m ∈ (ν3P 3, P 3] one has
Υt(m; M) > 2∆P t−3. But Υt(m; [0, 1)) = Υt(m; M) + Υt(m; m), and so it follows
from (6.2) and (6.3) that for each n ∈ Et(P ), one has

(6.6) |Υt(dn3; m)| > ∆P t−3.

When n ∈ Et(P ), we now define σn via the relation |Υt(dn3; m)| = σnΥt(dn3; m),
and then put

Kt(α) =
∑

n∈Et(P )

σne(−dn3α).

Here, in the event that Υt(dn3; m) = 0, we put σn = 0. Consequently, on abbrevi-
ating card(Et(P )) to Et, we find that by summing the relation (6.6) over n ∈ Et(P ),
one obtains

(6.7) Et∆P t−3 <

∫
m

g(c1α)g(c2α)h(c3α)h(c4α) . . . h(ctα)Kt(α) dα.

An application of Lemma 6 within (6.7) reveals that

Et∆P t−3 � max
i=1,2

max
3≤j≤t

∫
m

|g(ciα)2h(cjα)t−2Kt(α)| dα.

On making a trivial estimate for h(cjα) in case t > 6, we find by applying Schwarz’s
inequality that there are indices i ∈ {1, 2} and j ∈ {3, 4, . . . , t} for which

Et∆P t−3 �
(

sup
α∈m

|g(ciα)|
)
P t−6T 1/2

1 T 1/2
2 ,

where we write

T1 =
∫ 1

0

|g(ciα)2h(cjα)4| dα and T2 =
∫ 1

0

|h(cjα)4Kt(α)2| dα.

The first of the latter integrals can plainly be estimated via (6.4), and a consid-
eration of the underlying Diophantine equation reveals that the second may be
estimated in similar fashion. Thus, on making use of the enhanced version of
Weyl’s inequality (Lemma 1 of [V86]) by now familiar to the reader, we arrive at
the estimate

Et∆P t−3 � (P 3/4+ε)(P t−6)(P 3+ξ+ε) � P t−2−2τ+2ε.

The upper bound Et ≤ P 1−τ now follows whenever P is sufficiently large in terms
of t, c, η, ∆ and τ . This completes the proof of the theorem. �

We may now complete the proof of Theorem 2 for systems of type II. From
the discussion in §3, we may suppose that s ≥ 13, that 7 ≤ q0 ≤ s − 6, and that
amongst the forms Λi (1 ≤ i ≤ s) there are precisely 3 equivalence classes, one of
which has multiplicity 1. By taking suitable linear combinations of the equations
(1.1), and by relabelling the variables if necessary, it thus suffices to consider the
pair of equations

(6.8) a1x
3
1 + · · · + arx

3
r = d1x

3
s,

br+1x
3
r+1 + · · · + bs−1x

3
s−1 = d2x

3
s,

where we have written d1 = −as and d2 = −bs, both of which we may suppose to
be non-zero. We may apply the substitution xj → −xj whenever necessary so as to
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ensure that all of the coefficients in the system (6.8) are positive. Next write A and
B for the greatest common divisors of a1, . . . , ar and br+1, . . . , bs−1 respectively.
On replacing xs by ABy, with a new variable y, we may cancel a factor A from
the coefficients of the first equation, and likewise B from the second. There is
consequently no loss in assuming that A = B = 1 for the system (6.8).

In view of the discussion of §3, the hypotheses s ≥ 13 and 7 ≤ q0 ≤ s − 6
permit us to assume that in the system (6.8), one has r ≥ 6 and s − r ≥ 7. Let ∆
be a positive number sufficiently small in terms of ai (1 ≤ i ≤ r), bj (r + 1 ≤ j ≤
s − 1), and d1, d2. Also, put d = min{d1, d2}, D = max{d1, d2}, and recall that
ν = 16(c1+c2)η. Note here that by taking η sufficiently small in terms of d, we may
suppose without loss that νd−1/3 < 1

2D−1/3. Then as a consequence of Theorem 9,
for all but at most P 1−τ of the integers xs with νPd−1/3 < xs ≤ PD−1/3 one has
Rr(d1x

3
s; a) ≥ ∆P r−3, and likewise for all but at most P 1−τ of the same integers

xs one has Rs−r−1(d2x
3
s;b) ≥ ∆P s−r−4. Thus we see that

Ns(P ) ≥
∑

1≤xs≤P

Rr(d1x
3
s; a)Rs−r−1(d2x

3
s;b)

� (P − 2P 1−τ )(P r−3)(P s−r−4).

The bound Ns(P ) � P s−6 that we sought in order to confirm Theorem 2 for type
II systems is now apparent.

The only remaining situations to consider concern type I systems with s ≥ 13
and 7 ≤ q0 ≤ s − 6. Here the simultaneous equations take the shape

(6.9)
a1x

3
1 + · · · + ar−1x

3
r−1 = d1x

3
r,

br+1x
3
r+1 + · · · + bs−1x

3
s−1 = d2x

3
s,

with r ≥ 7 and s − r ≥ 7. As in the discussion of type II systems, one may make
changes of variable so as to ensure that (a1, . . . , ar−1) = 1 and (br+1, . . . , bs−1) = 1,
and in addition that all of the coefficients in the system (6.9) are positive. But as
a direct consequence of Theorem 9, in a manner similar to that described in the
previous paragraph, one obtains

Ns(P ) ≥
∑

1≤xr≤P

∑
1≤xs≤P

Rr−1(d1x
3
r; a)Rs−r−1(d2x

3
s;b)

� (P − P 1−τ )2(P r−4)(P s−r−4) � P s−6.

This confirms the lower bound Ns(P ) � P s−6 for type I systems, and thus the
proof of Theorem 2 is complete in all cases.

7. Asymptotic lower bounds for systems of smaller dimension

Although our methods are certainly not applicable to general systems of the
shape (1.1) containing 12 or fewer variables, we are nonetheless able to generalise
the approach described in the previous section so as to handle systems containing at
most 3 distinct coefficient ratios. We sketch below the ideas required to establish
such conclusions, leaving the reader to verify the details as time permits. It is
appropriate in future investigations of pairs of cubic equations, therefore, to restrict
attention to systems containing four or more coefficient ratios.

Theorem 10. Suppose that s ≥ 11, and that (aj , bj) ∈ Z2 \ {0} (1 ≤ j ≤ s)
satisfy the condition that the system (1.1) admits a non-trivial solution in Qp for
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every prime number p. Suppose in addition that the number of equivalence classes
amongst the forms Λj = ajα+bjβ (1 ≤ j ≤ s) is at most 3. Then whenever q0 ≥ 7,
one has Ns(P ) � P s−6.

We note that the hypothesis q0 ≥ 7 by itself ensures that there must be at
least 3 equivalence classes amongst the forms Λj (1 ≤ j ≤ s) when 8 ≤ s ≤
12, and at least 4 equivalence classes when 8 ≤ s ≤ 10. The discussion in the
introduction, moreover, explains why it is that the hypothesis q0 ≥ 7 must be
imposed, at least until such time as the current state of knowledge concerning
the density of rational solutions to (single) diagonal cubic equations in six or fewer
variables dramatically improves. The class of simultaneous diagonal cubic equations
addressed by Theorem 10 is therefore as broad as it is possible to address given
the restriction that there be at most three distinct equivalence classes amongst the
forms Λj (1 ≤ j ≤ s). In addition, we note that although, when s ≤ 12, one
may have p-adic obstructions to the solubility of the system (1.1) for any prime
number p with p ≡ 1 (mod 3), for each fixed system with s ≥ 4 and q0 ≥ 3 such
an obstruction must come from at worst a finite set of primes determined by the
coefficients a,b.

We now sketch the proof of Theorem 10. When s ≥ 13, of course, the desired
conclusion follows already from that of Theorem 2. We suppose henceforth, there-
fore, that s is equal to either 11 or 12. Next, in view of the discussion of §3, we
may take suitable linear combinations of the equations and relabel variables so as
to transform the system (1.1) to the shape

(7.1)
l∑

i=1

λix
3
i =

m∑
j=1

µjy
3
j =

n∑
k=1

νkz3
k,

with λi, µj , νk ∈ Z \ {0} (1 ≤ i ≤ l, 1 ≤ j ≤ m, 1 ≤ k ≤ n), wherein

(7.2) l ≥ m ≥ n, l + m + n = s, l + n ≥ 7 and m + n ≥ 7.

By applying the substitution xi → −xi, yj → −yj and zk → −zk wherever nec-
essary, moreover, it is apparent that we may assume without loss that all of the
coefficients in the system (7.1) are positive. In this way we conclude that

(7.3) Ns(P ) ≥
∑

1≤N≤P 3

Rl(N ; λ)Rm(N ; µ)Rn(N ; ν).

Finally, we note that the only possible triples (l, m, n) permitted by the constraints
(7.2) are (5, 5, 2), (5, 4, 3) and (4, 4, 4) when s = 12, and (4, 4, 3) when s = 11. We
consider these four triples (l, m, n) in turn. Throughout, we write τ for a sufficiently
small positive number.

We consider first the triple of multiplicities (5, 5, 2). Let (ν1, ν2) ∈ N2, and
denote by X the multiset of integers {ν1z

3
1 + ν2z

3
2 : z1, z2 ∈ A(P, P η)}. Consider

a 5-tuple ξ of natural numbers, and denote by X(P ; ξ) the multiset of integers
N ∈ X ∩ [ 12P 3, P 3] for which the equation ξ1u

3
1 + · · · + ξ5u

3
5 = N possesses a p-

adic solution u for each prime p. It follows from the hypotheses of the statement
of the theorem that the multiset X(P ; λ; µ) = X(P ; λ) ∩ X(P ; µ) is non-empty.
Indeed, by considering a suitable arithmetic progression determined only by λ, µ
and ν, a simple counting argument establishes that card(X(P ; λ; µ)) � P 2. Then
by the methods of [BKW01a] (see also the discussion following the statement
of Theorem 1.2 of [BKW01b]), one has the lower bound R5(N ; λ) � P 2 for
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each N ∈ X(P ; λ; µ) with at most O(P 2−τ ) possible exceptions. Similarly, one has
R5(N ; µ) � P 2 for each N ∈ X(P ; λ; µ) with at most O(P 2−τ ) possible exceptions.
Thus we see that for systems with coefficient ratio multiplicity profile (5, 5, 2), one
has the lower bound

(7.4)
N12(P ) ≥

∑
N∈X(P ;λ;µ)

R5(N ; λ)R5(N ; µ)

� (P 2 − 2P 2−τ )(P 2)2 � P 6.

Consider next the triple of multiplicities (5, 4, 3). Let (ν1, ν2, ν3) ∈ N3, and
take τ > 0 as before. We now denote by Y the multiset of integers

{ν1z
3
1 + ν2z

3
2 + ν3z

3
3 : z1, z2, z3 ∈ A(P, P η)}.

Consider a v-tuple ξ of natural numbers with v ≥ 4, and denote by Yv(P ; ξ) the
multiset of integers N ∈ Y∩ [ 12P 3, P 3] for which the equation ξ1u

3
1 + · · ·+ξvu3

v = N
possesses a p-adic solution u for each prime p. The hypotheses of the statement
of the theorem ensure that the multiset Y(P ; λ; µ) = Y5(P ; λ) ∩ Y4(P ; µ) is non-
empty. Indeed, again by considering a suitable arithmetic progression determined
only by λ, µ and ν, one may show that card(Y(P ; λ; µ)) � P 3. When s ≥ 4,
the methods of [BKW01a] may on this occasion be applied to establish the lower
bound R5(N ; λ) � P 2 for each N ∈ Y(P ; λ; µ), with at most O(P 3−τ ) possible
exceptions. Likewise, one obtains the lower bound R4(N ; µ) � P for each N ∈
Y(P ; λ; µ), with at most O(P 3−τ ) possible exceptions. Thus we find that for
systems with coefficient ratio multiplicity profile (5, 4, 3), one has the lower bound

(7.5)
N12(P ) ≥

∑
N∈Y(P ;λ;µ)

R5(N ; λ)R4(N ; µ)

� (P 3 − 2P 3−τ )(P 2)(P ) � P 6.

The triple of multiplicities (4, 4, 3) may plainly be analysed in essentially the same
manner, so that

(7.6)
N11(P ) ≥

∑
N∈Y(P ;λ;µ)

R4(N ; λ)R4(N ; µ)

� (P 3 − 2P 3−τ )(P )2 � P 5.

An inspection of the cases listed in the aftermath of equation (7.3) reveals
that it is only the multiplicity triple (4, 4, 4) that remains to be tackled. But here
conventional exceptional set technology in combination with available estimates
for cubic Weyl sums may be applied. Consider a 4-tuple ξ of natural numbers,
and denote by Z(P ; ξ) the set of integers N ∈ [ 12P 3, P 3] for which the equation
ξ1u

3
1 + · · · + ξ4u

3
4 = N possesses a p-adic solution u for each prime p. It follows

from the hypotheses of the statement of the theorem that the set

Z(P ; λ; µ; ν) = Z(P ; λ) ∩ Z(P ; µ) ∩ Z(P ; ν)

is non-empty. But the estimates of Vaughan [V86] permit one to prove that
the lower bound R4(N ; λ) � P holds for each N ∈ Z(P ; λ; µ; ν) with at most
O(P 3(log P )−τ ) possible exceptions, and likewise when R4(N ; λ) is replaced by
R4(N ; µ) or R4(N ; ν). Thus, for systems with coefficient ratio multiplicity profile
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(4, 4, 4), one arrives at the lower bound

(7.7)
N12(P ) ≥

∑
N∈Z(λ;µ;ν)

R4(N ; λ)R4(N ; µ)R4(N ; ν)

� (P 3 − 3P 3(log P )−τ )(P )3 � P 6.

On collecting together (7.4), (7.5), (7.6) and (7.7), the proof of the theorem is
complete.
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Second moments of GL2 automorphic L-functions

Adrian Diaconu and Dorian Goldfeld

Abstract. The main objective of this paper is to explore a variant of the

Rankin-Selberg method introduced by Anton Good about twenty years ago in
the context of second integral moments of L-functions attached to modular

forms on SL2(Z). By combining Good’s idea with some novel techniques, we
shall establish the meromorphic continuation and sharp polynomial growth
estimates for certain functions of two complex variables (double Dirichlet se-

ries) naturally attached to second integral moments.

1. Introduction

In 1801, in the Disquisitiones Arithmeticae [Gau01], Gauss introduced the
class number h(d) as the number of inequivalent binary quadratic forms of discrim-
inant d. Gauss conjectured that the average value of h(d) is 2π

7ζ(3)

√
|d| for negative

discriminants d. This conjecture was first proved by I. M. Vinogradov [Vin18] in
1918. Remarkably, Gauss also made a similar conjecture for the average value of
h(d) log(εd), where d ranges over positive discriminants and εd is the fundamen-
tal unit of the real quadratic field Q(

√
d). Of course, Gauss did not know what

a fundamental unit of a real quadratic field was, but he gave the definition that
εd = t+u

√
d

2 , where t, u are the smallest positive integral solutions to Pell’s equation
t2 − du2 = 4. For example, he conjectured that

d ≡ 0 (mod 4) →
∑
d≤x

h(d) log(εd) ∼ 4π2

21ζ(3)
x

3
2 ,

while

d ≡ 1 (mod 4) →
∑
d≤x

h(d) log(εd) ∼ π2

18ζ(3)
x

3
2 .

These latter conjectures were first proved by C. L. Siegel [Sie44] in 1944.
In 1831, Dirichlet introduced his famous L–functions

L(s, χ) =
∞∑

n=1

χ(n)
ns

,
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where χ is a character (mod q) and �(s) > 1. The study of moments∑
q

L(s, χq)m,

say, where χq is the real character associated to a quadratic field Q(
√

q), was not
achieved until modern times. In the special case when s = 1 and m = 1, the value of
the first moment reduces to the aforementioned conjecture of Gauss because of the
Dirichlet class number formula (see [Dav00], pp. 43-53) which relates the special
value of the L–function L(1, χq) with the class number and fundamental unit of the
quadratic field Q(

√
q).

Let

L(s) =
∞∑

n=1

a(n)n−s

be the L–function associated to a modular form for the modular group. The main
focus of this paper is to obtain meromorphic continuation and growth estimates in
the complex variable w of the Dirichlet series∫ ∞

1

|L ( 1
2 + it) |k t−wdt.

We shall show, by a new method, that it is possible to obtain meromorphic contin-
uation and rather strong growth estimates of the above Dirichlet series for the case
k = 2. It is then possible, by standard methods, to obtain asymptotics, as T → ∞,
for the second integral moment ∫ T

0

|L( 1
2 + it)|2 dt.

In the special case that the modular form is an Eisenstein series this yields asymp-
totics for the fourth moment of the Riemann zeta-function.

Moment problems associated to the Riemann zeta-function ζ(s) =
∞∑

n=1
n−s

were intensively studied in the beginning of the last century. In 1918, Hardy and
Littlewood [HL18] obtained the second moment

∫ T

0

|ζ ( 1
2 + it)|2 dt ∼ T log T,

and in 1926, Ingham [Ing26], obtained the fourth moment∫ T

0

|ζ ( 1
2 + it)|4 dt ∼ 1

2π2
· T (log T )4.

Heath-Brown (1979) [HB81] obtained the fourth moment with error term of the
form ∫ T

0

|ζ ( 1
2 + it)|4 dt =

1
2π2

· T · P4(log T ) + O
(
T

7
8+ε
)

,

where P4(x) is a certain polynomial of degree four.

Let f(z) =
∞∑

n=1
a(n)e2πinz be a cusp form of weight κ for the modular group

with associated L–function Lf (s) =
∞∑

n=1
a(n)n−s. Anton Good [Goo82] made a
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significant breakthrough in 1982 when he proved that∫ T

0

|Lf (κ
2 + it) |2 dt = 2aT (log(T ) + b) + O

((
T log T

) 2
3
)

for certain constants a, b. It seems likely that Good’s method can apply to Eisenstein
series.

In 1989, Zavorotny [Zav89], improved Heath-Brown’s 1979 error term to∫ T

0

|ζ ( 1
2 + it)|4 dt =

1
2π2

· T · P4(log T ) + O
(
T

2
3+ε
)

.

Shortly afterwards, Motohashi [Mot92], [Mot93] slightly improved the above error
term to

O
(
T

2
3 (log T )B

)
for some constant B > 0. Motohashi introduced the double Dirichlet series [Mot95],
[Mot97] ∫ ∞

1

ζ(s + it)2ζ(s − it)2t−w dt

into the picture and gave a spectral interpretation to the moment problem.
Unfortunately, an old paper of Anton Good [Goo86], going back to 1985,

which had much earlier outlined an alternative approach to the second moment
problem for GL(2) automorphic forms using Poincaré series has been largely for-
gotten. Using Good’s approach, it is possible to recover the aforementioned results
of Zavorotny and Motohashi. It is also possible to generalize this method to more
general situations; for instance see [DG], where the case of GL(2) automorphic
forms over an imaginary quadratic field is considered. Our aim here is to explore
Good’s method and show that it is, in fact, an exceptionally powerful tool for the
study of moment problems.

Second moments of GL(2) Maass forms were investigated in [Jut97], [Jut05].
Higher moments of L–functions associated to automorphic forms seem out of reach
at present. Even the conjectured values of such moments were not obtained un-
til fairly recently (see [CF00], [CG01], [CFK+], [CG84], [DGH03], [KS99],
[KS00]).

Let H denote the upper half-plane. A complex valued function f defined on H
is called an automorphic form for Γ = SL2(Z), if it satisfies the following properties:

(1) We have

f

(
az + b

cz + d

)
= (cz + d)κf(z) for

(
a b
c d

)
∈ Γ;

(2) f(iy) = O(yα) for some α, as y → ∞;
(3) κ is either an even positive integer and f is holomorphic, or κ = 0, in

which case, f is an eigenfunction of the non-euclidean Laplacian ∆ =
− y2

(
∂2

∂x2 + ∂2

∂y2

)
(z = x+ iy ∈ H) with eigenvalue λ. In the first case, we

call f a modular form of weight κ, and in the second, we call f a Maass
form with eigenvalue λ.

In addition, if f satisfies ∫ 1

0

f(x + iy) dx = 0,
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then it is called a cusp form.
Let f and g be two cusp forms for Γ of the same weight κ (for Maass forms we

take κ = 0) with Fourier expansions

f(z) =
∑
m�=0

am |m|
κ−1

2 W (mz), g(z) =
∑
n �=0

bn |n|
κ−1

2 W (nz) (z = x + iy, y > 0).

Here, if f, for example, is a modular form, W (z) = e2πiz, and the sum is restricted
to m ≥ 1, while if f is a Maass form with eigenvalue λ1 = 1

4 + r2
1,

W (z) = W 1
2+ir1

(z) = y
1
2 Kir1(2πy)e2πix (z = x + iy, y > 0),

where Kν(y) is the K–Bessel function. Throughout, we shall assume that both f
and g are eigenfunctions of the Hecke operators, normalized so that the first Fourier
coefficients a1 = b1 = 1. Furthermore, if f and g are Maass cusp forms, we shall
assume them to be even.

Associated to f and g, we have the L–functions:

Lf (s) =
∞∑

m=1

amm−s; Lg(s) =
∞∑

n=1

bnn−s.

In [Goo86], Anton Good found a natural method to obtain the meromorphic con-
tinuation of multiple Dirichlet series of type

(1.1)
∫ ∞

1

Lf (s1 + it)Lg(s2 − it) t−w dt,

where Lf (s) and Lg(s) are the L–functions associated to automorphic forms f
and g on GL(2, Q). For fixed g and fixed s1, s2, w ∈ C, the integral (1.1) may be
interpreted as the image of a linear map from the Hilbert space of cusp forms to C
given by

f −→
∫ ∞

1

Lf (s1 + it)Lg(s2 − it) t−w dt.

The Riesz representation theorem guarantees that this linear map has a kernel.
Good computes this kernel explicitly. For example when s1 = s2 = 1

2 , he shows
that there exists a Poincaré series Pw and a certain function K such that

〈f, P̄wg〉 =
∫ ∞

−∞
Lf ( 1

2 + it)Lg( 1
2 + it) K(t, w) dt,

where 〈 , 〉 denotes the Petersson inner product on the Hilbert space of cusp forms.
Remarkably, it is possible to choose Pw so that

K(t, w) ∼ |t|−w, (as |t| → ∞).

Good’s approach has been worked out for congruence subgroups in [Zha].

There are, however, two serious obstacles in Good’s method.
• Although K(t, w) ∼ |t|−w as |t| → ∞ and w fixed, it has a quite different

behavior when t � |�(w)|. In this case it grows exponentially in |t|.
• The function 〈f, P̄wg〉 has infinitely many poles in w, occurring at the

eigenvalues of the Laplacian. So there is a problem to obtain polynomial
growth in w by the use of convexity estimates such as the Phragmén-
Lindelöf theorem.
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In this paper, we introduce novel techniques for surmounting the above two
obstacles. The key idea is to use instead another function Kβ , instead of K, so
that (1.1) satisfies a functional equation w → 1 − w. This allows one to obtain
growth estimates for (1.1) in the regions �(w) > 1 and −ε < �(w) < 0. In order to
apply the Phragmén-Lindelöf theorem, one constructs an auxiliary function with the
same poles as (1.1) and which has good growth properties. After subtracting this
auxiliary function from (1.1), one may apply the Phragmen-Lindelöf theorem. It
appears that the above methods constitute a new technique which may be applied
in much greater generality. We will address these considerations in subsequent
papers.

For �(w) sufficiently large, consider the function Z(w) defined by the absolutely
convergent integral

(1.2) Z(w) =

∞∫
1

Lf ( 1
2 + it)Lg( 1

2 − it)t−w dt.

The main object of this paper is to prove the following.

Theorem 1.3. Suppose f and g are two cusp forms of weight κ ≥ 12 for
SL(2, Z). The function Z(w), originally defined by (1.2) for �(w) sufficiently large,
has a meromorphic continuation to the half-plane �(w) > −1, with at most simple
poles at

w = 0,
1
2

+ iµ, −1
2

+ iµ,
ρ

2
,

where 1
4 +µ2 is an eigenvalue of ∆ and ζ(ρ) = 0; when f = g, it has a pole of order

two at w = 1. Furthermore, for fixed ε > 0, and ε < δ < 1 − ε, we have the growth
estimate

(1.4) Z(δ + iη) �ε (1 + |η|)2−
3δ
4 ,

provided |w|, |w − 1|, |w ± 1
2 − µ|,

∣∣w − ρ
2

∣∣ > ε with w = δ + iη, and for all µ, ρ, as
above.

Note that in the special case when f(z) = g(z) is the usual SL2(Z) Eisenstein
series at s = 1

2 (suitably renormalized), a stronger result is already known (see
[IJM00] and [Ivi02]) for �(δ) > 1

2 . It is remarked in [IJM00] that their methods
can be extended to holomorphic cusp forms, but that obtaining such results for
Maass forms is problematic.

2. Poincaré series

To obtain Theorem 1.3, we shall need two Poincaré series, the second one
being first considered by A. Good in [Goo86]. The first Poincaré series P (z; v, w)
is defined by

(2.1) P (z; v, w) =
∑

γ∈Γ/Z

(�(γz))v

(
�(γz)
|γz|

)w

(Z = {±I}).

This series converges absolutely for �(v) and �(w) sufficiently large. Writing

P (z; v, w) =
1
2

∑
γ∈SL2(Z)

yv+w|z|−w
∣∣∣ [γ] =

∑
γ∈Γ∞\Γ

yv+w ·
∞∑

m=−∞
|z + m|−w

∣∣∣ [γ],
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and using the well-known Fourier expansion of the above inner sum, one can im-
mediately write

P (z; v, w) =
√

π
Γ
(

w−1
2

)
Γ
(

w
2

) E(z, v + 1)(2.2)

+ 2 π
w
2 Γ
(w

2

)−1 ∞∑
k=−∞

k �=0

|k|
w−1

2 Pk

(
z; v +

w

2
,
w − 1

2

)
,

where Γ(s) is the usual Gamma function, E(z, s) is the classical non-holomorphic
Eisenstein series for SL2(Z), and Pk(z; v, s) is the classical Poincaré series defined
by

(2.3) Pk(z; v, s) = |k|− 1
2

∑
γ∈Γ∞\Γ

(�(γz))v W 1
2+s(k · γz).

It is not hard to show that Pk(z; v, s) ∈ L2
(
Γ\H

)
, for |�(s)|+ 3

4 > �(v) > |�(s)|+ 1
2

(see [Zha]).
To define the second Poincaré series Pβ(z, w), let β(z, w) be defined for z ∈ H

and �(w) > 0 by

(2.4) β(z, w) =




1
i

− log z̄∫
− log z

[
2yeξ

(zeξ−1)(z̄eξ−1)

]1−w

dξ if �(z) = x ≥ 0 and

�(w) > 0 ,

β(−z̄, w) if x < 0,

where the logarithm takes its principal values, and the integration is along a ver-
tical line segment. It can be easily checked that β(z, w) satisfies the following two
properties:

(2.5) β(αz, w) = β(z, w) (α > 0),

and for z off the imaginary axis,

(2.6) ∆β = w(1 − w)β.

If we write z = reiθ with r > 0 and 0 < θ < π
2 , then by (2.4) and (2.5), we

have

(2.7)

β(z, w) = β
(
eiθ, w

)
=

1
i

iθ∫
−iθ

[
2 eξ sin θ

(eξ+iθ − 1)(eξ−iθ − 1)

]1−w

dξ

=

θ∫
−θ

[
2 eit sin θ

(ei(t+θ) − 1)(ei(t−θ) − 1)

]1−w

dt

=

θ∫
−θ

(
sin θ

cos t − cos θ

)1−w

dt

=
√

2π sin θ Γ(w) P
1
2−w

− 1
2

(cos θ),
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where Pµ
ν (z) is the spherical function of the first kind. This function is a solution

of the differential equation

(2.8) (1 − z2)
d2u

dz2
− 2z

du

dz
+
[
ν(ν + 1) − µ2

1 − z2

]
u = 0 (µ, ν ∈ C).

There is another linearly independent solution of (2.8) denoted by Qµ
ν (z) and

called the spherical function of the second kind. We shall need these functions for
real values of z = x and −1 ≤ x ≤ 1. For these values, one can take as linearly
independent solutions the functions defined by

(2.9) Pµ
ν (x) =

1
Γ(1 − µ)

(
1 + x

1 − x

)µ
2

F

(
−ν, ν + 1; 1 − µ;

1 − x

2

)
;

(2.10) Qµ
ν (x) =

π

2 sinµπ

[
Pµ

ν (x) cosµπ − Γ(ν + µ + 1)
Γ(ν − µ + 1)

P−µ
ν (x)

]
.

Here

F (α, β; γ; z) =
Γ(γ)

Γ(α)Γ(β)
·

∞∑
n=0

1
n!

Γ(α + n)Γ(β + n)
Γ(γ + n)

zn

is the Gauss hypergeometric function. We shall need an additional formula (see
[GR94], page 1023, 8.737-2) relating the spherical functions, namely

(2.11) Pµ
ν (−x) = Pµ

ν (x) cos[(µ + ν)π] − 2
π

Qµ
ν (x) sin[(µ + ν)π].

Now, we define the second Poincaré series Pβ(z, w) by

(2.12) Pβ(z, w) =
∑

γ∈Γ/Z

β(γz, w) (Z = {±I}).

It can be observed that the series in the right hand side converges absolutely for
�(w) > 1.

3. Multiple Dirichlet series

Fix two cusp forms f, g of weight κ for Γ = SL(2, Z) as in Section 1. Here f, g
are holomorphic for κ ≥ 12 and are Maass forms if κ = 0. Define

F (z) = yκf(z)g(z).

For complex variables s1, s2, w, we are interested in studying the multiple Dirichlet
series of type

∞∫
1

Lf (s1 + it)Lg (s2 − it) t−w dt.

As was first discovered by Good [Goo86], such series can be constructed by consid-
ering inner products of F with Poincaré series of the type that we have introduced
in Section 2. Good shows that such inner products lead to multiple Dirichlet series
of the form

∞∫
0

Lf (s1 + it)Lg (s2 − it)K(s1, s2, t, w) dt,



84 ADRIAN DIACONU AND DORIAN GOLDFELD

with a suitable kernel function K(s1, s2, t, w). One of the main difficulties of the the-
ory is to obtain kernel functions K with good asymptotic behavior. The following
kernel functions arise naturally in our approach.

First, if f, g are holomorphic cusp forms of weight κ, then we define:

(3.1) K(s; v, w) = 21−w−2v−2κ π−v−κ Γ(w + v + κ − 1) Γ(s) Γ(v + κ − s)
Γ
(

w
2 + s

)
Γ
(

w
2 + v + κ − s

) ;

(3.2)

Kβ(t, w) =

21−κ π−κ−1
∣∣∣Γ(κ

2
+ it

)∣∣∣2
π
2∫

0

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ.

Also, for 0 < θ < 2π, let W̃ 1
2+ν

(
eiθ, s

)
denote the Mellin transform of W 1

2+ν

(
ueiθ

)
.

Then, if f and g are both Maass cusp forms, we define K(s; v, w) and Kβ(t, w) with
t ≥ 0, by

(3.3)

K(s; v, w) =
∑

ε1, ε2=±1

π∫
0

W̃ 1
2+ir1

(
ε1e

iθ, s
)

W̃ 1
2+ir2

(ε2 eiθ, v̄ − s̄) sinv+w−2(θ) dθ;

(3.4)

Kβ(t, w) =
∑

ε1, ε2=±1

π∫
0

β
(
eiθ, w

)
sin−2(θ) W̃ 1

2+ir1

(
ε1e

iθ, it
)
W̃ 1

2+ir2
(ε2 eiθ, it) dθ.

We have the following.

Proposition 3.5. Fix two cusp forms f, g of weight κ for SL(2, Z) with asso-
ciated L-functions Lf (s), Lg(s). For �(v) and �(w) sufficiently large, we have

〈P (∗ ; v, w), F 〉 =
∞∫

−∞

Lf

(
σ − κ

2
+

1
2

+ it

)
Lg

(
v +

κ

2
+

1
2
− σ − it

)
K(σ + it; v, w) dt,

and

〈Pβ(∗ ; w), F 〉 =

∞∫
0

Lf ( 1
2 + it)Lg( 1

2 − it)Kβ(t, w) dt,

where K(s; v, w), Kβ(t, w) are given by (3.1) and (3.2), if f and g are holomorphic,
and by (3.3) and (3.4), if f and g are both Maass cusp forms.

Proof. We evaluate

I(v, w) = 〈P (∗; v, w), F 〉 =
∫ ∫

Γ\H
P (z; v, w)f(z)g(z) yκ dx dy

y2
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by the unfolding technique. We have

I(v, w) =

=

∞∫
0

∞∫
−∞

f(z)g(z) |z|−wyv+w+κ−2 dx dy =

=

π∫
0

∞∫
0

f
(
reiθ

)
g (reiθ) rv+κ−1 sinv+w+κ−2(θ) dr dθ =

=
∑

m, n �=0

ambn

|mn| 1−κ
2

π∫
0

∞∫
0

W 1
2+ir1

(
mreiθ

)
W 1

2+ir2
(nreiθ) rv+κ−1 sinv+w+κ−2(θ) dr dθ.

By Mellin transform theory, we may express

W 1
2+ir1

(
mreiθ

)
=

1
2πi

∫
(σ)

∞∫
0

W 1
2+ir1

(
mueiθ

)
us du

u
r−s ds.

Making the substitution u �→ u
|m| , we have

W 1
2+ir1

(
reiθ

)
=

1
2πi

∫
(σ)

∞∫
0

W 1
2+ir1

(
m

|m| ueiθ

)
us

|m|s
du

u
r−s ds.

Plugging this in the last expression of 〈P (·; v, w), F 〉, we obtain

I(v, w) =
1

2πi

∫
(σ)

∑
m, n �=0

ambn

|m|s+ 1−κ
2 |n| 1−κ

2

π∫
0

∞∫
0

W 1
2+ir1

(
m

|m| ueiθ

)
us du

u

·
∞∫
0

W 1
2+ir2

(nreiθ) rv−s+κ dr

r
· sinv+w+κ−2(θ) dθ ds.

Recall that if f and g are Maass forms, then both are even. The proposition
immediately follows by making the substitution r �→ r

|n| .

The second formula in Proposition 3.5 can be proved by a similar argument. �

4. The kernels K(t, w) and Kβ(t, w)

In this section, we shall study the behavior in the variable t of the kernels

(4.1)
K(t, w) := K

(κ

2
+ it; 0, w

)

= 21−w−2κ π−κ Γ(w + κ − 1) Γ
(

κ
2 + it

)
Γ(κ

2 − it)
Γ
(

w
2 + κ

2 + it
)
Γ
(

w
2 + κ

2 − it
)

and Kβ(t, w) given by (3.2). This will play an important role in the sequel. We
begin by proving the following.

Proposition 4.2. For t � 0, the kernels K(t, w) and Kβ(t, w) are meromor-
phic functions of the variable w. Furthermore, for −1 < �(w) < 2, |�(w)| → ∞,
we have the asymptotic formulae

(4.3) K(t, w) = A(w) t−w ·
(

1 + Oκ

(
|�(w)|4

t2

))
,
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(4.4)

Kβ(t, w) =

= 21−κ π−κ−1|Γ(κ
2 + it)|2

π
2∫

0

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ

= B(w) t−w

(
1 + Oκ

(
|�(w)|3

t2

))
,

where

A(w) =
Γ(w + κ − 1)
22κ+w−1 πκ

and B(w) =
2πw− 1

2 Γ(w)Γ(w + κ − 1)
Γ(w + 1

2 )(4π)κ+w−1
.

Proof. Let s and a be complex numbers with |a| large and |a| < |s| 12 . Using
the well-known asymptotic representation for large values of |s| :

Γ(s) =
√

2π · ss− 1
2 e−s

(
1 +

1
12 s

+
1

288 s2
− 139

51840 s3
+ O

(
|s|−4

))
,

which is valid provided −π < arg(s) < π, we have

Γ(s)
Γ(s + a)

= s−a
(
1 +

a

s

)−s−a+ 1
2

ea ·
(

1 − 1
12 (s + a)

+ O
(
|s|−2

))(
1 +

1
12 s

+ O
(
|s|−2

))
.

Since |s| > |a|2, it easily follows that

( 1
2 − s − a) log

(
1 +

a

s

)
+ a =

a (1 − a)
2 s

+
a3

6 s2
+ O

(
|a|2|s|−2

)
.

Consequently,

Γ(s)
Γ(s+a) = s−ae

a (1−a)
2 s + a3

6 s2
+ O(|a|2|s|−2) ·

(
1 − 1

12 (s+a) + O
(
|s|−2

))
·
(
1 + 1

12 s + O
(
|s|−2

))
.

Now, we have by the Taylor expansion that

e
a (1−a)

2 s + a3

6 s2 = 1 +
a(1 − a)

2s
+ O

(
|a|4
|s|2

)
.

It follows that

(4.5)
Γ(s)

Γ(s + a)
= s−a

(
1 +

a(1 − a)
2s

+ O
(
|a|4
|s2|

))
.

Now

K(t, w) = 21−w−2κ π−κ Γ(w + κ − 1)
Γ
(

κ
2 + it

)
Γ(κ

2 − it)
Γ
(

w
2 + κ

2 + it
)
Γ
(

w
2 + κ

2 − it
) .

We may apply (4.5) (with s = κ
2 ± it, a = w

2 ) to obtain (for t → ∞)

K(t, w) = Γ(w+κ−1)
22κ+w−1 πκ

∣∣κ
2 + it

∣∣−w ·
(
1 + O

(
|w|4

κ2+t2

))
= Γ(w+κ−1)

22κ+w−1 πκ t−w ·
(
1 + O

(
|w|4
t2

))
.

This proves the asymptotic formula (4.3). �
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We now continue on to the proof of (4.4). Recall that

Kβ(t, w) =
4|Γ(κ

2 + it)|2
(2π)κ+1

π
2∫

0

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ.

We shall split the θ–integral into two parts. Accordingly, we write

Kβ(t, w) =

=
4|Γ(κ

2 + it)|2
(2π)κ+1




|�(w)|−
1
2∫

0

+

π
2∫

|�(w)|−
1
2


β

(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ.

First of all, we may assume t � |�(w)| 32+ε. Otherwise, the asymptotic formula
(4.4) is not valid.

∫ π
2

|�(w)|−
1
2

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ

� eπte
− 2t√

|�(w)| · max
|�(w)|−

1
2 ≤θ≤π

2

∣∣β(eiθ, w
)∣∣

� eπte−|�(w)|1+ε

,

since t � |�(w)| 32+ε and β
(
eiθ, w

)
is bounded. It follows that

Kβ(t, w) =
4|Γ(κ

2 + it)|2
(2π)κ+1

|�(w)|−
1
2∫

0

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ

+ O
(
e−|�(w)|1+ε

)

=
2|Γ(κ

2 + it)|2 · eπt

(2π)κ+1

|�(w)|−
1
2∫

0

β
(
eiθ, w

)
sinκ−2(θ) e−2θt dθ

+O
(
e−|�(w)|1+ε

)
.

Now, for θ � |�(w)|− 1
2 , we have

β
(
eiθ, w

)
=

θ∫
−θ

(
sin θ

cos u−cos θ

)1−w

du

= 2(sin θ)1−w · θ
1∫
0

(
cos(θu) − cos(θ)

)w−1
du

= 2(sin θ)1−w · θ
1∫
0

(
θ2 (1−u2)

2! − θ4 (1−u4)
4! + θ6 (1−u6)

6! − · · ·
)w−1

du

=
√

π 21−w(sin θ)1−w · θ2w−1

[
Γ(w)

Γ( 1
2+w) + θ2(w−1)

6

(
− 2Γ(w)

Γ( 1
2+w) + Γ(1+w)

Γ( 3
2+w)

)
+· · ·

]

=
√

π 21−w(sin θ)1−w · θ2w−1

[
Γ(w)

Γ( 1
2+w)

(
1 + θ2h2(w) + θ4h4(w) + θ6h6(w) +· · ·

)]
,
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where

h2(w) =
1 − w2

6 + 12w
, h4(w) =

(w − 1)(−21 − 5w + 9w2 + 5w3)
360(3 + 8w + 4w2)

,

h6(w) =
(1 − w)(3 + w)(465 − 314w − 80w2 + 14w3 + 35w4)

45360(1 + 2w)(3 + 2w)(5 + 2w)
, · · ·

and where h2�(w) = O
(
|�(w)|�

)
for � = 1, 2, 3, . . . , and

Γ(w)
Γ
(

1
2 + w

)
(

1 + θ2h2(w) + θ4h4(w) + θ6h6(w) + · · ·
)

converges absolutely for all w ∈ C and any fixed θ.
We may now substitute this expression for β

(
eiθ, w

)
into the above integral for

Kβ(t, w). We then obtain

Kβ(t, w) =

=
|Γ(κ

2 +it)|2·eπt Γ(w)

2κ+w−1π
1
2 +κ Γ( 1

2+w)

|�(w)|−
1
2∫

0

(sin θ)κ−w−1θ2w−1 e−2θt

(
1 + θ2h2(w) + · · ·

)
dθ

+ O
(
e−|�(w)|1+ε

)

=
|Γ(κ

2 +it)|2·eπt Γ(w)

2κ+w−1π
1
2 +κ Γ( 1

2+w)

|�(w)|−
1
2∫

0

θκ+w−2 e−2θt

(
1 + θ2h̃2(w) + θ4h̃4(w) + · · ·

)
dθ

+O
(
e−|�(w)|1+ε

)

=
|Γ(κ

2 +it)|2·eπt Γ(w)

2κ+w−1π
1
2 +κ Γ( 1

2+w)

∞∫
0

θκ+w−2 e−2θt

(
1 + θ2h̃2(w) + θ4h̃4(w) + · · ·

)
dθ

+ O
(
e−|�(w)|1+ε

)

=
|Γ(κ

2 +it)|2·eπt Γ(w)Γ(κ+w−1)

tκ+w−1·4κ+w−1π
1
2 +κ Γ( 1

2+w)

(
1 + O

(
|�(w)|3

t2

))
,

where, in the above, h̃2�(w) = O
(
|�(w)|�

)
for � = 1, 2, . . . .

If we now apply the identity
∣∣Γ (κ

2 + it
)∣∣2 = t · |1 + it|2|2 + it|2|3 + it|2 · · ·

∣∣κ
2 − 1 + it

∣∣2 π
sinh πt

= 2πtκ−1e−πt
(
1 + Oκ

(
t−2
))

in the above expression, we obtain the second part of Proposition 4.2. �

For t smaller than |�(w)|2+ε, we have the following

Proposition 4.6. Fix ε > 0, κ ≥ 12. For −1 < �(w) < 2 and 0 ≤ t �
|�(w)|2+ε, with �(w) → ∞, we have∣∣∣sin(πw

2

)
Kβ(t, 1 − w) − cos

(πw

2

)
Kβ(t, w)

∣∣∣ �κ t
1
2 |�(w)|κ− 3

2 .

Proof. Let g(w, θ) denote the function defined by

g(w, θ) = Γ(w) P
1
2−w

− 1
2

(cos θ).
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We observe that

(4.7)
sin
(πw

2

)
g(1 − w, θ) − cos

(
πw
2

)
g(w, θ) =

= − cos πw

2 cos
(

πw
2

) [g(w, θ) + g(w, π − θ)] .

To see this, apply (2.10) and (2.11) with ν = −1
2 and µ = 1

2 − w. We have:

g(1 − w, θ) = g(w, θ) sinπw − 2
π

Γ(w) Q
1
2−w

− 1
2

(cos θ) cosπw;

g(w, π − θ) = g(w, θ) cosπw +
2
π

Γ(w) Q
1
2−w

− 1
2

(cos θ) sinπw.

Multiplying the first by sinπw, the second by cos πw, and then adding the resulting
identities, we obtain

g(1 − w, θ) sinπw + g(w, π − θ) cosπw = g(w, θ),

from which (4.7) immediately follows by adding g(w, θ) cosπw on both sides.
Now, if f and g are holomorphic, it follows from (2.7), (3.3), and (4.7) that

(4.8)

sin
(

πw
2

)
Kβ(t, 1 − w) − cos

(
πw
2

)
Kβ(t, w)

= −2
1
2−κ π−κ− 1

2

∣∣∣Γ(κ

2
+ it

)∣∣∣2 cos πw

cos
(

πw
2

)
π
2∫

0

[g(w, θ) + g(w, π − θ)]

sinκ− 3
2 (θ) cosh[t(2θ − π)] dθ

= −2
1
2−κ π−κ− 1

2

∣∣∣Γ(κ

2
+ it

)∣∣∣2 Γ(w) cosπw

cos
(

πw
2

)
π∫

0

P
1
2−w

− 1
2

(cos θ)

sinκ− 3
2 (θ) cosh[t(2θ − π)] dθ.

By (2.9), we have

P
1
2−w

− 1
2

(cos θ) =
1

Γ(w + 1
2 )

cot
1
2−w

(
θ

2

)
F

(
1
2
,
1
2
; w +

1
2
; sin2

(
θ

2

))
.

Invoking the well-known transformation formula

F (α, β; γ; z) = (1 − z)−αF

(
α, γ − β; γ;

z

z − 1

)
,

we can further write

P
1
2−w

− 1
2

(cos θ) =
cos−w− 1

2
(

θ
2

)
sinw− 1

2
(

θ
2

)
Γ(w + 1

2 )
F

(
1
2
, w; w +

1
2
;− tan2

(
θ

2

))
.

Now, represent the hypergeometric function on the right hand side by its inverse
Mellin transform obtaining:

(4.9)

P
1
2−w

− 1
2

(cos θ) =
1

Γ( 1
2 )Γ(w)

cos−w− 1
2

(
θ

2

)
sinw− 1

2

(
θ

2

)

· 1
2πi

i∞∫
−i∞

Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

tan2z

(
θ

2

)
dz.

Here, the path of integration is chosen such that the poles of Γ( 1
2 + z) and Γ(w + z)

lie to the left of the path, and the poles of the function Γ(−z) lie to the right of it.
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It follows that

sin
(πw

2

)
Kβ(t, 1 − w) − cos

(πw

2

)
Kβ(t, w)

= −2
1
2−κ π−κ− 1

2

∣∣∣Γ(κ

2
+ it

)∣∣∣2 Γ(w) cos(πw)
cos

(
πw
2

)
π∫

0

cos−w− 1
2
(

θ
2

)
sinw− 1

2
(

θ
2

)
Γ( 1

2 )Γ(w)

·


 1

2πi

i∞∫
−i∞

Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

tan2z

(
θ

2

)
dz


 · sinκ− 3

2 (θ) cosh[t(2θ − π)] dθ.

In the above, we apply the identity sin(θ) = 2 sin
(

θ
2

)
cos

(
θ
2

)
; after exchanging

integrals and simplifying, we obtain

(4.10)

sin
(πw

2

)
Kβ(t, 1 − w) − cos

(πw

2

)
Kβ(t, w) =

|Γ(κ
2 + it)|2
2πκ+1

cos(πw)
cos

(
πw
2

)

· 1
2πi

i∞∫
−i∞

Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

·
π∫

0

cosκ−w−2z−2

(
θ

2

)
sin2z+w+κ−2

(
θ

2

)
cosh[t(2θ − π)] dθ dz.

Note that sin
(

πw
2

)
Kβ(t, 1−w)− cos

(
πw
2

)
Kβ(t, w) satisfies a functional equa-

tion w �→ 1 − w. We may, therefore, assume, without loss of generality, that
�(w) > 0. Fix ε > 0. We break the z–integral in (4.10) into three parts according
as

−∞ < �(z) < − ( 1
2 + ε)�(w), − ( 1

2 + ε)�(w) ≤ �(z) ≤ ( 1
2 + ε)�(w),

( 1
2 + ε)�(w) < �(z) < ∞.

Under the assumptions that �(w) → ∞ and 0 ≤ t � �(w)2+ε, it follows easily
from Stirling’s estimate for the Gamma function that

−i( 1
2+ε)�(w)∫
−i∞

∣∣∣∣Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

∣∣∣∣ dz = O
(
e−(π

2 +ε)�(w)
)

,

i∞∫

i( 1
2+ε)�(w)

∣∣∣∣Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

∣∣∣∣ dz = O
(
e−(π

2 +ε)�(w)
)

,
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and, therefore,

(4.11)

sin
(πw

2

)
Kβ(t, 1 − w) − cos

(πw

2

)
Kβ(t, w)

= −

∣∣∣Γ(κ
2 + it

)∣∣∣2
2πκ+1

cos πw

cos
(

πw
2

) · 1
2πi

i( 1
2+ε)�(w)∫

−i( 1
2+ε)�(w)

Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

·
π∫

0

cosκ−w−2z−2

(
θ

2

)
sin2z+w+κ−2

(
θ

2

)
cosh[t(2θ − π)] dθ dz

+ O
(
e−ε�(w)

)
.

Next, we evaluate the θ–integral on the right hand side of (4.11):

(4.12)

π∫
0

cosκ−w−2z−2

(
θ

2

)
sin2z+w+κ−2

(
θ

2

)
cosh[t(2θ − π)] dθ

=
e−πt

2

π∫
0

cosκ−w−2z−2

(
θ

2

)
sin2z+w+κ−2

(
θ

2

)
e2tθ dθ

f +
eπt

2

π∫
0

cosκ−w−2z−2

(
θ

2

)
sin2z+w+κ−2

(
θ

2

)
e−2tθ dθ

= e−πt

π/2∫
0

cosκ−w−2z−2(θ) sin2z+w+κ−2(θ) e4tθ dθ

+eπt
π/2∫
0

cosκ−w−2z−2(θ) sin2z+w+κ−2(θ) e−4tθ dθ,

where for the last equality we made the substitution

θ �→ 2θ.

Using the formula (see [GR94], page 511, 3.892-3),

∫ π/2

0

e2iβx sin2µ x cos2ν x dx =

= 2−2µ−2ν−1
(
eπi(β−ν− 1

2 ) Γ(β − ν − µ)Γ(2ν + 1)
Γ(β − µ + ν + 1)

F (−2µ, β − µ − ν; 1 + β − µ + ν;−1)

+ eπi(µ+ 1
2 ) Γ(β − ν − µ)Γ(2µ + 1)

Γ(β − ν + µ + 1)
F (−2ν, β − µ − ν; 1 + β + µ − ν;−1)

)
,
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which is valid for �(µ), �(ν) > −1
2 , one can write the first integral in (4.12) as

23−2κ
∑

ε=±1

e−επt ·
(
eπi

(1−κ+w+2z−4itε)
2

Γ(2 − κ − 2itε)Γ(−1 + κ − w − 2z)
Γ(1 − 2itε − w − 2z)

· F (2 − κ − w − 2z, 2 − κ − 2itε; 1 − w − 2z − 2itε;−1)

+ eπi (−1+κ+w+2z)
2

Γ(2 − κ − 2itε)Γ(−1 + κ + w + 2z)
Γ(1 − 2itε + w + 2z)

· F (2 − κ + w + 2z, 2 − κ − 2itε; 1 + w + 2z − 2itε;−1))
)
.

If we replace the θ–integral on the right hand side of (4.11) by the above expression,
it follows that

(4.13)

sin
(πw

2

)
Kβ(t, 1 − w) − cos

(πw

2

)
Kβ(t, w)

= −|Γ(κ
2 + it)|2

22κ−2πκ+1

cos πw

cos
(

πw
2

) · ∑
ε=±1

e−επtΓ(2 − κ − 2itε)

· 1
2πi

i( 1
2+ε)�(w)∫

−i( 1
2+ε)�(w)

Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

·
(

eπi
(1−κ+w+2z−4itε)

2
Γ(−1 + κ − w − 2z)
Γ(1 − 2itε − w − 2z)

· F (2 − κ − w − 2z, 2 − κ − 2itε; 1 − w − 2z − 2itε;−1)

+eπi (−1+κ+w+2z)
2

Γ(−1 + κ + w + 2z)
Γ(1 − 2itε + w + 2z)

· F (2 − κ + w + 2z, 2 − κ − 2itε; 1 + w + 2z − 2itε;−1))

)
dz

+ O
(
e−ε�(w)

)
.

To complete the proof of Proposition 4.6., we require the following Lemma.

Lemma 4.14. Fix κ ≥ 12. Let −1 < �(w) < 2, 0 ≤ t � |�(w)|2+ε, �(z) = −ε′

with ε, ε′ small positive numbers, and |�(z)| < 2|�(w)|. Then, we have the following
estimates:

F (2 − κ − w − 2z, 2 − κ − 2itε; 1 − w − 2z − 2itε;−1) �
√

min{1, 2t, |�(w + 2z)|},

F (2 − κ + w + 2z, 2 − κ − 2itε; 1 + w + 2z − 2itε;−1) �
√

min{1, 2t, |�(w + 2z)|}.

Proof. We shall make use of the following well-known identity of Kummer:

F (a, b, c;−1) = 2c−a−bF (c − a, c − b, c;−1).

It follows that

(4.15)
F (2 − κ − w − 2z, 2 − κ − 2itε, 1 − w − 2z − 2itε;−1)

= 22κ−3F (κ − 1 − 2itε, κ − 1 − w − 2z, 1 − w − 2z − 2itε;−1)

and

(4.16)
F (2 − κ + w + 2z, 2 − κ − 2itε; 1 + w + 2z − 2itε;−1)

= 22κ−3F (κ − 1 − 2itε, κ − 1 + w + 2z, 1 + w + 2z − 2itε,−1).
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Now, we represent the hypergeometric function on the right hand side of (4.15) as

(4.17) F (a, b, c;−1) =
Γ(c)

Γ(a)Γ(b)
· 1
2πi

δ+i∞∫
δ−i∞

Γ(a + ξ)Γ(b + ξ)Γ(−ξ)
Γ(c + ξ)

dξ,

with

a = κ − 1 − 2itε

b = κ − 1 − w − 2z

c = 1 − w − 2z − 2itε.

