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Preface

The 2002 Clay School on Geometry and String Theory was held at the Isaac
Newton Institute for Mathematical Sciences, Cambridge, UK from 24 March - 20
April 2002. It was organized jointly by the organizers of two concurrent workshops
at the Newton Institute, one on Higher Dimensional Complex Geometry organized
by Alessio Corti, Mark Gross and Miles Reid, and the other on M-theory orga-
nized by Robbert Dijkgraaf, Michael Douglas, Jerome Gauntlett and Chris Hull, in
collaboration with Arthur Jaffe, then president of the Clay Mathematics Institute.

This volume is one of two books which will provide the scientific record of the
school, and focuses on the topics of manifolds of special holonomy and supergravity.
Articles in algebraic geometry, Dirichlet branes and related topics are also included.
It begins with an article by Michael Douglas that provides an overview of the geom-
etry arising in string theory and sets the subsequent articles in context. A second
book, in the form of a monograph to appear later, will more systematically cover
mirror symmetry from the homological and SYZ points of view, derived categories,
Dirichlet branes, topological string theory, and the McKay correspondence.

On behalf of the Organizing Committee, we thank the directors of the Isaac
Newton Institute, H. Keith Moffatt and John Kingman, for their firm support.
We thank the Isaac Newton Institute staff, Wendy Abbott, Mustapha Amrani,
Tracey Andrew, Caroline Fallon, Jackie Gleeson, Louise Grainger, Robert Hunt,
Rebecca Speechley and Christine West, for their superlative job in bringing such
a large project to fruition, and providing the best possible environment for the
school. We thank the dining hall staff at Kings College, Magdelene College, Corpus
Christi College and Emmanuel College, and especially the Kings College singers, for
some memorable evenings. We thank the staff of the Clay Mathematics Institute,
and especially Barbara Drauschke, for their behind-the-scenes work, which made
the school possible. Finally we thank Arthur Greenspoon, Vida Salahi and Steve
Worcester for their efforts in helping to produce this volume.

Michael Douglas, Jerome Gauntlett and Mark Gross
September 2003
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The Geometry of String Theory

Michael R. Douglas

ABSTRACT. An overview of the geometry of string theory, which sets the var-
ious contributions to this proceedings in this context.

1. Introduction

The story of interactions between mathematics and physics is very long and
very rich, too much so to summarize in a few pages. But from the beginning, a
central aspect of this interaction has been the evolution of the concept of geometry,
from the static conceptions of the Greeks, through the 17th century development
of descriptions of paths and motions through a fixed space, to Einstein’s vision of
space-time itself as dynamical, described using Riemannian geometry.

String/M theory, the unified framework subsuming superstring theory and su-
pergravity, is at present by far the best candidate for a unified quantum theory
of all matter and interactions, including gravity. One might expect that a worthy
successor to Einstein’s theory would be based on a fundamentally new concept of
geometry. At present, it would be fair to say that this remains a dream, but a very
live dream indeed, which is inspiring a remarkably fruitful period of interaction
between physicists and mathematicians.

Our school focused on the most recent trends in this area, such as compactifi-
cation on special holonomy manifolds, and approaches to mirror symmetry related
to Dirichlet branes. But before we discuss these, let us say a few words about
how these interactions began. To a large extent, this can be traced to before the
renaissance of string theory in 1984, back to informal exchanges and schools during
the mid-1970’s, at which physicists and mathematicians began to realize that they
had unexpected common interests.

Although not universally known, one of the most important of these encounters
came at a series of seminars at Stony Brook, in which C. N. Yang would invite
mathematicians to speak on topics of possible mutual interest. In 1975, Jim Simons
gave a lecture series on connections and curvature, and the group quickly realized
that this mathematics was the geometric foundation of Yang-Mills theory, and
could be used to understand the recently discovered non-Abelian instanton and
monopole solutions [23, 65]. These foundations are by now so familiar that it is
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2 MICHAEL R. DOUGLAS

a bit surprising to realize that, for Yang-Mills theory, they date back only to this
time.

Among the participants in the Simons-Yang seminars was Is Singer, who carried
news of these developments to Atiyah at Oxford. Before long the mathematicians
were taking the lead in exploiting these solutions, culminating in the early 1980’s
with Donaldson’s use of instanton moduli spaces to formulate his celebrated invari-
ants [17], which revolutionized the study of four-dimensional topology.

While this case study in math-physics interaction might have ended there, with
the lesson being that mathematicians can find useful inspiration in physical devel-
opments but then must apply them to their own problems, of course it did not.
The deeper aspects of this interaction began with Witten’s 1988 reformulation of
the Donaldson invariants as observables in a topological field theory [58]. This set
the stage for the eventual application of deeper physical arguments, which led to
the 1994 Seiberg-Witten solution of A = 2 supersymmetric gauge theory [50]. Ap-
plying this to the topological field theory formulation led to the dramatic discovery
of the Seiberg-Witten invariants [60]. While the special role of four dimensions in
physics had led many to suspect physics would lead to new insights into special
features of four-dimensional space, this success went far beyond what anyone had
expected.

An extreme reading of these striking developments would take them as evidence
that fundamental theoretical physics and mathematics (or at least some subfields of
mathematics) have merged into a single unified field. However, few workers in either
field would agree with this claim, and consideration of the developments following
the Seiberg-Witten work bears this out: with some noteworthy exceptions such as
[42], the subsequent mathematical developments [43] and physical developments
(well discussed in Dorey’s lectures in this volume) have had little overlap so far. Of
course it would be overly pessimistic to rule out equally dramatic interactions in
the future, but the point we want to make is simply that the two fields are not the
same: they have different goals, different questions are raised, and even the sense
of when a question has been answered or an area understood is rather different in
the two fields. Thus the basic questions of why such a sustained interaction should
be possible at all, and whether we should expect this trend to continue indefinitely
or not, deserve serious consideration.

While we will not address these questions in depth here, the most basic point
to keep in mind is that a sustained interaction is only possible in an area which is
of fundamental interest on both sides, and in practice this interest is going to be for
very different reasons on the two sides. This was certainly the case for the study of
gauge theory, and it is equally true for string theory. Just because so many of the
recent physical developments start with interesting mathematics, say the existence
of manifolds of G5 holonomy, or the classification of Calabi-Yau threefolds, and
then suggest intriguing mathematical conjectures, does not in itself make these
interactions deep or significant. Rather, they have true significance only to the
extent that the ideas which cross over from one side to the other turn out to be
important in addressing the fundamental questions on the “other” side.

We will try to say a few words about this deeper significance in our conclusions,
but for now the main point we take from these comments is that one needs to
keep the fundamental questions from math and from physics clearly in mind in
evaluating the likely progress and significance of any given point of interaction.



THE GEOMETRY OF STRING THEORY 3

Thus I start in section 2 with a very brief overview for mathematicians of where
string theorists stand at present, and what for them are the fundamental physical
questions. While this will necessarily be a sketch with a lot of undefined terms,
besides serving as cultural background, it will outline the long road we have taken
from our experimental foundations to our present situation, in which we believe
interaction with mathematicians will provide us with essential insights. I will not
presume to do the same for the mathematical questions, instead referring to [47].

In the remainder of the article, we introduce the various frameworks used to
study string theory. Of course a basic problem in math-physics interaction is that
there is at present no precise definition of string theory or even most quantum field
theories, even to the satisfaction of physicists. On the other hand, the problem is
not as bad as one might think, in that these theories are highly overconstrained — it
is not hard to list axioms which almost all physicists would agree should characterize
them uniquely. Rather, the problem with treating the theories mathematically is
that along with these axioms, a very large number of supplementary assumptions
are used in physical arguments; one wants to reduce these down to a manageable
list which deserve the name “axioms.” Having even a redundant set of axioms
for a particular QFT or string theory, which sufficed to make interesting physical
arguments, would be a valuable advance, even before we reach the (probably still
distant) goal of proving the existence of the theories they characterize.

Most math-physics interaction is based on theories for which this problem is
not too serious, and we concentrate on these. In particular, classical field theory,
in which the basic mathematical framework is simply that of partial differential
equations, is far more generally applicable to these problems than one might think.
The only essential generalizations beyond what was needed to formulate general
relativity and Yang-Mills theory are fairly trivial mathematically, for example to
allow anticommuting variables.

While at first one might think classical field theory would be too simple to
address any of the questions of current interest, this is not true at all. Indeed, the
formulation of the Standard Model, which summarizes most existing observational
and experimental data, and most of the proposals which try to go beyond it, is
made using “effective field theory,” which summarizes quantum and string theoretic
results in classical terms.

The concept of effective field theory is also central in the connections to math-
ematics — in particular, the Seiberg-Witten solution is just the effective field theory
related to the original Donaldson theory. Thus we give an introduction to this idea
in section 3, emphasizing the sense in which effective field theory can be thought
of as a generalization of “moduli space.” As such, concepts developed in algebraic
geometry, such as formal deformation spaces and stacks, have simple effective field
theory analogs, and this is an important dictionary to learn.

In section 4, we discuss the physics of higher-dimensional field theories, Kaluza-
Klein reduction, and supersymmetry. For mathematician-friendly introductions to
supersymmetry, we recommend [24, 13]. Again, these are classical field theories,
but there is a precise sense in which a limit (the low energy limit) of string theory
is described by the ten- and eleven-dimensional supergravity theories, and many of
the recent developments involving duality were first discovered by working on this
level.
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In section 5, we discuss results from the study of perturbative string theory, the
limit of string theory which can be defined in terms of a string world-sheet governed
by two-dimensional quantum field theory. This was the traditional definition of
string theory, and is still the basis of most of our understanding of string theory
beyond the low energy limit. As by far the most concrete formulation which goes
beyond conventional ideas of geometry, it has been a major focus of interaction
with algebraic geometers, leading to discoveries such as mirror symmetry, and its
more recent open string/Dirichlet brane analogs.

In section 6 we briefly discuss the more recent developments of superstring
duality and M theory. Most of the physics lectures in the volume address these
topics. While physicists have had a fairly clear picture of what M theory should
be for several years, it is still rather challenging to summarize this in a way which
mathematicians will find accessible. See [64] for another attempt at this.

In section 7 we conclude.

2. String theory and its physical goals

The stated goal of “fundamental physics” is to provide a single set of precise
laws which governs all observed physical phenomena. While ambitious, from many
points of view this goal has already been realized: it is difficult to find any hard
evidence for phenomena which are not very well described by the combination of
the “Standard Model,” a specific four-dimensional quantum field theory based on
Yang-Mills theory, and general relativity.

On the other hand, it is clear on theoretical grounds that this combination
of theories is incomplete. Most importantly, quantum effects in general relativity
predict the breakdown of the theory at a very high energy scale called the “Planck
scale,” My ~ 101 GeV = 10?8 eV (electron volts). For comparison purposes, the
mass of the electron is about 5 x 10° eV.

To illustrate this breakdown, consider an experiment in which we collide an
electron and positron each moving with energy E. While the Standard Model
by itself makes definite predictions for any F, since the gravitational interaction
has strength roughly E? /Mgl7 as © ~ My this interaction is no longer a small
correction, and must be taken into account on an equal footing with the other
forces. Providing any candidate set of laws which does this remained an open
problem for many years. Over the course of the 1980’s, fairly convincing arguments
were developed to show that superstring theory could solve this problem.

Besides this basic problem, there are many features of the Standard Model
which strongly suggest that there are deeper layers of structure to be found. The two
best examples are known as “coupling unification” and the “hierarchy problem.”
To explain these, we start with an exceedingly brief overview of gauge symmetry
as it relates to the Standard Model.

2.1. The Standard Model and gauge symmetry. There are three fun-
damental forces of nature described by gauge theory, namely electromagnetism,
the weak interaction, and the strong interaction, These look very different in low
energy experiments: the electric and magnetic interactions are long range and rel-
atively weak; the weak interaction operates over nuclear distances and operates
between “currents” much like the electromagnetic current, while the strong inter-
action, while also operating only over nuclear distances, is exceedingly complicated
and on the surface bears little resemblance to Maxwell’s theory.
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On the other hand, at the highest energies we attain in accelerator experiments
today, around 100 GeV, the three gauge forces look very similar, and one can
directly observe particles which form representations of the gauge groups U(1),
SU(2) and SU(3). Their very different behaviors at low energy are explained
through the existence of three phases of gauge theory, somewhat analogous to the
phases solid, liquid and gas of ordinary matter. One possibility, the “Coulomb
phase”, is the familiar behavior of electromagnetism as described by Maxwell’s
equations. The second is the “spontaneously broken” or “Higgs phase,” in which
the force is short range and weak; the weak interaction of the Standard Model
arises through breaking of SU(2) x U(1) gauge symmetry. Finally, the strong force
is in the “confined” phase, in which the gauge interactions between charged objects
(quarks) are not directly observable; indeed, the most basic physical effect is the
formation of a non-trivial vacuum “condensate” of quarks, so that the lightest
strongly interacting particles (the pions) are “spin waves” of this condensate.

While we will not get into the physical details of this, it is valuable to have
some mathematical analogies or counterparts for these effects, because they are
central in physicists’ thinking, and the actual study of supersymmetry and string
theory relies heavily on these ideas. Let us do this in the following framework: we
grant that the additional structure of string theory, M theory or whatever candidate
fundamental theory lies beneath the Standard Model can be described by a family
of “configurations”. Traditionally, in string theory a configuration is a choice of
structure for the compact manifold of “extra dimensions of space-time,” and might
include auxiliary structures such as vector bundles on this manifold, submanifolds
(branes), and so on. Eventually, we may want to describe string theory using
something other than differential geometry, and we might then use some more
abstract family of configurations. In any case, a possible physical history will be a
map from four-dimensional space-time into the family of configurations.

In this language, the gauge symmetry we observe arises because our vacuum
is a configuration with an isometry or endomorphism group. Since this group acts
at each point in observable space-time, it will lead to gauge symmetry, almost by
definition. Thus, physical experiment tells us that whatever may be the additional
structure which leads to the Standard Model, it must be preserved by an SU(3) x
SU(2) x U(1) symmetry in some sense.

What about the three phases? The broken or Higgs phase is relatively easy to
explain in these terms: it corresponds to an “approximate symmetry.” More specif-
ically, it arises in the situation in which a family of configurations (say connections)
is naturally defined by a quotient construction. Reducible configurations then have
additional endomorphisms (by definition) and thus lead to enhanced gauge symme-
try. A configuration which is close to a reducible configuration (in terms of some
metric), will have broken gauge symmetry, at a scale proportional to the distance
to the reducibility locus. Thus, while our expectation of an SU(3) x SU(2) x U(1)
symmetry for the additional structure is correct, it must be that the effective po-
tential (to be explained below) has a minimum which is SU(3) symmetric, and near
but not precisely at the SU(2) x U(1) symmetric point.

The confined phase would seem the most difficult to explain in these terms.
In one way, it is not: from the point of view of families of configurations, if we
grant that the group G is confined, the consequence is that at low energies we must
identify all configurations related by G symmetry; in other words we can answer all



6 MICHAEL R. DOUGLAS

physical questions after performing the G quotient. Of course this begs the question
of whether or not a given symmetry G which appears at a particular reducibility
locus is confined; this is a central question we will return to below.

2.2. Coupling unification. At 100 GeV, the strengths of each of the gauge
interactions can be parameterized by a dimensionless “coupling constant” a; ~
1/60, ag ~ 1/30 and a3 ~ 1/10. Now, due to renormalization effects, these cou-
pling constants depend on the energy at which they are measured. Going down to
everyday energies, a combination of a; and as becomes the familiar “fine struc-
ture constant” ~ % On the other hand, if one extrapolates to high energies
one finds that all three become equal to agyr ~ 1/25 at a single energy scale
Mgyt ~ 10'6 GeV called the “GUT scale,” where GUT stands for “grand unified
theory.”

Needless to say, while getting two functions (coupling as a function of energy)
to agree at some value would not be too impressive, the fact that three agree at
the same energy looks like clear evidence that something important happens at
that energy. The simplest hypothesis is that all three interactions arise from the
spontaneous breakdown of a larger gauge symmetry, say the group SU(5) which
contains SU(3) x SU(2) xU(1) as a (maximal) subgroup. This hypothesis of “grand
unification” implies a great deal of additional structure, and leads to very concrete
predictions, for example that the proton has a finite (although extremely long)
lifetime.

This picture was suggested in 1974 [27] and subsequently many attempts were
made to find a simple GUT from which all the observed structure of the Standard
Model would naturally arise. Although some progress was made, it is now generally
believed that there is no GUT which achieves this in a particularly simple and
natural way; the GUTs are almost as complicated as the Standard Model they
purport to explain. Rather, it appears that some other level of structure is required
to explain the origin of most of the features of the Standard Model, such as the
three generations of quarks and leptons.

2.3. The hierarchy problem. The Standard Model contains an explicit pa-
rameter setting the scale of electroweak SU(2) x U (1) symmetry breaking, the mass
squared of the Higgs boson. While not yet observed, if the Standard Model is right,
this must be between 110 GeV (the current experimental lower bound) and about
500 GeV. Either of these figures is far below the other two scales we mentioned, the
Planck scale and the GUT scale, and this already might lead one to deep scepticism
about any attempt to provide a complete fundamental theory — how can we hope
to extrapolate more than 13 orders of magnitude in energy, without experimental
input? On a more positive note, one can remark that no previously known physical
phenomenon relates such disparate scales, so if it is true here, there must be some
striking new physics which makes this possible, which we can hope to discover.

Of the various proposals in this direction, by far the most widely believed is
that this new physics is low energy supersymmetry, meaning not only that each
particle observed so far has a counterpart of the opposite statistics, but that these
“superpartners” must have mass around the same 100 — 500 GeV energy range.
Besides theoretical arguments, there is a powerful supporting piece of evidence in
the fact that the coupling unification we just mentioned has now been tested to
very high precision, and actually fails to work if one has only the Standard Model
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particle content. On the other hand, it works extremely well if one assumes low
energy supersymmetry.

This is very good news for physicists as it would mean that the superpartners
should be observed in upcoming experiments at the Large Hadron Collider now
being constructed at CERN. These experiments should come into full swing around
the year 2008, giving physicists some time to try to sharpen our predictions in
preparation.

If we grant this conventional wisdom, the problem facing string theorists is fairly
clear. We must show that there is some solution of string theory which leads to
effectively four-dimensional physics at the energies of interest, contains low energy
supersymmetry, and agrees in detail with the tested predictions of the Standard
Model. Of course, we need not grant the conventional wisdom, and other scenarios
have been suggested, for example that some of the extra dimensions of string theory
will be observed in accelerator experiments. Other experimental surprises might
completely change this picture as well. Of course, any attempt to make physical
predictions is by definition speculative, and this is only a question of degree.

Leaving aside physical arguments as to where to place our bets, what is more
important for the present discussion is that the “conventional low energy super-
symmetry” scenario is the only one which has been developed physically to the
point where any of the important questions can be made mathematically precise,
and thus we continue our discussion in this framework.

3. Effective field theory

Once we establish the existence of solutions of string theory with low energy
supersymmetry, we will need to go on and derive their physical predictions. In
particular, we need a framework which is general enough to incorporate “stringy”
and quantum corrections, which will be essential for understanding effects such as
the breaking of supersymmetry at low energy.

In practice, the framework which is used is “effective field theory.” The physical
definition of an effective theory is as follows: one chooses an energy scale F/, and asks
for the simplest theory which can reproduce all physical phenomena at energies up
to E/, without knowing anything about the “degrees of freedom” present at energies
above E. The simplest example is quantum electrodynamics, which describes the
physics of electrons and photons. This theory is not complete, since of course there
are many other particles which can be created by the interaction of electrons and
photons. On the other hand, if one only does experiments at energies less than
105 MeV (the mass of the second lightest charged particle, the muon), the other
particles cannot be created directly. They still have “virtual” effects, but these can
be summarized by modifications (renormalizations) of the parameters entering the
Lagrangian, including those controlling “higher-dimensional operators.”

Thus, one can describe all physics at low energies solely in terms of the particles
we see, at the cost of needing to determine some additional parameters. The pro-
cess of finding the contributions of the more massive particles (equivalently, fields)
to these parameters is called “integrating out.” One can show that these effects
are controlled by powers of E/M, where M is the lightest mass of a particle not
explicitly present in the theory, so one only needs a finite (and small) number of
parameters to make real predictions.
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This paradigm would appear quite appropriate for discussing the relation be-
tween string theory and the real world, at least until that happy day when we can
directly produce strings or higher-dimensional excitations, not described by conven-
tional field theory, in our experiments. For various reasons, at present most string
theorists do not consider this outcome very likely at LHC or any accelerator we can
imagine constructing, though in the end of course this is a question for experiment
to decide. We should also say that for some questions, especially those involving
gravitational effects, the applicability of effective field theory is controversial; see
for example [4] for arguments making this point.

In any case, the Standard Model is universally thought of as an effective field
theory, and thus it is a central problem to derive this particular effective field theory
from string theory.

For our purposes, an effective field theory is defined by the data (C,V,F, G):

e C is a manifold with metric called the “configuration space.” This is
not space-time; rather it is the space in which scalar fields take values.
Coordinates on this space are traditionally called “scalar fields” and are
often denoted ¢°.

e V is a real function on C, called the potential.

e F is a complex vector bundle over C, in which the fermions take values.
This also comes with a metric.

e (G is a Lie group with an action on C, which preserves the other data.

Traditionally, all of this data is finite dimensional, and G is compact and semisimple.
It can be useful to consider infinite dimensional manifolds and groups as well.

The data would be used to define the effective field theory as follows (see
[24] for details). One takes as degrees of freedom a map M — C (the scalar
fields), a compatible section of I'(M, F @ Spin(M)) (the fermionic fields), etc. One
then uses the data to write an action for these fields. This requires postulating
additional data as well, most importantly the “Yukawa couplings,” a bilinear form
Y:F®F|s — C at each ¢ € C, but this will not appear in our discussion.

Finally, for present purposes, one treats this action classically; in other words
a possible dynamics for the system is given by a gauge equivalence class of solutions
of the classical equations of motion. Thus, a “configuration” as in section 2 is a
G-orbit of the form g(p,§) € (C,F|,) with g € G.

The only solution we will discuss is the vacuum solution, in which the scalar
fields are constant,

(2

9¢*(x) _ 0: oV _ 0.

Ox oP*
and the fermions (the section of F) are zero. We furthermore identify solutions un-
der gauge equivalence; in other words a solution is a G-orbit of critical points. Such
a solution preserves the maximal possible symmetry of four-dimensional space-time
and contains no particles anywhere in space; thus it is referred to as a “vacuum.”
For a stable vacuum, the solution should be stable to small perturbations. This
will be true if the critical point is a local minimum.

We say “a” and not “the” vacuum for the evident reason that a general func-
tion V can have many minima. A priori, any one of the minima is a candidate for
describing physics. All further physical predictions depend on the choice of mini-
mum ¢: for example, the spectrum of scalar particle masses is the matrix of second
derivatives V" (¢) evaluated in a local orthonormal basis at ¢.
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Our previous comments about gauge symmetry and its breaking can be sum-
marized in this language as follows: the unbroken gauge symmetry of a vacuum ¢
is its stabilizer H C (G, while an orbit at distance d from such a stabilizer has H
symmetry broken at energy £ = d. Finally, whereas in general one can identify
G and distinguish points on a G-orbit by performing experiments at sufficiently
high energy, if an unbroken gauge group H confines at a point ¢ g, then there is a
“confinement scale” A such that two points on the same H-orbit at distance d < A
from ¢y cannot be distinguished physically.

So far, we have not really distinguished classical field theory and effective field
theory. As we suggested earlier, the main physical point of the latter is that we
can incorporate all quantum mechanical effects, as well as all effects due to strings
or other objects which are not explicitly descibed by the effective field theory, in
the choice of the data of the effective Lagrangian. In particular, if we start with a
particular classical Lagrangian and quantize it, the resulting effective field theory
will obtain modifications or “renormalizations” of V' and the metric on C.

In general, even data such as the choice of G or the topology of C can be dif-
ferent in the quantum theory from that one might have guessed at from a naive
interpretation of the classical Lagrangian, for example because confinement can
make the identification of G ambiguous, as we just discussed. While such possi-
bilities can be controlled using perturbative techniques at small A, one needs more
subtle arguments to treat large h; much of the lectures of Acharya, Dorey and
Gauntlett are explicitly or implicitly devoted to this problem.

We can now summarize our problem as string theorists: it is to find the effective
field theories which can arise from string theory, with quantum corrections taken
into account, find their vacua, and find out which of these can agree with the
Standard Model.

3.1. The Standard Model and unification. In the Standard Model, G =
SU(3) x SU(2) x U(1). G acts linearly on C and F, so the action is described by
a choice of linear representation. The irreps are usually denoted (N3, N3)y, where
N3 and Ny are dimensions of SU(3) and SU(2) representations, and the notation
N3 is used to denote the complex conjugate representation. Finally, Y is the weight
for the U(1) action.

First, we specify C = (1,2),/2, while V' is an invariant quartic polynomial, for
which ¢ = 0 is a local maximum. The metric can be taken to be flat.

We then have

(31) F=3[Q (3,2)16®D (3,1)1580U (3,1)_o3® L (1,2)_1/2® E (1,1)4],

where we label the quark” fields Q, U and D, and the lepton fields L and E. In
other words, we have 3 copies of a specific 15-dimensional reducible representation
(a “generation” of quarks and leptons).

One must also specify (up to change of basis) three matrices my, mg, msg €
Mat3(C), the Yukawa couplings. Together with the three gauge couplings, these
form 19 real parameters which must be determined by experiment.!

At first sight, a mathematician might say that while C and V seem reasonably
simple, F is a rather ugly and random looking collection of data. Needless to say,
physicists have had a lot of time to consider the matter, and to some extent have

1The discovery of neutrino oscillations is the first solid evidence for physics beyond the
Standard Model, but can be accommodated with a few more parameters and fields.
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come to the opposite point of view: the G-representation which appears in (3.1)
can easily come out of a simpler starting point, but the presence of C and V is quite
difficult to understand.

Perhaps the simplest hypothesis which can lead to (3.1) is to postulate that
G = SO(10), F is 3 copies of an irreducible spinor representation, and C contains a
copy of the adjoint representation of G. It is then easy to find a ¢ whose stabilizer
is the Standard Model gauge group, and it is a simple exercise to check that the 16
dimensional spinor of SO(10) decomposes into the spectrum (3.1) plus an additional
trivial representation. Thus this is a “grand unified theory.” Other nice unification
groups, for which simple choices for F can decompose into (3.1), include SU(5) and
FEs.

Although this striking observation may look like direct evidence for grand uni-
fication, one can find other explanations for this matter content. For example, a
consistency condition called anomaly cancellation strongly constrains the allowed
matter representations in gauge theory, and determines the U(1) weight assign-
ments in (3.1). Still, this observation combined with coupling unification is very
suggestive.

Points which remain unexplained are the number 3 of generations and the
structure of the Yukawa couplings. Most significantly, as mentioned already, one
also has the hierarchy problem: the potential V' must have a minimum of order
100 GeV, while other couplings are of order 10'6 GeV. This is not easy to arrange,
and the only simple way to do it involves supersymmetry.

3.2. Supersymmetric effective field theory. An A/ = 1 supersymmetric
effective field theory can be defined by the data (C, G, u, W).

C is a complex manifold with Ké&hler metric.

G is a Lie group with a holomorphic action by isometries on C.

1 are moment maps for the G action.

W is a holomorphic G-invariant function on C, called the superpotential.

Note that there is less data than in the non-supersymmetric case, and that it obeys
the far more constraining conditions of complex geometry.

This data determines a specific effective theory which can also be described
in the general terms we gave earlier, but with very specific relations among the
particles and the couplings. In particular, each particle has a “superpartner” —
quarks come with scalar “squarks”, and gauge bosons come with partner “gaug-
inos.” While none of these have been observed yet, there is a precise hypothesis
which accounts for this: supersymmetry is spontaneously broken.

What this means for present purposes is the following. Given the data, the
potential of the effective theory is

(3.2) V = (OW,0W) + |ul,

where 0 is the holomorphic gradient, (,) is the Hermitian inner product derived
from the Kéhler metric, and p are the moment maps (the metric which appears
here is derived from the gauge couplings).

Such a potential has two types of critical points. One type, in which

(3.3) 0=0W = p,

is a “supersymmetric vacuum.” One can also have critical points V/ = 0 at which
(3.3) does not hold, called “non-supersymmetric” vacua.
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In a supersymmetric vacuum, the naive consequences of supersymmetry hold —
for example, superpartners must have the same mass. This is clearly not true in our
universe, so if supersymmetry is relevant for real physics, it must be spontaneously
broken. In other words, we must be in a non-supersymmetric vacuum. Expanding
about such a vacuum, one can compute masses of all particles; now superpartners
have different masses, and it turns out to be natural for the presently observed
particles to be lighter than the others.

Thus, spontaneously broken supersymmetry is not easy to detect experimen-
tally, until one reaches the energy scales set by |[0W| and |u|, which sets the mass
of the superpartners. On the other hand, whether or not the supersymmetry is
spontaneously broken, supersymmetric theories enjoy much better renormalization
properties, in particular the superpotential is not renormalized to all orders in A.
This is an essential ingredient in most solutions to the hierarchy problem, as it
allows terms of very different order to coexist. It is not the entire story, as one
must somehow generate these terms in the first place. The field of “dynamical su-
persymmetry breaking” began with the realization that W could obtain corrections
from instanton effects, which are exponentially small in . One can find theories in
which supersymmetric vacua which would have been present without these effects
become nonsupersymmetric vacua in the exact theory, leading to a solution to the
hierarchy problem.

A lot of work has been done on supersymmetric extensions of the Standard
Model. Indeed, the simplest such extensions have the same G = SU(3) x SU(2) x
U(1), while C is now the direct sum of F from (3.1), with the C as in the Standard
Model, with a “second Higgs” (1,2)_1/2 (necessary because W is holomorphic,
so the two representations are different). The Yukawa couplings of the Standard
Model, are then derived from cubic terms in the superpotential,

(3.4) W =U my QHy +D mo QHy + E ms LHo,

where H; are the two Higgs fields, and m1, ms and mg are 3 X 3 matrices encoding
the specific Yukawa couplings.

Thus, the Standard Model fits relatively easily into a supersymmetric extension,
and its grand unified extensions do as well. This is somewhat non-trivial as one
can easily write effective field theories which do not. Checking these constraints
from supersymmetry largely depends on discovering the Higgs boson, but it is also
generally believed that supersymmetry forces the Higgs bosons to be relatively
light, so this should also happen before long. Either way, the status of low energy
supersymmetry should become much clearer in a few years.

Having gotten this far, we can briefly mention the next important problem
in constructing a supersymmetric GUT, the problem of “fast proton decay,” and
the related “doublet-triplet splitting” problem. First, note the non-generic form of
(3.4), in which no terms appear which are odd in quarks or leptons separately. Such
terms would describe processes in which quarks decay (or transmute) into leptons,
but the observation that the proton lifetime is greater than 1033 years forces the
coefficient of any such term to be vanishingly small. The problem is then that this
is not easy to get from a GUT, which in the first instance treats quarks and leptons
on the same footing. It is not impossible, but we refer to [63] and references there
for further discussion of how this can be done.
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3.3. Summary. We gave a brief sketch of the Standard Model, and a few of
the most promising ideas for what physicists believe lies beyond it, grand unification
and supersymmetry. All of these ideas can be described in the general framework
of four-dimensional effective field theory.

Attempts to derive these effective field theories from superstring theory and
understand their physics have been a major focus of the field for almost twenty
years. It is this line of work which has led to most of the mathematical “spin-offs,”
and explaining this will take up most of the rest of the lecture.

4. Supersymmetric Kaluza-Klein compactification

The field of superstring compactification started in 1985 with the work of Can-
delas, Horowitz, Strominger and Witten on compactification of the heterotic string
on Calabi-Yau manifolds, which led to the first quasi-realistic models with low
energy supersymmetry [6].

While this construction was discovered in the context of string theory, all of
the work was actually done using field theory, and in concept directly follows the
original picture of Kaluza and Klein, in which Maxwell’s equations were derived as
a consequence of compactification of five-dimensional general relativity. Thus we
review this picture very quickly before proceeding.

The modern version of the Kaluza-Klein idea can be stated succinctly as the
idea that all properties of the four-dimensional effective field theory of our universe
can be traced to geometric properties of extra dimensions of space. The central
problem in “the geometry of string theory,” is a definition of “geometry” which is
general enough to encompass all work on string and M theory compactification in
a reasonably unified way.

4.1. Kaluza-Klein compactification. Consider a solution of general rela-
tivity which is close to the product manifold M x K, where M is four-dimensional
Minkowski space-time with its flat metric, and K is a D-dimensional compact man-
ifold. The data of (D + 4)-dimensional general relativity is a D + 4 metric and its
associated Levi-Civita connection; we now try to interpret this as 4-dimensional
data.

Besides a 4-dimensional metric, we find two additional “fields.” First, there is
the D-dimensional metric on K. This is a choice which can be made independently
at each point in M, and thus this choice is a configuration in the terms of section
2. The vacua are direct product solutions of the Einstein equation, with a fixed
Ricci-flat metric on K. This can be described in effective field theory terms by
taking C = Met(K), the infinite dimensional space of metrics on K, and V to be
the Einstein-Hilbert action functional on these metrics.

Close to the direct product solutions are solutions in which the metric on K is
slowly varying as we move in M. These can be described to a good approximation
by a scalar field, a map from M into C.

This approximation is typically controlled by the ratio between the scale L of
this variation in M to the radius R of K. More precisely, it is controlled by the
ratio E/h, where F is the energy and h ~ 1/R is the gap (the lowest non-zero
eigenvalue) for the scalar (and other) Laplacians) on K. If we want an effective
field theory for energies far below h, the description using an infinite dimensional
C is far more complicated than we need.
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Rather, one can take for C the moduli space of Ricci-flat metrics on K. Since
all of these are solutions, one takes V' = 0. This C carries a natural metric, the
Weil-Petersson metric, inherited from the natural metric on Met(K).

The remaining data contained in the (D+4)-dimensional metric can be regarded
as a connection on the fibration of K over M. While in general this connection need
not be linear, if we restrict attention to solutions which are slowly varying in M we
find that the connection must be trivial up to a possible action by an isometry of
K. In particular, the original result of Kaluza and Klein was that K = S = U(1),
so in this case one recovers a U(1) connection. More generally, one obtains a G-
connection, where G is the isometry group of K. Furthermore, there is an induced
action of G on C; in physics terms one says that the scalar field is “charged” under
G.

While in pure (D + 4)-dimensional general relativity K must be Ricci-flat, by
considering other theories this can be generalized. The simplest possibility [25] is
to consider a (D +4)-dimensional theory with an additional 3-form gauge potential
(generalizing Einstein-Maxwell theory). As discussed by Acharya and Gauntlett in
this volume, one can show that the resulting field equations can be solved by K
with constant positive scalar curvature. This greatly enlarges the possible isometry
group, at the cost of obtaining M with constant negative curvature (anti-de Sitter
space).

To end, we summarize the proposal of Kaluza and Klein as the idea that a
configuration is a manifold with metric, up to the natural equivalence by diffeomor-
phisms. Gauge symmetry arises at fixed points of the quotient by this equivalence.

4.2. String theory. For a long time, the Kaluza-Klein idea was completely
ignored, for the simple reason that it requires starting with a higher-dimensional
analog of general relativity. Even in four dimensions, it is very hard (most would
say impossible) to quantize general relativity by a direct approach, for the reason
mentioned earlier that the interaction becomes strong at short distances. This
problem gets worse in higher dimensions and, while mitigated in supergravity, is
not cured.

In superstring theory, point particles are replaced by strings. These come with
a natural length scale, their average size or “string length” I, and it turns out that
all interactions become weak at distances shorter than /s, overcoming this problem.
On the other hand, at distances larger than [, it is a good approximation to regard
the string as a convenient summary for a particular spectrum of particles, one for
each possible joint state of its modes of vibration. Only a small number of these
particles have mass small compared to 1/ls, and thus string theory will reduce to
a field theory with a finite number of fields at distances L >> [, and energies
E << 1/ls. This is the limit in which we want to think of string theory as reducing
to general relativity.

The fact that superstring theory includes general relativity is still one of the
most striking and mysterious facts about the subject, and we will not be able to
explain it satisfactorily here. Most of the explanations are indirect, developing
other properties of the theory and eventually seeing that these imply the existence
of a massless spin two particle, which by general arguments imply that the theory
must include general relativity.

Perhaps the simplest indirect explanation of this sort makes gravity a con-
sequence of supersymmetry. We will only describe this impressionistically: the
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motion of a string can be described by a two-dimensional field theory of maps from
¥, a two-dimensional manifold of topology S! x R parameterizing the space-time
history of a loop of string, into space-time M x K. There are also two-dimensional
field theories whose fields are fermionic, taking values in a space A with anticom-
muting coordinates, as well as more complicated possibilities. A theory of maps
into M x K x A will naturally have symmetries which mix all of the dimensions,
and these are the supersymmetries.

We now grant that string theory can realize supersymmetry (in fact string
theory came first, and was one of the clues which led to the discovery of supersym-
metry), and consider the consequences of supersymmetry.

4.3. Supersymmetry and supergravity. After the dimension of space-time,
the most basic characterization of a supersymmetric theory is the number of super-
charges (in Minkowski space-time), which we denote Ns. The A/ = 1 theories in
four dimensions have Ns = 4, but the upper bound (for the known unitary theories)
is Ns = 32.

There are three basic supergravity theories with Ns = 32. The simplest one,
discussed in Acharya and Gauntlett’s lectures, is formulated in 11 space-time di-
mensions; the supercharges form a real spinor representation of SO(1,10). Besides
the metric, it contains a fermionic “gravitino,” and a three-form gauge potential.
The other two basic supergravities are formulated in 10 space-time dimensions, and
the supercharges form spinor representations of SO(1,9) — depending on the choice
of representation, one obtains the Ila or the IIb theory.

The basic example of a supersymmetric theory with Ns = 16 is super Yang-
Mills theory in ten dimensions; this theory contains a fermionic superpartner called
a “gaugino.” As with pure Yang-Mills theory, these theories are uniquely deter-
mined by the choice of “gauge group,” a finite dimensional compact semisimple Lie
group G. These theories can also be coupled to gravity, to obtain “type I super-
gravity.” In this case, the gauge coupling is determined by the expectation value
of a complex scalar field usually called the “dilaton-axion.”

The explicit Lagrangians and equations of motion for these theories are of course
known and discussed in other contributions in this volume. More important for us
here are the supersymmetry transformation laws, and the corresponding conditions
for unbroken supersymmetry,

(4.2) 0=dx =T Fjje.

Here GG denotes a direct sum of the various gauge field strengths of the particular
supergravity theory.

A background in which the supersymmetry variations of all fields are zero is
one which preserves supersymmetry. In classical backgrounds, fermionic fields have
zero expectation value, so this condition reduces to setting the right hand side of
(4.1) to zero. The analysis of these conditions, and variants of them which we will
come to, is the first step in the study of supersymmetric compactification.

4.4. Low energy supersymmetry from string theory. Let us start with
the simplest case of FF = G = 0. In this case, the conditions (4.1) reduce to D;e = 0;
in other words € must be a covariantly constant spinor.
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As is familiar, covariantly constant spinors are associated to a reduction of
the global holonomy group of K from SO(D) to a subgroup H, such that the
spinor representation contains an H-invariant subspace. The possibilities, listed in
Gauntlett’s lectures, include all of those on Berger’s list which support Ricci-flat
metrics. The simplest, used in the early works, is H = SU(n) with n = D/2.
Manifolds with SU(n) holonomy admit Ricci-flat metrics, and are thus solutions
of supergravity. In particular, compactification of the Ns = 16 supergravity on a
Calabi-Yau threefold, leads to an Ns = 4 supergravity in four dimensions.

On a Calabi-Yau, the second equation in (4.1) reduces to the Hermitian Yang-
Mills equations (in the special case ¢y (V) = 0), F29) = F(LU A JAJ =0 (where .J
is the Kéhler form). Now one appeals to the theorems of Donaldson and Uhlenbeck-
Yau to argue that for a u-stable holomorphic vector bundle V on K, these equations
have a unique solution.

This class of theories provides the simplest candidates for realistic physics, as
we discuss shortly. There are two more essential ingredients in the string theoretic
discussion. First, it turns out that to quantize a field theory in ten dimensions, the
spectrum of fermions must satisfy the very strong constraint of “anomaly cancella-
tion.” Without going into details, this arises because the determinant of the Dirac
operator acting on an irreducible spinor representation in ten (or any even number
of) dimensions is gauge invariant only up to a phase, and one must arrange for the
non gauge invariant phase to cancel between representations. In ten-dimensional
supergravity, this is true for the type II theories, and for type I theories only for
the gauge groups Fs x Eg and Spin(32)/Z,. Both can be realized in the heterotic
string.

A full discussion of this point brings us to the second essential string theoretic
modification, the “Green-Schwarz term.” This imposes a topological constraint on
the gauge bundle,

CQ(K) = CQ(V).

The resulting four-dimensional theory will have as a factor in its gauge group
the endomorphism group of V' as an Eg x Eg or Spin(32)/Zs bundle, while C will
include the formal deformation space of V', as we shortly discuss.

4.5. Deriving the supersymmetric effective field theory. Suppose we
grant the above, and find an interesting M and V; how would we go on to derive
the effective field theory, to compare it with the supersymmetric Standard Model?

The first point to recognize is that the discussion above, based on Kaluza-Klein
reduction of a supergravity theory, does not lead to exact results in superstring
theory. Physically, one usually thinks of supergravity as the “weak coupling” and
“large volume” limit of superstring theory. These limits are characterized by two
parameters, controlling “stringy” and “quantum” corrections respectively.

The “stringy” corrections are functions of the length scales L of the internal
manifold K, measured in units of the string length l; in other words of I, /L, which
go to zero as L — oo. These include “world-sheet instantons,” maps from two-
dimensional surfaces ¥ into M, controlled by exp(—I2/L?) where L? is the volume
of a two-cycle. In general they also include “perturbative” corrections, given by a
general Taylor series in [;/L. The “quantum” corrections are functions of the string
coupling g (the stringy analog of Planck’s constant /) and can also be power-like
or exponentially suppressed.
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In any case, physicists argue that as I5/L — 0 and g; — 0 the supergravity de-
scription becomes good. Thus the style of analysis described above can be extended
to derive the entire low energy effective Lagrangian in this limit.

Actually, g, is controlled by a scalar field, the dilaton-axion, so a better way
to think about the situation is that the effective Lagrangian data one derives in
the supergravity approximation is an approximation to the true data, which is
controlled in a subset of C, and progressively less reliable away from this subset.
The parameters [;/L are also controlled by fields (the Ké&hler class of the Ricci-
flat metric), so this statement of the situation is general: we only have direct
information about a limit of the effective field theory.

For quite a while, this realization, and general arguments that our universe
could not be described by the supergravity limit, turned most string theorists away
from detailed exploration of the problem we now discuss. On the other hand, it
does exhibit a lot of the structure one wants, and later considerations involving
duality make even limiting results much more interesting. So let us continue.

On some level, the result is not hard to describe, in the case G = 0. The
space C is a fibration, whose base is the product of the moduli space of Ricci-flat
metrics on M with its natural metric with a copy of the hyperbolic disc (in which
the dilaton-axion takes values).

The fiber F' is harder to describe. One’s first attempt would be to take it
to be the moduli space of holomorphic Eg x Eg (or Spin(32)/Zs) bundles on K.
Within this moduli space, interesting bundles V' lie on the reducibility locus with
endomorphism group SU(3) x SU(2) x U(1), while infinitesimal deformations away
from this locus correspond to the spectrum of quarks and leptons (3.1).

Of course, this is problematic: in general there is no good moduli space, and
even if we place restrictions to make it so (for example, consider p-stable bundles), it
is not a manifold. In favorable cases it might be a variety with quotient singularities,
with some complicated obstruction theory. This is all relevant physical data; for
example the Massey products translate into Yukawa couplings in the effective field
theory.

One can postpone the problems of defining a moduli space by taking the fiber
to be the space of holomorphic connections on K, described as deformations of a
reference connection by an End G-valued (0, 1)-form. Since K is Kéahler, this space
has a natural Kahler metric. The superpotential W is the holomorphic Chern-
Simons action,

(4.3) WI[A] = /M QA Tr(A0A + §A3).

This is a functional of A with the property that 6W/§A = F(©2) = 0; in other
words its stationary points are connections on holomorphic bundles. Finally, the
G-action is the action of the group of holomorphic maps from K into G¢, and
the corresponding moment maps p are the Hermitian Yang-Mills equations, as
explained in [17]. Reducible connections lead to enhanced gauge symmetry, as in
our previous discussion, while the cubic coupling in (4.3) directly encodes the cubic
terms in W which become the Yukawa couplings.

While this is morally an effective field theory, it is infinite dimensional and
not concrete enough to address physicists’ questions. We need ways to reduce this
description to a finite number of variables. Now, many generalizations of “moduli
space” have been suggested by mathematicians to capture this information and get
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a usable description of F. Personally, while one of my goals for the school was to
start a serious math-physics discussion of these ideas, I am not sure this effort was
a success; still, I hope some student will soon prove me wrong!

Perhaps more importantly, as we mentioned, the effective field theories one
obtains are only approximations valid in the large volume limit; as we move away
from this limit, the general result will obtain “quantum” and “stringy” corrections.
Rather than make this approximate effective field theory explicit, and then add
these corrections, one would rather find an equally general “geometric” characteri-
zation of the true effective field theory, and then find its explicit realizations.

5. Beyond differential geometry: the string world-sheet

So far we have been discussing applications of existing geometry — differential
and algebraic — to string theory. Why should we expect string theory to require,
or suggest, new concepts of geometry?

There are several intuitive reasons to expect this. Of course the most funda-
mental is that the primary definitions are not in terms of point-like particles but
instead extended objects, strings and the “branes” we discuss below. One thus feels
that concept of geometry based on points is somehow not “to the point,” and one
should start from new foundations.

These new foundations do not yet exist, though we will certainly come back to
this topic below. Now, even if we try to formulate string theory using the standard
language of field theory, we find not general relativity and Yang-Mills theory, but a
two-parameter deformation of these theories. The case of finite string length [, is
still far better understood than that of finite g5, and in this section we consider it.
In string theory terms, it corresponds to “perturbative” string theory (so, processes
involving one or a few strings), but moving through a background geometry in which
curvature and other geometric length scales can be arbitrarily small.

The propagation of a string moving through any background geometry, which
solves the stringy analog of Einstein’s equations, is described by a two-dimensional
conformal field theory, and thus we start here. This subject is on a somewhat
better mathematical footing than general field theory or string theory, as there are
many exactly solved cases (Wess-Zumino-Witten models, Gepner models, and so
on) which either have been or are in the process of being rigorously formulated. We
refer to [56] for a status report on this work, and continue our overview.

The most “geometric” definition of quantum field theory is the nonlinear sigma
model. This is defined as a functional integral over maps from 3, here a two-
dimensional Riemannian manifold, to a target space K, a manifold with metric;
denote this g € Met(K). One can also supersymmetrize this model, adding fermions
valued in the tangent bundle to K.

The foundational result here [26] is that the renormalization theory is geo-
metric, i.e. can be done in a generally covariant way. While the arguments are
perturbative, so is renormalization, so it is very plausible that an exact defini-
tion would share this property; of course more rigorous arguments would be very
valuable.

The primary result of the renormalization theory is the renormalization group
(RG) flow, a vector field on Met(K). This is a deformation of the Ricci flow, by
corrections in a Taylor series in [4 and local tensors constructed from the metric.
The additional couplings of string theory, such as the “B-field” and dilaton, can



18 MICHAEL R. DOUGLAS

also be treated; adding the latter leads to the modified flow equations studied (for
example) in [46].

Fixed points of the RG flow are conformal field theories. Very few examples
are known for the original nonlinear sigma model, and these have either flat metric
or additional background fields (for example, the Wess-Zumino-Witten model has
a B-field) and at least hints at some underlying integrable structure. On the other
hand, it has been argued for the supersymmetric sigma model that any Ricci-flat
metric on K will correspond to a fixed point. Note that the fixed point metric
is typically not Ricci-flat, due to the I, corrections [31]; rather the obstruction to
solving the corrected fixed point equations vanishes in perturbation theory [45].

5.1. Strings as loops, and T-duality. The approach we just described,
based on constructing the stringy deformation order by order, is not too satisfying;
one would rather characterize the theory at finite [, presumably in terms of some
radical reformulation of geometry.

While this goal is widely accepted, other satisfactory starting points are not
easy to find or work with. Perhaps the one which has been most studied is to
formulate stringy geometry as a geometry of loop spaces. So far, attempts to do
this, both physical and mathematical, rapidly get lost in the technicalities of infinite
dimensional manifolds, renormalization theory, and so on. Some sort of conceptual
breakthrough seems to be required to make useful progress in this direction.

Even without this, the intuitions coming from the picture of loops and extended
objects have motivated many important developments. Perhaps the most simple
intuitive ideas which came out of perturbative string theory are T-duality, of which
mirror symmetry is an example, and the noncommutativity of open string theory.

T-duality is a symmetry of perturbative string theory which appears in com-
pactification on tori, or torus fibrations. For example, a compactification of the
type Ila string on an S! of circumference 27 R is physically identical to a compact-
ification of the IIb string on an S* of circumference 27l2/R.

The picture which leads to this equivalence is the following. Compactification of
field theory on an S' leads to a spectrum of “Kaluza-Klein” or “momentum” modes,
whose masses are given by the square roots of the eigenvalues of the Laplacian, say
M, = n/R for n € Z. This is part of the string theory spectrum, obtained by
quantizing string loops with trivial topology (zero winding number).

By itself, this spectrum is obviously not invariant under R — [2/R. On the
other hand, string theory contains additional “winding modes,” defined as string
loops around the S!' with fixed winding number, call this m. These have mass
equal to the string tension, 1/2712, multiplied by the length of the geodesic with
this winding number, 27 Rm, so M,, = Rm/I?>. Now R — [2/R is a symmetry of
the union of these two mass spectra, exchanging momentum and winding modes.
This intuitive argument can be made precise using string world-sheet techniques.

To generalize this to higher-dimensional tori, one starts by noting that the
moduli space of string compactifications on 7¢ with d > 1 is larger than the space
of metrics: one can also choose a harmonic two-form called the “Neveu-Schwarz
B-field.” The combined moduli space of metric and B-field can be shown to be the
homogeneous space SO(d,d,R)/SO(d) x SO(d) before T-duality, and T-duality
leads to identifications by any element of the discrete group SO(d,d,Z). The re-
sulting quotient space is a submanifold of C for type II string compactification on
tori, but not all of C — we will discuss this further under “duality” below.
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What is most important for later developments is that there is much evidence
that T-duality applies not just to tori, but generalizes to any fibration with a torus
action which (at least approximately) preserves the metric.

5.2. Mirror symmetry and topological string theory. One can also take
the point of view that the framework of two-dimensional conformal field theory is
itself the starting point for “stringy geometry.” On the surface, this certainly
looks very different from conventional geometry. For example, some conformal field
theories can be defined in purely algebraic terms, without assuming that the fields
take values in any target space. One then might try to find geometric notions which
capture the structure of this algebraic problem, in the spirit of modern algebraic
geometry.

While attractive, this point of view has not been easy to implement in gener-
ality, because by themselves the axioms of conformal field theory are far too weak
to draw interesting conclusions. There is a special case of the problem, rational
conformal field theory [41], which is more accessible, and this led to one of the
most interesting early results, the construction of Gepner [28]. This was an ex-
plicit algebraic construction of certain (2,2) theories, which Gepner proposed (and
others confirmed) were equivalent to sigma models with Calabi-Yau target space at
particular points in moduli space. On the other hand, the class of rational theories
is not preserved by deformation, and thus seems too special to form the foundation
of a new geometry.

The most interesting CFT results so far are for the special case of the (2,2)
models. To make a long story short (see [39, 14, 29]), the supersymmetric nonlinear
sigma model with target space a complex Kéahler manifold has additional world-
sheet supersymmetry, the (2,2) superconformal algebra. This structure is very
central in all relations between string theory and algebraic geometry. It also leads
to the definition of “topological twisting” and the A and B twisted sigma models.

In early study of the (2,2) models with Calabi-Yau target space [16, 35], it
was noted that the complex and Ké&hler moduli entered on a “symmetric” footing,
and that their roles could be interchanged by a simple automorphism of the (2,2)
algebra. This observation was developed by Greene and Plesser [30], who used
Gepner’s construction and identifications to propose a specific equivalence between
a pair of sigma models with Calabi-Yau target. This proposal was the basis for the
famous work of Candelas et al [7], counting curves using mirror symmetry.

While the direct CFT point of view remains difficult, much progress has been
made in recent years by the use of the “linear sigma model” construction [59].
This essentially constructs Calabi-Yau target spaces as subvarieties of toric varieties
obtained by an explicit quotient of C™ by holomorphic isometries. We refer to [39]
for a detailed discussion of this topic, and the associated mathematical and physical
proofs of mirror symmetry.

5.3. Dirichlet branes. Although historically Dirichlet branes were not much
studied before the “duality revolution” we discuss below, they are also defined in
terms of the string world-sheet, and thus belong logically to the current discussion.

Strings can be closed, with topology S', or open, with the topology of the
interval. Intuitively, a Dirichlet brane is an allowed endpoint for an open string.
Thus, in a geometrical framework, a Dirichlet brane could be specified by a choice
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of a submanifold of the target space, on which a particular type of open string is
allowed to end.

There is an additional possible choice: since the end of an open string is a point,
it behaves physically like a particle, and can be coupled to a Yang-Mills field. Thus,
one can also specify a non-trivial Yang-Mills connection on the Dirichlet brane. In
fact, when one quantizes the string, one finds that this degree of freedom emerges
as a physical field, much in the same way that gravity emerged from the closed
string. Thus, in the physical discussion one cannot leave this out.

On a more general level, the Dirichlet brane turns out to be the simplest way
to embed Yang-Mills theory into the general framework of string theory, and has
led to many striking connections between the mathematical and physical study of
Yang-Mills theory. The simplest, which led to the original argument that Dirichlet
branes must be included in string theory [12], is that T-duality acts on a Dirichlet
brane as a sort of “Fourier-Mukai” or “spectral cover” transform. For example, a
brane embedded in 7% carries a U(1) connection, which by the Yang-Mills equations
must be flat. Flat U(1) connections of course parameterize points in a dual 79,
which turns out physically to be the moduli space of a T-dual Dirichlet brane which
sits at a point in the dual torus.

The next such relation to be discovered was the equivalence between “point-like
instantons” and Dirichlet branes [61, 18]. If one considers a Dirichlet brane with
spatial dimension p > 4, the associated Yang-Mills field theory will have self-dual
instanton solutions. Among their moduli is a scale size, and one can ask how string
theory resolves the singularity which appears when the scale size goes to zero. In
fact, one finds that, in the limit, the instanton becomes equivalent to a second
Dirichlet brane of spatial dimension p — 4. Following this idea, one can find a
purely physical rederivation of the ADHM construction of instanton moduli space
[3], which admits many generalizations and has found many physical applications,
as discussed in Dorey’s lectures.

5.4. Noncommutative geometry. The physics of Dirichlet branes is rich
and complicated, and one soon feels the need for organizing principles. One of the
simplest of these starts with the elementary observation that an open string has
two ends. Furthermore, if we consider oriented strings, an interaction of two open
strings can take place when the end of the first string adjoins the beginning of the
second. This can be distinguished from another possibility — the end of the second
string could adjoin the beginning of the first — which leads to a different interaction.

These interactions can be formulated more precisely as the operator product
algebra on the two-dimensional world-sheet. Whereas for closed strings this prod-
uct is defined by taking a coincidence limit of two points on the sphere, a limit
without any natural ordering, for open strings one takes a coincidence limit of
points on the boundary of the disk, which are ordered. This distinction can be
encoded algebraically as noncommutativity — whereas closed string operator prod-
ucts form a commutative algebra, open string operator products naturally define a
noncommutative algebra.

One furthermore has a choice of boundary conditions — a choice of submanifold
and connection in the geometric description, or some more abstract choice in general
CF'T. Since an open string has two ends, its spectrum depends on a choice of a pair
of boundary conditions, say A and B, and a string ending on (say) B can only
interact with another string beginning on B.
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One way to encode these constraints is to say that Dirichlet branes (boundary
conditions) are objects in a category, and open strings are morphisms. This is not
the only way to think of this; one could instead say that open strings form a groupoid
algebra, as in [9], but given a general and diverse set of boundary conditions the
categorical language is perhaps more natural. In any case, the essential feature is the
noncommutativity — in this sense, the Dirichlet branes define a “noncommutative
geometry” associated to any CFT.

This idea has been made precise in several different ways. In principle, the
most general would be to work with open string field theory, along the lines of
[57], but so far this framework remains cumbersome. To avoid its difficulties, one
must consider a special case or limit in which the operator product algebra of CFT
reduces to an ordinary algebra. This essentially requires operator products to be
independent of the positions of operators on the world sheet; in other words one
must study topological string theory.

One special case in which the string reduces to a topological string is the study
of a background Neveu-Schwarz B-field, as discussed by Cattaneo and Felder [8]
following earlier work by Kontsevich [34]. In particular, in toroidal compactifica-
tion, this leads to the noncommutative torus algebra, as was argued in works of
Connes et al [10], Douglas and Hull [21], Schomerus [52] and Seiberg and Witten
[51].

5.5. Open string mirror symmetry. Another special case in which the
string can be made topological is the sigma model with Calabi-Yau target. Now
the topologically twisted open string theories provide categories of Dirichlet branes,
which can be defined using the data of the topological closed string theory.

For the B model, this data is a Calabi-Yau K considered as a complex variety.
The obvious category which arises is the category of coherent sheaves on K.

For the A model, the closed string data is a Calabi-Yau K considered as a sym-
plectic manifold. It is also clear from elementary considerations that world-sheet
instantons with disk topology contribute to the operator product algebra. The nat-
ural category which these considerations suggest is the Fukaya category of isotopy
classes of Lagrangian submanifolds, with morphisms given by Floer cohomology.

A naive conjecture of open string mirror symmetry would equate Coh M with
Fuk W on its mirror. However, Kontsevich, who was the first to get this far,
realized that this could not be — the two categories look too different in general.
This observation was subsequently made concrete in many different ways. For
example, mirror symmetry actually relates the B model on W, to a collection of A
models on various CY’s M, M’ etc. which are birationally equivalent, but non-
homeomorphic. While Fuk W does not depend on the B model data (the complex
structure), Coh M # Coh M’ for non-homeomorphic Calabi-Yau’s, so one gets a
contradiction.

This contradiction can be fixed by instead postulating that the category arising
from the topological B model open string is the derived category D(Coh M), which
(as first suggested by Bondal and Orlov [5]) is equivalent for birationally equivalent
CY’s. This is one way to arrive at Kontsevich’s homological mirror symmetry
conjecture, discussed in detail in the monograph [40].

Physical understanding of this idea came much later. A simpler physical picture
of open string mirror symmetry is to relate it to T-duality. As we discussed, this
naturally acts on torus fibrations, and this can fit with the known action of mirror
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symmetry on homology only if these are T° fibrations. This picture leads to the
Strominger-Yau-Zaslow formulation of mirror symmetry [53], also discussed in [40],
in which Dirichlet branes wrapping the 7 on W are mirror to point-like branes on
M.

As explained by Gauntlett, supersymmetry requires the relevant branes on W
to wrap special Lagrangian cycles. This suggests a mirror relation between the
complete set of special Lagrangian cycles on W and the coherent sheaves on M.
However, early pictures of this relation relied too much on properties of the large
volume approximation, and it seems fair to say that the full picture has not yet been
spelled out. Making this full picture will clearly require a good deal of math-physics
interaction, as indicated by a few results we now mention.

One of the simpler mathematical consequence of this symmetry, discussed in
Szendréi’s contribution, is a mirror relation between Fourier-Mukai transforms,
which realize the autoequivalences on D(Coh M), and symplectomorphisms on .
Both transformations are “generalized T-dualities” in physics language, but the
first is non-geometric, further demonstrating that D(Coh M) must play a physical
role. This has been better understood, along lines discussed by Douglas in [22] and
to be explained in [40].

Another small volume subtlety is discussed in Kapustin’s contribution: to get
mirror symmetry in general, the Fukaya category must be enlarged to include
coisotropic submanifolds, objects which can also be shown to be supersymmetric
Dirichlet branes.

5.6. Resolution of orbifold singularities. The simplest non-trivial non-
commutative algebras of this sort arise as quotients of C™ by a discrete group
action. Taking infinite groups provides the rich set of examples discussed in [9],
but quotients by finite groups are very interesting as well, especially in the context
of algebraic geometry, where one has well understood methods to resolve and study
the resulting orbifold singularities.

Since quotients are natural, one would expect that all reasonable definitions of
the quotient will agree. This is certainly borne out by the Dirichlet brane example,
in which orbifolding leads directly to the concrete quiver theories which arose in the
study of the McKay and generalized McKay correspondence [48]. This connection
allowed immediately generalizing Witten’s small instanton work to gauge fields on
orbifold resolutions [19], and subsequent physical work has made fairly detailed
contact with the mathematical work on the McKay correspondence, explained in
contributions by Craw and Ishii to this volume. All of these topics will be discussed
at length in [40].

6. The duality revolution

So far, we discussed the new geometry associated with I;,. The problem of
understanding quantum g, corrections is much more far-reaching, and much more
difficult. Clearly one should start by understanding the gs; deformation in the
absence of [, corrections.

6.1. Quantum supersymmetric field theory. The typical problem here is
to start with a classical Lagrangian, not including g, corrections, and compute the
exact answer with g, corrections. Many such problems are discussed in the lectures
of Dorey and Acharya. Traditionally, one starts by showing that the quantity of
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interest receives either no corrections in perturbation theory (say the superpotential
in d = 4, N = 1 gauge theory), or very specific corrections (say the metric on C
in N = 2 gauge theory, for which the only correction in the g5 expansion is the
“one-loop” correction independent of g). This allows determining its behavior
in certain limits and, using an intricate combination of symmetry arguments and
global constraints on holomorphic functions, this can in simple cases be pushed to
get exact results.

Perhaps the most famous example is the Seiberg-Witten solution of four-dim-
ensional N' = 2 (or Ns = 8 in our conventions) gauge theory. In the language of
N =1 effective field theory, this theory has C = G¢ (the complexified Lie algebra)
with the adjoint action of G, and the space of vacua is C //G = T¢ / Weyl(G) (the
complexified Cartan subalgebra modulo the Weyl group). In the “exact solution”
(meaning the exact low energy effective field theory; almost no other observables
are computable at present), one learns (essentially) two things.

First, one learns the exact metric on C, which (much as in mirror symmetry)
is given by an infinite series summing instanton contributions (in a tour de force
work [44], this was recently checked against the direct computation).

Second, one learns the locus in C on which new charged particles become mass-
less. These are the magnetic monopoles and dyons visible as solitonic solutions at
weak coupling, and this is the result which led to the formulation of the Seiberg-
Witten equations: they are the equations of motion for the effective field theory
of the monopole, and as such “must” (when suitably interpreted) reproduce the
Donaldson invariants. The argument is that since these invariants are “topologi-
cal” and do not depend on the metric, they cannot depend on the overall scale of
energy, therefore they must be the same for the effective field theory as they were
in the full quantum field theory.

Physically, this result determines the phase structure of the theory: in partic-
ular, the related N' = 1 theory obtained by adding a quadratic superpotential is
in the confining phase. These ideas can be pushed further to compute the effective
superpotential as a functional of the original superpotential (taken to be a general
G-invariant function on C). Indeed, many more exact N = 1 superpotentials are
known for simple cases.

If we add a cubic or higher order superpotential, something even more unusual
happens: the result is a “non-trivial fixed point theory” [1], a theory with quantum
fluctuations at all length scales, analogous to the models of critical phenomena.
Another example can be obtained by coupling matter in sufficiently many copies
of the fundamental representation of G [49], and there is a whole zoo of further
examples. Such theories do not behave classically in the low energy limit and thus
are not well described by effective field theory; one needs more elaborate tools, more
analogous to those of two-dimensional conformal field theory (indeed, it is generally
believed that fixed point theories in any dimension are conformally invariant).

Shortly after the school, a general prescription for computing exact N = 1
superpotentials at finite g; was found by Dijkgraaf and Vafa [15]. It states that
the quantum superpotential can be obtained by a Legendre-type transform of the
result of an integral over C treated as a zero-dimensional (hence, matrix model)
integral.

6.2. The web of dualities. We turn to discuss the entire string theory at
finite gs. The remarkable and still amazing discovery of the “second superstring
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revolution,” is that these theories are simple not just at small g5, but also in the
limit of very large g;.

The prototypical example is the relation between Ila superstring theory in
ten dimensions and eleven-dimensional supergravity. Naively, the ITa theory has a
dimensionless parameter, the string coupling gs. In fact, this parameter must be
thought of as the expectation value of a field, the dilaton. As it becomes large, the
theory actually becomes equivalent to eleven-dimensional supergravity compactified
on K = S', of radius R ~ 92/2.

Conversely, the spectrum of Ila supergravity can be obtained from eleven-
dimensional supergravity by Kaluza-Klein reduction on S'. Even the superstring
can be obtained by wrapping the membrane on S*, i.e. embedding one of the two
spatial dimensions with the S, one obtains an object which looks like a string. In
the small radius limit, the claim is that this becomes the string.

Arguing in this vein, one concludes that the well-definedness of superstring
theory implies the existence of a “completion” of eleven-dimensional supergravity,
which makes sense at all energy scales, and contains the membrane and a (5 + 1)-
dimensional solution called the “fivebrane.” This theory is generally called “M
theory.” It turns out that similar arguments can be used to connect the IIb, type I
and heterotic string theories (suitably compactified), and this connected web of dual
theories is sometimes also called “M theory.” Evidently any starting point would
have this property, and thus the more democratic and inclusive term “string/M
theory” is also used.

While we do not have space to treat superstring duality in the depth it deserves,
the interested reader will find many overviews which do in [55] and references there.

6.3. Branes and singularities. A point in the preceding discussion worthy
of emphasis is the role of the spectrum of extended objects, or branes. This en-
tered into our discussion of Ila-M theory duality, and can be generalized into the
claim that, in a limit in which a wrapped brane becomes light, it will become a
fundamental object in the dual theory. So, for example, the wrapped fivebrane on
M theory compactified on the K3 manifold turns out to have the spectrum of the
heterotic string compactified on 72 (both seven-dimensional theories); thus these
theories are dual.

Another variation on this argument is to consider a compactification with non-
trivial cycles of small volume. In this case, the wrapped branes will lead to new
localized degrees of freedom. This situation can be arranged by compactifying on
a singular manifold and then resolving or deforming it slightly. Depending on the
spectrum of branes, this can lead to instanton effects and a quantum deformation
of the effective field theory, or it can lead to new light fields in the effective field
theory.

To review the case of the fundamental string (which counts as a brane for this
argument), the first effect is seen in mirror symmetry (world-sheet instantons asso-
ciated with small two-cycles), while the second is seen in T-duality (new “winding
states”) associated with .

A central ingredient in generalizing these results to higher-dimensional branes
is calibrated geometry. As explained in Gauntlett’s lectures, this provides the
conditions for a wrapped brane to preserve supersymmetry. It can be generalized
to compactifications with the non-metric fields (or “fluxes”) turned on as well.
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Of the many other cases, a particularly interesting one is the resolution of a
canonical (or ADE) two-dimensional complex singularity, locally described by the
orbifold C2?/T for T € SU(2). In a theory with a membrane, such as M theory, this
leads to an effective field theory with enhanced gauge symmetry, with the corre-
sponding ADE gauge group. In a bit more detail, the three-form gauge potential
leads to the Cartan subalgebra of the gauge symmetry, while the wrapped mem-
branes lead to the non-Abelian gauge bosons. This beautiful physical connection
between two interpretations of ADE has numerous generalizations, for example to
compactification on threefolds [32, 20].

Furthermore, it is perhaps the simplest example we know of for which the
basic questions of “the geometry of string theory” have not been satisfactorily
answered. A “correct stringy geometric” description of the singularity would make
this G-symmetry manifest, and predict the corresponding behaviors in families, for
higher-dimensional singularities, and so on. No fitting mathematicization or even
summary of the somewhat ad hoc physical arguments has yet emerged.

6.4. G2 and other supersymmetric compactifications. The basic anal-
ysis of supersymmetry we gave in section 4 of course has a role for most of the
special holonomies. For example, compactification on a manifold of G5 holonomy
preserves 1/8 of supersymmetry. This is particularly interesting starting from M
theory, as one then gets A/ = 1 supersymmetry in four dimensions, and candidate
physical models.

While we could have begun the discussion of G5 compactification in an earlier
section, it only becomes physically interesting when one considers compactification
on singular manifolds. This is because an easy index theorem argument shows that
on a smooth G5 manifold the matter must form real G-representations. On the
other hand, the Standard Model spectrum (3.1) involves a complex representation
(physically, one says the Standard Model has chiral fermions).

The arguments of the last section tell us how to get non-Abelian gauge sym-
metry; we need to compactify on a G5 manifold with an ADE singularity. This
will lead to non-Abelian gauge symmetry localized in real codimension four. As
discussed by Acharya, the simplest way to get chiral fermions is to have two such
singularities intersect at a point (the metric behavior near the singularity turns out
to allow this).

The novelty of these results has led to a lot of interest in G2 compactification,
but it must be admitted that the field is difficult as the appropriate mathematical
foundations barely exist. The work of Joyce, reviewed in this volume, is of course the
necessary starting point, and further discussion can be found in the contributions
of Hitchin and Kovalev as well as Acharya.

6.5. AdS/CFT. One of the most beautiful, yet startling, results of super-
string duality was the AdS/CFT correspondence, discovered by Maldacena [36].
To put the simplest example in a nutshell, N' = 4 supersymmetric Yang-Mills the-
ory in four dimensions is dual to ten-dimensional IIb supergravity compactified on
S5. This duality between theories of different dimension will obviously require some
explanation; we refer to the review [2] and the lectures of Acharya and Gauntlett
in this volume.

As the name suggests, the central point is that (D + 1)-dimensional anti-de
Sitter space-time admits as symmetry group SO(D,2), which is the same as the
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group of conformal isometries of D-dimensional Minkowski space-time. Thus, the
simplest geometric questions which appear in this context involve string compact-
ifications which lead to anti-de Sitter space, and variations of these solutions of
supergravity.

In a real sense this duality goes beyond geometry, instead describing a sense
in which geometry can emerge from “pre-geometrical” ingredients. Indeed, for a
variety of reasons, many physicists have long suspected that a full theory of quantum
gravity would not have the same relation to geometry as classical general relativity.
After all, if the metric is a fluctuating quantum variable, it becomes difficult to
formulate the standard geometric observables such as geodesic or holonomy. On
the other hand, one might imagine that other, simpler observables might appear.
In AdS/CFT, these are boundary conditions on the fields in anti-de Sitter space,
dual to couplings in the gauge theory.

Some more mathematical papers inspired by these ideas include [62, 37].

7. Some reflections

As we have seen, string theory is a very rich subject, and the project of under-
standing it mathematically has barely begun. Most of us who attended the school,
and many readers, would happily agree with the claim that this project is destined
to be interesting for both physics and mathematics, and does not require further
justification. Let me nevertheless offer a few thoughts on where this interaction is
going, and what we can hope will come out of it.

We devoted most of our attention to the “classic” problem of string compactifi-
cation, to explain or at least reproduce the physics we have seen in experiments and
observations. While the original scenarios for this involved a fairly direct (though
ingenious) generalization of the Kaluza-Klein idea, during the 1980’s string theo-
rists came to realize that string theory was not adequately described by existing
notions of geometry, due to the I and g, corrections. This led to the idea that
string theory would lead to completely new ideas of geometry.

On the other hand, the progress on this problem over the years has largely
come through a more modest agenda: one works on a subproblem which can be
formulated in geometric terms, but for which string theory provides a “twist.”
For example, both sides of closed string mirror symmetry can be formulated in
these terms, counting curves and varying Hodge structures; the twist is to connect
these seemingly very different problems. A related but more recent example is
the description of Dirichlet branes as objects in the derived category of coherent
sheaves, a notion formulated by mathematicians, but satisfying a modified stability
condition motivated by string theory, which incorporates the I5 corrections [22].

Such developments seem very likely to continue, and this should be to the
benefit of both sides, but at present seem of more clear interest to mathematicians
than to physicists. Indeed, for those who feel string theory has something to say
about the real world, the following quote may be telling:

There is probably less difference between the positions of a math-
ematician and of a physicist than is generally supposed, and the
most important seems to me to be this, that the mathematician is
in much more direct contact with reality.

This was from G. H. Hardy’s A Mathematician’s Apology, but it seems to me
strangely appropriate as a description of the string theorists’ present situation.
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Of course, Dirac is particularly well known for the point of view that the beauty
of equations is itself evidence for their correctness, but Hardy’s point is also well
taken: the mathematician knows what he (or she) is talking about, and in the act
of precisely formulating it makes it real, at least real as mathematics.?

String theory has far passed the threshold of convincing us that it is real in
this sense, despite our inability to precisely formulate it. On the other hand, it is
still hard to say how we will be convinced that it describes the physical world. It
could be that strings will be discovered in accelerators, but if not, it seems very
possible that we will have to live for some time with the argument that it is the
only candidate which is not “obviously wrong.”

One of the striking points which the school brought home to me is how different
the cultures of mathematics and physics are. It is interesting to ask whether or
not this interaction will ultimately lead to a merging of the two, or perhaps the
formation of some sort of intermediate culture.

One of the well-known differences in culture is the attitude towards generaliza-
tion. Physicists are always happier to consider examples, and feel that these bring
home the essential “point” of an idea or development much better than any abstract
treatment. On the other hand, while mathematicians regard examples as essential
as well, one of the defining characteristics of mathematics is the development of
general theory.

This is a very deep difference. It comes to the fore when one tries to prove
that some property or attribute of the objects under consideration is not possible,
as most such proofs require a general definition which does not presuppose the ex-
istence of an object with this property. In some cases, one can make reductio ad
absurdum proofs, but on reflection one realizes that this presupposes a far better
understanding of the objects under discussion than physicists usually can get. In-
deed, there is a saying among physicists that “no-go” theorems, which state that
some desired property or construction is impossible, would better be renamed “go-
go” theorems, as there are so many examples of loopholes or other ways around the
supposed impossibility. While this is more an illustration of selective memory than
anything else, it shows the deep distrust of physicists for general arguments.

If we ever attain a reasonably complete formulation of string/M theory, this
attitude will have to change. After all, by definition, we will have reached the point
where the axioms are not just obstacles to work one’s way around, but inevitable
constraints on the possibilities. Indeed, we must hope that these constraints are
strong enough in the end to enable us to make predictions. The most basic test of
whether a theory has content is whether it can be wrong or, more precisely, falsi-
fied by the observations. Assuming that physicists do discover supersymmetry and
additional phenomena, but only those which can be described by four-dimensional
effective field theory, the primary question which string theory will need to answer
is: can the effective field theory of our world arise from string theory? Omne can
answer this question by finding the “correct compactification,” but this is mean-
ingless if any effective theory can be obtained from some compactification. From
this point of view, the question of showing that certain possibilities cannot come
out of string theory is just as important as showing that the one which describes

20n the other hand, Jerome Gauntlett reminded me of another quote: “Mathematics may
be defined as the subject where we never know what we are talking about, nor whether what we
are saying is true.” (Bertrand Russell, Mysticism and Logic).
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our universe can arise. This is at heart a mathematical question, in the sense I just
described, and it seems to me that physicists will have to adopt something of the
spirit of the mathematicians to answer it.

ies

Comparing my colleagues’ attitudes with those I recall from my graduate stud-
in the early 80’s, I can only say that this process has come a long way already,

and probably has farther to go. As to whether mathematicians are being influenced
in equally deep ways, I leave for them, and especially the students in this school,

to tell me.
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ABSTRACT. M theory on a manifold X of G2-holonomy is a natural framework
for obtaining vacua with four large spacetime dimensions and N' = 1 supersym-
metry. The standard features of particle physics, namely non-Abelian gauge
symmetries and chiral fermions, emerge from singularities of X. The aim of
these lectures is to describe in detail how the above picture emerges. Along
the way we will see how interesting aspects of strongly coupled gauge theo-
ries, such as confinement and mass gap, receive relatively simple explanations
within the context of M theory. All of the singularities of Gi2-manifolds we
discuss here are are constructed naturally from the familiar ADE-singularities.
For instance, codimension seven singular points which support chiral fermions
are obtained from a natural modification of the Kronheimer construction of
ALE-spaces.

1. Introdution

Supersymmetry is one of our best candidates for physics beyond the Standard
Model. M theory goes further in the sense that it is supersymmetric, contains
gravity and is quantum mechanically consistent. Since the theory is formulated
on spacetimes with eleven dimensions, a natural question to ask is whether there
are vacua of M theory with four macroscopic spacetime dimensions and a realistic
particle physics spectrum? Since supersymmetry is intrinsic to M theory, it is
perhaps more natural to look for vacua with supersymmetric particle physics in
four dimensions. Since non-minimal or extended supersymmetry in four dimensions
cannot accommodate chiral fermions, to answer this question we should really be
studying M theory vacua with A" = 1 supersymmetry.

There are two (to date) natural looking ways to obtain four large spacetime
dimensions with A/ = 1 supersymmetry from M theory. Both of these require the
seven extra dimensions to form a manifold X whose metric obeys certain properties.
The first consists of taking X to be a manifold whose boundary 90X is a Calabi-Yau
threefold [15]. The second possibility, which will be the subject of these lectures is
to take X to be a manifold of G5-holonomy!. We will explain what this means in
section two.
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IWe will often refer to X as a G2-manifold.
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If X is large compared to the Planck scale (the only scale in M theory)
and smooth, then at low energies a good approximation is provided by eleven-
dimensional supergravity. Compactifications of the latter have been studied for
several decades. See [13] for a review. Unfortunately, Witten proved that none of
these could give rise to chiral fermions [22]. However, this does not mean that Go-
manifolds are useless for obtaining models of particle physics from a fundamental
theory. This is because we have learned in recent years that additional light de-
grees of freedom can be “hidden” at singularities of X. These are typically branes
wrapped on submanifolds of X which have shrunk at the singularity?. In M theory
these are either the M2-brane or the M5-brane. This can provide a novel picture
of conventional field theory dynamics and can even lead to new theories. The su-
pergravity approximation breaks down at such singularities and the analysis of [22]
no longer applies.

Within the past couple of years there has been a tremendous amount of progress
in understanding M theory physics near singularities in manifolds of G2-holonomy
[4 — 10]. In particular we now understand at which kinds of singularities in Go-
manifolds the basic requisites of the standard model - non-Abelian gauge groups
and chiral fermions - are to be found. The purpose of these lectures will be to
explain how this picture was developed in detail. Along the way we will see how
important properties of strongly coupled gauge theories such as confinement and
the mass gap can receive a semi-classical description in M theory on Gs-manifolds.

The subject of these lectures may also be of interest to mathematicians. One
compelling mathematical theme is ADE-singularities. As we will see, all of the
singularities of interest here are built out of the basic ADE orbifold singularities.
Yang-Mills fields in four dimensions emerge by considering singularities of X param-
eterised by an associative 3-manifold W C X, near which X looks like C? /T apexW.
Chiral fermions emerge from additional singular points in X through which W
passes and near which the description of X is given by a simple modification of
the Kronheimer construction of ADE-singularities: one simply picks a U(1) in the
Kronheimer gauge group and does not set its corresponding moment map to zero.
One then obtains a 7-manifold which fibers over R3 (given by the set of values of
this privileged moment map) and the fibers of this map are ADE-singularities. At
the origin in R? the 7-manifold becomes more singular since some collection of S?’s
in the fibers collapse at that point.

Another point which may also be of interest to mathematicians - especially
to those interested in mirror symmetry - will be a duality which we exploit here
between M theory on K3-fibered G>-manifolds and heterotic string theory on 73-
fibered Calabi-Yau threefolds. On the string theory side the threefold is endowed
with a Hermitian-Yang-Mills connection A and chiral fermions emerge from zero
modes of the Dirac operator twisted by A. On the M theory side this gets mapped
to a statement about the singularities of X, which is how the aforementioned de-
scription of singularities is obtained.

By the end of these lectures, we should have a good and clear picture of the basic
properties that X should have in order that M theory on X produces something
like a realistic model of particle physics in four dimensions. An important problem

2A more conventional example of light states at a singularity is provided by string theory on
an orbifold. Typically one finds extra light states confined to the singularity. These arise in the
so-called twisted sectors.
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- which we would like to pose to the mathematicians - is to construct compact
G2-manifolds with these properties.

At the beginning of each main section we will offer a section summary. In
section two we derive the basic properties of M theory when X is large and smooth.
We also derive some basic properties of GGo-manifolds. Section three explains how
classical supersymmetric Yang-Mills theory can be obtained from M theory on a
singular Go-manifold X. We describe these singularities in detail. Section four
describes how quantum properties of the Yang-Mills theory, confinement and a
mass gap, can be understood from M theory. The reason that this can be done
successfully is that M theory contains semi-classical limits which are not present
in the quantum gauge theory. Having understood how non-Abelian gauge groups
emerge, section five goes on to describe how additional singularities of X give rise
to chiral fermions.

2. Supersymmetry, Gs-holonomy and Kaluza Klein spectrum.

In this section we will describe in detail why (Gs-holonomy manifolds natu-
rally emerge in the context of supersymmetric M theory compactification. We will
describe some of the basic properties of Ga-manifolds. We will then discuss the
Kaluza-Klein spectrum of M theory on a large and smooth G-manifold.

2.1. Supersymmetry and Gs-holonomy. At low energies M theory admits
a description in terms of eleven-dimensional supergravity. This description is valid
on smooth spacetimes whose smallest length scale is much larger than the eleven-
dimensional Planck length. The supergravity contains three fields, a metric g, a
three-form potential C' and a gravitino . In addition to being generally covariant
and supersymmetric, the theory has a gauge invariance under which

(2.1) 5C = dA

with A a 2-form, so the gauge invariant field is the derivative of C, denoted by G.
The action for the bosonic fields is of the form

1 1
(2.2) S:/\/gR—§G/\*G—EC/\G/\G.
The equations of motion for C' and ¢ are of the form,
(2.3) dxG=GNG
and
1
(2.4) RMN_ggMNR:TMN(C)

where T is the energy-momentum tensor for the C-field.

Since the theory is supersymmetric, it is natural to look for supersymmetric
vacua. In the classical theory these are just the conditions that the supersymmetry
variations of the three fields vanish. In a Lorentz invariant background the expecta-
tion value of U is zero, in which case the variations of g and C vanish automatically.
In order to find classically supersymmetric field configurations we must find values
of C' and g for which the variation of W is zero:

1
(Fi[QRSGPQRS — GFPQRGMPQR)’U =0.

2. Uy = —
(2.5) Y VM77+288
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The simplest way to solve these equations is to take G = 0 in which case we
are looking for 11-manifolds with metric g which admit a covariantly constant or
parallel spinor:

(2.6) Vun = 0.
We will re-write this equation in the more symbolic form,
(2.7) Vgn=0

where by V4, we mean the Levi-Civita connection constructed from g. Solutions to
these conditions can be classified via the holonomy group of the connection V,.

The holonomy group of a connection acting on a field like 1 or a vector field
can be understood in terms of parallel transport. One takes a closed loop on the
manifold and literally transports the field around it. In the case of the Levi-Civita
connection, the field comes back to itself up to a rotation in SO(n) in the case of
Riemannian n-manifolds or SO(10, 1) in the case of M theory. The set of all such
rotations based at some point on the manifold generates a group, the holonomy
group of V4, Hol(g). If g is sufficiently generic then Hol(g) = SO(10,1). However,
if we take special choices of g, then Hol(g) can be a proper subgroup of SO(10, 1).
For instance, if ¢ is such that parallel spinors (supersymmetries) can be found, then
7 is a field which undergoes no parallel transport at all and therefore Hol(g) must
be a subgroup of SO(10, 1) for which there are spinors in the trivial representation.

We will concern ourselves with compactifications of M theory to four dimen-
sions on a 7-manifold X. More precisely we will take the eleven-manifold to be a
product X xR*! with g a product metric of a metric g(X) and the Minkowski met-
ric on R*!. With this choice of eleven-metric, we have explicitly broken SO(10,1)
to SO(7)xS0O(3,1). The second factor now plays the role of the Lorentz group
of the compactified theory. The conditions for supersymmetry can be satisfied by
taking g(X) to be such that it admits a spinor 6 obeying

(2.8) Vex)f =0
and choosing
(2.9) n=0xe

with e a basis of constant spinors in Minkowski space.
The condition

(2.10) Vy(x)0 =0

implies that Hol(g(X)) is G2 or a subgroup. This is because G2 is the maximal
proper subgroup of SO(7) under which the spinor representation contains a singlet.
Specifically, a spinor of SO(7) can be regarded as a fundamental of G and a singlet:

(2.11) 8 —7+1.

Therefore, if X is a compact manifold of precisely Go-holonomy, the effective
theory in four dimensions will be minimally N' = 1 supersymmetric. We get pre-
cisely A = 1 and no more because there is only one singlet spinor according to the
above group theory.
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2.2. Properties of G3-manifolds. From the parallel spinor 8 we can con-
struct other covariantly constant fields on X. More precisely, any p-form with
components

(2.12) 0T 0

i192...1p
is obviously parallel with respect to V(x). In fact, since the antisymmetric rep-
resentations of SO(7), when decomposed as representations of Gy, contain singlets
only when p is 0,3,4,7 the above p-forms are non-zero precisely for these values.
The 0-form is just a constant on X. The 7-form is the volume form. Locally the
three-form, which we will conventionally denote by ¢, can be regarded as a set of
structure constants for the octonion algebra. This stems from the fact that Gs
is the automorphism group of the octonion algebra, where we regard the tangent
space at a point on X as a copy of ImO, the imaginary octonions. A specific
representation of ¢ locally is

(2.13) wo = dx123 + dx145 + dr167 + dT246 — dT257 — dT347 — dX356

where the subscript refers to the fact that we are considering a local model. The
covariantly constant 4-form is the Hodge dual of ¢, which in the local model is
given by

(2.14) *po = dxas67 + drazer + drazas + dr13s57 — dT1346 — dT1256 — dT1247.