This integral representation is valid, if, for instance, −1 < δ < 0. We may also shift
the line of integration to 0 < δ < 1 which crosses a simple pole with residue 1.
Clearly, the main contribution comes from small values of the imaginary part of ξ.

If, for example, we use Stirling’s formula

Γ(s) =
√

2π · |t|σ− 1
2 e−

1
2 π|t|+i

(
t log |t|−t+ π

2 · t
|t| (σ− 1

2 )
)
·
(
1 + O

(
|t|−1

) )
,

where s = σ + it, 0 ≤ σ ≤ 1, |t| � 0, we have

(4.18)

∣∣∣∣Γ(a + ξ)Γ(b + ξ)Γ(c)Γ(−ξ)
Γ(a)Γ(b)Γ(c + ξ)

∣∣∣∣� e
π
2

(
−|W−ξ|+|2t+W−ξ|−|ξ|−|ξ−2t|

)

· t
3
2−κ W

3
2−κ |W − ξ|− 3

2+κ+δ |ξ − 2t|− 3
2+κ+δ

√
2t + W

|ξ| 12+δ |2t + W − ξ| 12+δ
,

where W = �(w + 2z) ≥ 0. This bound is valid provided

min
(
|W − ξ|, |2t + W − ξ|, |ξ|, |ξ − 2t|

)

is sufficiently large. If this minimum is close to zero, we can eliminate this term
and obtain a similar expression. There are 4 cases to consider.

Case 1: |ξ| ≤ W, |ξ| ≤ 2t. In this case, the exponential term in (4.18)
becomes e0 = 1 and we obtain∣∣∣∣Γ(a + ξ)Γ(b + ξ)Γ(c)Γ(−ξ)

Γ(a)Γ(b)Γ(c + ξ)

∣∣∣∣� |ξ|− 1
2 .

Case 2: |ξ| ≤ W, |ξ| > 2t. In this case the exponential term in (4.18)
becomes

+e
π
2

(
−W+ξ+2t+W−ξ−|ξ|−|ξ|+2t

)
which has exponential decay in (|ξ| − t).

Case 3: |ξ| > W, |ξ| ≤ 2t. Here, the exponential term in (4) takes the form

e
π
2

(
−|ξ|+W+2t+W−ξ−|ξ|−2t+ξ

)
which has exponential decay in (|ξ| − W ).

Case 4: |ξ| > W, |ξ| > 2t. In this last case, we get

e
π
2

(
−|ξ|−W+2t+W+|ξ|−2|ξ|−2t

)
if ξ is negative. Note that this has exponential decay in |ξ|. If ξ is positive,
we get

e
π
2

(
−|ξ|+W+|2t+W−ξ|−2|ξ|+2t

)
.
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This last expression has exponential decay in (2|ξ| − W − 2t) if 2t + W − ξ > 0.
Otherwise it has exponential decay in |ξ|.

It is clear that the major contribution to the integral (4.17) for the hypergeo-
metric function will come from case 1. This gives immediately the first estimate in
Lemma 4.14. The second estimate in Lemma 4.14 can be established by a similar
method. �

We remark that for t = 0, one can easily obtain the estimate in Proposition 4.6
by directly using the formula (see [GR94], page 819, 7.166),

∫ π

0

P−µ
ν (cos θ) sinα−1(θ) dθ = 2−µπ

Γ(α+µ
2 )Γ(α−µ

2 )
Γ( 1+α+ν

2 )Γ(α−ν
2 )Γ(µ+ν+2

2 )Γ(µ−ν+1
2 )

,

which is valid for �(α± µ) > 0, and then by applying Stirling’s formula. It follows
from this that

sin
(πw

2

)
Kβ(0, 1 − w) − cos

(πw

2

)
Kβ(0, w) � |�(w)|κ−2.

Finally, we return to the estimation of sin
(

πw
2

)
Kβ(0, 1−w)−cos

(
πw
2

)
Kβ(0, w)

using (4.13) and Lemma 4.14. If we apply Stirling’s asymptotic expansion for the
Gamma function, as we did before, it follows (after noting that t,�(w) > 0) that
∣∣∣sin(πw

2

)
Kβ(0, 1 − w) − cos

(πw

2

)
Kβ(0, w)

∣∣∣

� t
1
2

i( 1
2+ε)�(w)∫

−i( 1
2+ε)�(w)

|�(w + 2z)|κ− 3
2

�(w)
1
2 (1 + |�(z)|) 1

2 |�(w + 2z + 2εt)| 12
√

min{1, 2t, |�(w + 2z)|} dz

� t
1
2�(w)κ− 3

2 .

This completes the proof of Proposition 4.6. �

5. The analytic continuation of I(v, w)

To obtain the analytic continuation of

I(v, w) = 〈P (∗; v, w), F 〉 =
∫ ∫

Γ\H
P (z; v, w)f(z)g(z) yκ dx dy

y2
,

we will compute the inner product 〈P (∗; v, w), F 〉 using Selberg’s spectral theory.
First, let us fix u0, u1, u2, . . . an orthonormal basis of Maass cusp forms which are
simultaneous eigenfunctions of all the Hecke operators Tn, n = 1, 2, . . . and T−1,
where

(T−1 u)(z) = u(−z̄).

We shall assume that u0 is the constant function, and the eigenvalue of uj , for
j = 1, 2, . . . , will be denoted by λj = 1

4 + µ2
j . Since the Poincaré series Pk(z; v, s)

(k ∈ Z, k �= 0) is square integrable, for |�(s)| + 3
4 > �(v) > |�(s)| + 1

2 , we can
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spectrally decompose it as

(5.1)

Pk(z; v, s) =
∞∑

j=1

〈Pk(∗; v, s), uj〉uj(z)

+
1
4π

∞∫
−∞

〈Pk(∗; v, s), E(∗, 1
2 + iµ)〉E(z, 1

2 + iµ) dµ.

Here we used the simple fact that 〈Pk(∗; v, s), u0〉 = 0.
We shall need to write (5.1) explicitly. In order to do so, let u be a Maass cusp

form in our basis with eigenvalue λ = 1
4 + µ2. Writing

u(z) = ρ(1)
∑
ν �=0

cν |ν|−
1
2 W 1

2+iµ(νz),

then by (2.3) and an unfolding process, we have

〈Pk(∗; v, s), u〉 = |k|− 1
2

∞∫
0

1∫
0

yv W 1
2+s(kz) u(z)

dx dy

y2

= ρ(1)
∑
ν �=0

cν√
|kν|

∞∫
0

1∫
0

yv−1 W 1
2+s(kz) W 1

2+iµ(−νz)
dx dy

y

= ρ(1) ck

∞∫
0

yv Ks(2π|k|y) Kiµ(2π|k|y)
dy

y

= π−v ρ(1)
8

ck

|k|v
Γ
(−s+v−iµ

2

)
Γ
(

s+v−iµ
2

)
Γ
(−s+v+iµ

2

)
Γ
(

s+v+iµ
2

)
Γ(v)

.

Let G(s; v, w) denote the function defined by

(5.2) G(s; v, w) = π−v−w
2

Γ
(−s+v+1

2

)
Γ
(

s+v
2

)
Γ
(−s+v+w

2

)
Γ
(

s+v+w−1
2

)
Γ
(
v + w

2

) .

Then, replacing v by v + w
2 and s by w−1

2 , we obtain

(5.3)
〈

Pk

(
∗; v +

w

2
,
w − 1

2

)
, u

〉
=

ρ(1)
8

ck

|k|v+ w
2
G( 1

2 + iµ; v, w).

Next, we compute the inner product between Pk

(
z; v+ w

2 , w−1
2

)
and the Eisen-

stein series E(z, s̄). This is well-known to be the Mellin transform of the constant
term of Pk

(
z; v + w

2 , w−1
2

)
. More precisely, if we write

Pk

(
z; v+

w

2
,
w − 1

2

)
= yv+ w

2 + 1
2 Kw−1

2
(2π|k|y)e(kx)+

∞∑
n=−∞

an

(
y; v+

w

2
,
w − 1

2

)
e(nx),

where we denoted e2πix by e(x), then for �(s) > 1,

〈
Pk

(
·; v +

w

2
,
w − 1

2

)
, E(·, s̄)

〉
=

∞∫
0

a0

(
y; v +

w

2
,
w − 1

2

)
ys−2 dy.



96 ADRIAN DIACONU AND DORIAN GOLDFELD

Now, by a standard computation, we have

a0

(
y; v +

w

2
,
w − 1

2

)
=

∞∑
c=1

c∑
r=1

(r, c)=1

e

(
kr

c

) ∞∫
−∞

(
y

c2x2 + c2y2

)v+ w+1
2

· Kw−1
2

(
2π|k|y

c2x2 + c2y2

)
e

(
−kx

c2x2 + c2y2

)
dx.

Making the substitution x �→ x
c2 and y �→ y

c2 , we obtain

〈
Pk

(
∗; v +

w

2
,
w − 1

2

)
, E(∗, s̄)

〉
=

∞∑
c=1

τc(k) c−2s ·
∞∫
0

∞∫
−∞

ys+v+ w−3
2

(x2 + y2)v+ w+1
2

·Kw−1
2

(
2π|k|y
x2 + y2

)
· e
(

−kx

x2 + y2

)
dx dy.

Here, τc(k) is the Ramanujan sum given by

τc(k) =
c∑

r=1
(r,c)=1

e

(
kr

c

)
.

Recalling that

∞∑
c=1

τc(k) c−2s =
σ1−2s(|k|)

ζ(2s)
,

where for a positive integer n, σs(n) =
∑

d|n ds, it follows after making the substi-
tution x �→ |k|x, y �→ |k|y that

〈
Pk

(
∗; v +

w

2
,
w − 1

2

)
, E(·, s̄)

〉
(5.4)

= |k|s−v−w
2 − 1

2 · σ1−2s(|k|)
ζ(2s)

∞∫
0

∞∫
−∞

ys+v+ w−3
2

(x2 + y2)v+ w+1
2

· Kw−1
2

(
2πy

x2 + y2

)
e

(
− k

|k|
x

x2 + y2

)
dx dy.

The double integral on the right hand side can be computed in closed form
by making the substitution z �→ − 1

z . For �(s) > 0 and for �(v − s) > −1, we
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successively have:
∞∫
0

∞∫
−∞

ys+v+ w−3
2

(x2 + y2)v+ w+1
2

· Kw−1
2

(
2πy

x2 + y2

)
e

(
− k

|k|
x

x2 + y2

)
dx dy(5.5)

=

∞∫
0

∞∫
−∞

ys+v+ w−3
2 (x2 + y2)−s · Kw−1

2
(2πy) e

(
k

|k| x

)
dx dy

=

∞∫
0

ys+v+ w−3
2 Kw−1

2
(2πy) ·

∞∫
−∞

(x2 + y2)−s e

(
k

|k| x

)
dx dy

=
2−v−w

2 +1 πs−v−w
2

Γ(s)

∞∫
0

yv+ w
2 −1 Kw−1

2
(y) Ks− 1

2
(y) dy

=
G(s; v, w)
4 π−s Γ(s)

.

Combining (5.4) and (5.5), we obtain

(5.6)
〈

Pk

(
∗; v +

w

2
,
w − 1

2

)
, E(·, s̄)

〉
= |k|s−v−w

2 − 1
2 · σ1−2s(|k|)

4 π−s Γ(s) ζ(2s)
G(s; v, w)

Using (5.1), (5.3) and (5.6), one can decompose Pk

(
·; v + w

2 , w−1
2

)
as

Pk

(
z; v +

w

2
,
w − 1

2

)
(5.7)

=
∞∑

j=1

ρj(1)
8

c
(j)
k

|k|v+ w
2
G( 1

2 + iµj ; v, w) uj(z)

+
1

16π

∞∫
−∞

1
π− 1

2+iµ Γ( 1
2 − iµ) ζ(1 − 2iµ)

σ2iµ(|k|)
|k|v+ w

2 +iµ
G( 1

2 − iµ; v, w)E(z, 1
2 + iµ) dµ.

Now from (2.2) and (5.7), we deduce that

π−w
2 Γ
(w

2

)
P (z; v, w) = π

1−w
2 Γ

(
w − 1

2

)
E(z, v + 1)(5.8)

+
1
2

∑
uj−even

ρj(1)Luj
(v + 1

2 )G( 1
2 + iµj ; v, w) uj(z)

+
1
4π

∞∫
−∞

ζ(v + 1
2 + iµ) ζ(v + 1

2 − iµ)
π− 1

2+iµ Γ( 1
2 − iµ) ζ(1 − 2iµ)

G( 1
2 − iµ; v, w)E(z, 1

2 + iµ) dµ.

The series corresponding to the discrete spectrum converges absolutely for (v, w) ∈
C2, apart from the poles of G( 1

2 + iµj ; v, w). To handle the continuous part of the
spectrum, we write the above integral as

1
4πi

∫
( 1
2 )

ζ(v + s)ζ(v + 1 − s)
πs−1Γ(1 − s)ζ(2 − 2s)

G(1 − s; v, w)E(z, s) ds.
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As a function of v and w, this integral can be meromorphically continued by shifting
the line �(s) = 1

2 . For instance, to obtain continuation to a region containing
v = 0, take v with �(v) = 1

2 + ε, ε > 0 sufficiently small, and take �(w) large.
By shifting the line of integration �(s) = 1

2 to �(s) = 1
2 − 2ε, we are allowed to

take 1
2 − ε ≤ �(v) ≤ 1

2 + ε. We now assume �(v) = 1
2 − ε, and shift back the line

of integration to �(s) = 1
2 . It is not hard to see that in this process we encounter

simple poles at s = 1 − v and s = v with residues

π
1−w

2
Γ
(

w
2

)
Γ
(

2v+w−1
2

)
Γ
(
v + w

2

) E(z, 1 − v),

and

π
3
2−2v−w

2
Γ(v)Γ

(
2v+w−1

2

)
Γ
(

w
2

)
Γ(1 − v)Γ

(
v + w

2

) ζ(2v)
ζ(2 − 2v)

E(z, v)

= π
1−w

2
Γ
(

2v+w−1
2

)
Γ
(

w
2

)
Γ
(
v + w

2

) E(z, 1 − v),

respectively, where for the last identity we applied the functional equation of the
Eisenstein series E(z, v). In this way, we obtained the meromorphic continuation
of the above integral to a region containing v = 0. Continuing this procedure, one
can prove the meromorphic continuation of the Poincaré series P (z; v, w) to C2.

Using Parseval’s formula, we obtain

π−w
2 Γ
(w

2

)
I(v, w) = π

1−w
2 Γ

(
w − 1

2

)
〈E(·, v + 1), F 〉(5.9)

+
1
2

∑
uj−even

ρj(1)Luj
(v + 1

2 )G( 1
2 + iµj ; v, w) 〈uj, F 〉

+
1
4π

∞∫
−∞

ζ(v + 1
2 + iµ) ζ(v + 1

2 − iµ)
π− 1

2+iµ Γ( 1
2 − iµ) ζ(1 − 2iµ)

G( 1
2 − iµ; v, w) 〈E(·, 1

2 + iµ), F 〉 dµ,

which gives the meromorphic continuation of I(v, w). We record this fact in the
following

Proposition 5.10. The function I(v, w), originally defined for �(v) and �(w)
sufficiently large, has a meromorphic continuation to C2.

We conclude this section by remarking that from (5.9), one can also obtain
information about the polar divisor of the function I(v, w). When v = 0, this issue
is further discussed in the next section.

6. Proof of Theorem 1.3

To prove the first part of Theorem 1.3, assume for the moment that f = g.
By Proposition 5.10, we know that the function I(v, w) admits a meromorphic
continuation to C2. Furthermore, if we specialize v = 0, the function I(0, w) has its
first pole at w = 1. Using the asymptotic formula (4), one can write

(6.1) I(0, w) =

∞∫
−∞

|Lf ( 1
2 + it)|2 K(t, w) dt = 2

∞∫
0

|Lf ( 1
2 + it)|2 K(t, w) dt,
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for at least �(w) sufficiently large. Here the kernel K(t, w) is given by (4.1). As
the first pole of I(0, w) occurs at w = 1, it follows from (4.3) and Landau’s Lemma
that

Z(w) =

∞∫
1

|Lf ( 1
2 + it)|2 t−w dt

converges absolutely for �(w) > 1. If f �= g, the same is true for the integral defining
Z(w) by Cauchy’s inequality. The meromorphic continuation of Z(w) to the region
�(w) > −1 follows now from (4.3). This proves the first part of the theorem.

To obtain the polynomial growth in |�(w)|, for �(w) > 0, we invoke the func-
tional equation (see [Goo86])

cos
(πw

2

)
Iβ(w) − sin

(πw

2

)
Iβ(1 − w)(6.2)

=
2π ζ(w) ζ(1 − w)

(2w − 1) π−w Γ(w) ζ(2w)
〈E(·, 1 − w), F 〉.

It is well-known that 〈E(·, 1−w), F 〉 is (essentially) the Rankin-Selberg convo-
lution of f and g. Precisely, we have:

(6.3) 〈E(·, 1 − w), F 〉 = (4π)w−κΓ(κ − w) L(1 − w, f × g).

It can be observed that the expression on the right hand side of (6.2) has polynomial
growth in |�(w)|, away from the poles for −1 < �(w) < 2.

On the other hand, from the asymptotic formula (4), the integral

Iβ(w) :=

∞∫
0

Lf ( 1
2 + it)Lg( 1

2 − it)Kβ(t, w) dt

is absolutely convergent for �(w) > 1. We break Iβ(w) into two integrals:

Iβ(w) =

∞∫
0

Lf ( 1
2 + it)Lg( 1

2 − it)Kβ(t, w) dt(6.4)

=

Tw∫
0

+

∞∫
Tw

:= I
(1)
β (w) + I

(2)
β (w),

where Tw � |�(w)|2+ε (for small fixed ε > 0), and Tw will be chosen optimally
later.

Now, take w such that −ε < �(w) < − ε
2 , and write the functional equation

(6.2) as

cos
(πw

2

)
I
(2)
β (w) =

(
sin
(πw

2

)
I
(1)
β (1 − w) − cos

(πw

2

)
I
(1)
β (w)

)
(6.5)

+ sin
(πw

2

)
I
(2)
β (1 − w)

+
2π ζ(w) ζ(1 − w)

(2w − 1) π−w Γ(w) ζ(2w)
〈E(·, 1 − w), F 〉.
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Next, by Proposition 4.2,

I
(2)
β (w)
B(w)

=
∫ ∞

Tw

Lf ( 1
2 + it)Lg( 1

2 − it) t−w

(
1 + O

(
|�(w)|3

t2

))
dt

= Z(w) −
Tw∫
1

Lf ( 1
2 + it)Lg( 1

2 − it) t−w dt + O
(
|�(w)|3

T 1−ε
w

)

= Z(w) + O
(

T 1+ε
w +

|�(w)|3

T 1−ε
w

)
.

It follows that

(6.6) Z(w) =
I
(2)
β (w)
B(w)

+ O
(

T 1+ε
w +

|�(w)|3

T 1−ε
w

)
.

We may estimate
I
(2)
β (w)

B(w) using (6.5). Consequently,

I
(2)
β (w)
B(w)

(6.7)

=
1

B(w)

[(
tan

(πw

2

)
I
(1)
β (1 − w) − I

(1)
β (w)

)
+ tan

(πw

2

)
I
(2)
β (1 − w)

+
2π ζ(w) ζ(1 − w)

cos
(

πw
2

)
(2w − 1) π−w Γ(w) ζ(2w)

〈E(·, 1 − w), F 〉
]
.

We estimate each term on the right hand side of (6.7) using Proposition 4.2 and
Proposition 4.6. First of all

tan
(

πw
2

)
I
(1)
β (1 − w) − I

(1)
β (w)

B(w)
(6.8)

=
sin
(

πw
2

)
I
(1)
β (1 − w) − cos

(
πw
2

)
I
(1)
β (w)

cos
(

πw
2

)
B(w)

=
∫ Tw

0

Lf ( 1
2 + it)Lg( 1

2 − it) · t
1
2 |�(w)|κ− 3

2

|�(w)|κ−2−ε
dt

� T
3
2+ε

w |�(w)| 12+ε.
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Next, using Stirling’s formula to bound the Gamma function,

tan
(

πw
2

)
I
(2)
β (1 − w)

B(w)
(6.9)

=

∞∫
Tw

Lf (·)Lg(·)
B(1 − w)
B(w)

t−1− ε
2

(
1 + O

(
|�(w)|3

t2

))
dt

= O
(
B(1 − w)
B(w)

·
(

1 +
|�(w)|3

T 2
w

))

�
∣∣∣∣∣
Γ(1 − w)Γ(1 − w + κ − 1)Γ

(
1
2 + w

)
Γ(w)Γ(w + κ − 1)Γ

(
3
2 − w

)
∣∣∣∣∣ ·
(

1 +
|�(w)|3

T 2
w

)

� |�(w)|1+2ε +
|�(w)|4+2ε

T 2
w

.

Using the functional equation of the Riemann zeta-function (6.3), and Stirling’s
asymptotic formula, we have

(6.10)

∣∣∣∣∣
2π ζ(w) ζ(1 − w)

B(w) cos
(

πw
2

)
(2w − 1) π−w Γ(w) ζ(2w)

〈E(·, 1 − w), F 〉
∣∣∣∣∣�ε |�(w)|1+ε.

Now, we can optimize Tw by letting

T
3
2+ε

w |�(w)| 12+ε =
|�(w)|3

T 1−ε
w

=⇒ Tw = |�(w)|.

Thus, we get
Z(w) = O

(
|�(w)|2+2ε

)
.

One cannot immediately apply the Phragmén-Lindelöf principle as the above
function may have simple poles at w = 1

2 ± iµj , j ≥ 1. To surmount this difficulty,
let

(6.11) G0(s, w) =
Γ
(
w − 1

2

)
Γ
(

w
2

)
[
Γ
(

1 − s

2

)
Γ
(

w − s

2

)
+ Γ

(s

2

)
Γ
(

w + s − 1
2

)]
,

and define J (w) = Jdiscr(w) + Jcont(w), where

(6.12) Jdiscr(w) =
1
2

∑
uj−even

ρj(1)Luj
( 1

2 )G0( 1
2 + iµj , w) 〈uj , F 〉

and

Jcont(w)(6.13)

=
1
4π

∞∫
−∞

ζ( 1
2 + iµ) ζ( 1

2 − iµ)
π− 1

2+iµ Γ( 1
2 − iµ) ζ(1 − 2iµ)

G0( 1
2 − iµ, w)〈E(·, 1

2 + iµ), F 〉 dµ.

In (6.13), the contour of integration must be slightly modified when �(w) = 1
2 to

avoid passage through the point s = w.
From the upper bounds of Hoffstein-Lockhart [HL94] and Sarnak [Sar94], we

have that ∣∣∣ρj(1) 〈uj , F 〉
∣∣∣ �ε |µj |N+ε,
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for a suitable N. It follows immediately that the series defining Jdiscr(w) converges
absolutely everywhere in C, except for points where G0( 1

2 + iµj , w), j ≥ 1, have
poles. The meromorphic continuation of Jcont(w) follows easily by shifting the line
of integration to the left. The key point for introducing the auxiliary function J (w)
is that

I(0, w) − J (w) (�(w) > −ε)
(may) have poles only at w = 0, 1

2 , 1, and moreover,

cos
(πw

2

)
J (w)

has polynomial growth in |�(w)|, away from the poles, for −ε < �(w) < 2. To
obtain a good polynomial bound in |�(w)| for this function, it can be observed
using Stirling’s formula that the main contribution to Jdiscr(w) comes from terms
corresponding to |µj | close to |�(w)|. Applying Cauchy’s inequality, we have that

∣∣∣∣Jdiscr(w)
2A(w)

∣∣∣∣ � 1
|A(w)| ·

( ∑
uj

|µj |<2|�(w)|

|ρj(1) 〈uj , F 〉|2
) 1

2

·
( ∑

uj

|µj |<2|�(w)|

L2
uj

( 1
2 ) |G0( 1

2 + iµj , w)|2
) 1

2

.

Using Stirling’s asymptotic formula, we have the estimates
1

|A(w)| � |�(w)|−�(w)−κ+ 3
2 e

π
2 |�(w)|

|G0( 1
2 + iµj , w)| �ε |�(w)|

�(w)
2 − 3

4+εe−
π
2 |�(w)| (�(w) < 1 + ε).

Also, the Hoffstein-Lockhart estimate [HL94] gives

|ρj(1)|2 �ε |�(w)|εeπ|µj |,

for µj � |�(w)|. It follows that

∣∣∣∣Jdiscr(w)
2A(w)

∣∣∣∣ � |�(w)|−
�(w)

2 −κ+ 3
4+2ε ·

( ∑
uj

|µj |<2|�(w)|

eπ|µj | · |〈uj , F 〉|2
) 1

2

·
( ∑

uj

|µj |<2|�(w)|

L2
uj

( 1
2 )

) 1
2

.

A very sharp bound for the first sum on the right hand side was recently obtained
by Bernstein and Reznikov (see [BR99]). It gives an upper bound on the order
of |�(w)|κ+ε. Finally, Kuznetsov’s bound (see [Mot97]) gives an estimate on the
order of |�(w)|1+ε for the second sum. We obtain the final estimate

(6.14)
∣∣∣∣Jdiscr(w)

2A(w)

∣∣∣∣ �ε |�(w)|−
�(w)

2 + 7
4+4ε (�(w) < 1 + ε).

It is not hard to see that the same estimate holds for Jcont(w)
2A(w) . To see this, we

apply in (6.3) the convexity bound for the Rankin-Selberg L–function together
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with Stirling’s formula. It follows that

|〈E(·, 1
2 + iµ), F 〉| �ε |µ|κ+ε e−

π
2 |µ|.

Then,

∣∣∣∣Jcont(w)
2A(w)

∣∣∣∣ �ε |�(w)|−
�(w)

2 + 3
4+2ε

2|�(w)|∫
−2|�(w)|

|ζ( 1
2 + iµ)|2

|ζ(1 − 2iµ)| dµ (�(w) < 1 + ε).

By the well-known bounds

|ζ(1 + it)|−1 � 1,

T∫
0

|ζ( 1
2 + it)|2 dt �ε T 1+ε,

we obtain

(6.15)
∣∣∣∣Jcont(w)

2A(w)

∣∣∣∣ �ε |�(w)|−
�(w)

2 + 7
4+3ε (�(w) < 1 + ε).

It can be easily seen that the function

Z(w) − J (w)
2A(w)

(�(w) > −ε)

(may) have poles only at w = 0, 1
2 , 1. We can now apply the Phragmén-Lindelöf

principle, and Theorem 1.3 follows. �
Finally, we remark that the choice of the function G0(s, w) defined by (6.11) is

not necessarily the optimal one. We were rather concerned with making the method
as transparent as possible, and in fact, the exponent 2−2δ instead of 2− 3

4δ should
be obtainable.

While a previous version of this manuscript has circulated, A. Ivić kindly
pointed out to us that from the results obtained by Motohashi [Mot94] one can easi-
ly obtain the exponent (mentioned above) 2− 2δ, but only in the range 1

2 < δ ≤ 1.
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CM points and weight 3/2 modular forms

Jens Funke

Abstract. We survey the results of [Fun02] and of our joint work with Bru-
inier [BF06] on using the theta correspondence for the dual pair SL(2)×O(1, 2)

to realize generating series of values of modular functions on a modular curve
as (non)-holomorphic modular forms of weight 3/2.

1. Introduction

The theta correspondence has been an important tool in the theory of auto-
morphic forms with manifold applications to arithmetic questions.

In this paper, we consider a specific theta lift for an isotropic quadratic space
V over Q of signature (1, 2). The theta kernel we employ associated to the lift
has been constructed by Kudla-Millson (e.g., [KM86, KM90]) in much greater
generality for O(p, q) (U(p, q)) to realize generating series of cohomological inter-
section numbers of certain, ’special’ cycles in locally symmetric spaces of orthogonal
(unitary) type as holomorphic Siegel (Hermitian) modular forms. In our case for
O(1, 2), the underlying locally symmetric space M is a modular curve, and the spe-
cial cycles, parametrized by positive integers N , are the classical CM points Z(N);
i.e., quadratic irrationalities of discriminant −N in the upper half plane.

We survey the results of [Fun02] and of our joint work with Bruinier [BF06]
on using this particular theta kernel to define lifts of various kinds of functions F
on the underlying modular curve M . The theta lift is given by

(1.1) I(τ, F ) =
∫

M

F (z)θ(τ, z),

where τ ∈ H, the upper half plane, z ∈ M , and θ(τ, z) is the theta kernel in
question. Then I(τ, F ) is a (in general non-holomorphic) modular form of weight
3/2 for a congruence subgroup of SL2(Z). One key feature of the theta kernel is its
very rapid decay on M , which distinguishes it from other theta kernels which are
usually moderately increasing. Consequently, we can lift some rather nonstandard,
even exponentially increasing, functions F .

2000 Mathematics Subject Classification. Primary 11F37, Secondary 11F11, 11F27.
Partially supported by NSF grant DMS-0305448.
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Note that Kudla and Millson, who focus entirely on the (co)homological aspects
of their general lift, study in this situation only the lift of the constant function 1
in the compact case of a Shimura curve, when V is anisotropic.

One feature of our work is that it provides a uniform approach to several topics
and (in part previously known) results, which so far all have been approached by
(entirely) different methods. We discuss the following cases in some detail:

(i) The lift of the constant function 1. Then I(τ, 1) realizes the generating
series of the (geometric) degree of the 0-cycles Z(N) as the holomorphic
part of a non-holomorphic modular form. As a special case, we recover
Zagier’s well known Eisenstein series F(τ, s) of weight 3/2 at s = 1/2 (in
our normalization) whose Fourier coefficients of positive index are given
by the Kronecker-Hurwitz class numbers H(N) [Zag75, HZ76].

(ii) The lift of a modular function f of weight 0 on M . In that case, we obtain
a generalization with a completely different proof of Zagier’s influential
result [Zag02] on the generating series of the traces of the singular moduli,
that is, the sum of values of the classical j-invariant over the CM points
of a given discriminant. Moreover, our method provides a generalization
to modular curves of arbitrary genus.

(iii) The lift of the logarithm of the Petersson metric log ‖∆‖ of the discrim-
inant function ∆. This was suggested to us by U. Kühn. In that case,
the lift I(τ, ‖ log ∆‖) turns out to be the derivative of Zagier’s Eisenstein
series F ′(τ, s) at s = 1/2. Furthermore, one can interpret the Fourier co-
efficients as the arithmetic degree of the (Z extension of the) CM cycles.
This provides a different approach for the result of (Kudla, Rapoport and)
Yang [Yan04] in this case, part of Kudla’s general program on realizing
generating series in arithmetic geometry as modular forms, in particular
as derivatives of Eisenstein series. Their result in the modular curve case
grew out of their extensive and deep work on the analogous but more
involved case for Shimura curves [KRY04, KRY06].

(iv) The lift of a weight 0 Maass cusp form f on M . For this input, our lift
is equivalent to a theta lift introduced by Maass [Maa59], which was
studied and applied by Duke [Duk88] (to obtain equidistribution results
for the CM points and certain geodesics in M) and Katok and Sarnak
[KS93] (to obtain nonnegativity of the L-function of f at the center of
the criticial strip).

The paper is mostly expository; for convenience of the reader and for future
use, we briefly discuss the construction of the theta kernel and also give general
formulas for the Fourier coefficients.

However, we also discuss a few new aspects. Namely:

(v) For any meromorphic modular form f , we give an explicit formula for the
positive Fourier coefficients of the lift I(τ, log ‖f‖) of the logarithm of the
Petersson metric of f in the case when the divisor of f is not (necessarily)
disjoint to one of the 0-cycles Z(N). In particular, for the j-invariant, we
realize the logarithm of the norm of the singular moduli as the Fourier
coefficients of a non-holomorphic modular form of weight 3/2. Recall that
the norms of the singular moduli were studied by Gross-Zagier [GZ85].
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In this context and also in view of (iii) it will be interesting to consider
the lift for the logarithm of the Petersson metric of a Borcherds product
[Bor98]. We will come back to this point in the near future.

(vi) Bringmann, Ono, and Rouse [BOR05] consider the intersection of a mod-
ular curve with a Hirzebruch-Zagier curve TN in a Hilbert modular curve.
Based on our work, they realize the generating series of the traces of the
singular moduli on these intersections as a weakly holomorphic modular
form of weight 2. They proceed to find some beautiful formulas involving
Hilbert class polynomials.

In the last section of this paper, we show how one can obtain such
generating series in the context of the Kudla-Millson machinery and gen-
eralize this aspect of [BOR05] to the intersection of a modular curve
with certain special divisors inside locally symmetric spaces associated to
O(n, 2).

Some comments on the usage of this particular kernel function for the lift are
in order. The lift I is designed to produce holomorphic generating series, while
often theta series and integrals associated to indefinite quadratic forms give rise
to non-holomorphic modular forms. Furthermore, the lift focuses a priori only on
the positive coefficients which correspond to the CM points, while the negative
coefficients (which correspond to certain geodesics in M) often vanish. For these
geodesics, in the Kudla-Millson theory [KM86, KM90], there is another lift for
signature (2, 1) with weight 2 forms as input, which produces generating series of
periods over the geodesics, see also [FM02]. This lift is closely related to Shintani’s
theta lift [Shi75].

Finally note that J. Bruinier [Bru06] wrote up a survey on some aspects of
our work as well. I also thank him and U. Kühn for comments on the present
paper. We also thank the Centre de Recerca Matemàtica in Bellaterra/Spain for
its hospitality during fall 2005.

2. Basic notions

2.1. CM points. Let V be a rational vector space of dimension 3 with a non-
degenerate symmetric bilinear form ( , ) of signature (1, 2). We assume that V is
given by

(2.1) V = {X ∈ M2(Q); tr(X) = 0}
with (X, Y ) = tr(XY ) and associated quadratic form q(X) = 1

2 (X, X) = det(X).
We let G = SpinV � SL2, which acts on V by g.X := gXg−1. We set G = G(R)
and let D = G/K be the associated symmetric space, where K = SO(2) is the
standard maximal compact subgroup of G. We have D � H = {z ∈ C; �(z) > 0}.
Let L ⊂ V (Q) be an integral lattice of full rank and let Γ be a congruence subgroup
of G which takes L to itself. We write M = Γ\D for the attached locally symmetric
space, which is a modular curve. Throughout the paper let p be a prime or p = 1.
For simplicity, we assume that the lattice L is given by

(2.2) L =
{

[a, b, c] :=
(

b −2c
2ap −b

)
: a, b, c ∈ Z

}
.

(For arbitrary even lattices, see [BF06]). Then we can take Γ = Γ∗
0(p), the exten-

sion of the Hecke subgroup Γ0(p) by the Fricke involution Wp. Note that then M
has only one cusp.
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We identify D with the space of lines in V (R) on which the form ( , ) is positive:

(2.3) D � {z ⊂ V (R); dim z = 1 and ( , )|z > 0}.

We pick as base point of D the line z0 spanned by
(

0 1
−1 0

)
. For z ∈ H, we choose

gz ∈ G/K such that gzi = z; the action is the usual linear fractional transformation
on H. Then z �−→ gzz0 gives rise to a G-equivariant isomorphism H � D. The
positive line associated to z = x + iy ∈ H is generated by X(z) := gz.

(
0 1
−1 0

)
. We

let ( , )z be the minimal majorant of ( , ) associated to z ∈ D. One easily sees that
(X, X)z = (X, X(z))2 − (X, X).

The classical CM points are now given as follows. For X = [a, b, c] ∈ V such
that q(X) = 4acp − b2 = N > 0, we put

(2.4) DX = span(X) ∈ D.

It is easy to see that DX is explicitly given by the point −b+i
√

N
2ap in the upper half

plane. The stabilizer ΓX of X in Γ is finite. We then denote by Z(X) the image
of DX in M , counted with multiplicity 1

|ΓX | . Here ΓX denotes the image of ΓX in
PGL2(Z). Furthermore, Γ acts on LN = {X ∈ L; q(X) = N} with finitely many
orbits. The CM points of discriminant −N are given by

(2.5) Z(N) =
∑

X∈Γ\LN

Z(X).

We can interpret this in terms of positive definite binary quadratic forms as well.
For N > 0 a positive integer, we let QN,p be the set of positive definite binary
quadratic forms of the form apX2+bXY +cY 2 of discriminant −N = b2−4acp with
a, b, c,∈ Z. Then Γ = Γ∗

0(p) acts on QN,p in the usual way, and the obvious map
from QN,p to LN is Γ∗

0(p)-equivariant, and LN is in bijection with QN,p

∐
−QN,p.

(The vector X = [a, b, c] ∈ LN with a < 0 corresponds to a negative definite form).
For a Γ-invariant function F on D � H, we define its trace by

(2.6) tF (N) =
∑

z∈Z(N)

F (z) =
∑

X∈Γ\LN

1
|ΓX |

F (DX).

2.2. The Theta lift. Kudla and Millson [KM86] have explicitly constructed
a Schwartz function ϕKM = ϕ on V (R) valued in Ω1,1(D), the differential (1, 1)-
forms on D. It is given by

(2.7) ϕ(X, z) =
(

(X, X(z))2 − 1
2π

)
e−π(X,X)z ω,

where ω = dx∧dy
y2 = i

2
dz∧dz̄

y2 . We have ϕ(g.X, gz) = ϕ(X, z) for g ∈ G. We define

ϕ0(X, z) = eπ(X,X)ϕ(X, z) =
(

(X, X(z))2 − 1
2π

)
e−2πR(X,z) ω,(2.8)

with R(X, z) = 1
2 (X, X)z − 1

2 (X, X). Note tha R(X, z) = 0 if and only if z = DX ,
i.e., if X lies in the line generated by X(z).

For τ = u + iv ∈ H, we put g′τ = ( 1 u
0 1 )

(
v1/2 0

0 v−1/2

)
, and we define

(2.9) ϕ(X, τ, z) = ϕ0(
√

vX, z)e2πiq(X)τ .
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Then, see [KM90, Fun02], the theta kernel

(2.10) θ(τ, z) :=
∑
X∈L

ϕ(X, τ, z)

defines a non-holomorphic modular form of weight 3/2 with values in Ω1,1(M), for
the congruence subgroup Γ0(4p). By [Fun02, BF06] we have

(2.11) θ(τ, z) = O(e−Cy2
) as y → ∞,

uniformly in x, for some constant C > 0.
In this paper, we discuss for certain Γ-invariant functions F with possible log-

arithmic singularities inside D, the theta integral

I(τ, F ) :=
∫

M

F (z)θ(τ, z).(2.12)

Note that by (2.11), I(τ, F ) typically converges even for exponentially increasing
F . It is clear that I(τ, F ) defines a (in general non-holomorphic) modular form on
the upper half plane of weight 3/2. The Fourier expansion is given by

(2.13) I(τ, F ) =
∞∑

N=−∞
aN (v)qN

with

(2.14) aN (v) =
∫

M

∑
X∈LN

F (z)ϕ0(
√

vX, z).

For the computation of the Fourier expansion of I(τ, f), Kudla’s construction
of a Green function ξ0 associated to ϕ0 is crucial, see [Kud97]. We let

(2.15) ξ0(X, z) = −Ei(−2πR(X, z)) =
∫ ∞

1

e−2πR(X,z)t dt

t
,

where Ei(w) denotes the exponential integral, see [Ste84]. For q(X) > 0, the
function ξ0(X, z) has logarithmic growth at the point DX , while it is smooth on D
if q(X) ≤ 0.

We let ∂, ∂̄ and d be the usual differentials on D and set dc = 1
4πi (∂ − ∂̄).

Theorem 2.1 (Kudla [Kud97], Proposition 11.1). Let X be a nonzero vector
in V . Set DX = ∅ if q(X) ≤ 0. Then, outside DX , we have

(2.16) ddcξ0(X, z) = ϕ0(X, z).

In particular, ϕ0(X, z) is exact for q(X) ≤ 0. Furthermore, if q(X) > 0 or if
q(X) < 0 and q(X) /∈ −(Q×)2 (so that ΓX is infinite cyclic), we have for a smooth
function F on ΓX\D that

(2.17)
∫

ΓX\D

F (z)ϕ0(X, z) = δDX
(F ) +

∫
ΓX\D

(ddcF (z)) ξ0(X, z).

Here δDX
denotes the delta distribution concentrated at DX . By Propositions 2.2

and 4.1 of [BF06] and their proofs, (2.17) does not only hold for compactly support
functions F on ΓX\D, but also for functions of “linear-exponential” growth on
ΓX\D.
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In Proposition 4.11, we will give an extension of Theorem 2.1 to F having
logarithmic singularities inside D.

By the usual unfolding argument, see [BF06], section 4, we have

Lemma 2.2. Let N > 0 or N < 0 such that N /∈ −(Q×)2. Then

aN (v) =
∑

X∈Γ\LN

∫
ΓX\D

F (z)ϕ0(
√

vX, z).

If F is smooth on X, then by Theorem 2.17 we obtain

aN (v) = tF (N) +
∑

X∈Γ\LN

1
|ΓX |

∫
D

(ddcF (z)) · ξ0(
√

vX, z), (N > 0)

aN (v) =
∑

X∈Γ\LN

∫
ΓX\D

(ddcF (z)) · ξ0(
√

vX, z) (N < 0, N /∈ −(Q×)2)

For N = −m2, unfolding is (typically) not valid, since in that case ΓX is trivial.
In the proof of Theorem 7.8 in [BF06] we outline

Lemma 2.3. Let N = −m2. Then

aN (v) =
∑

X∈Γ\LN

1
2πi

∫
M

d


F (z)

∑
γ∈Γ

∂ξ0(
√

vX, γz)




+
1

2πi

∫
M

d


∂̄F (z)

∑
γ∈Γ

ξ0(
√

vX, γz)




− 1
2πi

∫
M

(∂∂̄F (z))
∑
γ∈Γ

ξ0(
√

vX, γz).

Note that with our choice of the particular lattice L in (2.2), we actually have
#Γ\L−m2 = m, and as representatives we can take {

(
m 2k

−m

)
; k = 0, . . . , m − 1}.

Finally, we have

a0(v) =
∫

M

F (z)
∑

X∈L0

ϕ0(
√

vX, z).(2.18)

We split this integral into two pieces a′
0 for X = 0 and a′′(v) = a0(v)−a′

0 for X �= 0.
However, unless F is at most mildly increasing, the two individual integrals will not
converge and have to be regularized in a certain manner following [Bor98, BF06].
For a′′

0(v), we have only one Γ-equivalence class of isotropic lines in L, since Γ has
only one cusp. We denote by 
0 = QX0 the isotropic line spanned by the primitive
vector in L, X0 = ( 0 2

0 0 ). Note that the pointwise stabilizer of 
0 is Γ∞, the usual
parabolic subgroup of Γ. We obtain

Lemma 2.4.

(2.19) a′
0 = − 1

2π

∫ reg

M

F (z)ω,
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a′′
0(v) =

1
2πi

∫ reg

M

d


F (z)

∑
γ∈Γ∞\Γ

∞∑′

n=−∞
∂ξ0(

√
vnX0, γz)


(2.20)

+
1

2πi

∫ reg

M

d


∂̄F (z)

∑
γ∈Γ∞\Γ

∞∑′

n=−∞
ξ0(

√
vnX0, γz)




− 1
2πi

∫ reg

M

(∂∂̄F (z))
∑

γ∈Γ∞\Γ

∞∑′

n=−∞
ξ0(

√
vnX0, γz).

Here
∑′

indicates that the sum only extends over n �= 0.

3. The lift of modular functions

3.1. The lift of the constant function. The modular trace of the constant
function F = 1 is already very interesting. In that case, the modular trace of index
N is the (geometric) degree of the 0-cycle Z(N):

(3.1) t1(N) = deg Z(N) =
∑

X∈Γ\LN

1
|ΓX |

.

For p = 1, this is twice the famous Kronecker-Hurwitz class number H(N) of
positive definite binary integral (not necessarily primitive) quadratic forms of dis-
criminant −N . From that perspective, we can consider deg Z(N) for a general
lattice L as a generalized class number. On the other hand, deg Z(N) is essentially
the number of length N vectors in the lattice L modulo Γ. So we can think about
deg Z(N) also as the direct analogue of the classical representation numbers by
quadratic forms in the positive definite case.

Theorem 3.1 ([Fun02]). Recall that we write τ = u + iv ∈ H. Then

I(τ, 1) = vol(X) +
∞∑

N=1

deg Z(N)qN +
1

8π
√

v

∞∑
n=−∞

β(4πvn2)q−n2
.

Here vol(X) = − 1
2π

∫
X

ω ∈ Q is the (normalized) volume of the modular curve M .
Furthermore, β(s) =

∫ ∞
1

e−stt−3/2dt.

In particular, for p = 1, we recover Zagier’s well known Eisenstein series F(τ)
of weight 3/2, see [Zag75, HZ76]. Namely, we have

Theorem 3.2. Let p = 1, so that deg Z(N) = 2H(N). Then

1
2
I(τ, 1) = F(τ) = − 1

12
+

∞∑
N=1

H(N)qN +
1

16π
√

v

∞∑
n=−∞

β(4πn2v)q−n2

Remark 3.3. We can view Theorem 3.1 on one hand as the generalization of
Zagier’s Eisenstein series. On the other hand, we can consider Theorem 3.2 as a
special case of the Siegel-Weil formula, realizing the theta integral as an Eisenstein
series. Note however that here Theorem 3.2 arises by explicit computation and
comparison of the Fourier expansions on both sides. For a more intrinsic proof, see
Section 3.3 below.
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Remark 3.4. Lemma 2.2 immediately takes care of a large class of coefficients.
However, the calculation of the Fourier coefficients of index −m2 is quite delicate
and represents the main technical difficulty for Theorem 3.1, since the usual un-
folding argument is not allowed. We have two ways of computing the integral. In
[Fun02], we employ a method somewhat similar to Zagier’s method in [Zag81],
namely we appropriately regularize the integral in order to unfold. In [BF06],
we use Lemma 2.3, i.e., explicitly the fact that for negative index, the Schwartz
function ϕKM (x) (with (x, x) < 0) is exact and apply Stokes’ Theorem.

Remark 3.5. In joint work with O. Imamoglu [FI], we are currently considering
the analogue of the present situation to general hyperbolic space (1, q). We study
a similar theta integral for constant and other input. In particular, we realize the
generating series of certain 0-cycles inside hyperbolic manifolds as Eisenstein series
of weight (q + 1)/2.

3.2. The lift of modular functions and weak Maass forms. In [BF04],
we introduced the space of weak Maass forms. For weight 0, it consists of those
Γ-invariant and harmonic functions f on D � H which satisfy f(z) = O(eCy) as
z → ∞ for some constant C. We denote this space by H0(Γ). A form f ∈ H0(Γ)
can be written as f = f+ + f−, where the Fourier expansions of f+ and f− are of
the form

f+(z) =
∑
n∈Z

b+(n)e(nz) and f−(z) = b−(0)v +
∑

n∈Z−{0}
b−(n)e(nz̄),(3.2)

where b+(n) = 0 for n 
 0 and b−(n) = 0 for n � 0. We let H+
0 (Γ) be the subspace

of those f that satisfy b−(n) = 0 for n ≥ 0. It consists for those f ∈ H0(Γ) such
that f− is exponentially decreasing at the cusps. We define a C-antilinear map by
(ξ0f)(z) = y−2L0f(z) = R0f(z). Here L0 and R0 are the weight 0 Maass lowering
and raising operators. Then the significance of H+

0 (Γ) lies in the fact, see [BF04],
Section 3, that ξ0 maps H+

0 (Γ) onto S2(Γ), the space of weight 2 cusp forms for
Γ. Furthermore, we let M !

0(Γ) be the space of modular functions for Γ (or weakly
holomorphic modular forms for Γ of weight 0). Note that ker ξ = M !

0(Γ). We
therefore have a short exact sequence

(3.3) 0 �� M !
0(Γ) �� H+

0 (Γ)
ξ0 �� S2(Γ) �� 0 .

Theorem 3.6 ([BF06], Theorem 1.1). For f ∈ H+
0 (Γ), assume that the con-

stant coefficient b+(0) vanishes. Then

I(τ, f) =
∑
N>0

tf (N)qN +
∑
n≥0

(
σ1(n) + pσ1(n

p )
)
b+(−n) −

∑
m>0

∑
n>0

mb+(−mn)q−m2

is a weakly holomorphic modular form (i.e., meromorphic with the poles concen-
trated inside the cusps) of weight 3/2 for the group Γ0(4p). If a(0) does not vanish,
then in addition non-holomorphic terms as in Theorem 3.1 occur, namely

1
8π

√
v
b+(0)

∞∑
n=−∞

β(4πvn2)q−n2
.

For p = 1, we let J(z) := j(z)−744 be the normalized Hauptmodul for SL2(Z).
Here j(z) is the famous j-invariant. The values of j at the CM points are of classical
interest and are known as singular moduli. For example, they are algebraic integers.
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In fact, the values at the CM points of discriminant D generate the Hilbert class
field of the imaginary quadratic field Q(

√
D). Hence its modular trace (which

can also be considered as a suitable Galois trace) is of particular interest. Zagier
[Zag02] realized the generating series of the traces of the singular moduli as a
weakly holomorpic modular form of weight 3/2. For p = 1, Theorem 3.6 recovers
this influential result of Zagier [Zag02].

Theorem 3.7 (Zagier [Zag02]). We have that

−q−1 + 2 +
∞∑

N=1

tJ(N)qN

is a weakly holomorphic modular form of weight 3/2 for Γ0(4).

Remark 3.8. The proof of Theorem 3.6 follows Lemmas 2.2, 2.3, and 2.4.
The formulas given there simplify greatly since the input f is harmonic (or even
holomorphic) and ∂f is rapidly decreasing (or even vanishes). Again, the coefficients
of index −m2 are quite delicate. Furthermore, a′′

0(v) vanishes unless b+
0 is nonzero,

while we use a method of Borcherds [Bor98] to explicitly compute the average
value a′

0 of f . (Actually, for a′
0, Remark 4.9 in [BF06] only covers the holomorphic

case, but the same argument as in the proof of Theorem 7.8 in [BF06] shows that
the calculation is also valid for H+

0 ).

Remark 3.9. Note that Zagier’s approach to the above result is quite different.
To obtain Theorem 3.7, he explicitly constructs a weakly holomorphic modular form
of weight 3/2, which turns to be the generating series of the traces of the singular
moduli. His proof heavily depends on the fact that the Riemann surface in question,
SL2(Z)\H, has genus 0. In fact, Zagier’s proof extends to other genus 0 Riemann
surfaces, see [Kim04, Kim].

Our approach addresses several questions and issues which arise from Zagier’s
work:

• We show that the condition ’genus 0’ is irrelevant in this context; the
result holds for (suitable) modular curves of any genus.

• A geometric interpretation of the constant coefficient is given as the reg-
ularized average value of f over M , see Lemma 2.4. It can be explicitly
computed, see Remark 3.8 above.

• A geometric interpretation of the coefficient(s) of negative index is given in
terms of the behavior of f at the cusp, see Definition 4.4 and Theorem 4.5
in [BF06].

• We settle the question when the generating series of modular traces for
a weakly holomorphic form f ∈ M !

0(Γ) is part of a weakly holomorphic
form of weight 3/2 (as it is the case for J(z)) or when it is part of a
nonholomorphic form (as it is the case for the constant function 1 ∈
M !

0(Γ)). This behavior is governed by the (non)vanishing of the constant
coefficient of f .

Remark 3.10. Theorem 3.6 has inspired several papers of K. Ono and his
collaborators, see [BO05, BO, BOR05]. In Section 5, we generalize some aspects
of [BOR05].
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Remark 3.11. As this point we are not aware of any particular application of
the above formula in the case when f is a weak Maass form and not weakly holo-
morphic. However, it is important to see that the result does not (directly) depend
on the underlying complex structure of D. This suggests possible generalizations to
locally symmetric spaces for other orthogonal groups when they might or might not
be an underlying complex structure, most notably for hyperbolic space associated
to signature (1, q), see [FI]. The issue is to find appropriate analogues of the space
of weak Maass forms in these situations.

In any case, the space of weak Maass forms has already displayed its signifi-
cance, for example in the work of Bruinier [Bru02], Bruinier-Funke [BF04], and
Bringmann-Ono [BO06].

3.3. The lift of the weight 0 Eisenstein Series. For z ∈ H and s ∈ C, we
let

E0(z, s) =
1
2
ζ∗(2s + 1)

∑
γ∈Γ∞\ SL2(Z)

(�(γz))s+ 1
2

be the Eisenstein series of weight 0 for SL2(Z). Here Γ∞ is the standard stabilizer
of the cusp i∞ and ζ∗(s) = π−s/2Γ( s

2 )ζ(s) is the completed Riemann Zeta function.
Recall that with the above normalization, E0(z, s) converges for �(s) > 1/2 and
has a meromorphic continuation to C with a simple pole at s = 1/2 with residue
1/2.

Theorem 3.12 ([BF06], Theorem 7.1). Let p = 1. Then

I(τ, E0(z, s)) = ζ∗(s +
1
2
)F(τ, s).

Here we use the normalization of Zagier’s Eisenstein series as given in [Yan04],
in particular F(τ) = F(τ, 1

2 ).

We prove this result by switching to a mixed model of the Weil representation
and using not more than the definition of the two Eisenstein series involved. In
particular, we do not have to compute the Fourier expansion of the Eisenstein series.
One can also consider Theorem 3.12 and its proof as a special case of the extension
of the Siegel-Weil formula by Kudla and Rallis [KR94] to the divergent range. Note
however, that our case is actually not covered in [KR94], since for simplicity they
only consider the integral weight case to avoid dealing with metaplectic coverings.

Taking residues at s = 1/2 on both sides of Theorem 3.12 one obtains again

Theorem 3.13.
I(τ, 1) = 1

2F(τ, 1
2 ),

as asserted by the Siegel-Weil formula.