In addition to implying that there are other parallel fields on X, the existence
of a parallel spinor (or a Ga-holonomy metric) also has other implications. One of
these is that the metric of Go-holonomy, g(X), is Ricci-flat. To see this, observe
that the commutator of the covariant derivative is the Riemann curvature. Acting
on # this implies

1
(2.15) [VQ(X), Vg(x)]mne = ZRmnquWH =0.
Now, contract again with a I'-matrix to obtain,
(2.16) I"TPIRnpg® =0

The Bianchi identity for R,,,,, which asserts that the components totally antisym-
metric in [npq] are zero then implies that

(2.17) IMR;;06 =0

which implies that the Ricci tensor vanishes. This shows that Gs-manifolds obey
the equations of motion of d = 11 supergravity when the 4-form field strength G and
the gravitino are zero: these equations are simply the vacuum Einstein equations.

A final implication - whose proof goes beyond the scope of these lectures but
which can be found in [16] - is that compact manifolds with Hol(g) = G2 have a
finite fundamental group. This implies that the first Betti number vanishes.

2.3. Kaluza-Klein Reduction. At low energies, the eleven-dimensional su-
pergravity approximation is valid when spacetime is smooth and large compared to
the eleven-dimensional Planck length. So, when X is smooth and large enough, we
can obtain an effective four-dimensional description by considering a Kaluza- Klein
analysis of the fields on X. This analysis was first carried out in [20].

In compactification of eleven-dimensional supergravity, massless scalars in four
dimensions can originate from either the metric or the C-field. If g(X) contains k
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parameters, i.e. there is a k-dimensional family of Go-holonomy metrics on X, then
there will be correspondingly k& massless scalars in four dimensions.

The scalars in four dimensions which originate from C' arise via the Kaluza-
Klein ansatz,

(2.18) C =Xl (2)dr(y) + ...

where w! form a basis for the harmonic 3-forms on X. These are zero modes of
the Laplacian on X and are also closed. There are b3(X) linearly independent such
forms. The dots refer to further terms in the Kaluza-Klein ansatz which will be
prescribed later. The ¢;(y) are scalar fields in four-dimensional Minkowski space
with coordinates y. With this ansatz, these scalars are classically massless in four
dimensions. To see this, note that,

(2.19) G = Yw Ador
and d * G is just
(2.20) d* G =+Xwld* de;.

Since GAG vanishes identically, the equations of motion actually assert that the
scalar fields ¢; are all massless in four dimensions. Thus, the C-field gives rise to
bs(X) real massless scalars in four dimensions.

In fact it now follows from N = 1 supersymmetry in four dimensions that the
Kaluza-Klein analysis of g will yield an additional b3(X) scalars in four dimensions.
This is because the superpartners of C' should come from g as these fields are
superpartners in eleven dimensions. We should also add that (up to duality trans-
formations) all representations of the A/ = 1 supersymmetry algebra which contain
one massless real scalar actually contain two scalars in total which combine into
complex scalars. We will now describe how these scalars arise explicitly.

We began with a Gy-holonomy metric g(X) on X. g¢(X) obeys the vacuum
Einstein equations,

(2.21) Rij(9(X)) =0.
To obtain the spectrum of modes originating from g we look for fluctuations in
g(X) which also satisfy the vacuum Einstein equations. We take the fluctuations in

g(X) to depend on the four-dimensional coordinates y in Minkowski space. Writing
the fluctuating metric as

(222) gij(x) + (5gij(x,y)

and expanding to first order in the fluctuation yields the Lichnerowicz equation
(223) ALdgij = *V?\/jagij - 2Rijmnégm” + 2R’(“iégj)k =0.

Next we make a Kaluza-Klein ansatz for the fluctuations as

(2.24) 0gi5 = hij (z)p(y).

Note that the term V2 is the square of the full d = 11 covariant derivative. If we
separate this term into two terms:

(2.25) Vi =V, +Vi,

then we see that the fluctuations are scalar fields in four dimensions with squared
masses given by the eigenvalues of the Lichnerowicz operator acting on the h;;:

(2.26) hi;Vap(y) = —(Aphi;)p(y) = —Ahijp(y).
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Thus, zero modes of the Lichnerowicz operator give rise to massless scalar fields in
four dimensions. We will now show that we have precisely b3(X) such zero modes.

On a 7-manifold of SO(7) holonomy, the h;; - being symmetric 2-index tensors
- transform in the 27-dimensional representation. Under G, this representation
remains irreducible. On the other hand, the 3-forms on a G-manifold, which are
usually in the 35 of SO(7), decompose under G5 as

(2.27) 35 — 1+ 7+27.
Thus, the h;; can also be regarded as 3-forms on X. Explicitly,
(2.28) Pripaly] = Wpgr-

The w’s are 3-forms in the same representation as h;; since ¢ is in the trivial
representation. The condition that h is a zero mode of Ay, is equivalent to w being
a zero mode of the Laplacian:

(2.29) Aph =0« Aw=0.

This shows that there are precisely b3(X) additional massless scalar fields coming
from the fluctuations of the Ga-holonomy metric on X.

As we mentioned above, these scalars combine with the ¢’s to give b3(X) mass-
less scalars, ®(y), which are the lowest components of massless chiral superfields
in four dimensions. There is a very natural formula for the complex scalars ®7(y).
Introduce a basis «y for the third homology group of X, H3(X,R). This is a basis
for the noncontractible holes in X of dimension three. We can choose the a; so
that

(2.30) / w! =67.

Since the fluctuating Gao-structure is

(2.31) ¢ =p+8p=p+ 3 (yw(z),
we learn that
(2.32) ! (y) = / ¢ +iC.

ar

The fluctuations of the four-dimensional Minkowski metric give us the usual
fluctuations of four-dimensional gravity, which due to supersymmetry implies that
the four-dimensional theory is locally supersymmetric.

In addition to the massless chiral multiplets, we also get massless vector multi-
plets. The bosonic component of such a mulitplet is a massless Abelian gauge field
which arises from the C-field through the Kaluza-Klein ansatz,

(2.33) C =X, %) A Aa(y)

where the 3’s are a basis for the harmonic 2-forms and the A’s are one-forms in
Minkowski space, i.e. Abelian gauge fields. Again, the equations of motion for C
imply that the A’s are massless in four dimensions. This gives bo(X) such gauge
fields. As with the chiral multiplets above, the fermionic superpartners of the
gauge fields arise from the gravitino field. Note that we could have also included
an ansatz giving 2-forms in four dimensions by summing over harmonic 1-forms on
X. However, since by (X) = 0, this does not produce any new massless fields in four
dimensions.
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We are now in a position to summarise the basic effective theory for the massless
fields. The low energy effective theory is an N/ = 1 supergravity theory coupled
to ba(X) Abelian vector multiplets and b3(X) massless, neutral chiral multiplets.
This theory is relatively uninteresting physically. In particular, the gauge group is
Abelian and there are no light charged particles. We will thus have to work harder
to obtain the basic requisites of the standard model - non-Abelian gauge fields and
chiral fermions - from Ga-compactifications. The basic point of these lectures is to
emphasise that these features emerge naturally from singularities in G2-manifolds.

3. Super Yang-Mills from G3-manifolds: Classical

In this section we will describe how to obtain non-Abelian gauge groups from
singular Go-manifolds. We have known for some time now that non-Abelian gauge
groups emerge from M theory when space has a so-called ADE-singularity. We
learned this in the context of the duality between M theory on K3 and the heterotic
string on a flat three-torus, T3 [23]. So, our basic strategy will be to embed ADE-
singularities into Go-manifolds. After reviewing the basic features of the duality
between M theory on K3 and heterotic string theory on T3, we describe ADE-
singularities explicitly. We will then describe the M theory physics near such a
singularity. This is the physics of the McKay correspondence.

We then develop a picture of a Ga-manifold near an embedded ADE-singularity.
Based on this picture we analyse what kinds of four-dimensional gauge theories
these singularities give rise to. We then go on to describe local models for such
singular Go-manifolds as finite quotients of smooth ones.

3.1. M theory - Heterotic Duality in Seven Dimensions. M theory
compactified on a K3 manifold is widely believed to be equivalent to the heterotic
string theory compactified on a 3-torus T3. As with G5 compactification, both
of these are compactifications to flat Minkowski space. Up to diffeomorphisms,
K3 is the only simply connected, compact 4-manifold admitting metrics of SU(2)-
holonomy. SU(2) is the analog in four dimensions of G5 in seven dimensions.
Interestingly enough, in this case K3 is the only simply connected example, whereas
there are many Gs-manifolds.

There is a 58-dimensional moduli space of SU(2)-holonomy metrics on K3
manifolds of fixed volume. This space M(K3) is locally a coset space:

S0(3,19)
SO(3)xS0(19)°

An SU(2) holonomy metric also admits two parallel spinors, which when ten-
sored with the 8 constant spinors of 7-dimensional Minkowski space give 16 global
supercharges. This corresponds to minimal supersymmetry in seven dimensions (in
the same way that Gs-holonomy corresponds to minimal supersymmetry in four
dimensions). If we work at a smooth point in M we can use Kaluza-Klein analysis
and we learn immediately that the effective d = 7 supergravity has 58 massless
scalar fields which parameterise M. These are the fluctuations of the metric on
K3. Additionally, since H?(K3,R) = R?? there are twenty-two linearly indepen-
dent classes of harmonic 2-forms. These may be used a la equation (32) to give
a U(1)?? gauge group in seven dimensions. We now go on to describe how this
spectrum is the same as that of the heterotic string theory on T3, at generic points
in M.

(3.1) M(K3) =RTx
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The heterotic string in ten dimensions has a low energy description in terms
of a supergravity theory whose massless bosonic fields are a metric, a 2-form B,
a dilaton ¢ and non-Abelian gauge fields of structure group SO(32) or Egx Ejg.
There are sixteen global supersymetries. Compactification on a flat T3 preserves
all supersymmetries which are all products of constant spinors on both T3 and
Minkowski space. A flat metric on T? involves six parameters so the metric gives rise
to six massless scalars, and since there are three independent harmonic two forms we
obtain from B three more. The condition for the gauge fields to be supersymmetric
on T3 is that their field strengths vanish: these are so called flat connections.
They are parameterised by Wilson lines around the three independent circles in
T3. These are representations of the fundamental group of T? in the gauge group.
Most of the flat connections actually arise from Wilson loops which are actually in
the maximal torus of the gauge group, which in this case is U(1)!6. Clearly, this
gives a 48-dimensional moduli space giving 58 scalars altogether. Narain showed
that this moduli space is actually also locally of the same form as M [19].

From the point of view of the heterotic string on T3, the effective gauge group in
7 dimensions (for generic metric and B-field) is the subgroup of SO(32) or Egx Fs
which commutes with the flat connection on T®. At generic points in the moduli
space of flat connections, this gauge group will be U(1)!6. This is because the
generic flat connection defines three generic elements in U(1)16 € G. We can think
of these as diagonal 16 by 16 matrices with all elements on the diagonal non-zero.
Clearly, only the diagonal elements of G will commute with these. So, at a generic
point in moduli space the gauge group is Abelian.

Six more U(1) gauge fields arise as follows from the metric and B-field. T2 has
three harmonic one forms, so Kaluza-Klein reduction of B gives three gauge fields.
Additionally, since T? has a U(1)? group of isometries, the metric gives three more.
In fact, the local actions for supergravity theories in seven dimensions are actually
determined by the number of massless vectors. So, in summary, we have shown
that at generic points in M the low energy supergravity theories arising from M
theory on K3 or the heterotic string on T? are the same.

At special points, some of the eigenvalues of the flat connections will vanish. At
these points the unbroken gauge group can get enhanced to a non-Abelian group.
This is none other than the Higgs mechanism: the Higgs fields are just the Wilson
lines. Additionally, because seven-dimensional gauge theories are infrared trivial
(the gauge coupling has dimension a positive power of length), the low energy
quantum theory actually has a non-Abelian gauge symmetry.

If M theory on K3 is actually equivalent to the heterotic string in seven di-
mensions, it too should therefore exihibit non-Abelian symmetry enhancement at
special points in the moduli space. These points are precisely the points in moduli
space where the K3 develops orbifold singularities. We will not provide a detailed
proof of this statement, but will instead look at the K3 moduli space in a neigh-
bourhood of this singularity, where all the interesting behaviour of the theory is
occurring. So, the first question is: what do these orbifold singularities look like?

3.1.1. ADE-singularities. An orbifold singularity in a Riemannian 4-manifold
can locally be described as R*/T, where I is a finite subgroup of SO(4). For generic
enough I'; the only singular point of this orbifold is the origin. These are the points
in R* left invariant under I'. A very crucial point is that on the heterotic side,
supersymmetry is completely unbroken all over the moduli space, so our orbifold
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singularities in K3 should also preserve supersymmetry. This means that I' is a
finite subgroup of SU(2) C SO(4). The particular SU(2) can easily be identified as
follows. Choose some set of complex coordinates so that C?> = R*. Then, a point in
C? is labelled by a 2-component vector. The SU(2) in question acts on this vector
in the standard way:

W ()-(D0)

The finite subgroups of SU(2) have a classification which may be described in
terms of the simply laced semi-simple Lie algebras: A,, Dy, Eg, E; and Eg. There
are two infinite series corresponding to SU(n + 1) = A, and SO(2k) = Dy and
three exceptional subgroups corresponding to the three exceptional Lie groups of
E-type. The subgroups, which we will denote by I' 4, I'p,, I'g, can be described
explicitly.

Ca, .,

27

e 0
3.3 o |-
(3.3) <0ei >

I'p, is isomorphic to Dy_o - the binary dihedral group of order 4k — 8 - and
has two generators « and (§ given by

ez () 0 i

I'g, is isomorphic to T - the binary tetrahedral group of order 24 - and has two
generators given by

. —7i an — i i
0 e V2 \ eF %

I'g, is isomorphic to O - the binary octahedral group of order 48 - and has
three generators. Two of these are the generators of T and the third is

27
es 0

Finally, I'g, is isomorphic to I - the binary icosahedral group of order 120 -
and has two generators given by

2mi3 274 —2mi
e 5 0 1 es +e’ s 1
(3.7) - 0 6211‘2 and PETD) 37i3 1 62;" e—%’”
5 e 5 —e 5 - - 2

Since all the physics of interest is happening near the orbifold singularities of
K3, we can replace the K3 by C?/I'ypg and study the physics of M theory on
(C2/FADE><]R6’1 near its singular set which is just 0xR%!. Since the K3 went from
smooth to singular as we varied its moduli we expect that the singular orbifolds
C2% /T apr are singular limits of non-compact smooth 4-manifolds X ADE  Because
of supersymmetry, these should have SU(2)-holonomy. This is indeed the case.
The metrics of SU(2)-holonomy on the XAP¥ are known as ALE-spaces, since
they asymptote to the locally Euclidean metric on C?/I'ypg. Their existence was

is isomorphic to Z,, - the cyclic group of order n - and is generated by
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proven by Kronheimer [18] - who constructed a gauge theory whose Higgs branch
is precisely the C2/Typg with its SU(2)-holonomy (or hyper-Kihler) metric.

A physical description of this gauge theory arises in string theory. Consider
Type I1A or IIB string theory on C?/T"ypg xR%!. Take a flat Dp-brane (with p < 5)
whose world-volume directions span RP"! € R?!, i.e. the D-brane is sitting at a point
on the orbifold. Then the world-volume gauge theory, which was first derived in
[12], is given by the Kronheimer gauge theory. This theory has eight supersym-
metries, which implies that its Higgs branch is a hyper-Kéhler manifold. For one
D-brane this theory has a gauge group which is a product of unitary groups of
ranks given by the Dynkin indices (or dual Kac labels) of affine Dynkin diagram
of the corresponding ADE-group. So, for the A, -case the gauge group is U(1)" 1.
The matter content is also given by the affine Dynkin diagram - each link between
a pair of nodes represents a hypermultiplet transforming in the bifundamental rep-
resentation of the two unitary groups. This is an example of a quiver gauge theory
- a gauge theory determined by a quiver diagram.

We will make this explicit in the simplest case of I 4,. I'4, is isomorphic to Zs
and is in fact the center of SU(2). Its generator acts on C? as

(1) (=)

In this case, the Kronheimer gauge theory has a gauge group which is U(1) and
has two fields ®; and ®5. These are hypermultiplets in the string theory realisation
on a D-brane. The hypermultiplets each contain two complex scalars (a;,b;) and
the a’s transform with charge +1 under U(1), whilst the b’s transform with charge
—1.

The potential energy of these scalar fields on the D-brane is

(3.9) v =|BP =l
where the three D-fields D (which are also known as the hyper-Kahler moment

maps i associated with the U(1) action on the C* parameterised by the fields) are
given by

(3.10) Dy = |ar|* + [by|* — |az|* — |bo]?
and
(3.11) D5 4+ iD3 = a1by — asbs.

The space of zero energy minima of V' is the space of supersymmetric ground
states S of the theory on the brane;

(3.12) S ={D=0}/U(1).

In supersymmetric field theories, instead of solving these equations directly, it is
equivalent to simply construct the space of gauge invariant holomorphic polynomials
of the fields and impose only the holomorphic equation above (this is the classical

F-term).
In the case at hand the gauge invariant polynomials are simply
(3.13) X:albl, Yzagbg, Z:albg, Wzagbl.

These obviously parameterise C* but are subject to the relation
(3.14) Xy =wz
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However, the complex D-term equation asserts that

(3.15) X=Y
hence
(3.16) X2=WwW2Z.

The space of solutions is precisely a copy of C2/T'4,. To see this, we can
parameterise C?/T' 4, algebraically in terms of the I'4, invariant coordinates on
C?. These are u?, v2 and wv. If we denote these three coordinates as w, z, z, then
obviously

(3.17) 1 = wz.

We prefer to re-write this equation by changing coordinates again. Defining x
= u? — 0%, y = iw?® +iv? and z = 2uv gives a map from C2/T'4, to C3. Clearly

however,
(3.18) P4y’ +22=0

which means that C2/I"4, is the hypersurface in C* defined by this equation.
The orbifold can be deformed by adding a small constant to the right hand
side,

(3.19) 22 +y? 22 =02

If we take z, y and z to all be real and r to be real then it is clear that the deformed
4-manifold contains a 2-sphere of radius r. This 2-sphere contracts to zero size as
r goes to zero. The total space of the deformed 4-manifold is in fact the cotangent
bundle of the 2-sphere, T*S2. To see this write the real parts of the z, y and z as
x; and their imaginary parts as p;. Then, since r is real, the x; are coordinates on
the sphere which obey the relation

This means that the p;’s parameterise tangential directions. The radius r sphere
in the center is then the zero section of the tangent bundle. Since the manifold
is actually complex it is natural to think of this as the cotangent bundle of the
Riemann sphere, T*CP'. In the context of Euclidean quantum gravity, Eguchi
and Hanson constructed a metric of SU(2)-holonomy on this space, asymptotic to
the locally flat metric on C2/Ty, .

In the Kronheimer gauge theory on the D-brane, deforming the singularity
corresponds to setting the D-terms or moment maps not to zero but to constants.
On the D-brane these constants represent the coupling of the background closed
string fields to the brane. These fields parameterise precisely the metric moduli of
the Eguchi-Hanson metric.

3.1.2. M theory Physics at the Singularity. This metric, whose precise
form we will not require, actually has three parameters which control the size and
shape of the two-sphere which desingularises the orbifold - the three possibilities
for setting the moment maps to constants . From a distance it looks as though
there is an orbifold singularity, but as one looks more closely one sees that the
singularity has been smoothed out by a two-sphere. The 2-sphere is dual to a
compactly supported harmonic 2-form, . Thus, Kaluza-Klein reducing the C-field
using « gives a U(1) gauge field in seven dimensions. A vector multiplet in seven
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dimensions contains precisely one gauge field and three scalars and the latter are
the parameters of the S2. So, when T*CP' is smooth the massless spectrum is an
Abelian vector multiplet.

From the duality with the heterotic string we expect to see an enhancement
in the gauge symmetry when we vary the scalars to zero i.e. when the sphere
shrinks to zero size. In order for this to occur, W*-bosons must become massless
at the singularity. These are electrically charged under the U(1) gauge field which
originated from C'. From the eleven-dimensional point of view the object which is
charged under C' is the M2-brane. If the M2-brane wraps around the two-sphere,
it appears as a particle from the seven-dimensional point of view. This particle is
electrically charged under the U(1) and has a mass which is classically given by the
volume of the sphere. Since the M2-brane has tension its dynamics will push it to
wrap the smallest volume two-sphere in the space. This least mass configuration is
in fact invariant under half of the supersymmetries 3 - a fact which means that it
lives in a short representation of the supersymmetry algebra. This in turn means
that its classical mass is in fact uncorrected quantum mechanically. The M2-brane
wrapped around this cycle with the opposing orientation has the opposing U(1)
charge to the previous one.

Thus, when the two-sphere shrinks to zero size we find that two oppositely
charged BPS multiplets become massless. These have precisely the right quantum
numbers to enhance the gauge symmetry from U(1) to Ay = SU(2). Super Yang-
Mills theory in seven dimensions depends only on its gauge group. In this case we
are asserting that in the absence of gravity, the low energy physics of M theory on
C2%/T 4, xR%! is described by super Yang-Mills theory on 0xR%! with gauge group
A;.

The obvious generalisation also applies: in the absence of gravity, the low
energy physics of M theory on C2?/TprxR%! is described by super Yang-Mills
theory on OxR®%! with ADE gauge group. To see this, note that the smoothing
out of the orbifold singularity in C2/Tspg contains rank(ADE) two-spheres which
intersect according to the Cartan matrix of the ADE group. At smooth points
in the moduli space the gauge group is thus U(l)mnk(ADE). The corresponding
wrapped membranes give rise to massive BPS multiplets with precisely the masses
and quantum numbers required to enhance the gauge symmetry to the full ADE-
group at the origin of the moduli space.

Mathematically, the quantum numbers of wrapped branes are exactly the sim-
ple roots of the ADE-Lie algebra. This is our first encounter with the physics of the
McKay correspondence.

3.2. ADE-singularities in Go-manifolds. We have thus far restricted our
attention to the ADE singularities in K3xR%!. However, the ADE singularity is a
much more local concept. We can consider more complicated spacetimes X 10! with
ADE singularities along more general seven-dimensional spacetimes, Y'%!. Then, if
X has a modulus which allows us to scale up the volume of Y, the large volume limit
is a semi-classical limit in which X approaches the previous maximally symmetric
situation discussed above. Thus, for large enough volumes we can assert that

3This is because the least volume two-sphere is an example of a calibrated or supersymmetric
cycle.
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the description of the classical physics of M theory near Y is in terms of seven-
dimensional super Yang-Mills theory on Y - again with gauge group determined by
which ADE singularity lives along Y.

In the context of Ga-compactification on X xR3!, we want Y to be of the form
W xR3!, with W the locus of ADE singularities inside X. Near W xR3!, X xR3!
looks like C2 /T ypg x W xR?1. In order to study the gauge theory dynamics without
gravity, we can again focus on the physics near the singularity itself. So, we want
to focus on seven-dimensional super Yang-Mills theory on W xR3!,

3.2.1. M theory Spectrum Near The Singularity. In flat space the super
Yang-Mills theory has a global symmetry group which is SO(3)xSO(6,1). The
second factor is the Lorentz group, the first is the R-symmetry. The theory has
gauge fields transforming as (1, 7), scalars in the (3,1) and fermions in the (2, 8) of
the universal cover. All fields transform in the adjoint representation of the gauge
group. Moreover the sixteen supersymmetries also transform as (2, 8).

On WxR3>! - with an arbitrary W - the symmetry group gets broken to
SO(3)xS0O(3)'xSO(3,1). Since SO(3)’ is the structure group of the tangent bun-
dle on W, covariance requires that the theory is coupled to a background SO(3)’
gauge field - the spin connection on W. Similarly, though perhaps less intuitively,
SO(3) acts on the normal bundle to W inside X, hence there is a background SO(3)
gauge field also.

The supersymmetries transform as (2,2, 2) + (2,2, 2). For large enough W and
at energy scales below the inverse size of W, we can describe the physics in terms
of a four-dimensional gauge theory. But this theory as we have described it is not
supersymmetric as this requires that we have covariantly constant spinors on W.
Because W is curved, there are none. However, we actually want to consider the
case in which W is embedded inside a Gs-manifold X. In other words we require
that our local model - C?/T'ypgxW - admits a Go-holonomy metric. When W is
curved this metric cannot be the product of the locally flat metric on C?/T'zpg
and a metric on W. Instead the metric is warped and is more like the metric on
a fiber bundle in which the metric on C? varies as we move around in W. Since
the space has Ga-holonomy we should expect the four-dimensional gauge theory
to be supersymmetric. We will now demonstrate that this is indeed the case by
examining the Ga-structure more closely. In order to do this however, we need to
examine the SU(2) structure on C?/I" as well.

4-dimensional spaces of SU(2)-holonomy are actually examples of hyperKéhler
manifolds. They admit three parallel 2-forms w;. These are analogous to the parallel
forms on Go-manifolds. These three forms transform locally under SO(3) which
locally rotates the complex structures. On C? these forms can be given explicitly
as

(3.21) wy +iwe = duAdv,
(3.22) wy = %du/\dﬂerv/\dz’;.

Tapr is defined so that it preserves all three of these forms. The SO(3) which
rotates these three forms is identified with the SO(3) factor in our seven-dimensional
gauge theory picture. This is because the moduli space of SU(2)-holonomy metrics
is the moduli space of the gauge theory and this has an action of SO(3).
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In a locally flat frame we can write down a formula for the Gs-structure on
C2/FADEXW,

1 g
(3.23) o= gwi Nejo +ep Nex Aes

where e; are a flat frame on W. Note that this formula is manifestly invariant under
the SO(3) which rotates the w; provided that it also acts on the e; in the same way.

The key point is that when the SO(3) of the gauge theory acts, in order for
the Ga-structure to be well defined the e;’s must transform in precisely the same
way as the w;. But SO(3)" acts on the e;, because it is the structure group of the
tangent bundle to W. Therefore, if C2/T spgxW, admits a Gy-holonomy metric,
we must identify SO(3) with SO(3)’. In other words, the connection on the tangent
bundle is identified with the connection on the normal SO(3)" bundle. This breaks
the symmetries to the diagonal subgroup of the two SO(3)’s and implies that the
effective four-dimensional field theory is classically supersymmetric. Identifying the
two groups breaks the symmetry group down to SO(3)”xS0O(3,1) under which the
supercharges transform as (1, 2) + (3, 2) + cc. We now have supersymmetries since
the (1,2) and its conjugate can be taken to be constants on W.

An important point, which we will not actually prove here, but will require in
the sequel is that the locus of ADE-singularities - namely the copy of W at the center
of C?/T is actually a supersymmetric cycle (also known as a calibrated cycle). This
follows essentially from the fact that I'ypg fixes W and therefore the ¢ restricts to
be the volume form on W. This is the condition for W to be supersymmetric.

Supposing we could find a Go-manifold of this type, what exactly is the four-
dimensional supersymmetric gauge theory it corresponds to? This we can answer
also by Kaluza-Klein analysis [1, 2], since W will be assumed to be smooth and
‘large’. Under SO(3)"xS0(3,1), the seven-dimensional gauge fields transform as
(3,1) + (1,4), the three scalars give (3,1) and the fermions give (1,2) + (3,2) +cc.
Thus the fields which are scalars under the four-dimensional Lorentz group are two
copies of the 3 of SO(3)”. These may be interpreted as two one forms on W. These
will be massless if they are zero modes of the Laplacian on W (w.r.t. its induced
metric from the Gy-manifold). There will be precisely by (W) of these i.e. one for
every harmonic one-form. Their superpartners are clearly the (3, 2) + cc fermions,
which will be massless by supersymmetry. This is precisely the field content of
b1 (W) chiral supermultiplets of the supersymmetry algebra in four dimensions.

The (1,4) field is massless if it is constant on W and this gives one gauge field
in four dimensions. The requisite superpartners are the remaining fermions which
transform as (1,2) + cc.

All of these fields transform in the adjoint representation of the seven dimen-
sional gauge group. Thus the final answer for the massless fields is that they are
described by N = 1 super Yang-Mills theory with b1 (W) massless adjoint chiral
supermultiplets. The case with pure “superglue” i.e. b (W) = 0 is a particularly
interesting gauge theory at the quantum level: in the infrared the theory is believed
to confine colour, undergo chiral symmetry breaking and have a mass gap. We will
actually exhibit some of these very interesting properties semi-classically in M the-
ory! Much of the sequel will be devoted to explaining this. But before we can do
that we must first describe concrete examples of Go-manifolds with the properties
we desire.
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One idea is to simply look for smooth Go-manifolds which are topologically
C2xW but admit an action of SU(2) which leaves W invariant but acts on C? in
the natural way. Then we simply pick a I'ypg C SU(2) and form the quotient space
(C2 /FA]D)]E xW.

Luckily, such non-compact Ge-manifolds were constructed some time ago [9]!
Moreover, in these examples, W = 52, the simplest possible compact 3-manifold
with by (W) = 0. Perfect.

3.2.2. Examples of Gs-manifolds with ADE-singularities. The G5 holo-
nomy metrics on C?xS? were constructed in [9]. These metrics are smooth and
complete and depend on one parameter a. There is a radial coordinate r» and the
metric shows that there is a finite size S® (of size a) in the center which grows as we
move out along the r direction. They asymptote at infinity in a radial coordinate
r to a conical form

(3.24) ds* = dr? + r*dx?

where d¥:? is an Einstein metric on S3x.S83. Taking 7 large is equivalent to taking
a to zero, so the finite volume S3 shrinks to zero size. This Einstein metric d¥?
is not the standard product metric on the product of two spheres, although it is
the homogeneous metric on G/H with G = SU(2)® and H = SU(2). H acts on G
as the ‘diagonal’ subgroup of the three SU(2)’s. G/H is obviously isomorphic as a
manifold to S®x 93 since S is isomorphic to SU(2). This description of the conical
G-metric obviously has an asymptotic SU(2)3x X3 group of isometries with 33 the
group of permutations of the three SU(2) factors.

The conical metric is obviously incomplete, since the base of the cone goes to
zero size at r = 0. The complete G2 metrics can thus be regarded as completions of
the cones obtained by smoothing out the singularity at its apex. Topologically the
conical manifold is R x,53x.83, which gets smoothed out to R*xS3. Concretely
this amounts to choosing an SU(2) factor in G and ‘filling it in’ to form R*. We
remind the reader that R* — 0 is the same as RT xS? and filling in the origin gives
back R*. In the case at hand we actually complete the cone by gluing in an S3.
This is the S® of size a.

Clearly there are three natural ways to carry out this procedure since GG consists
of three copies of SU(2). Obviously each of these gives the same topological mani-
fold but it is very important for what follows that we realise that there are actually
three G5 manifolds that we can make in this way. The point is that the classical
moduli space of Ga-holonomy metrics consists of three real lines which intersect
at one point - the conical singularity. Moving off of the conical manifold in the
three different directions amounts to choosing an S® in G and filling it in. Along
these three directions three different S3’s develop a finite volume. Another way to
say more or less the same thing in a perhaps more physical way is that there are
three smooth Gs-manifolds with the prescribed behaviour at infinity: the metric
on G/H. The transition between the three-manifolds via the conical singularity is
called a ‘flop’ - by analogy with what happens to spheres in complex manifolds.

We can give a simple algebraic description of the phenomenon of collapsing one
sphere and growing another with the following model taken from [6]. Consider the
hypersurface in R*xR* cut out by the following equation
(3.25) Yix? —y? =a

;=
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where the z’s and 3’ s are linear coordinates on the two R*’s. For a positive, we have
a radius a S® at the origin in the second R*. This manifold is clearly topologically
S3xR*. For a negative, its again the same manifold topologically, but the roles of
x and y have been interchanged. Therefore as a passes from positive to negative
an 52 shrinks to zero volume, the manifold becomes singular at 0 and another S3
grows and the space remains smooth. This is obviously a much cruder description
of the space as a function of a, since as we have seen above there are actually three
directions in the moduli space and not two, but it has the advantage that it makes
the basic picture transparent.

3.2.3. M theory Physics on X = R*x.S3. We saw earlier that the moduli of
the Ga-metric get complexified in M theory by the addition of the C-field. This is
necessary for supersymmetry. We observed that on a compact Go-manifold the low
energy four-dimensional theory contains one massless scalar for every parameter
in the Gso-metric. The situation on a non-compact manifold X can in general
be quite different, since the metric fluctuations need not be localised on X. The
more delocalised these fields are, the more difficult it is to excite them. Indeed
to obtain a four-dimensional action we have to integrate over X, and this integral
will diverge if the fluctuations are not L?-normalisable. If this is indeed the case
then we should not regard the corresponding four-dimensional fields as fluctuating;:
rather they are background parameters, coupling constants, and we should study
the four-dimensional physics as a function of them.

In the case at hand, by examining the first order fluctation in the G-metric one
can readily see that a should indeed be treated as a coupling constant. It follows
from supersymmetry that its complex partner should also. We refer the reader to
[7] for the simple calculation which shows this explicitly. Our formula (32) can now
be applied to write this complex coupling constant as

(3.26) T =/ @ +iC = Vol(S?) +i/C
S3

where we integrate over the minimal volume three-sphere in the center of X. This
sphere generates the third homology. Note that there is no prime here, since the
field is not fluctuating.

So, we arrive at the conclusion that M theory on our Go-manifold X is actually
a one complex dimensional family of theories parameterised by 7. There are three
semi-classical regimes corresponding to the three regions in which the spheres are
large, X is smooth and thus supergravity is valid. The four-dimensional spectrum
is massive in each of these semi-classical regimes since bo(X) is zero and the zero
mode of the Lichnerowicz operator does not fluctuate. The physics in each of these
three regions is clearly the same since the metrics are the ‘same’. What about the
physics on the bulk of the 7-plane?

Our intuition asserts that there is only one further interesting point, 7 = 0
where the manifold develops a conical singularity. In minimally supersymmetric
field theories in four dimensions which do have massless complex scalars which
parameterise a moduli space M, singularities in the physics typically only occur
at subloci in M which are also complex manifolds. In our case, we don’t have a
moduli space, but rather a parameter space, but we can think of 7 as a background
superfield.
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In any case, at 7 = 0 we have zero size S’s and instanton effects can become
important here, since the action of an M2-brane instanton is 7. These effects could
generate a non-zero quantum value of the C-field period and remove this potential
singularity, in which case we would be in the situation that there are no physical
phase transitions as a function of 7. Of course, physical quantities will depend on
7, but the qualitative nature of the physics will remain the same for any value of 7.

This was first suggested in [6] and proven rigorously in [7].

The parameter space spanned by 7 is thus a Riemann sphere with three spe-
cial points which correspond to the three large Go-manifolds. This is the picture
Robbert Dijkgraaf alluded to in his lectures. To make contact with what he was
discussing we need to understand the S! quotients of our three G-manifolds. This
is because if the M theory 11-manifold Y is “fibered” by circles then the base 10-
manifold @) can be regarded as a spacetime in Type ITA string theory. The ITA
theory has a 1-form field A which is a connection on this circle bundle.

The quotient by S! of our three Gy-manifolds are basically the three geometries
Robbert was describing - the resolved conifold, its flop and the deformed conifold
with open strings!

To see this we define the S! action on the first big G»-manifold to be the
standard action on the S® in R*xS? regarded as a Hopf fibration over CP'. The
quotient is thus an R%-bundle over CP'. Because A is now topologically non-trivial
the metric one gets on this 6-manifold is not the Calabi-Yau metric on the resolved
conifold. However, it is a metric with the same symplectic structure! Thus, the
closed string Gromov-Witten invariants are the same as on the Calabi-Yau conifold.
The S!' quotient of Go-manifold number two gives the ‘same’ 6-manifold in Type
ITA - but now this is better regarded as the flop of the previous one.

Finally, S'-quotient number three acts on the R* and not the S3. The quotient
by U(1) of R* is R3. The quotient of the Ga-manifold is thus an R3-bundle over
53. This action has a fixed point which is the S® of minimal volume in the middle
of the G5 space. The fact that there is a fixed point of the circle action means
in Type IIA language that A is singular along a codimension three submanifold in
the 10-dimensional spacetime. This is thus a 7-manifold which supports a Dirac
monopole. This is a D6-brane in string theory and is a place where open strings
can end. We thus learn that the third quotient gives Type IIA string theory on the
deformed conifold plus one D6-brane wrapping the S3.

Therefore M theory explains why the open string Gromov-Witten invariants
of the deformed conifold are exactly the same as the usual closed string Gromov-
Witten invariants of the resolved conifold. This is simply the statement that all
three Type ITA geometries are the same Go-manifold in M theory metrically.

In M theory these invariants should be regarded as counting associative 3-cycles
in a Go-manifold.

4. Super Yang-Mills from Gs-manifolds: Quantum.

We now move on to study the interplay between quantum super Yang-Mills
theory and M theory on Ga-manifolds. The results of this section are based upon
[2, 6, 7, 3]. We will be studying the physics of M theory on the Ga-manifolds
with ADE-singularities whose construction we described at the end of section 3.2.1.
We begin by reviewing the basic properties of super Yang-Mills theory. We then
go on to describe how these features are reflected in M theory. We first show
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how membrane instantons can be seen to generate the superpotential of the theory.
Second, we go on to exhibit confinement and a mass gap semi-classically in M
theory. The result about confinement highlights the power of the physical McKay
correspondence.

The G»-manifolds that actually interest us are obtained as quotients of R*x $3
by T'apg. We saw previously that, for large volume and low energies, four-dimen-
sional super Yang-Mills theory is a good description of the M theory physics. We
will thus begin this section with a review of the basic properties of the gauge theory.

4.1. Super Yang-Mills Theory. For completeness and in order to compare
easily with M theory results obtained later we briefly give a review of N’ = 1 pure
super Yang-Mills theory. We begin with gauge group SU(n). N' =1 SU(n) super
Yang-Mills theory in four dimensions is an extensively studied quantum field theory.
The classical Lagrangian for the theory is

1 0
442 3272
F is the gauge field strength and A is the gaugino field.

It is widely believed that this theory exhibits dynamics very similar to that of
ordinary QCD: confinement, chiral symmetry breaking, a mass gap. There are n
supersymmetric vacua. Supersymmetry constrains the dynamics of the theory so
strongly that the values of the low energy effective superpotential in the n vacua
are known. These are of the form

1 -
(4.1) L=——(F%)*+ §Aauma +i

n%

a prapv
Fo, Fam,

(42) W@ff = C/L3€2Tri7/n.
Here 7 is the complex coupling constant,

0 47
4.3 - L 4
(4.3) T o +1 7

and p the mass scale. Shifting 6 by 27 gives n different values for W.

In particular, the form of this potential suggests that it is generated by dynam-
ics associated with “fractional instantons”, i.e. instantonic objects in the theory
whose quantum numbers are formally of instanton number % Such states are also
closely related to the spontaneously broken chiral symmetry of the theory. Let us
briefly also review some of these issues here.

Under the U(1)R-symmetry of the theory, the gauginos transform as

(4.4) A — e\

This is a symmetry of the classical action but not of the quantum theory (as can
easily be seen by considering the transformation of the fermion determinant in the
path integral). However, if the above transformation is combined with a shift in the
theta angle of the form

2
(4.5) L

2
then this cancels the change in the path integral measure. This shift symmetry
is a bona fide symmetry of the physics if a = g—z, so that even in the quantum

theory a Zo,, symmetry remains. Associated with this symmetry is the presence of
a non-zero value for the following correlation function,

(4.6) O @) AN (22) . A (@)
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which is clearly invariant under the Zs, symmetry. This correlation function is
generated in the 1-instanton sector and the fact that 2n gauginos enter is due to
the fact that an instanton of charge 1 generates 2n chiral fermion zero modes.

Cluster decomposition implies that the above correlation function decomposes
into ‘n constituents’ and therefore there exists a non-zero value for the gaugino
condensate:

(4.7) (AN) 0.

Such a non-zero expectation value is only invariant under a Zs subgroup of
Zso, implying that the discrete chiral symmetry has been spontaneously broken.
Consequently this implies the existence of n vacua in the theory.

In fact, it can be shown that

3272

(4.8) ON) = 16m‘(%weff _ 320 sgawinin,

In view of the above facts it is certainly tempting to propose that ‘fractional
instantons’ generate the non-zero gaugino condensate directly. But this is difficult
to see directly in super Yang-Mills on R3!. We will return to this point later.

More generally, if we replace the SU(n) gauge group by some other gauge
group H, then the above statements are also correct but with n replaced every-
where with ¢o(H), the dual Coxeter number of H. For ADE gauge groups co(H)
= Efillai, where r is the rank of the gauge group and the a; are the Dynkin
indices of the affine Dynkin diagram associated to H. For A,, all the a; = 1;
for D,, groups the four ‘outer’ nodes have index 1 whilst the rest have a; = 2.
Es has indices (1,1,1,2,2,2,3), E; has (1,1,2,2,2,3,3,4) whilst Eg has indices
(1,2,2,3,3,4,4,5,6).

4.2. Theta angle and Coupling Constant in M theory. The physics of

M theory supported near the singularities of C?/T'x R%! is described by super

Yang-Mills theory on R%!. The gauge coupling constant of the theory is given by
1 N 1
934 I3

where [, is the eleven-dimensional Planck length. In seven dimensions, one analog

of the theta angle in four dimensions is actually a three-form ©. The reason for
this is the seven-dimensional interaction

(4.10) L; ~ OANFAF

(with F' the Yang-Mills field strength). In M theory © is given by C, the three-form
potential for the theory.

If we now take M theory on our Ga-manifold R*/T'xW we have essentially
compactified the seven-dimensional theory on W and the four-dimensional gauge
coupling constant is roughly given by

1 Vv
QZd lg
where Vi is the volume of W. The four-dimensional theta angle can be identified
as

(4.12) 6 = /W C.

(4.9)

(4.11)
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The above equation is correct because under a global gauge transformation of C'
which shifts the above period by 27 times an integer - a transformation which is a
symmetry of M theory - 6 changes by 27 times an integer. Such shifts in the theta
angle are also global symmetries of the field theory.

Thus the complex gauge coupling constant of the effective four-dimensional
theory may be identified as the 7 parameter of M theory

C
(4.13) r:/ i+ 2
w 27 lp
This is of course entirely natural, since 7 is the only parameter in M theory on this
space!

4.3. Superpotential in M theory. There is a very elegant way to calculate
the superpotential of super Yang-Mills theory on R?*! by first compactifying it on
a circle to three dimensions [21]. The three-dimensional theory has a perturbative
expansion since the Wilson lines on the circle behave as Higgs fields whose vev’s
break the gauge symmetry to the maximal torus. The theory has a perturbative
expansion in the Higgs vevs, which can be used to compute the superpotential of
the compactified theory. One then takes the four-dimensional limit. In order to
compute the field theory superpotential we will mimic this idea in M theory [1].
Compactifying the theory on a small circle is equivalent to studying perturbative
Type IIA string theory on our G3-manifold.

4.3.1. Type IIA theory on X = R*/TprxS3. Consider Type ITA string
theory compactified to three dimensions on a seven-manifold X with holonomy Gs.
If X is smooth we can determine the massless spectrum of the effective supergravity
theory in three dimensions as follows. Compactification on X preserves four of
the 32 supersymmetries in ten dimensions, so the supergravity theory has three-
dimensional N' = 2 local supersymmetry. The relevant bosonic fields of the ten-
dimensional supergravity theory are the metric, B -field, dilaton plus the Ramond-
Ramond one- and three-forms. These we will denote by g, B, ¢, A1, Az respectively.
Upon Kaluza-Klein reduction the metric gives rise to a three-metric and b3(X)
massless scalars. The latter parameterise the moduli space of G5 -holonomy metrics
on X. B gives rise to bo(X) periodic scalars ;. ¢ gives a three-dimensional dilaton.
A; reduces to a massless vector, while Az gives ba(X) vectors and b3(X) massless
scalars. In three dimensions a vector is dual to a periodic scalar, so at a point
in moduli space where the vectors are free we can dualise them. The dual of the
vector field originating from A; is the period of the RR 7-form on X, whereas the
duals of the vector fields coming from Ag are given by the periods of the RR 5-form
As over a basis of 5-cycles which span the fifth homology group of X. Denote
these scalars by o;. All in all, in the dualised theory we have, in addition to the
supergravity multiplet, ba(X) + b3(X) scalar multiplets. Notice that be(X) of the
scalar multiplets contain two real scalar fields, both of which are periodic.

Now we come to studying the Type IIA theory on X = R*/Tsprx.S3. Recall
that X = R* /T apE xS 3 is defined as an orbifold of the standard spin bundle of S3,
denoted by S(S%). To determine the massless spectrum of ITA string theory on X
we can use standard orbifold techniques. However, the answer can be phrased in a
simple way. X is topologically R*/T'sprxS3. This manifold can be desingularised
to give a smooth seven-manifold M"*= which is topologically X142 x S3  where
X T is homeomorphic to an ALE space. The string theoretic cohomology groups
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of X are isomorphic to the usual cohomology groups of M4?=. The reason for this
is simple: X is a global orbifold of S(%). The string theoretic cohomology groups
count massless string states in the orbifold CFT. The massless string states in the
twisted sectors are localised near the fixed points of the action of I'ypg on the spin
bundle. Near the fixed points we can work on the tangent space of S(S%) near a
fixed point and the action of I'spg there is just its natural action on R*xR3.

Note that blowing up X to give M 48 cannot give a metric with G5 -holonomy
which is continuosly connected to the singular G5 -holonomy metric on X, since this
would require that the addition to homology in passing from X to MT4= receives
contributions from four-cycles. This is necessary since these are dual to elements
of H3(M) which generate metric deformations preserving the Go -structure. This
argument does not rule out the possibility that M4*® admits ‘disconnected’ G -
holonomy metrics, but is consistent with the fact that pure super Yang-Mills theory
in four dimensions does not have a Coulomb branch.

The important points to note are that the twisted sectors contain massless
states consisting of r scalars and r vectors where r is the rank of the corresponding
ADE group associated to I'. The r scalars can intuitively be thought of as the periods
of the B field through r two-cycles. In fact, for a generic point in the moduli space of
the orbifold conformal field theory the spectrum contains massive particles charged
under the r twisted vectors. These can be interpreted as wrapped D2-branes whose
quantum numbers are precisely those of W -bosons associated with the breaking of
an ADE gauge group to U(1)". This confirms our interpretation of the origin of this
model from M theory: the values of the r B -field scalars can be interpreted as the
expectation values of Wilson lines around the eleventh dimension associated with
this symmetry breaking. At weak string coupling and large S® volume these states
are very massive and the extreme low energy effective dynamics of the twisted sector
states is described by N' =2 U(1)" super Yang-Mills in three dimensions. Clearly
however, the underlying conformal field theory is not valid when the W -bosons
become massless. The appropriate description is then the pure super Yang-Mills
theory on R?1xS! which corresponds to a sector of M theory on X xS!. In this
section however, our strategy will be to work at a generic point in the CFT moduli
space which corresponds to being far out along the Coulomb branch of the gauge
theory. We will attempt to calculate the superpotential there and then continue the
result to four dimensions. This exactly mimics the strategy of [21] in field theory.
Note that we are implicitly ignoring gravity here. More precisely, we are assuming
that, in the absence of gravitational interactions with the twisted sector, the low
energy physics of the twisted sectors of the CFT is described by the Coulomb branch
of the gauge theory. This is natural since the twisted sector states are localised at
the singularities of X xR%! whereas the gravity propagates in bulk.

In this approximation, we can dualise the photons to obtain a theory of r
chiral multiplets, each of whose bosonic components (¢ and o ) is periodic. But
remembering that this theory arose from a non-Abelian one we learn that the
moduli space of classical vacua is

(CT'

414 Lo c
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where AY, is the complexified weight lattice of the ADE group and W, is the Weyl
group.
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We can now ask about quantum effects. In particular, is there a non-trivial
superpotential for these chiral multiplets? In a theory with four supercharges BPS
instantons with only two chiral fermion zero modes can generate a superpotential.
Are there instantons in Type ITA theory on J? BPS instantons come from branes
wrapping supersymmetric cycles and Type ITA theory on a Gs -holonomy space
can have instantons corresponding to D6-branes wrapping the space itself or D2-
brane instantons which wrap supersymmetric 3-cycles. For smooth G5 -holonomy
manifolds these were studied in [14]. In the case at hand the D6-branes would
generate a superpotential for the dual of the graviphoton multiplet which lives in the
gravity multiplet but, since we wish to ignore gravitational physics for the moment,
we will ignore these. In any case, since X is non-compact, these configurations have
infinite action. The D2-branes on the other hand are much more interesting. They
can wrap the supersymmetric S® over which the singularities of X are fibered. We
can describe the dynamics of a wrapped D2-brane as follows. At large volume,
where the sphere becomes flatter and flatter the world-volume action is just the
Kronheimer gauge theory that we described previously in section 3.1.1! Here we
should describe this theory not just on S3 but on a supersymmetric (or calibrated)
53 embedded in a space with a non-trivial G -holonomy structure. The upshot is
that the world-volume theory is in fact a cohomological field theory [8] so we can
trust it for any volume as long as the ambient space has G5 -holonomy. This is
because the supersymmetries on the world-volume are actually scalars on S and
so must square to zero. This “topological version” of the Kronheimer theory can
be naturally obtained by “twisting” the usual gauge theory in the same way that
one obtains the topological A-model and B-model by twisting and was described by
Robbert Dijkgraaf in his lectures. In this case, the twisting is naturally incorporated
by the normal bundle of the calibrated three-sphere.

Note that, since we are ignoring gravity, we are implicitly ignoring higher de-
rivative corrections which could potentially also affect this claim. Another crucial
point is that the S which sits at the origin in R* in the covering space of X is the
supersymmetric cycle, and the spheres away from the origin are not supersymmet-
ric, so that the BPS wrapped D2-brane is constrained to live on the singularities of
X. In the quiver gauge theory, the origin is precisely the locus in moduli space at
which the single D2-brane can fractionate (according to the quiver diagram) and
this occurs by giving expectation values to the scalar fields which parameterise the
Coulomb branch which corresponds to the position of our D2-brane in the dimen-
sions normal to X.

What contribution to the superpotential do the fractional D2-branes make? To
answer this we need to identify the configurations which possess only two fermionic
zero modes. We will not give a precise string theory argument for this, but using
the correspondence between this string theory and field theory will identify exactly
which D-brane instantons we think are responsible for generating the superpoten-
tial. This may sound like a strong assumption, but, as we hope will become clear,
the fact that the fractional D2-branes are wrapped D4-branes is actually antici-
pated by the field theory! This makes this assumption, in our opinion, somewhat
weaker and adds credence to the overall picture being presented here.

In [11], it was shown that the fractionally charged D2-branes are actually D4-
branes which wrap the ‘vanishing’ 2-cycles at the origin in R*/I". More precisely,
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each individual fractional D2-brane which originates from a single D2-brane pos-
sesses D4-brane charge, but the total configuration, since it began life as a single
D2-brane, has zero D4-brane charge. The possible contributions to the superpoten-
tial are constrained by supersymmetry and must be given by a holomorphic function
of the r chiral superfields and also of the holomorphic gauge coupling constant 7
which corresponds to the complexified volume of the S in eleven-dimensional M
theory. We have identified above the bosonic components of the chiral superfields
above. T is given by

(4.15) r= [e+ic

where ¢ is the G5 -structure defining 3-form on X. The period of the M theory
3-form through S? plays the role of the theta angle.
The world-volume action of a D4-brane contains the couplings

(4.16) L=BANAs+ As.
Holomorphy dictates that there is also a term
(4.17) BAg

so that the combined terms are written as

(4.18) BAT+ As

Since the fourbranes wrap the ‘vanishing cycles’ and the S3 we see that the
contribution of the D4-brane corresponding to the k-th fractional D2 takes the
form

(4.19) S=—-0B.z
where we have defined
(4.20) z =19 +O

and the B are charge vectors. The r complex fields z are the natural holomorphic
functions upon which the superpotential will depend.

The wrapped D4-branes are the magnetic duals of the massive D2-branes which
we identified above as massive W -bosons. As such they are magnetic monopoles for
the original ADE gauge symmetry. Their charges are therefore given by an element
of the co-root lattice of the Lie algebra and thus each of the » + 1 3 ’s is a rank
r vector in this space. Choosing a basis for this space corresponds to choosing a
basis for the massless states in the twisted sector Hilbert space which intuitively we
can think of as a basis for the cohomology groups Poincaré dual to the ‘vanishing’
2-cycles. A natural basis is provided by the simple co-roots of the Lie algebra of
ADE, which we denote by aj for k = 1,...,r. This choice is natural, since these,
from the field theory point of view, are the fundamental monopole charges.

At this point it is useful to mention that the r wrapped D4-branes whose
magnetic charges are given by the simple co-roots of the Lie algebra correspond in
field theory to monopoles with charges aj and each of these is known to possess
precisely the right number of zero modes to contribute to the superpotential. Since
we have argued that, in a limit of the Type ITA theory on X, the dynamics at low
energies is governed by the field theory studied in [21] it is natural to expect that
these wrapped fourbranes also contribute to the superpotential. Another striking
feature of the field theory is that these monopoles also possess a fractional instanton
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number - the second Chern number of the gauge field on R>!'xS!. These are
precisely in correspondence with the fractional D2-brane charges. Thus, in this
sense, the field theory anticipates that fractional branes are wrapped branes.

In the field theory on R%*!xS?! it is also important to realise that there is
precisely one additional BPS state which contributes to the superpotential. The key
point is that this state, unlike the previously discussed monopoles, has dependence
on the periodic direction in spacetime. This state is associated with the affine node
of the Dynkin diagram. Its monopole charge is given by

(4.21) —Y o

and it also carries one unit of instanton number.
The action for this state is

(4.22) S =3,_105.2 — 2miT

Together, these r + 1 BPS states can be regarded as fundamental in the sense
that all the other finite action BPS configurations can be thought of as bound states
of them.

Thus, in the correspondence with string theory it is also natural in the same
sense as alluded to above that a state with these corresponding quantum numbers
also contributes to the superpotential. It may be regarded as a bound state of
anti-D4-branes with a charge one D2-brane. In the case of SU(n) this is extremely
natural, since the total D4/D2-brane charge of the r +1 states is zero/one, and this
is precisely the charge of the D2-brane configuration on S* whose world-volume
action is the quiver gauge theory for the affine Dynkin diagram for SU(n). In
other words, the entire superpotential is generated by a single D2-brane which has
fractionated.

In summary, we have seen that the correspondence between the Type ITA string
theory on X and the super Yang-Mills theory on R%! xS is quite striking. Within
the context of this correspondence we considered a smooth point in the moduli space
of the perturbative Type ITA CFT, where the spectrum matches that of the Yang-
Mills theory along its Coulomb branch. On the string theory side we concluded
that the possible instanton contributions to the superpotential are from wrapped
D2-branes. Their world volume theory is essentially topological, from which we
concluded that they can fractionate. As is well known, the fractional D2-branes are
really wrapped fourbranes. In the correspondence with field theory, the wrapped
fourbranes are magnetic monopoles, whereas the D2-branes are instantons. Thus, if
these branes generate a superpotential they correspond in field theory to monopole-
instantons. This is exactly how the field theory potential is known to be generated.
We thus expect that the same occurs in the string theory on X.

Finally, the superpotential generated by these instantons is of affine-Toda type
and is known to possess co(ADE) minima corresponding to the vacua of the ADE
super Yang-Mills theory on R31. The value of the superpotential in each of these
vacua is of the form e ¢ . As such it formally looks as though it was generated
by fractional instantons, and in this context fractional M 2-brane instantons. This
result holds in the four-dimensional M theory limit because of holomorphy.

Let us demonstrate the vacuum structure in the simple case when the gauge
group is SU(2). Then there is only one scalar field, z. There are two fractional
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D2-brane instantons whose actions are

(4.23) S1 = —z and Sy = z — 2miT
Both of these contribute to the superpotential as
(4.24) W =e 1 452,
Defining z = In'Y we have

eZwiT
4.2 =Y .
(4.25) w + v
The critical points of W are
(4.26) Y = 4™

This result about the superpotential suggests strongly that there is a limit
of M theory near an ADE singularity in a G -manifold which is precisely super
Yang-Mills theory. We will now go on to explore other limits of this M theory
background.

4.4. M theory Physics on ADE-singular Gs-manifolds. We saw previ-
ously that before taking the quotient by I', the M theory physics on R*xS? with
its Go-metric was smoothly varying as a function of 7. In fact the same is true in
the case with ADE-singularities. One hint for this was that we explicitly saw just
now that the superpotential is non-zero in the various vacua and this implies that
the C-field is non-zero. This suggestion was concretely proven in [7].

Before orbifolding by I' we saw there were three semiclassical limits of M theory
in the space parameterised by 7. These were described by M theory on three large
and smooth Go-manifolds X;, all three of which were of the form R*xS%. There
are also three semiclassical i.e. large volume Ga-manifolds when we orbifold by I'.
These are simply the quotients by I' of the X;. One of these is the Gz-manifold
R* /T spe xS®. The other two are both of the form S3/T"ypg xR*. To see this, note
that the three S®’s in the three Ga-manifolds X; of the form R*x.S? correspond to
the three S3 factors in G = S2x53x 83, Tapg is a subgroup of one of these S%’s.
If Tapg acts on the R* factor of X; in the standard way, then it must act on S®
in X, - since X5 can be thought of as the same manifold but with the two S%’s at
infinity exchanged. Then, because of the permutation symmetry it also acts on the
AS3 in.)(g.

In the simple, crude, algebraic description in section 3.2.2, let X; be the mani-
fold with a negative. Then define I'ypg to act on the R* parameterised by x;. Then
x; = 0 is an S3 of fixed points parameterised by y;. Thus X; /T apE is isomorphic
to our Gy-manifold with ADE-singularities. Consider now what happens when a is
taken positive. This is our manifold X5. Then, because x; = 0 is not a point on
X, there is no fixed point and T'ypr acts freely on the S2 surrounding the origin
in the z-space. Thus, Xo/T'spg is isomorphic to S3/Tapg xR, as is X3.

On X /Tspg in the large volume limit, we have a semi-classical description of
the four-dimensional physics in terms of perturbative super Yang-Mills theory. But,
at extremely low energies, this theory becomes strongly coupled, and is believed to
confine and get a mass gap. So, apart from calculating the superpotential in each
vacuum, as we did in section 4.3, we can’t actually calculate the spectrum here.

What about the physics in the other two semiclassical limits, namely large
X2.3/Tape? These Ga-manifolds are completely smooth. So supergravity is a good
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approximation to the M theory physics. What do we learn about the M theory
physics in this approximation?

4.5. Confinement from Gs-manifolds. If it is true that the qualitative
physics of M theory on X5/Tapr and X3/Tapr is the same as that of M the-
ory on X1/Tapg, then some of the properties of super Yang-Mills theory at low
energies ought to be visible. The gauge theory is believed to confine ADE-charge
at low energies. If a gauge theory confines in four dimensions, electrically charged
confining flux tubes (confining strings) should be present. This is because the con-
fining potential is linear. If the classical fields of the gauge theory contain only
fields in the adjoint representation of the gauge group G, then these strings are
charged with respect to the center of G, Z(G). All other charges are screened by
quantum fluctuations. Can we see these strings in M theory on X5 /T'spg? Indeed,
the confining strings have a very simple description [3].

The natural candidates for such strings are M2-branes which wrap around 1-
cycles in Xo/Tapg or M5-branes which wrap 4-cycles in Xo/T'spg. Since X5 /T apg
is homeomorphic to S%/I"ypr xR* which is contractible to S /T spg, the homology
groups of X5 /T'apg are the same as those of the three-manifold S 3 /Tape. Thus, our
space has no four-cycles to speak of, so the confining strings can only come from
M 2-branes wrapping one-cycles in S3/I'ypg. The string charges are classified by the
first homology group H;(S%/T apk, Z). For any manifold, the first homology group is
isomorphic to the Abelianisation of its fundamental group, I1;. The Abelianisation
is obtained by setting all commutators in II; to be trivial, i.e.

1T, (M)
(I, (M), Iy (M)]

The fundamental group of S3 /Tape is Tape. Hence, in order to calculate the
charges of our candidate confining strings we need to compute the Abelianisations
of all of the finite subgroups of SU(2).

Ta,_ , & Z,. The gauge group is locally SU(n). Since Z, is Abelian, its
commutator subgroup is trivial and hence the charges of our strings take values in
Z,,. Since this is isomorphic to the center of SU(n) this is the expected answer for
a confining SU(n) theory.

For I 2 Do, the binary dihedral group of order 4k — 8, the local gauge group
of the Yang-Mills theory is SO(2k). The binary dihedral group is generated by two
elements « and (3 (see section 3.1.1) which obey the relations

(4.27) H\(M,Z) =

(4.28) a? = g2
(4.29) af = p1a
(4.30) at =gt =1,

To compute the Abelianisation of Dy_o, we simply take these relations and
impose that the commutators are trivial. From the second relation this implies
that

(4.31) g=p""
which in turn implies that

(4.32) a?=1fork=2p
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and
(4.33) a?=pfork=2p+1.

Thus, for k = 2p we learn that the Abelianisation of Dy _5 is isomorphic to ZgXZo,
whereas for £ = 2p + 1 it is isomorphic to Z,. These groups are respectively the
centers of Spin(4p) and Spin(4p+2). This is the expected answer for the confining
strings in SO(2k) super Yang-Mills which can be coupled to spinorial charges.

To compute the Abelianisations of the binary tetrahedral (denoted T), octahe-
dral (0) and icosahedral (I) groups which correspond respectively to Eg, F7 and
Eg super Yang-Mills theory, we utilise the fact that the order of F/[F, F] - with
F' a finite group - is the number of inequivalent one-dimensional representations of
F'. The representation theory of the finite subgroups of SU(2) is described through
the McKay correspondence by the representation theory of the corresponding Lie
algebras. In particular the dimensions of the irreducible representations of T, O and
I are given by the coroot integers (or dual Kac labels) of the affine Lie algebras as-
sociated to Eg, E7 or Eg respectively. From this we learn that the respective orders
of T/[T,T], O/[0, 0] and I/[I,1] are three, two and one. Moreover, one can easily
check that T/[T,T] and Q/[0, Q] are Z3 and Zs respectively, by examining their
group relations. Thus we learn that T/[T, T], ©/[O, O] and I/[L, 1] are, respectively
isomorphic to the centers Z(FEg), Z(E7) and Z(Esg), in perfect agreement with the
expectation that the super Yang-Mills theory confines. Note that the Eg-theory
does not confine, since the strings are uncharged.

This result is also natural from the following point of view. In the singular
X1/Tapr (where the actual gauge theory dynamics is) the gauge bosons correspond
to M2-branes wrapped around zero-size cycles. When we vary 7 away from the ac-
tual gauge theory limit until we reach M theory on a large and smooth X5 /Tapg the
confining strings are also wrapped M2-branes. In the gauge theory we expect the
confining strings to be “built” from the excitations of the gauge fields themselves.
In M theory, the central role played by the gauge fields is actually played by the
M2-brane.

4.6. Mass Gap from Gs-manifolds. We can also see the mass gap expected
of the gauge theory by studying the spectrum of M theory on the smooth G-
manifolds Xo/T'apg and X5/Tape. We already noted previously that the four-
dimensional spectrum of M theory on the X; was massive. For precisely the same
reasons the spectrum of M theory on Xs 3/Tapg is also massive.

5. Chiral Fermions from Gs-manifolds.

Thus far, we have seen that the simplest possible singularities of a G3-manifold,
namely ADE orbifold singularities, produce a convincing picture of how non-Abelian
gauge groups emerge. However, for the purpose of obtaining a realistic model of
particle physics this is not enough. To this end, a basic requisite is the presence
of chiral fermions charged under these gauge symmetries. Chiral fermions are im-
portant in nature since they are massless as long as the gauge symmetries they are
charged under are unbroken. This enables us to understand the lightness of the
electron in terms of the Higgs vev.

What sort of singularity in a Go-manifold X might we expect to give rise to
a chiral fermion in M theory? If the singularity is “bigger than a point” then we
don’t expect chiral fermions. This is because if the codimension of the singularity
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is less than seven, the local structure of the singularity can actually be regarded as
a singularity in a Calabi-Yau threefold or K3 and these singularities give rise to a
spectrum of particles which form representations of AN/ > 1 supersymmetry. Such
spectra are CPT self-conjugate. For instance, real codimension four singularities in
Go-manifolds are the ADE-singularities we discussed above and the corresponding
four-dimensional spectra were not chiral. Similarly, if the singularity is codimension
six, i.e. is along a one-dimensional curve ¥ in X, then everywhere near ¥ the tangent
spaces of X naturally split into tangent and normal directions to X. Hence, the
holonomy of X near ¥ actually reduces to SU(3) acting normally to X.

So we want to consider point-like singularities of X. The simplest such singu-
larities are conical, for which the metric looks locally like

(5.1) ds®> = dr? +r?g(Y)

for some six-dimensional metric g(Y') on a 6-manifold Y. This has a singularity at
r = 0. We will argue that for many different choices of Y that chiral fermions are
part of the M theory spectrum.

5.1. Hints from Anomaly Inflow. The basic strategy of this subsection will
be to assume there is a Go-manifold with a conical singularity of the above type
and consider the variation of bulk terms in the M theory effective action under
various gauge symmetries. These will be shown to be non-zero if Y obeys certain
conditions. If the theory is to be consistent, these anomalous variations must be
cancelled and this suggests the presence of chiral fermions in the spectrum. This is
based upon [24] who showed that when X is compact all these variations add up
to zero!

The gauge symmetries we will consider are the ones we have focussed on in
these lectures: the U(1) gauge symmetries from Kaluza-Klein reducing the C-field
and the ADE symmetries from the ADE-singularities.

We begin with the former case. We take M theory on X xR*! with X a cone
on Y so that X with the vertex removed is RxY. The Kaluza-Klein ansatz for C'
which gives gauge fields in four dimensions is

(5.2) C =X, 8%=) N Aaly)

where the 3’s are harmonic 2-forms on X. With this ansatz, consider the eleven-
dimensional Chern-Simons interaction

1
(5.3) S = ~CAGAG.

X xR3:1

Under a gauge transformation of C' under which
(5.4) C — C+de
S changes by something of the form*

(5.5) 08 ~ dleN GAG).

X xR3:1

We can regard X as a manifold with boundary 0X =Y and hence

(5.6) 08 ~ eN GAG.

Y xR3:1

4We will not be too careful about factors in this section.



60 BOBBY S. ACHARYA

If we now make the Kaluza-Klein ansatz for the 2-form e

(5.7) €= X;e“p”

and use our ansatz for C, we find

(5.8) 58 ~ / B2 A B A 55/ e?dA” N dA°.
Y R3,1

Thus if the integrals over Y (which are topological) are non-zero we obtain a non-
zero four-dimensional interaction characteristic of an anomaly in an Abelian gauge
theory. Thus, if the theory is to be consistent, it is natural to expect a spectrum
of chiral fermions at the conical singularity which exactly cancels 5.

We now turn to non-Abelian gauge anomalies. We have seen that ADE gauge
symmetries in M theory on a Go-manifold X are supported along a three-manifold
W in X. If additional conical singularities of X are to support chiral fermions
charges under the ADE gauge group, then these singularities should surely also be
points P; on W. So let us assume that near such a point the metric on X assumes
the conical form. In four-dimensional ADE gauge theories the triangle anomaly is
only non-trivial for A,-gauge groups. So we restrict ourselves to this case. In this
situation, there is a seven-dimensional interaction of the form

(5.9) S = K AQ5(A)
W xR31

where A is the SU(n) gauge field and

(5.10) dQs(A) =trF ANF A F.

K is a two-form which is the field strength of a U(1) gauge field which is part of

the normal bundle to W. K measures how the A,-singularity twists around W.

The U(1) gauge group is the subgroup of SU(2) which commutes with I, .
Under a gauge transformation,

(5.11) A— A+ Dy

and

(5.12) 08 ~ / (K A dtrAF N F)
W xR3:1

so if K is closed, 65 = 0. This will be the case if the A, -singularity is no worse at the
conical singularity P than at any other point on W. If, however, the A, -singularity
actually increases rank at P, then

(5.13) dK = 2mqSp

and we have locally a Dirac monopole of charge g at P. The charge is an integer
because of obvious quantisation conditions. In this situation we have that

(5.14) 08 ~ A(K ANtrAF AF) = —q/ tr \FF NF
WX]R?x,l R3,1

which is precisely the triangle anomaly in an SU(n) gauge theory. Thus, if we have
this sort of situation in which the ADE-singularity along W degenerates further at
P we also expect chiral fermions to be present.

We now go on to utilise the M theory heterotic duality of subsection (3.1) to
construct explicitly conically singular manifolds for which we know the existence of
chiral fermions.
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5.2. Chiral Fermions via Duality With The Heterotic String. In sec-
tion three we utilised duality with the heterotic string on T® to learn about en-
hanced gauge symmetry in M theory. We applied this to G3-manifolds quite suc-
cessfully. In this section we will take a similar approach. The following is based
upon [5].

We start by considering duality with the heterotic string. The heterotic string
compactified on a Calabi-Yau three fold Z can readily give chiral fermions. On the
other hand, most Calabi-Yau manifolds participate in mirror symmetry. For Z to
participate in mirror symmetry means, according to Strominger, Yau and Zaslow,
that, in a suitable limit of its moduli space, it is a T3 fibration (with singularities
and monodromies) over a base W. Then, taking the T3’s to be small and using on
each fiber the equivalence of the heterotic string on T? with M theory on K3, it
follows that the heterotic string on Z is dual to M theory on a seven-manifold X
that is K 3-fibered over W (again with singularities and monodromies). X depends
on the gauge bundle on Z. Since the heterotic string on Z is supersymmetric, M
theory on X is likewise supersymmetric, and hence X is a manifold of G5 holonomy.

The heterotic string on Z will typically have a four-dimensional spectrum of chi-
ral fermions. Since there are many Z’s that could be used in this construction (with
many possible classes of gauge bundles) it follows that there are many manifolds of
G5 holonomy with suitable singularities to give non-Abelian gauge symmetry with
chiral fermions. The same conclusion can be reached using duality with Type ITA|
as many six-dimensional Type ITA orientifolds that give chiral fermions are dual to
M theory on a G manifold [10]

Let us try to use this construction to determine what kind of singularity X
must have. (The reasoning and the result are very similar to that given in [17]
for engineering matter from Type II singularities. In [17] the Dirac equation is
derived directly rather than being motivated — as we will — by using duality with
the heterotic string.) Suppose that the heterotic string on Z has an unbroken
gauge symmetry G, which we will suppose to be simply-laced (in other words, an
A, D, or E group) and at level one. This means that each K3 fiber of X will have
a singularity of type G. As one moves around in X one will get a family of G-
singularities parameterized by W. If W is smooth and the normal space to W is a
smoothly varying family of G-singularities, the low energy theory will be G' gauge
theory on W x R*! without chiral multiplets. This was the situation studied in
sections three and four. So chiral fermions will have to come from singularities of
W or points where W passes through a worse-than-orbifold singularity of X.

We can use the duality with the heterotic string to determine what kind of
singularities are required. The argument will probably be easier to follow if we
begin with a specific example, so we will consider the case of the Eg x Eg heterotic
string with G = SU(5) a subgroup of one of the Eg’s. Such a model can very easily
get chiral 5’s and 10’s of SU(5); we want to see how this comes about, in the region
of moduli space in which Z is T3-fibered over W with small fibers, and then we
will translate this description to M theory on X.

Let us consider, for example, the 5’s. The commutant of SU(5) in Eg is a
second copy of SU(5), which we will denote as SU(5)". Since SU(5) is unbroken,
the structure group of the gauge bundle F on Z reduces from Eg to SU(5)". Massless
fermions in the heterotic string transform in the adjoint representation of Eg. The
part of the adjoint representation of Eg that transforms as 5 under SU(5) transforms
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as 10 under SU(5)". So to get massless chiral 5’s of SU(5), we must look at the
Dirac equation D on Z with values in the 10 of SU(5)’; the zero modes of that
Dirac equation will give us the massless 5’s of the unbroken SU(5).

We denote the generic radius of the T? fibers as «, and we suppose that « is
much less than the characteristic radius of W. This is the regime of validity of the
argument for duality with M theory on X (and the analysis of mirror symmetry of
SYZ). For small «, we can solve the Dirac equation on Z by first solving it along
the fiber, and then along the base. In other words, we write D = Dr + Dy, where
Dr is the Dirac operator along the fiber and Dy, is the Dirac operator along the
base. The eigenvalue of D gives an effective “mass” term in the Dirac equation
on W. For generic fibers of Z — W as we explain momentarily, the eigenvalues of
Dr are all nonzero and of order 1/«. This is much too large to be canceled by the
behavior of Dy. So zero modes of D are localized near points in W above which
Dt has a zero mode.

When restricted to a T? fiber, the SU(5)’ bundle E can be described as a flat
bundle with monodromies around the three directions in T?3. In other words, as in
section three, we have three Wilson lines on each fiber. For generic Wilson lines,
every vector in the 10 of SU(5)" undergoes non-trivial “twists” in going around
some (or all) of the three directions in T®. When this is the case, the minimum
eigenvalue of Dy is of order 1/a. This is simply because for a generic flat gauge
field on the T3-fiber there will be no zero mode.

A zero mode of D above some point P € W arises precisely if for some vector
in the 10, the monodromies in the fiber are all trivial.

This means that the monodromies lie in the subgroup of SU(5)’ that leaves fixed
that vector. If we represent the 10 by an antisymmetric 5 x 5 matrix B, i,j =
1,...,5, then the monodromy-invariant vector corresponds to an antisymmetric
matrix B that has some nonzero matrix element, say B'?; the subgroup of SU(5)’
that leaves B invariant is clearly then a subgroup of SU(2) x SU(3) (where in these
coordinates SU(2) acts on 4,5 = 1,2 and SU(3) on 4,5 = 3,4,5). Let us consider
the case (which we will soon show to be generic) in which B2 is the only nonzero
matrix element of B. If so, the subgroup of SU(5)’ that leaves B fixed is precisely
SU(2) x SU(3). There is actually a distinguished basis in this problem — the one
that diagonalizes the monodromies near P — and it is in this basis that B has only
one nonzero matrix element.

The commutant of SU(2) x SU(3) in Es is SU(6). So, over the point P,
the monodromies commute not just with SU(5) but with SU(6). Everything of
interest will happen inside this SU(6). The reason for this is that the monodromies
at P give large masses to all EFs modes except those in the adjoint of SU(6). So
we will formulate the rest of the discussion as if the heterotic string gauge group
were just SU(6), rather than Eg. Away from P, the monodromies break SU(6)
to SU(5) x U(1) (the global structure is actually U(5)). Restricting the discussion
from Eg to SU(6) will mean treating the vacuum gauge bundle as a U(1) bundle
(the U(1) being the second factor in SU(5) x U(1) C SU(6)) rather than an SU(5)’
bundle.

The fact that, over P, the heterotic string has unbroken SU(6) means that,
in the M theory description, the fiber over P has an SU(6) singularity. Likewise,
the fact that away from P the heterotic string has only SU(5) x U(1) unbroken
means that the generic fiber, in the M theory description, must contain an SU(5)
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singularity only, rather than an SU(6) singularity. As for the unbroken U(1), in
the M theory description it must be carried by the C-field. Indeed, over generic
points on W there is a non-zero size S? which shrinks to zero size at P in order
that the gauge symmetry at that point increases. Kaluza-Klein reducing C along
this 52 gives a U(1).

If we move away from the point P in the base, the vector B in the 10 of SU(5)’
is no longer invariant under the monodromies. Under parallel transport around
the three directions in T3, it is transformed by phases €>™%  j = 1,2,3. Thus,
the three ¢; must all vanish to make B invariant. As W is three-dimensional,
we should expect generically that the point P above which the monodromies are
trivial is isolated. (Now we can see why it is natural to consider the case that,
in the basis given by the monodromies near P, only one matrix element of B is
nonzero. Otherwise, the monodromies could act separately on the different matrix
elements, and it would be necessary to adjust more than three parameters to make
B invariant. This would be a less generic situation.) We will only consider the
(presumably generic) case that P is disjoint from the singularities of the fibration
Z — W. Thus, the T? fiber over P is smooth (as we have implicitly assumed in
introducing the monodromies on T%).

In [5] we explicitly solved the Dirac equation in a local model for this situation.
We found that the net number of chiral zero modes was one. We will not have time
to describe the details of the solution here.

In summary, before we translate into the M theory language, the chiral fermions
in the heterotic string theory on Z are localised at points on W over which the
Wilson lines in the T3-fibers are trivial. In M theory this translates into the
statement that the chiral fermions are localised at points in W over which the ADE-
singularity “worsens”. This is also consistent with what we found in the previous
section.

5.3. M theory Description. So we have found a local structure in the het-
erotic string that gives a net chirality — the number of massless left-handed 5’s
minus right-handed 5’s — of one. Let us see in more detail what it corresponds to
in terms of M-theory on a manifold of G2 holonomy.

Here it may help to review the case considered in [17] where the goal was
geometric engineering of charged matter on a Calabi-Yau threefold in Type IIA.
What was considered there was a Calabi-Yau three fold R, fibered by K3’s with
a base W', such that over a distinguished point P € W’ there is a singularity of
type é, and over the generic point in W’ this singularity is replaced by one of type
G — the rank of G being one greater than that of G. In our example, G = SU(6)
and G = SU(5). In the application to Type ITA, although R also has a Kéahler
metric, the focus is on the complex structure. For G = SU(6), G = SU(5), let us
describe the complex structure of R near the singularities. The SU(6) singularity
is described by an equation zy = 28 - cf. section three. Its “unfolding” depends
on five complex parameters and can be written zy = 26 + Py(z), where P;(z) is a
quartic polynomial in z. If — as in the present problem — we want to deform the
SU(6) singularity while maintaining an SU (5) singularity, then we must pick Py so
that the polynomial 28+ P, has a fifth order root. This determines the deformation
to be

(5.15) ry = (2 +5¢)(z — €)°,
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where we interpret € as a complex parameter on the base W’. Thus, the above
equation gives the complex structure of the total space R.

What is described above is the partial unfolding of the SU(6) singularity, keep-
ing an SU(5) singularity. In our G2 problem, we need a similar construction, but
we must view the SU(6) singularity as a hyper-Kéhler manifold, not just a com-
plex manifold. In unfolding the SU(6) singularity as a hyper-K&hler manifold, each
complex parameter in P, is accompanied by a real parameter that controls the area
of an exceptional divisor in the resolution/deformation of the singularity. The pa-
rameters are thus not five complex parameters but five triplets of real parameters.
(There is an SO(3) symmetry that rotates each triplet. This is the SO(3) rotating
the three Kéhler forms in section three.)

To get a Go-manifold, we must combine the complex parameter seen in (5.15)
with a corresponding real parameter. Altogether, this will give a three-parameter
family of deformations of the SU(6) singularity (understood as a hyper-Kéhler man-
ifold) to a hyper-Kéhler manifold with an SU(5) singularity. The parameter space
of this deformation is what we have called W, and the total space is a seven-manifold
that is our desired singular G-manifold X, with a singularity that produces the
chiral fermions that we analyzed above in the heterotic string language.

To find the hyper-Kahler unfolding of the SU(6) singularity that preserves an
SU(5) singularity is not difficult, using Kronheimer’s description of the general un-
folding via a hyper-Kéhler quotient [18]. At this stage, we might as well generalize
to SU(N), so we consider a hyper-Kéhler unfolding of the SU(N + 1) singularity
to give an SU(N) singularity. The unfolding of the SU(N + 1) singularity is ob-
tained by taking a system of N + 1 hypermultiplets ®q, ®1,...®x with an action of
K =U(1)". Under the i*" U(1) fori = 1,..., N, ®; has charge 1, ®;_; has charge
—1, and the others are neutral. This configuration of hypermultiplets and gauge
fields is known as the quiver diagram of SU(N 4+ 1) and appears in studying D-
branes near the SU(N + 1) singularity We let H denote R*, so the hypermultiplets
parameterize HV 1, the product of N + 1 copies of R*. The hyper-Kihler quotient
of HVN*! by K is obtained by setting the D-field (or components of the hyper-
Kihler moment map) to zero and dividing by K. It is denoted HV*!//K, and is
isomorphic to the SU(N + 1) singularity R*/Zy, 1. Its unfolding is described by
setting the D-fields equal to arbitrary constants, not necessarily zero. In all, there
are 3N parameters in this unfolding — three times the dimension of K — since for
each U(1), D has three components, rotated by an SO(3) group of R-symmetries.

We want a partial unfolding keeping an SU(N) singularity. To describe this,
we keep 3(N — 1) of the parameters equal to zero and let only the remaining
three vary; these three will be simply the values of D for one of the U(1)’s. The
seven-manifold which we propose admits a natural Go-holonomy metric is easy to
describe. One picks a U(1) subgroup of K - the gauge group of the Kronheimer
construction. There are three D-terms D associated to this U (1). Then one simply
repeats Kronheimer’s construction, but one does not set D to zero. This gives a 7-
manifold which maps to R? (parameterised by the space of values of 13) over which
the generic fiber is the ADE-singularity obtained from the Kronheimer construction
using K’, the commutant of U(1) in K. However, at the origin, i.e. when D is Z€ero,
the fiber degenerates further to an ADE-singularity of higher rank. This is exactly
the sort of picture we expected from the heterotic string.
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To carry out this procedure, we first write K = K’ xU(1)" (where U (1)’ denotes
a chosen U(1) factor of K = U(1)"). Then we take the hyper-Kihler quotient of
HN+1 by K’ to get a hyper-Kahler eight-manifold X = HN*1//K’, after which
we take the ordinary quotient, not the hyper-Kahler quotient, by U(1)’ to get a
seven-manifold X = X /U(1)’ that should admit a metric of Go-holonomy. X has
a natural map to W = R3 given by the value of the D-field of U(1)’ — which was
not set to zero — and this map gives the fibration of X by hyper-Kéahler manifolds.

In the present example, we can easily make this explicit. We take U(1)" to
be the “last” U(1) in K = U(1)", so U(1)’ only acts on ®x_; and ®y. K’ is
therefore the product of the first N — 1 U(1)’s; it acts trivially on ®x, and acts on
Dy, ..., PyN_1 according to the standard quiver diagram of SU(N). So the hyper-
Kihler quotient HN*!//K’ is just (HY //K') x H', where HY //K' is the SU(N)
singularity, isomorphic to H/Zy and H’ is parameterized by ®y. So finally, X will
be (H/Zy x H')/U(1)". To make this completely explicit, we just need to identify
the group actions on H and H'. If we parameterize H and H’ respectively by pairs of
complex variables (a,b) and (a’,b") then the Zy action on H, such that the quotient
H/Zy is the SU(N) singularity, is given by

a o2mik/N
(5.16) ( b > - ( e—2mik/Ny, >v

while the U(1)" action that commutes with this (and preserves the hyper-Kéhler
structure) is

a eiw/Na
(5.17) ( b > — < o—i0/N}, )

The U(1)" action on H' is similarly

a eiw/Na/

In all, if we set A = e™¥/N wy =@, wy =V, wy = a, wy = b, then the quotient

H/Zn x H'/U(1) can be described with four complex variables wy, . .., ws modulo
the equivalence
(5.19) (w1, wa, wz, wg) — (ANwi, \Nwa, Aws, Mwy), [N =1

This quotient is a cone on a weighted projective space W(CIP’?W N1+ In fact, if we
impose the above equivalence relation for all nonzero complex A, we would get the
weighted projective space itself; by imposing this relation only for |A| = 1, we get a
cone on the weighted projective space. Note that the conical metric of G2-holonomy
on this space does not use usual Kéhler metric on weighted projective space.
W(CIP’?VW)M has a family of Ay _1-singularities at points (wy, ws,0,0). This is
easily seen by setting A to €2™/N. This set of points is a copy of CP' = S2. Our
proposed Gs-manifold is a cone over weighted projective space, so it has a family
of An_1-singularities which are a cone over this S2. This is of course a copy of R3.
Away from the origin in R® the only singularities are these orbifold singularities.
At the origin however, the whole manifold develops a conical singularity. There,
the 2-sphere, which is noncontractible in the bulk of the manifold, shrinks to zero
size. This is in keeping with the anomaly inflow arguments of the previous section.
There we learned that an ADE-singularity which worsens over a point in W is a
good candidate for the appearance of chiral fermions. Here, via duality with the
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heterotic string, we find that the conical singularity in this example supports one
chiral fermion in the N of the SU(N) gauge symmetry coming from the Ay_1-
singularity. In fact, the U(1) gauge symmetry from the C-field in this example
combines with the SU(N) to give a gauge group which is globally U(N) and the
fermion is in the fundamental representation.

Some extensions of this can be worked out in a similar fashion. Consider the
case that away from P, the monodromies break SU(N+1) to SU(p) x SU(q) xU (1),
where p+q = N+1. Analysis of the Dirac equation along the above lines shows that
such a model will give chiral fermions transforming as (p,q) under SU(p) x SU(q)
(and charged under the U(1)). To describe a dual in M theory on a manifold of G
holonomy, we let K = K’ x U(1)’, where now K’ = K; x K5, K; being the product
of the first p — 1 U(1)’s in K and K3 the product of the last ¢ — 1, while U(1)’ is
the p* U(1). Now we must define X = HN*!//K’, and the manifold admitting a
metric of Gy holonomy should be X /U(1)’.

We can compute X easily, since K; acts only on ®4,...,®, and K, only on
®pi1,..., Pny1. The hyper-Kahler quotients by K; and K thus simply construct
the SU(p) and SU(q) singularities, and hence X = H/Z, x H/Z,. X has planes
of Z, and Z, singularities, which will persist in X = X/U(1), which will also
have a more severe singularity at the origin. So the model describes a theory with
SU(p) x SU(q) gauge theory and chiral fermions supported at the origin. U(1)" acts
on H/Z, and H/Z, as the familiar global symmetry that preserves the hyper-Kéhler
structure of the SU(p) and SU(q) singularities. Representing those singularities by
pairs (a,b) and (a’,b") modulo the usual action of Z, and Z,, U(1)" acts by

a et/pg a e~ W/aqy!
o (3)-(28) e (7)-(550)

Now if p and ¢ are relatively prime, we set A = €'¥/P4, and we find that the

U(1)" action on the complex coordinates ws, ..., wy (which are defined in terms of
a,b,a’, b’ by the same formulas as before) is
(521) (wl,wg,wg,w4) — ()\pwl,)\pwz,)\qwg,)\qw4).

If p and q are relatively prime, then the U(1)" action, upon taking A to be a p!”* or
g*" root of 1, generates the 7y x Zq orbifolding that is part of the original definition
of X. Hence in forming the quotient X /U(1)’, we need only to act on the w’s by
the equivalence relation. The quotient is therefore a cone on a weighted projective
space WCIP’?,)pyqvq. If p and ¢ are not relatively prime, we let (p, q) = r(n, m) where
r is the greatest common divisor and n and m are relatively prime. Then we let

A = exp(iryY/pq), so the equivalence relation above is replaced with
(5.22) (w1, wa, ws,wy) — (A"w1, N"wa, A" ws, A wy).
To reproduce X /U(1) we must now also divide by Z,, acting by
(5.23) (w1, w2, w3, wq) — (Cwi, Cwa, w3, wa),

where (" = 1. So X is a cone on W(CIP’;?’L’n’m’m/ZT.