From our point of view, one can consider Theorem 3.2/3.13 as some kind of geo-
metric Siegel-Weil formula (Kudla): The geometric degrees of the 0-cycles Z(N) in
(regular) (co)homology form the Fourier coefficients of the special value of an Eisen-
stein series. For the analogous (compact) case of a Shimura curve, see [KRY04].
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3.4. Other inputs.
3.4.1. Maass cusp forms. We can also consider I(τ, f) for f ∈ L2

cusp(Γ\D), the
space of cuspidal square integrable functions on Γ\D = M . In that case, the lift
is closely related to another theta lift IM first introduced by Maass [Maa59] and
later reconsidered by Duke [Duk88] and Katok and Sarnak [KS93]. The Maass
lift uses a similar theta kernel associated to a quadratic space of signature (2, 1)
and maps rapidly decreasing functions on M to forms of weight 1/2. In fact, in
[Maa59, KS93] only Maass forms are considered, that is, eigenfunctions of the
hyperbolic Laplacian ∆.

To describe the relationship between I and IM , we need the operator ξk which
maps forms of weight k to forms of “dual” weight 2 − k. It is given by

(3.4) ξk(f)(τ) = vk−2Lkf(τ) = R−kvkf(τ),

where Lk and R−k are the usual Maass lowering and raising operators. In [BF06],
we establish an explicit relationship between the two kernel functions and obtain

Theorem 3.14 ([BF06]). For f ∈ L2
cusp(Γ\D), we have

ξ1/2IM (τ, f) = −πI(τ, f).

If f is an eigenfunction of ∆ with eigenvalue λ, then we also have

ξ3/2I(τ, f) = − λ

4π
IM (τ, f).

Remark 3.15. The theorem shows that the two lifts are essentially equivalent
on Maass forms. However, the theta kernel for IM is moderately increasing. Hence
one cannot define the Maass lift on H+

0 , at least not without regularization. On
the other hand, since I(τ, f) is holomorphic for f ∈ H+

0 , we have ξ3/2I(τ, f) = 0
(which would be the case λ = 0).

Remark 3.16. Duke [Duk88] uses the Maass lift to establish an equidistribu-
tion result for the CM points and also certain geodesics in M (which in our context
correspond to the negative coefficients). Katok and Sarnak [KS93] use the fact
that the periods over these geodesics correspond to the values of L-functions at
the center of the critical strip to extend the nonnegativity of those values to Maass
Hecke eigenforms. It seems that for these applications one could have also used our
lift I.

3.4.2. Petersson metric of (weakly) holomorphic modular forms. Similarly, one
could study the lift for the Petersson metric of a (weakly) holomorphic modu-
lar form f of weight k for Γ. For such an f , we define its Petersson metric by
‖f(z)‖ = |f(z)yk/2|. Then by Lemma 2.2 the holomorphic part of the positive
Fourier coefficients of I(τ, ‖f‖) is given by the t‖f‖(N). It would be very interestig
to find an application for this modular trace.

It should also be interesting to consider the lift of the Petersson metric for a
meromorphic modular form f or, in weight 0, of a meromorphic modular function
itself. Of course, in these cases, the integral is typcially divergent and needs to be
normalized. To find an appropriate normalization would be interesting in its own
right.
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3.4.3. Other Weights. Zagier [Zag02] also discusses a few special cases of traces
for a (weakly holomorphic) modular form f of negative weight −2k (for small k)
by considering the modular trace of R−2 ◦ R−4 ◦ · · · ◦ R−2kf , where R� denotes
the raising operator for weight 
. For k even, Zagier obtains a correspondence in
which forms of weight −2k correspond to forms of positive weight 3/2+k. Zagier’s
student Fricke [Fri] following our work [BF06] introduces theta kernels similar to
ours to realize Zagier’s correspondence via theta liftings. It would be interesting
to see whether his approach can be understood in terms of the extension of the
Kudla-Millson theory to cycles with coefficients by Funke and Millson [FM]. For
k odd, Zagier’s correspondence takes a different form, namely forms of weight −2k
correspond to forms of negative weight 1/2−k. For this correspondence, one needs
to use a different approach, constructing other theta kernels.

4. The lift of log ‖f‖

In this section, we study the lift for the logarithm of the Petersson metric of a
meromorphic modular form f of weight k for Γ. We normalize the Petersson metric
such that it is given by

‖f(z)‖ = e−kC/2|f(z)(4πy)k/2|,
with C = 1

2 (γ + log 4π). Here γ is Euler’s constant.
The motivation to consider such input comes from the fact that the positive

Fourier coefficients of the lift will involve the trace tlog ‖f‖(N). It is well known
that such a trace plays a significant role in arithmetic geometry as we will also see
below.

4.1. The lift of log ‖∆‖. We first consider the discriminant function

∆(z) = e2πiz
∞∏

n=1

(
1 − e2πinz

)24
.

Via the Kronecker limit formula

(4.1) − 1
12

log |∆(z)y6| = lim
s→ 1

2

(E0(z, s) − ζ∗(2s − 1))

we can use Theorem 3.12 to compute the lift I(τ, ‖∆‖). Namely, we take the
constant term of the Laurent expansion at s = 1/2 on both sides of Theorem 3.12
and obtain

Theorem 4.1. We have

− 1
12

I (τ, log ‖∆(z)‖) = F ′(τ,
1
2
).

On the other hand, we can give an interpretation in arithmetic geometry in
the context of the program of Kudla, Rapoport and Yang, see e.g. [KRY06]. We
give a very brief sketch. For more details, see [Yan04, KRY04, BF06]. We
let M be the Deligne-Rapoport compactification of the moduli stack over Z of
elliptic curves, so M(C) is the orbifold SL2(Z)\H ∪ ∞. We let ĈH

1

R(M) be the
extended arithmetic Chow group of M with real coefficients and let 〈 , 〉 be the
extended Gillet-Soulé intersection pairing, see [Sou92, Bos99, BKK, Küh01].
The normalized metrized Hodge bundle ω̂ on M defines an element

(4.2) ĉ1(ω̂) = 1
12 (∞,− log ‖∆(z)‖2) ∈ ĈH

1

R(M).
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For N ∈ Z and v > 0, Kudla, Rapoport and Yang construct elements Ẑ(N, v) =

(Z(N), Ξ(N, v)) ∈ ĈH
1

R(M). Here for N > 0 the complex points of Z(N) are the
CM points Z(N) and ξ(N, v) =

∑
X∈LN

ξ0(
√

vX) is a Green’s function for Z(N).
In [BF06] we indicate

Theorem 4.2 ([BF06]).

− 1
12

I (τ, log (‖∆(z)‖)) = 4
∑
N∈Z

〈Ẑ(N, v), ω̂〉qN .

We therefore recover

Theorem 4.3 ((Kudla-Rapoport-Yang) [Yan04]). For the generating series of
the arithmetic degrees 〈Ẑ(N, v), ω̂〉, we have

∑
N∈Z

〈Ẑ(N, v), ω̂〉qN =
1
4
F ′(τ,

1
2
).

Remark 4.4. One can view our treatment of the above result as some kind of
arithmetic Siegel-Weil formula in the given situation, realizing the “arithmetic theta
series” (Kudla) of the arithmetic degrees of the cycles Z(N) on the left hand side
of Theorem 4.3 as an honest theta integral (and as the derivative of an Eisenstein
series).

Our proof is different than the one given in [Yan04]. We use two different
ways of ‘interpreting’ the theta lift, the Kronecker limit formula, and unwind the
basic definitions and formulas of the Gillet-Soulé intersection pairing. The proof
given in [Yan04] is based on the explicit computation of both sides, which is not
needed with our method. The approach and techniques in [Yan04] are the same as
the ones Kudla, Rapoport, and Yang [KRY04] employ in the analogous situation
for 0-cycles in Shimura curves. In that case again, the generating series of the
arithmetic degrees of the analogous cycles is the derivative of a certain Eisenstein
series.

It needs to be stressed that the present case is considerably easier than the
Shimura curve case. For example, in our situation the finite primes play no role,
since the CM points do not intersect the cusp over Z. Moreover, our approach is
not applicable in the Shimura curve case, since there are no Eisenstein series (and
no Kronecker limit formula). See also Remark 4.10 below.

Finally note that by Lemma 2.2 we see that the main (holomorphic) part of the
positive Fourier coefficients of the lift is given by tlog ‖∆(z)y6‖(N), which is equal
to the Faltings height of the cycle Z(N). For details, we refer again the reader to
[Yan04].

4.2. The lift for general f . In this section, we consider I(τ, log ‖f‖) for a
general meromorphic modular form f . Note that while log ‖f‖ is of course inte-
grable, we cannot evaluate log ‖f‖ at the divisor of f . So if the divisor of f is not
disjoint from (one) of the 0-cycles Z(N), we need to expect complications when
computing the Fourier expansion of I(τ, log ‖f‖).

We let t be the order of f at the point DX = z0, i.e., t is the smallest integer
such that

lim
z→z0

(z − z0)−tf(z) =: f (t)(z0) /∈ {0,∞}.
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Note that the value f (t)(z0) does depend on z0 itself and not just on the Γ-
equivalence class of z0. If f has order t at z0 we put

||f (t)(z0)|| = e−C(t+k/2)|f (t)(z0)(4πy0)t+k/2|

Lemma 4.5. The value ||f (t)(z0)|| depends only on the Γ-equivalence class of
z0, i.e.,

||f (t)(γz0)|| = ||f (t)(z0)||
for γ ∈ Γ.

Proof. It’s enough to do the case t ≥ 0. For t < 0, consider 1/f . We
successively apply the raising operator R� = 2i ∂

∂τ + 
y−1 to f and obtain

(4.3)
(
−1

2
i

)t

Rk+t−2 ◦ · · · ◦ Rkf(z) = f (t)(z) + lower derivatives of f.

But |Rk+t−2 · · ·Rke−C(t+k/2)f(z)(4π)yt+k/2| has weight 0 and its value at z0 is
equal to ||f (t)(z0)|| since the lower derivatives of f vanish at z0. �

Theorem 4.6. Let f be a meromorphic modular form of weight k. Then for
N > 0, the N -th Fourier coefficient of I(τ, log ‖f‖) is given by

aN (v) =
∑

z∈Z(N)

1
|Γ̄z|

(
log ||f (ord(f,z))(z)|| − ord(f,z)

2 log((4π)2Nv) + k
16πiJ(4πNv)

)
,

where

J(t) =
∫ ∞

0

e−tw[(w + 1)
1
2 − 1]w−1dw.

We give the proof of Theorem 4.6 in the next section.

Remark 4.7. We will leave the computation of the other Fourier coefficients
for another time. Note however, that the coefficient for N < 0 such that N /∈ −(Q)2

can be found in [KRY04], section 12.

Remark 4.8. The constant coefficient a′
0 of the lift is given by

(4.4)
∫ reg

M

log ||f(z)||dx dy

y2
,

see Lemma 2.4. An explicit formula can be obtained by means of Rohrlich’s modular
Jensen’s formula [Roh84], which holds for f holomorphic on D and not vanishing at
the cusp. For an extension of this formula in the context of arithmetic intersection
numbers, see e.g. Kühn [Küh01]. See also Remark 4.10 below.

Example 4.9. In the case of the classical j-invariant the modular trace of the
logarithm of the j-invariant is the logarithm of the norm of the singular moduli,
i.e.,

(4.5) tlog |j|(N) = log |
∏

z∈Z(N)

j(z)|.

Recall that the norms of the singular moduli were studied by Gross-Zagier [GZ85].
On the other hand, we have j (ρ) = 0 for ρ = 1+i

√
3

2 and 1
3ρ ∈ Z(3N2). Hence for
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these indices the trace is not defined. Note that the third derivative j′′′(ρ) is the
first non-vanishing derivative of j at ρ. Thus

I(τ, log |j|) =
∑
D>0

t′log |j|(D)qD +
∞∑

N=1

(
log ‖j(3)(ρ)‖ − 1

2 log(48π2N2v)
)

q3N2
+ . . .

(4.6)

Here t′log |j|(D) denotes the usual trace for D �= 3N2, while for D = 3N2 one
excludes the term corresponding to ρ.

Finally note that Gross-Zagier [GZ85] in their analytic approach to the singular
moduli (sections 5-7) also make essential use of the derivative of an Eisenstein series
(of weight 1 for the Hilbert modular group).

Remark 4.10. It is a very interesting problem to consider the special case
when f is a Borcherds product, that is, when

(4.7) log ||f(z)|| = Φ(z, g),

where Φ(z, g) is a theta lift of a (weakly) holomorphic modular form of weight 1/2
via a certain regularized theta integral, see [Bor98, Bru02]. The calculation of
the constant coefficient a′

0 of the lift I(τ, Φ(z, g)) boils down (for general signature
(n, 2)) to work of Kudla [Kud03] and Bruinier and Kühn [BK03] on integrals
of Borcherds forms. (The present case of a modular curve is excluded to avoid
some technical difficulties). Roughly speaking, one obtains a linear combination of
Fourier coefficients of the derivative of a certain Eisenstein series.

From that perspective, it is reasonable to expect that for the Petersson metric
of Borcherds products, the full lift I(τ, Φ(z, g)) will involve the derivative of certain
Eisenstein series, in particular in view of Kudla’s approach in [Kud03] via the
Siegel-Weil formula. Note that the discriminant function ∆ can be realized as a
Borcherds product. Therefore, one can reasonably expect a new proof for Theo-
rem 4.1. Furthermore, this method a priori is also available for the Shimura curve
case (as opposed to the Kronecker limit formula), and one can hope to have a new
approach to some aspects (say, at least for the Archimedean prime) of the work of
Kudla, Rapoport, and Yang [KRY04, KRY06] on arithmetic generating series in
the Shimura curve case.

We will come back to these issues in the near future.

4.3. Proof of Theorem 4.6. For the proof of the theorem, we will show how
Theorem 2.1 extends to functions which have a logarithmic singularity at the CM
point DX . This will then give the formula for the positive coefficients.

Proposition 4.11. Let q(X) = N > 0 and let f be a meromorphic modular
form of weight k with order t at DX = z0. Then∫

D

log ||f(z)||ϕ0(X, z) = ||f (t)(z0)|| −
t

2
log((4π)2N) +

∫
D

ddc log ||f(z)|| · ξ0(X, z)

= ||f (t)(z0)|| −
t

2
log((4π)2N) +

k

16πi

∫
D

ξ0(X, z)
dxdy

y2
.

Note that by [KRY04], section 12 we have∫
D

ξ0(X, z)
dxdy

y2
= J(4πN).
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Proof of Proposition 4.11. The proof consists of a careful analysis and
extension of the proof of Theorem 2.1 given in [Kud97]. We will need

Lemma 4.12. Let

ξ̃0(X, z) = ξ0(X, z) + log |z − z0|2.

Then ξ̃0(X, z) extends to a smooth function on D and

ξ̃0(X, z0) = −γ − log(4πN/y2
0).

In particular, writing z − z0 = reiθ, we have

∂

∂r
ξ̃0(X, z) = O(1)

in a neighborhood of z0.

Proof of Lemma 4.12. This is basically Lemma 11.2 in [Kud97]. We have

R(X, z) = 2N

[
r2

2y0(y0 + r cos θ)

] [
r2

2y0(y0 + r cos θ)
+ 2

]
.(4.8)

Since

Ei(z) = γ + log(−z) +
∫ z

0

et − 1
t

dt,

we have

(4.9) ξ̃0(X, z) = −γ − log
([

4πN

2y0(y0 + r cos θ)

] [
r2

2y0(y0 + r cos θ)
+ 2

])

−
∫ −2πR(X,z)

0

et − 1
t

dt.

The claims follow. �

For the proof of the proposition, we first note that (2.17) in Theorem 2.1 still
holds for F = log ‖f‖ when the divisor of f is disjoint to DX . We now consider∫

D
ddc log ||f(z)|| · ξ0(X, z). Since log ||(z − z0)−tf(z)|| is smooth at z = z0, we see∫

D

ddc log ||f(z)|| · ξ0(X, z) =
∫

D

ddc log ||(z − z0)−tf(z)|| · ξ0(X, z)(4.10)

= − log ||f (t)(z0)|| − tC + t log(4πy0)

+
∫

D

log ||(z − z0)−tf(z)|| · ϕ0(X, z).

So for the proposition it suffices to proof

(4.11)
∫

D

log |z − z0|−t · ϕ0(X, z) =
t

2
(
γ + log(4πN/y2

0

)
.

For this, we let Uε be an ε-neighborhood of z0. We see

∫
D−Uε

ddc log |z − z0|t · ξ0(X, z) =
∫

D−Uε

log |z − z0|t · ddcξ0(X, z)

(4.12)

+
∫

∂{D−Uε}

(
ξ0dc log |z − z0|t − log |z − z0|tdcξ0

)
.
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Of course ddc log |z − z0|t = 0 (outside z0), so the integral on the left hand side
vanishes. For the first term on the right hand side, we note ddcξ0 = ϕ0, and using
the rapid decay of ξ0(X), we obtain

(4.13)
∫

D

log |z − z0|tϕ0(X, z) = lim
ε→0

∫
∂Uε

(
ξ0dc log |z − z0|t − log |z − z0|tdcξ0

)
.

For the right hand side of 4.13, we write z−z0 = reiθ. Using dc = r
4π

∂
∂rdθ− 1

4πr
∂
∂θ dr,

we see dc log |z − z0| = 1
4π dθ. Via Lemma 4.12, we now obtain∫

∂Uε

(
ξ0dc log |z − z0|t − log |z − z0|tdcξ0

)

=
∫ 2π

0

[
(− log ε2 + ξ̃0)

t

4π
dθ − t log ε(− 1

2π
dθ + O(ε)dθ)

]

=
∫ 2π

0

[
ξ̃0 t

4π
dθ − t log εO(ε)dθ

]

→ t

2
ξ̃0(X, z0) = − t

2
(
γ + log(4Nπ/y2

0)
)

as ε → 0.

The proposition follows. �

5. Higher dimensional analogues

We change the setting from the previous sections and let V now be a rational
quadratic space of signature (n, 2). We let G = SO0(V (R)) be the connected
component of the identity of O(V (R)). We let D be the associated symmetric
space, which we realize as the space of negative two-planes in V (R):

(5.1) D = {z ⊂ V (R); dim z = 2 and ( , )|z < 0}.

We let L be an even lattice in V and Γ a congruence subgroup inside G stabilizing
L. We assume for simplicity that Γ is neat and that Γ acts on the discriminant
group L#/L trivially. We set M = Γ\D. It is well known that D has a complex
structure and M is a (in general) quasi-projective variety.

A vector x ∈ V such that (x, x) > 0 defines a divisor Dx by

(5.2) Dx = {z ∈ D; z ⊥ x}.

The stabilizer Γx acts on Dx, and we define the special divisor Z(x) = Γx\Dx ↪→ M .
For N ∈ Z, we set LN = {x ∈ L; q(x) := 1

2 (x, x) = N} and for N > 0, we define
the composite cycle Z(N) by

(5.3) Z(N) =
∑

x∈Γ\LN

Z(x).

For n = 1, these are the CM points inside a modular (or Shimura) curve discussed
before, while for n = 2, these are (for Q-rank 1) the famous Hirzebruch-Zagier
divisors inside a Hilbert modular surface, see [HZ76] or [vdG88]. On the other
hand, we let U ⊂ V be a rational positive definite subspace of dimension n−1. We
then set

(5.4) DU = {z ∈ D; z ⊥ U}.
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This is an embedded upper half plane H inside D. We let ΓU be the stabilizer of
U inside Γ and set Z(U) = ΓU\DU which defines a modular or Shimura curve. We
denote by ιU the embedding of Z(U) into M (which we frequently omit). Therefore

(5.5) DU ∩ Dx =

{
DU,x if x /∈ U

DU if x ∈ U.

Here DU,x is the point (negative two plane in V (R)) in D, which is orthogonal to
both U and x. We denote its image in M by Z(U, x). Consequently Z(U) and
Z(x) intersect transversally in Z(U, x) if and only if γx /∈ U for all γ ∈ Γ while
Z(U) = Z(x) if and only if γx ∈ U for one γ ∈ Γ. This defines a (set theoretic)
intersection

(5.6) (Z(U) ∩ Z(N))M

in (the interior of) M consisting of 0- and 1-dimensional components. For n = 2,
the Hilbert modular surface case, this follows Hirzebruch and Zagier ([HZ76]). For
f a function on the curve Z(U), we let (Z(U) ∩ Z(N))M [f ] be the evaluation of f
on (Z(U) ∩ Z(N))M . Here on the 1-dimensional components we mean by this the
(regularized) average value of f over the curve, see (2.19). Now write

(5.7) L =
r∑

i=1

(LU + λi) ⊥ (LU⊥ + µi)

with λi ∈ L#
U and µi ∈ L#

U⊥ such that λ1 = µ1 = 0.

Lemma 5.1. Let r(N1, LU + λi) = #{x ∈ LU + λi : q(x) = N1} be the
representation number of the positive definite (coset of the) lattice LU , and let
Z(N2, LU⊥ + µi) =

∑
x∈ΓU\(L

U⊥+µi)

q(x)=N2

Z(x) be the CM cycle inside the curve Z(U).

Let f be a function on the curve Z(U). Then

(Z(U) ∩ Z(N))M [f ] =
∑

N1≥0,N2>0
N1+N2=N

r∑
i=1

r(N1, LU + λi)Z(N2, LU⊥ + µi)[f ]

− 1
2π

r(N, LU )
∫ reg

Z(U)

f(z)ω.

Proof. A vector x ∈ LU ∩ LN gives rise to a 1-dimensional intersection, and
conversely a 1-dimensional intersection arises from a vector x ∈ LN which can be
taken after translating by a suitable γ ∈ Γ to be in LU . Thus the 1-dimensional
component is equal to Z(U) occurring with multiplicity r(N, LU ). Note that only
the component λ1 = µ1 = 0 occurs. This gives the second term. For the 0-
dimensional components, we first take an x = x1 + x2 ∈ LN with x1 ∈ LU + λi

and x2 ∈ LU⊥ + µi such that q(x1) = N1 and q(x2) = N2. This gives rise to the
transversal intersection point Z(U, x) if x cannot be Γ-translated into U . Note that
this point lies in the CM cycle Z(N2, LU⊥ + µi) inside Z(U). In fact, in this way,
we see by changing x2 by y2 ∈ LU⊥ +µi of the same length N2 that the whole cycle
Z(N2, LU⊥ + µi) lies in the transversal part of Z(U) ∩ Z(N). (Here we need that
ΓU acts trivially on the cosets). Moreover, its multiplicity is the representation
number r(N1, LU +λi). (Here we need that ΓU acts trivially on U since Γ is neat).
This gives the first term. �
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We now let ϕV ∈ [S(V (R)) ⊗ Ω1,1(D)]G be the Kudla-Millson Schwartz form
for V . Then the associated theta function θ(τ, ϕV ) for the lattice L is a modular
form of weight (n + 2)/2 with values in the differential forms of Hodge type (1, 1)
of M . Moreover, for N > 0, the N -th Fourier coefficient is a Poincaré dual form
for the special divisor Z(N). It is therefore natural to consider the integral

(5.8) IV (τ, Z(U), f) :=
∫

Z(U)

f(z)θV (τ, z, L)

and to expect that this involves the evaluation of f at (Z(N) ∩ Z(U))M . (Note
however that the intersection of the two relative cycles Z(U) and Z(N) is not
cohomological).

Proposition 5.2. We have

IV (τ, Z(U), f) =
r∑

i=1

ϑ(τ, LU + λi)IU⊥(τ, LU⊥ + µi, f).

Here ϑ(τ, LU + λi) =
∑

x∈LU+λi
e2πiq(x)τ is the standard theta function of the

positive definite lattice LU , and IU⊥(τ, LU⊥ +µi, f) is the lift of f considered in the
main body of the paper for the space U⊥ of signature (1, 2) (and the coset µi of the
lattice LU⊥).

Proof. Under the pullback i∗U : Ω1,1(D) −→ Ω1,1(DU ), we have, see [KM86],
i∗UϕV = ϕ+

U ⊗ ϕU⊥ , where ϕ+
U is the usual (positive definite) Gaussian on U . Then

θϕV
(τ, z, L) =

∑
x∈L

ϕV (X, τ, z) =
r∑

i=1

∑
x∈LU+λi

ϕ+
U (x, τ)

∑
y∈L

U⊥+µi

ϕU⊥(y, τ, z),

(5.9)

which implies the assertion. �

Making the Fourier expansion IV (τ, Z(U), f) explicit, and using Lemma 5.1
and Theorem 3.6 (in its form for cosets of a general lattice, [BF06]), we obtain

Theorem 5.3. Let f ∈ M !
0(Z(U)) be a modular function on Z(U) such that the

constant Fourier coefficient of f at all the cusps of Z(U) vanishes. Then θϕV
(τ, L)

is a weakly holomorphic modular form of weight (n+2)/2 whose Fourier expansion
involves the generating series

∑
N>0

((Z(U) ∩ Z(N))M [f ]) qN

of the evaluation of f along (Z(U) ∩ Z(N))M .

Remark 5.4. This generalizes a result of Bringmann, Ono, and Rouse (Theo-
rem 1.1 of [BOR05]), where they consider some special cases of Theorem 5.3 for
n = 2 in the case of Hilbert modular surfaces, where the cycles Z(N) and Z(U)
are the famous Hirzebruch-Zagier curves [HZ76]. Note that [BOR05] uses our
Theorem 3.6 as a starting point.
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The path to recent progress on small gaps between primes

D. A. Goldston, J. Pintz, and C. Y. Yıldırım

Abstract. We present the development of ideas which led to our recent find-

ings about the existence of small gaps between primes.

1. Introduction

In the articles Primes in Tuples I & II ([GPYa], [GPYb]) we have presented
the proofs of some assertions about the existence of small gaps between prime
numbers which go beyond the hitherto established results. Our method depends
on tuple approximations. However, the approximations and the way of applying
the approximations has changed over time, and some comments in this paper may
provide insight as to the development of our work.

First, here is a short narration of our results. Let

(1) θ(n) :=

{
log n if n is prime,
0 otherwise,

and

(2) Θ(N ; q, a) :=
∑
n≤N

n≡a ( mod q)

θ(n).

In this paper N will always be a large integer, p will denote a prime number, and
pn will denote the n-th prime. The prime number theorem says that

(3) lim
x→∞

|{p : p ≤ x}|
x

log x

= 1,

and this can also be expressed as

(4)
∑
n≤x

θ(n) ∼ x as x → ∞.
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It follows trivially from the prime number theorem that

(5) lim inf
n→∞

pn+1 − pn

log pn
≤ 1.

By combining former methods with a construction of certain (rather sparsely dis-
tributed) intervals which contain more primes than the expected number by a factor
of eγ , Maier [Mai88] had reached the best known result in this direction that

(6) lim inf
n→∞

pn+1 − pn

log pn
≤ 0.24846... .

It is natural to expect that modulo q the primes would be almost equally
distributed among the reduced residue classes. The deepest knowledge on primes
which plays a role in our method concerns a measure of the distribution of primes in
reduced residue classes referred to as the level of distribution of primes in arithmetic
progressions. We say that the primes have level of distribution α if

(7)
∑
q≤Q

max
a

(a,q)=1

∣∣∣∣Θ(N ; q, a) − N

φ(q)

∣∣∣∣ � N

(log N)A

holds for any A > 0 and any arbitrarily small fixed ε > 0 with

(8) Q = Nα−ε.

The Bombieri-Vinogradov theorem provides the level 1
2 , while the Elliott-Halberstam

conjecture asserts that the primes have level of distribution 1.
The Bombieri-Vinogradov theorem allows taking Q = N

1
2 (log N)−B(A) in (7),

by virtue of which we have proved unconditionally in [GPYa] that for any fixed
r ≥ 1,

(9) lim inf
n→∞

pn+r − pn

log pn
≤ (

√
r − 1)2 ;

in particular,

(10) lim inf
n→∞

pn+1 − pn

log pn
= 0.

In fact, assuming that the level of distribution of primes is α, we obtain more
generally than (9) that, for r ≥ 2,

(11) lim inf
n→∞

pn+r − pn

log pn
≤ (

√
r −

√
2α)2.

Furthermore, assuming that α > 1
2 , there exists an explicitly calculable constant

C(α) such that for k ≥ C(α) any sequence of k-tuples

(12) {(n + h1, n + h2, . . . , n + hk)}∞n=1,

with the set of distinct integers H = {h1, h2, . . . , hk} admissible in the sense that
k∏

i=1

(n + hi) has no fixed prime factor for every n, contains at least two primes

infinitely often. For instance if α ≥ 0.971, then this holds for k ≥ 6, giving

(13) lim inf
n→∞

(pn+1 − pn) ≤ 16,

in view of the shortest admissible 6-tuple (n, n + 4, n + 6, n + 10, n + 12, n + 16).
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By incorporating Maier’s method into ours in [GPY06] we improved (9) to

(14) lim inf
n→∞

pn+r − pn

log pn
≤ e−γ(

√
r − 1)2,

along with an extension for primes in arithmetic progressions where the modulus
can tend slowly to infinity as a function of pn.

In [GPYb] the result (10) was considerably improved to

(15) lim inf
n→∞

pn+1 − pn

(log pn)
1
2 (log log pn)2

< ∞.

In fact, the methods of [GPYb] lead to a much more general result: When A ⊆ N
is a sequence satisfying A(N) := |{n; n ≤ N, n ∈ A}| > C(log N)1/2(log log N)2 for
all sufficiently large N , infinitely many of the differences of two elements of A can
be expressed as the difference of two primes.

2. Former approximations by truncated divisor sums

The von Mangoldt function

(16) Λ(n) :=

{
log p if n = pm, m ∈ Z+,

0 otherwise,

can be expressed as

(17) Λ(n) =
∑
d|n

µ(d) log(
R

d
) for n > 1.

Since the proper prime powers contribute negligibly, the prime number theorem (4)
can be rewritten as

(18) ψ(x) :=
∑
n≤x

Λ(n) ∼ x as x → ∞.

It is natural to expect that the truncated sum

(19) ΛR(n) :=
∑
d|n

d≤R

µ(d) log(
R

d
) for n ≥ 1.

mimics the behaviour of Λ(n) on some averages.
The beginning of our line of research is Goldston’s [G92] alternative rendering

of the proof of Bombieri and Davenport’s theorem on small gaps between primes.
Goldston replaced the application of the circle method in the original proof by the
use of the truncated divisor sum (19). The use of functions like ΛR(n) goes back to
Selberg’s work [Sel42] on the zeros of the Riemann zeta-function ζ(s). The most
beneficial feature of the truncated divisor sums is that they can be used in place of
Λ(n) on some occasions when it is not known how to work with Λ(n) itself. The
principal such situation arises in counting the primes in tuples. Let

(20) H = {h1, h2, . . . , hk} with 1 ≤ h1, . . . , hk ≤ h distinct integers

(the restriction of hi to positive integers is inessential; the whole set H can be
shifted by a fixed integer with no effect on our procedure), and for a prime p denote
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by νp(H) the number of distinct residue classes modulo p occupied by the elements
of H. The singular series associated with the k-tuple H is defined as

(21) S(H) :=
∏
p

(1 − 1
p
)−k(1 − νp(H)

p
).

Since νp(H) = k for p > h, the product is convergent. The admissibility of H is
equivalent to S(H) 
= 0, and to νp(H) 
= p for all primes. Hardy and Littlewood
[HL23] conjectured that

(22)
∑
n≤N

Λ(n;H) :=
∑
n≤N

Λ(n+h1) · · ·Λ(n+hk) = N(S(H)+o(1)), as N → ∞.

The prime number theorem is the k = 1 case, and for k ≥ 2 the conjecture remains
unproved. (This conjecture is trivially true if H is inadmissible).

A simplified version of Goldston’s argument in [G92] was given in [GY03] as
follows. To obtain information on small gaps between primes, let

(23) ψ(n, h) := ψ(n+h)−ψ(n) =
∑

n<m≤n+h

Λ(m), ψR(n, h) :=
∑

n<m≤n+h

ΛR(m),

and consider the inequality

(24)
∑

N<n≤2N

(ψ(n, h) − ψR(n, h))2 ≥ 0.

The strength of this inequality depends on how well ΛR(n) approximates Λ(n). On
multiplying out the terms and using from [G92] the formulas

∑
n≤N

ΛR(n)ΛR(n + k) ∼ S({0, k})N,
∑
n≤N

Λ(n)ΛR(n + k) ∼ S({0, k})N (k 
= 0)

(25)

∑
n≤N

ΛR(n)2 ∼ N log R,
∑
n≤N

Λ(n)ΛR(n) ∼ N log R,

(26)

valid for |k| ≤ R ≤ N
1
2 (log N)−A, gives, taking h = λ log N with λ � 1,

(27)∑
N<n≤2N

(ψ(n+h)−ψ(n))2 ≥ (hN log R +Nh2)(1− o(1)) ≥ (
λ

2
+λ2 − ε)N(log N)2

(in obtaining this one needs the two-tuple case of Gallagher’s singular series average
given in (46) below, which can be traced back to Hardy and Littlewood’s and
Bombieri and Davenport’s work). If the interval (n, n + h] never contains more
than one prime, then the left-hand side of (27) is at most

(28) log N
∑

N<n≤2N

(ψ(n + h) − ψ(n)) ∼ λN(log N)2,

which contradicts (27) if λ > 1
2 , and thus one obtains

(29) lim inf
n→∞

pn+1 − pn

log pn
≤ 1

2
.

Later on Goldston et al. in [FG96], [FG99], [G95], [GY98], [GY01], [GYa]
applied this lower-bound method to various problems concerning the distribution
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of primes and in [GGÖS00] to the pair correlation of zeros of the Riemann zeta-
function. In most of these works the more delicate divisor sum

(30) λR(n) :=
∑
r≤R

µ2(r)
φ(r)

∑
d|(r,n)

dµ(d)

was employed especially because it led to better conditional results which depend
on the Generalized Riemann Hypothesis.

The left-hand side of (27) is the second moment for primes in short intervals.
Gallagher [Gal76] showed that the Hardy-Littlewood conjecture (22) implies that
the moments for primes in intervals of length h ∼ λ log N are the moments of a
Poisson distribution with mean λ. In particular, it is expected that

(31)
∑
n≤N

(ψ(n + h) − ψ(n))2 ∼ (λ + λ2)N(log N)2

which in view of (28) implies (10) but is probably very hard to prove. It is known
from the work of Goldston and Montgomery [GM87] that assuming the Riemann
Hypothesis, an extension of (31) for 1 ≤ h ≤ N1−ε is equivalent to a form of the
pair correlation conjecture for the zeros of the Riemann zeta-function. We thus see
that the factor 1

2 in (27) is what is lost from the truncation level R, and an obvious
strategy is to try to improve on the range of R where (25)-(26) are valid. In fact,
the asymptotics in (26) are known to hold for R ≤ N (the first relation in (26) is
a special case of a result of Graham [Gra78]). It is easy to see that the second
relation in (25) will hold with R = Nα−ε, where α is the level of distribution of
primes in arithmetic progressions. For the first relation in (25) however, one can
prove the the formula is valid for R = N1/2+η for a small η > 0, but unless one also
assumes a somewhat unnatural level of distribution conjecture for ΛR, one can go
no further. Thus increasing the range of R in (25) is not currently possible.

However, there is another possible approach motivated by Gallagher’s work
[Gal76]. In 1999 the first and third authors discovered how to calculate some of
the higher moments of the short divisor sums (19) and (30). At first this was
achieved through straightforward summation and only the triple correlations of
ΛR(n) were worked out in [GY03]. In applying these formulas, the idea of finding
approximate moments with some expressions corresponding to (24) was eventually
replaced with

(32)
∑

N<n≤2N

(ψ(n, h) − ρ log N)(ψR(n, h) − C)2

which if positive for some ρ > 1 implies that for some n we have ψ(n, h) ≥ 2 log N .
Here C is available to optimize the argument. Thus the problem was switched from
trying to find a good fit for ψ(n, h) with a short divisor sum approximation to the
easier problem of trying to maximize a given quadratic form, or more generally
a mollification problem. With just third correlations this resulted in (29), thus
giving no improvement over Bombieri and Davenport’s result. Nevertheless the
new method was not totally fruitless since it gave

(33) lim inf
n→∞

pn+r − pn

log pn
≤ r −

√
r

2
,
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whereas the argument leading to (29) gives r− 1
2 . Independently of us, Sivak [Siv05]

incorporated Maier’s method into [GY03] and improved upon (33) by the factor
e−γ (cf. (6) and (14) ).

Following [GY03], with considerable help from other mathematicians, in [GYc]
the k-level correlations of ΛR(n) were calculated. This leap was achieved through
replacing straightforward summation with complex integration upon the use of
Perron type formulae. Thus it became feasible to approximate Λ(n,H) which was
defined in (22) by

(34) ΛR(n;H) := ΛR(n + h1)ΛR(n + h2) · · ·ΛR(n + hk).

Writing

(35) ΛR(n;H) := (log R)k−|H|ΛR(n;H), ψ
(k)
R (n, h) :=

∑
1≤h1,...,hk≤h

ΛR(n;H),

where the distinct components of the k-dimensional vector H are the elements of
the set H, ψ

(j)
R (n, h) provided the approximation to ψ(n, h)j , and the expression

(36)
∑

N<n≤2N

(ψ(n, h) − ρ log N)(
k∑

j=0

ajψ
(j)
R (n, h)(log R)k−j)2

could be evaluated. Here the aj are constants available to optimize the argument.
The optimization turned out to be a rather complicated problem which will not be
discussed here, but the solution was recently completed in [GYb] with the result
that for any fixed λ > (

√
r −

√
α
2 )2 and N sufficiently large,

(37)
∑
n≤N

pn+r−pn≤λ log pn

1 �r

∑
p≤N

p: prime

1.

In particular, unconditionally, for any fixed η > 0 and for all sufficiently large
N > N0(η), a positive proportion of gaps pn+1 − pn with pn ≤ N are smaller than
( 1
4 + η) log N . This is numerically a little short of Maier’s result (6), but (6) was

shown to hold for a sparse sequence of gaps. The work [GYb] also turned out to
be instrumental in Green and Tao’s [GT] proof that the primes contain arbitrarily
long arithmetic progressions.

The efforts made in 2003 using divisor sums which are more complicated than
ΛR(n) and λR(n) gave rise to more difficult calculations and didn’t meet with
success. During this work Granville and Soundararajan provided us with the idea
that the method should be applied directly to individual tuples rather than sums
over tuples which constitute approximations of moments. They replaced the earlier
expressions with

(38)
∑

N<n≤2N

(
∑

hi∈H
Λ(n + hi) − r log 3N)(Λ̃R(n;H))2,

where Λ̃R(n;H) is a short divisor sum which should be large when H is a prime
tuple. This is the type of expression which is used in the proof of the result described
in connection with (12)–(13) above. However, for obtaining the results (9)–(11).
we need arguments based on using (32) and (36).
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3. Detecting prime tuples

We call the tuple (12) a prime tuple when all of its components are prime
numbers. Obviously this is equivalent to requiring that

(39) PH(n) := (n + h1)(n + h2) · · · (n + hk)

is a product of k primes. As the generalized von Mangoldt function

(40) Λk(n) :=
∑
d|n

µ(d)(log
n

d
)k

vanishes when n has more than k distinct prime factors, we may use

(41)
1
k!

∑
d|PH(n)

d≤R

µ(d)(log
R

d
)k

for approximating prime tuples. (Here 1/k! is just a normalization factor. That
(41) will be also counting some tuples by including proper prime power factors
doesn’t pose a threat since in our applications their contribution is negligible). But
this idea by itself brings restricted progress: now the right-hand side of (6) can be
replaced with 1 −

√
3

2 .
The efficiency of the argument is greatly increased if instead of trying to in-

clude tuples composed only of primes, one looks for tuples with primes in many
components. So in [GPYa] we employ

(42) ΛR(n;H, �) :=
1

(k + �)!

∑
d|PH(n)

d≤R

µ(d)(log
R

d
)k+�,

where |H| = k and 0 ≤ � ≤ k, and consider those PH(n) which have at most k + �
distinct prime factors. In our applications the optimal order of magnitude of the
integer � turns out to be about

√
k. To implement this new approximation in the

skeleton of the argument, the quantities

(43)
∑
n≤N

ΛR(n;H1, �1)ΛR(n;H2, �2),

and

(44)
∑
n≤N

ΛR(n;H1, �1)ΛR(n;H2, �2)θ(n + h0),

are calculated as R, N → ∞. The latter has three cases according as h0 
∈ H1∪H2,
or h0 ∈ H1 \ H2, or h0 ∈ H1 ∩ H2. Here M = |H1| + |H2| + �1 + �2 is taken as a
fixed integer which may be arbitrarily large. The calculation of (43) is valid with
R as large as N

1
2−ε and h ≤ RC for any constant C > 0. The calculation of (44)

can be carried out for R as large as N
α
2 −ε and h ≤ R. It should be noted that in

[GYb] in the same context the usage of (34), which has k truncations, restricted
the range of the divisors greatly, for then R ≤ N

1
4k−ε was needed. Moreover the

calculations were more complicated compared to the present situation of dealing
with only one truncation.
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Requiring the positivity of the quantity
(45)

2N∑
n=N+1

(
∑

1≤h0≤h

θ(n + h0) − r log 3N)(
∑

H⊂{1,2,...,h}
|H|=k

ΛR(n;H, �))2, (h = λ log 3N),

which can be calculated easily from asymptotic formulas for (43) and (44), and
Gallagher’s [Gal76] result that with the notation of (20) for fixed k

(46)
∑
H

S(H) ∼ hk as h → ∞,

yields the results (9)–(11). For the proof of the result mentioned in connection with
(12), the positivity of (38) with r = 1 and ΛR(n;H, �) for an H satisfying (20) in
place of Λ̃R(n;H) is used. For (13), the positivity of an optimal linear combination
of the quantities for (12) is pursued.

The proof of (15) in [GPYb] also depends on the positivity of (45) for r = 1
and h = C log N

k modified with the extra restriction

(47) (PH(n),
∏

p≤
√

log N

p) = 1

on the tuples to be summed over, but involves some essential differences from the
procedure described above. Now the size of k is taken as large as c

√
log N

(log log N)2 (where
c is a sufficiently small explicitly calculable absolute constant). This necessitates a
much more refined treatment of the error terms arising in the argument, and in due
course the restriction (47) is brought in to avoid the complications arising from the
possibly irregular behaviour of νp(H) for small p. In the new argument a modified
version of the Bombieri-Vinogradov theorem is needed. Roughly speaking, in the
version developed for this purpose, compared to (7) the range of the moduli q is
curtailed a little bit in return for a little stronger upper-bound. Moreover, instead
of Gallagher’s result (46) which was for fixed k (though the result may hold for
k growing as some function of h, we do not know exactly how large this function
can be in addition to dealing with the problem of non-uniformity in k), the weaker
property that

∑
H S(H)/hk is non-decreasing (apart from a factor of 1+ o(1)) as a

function of k is proved and employed. The whole argument is designed to give the
more general result which was mentioned after (15).

4. Small gaps between almost primes

In the context of our work, by almost prime we mean an E2-number, i.e. a
natural number which is a product of two distinct primes. We have been able to
apply our methods to finding small gaps between almost primes in collaboration
with S. W. Graham. For this purpose a Bombieri-Vinogradov type theorem for
Λ ∗Λ is needed, and the work of Motohashi [Mot76] on obtaining such a result for
the Dirichlet convolution of two sequences is readily applicable (see also [Bom87]).
In [GGPYa] alternative proofs of some results of [GPYa] such as (10) and (13)
are given couched in the formalism of the Selberg sieve. Denoting by qn the n-th
E2-number, in [GGPYa] and [GGPYb] it is shown that there is a constant C
such that for any positive integer r,

(48) lim inf
n→∞

(qn+r − qn) ≤ Crer;
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in particular

(49) lim inf
n→∞

(qn+1 − qn) ≤ 6.

Furthermore in [GGPYc] proofs of a strong form of the Erdös–Mirsky conjecture
and related assertions have been obtained.

5. Further remarks on the origin of our method

In 1950 Selberg was working on applications of his sieve method to the twin
prime and Goldbach problems and invented a weighted sieve method that gave
results which were later superseded by other methods and thereafter largely ne-
glected. Much later in 1991 Selberg published the details of this work in Volume II
of his Collected Works [Sel91], describing it as “by now of historical interest only”.
In 1997 Heath-Brown [HB97] generalized Selberg’s argument from the twin prime
problem to the problem of almost prime tuples. Heath-Brown let

(50) Π =
k∏

i=1

(ain + bi)

with certain natural conditions on the integers ai and bi. Then the argument of
Selberg (for the case k = 2) and Heath-Brown for the general case is to choose
ρ > 0 and the numbers λd of the Selberg sieve so that, with τ the divisor function,

(51) Q =
∑
n≤x

{1 − ρ
k∑

i=1

τ(ain + bi)}(
∑
d|Π

λd)2 > 0.

From this it follows that there is at least one value of n for which

(52)
k∑

i=1

τ(ain + bi) <
1
ρ
.

Selberg found in the case k = 2 that ρ = 1
14 is acceptable, which shows that one of

n and n + 2 has at most two, while the other has at most three prime factors for
infinitely many n. Remarkably, this is exactly the same type of tuple argument of
Granville and Soundararajan which we have used, and the similarity doesn’t end
here. Multiplying out, we have Q = Q1 − ρQ2 where

(53) Q1 =
∑
n≤x

(
∑
d|Π

λd)2 > 0, Q2 =
k∑

i=1

∑
n≤x

τ(ain + bi)}(
∑
d|Π

λd)2 > 0.

The goal is now to pick λd optimally. As usual, the λd are first made 0 for d > R.
At this point it appears difficult to find the exact solution to this problem. Further
discussion of this may be found in [Sel91] and [HB97]. Heath-Brown, desiring to
keep Q2 small, made the choice

(54) λd = µ(d)(
log(R/d)

log R
)k+1,

and with this choice we see

(55) Q1 =
((k + 1)!)2

(log R)2k+2

∑
n≤x

(ΛR(n;H, 1))2.

Hence Heath-Brown used the approximation for a k-tuple with at most k + 1
distinct prime factors. This observation was the starting point for our work with
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the approximation ΛR(n;H, �). The evaluation of Q2 with its τ weights is much
harder to evaluate than Q1 and requires Kloosterman sum estimates. The weight
Λ in Q2 in place of τ requires essentially the same analysis as Q1 if we use the
Bombieri-Vinogradov theorem. Apparently these arguments were never viewed as
directly applicable to primes themselves, and this connection was missed until now.
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Negative values of truncations to L(1, χ)

Andrew Granville and K. Soundararajan

Abstract. For fixed large x we give upper and lower bounds for the minimum

of
P

n≤x χ(n)/n as we minimize over all real-valued Dirichlet characters χ.

This follows as a consequence of bounds for
P

n≤x f(n)/n but now minimizing

over all completely multiplicative, real-valued functions f for which −1 ≤
f(n) ≤ 1 for all integers n ≥ 1. Expanding our set to all multiplicative, real-

valued multiplicative functions of absolute value ≤ 1, the minimum equals
−0.4553 · · ·+o(1), and in this case we can classify the set of optimal functions.

1. Introduction

Dirichlet’s celebrated class number formula established that L(1, χ) is positive for
primitive, quadratic Dirichlet characters χ. One might attempt to prove this posi-
tivity by trying to establish that the partial sums

∑
n≤x χ(n)/n are all non-negative.

However, such truncated sums can get negative, a feature which we will explore in
this note.

By quadratic reciprocity we may find an arithmetic progression (mod 4
∏

p≤x p)

such that any prime q lying in this progression satisfies
(

p
q

)
= −1 for each p ≤ x.

Such primes q exist by Dirichlet’s theorem on primes in arithmetic progressions,
and for such q we have

∑
n≤x

(
n
q

)
/n =

∑
n≤x λ(n)/n where λ(n) = (−1)Ω(n) is the

Liouville function. Turán [6] suggested that
∑

n≤x λ(n)/n may be always positive,
noting that this would imply the truth of the Riemann Hypothesis (and previously
Pólya had conjectured that the related

∑
n≤x λ(n) is non-positive for all x ≥ 2,

which also implies the Riemann Hypothesis). In [Has58] Haselgrove showed that
both the Turán and Pólya conjectures are false (in fact x = 72, 185, 376, 951, 205 is
the smallest integer x for which

∑
n≤x λ(n)/n < 0, as was recently determined in

[BFM]). We therefore know that truncations to L(1, χ) may get negative.
Let F denote the set of all completely multiplicative functions f(·) with −1 ≤

f(n) ≤ 1 for all positive integers n, let F1 be those for which each f(n) = ±1, and
F0 be those for which each f(n) = 0 or ±1. Given any x and any f ∈ F0 we may find
a primitive quadratic character χ with χ(n) = f(n) for all n ≤ x (again, by using
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quadratic reciprocity and Dirichlet’s theorem on primes in arithmetic progressions)
so that, for any x ≥ 1,

min
χ a quadratic

character

∑
n≤x

χ(n)
n

= δ0(x) := min
f∈F0

∑
n≤x

f(n)
n

.

Moreover, since F1 ⊂ F0 ⊂ F we have that

δ(x) := min
f∈F

∑
n≤x

f(n)
n

≤ δ0(x) ≤ δ1(x) := min
f∈F1

∑
n≤x

f(n)
n

.

We expect that δ(x) ∼ δ1(x) and even, perhaps, that δ(x) = δ1(x) for sufficiently
large x.

Trivially δ(x) ≥ −
∑

n≤x 1/n = −(log x+γ+O(1/x)). Less trivially δ(x) ≥ −1,
as may be shown by considering the non-negative multiplicative function g(n) =∑

d|n f(d) and noting that

0 ≤
∑
n≤x

g(n) =
∑
d≤x

f(d)
[x

d

]
≤

∑
d≤x

(
x

f(d)
d

+ 1
)
.

We will show that δ(x) ≤ δ1(x) < 0 for all large values of x, and that δ(x) → 0 as
x → ∞.

Theorem 1. For all large x and all f ∈ F we have
∑
n≤x

f(n)
n

≥ − 1
(log log x)

3
5
.

Further, there exists a constant c > 0 such that for all large x there exists a function
f(= fx) ∈ F1 such that ∑

n≤x

f(n)
n

≤ − c

log x
.

In other words, for all large x,

− 1
(log log x)

3
5
≤ δ(x) ≤ δ0(x) ≤ δ1(x) ≤ − c

log x
.

Note that Theorem 1 implies that there exists some absolute constant c0 > 0
such that

∑
n≤x f(n)/n ≥ −c0 for all x and all f ∈ F , and that equality occurs only

for bounded x. It would be interesting to determine c0 and all x and f attaining
this value, which is a feasible goal developing the methods of this article.

It would be interesting to determine more precisely the asymptotic nature of
δ(x), δ0(x) and δ1(x), and to understand the nature of the optimal functions.

Instead of completely multiplicative functions we may consider the larger class
F∗ of multiplicative functions, and analogously define

δ∗(x) := min
f∈F∗

∑
n≤x

f(n)
n

.

Theorem 2. We have

δ∗(x) =
(
1 − 2 log(1 +

√
e) + 4

∫ √
e

1

log t

t + 1
dt

)
log 2 + o(1) = −0.4553 . . . + o(1).
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If f∗ ∈ F∗ and x is large then
∑
n≤x

f∗(n)
n

≥ − 1
(log log x)

3
5
,

unless
∞∑

k=1

1 + f∗(2k)
2k

	 (log x)−
1
20 .

Finally ∑
n≤x

f∗(n)
n

= δ∗(x) + o(1)

if and only if

( ∞∑
k=1

1 + f∗(2k)
2k

)
log x+

∑
3≤p≤x1/(1+

√
e)

∞∑
k=1

1 − f∗(pk)
pk

+
∑

x1/(1+
√

e)≤p≤x

1 + f∗(p)
p

= o(1).

2. Constructing negative values

Recall Haselgrove’s result [Has58]: there exists an integer N such that
∑
n≤N

λ(n)
n

= −δ

with δ > 0, where λ ∈ F1 with λ(p) = −1 for all primes p. Let x > N2 be large and
consider the function f = fx ∈ F1 defined by f(p) = 1 if x/(N +1) < p ≤ x/N and
f(p) = −1 for all other p. If n ≤ x then we see that f(n) = λ(n) unless n = p� for
a (unique) prime p ∈ (x/(N + 1), x/N ] in which case f(n) = λ(�) = λ(n) + 2λ(�).
Thus

∑
n≤x

f(n)
n

=
∑
n≤x

λ(n)
n

+ 2
∑

x/(N+1)<p≤x/N

1
p

∑
�≤x/p

λ(�)
�

=
∑
n≤x

λ(n)
n

− 2δ
∑

x/(N+1)<p≤x/N

1
p
.

(2.1)

A standard argument, as in the proof of the prime number theorem, shows that

∑
n≤x

λ(n)
n

=
1

2πi

∫ 2+i∞

2−i∞

ζ(2s + 2)
ζ(s + 1)

xs

s
ds 	 exp(−c

√
log x),

for some c > 0. Further, the prime number theorem readily gives that
∑

x/(N+1)<p≤x/N

1
p
∼ log

( log(x/N)
log(x/(N + 1))

)

 1

N log x
.

Inserting these estimates in (2.1) we obtain that δ(x) ≤ −c/ log x for large x (here
c 
 δ/N), as claimed in Theorem 1.

Remark 2.1. In [BFM] it is shown that one can take δ = 2.0757641 · · · · 10−9

for N = 72204113780255 and therefore we may take c ≈ 2.87 · 10−23.
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3. The lower bound for δ(x)

Proposition 3.1. Let f be a completely multiplicative function with −1 ≤
f(n) ≤ 1 for all n, and set g(n) =

∑
d|n f(d) so that g is a non-negative multiplica-

tive function. Then

∑
n≤x

f(n)
n

=
1
x

∑
n≤x

g(n) + (1 − γ)
1
x

∑
n≤x

f(n) + O
( 1

(log x)
1
5

)
.

Proof. Define F (t) = 1
t

∑
n≤t f(n). We will make use of the fact that F (t)

varies slowly with t. From [GS03, Corollary 3],we find that if 1 ≤ w ≤ x/10 then

(3.1)
∣∣∣|F (x)| − |F (x/w)|

∣∣∣ 	 ( log 2w

log x

)1− 2
π

log
( log x

log 2w

)
+

log log x

(log x)2−
√

3
.

We may easily deduce that

(3.2)
∣∣∣F (x)−F (x/w)

∣∣∣ 	 ( log 2w

log x

)1− 2
π

log
( log x

log 2w

)
+

log log x

(log x)2−
√

3
	

( log 2w

log x

) 1
4
.

Indeed, if F (x) and F (x/w) are of the same sign then (3.2) follows at once from
(3.1). If F (x) and F (x/w) are of opposite signs then we may find 1 ≤ v ≤ w with
|
∑

n≤x/v f(n)| ≤ 1 and then using (3.1) first with F (x) and F (x/v), and second
with F (x/v) and F (x/w) we obtain (3.2).

We now turn to the proof of the Proposition. We start with

(3.3)
∑
n≤x

g(n) =
∑
d≤x

f(d)
[x

d

]
= x

∑
d≤x

f(d)
d

−
∑
d≤x

f(d)
{x

d

}
.

Now
∑
d≤x

f(d)
{x

d

}
=

∑
j≤x

∑
x/(j+1)<d≤x/j

f(d)
(x

d
− j

)

=
∑

j≤log x

∫ x/j

x/(j+1)

x

t2

∑
x/(j+1)<d≤t

f(d)dt + O
( x

log x

)
.

From (3.2) we see that if j ≤ log x, and x/(j + 1) < t ≤ x/j then

∑
x/(j+1)<d≤t

f(d) =
(
t − x

(j + 1)

) 1
x

∑
n≤x

f(n) + O
(x log(j + 1)

j(log x)
1
4

)
.

Using this above we conclude that
(3.4)∑

d≤x

f(d)
{x

d

}
=

( ∑
n≤x

f(n)
) ∑

j≤log x

(
log

(j + 1
j

)
− 1

j + 1

)
+ O

(x(log log x)2

(log x)
1
4

)
.

Since
∑

j≤J(log(1+1/j)−1/(j+1)) = log(J+1)−
∑

j≤J+1 1/j+1 = 1−γ+O(1/J),
when we insert (3.4) into (3.3) we obtain the Proposition. �
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Set u =
∑

p≤x(1 − f(p))/p. By Theorem 2 of A. Hildebrand [Hil87] (with f

there being our function g, K = 2, K2 = 1.1, and z = 2) we obtain that

1
x

∑
n≤x

g(n)�
∏
p≤x

(
1 − 1

p

)(
1 +

g(p)
p

+
g(p2)
p2

+. . .
)
σ−

(
exp

( ∑
p≤x

max(0, 1 − g(p))
p

))

+ O(exp(−(log x)β)),

where β is some positive constant and σ−(ξ) = ξρ(ξ) with ρ being the Dickman
function1. Since max(0, 1 − g(p)) ≤ (1 − f(p))/2 we deduce that

1
x

∑
n≤x

g(n) � (e−u log x)(eu/2ρ(eu/2)) + O(exp(−(log x)β))

� e−ueu/2
(log x) + O(exp(−(log x)β)),

(3.5)

since ρ(ξ) = ξ−ξ+o(ξ).
On the other hand, a special case of the main result in [HT91] implies that

(3.6)
1
x

∣∣∣ ∑
n≤x

f(n)
∣∣∣ 	 e−κu,

where κ = 0.32867 . . .. Combining Proposition 3.1 with (3.5) and (3.6) we imme-
diately get that δ(x) ≥ −c/(log log x)ξ for any ξ < 2κ. This completes the proof of
Theorem 1.

Remark 3.2. The bound (3.5) is attained only in certain very special cases,
that is, when there are very few primes p > xe−u

for which f(p) = 1 + o(1). In this
case one can get a far stronger bound than (3.6). Since the first part of Theorem 1
depends on an interaction between these two bounds, this suggests that one might
be able to improve Theorem 1 significantly by determining how (3.5) and (3.6)
depend upon one another.

4. Proof of Theorem 2

Given f∗ ∈ F∗ we associate a completely multiplicative function f ∈ F by setting
f(p) = f∗(p). We write f∗(n) =

∑
d|n h(d)f(n/d) where h is the multiplicative

function given by h(pk) = f∗(pk) − f(p)f∗(pk−1) for k ≥ 1. Now,
∑
n≤x

f∗(n)
n

=
∑
d≤x

h(d)
d

∑
m≤x/d

f(m)
m

=
∑

d≤(log x)6

h(d)
d

∑
m≤x/d

f(m)
m

+ O
(

log x
∑

d>(log x)6

|h(d)|
d

)
.

(4.1)

Since h(p) = 0 and |h(pk)| ≤ 2 for k ≥ 2 we see that

(4.2)
∑

d>(log x)6

|h(d)|
d

≤ (log x)−2
∑
d≥1

|h(d)|
d

2
3

	 (log x)−2.

1The Dickman function is defined as ρ(u) = 1 for u ≤ 1, and ρ(u) = (1/u)
R u

u−1 ρ(t)dt for

u ≥ 1.
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Further, for d ≤ (log x)6, we have (writing F (t) = 1
t

∑
n≤t f(n) as in section 3)

∑
x/d≤n≤x

f(n)
n

= F (x) − F (x/d) +
∫ x

x/d

F (t)
t

dt =
log d

x

∑
n≤x

f(n) + O
( 1

(log x)
1
5

)
,

using (3.2). Using the above in (4.1) we deduce that

∑
n≤x

f∗(n)
n

=
( ∑

n≤x

f(n)
n

) ∑
d≤(log x)6

h(d)
d

− 1
x

∑
n≤x

f(n)
∑

d≤(log x)6

h(d) log d

d
+O

( 1
(log x)

1
5

)
.

Arguing as in (4.2) we may extend the sums over d above to all d, incurring a
negligible error. Thus we conclude that

∑
n≤x

f∗(n)
n

= H0

∑
n≤x

f(n)
n

+ H1
1
x

∑
n≤x

f(n) + O
( 1

(log x)
1
5

)
,

with

H0 =
∞∑

d=1

h(d)
d

, and H1 = −
∞∑

d=1

h(d) log d

d
.

Note that H0 =
∏

p(1 + h(p)/p + h(p2)/p2 + . . .) ≥ 0, and that H0, |H1| 	 1.
We now use Proposition 3.1, keeping the notation there. We deduce that

(4.3)
∑
n≤x

f∗(n)
n

= H0
1
x

∑
n≤x

g(n) +
(
(1 − γ)H0 + H1

) 1
x

∑
n≤x

f(n) + O
( 1

(log x)
1
5

)
.

If H0 ≥ (log x)−
1
20 then we may argue as in section 3, using (3.5) and (3.6). In that

case, we see that
∑

n≤x f∗(n)/n ≥ −1/(log log x)
3
5 . Henceforth we suppose that

H0 ≤ (log x)−
1
20 . Since

H0 
 1 +
h(2)

2
+

h(22)
22

+ . . . 
 1 +
f∗(2)

2
+

f∗(22)
22

+ . . . ,

we deduce that (note h(2) = 0)

(4.4)
∞∑

k=2

2 + h(2k)
2k



∞∑

k=1

1 + f∗(2k)
2k

	 (log x)−
1
20 .

This proves the middle assertion of Theorem 2.
Writing d = 2k� with � odd,

H1 = −
∑

� odd

h(�)
�

∞∑
k=0

h(2k)
2k

(k log 2 + log �)

= − log 2
( ∞∑

k=1

kh(2k)
2k

) ∑
� odd

h(�)
�

+ O((log x)−
1
20 )

= 3 log 2
∏
p≥3

(
1 +

h(p)
p

+
h(p2)

p2
+ . . .

)
+ O

( log log x

(log x)
1
20

)
,
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where we have used (4.4) and that
∑∞

k=1 kh(2k)/2k = −3 + O(log log x/(log x)
1
20 ).

Using these observations in (4.3) we obtain that

∑
n≤x

f∗(n)
n

= H0
1
x

∑
n≤x

g(n) + 3 log 2
∏
p≥3

(
1 +

h(p)
p

+
h(p2)

p2
+ . . .

) 1
x

∑
n≤x

f(n) + o(1)

≥ 3 log 2
∏
p≥3

(
1 +

h(p)
p

+
h(p2)

p2
+ . . .

) 1
x

∑
n≤x

f(n) + o(1).

(4.5)

Let r(·) be the completely multiplicative function with r(p) = 1 for p ≤ log x,
and r(p) = f(p) otherwise. Then Proposition 4.4 of [GS01] shows that

1
x

∑
n≤x

f(n) =
∏

p≤log x

(
1 − 1

p

)(
1 − f(p)

p

)−1 1
x

∑
n≤x

r(n) + O
( 1

(log x)
1
20

)
.

Since f(2) = −1 + O(H0) we deduce from (4.5) and the above that

(4.6)
∑
n≤x

f∗(n)
n

≥ log 2
∏
p≥3

(
1− 1

p

)(
1 +

f∗(p)
p

+
f∗(p2)

p2
+ . . .

) 1
x

∑
n≤x

r(n) + o(1).

One of the main results of [GS01] (see Corollary 1 there) shows that

(4.7)
1
x

∑
n≤x

r(n) ≥ 1−2 log(1+
√

e)+4
∫ √

e

1

log t

t + 1
dt+o(1) = −0.656999 . . .+o(1),

and that equality here holds if and only if

(4.8)
∑

p≤x1/(1+
√

e)

1 − r(p)
p

+
∑

x1/(1+
√

e)≤p≤x

1 + r(p)
p

= o(1).

Since the product in (4.6) lies between 0 and 1 we conclude that

(4.9)
∑
n≤x

f∗(n)
n

≥
(
1 − 2 log(1 +

√
e) + 4

∫ √
e

1

log t

t + 1
dt

)
log 2 + o(1),

and for equality to be possible here we must have (4.8), and in addition that the
product in (4.6) is 1 + o(1). These conditions may be written as

∑
3≤p≤x1/(1+

√
e)

∞∑
k=1

1 − f∗(pk)
pk

+
∑

x1/(1+
√

e)≤p≤x

1 − f∗(p)
p

= o(1).

If the above condition holds then, by (3.5),
∑

n≤x g(n) � x log x and so for equality
to hold in (4.5) we must have H0 = o(1/ log x). Thus equality in (4.9) is only
possible if

( ∞∑
k=1

1 + f∗(2k)
2k

)
log x+

∑
3≤p≤x1/(1+

√
e)

∞∑
k=1

1 − f∗(pk)
pk

+
∑

x1/(1+
√

e)≤p≤x

1 − f∗(p)
p

= o(1).

Conversely, if the above is true then equality holds in (4.5), (4.6), and (4.7) giving
equality in (4.9). This proves Theorem 2.
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Long arithmetic progressions of primes

Ben Green

Abstract. This is an article for a general mathematical audience on the au-

thor’s work, joint with Terence Tao, establishing that there are arbitrarily long
arithmetic progressions of primes.

1. Introduction and history

This is a description of recent work of the author and Terence Tao [GTc]
on primes in arithmetic progression. It is based on seminars given for a general
mathematical audience in a variety of institutions in the UK, France, the Czech
Republic, Canada and the US.

Perhaps curiously, the order of presentation is much closer to the order in which
we discovered the various ingredients of the argument than it is to the layout in
[GTc]. We hope that both expert and lay readers might benefit from contrasting
this account with [GTc] as well as the expository accounts by Kra [Kra06] and
Tao [Tao06a, Tao06b].

As we remarked, this article is based on lectures given to a general audience. It
was often necessary, when giving these lectures, to say things which were not strictly
speaking true for the sake of clarity of exposition. We have retained this style here.
However, it being undesirable to commit false statements to print, we have added
numerous footnotes alerting readers to points where we have oversimplified, and
directing them to places in the literature where fully rigorous arguments can be
found.

Our result is:

Theorem 1.1 (G.–Tao). The primes contain arbitrarily long arithmetic pro-
gressions.

Let us start by explaining that the truth of this statement is not in the least
surprising. For a start, it is rather easy to write down a progression of five primes
(for example 5, 11, 17, 23, 29), and in 2004 Frind, Jobling and Underwood produced

2000 Mathematics Subject Classification. Primary 11N13, Secondary 11B25.

c© 2007 Ben Green
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the example

56211383760397 + 44546738095860k; k = 0, 1, . . . , 22.

of 23 primes in arithmetic progression. A very crude heuristic model for the primes
may be developed based on the prime number theorem, which states that π(N),
the number of primes less than or equal to N , is asymptotic to N/ log N . We may
alternatively express this as

P
(
x is prime | 1 � x � N

)
∼ 1/ log N.

Consider now the collection of all arithmetic progressions

x, x + d, . . . , x + (k − 1)d

with x, d ∈ {1, . . . , N}. Select x and d at random from amongst the N2 possible
choices, and write Ej for the event that x+ jd is prime, for j = 0, 1, . . . , k− 1. The
prime number theorem tells us that

P(Ej) ≈ 1/ log N.

If the events Ej were independent we should therefore have

P(x, x + d, . . . , x + (k − 1)d are all prime) = P
( k−1∧

j=0

Ej

)
≈ 1/(log N)k.

We might then conclude that

#{x, d ∈ {1, . . . , N} : x, x + d, . . . , x + (k − 1)d are all prime } ≈ N2

(log N)k
.

For fixed k, and in fact for k nearly as large as 2 log N/ log log N , this is an increasing
function of N . This suggests that there are infinitely many k-term arithmetic
progressions of primes for any fixed k, and thus arbitrarily long such progressions.

Of course, the assumption that the events Ej are independent was totally un-
justified. If E0, E1 and E2 all hold then one may infer that x is odd and d is even,
which increases the chance that E3 also holds by a factor of two. There are, how-
ever, more sophisticated heuristic arguments available, which take account of the
fact that the primes > q fall only in those residue classes a(mod q) with a coprime
to q. There are very general conjectures of Hardy-Littlewood which derive from
such heuristics, and a special case of these conjectures applies to our problem. It
turns out that the extremely näıve heuristic we gave above only misses the mark
by a constant factor:

Conjecture 1.2 (Hardy-Littlewood conjecture on k-term APs). For each k
we have

#{x, d ∈ {1, . . . , N} : x, x+d, . . . , x+(k−1)d are all prime } =
γkN2

(log N)k
(1+o(1)),

where
γk =

∏
p

α(k)
p

is a certain product of “local densities” which is rapidly convergent and positive.
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We have

α(k)
p =




1
p

(
p

p−1

)k−1

if p � k(
1 − k−1

p

)(
p

p−1

)k−1

if p � k.

In particular we compute1

γ3 = 2
∏
p�3

(
1 − 1

(p − 1)2
)
≈ 1.32032

and

γ4 =
9
2

∏
p�5

(
1 − 3p − 1

(p − 1)3
)
≈ 2.85825.

What we actually prove is a somewhat more precise version of Theorem 1.1, which
gives a lower bound falling short of the Hardy-Littlewood conjecture by just a
constant factor.

Theorem 1.3 (G.–Tao). For each k � 3 there is a constant γ′
k > 0 such that

#{x, d ∈ {1, . . . , N} : x, x + d, . . . , x + (k − 1)d are all prime } � γ′
kN2

(log N)k

for all N > N0(k).

The value of γ′
k we obtain is very small indeed, especially for large k.

Let us conclude this introduction with a little history of the problem. Prior to
our work, the conjecture of Hardy-Littlewood was known only in the case k = 3, a
result due to Van der Corput [vdC39] (see also [Cho44]) in 1939. For k � 4, even
the existence of infinitely many k-term progressions of primes was not previously
known. A result of Heath-Brown from 1981 [HB81] comes close to handling the
case k = 4; he shows that there are infinitely many 4-tuples q1 < q2 < q3 < q4

in arithmetic progression, where three of the qi are prime and the fourth is either
prime or a product of two primes. This has been described as “infinitely many
3 1

2 -term arithmetic progressions of primes”.

2. The relative Szemerédi strategy

A number of people have noted that [GTc] manages to avoid using any deep
facts about the primes. Indeed the only serious number-theoretical input is a zero-
free region for ζ of “classical type”, and this was known to Hadamard and de
la Vallée Poussin over 100 years ago. Even this is slightly more than absolutely
necessary; one can get by with the information that ζ has an isolated pole at 1
[Taoa].

Our main advance, then, lies not in our understanding of the primes but rather
in what we can say about arithmetic progressions. Let us begin this section by
telling a little of the story of the study of arithmetic progressions from the combi-
natorial point of view of Erdős and Turán [ET36].

1For a tabulation of values of γk, 3 � k � 20, see [GH79]. As k → ∞, log γk ∼ k log log k.
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Definition 2.1. Fix an integer k � 3. We define rk(N) to be the largest
cardinality of a subset A ⊆ {1, . . . , N} which does not contain k distinct elements
in arithmetic progression.

Erdős and Turán asked simply: what is rk(N)? To this day our knowledge on
this question is very unsatisfactory, and in particular we do not know the answer
to

Question 2.2. Is it true that rk(N) < π(N) for N > N0(k)?

If this is so then the primes contain k-term arithmetic progressions on density
grounds alone, irrespective of any additional structure that they might have. I do
not know of anyone who seriously doubts the truth of this conjecture, and indeed
all known lower bounds for rk(N) are much smaller than π(N). The most famous
such bound is Behrend’s assertion [Beh46] that

r3(N) � Ne−c
√

log N ;

slightly superior lower bounds are known for rk(N), k � 4 (cf. [�LL, Ran61]).

The question of Erdős and Turán became, and remains, rather notorious for
its difficulty. It soon became clear that even seemingly modest bounds should
be regarded as great achievements in combinatorics. The first really substantial
advance was made by Klaus Roth, who proved

Theorem 2.3 (Roth, [Rot53]). We have r3(N) � N(log log N)−1.

The key feature of this bound is that log log N tends to infinity with N , albeit
slowly2. This means that if one fixes some small positive real number, such as
0.0001, and then takes a set A ⊆ {1, . . . , N} containing at least 0.0001N integers,
then provided N is sufficiently large this set A will contain three distinct elements
in arithmetic progression.

The generalisation of this statement to general k remained unproven until Sze-
merédi clarified the issue in 1969 for k = 4 and then in 1975 for general k. His
result is one of the most celebrated in combinatorics.

Theorem 2.4 (Szemerédi [Sze69, Sze75]). We have rk(N) = o(N) for any
fixed k � 3.

Szemerédi’s theorem is one of many in this branch of combinatorics for which
the bounds, if they are ever worked out, are almost unimaginably weak. Although
it is in principle possible to obtain an explicit function ωk(N), tending to zero as
N → ∞, for which

rk(N) � ωk(N)N,

to my knowledge no-one has done so. Such a function would certainly be worse
than 1/ log∗ N (the number of times one must apply the log function to N in order
to get a number less than 2), and may even be slowly-growing compared to the
inverse of the Ackermann function.

The next major advance in the subject was another proof of Szemerédi’s the-
orem by Furstenberg [Fur77]. Furstenberg used methods of ergodic theory, and

2cf. the well-known quotation “log log log N has been proved to tend to infinity with N , but

has never been observed to do so”.
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his argument is relatively short and conceptual. The methods of Furstenberg have
proved very amenable to generalisation. For example in [BL96] Bergelson and
Leibman proved a version of Szemerédi’s theorem in which arithmetic progressions
are replaced by more general configurations (x + p1(d), . . . , x + pk(d)), where the
pi are polynomials with pi(Z) ⊆ Z and pi(0) = 0. A variety of multidimensional
versions of the theorem are also known. A significant drawback3 of Furstenberg’s
approach is that it uses the axiom of choice, and so does not give any explicit
function ωk(N).

Rather recently, Gowers [Gow98, Gow01] made a major breakthrough in
giving the first “sensible” bounds for rk(N).

Theorem 2.5 (Gowers). Let k � 3 be an integer. Then there is a constant
ck > 0 such that

rk(N) � N(log log N)−ck .

This is still a long way short of the conjecture that rk(N) < π(N) for N
sufficiently large. However, in addition to coming much closer to this bound than
any previous arguments, Gowers succeeded in introducing methods of harmonic
analysis to the problem for the first time since Roth. Since harmonic analysis (in
the form of the circle method of Hardy and Littlewood) has been the most effective
tool in tackling additive problems involving the primes, it seems fair to say that it
was the work of Gowers which first gave us hope of tackling long progressions of
primes. The ideas of Gowers will feature fairly substantially in this exposition, but
in our paper [GTc] much of what is done is more in the ergodic-theoretic spirit of
Furstenberg and of more recent authors in that area such as Host–Kra [HK05] and
Ziegler [Zie].

To conclude this discussion of Szemerédi’s theorem we mention a variant of it
which is far more useful in practice. This applies to functions4 f : Z/NZ → [0, 1]
rather than just to (characteristic functions of) sets. It also guarantees many arith-
metic progressions of length k. This version does, however, follow from the earlier
formulation by some fairly straightforward averaging arguments due to Varnavides
[Var59].

Proposition 2.6 (Szemerédi’s theorem, II). Let k � 3 be an integer, and let
δ ∈ (0, 1] be a real number. Then there is a constant c(k, δ) > 0 such that for any
function f : Z/NZ → [0, 1] with Ef = δ we have the bound5

Ex,d∈Z/NZf(x)f(x + d) . . . f(x + (k − 1)d) � c(k, δ).

We do not, in [GTc], prove any new bounds for rk(N). Our strategy is to
prove a relative Szemerédi theorem. To describe this we consider, for brevity of
exposition, only the case k = 4. Consider the following table.

3A discrete analogue of Furstenberg’s argument has now been found by Tao [Taob]. It does

give an explicit function ωk(N), but once again it tends to zero incredibly slowly.
4When discussing additive problems it is often convenient to work in the context of a finite

abelian group G. For problems involving {1, . . . , N} there are various technical tricks which allow

one to work in Z/N ′Z, for some N ′ ≈ N . In this expository article we will not bother to distinguish
between {1, . . . , N} and Z/NZ. For examples of the technical trickery required here, see [GTc,

Definition 9.3], or the proof of Theorem 2.6 in [Gow01].
5We use this very convenient conditional expectation notation repeatedly. Ex∈Af(x) is de-

fined to equal |A|−1
P

x∈A f(x).
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Szemerédi Relative Szemerédi
{1, . . . , N} ?

A ⊆ {1, . . . , N}
|A| � 0.0001N

PN

= primes � N
Szemerédi’s theorem:

A contains many 4-term APs.
Green–Tao theorem:

PN contains many 4-term APs.

On the left-hand side of this table is Szemerédi’s theorem for progressions of length
4, stated as the result that a set A ⊆ {1, . . . , N} of density 0.0001 contains many
4-term APs if N is large enough. On the right is the result we wish to prove.
Only one thing is missing: we must find an object to play the rôle of {1, . . . , N}.
We might try to place the primes inside some larger set P ′

N in such a way that
|PN | � 0.0001|P ′

N |, and hope to prove an analogue of Szemerédi’s theorem for P ′
N .

A natural candidate for P ′
N might be the set of almost primes; perhaps, for

example, we could take P ′
N to be the set of integers in {1, . . . , N} with at most

100 prime factors. This would be consistent with the intuition, coming from sieve
theory, that almost primes are much easier to deal with than primes. It is relatively
easy to show, for example, that there are long arithmetic progressions of almost
primes [Gro80].

This idea does not quite work, but a variant of it does. Instead of a set P ′
N we

instead consider what we call a measure6 ν : {1, . . . , N} → [0,∞). Define the von
Mangoldt function Λ by

Λ(n) :=
{

log p if n = pk is prime
0 otherwise.

The function Λ is a weighted version of the primes; note that the prime number
theorem is equivalent to the fact that E1�n�NΛ(n) = 1 + o(1). Our measure ν will
satisfy the following two properties.

(i) (ν majorises the primes) We have Λ(n) � 10000ν(n) for all 1 � n � N .
(ii) (primes sit inside ν with positive density) We have E1�n�Nν(n) = 1 +

o(1).
These two properties are very easy to satisfy, for example by taking ν = Λ, or

by taking ν to be a suitably normalised version of the almost primes. Remember,
however, that we intend to prove a Szemerédi theorem relative to ν. In order to do
that it is reasonable to suppose that ν will need to meet more stringent conditions.
The conditions we use in [GTc] are called the linear forms condition and the
correlation condition. We will not state them here in full generality, referring the
reader to [GTc, §3] for full details. We remark, however, that verifying these
conditions is of the same order of difficulty as obtaining asymptotics for, say,∑

n�N

ν(n)ν(n + 2).

6Actually, ν is just a function but we use the term “measure” to distinguish it from other

functions appearing in our work.
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For this reason there is no chance that we could simply take ν = Λ, since if we
could do so we would have solved the twin prime conjecture.

We call a measure ν which satisfies the linear forms and correlation conditions
pseudorandom.

To succeed with the relative Szemerédi strategy, then, our aim is to find a
pseudorandom measure ν for which conditions (i) and (ii) and the are satisfied.
Such a function7 comes to us, like the almost primes, from the idea of using a sieve
to bound the primes. The particular sieve we had recourse to was the Λ2-sieve of
Selberg. Selberg’s great idea was as follows.

Fix a parameter R, and let λ = (λd)R
d=1 be any sequence of real numbers with

λ1 = 1. Then the function

σλ(n) := (
∑
d|n

d�R

λd)2

majorises the primes greater than R. Indeed if n > R is prime then the truncated
divisor sum over d|n, d � R contains just one term corresponding to d = 1.

Although this works for any sequence λ, some choices are much better than
others. If one wishes to minimise ∑

n�N

σλ(n)

then, provided that R is a bit smaller than
√

N , one is faced with a minimisation
problem involving a certain quadratic form in the λds. The optimal weights λSEL

d ,
Selberg’s weights, have a slightly complicated form, but roughly we have

λSEL
d ≈ λGY

d := µ(d)
log(R/d)

log R
,

where µ(d) is the Möbius function. These weights were considered by Goldston and
Yıldırım [GY] in some of their work on small gaps between primes (and earlier, in
other contexts, by others including Heath-Brown). It seems rather natural, then,
to define a function ν by

ν(n) :=




log N n � R

1
log R

( ∑
d|n

d�R

λGY
d

)2

n > R.

The weight 1/ log R is chosen for normalisation purposes; if R < N1/2−ε for some
ε > 0 then we have E1�n�Nν(n) = 1 + o(1).

One may more-or-less read out of the work of Goldston and Yıldırım a proof
of properties (i) and (ii) above, as well as pseudorandomness, for this function ν.

7Actually, this is a lie. There is no pseudorandom measure which majorises the primes
themselves. One must first use a device known as the W -trick to remove biases in the primes
coming from their irregular distribution in residue classes to small moduli. This is discussed in

§3.
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One requires that R < N c where c is sufficiently small. These verifications use
the classical zero-free region for the ζ-function and classical techniques of contour
integration.

Goldston and Yıldırım’s work was part of their long-term programme to prove
that

(1) liminfn→∞
pn+1 − pn

log n
= 0,

where pn is the nth prime. We have recently learnt that this programme has been
successful. Indeed together with J. Pintz they have used weights coming from a
higher-dimensional sieve in order to establish (1). It is certain that without the
earlier preprints of Goldston and Yıldırım our work would have developed much
more slowly, at the very least.

Let us conclude this section by remarking that ν will not play a great rôle in
the subsequent exposition. It plays a substantial rôle in [GTc], but in a relatively
non-technical exposition like this it is often best to merely remark that the measure
ν and the fact that it is pseudorandom is used all the time in proofs of the various
statements that we will describe.

3. Progressions of length three and linear bias

Let G be a finite abelian group with cardinality N . If f1, . . . , fk : G → C are
any functions we write

Tk(f1, . . . , fk) := Ex,d∈Gf1(x)f2(x + d) . . . fk(x + (k − 1)d)

for the normalised count of k-term APs involving the fi. When all the fi are equal
to some function f , we write

Tk(f) := Tk(f, . . . , f).

When f is equal to 1A, the characteristic function of a set A ⊆ G, we write

Tk(A) := Tk(1A) = Tk(1A, . . . , 1A).

This is simply the number of k-term arithmetic progressions in the set A, divided
by N2.

Let us begin with a discussion of 3-term arithmetic progressions and the trilin-
ear form T3. If A ⊆ G is a set, then clearly T3(A) may vary between 0 (when A = ∅)
and 1 (when A = G). If, however, one places some restriction on the cardinality of
A then the following question seems natural:

Question 3.1. Let α ∈ (0, 1), and suppose that A ⊆ G is a set with cardinality
αN . What is T3(A)?

To think about this question, we consider some examples.

Example 1 (Random set). Select a set A ⊆ G by picking each element x ∈ G to
lie in A independently at random with probability α. Then with high probability
|A| ≈ αN . Also, if d �= 0, the arithmetic progression (x, x + d, x + 2d) lies in G
with probability α3. Thus we expect that T3(A) ≈ α3, and indeed it can be shown
using simple large deviation estimates that this is so with high probability.
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Write E3(α) := α3 for the expected normalised count of three-term progressions
in the random set of Example 1. One might refine Question 3.1 by asking:

Question 3.2. Let α ∈ (0, 1), and suppose that A ⊆ G is a set with cardinality
αN . Is T3(A) ≈ E3(α)?

It turns out that the answer to this question is “no”, as the next example
illustrates.

Example 2 (Highly structured set, I). Let G = Z/NZ, and consider the set
A = {1, . . . , �αN
}, an interval. It is not hard to check that if α < 1/2 then
T3(A) ≈ 1

4α2, which is much bigger than E3(α) for small α.

These first two examples do not rule out a positive answer to the following
question.

Question 3.3. Let α ∈ (0, 1), and suppose that A ⊆ G is a set with cardinality
αN . Is T3(A) � E3(α)?

If this question did have an affirmative answer, the quest for progressions of
length three in sets would be a fairly simple one (the primes would trivially contain
many three-term progressions on density grounds alone, for example). Unfortu-
nately, there are counterexamples.

Example 3 (Highly structured set, II). Let G = Z/NZ. Then there are sets
A ⊆ G with |A| = �αN
 , yet with T3(A) � α10000. We omit the details of
the construction, remarking only that such sets can be constructed8 as unions of
intervals of length �α N in Z/NZ.

Our discussion so far seems to be rather negative, in that our only conclusion
is that none of Questions 3.1, 3.2 and 3.3 have particularly satisfactory answers.
Note, however, that the three examples we have mentioned are all consistent with
the following dichotomy.

Dichotomy 3.4 (Randomness vs Structure for 3-term APs). Suppose that
A ⊆ G has size αN . Then either

• T3(A) ≈ E3(α) or
• A has structure.

It turns out that one may clarify, in quite a precise sense, what is meant
by structure in this context. The following proposition may be proved by fairly
straightforward harmonic analysis. We use the Fourier transform on G, which is
defined as follows. If f : G → C is a function and γ ∈ Ĝ a character (i.e., a
homomorphism from G to C×), then

f∧(γ) := Ex∈Gf(x)γ(x).

Proposition 3.5 (Too many/few 3APs implies linear bias). Let α, η ∈ (0, 1).
Then there is c(α, η) > 0 with the following property. Suppose that A ⊆ G is a set
with |A| = αN , and that

|T3(A) − E3(α)| � η.

8Basically one considers a set S ⊆ Z2 formed as the product of a Behrend set in {1, . . . , M}
and the interval {1, . . . , L}, for suitable M and L, and then one projects this set linearly to Z/NZ.
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Then there is some character γ ∈ Ĝ with the property that

|(1A − α)∧(γ)| � c(α, η).

Note that when G = Z/NZ every character γ has the form γ(x) = e(rx/N).
It is the occurrence of the linear function x �→ rx/N here which gives us the name
linear bias.

It is an instructive exercise to compare this proposition with Examples 1 and
2 above. In Example 2, consider the character γ(x) = e(x/N). If α is reasonably
small then all the vectors e(x/N), x ∈ A, have large positive real part and so when
the sum

(1A − α)∧(γ) = Ex∈Z/NZ1̂A(x)e(x/N)

is formed there is very little cancellation, with the result that the sum is large.

In Example 1, by contrast, there is (with high probability) considerable can-
cellation in the sum for (1A − α)∧(γ) for every character γ.

4. Linear bias and the primes

What use is Dichotomy 3.4 for thinking about the primes? One might hope to
use Proposition 3.5 in order to count 3-term APs in some set A ⊆ G by showing
that A does not have linear bias. One would then know that T3(A) ≈ E3(α), where
|A| = αN .

Let us imagine how this might work in the context of the primes. We have the
following proposition9, which is an analogue of Proposition 3.5. In this proposi-
tion10, ν : Z/NZ → [0,∞) is the Goldston-Yıldırım measure constructed in §2.

Proposition 4.1. Let α, η ∈ (0, 2]. Then there is c(α, η) > 0 with the following
propety. Let f : Z/NZ → R be a function with Ef = α and such that 0 � f(x) �
10000ν(x) for all x ∈ Z/NZ, and suppose that

|T3(f) − E3(α)| � η.

Then

(2) |Ex∈Z/NZ(f(x) − α)e(rx/N)| � c(α, η)

for some r ∈ Z/NZ.

This proposition may be applied with f = Λ and α = 1 + o(1). If we could
rule out (2), then we would know that T3(Λ) ≈ E3(1) = 1, and would thus have an
asymptotic for 3-term progressions of primes.

9There are two ways of proving this proposition. One uses classical harmonic analysis. For
pointers to such a proof, which would involve establishing an Lp-restriction theorem for ν for

some p ∈ (2, 3), we refer the reader to [GT06]. This proof uses more facts about ν than mere
pseudorandomness. Alternatively, the result may be deduced from Proposition 3.5 by a transfer-

ence principle using the machinery of [GTc, §6–8]. For details of this approach, which is far more
amenable to generalisation, see [GTb]. Note that Proposition 4.1 does not feature in [GTc] and
is stated here for pedagogical reasons only.

10Recall that we are being very hazy in distinguishing between {1, . . . , N} and Z/NZ.
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Sadly, (2) does hold. Indeed if N is even and r = N/2 then, observing that
most primes are odd, it is easy to confirm that

Ex∈Z/NZ(Λ(x) − 1)e(rx/N) = −1 + o(1).

That is, the primes do have linear bias.

Fortunately, it is possible to modify the primes so that they have no linear bias
using a device that we refer to as the W -trick. We have remarked that most primes
are odd, and that as a result Λ − 1 has considerable linear bias. However, if one
takes the odd primes

3, 5, 7, 11, 13, 17, 19, . . .

and then rescales by the map x �→ (x − 1)/2, one obtains the set

1, 2, 3, 5, 6, 8, 9, . . .

which does not have substantial (mod 2) bias (this is a consequence of the fact
that there are roughly the same number of primes congruent to 1 and 3(mod 4)).
Furthermore, if one can find an arithmetic progression of length k in this set of
rescaled primes, one can certainly find such a progression in the primes themselves.
Unfortunately this set of rescaled primes still has linear bias, because it contains
only one element ≡ 1(mod 3). However, a similar rescaling trick may be applied to
remove this bias too, and so on.

Here, then, is the W -trick. Take a slowly growing function w(N) → ∞, and
set W :=

∏
p<w(N) p. Define the rescaled von Mangoldt function Λ̃ by

Λ̃(n) :=
φ(W )

W
Λ(Wn + 1).

The normalisation has been chosen so that EΛ̃ = 1 + o(1). Λ̃ does not have sub-
stantial bias in any residue class to modulus q < w(N), and so there is at least
hope of applying a suitable analogue of Proposition 4.1 to it.

Now it is a straightforward matter to define a new pseudorandom measure ν̃

which majorises Λ̃. Specifically, we have

(i) (ν̃ majorises the modified primes) We have λ̃(n) � 10000ν̃(n) for all
1 � n � N .

(ii) (modified primes sit inside ν̃ with positive density) We have E1�n�N ν̃(n) =
1 + o(1).

The following modified version of Proposition 4.1 may be proved:

Proposition 4.2. Let α, η ∈ (0, 2]. Then there is c(α, η) > 0 with the following
property. Let f : Z/NZ → R be a function with Ef = α and such that 0 � f(x) �
10000ν̃(x) for all x ∈ Z/NZ, and suppose that

|T3(f) − E3(α)| � η.

Then

(3) |Ex∈Z/NZ(f(x) − α)e(rx/N)| � c(α, η)

for some r ∈ Z/NZ.
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This may be applied with f = Λ̃ and α = 1 + o(1). Now, however, condition
(3) does not so obviously hold. In fact, one has the estimate

(4) sup
r∈Z/NZ

|Ex∈Z/NZ(Λ̃(x) − 1)e(rx/N)| = o(1).

To prove this requires more than simply the good distribution of Λ̃ in residue
classes to small moduli. It is, however, a fairly standard consequence of the Hardy-
Littlewood circle method as applied to primes by Vinogradov. In fact, the whole
theme of linear bias in the context of additive questions involving primes may be
traced back to Hardy and Littlewood.

Proposition 4.2 and (4) imply that T3(Λ̃) ≈ E3(1) = 1. Thus there are infinitely
many three-term progressions in the modified (W -tricked) primes, and hence also
in the primes themselves11.

5. Progressions of length four and quadratic bias

We return now to the discussion of §3. There we were interested in counting
3-term arithmetic progressions in a set A ⊆ G with cardinality αN . In this section
our interest will be in 4-term progressions.

Suppose then that A ⊆ G is a set, and recall that

T4(A) := Ex,d∈G1A(x)1A(x + d)1A(x + 2d)1A(x + 3d)

is the normalised count of four-term arithmetic progressions in A. One may, of
course, ask the analogue of Question 3.1:

Question 5.1. Let α ∈ (0, 1), and suppose that A ⊆ G is a set with cardinality
αN . What is T4(A)?

Examples 1,2 and 3 make perfect sense here, and we see once again that there
is no immediately satisfactory answer to Question 5.1. With high probability the
random set of Example 1 has about E4(α) := α4 four-term APs, but there are
structured sets with substantially more or less than this number of APs. As in §3,
these examples are consistent with a dichotomy of the following type:

Dichotomy 5.2 (Randomness vs Structure for 4-term APs). Suppose that
A ⊆ G has size αN . Then either

• T4(A) ≈ E4(α) or
• A has structure.

Taking into account the three examples we have so far, it is quite possible that
this dichotomy takes exactly the form of that for 3-term APs. That is to say “A
has structure” could just mean that A has linear bias:

Question 5.3. Let α, η ∈ (0, 1). Suppose that A ⊆ G is a set with |A| = αN ,
and that

|T4(A) − E4(α)| � η.

11In fact, this analysis does not have to be pushed much further to get a proof of Conjecture
1.2 for k = 3, that is to say an asymptotic for 3-term progressions of primes. One simply counts
progressions x, x + d, x + 2d by splitting into residue classes x ≡ b(mod W ), d ≡ b′(mod W ) and

using a simple variant of Proposition 4.2.
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Must there exist some c = c(α, η) > 0 and some character γ ∈ Ĝ with the property
that

|(1A − α)∧(γ)| � c(α, η)?

That the answer to this question is no, together with the nature of the coun-
terexample, is one of the key themes of our whole work. This phenomenon was
discovered, in the context of ergodic theory, by Furstenberg and Weiss [FW96]
and then again, in the discrete setting, by Gowers [Gow01].

Example 4 (Quadratically structured set). Define A ⊆ Z/NZ to be the set of
all x such that x2 ∈ [−αN/2, αN/2]. It is not hard to check using estimates for
Gauss sums that |A| ≈ αN , and also that

sup
r∈Z/NZ

|Ex∈Z/NZ(1A(x) − α)e(rx/N)| = o(1),

that is to say A does not have linear bias. (In fact, the largest Fourier coefficient
of 1A − α is just N−1/2+ε.) Note, however, the relation

x2 − 3(x + d)2 + 3(x + 2d)2 + (x + 3d)2 = 0,

valid for arbitrary x, d ∈ Z/NZ. This means that if x, x + d, x + 2d ∈ A then
automatically we have

(x + 3d)2 ∈ [−7αN/2, 7αN/2].

It seems, then, that if we know that x, x+d and x+2d lie in A there is a very high
chance that x + 3d also lies in A. This observation may be made rigorous, and it
does indeed transpire that T4(A) � cα3.

How can one rescue the randomness-structure dichotomy in the light of this
example? Rather remarkably, “quadratic” examples like Example 4 are the only
obstructions to having T4(A) ≈ E4(α). There is an analogue of Proposition 3.5 in
which characters γ are replaced by “quadratic” objects12.

Proposition 5.4 (Too many/few 4APs implies quadratic bias). Let α, η ∈
(0, 1). Then there is c(α, η) > 0 with the following property. Suppose that A ⊆ G
is a set with |A| = αN , and that

|T4(A) − E4(α)| � η.

Then there is some quadratic object q ∈ Q(κ), where κ � κ0(α, η), with the property
that

|Ex∈G(1A(x) − α)q(x)| � c(α, η).

We have not, of course, said what we mean by the set of quadratic objects Q(κ).
To give the exact definition, even for G = Z/NZ, would take us some time, and
we refer to [GTa] for a full discussion. In the light of Example 4, the reader will
not be surprised to hear that quadratic exponentials such as q(x) = e(x2/N) are
members of Q. However, Q(κ) also contains rather more obscure objects13 such as

q(x) = e(x
√

2{x
√

3})

12The proof of this proposition is long and difficult and may be found in [GTa]. It is heavily
based on the arguments of Gowers [Gow98, Gow01]. This proposition has no place in [GTc],

and it is once again included for pedagogical reasons only. It played an important rôle in the
development of our ideas.

13We are thinking of these as defined on {1, . . . , N} rather than Z/NZ.
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and
q(x) = e(x

√
2{x

√
3} + x

√
5{x

√
7} + x

√
11),

where {x} denotes fractional part. The parameter κ governs the complexity of the
expressions which are allowed: smaller values of κ correspond to more complicated
expressions. The need to involve these “generalised” quadratics in addition to
“genuine” quadratics such as e(x2/N) was first appreciated by Furstenberg and
Weiss in the ergodic theory context, and the matter also arose in the work of
Gowers.

6. Quadratic bias and the primes

It is possible to prove14 a version of Proposition 5.4 which might be applied to
primes. The analogue of Proposition 4.1 is true but not useful, for the same reason
as before: the primes exhibit significant bias in residue classes to small moduli. As
before, this bias may be removed using the W -trick.

Proposition 6.1. Let α, η ∈ (0, 2]. Then there are c(α, η) and κ0(α, η) > 0
with the following propety. Let f : Z/NZ → R be a function with Ef = α and such
that 0 � f(x) � 10000ν̃(x) for all x ∈ Z/NZ, and suppose that

|T4(f) − E4(α)| � η.

Then we have

(5) |Ex∈Z/NZ(f(x) − α)q(x)| � c(α, η)

for some quadratic object q ∈ Q(κ) with κ � κ0(α, η).

One is interested, of course, in applying this with f = Λ̃. If we could verify
that (5) does not hold, that is to say the primes do not have quadratic bias, then
it would follow that T4(Λ̃) ≈ E4(1) = 1. This means that the modified (W -tricked)
primes have many 4-term progressions, and hence so do the primes themselves15.

One wishes to show, then, that for fixed κ one has

(6) sup
q∈Q(κ)

|Ex∈Z/NZ(Λ̃(x) − 1)q(x)| = o(1).

Such a result is certainly not a consequence of the classical Hardy-Littlewood circle
method16. Generalised quadratic phases such as q(x) = e(x

√
2{x

√
3}) are partic-

ularly troublesome. Although we do now have a proof of (6), it is very long and
complicated. See [GTd] for details.

In the next section we explain how our original paper [GTc] managed to avoid
the need to prove (6).

14As with Proposition 4.1, this proposition does not appear in [GTc], though it motivated
our work and a variant of it is used in our later work [GTb]. Once again there are two proofs.

One is based on a combination of harmonic analysis and the work of Gowers, is difficult, and
requires more facts about ν than mere pseudorandomness. This was our original argument. It

is also possible to proceed by a transference principle, deducing the result from Proposition 5.4
using the machinery of [GTc, §6–8]. See [GTb] for more details.

15in fact, just as for progressions of length 3, this allows one to obtain a proof of Conjecture

1.2 for k = 4, that is to say an asymptotic for prime progressions of length 4. See [GTb].
16Though reasonably straightforward extensions of the circle method do permit one to handle

genuine quadratic phases such as q(x) = e(x2
√

2).
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7. Quotienting out the bias - the energy increment argument

Our paper [GTc] failed to rule out the possibility that Λ̃ − 1 correlates with
some quadratic function q ∈ Q(κ). For that reason we did not obtain a proof
of Conjecture 1.2, getting instead the weaker statement of Theorem 1.3. In this
section17 we outline the energy increment argument of [GTc], which allowed us to
deal with the possibility that Λ̃ − 1 does correlate with a quadratic.

We begin by writing

(7) Λ̃ := 1 + f0.

Proposition 6.1 tells us that T4(Λ̃) ≈ 1, unless f0 correlates with some quadratic
q0 ∈ Q. Suppose, then, that

|Ex∈Z/NZf0(x)q0(x)| � η.

Then we revise the decomposition (7) to

(8) Λ̃ := F1 + f1,

where F1 is a function defined using q0. In fact, F1 is basically the average of Λ̃
over approximate level sets of q0. That is, one picks an appropriate scale18 ε = 1/J ,
and then defines

F1 := E(Λ̃|B0),

where B0 is the σ-algebra generated by the sets x : q0(x) ∈ [j/J, (j + 1)/J).

A variant of Proposition 6.1 implies a new dichotomy: either T4(Λ̃) ≈ T4(F1),
or else f1 correlates with some quadratic q1 ∈ Q. Suppose then that

|Ex∈Z/NZf1(x)q1(x)| � η.

We then further revise the decomposition (8) to

Λ̃ := F2 + f2,

where now
F2 := E(Λ̃|B0 ∧ B1),

the σ-algebra being defined by the joint level sets of q0 and q1.

We repeat this process. It turns out that the algorithm stops in a finite number
s of steps, bounded in terms of η. The reason for this is that each new assumption

|Ex∈Z/NZfj(x)qj(x)| � η

17The exposition in this section is rather looser than in other sections. To make the argument

rigorous, one must introduce various technical devices, such as the exceptional sets which feature
in [GTc, §7,8]. We are also being rather vague about the meaning of terms such as “correlate”,

and the parameter κ involved in the definition of quadratic object. Note also that the argument
of [GTc] uses soft quadratic objects rather than the genuine ones which we are discussing here

for expositional purposes. See §8 for a brief discussion of these.
18As we remarked, the actual situation is more complicated. There is an averaging over

possible decompositions of [0, 1] into intervals of length ε, to ensure that the level sets look pleasant.
There is also a need to consider exceptional sets, which unfortunately makes the argument look

rather messy.
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implies an increased lower bound for the energy of Λ̃ relative to the σ-algebra
B0 ∧ · · · ∧ Bj−1, that is to say the quantity

Ej := ‖E(Λ̃|B0 ∧ · · · ∧ Bj−1)‖2.

The fact that Λ̃ is dominated by ν̃ does, however, provide a universal bound for
the energy, by dint of the evident inequality

Ej � 10000‖E(ν̃|B0 ∧ · · · ∧ Bj−1)‖2.

The pseudorandomness of ν̃ allows one19 to bound the right-hand side here by O(1).

At termination, then, we have a decomposition

Λ̃ = Fs + fs,

where

(9) sup
q∈Q

|Ex∈Z/NZfs(x)q(x)| < η,

and Fs is defined by

(10) Fs := E(Λ̃|B0 ∧ B1 ∧ · · · ∧ Bs−1).

A variant of Proposition 6.1 implies, together with (9), that

(11) T4(Λ̃) ≈ T4(Fs).

What can be said about T4(Fs)? Let us note two things about the function Fs.
First of all the definition (10) implies that

(12) EFs = EΛ̃ = 1 + o(1).

Secondly, Fs is not too large pointwise; this is again an artifact of Λ̃ being dominated
by ν̃. We have, of course,

‖Fs‖∞ = ‖E(Λ̃|B0 ∧ B1 ∧ · · · ∧ Bs−1)‖∞ � 10000‖E(ν̃|B0 ∧ B1 ∧ · · · ∧ Bs−1)‖∞.

The pseudorandomness of ν̃ can again be used20 to show that the right-hand side
here is 10000 + o(1); that is,

(13) ‖Fs‖∞ � 10000 + o(1).

The two properties (12) and (13) together mean that Fs behaves rather like the
characteristic function of a subset of Z/NZ with density at least 1/10000. This
suggests the use of Szemerédi’s theorem to bound T4(Fs) below. The formulation
of that theorem given in Proposition 2.6 applies to exactly this situation, and it
tells us that

T4(Fs) > c

for some absolute constant c > 0. Together with (11) this implies a similar lower
bound for T4(Λ̃), which means that there are infinitely many 4-term arithmetic
progressions of primes.

19This deduction uses the machinery of the Gowers U3-norm, which we do not discuss in this

survey. See [GTc, §6] for a full discussion. Of specific relevance is the fact that ‖eν‖U3 = o(1),

which is a consequence of the pseudorandomness of eν.
20Again, the machinery of the Gowers U3-norm is used.
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Let us conclude this section with an overview of what it is we have proved. The
only facts about Λ̃ that we used were that it is dominated pointwise by 10000ν̃,
and that EΛ̃ is not too small. The argument sketched above applies equally well
in the general context of functions with these properties, and in the context of an
arbitrary pseudorandom measure (not just the Goldston-Yıldırım measure).

Proposition 7.1 (Relative Szemerédi Theorem). Let δ ∈ (0, 1] be a real num-
ber and let ν be a psuedorandom measure. Then there is a constant c′(4, δ) > 0
with the following property. Suppose that f : Z/NZ → R is a function such that
0 � f(x) � ν(x) pointwise, and for which Ef � δ. Then we have the estimate

T4(f) � c′(4, δ).

In [GTc] we prove the same21 theorem for progressions of any length k � 3.

Proposition 7.1 captures the spirit of our argument quite well. We first deal
with arithmetic progressions in a rather general context. Only upon completion of
that study do we concern ourselves with the primes, and this is simply a matter
of constructing an appropriate pseudorandom measure. Note also that Szemerédi’s
theorem is used as a “black box”. We do not need to understand the proof of it,
or to have good bounds for it.

Observe that one consequence of Proposition 7.1 is a Szemerédi theorem relative
to the primes: any subset of the primes with positive relative density contains
progressions of arbitrary length. Applying this to the set of primes congruent to
1(mod 4), we see that there are arbitrarily long progressions of numbers which are
sums of two squares.

8. Soft obstructions

Readers familiar with [GTc] may have been confused by our exposition thus
far, since “quadratic objects” play essentially no rôle in that paper. The purpose
of this brief section is to explain why this is so, and to provide a bridge between
this survey and our paper. Further details and discussion may be found in [GTc,
§6].

Let us start by recalling §3, where a set of “obstructions” to a set A ⊆ G
having roughly E3(α) three-term APs was obtained. This was just the collection
of characters γ ∈ Ĝ, and we used the term linear bias to describe correlation with
one of these characters.

Let f : G → C be a function with ‖f‖∞ � 1. Now we observe the formula

Ea,b∈Gf(x + a)f(x + b)f(x + a + b) =
∑
γ∈ bG

|f̂(γ)|2f̂(γ)γ(x),

which may be verified by straightforward harmonic analysis on G. Coupled with
the fact that ∑

γ∈ bG

|f̂(γ)|2 � 1,

21Note, however, that the definition of pseudorandom measure is strongly dependent on k.
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a consequence of Parseval’s identity, this means that the22 “dual function”

D2f := Ea,b∈Gf(x + a)f(x + b)f(x + a + b)

can be approximated by the weighted sum of a few characters. Every character is
actually equal to a dual function; indeed we clearly have D2(γ) = γ.

We think of the dual functions D2(f) as soft linear obstructions. They may
be used in the iterative argument of §7 in place of the genuinely linear functions,
after one has established certain algebraic closure properties of these functions (see
[GTc, Proposition 6.2])

The great advantage of these soft obstructions is that it is reasonably obvious
how they should be generalised to give objects appropriate for the study of longer
arithmetic progressions. We write D3(f) for

Ea,b,cf(x + a)f(x + b)f(x + c)f(x + a + b)f(x + a + c)f(x + b + c)f(x + a + b + c).

This is a kind of sum of f over parallelepipeds (minus one vertex), whereas D2(f)
was a sum over parallelograms (minus one vertex). This we think of as a soft
quadratic obstruction. Gone are the complications of having to deal with explicit
generalised quadratic functions which, rest assured, only become worse when one
deals with progressions of length 5 and longer.

The idea of using these soft obstructions came from the ergodic-theory work of
Host and Kra [HK05], where very similar objects are involved.

We conclude by emphasising that soft obstructions lead to relatively soft results,
such as Theorem 1.3. To get a proof of Conjecture 1.2 it will be necessary to return
to generalised quadratic functions and their higher-order analogues.
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[Gow01] , “A new proof of Szemerédi’s theorem”, GAFA 11 (2001), p. 465–588.
[Gro80] E. Grosswald – “Arithmetic progressions of arbitrary length and consisting only of

primes and almost primes”, J. Reine Angew. Math. 317 (1980), p. 200–208.
[GTa] B. J. Green & T. C. Tao – “An inverse theorem for the Gowers U3-norm, with appli-

cations”, to appear in Proc. Edinbrugh Math. Soc.
[GTb] , “Linear equations in primes”, math.NT/0606088.

[GTc] , “The primes contain arbitrarily long arithmetic progressions”, to appear in
Ann. of Math.