5.4. Other Gauge Groups and Matter Representations. We now ex-
plain how to generalise the above construction to obtain singularities with more
general gauge groups and chiral fermion representations. Suppose that we want to
get chiral fermions in the representation R of a simply-laced group G. This can be
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achieved for certain representations. We find a simply-laced group G of rank one
more than the rank of G, such that G contains G x U(1) and the Lie algebra of G
decomposes as g ® o & r & T, where g and o are the Lie algebras of G and U(1),
r transforms as R under G and of charge 1 under U(1), and T transforms as the
complex conjugate. Such a G exists only for special R’s, and these are the R’s that
we will generate from G5 singularities.

Given G , we proceed as above on the heterotic string side. We consider a family
of T?’s, parameterized by W, with monodromy that at a special point P € W leaves
unbroken G, and at a generic point breaks G to G x U (1). We moreover assume that
near P, the monodromies have the same sort of generic behavior assumed above.
Then the same computation as above will show that the heterotic string has, in this
situation, a single multiplet of fermion zero modes (the actual chirality depends on
solving the Dirac equation) in the representation R, with U(1) charge 1.

Dualizing this to an M theory description, over P we want a G singularity, while
over a generic point in W we should have a G singularity. Thus, we want to consider
the unfolding of the G singularity (as a hyper-Kédhler manifold) that preserves a
G singularity. To do this is quite simple. We start with the Dynkin diagram of
G. The vertices are labeled with integers n;, the Dynkin indices. In Kronheimer’s
construction, the G singularity is obtained as the hyper-Kihler quotient of H¥ (for
some k) by the action of a group K = [[,U(n;). Its unfolding is obtained by
allowing the D-fields of the U(1) factors (the centers of the U(n;)) to vary.

The G Dynkin diagram is obtained from that of G by omitting one node,
corresponding to one of the U(n;) groups; we write the center of this group as
U(1). Then we write K (locally) as K = K’ x U(1)’, where K’ is defined by
replacing the relevant U(n;) by SU(n;). We get a hyper-Kéahler eight-manifold as
the hyper-Kahler quotient X = HF //K', and then we get a seven-manifold X by
taking the ordinary quotient X = X'/U(l)’. This maps to W = R? by taking the
value of the U(1)’ D-field, which was not set to zero. The fiber over the origin is
obtained by setting this D-field to zero after all, and gives the original G singularity,
while the generic fiber has a singularity of type G.

One can readily work out examples of pairs G, G. We will just consider the
cases most relevant for grand unification. For G = SU(N), to get chiral fields in the
antisymmetric tensor representation, G should be SO(2N). For G = SO(10), to
get chiral fields in the 16, G should be Eg. For G = SO(2k), to get chiral fields in
the 2k, G should be SO(2k+2). (Note in this case that 2k is a real representation.
However, the monodromies in the above construction break SO(2k+2) to SO(2k) x
U(1), and the massless 2k’s obtained from the construction are charged under the
U(1); under SO(2k) x U(1) the representation is complex.) For 2k = 10, this
example might be used in constructing SO(10) GUT’s. For G = Eg, to get 27’s, G
should be E;. A useful way to describe the topology of X in these examples is not
clear.

In this construction, we emphasized, on the heterotic string side, the most
generic special monodromies that give enhanced gauge symmetry, which corre-
sponds on the M theory side to omitting from the hyper-Kéhler quotient a rather
special U(1) that is related to a single node of the Dynkin diagram. We could also
consider more general heterotic string monodromies; this would correspond in M
theory to omitting a more general linear combination of the U(1)’s.
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6. Outlook.

Having gathered all the necessary ingredients we can now briefly describe how
one goes about building a model of particle physics from M theory on a Gs-
manifold, X. First it is natural that X admits a map to a three-manifold .
The generic fibers of the map are all K3-surfaces which have an ADE singularity of
some fixed type. Ay = SU(5) is a promising possibility for particle physics. This
plays the role of the GUT gauge group.

At a finite number of points on X which are also on W, there are conical
singularities of the kind discussed in section five. These support chiral fermions in
various representations of the ADE gauge group. For instance, in the case of SU(5)
we would like to obtain three 5’s and three 10’s. The singularities of X should be
of the required type.

We then take W to non-simply connected (e.g. W might be S3/Z,). Wilson
lines (or flat connections) of the SU(5) gauge fields can then be used to break SU(5)
to SU(3)xSU(2)xU(1) - the gauge group of the standard model.

An analysis of some of the basic properties of such models (assuming a suitable
X exists) was carried out in [25]. It was found that one of the basic physical tests
of such a model - namely the stability of the proton - was not problematic. This is
because the various families of chiral fermions originate from different points on X
so it is natural for them to be charged under different discrete symmetries. These
symmetries prevent the existence of operators which would otherwise mediate the
decay of the proton too quickly.

On the mathematical side, we still do not have examples of compact Gs-
manifolds with these conical singularities. The physics suggests that they are nat-
ural spaces to construct and we hope that this will be done in the near future.

Of course, we are still a long way from having a realistic explanation of particle
physics through M theory, since we do not understand in detail why supersymmetry
is broken in nature and why the cosmological constant is so small.
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Conjectures in Kahler geometry
Simon K. Donaldson

ABSTRACT. We state a general conjecture about the existence of Kahler met-
rics of constant scalar curvature, and discuss the background to the conjecture.

1. The equations

In this article we discuss some well-known problems in Kéhler geometry. The
general theme is to ask whether a complex manifold admits a preferred Kéahler
metric, distinguished by some natural differential-geometric criterion. A paradigm
is the well-known fact that any Riemann surface admits a metric of constant Gauss
curvature. Much of the interest of the subject comes from the interplay between, on
the one hand, the differential geometry of metrics, curvature tensors etc. and, on
the other hand, the complex analytic or algebraic geometry of the manifold. This
is, of course, a very large field and we make no attempt at an exhaustive account,
but it seems proper to emphasise at the outset that many of these questions have
been instigated by seminal work of Calabi.

Let (V,wp) be a compact Kédhler manifold of complex dimension n. The Kéahler
forms in the class [wo] can be written in terms of a Kithler potential wy = wg +i00¢.
In the case when 27[wp] is an integral class, e? has a geometrical interpretation
as the change of metric on a holomorphic line bundle L — V. The Ricci form
p = pg is —i times the curvature form of K‘jl, with the metric induced by wg, so
[p] = 2mc1(V) € H3(V). In the 1950’s, Calabi [3] initiated the study of Kdhler-
FEinstein metrics, with

(1) Py = g,

for constant A. For these to exist we need the topological condition 27c; (V) = A[w].
When this condition holds we can write (by the 99 Lemma)

Po — Awg = Zgafa

for some function f. The Kahler-Einstein equation becomes the second order, fully
nonlinear, equation

(2) (wo +100p)™ = e A0y
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More explicitly, in local coordinates z, and in the case when the metric wq is
Euclidean, the equation is

¢\ _ s-xe
(3) det ((5(15 + m) =€ .

This is a complex Monge-Ampere equation and the analysis is very much related
to that of real Monge-Ampere equations of the general shape

0%u

(4) det <6xi6xj> = F(z,u),
where u is a convex function on an open set in R™. There is a tremendous body of
work on these real and complex Monge-Ampere equations. In the Kahler setting,
the decisive contributions, dating back to the 1970’s, are due to Yau [9] and Aubin
[2]. The conclusion is, roughly stated, that PDE techniques reduce the problem
of finding a solution to that of finding a priori bounds for ||¢||r~. In the case
when A < 0 this bound is easily obtained from the maximum principle; in the case
when A = 0 the bound follows from a more sophisticated argument of Yau. This
leads, of course, to the renowned Calabi-Yau metrics on manifolds with vanishing
first Chern class. When )\ is positive, so in algebro-geometric language we are
considering a Fano manifold V', the bound on ||¢| L, and hence the existence of a
Kahler-Einstein metric, may hold or may not, depending on more subtle properties
of the geometry of the manifold V' and, in a long series of papers, Tian has made
enormous progress towards understanding precisely when a solution exists. Notably,
Tian made a general conjecture in [8], which we will return to in the next section.

In the early 1980’s, Calabi initiated another problem [4]. His starting point was
to consider the L? norm of the curvature tensor as a functional on the metrics and
seek critical points, called extremal Kdahler metrics. The Euler-Lagrange equations
involve the scalar curvature

S=(pAw" ) w"

The extremal condition is the equation

(5) J(grad S) = 0.

On the face of it this is a very intractable partial differential equation, combining
the full nonlinearity of the Monge-Ampere operator, which is embedded in the
definition of the curvature tensor, with high order: the equation being of order six
in the derivatives of the Kahler potential ¢. Things are not, however, quiet as bad
as they may seem. The extremal equation asserts that the vector field grad S on V'
is holomorphic so if, for example, there are no non-trivial holomorphic vector fields
on V the equation reduces to the constant scalar curvature equation

(6) S =o,

where the constant o is determined by V' through Chern-Weil theory. This reduction
still leaves us with an equation of order four and, from the point of view of partial
differential equations, the difficulty which permeates the theory is that one cannot
directly apply the maximum principle to equations of this order. From the point
of view of Riemannian geometry, the difficulty which permeates the theory is that
control of the scalar curvature—in contrast to the Ricci tensor—does not give much
control of the metric.
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In the case when [p] = A[w] the constant scalar curvature and Kéhler-Einstein
conditions are equivalent. Of course this is a global phenomenon: locally the equa-
tions are quite different. Obviously Kéahler-Einstein implies constant scalar curva-
ture. Conversely, one has an identity

08 = 0*p,

so if the scalar curvature is constant the Ricci form p is harmonic. But Aw is also
a harmonic form so if p and Aw are in the same cohomology class they must be
equal, by the uniqueness of harmonic representatives.

There are two parabolic evolution equations associated to these problems. The
Ricci flow

ow
(7) it Aw.
and the Calabi flow
ow =
(8) 5 = 100S.

Starting with an extremal metric, the Calabi flow evolves the metric by diffeomeor-
phims (the one-parameter group generated by the vector field grad S): the geometry
is essentially unchanged. The analogues of general extremal metrics (nonconstant
scalar curvature) for the Ricci flow are the “Ricci solitons”

9) p—w = Lyw,

where L, is the Lie derivative along a holomorphic vector field v.

2. Conjectural picture

We present a precise algebro-geometric condition which we expect to be equiva-
lent to the existence of a constant scalar curvature Kahler metric. This conjecture is
formulated in [6]; in the Kéhler-Einstein/Fano case the conjecture is essentially the
same as that made by Tian in [8]. An essential ingredient is the notion of the “Fu-
taki invariant”. Suppose L — V is a holomorphic line bundle with ¢; (L) = 27[w]
and with a Hermitian metric whose induced connection has curvature —iw. Suppose
we have a C*-action « on the pair V, L. Then we get a complex-valued function H
on V by comparing the horizontal lift of the vector field generating the action on
V with that generating the action on L. In the case when S' C C* acts by isome-
tries H is real-valued and is just the Hamiltonian in the usual sense of symplectic
geometry. The Futaki invariant of the C*-action is

JRCEL:

where o is the average value of the scalar curvature S (a topological invariant).
There is another, more algebro-geometric, way of describing this involving deter-
minant lines. For large k we consider the line

A" HO(V; LF).

The C*-action on (V, L) induces an action on this line, with some integer weight wy,.
Let dj be the dimension of H°(V; L*) and F(k) = wy/kdy. By standard theory,
this has an expansion for large k:

Fk)=Fy+FREk '+ FRE2+.. ..
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The equivariant Riemann-Roch formula shows that the Futaki invariant is just the
coefficient F) in this expansion. Turning things around, we can define the Futaki
invariant to be Fj, the advantage being that this algebro-geometric point of view
extends immediately to singular varieties, or indeed general schemes.

Given (V, L), we define a “test configuration” of exponent r to consist of

(1) a scheme V with a line bundle £ — V;

(2) amap 7 : ¥V — C with smooth fibres V; = 7= () for non-zero ¢, such that
V4 is isomorphic to V' and the restriction of £ is isomorphic to L";

(3) a C*-action on £ — V covering the standard action on C.

We define the Futaki invariant of such a configuration to be the invariant of
the action on the central fibre 7=1(0), (with the restriction of £) - noting that
this may not be smooth. We say that the configuration is “destabilising” if the
Futaki invariant is bigger than or equal to zero and, in the case of invariant zero the
configuration is not a product V' xC. Finally we say that (V, L) is “K-stable” (Tian’s
terminology) if there are no destabilising configurations. Then our conjecture is:

CONJECTURE 1. Suppose (V,wq) is a compact Kdihler manifold and |wo] =

2rc1(L). Then there is a metric of constant scalar curvature in the class [wo] if and
only if (V,L) is K-stable.

The direct evidence for the truth of this conjecture is rather slim, but we will
attempt to explain briefly why one might hope that it is true.

The first point to make is that “K-stability”, as defined above, is related to
the standard notion of “Hilbert-Mumford stability” in algebraic geometry. That is,
we consider, for fixed large k, the embedding V' — CP¥ defined by the sections
of L* which gives a point [V, L];, in the appropriate Hilbert scheme of subschemes
of CPY. The group SL(N + 1,C) acts on this Hilbert scheme, with a natural
linearisation, so we have a standard notion of Geometric Invariant Theory stability
of [V, L]. Then K-stability of (V, L) is closely related to the stability of [V, L] for
all sufficiently large k. (The notions are not quite the same: the distinction between
them is analogous to the distinction between “Mumford stability” and “Gieseker
stability” of vector bundles.)

The second point to make is that there is a “moment map” interpretation of
the differential geometric set-up. This is explained in more detail in [5] , although
the main idea seems to be due originally to Fujiki [7]. For this, we change our
point of view and instead of considering different metrics (i.e. symplectic forms) on
a fixed complex manifold we fix a symplectic manifold (M,w) and consider the set
J of compatible complex structures on M. Thus a point J in J gives the same
data—a complex manifold with a Kéahler metric—which we denoted previously by
(V,w). The group G of “exact” symplectomorphisms of (M, w) acts on J and one
finds that the map J — S — o is a moment map for the action. In this way, the
moduli space of constant scalar curvature Kéhler metrics appears as the standard
symplectic quotient of J. In such situations, one anticipates that the symplectic
quotient will be identified with a complex quotient, involving the complexification
of the relevant group. In the case at hand, the group G does not have a bona fide
complexification but one can still identify infinite-dimensional submanifolds which
play the role of the orbits of the complexification: these are just the equivalence
classes under the equivalence relation Jy ~ Jo if (M, J;) and (M, Jz2) are isomorphic
as complex manifolds. With this identification, and modulo the detailed notion of
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stability, Conjecture 1 becomes the familiar statement that a stable orbit for the
complexified group contains a zero of the moment map. Of course all of this is
a formal picture and does not lead by itself to any kind of proof, in this infinite-
dimensional setting. We do however get a helpful and detailed analogy with the
better understood theory of Hermitian Yang-Mills connections. In this analogy
the constant scalar curvature equation corresponds to the Hermitian Yang-Mills
equation, for a connection A on a holomorphic bundle over a fized Kédhler manifold,

F4.w = constant.
The extremal equation d(grad S) = 0 corresponds to the Yang-Mills equation
" Fy=0,

whose solutions, in the framework of holomorphic bundles, are just direct sums of
Hermitian-Yang-Mills connections.

Leaving aside these larger conceptual pictures, let us explain in a down-to-earth
way why one might expect Conjecture 1 to be true. Let us imagine that we can
solve the Calabi flow equation (8) with some arbitrary initial metric wg. Then,
roughly, the conjecture asserts that one of four things should happen in the limit
as t — oo. (We are discussing this flow, here, mainly for expository purposes.
One would expect similar phenomena to appear in other procedures, such as the
continuity method. But it should be stressed that, in reality, there are very few
rigorous results about this flow in complex dimension n > 1: even the long time
existence has not been proved.)

(1) The flow converges, as t — o0, to the desired constant scalar curvature
metric on V.

(2) The flow is asymptotic to a one-parameter family of extremal metrics
on the same complex manifold V', evolving by diffeomeorphisms. Thus
in this case V admits an extremal metric. Transforming to the other
setting, of a fixed symplectic form, the flow converges to a point in the
equivalence class defined by V. In this case V' cannot be K-stable, since
the diffeomorphisms arise from a C*-action on V with non-trivial Futaki
invariant and we get a destabilising configuration by taking ¥V =V x C
with this action.

(3) The manifold V' does not admit an extremal metric but the transformed
flow J; on J converges. In this case the limit of the transformed flow lies in
another equivalence class, corresponding to another complex structure V'
on the same underlying differentiable manifold. The manifold V' admits
an extremal metric. The original manifold V' is not K-stable because there
is a destabilising configuration where V is diffeomorphic to V x C but the
central fibre has a different complex structure V' (“jumping” of complex
structure).

(4) The transformed flow J; on J does not converge to any complex structure
on the given underlying manifold but some kind of singularities develop.
However, one can still make sufficient sense of the limit of J; to extract a
scheme from it, and this scheme can be fitted in as the central fibre of a
destabilising configuration, similar to case (3).

We stress again that this is more of a programme of what one might hope
eventually to prove, rather than a summary of what is really known. In the Kéhler-
Einstein/Fano situation one can develop a parallel programme (as sketched by Tian
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in [8]) for the Ricci flow (about which much more is known), where Ricci solitons
take the place of extremal metrics. In any event we hope this brings out the point
that one can approach two kinds of geometric questions, which on the face of it
seem quite different.

(1) ALGEBRAIC GEOMETRY PROBLEM. Describe the possible destabil-
ising configurations and in particular the nature of the singularities of the
central fibre (e.g. does one need schemes as opposed to varieties?).

(2) PDE/DIFFERENTIAL GEOMETRY PROBLEM. Describe the possible
behaviour of the Calabi flow/Ricci flow (or other continuity methods),
and the nature of the singularities that can develop.

The essence of Conjecture 1 is that these different questions should have the same
answer.

3. Toric varieties and a toy model

One can make some progress towards the verification of Conjecture 1 in the case
when V is a toric variety [6]. Such a variety corresponds to an integral polytope P
in R™ and the metric can be encoded in a convex function w on P. The constant
scalar curvature condition becomes the equation (due to Abreu [1])

0%u¥
(10) = —0,

where (u*) is the inverse of the Hessian matrix (u;;) of second derivatives of u.
This formulation displays very well the way in which the equation is an analogue,
of order 4, of the real Monge-Ampere equation (4). The equation is supplemented by
boundary conditions which can be summarised by saying that the desired solution
should be an absolute minimum of the functional

(11) F(u) :/Pflogdet(uij) + L(uw),

where

(12) E(u)z/{aPudpfo/Pu dp.

Here du is Lebesgue measure on P and dp is a natural measure on dP. (Each
codimension-1 face of 9P is defined by a linear form, which we can normalise to
have coprime integer coefficients. This linear form and the volume element on R™
induce a volume element on the face.) We wish to draw attention to one interesting
point, which can be seen as a very small part of Conjecture 1. Suppose there is a
non-trivial convex function g on P such that £(g) < 0. Then one can show that F
does not attain a minimum so there is no constant scalar curvature metric. Suppose
on the other hand that f is a piecewise linear, rational convex function (that is, the
maximum of a finite set of rational affine linear functions). Then one can associate
a canonical test configuration to f and show that this is destabilising if £(f) < 0.
Thus we have

CONJECTURE 2. If there is a non-trivial convex function g on P with L(g) <0

then there is a non-trivial piecewise-linear, rational convex function f with L(f) <
0.
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This is a problem of an elementary nature, which was solved in [6] in the case
when the dimension n is 2, but which seems quite difficult in higher dimensions.
(And one can also ask for a more conceptual proof than that in [6] for dimension 2.)
On the other hand if this Conjecture 2 is false then very likely the same is true for
Conjecture 1: in that event one probably has to move outside algebraic geometry
to capture the meaning of constant scalar curvature.

Even in dimension 2 the partial differential equation (10) is formidable. We
can still see some interesting things if we go right down to dimension 1. Thus is
this case V is the Riemann sphere and P is the interval [—1,1] in R. The equation
(10) becomes

d2
(13) S5 = o,
which one can readily solve explicitly. This is no surprise since we just get a
description of the standard round metric on the 2-sphere. To make things more
interesting we can consider the equation
d2
dx?
where A is a function on (—1,1). This equation has some geometric meaning, cor-
responding to a rotationally invariant metric on the sphere whose scalar curvature
is a given function A(h) of the Hamiltonian A for the circle action. The boundary
conditions we want are, in this case, v’ ~ (1 £2)~! as z — £1. But if we have a
solution with

(15) u”(z) — o0

(14) (W)™ = -4,

as x — +1, these are equivalent to the normalisations
1 1
(16) / A(z)dx =1, / rA(x)dx =0,
—1 1

which we suppose hold.
We now consider the linear functional
1

(17) EA(u):u(l)Jru(—l)f/ (@) A(x)da.

1
and
(18) Fa(u) = [ B (@) + £ a(u).

Then we have

THEOREM 1. There is a solution to equations (14), (15) if and only if LA(f) >
0 for all (non-affine) convex functions g on [—1,1]. In this case the solution is an
absolute minimum of the functional F4.

To prove this we consider the function ¢(x) = 1/u”(x). This should satisfy the
equation ¢ = —A with ¢ — 0 at £1. Thus the function ¢ is given via the usual
Green’s function

wm:/E%@mww%
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where g, (y) is a linear function of y on the intervals (—1,z) and (z,1), vanishing
on the endpoints £1 and with a negative jump in its derivative at y = x. Thus
—g.(y) is a convex function on [—1, 1] and

~9z) /A Y)92(y)dy = ¢().

Thus our hypothesis (£4(g) > 0 on convex g) implies that the solution ¢ is positive
throughout (—1,1) so we can form ¢! and integrate twice to solve the equation

"n_ ¢—1

thus finding the desired solution u. The converse is similar. The fact that the
solution is an absolute minimum follows from the convexity of the functional F4.
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Branes, Calibrations and Supergravity

Jerome P. Gauntlett

ABSTRACT. We attempt to provide an elementary and somewhat self contained
discussion of the construction of supergravity solutions describing branes wrap-
ping calibrated cycles, emphasising the geometrical aspects and focusing on
D=11 supergravity. Following a discussion of the role of special holonomy
backgrounds in D=11 supergravity, the basic membrane and fivebrane solu-
tions are reviewed and the connection with the AdS/CFT correspondence is
made. The world-volume description of branes is introduced and used to argue
that branes wrapping calibrated cycles in special holonomy manifolds preserve
supersymmetry. The corresponding supergravity solutions are constructed first
in an auxiliary gauged supergravity theory which is obtained via Kaluza-Klein
reduction.

1. Introduction

Supergravity theories in D=10 and D=11 spacetime dimensions play an impor-
tant role in string/M-theory since they describe the low-energy dynamics. There
are five different supersymmetric string theories, all in D=10. At low energies the
type IIA and type IIB string theories give rise to type IIA and type IIB super-
gravity, respectively, while the type I, and the two heterotic string theories all give
rise to type I supergravities. The five string theories are all related to each other,
possibly after compactification, by various dualities. There are also dualities which
relate string theory to M-theory, which resides in D=11. M-theory is much less
understood than string theory, but one of the most important things that is known
about it is that its low-energy effective action is given by D=11 supergravity.

Solutions to the supergravity equations of motion, particularly those that pre-
serve some supersymmetry, are of interest for many reasons. One reason is that
they are useful in studying compactifications from D=10 or 11 down to a lower
dimensional spacetime. By compactifying down to four spacetime dimensions, for
example, one might hope to make contact with particle physics phenomenology.
In addition to strings, it is known that string theory has a rich spectrum of other
extended objects or “branes”. Indeed, supergravity solutions can be constructed
describing the geometries around such branes, and these provide a very important
description of the branes. Similarly, there are membrane and fivebrane solutions
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of D=11 supergravity, which will be reviewed later, which implies that M-theory
contains such branes. An important application of brane and more general inter-
secting brane solutions is that they can be used to effectively study the quantum
properties of black holes.

Supergravity solutions also provide powerful tools to study quantum field the-
ories. The most significant example is Maldacena’s celebrated AdS/CFT corre-
spondence [108], which conjectures that string/M-theory on certain supergravity
geometries that include anti-de Sitter (AdS) space factors is equivalent to certain
conformally invariant quantum field theories (CFTs). The supergravity approxi-
mation to string/M-theory allows one to calculate highly non-trivial information
about the conformal field theories.

The AdS/CFT correspondence is truly remarkable. On the one hand it states
that certain quantum field theories, that a priori have nothing to do with gravity,
are actually described by theories of quantum gravity (string/M-theory). Similarly,
and equally surprising, it also states that quantum gravity on certain geometries is
actually quantum field theory. As a consequence much effort has been devoted to
further understanding and generalising the correspondence.

The basic AdS/CFT examples arise from studying the supergravity solutions
describing planar branes in flat space, in the “near horizon limit”. Roughly speak-
ing, this is the limit close to the location of the brane. Here we shall discuss more
general supergravity solutions that describe branes that are partially wrapped on
various calibrated cycles within special holonomy manifolds. We will construct ex-
plicit solutions in the near horizon limit, which is sufficient for applications to the
AdS/CFT correspondence.

To keep the presentation simple, we will mostly restrict our discussion to D=11
supergravity. In an attempt to make the lectures accessible to both maths and
physics students we will emphasise the geometrical aspects and de-emphasise the
quantum field theory aspects. To make the discussion somewhat self contained, we
begin with some basic material; it is hoped that the discussion is not too pedestrian
for the physics student and not too vague for the maths student!

We start with an introduction to D=11 supergravity, defining the notion of
a bosonic solution of D=11 supergravity that preserves supersymmetry. We then
describe why manifolds with covariantly constant spinors, and hence with special
holonomy, are important. Following this we present the geometries describing pla-
nar membranes and fivebranes. These geometries have horizons, and in the near
horizon limit we obtain geometries that are products of AdS spaces with spheres,
which leads to a discussion of the basic AdS/CFT examples.

To motivate the search for new AdS/CFT examples we first introduce the world-
volume description of branes. Essentially, this is an approximation that treats
the branes as “probes” propagating in a fixed background geometry. We define
calibrations and calibrated cycles, and explain why such probe-branes wrapping
calibrated cycles in special holonomy manifolds preserve supersymmetry. The aim
is then to construct supergravity solutions describing such wrapped branes after
including the back-reaction of the branes on the special holonomy geometry.

The construction of these supergravity solutions is a little subtle. In particular,
the solutions are first constructed in an auxiliary gauged supergravity theory. We
will focus, for illustration, on the geometries corresponding to wrapped fivebranes.
For this case the solutions are first found in SO(5) gauged supergravity in D=7.
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This theory arises from the consistent truncation of the dimensional reduction of
D=11 supergravity on a four-sphere, as we shall discuss. This means that any
solution of the D=7 supergravity theory automatically gives a solution of D=11
supergravity. We will present several details of the construction of the solutions
describing fivebranes wrapping SLAG 3-cycles, and summarise more briefly the
other cases. We also comment on some aspects of the construction of the solutions
for wrapped membranes and D3-branes of type IIB supergravity.

We conclude with a discussion section that outlines some open problems as
well as a brief discussion of other related work on the construction of wrapped
NS-fivebranes of type IIB supergravity.

2. D=11 supergravity

The bosonic field content of D=11 supergravity [36] consists of a metric, g, and
a three-form C' with four-form field strength G = dC which live on a D=11 manifold
which we take to be spin. The signature is taken to be mostly plus, (—, +,...,+).
In addition the theory has a fermionic gravitino, 1,. The action with 3, = 0 is
given by

1 1 1 1

and thus the bosonic equations of motion, including the Bianchi identity for the
four-form, are

R, = %(Giu - %ngz)
d+ G+ %G NG =

(2.2) dG = 0,
where wa = Guoro205Gv7192%% and G? = G 0y040,G71727%%4, with p,v,0 =
0,1,...,10. The theory is invariant under supersymmetry transformations whose
infinitesimal form is given schematically by

og ~ €y

60C ~ e
(2.3) 6 ~ Ve+ e,

where the spinor € parameterises the variation and the connection V will be given
shortly.

Of primary interest are bosonic solutions to the equations of motion that pre-
serve at least one supersymmetry. These are solutions to the equations of motion
with ¢ = 0 which are left inert under a supersymmetry variation. From (2.3) we
see that g = 6C = 0 trivially, and hence we seek solutions to the equations of
motion that admit non-trivial solutions to the equation Ve = 0.

As somewhat of an aside we mention a potentially confusing point. For the
theory to be supersymmetric, it is necessary that all of the fermions are Grassmann
odd (anti-commuting) spinors. However, since the only place that fermions enter
into bosonic supersymmetric solutions is via Ve = 0 and since this is linear in € we
can, and will, take € to be a commuting (i.e. ordinary) spinor from now on. The
Grassmann odd character of the fermions is certainly important in the quantum
theory, but this will not concern us here.
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To be more precise about the connection V let us introduce some further nota-
tion. We will use the convention that u, v, ... are coordinate indices and «, 3, ...
are tangent space indices, i.e., indices with respect to an orthonormal frame. The
D=11 Clifford algebra, Clif f(10,1), is generated by gamma-matrices I'“ satisfying
the algebra

(2.4) ror? 4 0Pre = 28 |

with = diag(—1,1,...,1). We will work in a representation where the gamma-
matrices are real 32 x 32 matrices acting on real 32 component spinors, with
[oly...T10 = +1. Recall that Spin(10,1) is generated by

Lpras — 1 pops _ popa
(2.5) T _8(FF r’re) ,
and here we have introduced the notation that ['*-~“r is an anti-symmetrised
product of p gamma-matrices. The charge conjugation matrix is defined to be I'y
and e = €'T.
We can now write the condition for a bosonic configuration to preserve super-
symmetry as

- 1
(26) VME = VILE + @[F#uluzusm _ 851:11—‘1/21/31/4](;”1”2”3”46 =0 ,
where V e is the usual covariant derivative on the spin bundle
1
(2.7) Vue= (0, + Zwuagl“o‘ﬁ)e .

Observe that the terms involving the four-form in (2.6) imply that V takes values in
the Clifford algebra and not just the Spin subalgebra. This is the typical situation
in supergravity theories but there are exceptions, such as type I supergravity, where
the connection takes values in the spin subalgebra and has totally anti-symmetric
torsion [135].

Non-trivial solutions to (2.6) are called Killing spinors. The nomenclature is
appropriate since if €/, ¢/ are Killing spinors then K“* = &T'* ¢l are Killing vectors.
To see this, first define O, = €T,,,¢/ and XY/ = @T, ,,¢. Then use (2.6)
to show that [76]

M5

1 1.
(28) V/JK;] = 69”0102G0102ul/ + @E”Ulg2g3a4a5 * G0102030405uu s

and hence in particular V(MK% = 0. It can also be shown that the “diagonal”

Killing vectors K%, for each Killing spinor €, are either time-like or null [27]. The
zeroth components of these vectors in an orthonormal frame are given by (¢!)Te’,
and are clearly non-vanishing if and only if € is, and hence so is K itself.

It is useful to know under what conditions a geometry admitting a Killing spinor
will also solve the equations of motion. In the case when there is a time-like Killing
spinor, i.e. a Killing spinor whose corresponding Killing vector is time-like, it was
proved in [76] that the geometry will solve all of the equations of motion providing
that G satisfies the Bianchi identity dG = 0 and the four-form equation of motion
d+ G+ (1/2)G NG = 0. If all of the Killing spinors are null, it is necessary, in
addition, to demand that just one component of the Einstein equations is satisfied
[76].

Note that given the value of a Killing spinor at a point, the connection defines
a Killing spinor everywhere, via parallel transport. Also, as the Killing spinor
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equation is linear, the Killing spinors form a vector space whose dimension n can,
in principle, be from 1,...,32. The fraction of preserved supersymmetry is then
n/32. Although solutions are known preserving many fractions of supersymmetry, it
is not yet known if all fractions can occur (for some recent speculations on this issue
see [51]). A general characterisation of the most general supersymmetric geometries
preserving one time-like Killing spinor is presented in [76]. It was shown that the
geometry is mostly determined by a ten-dimensional manifold orthogonal to the
orbits of the Killing vector that admits an SU(5)-structure with rather weakly
constrained intrinsic torsion. The analogous analysis for null Killing spinors has
not yet been carried out. A complete classification of maximally supersymmetric
solutions preserving all 32 supersymmetries is presented in [58].

Most of our considerations will be in the context of D=11 supergravity, but
it is worth commenting on some features of M-theory that embellish D=11 super-
gravity. Firstly, the flux G, which is unconstrained in D=11 supergravity, satisfies
a quantisation condition in M-theory. Introducing the Planck length [, via

(2.9) 2% = (2m)%1)
for M-theory on a D=11 spin manifold ¥ we have [138]

1 A 4
(2.10) (27rlp)3G 5 e HY(Y,Z) ,
where A(Y) = p1(Y)/2 with p;(Y) the first Pontryagin class of Y, given below.
Note that since Y is a spin manifold, p;(Y) is divisible by two. Actually, more
generally it is possible to consider M-theory on unorientable manifolds admitting
pinors and some discussion can be found in [138].

A second point is that the low-energy effective action of M-theory is given by
D=11 supergravity supplemented by an infinite number of higher order corrections.
It is not yet known how to determine almost all of these corrections, but there is
one important exception. Based on anomaly considerations it has been shown that
the equation of motion for the four-form G is modified, at next order, by [137, 52]

97l )6
(fgg) (p —4p2)

where the first and second Pontryagin forms are given by

(2.11) d*G+%GAG:—

1

2.12 =———tr R?, =— trR*
(2:12) Pr="3 P2 = T Tog
At the same order there are other corrections to the equations of motion and also
to the supersymmetry variations, but these have not yet been determined. Thus it
is not yet known how to fully incorporate this correction consistently with super-
symmetry but nevertheless it does have important consequences (see e.g. [132]).
As this correction will not play a role in the subsequent discussion, we will ignore
it.

In the next sub-sections we will review two basic classes of supersymmetric
solutions to D=11 supergravity. The first class are special holonomy manifolds and
the second class are the membrane and fivebrane solutions.

(trR%)? .

2.1. Special Holonomy. First consider supersymmetric solutions that have
vanishing four-form flux G, where things simplify considerably. The equations of
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motion and the Killing spinor equation then become

R, = 0
(2.13) Ve = 0.
That is, Ricci-flat manifolds with covariantly constant spinors. The second condi-
tion implies that the manifolds have special holonomy. To see this, observe that it
implies the integrability condition

1
(2.14) V., V,]e= ZRWagraﬁe =0.

The subgroup of Spin(10,1) generated by Rwaﬁfaﬁ gives the restricted holonomy
group H. Thus (2.14) implies that a Killing spinor must be invariant under H.
i.e. it must be a singlet under the decomposition of the 32 spinor representation
of Spin(10,1) into H representations, and this constrains the possible holonomy
groups H that can arise.

Of most interest to us here are geometries R119~% x M, which are the direct
product of (11 — d)-dimensional Minkowski space, R1'19~4  with a d-dimensional
Riemannian manifold My, which we mostly take to be simply connected. (For a
discussion of supersymmetric solutions with Lorentzian special holonomy, see [27,
57]). The possible holonomy groups of the Levi-Civita connection on manifolds M
admitting covariantly constant spinors is well known, and we now briefly summarise
the different cases.

Spin(7)-Holonomy: In d = 8 there are Riemannian manifolds with Spin(7)
holonomy. These have a nowhere vanishing self-dual Cayley four-form ¥ whose
components in an orthonormal frame can be taken as

U = 61234 + e1256 + 61278 + 63456 + e3478 + 65678

(2.15)
4 61357 _ 61368 _ 61458 _ 61467 _ 62358 _ 62367 _ 62457 + 62468

)

where e.g. €234 = el Ae? Ae3 Ae?. The Cayley four-form is covariantly constant
for Spin(7) manifolds and this is equivalent to ¥ being closed:

(2.16) AV =0 .

Spin(7) holonomy manifolds have a single covariantly constant chiral Spin(8) spinor,
which we denote by p. Moreover, the Cayley four-form can be constructed as a bi-
linear in p:

(2.17) Yinnpg = —PYmnpgP s

where here m,n,p,q =1,...,8. For more discussion on the spinor conventions for
this case and those below, see appendix B of [75].

Go-Holonomy: In d = 7 there are Riemannian manifolds with G5 holonomy.
These have a nowhere vanishing associative three-form ¢ whose components in an
orthonormal frame can be taken as

(2.18) b= 240 _ 235 _ o145 _ 136 4 127 | 347 | 56T
The three-form is covariantly constant and this is in fact equivalent to the conditions
(2.19) dp=dx¢p=0.

These geometries possess a single covariantly constant minimal d = 7 spinor p. The
associative three-form can be constructed from p via

(220) ¢mnp = 7ip7mnpp .
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SU(n)-Holonomy: In d = 2n there are Calabi-Yau n-folds (CY,,) with SU(n)
holonomy. The cases relevant for D=11 supergravity have n = 2, 3,4, 5. Calabi-Yau
manifolds are complex manifolds, with complex structure J, and admit a nowhere
vanishing holomorphic (n,0)-form Q. The Ké&hler form, which we also denote by
J, is obtained by lowering an index on the complex structure. In an orthonormal
frame we can take

J = 612 + 634 NI e(2n—1)(2n)
(2.21) Q = (e' +ie?) (e +iet) ... (2" +ie?) .

Both J and Q are covariantly constant and this is equivalent to the vanishing of
the exterior derivative of the Kéhler form and the holomorphic (n, 0)-form:

(2.22) dJ=dQ=0.

These manifolds have a covariantly constant complex chiral spinor p. The complex
conjugate of this spinor is also covariantly constant. For n = 2,4 the conjugate
spinor has the same chirality, while for n = 3,5 it has the opposite chirality. J and
Q can be written in terms of the spinor p as

(2.23) Qnyomay, = pT’Y'rnlu.mmp .

Sp(n)-Holonomy: In d = 4n there are hyper-Kéhler n-manifolds (H K,,) with
Sp(n) holonomy. The cases relevant for D=11 supergravity have n = 1,2. These
admit three covariantly constant complex structures J® satisfying the algebra of
the imaginary quaternions

(2.24) Jo. Jb = _gab 4 cabe ye

If we lower an index on the J* we obtain three Kéhler forms and the condition for
Sp(n)-holonomy is equivalent to them being closed:

(2.25) dJ* =0.

Note that when n = 1, since Sp(1) = SU(2), four-dimensional hyper-Ké&hler man-
ifolds are equivalent to Calabi-Yau two-folds. From the CY5 side, the extra two
complex structures are obtained from the holomorphic two-form via Q = J2 4 4.J'.
The remaining case of interest for D=11 supergravity is eight-dimensional hyper-
Kéahler manifolds when n = 2. In this case, in an orthonormal frame we can take
the three Kéhler forms to be given by

Jh = 12 4 o34 4 56 4 T8
(226) J2 — 614 +€23 + 658 + 667
J3 = 13 4 42 4 BT 4 86
Each complex structure J¢ has a corresponding holomorphic (4, 0)-form given by
Q' =3 AN =LA I AT
(2.27) P =L AT LA AT
P =LA =L AT i AT
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These manifolds have three covariantly constant Spin(8) spinors of the same chi-
rality pq, a = 1,2,3. The three Kahler forms can be constructed as

J:nn = _/jZ’Ymnp3
ann = _ﬁlvmnp2 .

In addition to these basic irreducible examples we can also consider My to be
the direct product of two manifolds. A rather trivial possibility is to consider the
product of one of the above manifolds with a number of flat directions. Two non-
trivial possibilities are to consider the product CY; x CY; with SU(3) x SU(2)
holonomy, or the product CY2 x CYy with SU(2) x SU(2) holonomy.

We have summarised the possibilities in table 1. We have also recorded the
amount of D=11 supersymmetry preserved by geometries of the form R"10=% x M.
As we noted, this corresponds to the total number of singlets in the decomposition
of 32 of Spin(10,1) into representations of H. Let us illustrate the counting for
the d = 8 cases. The spinor representation 32 of Spin(10,1) decomposes into
Spin(2,1) x Spin(8) representations as

(2.29) 32 — (2,8,)+(2,8.),

where the subscripts refer to the chirality of the two spinor representations of
Spin(8). When Mj is a Spin(7)-manifold we have the further decomposition under
Spin(7) C Spin(8)

(2.30) 8, —7+1, 8 —8.

The singlet corresponds to the single covariantly constant, Spin(7) invariant, spinor
on the Spin(7)-manifold discussed above. From (2.29) we see that this gives rise
to two preserved supersymmetries and that they transform as a minimal two real
component spinor of Spin(2,1). This is also described as preserving N = 1 super-
symmetry in D=3 spacetime dimensions corresponding to the R':? factor. When
Mg is Calabi-Yau under SU(4) C Spin(8) we have

(2.31) 8, —-6+1+1, 8 —4+4.

The two singlets combine to form the complex covariantly constant spinor on C'Y}
mentioned above. In this case four supersymmetries are preserved, transforming as
two minimal spinors of Spin(2,1), or N = 2 supersymmetry in D=3. When Mg is
hyper-Kahler, under Sp(2) C Spin(8) we have

(2.32) 8, 55+1+1+1, 8. —4+4,

and six supersymmetries are preserved, or N = 3 in D=3. Similarly, when Mg is
the product of two Calabi-Yau two-folds eight supersymmetries are preserved, or
N =4 in D=3. If we also allow tori, then when Mg is the product of a Calabi-Yau
two-fold with T#, sixteen supersymmetries are preserved, or N = 8 in D=3, while
the simple case of T® preserves all thirty-two supersymmetries, or N = 16 in D=3.

An important way to make contact with four-dimensional physics is to con-
sider geometries of the form RM3 x M, with M; compact. If we choose M, to
be T7 then it preserves all 32 supersymmetries or N = 8 supersymmetry in D=4
spacetime dimensions. T2 x C'Y, preserves 16 supersymmetries or N = 4 in D=4,
S1 x CYs3 preserves 8 supersymmetries or N = 2 in D=4 and G, preserves four
supersymmetries or N = 1 in D=4.
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| dim(M) ‘ Holonomy | Supersymmetry

10 SU(5) 2
10 SU(3) x SU(2) 4
8 Spin(7) 2
8 SU(4) 4
8 Sp(2) 6
8 | SU(2) x SU(2) 8
7 Ga 4
6 SU(3) 8
1 SU(2) 16

TABLE 1. Manifolds of special holonomy and the corresponding
amount of preserved supersymmetry.

N = 1 supersymmetry in four spacetime dimensions has many attractive phe-
nomenological features and this is the key reason for the recent interest in manifolds
with G5 holonomy. As discussed in Acharya’s lectures at this school, it is important
to emphasise that the most interesting examples from the physics point of view are
not complete. In addition one can use non-compact G5 holonomy manifolds very
effectively to study various quantum field theories in four spacetime dimensions
(see e.g. [9]).

Another important class of examples is to consider d = 7 manifolds of the
form S'/Z; x C'Y3 where the Z, action has two fixed planes. It can be shown that
the orbifold breaks a further one-half of the supersymmetries and one is again left
with four supersymmetries in four spacetime dimensions. These configurations are
related to the the strongly coupled limit of heterotic string theory compactified on
CY; [93, 92].