[GTd] , “Quadratic uniformity of the Möbius function”, math.NT/0606087.
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Heegner points and non-vanishing of Rankin/Selberg
L-functions
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Abstract. We discuss the nonvanishing of central values L( 1
2
, f ⊗ χ), where

f is a fixed automorphic form on GL(2) and χ varies through class group

characters of an imaginary quadratic field K = Q(
√
−D), as D varies; we

prove results of the nature that at least D1/5000 such twists are nonvanishing.

We also discuss the related question of the rank of a fixed elliptic curve E/Q

over the Hilbert class field of Q(
√
−D), as D varies. The tools used are results

about the distribution of Heegner points, as well as subconvexity bounds for
L-functions.

1. Introduction

The problem of studying the non-vanishing of central values of automorphic L-
functions arise naturally in several contexts ranging from analytic number theory,
quantum chaos and arithmetic geometry and can be approached by a great variety
of methods (ie. via analytic, geometric spectral and ergodic techniques or even a
blend of them).

Amongst the many interesting families that may occur, arguably one of the
most attractive is the family of (the central values of) twists by class group char-
acters: Let f be a modular form on PGL(2) over Q and K a quadratic field
of discriminant D. If χ is a ring class character associated to K, we may form
the L-function L(s, f ⊗ χ): the Rankin-Selberg convolution of f with the θ-series
gχ(z) =

∑
{0}�=a⊂OK

χ(a)e(N(a)z). Here gχ is a holomorphic Hecke-eigenform of
weight 1 on Γ0(D) with Nebentypus χK and a cusp form iff χ is not a quadratic
character1.
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×
K/K×.
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We will always assume that the conductor of f is coprime to the discriminant of
K. In that case the sign of the functional equation equals ±

(−D
N

)
, where one takes

the + sign in the case when f is Maass, and the − sign if f is weight 2 holomorphic
(these are the only cases that we shall consider).

Many lovely results have been proved in this context: we refer the reader to
§1.3 for a review of some of these results. A common theme is the use, implicit or
explicit, of the equidistribution properties of special points. The purpose of this
paper is to give an informal exposition (see §1.1) as well as some new applications
of this idea. Since our goal is merely to illustrate what can be obtained along these
lines we have not tried to reach the most general results that can be obtained and,
in particular, we limit ourselves to the non-vanishing problem for the family of
unramified ring class characters of an imaginary quadratic field K = Q(

√
−D) of

large discriminant D.
We prove

Theorem 1. Let f(z) be a weight 0, even, Maass (Hecke-eigen) cuspform on
the modular surface X0(1); then, for any 0 < δ < 1/2700, one has the lower bound∣∣{χ ∈ ĈlK , L(f ⊗ χ, 1/2) �= 0}

∣∣ �δ,f Dδ

Theorem 2. Let q be a prime and f(z) be a holomorphic Hecke-eigen cuspform
of weight 2 on Γ0(q) such that q remains inert in K; then, for any 0 < δ < 1/2700,
one has the lower bound∣∣{χ ∈ ĈlK , L(f ⊗ χ, 1/2) �= 0}

∣∣ �δ,f Dδ

for any δ < 1/2700.

The restriction to either trivial or prime level in the theorems above is merely
for simplification (to avoid the occurrence of oldforms in our analysis) and extending
these results to more general levels is just a technical matter. Another arguably
more interesting generalization consists in considering levels q and quadratic fields
K such that the sign of the functional equation is −1: then one expects that the
number of χ such that the first derivative L′(f ⊗ χ, 1/2) �= 0 is � Dδ for some
positive absolute δ. This can be proven along the above lines at least when f is
holomorphic of weight 2 by using the Gross/Zagier formulas; the proof however
is significantly more difficult and will be dealt with elsewhere; interestingly the
proof combines the two types of equidistribution results encountered in the proof
of Theorems 1 and 2 above. In the present paper, we give, for the sake of diversity,
an entirely different, purely geometric, argument of such a generalization when f
corresponds to an elliptic curve. For technical reasons we need to assume a certain
hypothesis “Sβ,θ” that guarantees there are enough small split primes in K. This
is a fairly common feature of such problems (cf. [DFI95], [EY03]) and we regard
it as almost orthogonal to the main issues we are considering. Given θ > 0 and
α ∈]0, 1] we consider

Hypothesis Sβ,θ. The number of primitive2 integral ideals n in OK with
Norm(n) � Dθ is � Dβθ.

Actually, in a sense it is remarkable that Theorems 1 and 2 above do not require
such a hypothesis. It should be noted that Sβ,θ is always true under the generalized

2That is, not divisible by any nontrivial ideal of the form (m), with m ∈ Z.
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Lindelöf hypothesis and can be established unconditionally with any α ∈]0, 1/3[ for
those Ds whose largest prime factor is a sufficiently small power of D by the work
of Graham/Ringrose [GR90]( see [DFI95] for more details).

Theorem 3. Assume Sβ,θ. Let E be an elliptic curve over Q of squarefree
conductor N , and suppose D is odd, coprime to N , and so that all primes dividing
N split in the quadratic extension Q(

√
−D). Then the Mordell-Weil rank of E over

the Hilbert class field of Q(
√
−D) is �ε Dδ−ε, where δ = min(βθ, 1/2 − 4θ).

Neither the statement nor the proof of Theorem 3 make any use of automorphic
forms; but (in view of the Gross/Zagier formula) the proof actually demonstrates
that the number of nonvanishing central derivatives L′(fE ⊗χ, 1/2) is � Dα, where
fE is the newform associated to E. Moreover, we use the ideas of the proof to give
another proof (conditional on Sβ,θ) of Thm. 1.

We conclude the introduction by describing the main geometric issues that
intervene in the proof of these Theorems. Let us consider just Theorem 1 for
clarity. In that case, one has a collection of Heegner points in SL2(Z)\H with
discriminant −D, parameterized by ClK . The collection of values L( 1

2 , f ⊗ χ)
reflects – for a fixed Maass form f , varying χ through ĈlK – the distribution of
Heegner points. More precisely, it reflects the way in which the distribution of
these Heegner points interacts with the subgroup structure of ClK . For example, if
there existed a subgroup H ⊂ ClK such that points in the same H-coset also tend
to cluster together on SL2(Z)\H, this would cause the L-values to be distributed
unusually. Thus, in a sense, whatever results we are able to prove about these values
are (geometrically speaking) assertions that the group structure on ClK does not
interact at all with the “proximity structure” that arises from its embedding into
SL2(Z)\H.

Remark 1.1. Denote by ClK = Pic(OK) the class group of OK and by ĈlK its
dual group. We write hK = |ClK | = |ĈlK | for the class number of OK . By Siegel’s
theorem one has

(1) hK �ε D1/2−ε

(where the constant implied is not effective) so the lower bounds of Theorems 1
and 2 are far from giving a constant proportion of nonvanishing values. (In the
case where f is Eisenstein, Blomer has obtained much better results: see Sec. 1.3).
Moreover, both proofs make use of (1) so the constants implied are ineffective.

1.1. Nonvanishing of a single twist. Let us introduce some of the main
ideas of the present paper in the most direct way, by sketching two very short proofs
that at least one twist is nonvanishing in the context of Theorem 1. We denote by
H the upper-half plane. To the quadratic field K = Q(

√
−D) – where we always

assume that −D is a fundamental discriminant – and each ideal class x of the
maximal order OK of Q(

√
−D) there is associated a Heegner point [x] ∈ SL2(Z)\H.

3

One can describe the collection HeK := {[x] : x ∈ ClK} using the moduli
description of SL2(Z)\H: if one identifies z ∈ SL2(Z)\H with the isomorphism

3Namely, [x] is represented by the point −b+
√

−D
2a

, where au2 + buv + cv2 is a quadratic form
of discriminant −D corresponding to the ideal class x, i.e. there exists a fractional ideal J in the

class x and a Z-basis α, β for J so that Norm(uα + vβ) = Norm(J)(au2 + buv + cv2).
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class of elliptic curves over C, via z ∈ H → C/(Z + zZ), then HeK is identified
with the set of elliptic curves with CM by OK .

If f is a Maass form and χ a character of ClK , one has associated a twisted
L-function L(s, f × χ), and it is known, from the work of Waldspurger and Zhang
[Zha01, Zha04] that

(2) L(f ⊗ χ, 1/2) =
2√
D

∣∣ ∑
x∈ClK

χ(x)f([x])
∣∣2.

In other words: the values L( 1
2 , f ⊗ χ) are the squares of the “Fourier coeffi-

cients” of the function x �→ f([x]) on the finite abelian group ClK . The Fourier
transform being an isomorphism, in order to show that there exists at least one
χ ∈ ĈlK such that L(1/2, f ⊗ χ) is nonvanishing, it will suffice to show that
f([x]) �= 0 for at least one x ∈ ClK . There are two natural ways to approach
this (for D large enough):

(1) Probabilistically: show this is true for a random x. It is known, by a the-
orem of Duke, that the points {[x] : x ∈ ClK} become equidistributed (as
D → ∞) w.r.t. the Riemannian measure on Y ; thus f([x]) is nonvanishing
for a random x ∈ ClK .

(2) Deterministically: show this is true for a special x. The class group ClK
has a distinguished element, namely the identity e ∈ ClK ; and the cor-
responding point [e] looks very special: it lives very high in the cusp.
Therefore f([e]) �= 0 for obvious reasons (look at the Fourier expansion!)

Thus we have given two (fundamentally different) proofs of the fact that there
exists χ such that L( 1

2 , f ⊗ χ) �= 0! Soft as they appear, these simple ideas are
rather powerful. The main body of the paper is devoted to quantifying these ideas
further, i.e. pushing them to give that many twists are nonvanishing.

Remark 1.2. The first idea is the standard one in analytic number theory: to
prove that a family of quantities is nonvanishing, compute their average. It is an
emerging philosophy that many averages in analytic number theory are connected
to equidistribution questions and thus often to ergodic theory.

Of course we note that, in the above approach, one does not really need to
know that {[x] : x ∈ ClK} become equidistributed as D → ∞; it suffices to know
that this set is becoming dense, or even just that it is not contained in the nodal
set of f . This remark is more useful in the holomorphic setting, where it means
that one can use Zariski dense as a substitute for dense. See [Cor02].

In considering the second idea, it is worth keeping in mind that f([e]) is ex-
tremely small – of size exp(−

√
D)! We can therefore paraphrase the proof as fol-

lows: the L-function L( 1
2 , f ⊗ χ) admits a certain canonical square root, which is

not positive; then the sum of all these square roots is very small but known to be
nonzero!

This seems of a different flavour from any analytic proof of nonvanishing known
to us. Of course the central idea here – that there is always a Heegner point (in fact
many) that is very high in the cusp – has been utilized in various ways before. The
first example is Deuring’s result [Deu33] that the failure of the Riemann hypothesis
(for ζ) would yield an effective solution to Gauss’ class number one problem; another
particularly relevant application of this idea is Y. André’s lovely proof [And98] of
the André–Oort conjecture for products of modular surfaces.
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1.2. Quantification: nonvanishing of many twists. As we have remarked,
the main purpose of this paper is to give quantitative versions of the proofs given
in §1.1. A natural benchmark in this question is to prove that a positive proportion
of the L-values are nonzero. At present this seems out of reach in our instance,
at least for general D. We can compute the first but not the second moment of
{L( 1

2 , f ⊗χ) : χ ∈ ĈlK} and the problem appears resistant to the standard analytic
technique of “mollification.” Nevertheless we will be able to prove that � Dα

twists are nonvanishing for some positive α.
We now indicate how both of the ideas indicated in the previous section can

be quantified to give a lower bound on the number of χ for which L( 1
2 , f ⊗ χ) �= 0.

In order to clarify the ideas involved, let us consider the worst case, that is, if
L( 1

2 , f ⊗ χ) was only nonvanishing for a single character χ0. Then, in view of the
Fourier-analytic description given above, the function x �→ f([x]) is a linear multiple
of χ0, i.e. f([x]) = a0χ0(x), some a0 ∈ C. There is no shortage of ways to see that
this is impossible; let us give two of them that fit naturally into the “probabilistic”
and the “deterministic” framework and will be most appropriate for generalization.

(1) Probabilistic: Let us show that in fact f([x]) cannot behave like a0χ0(x)
for “most” x. Suppose to the contrary. First note that the constant a0

cannot be too small: otherwise f(x) would take small values everywhere
(since the [x] : x ∈ ClK are equidistributed). We now observe that the
twisted average

∑
f([x])χ0(x) must be “large”: but, as discussed above,

this will force L( 1
2 , f ⊗χ0) to be large. As it turns out, a subconvex bound

on this L-function is precisely what is needed to rule out such an event. 4

(2) Deterministic: Again we will use the properties of certain distinguished
points. However, the identity e ∈ ClK will no longer suffice by itself. Let
n be an integral ideal in OK of small norm (much smaller than D1/2).
Then the point [n] is still high in the cusp: indeed, if we choose a rep-
resentative z for [n] that belongs to the standard fundamental domain,
we have 
(z) � D1/2

Norm(n) . The Fourier expansion now shows that, under
some mild assumption such as Norm(n) being odd, the sizes of |f([e])|
and |f([n])| must be wildly different. This contradicts the assumption
that f([x]) = a0χ(x).

As it turns out, both of the approaches above can be pushed to give that a
large number of twists L( 1

2 , f ⊗ χ) are nonvanishing. However, as is already clear
from the discussion above, the “deterministic” approach will require some auxiliary
ideals of OK of small norm.

4Here is another way of looking at this. Fix some element y ∈ ClK . If it were true

that the function x �→ f([x]) behaved like x �→ χ0(x), it would in particular be true that
f([xy]) = f([x])χ0(y) for all x. This could not happen, for instance, if we knew that the col-

lection {[x], [xy]}x∈Cld ⊂ Y 2 was equidistributed (or even dense). Actually, this is evidently not
true for all y (for example y = e or more generally y with a representative of small norm) but one
can prove enough in this direction to give a proof of many nonvanishing twists if one has enough

small split primes. Since the deterministic method gives this anyway, we do not pursue this.
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1.3. Connection to existing work. As remarked in the introduction, a con-
siderable amount of work has been done on nonvanishing for families L(f ⊗χ, 1/2)
(or the corresponding family of derivatives). We note in particular:

(1) Duke/Friedlander/Iwaniec and subsequently Blomer considered the case
where f(z) = E(z, 1/2) is the standard non-holomorphic Eisenstein series
of level 1 and weight 0 and Ξ = ĈlK is the group of unramified ring class
characters (ie. the characters of the ideal class group) of an imaginary
quadratic field K with large discriminant (the central value then equals
L(gχ, 1/2)2 = L(K, χ, 1/2)2). In particular, Blomer [Blo04], building on
the earlier results of [DFI95], used the mollification method to obtain the
lower bound

(3) |{χ ∈ ĈlK , L(K, χ, 1/2) �= 0}| �
∏
p|D

(1 − 1
p
)ĈlK for |disc(K)| → +∞.

This result is evidently much stronger than Theorem 1.
Let us recall that the mollification method requires the asymptotic

evaluation of the first and second (twisted) moments∑
χ∈ dClK

χ(a)L(gχ, 1/2),
∑

χ∈ dClK

χ(a)L(gχ, 1/2)2

(where a denotes an ideal of OK of relatively small norm) which is the
main content of [DFI95]. The evaluation of the second moment is by
far the hardest; for it, Duke/Friedlander/Iwaniec started with an integral
representation of the L(gχ, 1/2)2 as a double integral involving two copies
of the theta series gχ(z) which they averaged over χ; then after several
tranformations, they reduced the estimation to an equidistribution prop-
erty of the Heegner points (associated with OK) on the modular curve
X0(NK/Q(a))(C) which was proven by Duke [Duk88].

(2) On the other hand, Vatsal and Cornut, motivated by conjectures of Mazur,
considered a nearly orthogonal situation: namely, fixing f a holomorphic
cuspidal newform of weight 2 of level q, and K an imaginary quadratic
field with (q, disc(K)) = 1 and fixing an auxiliary unramified prime p,
they considered the non-vanishing problem for the central values

{L(f ⊗ χ, 1/2), χ ∈ ΞK(pn)}

(or for the first derivative) for ΞK(pn), the ring class characters of K
of exact conductor pn (the primitive class group characters of the order
OK,pn of discriminant −Dp2n) and for n → +∞ [Vat02, Vat03, Cor02].
Amongst other things, they proved that if p � 2qdisc(K) and if n is large
enough – where “large enough” depends on f, K, p – then L(f ⊗ χ, 1/2)
or L′(f ⊗ χ, 1/2) (depending on the sign of the functional equation) is
non-zero for all χ ∈ ΞK(pn).

The methods of [Cor02, Vat02, Vat03] look more geometric and
arithmetic by comparison with that of [Blo04, DFI95]. Indeed they
combine the expression of the central values as (the squares of) suitable
periods on Shimura curves, with some equidistribution properties of CM
points which are obtained through ergodic arguments (i.e. a special case of
Ratner’s theory on the classification of measures invariant under unipotent
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orbits), reduction and/or congruence arguments to pass from the ”defi-
nite case” to the ”indefinite case” (i.e. from the non-vanishing of central
values to the non-vanishing of the first derivative at 1/2) together with
the invariance property of non-vanishing of central values under Galois
conjugation.

1.4. Subfamilies of characters; real qudratic fields. There is another
variant of the nonvanishing question about which we have said little: given a sub-
family S ⊂ ĈlK , can one prove that there is a nonvanishing L( 1

2 , f ⊗ χ) for some
χ ∈ S ? Natural examples of such S arise from cosets of subgroups of ĈlK . We
indicate below some instances in which this type of question arises naturally.

(1) If f is holomorphic, the values L( 1
2 , f⊗χ) have arithmetic interpretations;

in particular, if σ ∈ Gal(Q/Q), then L( 1
2 , fσ ⊗χσ) is vanishing if and only

if L( 1
2 , f ⊗ χ) is vanishing. In particular, if one can show that one value

L( 1
2 , f⊗χ) is nonvanishing, when χ varies through the Gal(Q/Q(f))-orbit

of some fixed character χ0, then they are all nonvanishing.
This type of approach was first used by Rohrlich, [Roh84]; this is also

essentially the situation confronted by Vatsal. In Vatsal’s case, the Galois
orbits of χ in question are precisely cosets of subgroups, thus reducing us
to the problem mentioned above.

(2) Real quadratic fields: One can ask questions similar to those considered
here but replacing K by a real quadratic field. It will take some prepara-
tion to explain how this relates to cosets of subgroups as above.

Firstly, the question of whether there exists a class group character
χ ∈ ĈlK such that L( 1

2 , f ⊗ χ) �= 0 is evidently not as well-behaved,
because the size of the class group of K may fluctuate wildly. A suitable
analogue to the imaginary case can be obtained by replacing ClK by the
extended class group, C̃lK := A×

K/R∗UK×, where R∗ is embedded in
(K ⊗ R)×, and U is the maximal compact subgroup of the finite ideles
of K. This group fits into an exact sequence R∗/O×

K → C̃lK → ClK . Its
connected component is therefore a torus, and its component group agrees
with ClK up to a possible Z/2-extension.

Given χ ∈ ̂̃ClK , there is a unique sχ ∈ R such that χ restricted to
the R∗

+ is of the form x �→ xisχ . The “natural analogue” of our result
for imaginary quadratic fields, then, is of the following shape: For a fixed
automorphic form f and sufficiently large D, there exist χ with |sχ| � C
– a constant depending only on f – and L( 1

2 , f ⊗ χ) �= 0.
One may still ask, however, the question of whether L( 1

2 , f ⊗ χ) �= 0
for χ ∈ ĈlK if K is a real quadratic field which happens to have large class
group – for instance, K = Q(

√
n2 + 1). We now see that this is a question

of the flavour of that discussed above: we can prove nonvanishing in the

large family L( 1
2 , f⊗χ), where χ ∈ ̂̃ClK , and wish to pass to nonvanishing

for the subgroup ĈlK .
(3) The split quadratic extension: to make the distinction between C̃lK and

ClK even more clear, one can degenerate the previous example to the split
extension K = Q ⊕ Q.
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In that case the analogue of the θ-series χ is given simply by an Eisen-
stein series of trivial central character; the analogue of the L-functions
L( 1

2 , f ⊗ χ) are therefore |L( 1
2 , f ⊗ ψ)|2, where ψ is just a usual Dirichlet

character over Q.
Here one can see the difficulty in a concrete fashion: even the asymp-

totic as N → ∞ for the square moment

(4)
∑
ψ

|L(
1
2
, f ⊗ ψ)|2,

where the sum is taken over Dirichlet characters ψ of conductor N , is not
known in general; however, if one adds a small auxiliary t-averaging and
considers instead

(5)
∑
ψ

∫
|t|�1

|L(
1
2

+ it, f ⊗ ψ)|2dt.

then the problem becomes almost trivial.5

The difference between (4) and (5) is precisely the difference between
the family χ ∈ ClK and χ ∈ C̃lK .

2. Proof of Theorem 1

Let f be a primitive even Maass Hecke-eigenform (of weight 0) on SL2(Z)\H
(normalized so that its first Fourier coefficient equals 1); the proof of theorem 1
starts with the expression (2) of the central value L(f ⊗ χ, 1/2) as the square of a
twisted period of f over HK . From that expresssion it follows that∑

χ

L(f ⊗ χ, 1/2) =
2hK√

D

∑
σ∈ClK

|f([σ])|2.

Now, by a theorem of Duke [Duk88] the set HeK = {[x] : x ∈ ClK} becomes
equidistributed on X0(1)(C) with respect to the hyperbolic measure of mass one
dµ(z) := (3/π)dxdy/y2, so that since the function z → |f(z)|2 is a smooth, square-
integrable function, one has

1
hK

∑
σ∈ClK

|f([σ])|2 = (1 + of (1))
∫

X0(1)(C)

|f(z)|2dµ(z) = 〈f, f〉(1 + of (1))

as D → +∞ (notice that the proof of the equidistribution of Heegner points uses
Siegel’s theorem, in particular the term of (1) is not effective). Hence, we have

∑
χ

L(f ⊗ χ, 1/2) = 2
h2

K√
D
〈f, f〉(1 + of (1)) �f,ε D1/2−ε

by (1). In particular this proves that for D large enough, there exists χ ∈ ĈlK such
that L(f ⊗χ, 1/2) �= 0. In order to conclude the proof of Theorem 1, it is sufficient
to prove that for any χ ∈ ĈlK

L(f ⊗ χ, 1/2) �f D1/2−δ,

for some absolute δ > 0. Such a bound is known as a subconvex bound, as the
corresponding bound with δ = 0 is known and called the convexity bound (see
[IS00]). When χ is a quadratic character, such a bound is an indirect consequence

5We thank K. Soundararajan for an enlightening discussion of this problem.
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of [Duk88] and is essentially proven in [DFI93] (see also [Har03, Mic04]). When
χ is not quadratic, this bound is proven in [HM06].

Remark 2.1. The theme of this section was to reduce a question about the
average L( 1

2 , f ⊗χ) to equidistribution of Heegner points (and therefore to subcon-
vexity of L( 1

2 , f ⊗χK), where χK is the Dirichlet character associated to K). This
reduction can be made precise, and this introduces in a natural way triple product
L-functions:

(6)
1

hK

∑
χ∈ dClK

L(1/2, f ⊗ χ) ∼ 1
hK

∑
x∈ClK

|f([x])|2

=
∫

SL2(Z)\H
|f(z)|2dz +

∑
g

〈f2, g〉
∑

x∈ClK

g([x])

Here ∼ means an equality up to a constant of size D±ε, and, in the second term,
the sum over g is over a basis for L2

0(SL2(Z)\H). Here L2
0 denotes the orthogonal

complement of the constants. This g-sum should strictly include an integral over
the Eisenstein spectrum; we suppress it for clarity. By Cauchy-Schwarz we have a
majorization of the second term (continuing to suppress the Eisenstein spectrum):

(7)

∣∣∣∣∣
∑

g

〈f2, g〉
∑

x∈ClK

g([x])

∣∣∣∣∣
2

�
∑

g

∣∣〈f2, g〉
∣∣2

∣∣∣∣∣
∑

x∈ClK

g([x])

∣∣∣∣∣
2

where the g-sum is taken over L2
0(SL2(Z)\H), again with suppression of the contin-

uous spectrum. Finally, the summand corresponding to g in the right-hand side can
be computed by period formulae: it is roughly of the shape (by Watson’s identity,
Waldspurger/Zhang formula (2), and factorization of the resulting L-functions)

L(1/2, sym2f ⊗ g)L(1/2, g)2L(1/2, g ⊗ χK)
〈g, g〉2〈f, f〉 .

By use of this formula, one can, for instance, make explicit the dependence of
Theorem (1) on the level q of f : one may show that there is a nonvanishing twist as
soon as q < DA, for some explicit A. Upon GLH, q < D1/2 suffices. There seems
to be considerable potential for exploiting (7) further; we hope to return to this in
a future paper. We note that similar identities have been exploited in the work of
Reznikov [Rez05].

One can also prove the following twisted variant of (6): let σl ∈ ClK be the
class of an integral ideal l of OK coprime with D. Then one can give an asymptotic
for

∑
χ χ(σl)L(f ⊗ χ, 1/2), when the norm of l is a sufficiently small power of D.

This again uses equidistribution of Heegner points of discriminant D, but at level
Norm(l).

3. Proof of Theorem 2

The proof of Theorem (2) is in spirit identical to the proof of Theorem (1) that
was presented in the previous section. The only difference is that the L-function is
the square of a period on a quaternion algebra instead of SL2(Z)\H. We will try
to set up our notation to emphasize this similarity.
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For the proof of Theorem (2) we need to recall some more notations; we refer to
[Gro87] for more background. Let q be a prime and Bq be the definite quaternion
algebra ramified at q and ∞. Let Oq be a choice of a maximal order. Let S
be the set of classes for Bq, i.e. the set of classes of left ideals for Oq. To each
s ∈ S is associated an ideal I and another maximal order, namely, the right order
Rs := {λ ∈ Bq : Iλ ⊂ I}. We set ws = #R×

s /2. We endow S with the measure ν
in which each {s} has mass 1/ws. This is not a probability measure.

The space of functions on S becomes a Hilbert space via the norm 〈f, f〉2 =∫
|f |2dν. Let SB

2 (q) be the orthogonal complement of the constant function. It is
endowed with an action of the Hecke algebra T(q) generated by the Hecke operators
Tp p � q and as a T(q)-module SB

2 (q) is isomorphic with S2(q), the space of weight
2 holomorphic cusp newforms of level q. In particular to each Hecke newform
f ∈ S2(q) there is a corresponding element f̃ ∈ SB

2 (q) such that

Tnf̃ = λf (n) · f̃ , (n, q) = 1.

We normalize f̃ so that 〈f̃ , f̃〉 = 1.
Let K be an imaginary quadratic field such that q is inert in K. Once one fixes

a special point associated to K, one obtains for each σ ∈ GK a “special point”
xσ ∈ S, cf. discussion in [Gro87] of “xa” after [Gro87, (3.6)].

One has the Gross formula [Gro87, Prop 11.2]: for each χ ∈ ĈlK ,

(8) L(f ⊗ χ, 1/2) =
〈f, f〉
u2

√
D

∣∣∣∣∣
∑

σ∈ClK

f̃(xσ)χ(σ)

∣∣∣∣∣
2

Here u is the number of units in the ring of integers of K. Therefore,
∑

χ∈ dClK

L(f ⊗ χ, 1/2) =
hK〈f, f〉
u2

√
D

∑
σ∈ClK

∣∣∣f̃(xσ)
∣∣∣2

Now we use the fact that the ClK-orbit {xσ, σ ∈ ClK} becomes equidistributed,
as D → ∞, with respect to the (probability) measure ν

ν(S) : this is a consequence
of the main theorem of [Iwa87] (see also [Mic04] for a further strengthening) and
deduce that

(9) h−1
K

∑
σ

∣∣∣f̃(xσ)
∣∣∣2 = (1 + oq(1))

1
ν(S)

∫
|f̃ |2dν

In particular, it follows from (1) that, for all ε > 0∑
χ

L(f ⊗ χ, 1/2) �f,ε D1/2−ε.

Again the proof of theorem 2 follows from the subconvex bound

L(f ⊗ χ, 1/2) �f D1/2−δ

for any 0 < δ < 1/1100, which is proven in [Mic04].

4. Quantification using the cusp; a conditional proof of Theorem 1 and
Theorem 3 using the cusp.

Here we elaborate on the second method of proof discussed in Section 1.1.
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4.1. Proof of Theorem 1 using the cusp. We note that Sβ,θ implies that
there are � Dβθ−ε distinct primitive ideals with odd norms with norm � Dθ.
Indeed Sβ,θ provides many such ideals without the restriction of odd norm; just
take the “odd part” of each such ideal. The number of primitive ideals with norm
� X and the same odd part is easily verified to be O(log X), whence the claim.

Proposition 4.1. Assume hypothesis Sβ,θ, and let f be an even Hecke-Maass
cusp form on SL2(Z)\H. Then � Dδ−ε twists L( 1

2 , f ⊗χ) are nonvanishing, where
δ = min(βθ, 1/2 − 4θ).

Proof. Notations being as above, fix any α < δ, and suppose that precisely
k − 1 of the twisted sums

(10)
∑

x∈ClK

f([x])χ(x)

are nonvanishing, where k < Dα. In particular, k < Dβθ. We will show that this
leads to a contradiction for large enough D.

Let 1/4 + ν2 be the eigenvalue of f . Then f has a Fourier expansion of the
form

(11) f(x + iy) =
∑
n�1

an(ny)1/2Kiν(2πny) cos(2πnx),

where the Fourier coefficients |an| are polynomially bounded. We normalize so that
a1 = 1; moreover, in view of the asymptotic Kiν(y) ∼ ( π

2y )1/2e−y(1 + Oν(y−1)),
we obtain an asymptotic expansion for f near the cusp. Indeed, if z0 = x0 + iy0

belongs to the standard fundamental domain for SL2(Z), the standard asymptotics
show that – with an appropriate normalization –

(12) f(z) = const. cos(2πx) exp(−2πy)(1 + O(y−1)) + O(e−4πy)

Let pj , qj be primitive integral ideals of OK for 1 � j � k, all with odd norm,
so that pj are mutually distinct and the qj are mutually distinct; and, moreover
that

Norm(p1) < Norm(p2) < · · · < Norm(pk) < Dθ(13)

Dθ > Norm(q1) > Norm(q2) > · · · > Norm(qk).(14)

The assumption on the size of k and the hypothesis Sβ,θ guarantees that we may
choose such ideals, at least for sufficiently large D.

If n is any primitive ideal with norm <
√

D, it corresponds to a reduced bi-
nary quadratic form ax2 + bxy + cy2 with a = Norm(n) and b2 − 4ac = −D; the
corresponding Heegner point [n] has as representative −b+

√
−D

2Norm(n) . We note that if
a = Norm(n) is odd, then

(15)
∣∣∣∣cos(2π ·

(
−b

2Norm(n)

)
)
∣∣∣∣ � Norm(n)−1.

Then the functions x �→ f([xpj ]) – considered as belonging to the vector space
of maps ClK → C – are necessarily linearly dependent for 1 � j � k, because of the
assumption on the sums (10). Evaluating these functions at the [qj ] shows that the
matrix f([piqj ])1�i,j�k must be singular. We will evaluate the determinant of this
matrix and show it is nonzero, obtaining a contradiction. The point here is that,
because all the entries of this matrix differ enormously from each other in absolute
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value, there is one term that dominates when one expands the determinant via
permutations.

Thus, if n is a primitive integral ideal of odd norm < c0

√
D, for some suitable,

sufficiently large, absolute constant c0, (12) and (15) show that one has the bound
– for some absolute c1, c2 –

c1e
−π

√
D/Norm(n) � |f([n])| � c2D

−1e−π
√

D/Norm(n).

Expanding the determinant of f([piqj ])1�i,j�k we get

(16) det =
∑

σ∈Sk

k∏
i=1

f([piqσ(i)])sign(σ)

Now, in view of the asymptotic noted above, we have

k∏
i=1

f([piqσ(i)]) = c3 exp

(
−π

√
D

∑
i

1
Norm(piqσ(i))

)

where the constant c2 satisfies c3 ∈ [(c2/D)k, ck
1 ]. Set aσ =

∑
i

1
Norm(pi)Norm(qσ(i))

.
Then aσ is maximized – in view of (13) and (14) – for the identity permutation
σ = Id, and, moreover, it is simple to see that aId − aσ � 1

D4θ for any σ other than
the identity permutation. It follows that the determinant of (16) is bounded below,
in absolute value, by

exp(aId)
(
(c2/D)k − ck

1k! exp(−πD1/2−4θ)
)

Since k < Dα and α < 1/2− 4θ, this expression is nonzero if D is sufficiently large,
and we obtain a contradiction. �

4.2. Variant: the derivative of L-functions and the rank of elliptic
curves over Hilbert class fields of Q(

√
−D). We now prove Thm. 3. For a

short discussion of the idea of the proof, see the paragraph after (18).
Take ΦE : X0(N) → E a modular parameterization, defined over Q, with N

squarefree. If f is the weight 2 newform corresponding to E, the map

(17) ΦE : z �→
∫

τ

f(w)dw,

where τ is any path that begins at ∞ and ends at z, is well-defined up to a lattice
L ⊂ C and descends to a well-defined map X0(N) → C/L ∼= E(C); this sends the
cusp at ∞ to the origin of the elliptic curve E and arises from a map defined over
Q.

The space X0(N) parameterizes (a compactification) of the space of cyclic N -
isogenies E → E′ between two elliptic curves. We refer to [GZ86, II. §1] for further
background on Heegner points; for now we just quote the facts we need. If m is
any ideal of OK and n any integral ideal with Norm(n) = N , then C/m → C/mn−1

defines a Heegner point on X0(N) which depends on m only through its ideal class,
equivalently, depends only on the point [m] ∈ SL2(Z)\H. Thus Heegner points are
parameterized by such pairs ([m], n) and their total number is |ClK | · ν(N), where
ν(N) is the number of divisors of N .

Fix any n0 with Norm(n0) = N and let P be the Heegner point corresponding
to ([e], n0). Then P is defined over H, the Hilbert class field of Q(

√
−D), and we
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can apply any element x ∈ ClK (which is identified with the Galois group of H/K)
to P to get P x, which is the Heegner point corresponding to ([x], n0).

Suppose m is an ideal of OK of norm m, prime to N . We will later need an ex-
plicit representative in H for Pmn0 = ([mn0], n0). (Note that the correspondence be-
tween z ∈ Γ0(N)\H and elliptic curve isogenies sends z to C/〈1, z〉 �→ C/〈1/N, z〉.)
This representative (cf. [GZ86, eq. (1.4–1.5)]) can be taken to be

(18) z =
−b +

√
−D

2a
,

where a = Norm(mn0), and mn0 = 〈a, b+
√
−D

2 〉, m = 〈aN−1, b+
√
−D

2 〉.
Let us explain the general idea of the proof. Suppose, first, that E(H) had rank

zero. We denote by #E(H)tors the order of the torsion subgroup of E(H). This
would mean, in particular, that Φ(P ) was a torsion point on E(H); in particular
#E(H)tors.Φ(P ) = 0. In view of (17), and the fact that P is very close to the cusp
of X0(N) the point Φ(P ) ∈ C/L is represented by a nonzero element zP ∈ C very
close to 0. It is then easy to see that #E(H)tors · zP /∈ L, a contradiction. Now
one can extend this idea to the case when E(H) has higher rank. Suppose it had
rank one, for instance. Then ClK must act on E(H) ⊗ Q through a character of
order 2. In particular, if p is any integral ideal of K, then Φ(P p) equals ±Φ(P )
in E(H) ⊗ Q. Suppose, say, that Φ(P p) = Φ(P ) in E(H) ⊗ Q. One again verifies
that, if the norm of p is sufficiently small, then Φ(P p)−Φ(P ) ∈ C/L is represented
by a nonzero z ∈ C which is sufficiently close to zero that #E(H)tors.z /∈ L.

The Q-vector space V := E(H)⊗Q defines a Q-representation of Gal(H/K) =
ClK , and we will eventually want to find certain elements in the group algebra of
Gal(H/K) which annihilate this representation, and on the other hand do not have
coefficients that are too large. This will be achieved in the following two lemmas.

Lemma 4.1. Let A be a finite abelian group and W a k-dimensional Q-repre-
sentation of A. Then there exists a basis for W with respect to which the elements
of A act by integral matrices, all of whose entries are � Ck2

in absolute value. Here
C is an absolute constant.

Proof. We may assume that W is irreducible over Q. The group algebra Q ·A
decomposes as a certain direct sum ⊕jKj of number fields Kj ; these Kj exhaust
the Q-irreducible representations of A.

Each of these number fields has the property that it is generated, as a Q-vector
space, by the roots of unity contained in it (namely, take the images of elements of
A under the natural projection Q.A → Kj). The roots of unity in each Kj form a
group, necessarily cyclic; so all the Kj are of the form Q[ζ] for some root of unity
ζ; and each a ∈ A acts by multiplication by some power of ζ.

Thus let ζ be a kth root of unity, so [Q(ζ) : Q] = ϕ(k) and Q(ζ) is isomorphic
to Q[x]/pk(x), where pk is the kth cyclotomic polynomial. Then multiplication by
x on Q[x]/pk(x) is represented, w.r.t. the natural basis {1, x, . . . , xϕ(k)−1}, by a
matrix all of whose coefficients are integers of size � A, where A is the absolute
value of the largest coefficient of pk. Since any coefficient of A is a symmetric
function in {ζi}(i,k)=1, one easily sees that A � 2k.

For any k×k matrix M , let ‖M‖ denote the largest absolute value of any entry
of M . Then one easily checks that ‖M.N‖ � k‖M‖‖N‖ and, by induction, ‖Mr‖ �
kr−1‖M‖r. Thus any power of ζ acts on Q(ζ), w.r.t. the basis {1, ζ, . . . , ζϕ(k)−1},
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by an integral matrix all of whose entries have size � kk · 2k2 � Ck2
for some

absolute C. �

Lemma 4.2. Let assumptions and notations be as in the previous lemma; let
S ⊂ A have size |S| = 2k. Then there exist integers ns ∈ Z, not all zero, such that
the element

∑
nss ∈ Z[A] annihilates the A-module W . Moreover, we may choose

ns so that |ns| � Ck2

2 , for some absolute constant C2.

Proof. This follows from Siegel’s lemma. Indeed, consider all choices of ns

when |ns| � N for all s ∈ S; there are at least N2k such choices. Let {wi}1�i�k

be the basis for W provided by the previous lemma. For each i0, the element
(
∑

nss)·wi0 can be expanded in terms of the basis wi with integral coefficients of size
� (2k)Ck2

N . So the number of possibilities for the collection {(
∑

nss)wj}1�j�k

is � Ck3

2 Nk, for some suitable absolute constant C2. It follows that if N � Ck2

2

two of these must coincide. �

We are now ready to prove Theorem 3.

Proof. (of Thm. 3). Fix α < δ = min(βθ, 1/2−4θ) and suppose that the rank
of E(H) ⊗ Q is k, where k < Dα. We will show that this leads to a contradiction
for D sufficiently large.

Choose {p1, . . . , p2k, q1, . . . , q2k} satisfying the same conditions (13) and (14)
as in the proof of Prop. 4.1. We additionally assume that all pj , qj have norms
coprime to N ; it is easy to see that this is still possible for sufficiently large D.
Recall we have fixed an integral ideal n0 of norm N . Lem. 4.2 shows that there are
integers ni (1 � i � 2k) such that the element

(19) Υ :=
2k∑
i=1

ni · pin0 ∈ Z[ClK ]

annihilates E(H) ⊗ Q and moreover |ni| � Ck2

2 . In particular

(20) Υ · ΦE(P qj ) = 0 (1 � j � k)

But ΦE(P piqjn0) is the image under the map ΦE (see (17)) of a point zP,i,j ∈ H
whose y-coordinate is given by (cf. (18)) yP,i,j =

√
D

2Norm(piqjn0)
. In particular this

satisfies yP,i,j � D1/2−2θ.
The weight 2 form f has a q-expansion in the neighbourhood of ∞ of the form

f(z) = e2πiz +
∑
n�2

ane2πinz

where the an are integers satisfying |an| � n1/2+ε. In particular, there exists a
contour C from ∞ to zP,i,j so that∣∣∣∣

∫
C

f(τ)dτ

∣∣∣∣ =
1

2πi
exp(−π

√
D

Norm(piqjn0)
)
(
1 + O(exp(−πD1/2−2θ))

)

Thus the image of the Heegner point P piqjn0 on E(C) = C/L is represented by
zij ∈ C satisfying |zij | = 1

2πi exp(−π
√

D
Norm(piqjn0)

)
(
1 + O(exp(−πD1/2−2θ))

)
. The

relation (20) shows that

#E(H)tors ·
∑

nizij ∈ L.
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Note that #E(H)tors is bounded by a polynomial in D, by reducing modulo primes
of H that lie above inert primes in K. Since |ni| � Ck2

2 and k < Dα, this forces∑
nizij = 0 for sufficiently large D. This implies that the matrix (zij)1�i,j�2k is

singular, and one obtains a contradiction by computing determinants, as in Sec.
4.1. �

References
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Singular moduli generating functions for modular curves and
surfaces

Ken Ono

Abstract. Zagier [Zag02] proved that the generating functions for the traces
of singular moduli are often weight 3/2 modular forms. Here we investigate

the modularity of generating functions of Maass singular moduli, as well as
traces of singular moduli on Hilbert modular surfaces.

1. Introduction and Statement of Results

Let j(z) be the usual modular function for SL2(Z)

j(z) = q−1 + 744 + 196884q + 21493760q2 + · · · ,

where q = e2πiz. The values of modular functions such as j(z) at imaginary qua-
dratic arguments in h, the upper half of the complex plane, are known as singular
moduli. Singular moduli are algebraic integers which play many roles in number
theory. For example, they generate class fields of imaginary quadratic fields, and
they parameterize isomorphism classes of elliptic curves with complex multiplica-
tion.

This expository article describes the author’s recent joint works with Bring-
mann, Bruinier, Jenkins, and Rouse [BO, BOR05, BJO06] on generating func-
tions for traces of singular moduli. To motivate these results, we begin by comparing
the classical evaluations

j
(

−1+
√
−3

2

)
− 744

3
= −248,

j(i) − 744
2

= 492, j

(
1 +

√
−7

2

)
−744 = −4119,

with the Fourier coefficients of the modular form

g(z) := −η(z)2 · E4(4z)
η(2z)η(4z)6

= −q−1 + 2 − 248q3 + 492q4 − 4119q7 + 7256q8 − · · · ,

(1.1)

where E4(z) = 1 + 240
∑∞

n=1 σ3(n)qn is the usual weight 4 Eisenstein series, and
η(z) = q1/24

∏∞
n=1(1 − qn) is Dedekind’s eta-function. The appearance of singular
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moduli as the initial coefficients of the modular form g(z) is not a coincidence. In
a recent groundbreaking paper [Zag02], Zagier established that g(z) is indeed the
generating function for the “traces” of the j(z) singular moduli. In this important
paper, Zagier employs such results to give a new proof of Borcherds’ famous theorem
on the infinite product expansions of integer weight modular forms on SL2(Z) with
Heegner divisor (for example, see [Bor95a, Bor95b]).

Here we survey three recent papers inspired by Zagier’s work. First we revisit
his work from the context of Maass-Poincaré series. This uniform approach gives
many of his results as special cases of a single theorem, and, as an added bonus, gives
exact formulas for traces of singular moduli. Our first general result (see Theorem
1.1) establishes that the coefficients of certain half-integral weight Maass forms
have the property that their coefficients are traces of singular moduli. These works
are described in [BO, BJO06]. Secondly, we obtain generalizations [BOR05] for
Hilbert modular surfaces (see Theorem 1.2).

Before we state these results, we first recall some of Zagier’s results. For integers
λ, let M !

λ+ 1
2

be the space of weight λ + 1
2 weakly holomorphic modular forms on

Γ0(4) satisfying the “Kohnen plus-space” condition. Recall that a meromorphic
modular form is weakly holomorphic if its poles (if there are any) are supported at
the cusps, and it satisfies Kohnen’s plus-space condition if its q-expansion has the
form

(1.2)
∑

(−1)λn≡0,1 (mod 4)

a(n)qn.

Throughout, let d ≡ 0, 3 (mod 4) be a positive integer, let H(d) be the Hurwitz-
Kronecker class number for the discriminant −d, and let Qd be the set of positive
definite integral binary quadratic forms (including imprimitive forms)

Q(x, y) = [a, b, c] = ax2 + bxy + cy2

with discriminant DQ = −d = b2 − 4ac. For each Q, let τQ be the unique root
in h of Q(x, 1) = 0. The singular modulus f(τQ), for any modular invariant f(z),
depends only on the equivalence class of Q under the action of Γ := PSL2(Z). If
ωQ ∈ {1, 2, 3} is given by

ωQ :=




2 if Q ∼Γ [a, 0, a],
3 if Q ∼Γ [a, a, a],
1 otherwise,

then, for a modular invariant f(z), define the trace Tr(f ; d) by

(1.3) Tr(f ; d) :=
∑

Q∈Qd/Γ

f(τQ)
ωQ

.

Theorems 1 and 5 of [Zag02] imply the following.

Theorem. (Zagier)
If f(z) ∈ Z[j(z)] has a Fourier expansion with constant term 0, then there is a
finite principal part Af (z) =

∑
n≤0 af (n)qn for which

Af (z) +
∑

0<d≡0,3 (mod 4)

Tr(f ; d)qd ∈ M !
3
2
.
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Remark. The earlier claim about the modular form g(z) is the f(z) = J1(z) =
j(z) − 744 case of this theorem.

Remark. Using Poincaré series constructed [BJO06] by Bruinier, Jenkins and
the author, Duke [Duk06] and Jenkins [Jen] have provided new proofs of this the-
orem by combining earlier results of Niebur [Nie73] with facts about Kloosterman-
Salié sums.

Zagier gave several generalizations of this result. Here we highlight two of
these; the first concerns “twisted traces”. For fundamental discriminants D1, let
χD1 denote the associated genus character for positive definite binary quadratic
forms whose discriminants are multiples of D1. If λ is an integer and D2 is a non-
zero integer for which (−1)λD2 ≡ 0, 1 (mod 4) and (−1)λD1D2 < 0, then define
the twisted trace of a modular invariant f(z), say TrD1(f ; D2), by

(1.4) TrD1(f ; D2) :=
∑

Q∈Q|D1D2|/Γ

χD1(Q)f(τQ)
ωQ

.

If f ∈ Z[j(z)] has a Fourier expansion with constant term 0, then Zagier proved
that these traces are coefficients of weight 3/2 forms (see Theorem 6 of [Zag02]).
The second generalization involves Tr(f ; d) for special non-holomorphic modular
functions f(z). In these cases, the corresponding generating functions have weight
λ + 1

2 , where λ ∈ {−6,−4,−3,−2,−1} (see Theorems 10 and 11 of [Zag02]).

Remark. Kim [Kim04, Kim] has established the modularity for traces of
singular moduli on certain genus zero congruence subgroups. Using theta lifts,
Bruinier and Funke [BF06] (see Theorem 3.1) have recently proven a more general
theorem which holds for modular functions on modular curves of arbitrary genus.
Their result plays an important role in the proof of Theorem 1.2, our result for
Hilbert modular surfaces.

Generalizing the arguments of Duke and Jenkins alluded to above, we show
that the coefficients of certain half-integral weight Maass-Poincaré series are traces
of singular moduli. This result includes the results of Zagier described above, and,
as an added bonus, gives exact formulas for these traces. To construct these series,
let k := λ + 1

2 , where λ is an arbitrary integer, and let Mν, µ(z) be the usual
M -Whittaker function. For s ∈ C and y ∈ R − {0}, we define

Ms(y) := |y|− k
2 M k

2 sgn(y), s− 1
2
(|y|).

Suppose that m ≥ 1 is an integer with (−1)λ+1m ≡ 0, 1 (mod 4). Define ϕ−m,s(z)
by

ϕ−m,s(z) := Ms(−4πmy)e(−mx),

where z = x + iy, and e(w) := e2πiw. Furthermore, let

Γ∞ :=
{
±
(

1 n
0 1

)
: n ∈ Z

}

denote the translations within SL2(Z). Using this notation, define the Poincaré
series

(1.5) Fλ(−m, s; z) :=
∑

A∈Γ∞\Γ0(4)

(ϕ−m,s |k A)(z)
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for Re(s) > 1. Here |k denotes the usual half-integral weight k “slash operator”
(see Shimura’s seminal paper [Shi73]). If prλ is Kohnen’s projection operator (see
page 250 of [Koh85]) to the weight λ + 1

2 plus-space for Γ0(4), then for λ �∈ {0, 1}
define Fλ(−m; z) by

(1.6) Fλ(−m; z) :=

{
3
2Fλ

(
−m, k

2 ; z
)
| prλ if λ ≥ 2,

3
2(1−k)Γ(1−k)Fλ

(
−m, 1 − k

2 ; z
)
| prλ if λ ≤ −1.

Remark. For λ = 0 or 1 we also have series Fλ(−m; z). Their construction
requires more care. For λ = 1 this is carried out in [BJO06], and for λ = 0 see
[BO].

By Theorem 3.5 of [BJO06], if λ ≥ −6 with λ �= −5, then Fλ(−m; z) ∈ M !
λ+ 1

2
.

For such λ, we denote the corresponding Fourier expansions by

(1.7) Fλ(−m; z) = q−m +
∑
n≥0

(−1)λn≡0,1 (mod 4)

bλ(−m; n)qn ∈ M !
λ+ 1

2
.

For other λ, namely λ = −5 or λ ≤ −7, it turns out that the Fλ(−m; z) are weak
Maass forms of weight λ + 1

2 (see Section 2.1). We denote their expansions by

(1.8) Fλ(−m; z) = Bλ(−m; z) + q−m +
∑
n≥0

(−1)λn≡0,1 (mod 4)

bλ(−m; n)qn,

where Bλ(−m; z) is the “non-holomorphic” part of Fλ(−m; z).

Example. If λ = 1 and −m = −1, then we have the modular form in (1.1)

−F1(−1; z) = g(z) = −q−1 + 2 − 248q3 + 492q4 − 4119q7 + 7256q8 − · · · .

Generalizing Zagier’s results, we show that the coefficients bλ(−m; n) of the
Fλ(−m; z) are traces of singular moduli for functions defined by Niebur [Nie73].
If Is(x) denotes the usual I-Bessel function, and if λ > 1, then let

(1.9) Fλ(z) := π
∑

A∈Γ∞\SL2(Z)

Im(Az)
1
2 Iλ− 1

2
(2πIm(Az))e(−Re(Az)).

Remark. For λ = 1, Niebur’s [Nie73] shows that F1(z) = 1
2 (j(z)−744), where

this function is the analytic continuation, as s → 1 from the right, of

−12 + π
∑

A∈Γ∞\SL2(Z)

Im(Az)
1
2 Is− 1

2
(2πIm(Az))e(−Re(Az)).

Arguing as in [BJO06, Duk06, Jen], Bringmann and the author have proved
[BO] the following:

Theorem 1.1. (Bringmann and Ono; Theorem 1.2 of [BO])
If λ, m ≥ 1 are integers for which (−1)λ+1m is a fundamental discriminant (which
includes 1), then for each positive integer n with (−1)λn ≡ 0, 1 (mod 4) we have

bλ(−m; n) =
2(−1)[(λ+1)/2]n

λ
2 − 1

2

m
λ
2

· Tr(−1)λ+1m (Fλ; n) .
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Remark. A version of Theorem 1.1 holds for integers λ ≤ 0. This follows from
a beautiful duality (see Theorem 1.1 of [BO]) which generalizes an observation of
Zagier. Suppose that λ ≥ 1, and that m is a positive integer for which (−1)λ+1m ≡
0, 1 (mod 4). For every positive integer n with (−1)λn ≡ 0, 1 (mod 4), this duality
asserts that

bλ(−m; n) = −b1−λ(−n; m).

Remark. For λ = 1, Theorem 1.1 relates b1(−m; n) to traces and twisted
traces of F1(z) = 1

2 (j(z) − 744). These are Theorems 1 and 6 of Zagier’s paper
[Zag02].

Theorem 1.1 is obtained by reformulating, as traces of singular moduli, exact
expressions for the coefficients bλ(−m; n). We shall sketch the proof of this in
Section 2. These exact formulas often lead to nice number theoretic consequences.
Here we mention one such application which is related to the classical observation
that

(1.10) eπ
√

163 = 262537412640768743.9999999999992 . . .

is nearly an integer.
To make this precise, we recall some classical facts. A primitive positive definite

binary quadratic form Q is reduced if |B| ≤ A ≤ C, and B ≥ 0 if either |B| = A
or A = C. If −d < −4 is a fundamental discriminant, then there are H(d) reduced
forms with discriminant −d. The set of such reduced forms, say Qred

d , is a complete
set of representatives for Qd/Γ. Moreover, each such reduced form has 1 ≤ A ≤√

d/3 (see page 29 of [Cox89]), and has the property that τQ lies in the usual
fundamental domain for the action of SL2(Z)

(1.11) F =
{
−1

2
≤ 	(z) <

1
2

and |z| > 1
}
∪
{
−1

2
≤ 	(z) ≤ 0 and |z| = 1

}
.

Since J1(z) := j(z)−744 = q−1 +196884q + · · · , it follows that if Gred(d) is defined
by

(1.12) Gred(d) =
∑

Q=(A,B,C)∈Qred
d

eπBi/A · eπ
√

d/A,

then Tr(d) − Gred(d) is “small”, where Tr(d) := Tr(J1; d). In other words, q−1

provides a good approximation for J1(z) for most points z. This is illustrated by
(1.10) where H(163) = 1.

It is natural to investigate the “average value”

Tr(d) − Gred(d)
H(d)

,

which for d = 163 is −0.0000000000008 . . . . Armed with the exact formulas for
Tr(d), it turns out that a uniform picture emerges for a slightly perturbed average,
one including some non-reduced quadratic forms. For each positive integer A, let
Qold

A,d denote the set

(1.13) Qold
A,d = {Q = (A, B, C) : non-reduced with DQ = −d and |B| ≤ A}.
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Define Gold(d) by

(1.14) Gold(d) =
∑

√
d/2≤A≤

√
d/3

Q∈Qold
A,d

eπBi/A · eπ
√

d/A.

The non-reduced forms Q contributing to Gold(d) are those primitive discriminant
−d forms for which τQ is in the bounded region obtained by connecting the two
endpoints of the lower boundary of F with a horizontal line. The following data is
quite suggestive:

Tr(d) − Gred(d) − Gold(d)
H(d)

=



−24.672 . . . if d = 1931,

−24.483 . . . if d = 2028,

−23.458 . . . if d = 2111.

Recently, Duke has proved [Duk06] a result which implies the following theorem.

Theorem. (Duke [Duk06])
As −d ranges over negative fundamental discriminants, we have

lim
−d→−∞

Tr(d) − Gred(d) − Gold(d)
H(d)

= −24.

In Section 2 we shall give an explanation of the constant −24 in this theorem. We
shall see that it makes a surprising appearance in the exact formulas for Tr(d).

We shall also describe some generalizations of Theorem 1.1 for Hilbert modular
surfaces. Using the groundbreaking work of Hirzebruch and Zagier [HZ76] on the
intersection theory of Hilbert modular surfaces as a prototype, we consider analogs
of Theorem 1.1 for Hilbert modular surfaces defined over Q(

√
p), where p ≡ 1

(mod 4) is prime. As usual, let OK := Z
[

1+
√

p

2

]
be the ring of integers of the real

quadratic field K := Q(
√

p). The group SL2(OK) acts on h × h by(
α β
γ δ

)
◦ (z1, z2) :=

(
αz1 + β

γz1 + δ
,
α′z2 + β′

γ′z2 + δ′

)
.

Here ν′ denotes the conjugate of ν in Q(
√

p). The quotient Xp := (h×h)/SL2(OK) is
a non-compact surface with finitely many singularities which can be compactified
by adding finitely many points (i.e. cusps). Hirzebruch showed [Hir73] how to
resolve the singularities introduced by adding cusps using cyclic configurations of
rational curves. The resulting modular surface Yp is a nearly smooth compact
algebraic surface with quotient singularities supported at those points in h×h with
a non-trivial isotropy subgroup within PSL2(OK).

Hirzebruch and Zagier introduced [HZ76] a sequence of algebraic curves

Z
(p)
1 , Z

(p)
2 , · · · ⊂ Xp,

and studied the generating functions for their intersection numbers. They proved
the striking fact that these generating functions are weight 2 modular forms, an
observation which allowed them to identify spaces of modular forms with certain
homology groups for Yp. To define these curves, for a positive integer N , consider
the points (z1, z2) ∈ h × h satisfying an equation of the form

(1.15) Az1z2
√

p + λz1 − λ′z2 + B
√

p = 0,
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where A, B ∈ Z, λ ∈ OK , and λλ′ + ABp = N . Each such equation defines a
curve in h × h isomorphic to h, and their union is invariant under SL2(OK). The
Hirzebruch-Zagier divisor Z

(p)
N is defined to be the image of this union in Xp.

Remark. If
(
N
p

)
= −1, then one easily sees from (1.15) that Z

(p)
N is empty.

We let Z̃
(p)
N denote the closure of Z

(p)
N in Yp. If (Z̃(p)

m , Z̃
(p)
n ) denotes the intersec-

tion number of Z̃
(p)
m and Z̃

(p)
n in Yp, then Hirzebruch and Zagier proved in [HZ76],

for every positive integer m, that

(1.16) Φ(p)
m (z) := a(p)

m (0) +
∞∑

n=1

(Z̃(p)
m , Z̃

(p)
n )qn

is a holomorphic weight 2 modular form on Γ0(p) with Nebentypus
( ·
p

)
. Here a

(p)
m (0)

is a simple constant arising from a volume computation. More precisely, Φ(p)
m (z)

is in the plus space M+
2

(
Γ0(p),

( ·
p

))
, the space of holomorphic weight 2 modular

forms F (z) =
∑∞

n=0 a(n)qn on Γ0(p) with Nebentypus
( ·
p

)
, with the additional

property that

a(n) = 0 if
(

n

p

)
= −1.(1.17)

Our generalization of Theorem 1.1 to these surfaces is also a generalization of
this result of Hirzebruch and Zagier, one which involves forms in M2

(
Γ0(p),

( ·
p

))
,

the space of weakly holomorphic modular forms of weight 2 on Γ0(p) with Neben-
typus

( ·
p

)
, and M+

2

(
Γ0(p),

( ·
p

))
, the subspace of those forms in M2

(
Γ0(p),

( ·
p

))
that satisfy (1.17).

To explain this, we first note that the “geometric part” of the proof of the
modularity of (1.16) gives a concrete description of the intersection points Z

(p)
m ∩Z

(p)
n

in terms of CM points which are the “roots” of Γ0(m) equivalence classes of binary
quadratic forms with negative discriminants of the form −(4mn − x2)/p. In this
context, it is natural to consider the traces of singular moduli over the points
constituting Z

(p)
m ∩ Z

(p)
n .

To state our result, suppose that � = 1 or that � is an odd prime with
(

�
p

)
�=

−1, and let Γ∗
0(�) be the projective image of the extension of Γ0(�) by the Fricke

involution W� =
(

0 −1
� 0

)
in PSL2(R). Suppose that f(z) =

∑
n
−∞ a(n)qn ∈

M0(Γ∗
0(�)), the space of weakly holomorphic modular functions with respect to

Γ∗
0(�), and suppose that a(0) = 0. We define the “trace” of f(z) over Z

(p)
� ∩ Z

(p)
n

by

(1.18) (Z(p)
� , Z(p)

n )trf :=
∑

τ∈Z
(p)
� ∩Z

(p)
n

f(τ)
#Γ∗

0(�)τ
,

where Γ∗
0(�)τ is the stabilizer of τ in Γ∗

0(�). We consider their generating functions

(1.19) Φ(p)
�,f (z) := A

(p)
�,f (z) + B

(p)
�,f (z) +

∞∑
n=1

(Z(p)
� , Z(p)

n )trf qn,
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where

A
(p)
�,f (z)

:= −ε(�)
∑

m,n≥1

ma(−mn)




∑
x∈Z

x2≡m2p (mod 2�)

q
x2−m2p

4� +
∑
x∈Z

x≡m (mod 2)

q
x2�−m2p�

4


 ,

B
(p)
�,f (z) := 2ε(�)

∑
n≥1

(σ1(n) + �σ1(n/�))a(−n)
∑
x∈Z

q�x2
,

and where ε(�) = 1/2 for � = 1, and is 1 otherwise. As usual, σ1(x) denotes the
sum of the positive divisors of x if x is an integer, and is zero if x is not an integer.

Bringmann, Rouse and the author have shown [BOR05] that these generating
functions are also modular forms of weight 2. In particular, we obtain a linear map:

Φ(p)
�,� : M0(Γ∗

0(�)) → M2

(
Γ0(p�2),

(
·
p

))

(where the map is defined for the subspace of those functions with constant term
0).

Theorem 1.2. (Bringmann, Ono and Rouse; Theorem 1.1 of [BOR05])
Suppose that p ≡ 1 (mod 4) is prime, and that � = 1 or is an odd prime with(

�
p

)
�= −1. If f(z) =

∑
n
−∞ a(n)qn ∈ M0(Γ∗

0(�)) , with a(0) = 0, then the

generating function Φ(p)
�,f (z) is in M2

(
Γ0(p�2),

( ·
p

))
.

In Section 3 we combine the geometry of these surfaces with recent work of
Bruinier and Funke [BF06] to sketch the proof of Theorem 1.2. In this section
we characterize these modular forms Φ(p)

�,f (z) when f(z) = J1(z) := j(z) − 744. In
terms of the classical Weber functions

(1.20) f1(z) =
η(z/2)
η(z)

and f2(z) =
√

2 · η(2z)
η(z)

,

we have the following exact description.

Theorem 1.3. (Bringmann, Ono and Rouse; Theorem 1.2 of [BOR05])
If p ≡ 1 (mod 4) is prime, then

Φ(p)
1,J1

(z) =
η(2z)η(2pz)E4(pz)f2(2z)2f2(2pz)2

4η(pz)6
·
(
f1(4z)4f2(z)2 − f1(4pz)4f2(pz)2

)
.

Although Theorem 1.3 gives a precise description of the forms Φ(p)
1,J1

(z), it is
interesting to note that they are intimately related to Hilbert class polynomials,
the polynomials given by

(1.21) HD(x) =
∏

τ∈CD

(x − j(τ)) ∈ Z[x],

where CD denotes the equivalence classes of CM points with discriminant −D. Each
HD(x) is an irreducible polynomial in Z[x] which generates a class field extension
of Q(

√
−D). Define Np(z) as the “multiplicative norm” of Φ1,J1(z)

(1.22) Np(z) :=
∏

M∈Γ0(p)\SL2(Z)

Φ(p)
1,J1

|M.
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If N∗
p (z) is the normalization of Np(z) with leading coefficient 1, then we have

N∗
p (z) =




∆(z)H75(j(z)) if p = 5,

E4(z)∆(z)2H3(j(z))H507(j(z)) if p = 13,

∆(z)3H4(j(z))H867(j(z)) if p = 17,

∆(z)5H7(j(z))2H2523(j(z)) if p = 29,

where ∆(z) = η(z)24 is the usual Delta-function. These examples illustrate a
general phenomenon in which N∗

p (z) is essentially a product of certain Hilbert class
polynomials.

To state the general result, define integers a(p), b(p), and c(p) by

a(p) :=
1
2

((
3
p

)
+ 1
)

,(1.23)

b(p) :=
1
2

((
2
p

)
+ 1
)

,(1.24)

c(p) :=
1
6

(
p −
(

3
p

))
,(1.25)

and let Dp be the negative discriminants −D �= −3,−4 of the form x2−4p
16f2 with

x, f ≥ 1.

Theorem 1.4. (Bringmann, Ono and Rouse; Theorem 1.3 of [BOR05])
Assume the notation above. If p ≡ 1 (mod 4) is prime, then

N∗
p (z) = (E4(z)H3(j(z)))a(p) ·H4(j(z))b(p) ·∆(z)c(p) ·H3·p2(j(z)) ·

∏
−D∈Dp

HD(j(z))2.

The remainder of this survey is organized as follows. In Section 2 we compute
the coefficients of the Maass-Poincaré series Fλ(−m; z), and we sketch the proof of
Theorem 1.1 by employing facts about Kloosterman-Salié sums. Moreover, we give
a brief discussion of Duke’s theorem on the “average values”

Tr(d) − Gred(d) − Gold(d)
H(d)

.

In Section 3 we sketch the proof of Theorems 1.2, 1.3 and 1.4.

Acknowledgements
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2. Maass-Poincaré series and the proof of Theorem 1.1

In this section we sketch the proof of Theorem 1.1. We first recall the construc-
tion of the forms Fλ(−m; z), and we then give exact formulas for the coefficients
bλ(−m; n). The proof then follows from classical observations about Kloosterman-
Salié sums and their reformulation as Poincaré series.
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2.1. Maass-Poincaré series. Here we give more details on the Poincaré se-
ries Fλ(−m; z) (see [Bru02, BO, BJO06, Hir73] for more on such series). Sup-

pose that λ is an integer, and that k := λ + 1
2 . For each A =

(
α β
γ δ

)
∈ Γ0(4),

let

j(A, z) :=
(

γ

δ

)
ε−1
δ (γz + δ)

1
2

be the factor of automorphy for half-integral weight modular forms. If f : h → C
is a function, then for A ∈ Γ0(4) we let

(2.1) (f |k A) (z) := j(A, z)−2λ−1f(Az).

As usual, let z = x + iy, and for s ∈ C and y ∈ R − {0}, we let

(2.2) Ms(y) := |y|− k
2 M k

2 sgn(y), s− 1
2
(|y|),

where Mν,µ(z) is the standard M -Whittaker function which is a solution to the
differential equation

∂2u

∂z2
+
(
−1

4
+

ν

z
+

1
4 − µ2

z2

)
u = 0.

If m is a positive integer, and ϕ−m,s(z) is given by

ϕ−m,s(z) := Ms(−4πmy)e(−mx),

then recall from the introduction that

(2.3) Fλ(−m, s; z) :=
∑

A∈Γ∞\Γ0(4)

(ϕ−m,s |k A)(z).

It is easy to verify that ϕ−m,s(z) is an eigenfunction, with eigenvalue

(2.4) s(1 − s) + (k2 − 2k)/4,

of the weight k hyperbolic Laplacian

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

Since ϕ−m,s(z) = O
(
yRe(s)− k

2

)
as y → 0, it follows that Fλ(−m, s; z) converges

absolutely for Re(s) > 1, is a Γ0(4)-invariant eigenfunction of the Laplacian, and is
real analytic.

Special values, in s, of these series provide examples of half-integral weight
weak Maass forms. A weak Maass form of weight k for the group Γ0(4) is a smooth
function f : h → C satisfying the following:

(1) For all A ∈ Γ0(4) we have

(f |k A)(z) = f(z).

(2) We have ∆kf = 0.
(3) The function f(z) has at most linear exponential growth at all the cusps.

In particular, the discussion above implies that the special s-values at k/2
and 1 − k/2 of Fλ(−m, s; z) are weak Maass forms of weight k = λ + 1

2 when
the series is absolutely convergent. If λ �∈ {0, 1} and m ≥ 1 is an integer for
which (−1)λ+1m ≡ 0, 1 (mod 4), then this implies that the Kohnen projections
Fλ(−m; z), from the introduction, are weak Maass forms of weight k = λ + 1

2 on
Γ0(4) in Kohnen’s plus space.
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If λ = 1 and m is a positive integer for which m ≡ 0, 1 (mod 4), then define
F1(−m; z) by

(2.5) F1(−m; z) :=
3
2
F1

(
−m,

3
4
; z
)

| pr1 + 24δ�,mG(z).

The function G(z) is given by the Fourier expansion

G(z) :=
∞∑

n=0

H(n)qn +
1

16π
√

y

∞∑
n=−∞

β(4πn2y)q−n2
,

where H(0) = −1/12 and

β(s) :=
∫ ∞

1

t−
3
2 e−stdt.

Proposition 3.6 of [BJO06] establishes that each F1(−m; z) is in M !
3
2
.

Remark. The function G(z) plays an important role in the work of Hirzebruch
and Zagier [HZ76] which is intimately related to Theorems 1.2, 1.3 and 1.4.

Remark. An analogous argument is used to define the series F0(−m; z) ∈ M !
1
2
.

2.2. Exact formulas for the coefficients bλ(−m; n). Here we give exact
formulas for the bλ(−m; n), the coefficients of the holomorphic parts of the Maass-
Poincaré series Fλ(−m; z). These coefficients are given as explicit infinite sums
in half-integral weight Kloosterman sums weighted by Bessel functions. To define
these Kloosterman sums, for odd δ let

(2.6) εδ :=

{
1 if δ ≡ 1 (mod 4),
i if δ ≡ 3 (mod 4).

If λ is an integer, then we define the λ+ 1
2 weight Kloosterman sum Kλ(m, n, c)

by

Kλ(m, n, c) :=
∑

v (mod c)∗

(
c

v

)
ε2λ+1
v e

(
mv̄ + nv

c

)
.(2.7)

In the sum, v runs through the primitive residue classes modulo c, and v̄ denotes
the multiplicative inverse of v modulo c. In addition, for convenience we define
δ�,m ∈ {0, 1} by

(2.8) δ�,m :=

{
1 if m is a square,
0 otherwise.

Finally, for integers c define δodd(c) by

δodd(c) :=

{
1 if c is odd,

0 otherwise.

Theorem 2.1. Suppose that λ is an integer, and suppose that m is a positive
integer for which (−1)λ+1m ≡ 0, 1 (mod 4). Furthermore, suppose that n is a
non-negative integer for which (−1)λn ≡ 0, 1 (mod 4).
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(1) If λ ≥ 2, then bλ(−m; 0) = 0, and for positive n we have

bλ(−m; n) = (−1)[(λ+1)/2]π
√

2(n/m)
λ
2 − 1

4 (1 − (−1)λi)

×
∑
c>0

c≡0 (mod 4)

(1 + δodd(c/4))
Kλ(−m, n, c)

c
· Iλ− 1

2

(
4π

√
mn

c

)
.

(2) If λ ≤ −1, then

bλ(−m; 0) = (−1)[(λ+1)/2]π
3
2−λ21−λm

1
2−λ(1 − (−1)λi)

× 1
( 1
2 − λ)Γ( 1

2 − λ)

∑
c>0

c≡0 (mod 4)

(1 + δodd(c/4))
Kλ(−m, 0, c)

c
3
2−λ

,

and for positive n we have

bλ(−m; n) = (−1)[(λ+1)/2]π
√

2(n/m)
λ
2 − 1

4 (1 − (−1)λi)

×
∑
c>0

c≡0 (mod 4)

(1 + δodd(c/4))
Kλ(−m, n, c)

c
· I 1

2−λ

(
4π

√
mn

c

)
.

(3) If λ = 1, then b1(−m; 0) = −2δ�,m, and for positive n we have

b1(−m; n) = 24δ�,mH(n) − π
√

2(n/m)
1
4 (1 + i)

×
∑
c>0

c≡0 (mod 4)

(1 + δodd(c/4))
K1(−m, n, c)

c
· I 1

2

(
4π

√
mn

c

)
.

(4) If λ = 0, then b0(−m; 0) = 0, and for positive n we have

b0(−m; n) = −24δ�,nH(m) + π
√

2(m/n)
1
4 (1 − i)

×
∑
c>0

c≡0 (mod 4)

(1 + δodd(c/4))
K0(−m, n, c)

c
· I 1

2

(
4π

√
mn

c

)
.

Remark. For positive integers m and n, the formulas for bλ(−m; n) are nearly
uniform in λ. In fact, this uniformity may be used to derive a nice duality (see
Theorem 1.1 of [BO]) for these coefficients. More precisely, suppose that λ ≥ 1,
and that m is a positive integer for which (−1)λ+1m ≡ 0, 1 (mod 4). For every
positive integer n with (−1)λn ≡ 0, 1 (mod 4), this duality asserts that

bλ(−m; n) = −b1−λ(−n; m).

The proof of Theorem 2.1 requires some further preliminaries. For s ∈ C and
y ∈ R − {0}, we let

(2.9) Ws(y) := |y|− k
2 W k

2 sgn(y), s− 1
2
(|y|),

where Wν,µ denotes the usual W -Whittaker function. For y > 0, we have the
relations

(2.10) M k
2
(−y) = e

y
2 ,

(2.11) W1− k
2
(y) = W k

2
(y) = e−

y
2 ,
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and

(2.12) W1− k
2
(−y) = W k

2
(−y) = e

y
2 Γ (1 − k, y) ,

where

Γ(a, x) :=
∫ ∞

x

e−tta
dt

t

is the incomplete Gamma function. For z ∈ C, the functions Mν,µ(z) and Mν,−µ(z)
are related by the identity

Wν,µ(z) =
Γ(−2µ)

Γ( 1
2 − µ − ν)

Mν,µ(z) +
Γ(2µ)

Γ( 1
2 + µ − ν)

Mν,−µ(z).

From these facts, we easily find, for y > 0, that

(2.13) M1− k
2
(−y) = (k − 1)e

y
2 Γ(1 − k, y) + (1 − k)Γ(1 − k)e

y
2 .

Sketch of the proof of Theorem 2.1. For simplicity, suppose that λ �∈
{0, 1}, and suppose that m is a positive integer for which (−1)λ+1m ≡ 0, 1 (mod 4).
Computing the Fourier expansion requires the integral∫ ∞

−∞
z−kMs

(
−4πm

y

c2|z|2

)
e

(
mx

c2|z|2 − nx

)
dx,

which may be found on p. 357 of [Hir73]. This calculation implies that Fλ (−m, s; z)
has a Fourier expansion of the form

Fλ (−m, s; z) = Ms(−4πmy)e(−mx) +
∑
n∈Z

c(n, y, s)e(nx).

If Js(x) is the usual Bessel function of the first kind, then the coefficients c(n, y, s)
are given as follows. If n < 0, then

c(n, y, s)

:=
2πi−kΓ(2s)
Γ(s − k

2 )

∣∣∣ n
m

∣∣∣
λ
2 − 1

4 ∑
c>0

c≡0 (mod 4)

Kλ(−m, n, c)
c

J2s−1

(
4π
√
|mn|
c

)
Ws(4πny).

If n > 0, then

c(n, y, s)

:=
2πi−kΓ(2s)
Γ(s + k

2 )
(n/m)

λ
2 − 1

4

∑
c>0

c≡0 (mod 4)

Kλ(−m, n, c)
c

I2s−1

(
4π

√
mn

c

)
Ws(4πny).

Lastly, if n = 0, then

c(0, y, s) :=
4

3
4−

λ
2 π

3
4+s−λ

2 i−kms−λ
2 − 1

4 y
3
4−s−λ

2 Γ(2s − 1)
Γ(s + k

2 )Γ(s − k
2 )

∑
c>0

c≡0 (mod 4)

Kλ(−m, 0, c)
c2s

.

The Fourier expansion defines an analytic continuation of Fλ(−m, s; z) to
Re(s) > 3/4. For λ ≥ 2, the presence of the Γ-factor above implies that the Fourier
coefficients c(n, y, s) vanish for negative n. Therefore, Fλ(−m, k

2 ; z) is a weakly
holomorphic modular form on Γ0(4). Applying Kohnen’s projection operator (see
page 250 of [Koh85]) to these series gives Theorem 2.1 (1).
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As we have seen, if λ ≤ −1, then Fλ(−m, 1 − k
2 ; z) is a weak Maass form

of weight k = λ + 1
2 on Γ0(4). Using (2.12) and (2.13), we find that its Fourier

expansion has the form

Fλ

(
−m, 1 − k

2
; z
)

= (k − 1) (Γ(1 − k, 4πmy) − Γ(1 − k)) q−m +
∑
n∈Z

c(n, y)e(nz),
(2.14)

where the coefficients c(n, y), for n < 0, are given by

2πi−k(1−k)
∣∣∣ n
m

∣∣∣
λ
2 − 1

4
Γ(1−k, 4π|n|y).

∑
c>0

c≡0 (mod 4)

Kλ(−m, n, c)
c

J 1
2−λ

(
4π

c

√
|mn|
)

.

For n ≥ 0, (2.11) allows us to conclude that the c(n, y) are given by


2πi−kΓ(2 − k)(n/m)
λ
2 − 1

4

∑
c>0

c≡0 (mod 4)

Kλ(−m, n, c)
c

· I 1
2−λ

(
4π

c

√
mn

)
, n > 0,

4
3
4−

λ
2 π

3
2−λi−km

1
2−λ

∑
c>0

c≡0 (mod 4)

Kλ(−m, 0, c)
c

3
2−λ

. n = 0.

One easily checks that the claimed formulas for bλ(−m; n) are obtained from these
formulas by applying Kohnen’s projection operator prλ. �

Remark. In addition to those λ ≥ 0, if λ ∈ {−6,−4,−3,−2,−1}, then the
functions Fλ(−m; z) are in M !

λ+ 1
2
, and their q-expansions are of the form

(2.15) Fλ(−m; z) = q−m +
∑
n≥0

(−1)λn≡0,1 (mod 4)

bλ(−m; n)qn.

This claim is equivalent to the vanishing of the non-holomorphic terms appearing
in the proof of Theorem 2.1 for these λ. This vanishing is proved in Section 2 of
[BO].

2.3. Sketch of the proof of Theorem 1.1. Here we sketch the proof of
Theorem 1.1. Armed with Theorem 2.1, this proof reduces to classical facts re-
lating half-integral weight Kloosterman sums to Salié sums. To define these sums,
suppose that 0 �= D1 ≡ 0, 1 (mod 4). If λ is an integer, D2 �= 0 is an integer for
which (−1)λD2 ≡ 0, 1 (mod 4), and N is a positive multiple of 4, then define the
generalized Salié sum Sλ(D1, D2, N) by
(2.16)

Sλ(D1, D2, N) :=
∑

x (mod N)

x2≡(−1)λD1D2 (mod N)

χD1

(
N

4
, x,

x2 − (−1)λD1D2

N

)
e

(
2x

N

)
,

where χD1(a, b, c), for a binary quadratic form Q = [a, b, c], is given by
(2.17)

χD1(a, b, c) :=

{
0 if (a, b, c, D1) > 1,(
D1
r

)
if (a, b, c, D1) = 1 and Q represents r with (r, D1) = 1.



SINGULAR MODULI FOR MODULAR CURVES AND SURFACES 199

Remark. If D1 = 1, then χD1 is trivial. Therefore, if (−1)λD2 ≡ 0, 1 (mod 4),
then

Sλ(1, D2, N) =
∑

x (mod N)

x2≡(−1)λD2 (mod N)

e

(
2x

N

)
.

Half-integral weight Kloosterman sums are essentially equal to such Salié sums,
a fact which plays a fundamental role throughout the theory of half-integral weight
modular forms. The following proposition is due to Kohnen (see Proposition 5 of
[Koh85]).

Proposition 2.2. Suppose that N is a positive multiple of 4. If λ is an integer,
and D1 and D2 are non-zero integers for which D1, (−1)λD2 ≡ 0, 1 (mod 4), then

N− 1
2 (1 − (−1)λi)(1 + δodd(N/4)) · Kλ((−1)λD1, D2, N) = Sλ(D1, D2, N).

As a consequence, we may rewrite the formulas in Theorem 2.1 using Salié
sums. The following proposition, well known to experts, then describes these Salié
sums as Poincaré-type series over CM points.

Proposition 2.3. Suppose that λ is an integer, and that D1 is a fundamental
discriminant. If D2 is a non-zero integer for which (−1)λD2 ≡ 0, 1 (mod 4) and
(−1)λD1D2 < 0, then for every positive integer a we have

Sλ(D1, D2, 4a) = 2
∑

Q∈Q|D1D2|/Γ

χD1(Q)
ωQ

∑
A∈Γ∞\SL2(Z)

Im(AτQ)=

√
|D1D2|

2a

e (−Re (AτQ)) .

Proof. For every integral binary quadratic form

Q(x, y) = ax2 + bxy + cy2

of discriminant (−1)λD1D2, let τQ ∈ h be as before. Clearly τQ is equal to

τQ =
−b + i

√
|D1D2|

2a
,(2.18)

and the coefficient b of Q solves the congruence

(2.19) b2 ≡ (−1)λD1D2 (mod 4a).

Conversely, every solution of (2.19) corresponds to a quadratic form with an associ-
ated CM point thereby providing a one-to-one correspondence between the solutions
of

b2 − 4ac = (−1)λD1D2 (a, b, c ∈ Z, a, c > 0)

and the points of the orbits⋃
Q

{
AτQ : A ∈ SL2(Z)/ΓτQ

}
,

where ΓτQ
denotes the isotropy subgroup of τQ in SL2(Z), and where Q varies

over the representatives of Q|D1D2|/Γ. The group Γ∞ preserves the imaginary part
of such a CM point τQ, and preserves (2.19). However, it does not preserve the
middle coefficient b of the corresponding quadratic forms modulo 4a. It identifies the
congruence classes b, b+2a (mod 4a) appearing in the definition of Sλ(D1, D2, 4a).
Since χD1(Q) is fixed under the action of Γ∞, the corresponding summands for such
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pairs of congruence classes are equal. Proposition 2.3 follows since #ΓτQ
= 2ωQ,

and since both ΓτQ
and Γ∞ contain the negative identity matrix. �

Sketch of the proof of Theorem 1.1. Here we prove the cases where λ ≥
2. The argument when λ = 1 is identical. For λ ≥ 2, Theorem 2.1 (1) implies that

bλ(−m; n) = (−1)[(λ+1)/2]π
√

2(n/m)
λ
2 − 1

4 (1 − (−1)λi)

×
∑
c>0

c≡0 (mod 4)

(1 + δodd(c/4))
Kλ(−m, n, c)

c
· Iλ− 1

2

(
4π

√
mn

c

)
.

Using Proposition 2.2, where D1 = (−1)λ+1m and D2 = n, for integers N = c
which are positive multiples of 4, we have

c−
1
2 (1 − (−1)λi)(1 + δodd(c/4)) · Kλ(−m, n, c) = Sλ((−1)λ+1m, n, c).

These identities, combined with the change of variable c = 4a, give

bλ(−m; n) =
(−1)[(λ+1)/2]π√

2
(n/m)

λ
2 − 1

4

∞∑
a=1

Sλ((−1)λ+1m, n, 4a)√
a

· Iλ− 1
2

(
π
√

mn

a

)
.

Using Proposition 2.3, this becomes

bλ(−m; n) =
2(−1)[(λ+1)/2]π√

2
(n/m)

λ
2 − 1

4

∑
Q∈Qnm/Γ

χ(−1)λ+1m(Q)
ωQ

∞∑
a=1

∑
A∈Γ∞\SL2(Z)

Im(AτQ)=
√

mn
2a

Iλ− 1
2
(2πIm(AτQ))

√
a

· e(−Re(AτQ)).

The definition of Fλ(z) in (1.9), combined with the obvious change of variable
relating 1/

√
a to Im(AτQ)

1
2 , gives

bλ(−m; n) =
2(−1)[(λ+1)/2]n

λ
2 − 1

2

m
λ
2

· π
∑

Q∈Qnm/Γ

χ(−1)λ+1m(Q)
ωQ∑

A∈Γ∞\SL2(Z)

Im(AτQ)
1
2 · Iλ− 1

2
(2πIm(AτQ))e(−Re(AτQ))

=
2(−1)[(λ+1)/2]n

λ
2 − 1

2

m
λ
2

· Tr(−1)λ+1m(Fλ; n).

�

2.4. The “24 Theorem”. Here we explain the source of −24 in the limit

(2.20) lim
−d→−∞

Tr(d) − Gred(d) − Gold(d)
H(d)

= −24.

Combining Theorems 1.1 and 2.1 with Proposition 2.2, we find that

Tr(d) = −24H(d) +
∑
c>0

c≡0 (mod 4)

S(d, c) sinh(4π
√

d/c),
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where S(d, c) is the Salié sum

S(d, c) =
∑

x2≡−d (mod c)

e(2x/c).

The constant −24 arises from (2.5). It is not difficult to show that the “24 Theorem”
is equivalent to the assertion that

∑
c>
√

d/3

c≡0 (4)

S(d, c) sinh
(

4π

c

√
d

)
= o (H(d)) .

This follows from the fact the sum over c ≤
√

d/3 is essentially Gred(d) + Gold(d).
The sinh factor contributes the size of q−1 in the Fourier expansion of a singular
modulus, and the summands in the Kloosterman sum provides the corresponding
“angles”. The contribution Gold(d) arises from the fact that the Kloosterman sum
cannot distinguish between reduced and non-reduced forms. In view of Siegel’s
theorem that H(d) �ε d

1
2−ε, (2.20) follows from a bound for such sums of the form

� d
1
2−γ , for some γ > 0. Such bounds are implicit in Duke’s proof of this result

[Duk06].

3. Traces on Hilbert modular surfaces

In this section we sketch the proofs of Theorems 1.2, 1.3 and 1.4. In the first
subsection we recall the arithmetic of the intersection points on the relevant Hilbert
modular surfaces, and in the second subsection we recall recent work of Bruinier
and Funke concerning traces of singular moduli on more generic modular curves.
In the last subsection we sketch the proofs of the theorems.

3.1. Intersection points on Hilbert modular surfaces. Here we provide
(for � = 1 or an odd prime with

(
�
p

)
�= −1) an interpretation of Z

(p)
� ∩ Z

(p)
n as a

union of Γ∗
0(�) equivalence classes of CM points. As before, for −D ≡ 0, 1 (mod 4)

with D > 0, we let QD be the set of all (not necessarily primitive) binary quadratic
forms

Q(x, y) = [a, b, c](x, y) := ax2 + bxy + cy2

with discriminant b2 − 4ac = −D. To each such form Q, we let the CM point τQ

be as before. For � = 1 or an odd prime and D > 0, −D ≡ 0, 1 (mod 4) we define
Q[�]

D to be the subset of QD with the additional condition that �|a. It is easy to
show that Q[�]

D is invariant under Γ∗
0(�).

If � = 1 or � is an odd prime with
(

�
p

)
�= −1, then there is a prime ideal p ⊆ OK

with norm �. Define

SL2(OK , p) :=
{(

α β
γ δ

)
∈ SL2(K) : α, δ ∈ OK , γ ∈ p, β ∈ p

−1

}
.

In this case there is a matrix A ∈ GL+
2 (K) such that A−1SL2(OK , p)A = SL2(OK).

Define
φ : (h × h)/SL2(OK , p) → (h × h)/SL2(OK)

by
φ((z1, z2)) := (Az1, A

′z2).
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Let Γ be the stabilizer of {(z, z) : z ∈ h} ⊆ h×h in SL2(OK , p). Then Γ = Γ0(�)
if � �= p and Γ = Γ∗

0(�) if � = p. The image of {(z, z) : z ∈ h} under φ is Z
(p)
� .

Hence, we have a natural map ψ : h/Γ → Z
(p)
� . By the work of Hirzebruch and

Zagier [HZ76], if � = 1 or an odd prime with
(

�
p

)
�= −1, and n ≥ 1, then we may

define

(3.1) Z
(p)
� ∩ Z(p)

n :=
⋃
x∈Z

x2<4�n
x2≡4�n (mod p)

{
τQ : Q ∈ Q[�]

(4�n−x2)/p / Γ∗
0(�)
}

.

Here the repetition of x and −x indicates that Z
(p)
� ∩Z

(p)
n is a multiset where a CM

point τQ occurs twice if Q ∈ Q[�]
(4�n−x2)/p for x �= 0. In addition, if � > 1 and �|n,

then we include ⋃
x∈Z

x2<4n/�

x2≡4n/� (mod p)

{
τQ : Q ∈ Q[�]

(4n/�−x2)/p /Γ∗
0(�)
}

,

where each point with non-zero x is taken with multiplicity 2�, and a point where
x = 0 is taken with multiplicity �.

To justify our definition we argue as follows. Hirzebruch and Zagier ([HZ76],
p. 66) show that if t ∈ h, n ≥ 1 and ψ(t) ∈ Z

(p)
� ∩ Z

(p)
n , then

a�t2 +
�λ − �λ′

√
p

t + b = 0

for (a, b, λ) ∈ Z⊕Z⊕p−1 with �λλ′+abp = n. This follows as a result of considering
the inverse image φ−1(Z(p)

� ) ⊆ (h × h)/SL2(OK , p).
Write �λ = c + d

1+
√

p

2 , for c, d ∈ Z. We have that the discriminant of the
equation above is d2 − 4ab�. However, this implies that

(2c + d)2 − 4n�

p
= d2 − 4ab�.

Thus, the discriminant is of the form (x2 − 4n�)/p. From Hirzebruch and Zagier’s
Theorem 3 ([HZ76], p. 77), computing the number of transverse intersections of
Z

(p)
� and Z

(p)
n , we see that each z ∈ h with discriminant of the form (x2 − 4n�)/p

occurs with the appropriate multiplicity.

3.2. Traces of singular moduli on modular curves aprés Bruinier and
Funke. Throughout, we let � be 1 or an odd prime. Recently, Bruinier and Funke
[BF06] have generalized Zagier’s results on the modularity of generating functions
for traces of singular moduli, and they have obtained results for groups which do
not necessarily possess a Hauptmodul. A particularly elegant example of their work
applies to modular functions on Γ∗

0(�). Suppose that f(z) =
∑

n
−∞ a(n)qn ∈
M0(Γ∗

0(�)) has constant term a(0) = 0. The discriminant −D trace is given by

(3.2) t∗f (D) :=
∑

Q∈QD,�/Γ∗
0(�)

1
#Γ∗

0(�)Q
· f(τQ).

Here Γ∗
0(�)Q is the stabilizer of Q in Γ∗

0(�). Following Kohnen [Koh82], we let, for
ε ∈ {±1}, M+,ε

k+ 1
2
(Γ0(4�)) be the space of those weight k + 1

2 weakly holomorphic
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modular forms f(z) =
∑

n
−∞ a(n)qn on Γ0(4�) whose Fourier coefficients satisfy

(3.3) a(n) = 0 whenever (−1)kn ≡ 2, 3 (mod 4) or
(

(−1)kn

�

)
= −ε.

Theorem 3.1. (Bruinier and Funke; Theorem 1.1 of [BF06])
If � = 1 or is an odd prime and f(z) =

∑
n
−∞ a(n)qn ∈ M0(Γ∗

0(�)), with a(0) = 0,
then

G�(f, z) := −
∑

m,n≥1

ma(−mn)q−m2

+
∑
n≥1

(σ1(n) + �σ1(n/�)) a(−n) +
∑
D>0

t∗f (D)qD

is an element of M+,+
3
2

(Γ0(4�)) .

3.3. Traces on Hilbert modular surfaces. We are now in a position to
sketch the proofs of Theorems 1.2, 1.3, and 1.4.

Sketch of the proof of Theorem 1.2. It is well known that the Jacobi
theta function

(3.4) Θ(z) =
∑
x∈Z

qx2
= 1 + 2q + 2q4 + 2q9 + · · · .

is a weight 1/2 holomorphic modular form on Γ0(4). Suppose that

f(z) =
∑

n
−∞
a(n)qn ∈ M0(Γ∗

0(�))

satisfies the hypotheses of Theorem 1.2. By (3.1) and Theorem 3.1, an easy calcu-
lation reveals that

(3.5) Φ(p)
�,f (z) = ε(�) (G�(f, pz)Θ(z)) | U(4) | (U(�) + �V (�)) ,

where for d ≥ 1 the operators U(d) and V (d) are defined on formal power series by

(3.6)
(∑

a(n)qn
)

| U(d) :=
∑

a(dn)qn,

and

(3.7)
(∑

a(n)qn
)

| V (d) :=
∑

a(n)qdn.

The proof now follows from generalizations of classical facts about the U and V
operators to spaces of weakly holomorphic modular forms. �

Sketch of the proof of Theorem 1.3. We work directly with (1.1). We
recall the following classical theta function identities:

(3.8) Θ(z) =
η(2z)5

η(z)2η(4z)2
=
∑
x∈Z

qx2
= 1 + 2q + 2q4 + · · · ,

(3.9) Θ0(z) =
η(z)2

η(2z)
=
∑
x∈Z

(−1)xqx2
= 1 − 2q + 2q4 − 2q9 + · · · ,

and

(3.10) Θodd(z) =
η(16z)2

η(8z)
=
∑
x≥0

q(2x+1)2 = q + q9 + q25 + q49 + · · · .
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By (1.1), (3.5), and (3.9), we have that

Φ(p)
1,J1

(z) = − (g1(pz)Θ(z)) | U(4)

= −
(

Θ0(pz)E4(4pz)
η(4pz)6

· Θ(z)
)

| U(4).

For integers v, we have the identities E4(p(z + ν)) = E4(pz) and

η(p(z + ν))6 = iνη(pz)6,

which when inserted into the definition of U(4) gives

Φ(p)
1,J1

(z) = − E4(pz)
4η(pz)6

3∑
ν=0

i−νΘ0(p(z + ν)/4)Θ((z + ν)/4).

By (3.9) and (3.10), one finds that

Φ(p)
1,J1

(z) = − E4(pz)
4η(pz)6

·
∑

x,y∈Z

q(px2+y2)/4 · (−1)x

(
3∑

ν=0

ipνx2+y2ν−ν

)
.

Since we have that
3∑

ν=0

ipνx2+y2ν−ν =

{
0 if x ≡ y (mod 2),
4 if x �≡ y (mod 2),

it follows that

Φ(p)
1,J1

(z) = −E4(pz)
η(pz)6

·


∑

x,y∈Z

q((2y+1)2+4px2)/4 −
∑

x,y∈Z

q(4y2+(2x+1)2p)/4




= −2E4(pz)
η(pz)6

· (Θ(pz)Θodd(z/4) − Θ(z)Θodd(pz/4)) .

The claimed formula now follows easily from (1.20), (3.8), and (3.10). �

Sketch of the proof of Theorem 1.4. If p ≡ 1 (mod 4) is prime, then a
lengthy, but straightforward calculation, reveals that

N∗
p (z) = E4(z)a(p) · ∆(z)c(p) · Fp(j(z)),(3.11)

where Fp(x) ∈ Z[x] is a monic polynomial with

deg(Fp(x)) =

{
(5p − 5)/12 if p ≡ 1 (mod 12),
(5p − 1)/12 if p ≡ 5 (mod 12).

Hence it suffices to compute the factorization of Fp(x) over Z[x].
Loosely speaking, Fp(x) captures the divisor of the modular form N∗

p (z) in h.
To compute the points in the divisor, we shall make use of Theorem 1.3. Since η(z)
is non-vanishing on h, the factors of Fp(x) only arise from the zeros of the “norm”
of E4(pz) and of

f1(4z)4f2(z)2 − f1(4pz)4f2(pz)2.

To determine these zeros and their corresponding multiplicities, we require
classical facts about class numbers and the Eichler-Selberg trace formula. To begin,
first observe that E4(ω) = 0, where ω := e2π/3 = −1+

√
−3

2 . Hence it follows that
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E4(pz) is zero for zp := ω/p. Since zp has discriminant −3p2, the irreducibility of
H3·p2(x) implies that H3·p2(x) | Fp(x) in Z[x]. Therefore, we may conclude that

Fp(x) = H3·p2(x) · Ip(x),

where Ip(x) ∈ Z[x] has

deg(Ip(x)) =

{
(p − 1)/12 if p ≡ 1 (mod 12),
(p − 5)/12 if p ≡ 5 (mod 12).

To complete the proof, it suffices to determine the polynomial Ip(x). To this
end, observe that Ip(x) is the polynomial which encodes the divisor of the norm of

f1(4z)4f2(z)2 − f1(4pz)4f2(pz)2.

To study this divisor, one notes that if
(

a b
c d

)
∈ SL2(Z) with b ≡ c ≡ 0 (mod 4)

and g(z) := f1(4z)4f2(z)2, then g
(

az+b
cz+d

)
= g(z). The proof is complete once we

establish that
Ip(x) = H3(x)a(p) · H4(x)b(p)

∏
−D∈Dp

HD(x)2.

To prove this assertion, we note that the modular transformation above implies
that z ∈ h is a root of g(z) − g(pz) if az+b

cz+d = pz for
(

a b
c d

)
∈ SL2(Z) with b ≡ c ≡ 0

(mod 4). This leads to the quadratic equation

pc

4
z2 +

pd − a

4
z − b

4
= 0.

Using some class number relations, and the fact that Hilbert class polynomials are
irreducible, we simply need to show that for a negative discriminant of the form
−D := x2−4p

16f2 with x, f ∈ Z that there are two integral binary quadratic forms

Q1 :=
pc1

4f
x2 +

pd1 − a1

4f
xy − b1

4f
y2

Q2 :=
pc2

4f
x2 +

pd2 − a2

4f
xy − b2

4f
y2,

which are inequivalent under Γ0(p) with discriminants −D such that
(

a1 b1
c1 d1

)
,(

a2 b2
c2 d2

)
∈ SL2(Z) with b1 ≡ b2 ≡ c1 ≡ c2 ≡ 0 (mod 4). This is an easy exer-

cise. �
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Rational points of bounded height on threefolds

Per Salberger

Abstract. Let ne,f (B) be the number of non-trivial positive integer solutions
x0, x1, x2, y0, y1, y2 ≤ B to the simultaneous equations

xe
0 + xe

1 + xe
2 = ye

0 + ye
1 + ye

2, xf
0 + xf

1 + xf
2 = yf

0 + yf
1 + yf

2 .

We show that n1,4(B) = Oε(B85/32+ε), n1,5(B) = Oε(B51/20+ε) and that

ne,f (B) = Oe,f,ε(B
5/2+ε) if ef ≥ 6 and f ≥ 4. These estimates are deduced

from general upper bounds for the number of rational points of bounded height
on projective threefolds over Q.

Introduction

This paper deals with the number N(X, B) of rational points of height at most
B on projective threefolds X ⊂ Pn over Q. To define the height H(x) of a rational
point x on Pn, we choose a primitive integral (n + 1)-tuple (x0, ..., xn) representing
x and let H(x) = max(|x0| , ..., |xn|). Our main result is the following.

Theorem 0.1. Let X ⊂ Pn be a geometrically integral projective threefold over
Q of degree d and let X ′ be the complement of the union of all planes on X. Then

N(X ′, B) =




On,ε(B15
√

3/16+5/4+ε) if d = 3,
On,ε(B1205/448+ε) if d = 4,
On,ε(B51/20+ε) if d = 5,
Od,n,ε(B5/2+ε) if d ≥ 6.

If n = d = 4 and X is not a cone of a Steiner surface, then

N(X ′, B) = On,ε(B85/32+ε).

This bound is better than the bound Od,n,ε(B11/4+ε + B5/2+5/3d+ε) in [Salc],
§8. An important special case is the following.

Theorem 0.2. Let (a0, . . . , a5) and (b0, . . . , b5) be two sextuples of rational
numbers all different from zero and e < f be positive integers. Let X ⊂ P5 be the
threefold defined by the two equations a0x

e
0+. . .+a5x

e
5 = 0 and b0x

f
0 + . . . + b5x

f
5 = 0.

Then there are only finitely many planes on X if f ≥ 3. Moreover, if X ′ ⊂ X is

2000 Mathematics Subject Classification. Primary 14G08, Secondary 11G35.

c© 2007 Per Salberger
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the complement of these planes in X, then

N(X ′, B) =




Oε(B15
√

3/16+5/4+ε) if e = 1 and f = 3,
Oε(B85/32+ε) if e = 1 and f = 4,
Oε(B51/20+ε) if e = 1 and f = 5,
Oe,f,ε(B5/2+ε) if ef ≥ 6.

As a corollary we obtain from Lemma 1 in [BHB] the following result on pairs
of simultaneous equal sums of three powers.

Corollary 0.3. Let ne,f (B), e < f be the number of solutions in positive
integers xi, yi ≤ B to the two polynomial equations

xe
0 + xe

1 + xe
2 = ye

0 + ye
1 + ye

2

xf
0 + xf

1 + xf
2 = yf

0 + yf
1 + yf

2

where (x0, x1, x2) �= (yi, yj , yk) for all six permutations of (i, j, k) of (0, 1, 2). Then,

n1,4(B) = Oε(B85/32+ε)
n1,5(B) = Oε(B51/20+ε)
ne,f (B) = Oe,f,ε(B5/2+ε) if ef ≥ 6 and f ≥ 4.

Previously, it has been shown by Greaves [Gre97] that n1,f (B) = Oε(B17/6+ε)
and by Skinner-Wooley[SW97] that n1,f (B) = Oε(B8/3+1/(f−1)+ε). Moreover,
work of Wooley [Woo96] shows that n2,3(B) = Oε(B7/3+ε) and Tsui and Wooley
[TW99] have shown that n2,4(B) = Oε(B36/13+ε). Finally, one may find the
estimate

ne,f (B) = Oe,f,ε(B11/4+ε + B5/2+5/3ef+ε)

in the paper of Browning and Heath-Brown [BHB]. Our estimate for ne,f (B) is
superior to the previous estimates when f ≥ 4.

The main idea of the proof of Theorem 0.1 is to use hyperplane sections to
reduce to counting problems for surfaces. For the geometrically integral hyperplane
sections we use thereby the new sharp estimates for surfaces in [Sala].

I would like to thank T. Browning for his comments on an earlier version of
this paper.

1. The hyperplane sections given by Siegel’s lemma

Let Gr(Pn) be the Grassmannian of r-planes on Pn. It is embedded into
P(n+1

r+1)−1 by the Plücker embedding. In particular, if r = n − 1, then we may
identify Gr(Pn) with the dual projective space Pn∨. The height H(Λ) of a rational
r-plane Λ ⊂ Pn is by definition the height of its Plücker coordinates. In particular,
if r = n−1 then the height of a hyperplane Λ ⊂ Pn defined by c0x0+. . .+cnxn = 0,
is the height of the rational point (c0, . . . , cn) in Pn∨.

In order to prove Theorem 0.1 for hypersurfaces in P4, we shall need the follow-
ing two lemmas from the geometry of numbers. See [Sch91], Chap I, for example.

Lemma 1.1. Let x be a rational point of height ≤ B on P4. Then x lies on a
hyperplane Π of height H(Π) ≤ (5B)1/4.

Lemma 1.2. There is an absolute constant κ such that H(Π) ≤ κH(Λ)1/3 for
any rational hyperplane Π of minimal height containing a given line Λ ⊂ P4.
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We now introduce the following notation for a geometrically integral hypersur-
face X ⊂ P4.

Notation 1.3. (i) X ′ is the complement of the union of all planes on X.
(ii) S(X, B) is the set of all rational points of height at most B on X.
(iii) P (X, B) is the set of all rational planes Θ ⊂ X which are spanned by

their rational points of height ≤ B and which are contained in a rational
hyperplane Π ⊂ P4 of height H(Π) ≤ (5B)1/4.

(iv) S̃(X, B) is the set of all rational points of height at most B on X, which
do not lie on a plane Θ ⊂ X in P (X, B).

(v) N(X, B) = #S(X, B) and Ñ(X, B) = #S̃(X, B).

2. The hyperplane sections which are not geometrically integral

We shall in this section estimate the contribution to Ñ(X, B) from the hyper-
plane sections Π ∩ X, which are not geometrically integral.

Lemma 2.1. Let X ⊂ P4 be a geometrically integral projective threefold of
degree d ≥ 2 over some field. Let P4∨ be the dual projective space parameterising
hyperplanes Π ⊂ P4 and let c < d be a positive integer. Then the following holds.

a) There is a closed subscheme Wc,d ⊂ P4∨ which parameterises the hyper-
planes Π such that Π ∩ X contains a surface of degree c. The sum of the
degrees of the irreducible components of Wc,d is bounded in terms of d.

b) dimWc,d ≤ 2.
c) If there is a plane on Wc,d ⊂ P4∨, then X is a cone over a curve.

Proof. a) See [Sal05], Lemma 3.3.
(b) There exists by the theorem of Bertini a hyperplane Π0 ⊂ P4∨ and a plane

Θ ⊂ Π0 such that Π0∩X and Θ∩X are geometrically integral. Let Π∨
0 be the dual

projective 3-space of Π0 which parameterises all planes in Π0 and f : Wc,d → Π∨
0 be

the linear morphism which sends the Grassmann point of Π ⊂ P4 to the Grassmann
points of Π ∩ Π0 ⊂ Π0. Then f must be finite since otherwise one of the fibres of
f would contain a line passing through the Grassmann point of Π0 ⊂ P4. Also, f
is not surjective since Θ cannot be of the form Π ∩ Π0 for any hyperplane Π ⊂ P4

parameterised by a point in Wc,d. Hence dim Wc,d = dim f(Wc,d) ≤ dim Π0−1 = 2.
(c) Let Γ ⊂ P4∨ be a plane, Λ ⊂ P4 the dual line, π : Z → P4 the blow-up

at Λ and X̃ = π−1(X). Let p : P4\Λ → P2 be a linear projection from Λ and
q : Z → P2 the morphism induced by p. If q(X̃) �= P2, then X is a cone over a
curve with Λ as vertex. If q(X̃) = P2, then we apply the theorem of Bertini to the
restriction of q to X̃. This implies that q−1(L) ∩ X̃ is geometrically integral for a
generic line L ⊂ P2. Let Π ⊂ P4 be the hyperplane given by the closure of p−1(L).
Then Π∩X is geometrically integral since q−1(L)∩ X̃ is mapped birationally onto
Π ∩ X under π. But as Π ⊃ Λ, this hyperplane is parameterised by a point on
Γ\Wc,d. In particular, Γ is not contained in Wc,d. This completes the proof. �

The following result is a minor extension of Theorem 2.1 in [Sal05].

Theorem 2.2. Let W ⊂ Pn be a closed subscheme defined over Q where all
irreducible components are of dimension at most two. Let D be the sum of the
degrees of all irreducible components of W . Then,

N(W, B) = OD,n(B3) .
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If W does not contain any plane spanned by its rational points of height at most B,
then

N(W, B) = OD,n,ε(B2+ε).

Proof. One reduces immediately to the case where W is integral and then
to the case where W is geometrically integral by the arguments in the proof of
Theorem 2.1 in [Sal05]. It is also shown there that Theorem 2.2 holds if W is
geometrically integral and not a plane. It remains to prove Theorem 2.2 for a
rational plane W . Then the rational points of height ≤ B on W span an r-plane Λ,
r ≤ 2 where N(W, B) = N(Λ, B) = On(BdimΛ) if N(W, B) ≥ 1, ([HB02], Lemma
1(iii)). This completes the proof. �

Lemma 2.3. Let X ⊂ P4 be a geometrically integral projective threefold over Q

of degree d ≥ 2. Then there are Od,ε(B11/4+ε) points x ∈ S̃(X, B) for which there
is a rational hyperplane Π ⊂ P4 of height at most (5B)1/4 containing x such that
Π∩X is not geometrically integral. If X is not a cone over a curve then there are
Od,ε(B5/2+ε) such points x ∈ S̃(X, B) .

Proof. It suffices to establish this bound under the extra hypothesis that
Π ∈ Wc,d(Q) for some fixed integer c < d. By Lemma 2.1 and Theorem 2.2 we have
N(Wc,d, (5B)1/4) = Od,ε(B3/4) in general and N(Wc,d, (5B)1/4) = Od,ε(B1/2+ε)
if X is not a cone over a curve. We may also apply Theorem 2.2 to the closure
W in Π ∩ X of the complement of all rational planes in Π ∩ X spanned by its
rational points of height ≤ B. We then get that there are Od,ε(B2+ε) points in
S̃(X, B)∩Π(Q) for any hyperplane Π ⊂ P4. The desired result follows by summing
over all Π ∈ Wc,d(Q) in the statement of the lemma and over all c. �

3. The points outside the lines

We shall in this section count the points outside the lines on hypersurfaces X
in P4.