In summary, when G = 0, geometries of the form R0~ x M, preserve su-
persymmetry when M, admits covariantly constant spinors and hence has special
holonomy. For physical applications, My need be neither compact nor complete.
In the next section we will consider the basic solutions with G # 0, the fivebrane
and the membrane solutions.

2.2. Membranes and Fivebranes. The simplest, and arguably the most im-
portant supersymmetric solutions with non-vanishing four-form are the membrane
and fivebrane solutions. Further discussion can be found in e.g. [134].

The fivebrane geometry is given by

ds* = H Y3 [dg'd¢In;;) + HY? [da'da’]
(2.33) G11[2]3[4 = —C€]1]2]3]4J6JH s c==+1 ,
where i,j =0,1,...5, I =1,...,5and H = H(x). This geometry preserves 1/2 of
the supersymmetry. In the obvious orthonormal frame {H —16qei HY3dxT }, the
16 Killing spinors are given by

(2.34) e = H /12%¢,

)

where ¢ is a constant spinor, and satisfy
(2.35) [012345¢ — ce
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Since I'V12345 gquares to unity and is traceless, we conclude that the geometry
admits 16 independent Killing spinors.

This geometry satisfies the equations of motion providing that we impose the
Bianchi identity for G which implies that H is harmonic. If we take H to have a
single centre

asN
(2.36) H:1+5—3, r? =izl
r
with N positive and a5 = wlg, then the solution carries ¢/N units of quantised
magnetic four-form flux

1

(2.37) ) o G =cN ,
with N a positive integer, consistent with (2.10). When ¢ = +1 the solution
describes N coincident fivebranes, that are oriented along the dé® A dé! A ... dE°
plane. When ¢ = —1 the solution describes IV coincident anti-fivebranes. Roughly
speaking, the fivebranes can be thought of as being located at » = 0, where the
solution appears singular. However, this is in fact a regular horizon and moreover,
it is possible to analytically continue to obtain a completely non-singular geometry
[78]. Thus it is not possible to say exactly where the fivebranes are located.

In the directions transverse to the fivebrane the metric becomes asymptotically
flat. We can thus calculate the ADM mass per unit volume, or tension, and we find

_ 1
(2m)58

where T5 is the tension of a single fivebrane (for a careful discussion of numerical
coefficients appearing in T5 and the membrane tension Tb below, see [46]). It is
possible to show that the supersymmetry algebra actually implies that the tension
of the fivebranes is fixed by the magnetic charge. This “BPS” condition is equivalent
to the geometry preserving 1/2 of the supersymmetry. Note also that if H is taken
to be a multi-centred harmonic function then we obtain a solution with the NV
coincident fivebranes separated.

It is interesting to examine the near horizon limit of the geometry of N coin-
cident fivebranes, when r ~ 0. By dropping the one from the harmonic function in
(2.36) we get

(2.38) Tension = NT5 , T5 =

2 _ r i 7e5 (N3 5

(239) ds - W [df dfj’lh‘j] + T [d?“ +r de .
where df4 is the metric on the round four-sphere. After a coordinate transformation
we can rewrite this as
dg*dg?n; + dp®

2
which is just AdS7 x S*, in Poincaré coordinates, with the radius of the AdS; given
by
(2.41) R=2(xN)Y3, .
There are still N units of flux on the four-sphere. This geometry is in fact a
solution to the equations of motion that preserves all 32 supersymmetries. A closely

related fact is that the Lorentz symmetry SO(5, 1) of the fivebrane solution has been
enhanced to the conformal group SO(6,2). The interpretation of this fact and the

2 2 R2
(240) ds = R + Isz; 5
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SO(5) isometries of the four-sphere will be discussed in the next section. Before
doing so, we introduce the membrane solution.
The membrane geometry is given by

ds* = H*3[dg'd¢n;) + HY? [da'da’)
(2.42) C = cH 'O Ader A de3, c==+1,

with, here, 7,7 = 0,1,2, I = 1,...8 and H = H(z'). This geometry preserves one
half of the supersymmetry. Using the orthonormal frame {H~/3d¢?, HYSdx!} we
find that the Killing spinors are given by

(2.43) e=H Y%,
where ¢ is a constant spinor, and satisfy the constraint

(2.44) 2%¢ = ce .

Since I'°!2 squares to unity and is traceless, we conclude that the geometry admits

16 independent Killing spinors.

This geometry solves all of the equations of motion providing that we impose
the four-form equation of motion. This implies that the function H is harmonic.
Now take H to be

as N
(2.45) H=1+ "2~ 1?=alal,

r
with N a positive integer and ap = 3272l5. The solution carries ¢N units of
quantised electric four-form charge:

1
2.46 —_ *G =cN .
( ) (27Tlp)6 S7
When ¢ = £1, the solution describes N coincident (anti-)membranes oriented along
the d€® A d€ A d€3 plane. Transverse to the membrane the solution tends to flat
space, and we can thus determine the ADM tension of the membranes. We again
find that it is related to the charge as dictated by supersymmetry

1
(2m)23

where T3 is the tension of a single membrane. If the harmonic function is replaced
with a multi-centre harmonic function we obtain a solution with the membranes
separated.

The solution describing IV coincident membanes appears singular at r ~ 0, but
one can in fact show that this is a horizon. The solution can be extended across
the horizon and one finds a timelike singularity inside the horizon (see e.g. [134]),
which can be mapped onto a membrane source with tension 75. To obtain the near
horizon geometry, r = 0, we drop the one in the harmonic function (2.45), to find,
after a coordinate transformation,

dg*d&? n; + dp®
2
which is simply the direct product AdS,; x S” with the radius of AdS, given by

N 2\ 1/6
(2.49) R:(T”) I, .

(2.47) Tension = NTs , T =

(2.48) ds®* = R? { } +4R%dQ;
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There are still N units of flux on the seven-sphere. This configuration is itself a
supersymmetric solution preserving all 32 supersymmetries. The SO(2,1) Lorentz
symmetry of the membrane solution has been enhanced to the conformal group
SO(3,2) and the seven-sphere admits an SO(8) group of isometries.

This concludes our brief review of the basic planar membrane and fivebrane
solutions. There is a whole range of more general solutions describing the intersec-
tion of planar membranes and fivebranes, and we refer to the reviews [64, 133] for
further details.

3. AdS/CFT Correspondence

In the last section we saw that D=11 supergravity admits supersymmetric solu-
tions corresponding to N coincident membranes or coincident fivebranes, and that
in the near horizon limit the metrics become AdSy x S7 or AdS; x S*, respectively.
The famous conjecture of Maldacena [108] states that M-theory on these back-
grounds is equivalent to certain conformal field theories in three or six spacetime
dimensions, respectively. For a comprehensive review of this topic, we refer to [6],
but we would like to make a few comments in order to motivate the construction
of the supersymmetric solutions of D=11 supergravity presented in later sections.

The best understood example of the AdS/CFT correspondence actually arises
in type IIB string theory, so we first pause to introduce it. The low-energy limit of
type IIB string theory is the chiral type IIB supergravity [131, 97]. The bosonic
field content of the supergravity theory consists of a metric, a complex scalar, a
complex three-form field strength and a self-dual five-form field strength. The
theory admits a 1/2 supersymmetric three-brane, called a D3-brane. The metric of
the corresponding supergravity solution is given by

(3.1) ds* = H™' [d¢'d¢n;;| + H [da'dz']
where 4,7 = 0,1,2,3, I,J = 1,...6 and H = H(2!) is a harmonic function. If we

choose
Qs N

)
7"2

(3.2) H=1+

with N a positive integer, and a3 some constant with dimensions of length squared,
then the solution corresponds to N coincident D3-branes. The only other non-
vanishing field is the self-dual five-form and the solution, for suitably chosen as,
carries IV units of flux when integrated around a five-sphere surrounding the D3-
branes. In the near horizon limit, r ~ 0, we get AdS5 x S°, with equal radii.

The boundary of AdSs is the conformal compactification of four-dimensional
Minkowski space, My. The AdS/CFT conjecture states that type IIB string theory
on AdSs x S° is equivalent (dual) to N' = 4 supersymmetric Yang-Mills theory
with gauge group SU(N) on M. This quantum field theory is very special as it
has the maximal amount of supersymmetry that a quantum field theory can have.
Moreover, it is a conformal field theory (CFT), i.e. invariant under the conformal
group. The AdS/CFT correspondence relates parameters in the field theory with
those of the string theory on AdSs x S®. It turns out that perturbative Yang-Mills
theory can be a good description only when the radius R of the AdSj5 is small, while
supergravity is a good approximation only when R is large and N is large. The
fact that these different regimes don’t overlap is a key reason why such seemingly
different theories could be equivalent at all.
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The natural objects to consider in a conformal field theory are correlation
functions of operators. A precise dictionary between operators in the conformal
field theory and fields (string modes) propagating in AdSs is given in [84, 139].
Moreover, in the supergravity approximation, correlation functions of the operators
are determined by the dependence of the supergravity action on the asymptotic
behaviour of the fields on the boundary. For example, the conformal dimensions of
the operators is determined by the mass of the fields.

It remains very unclear how to prove the AdS/CFT conjecture. Neverthe-
less, it has now passed an enormous number of tests. Amongst the simplest is to
compare the symmetries on the two sides. N = 4 super Yang-Mills theory has
an internal SO(6) “R-symmetry” and is invariant under the conformal group in
four dimensions, SO(4,2). But SO(4,2) x SO(6) are precisely the isometries of
AdSs x S®. Moreover, after including the supersymmetry, we find that both sides
are invariant under the action of the supergroup SU(2, 2|4) whose bosonic subgroup
is SO(4,2) x SO(6).

Let us now return to the near horizon geometries of the membrane and five-
brane. For the membrane, it is conjectured that M-theory on AdS; x S7 with
N units of flux on the seven-sphere is equivalent to a maximally supersymmet-
ric conformal field theory on the conformal compactification of three-dimensional
Minkowski space, the boundary of AdSy. More precisely this conformal field the-
ory is the infrared (low energy) limit of N = 8 super-Yang-Mills theory with gauge
group SU(N) in three dimensions. It is known that this theory has an SO(8)
R-symmetry. For this case, the SO(3,2) x SO(8) isometries of AdS,; x S” cor-
respond to the conformal invariance and the R-symmetry of the conformal field
theory. After including supersymmetry we find that both sides are invariant under
the supergroup OSp(8|4).

For the fivebrane, it is conjectured that M-theory on AdS; x S* with N units
of flux on the four-sphere is equivalent to a maximally supersymmetric chiral con-
formal field theory on the conformal compactification of six-dimensional Minkowski
space, the boundary of AdS;. This conformal field theory is still rather mysteri-
ous and the AdS/CFT correspondence actually provides a lot of useful information
about it (assuming the correspondence is valid!). The SO(6,2) x SO(5) isometries
of AdS; x S* correspond to the conformal invariance and the SO(5) R-symmetry
of the field theory. After including supersymmetry we find that both sides are
invariant under the supergroup OSp(6,2[4). For the membrane and fivebrane ex-
amples, when N is large, the radius of the AdS spaces are large and M-theory is
well approximated by D=11 supergravity.

Much effort has been devoted to further understanding and generalising the
AdS/CFT correspondence. Let us briefly discuss some of the generalisations that
have been pursued, partly to put the solutions we will construct later into some
kind of context, and partly as a rough guide to some of the vast literature on the
subject.

The three basic examples of the AdS/CFT correspondence relate string/M-
theory on AdSiy1 X sphere geometries to conformally invariant quantum field the-
ories in d = 3,4 and 6 with maximal supersymmetry. One direction is to find
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new supersymmetric solutions of supergravity theories that are the products, pos-
sibly warped®, of AdSy,; with other compact spaces, preserving less than maximal
supersymmetry. Since the isometry group of AdSgy; is the conformal group, this in-
dicates that these would be dual to new superconformal field theories in d spacetime
dimensions. Non-supersymmetric solutions with AdS factors are also of interest,
as they could be dual to non-supersymmetric CFTs. However, one has to check
whether the solutions are stable at both the perturbative and non-perturbative
level, which is very difficult in general. By contrast, in the supersymmetric case,
stability is guaranteed from the supersymmetry algebra. The focus has thus been
on supersymmetric geometries with AdS factors.

One class of examples, discussed in [103, 2, 114], is to start with the fivebrane,
membrane or D3-brane geometry (2.33), (2.42) or (3.1), respectively, and observe
that if the flat space transverse to the brane is replaced by a manifold with special
holonomy as in table 1, and the associated flux left unchanged, then the resulting
solution will still preserve supersymmetry but will preserve, in general, a reduced
amount. Now let the special holonomy manifold be a cone over a base X, i.e. let
the metric of the transverse space be

(3.3) dr? +r?ds*(X) ,

X must be Einstein and have additional well known properties to ensure that
the metric has special holonomy. For example a five-dimensional X should be
Einstein-Sasaki in order that the six-dimensional cone is Calabi-Yau. Apart from
the special case when X is the round sphere these spaces have a conical singularity
at r = 0. To illustrate this construction explicitly for the membrane, one replaces
the eight-dimensional flat space transverse to the membrane in (2.42) with an eight-
dimensional cone with special holonomy:

(3.4) ds® = H2/3 [de'dein,;] + HY? [dr? + r?ds*(X)] ,

where H = 1 + a3y N/7%, as before. Clearly this can be interpreted as N coincident
membranes sitting at the conical singularity. By considering the near horizon limit
of (3.4), r = 0, one finds that it is now the direct product AdS,; x X and this
provides a rich class of new AdS/CFT examples.

Another generalisation is to exploit the fact that the maximally supersymmetric
conformal field theories can be perturbed by certain operators. In some cases,
under renormalisation group flow, these quantum theories will flow in the infrared
(low energies) to new superconformal field theories, with less supersymmetry. It is
remarkable that corresponding dual supergravity solutions can be found. Given the
dictionary between operators in the conformal field theory in d dimensions and fields
in AdS44+1 mentioned above, the perturbation of the conformal field theory should
correspond to dual supergravity solutions that asymptotically tend to AdS4y1 in a
prescribed way. Now on rather general grounds it can be argued that this AdSgy1
boundary corresponds to the ultraviolet (UV) of the dual perturbed conformal
field theory, and that going away from the boundary into the interior corresponds
to going to the infrared (IR) in the dual quantum field theory [136]. This can be
seen, for example, by studying the action of the conformal group on AdS441 and
on the correlation functions in the d-dimensional conformal field theory. Thus if
the perturbed conformal field theory is flowing to another conformal field theory

1A warped product of two spaces with coordinates x and y corresponds to a metric of the
form f(y)ds?(z) + ds?(y), for some function f(y).
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in the IR, we expect that there should be supergravity solutions that interpolate
from the perturbed AdS boundary to another AdS region in the interior. Indeed
such solutions can be found (see for example [102, 59, 126]).

The above examples concern gravity duals of superconformal field theories or
flows between superconformal field theories. Another way to generalise the cor-
respondence is to find supergravity solutions that are dual to non-conformal field
theories. For example, one might study perturbed superconformal field theories
that flow in the infrared to non-conformal phases, such as Coulomb, Higgs and
confining phases. The corresponding dual supergravity solutions should still have
an asymptotic AdSy41 boundary, describing the perturbed conformal field theory,
but they will no longer interpolate to another AdS;41 region but to different kinds
of geometry dual to the different phases. For an example of these kinds of solutions
see [125]. Often the geometries found in the IR are singular and further analysis
is required to determine the physical interpretation.

The generalisation we will discuss in the rest of the lectures was initiated by
Maldacena and Nuflez [110]. The idea is to construct supergravity solutions de-
scribing branes wrapping calibrated cycles in manifolds of special holonomy, in the
near horizon limit. The next section will explain the background for attempting
this, and in particular why such configurations preserve supersymmetry. The sub-
sequent section will describe the construction of the solutions using the technical
tool of gauged supergravity. The D=11 solutions describing wrapped membranes
and fivebranes and the D=10 solutions describing wrapped D3-branes provide a
large class of solutions with dual field theory interpretations. The simplest, and
perhaps most important, solutions are warped products of AdS spaces, cycles with
Einstein metrics and spheres. The presence of the AdS factor for these solutions
implies that they provide a large class of new AdS/CFT examples. In addition, as
we shall discuss, there are more complicated solutions that describe flows from a
perturbed AdS boundary, describing the UV, to both conformal and non-conformal
behaviour in the IR.

Type IIB string theory also contains NS fivebranes. In the discussion section we
will briefly discuss how supergravity solutions describing NS fivebranes wrapped on
calibrated cycles can be used to study non-conformal field theories. A particularly
interesting solution [111] (see also [33]) gives rise to a dual quantum field theory
that has many features of N' = 1 supersymmetric Yang-Mills theory in four dimen-
sions. This is a very interesting theory as it has many features that are similar to
QCD. Two other interesting ways of studying N' = 1 supersymmetric Yang-Mills
theory in four dimensions can be found in [104] and [128]. Related constructions
with A/ = 2 supersymmetry can be found in [69, 22, 20, 127] (for reviews see
[5, 19, 21]). The explicit regular solutions found in [104] are examples of a more
general construction discussed in [42] (see [40] for a review).

4. Brane worldvolumes and calibrations

The supergravity brane solutions that were presented in section 2 describe static
planar branes of finite tension and infinite extent. Physical intuition suggests that
these branes should become dynamical objects if they are perturbed. Moreover,
we also expect that branes with different topologies should exist. On the other
hand it is extremely difficult to study these aspects of branes purely from the
supergravity point of view. Luckily, there are alternative descriptions of branes
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which can be used. In this section we will describe the low-energy world-volume
description of branes. Essentially, this is a probe-approximation in which the branes
are taken to be very light and hence propagate in a fixed background geometry
with no back-reaction. We will use this description to argue that branes can wrap
calibrated cycles in manifolds of special holonomy while preserving supersymmetry
[12, 13, 73, 79]. This then provides the motivation to seek D=11 supergravity
solutions that describe a large number of such wrapped branes, when the back-
reaction on the geometry will be very significant. We will construct the solutions in
the next section in the near horizon limit, which is the limit relevant for AdS/CFT
applications.

It will be useful to first review some background material concerning calibra-
tions on manifolds of special holonomy, before turning to the brane world-volume
theories.

4.1. Calibrations. A calibration [90] on a Riemannian manifold M is a p-
form ¢ satisfying two conditions:

dp = 0

where £, is any tangent p-plane, and Vol is the volume form on the cycle induced
from the metric on M. A p-cycle X, is calibrated by ¢ if it satisfies

(42) (p|2p = VOllgp .

A key feature of calibrated cycles is that they are minimal surfaces in their homology
class. The proof is very simple. Consider another cycle ¥’ such that ¥ — ¥’ is the
boundary of a (p + 1)-dimensional manifold =Z. We then have

(4.3) Vol(E):/Egoz/Edgo—i—//w://(pSVOI(E').

The first equality is due to ¥ being calibrated. The second equality uses Stokes’
theorem. The remaining steps use the closure of ¢ and the second part of the
definition of a calibration.

We will only be interested in calibrations that can be constructed as bilinears
of spinors, for reasons that will soon become clear. The general procedure for such
a construction was first discussed in [44, 89]. In fact all of the special holonomy
manifolds that we discussed earlier have such calibrations. We now summarise
the various cases, noting that the the spinorial construction and the closure of the
calibrations was already presented in section 2. That the calibrations also satisfy
the second condition in (4.1) was shown, for almost all cases, in [90]; it is also
straightforward to establish using the spinorial construction.

On Spin(7)-holonomy manifolds the Cayley four-form ¥ is a calibration and
the 4-cycles calibrated by ¥ are called Cayley 4-cycles.

G2-holonomy manifolds have two types of calibrations, ¢ and *¢. The former
calibrates associative 3-cycles, while the latter calibrates co-associative 4-cycles.

Calabi-Yau n-folds generically have two classes of calibrations. The first class
is the Kahler calibrations given by %J ™ where the wedge product is used. These
calibrate even 2n-dimensional cycles and this is equivalent to the cycles being holo-
morphic. The second type of calibration is the special Lagrangian (SLAG) cali-
bration given by the real part of the holomorphic n-form €€}, where the constant
6 € S', and these calibrate special Lagrangian n-cycles. Recall that for our purposes
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n = 2,3,4,5. When n = 2, there is no real distinction between SLAG and Kahler
2-cycles since the cycles that are Kéahler with respect to one complex structure are
SLAG with respect to another (recall that C'Ys = HK;). When n = 4 there are also
4-cycles that are calibrated by %J 2 + Re(e"Q) — these are in fact Cayley 4-cycles
if we view the Calabi-Yau four fold as a special example of a Spin(7)-manifold.

Hyper-Kéahler manifolds in eight dimensions are special cases of Calabi-Yau
four-folds. They thus admit Kéhler and special Lagrangian calibrations with respect
to each complex structure. They also admit Cayley calibrations as just described. In
addition there are quaternionic calibrations [45] that calibrate quaternionic 4-cycles
which are Kéhler with respect to all three complex structures: Vol = %(J h2 =
1(J?)? = 1(J%)2, when restricted to the cycle. For example, with respect to the
hyper-Kihler structure (2.26), we see that e'?** is a quaternionic 4-cycle®. Of
more interest to us will be the complex-Lagrangian (C-Lag) calibrations [45] which
calibrate 4-cycles that are Kahler with respect to one complex structure and special
Lagrangian with respect to the other two: for example, Vol = %(Jl)2 = Re(Q?) =
—Re(03) when restricted to the cycle. Referring to (2.26) and (2.27) we see that
e12%6 is an example of such a C-Lag 4-cycle.

In constructing supergravity solutions describing branes wrapping calibrated
cycles in the next section, it will be very important to understand the structure of
the normal bundle of calibrated cycles. Let us summarise some results of Mclean
[113]. The tangent bundle of the special holonomy manifold restricted to the cycle
splits into the tangent bundle of the cycle plus the normal bundle

(4.4) T(M)|s=T(X)& N(X) .

In some, but not all cases, the normal bundle, N(X), is intrinsic to ¥. Given a
calibrated cycle, one can also ask which normal deformation, if any, is a normal
deformation through a family of calibrated cycles.

A simple case to describe are the special Lagrangian cycles, where N(X) is
intrinsic to X. It is not difficult to show that on a special Lagrangian cycle the
Kahler form, J, restricted to ¥ vanishes. Thus, for any vector field V on ¥ we
have that JijVj are the components of a one-form on ¥ which is orthogonal to all
vectors on X. In other words, J;V7 defines a normal vector field. Hence N(X) is
isomorphic to T'(X).

In addition, the normal deformation described by the vector V is a normal
deformation through the space of special Lagrangian submanifolds if and only if the
one-form with components .J;; V7 is harmonic. Thus if ¥ is compact, the dimension
of the moduli space of special Lagrangian manifolds near ¥ is given by the first
Betti number, () = dim[H'(X,R)]. In particular if 3' = 0, then ¥ has no
harmonic one-forms and hence it is rigid as a special Lagrangian submanifold.

Next consider co-associative 4-cycles in manifolds of G2 holonomy, for which
N(X) is also intrinsic to X. In fact N(X) is isomorphic to the bundle of anti-self-
dual two-forms on 3. A normal vector field is a deformation through a family of co-
associative 4-cycles if and only if the corresponding anti-self-dual two-form is closed
and hence harmonic. Thus if ¥ is compact the dimension of the moduli space of co-
associative 4-cycles near ¥ is given by the Betti number, 3% (X) = dim[H? (3, R)].
In particular if 32 = 0, then ¥ is rigid as a co-associative submanifold.

2Supergrawity solutions describing fivebranes wrapping quaternionic 4-cycles in R8, which
are necessarily linear [45], were constructed in [120, 121].
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The normal bundles of associative 3-cycles in manifolds of G5 holonomy are not
intrinsic to % in general. The normal bundle is given by S ® V' where S is the spin
bundle of ¥ (oriented three-manifolds are always spin) and V is a rank two SU(2)
bundle. In other words the normal directions are specified by two-dimensional
spinors on ¥ that carry an additional SU(2) index. A normal vector field gives a
deformation through a family of associative 3-cycles if and only if the corresponding
twisted spinor is harmonic, i.e. in the kernel of the twisted Dirac operator. In the
special case that the bundle V' is trivial, the spinor must be harmonic. For example,
if 3 is an associative three-sphere and V is trivial, as in the G5 manifold constructed
in [28], then it is rigid.

The deformation theory of Cayley 4-cycles in manifolds of Spin(7) holonomy
has a similar flavour to the associative 3-cycles. The normal bundle is given by
S_®V where S_ is the bundle of spinors of negative chirality on ¥ and V' is a rank
two SU(2) bundle. Although not all 4-cycles admit a spin structure, all Cayley
4-cycles admit such twisted spinors. A normal vector field gives a deformation
through a family of Cayley 4-cycles if and only if the corresponding twisted spinor
is harmonic, i.e. in the kernel of the twisted Dirac operator. In the special case that
the bundle V is trivial the spinor must be harmonic. For example, if ¥ is a Cayley
four-sphere and V' is trivial, as in the Spin(7) manifold constructed in [28], then it
is rigid.

Finally, let us make some comments concerning the Kahler cycles. These
cycles reside in Calabi-Yau manifolds M which have vanishing first Chern class,
a[T(M)] = 0. Since 1 [T (M)|s] = a1[T(2)] + 1[N (2)] we conclude that in general

(4.5) a[NE)] = —a[T(X)] .

If one considers the special case that ¥ is a divisor i.e. a complex hypersurface
(i.e. real codimension two), then N(X) is intrinsic to ¥. Indeed one can show that
N(X) 2 K(X) where K(X) is the canonical bundle of X.

4.2. Membrane world-volume theory. Let us now turn to the world-vol-
ume theory of branes, beginning with membranes [15, 16]. We will consider the
membranes to be propagating in a fixed D=11 geometry which is taken to be a
bosonic solution to the equations of motion of D=11 supergravity, with metric g
and three-form C. The bosonic dynamical fields are maps z* (o) from the world-
volume of the membrane, W, to the D=11 target space geometry. If we let o?
be coordinates on W with ¢ = 0,1,2, and z* be coordinates on the D=11 target

geometry with 4 =0,1,...,10, the reparametrisation invariant action is given by
1 ..
(4.6) S = Tg/ d*o [—det aix“ajx”gw(x)]l/g + ge”k&m‘”@jx‘“8kx“3CN1M2M3 .
W .

The first term is just the volume element of the pullback of the metric to the world-
volume and is called the Nambu-Goto action. The second term arises because the
membrane carries electric four-form charge; it generalises the coupling of an electri-
cally charged particle to a vector potential. The full action also includes fermions
and is invariant under supersymmetry when the D=11 target admits Killing spinors.
The supersymmetry of brane-world volume theories is actually quite intricate, but
luckily we will not need many of the details. The reason is similar to the reason
that we didn’t need to discuss such details for D=11 supergravity. Once again,
our interest is bosonic solutions to the equations of motion that preserve some su-
persymmetry. For such configurations, the supersymmetry variation of the bosonic
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fields automatically vanishes, and hence one only needs to know the supersymmetry
variation of the fermions, and this will be mentioned later.

To get some further insight, consider static bosonic D=11 backgrounds with
vanishing three-form, C' = 0,and write the metric as

(4.7) ds®> = —dt® + gyndeMda? |

where M, N = 1,2,...,10. If we substitute this into (4.6) and partially fix the
reparametrisation invariance by choosing ¢ = ¢ the membrane action gives rise to
the energy functional

(4.8) E=T d*o [mab]l/2 ,

W/
where a,b = 1,2, W’ is the spatial part of the world-volume, and m,; is the spatial
part of the induced world-volume metric given by

(4.9) Map = O™z gurn -

In other words, the energy is just given by the tension of the membrane times the
spatial area of the membrane. Now, static solutions to the equations of motion
minimise the energy functional. Thus static configurations minimise the area of
the membrane, which implies that the spatial part of the membrane is a minimal
surface. This is entirely in accord with expectations: the tension of the mem-
brane tends to make it shrink. It should be noted that the minimal surfaces can
be of infinite extent: the simplest example is an infinite flat membrane in D=11
Minkowski space. Of most interest to us will be membranes wrapping compact
minimal surfaces.

Let us further restrict to background geometries of the form RV19=% x My,
with vanishing three-form that preserve supersymmetry. In other words M, has
special holonomy as discussed in section 2. The membrane world-volume theory is
supersymmetric with the number of supersymmetries determined by the number of
Killing spinors. Static membrane configurations that preserve supersymmetry wrap
cycles called supersymmetric cycles. We now argue that supersymmetric cycles are
equivalent to calibrated cycles with the associated calibration being constructed
from the Killing spinors.

In order that a bosonic world-volume configuration be supersymmetric the
supersymmetry variation of the fermions must vanish. Given the explicit super-
symmetry variations, it is simple to show this implies that [12]

(4.10) (1-Te=0,
where € is a D=11 Killing spinor and the matrix I" is given by
1
r = —1°
Vdetm
1
(411) vy o= (Ee“baaxMabel“MN> y

where [['a7,'v]s = 2ga7n. The matrix I satisfies 2 = 1 and is Hermitian, I't =T.
We now calculate
((1-T)(1-T)

1-T) (1-T)
4.12 i = = 2>90.
( ) € 5 €e=c¢ 5 5 €= 5 ell*>0
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We thus conclude that efe > €'Te with equality if and only (1 — I')e = 0, which
is equivalent to the configuration being supersymmetric. The inequality can be
rewritten

(4.13) Vdetm > €' T%e = —eve .
Thus the two-form defined by

1
(4.14) o= f§€FMNedxM AdxN |

satisfies the second condition in (4.1) required for a calibration. One can argue
that the supersymmetry algebra [88] implies that it is closed and hence is in fact a
calibration (we will verify this directly in a moment). Moreover, the inequality is
saturated if and only if the membrane is wrapping a supersymmetric cycle, and we
see that this is equivalent to the cycle being calibrated by (4.14).

The only two-form calibrations on special holonomy backgrounds are Kéahler
calibrations, and indeed ¢ is in fact equal to a Ké&hler two-form on the background.
To see this very explicitly and to see how much supersymmetry is preserved when
a membrane wraps a Kahler 2-cycle, first consider the D=11 background to be R x
CY5. We noted earlier that this background preserves two D=11 supersymmetries:
in a suitable orthonormal frame, the two covariantly constant D=11 spinors can be
taken to satisfy the projections (see, for example, the discussion in appendix B of
[75]):

(415) F1234€ —_ F34566 — F5678€ —_ —F78910€ = —¢.

Note that these imply that I'°'2¢ = €. Substituting either of these spinors into
(4.14) we find that ¢ is precisely the Kéhler calibration on CYs:

(4.16) p=J=e?+e 450 4™ - M0

Consider now a membrane wrapping a Kéahler 2-cycle in CYj5, i.e. its worldvolume
is R x ¥ with ¥ C CY5. To be concrete, consider Vol(X) = e!?|s. We then
find that the supersymmetry condition (4.10) implies that T'°'2¢ = ¢, which is
precisely the projection on the spinors that we saw in the supergravity solution for
the membrane (2.44). For this case we see that this projection does not constrain
the two supersymmetries satisfying (4.15) further and thus a membrane can wrap
a Kahler 2-cycle in a C'Y5 “for free”. Clearly if we wrapped an anti-membrane,
satisfying I''%¢ = —¢, there would be no surviving supersymmetry®. Let us now
consider the background to be R x CY; x R2. This preserves four supersymmetries
satisfying projections which we can take to be

(4.17) [1234, _ 8456, _ [S6T8, _ L7800, _
Two of these satisfy ['’'2¢ = ¢ and two satisfy I'°'%2¢ = —¢. After substituting into
(4.14) they give rise to two Kihler forms on CY, x R?:

(4.18) p=J=e?+e* + e e g0

If we now wrap the membrane on a Kihler 2-cycle with Vol(X) = e'?|y, then
we see that the supersymmetry condition (4.10), I''*2¢ = ¢, preserves two of the
supersymmetries. Similarly, if we wrapped an anti-membrane satisfying I'?'%e = —¢
it would also preserve two supersymmetries.

3Note that if we change the orientation by switching e1© — —e19, then (4.15) would assume
a more symmetric form and we would find that we could wrap an anti-membrane along 3 for free.
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The amount of supersymmetry preserved by any brane wrapping a calibrated
cycle in a special holonomy background can be worked out in a similar way: one
considers a convenient set of projections for the background geometry and then
supplements them with those of the wrapped brane (or anti-brane). In almost all
cases, wrapping the brane breaks 1/2 of the supersymmetries preserved by the spe-
cial holonomy background. We have summarised the possibilities for the membrane
in table 2.

| Calibration | World-Volume | Supersymmetry |

Kahler R x (22 C CYs) 8
R x (32 C CY3) 4
R x (22 C CY4) 2
R x (33 C CY5) 2

TABLE 2. The different ways in which membranes can wrap cali-
brated cycles and the amount of supersymmetry preserved.

The action (4.6) describes the dynamics of a membrane propagating in a fixed
D=11 supergravity background. Such a membrane is often called a “probe mem-
brane”. Of course, the dynamics of the membrane will back-react on the geometry,
and so one should really supplement the D=11 supergravity action with the world-
volume action:

(4.19) S = Sp=11+ Swv .

If there are many coincident membranes then this back-reaction could be large.
We have been emphasising the geometric aspects of the membrane world-
volume theory. The world-volume theory is also a quantum field theory. To
gain some insight into this aspect, let us restrict the target geometry to be D=11
Minkowski space and the world-volume to be R%2. Now fix the reparametrisation
invariance completely by setting 0® = ¢, 0! = 2!, 02 = 22. We can then expand the

determinant to get
1
(4.20) S=1 /d?’a(—aﬁaxlaaxl + fermions +...) ,

where we have dropped an infinite constant and the dots refer to higher derivative
terms. The eight scalar fields describe the eight transverse fluctuations of the
membrane. After quantisation, this action gives a three-dimensional quantum field
theory, with eight scalar fields plus fermions, that preserves 16 supersymmetries or
N = 8 supersymmetry in three dimensions. This quantum field theory is interacting
with gravity, via (4.19), but if we take the limit, I, — 0, it decouples from gravity.
In other words, in this decoupling limit we get a three-dimensional quantum field
theory living on the world-volume of the membrane. When there are N coincident
branes, the quantum field theory is much more complicated. There is a piece
describing the centre of mass dynamics of the branes given by (4.20) with T, — NT,
and there is another piece describing the interactions between the membranes. This
latter theory is known to be a superconformal field theory that arises as the IR limit
of N = 8 supersymmetric Yang-Mills theory in three dimensions. Recall that this is
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precisely the superconformal field theory that is conjectured to be dual to M-theory
on AdSy x S”.

The important message here is that the supergravity solution describing the
membranes in the near horizon limit, AdSy x S7, is conjectured to be equivalent to
the quantum field theory arising on the membrane world-volume theory, in a limit
which decouples gravity.

Now consider a more complicated example. Take the D=11 background to be
of the form R6 x C'Y; with a probe membrane wrapping a Kihler 2-cycle ¥ C CY5.
i.e. the world-volume of the membrane is R x (¥ C CY3). There is again a quantum
field theory living on the brane interacting with gravity. In the decoupling limit,
l, — 0 and keeping the volume of ¥ fixed, we get a supersymmetric quantum field
theory on Rx Y. If 3 is compact, the low-energy infrared (IR) limit of this quantum
field theory corresponds to length scales much larger than the size of X. In this IR
limit the quantum field theory on R x X behaves like a quantum field theory on the
time direction R, which is just a quantum mechanical model.

If we could construct a supergravity solution describing membranes wrapping
such Kéhler 2-cycles, in the near horizon limit, we would have an excellent candi-
date for an M-theory dual for this quantum field theory on R x 3. Moreover, if
the supergravity solution has an AdSy factor, it would strongly indicate that the
corresponding dual quantum mechanics, arising in the IR limit, is a superconformal
quantum mechanics. These kinds of supergravity solutions have been found [70]
and the construction will be described in the next section.

It is worth making some further comments about the quantum field theory on
R x Y. For a single membrane the physical bosonic degrees of freedom describe
the transverse deformations of the membrane. In the case of a membrane with
world-volume R»? in R11? we saw above in (4.20) that there are eight scalar fields
describing these deformations. Geometrically, they are sections of the normal bun-
dle, which is trivial in this case. Now consider, for example, a membrane with
world-volume R x (¥ C CY3). There are six directions transverse to the membrane
that are also transverse to the C'Yy and these lead to six scalar fields. There are
also two directions transverse to the membrane that are tangent to the C'Ys: these
give rise to a section of the normal bundle. As we discussed earlier the normal
deformations of a Kahler 2-cycle ¥ C CY> (which are also SLAG 2-cycles with
respect to another complex structure) are specified by one-forms on X.

This “transition” from scalars to one-forms is intimately connected with the
way in which the field theory on R x ¥ realises supersymmetry. In particular it
arises because the theory is coupled to external R-symmetry gauge fields. We will
discuss this issue again in the context of fivebranes wrapping SLAG 3-cycles, as
this is the example we will focus on when we construct the supergravity solutions
in the next section.

4.3. D3-brane and fivebrane world-volume theories. Let us now briefly
discuss the world-volume theories of the type IIB D3-brane and the M-theory five-
brane. The D3-brane action is given by a Dirac-Born-Infeld type action that in-
cludes a coupling to a four-form potential whose field strength is the self-dual
five-form (see Myers’ lectures for further discussion). If we consider, for simplicity,
a bosonic type IIB background with all fields vanishing except for the metric, the
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world-volume action for a single D3-brane, with fermions set to zero, is given by
(4.21) S =Ty / d*o [—det(8;z" 02" g () + Fiy)]Y? .
w

The main new feature is that, in addition to the world-volume fields z*, there is
now a U(1) gauge field with field strength F'.

If we set F = 0, the action (4.21) reduces to the Nambu-Goto action. Following
a similar analysis to that of the membrane, we again find in static supersymmetric
backgrounds of the form R%10~¢ x M, that supersymmetric cycles with F' = 0 are
calibrated cycles. As the D3-brane has three spatial world-volume directions, there
are now more possibilities. A D3-brane can either wrap a calibrated 3-cycle in My,
with world-volume R x (X3 C My) or a Kéhler 2-cycle in CY,, with world-volume
RYL x (35 € CY,,). The possibilities with the amount of supersymmetry preserved
are presented in table 3. For the Kihler cases, the world-volume has an R%!
factor and we have also denoted by (ny,n_) the amount of d = 2 supersymmetry
preserved on the RY! factor, where n is the number of chiral supersymmetries
and n_ the number of anti-chiral supersymmetries.

| Calibration ‘ ‘World-Volume ‘ Supersymmetry |
Kahler RUL x (3, CCYs) | 8, (4,4) d=2
RITx (3, CCY3) | 4, (2,2) d=2
RITX (S, CCYy) | 2, (1,1) d=2
SLAG R x (23 C CY3) 4
Associative | R x (X3 C G2) 2

TABLE 3. The different ways in which D3-branes can wrap cali-
brated cycles and the amount of supersymmetry preserved.

In order to get some insight into the field theory living on D3-branes, consider
the target to be D=10 Minkowski space-time, the world-volume to be R"3 and
fix the reparametrisation invariance by setting 0¥ = t,o! = 2!, 02 = 22,03 = 3.

After expanding the determinant and dropping a constant term, we get
4 Lo rqi0 1 ij .
(4.22) S=T; [ d cr(—§8ix o'z’ — ZFijFJ + fermions +...) .

In addition to F' there are six scalar fields that describe the transverse displacement
of the D3-brane. This action is simply N = 4 super-Yang-Mills theory with gauge
group U(1). When there are N D3-branes, it is known that the DBI action should
be replaced by a non-Abelian generalisation but its precise form is not yet known.
However, it is known that after decoupling gravity, the leading terms give U(N)
N = 4 super-Yang-Mills theory. After dropping the U(1) centre of mass piece,
we find N = 4 SU(N) Yang-Mills theory. Recall that this is the theory that is
conjectured to be dual to type IIB string theory on AdSs x S°, which is the near
horizon limit of the type IIB supergravity solution describing a planar D3-brane.
Once again, the near horizon limit of the supergravity solution is dual to the field
theory arising on the brane, and the same should apply to the near horizon limits
of the supergravity solutions describing the wrapped D3-branes in table 3.
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The world-volume theory of M-theory fivebranes is arguably the most intricate
of all branes [95, 96, 122, 10, 17]|. The bosonic dynamical fields are maps z* (o)
along with a three-form field strength H;j;;, that satisfies a non-linear self-duality
condition. If we set H = 0 the dynamics is described by the Nambu-Goto action
and we again find in a static supersymmetric background of the form R10=4 x M,
that supersymmetric cycles with H = 0 are calibrated cycles. As the fivebrane
has five spatial world-volume directions, there are many possibilities, which are
summarised in table 4. We have included the amount of supersymmetry preserved
including the number of supersymmetries counted with respect to the flat part of
the world-volume R"? when ¢ > 1.

‘ Calibration ‘ World-Volume | Supersymmetry |

SLAG RIS x (3, C CYa) 8, N=2d=4
RIZ x (33 C CY;3) 4, N=2 d=3
RUTx (24 C CYy) 2, (L,1) d=2

R x (35 C CY5) 1
RV X (B CcCYa) x (B, CCYY) | 4, (2,2) d=2

R x (22 C 01/2) X (23 C CYg) 2
Kéhler RIS x (X5 C COY3) 4, N=1 d=4
RITx (5, C OY3) 1, (40) d=2
RITx (5, C CYy) 2, (2,0) d=2
C-Lag RITx (3, C HK>) 3, (2,1) d=2
Associative RYM2 x (33 C Go) 2, N=1d=3
Co-associative RN x (34 C Go) 2, (2,0) d=2
Cayley RV x (34 C Spin(7)) 1, (1,0) d=2

TABLE 4. The different ways in which fivebranes can wrap cali-
brated cycles and the amount of supersymmetry preserved.

The six-dimensional field theory living on a single planar fivebrane has five
scalar fields, describing the transverse fluctuations, the three-form H and fermions,
and has a chiral (2, 0) supersymmetry. The field theory when there are N coincident
fivebranes is not yet well understood. The AdS/CFT conjecture states that it is
dual to M-theory propagating on AdS; x S*. Recall that the field theory has an
SO(5) R-symmetry.

In order to construct supergravity solutions describing wrapped branes, it is
very helpful to understand how supersymmetry is realised in the field theory living
on a probe-brane world-volume. The details depend on which calibrated cycle is
being wrapped and they are intimately connected to the structure of the normal
bundle of the calibrated cycle. Let us concentrate on the case of fivebranes wrapping
SLAG 3-cycles, as this will be the focus of the next section. The field theory on the
probe fivebrane world-volume lives on R"2 x ¥3. In order for this field theory to be
supersymimetric it is necessary that there be some notion of a constant spinor on X3.
It is not immediately clear what this notion is, since, in general, >3 will not have a
covariantly constant spinor. However, the field theory living on the fivebrane with
world-volume RY5 C RY!0 has an internal SO(5) R-symmetry, coming from the
five flat transverse directions, under which the fermions transform. The covariant
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derivative of the spinors is schematically of the form
(4.23) (O +wu — Ape,

where w is the spin connection and A is the SO(5) gauge connection. Now consider
the fivebrane theory on R1? x ¥3. If we decompose SO(5) — SO(3) x SO(2) and
choose the SO(3) gauge fields to be given by the SO(3) spin connection on X3,
A = w, then clearly we can have constant spinors on Y3 that could parameterise
the supersymmetry. This is exactly the way supersymmetry is realised for wrapped
branes [18]. It is sometimes said that the field theory is “twisted” because of the
similarities with the construction of topological field theories.