Definition 3.1. A surface X ⊂ P3 is said to be a Steiner surface if there is a
morphism π : P2 → P3 of projective degree 2 which maps P2 birationally onto X.

It follows immediately from the definition that a Steiner surface is of degree 4.
The following result is proved but not stated in [Sala].

Theorem 3.2. Let X ⊂ P3 be a geometrically integral projective surface over
Q of degree d ≥ 3. Suppose that X is not a Steiner surface. Then there exists a set
of Od,ε(B3/2

√
d+ε) rational lines on X such that there are

Od,ε(B3/
√

d+ε + B3/2
√

d+2/3+ε + B1+ε)

rational points of height ≤ B not lying on these lines. If X ⊂ P3 is a Steiner
surface, then there are

Od,ε(B43/28+ε)
rational points of height ≤ B not lying on the lines.

Proof. There exists by Theorem 0.5 in [Sala] a set Γ of Od,ε(B3/2
√

d+ε) geo-
metrically integral curves of degree Od,ε(1) on X such that all but Od,ε(B3/

√
d+ε)

rational points of height ≤ B on X lie on the union of these curves. Hence, by
[HB02], th.5, there are Od,ε(B3/2

√
d+2/3+ε) rational points of height ≤ B on the
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union of all curves in Γ of degree ≥ 3. It thus only remains to estimate the total
contribution from the conics. But it is proved in [Sala], 5.4, that this contribution
is Od,ε(B1+3/2

√
d−3

√
d/16+ε+ B1+ε) if X does not contain a two-dimensional family

of conics and Od,ε(B43/28+ε) if X contains such a family. To complete the proof, we
use the fact that a geometrically integral surface X ⊂ P3 of degree d ≥ 3 contains
a two-dimensional family of conics if and only if it is a Steiner surface (cf. [SR49],
pp. 157-8 or [Sha99], p.74). �

Theorem 3.3. Let X ⊂ P4 be a geometrically integral projective threefold over
Q of degree d ≥ 3 , which is not a cone of a Steiner surface. Then there exists a set
of Od,ε(B45/32

√
d+5/4+ε) rational lines on X such that there are

Od,ε(B45/16
√

d+5/4+ε + B5/2+ε) rational points in S̃(X, B) not lying on any of these
lines. If X is a cone of a Steiner surface, then there exists a set of Od,ε(B45/64+5/4+ε)
rational lines on X such that there are Od,ε(B1205/448+ε) rational points on X not
lying on any of these lines.

Proof. We follow the proof of Lemma 5.1 in [Sal05] to which we refer for more
details. To each hyperplane Π ⊂ P4 we introduce new coordinates (y1, y2, y3, y4) for
Π with the following properties for the rational points Pj , 1 ≤ j ≤ 4 on Π defined
by yi(Pj) = δij for 1 ≤ j ≤ 4 .

(3.4)
(i) H(P1) ≤ H(P2) ≤ H(P3) ≤ H(P4)
(ii) H(Π) 	 H(P1)H(P2)H(P3)H(P4) 	 H(Π)
(iii) Any rational point P on Π is represented by a primitive integral quadruple

(y1, y2, y3, y4) such that |yi| 	 H(P )/H(Pi) for 1 ≤ i ≤ 4.
The heights in (3.4) are defined with respect to the original coordinates for P4.
Now let g(d) = max (3/

√
d, 3/2

√
d + 2/3, 1) if X is not a cone of a Steiner

surface. In this case no hyperplane section of X is a Steiner surface by [Rog94],
Lemma 12. If X is a cone of a Steiner surface, let g(d) = 43/28. Then, by Theorem
3.2 and (3.4)(iii) the following assertion holds for any hyperplane Π ⊂ P4 such that
Π ∩ X is geometrically integral.

(3.5) There exists a set of 	d,ε (B/H(P1))3/2
√

d+ε lines on Π ∩ X such that
there are 	d,ε (B/H(P1))g(d)+ε rational points of height ≤ B on Π ∩ X outside
these lines.

Now let 1 ≤ C1 ≤ C2 ≤ C3 ≤ C4 and C1C2C3C4 	 B1/4 and let us consider
the hyperplanes spanned by quadruples (P1, P2, P3, P4) of rational points as above
and such that Cj ≤ H(Pj) ≤ 2Cj , 1 ≤ j ≤ 4. It follows from the proof of
Lemma 5.1 in [Sal05], that there are 	 C8

1 (C2C3C4)4 such hyperplanes. Also,
for any such hyperplane Π where Π ∩ X is geometrically integral, there exists by
Theorem 3.2 a set of 	d,ε (B/C1)3/2

√
d+ε lines on Π ∩ X such that there are

	d,ε (B/C1)g(d)+ε rational points of height ≤ B on Π∩X outside these lines. This

implies just as in (op. cit.) that we have a set of 	d,ε B3/2
√

d+εC
8−3/2

√
d

1 (C2C3C4)4

rational lines on the union V of these hyperplane sections such that there 	d,ε

Bg(d)+εC
8−g(d)
1 (C2C3C4)4 rational points of height ≤ B on V outside all these

lines. Now as 3/2
√

d ≤ 4 and g(d) ≤ 4 we get from the assumptions on Cj , 1 ≤
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j ≤ 4 that C
8−3/2

√
d

1 (C2C3C4)4 ≤ (C1C2C3C4)5−3/8
√

d and C
8−g(d)
1 (C2C3C4)4 ≤

(C1C2C3C4)5−g(d)/4. Hence if we sum over all dyadic intervals [Cj , 2Cj ], 1 ≤ j ≤ 4
for 2-powers Cj as above and argue as in (op. cit.), we will get a set of 	d,ε

B15(3/2
√

d)/16+5/4+ε rational lines on X such that there are Od,ε(B15g(d)/16+5/4+ε)
rational points of height ≤ B on the union of all geometrically integral hyperplane
sections Π ∩ X with H(Π) ≤ (5B)1/4 which do not lie on these lines.

We now combine this with (1.1) and (2.3). Then we conclude that there are
	d,ε B15g(d)/16+5/4+ε +B5/2+ε points in S̃(X, B) outside these lines if X is not a
cone of a Steiner surface and 	ε B15g(d)/16+5/4+ε +B11/4+ε such points if X is a
cone of a Steiner surface. To finish the proof, note that max (15g(d)/16+5/4, 5/2) =
max (45/16

√
d+5/4, 5/2) in the first case and that max (15g(d)/16+5/4, 11/4) =

1205/448 in the second case. �

4. The points on the lines

We shall in this section estimate the contribution to N(X ′, B) from the lines
in Theorem 3.3.

Lemma 4.1. X ⊂ P4 be a geometrically integral projective threefold over Q of
degree d ≥ 2. Let M be a set of Od,ε(B5/2+ε) rational lines Λ on X each contained
in some hyperplane Π ⊂ P4 of height ≤ (5B)1/4 and Ñ(∪Λ∈MΛ, B) be the number
of points in S̃(X, B) ∩ (∪Λ∈MΛ (Q)). Then the following holds.

(a) Ñ(∪Λ∈MΛ, B) = Od,ε(B11/4+ε + B5/2+3/2d+ε).
(b) Ñ(∪Λ∈MΛ, B) = Od,ε(B5/2+3/2d+ε) if X is not a cone over a curve.
(c) Ñ(∪Λ∈MΛ, B) = Od,ε(B5/2+ε + B9/4+3/2d+ε) if there are only finitely

many planes on X.

Proof. We shall for each Λ ∈ M choose a hyperplane Π(Λ) ⊂ P4 of minimal
height containing Λ . Then, H(Π(Λ)) ≤ κH(Λ)1/3 for some absolute constant κ

by (1.2). The contribution to Ñ(∪Λ∈MΛ, B) from all Λ ∈ M where Π(Λ) ∩ X
is not geometrically integral is Od,ε(B11/4+ε) in general and Od,ε(B5/2+ε) if X is
not a cone over a curve (see (2.3)). The contribution from the lines Λ ∈ M with
N(Λ, B) ≤ 1 is Od,ε(B5/2+ε). We may and shall therefore in the sequel assume
that Π(Λ) ∩ X is geometrically integral and N(Λ, B) ≥ 2 for all Λ ∈ M . From
N(Λ, B) ≥ 2 we deduce that H(Λ) ≤ 2B2, N(Λ, B) 	 B2/H(Λ) and

(4.2) N(∪Λ∈MΛ, B) ≤
∑
Λ∈M

N(Λ, B) 	 B2
∑
Λ∈M

H(Λ)−1

It is therefore sufficient to prove that:

(4.3)
∑
Λ∈M

H(Λ)−1 = Od,ε(B1/2+3/2d+ε)

in general and that

(4.4)
∑
Λ∈M

H(Λ)−1 = Od,ε(B1/2+ε + B1/4+3/2d+ε)

if there are only finitely many planes on X.
A proof of (4.3) may be found in the proofs of Lemma 3.2.2 and Lemma 3.2.3

in [BS04]. It is therefore enough to show (4.4).
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Let M1 ⊆ M be the subset of rational lines Λ such that Π(Λ) ∩ X contains
only finitely many lines. Then it is known and easy to show using Hilbert schemes
that there is a uniform upper bound depending only on d for the number of lines
on such Π(Λ) ∩ X. There can therefore only be Od(B5/4) lines Λ ∈ M1 as there
are only O(B5/4) possibilities for Π(Λ). The contribution to

∑
Λ∈M1

H(Λ)−1 from
lines of height ≥ B3/4 is thus Od(B1/2).

Now let [R, 2R] be a dyadic interval with 1 ≤ R ≤ B3/4. Then H(Π(Λ)) 	
H(Λ)1/3 	 R1/3 for Λ with H(Λ) ∈ [R, 2R] so that there are only O(R5/3) possi-
bilities for Π(Λ) and Od(R5/3) such lines Λ. The contribution to

∑
Λ∈M1

H(Λ)−1

from the lines of height H(Λ) ∈ [R, 2R] is thus Od(R2/3). Hence if we sum over all
O(log B) dyadic intervals [R, 2R] with R ≤ B3/4 we get that lines of height ≤ B3/4

contribute with Od(B1/2(log B)) to
∑

Λ∈M1

H(Λ)−1 so that

(4.5)
∑

Λ∈M1

H(Λ)−1 = Od(B1/2(log B)).

We now consider the subset M2 ⊆ M of rational lines Λ where Π(Λ) ∩ X contains
infinitely many lines. This is equivalent to (Π(Λ)∩X)(Q̄) being a union of its lines
(see [Salb], 7.4).

There exists therefore by [Salb], 7.8 a hypersurface W ⊂ P4∨ of degree Od(1)
such that any hyperplane Π ⊂ P4 where Π ∩ X contains infinitely many lines is
parameterised by a point on W . There are thus Od(B) such hyperplanes of height
≤ (5B)1/4. If R ≥ 1, then H(Π(Λ)) 	 H(Λ)1/3 	 R4/3 for lines Λ of height
≤ 2R. There are therefore Od(R4/3) possibilities for Π(Λ) among all lines of height
≤ 2R. There are also by the proof of lemma 3.2.2 in [BS04] Od,ε(R2/d+ε) rational
lines of height ≤ 2R on each geometrically integral hyperplane section. There are
thus 	d,ε min(BR2/d+ε, R4/3+2/d+ε) rational lines of height ≤ 2R in M2. Hence
if R ≥ 1, the contribution from all rational lines of height H(Λ) ∈ [R, 2R] to∑

Λ∈M2
H(Λ)−1 will be 	d,ε min(BR−1+2/d+ε, R1/3+2/d+ε) ≤ B1/4+3/2dRε. If we

cover [1, 2B2] by O(log B) dyadic intervals with 1 ≤ R ≤ B2 , we obtain

(4.6)
∑

Λ∈M2

H(Λ)−1 = Od(B1/4+3/2d+ε) .

If we combine (4.5) and (4.6), then we get (4.4). This completes the proof. �

5. Proof of the theorems

We shall in this section prove Theorems 0.1 and 0.2.

Theorem 5.1. Let X ⊂ P4 be a geometrically integral projective hypersurface
over Q of degree d ≥ 3. Then,

Ñ(X, B) = Od,ε(B11/4+ε + B3/2d+5/2+ε) .

If X is not a cone over a curve, then,

Ñ(X, B) = Od,ε(B45/16
√

d+5/4+ε + B3/2d+5/2+ε) .
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If there are only finitely many planes on X ⊂ P4, then

Ñ(X, B) =




Oε(B45/16
√

d+5/4+ε) if d = 3 or 4 and X is not a cone of a
Steiner surface

Oε(B1205/448+ε) if d = 4
Oε(B51/20+ε) if d = 5
Od,ε(B5/2+ε) if d ≥ 6.

Proof. Let h(d) = max(45/16
√

d + 5/4, 5/2) if X is not a cone of a Steiner
surface and h(d) = 1205/448 if X is a cone of a Steiner surface. Then it is shown in
Theorem 3.3 that there is a set M of Od,ε(B45/32

√
d+5/4+ε) rational lines on X such

that all but Od,ε(Bh(d)+ε) points in S̃(X, B) lie on the union of these lines. To count
the points in S̃(X, B)∩ (∪Λ∈MΛ (Q)), we note that #M = Od,ε(B5/2+ε) and apply
Lemma 4.1. We then get that Ñ(X, B) = Od,ε(Bh(d)+ε +B11/4+ε +B3/2d+5/2+ε) in
general. Further, if X is not a cone over a curve, then Ñ(X, B) = Od,ε(Bh(d)+ε +
B3/2d+5/2+ε) while Ñ(X, B) = Od,ε(Bh(d)+ε + B3/2d+9/4+ε + B5/2+ε) in the more
special case when there are only finitely many planes on X ⊂ P4. It is now easy to
complete the proof by comparing all the exponents that occur. �

Corollary 5.2. Let X ⊂ P4 be a geometrically integral projective hypersur-
face over Q of degree d ≥ 3. Then, N(X, B) = Od,ε(B3+ε).

Proof. This follows from the first assertion in Theorem 5.1 and [BS04],
Lemma 3.1.1. (The result was first proved for d ≥ 4 in [BS04] and then for
d = 3 in [BHB05].) �

Theorem 5.3. Let X ⊂ Pn be a geometrically integral projective threefold over
Q of degree d. Let X ′ be the complement of the union of all planes on X. Then,

N(X ′, B) =




On,ε(B15
√

3/16+5/4+ε) if d = 3,
On,ε(B1205/448+ε) if d = 4,
On,ε(B51/20+ε) if d = 5,
Od,n,ε(B5/2+ε) if d ≥ 6 .

If n = d = 4 and X is not a cone of a Steiner surface, then

N(X ′, B) = On,ε(B85/32+ε) .

Proof. If n = 4 and there are only finitely many planes on X ⊂ P4, then this
follows from Theorem 5.1 since N(X ′, B) ≤ Ñ(X, B). If there are infinitely many
planes on X, then X ′ is empty [Salb], 7.4 and N(X ′, B) = 0. To prove Theorem
5.3 for n > 4, we reduce to the case n = 4 by means of a birational projection
argument (see [Salc], 8.3). �

Proposition 5.4. Let k be an algebraically closed field of characteristic 0 and
(a0, . . . , a5), (b0, . . . , b5) be two sextuples in k∗ = k \ {0} and X ⊂ P5 be the closed
subscheme defined by the two equations a0x

e
0+. . .+a5x

e
5 = 0 and b0x

f
0 +. . .+b5x

f
5 =

0 where e < f . Then the following holds
(a) There are only finitely many singular points on X,
(b) Xis a normal integral scheme of degree ef ,
(c) There are only finitely many planes on X if f ≥ 3,
(d) X is not a cone over a Steiner surface.
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Proof. (a) Let (x0, . . . , x5) be a singular point on X with at least two non-zero
coordinates xi, xj . Then it follows from the Jacobian criterion that aibjx

e−1
i xf−1

j =
ajbix

e−1
j xf−1

i and hence that aibjx
f−e
j = ajbix

f−e
i . Hence there are only f − e

possible values for xj/xi for any two non-zero coordinates xi, xj of a singular point.
This implies that there only finitely many singular points on X.

(b) The forms a0x
e
0 + . . . + a5x

e
5 and b0x

f
0 + . . . + b5x

f
5 are irreducible for

(a0, . . . , a5), (b0, . . . , b5) as above and define integral hypersurfaces Ya ⊂ P5 and
Yb ⊂ P5 of different degrees. Therefore, X ⊂ P5 is a complete intersection of
codimension two of degree ef . In particular, Yb is a Cohen-Macaulay scheme and
X ⊂ Yb a closed subscheme which is regularly immersed. Hence, as the singular
locus of X is of codimension ≥ 2, we obtain from [AK70], VII 2.14, that X is
normal. As X is of finite type over k, it is thus integral if and only if it is connected.
To show that X is connected, use Exercise II.8.4 in [Har77].

(c) It is known that there are only finitely many planes on non-singular hyper-
surfaces of degree ≥3 in P5 (see [Sta06] where it is attributed to Debarre). There
are thus only finitely many planes on Y and hence also on X.

(d) It is well known that a Steiner surface has three double lines. The singular
locus of a cone of Steiner surface is thus two-dimensional. Hence X cannot be such
a cone by (a). �

Parts (a) and (c) of the previous proposition were used already in [Kon02] and
[BHB].

Theorem 5.5. Let (a0, . . . , a5) and (b0, . . . , b5) be two sextuples of rational
numbers different from zero and e < f be positive integers with f ≥ 3. Let X ⊂ P5

be the threefold defined by the two equations a0x
e
0 + . . . + a5x

e
5 = 0 and b0x

f
0 +

. . . + b5x
f
5 = 0 . Then there are only finitely many planes on X. If X ′ ⊂ X is the

complement of these planes in X, then

N(X ′, B) = Oε(B45/16
√

ef+5/4+ε) if ef = 3 or 4,
N(X ′, B) = Oε(B51/20+ε) if ef = 5,
N(X ′, B) = Oe,f,ε(B5/2+ε) if ef ≥ 6 .

Proof. This follows from Theorems 5.3 and 5.4. �
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Reciprocal Geodesics

Peter Sarnak

Abstract. The closed geodesics on the modular surface which are equiva-

lent to themselves when their orientation is reversed have recently arisen in
a number of different contexts.We examine their relation to Gauss’ ambigu-

ous binary quadratic forms and to elements of order four in his composition
groups.We give a parametrization of these geodesics and use this to count them
asymptotically and to investigate their distribution.

This note is concerned with parametrizing, counting and equidistribution of
conjugacy classes of infinite maximal dihedral subgroups of Γ = PSL(2, Z) and
their connection to Gauss’ ambiguous quadratic forms. These subgroups feature in
the recent work of Connolly and Davis on invariants for the connect sum problem
for manifolds [CD]. They also come up in [PR04] (also see the references therein)
in connection with the stability of kicked dynamics of torus automorphisms as well
as in the theory of quasimorphisms of Γ. In [GS80] they arise when classifying
codimension one foliations of torus bundles over the circle. Apparently they are of
quite wide interest. As pointed out to me by Peter Doyle, these conjugacy classes
and the corresponding reciprocal geodesics, are already discussed in a couple of
places in the volumes of Fricke and Klein ([FK], Vol. I, page 269, Vol II, page
165). The discussion below essentially reproduces a (long) letter that I wrote to
Jim Davis (June, 2005).

Denote by {γ}Γ the conjugacy class in Γ of an element γ ∈ Γ. The elliptic
and parabolic classes (i.e., those with t(γ) ≤ 2 where t(γ) = |trace γ|) are well-
known through examining the standard fundamental domain for Γ as it acts on
H. We restrict our attention to hyperbolic γ’s and we call such a γ primitive (or
prime) if it is not a proper power of another element of Γ. Denote by P the set of
such elements and by Π the corresponding set of conjugacy classes. The primitive
elements generate the maximal hyperbolic cyclic subgroups of Γ. We call a p ∈ P
reciprocal if p−1 = S−1pS for some S ∈ Γ. In this case, S2 = 1 (proofs of this and
further claims are given below) and S is unique up to multiplication on the left by
γ ∈ 〈p〉. Let R denote the set of such reciprocal elements. For r ∈ R the group
Dr = 〈r, S〉, depends only on r and it is a maximal infinite dihedral subgroup of
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Γ. Moreover, all of the latter arise in this way. Thus, the determination of the
conjugacy classes of these dihedral subgroups is the same as determining ρ, the
subset of Π consisting of conjugacy classes of reciprocal elements. Geometrically,
each p ∈ P gives rise to an oriented primitive closed geodesic on Γ\H, whose length

is log N(p) where N(p) =
[(

t(p) +
√

t(p)2 − 4
)

/2
]2

. Conjugate elements give
rise to the same oriented closed geodesic. A closed geodesic is equivalent to itself
with its orientation reversed iff it corresponds to an {r} ∈ ρ.

The question as to whether a given γ is conjugate to γ−1 in Γ is reflected in

part in the corresponding local question. If p ≡ 3 (mod 4), then c =
[

1 0
1 1

]

is not conjugate to c−1 in SL(2, Fp), on the other hand, if p ≡ 1 (mod 4) then
every c ∈ SL(2, Fp) is conjugate to c−1. This difficulty of being conjugate in G(F̄ )
but not in G(F ) does not arise if G = GLn (F a field) and it is the source of a
basic general difficulty associated with conjugacy classes in G and the (adelic) trace
formula and its stabilization [Lan79]. For the case at hand when working over Z,
there is the added issue associated with the lack of a local to global principle and
in particular the class group enters. In fact, certain elements of order dividing four
in Gauss’ composition group play a critical role in the analysis of the reciprocal
classes.

In order to study ρ it is convenient to introduce some other set theoretic
involutions of Π. Let φR be the involution of Γ given by φR(γ) = γ−1. Let

φw(γ) = w−1γw where w =
(

1 0
0 −1

)
∈ PGL(2, Z) (modulo inner automor-

phism φw generates the outer automorphisms of Γ coming from PGL(2, Z)). φR

and φw commute and set φA = φR◦φw = φw ◦φR. These three involutions generate
the Klein group G of order 4. The action of G on Γ preserves P and Π. For H
a subgroup of G, let ΠH = {{p} ∈ Π : φ({p}) = {p} for φ ∈ H}. Thus Π{e} = Π
and Π〈φR〉 = ρ. We call the elements in Π〈φA〉 ambiguous classes (we will see that
they are related to Gauss’ ambiguous classes of quadratic forms) and of Π〈φw〉, inert
classes. Note that the involution γ → γt is, up to conjugacy in Γ, the same as φR,

since the contragredient satisfies tg−1 =
[

0 1
−1 0

]
g

[
0 1
−1 0

]
. Thus p ∈ P is

reciprocal iff p is conjugate to pt.
To give an explicit parametrization of ρ let

(1) C =
{
(a, b) ∈ Z2 : (a, b) = 1, a > 0, d = 4a2 + b2 is not a square

}
.

To each (a, b) ∈ C let (t0, u0) be the least solution with t0 > 0 and u0 > 0 of
the Pell equation

(2) t2 − du2 = 4 .

Define ψ : C −→ρ by

(3) (a, b) −→







t0 − bu0

2
au0

au0
t0 + bu0

2







Γ

,
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It is clear that ψ((a, b)) is reciprocal since an A ∈ Γ is symmetric iff S−1
0 AS0 = A−1

where S0 =
[

0 1
−1 0

]
. Our central assertion concerning parametrizing ρ is;

Proposition 1. ψ : C −→ρ is two-to-one and onto. ∗

There is a further stratification to the correspondence (3). Let

(4) D = {m |m > 0 , m ≡ 0, 1 (mod 4) , m not a square} .

Then
C =

⋃
d∈D

Cd

where

(5) Cd =
{
(a, b) ∈ C | 4a2 + b2 = d

}
.

Elementary considerations concerning proper representations of integers as a sum
of two squares shows that Cd is empty unless d has only prime divisors p with p ≡ 1
(mod 4) or the prime 2 which can occur to exponent α = 0, 2 or 3. Denote this
subset of D by DR. Moreover for d ∈ DR,

(6) |Cd| = 2 ν(d)

where for any d ∈ D, ν(d) is the number of genera of binary quadratic forms of
discriminant d ((6) is not a coincidence as will be explained below). Explicitly ν(d)
is given as follows: If d = 2αD with D odd and if λ is the number of distinct prime
divisors of D then

(6′) ν(d) =




2λ−1 if α = 0

2λ−1 if α = 2 and D ≡ 1 (mod 4)

2λ if α = 2 and D ≡ 3 (mod 4)

2λ if α = 3 or 4

2λ+1 if α ≥ 5 .

Corresponding to (5) we have

(7) ρ =
⊔

d∈DR

ρd ,

with ρd = ψ(Cd). In particular, ψ : Cd −→ ρd is two-to-one and onto and hence

(8) |ρd| = ν(d) for d ∈ DR .

Local considerations show that for d ∈ D the Pell equation

(9) t2 − du2 = −4 ,

can only have a solution if d ∈ DR. When d ∈ DR it may or may not have a solution.
Let D−

R be those d’s for which (9) has a solution and D+
R the set of d ∈ DR for

which (9) has no integer solution. Then
(i) For d ∈ D+

R none of the {r} ∈ ρd, are ambiguous.
(ii) For d ∈ D−

R , every {r} ∈ ρd is ambiguous.

∗Part of this Proposition is noted in ([FK], Vol. I, pages 267-269).



220 PETER SARNAK

In this last case (ii) we can choose an explicit section of the two-to-one map
(3). For d ∈ D−

R let C−
d = {(a, b) : b < 0}, then ψ : C−

d −→ ρd is a bijection.†

Using these parameterizations as well as some standard techniques from the
spectral theory of Γ\H one can count the number of primitive reciprocal classes.
We order the primes {p} ∈ Π by their trace t(p) (this is equivalent to ordering the
corresponding prime geodesics by their lengths). For H a subgroup of G and x > 2
let

(10) ΠH(x) :=
∑

{p}∈ΠH
t(p) ≤ x

1 .

Theorem 2. As x −→ ∞ we have the following asymptotics:

(11) Π{1}(x) ∼ x2

2 log x
,

(12) Π〈φA〉 (x) ∼ 97
8π2

x(log x)2 ,

(13) Π〈φR〉 (x) ∼ 3
8

x ,

(14) Π〈φw〉 (x) ∼ x

2 log x

and

(15) ΠG (x) ∼ 21
8π

x1/2 log x .

(All of these are established with an exponent saving for the remainder).

In particular, roughly the square root of all the primitive classes are reciprocal
while the fourth root of them are simultaneously reciprocal ambiguous and inert.

We turn to the proofs of the above statements as well as a further discussion
connecting ρ with elements of order dividing four in Gauss’ composition groups.

We begin with the implication S−1pS = p−1 =⇒ S2 = 1. This is true already

in PSL(2, R). Indeed, in this group p is conjugate to ±
(

λ 0
0 λ−1

)
with λ > 1.

Hence Sp−1 = pS with S =
[

a b
c d

]
=⇒ a = d = 0, i.e., S = ±

[
0 β

−β−1 0

]

and so S2 = 1. If S and S1 satisfy x−1px = p−1 then SS−1
1 ∈ Γp the centralizer

of p in Γ. But Γp = 〈p〉 and hence S = βS1 with β ∈ 〈p〉. Now every element
S ∈ Γ whose order is two (i.e., an elliptic element of order 2) is conjugate in Γ to

S0 = ±
[

0 1
−1 0

]
. Hence any r ∈ R is conjugate to an element γ ∈ Γ for which

S−1
0 γS0 = γ−1. The last is equivalent to γ being symmetric. Thus each r ∈ R is

conjugate to a γ ∈ R with γ = γt. (15′)
We can be more precise:

Lemma 3. Every r ∈ R is conjugate to exactly four γ’s which are symmetric.

†For a general d ∈ D+
R it appears to be difficult to determine explicitly a one-to-one section

of ψ.
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To see this associate to each S satisfying

(16) S−1rS = r−1

the two solutions γS and γ′
S (here γ′

S = SγS) of

(17) γ−1Sγ = S0 .

Then

(18) γ−1
S rγS = ((γ′

S)−1 rγ′
S)−1 and both of these are symmetric.

Thus each S satisfying (17) affords a conjugation of r to a pair of inverse symmetric
matrices. Conversely every such conjugation of r to a symmetric matrix is induced
as above from a γS . Indeed if β−1rβ is symmetric then S−1

0 β−1 rβS0 = β−1 r−1β
and so βS−1

0 β−1 = S for an S satisfying (17). Thus to establish (16) it remains to
count the number of distinct images γ−1

S rγS and its inverse that we get as we vary
over all S satisfying (17). Suppose then that

(19) γ−1
S rγS = γ−1

S′ rγS′ .

Then

(20) γS′ γ−1
S = b ∈ Γr = 〈r〉 .

Also from (18)

(21) γ−1
S SγS = γ−1

S′ S′ γS′

or

(22) γS′ γ−1
S S γS γ−1

S′ = S′ .

Using (21) in (23) yields

(23) b−1 Sb = S′ .

But bS satisfies (17), hence bSbS = 1. Putting this relation in (24) yields

(24) S′ = b−2S .

These steps after (22) may all be reversed and we find that (20) holds iff S = b2S′ for
some b ∈ Γr. Since the solutions of (17) are parametrized by bS with b ∈ Γr(and
S a fixed solution) it follows that as S runs over solutions of (17), γ−1

S rγS and
(γ′

S)−1r(γ′
S) run over exactly four elements. This completes the proof of (16). This

argument should be compared with the one in ([Cas82], p. 342) for counting the
number of ambiguous classes of forms. Peter Doyle notes that the four primitive
symmetric elements which are related by conjugacy can be described as follows: If
A is positive, one can write A as γ′γ with γ ∈ Γ (the map γ −→ γ′γ is onto such);
then A, A−1, B, B−1, with B = γγ′, are the four such elements.

To continue we make use of the explicit correspondence between Π and classes
of binary quadratic forms (see [Sar] and also ([Hej83], pp. 514-518). ‡ An integral
binary quadratic form f = [a, b, c] (i.e. ax2 + bxy + xy2) is primitive if (a, b, c) = 1.
Let F denote the set of such forms whose discriminant d = b2 − 4ac is in D. Thus

(25) F =
⊔

d∈D
Fd .

with Fd consisting of the forms of discriminant d. The symmetric square represen-
tation of PGL2 gives an action σ(γ) on F for each γ ∈ Γ. It is given by σ(γ)f = f ′

‡This seems to have been first observed in ([FK], Vol., page 268)
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where f ′(x, y) = f((x, y)γ). Following Gauss we decompose F into equivalence
classes under this action σ(Γ). The class of f is denoted by f̄ or Φ and the set of
classes by F . Equivalent forms have a common discriminant and so

(26) F =
⊔

d∈D
Fd .

Each Fd is finite and its cardinality is denoted by h(d) - the class number. Define
a map n from P to F by

(27) p =
[

a b
c d

]
n−→ f(p) =

1
δ

sgn (a + d) [b, d − a,−c] .

where δ = gcd(a, d − a, c) ≥ 1 and n satisfies the following

(i) n is a bijection from Π to F .
(ii) n(γpγ−1) = (det γ) σ(γ) n(p) for γ ∈ PGL(2, Z).
(iii) n(p−1) = −n(p)
(iv) n(w−1pw) = n(p)∗

(v) n(w−1p−1w) = n(p)′

where

(28) [a, b, c]∗ = [−a, b,−c]

and

(29) [a, b, c]′ = [a,−b, c] .

The proof is a straight-forward verification except for n being onto, which relies on
the theory of Pell’s equation (2). If f = [a, b, c] ∈ F and has discriminant d and if
(td, ud) is the fundamental positive solution to (2) (we also let εd := td+

√
d ud

2 ) and
if

(30) p =




td−udb
2 aud

−cud
td+udb

2




then p ∈ P and n(p) = f . That p is primitive follows from the well-known fact (see
[Cas82], p. 291) that the group of automorphs of f , AutΓ(f) satisfies
(31)

AutΓ(f) := {γ ∈ Γ : σ(γ)f = f} =






t−bu
2 au

−cu t+bu
2


 : t2 − du2 = 4



/

± 1

More generally
Z(f) := {γ ∈ PGL(2, Z)|σ(γ)f = (det γ)f}

(32) =






t−bu
2 au

−cu t+bu
2


 : t2 − du2 = ±4



/

± 1 .

Z(f) is cyclic with a generator ηf corresponding to the fundamental solution ηd =
(t1 +

√
d u1)/2, t1 > 0, u1 > 0 of

(33) t2 − du2 = ±4 .
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If (9) has a solution, i.e. d ∈ D−
R then ηd corresponds to a solution of (9) and

εd = η2
d. If (9) doesn’t have a solution then ηd = εd. Note that Z(f) has elements

with det γ = −1 iff df ∈ D−
R . (35)

From (ii) of the properties of the correspondence n we see that Z(f) is the
centralizer of p in PGL(2, Z), where n(p) = f . (36)

Also from (ii) it follows that n preserves classes and gives a bijection be-
tween Π and F . Moreover, from (iii), (iv) and (v) we see that the action of
G = {1, φw, φA, φR)} corresponds to that of G̃ = {1, ∗, ′,−} on F , G̃ preserves
the decomposition (27) and we therefore examine the fixed points of g ∈ G̃ on Fd.

Gauss [Gau] determined the number of fixed points of ′ in Fd. He discovered
that Fd forms an abelian group under his law of composition. In terms of the
group law, Φ′ = Φ−1 for Φ ∈ Fd. Hence the number of fixed points of ′ (which
he calls ambiguous forms) in Fd is the number of elements of order (dividing) 2.
Furthermore Fd/F2

d is isomorphic to the group of genera (the genera are classes
of forms with equivalence being local integral equivalence at all places). Thus the
number of fixed points of ′ in Fd is equal to the number of genera, which in turn
he showed is equal to the number ν(d) defined earlier. For an excellent modern
treatment of all of this see [Cas82].

Consider next the involution ∗ on Fd. If b ∈ Z and b ≡ d (mod 2) then
the forms [−1, b, d−b2

4 ] are all equivalent and this defines a class J ∈ Fd. Using
composition one sees immediately that J2 = 1, that is J is ambiguous. Also,
applying composition one finds that

(37) J [a, b, c] = [−a, b,−c] = [a, b, c]
∗
.

That is, the action of ∗ on Fd is given by translation in the composition group;
Φ → ΦJ . Thus ∗ has a fixed point in Fd iff J = 1, in which case all of Fd is fixed
by ∗. To analyze when J = 1 we first determine when J and 1 are in the same
genus (i.e. the principal genus). Since [1, b, b2−d

4 ] and [1,−b, b2−d
4 ] are in the same

genus (they are even equivalent) it follows that J and 1 are in the same genus iff
f = [1, b, b2−d

4 ] and −f are in the same genus. An examination of the local genera
(see [Cas82], p. 33) shows that there is an f of discriminant d which is in the same
genus as −f iff d ∈ DR. Thus J is in the principal genus iff d ∈ DR. (38)

To complete the analysis of when J = 1, note that this happens iff [1, b, b2−d
4 ] ∼

[−1, b d−b2

4 ]. That is, [1, b, b2−d
4 ] ∼ (detw) σ(w)[1, b, b2−d

4 ]. Alternatively, J = 1
iff f = (det γ) σ(γ)f with f = [1, b, b2−d

4 ] and det γ = −1. According to (35) this
is equivalent to d ∈ D−

R . Thus ∗ fixes Fd iff J = 1 iff d ∈ D−
R and otherwise ∗ has

no fixed points in Fd. (39)
We turn to the case of interest, that is, the fixed points of − on Fd. Since −

is the (mapping) composite of ∗ and ′ we see from the discussion above that the
action Φ −→ −Φ on Fd when expressed in terms of (Gauss) composition on Fd is
given by

(40) Φ −→ J Φ−1 .

Thus the reciprocal forms in Fd are those Φ’s satisfying

(41) Φ2 = J .

Since J2 = 1, these Φ’s have order dividing 4. Clearly, the number of solutions
to (41) is either 0 or #{B|B2 = 1}, that is, it is either 0 or the number of
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ambiguous classes, which we know is ν(d). According to (38) if d /∈ DR then
J is not in the principal genus and since Φ2 is in the principal genus for every
Φ ∈ Fd, it follows that if d /∈ DR then (41) has no solutions. On the other hand,
if d ∈ DR then we remarked earlier that d = 4a2 + b2 with (a, b) = 1. In fact
there are 2ν(d) such representations with a > 0. Each of these yields a form
f = [a, b,−a] in Fd and each of these is reciprocal by S0. Hence for each such
f, Φ = f̄ satisfies (41), which of course can also be checked by a direct calculation
with composition. Thus for d ∈ DR, (41) has exactly ν(d) solutions. In fact,
the 2ν(d) forms f = [a, b,−a] above project onto the ν(d) solutions in a two-to-one
manner. To see this, recall (15′), which via the correspondence n, asserts that every
reciprocal g is equivalent to an f = [a, b, c] with a = c. Moreover, since [a, b,−a] is
equivalent to [−a,−b, a] it follows that every reciprocal class has a representative
form f = [a, b,−a] with (a, b) ∈ Cd. That is (a, b) −→ [a, b,−a] from Cd to Fd maps
onto the ν(d) reciprocal forms. That this map is two-to-one follows immediately
from (16) and the correspondence n. This completes our proof of (3) and (8). In
fact (15′) and (16) give a direct counting argument proof of (3) and (8) which
does not appeal to the composition group or Gauss’ determination of the number
of ambiguous classes. The statements (i) and (ii) follow from (41) and (39). If
d ∈ D−

R then J = 1 and from (41) the reciprocal and ambiguous classes coincide. If
d ∈ D+

R then J �= 1 and according to (14) the reciprocal classes constitute a fixed
(non-identity) coset of the group A of ambiguous classes in Fd.

To summarize we have the following: The primitive hyperbolic conjugacy
classes are in 1-1 correspondence with classes of forms of discriminants d ∈ D.
To each such d, there are h(d) = |Fd| such classes all of which have a common trace
td and norm ε2d. The number of ambiguous classes for any d ∈ D is ν(d). Unless
d ∈ DR there are no reciprocal classes in Fd while if d ∈ DR then there are ν(d)
such classes and they are parametrized by Cd in a two-to-one manner. If d /∈ D−

R ,
there are no inert classes. If d ∈ D−

R every class is inert and every ambiguous class
is reciprocal and vice-versa. For d ∈ D−

R , C−
d parametrizes the G fixed classes.

Here are some examples:

(i) If d ∈ DR and Fd has no elements of order four, then d ∈ D−
R (this fact

seems to be first noted in [Re1]). For if d ∈ D+
R then J �= 1 and hence

any one of our ν(d) reciprocal classes is of order four. In particular, if

d = p ≡ 1 (mod 4), then h(d) is odd (from the definition of ambiguous

forms it is clear that h(d) ≡ ν(d) (mod 2)) and hence d ∈ D−
R . That is,

t2 − pu2 = −4 has a solution (this is a well-known result of Legendre).

(ii) d = 85 = 17 × 5. η85 = 9+
√

85
2 , ε85 = 83+9

√
85

2 , 85 ∈ D−
R and ν(85) =

h(85) = 2. The distinct classes are [1, 9,−1] and [3, 7,−3]. Both are

ambiguous reciprocal and inert. The corresponding classes in ρ are




 1 9

9 82






Γ

and




 10 27

27 73






Γ

.
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(iii) d = 221 = 13 × 17. η221 = ε221 = 15+
√

221
2 so that 221 ∈ D+

R . ν(221) =

2 while h(221) = 4. The distinct classes are [1, 13,−13], [−1, 13, 13],

[5, 11,−5] = [7, 5,−7], [−5, 11, 5] = [−7, 5, 7]. The first two classes 1 and

J are the ambiguous ones while the last two are the reciprocal ones. There

are no inert classes. The composition group is cyclic of order four with

generator either of the reciprocal classes. The two genera consist of the

ambiguous classes in one genus and the reciprocal classes in the other.

The corresponding classes in ρ221 are


 2 5

5 13






Γ

and




 13 5

5 2






Γ

.

The two-to-one correspondence from C221 to ρ221 has (5, 11) and (7, 5)

going to the first class and (5, 11) and (7,−5) going to the second class.

(iv)§ d = 1885 = 5 × 13 × 29. η1885 = ε1885 = (1042 + 24
√

1885/2) so that

1885 ∈ D+
R . ν(1885) = 4 and h(1885) = 8. The 8 distinct classes are

1 = [1, 43,−9], [−1, 43, 9] = J, [7, 31,−33], [−7, 31, 33],

[21, 11,−21] = [−19, 21, 19], [−21, 11, 21] = [19, 21,−19],

[3, 43,−3] = [17, 27,−17], [−3, 43, 3] = [−17, 27, 17].

The first four are ambiguous and the last four reciprocal. The com-

position group F1885
∼= Z/2Z × Z/4 and the group of genera is equal to

F1885/{1, J}. The corresponding classes in ρ1885 are


 389 504

504 653






Γ

,




 653 504

504 389






Γ

,




 5 72

72 1037






Γ

,




 1037 72

72 5






Γ

.

The two-to-one correspondence from C1885 to ρ1885 has the pairs (21, 11)

and (19,−21), (21,−11) and (19, 21), (3, 43) and (17, 27), (3,−43) and

(17,−27) going to each of the reciprocal classes.

§The classes of forms of this discriminant as well as all others for d < 2000 were computed

using Gauss reduced forms, in Kwon [Kwo].
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(v) Markov discovered an infinite set of elements of II all of which project

entirely into the set G3/2, where for a > 1Ga = {z ∈ G; y < a} and G

is the standard fundamental domain for Γ. These primitive geodesics are

parametrized by positive integral solutions m = (m0, m1, m2) of

(41′) m2
0 + m2

1 + m2
2 = 3 m0m1m2 .

All such solutions can be gotten from the solution (1, 1, 1) by repeated

application of the transformation (m0, m1, m2) → (3m1m2 −m0, m1, m2)

and permutations of the coordinates. The set of solutions to (41′) is very

sparse [Zag82]. For a solution m of (41′) with m0 ≥ m1 ≥ m2 let u0 be

the (unique) integer in (0, m0/2] which is congruent to εm̄1m2 (mod m0)

where ε = ±1 and m̄1m1 ≡ 1 (mod m0). Let v0 be defined by u2
0 + 1 =

m0v0, it is an integer since (m̄1m2)2 ≡ −1 mod m0, from (41′). Set fm

to be [m0, 3m0−2u0, v0−3u0] if m0 is odd and 1
2 [m0, 3m0−2u0, v0−3u0]

if m0 is even. Then fm ∈ F and let Φm = f̄m ∈ F . Its discriminant dm

is 9m2
0 − 4 if m0 is odd and (9m2

0 − 4)/4 if m0 is even. The fundamental

unit is given by εdm
= (3m +

√
dm)/2 and the corresponding class in Π is

{pm}Γ with

(41′′) pm =


 u0 m0

3u0 − v0 3m0 − u0


 .

The basic fact about these geodesics is that they are the only complete

geodesics which project entirely into G3/2 and what is of interest to us here,

these {pm}Γ are all reciprocal (see [CF89] p. 20 for proofs).

m = (1, 1, 1) gives Φ(1,1,1) = [1, 1,−1], d(1,1,1) = 5, ε5 = (3 +
√

5)/2

while η5 = (1 +
√

5)/2. Hence d5 ∈ D−
R and Φ(1,1,1) is ambiguous and

reciprocal. The same is true for m = (2, 1, 1) and Φ(2,1,1) = [1, 2,−1].

m = (5, 2, 1) gives Φ(5,2,1) = [5, 11,−5] and d(5,2,1) = 221. This is

the case considered in (iv) above. Φ(5,2,1) is one of the two reciprocal

classes of discriminant 221. It is not ambiguous.

For m �= (1, 1, 1) or (2, 1, 1), ηdm
= εdm

and since Φm is reciprocal we

have that dm ∈ D+
R and since Φm is not ambiguous, it has order 4 in Fdm

.
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We turn to counting the primes {p} ∈ ΠH , for the subgroups H of G. The cases
H = {e} and 〈φw〉 are similar in that they are connected with the prime geodesic
theorems for Γ = PSL(2, Z) and PGL(2, Z) [Hej83].

Since t(p) ∼ (N(p))1/2 as t(p) −→ ∞,

(42) Π{e} (x) =
∑

t(p) ≤ x
{p}∈ Π

1 ∼
∑

N(p) ≤ x2
{p}∈Π

1 .

According to our parametrization we have

(43)
∑

N(p) ≤ x2
{p}∈Π

1 =
∑
d ∈D

εd ≤ x

h(d) .

The prime geodesic theorem for a general lattice in PSL(2, R) is proved using
the trace formula, however for Γ = PSL(2, Z) the derivation of sharpest known
remainder makes use of the Petersson-Kuznetzov formula and is established in
[LS95]. It reads

(44)
∑

N(p) ≤ x
{p}∈Π

1 = Li(x) + O(x7/10) .

Hence

(45) Π{e}(x) ∼
∑
d ∈D

εd ≤ x

h(d) ∼ x2

2 log x
, as x −→ ∞ .

We examine H = 〈φw〉 next. As x −→ ∞,

(46) Π〈φw〉(x) =
∑

t(p) ≤ x
{p}∈Π〈φw〉

1 ∼
∑

N(p) ≤ x2
{p}∈Π〈φw〉

1 .

Again according to our parametrization,

(47)
∑

N(p) ≤ x2
{p}∈Π〈φw〉

1 =
∑

d ∈D−
R

εd ≤ x

h(d) .

Note that if p ∈ P and φw({p}) = {p} then w−1p w = δ−1pδ for some δ ∈ Γ.
Hence w δ−1 is in the centralizer of p in PGL(2, Z) and det(wδ−1) = −1. From
(36) it follows that there is a unique primitive h ∈ PGL(2, Z), deth = −1, such
that h2 = p. Moreover, every primitive h with det h = −1 arises this way and if p1

is conjugate to p2 in Γ then h1 is Γ conjugate to h2. That is,

(48)
∑

N(p) ≤ x2
{p}∈Π〈φw〉

1 =
∑

N(h) ≤ x
{h}Γ

det h = −1

1 ,

where the last sum is over all primitive hyperbolic elements in PGL(2, Z) with
det h = −1, {h}Γ denotes Γ conjugacy and N(h) =

√
N(h2). The right hand

side of (48) can be studied via the trace formula for the even and odd part of the
spectrum of Γ\H ( [Ven82], pp. 138-143). Specifically, it follows from ([Efr93],
p. 210) and an analysis of the zeros and poles of the corresponding Selberg zeta
functions Z+(s) and Z−(s) that
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(49) B(s) := Π
{h}Γ, det h= −1

h primitive

(
1 − N(h)−s

1 + N(h)−s

)

has a simple zero at s = 1 and is homomorphic and otherwise non-vanishing in
�(s) > 1/2.

Using this and standard techniques it follows that

(50)
∑

N(h) ≤ x
det h= −1

{γ}Γ

1 ∼ 1
2

x

log x
as x −→ ∞ .

Thus

(51) Π〈φw〉(x) ∼
∑

d ∈D−
R

εd ≤ x

h(d) ∼ x

2 log x
as x −→ ∞ .

The asymptotics for Π〈φR〉, Π〈φA〉 and ΠG all reduce to counting integer points
lying on a quadric and inside a large region. These problems can be handled for
quite general homogeneous varieties ([DRS93], [EM93]), though two of the three
cases at hand are singular so we deal with the counting directly.

(52) Π〈φR〉(x) =
∑

{γ}∈Π〈φR〉
t(γ) ≤ x

1 =
∑

td ≤ x

d ∈DR

ν(d) .

According to (16) every γ ∈ R is conjugate to exactly 4 primitive symmetric
γ ∈ Γ. So

(53)

Π〈φR〉 (x) = 1
4

∑
t(γ) ≤ x

γ ∈ P
γ = γt

1

∼ 1
4

∑
N(γ) ≤ x2

γ ∈P

γ = γt

1 .

Now if γ ∈ P and γ = γt, then for k ≥ 1, γk = (γk)t and conversely if β ∈ Γ
with β = βt, β hyperbolic and β = γk

1 with γ1 ∈ P and k ≥ 1, then γ1 = γt
1. Thus

we have the disjoint union
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∞⊔
k=1

{γk : γ ∈ P, γ = γt}

=




γ =




a b

c d


 ∈ Γ : t(γ) > 2 , γ = γt




=




 a b

b d


 : ad − b2 = 1 , 2 < a + d, a, b, d ∈ Z


 .(54)

Hence as y −→ ∞ we have,

ψ(y) := #


γ =


 a b

b d


 ∈ Γ : 2 < t(γ) ≤ y




∼ #


γ =


 a b

b d


 ∈ Γ : 1 < N(γ) ≤ y2




=
∞∑

k=1

#
{
γ ∈ P : γ = γt , N(γ) ≤ y2/k

}

= #{γ ∈ P : γ = γt , N(γ) ≤ y2} + O(ψ(y) log y)) .(55)

Now γ −→ γtγ maps Γ onto the set of
[

a b
b d

]
, ad − b2 = 1 and a + d ≥ 2, in a

two-to-one manner. Hence

(56) ψ(y) =
1
2

∣∣ {γ ∈ Γ : trace (γtγ) ≤ y
} ∣∣ − 1 .

This last is just the hyperbolic lattice point counting problem (for Γ and z0 = i)
see ([Iwa95], p. 192) from which we conclude that as y −→ ∞,

(57) ψ(y) =
3
2

y + O(y2/3) .

Combining this with (55) and (53) we get that as x −→ ∞

(58) Π〈φR〉(x) ∼
∑

d ∈DR
εd ≤ x

ν(d) ∼ 3
8

x .

The case H = 〈φA〉 is similar but singular. Firstly one shows as in (16) (this is
done in ([Cas82], p. 341) where he determines the number of ambiguous forms and
classes) that every p ∈ P which is ambiguous is conjugate to precisely 4 primitive
p’s which are either of the form

(59) w−1p w = p−1



230 PETER SARNAK

or

(60) w−1
1 p w1 = p−1 with w1 =

[
1 0
1 −1

]
,

called of the first and second kind respectively.
Correspondingly we have

(61)
∑
d ∈D
εd ≤ x

ν(d) ∼ Π〈φA〉(x) = Π(1)
〈φA〉(x) + Π(2)

〈φA〉(x) .

An analysis as above leads to

(62) Π(1)
〈φA〉 (x) ∼ 1

4
#
{
a2 − bc = 1 ; 1 < a <

x

2

}
=

1
2

∑
1<a< x

2

τ(a2 − 1)

where τ(m) = # of divisors of m.
The asymptotics on the r.h.s. of (62) may be derived elementarily as in Ingham

[Ing27] (for a power saving in the remainder see [DFI94]) and one finds that

(63) Π(1)
〈φA〉(x) ∼ 3

2π2
x(log x)2 as x −→ ∞ .

Π(2)
〈φA〉(x) is a bit messier and reduces to counting

(64)
1
4

#
{
(m, n, c) : m2 − 4 = n(n − 4c) , 2 < m ≤ x

}
.

This is handled in the same way though it is a bit tedious, yielding

(65) Π(2)
〈φA〉(x) ∼ 85

8π2
x(log x)2 .

Putting these together gives

(66)
∑
d ∈D

εd ≤ x

ν(d) ∼ Π〈φA〉 (x) ∼ 97
8π2

x(log x)2 as x −→ ∞ .

Finally we consider H = G. According to the parametrization we have

(67) ΠG(x) =
∑

{p}∈ΠG
t(p) ≤ x

1 =
∑

d ∈D−
R

td ≤ x

ν(d) ∼
∑

d ∈D−
R

εd ≤ x

ν(d) .

As in the analysis of Π〈φR〉 and Π〈φA〉 we conclude that
(68)

ΠG(x) ∼ 1
4

#
{

γ =
[

a b
b c

]
∈ PGL(2, Z); det γ = −1 , 2 < a + c ≤

√
x

}
.

Or, what is equivalent, after a change of variables:

(69) ΠG(x) ∼ 1
4

∑
m≤

√
x

rf (m2 + 4)

where rf (t) is the number of representations of t by f(x1, x2) = x2
1 + 4x2

2. This
asymptotics can be handled as before and gives

(70)
∑

d ∈D−
R

εd ≤ x

ν(d) ∼ ΠG(x) ∼ 21
8π

√
x log x .

This completes the proof of Theorem 2.
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Returning to our enumeration of geodesics, note that one could order the ele-
ments of Π according to the discriminant d in their parametrization and ask about
the corresponding asymptotics. This is certainly a natural question and one that
was raised in Gauss (see [Gau], §304).

For H a subgroup of G define the counting functions ψH corresponding to ΠH

by

(71) ψH(x) =
∑
d ∈D
d ≤ x

# {Φ ∈ Fd : h(Φ) = Φ , h ∈ H} .

Thus according to our analysis

(72) ψ{e}(x) =
∑
d ∈D
d ≤ x

h(d)

(73) ψ〈φA〉 (x) =
∑
d ∈D
d ≤ x

ν(d)

(74) ψ〈φR〉 (x) =
∑

d ∈DR
d ≤ x

ν(d)

(75) ψ〈φw〉 (x) =
∑

d ∈D−
R

d ≤ x

h(d)

(76) ψG(x) =
∑

d∈D−
R , d≤x

ν(d) .

The asymptotics here for the ambiguous classes was determined by Gauss
([Gau], §301), though note that he only deals with forms [a, 2b, c] and so his count
is smaller than (73). One finds that

(77) ψ〈φA〉 (x) ∼ 3
2π2

x log x , as x −→ ∞ .

As far as (74) goes, it is immediate from (1) that

(78) ψ〈φR〉 (x) ∼ 3
4π

x , as x −→ ∞ .

The asymptotics for (72) and (75) are notoriously difficult problems. They are
connected with the phenomenon that the normal order of h(d) in this ordering ap-
pears to be not much larger than ν(d). There are Diophantine heuristic arguments
that explain why this is so [Hoo84], [Sar85]; however as far as I am aware, all that
is known are the immediate bounds

(79) (1 + o(1))
3

2π2
x log x ≤ ψ{e}(x) � x3/2

log x
.

The lower bound coming from (77) and the upper bound from the asymptotics in
[Sie44],

∑
d ∈D
d ≤ x

h(d) log εd =
π2

18ζ(3)
x3/2 + O(x log x) .
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In [Ho] a more precise conjecture is made:

(80) ψ{e} (x) ∼ c2 x(log x)2 .

Kwon [Kwo] has recently investigated this numerically. To do so she makes
an ansatz for the lower order terms in (80) in the form: ψ{e}(x) = x[c2(log x)2 +
c1(log x) + c0] + O(xα) with α < 1. The computations were carried out for x < 107

and she finds that for x > 104 the ansatz is accurate with c0 � 0.06, c1 � −0.89
and c2 � 4.96. It would be interesting to extend these computations and also to
extend Hooley’s heuristics to see if they lead to the ansatz.

The difficulty with (76) lies in the delicate issue of the relative density of D−
R

in DR. See the discussions in [Lag80] and [Mor90] concerning the solvability of
(9). In [R3́6], the two-component of Fd is studied and used to get lower bounds of
the form: Fix t a large integer, then

(81)
∑

d ∈D+
R

d ≤ x

1 and
∑

d ∈D−
R

d ≤ x

1 �
t

x(log log x)t

log x
.

On the other hand each of these is bounded above by
∑

d ∈DR
d ≤ x

1, which by Lan-

dau’s thesis or the half-dimensional sieve is asymptotic to c3 x
/√

log x. (81) leads to
a corresponding lower bound for ψG(x). The result [R3́6] leading to (81) suggests
strongly that the proportion of d ∈ DR which lie in D−

R is in
(

1
2 , 1
)

(In [Ste93] a con-
jecture for the exact proportion is put forth together with some sound reasoning).
It seems therefore quite likely that

(82)
ψG(x)

ψ〈φR〉 (x)
−→ c4 as x −→ ∞ , with

1
2

< c4 < 1 .

It follows from (78) and (79) that it is still the case that zero percent of the
classes in Π are reciprocal when ordered by discriminant, though this probability
goes to zero much slower than when ordering by trace. On the other hand, according
to (82) a positive proportion, even perhaps more than 1/2, of the reciprocal classes
are ambiguous in this ordering, unlike when ordering by trace.

We end with some comments about the question of the equidistribution of
closed geodesics as well as some comments about higher dimensions. To each prim-
itive closed p ∈ Π we associate the measure µp on X = Γ\H (or better still, the
corresponding measure on the unit tangent bundle Γ\SL(2, R)) which is arc length
supported on the closed geodesic. For a positive finite measure µ let µ̄ denote the
corresponding normalized probability measure. For many p’s (almost all of them
in the sense of density, when ordered by length) µ̄p becomes equidistributed with
respect to dA = 3

π
dxdy
y2 as �(p) → ∞. However, there are at the same time many

closed geodesics which don’t equidistribute w.r.t. dA as their length goes to infin-
ity. The Markov geodesics (41′′) are supported in G3/2 and so cannot equidistribute
with respect to dA. Another example of singularly distributed closed geodesics is
that of the principal class 1d (∈ Π), for d ∈ D of the form m2 − 4, m ∈ Z. In this
case εd = (m +

√
d)/2 and it is easily seen that µ̄1d

→ 0 as d → ∞ (that is, all the
mass of the measure corresponding to the principal class escapes in the cusp of X).
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On renormalizing one finds that for K and L compact geodesic balls in X,

lim
d→∞

µ1d
(L)

µ1d
(K)

→ Length(g ∩ L)
Length(g ∩ K)

,

where g is the infinite geodesics from i to i∞.
Equidistribution is often restored when one averages over naturally defined sets

of geodesics. If S is a finite set of (primitive) closed geodesics, set

µ̄S =
1

�(S)

∑
p∈S

µp

where �(S) =
∑
p∈S

�(p).

We say that an infinite set S of closed geodesics is equidistributed with respect
to µ when ordered by length (and similarly for ordering by discriminant) if µ̄Sx

→ µ
as x → ∞ where Sx = {p ∈ S : �(p) ≤ x}. A fundamental theorem of Duke [Duk88]
asserts that the measures µFd

for d ∈ D become equidistributed with respect to dA
as d → ∞. From this, it follows that the measures

∑
t(p) = t

p∈Π

µp =
∑
td = t
d∈D

µFd

become equidistributed with respect to dA as t → ∞. In particular the set Π
of all primitive closed geodesics as well as the set of all inert closed geodesics
become equidistributed as the length goes to infinity. However, the set of ambiguous
geodesics as well as the G-fixed closed geodesics don’t become equidistributed in
Γ\PSL(2, R) as their length go to infinity. The extra logs in the asymptotics (63)
and (70) are responsible for this singular behaviour. Specifically, in both cases a
fixed positive proportion of their mass escapes in the cusp. One can see this in the
ambiguous case by considering the closed geodesics corresponding to [a, 0,−c] with
4ac = t2 − 4 and t ≤ T . Fix y0 > 1 then such a closed geodesic with

√
c/a ≥ y0

spends at least log (
√

c/a/y0) if its length in Gy0 = {z ∈ G;�(z) > y0}. An
elementary count of the number of such geodesics with t ≤ T , yields a mass of at
least c0T (log T )3 as T −→ ∞, with c0 > 0 and independent of y0. This is a positive
proportion of the total mass

∑
t({γ}) ≤ T
γ∈π〈φA〉

�({γ}), and, since it is independent of y0, the

claim follows. The argument for the case of G-fixed geodesics is similar.
We expect that the reciprocal geodesics are equidistributed with respect to dg

in Γ\PSL(2, R), when ordered by length. One can show that there is c1 > 0 such
that for any compact set Ω ⊂ Γ PSL(2, R)

(83) lim inf
x−→∞

µρx
(Ω) ≥ c1Vol(Ω) .

This establishes a substantial part of the expected equidistribution. To prove (83)
consider the contribution from the reciprocal geodesics corresponding to [a, b,−a]
with 4a2 + b2 = t2−4, t ≤ T . Each such geodesic has length 2 log((t+

√
t2 − 4)/2).

The equidistribution in question may be rephrased in terms of the Γ action on the
space of geodesics as follows. Let V be the one-sheeted hyperboloid {(α, β, γ) :
β2−4αγ = 1}. Then ρ(PSL(2, R)) acts on the right on V by the symmetric square
representation and it preserves a Haar measure dv on V . For ξ ∈ V let Γξ be the
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stabilizer in Γ of ξ. If the orbit {ξρ(γ) : γ ∈ Γξ\Γ} is discrete in V then
∑

γ∈Γξ\Γ
δξρ(γ)

defines a locally finite ρ(Γ)-invariant measure on V . The equidistribution question
is that of showing that νT becomes equidistributed with respect to dv, locally in
V , where

(84) νT :=
∑

4 < t≤T

∑
4a2 + b2 = t2 −4

∑
γ∈Γξ(a,b)\Γ

δξ(a,b) ρ(γ)

and ξ(a, b) =
(

a√
t2−4

, b√
t2−4

, −a√
t2−4

)
.

Let Ω be a nice compact subset of V (say a ball) and fix γ ∈ Γ, then using the
spectral method [DRS93] for counting integral points in regions on the two-sheeted
hyperboloid 4a2 + b2 − t2 = −4 one can show that

(85)
∑

4 < t≤T

∑
4a2 + b2 = t2 −4

γ /∈i Γξ(a,b)

δξ(a,b) ρ(γ) (Ω) = c(γ, Ω)T + 0
(
T 1−δ ‖ γ ‖A

)

where δ > 0 and A < ∞ are fixed, c(γ, Ω) ≥ 0 and ‖ γ ‖=
√

tr(γ′γ). The c’s satisfy

(86)
∑

‖γ‖≤ ξ

c(γ, Ω) � Vol(Ω) log ξ as ξ −→ ∞ .

Hence, summing (85) over γ with ‖ γ ‖≤ T ε0 for ε0 > 0 small enough but fixed, we
get that

(87) νT (Ω) � Vol(Ω) T log T .

On the other hand for any compact B ⊂ V , νT (B) = O(T log T ) and hence (83)
follows.

In this connection we mention the recent work [ELMV] in which they revisit
Linnik’s methods and give a proof along those lines of Duke’s theorem mentioned
on the previous page. They show further that for a subset of Fd of size dε0 with
ε0 > 0 and fixed, any probability measure which is a weak-star limit of the measures
associated with such closed geodesics has positive entropy.

The distribution of these sets of geodesics is somewhat different when we order
them by discriminant. Indeed, at least conjecturally they should be equidistributed
with respect to dĀ. We assume the following normal order conjecture for h(d)
which is predicted by various heuristics [Sar85], [Hoo84]; For α > 0 there is ε > 0
such that

(88) #{d ∈ D : d ≤ x and h(d) ≥ dα} = O
(
x1−ε

)
.

According to the recent results of [Pop] and [HM], if h(d) ≤ dα0 with α0 = 1/5297
then every closed geodesic of discriminant d becomes equidistributed with respect
to dĀ as d −→ ∞. From this and Conjecture (88) it follows that each of our sets of
closed geodesics, including the set of principal ones, becomes equidistributed with
respect to dĀ, when ordered by discriminant.

An interesting question is whether the set of Markov geodesics is equidistributed
with respect to some measure ν when ordered by length (or equivalently by dis-
criminant). The support of such a ν would be one-dimensional (Hausdorff). One
can also ask about arithmetic equidistribution (e.g. congruences) for Markov forms
and triples.
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The dihedral subgroups of PSL(2, Z) are the maximal elementary noncyclic
subgroups of this group (an elementary subgroup is one whose limit set in R ∪ {∞}
consists of at most 2 points). In this form one can examine the problem more gen-
erally. Consider for example the case of the Bianchi groups Γd = PSL(2, Od) where
Od is the ring of integers in Q(

√
d), d < 0. In this case, besides the issue of the con-

jugacy classes of maximal elementary subgroups, one can investigate the conjugacy
classes of the maximal Fuchsian subgroups (that is, subgroups whose limit sets are
circles or lines in C ∪ {∞} = boundary of hyperbolic 3-space H3). Such classes cor-
respond precisely to the primitive totally geodesic hyperbolic surfaces of finite area
immersed in Γd\H3. As in the case of PSL(2, Z), these are parametrized by orbits
of integral orthogonal groups acting on corresponding quadrics (see Maclachlan and
Reid [MR91]). In this case one is dealing with an indefinite integral quadratic form
f in four variables and their arithmetic is much more regular than that of ternary
forms. The parametrization is given by orbits of the orthogonal group Of (Z) act-
ing on Vt = {x : f(x) = t} where the sign of t is such that the stabilizer of an
x(∈ Vt(R)) in Of (R) is not compact. As is shown in [MR91] using Siegel’s mass
formula (or using suitable local to global principles for spin groups in four variables
(see [JM96]) the number of such orbits is bounded independently of t (for d = −1,
there are 1,2 or 3 orbits depending on congruences satisfied by t). The mass formula
also gives a simple formula in terms of t for the areas of the corresponding hyper-
bolic surface. Using this, it is straight-forward to give an asymptotic count for the
number of such totally geodesic surfaces of area at most x, as x → ∞ (i.e., a “prime
geodesic surface theorem”). It takes the form of this number being asymptotic to
c.x with c positive constant depending on Γd. Among these, those surfaces which
are noncompact are fewer in number, being asymptotic to c1x/

√
log x.

Another regularizing feature which comes with more variables is that each
such immersed geodesic surface becomes equidistributed in the hyperbolic manifold
Xd = Γd\H3 with respect to dṼol, as its area goes to infinity. There are two ways
to see this. The first is to use Maass’ theta correspondence together with bounds
towards the Ramanujan Conjectures for Maass forms on the upper half plane,
coupled with the fact that there is basically only one orbit of Of (Z) on Vt(Z) for
each t (see the paper of Cohen [Coh05] for an analysis of a similar problem). The
second method is to use Ratner’s Theorem about equidistribution of unipotent
orbits and that these geodesic hyperbolic surfaces are orbits of an SOR(2, 1) action
in Γd\SL(2, C) (see the analysis in Eskin-Oh [EO]).
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The fourth moment of Dirichlet L-functions

K. Soundararajan

Abstract. Extending a result of Heath-Brown, we prove an asymptotic for-

mula for the fourth moment of L( 1
2
, χ) where χ ranges over the primitive

Dirichlet characters (mod q).

1. Introduction

In [HB81], D.R. Heath-Brown showed that

(1.1)
∑∗

χ (mod q)

|L( 1
2 , χ)|4 =

ϕ∗(q)
2π2

∏
p|q

(1 − p−1)3

(1 + p−1)
(log q)4 + O(2ω(q)q(log q)3).

Here
∑∗ denotes summation over primitive characters χ (mod q), ϕ∗(q) denotes

the number of primitive characters (mod q), and ω(q) denotes the number of dis-
tinct prime factors of q. Note that ϕ∗(q) is a multiplicative function given by
ϕ∗(p) = p − 2 for primes p, and ϕ∗(pk) = pk(1 − 1/p)2 for k ≥ 2 (see Lemma
1 below). Also note that when q ≡ 2 (mod 4) there are no primitive characters
(mod q), and so below we will assume that q �≡ 2 (mod 4). For q �≡ 2 (mod 4) it is
useful to keep in mind that the main term in (1.1) is � q(ϕ(q)/q)6(log q)4.

Heath-Brown’s result represents a q-analog of Ingham’s fourth moment for ζ(s):∫ T

0

|ζ( 1
2 + it)|4dt ∼ T

2π2
(log T )4.

When ω(q) ≤ (1/ log 2 − ε) log log q (which holds for almost all q) the error term
in (1.1) is dominated by the main term and (1.1) gives the q-analog of Ingham’s
result. However if q is even a little more than ‘ordinarily composite’, with ω(q) ≥
(log log q)/ log 2, then the error term in (1.1) dominates the main term. In this note
we remedy this, and obtain an asymptotic formula valid for all large q.

Theorem. For all large q we have
∑∗

χ (mod q)

|L( 1
2 , χ)|4 =

ϕ∗(q)
2π2

∏
p|q

(1 − p−1)3

(1 + p−1)
(log q)4

(
1+O

(ω(q)
log q

√
q

ϕ(q)

))
+O(q(log q)

7
2 ).
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Since ω(q) � log q/ log log q, and q/ϕ(q) � log log q, we see that

(ω(q)/ log q)
√

q/ϕ(q) � 1/
√

log log q.

Thus our Theorem gives a genuine asymptotic formula for all large q.
For any character χ (mod q) (not necessarily primitive) let a = 0 or 1 be given

by χ(−1) = (−1)a. For x > 0 we define

(1.2) Wa(x) =
1

2πi

∫ c+i∞

c−i∞

(Γ( s+ 1
2+a

2 )

Γ(
1
2+a

2 )

)2

x−s ds

s
,

for any positive c. By moving the line of integration to c = −1
2 + ε we may see that

(1.3a) W (x) = 1 + O(x
1
2−ε),

and from the definition (1.2) we also get that

(1.3b) W (x) = Oc(x−c).

We define

(1.4) A(χ) :=
∞∑

a,b=1

χ(a)χ(b)√
ab

Wa

(πab

q

)
.

If χ is primitive then |L( 1
2 , χ)|2 = 2A(χ) (see Lemma 2 below). Let Z = q/2ω(q)

and decompose A(χ) as B(χ) + C(χ) where

B(χ) =
∑

a, b ≥ 1
ab ≤ Z

χ(a)χ(b)√
ab

Wa

(πab

q

)
,

and

C(χ) =
∑

a, b ≥ 1
ab > Z

χ(a)χ(b)√
ab

Wa

(πab

q

)
.

Our main theorem will follow from the following two Propositions.

Proposition 1. We have∑∗

χ (mod q)

|B(χ)|2 =
ϕ∗(q)
8π2

∏
p|q

(1 − 1/p)3

(1 + 1/p)
(log q)4

(
1 + O

(ω(q)
log q

))
.

Proposition 2. We have∑
χ (mod q)

|C(χ)|2 � q
(ϕ(q)

q

)5

(ω(q) log q)2 + q(log q)3.

Proof of the Theorem. Since |L( 1
2 , χ)|2 = 2A(χ) = 2(B(χ) + C(χ)) for

primitive characters χ we have∑∗

χ (mod q)

|L( 1
2 , χ)|4 = 4

∑∗

χ (mod q)

(
|B(χ)|2 + 2B(χ)C(χ) + |C(χ)|2

)
.

The first and third terms on the right hand side are handled directly by Propositions
1 and 2. By Cauchy’s inequality

∑∗

χ (mod q)

|B(χ)C(χ)| ≤
( ∑∗

χ (mod q)

|B(χ)|2
) 1

2
( ∑

χ (mod q)

|C(χ)|2
) 1

2
,
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and thus Propositions 1 and 2 furnish an estimate for the second term also. Com-
bining these results gives the Theorem. �

In [HB79], Heath-Brown refined Ingham’s fourth moment for ζ(s), and ob-
tained an asymptotic formula with a remainder term O(T

7
8+ε). It remains a chal-

lenging open problem to obtain an asymptotic formula for
∑∗

χ (mod q) |L( 1
2 , χ)|4

where the error term is O(q1−δ) for some positive δ.
This note arose from a conversation with Roger Heath-Brown at the Gauss-

Dirichlet conference where he reminded me of this problem. It is a pleasure to
thank him for this and other stimulating discussions.

2. Lemmas

Lemma 1. If (r, q) = 1 then∑∗

χ (mod q)

χ(r) =
∑

k|(q,r−1)

ϕ(k)µ(q/k).

Proof. If we write hr(k) =
∑∗

χ(mod k) χ(r) then for (r, q) = 1 we have

∑
k|q

hr(k) =
∑

χ (mod q)

χ(r) =

{
ϕ(q) if q | r − 1
0 otherwise.

The Lemma now follows by Möbius inversion. �

Note that taking r = 1 gives the formula for ϕ∗(q) given in the introduction. If
we restrict attention to characters of a given sign a then we have, for (mn, q) = 1,
(2.1) ∑∗

χ (mod q)
χ(−1) = (−1)a

χ(m)χ(n) =
1
2

∑
k|(q,|m−n|)

ϕ(k)µ(q/k) +
(−1)a

2

∑
k|(q,m+n)

ϕ(k)µ(q/k).

Lemma 2. If χ is a primitive character (mod q) with χ(−1) = (−1)a then

|L( 1
2 , χ)|2 = 2A(χ),

where A(χ) is defined in (1.4).

Proof. We recall the functional equation (see Chapter 9 of [Dav00])

Λ( 1
2 + s, χ) =

( q

π

)s/2

Γ
(s + 1

2 + a

2

)
L( 1

2 + s, χ) =
τ(χ)
ia
√

q
Λ( 1

2 − s, χ),

which yields

(2.2) Λ( 1
2 + s, χ)Λ( 1

2 + s, χ) = Λ( 1
2 − s, χ)Λ( 1

2 − s, χ).

For c > 1
2 we consider

I :=
1

2πi

∫ c+i∞

c−i∞

Λ( 1
2 + s, χ)Λ( 1

2 + s, χ)

Γ(
1
2+a

2 )2
ds

s
.

We move the line of integration to Re(s) = −c, and use the functional equation
(2.2). This readily gives that I = |L( 1

2 , χ)|2 − I, so that |L( 1
2 , χ)|2 = 2I. On the

other hand, expanding L( 1
2 +s, χ)L( 1

2 +s, χ) into its Dirichlet series and integrating
termwise, we get that I = A(χ). This proves the Lemma. �
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We shall require the following bounds for divisor sums. If k and 	 are positive
integers with 	k � x

5
4 then

(2.3)
∑

n ≤ x
(n, k) = 1

d(n)d(	k ± n) � x(log x)2
∑
d|�

d−1,

provided that x ≤ 	k if the negative sign holds. This is given in (17) of Heath-Brown
[HB81]. Secondly, we record a result of P. Shiu [Shi80] which gives that

(2.4)
∑

n ≤ x
n ≡ r (mod k)

d(n) � ϕ(k)
k2

x log x,

where (r, k) = 1 and x ≥ k1+δ for some fixed δ > 0.

Lemma 3. Let k be a positive integer, and let Z1 and Z2 be real numbers ≥ 2.
If Z1Z2 > k

19
10 then ∑

Z1 ≤ ab < 2Z1
Z2 ≤ cd < 2Z2
(abcd, k) = 1

ac ≡ ±bd (mod k)
ac �= bd

1 � Z1Z2

k
(log(Z1Z2))3.

If Z1Z2 ≤ k
19
10 the quantity estimated above is � (Z1Z2)1+ε/k.

Proof. By symmetry we may just focus on the terms with ac > bd. Write
n = bd and ac = k	 ± bd. Note that k	 ≤ 2ac and so 1 ≤ 	 ≤ 8Z1Z2/k. Moreover
since ac ≥ k	/2 we have that bd ≤ 4Z1Z2/(ac) ≤ 8Z1Z2/(k	). Thus the sum we
desire to estimate is

(2.5) �
∑

1≤�≤8Z1Z2/k

∑
n ≤ 8Z1Z2/(k�)

n < k� ± n
(n, k) = 1

d(n)d(k	 ± n).

Since d(n)d(k	 ± n) � (Z1Z2)ε the second assertion of the Lemma follows.
Now suppose that Z1Z2 > k

19
10 . We distinguish the cases k	 ≤ (Z1Z2)

11
20 and

k	 > (Z1Z2)
11
20 . In the first case we estimate the sum over n using (2.3). Thus such

terms contribute to (2.5)

�
∑

�≤(Z1Z2)
11
20 /k

Z1Z2

k	
(log Z1Z2)2

∑
d|�

d−1 � Z1Z2

k
(log Z1Z2)3.

Now consider the second case. Here we sum over 	 first. Writing m = k	±n(= ac)
we see that such terms contribute

�
∑

n≤8Z1Z2/k

d(n)
∑

(Z1Z2)
11
20 /2 ≤ m ≤ 4Z1Z2/n

m ≡ ±n (mod k)

d(m),

and by (2.4) (which applies as (Z1Z2)
11
20 > k

209
200 ) this is

�
∑

n≤8Z1Z2/k

d(n)
Z1Z2

kn
log Z1Z2 � Z1Z2

k
(log Z1Z2)3.

The proof is complete. �
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The next two Lemmas are standard; we have provided brief proofs for com-
pleteness.

Lemma 4. Let q be a positive integer and x ≥ 2 be a real number. Then
∑

n ≤ x
(n, q) = 1

1
n

=
ϕ(q)

q

(
log x + γ +

∑
p|q

log p

p − 1

)
+ O

(2ω(q) log x

x

)
.

Further
∑

p|q log p/(p − 1) � 1 + log ω(q).

Proof. We have∑
n ≤ x

(n, q) = 1

1
n

=
∑
d|q

µ(d)
∑

n ≤ x
d | n

1
n

=
∑
d | q

d ≤ x

µ(d)
d

(
log

x

d
+ γ + O

(d

x

))

=
∑
d|q

µ(d)
d

(
log

x

d
+ γ

)
+ O

(2ω(q) log x

x

)
.

Since −
∑

d|q(µ(d)/d) log d = ϕ(q)/q
∑

p|q(log p)/(p − 1) the first statement of the
Lemma follows. Since

∑
p|q log p/(p − 1) is largest when the primes dividing q are

the first ω(q) primes, the second assertion of the Lemma holds. �
Lemma 5. We have ∑

n ≤ q
(n, q) = 1

2ω(n)

n
�

(ϕ(q)
q

)2

(log q)2.

For x ≥ √
q we have

∑
n ≤ x

(n, q) = 1

2ω(n)

n

(
log

x

n

)2

=
(log x)4

12ζ(2)

∏
p|q

(1 − 1/p

1 + 1/p

)(
1 + O

(1 + log ω(q)
log q

))
.

Proof. Consider for Re(s) > 1

F (s) =
∞∑

n = 1
(n, q) = 1

2ω(n)

n
=

ζ(s)2

ζ(2s)

∏
p|q

1 − p−s

1 + p−s
.

Since ∑
n ≤ q

(n, q) = 1

2ω(n)

n
≤ e

∞∑
n = 1

(n, q) = 1

2ω(n)

n1+1/ log q
= eF (1 + 1/ log q),

the first statement of the Lemma follows. To prove the second statement we note
that, for c > 0,

∑
n ≤ x

(n, q) = 1

2ω(n)

n

(
log

x

n

)2

=
2

2πi

∫ c+i∞

c−i∞
F (1 + s)

xs

s3
ds.

We move the line of integration to c = −1
2 + ε and obtain that the above is

2 Res
s=0

F (1 + s)
xs

s3
+ O(x−1

2+εqε).

A simple residue calculation then gives the Lemma. �
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3. Proof of Proposition 1

Applying (2.1) we easily obtain that∑∗

χ (mod q)

|B(χ)|2 = M + E,

where
(3.1)

M :=
ϕ∗(q)

2

∑
a, b, c, d ≥ 1

ab ≤ Z, cd ≤ Z
ac = bd

(abcd, q) = 1

1√
abcd

(
W0

(πab

q

)
W0

(πcd

q

)
+ W1

(πab

q

)
W1

(πcd

q

))

and
E =

∑
k|q

ϕ(k)µ2(q/k)E(k),

with

E(k) �
∑

(abcd, q) = 1
k | (ac ± bd)

ac �= bd
ab, cd ≤ Z

1√
abcd

.

To estimate E(k) we divide the terms ab, cd ≤ Z into dyadic blocks. Consider
the block Z1 ≤ ab < 2Z1, and Z2 ≤ cd < 2Z2. By Lemma 3 the contribution of
this block to E(k) is, if Z1Z2 > k

19
10 ,

� 1√
Z1Z2

Z1Z2

k
(log Z1Z2)3 �

√
Z1Z2

k
(log q)3,

and is � (Z1Z2)
1
2+ε/k if Z1Z2 ≤ k

19
10 . Summing over all such dyadic blocks we

obtain that E(k) � (Z/k)(log q)3 + k− 1
20+ε, and so

E � Z2ω(q)(log q)3 � q(log q)3.

We now turn to the main term (3.1). If ac = bd then we may write a = gr,
b = gs, c = hs, d = hr, where r and s are coprime. We put n = rs, and note that
given n there are 2ω(n) ways of writing it as rs with r and s coprime. Note also
that ab = g2rs = g2n, and cd = h2rs = h2n. Thus the main term (3.1) may be
written as

M =
ϕ∗(q)

2

∑
a=0,1

∑
n ≤ Z

(n, q) = 1

2ω(n)

n

( ∑
g ≤

p

Z/n
(g, q) = 1

1
g
Wa

(πg2n

q

))2

.

By (1.3a) we have that Wa(πg2n/Z) = 1 + O(
√

gn
1
4 /q

1
4 ), and using this above we

see that

M = ϕ∗(q)
∑

n ≤ Z
(n, q) = 1

2ω(n)

n

( ∑
g ≤

p

Z/n
(g, q) = 1

1
g

+ O(2−ω(q)/4)
)2

.

We split the terms n ≤ Z into the cases n ≤ Z0 and Z0 < n ≤ Z, where we set
Z0 = Z/9ω(q) = q/18ω(q). In the first case, Lemma 4 gives that the sum over g is
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(ϕ(q)/q) log
√

Z/n + O(1 + log ω(q)). Thus the contribution of such terms to M is

ϕ∗(q)
∑

n ≤ Z0
(n, q) = 1

2ω(n)

n

(ϕ(q)
2q

log
Z

n
+ O(1 + log ω(q))

)2

=ϕ∗(q)
(ϕ(q)

2q

)2 ∑
n ≤ Z0

(n, q) = 1

2ω(n)

n

((
log

Z0

n

)2

+ O(ω(q) log q)
)
.

Using Lemma 5 we conclude that the terms n ≤ Z0 contribute to M an amount

(3.2)
ϕ∗(q)
8π2

∏
p|q

(1 − 1/p)3

(1 + 1/p)
(log q)4

(
1 + O

(ω(q)
log q

))
.

In the second case when Z0 ≤ n ≤ Z, we extend the sum over g to all g ≤ 3ω(q)

that are coprime to q, and so by Lemma 4 the sum over g is � ω(q)ϕ(q)/q. Thus
these terms contribute to M an amount

� ϕ∗(q)
(
ω(q)

ϕ(q)
q

)2 ∑
Z0≤n≤Z

2ω(n)

n
� ϕ∗(q)

(ϕ(q)
q

)2

(ω(q))3 log q.

Since qω(q)/ϕ(q) � log q, combining this with (3.2) we conclude that

M =
ϕ∗(q)
8π2

∏
p|q

(1 − 1/p)3

(1 + 1/p)
(log q)4

(
1 + O

(ω(q)
log q

))
.

Together with our bound for E, this proves Proposition 1.

4. Proof of Proposition 2

The orthogonality relation for characters gives that∑
χ (mod q)

|C(χ)|2 � ϕ(q)
∑

(abcd, q) = 1
ac ≡ ±bd (mod q)

ab, cd > Z

1√
abcd

∑
a=0,1

∣∣∣Wa

(πab

q

)
Wa

(πcd

q

)∣∣∣

� ϕ(q)
∑

(abcd, q) = 1
ac ≡ ±bd (mod q)

ab, cd > Z

1√
abcd

(
1 +

ab

q

)−2(
1 +

cd

q

)−2

,

using (1.3a,b). We write the last expression above as R1 + R2, where R1 contains
the terms with ac = bd, and R2 contains the rest.

We first get an estimate for R2. We break up the terms into dyadic blocks; a
typical one counts Z1 ≤ ab < 2Z1 and Z2 ≤ cd < 2Z2 (both Z1 and Z2 being larger
than Z). The contribution of such a dyadic block is, using Lemma 3 (note that
Z1Z2 > Z2 > q

19
10 )

� ϕ(q)√
Z1Z2

(
1 +

Z1

q

)−2(
1 +

Z2

q

)−2 Z1Z2

q
(log Z1Z2)3.

Summing this estimate over all the dyadic blocks we obtain that

R2 � q(log q)3.
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We now turn to the terms ac = bd counted in R1. As in our treatment of M ,
we write a = gr, b = gs, c = hs, d = hr, with (r, s) = 1, and group terms according
to n = rs. We see easily that

(4.1) R1 � ϕ(q)
∑

(n,q)=1

2ω(n)

n

( ∑
g >

p

Z/n
(g, q) = 1

1
g

(
1 +

g2n

q

)−2)2

.

First consider the terms n > q in (4.1). Here the sum over g gives an amount
� q2/n2 and so the contribution of these terms to (4.1) is

� ϕ(q)
∑
n>q

2ω(n)

n

q4

n4
� ϕ(q) log q.

For the terms n < q the sum over g in (4.1) is easily seen to be

� 1 +
∑

p

Z/n ≤ g ≤
p

q/n
(g, q) = 1

1
g
� 1 +

ϕ(q)
q

ω(q).

The last estimate follows from Lemma 4 when n < Z/9ω(q), while if n > Z/9ω(q)

we extend the sum over g to all g ≤ 6ω(q) with (g, q) = 1 and then use Lemma 4.
Thus the contribution of terms n < q to (4.1) is, using Lemma 5,

� ϕ(q)
(
1 +

ϕ(q)
q

ω(q)
)2 ∑

n ≤ q
(n, q) = 1

2ω(n)

n
� q log2 q

(ϕ(q)
q

)5

ω(q)2.

Combining these bounds with our estimate for R2 we obtain Proposition 2.
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The Gauss Class-Number Problems

H. M. Stark

1. Gauss

In Articles 303 and 304 of his 1801 Disquisitiones Arithmeticae [Gau86], Gauss
put forward several conjectures that continue to occupy us to this day. Gauss stated
his conjectures in the language of binary quadratic forms (of even discriminant
only, a complication that was later dispensed with). Since Dedekind’s time, these
conjectures have been phrased in the language of quadratic fields. This is how we
will state the conjectures here, but we make some comments regarding the original
versions also. Throughout this paper, k = Q(

√
d) will be a quadratic field of

discriminant d and h(k) or sometimes h(d) will be the class-number of k.
In Article 303, Gauss conjectures that as k runs through the complex quadratic

fields (i.e., d < 0), h(k) → ∞. He also surmises that for low class-numbers, his
tables contain the complete list of fields with those class-numbers including all the
one class per genus fields. This innocent addendum caused much heartache when
in 1934 Heilbronn [Hei34] finally proved that k(d) → ∞ as d → −∞ ineffectively.
Thus it remained at that time impossible to even give an algorithm that would
provably terminate at a predetermined time with a complete list of the complex
quadratic fields of class-number one (or any other fixed class-number). By the
“class-number n problem for complex quadratic fields”, we mean the problem of
presenting a complete list of all complex quadratic fields with class-number n. We
will discuss complex quadratic fields and generalizations in Sections 3 – 5.

For real quadratic fields (i. e., d > 0), Gauss surmises in Article 304 that there
are infinitely many one class per genus real quadratic fields. By carrying over this
surmise to prime discriminants, we get the common interpretation that Gauss con-
jectures there are infinitely many real quadratic fields with class-number one. We
call this the “class-number one problem for real quadratic fields”. This is com-
pletely unproved and, to this day, it is not even known if there are infinitely many
number fields (degree arbitrary) with class-number one (or even just bounded).

We will discuss two approaches each to the one class per genus problem for
complex quadratic fields and the class-number one problem for real quadratic fields.
Admittedly, I don’t have much hope currently for the first approaches to each
problem but I think the questions raised are interesting. On the other hand, I
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think the second approaches to each problem will ultimately work. We discuss all
these in Sections 4 – 6 below.

It is particularly appropriate that this paper appear in these proceedings. From
Gauss and Dirichlet at the start to Landau, Siegel and Deuring, people connected
with Göttingen have made major contributions to the questions discussed here.

2. Dirichlet

Dirichlet introduced L-functions in order to study the distribution of primes
in progressions. A key fact in this study is that for every character χ (mod f),
L(1, χ) �= 0. Dirichlet knew that

∏
χ

L(s, χ) =
∞∑

n=1

ann−s ,

where the product is over all characters χ (mod f) and the an are non-negative
integers with a1 = 1. Thus for real s > 1 where everything converges, we must
have

(2.1)
∏

χ( mod f)

L(s, χ) ≥ 1 .

We now know that L(s, χ) has a first order pole at s = 1 when χ is the trivial
character and is analytic at s = 1 for other characters. It follows from (2.1) that at
most one of the L(1, χ) can be zero and that such a χ must be real since otherwise
χ and χ̄ would both contribute zeros to the product and the product would be zero
at s = 1. Echos of this difficulty that there could be an exceptional real χ still
persist today in the study of zeros near s = 1.

Of necessity, Dirichlet developed his class-number formula in order to finish
his theorem on primes in progressions. Although Kronecker symbols were still in
the future, Dirichlet discovered that every primitive real character corresponds to a
quadratic field (and conversely; the beginnings of class field theory!). We write χd to
be the primitive real character which corresponds to Q(

√
d). The part of the class-

number formula which concerns us here gives a non-zero algebraic interpretation of
L(1, χd). Dirichlet showed that

L(1, χd) =




2πh(d)
wd

√
|d|

when d < 0

2h(d) log(εd)√
d

when d > 0 .

Here when d < 0, w−3 = 6, w−4 = 4, wd = 2 for d < −4, and when d > 0, εd is the
fundamental unit of Q(

√
d).

Landau [Lan18b] states that Remak made the remark that even without the
class-number formula, from (2.1) we are able to see that with varying moduli there
can be at most one primitive real character χ with L(1, χ) = 0 and thus the primes
in progressions theorem would hold outside of multiples of this one extraordinary
modulus. To see this, we apply (2.1) with f the product of the conductors of the
two characters χ of interest.

In truth, (2.1) also holds when the product over χ is restricted to χ running over
all characters ( mod f) which are identically 1 on a given subgroup of (Z/fZ)∗. This
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is equivalent to χ running over a subgroup of the group of all characters (mod f).
This product too is the zeta function of an abelian extension of Q, but the proof
that (2.1) holds does not require such knowledge. In 1918, Landau already makes
use of the product in (2.1) over just four characters: the trivial character, the two
interesting real characters, and their product. The product of the four L-functions
is just the zeta function of the biquadratic field containing the two interesting
quadratic fields.

Landau also proves that if for some constant c > 0, L(s, χd) �= 0 for real s in
the range 1 − c

log(|d|) < s < 1, then

L(1, χd) �
1

log(|d|) as |d| → ∞ .

In particular, the Gauss conjectures for complex quadratic fields become conse-
quences of the Generalized Riemann Hypothesis.

When one looks at the two 1918 Landau papers [Lan18b], [Lan18a], one is
struck by how amazingly close Landau is to Siegel’s 1935 theorem [Sie35]. All the
ingredients are in the Landau papers!

3. Complex Quadratic Fields

The original Gauss class-number one conjecture is restricted to even discrimi-
nants and is much easier. For even discriminants, 2 ramifies and yet for d > −8,
absolute value estimates show there is no integer in k with norm 2. Thus the
only even class-number one discriminants are −4 and −8. Gauss also allowed non-
fundamental discriminants. These correspond to ring classes and it now becomes
a homework exercise to show that the non-fundamental class-number one discrim-
inants (even or odd) are −12, −16, −27, −28.

In 1934 Heilbronn [Hei34] proved the Gauss Conjecture that k(d) → ∞ as
d → −∞. Then also in 1934, Heilbronn and Linfoot [HL34] proved that besides the
nine known complex quadratic fields of class-number one, there is at most one more.
Heilbronn’s proof followed a remarkable 1933 theorem of Deuring [Deu33] who
proved that if there were infinitely many class-number one complex quadratic fields,
then the Riemann hypothesis for ζ(s) would follow! Many authors promptly carried
this over to other class-numbers. But Heilbronn realized that Deuring’s method
would allow one to prove the generalized Riemann hypothesis for any L(s, χ) as well
and this, together with Landau’s earlier result above, implies Gauss’s conjecture
for complex quadratic fields.

These theorems are purely analytic in the sense that there is no use made of
any algebraic interpretations of any special values of any relevant functions. These
theorems are also noteworthy in that they are ineffective. Three decades later,
the class-number one problem was solved by Baker [Bak66] and Stark [Sta67]
completely. There was also the earlier discounted method of Heegner [Hee52]
from 1952 which at the very least could be turned into a completely valid proof of
the same result. It is frequently stated that my proof and Heegner’s proof are the
same. The two papers end up with the same Diophantine equations, but I invite
anybody to read both papers and then say they give the same proof!

As an aside, I believe that I was the modern rediscoverer of Heegner’s paper,
having come across it in 1963 while working on my PhD thesis. Fortunately for me,
if not for mathematics, it was reaffirmed at a 1963 conference in Boulder, which
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I did not attend, that Heegner was incorrect and as a result I graduated in 1964
with degree in hand. Back then, it was commonly stated that the problem with
Heegner’s proof was that it relied on the unproved conjecture of Weber that for
d ≡ −3 (mod 8) and 3 � d, the classical modular function f(z) evaluated at z =

√
d

is an algebraic integer lying in the ring class field of k (mod 2). The assertion that
Heegner relied upon this conjecture in his class-number one proof turned out to be
absolutely false (although he did make use of Weber’s conjecture in other unrelated
portions of his paper) and I believe the first outline since Heegner’s paper of what
is actually involved in Heegner’s class-number one proof occurs in my 1967 paper
[Sta67]. In addition to Heegner [Hee52] and Stark [Sta67]. I refer the reader
to Birch [Bir69], Deuring [Deu68], and Stark [Sta69a], [Sta69b]. In particular,
Birch also proves Weber’s conjecture. I don’t think this is the place to go further
into this episode.

The Gauss class-number problem for complex quadratic fields has been gen-
eralized to CM-fields (totally complex quadratic extensions of totally real fields).
Since the mid 1970’s we now expect that there are only finitely many CM fields with
a given class-number. This has been proved effectively for normal CM fields and
conditionally under each of various additional conjectures including the Generalized
Riemann Hypothesis (GRH) for number field zeta functions, Artin’s conjecture on
L-functions being entire, and more recently under the Modified Generalized Rie-
mann Hypothesis (MGRH) which allows real exceptions to GRH. In particular,
this latter result allows Siegel zeroes to exist and would still result in effectively
sending the class-number h(K) of a CM field K to ∞ as K varies! It also turns
out that at least some of the implied complex exceptions to GRH that hamper an
attempted proof without MGRH are very near to s = 1. All this was prepared for
a history lecture at IAS in the Fall of 1999; this part of the lecture was delivered
in the Spring of 2000. It is still unpublished, but will appear someday [Sta].

4. Zeros of Epstein zeta functions

From the point of view of this exposition, none of the proofs of Heegner, Baker
or Stark qualify as a purely analytic proof. Harder to classify is the Goldfeld
[Gol76], Gross-Zagier [GZ86] combinded effective proof of the Gauss conjecture
that h(d) → ∞ as d → −∞. Goldfeld showed that the existence of an explicit
L-function of an elliptic curve with a triple zero at s = 1 would imply Gauss’s
conjecture and Gross-Zagier prove the existence of such an L-function by giving a
meaning to the first derivative at s = 1 of the L-function of a CM curve. For the
sake of argument, I will say that this result also is not purely analytic although
there remains the chance that it could be made so.

I believe that it is highly desirable that a purely analytic proof of the class-
number one result be found. This is because such a proof would have a chance
of extending to other fixed class-numbers and, if we were really lucky, might even
begin to effectively approach the strength of Siegel’s theorem. In particular, we
might at long last pick up the one class per genus complex quadratic fields.

There are two potential purely analytic approaches to the class-number one
problem. Both originated from the study of Epstein zeta functions. Let

Q(x, y) = ax2 + bxy + cy2 ,
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be a positive definite binary quadratic form with discriminant d = b2 − 4ac < 0.
We define the Epstein zeta functions

ζ(s, Q) = (1/2)
∑

m,n �=0,0

Q(m, n)−s .

This series converges absolutely for σ > 1 and has an analytic continuation to the
entire complex s-plane with a first order pole at s = 1 whose residue depends only
on d and not on a, b, c. I will begin with a well known “folk theorem”.

Theorem 4.1. (Folk Theorem.) Let c > 1/4 be a real number and set

Q(x, y) = x2 + xy + cy2 ,

with discriminant d = 1−4c < 0. Then for c > 41, ζ(s, Q) has a zero s with σ > 1.

Remark 4.2. This implies that for d < −163, h(d) > 1!

Folk proof. Davenport and Heilbronn [DH36] prove the cases where c is
transcendental and where c is rational, the exception being any integral d with
h(d) = 1. But we now know that there are no class-number one fields past −163
(hence the 41), and so this covers the case of rational c. Finally, Cassels [Cas61]
proved the case where c is an irrational algebraic number. �

There are three problems here. First, the only “proof” of this theorem uses the
class-number one determination as part of the proof, thereby rendering it useless as
an analytic proof of the class-number one theorem. A second difficulty is that Dav-
enport and Heilbronn only prove the transcendental case for Hurwitz zeta functions,
but their proof carries over, with slight complications. They also deal with integral
quadratic forms, which would not be a problem except that they restrict themselves
to fundamental discriminants. In principle, their method should go through, with
more serious complications this time, for non-fundamental discriminants so long
as class-number one non-fundamental discriminants are avoided (the last such is
−28). The third difficulty is that this folk theorem has not actually been proved
because Cassels did not prove the algebraic case! Cassels did prove the algebraic
case of a similar theorem for Hurwitz zeta functions, but no one has managed to
carry over his proof to Epstein zeta functions. So the challenge is clear: prove the
folk theorem, but better still, FIND A PURELY ANALYTIC PROOF OF THE
FOLK THEOREM. As a warmup problem, but one which I still have no idea how
to prove, let alone purely analytically, one could deal with

Q(x, y) = x2 + cy2 with c > 7 .

Once such a theorem is proved, the next step would be to generalize it to the sum
of h Epstein zeta functions of the same discriminant, but with real coefficients. At
the moment, I don’t even have any approach to the case of the one Epstein zeta
function of the folk theorem. In particular, an attempt to track a particular zero
of ζ(s, Q) as c grows seems likely to end on the line σ = 1/2 and stay there.

5. Zero Spacing of Zeta Functions of Complex Quadratic Fields

The other purely analytic approach seems to me to be more hopeful. In his
1933 and 1935 papers, Deuring [Deu33], [Deu35], found a very useful expansion
of an Epstein zeta function with

Q(x, y) = ax2 + bxy + cy2, d = b2 − 4ac < 0
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in the case that |d|/a2 is large. We can easily see where the two main terms come
from. We have

(5.1) ζ(s, Q) =
∞∑

m=1

(am2)−s +
∞∑

n=1

∑
m

(am2 + bmn + cn2)−s .

We approximate the inner sum on the right by the integral,
∞∫

−∞

(at2 + bnt + cn2)−sdt = a−s

(√
|d|

2a
n

)1−2s ∞∫
−∞

(u2 + 1)−sdu .

The integral on the right evaluates to
∞∫

−∞

(u2 + 1)−sdu =
√

πΓ(s − 1/2)
Γ(s)

.

This gives the approximation,

ζ(s, Q) = a−sζ(2s) + as−1

(√
|d|
2

)1−2s √
πΓ(s − 1/2)

Γ(s)
ζ(2s − 1) + R(s)

where R(s) is the error made in approximating the sum by the integral. Equiva-
lently, with

ξ(s) = π−s/2Γ(
s

2
)ζ(s) and R̃(s) =

(√
|d|

2π

)s

Γ(s)R(s) ,

we have

(√
|d|

2π

)s

Γ(s)ζ(s, Q) =

(√
|d|
2

)s

ξ(2s)a−s +

(√
|d|
2

)1−s

ξ(2s − 1)as−1 + R̃(s)

=

(√
|d|
2

)s

ξ(2s)a−s +

(√
|d|
2

)1−s

ξ(2 − 2s)as−1 + R̃(s) .

(5.2)

The main terms interchange on the right when s is replaced by 1−s. We are entitled
to suspect that we have stumbled upon the functional equation for ζ(s, Q); this is
indeed the truth and can be derived from this expansion if one uses the Poisson
summation formula on the sum on m in (5.1). The Poisson summation formula
leads to the same main terms and an expansion of R̃(s) in K-Bessel functions in
a form where Ks−1/2 appears and is invariant under s �→ 1 − s. Deuring used the
Euler MacLaurin summation formula to estimate R(s). On σ = 1/2, the two main
terms have the same absolute value and as t increases, the arguments of the two
main terms spin in opposite directions in a manner which is practically linear over
short ranges in t. Deuring realized in [Deu35] that this leads to the zeros of ζ(s, Q)
lying practically in arithmetic progressions in t.

From Stirling’s formula, when

s =
1
2

+ it ,
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we have

arg

[(√
|d|
2

)s

ξ(2s)

]
= arg

[(√
|d|

2π

)s

Γ(s)ζ(2s)

]

= t log

(√
|d|

2π

)
+ t log(t) − t + arg[ζ(1 + 2it)] + O(

1
t
).

(5.3)

If t goes from t0 to t0 + ε, where ε is suitably small, then to a first approximation,
the right side grows by

ε log

(√
|d|

2π
t

)
+ O(ε) .

In particular, the right side grows by π when ε is approximately

(5.4)
π

log(t
√
|d|)

.

For our particular Q, we find that the two main terms have the same absolute
values on σ = 1/2 and the sum of the two main terms has zeros almost precisely in
arithmetic progressions over short ranges of t. As a result, with a = 1, if one can
estimate R̃(1/2 + it) as small enough, we find that ζ(s, Q) also has zeros almost
precisely in arithmetic progressions over short ranges of t. The methods of Deuring
allowed such estimates out to t about

√
|d|, but more recent work takes t out to

high powers of |d| and even further. The number in (5.4) is the average spacing of
the zeros of ζk(s). One consequence is that if we can get t out to even small powers
of |d|, we cannot have a class-number one field if ζ(1/2 + it) has zeros significantly
closer than the average spacing at this height. And if we can get t out to high
powers of |d|, then we can’t have a class-number one field if ζ(1/2 + it) has zeros
closer than 1/2 the average spacing.

For fields of higher class numbers,

ζk(s) =
∑
Q

ζ(s, Q)

where the sum is over the reduced quadratic forms of discriminant d. We write
each Q(x, y) as

Q(x, y) = ax2 + bxy + cy2 with d = b2 − 4ac < 0 and a > 0

if b ≤ a < (|d|/4)1/2, then Q is reduced; if a > (|d|/3)1/2, then Q is not reduced. In
the intermediate range (|d|/4)1/2 ≤ a ≤ (|d|/3)1/2, Q may or may not be reduced,
but Q is within one or two reduction steps of being reduced and the corresponding
reduced form has an a of about the same size. Our expansion of ζk(s) then takes
the shape,

(√
|d|

2π

)s

Γ(s)ζk(s) =

(√
|d|
2

)s

ξ(2s)
∑
Q

a−s +

(√
|d|
2

)1−s

ξ(2 − 2s)
∑
Q

as−1

+ R̃k(s) .

(5.5)
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The sum
∑
Q

a−s is somewhat troublesome for class-numbers up towards |d|1/2−ε ,

but for a one class per genus field, we can take

(5.6)
∏
p||d|

(1 + p−s)

as a very good approximation to
∑
Q

a−s. When the arguments all line up correctly,

the product (5.6) can cause difficulties in deducing a zero spacing result, but this
only happens rarely. On average, we still end up with the approximate arithmetic
progressions and again, the higher we can do this the more we can hope that close
zeros of ζ(s) will provide the desired contradiction.

With the expansion (5.2) and Rouché’s theorem, Deuring [Deu35] proved that
when |d|/a2 is large, except for two real zeros, one near s = 1 and its reflection
near s = 0, all zeros of a single ζ(s, Q) up to height roughly (|d|/a2)1/2 are simple
and on the line σ = 1/2. I rediscovered this result complete with the application of
Rouché’s theorem, when working on my PhD thesis in 1963. I spent a fruitless year
then trying to prove that ζ(s) has occasional close zeros, with no luck whatsoever
before using the expansion (5.2) and numerical values of zeros of ζ(s) to push the
hypothetical tenth class number one discriminant out to 10107

. Proving that ζ(s)
has close zeros has been one of my favorite problems for 43 years and it would
appear that everyone since has been fixated on this as well. However, it is not
necessary to get close zeros. For instance, suppose that one could simply show
that between T and 2T there are pairs of zeros of ζ(s) whose distance is within
1% of the average spacing for ζ(s). This would provide an analytic solution of the
class-number one problem and likely lead to a solution of the one class per genus
question also. One simply chooses a height t as a suitable power of d so that the
average spacing of zeros of ζ(s) is not an integral multiple of the average spacing
of zeros of ζ(s, Q). Other variations are possible as well. This certainly has to be
explored.

6. Real Quadratic Fields

Here again, because he allows non-fundamental discriminants, the original
Gauss version of his class-number one conjecture was proved long ago by using a
carefully constructed family of orders in a fixed real quadratic field of class-number
one [Dic66]!

I have already in the commentaries to Heilbronn’s collected works sketched a
beginning potential approach to getting small class-numbers of real quadratic fields
by finding Euclidean rings of S-integers in quadratic fields. This was motivated by a
suggestion of Heilbronn [Hei51] that a certain explicit family of quartic fields may
contain infinitely many Euclidean fields. In truth I am dubious about the Euclidean
S-integer approach getting more than infinitely many S-integer Euclidean rings with
small |S| (and at the moment, I don’t see how to even approach that much either).

But there is another approach to class-number one real quadratic fields which I
believe will eventually succeed. The Cohen-Lenstra heuristics [CL84] predict that
the probability ap of a real quadratic field having class number divisible by an odd
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prime p is

ap = 1 −
∞∏

j=2

(1 − p−j) .

They then predict that for real quadratic fields k the probability of the odd part of
the class group being the identity is

(6.1)
∏
p≥3

(1 − ap) = .7544598...

In particular for prime discriminants where there is no two part of the class group,
this should be the probability that the h(k) = 1 for prime discriminant fields.

Since the product in (6.1) is convergent, the sum of the ap is convergent as well.
This means that to estimate the number of fields with discriminant up to x such
that the odd part of the class group is one, we can do inclusion-exclusion up to
some point and then just exclude fields with p|h(k) for primes past that point. The
inclusion-exclusion part would complicate life since we would require lower bounds
on densities of fields being put back in. However, the ap are so small that

∑
p≥3

ap = .265802... < 1 .

This suggests that it might be possible to take the total number of quadratic fields of
prime discriminant up to x, say, and subtract the number of fields with class-number
divisible by 3 up to x and then subtract the number of fields with class-number
divisible by 5 up to x, . . . , and still have a positive result at the end. What makes
this interesting is that all we would need to make this work is an upper bound
on the number of quadratic fields with class-number divisible by p. Since upper
bound density estimates are often easier to come by than lower bounds, there is a
chance this approach could succeed. If successful, we would not come up with the
Cohen-Lenstra predicted density, but we would get a positive lower estimate of the
density which at best would be .734197... Of course, one would need some sort of
error term in an upper estimate of number of real quadratic fields of discriminant
less than x whose class-numbers are divisible by p. And if we wanted, say, narrow
class-number one rather than class-number a power of 2, we would have to restrict
our quadratic field discriminants to being prime.

In turn, from class-field theory, we would like an estimate of the number of
fields of degree p and certain types of Galois groups. Again, since a good upper
bound is all that is needed, we could likely relax the conditions that the degree p
fields have to satisfy for larger p. The closer we get to counting just the number of
fields of degree p with prime power (for example, a prime to the (p − 1)/2 power)
discriminants, without worrying about what the Galois group is, the more possible
it is that such an estimate could ultimately be derived.
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