Geometrically, the identification of the SO(3) C SO(5) gauge fields with the
spin connection on Y3 corresponds to the structure of the normal bundle of a SLAG
3-cycle. The five directions transverse to the fivebrane wrapping the SLAG 3-cycle
consist of three directions that are tangent to the C'Y3 and two flat directions that
are normal to the C'Y3. This is responsible for breaking the SO(5) symmetry of the
flat fivebrane down to SO(3) x SO(2). We expect an SO(2) R-symmetry to survive
corresponding to the two flat directions, and thus the SO(2) gauge fields are zero in
the vacuum state. In section 4.1 we argued that for SLAG 3-cycles N (X3) = T'(X3)
and this is responsible for the fact that there are non-zero SO(3) gauge fields in
the vacuum state and moreover, A = w.

We can determine which external SO(5) gauge fields are excited for fivebranes
wrapping different supersymmetric cycles from our previous discussion of the nor-
mal bundles of calibrated cycles. We shall mention this again in the next section
in the context of constructing the corresponding supergravity solutions.

4.4. Generalised Calibrations. As somewhat of an aside, we comment that
there are more general supersymmetric cycles than those we have discussed above.

Firstly, we only considered background geometries when the background fluxes
(e.g. the four-form field strength G for D=11 supergravity) are all set to zero. By
analysing supersymmetric brane configurations when the fluxes are non-zero, one
is naturally lead to the notion of “generalised calibrations” [87, 88] (see also [11]).
The key new feature is that the exterior derivative of the generalised calibration is
no longer zero and is related to the flux. It is interesting to note that generalised
calibrations play an important role in characterising the most general classes of
supersymmetric supergravity solutions [67, 74, 76, 75]. They have also been
discussed in [86].

A second generalisation is to determine the conditions for supersymmetric
branes when non-trivial world-volume fluxes (F for D3-branes and H for the five-
branes) are switched on. This is related to the possibility of branes ending on
branes and is discussed in [14, 72, 65, 112].

5. Supergravity solutions for fivebranes wrapping calibrated cycles

At this point, we have established that D=11 supergravity has supersymmetric
membrane and fivebrane solutions. By considering the world-volume approxima-
tion to the dynamics of these branes we concluded that supersymmetric solutions
of D=11 supergravity describing branes wrapping calibrated cycles in special ho-
lonomy manifolds should also exist. In this section we will explain the explicit
construction of such solutions, in the near horizon limit, focusing on the richest
case of fivebranes.
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At first sight it is not at all clear how to construct these solutions. One might
imagine that one should start with an explicit special holonomy metric, which are
rather rare, and then “switch on the brane”. In fact the procedure we adopt [110]
is more indirect and subtle. A key point is that we aim to find the solutions in
the near horizon limit, i.e. near to the brane wrapping the cycle, and this simplifies
things in two important ways. Firstly, we expect that only the local geometry of
the calibrated cycle in the special holonomy manifold, including the structure of its
normal bundle, enters into the construction. Secondly, we will be able to employ a
very useful technical procedure of first finding the solutions in D=7 SO(5) gauged
supergravity. This theory arises from the consistent truncation of the Kaluza-Klein
reduction on a four-sphere of D=11 supergravity, as we shall describe. In particular
any supersymmetric solution of the D=7 theory gives rise to a supersymmetric
solution of D=11 supergravity. Although the converse is certainly not true, the
D=7 gauged supergravity does include many interesting solutions corresponding to
the near horizon limit of wrapped fivebrane geometries.

We first discuss Kaluza-Klein reduction starting with the simplest case of re-
duction on a circle. We then describe the reduction on a four-sphere leading to D=7
gauged supergravity. Following this we will describe the construction of fivebranes
wrapping calibrated cycles. We focus on the case of fivebranes wrapping SLAG
3-cycles to illustrate some details and then summarise some aspects of the other
cases.

5.1. Consistency of Kaluza-Klein reduction. The basic example of Kal-
uza-Klein dimensional reduction is to start with pure gravity in five spacetime
dimensions and then reduce on a circle to get a theory of gravity in four spacetime
dimensions coupled to a U(1) gauge field and a scalar field. The procedure is to
first expand the five-dimensional metric in harmonics on the circle. One obtains
an infinite tower of modes whose four-dimensional mass is proportional to the in-
verse of the radius of the circle, as well as some massless modes consisting of the
four-dimensional metric, gauge field and scalar field just mentioned. Finally one
truncates the theory to the massless mode sector.

This truncation is said to be “consistent” in the sense that any solution of the
four-dimensional theory is automatically a solution to the five-dimensional theory.
The reason for this consistency is simply that the massless modes being kept are
independent of the coordinate on the circle, while the massive modes, which have
non-trivial dependence on the coordinate on the circle, are all set to zero. Note
that this is an exact statement that does not rely on the radius of the circle being
small, where one might argue that the massive modes are decoupling because they
are all getting very heavy. Similarly, as we shall shortly illustrate in more detail,
one can consistently truncate the reduction of theories with additional matter fields
on a circle, and more generally on tori.

The D=7 gauged supergravity that we shall be interested in arises from the
dimensional reduction of D=11 supergravity on a four-sphere. In general there
are no consistent truncations of the dimensional reductions of gravity theories on
spheres with dimension greater than one. The reason is that all of the harmonics
on the sphere, including those associated with the lowest mass modes, typically
depend on the coordinates of the sphere. Indeed, generically, if one reduces a
theory of gravity on a sphere and attempts to truncate to the lowest mass modes,
one will find that it is not consistent. That is, solutions of the truncated theory



BRANES, CALIBRATIONS AND SUPERGRAVITY 105

will not correspond to exact solutions of the higher-dimensional theory. Of course if
the radius of the sphere were taken to be very small the truncated solutions could
provide very good approximations to solutions of the higher-dimensional theory.
However, in some special cases, including the reduction of D=11 supergravity on a
four-sphere, it has been shown that there is in fact a consistent truncation. We will
exploit this fact to construct exact solutions of D=11 supergravity by “uplifting”
solutions that we first find in the D=7 gauged supergravity.

Before we present the Kaluza-Klein reduction formulae for D=7 gauged super-
gravity, which are rather involved, let us first present them in the much simpler
setting of type ITA supergravity.

5.2. Reduction on S' to type IIA supergravity. Type IIA supergravity
in ten dimensions can be obtained from the Kaluza-Klein reduction of D=11 su-
pergravity on S* [77, 30, 100]. To see this, we construct an ansatz for the D=11
supergravity fields that just maintains the lowest massless modes. For the bosonic
fields we let

ds* = e **dsiy + e (dy + 0N
(5.1) C = C®4+BAdy.

Here the ten-dimensional line element ds?,, the scalar dilaton ®, the “Ramond-
Ramond” one-form C') and three-form C®), and the the Neveu-Schwarz two-
form B are all independent of y. The field strengths of the forms will be denoted
F® = dc®, F® = dC®) and H = dB. If we substitute this ansatz into the
D=11 equations of motion we find equations of motion for the ten-dimensional
fields which are derivable from the action
(5.2)

10 —2% o 1o 1
S—/d xfg(e (R + 409 12H] 5

1 1
ZF@)> — §B/\F4/\F4 .

Fy -
This is precisely the bosonic part of the action of type ITA supergravity. After
similarly including the fermions we find the full supersymmetric type IIA action,
which preserves 32 supersymmetries (two D=10 Majorana-Weyl spinors of opposite
chirality). Note that the isometries of S! give rise to the U(1) gauge field with field
strength F(y).

The key point to emphasise is that, by construction, any solution of type II
supergravity automatically can be uplifted to give a solution of D=11 supergravity
that admits a U(1) isometry using the formulae in (5.1). Moreover, the D=11
supergravity solution will preserve at least the same amount of supersymmetry as
the type ITIA solution®.

To illustrate with a simple example, consider the following supersymmetric
solution of type ITA supergravity:

ds? = H™'(d¢'d&n;;) + (do'dx’)
B = H 1'de® ndet
(5.3) e = H,

4Note that there are D=11 solutions with U(1) isometries that have supersymmetries that will
not survive the dimensional reduction because the Killing spinors have a non-trivial dependence
on the coordinate on the circle.
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withi,j =0,1and I,J =1,...,8. This is a solution to ITA supergravity providing
that H is harmonic in the transverse space. Choosing the simple single centre solu-
tion H = 1+ asN/r® we find that this solution carries NV units of quantised electric
H-flux. In fact this solution describes the fields around N coincident fundamental
ITA strings of infinite extent. It preserves one-half of the supersymmetry. If we now
uplift this solution to get a solution of D=11 supergravity using (5.1) we obtain the
planar membrane solution (2.42).

5.3. Reduction on S* to D=7 SO(5) gauged supergravity. The dimen-
sional reduction of D=11 supergravity on a four-sphere can be consistently trun-
cated to give D=7 SO(5) gauged supergravity [116, 117]. The origin of the SO(5)
gauge symmetry is the SO(5) isometries of the four-sphere.

The explicit formulae for the D=11 bosonic fields is given by

A4/5
ds* = A7?Pdsi+ — DY (T )P DY"
m
1 (T-Y)4s
= ———.DYyApyApyAspyAa T L
6= e Ty Y-T-Y

4 (T-Y)As
— _pyAMpydpyAsp (L |y
NETE (Y-T-Y)

A
+iFA1A2DYA3DYA4 (T ) Y) ° 4 iFA1A2FA3A4YA5]
m2

Y- T Y m
(5.4) +d(SpY?P) |
and the wedge product of forms is to be understood in the expression for G. Here
YA, A,B=1,...,5, are constrained coordinates parametrising a four-sphere, sat-

isfying YAY4 = 1. In this section z*, pu,v = 0,1,...,6 are D=7 coordinates and
ds? is the D=7 line element associated with the D=7 metric g7(z). The SO(5)
isometries of the round four-sphere lead to the introduction of SO(5) gauge fields
BAp(x), with field strength F4 5(x), that appear in the covariant derivative DY 4:

(5.5) DYA =dY* +2mBAgY " .

The matrix T is defined by

(5.6) T8 (@) = ()4 (2) (1) 5 (2)8%

where i,j = 1,...,5 and I14%(x) are 14 scalar fields that parameterise the coset
SL(5,R)/SO(5). The warp factor A is defined via

(5.7) ATS/5 = yATAB ()Y B

and S4(z) are five three-forms.

If we substitute this into the D=11 supergravity equations of motion we get
equations of motion for g7(z), B(z),II(z) and S(z). The resulting equations of
motion can be derived from the D=7 action:

S = /d7x\/_fg {R + %mQ (T? = 2T}, T) — Py PP — = (4T 57 FAP)®

|~

2
(5.8) —m? (1S 00) } — 6mSa A Fy

1
+V3eapcppd?€Se N FBC A FPE 4 g (2%[B] - 0s(B))
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where we have dropped the 7 subscript on g; here and below, for clarity. This is
precisely the bosonic part of the action of D=7 SO(5) gauged supergravity [123].
In particular, the kinetic energy terms for the scalar fields are determined by P,;;
which is defined to be the part symmetric in ¢ and j of

(5.9) (m-b,* (5ABaM + 2mBHAB) 556, .
The potential terms for the scalar fields are defined in terms of
(5.10) Ty =@ HA0 Y4, T="Ts.

Finally, Q3[B] and Qs5[B] are Chern-Simons forms for the gauge fields, whose explicit
form will not be needed.

It is also possible to explicitly construct an ansatz for the D=11 fermions to
recover the fermions and supersymmetry of the D=7 gauged supergravity. In par-
ticular the construction implies that any bosonic (supersymmetric) solution of D=7
SO(5) gauged supergravity will uplift via (5.4) to a bosonic (supersymmetric) so-
lution of D=11 supergravity.

In order to find bosonic supersymmetric solutions of the D=7 gauged supergrav-
ity, we need the supersymmetry variations of the fermions. The fermions consist
of gravitini 1, and dilatini A and, in a bosonic background, their supersymmetry
variations are given by

1
by = Vue— 250y " =807 Tije Ly’ T’ F°
1 o V., PO\ 1 4
+5gm T e+ 10\[( ve —5% P el ™78, 0 n
1 j 1 v 1 k l
0N = SY'TYePuij+ o™ (Tl = grirkl)em ng'F)P
1 1
(5.11) +5m(T — 5T6”)1“ €+ —— 20[ AT — A5 eI S pa

Here v* are the D=7 gamma matrices of Clif f(6,1), while ' are those of Clif f(5),
and these act on € which is a spinor with respect to both Spin(6,1) and Spin(5).
Note that v* and I'¥ commute. The covariant derivative appearing in the super-
symmetry variation for the gravitini is given by

1
(512) V (a + Wp, ’Vab"_ Quzjrl>

where @Q,,;; is the part of (5.9) anti-symmetric in ¢ and j. To obtain supersymmetric
configurations we set 61 = A’ = 0 and let € be a commuting spinor. Note that
setting the variations of the dilatini to zero leads to algebraic constraints on e.
Although still very complicated, D=7 gauged supergravity is a simpler theory
than D=11 supergravity as many degrees of freedom have been truncated. It is
clear from (5.4) that the “breathing mode”, corresponding to uniformly scaling
the round four-sphere, is one of the modes that has been truncated. This means
that there are no solutions of the D=7 gauged supergravity which give rise to the
full fivebrane solution of D=11 supergravity (2.33) with (2.36). However, the near
horizon limit of the fivebrane solution, AdS; x S%, is easily found. Indeed it arises
as the simplest “vacuum” solution of the theory where the gauge fields, the three-
forms and the scalars are all set to zero: B = S = 0, Il = §. In this case the
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equations of motion reduce to solving
3

(5.13) R, = _§ng/w )
and the unique solution preserving all supersymmetry is AdS7, which we can write
in Poincaré coordinates as

4 [detdein; + dp?
(5.14) ds? = — [fgn—fp}

m P
If we uplift this solution to D=11 using (5.4) we recover the AdS; x S solution
(2.40), with the radius of the AdS; given by 2/m. Note that, in these coordinates,
the D=7 metric clearly displays the flat planar world-volume of the fivebrane.

5.4. Fivebranes wrapping SLAG 3-cycles. Supergravity solutions describ-
ing fivebranes wrapping different calibrated cycles have been constructed in D=7
gauged supergravity and then uplifted to D=11 in [110, 3, 71, 68]. We will il-
lustrate in some detail the construction of fivebranes wrapping SLAG 3-cycles [71]
and then comment more briefly on the other cases.

Consider the D=11 supersymmetric geometry R? x CY3 x R? and G = 0,
with a probe fivebrane wrapping a SLAG 3-cycle inside the Calabi-Yau three-fold.
i.e. the world-volume of the fivebrane is R"? x ¥3 with ¥3 C CY5;. The five
directions transverse to the fivebrane world-volume consist of three that are tangent
to the CY3 and two flat directions that are normal to the C'Y3. If we wrap many
fivebranes, the back-reaction on the geometry will be significant and we aim to find
the corresponding supergravity solutions with G # 0.

To construct these solutions, we seek a good ansatz for D=7 gauged super-
gravity. By analogy with the flat planar fivebrane solution, we think of the D=7
coordinates as being those of the world-volume of the fivebrane plus an additional
radial direction which, when the solution is uplifted to D=11, should correspond to
a kind of radial distance away from the fivebrane in the five transverse directions.
Thus an obvious ansatz for the D=7 metric is

(5.15) ds? = €2 [ds?(RY?) + dr?] + €29d5%(%3) |

where f, g are functions of 7 only and d5*(¥3) is some metric on the 3-cycle. Now
before the back-reaction is taken into account, three of the directions transverse
to the fivebrane were tangent to C'Ys and two were flat. We thus decompose the
SO(5)-symmetry of the D=7 theory into SO(3) x SO(2) and only switch on SO(3)
gauge fields. In order to preserve supersymmetry, as we shall elaborate on shortly,
the SO(3) gauge fields are chosen to be proportional to the spin connection of X:

(5.16) 2mB®, = %, ,

for a,b=1,2,3. This is a key part of the ansatz and it precisely corresponds to the
fact that the normal bundle of SLAG-cycles is isomorphic to the tangent bundle
of the cycle, as we discussed in section 4.1 and also at the end of section 4.3. An
ansatz for the scalar fields respecting SO(3) x SO(2) symmetry is given by

(5.17) A" = diag(e®, e?, e, e73 734 |

where A is a third function of r. It is consistent with the equations of motion to
set the three-forms S to zero, which we do to complete the ansatz.

For the configuration to preserve supersymmetry, we require that there exist
spinors € such that the supersymmetry variations (5.11) vanish. Given the above
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ansatz, the composite gauge fields @) appearing in (5.12) are given by the SO(3)
gauge fields Q° = 2mB. As a consequence, in demanding the vanishing of the
variation of the gravitini in the directions along Y3, we find that

1
(5.18) 0+ 35" ab + %BabFab)e =0,

where @ is the SO(3) spin connection on X3. We now begin to see the significance
of the assumption (5.16). In particular, in the obvious orthonormal frame, (5.18)
can be satisfied by spinors independent of the coordinates along X3, if we impose
the following projections on e:

(5.19) y%e = —To%¢

Note that this precisely parallels our discussion on the preservation of supersymme-
try in the context of the world-volume of the probe fivebrane at the end of section
4.3. To ensure that the variation of all components of the gravitini and dilatini
vanish we also need to impose

(5.20) Ye=¢

and we find that the the only dependence of the Killing spinors on the coordinates is
radial: € = ef/2¢y where ¢ is a constant spinor. Note that only two of the conditions
(5.19) are independent and they break 1/4 of the supersymmetry. When combined
with (5.20) we see that 1/8 of the supersymmetry is preserved, in agreement with
table 4. Actually, if one follows through these preserved supersymmetries to D=11
one finds that they are precisely those that one expects when a fivebrane wraps a
SLAG 3-cycle: there are two projections corresponding to the C'Ys and another for
the fivebrane.

A more detailed analysis of the conditions for supersymmetry implies that the
metric on Y3 must in fact be Einstein. Given the factor €29, we can always normalise
so that the Ricci tensor and the metric on X3 are related by

(5.21) Ric(X3) = 1g(23) ,

with [ = 0,£1. In three dimensions the Riemann curvature tensor is determined
by the Ricci tensor. When [ = 0 (5.21) implies that 33 is flat: the resulting D=11
solution, after uplifting, corresponds to a fivebrane with a flat planar world-volume
and is thus not of primary interest. Indeed the solution turns out to be just a
special case of the fivebrane solution presented in (2.33) with a special harmonic
function with SO(3) x SO(2) symmetry.

The cases of most interest are thus when [ = +1. When [ = 1 the Einstein
condition (5.21) implies that 3 is the three-sphere, S3, or a quotient by a discrete
subgroup of isometries of the isometry group SO(4), while for [ = —1 it is hyper-
bolic three-space, H®, or a quotient by a discrete subgroup of SO(3,1). Note in
particular that when [ = —1 it is possible that the resulting geometry is compact.
We mentioned above that the Killing spinors are independent of the coordinates on
the cycle, and hence the quotients S3/I" and H?/T" are also supersymmetric.
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Finally, in addition, supersymmetry implies the following first order BPS equa-
tions on the three radial functions:

I 2 LU PRI 9,62 3L ax—2g
e f 0 [36 + 2e ] + 20m6
—for Mo —an 9067] _ 7T ax—2g
e ‘g 0 [36 + 2e ] 20m6
(5.22) iy = [ — e + L etr 29
' 5 10m '

If these equations are satisfied then all of the D=7 equations of motion are satisfied
and we have found a supersymmetric solution.

Using (5.4) we can now uplift any solution of these BPS equations to obtain
supersymmetric solutions of D=11 supergravity. The metric is given by

1
(5.23) dsi, = A™Pdst + — AYS [P DYDY + e dYdy©] |
m
where
DY® = dY®+a%Y’
(5.24) ATE5 = emAyaya g Sryaye

with a,b=1,2,3, a = 4,5 and (Y%, Y%) are constrained coordinates on S* satisfy-
ing Y*Y* 4+ Y*Y* = 1. The expression for the four-form is given by substituting
into (5.4). Clearly, the four-sphere is no longer round and it is non-trivially fibred
over the three-dimensional Einstein space 3.

It is illuminating® to change coordinates from the constrained coordinates
(r,Y4) to unconstrained coordinates (p%, p*) via

pa _ _ief+g+2)\ya
m
1

(5.25) Pt = ——e2f Ty
m

The metric then takes the form:
ds? = (A™2/5e2F) [ds*(RY?) + 2972/ d5%(%3)]
(5.26) +(AY5e=4F) [e21729(dp® + 0 p)? + dp®dp®] .
In these coordinates the warp factors have a similar form to the simple planar
fivebrane solution (2.33); in particular this form confirms the interpretation of the

solutions as describing fivebranes with world-volumes given by R2x%53. In addition
the metric clearly displays the SO(2) symmetry corresponding to rotations in the

p*, p° plane.
Of course to find explicit solutions we need to solve the BPS equations. When
[ = —1 it is easy to check that there is an exact solution given by
610)\ = 92
e29 = ﬂ
2m?2
o o8\
(5.27) et = o

5These types of coordinates were first noticed in the context of wrapped membranes in [70].
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The D=7 metric is then the direct product AdSs x (H3/T') (this D=7 solution
was first found in [124]). The uplifted D=11 solution is a warped product of
AdS, x (H?/T') with a four-sphere which is non-trivially fibred over (H3/T'). The
presence of the AdSy factor in the D=11 solution indicates that M-theory on this
background is dual to a superconformal field theory in three spacetime dimensions.
We will return to this point after analysing the general BPS solution. Note that
when [ = 1 there is no AdSy x (S2/T') solution.

It seems plausible that the BPS equations could be solved exactly. However,
much of the physical content can be deduced from a simple numerical investigation.
If we introduce the new variables

a2 _ nge—S)\
(5.28) eh = el
then the BPS equations are given by
—hp/ m o, 10x !
h = —— 12 -1 - —
© 2 [2e ] 4ma?
!
-na M oo 10A 3l
2o - 9 1] =
¢ % 2 [ c } 4ma?
l
5.29 “hy = Deor g .
( ) e 5 [6 } + 8ma2

We next define z = a? and F = ze'%* to obtain the ODE

dF  F[m?z — 5o+ 2]
(5.30) dr — x[m2(2F —x) +26]

F(x)

11
|

IR (BS) Py,
_(AdS7)
\ /
s

0.8 \\ e

: : : : : — X
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FIGURE 1. Behaviour of the orbits for five-branes wrapping SLAG
3-cycles with [ = —1. Note the flow from the AdS7-type region

when F, z are large to the IR fixed point and the flows to the good
and bad singularities in the IR, IR(GS) and IR(BS), respectively.
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F(x)
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FIGURE 2. Behaviour of the orbits for fivebranes wrapping SLAG
3-cycles with [ = 1.

The typical behaviour of F(x) is illustrated in figure 1 for [ = —1 and figure 2
for [ = 1. The region where both x and F' are large is interesting. There we have
F ~ z —[/m? and using a as a radial variable we obtain the asymptotic behaviour

of the metric:

4
ds® ~ o da® + a?[ds*(RY?) + d5?(23)] .

This looks very similar to AdS7 in Poincaré coordinates except that the sections
with constant a are not R but R%? x Xj.

This clearly corresponds to the near horizon limit of the fivebrane wrapped
on the SLAG 3-cycle. By the general discussion on the AdS/CFT correspondence
earlier, this should be dual to the six-dimensional quantum field theory living on the
wrapped fivebrane worldvolume R? x X3, after decoupling gravity. More precisely,
the asymptotic behaviour of the solution (5.31), when lifted to D=11, is dual to the
UV behaviour of the quantum field theory. Following the flow of the solution as in
figures 1 and 2 correspond to flowing to the IR of the field theory. In the present
context, the IR corresponds to length scales large compared to the size of the cycle
33 on which the fivebrane is wrapped. In other words, going to the IR corresponds
to taking 3 to be very small (assuming it is compact) and the six-dimensional
quantum field theory on R12 x X3 behaves more and more like a three-dimensional
quantum field theory on R%:2.

Perhaps the most interesting solutions occur for [ = —1. There is a solution
indicated by one of the dashed lines in figure 1 that flows from the UV AdS7
type region to the AdS, x (H3/T') fixed point that was given in (5.27). This is a
supergravity solution that describes a kind of renormalisation group flow from a
theory on R x (H3/T') to a superconformal field theory on R'2. In particular, we
see that the natural interpretation of the AdS, x (H?/T) solution is that, when it is
lifted to D=11, it is dual to a superconformal field theory on R%? that arises as the
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IR limit of the fivebrane field theory on living on RY2 x (H?3/T"). The interpretation
for non-compact H?3/T is less clear.

The absence of an AdSy x (S3/T) solution for I = 1 possibly indicates that the
quantum field theories arising on fivebranes wrapping SLAG 3-cycles with positive
curvature are not superconformal in the infrared. Alternatively, it could be that
there are more elaborate solutions lying outside of our ansatz that have AdSy
factors.

All other flows in figures 1 and 2 starting from the AdS; type region flow
to singular solutions. Being singular does not exclude the possibility that they
might be interesting physically. Indeed, a criteria for time-like singularities in
static geometries to be “good singularities”, i.e. dual to some quantum field theory
behaviour, was presented in [110]. In particular, a good singularity is defined to
be one in which the norm of the time-like Killing vector with respect to the D=11
supergravity metric does not increase as one goes to the singularity (one can also
consider the weaker criterion that the norm is just bounded from above). It is not
difficult to determine whether the singularities that arise in the different asymptotic
limits are good or bad by this criterion and this has been presented in figures 1 and
2. It is likely that the good singularities describe some kind of Higgs branches of
the quantum field theory corresponding to the possibility of moving the coincident
wrapped fivebranes apart.

In summary, using D=7 gauged supergravity, we have been able to construct
D=11 supergravity solutions that describe fivebranes wrapping SLAG 3-cycles. The
cycle is Einstein and is either S /T" or H3/T" where I is a discrete group of isometries.
Probably the most important solutions that have been found are the AdS, x (H3/T)
solutions which are dual to new superconformal field theories, after being uplifted
to D=11. More general flow solutions were also constructed numerically.

5.5. Fivebranes wrapping other cycles. The construction of supersym-
metric solutions corresponding to fivebranes wrapping other supersymmetric cycles
runs along similar lines. The ansatz for the D=7 metric is given by

(5.31) ds* = e/ [ds* (R~ + dr?] + €29d5%(Zq) ,

where ds? is the metric on the supersymmetric d-cycle, ¥4, and the functions f
and g depend on the radial coordinate r only.

The SO(5)-gauge fields are specified by the spin connection of the metric on X4
in a way determined by the structure of the normal bundle of the calibrated cycle
being wrapped. In general, we decompose the SO(5) symmetry into SO(p) x SO(q)
with p + ¢ = 5, and only excite the gauge fields in the SO(p) subgroup. We will
denote these directions by a,b = 1,. .., p. If we consider a probe fivebrane wrapping
the cycle inside a manifold of special holonomy M, this decomposition corresponds
to dividing the directions transverse to the brane into p directions within M and
q directions perpendicular to M. The precise ansatz for the SO(p) gauge fields is
determined by some part of the spin connection on the cycle and will be discussed
shortly.

In keeping with this decomposition, the solutions that we consider have a single
scalar field excited. More precisely we take

(5.32) 4" = diag(e?, ... e e P .. e PV,
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where we have p followed by ¢ entries. Once again this implies that the composite
gauge-field Q is then determined by the gauge fields via Q*® = 2mB®?.

It turns out that for the SLAG 5-cycle and most of the 4-cycle cases it is
necessary to have non-vanishing three-forms S4. The S-equation of motion is

(5.33) m25 40l T4 8 = —mos Fa + LGABCDE « (FBC A FPEY
4v/3
The solutions have vanishing four-form field strength F'4 and hence S4 are deter-
mined by the gauge fields.
Demanding that the configuration preserves supersymmetry, as for the SLAG
3-cycle case, we find that along the cycle directions:

1
(5.34) 0+ Z(Dbc’ybc + %B“’Tab)e =0,

where @%® is the spin connection one-form of the cycle. For each case the specific
gauge fields, determined by the type of cycle being wrapped, go hand in hand with
a set of projections which allow (5.34) to be satisfied for spinors independent of the
coordinates along ;. We can easily guess the appropriate ansatz for the gauge
fields from our discussion of the structure of the normal bundles of calibrated cy-
cles in section 4.1, and they are summarised below. The corresponding projections
are then easily determined and are given explicitly in [110, 3, 71, 68]. In the
uplifted D=11 solutions, these projections translate into a set of projections corre-
sponding to those of the special holonomy manifold and an additional projection
corresponding to the wrapped fivebrane.

By analysing the conditions for supersymmetry in more detail, one finds that
the metric on the cycle is necessarily Einstein, and we again normalise so that

(535) Rab = lgab ;

with | = 0,£1. When d = 2,3 the Einstein condition implies that the cycles have
constant curvature and hence are either spheres for [ = 1 or hyperbolic spaces for
I = —1, or quotients of these spaces by a discrete group of isometries. When d > 3
the Einstein condition implies that the Riemann tensor can be written

_ = 21
(536) Raveda = Waped + —ga[cgd]b s

d—1
where W is the Weyl tensor, and there are more possibilities. By analysing the
D=7 Einstein equations one finds that for d = 4,5 the part of the spin connection
that is identified with the gauge fields must have constant curvature.

We now summarise the ansatz for the SO(5) gauge fields for each case and
discuss the types of cycle that arise for d = 4,5. We can always take a quotient of
the cycles listed by a discrete group of isometries.

SLAG n-cycles: Consider a probe fivebrane wrapping a SLAG n-cycle in a
CY,,. The five directions transverse to the fivebrane consist of n directions tangent
to the C'Y;, and 5—n normal to it. Thus, for the supergravity solution we decompose
SO(5) — SO(n) x SO(5—n), and let the only non-vanishing gauge fields lie in the
SO(n) factor. Up to a factor of 2m these SO(n) gauge fields are identified with
the SO(n) spin connection on X,,, as in (5.16). This identification corresponds to
the fact that N(X,) = T(X,) for SLAG n-cycles. Since all of the spin connection
is identified with the gauge fields, the metric on 3,, must have constant curvature

(W =0 for d = 4,5) and hence %,, is S™ for l =1 and H" for [ = —1.
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Kaihler 2-cycles: Kihler 2-cycles in C'Y; are SLAG 2-cycles and have just been
discussed. For probe fivebranes wrapping Kahler 2-cycles in C'Y3 the five directions
transverse to the fivebrane consist of four directions tangent to the C'Ys and one flat
direction normal to the C'Y3. The normal bundle of the Kahler 2-cycle has structure
group U(2) = U(1) x SU(2), and now recall (4.5). Thus, for the supergravity
solution in D=7, we decompose SO(5) — SO(4) — U(2) = U(1) x SU(2) and
identify the U(1) spin connection of the cycle with the gauge fields in the U(1)
factor. We also set the SU(2) gauge fields to zero, which corresponds to considering
fivebranes wrapping Kéahler 2-cycles with non-generic normal bundle. An example
of such a cycle is the two-sphere in the resolved conifold. It would be interesting to
find more general solutions with non-vanishing SU(2) gauge fields, preserving the
same amount of supersymmetry.

Kahler 4-cycles: We assume that ¥4 in the D=7 supergravity solution has
a Kahler metric with a U(2) = U(1) x SU(2) spin connection. When probe five-
branes wrap Kahler 4-cycles in CY3 the five transverse directions consist of two
directions tangent to the C'Y3 and three flat directions normal to the CY3. Thus
we decompose SO(5) — SO(2) x SO(3), set the SO(3) gauge fields to zero and
identify the SO(2) = U(1) gauge fields with the U(1) part of the U(1) x SU(2) spin
connection on the 4-cycle. When probe fivebranes wrap Kahler 4-cycles in C'Y, the
five transverse directions consist of four directions tangent to the C'Y; and one flat
direction normal to the C'Yy. Thus we now decompose SO(5) — SO(4) — U(2) =
U(1) x SU(2) and we set the SU(2) gauge fields to zero, which again corresponds to
considering non-generic normal bundles. We identify the U(1) gauge fields with the
U(1) part of the spin connection as dictated by (4.5). In both cases, the identifica-
tion of the gauge fields with part of the spin connection doesn’t place any further
constraints on ¥4 other than it is Kéhler-Einstein. An example when | = 1 is CP2.

C-Lag 4-cycles: We again assume that >4 in the D=7 solution has a Kéhler
metric with a U(2) =2 U(1) x SU(2) spin connection. We again decompose SO(5) —
SO(4) — U(2) 2 U(1) x SU(2) but now we do not set the SU(2) gauge fields to
zero. Indeed, since the cycle is both SLAG and Kéhler, with respect to different
complex structures, we must identify all of the U(2) gauge fields with the U(2) spin
connection. Einstein’s equations then imply that >4 must have constant holomor-
phic sectional curvature. This means that for [ = 1 it is CP? while for [ = —1 it is
the open disc in C? with the Bergman metric. Note that the solutions corresponding
to fivebranes wrapping C-Lag CP? are different from the solutions corresponding
to fivebranes wrapping Kihler CP?, since they have more gauge fields excited and
preserve different amounts of supersymmetry.

Associative 3-cycles: When probe fivebranes wrap associative 3-cycles in G
manifolds, there are four transverse directions that are tangent to the G5 manifold
and one flat direction normal to the G2 manifold. We thus decompose SO(5) —
SO(4) =2 SU(2)" x SU(2)~, where the superscripts indicate the self-dual and anti-
self-dual parts. Recall that the normal bundle of associative 3-cycles is given by
S ®V where S was the SU(2) spin bundle on 35 and V is a rank SU(2) bundle. In
the non-generic case when V is trivial, for example for the G2 manifold in [28], then
the identification of the gauge fields is clear: we should identify the SO(3) = SU(2)
spin connection on Y3 with SU(2)" gauge fields and set the SU(2)~ gauge fields
to zero.
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Co-associative 4-cycles: When probe fivebranes wrap co-associative 4-cycles
in G5 manifolds, there are three transverse directions that are tangent to the Gs
manifold and two flat directions normal to the G manifold. We thus decompose
SO(5) — SO(3) x SO(2) and set the SO(2) gauge fields to zero. Recall that the
normal bundle of co-associative 4-cycles is isomorphic to the bundle of anti-self-dual
two-forms on the 4-cycle. This indicates that we should identify the SO(3) = SU(2)
gauge fields with the anti-self-dual part, SU(2)~, of the SO(4) = SU(2)* x SU(2)~
spin connection on ¥4. For the co-associative 4-cycles, Einstein’s equations imply
that the anti-self-dual part of the spin connection has constant curvature, or in
other words, the Weyl tensor is self-dual W~ = 0. These manifolds are sometimes
called conformally half-flat. If [ = 1 the only compact examples are CP? and S%.

Cayley 4-cycles: When probe fivebranes wrap Cayley 4-cycles in Spin(7)
manifolds the five normal directions consist of four directions tangent to the Spin(7)
manifold and one flat direction normal to the Spin(7) manifold. We thus again
decompose SO(5) — SO(4) = SU(2)* x SU(2)~, where the superscripts indicate
the self-dual and anti-self-dual parts. Recall that the normal bundle of Cayley
4-cycles is given by S_ ® V where S_ is the SU(2) bundle of negative chirality
spinors on X3 and V is a rank SU(2) bundle. In the non-generic case when V
is trivial, for example for the Spin(7) manifolds in [28], then the identification of
the gauge fields is clear: if SU(2)* are the self-dual and anti-self-dual parts of the
SO(4) spin connection on ¥4 then we should identify the SU(2)~ part of the spin
connection with SU(2)~ gauge fields and set the SU(2)" gauge fields to zero. As
for the co-associative 4-cycles, Einstein’s equations imply that the Weyl tensor is
self-dual, W~ = 0.

With this data the BPS equations can easily be derived and we refer to [110, 3,
71, 68] for the explicit equations. They have a similar appearance to those of the
SLAG 3-cycle case, with the addition of an extra term coming from the three-forms
S for most of the 4-cycle cases and the SLAG 5-cycles. When the curvature of the
cycle is negative, [ = —1, in all cases except for Kéahler 4-cycles in C'Y3, we obtain
an AdS7_gq x 34 fixed point. When [ = 1, only for SLAG 5-cycles do we find such
a fixed point. This is summarised in table 5.

We note that using exactly the same ansatz for the D=7 supergravity fields,
some additional non-supersymmetric solutions of the form AdS7_4 x ¥4 were found
[62]. In addition, by considering the possibility of extra scalar fields being ex-
cited, one more AdSj3 solution was found. Such solutions could be dual to non-
supersymmetric conformal field theories, that are related to wrapped fivebranes
with supersymmetry broken. To develop this interpretation it is necessary that
the solutions be stable, which is difficult to determine. A preliminary perturba-
tive investigation revealed that some of these solutions are unstable. We have also
summarised these solutions in table 5.

5.6. Wrapped Membranes and D3-branes. D=11 supergravity solutions
describing membranes wrapping Kéahler 2-cycles can be found in an analogous man-
ner [70]. The appropriate gauged supergravity for this case is maximal SO(8)
gauged supergravity in D=4 [47, 48] which can be obtained from a consistent
truncation of the dimensional reduction of D=11 supergravity on a seven-sphere
[50, 49]. The vacuum solution of this theory is AdS, and this uplifts to AdS, x S7,
which is the near horizon limit of the planar membrane solution. More general



BRANES, CALIBRATIONS AND SUPERGRAVITY 117

‘ spacetime | embedding | cycle X, ‘ supersymmetry
AdSs x Yo Kahler 2-cycle in CY5 H? yes
52 no*
Kéihler 2-cycle in CY3 H? yes
H? no
AdSy x Y3 SLAG 3-cycle in CYj3 ZE yes
H3 no
Associative 3-cycle ZE yes
H3 no
AdS3 x 3y Co-associative 4-cycle ct yes
SLAG 4-cycle in CY; H? yes
a4 no
S4 no
Kahler 4-cycle in C'Yy K? yes
Kf‘; no
Cayley 4-cycle ct yes
c* no
CP2?, 8% no
CLAG 4-cycle in HKg B yes
B no
CPp? no
SLAG 4-cycle in CY, x OY, | H? x H? yes
H? x H? no*
52 x 52 no*
52 x H? no*
AdSy x X5 SLAG 5-cycle in CYs e yes
95 yes
SLAG b5-cycle in CYs x CY3 | H? x H? ves
52 x H? no
S% x H3 no

TABLE 5. AdS fixed point solutions for wrapped fivebranes: C_
and K4 are conformally half-flat and K&hler—Einstein metrics with
the subscript denoting positive or negative scalar curvature and
B is the Bergman metric. Note that we can also take quotients
of all cycles by discrete groups of isometries and this preserves
supersymmetry. * denotes a solution shown to be unstable.

solutions can be found that uplift to solutions describing the near horizon limit of
wrapped membranes.

Actually, the general formulae for obtaining SO(8) gauged supergravity from
the dimensional reduction of D=11 supergravity on the seven-sphere are rather
implicit and not in a form that is useful for uplifting general solutions. Luckily,
there is a further consistent truncation of the SO(8) gauged supergravity theory to
a U(1)* gauged supergravity where the formulae are known explicitly (in the special
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case that the axion fields are zero) [39] and this is sufficient for the construction of
D=11 wrapped membrane solutions.

To see why, let us describe the ansatz for the gauge fields for the D=4 solutions.
If we consider a probe membrane wrapping a Kéhler 2-cycle in a CY,, then the eight
directions transverse to the membrane consist of 2n — 2 directions that are tangent
to the CY,, and 10 — 2n flat directions that are normal to the CY,,. In addition
the normal bundle of the Kéahler 2-cycle in C'Y,, has structure group U(n — 1) =
U(1) x SU(n — 1), and recall (4.5). Thus, in the D=4 supergravity, we should
first decompose SO(8) — SO(2n — 2) x SO(10 — 2n) and only have non-vanishing
gauge fields in U(n — 1) € SO(2n — 2). The gauge fields in the U(1) factor of
U(n—1)2U(1) x SU(n — 1) are then identified with the U(1) spin connection on
the 2-cycle, corresponding to (4.5). In the solutions that have been constructed, the
remaining SU(n — 1) gauge fields are set to zero, which corresponds to the normal
bundle of the Kahler 2-cycle being non-generic when n > 3. Thus, the ansatz for
the gauge fields is such that they always lie within the maximal Cartan subalgebra
U(1)* of SO(8) and hence the truncation formulae of [39] can be used.

Once again the metric on the 2-cycle is Einstein and hence is either S2/T for [ =
1or H?/T for | = —1. In particular, the cycle can be an arbitrary Riemann surface.
General BPS equations have been found and analysed numerically. Interestingly,
AdSs x Y9 fixed points are found only for [ = —1 and only for the cases of C'Y}
and C'Y5. When uplifted to D=11 these solutions become a warped product with a
non-round seven-sphere that is non-trivially fibred over the cycle. The AdS, fixed
point solutions should be dual to superconformal quantum mechanics living on the
wrapped membranes.

The appropriate gauged supergravity theory for finding D=10 type IIB so-
lutions describing D3-branes wrapping various calibrated cycles is the maximally
supersymmetric SO(6) gauged supergravity in D=5 [85]. This can be obtained
from the consistent truncation of the dimensional reduction of the type IIB super-
gravity on a five-sphere. In particular, the vacuum solution is AdSs and this uplifts
to AdSs x S® which is the near horizon limit of the planar D3-brane. Actually the
general formulae for this reduction are not yet known and one has to exploit further
consistent truncations that are known [129, 39, 107, 43].

All cases in table 3 have been investigated, and BPS equations have been
found and analysed. Once again, in the solutions, the 2- and 3-cycles that the D3-
branes wrap have Einstein metrics and hence have constant curvature. D3-branes
wrapping Kéahler 2-cycles in CY; and CY; were studied in [110] while the CY;
case was analysed in [115]. AdS3; x H?/T fixed points were found for the C'Y3
and CY, cases. D3-branes wrapping associative 3-cycles were analysed in [118]
and an AdSs x H3/T fixed point was found. Finally, D3-branes wrapping SLAG
3-cycles were studied in [115] and no AdS; fixed point was found. Note that non-
supersymmetric AdS solutions were sought in [115] for both wrapped membranes
and D3-branes, generalising the fivebrane solutions in [62], but none were found.

5.7. Other wrapped brane solutions. Let us briefly mention some other
supergravity solutions describing wrapped branes that have been constructed.

D6-branes of type ITA string theory carry charge under the U(1) gauge field
arising from the Kaluza-Klein reduction of D=11 supergravity on an S (the field
C® in (5.1)). The planar D6-brane uplifts to pure geometry: RY® x M,, where
My is Taub-NUT space with SU(2) holonomy. Similarly, when D6-branes wrap
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calibrated cycles they uplift to other special holonomy manifolds in D=11 and this
has been studied in, e.g. [1, 8, 80, 53, 91, 82]. Other solutions related to wrapped
D6-branes that are dual to non-commutative field theories have been studied in
[25, 26].

There are solutions of massive type IIA supergravity with AdSg factors which
are dual to the five-dimensional conformal field theory arising on the D4-D8-brane
system [56, 23]. Supersymmetric and non-supersymmetric solutions describing the
D4-D8 system wrapped on various calibrated cycles were found in [119, 115].

For some other supergravity solutions with possible applications to AdS/CFT,
that are somewhat related to those described here, see [7, 41, 54, 55, 24, 32,
105, 31, 106].

6. Discussion

We have explained in some detail the construction of supergravity solutions
describing branes wrapping calibrated cycles. There are a number of issues that
are worth further investigation.

It seems plausible that the BPS equations can be solved exactly. To date this
has only been achieved in a few cases. They were solved for the case of membranes
wrapping Kéhler 2-cycles in CY5 [70], but this case is special in that all scalar
fields in the gauged supergravity are set to zero. When there is a non-vanishing
scalar field, the BPS equations were solved exactly for some cases in [110] and
they have been partially integrated for other cases. Of particular interest are the
exact solutions corresponding to the flows from an AdSp region to an AdSp_gx %q
fixed point (for example, one of the dashed lines in figure 1) as they are completely
regular solutions.

For the case of membranes wrapping Kahler 2-cycles in C'Y5, the general flow
solution can be viewed as the “topological” AdS, black holes discussed in [29].
When [ = —1, there is a supersymmetric rotating generalisation of this black hole
[29]: when it is uplifted to D=11, it corresponds to waves on the wrapped mem-
brane [70]. The rotating solution is completely regular provided that the angular
momentum is bounded. It would be interesting to understand this bound from the
point of view of the dual field theory. In addition, the existence of this rotating
solution suggests, that for all of the regular flow solutions of wrapped branes start-
ing from an AdSp region and flowing to an AdSp_4 x X4 region, there should be
rotating generalisations that are waiting to be found.

In all of the supergravity solutions describing wrapped branes that have been
constructed, the cycle has an Einstein metric on it. It would be interesting if a more
general ansatz could be found in which this condition is relaxed. While this seems
possible, it may not be possible to find explicit solutions. In some cases, such as
fivebranes wrapping Kéahler 2-cycles in C'Y3, we noted that the solutions constructed
correspond to fivebranes wrapping cycles with non-generic normal bundles. This
was because certain gauge fields were set to zero. We expect that more general
solutions can be found corresponding to generic normal bundles. Note that such a
solution, with an AdS factor, was found for D3-branes wrapping Kéhler 2-cycles in
CY; [110].

It would also be interesting to construct more general solutions that describe
the wrapped branes beyond the near horizon limit. Such solutions would asymptote
to a special holonomy manifold, which would necessarily be non-compact in order
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that the solution can carry non-zero flux (a no-go theorem for D=11 supergravity
solutions with flux is presented in [76]). It seems likely that solutions can be
found that asymptote to the known cohomogeneity-one special holonomy manifolds.
For example, the deformed conifold is a cohomogeneity-one C'Y3 that is a regular
deformation of the conifold. It has a SLAG three-sphere and topologically the
manifold is the cotangent bundle of the three-sphere, T7%(S3). It should be possible
to generalise the solutions describing fivebranes wrapping SLAG three-spheres in
the near horizon limit to solutions that include an asymptotic region far from the
branes that approaches the conifold metric. Of course, these solutions will still be
singular in the near horizon limit. It will be particularly interesting to construct
similar solutions for the | = —1 case. T*(H?) admits a CY3 metric, with a SLAG
H3, but there is a singularity at some finite distance from the SLAG 3-cycle. There
may be a solution with non-zero flux that interpolates from this singular behaviour
down to the regular near horizon solutions that we constructed. Alternatively, it
may be that the flux somehow “pushes off” the singularity to infinity and the entire
solution is regular. The construction of these more general solutions, when the four-
sphere transverse to the fivebrane is allowed to get large, will necessarily require
new techniques, as they cannot be found in the gauged supergravity.

The construction of the wrapped brane solutions using gauged supergravity
is rather indirect and it is desirable to characterise the D=11 geometries more
directly. For example, this may lead to new methods to generalise the solutions
along the lines mentioned above. One approach, is to guess general ansitze for
D=11 supergravity configurations that might describe wrapped brane solutions and
then impose the conditions to have supersymmetry. This approach has its origins in
the construction of the intersecting brane solutions, reviewed in [64, 133], and was
further extended in e.g. [54, 35, 98, 99]. Recently, it has been appreciated that it
is possible to systematically characterise supersymmetric solutions of supergravity
theories with non-zero fluxes using the notion of G-structures [67, 60, 101, 74, 76,
75] (see also [66, 63]). In particular, it was emphasised in some of these works that
generalised calibrations play a central role and this is intimately connected with the
fact that supergravity solutions with non-vanishing fluxes arise when branes wrap
calibrated cycles. It should be noted that while these techniques provide powerful
ways of characterising the D=11 geometries it is often difficult to obtain explicit
examples: indeed, even recovering the known explicit solutions found via gauged
supergravity can be non-trivial (see e.g. [74]).

The supergravity solutions can be used to learn a lot about the dual conformal
field theory, assuming the AdS/CFT correspondence is valid. For example, the
AdS fixed points can be used to determine the spectrum and correlation functions
of the operators in the dual field theory. For the case of wrapped D3-branes, since
the dual field theory is related to N' = 4 super Yang-Mills theory, some detailed
comparisons can be made [110]. For the fivebrane case it will be more difficult
to do this since the conformal field theory living on the fivebrane is still poorly
understood. Perhaps some detailed comparisons can be made for the wrapped
membranes.

Recently some new supersymmetric solutions with AdS factors were constructed
n [38, 37]. It will be interesting to determine their dual CFT interpretation and
to see if they are related to wrapped branes. The non-supersymmetric solutions
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containing AdS factors found in [62] might be dual to non-supersymmetric con-
formal field theories. A necessary requirement is that the solutions are stable: it
would be useful to complete the preliminary analysis of the perturbative stability
undertaken in [62].

Supergravity solutions that are dual to supersymmetric quantum field theories
that are not conformally invariant can be constructed using wrapped N.S 5-branes
of type IIB string theory. The near horizon limit of the planar N.S 5-brane is
dual to what is known as “little string theory” in six dimensions (for a review
see [4]). These still mysterious theories are not local quantum field theories but
at low energies they give rise to supersymmetric Yang-Mills (SYM) theory in six
dimensions. As a consequence, the geometries describing NS 5-branes wrapped on
various calibrated cycles encode information about various SYM theories in lower-
dimensions. The geometries describing NS 5-branes wrapped on Kahler 2-cycles
in CY3 were constructed in [34, 111] and are dual to N' =1 SYM theory in four
dimensions. If the 5-branes are wrapped on Kéhler 2-cycles in C'Ys the geometries
are dual to A/ = 2 SYM theory in four dimensions [69, 22] (see also [94]). By
wrapping on associative 3-cycles one finds geometries that encode information about
N =1SYM in D=3 [3, 34, 130, 109, 81], while wrapping on SLAG 3-cycles one
finds N =2 SYM in D=3 [67, 83]. For the latter case, the solutions presented in
[67, 83] are singular and correspond to vanishing Chern-Simons form in the dual
SYM theory. There are strong physical arguments that suggest there are more
general regular solutions that are dual to SYM with non-vanishing Chern-Simons
form, and it would be very interesting to construct them. Note that supergravity
solutions describing NS 5-branes wrapping various 4-cycles were found in [115].
The D=10 geometry for wrapped NS 5-branes has been analysed in some detail in
[61, 67, 60, 101, 74, 75].

We hope to have given the impression that, while much is now known about
supergravity solutions describing branes wrapped on calibrated cycles, there is still
much to be understood.
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ABSTRACT. In these lectures I review recent progress on construction of man-
ifolds with exceptional holonomy and their application in string theory and
M-theory.

1. Introduction

Recently, M-theory compactifications on manifolds of exceptional holonomy
have attracted considerable attention. These models allow one to geometrically
engineer various minimally supersymmetric gauge theories, which typically have
a rich dynamical structure. A particularly interesting aspect of such models is
the behaviour near a classical singularity, where one might expect extra massless
degrees of freedom, enhancement of gauge symmetry, or a phase transition to a
different theory.

In these lectures I will try to explain two interesting problems in this subject
— namely, construction of manifolds with exceptional holonomy and the analysis
of the physics associated with singularities — and present general methods for their
solution. I will also try to make these lectures self-contained and pedagogical, so
that no special background is needed. In particular, below we start with an intro-
duction to special holonomy, then explain its relation to minimal supersymmetry
and proceed to the main questions.

2. Riemannian Manifolds of Special Holonomy

2.1. Holonomy Groups. Consider an oriented manifold X of real dimension
n and a vector ¢ at some point on this manifold. One can explore the geometry
of X by doing a parallel transport of @' along a closed contractible path in X; see
Figurel. Under such an operation the vector ¥ may not come back to itself. In
fact, generically it will transform into a different vector that depends on the geom-
etry of X, on the path, and on the connection which was used to transport v. For
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X

FIGURE 1. Parallel transport of a vector ¥ along a closed path on
the manifold X.

a Riemannian manifold X, the natural connection is the Levi-Civita connection.
Furthermore, Riemannian geometry also tells us that the length of the vector co-
variantly transported along a closed path should be the same as the length of the
original vector. But the orientation may be different, and this is precisely what we
are going to discuss.

The relative orientation of the vector after parallel transport with respect to the
orientation of the original vector ¥/ is described by holonomy. On an n-dimensional
manifold holonomy is conveniently characterised by an element of the special or-
thogonal group, SO(n). It is not hard to see that the set of all holonomies them-
selves form a group, called the holonomy group, where the group structure is induced
by the composition of paths and an inverse corresponds to a path traversed in the
opposite direction. From the way we introduced the holonomy group, Hol(X),
it seems to depend on the choice of the point where we start and finish parallel
transport. However, for a generic choice of such point the holonomy group does
not depend on it, and therefore Hol(X) becomes a true geometric characteristic of
the manifold X. By definition, we have

(2.1) Hol(X) C SO(n)

where the equality holds for a generic Riemannian manifold X.

In some special instances, however, one finds that Hol(X) is a proper subgroup
of SO(n). In such cases, we say that X is a special holonomy manifold or a manifold
with restricted holonomy. These manifolds are in some sense distinguished, for
they exhibit nice geometric properties. As we explain later in this section, these
properties are typically associated with the existence of non-degenerate (in some
suitable sense) p-forms which are covariantly constant. Such p-forms also serve as
calibrations, and are related to the subject of minimal varieties.

The possible choices for Hol(X) C SO(n) are limited, and were completely
classified by M. Berger in 1955 [12]. Specifically, for X simply-connected and
neither locally a product nor symmetric, the only possibilities for Hol(X), other
than the generic case of SO(n), are U (%), SU (%), Sp (%) x Sp(1), Sp(%), G,
Spin(7) or Spin(9), see Table 1. The first four of these correspond, respectively, to a

1The fourteen-dimensional simple Lie group Ga C Spin(7) is precisely the automorphism
group of the octonions, O.
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Metric Holonomy Dimension

Kahler U (%) n = even

Calabi-Yau SU (%

n = even

)
HyperKahler Sp (”) n = multiple of 4

Quaternionic | Sp (%) Sp(1) | n = multiple of 4

Exceptional G 7
Exceptional Spin(7) 8
Exceptional Spin(9) 16

TABLE 1. Berger’s list of holonomy groups.

Kéhler, Calabi-Yau, quaternionic Kéhler or hyper-Ké&hler manifold. The last three
possibilities are the so-called exceptional cases, which occur only in dimensions 7,
8 and 16, respectively. The case of 16-manifold with Spin(9) holonomy is in some
sense trivial since the Riemannian metric on any such manifold is always symmetric
[3].

2.2. Relation Between Holonomy and Supersymmetry. Roughly speak-
ing, one can think of the holonomy group as a geometric characteristic of the man-
ifold that tells us how much symmetry this manifold has. Namely, the smaller
the holonomy group, the larger the symmetry of the manifold X. Conversely, for
manifolds with larger holonomy groups the geometry is less restricted.

This philosophy becomes especially helpful in the physical context of super-
string or M-theory compactifications on X. There, the holonomy of X becomes
related to the degree of supersymmetry preserved in compactification: the mani-
folds with larger holonomy group typically preserve a smaller fraction of the super-
symmetry. This provides a nice link between the ‘geometric symmetry’ (holonomy)
and the ‘physical symmetry’ (supersymmetry). In Table 2 we illustrate this general
pattern with a few important examples, which will be used later.

The first example in Table 2 is a torus, T, which we view as a quotient of an n-
dimensional real vector space, R™, by a lattice. In this example, it is easy to deduce
directly from our definition that X = 7" has trivial holonomy group, inherited
from the trivial holonomy of R™. Indeed, no matter which path we choose on T", a
parallel transport of a vector ¢’ along this path always brings it back to itself. Hence,
this example is the most symmetric one, in the sense of the previous paragraph,
Hol(X) = 1. Correspondingly, in string theory toroidal compactifications preserve
all of the original supersymmetries.

Our next example is Hol(X) = SU(3), which corresponds to Calabi-Yau mani-
folds of complex dimension 3 (real dimension 6). These manifolds exhibit a number
of remarkable properties, such as mirror symmetry, and are reasonably well studied
both in the mathematical and in the physical literature. We just mention here that
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Manifold X | T™ CY; Xa, Xspin(7)

dimg (X) n 6 7 8

Hol(X) 1 C SUB) ¢ G2 C Spin(7)

SUSY 1 > 14 > 1/8 > 1/16

TABLE 2. Relation between holonomy and supersymmetry for cer-
tain manifolds.

compactification on Calabi-Yau manifolds preserves 1/4 of the original supersym-
metry. In particular, compactification of heterotic string theory on X = C'Y3 yields
N =1 effective field theory in 3 + 1 dimensions.

The last two examples in Table 2 are G and Spin(7) manifolds; that is, man-
ifolds with holonomy group G5 and Spin(7), respectively. They nicely fit into the
general pattern, so that as we read Table 2 from left to right the holonomy in-
creases, whereas the fraction of unbroken supersymmetry decreases. Specifically,
compactification of M-theory on a manifold with G5 holonomy leads to N/ = 1
four-dimensional theory. This is similar to the compactification of heterotic string
theory on Calabi-Yau three-folds. However, an advantage of M-theory on G5 man-
ifolds is that it is completely ‘geometric’. Compactification on Spin(7) manifolds
breaks supersymmetry even further, to an amount which is too small to be realised
in four-dimensional field theory.

Mathematically, the fact that all these manifolds preserve some supersymmetry
is related to the existence of covariantly constant spinors:

(2.2) VE=0

For example, if Hol(X) = G2 the covariantly constant spinor is the singlet in the
decomposition of the spinor of SO(7) into representations of Gs:

8-T7Ta1

Summarising, in Table 2 we listed some examples of special holonomy manifolds
that will be discussed below. All of these manifolds preserve a certain fraction of
supersymmetry, which depends on the holonomy group. Moreover, all of these
manifolds are Ricci-flat,

Rij =0.
This useful property guarantees that all backgrounds of the form
Rll_n x X

automatically solve eleven-dimensional Einstein equations with vanishing source
terms for matter fields.

Of particular interest are M-theory compactifications on manifolds with excep-
tional holonomy,
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M — theory on M — theory on
G2 manifold Spin(7) manifold
2.3

D=3+1QFT D=2+1QFT

since they lead to effective theories with minimal supersymmetry in four and three
dimensions, respectively. In such theories one can find many interesting phenomena,
e.g. confinement, various dualities, rich phase structure, non-perturbative effects,
etc. Moreover, minimal supersymmetry in three and four dimensions (partly) helps
with the following important problems:

e The Hierarchy Problem
e The Cosmological Constant Problem
e The Dark Matter Problem

All this makes minimal supersymmetry very attractive and, in particular, mo-
tivates the study of M-theory on manifolds with exceptional holonomy. In this
context, the spectrum of elementary particles in the effective low-energy theory
and their interactions are encoded in the geometry of the space X. Therefore,
understanding the latter may help us to learn more about dynamics of minimally
supersymmetric field theories, or even about M-theory itself!

2.3. Invariant Forms and Minimal Submanifolds. For a manifold X, we
have introduced the notion of special holonomy and related it to the existence of
covariantly constant spinors on X, c¢f. (2.2). However, special holonomy mani-
folds can be also characerised by the existence of certain invariant forms and the
corresponding minimal cycles.

Indeed, one can sandwich antisymmetric combinations of I'-matrices with a
covariantly constant spinor £ on X to obtain antisymmetric tensor forms of various
degree:

(2.4) w® =€, €

By construction, the p-form w® is covariantly constant and invariant under H ol(X).
In order to find all possible invariant forms on a special holonomy manifold X, we
need to decompose the cohomology of X into representations? of Hol(X) and iden-
tify all singlet components. For example, for a manifold with G5 holonomy such a

2This decomposition makes sense because the Laplacian on X commutes with Hol(X). In
a sense, for exceptional holonomy manifolds, decomposition of cohomology groups into represen-
tations of Hol(X) is a (poor) substitute for the Hodge decomposition in the realm of complex
geometry.
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]

H'(X,R) = R

HY(X,R) = Hj(X,R)

H%*(X,R) = HZ(X,R)® H:,(X,R)

H3X,R) = H}(X,R)® H3(X,R)® H3(X,R)
(2.5) H*(X,R) = H{(X,R)® H7(X,R) ® Hyr(X,R)

H?(X,R) = H(X,R)® HS,(X,R)

HS(X,R) = H{(X,R)

H'(X,R) R

Here, we used the G5 structure locally. The fact that the metric on X has irreducible
G2-holonomy implies global constraints on X and this forces some of the above
groups to vanish when X is compact, viz.

HE(X,R)=0, k=1,...,6

Let us now return to the construction (2.4) of the invariant forms on X. From
the above decomposition we see that on a GG3 manifold such forms can appear only
in degree p = 3 and p = 4. They are called associative and coassociative forms,
respectively. In fact, the coassociative 4-form is the Hodge dual of the associative
3-form. These forms, which we denote ® and *®, enjoy a number of remarkable
properties.

For example, the existence of a G5 holonomy metric on X is equivalent to the
closure and co-closure of the associative form?,

(2.6) dd = 0
d+«® = 0.

This may look a little surprising, especially since the number of metric components
on a 7-manifold is different from the number of of components of a generic 3-form.
However, given a G2 holonomy metric,

7
ds? = Z e ® e,
i=1
one can locally write the invariant 3-form ® in terms of the vielbein €,
1 i j ok
(2.7) P = gw”k e'ele
Here, 9,1, are totally antisymmetric structure constants of the imaginary octonions,

(2.8) O’Z‘O'jz—(sij—l—d)ijk ok, 4, 5,k=1,...,7

and (G5 is the automorphism group of the imaginary octonions. In a choice of basis
the non-zero structure constants are given by

(2.9) Yk =41, (abe) = {(123), (147), (165), (246), (257), (354), (367)} .

3Another, equivalent, condition is to say that the Ga-structure (g, ®) is torsion-free: V& = 0.
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Hol(X) cycle S p = dim(S) | Deformations | dim(Def)
SU(3) SLAG 3 unobstructed |  b1(9)
Go associative 3 obstructed
coassociative 4 unobstructed | b3 (9)
Spin(7) Cayley 4 obstructed

TABLE 3. Deformations of calibrated submanifolds.

It is, perhaps, less obvious that one can also locally reconstruct a G, metric
from the associative 3-form:

(2.10) gi; = det(B)"V/°B,;
1 o
Bjk _m‘bjmg‘I’kigz’4@z’5i6i7e““‘”

This will be useful to us in the following sections.

Similarly, on a Spin(7) manifold X we find only one invariant form in degree
p = 4, called the Cayley form, 2. Indeed, the decomposition of the cohomology
groups of X into Spin(7) representations looks as follows [37]:

H°(X,R) R

HY(X,R) = Hg(X,R)

H%*(X,R) = H2(X,R)® H2,(X,R)

H3(X,R) = HZ(X,R)® Hyg(X,R)

(2.11) HY(X,R) = H;+(X,R)® Hy (X,R) ® Hyri (X,R) @ H3s (X, R)

H’(X,R) = H(X,R)® Hig(X,R)

HS(X,R) = HY(X,R)® HS,(X,R)

H'(X,R) = HI(X,R)

H8(X,R) R

The additional label “+” denotes self-dual/anti-self-dual four-forms, respectively.
The cohomology class of the 4-form § generates Hy, (X, R),

Hy, (X, R) = ([Q)])
Again, on a compact simply-connected Spin(7) manifold we have extra constraints,
Hy=H3=Hy=Hi=0, H}=H;=HS=0

Another remarkable property of the invariant forms is that they represent the
volume forms of the minimal submanifolds in X. The forms with these properties
are called calibrations, and the corresponding submanifolds are called calibrated
submanifolds [36]. More precisely, we say that U is a calibration if it is less than or
equal to the volume on each oriented p-dimensional submanifold S C X. Namely,
combining the orientation of S with the restriction of the Riemann metric on X
to the subspace S, we can define a natural volume form vol(7,S) on the tangent
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space T3S for each point € S. Then, U|r, s = a - vol(T,S) for some a € R, and
we write:

\I/|TIS < VOl(TQ;S)

if @ < 1. If equality holds for all points x € S, then S is called a calibrated
submanifold with respect to the calibration ¥. According to this definition, the
volume of a calibrated submanifold S can be expressed in terms of ¥ as:

(2.12) Vol(S) :/Iesxymz/sqf

Since the right-hand side depends only on the cohomology class, we can write:

Vol(S):/\I/:/ qx:/ Ulp o g/ vol(T,,S") = Vol(S')
S 4 xeS’ zeS’

for any other submanifold S’ in the same homology class. Therefore, we have
just demonstrated that calibrated manifolds have minimal area in their homology
class. This important property of calibrated submanifolds allows us to identify
them with supersymmetric cycles. In particular, branes in string theory and M-
theory wrapped over calibrated submanifolds give rise to BPS states in the effective
theory.

Deformations of calibrated submanifolds have been studied by McLean [46],
and are briefly summarised in Table 3.

2.4. Why Exceptional Holonomy is Hard. Once we have introduced man-
ifolds with restricted (or special) holonomy, let us try to explain why until recently
so little was known about the exceptional cases, Go and Spin(7). Indeed, on the
physics side, these manifolds are very natural candidates for constructing minimally
supersymmetric field theories from string/M-theory compactifications. Therefore,
one might expect exceptional holonomy manifolds to be at least as popular and
attractive as, say, Calabi-Yau manifolds. However, there are several reasons why
exceptional holonomy appeared to be a difficult subject; here we will stress two of
them:

e Existence
e Singularities

Let us now explain each of these problems in turn. The first problem refers to
the existence of an exceptional holonomy metric on a given manifold X. Namely,
it would be useful to have a general theorem which, under some favorable condi-
tions, would guarantee the existence of such a metric. Indeed, the original Berger’s
classification, described earlier in this section, only tells us which holonomy groups
can occur, but says nothing about examples of such manifolds or conditions un-
der which they exist. To illustrate this further, let us recall that when we deal
with Calabi-Yau manifolds we use such a theorem all the time — it is a theorem
due to Yau (originally, Calabi’s conjecture) which guarantees the existence of a
Ricci-flat metric on a compact, complex, Kéhler manifold X with ¢;(X) = 0 [58].
Unfortunately, no analogue of this theorem is known in the case of G2 and Spin(7)
holonomy (the local existence of such manifolds was first established in 1985 by
Bryant [14]). Therefore, until such a general theorem is found we are limited to
a case-by-case analysis of the specific examples. We will return to this problem in
the next section.
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The second reason why exceptional holonomy manifolds are hard is associated
with singularities of these manifolds. As will be explained in the following sec-
tions, interesting physics occurs at the singularities. Moreover, the most interesting
physics is associated with the types of singularities of maximal codimension, which
exploit the geometry of the special holonomy manifold to the fullest. Indeed, singu-
larities with smaller codimension can typically arise in higher-dimensional compact-
ifications and, therefore, do not expose peculiar aspects of exceptional holonomy
manifolds related to the minimal amount of supersymmetry. Until recently, little
was known about these types of degenerations of manifolds with Gy and Spin(7)
holonomy. Moreover, even for known examples of isolated singularities, the dy-
namics of the M-theory in these backgrounds was unclear. Finally, it is important
to stress that the mathematical understanding of exceptional holonomy manifolds
would be incomplete too without proper account being taken of singular limits.

3. Construction of Manifolds With Exceptional Holonomy

In this section we review various methods of constructing compact and non-
compact manifolds with Gy and Spin(7) holonomy. In the absence of general ex-
istence theorems, akin to Yau’s theorem [58], these methods become especially
valuable. It is hard to give full justice to all the existing techniques in one section.
So we will try to explain only a few basic methods, focusing mainly on those which
have played an important role in recent developments in string theory. We also
illustrate these general techniques with several concrete examples that will appear
in the later sections.

3.1. Compact Manifolds. The first examples of metrics with G5 and Spin(7)
holonomy on compact manifolds were constructed by D. Joyce [37]. The basic idea
is to start with toroidal orbifolds of the form
(3.1) )T or  T®T

where T is a finite group, e.g. a product of Z, cyclic groups. Notice that 77 and
T8 themselves can be regarded as G and Spin(7) manifolds, respectively. In fact,
they possess infinitely many G2 and Spin(7) structures. Therefore, if T' preserves
one of these structures the quotient space automatically will be a manifold with
exceptional holonomy.

EXAMPLE 3.1 (Joyce [37]). Consider a torus 77, parametrized by periodic
variables x; ~ x;+1,4 =1,...,7. As we pointed out, it admits many G structures.
Let us choose one of them:

b = 61/\62/\€3+61/\64/\€5+61/\€6/\€7+62/\64/\66—62/\65/\67—63/\64/\67—63/\65/\66
where e/ = dx;. Furthermore, let us take
I'= ZQ X ZQ X ZQ

generated by three involutions

« : (.%'1,...71'7) = (l’],xQ,xS,_x4,_x5,_$6,_$7)
5 : (.’L'l,...71'7)H(ﬁrl,—$2,—$3,$4,x5,%_276,_277)
Y : (.’L'l,...71'7)'—>(_.’L'1,.’L'2,_.’L'3,£C4,%_$5,$6,%_.’I;7)

It is easy to check that these generators indeed satisfy a? = 3% = 42 = 1 and
that the group I' = («, §,~) preserves the associative three-form ® given above. It
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FIGURE 2. A cartoon representing a Joyce orbifold T"/T" with
C?/Zy orbifold points.

follows that the quotient space X = T7/T is a manifold with G holonomy. More
precisely, it is an orbifold since the group I has fixed points of the form 7° x C2/Z,.
The existence of orbifold fixed points is a general feature of the Joyce construction.

The quotient space (3.1) typically has bad (singular) points, as shown in Fig. 2.
In order to find a nice manifold X with G5 or Spin(7) holonomy one has to repair
these singularities. In practice, this means removing the local neighbourhood of
each singular point and replacing it with a smooth geometry, in a way which does
not affect the holonomy group. This may be difficult (or even impossible) for generic
orbifold singularities. However, if we have orbifold singularities that can also appear
as degenerations of Calabi-Yau manifolds, then things simplify dramatically.

Suppose we have a Zs orbifold, as in the previous example:

R"™* x C?/Z,

where Zs acts only on the C? factor (by reflecting all the coordiantes). This type
of orbifold singularity can be obtained as a singular limit of the A; ALE space:

R x ALEy, — R"™ x C?/Z,

Since both the ALE space and its singular limit have SU(2) holonomy group they
represent the local geometry of the K3 surface. This is an important point; we used
it implicitly to resolve the orbifold singularity with the usual tools from algebraic
geometry. Moreover, Joyce proved that resolving orbifold singularities in this way
does not change the holonomy group of the quotient space (3.1). Therefore, by the
end of the day, when all singularities are removed, we obtain a smooth, compact
manifold X with G2 or Spin(7) holonomy. In the above example, one finds a
smooth manifold X with G5 holonomy and Betti numbers:

bo(X) =12, b3(X) =43

There are many other examples of this construction, which are modelled not
only on K3 singularities, but also on orbifold singularities of Calabi-Yau three-folds
[37]. More examples can be found by replacing tori in (3.1) by products of the K3
surface or Calabi-Yau three-folds with lower-dimensional tori. In such models, finite
groups typically act as involutions on K3 or Calabi-Yau manifolds, to produce fixed
points of a familiar kind. Again, upon resolving the singularities one finds compact,
smooth manifolds with exceptional holonomy.
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It may look a little disturbing that in Joyce’s construction one always finds
a compact manifold X with exceptional holonomy near a singular (orbifold) limit.
However, from the physics point of view, this is not a problem at all since interesting
phenomena usually occur when X develops a singularity. Indeed, compactification
on a smooth manifold X whose dimensions are very large (compared to the Planck
scale) leads to a very simple effective field theory; it is Abelian gauge theory with
some number of scalar fields coupled to gravity. To find more interesting physics,
such as non-Abelian gauge symmetry or chiral matter, one needs singularities.

Moreover, there is a close relation between various types of singularities and
the effective physics they produce. A simple, but very important aspect of this
relation is that a codimension d singularity of X can be associated with physics of
D > 11 — d dimensional field theory. For example, there is no way one can obtain
four-dimensional chiral matter or parity symmetry breaking in D = 2+1 dimensions
from a C/Z, singularity in X. Indeed, both of these phenomena are specific to their
dimension and can not be lifted to a higher-dimensional theory. Therefore, in order
to reproduce them from compactification on X one has to use the geometry of X
‘to the fullest’ and consider singularities of maximal codimension. This motivates
us to study isolated singular points in G5 and Spin(7) manifolds.

Unfortunately, even though Joyce manifolds naturally admit orbifold singu-
larities, none of them contains isolated G2 or Spin(7) singularities. Indeed, as we
explained earlier, it is crucial that orbifold singularities are modelled on Calabi-Yau
singularities, so that we can treat them using the familiar methods. Therefore, at
best such singularities can give us the same physics as one finds in the corresponding
Calabi-Yau manifolds.

Apart from a large class of Joyce manifolds, very few explicit constructions of
compact manifolds with exceptional holonomy are known. One nice approach was
recently suggested by A. Kovalev [39], where a smooth, compact 7-manifold X with
G5 holonomy is obtained by gluing ‘back-to-back’ two asymptotically cylindrical
Calabi-Yau manifolds Wy and W,

X%(Wl Xsl)U(Wg XSl)

Although this construction is very elegant, so far it has been limited to very specific
types of G2 manifolds. In particular, it would be interesting to study deformations
of these spaces and to see if they can develop isolated singularities interesting in
physics. This leaves us with the following

Open Problem: Construct compact G2 and Spin(7) manifolds
with various types of isolated singularities

3.2. Non-compact Manifolds. As we explained, interesting physics occurs
at the singular points of the special holonomy manifold X. Depending on the
singularity, one may find, for example, extra gauge symmetry, global symmetry, or
massless states localized at the singularity. For each type of the singularity, the
corresponding physics may be different. However, usually it depends only on the
vicinity of the singularity, and not on the rest of the geometry of the space X.
Therefore, in order to study the physics associated with a given singularity, one
can imagine isolating the local neighbourhood of the singular point and studying it
separately. This gives the so-called ‘local model’ of a singular point. This procedure
is similar to considering one gauge factor in the standard model gauge group, rather
than studying the whole theory at once. In this sense, non-compact manifolds
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FIGURE 3. A cone over a compact space Y.

provide us with basic building blocks of low-energy energy physics that may appear
in compactifications on compact manifolds.

Here, we discuss a particular class of isolated singularities, namely conical sin-
gularities. They correspond to degenerations of the metric on the space X of the
form:

(3.2) ds*(X) = dt? +t?ds*(Y),

where a compact space Y is the base of the cone; the dimension of Y is one less
than the dimension of X. It is clear that X has an isolated singular point at the
tip of the cone, except for the special case when Y is a sphere, S~ !, with a round
metric.

The conical singularities of the form (3.2) are among the simplest isolated
singularities one could study; see Figure3. In fact, the first examples of non-compact
manifolds with G2 and Spin(7) holonomy, obtained by Bryant and Salamon [15]
and, independently, by Gibbons, Page, and Pope [28], exhibit precisely this type
of degeneration. Specifically, the complete metrics constructed in [15, 28] are
smooth everywhere, and asymptotically look like (3.2), for various base manifolds
Y. Therefore, they can be considered as resolutions of conical singularities. In Table
4 we list known asymptotically conical (AC) complete metrics with Gy and Spin(7)
holonomy that were originally found in [15, 28] and in more recent literature [17,
31].

The method of constructing G5 and Spin(7) metrics originally used in [15, 28]
was essentially based on the direct analysis of the Ricci-flatness equations,

(3.3) R;; =0,

for a particular metric ansatz. We will not go into details of this approach here
since it relies on finding the right form of the ansatz and, therefore, is not practical
for generalizations. Instead, following [32, 16], we will describe a very powerful
approach, recently developed by Hitchin [34], which allows us to construct all the
G2 and Spin(7) manifolds listed in Table 4 (and many more!) in a systematic
manner. Another advantage of this method is that it leads to first-order differential
equations, which are much easier than the second-order Einstein equations (3.3).
Before we explain the basic idea of Hitchin’s construction, notice that for all of
the AC manifolds in Table 4 the base manifold Y is a homogeneous quotient space

(3.4) Y = G/K,
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Holonomy | Topology of X Base YV
S* x R? CP?
Go CP? x R? SU(3)/U(1)?

S3xRY | SU(2) x SU(2)

ThH1 x R2

S* x R4 S0(5)/S0(3)

Spin(7) CP2 x R* SU(3)/U(1)

S5 x R?

TABLE 4. Asymptotically conical manifolds with G5 and Spin(7) holonomy.

where G is some group and K C G is a subgroup. Therefore, we can think of X
as being foliated by principal orbits G/K over a positive real line, R, as shown
on Figure4. A real variable ¢ € Ry in this picture plays the role of the radial
coordinate; the best way to see this is from the singular limit, in which the metric
on X becomes exactly conical, ¢f. eq. (3.2).

As we move along R, the size and the shape of the principal orbit changes, but
only in a way consistent with the symmetries of the coset space G/K. In particular,
at some point the principal orbit G/K may collapse into a degenerate orbit,

(3.5) B=G/H
where symmetry requires
(3.6) GDODHDK

At this point (which we denote t = ¢y) the “radial evolution” stops, resulting in
a non-compact space X with a non-trivial topological cycle B, sometimes called a
bolt. In other words, the space X is contractible to a compact set B, and from the
relation (3.6) we can easily deduce that the normal space of B inside X is itself a
cone on H/K. Therefore, in general, the space X obtained in this way is a singular
space, with a conical singularity along the degenerate orbit B = G/H. However, if
H/K is a round sphere, then the space X is smooth,

H/K =S¥ — X smooth

This simply follows from the fact that the normal space of B inside X in such a
case is non-singular, R*+! (= a cone over H/K). It is a good exercise to check that
for all manifolds listed in Table 4, one indeed has H/K = S¥, for some value of k.
To show this, one should first write down the groups G, H, and K, and then find

The representation of the non-compact space X in terms of principal orbits
which are homogeneous coset spaces is very useful. In fact, as we just explained, the
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orbitG/H N~ -

principal OrbitG /K

FIGURE 4. A non-compact space X can be viewed as a foliation by
principal orbits Y = G/K. The non-trivial cycle in X correspond
to the degenerate orbit G/H, where G D H D K.

topology of X simply follows from the group data (3.6). For example, if H/K = S*
so that X is smooth, we have

(3.7) X = (G/H) x RF!

However, this structure can also be used to find a G-invariant metric on X. In
order to do this, all we need to know are the groups G and K.

First, let us sketch the basic idea of Hitchin’s construction [34], and then explain
the details in some specific examples. For more details and further applications we
refer the reader to [32, 16]. We start with a principal orbit Y = G/K which can
be, for instance, the base of the conical manifold that we want to construct. Let
P be the space of (stable?) G-invariant differential forms on Y. This space is finite
dimensional and, moreover, it turns out that there exists a symplectic structure on
P. This important result allows us to think of the space P as the phase space of
some dynamical system:

P = Phase Space

where we parametrized P by some coordinate variables z; and the conjugate mo-
mentum variables p;.

Given a principal orbit G/K and a space of G-invariant forms on it, there
is a canonical construction of a Hamiltonian H(z;,p;) for our dynamical system,
such that the Hamiltonian flow equations are equivalent to the special holonomy

4Stable forms are defined as follows [35]. Let X be a manifold of real dimension n, and
V = TX. Then, the form p € APV* is stable if it lies in an open orbit of the (natural) GL(V)
action on APV*. In other words, this means that all forms in the neighborhood of p are GL(V)-
equivalent to p. This definition is useful because it allows one to define a volume. For example, a
symplectic form w is stable if and only if w™/2 # 0.
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condition [34]:

(3.9) % = 3—5, — Special Holonomy Metric
= —gﬁ. on (t1,t2) x (G/K)

where the ‘time’ in the Hamiltonian system is identified with the radial variable
t. Thus, solving the Hamiltonian flow equations from ¢ = t; to t = t5 with a
particular boundary condition leads to the special holonomy metric on (1,t2) X
(G/K). Typically, one can extend the boundaries of the interval (t;,t2) where the
solution is defined to infinity on one side, and to a point ¢ = ¢y, where the principal
orbit degenerates, on the other side. Then, this gives a complete metric with special
holonomy on a non-compact manifold X of the form (3.7). Let us now illustrate
these general ideas in more detail in a concrete example.

EXAMPLE 3.2. Let us take G = SU(2)? and K = SU(2). We can form the
following natural sequence of subgroups:

G H K
(3.10) I | I
SU((2)2 o> SU(2)? > SU(2)

From the general formula (3.4) it follows that in this example we deal with a space
X, whose principal orbits are
Y =5U(2) x SU(2) = S* x §?
Furthermore, G/H = H/K = S? implies that X is a smooth manifold with topol-
ogy, cf. (3.7),
X =83 xR*
In fact, X is one of the asymptotically conical manifolds listed in Table 4.

In order to find a G5 metric on this manifold, we need to construct the “phase
space”, P, that is, the space of SU(2)?~invariant 3-forms and 4-forms on Y = G/K:

P = 04(G/K) x O4(G/K)

In this example, it turns out that each of the factors is one-dimensional, generated
by a 3-form p and by a 4-form o, respectively,

(3.11) p= 010903 — $1 5955 + x(d(alzl) +d(023) + d(0323)),

(3.12) o= p2/5 (02220323 + 03X30121 + 01210222).
where we introduced two sets of left invariant one-forms (o,,%,) on Y
o1 = cosdf + sin v sin Odo, Y1 = cos 1/~)d§ + sin zZ sin édqz,
09 = —sinydf + cos 1 sin 0d g, Yo = —sin zﬁdé + cos 1; sin éddg,
(3.13) o3 =dy + cosbdg, Y3 = dip + cosOdg
which satisfy the usual SU(2) algebra

1 1
(3.14) dog, = ~5€abc0a Aoy, dX, = —§€abc2a Ay,

Therefore, we have only one “coordinate” x and its conjugate “momentum” p,
parametrizing the “phase space” P of our model. In order to see that there is a
natural symplectic structure on P, note that x and p multiply exact forms. For x
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this obviously follows from (3.11) and for p this can be easily checked using (3.12)
and (3.14). This observation can be used to define a non-degenerate symplectic
structure on P = Q3. (Y) x Q2 . (Y). Explicitly, it can be written as

exact exact
w ((p1, 01)7 (p27 02)) = <P1,02> - <P2,01>,

where, in general, for p = df € QF,, . (Y) and ¢ = dy € Q% (V) one has a
nondegenerate pairing

(3.15) (pr0) = /Y df Ay = (~1)F /Y BAdy.

Once we have the phase space P, it remains to write down the Hamiltonian
flow equations (3.9). In Hitchin’s construction, the Hamiltonian H(z,p) is defined
as an invariant functional on the space of differential forms, P. Specifically, in the
context of G manifolds it is given by

(3.16) H=2V(o)—-V(p),

where V(p) and V(o) are suitably defined volume functionals® [34]. Computing
(3.16) for the G-invariant forms (3.11) and (3.12) we obtain the Hamiltonian flow

equations:
p o= z(z—1)°
{ & = p’
These first-order equations can be easily solved, and the solution for x(t) and p(¢)
determines the evolution of the forms p and o, respectively. On the other hand,
these forms define the associative three-form on the 7-manifold Y x (t1,12),

(3.19) O =dt Nw+p,

where w is a 2-form on Y, such that ¢ = w?/2. For x(t) and p(t) satisfying the
Hamiltonian flow equations the associative form ® is automatically closed and co-
closed, cf. (2.6). Therefore, as we explained in section 2, it defines a G5 holonomy
metric. Specifically, one can use (2.10) to find the explicit form of the metric, which
after a simple change of variables becomes the GG metric on the spin bundle over
S3, originally found in [15, 28]:

9 dr? 2 S 5 T2 2 > 9
(320) ds® = W + E Z(O’a - Ea) + % 1-— ’]"_2 Z(O’a + Ea)
0 a=1 a=1

The above example can be easily generalised in a number of directions. For
example, if instead of (3.10) we take G = SU(2)? and K to be its trivial subgroup,
we end up with the same topology for X and Y, but with a larger space of Gs

5The volume V(o) for a 4-form o € AYT*Y = A2TY ® AST*Y is very easy to define. Indeed,
we have 02 € ASTY ® (AST*Y)3 2 (AST*Y)?, and therefore we can take

(3.17) V(o) = /Y o3| 3 .

to be the volume for o. In order to define the volume V(p) for a 3-form p € A3T*Y, one first
defines a map K,: TY — TY ® AST*Y, such that for a vector v € TY it gives K (v) = 2(v)pAp €
AT*Y = TY ® AST*Y. Hence, one can define tr(K2) € (AST*Y)2. Since stable forms with
stabilizer SL(3,C) are characterised by tr(K)2 < 0, following [35], we define

(3.18) Vip) = /Y IV —trK?).



M-THEORY ON MANIFOLDS WITH EXCEPTIONAL HOLONOMY 143

metrics on X. Indeed, for G = SU(2)? the space of G-invariant forms on Y is much
larger. Therefore, the corresponding dynamical system is more complicated and
has a richer structure. Some specific solutions of this more general system have
been recently constructed in [11, 18, 13, 19], but the complete solution is still not
known.

There is a similar systematic method, also developed by Hitchin [34], of con-
structing complete non-compact manifolds with Spin(7) holonomy. Again, this
method can be used to obtain the asymptotically conical metrics listed in Table 4,
as well as other Spin(7) metrics recently found in [20, 29, 17, 42].

4. M-theory, Circle Fibrations, and Calibrated Submanifolds

Since compactification on smooth manifolds does not produce interesting physics
— in particular, does not lead to realistic quantum field theories — one has to study
the dynamics of string theory and M-theory on singular G5 and Spin(7) manifolds.
This is a very interesting problem which can provide us with many insights about
infrared behaviour of minimally supersymmetric gauge theories and even about
M-theory itself. From the experience with string theory and M-theory, one might
expect to find some new physics at the singularities of G5 and Spin(7) manifolds,
for example,

New massless objects

Extra gauge symmetry

Restoration of continuous/discrete symmetry
Topology changing transition

Before one talks about physics associated with Go and Spin(7) singularities,
it would be nice to have a classification of all such degenerations. Unfortunately,
this problem is not completely solved even for Calabi-Yau manifolds (apart from
the ones in low dimension), and seems even less promising for real manifolds with
exceptional holonomy. Therefore, one starts with some simple examples.

One simple kind of singularities — which we already encountered in section 3.1
in the Joyce construction of compact manifolds with exceptional holonomy — is a
large class of orbifold singularities®. Locally, an orbifold singularity can be repre-
sented as a quotient of R™ by some discrete group T,

(4.1) R™/T

Therefore, in string theory, the physics associated with such singularities can be
systematically extracted from the orbifold conformal field theory [21]. For Gs
manifolds this was done in [51, 23, 52, 9, 24, 49|, and for Spin(7) manifolds
in [51, 10]. Typically, one finds new massless degrees of freedom localized at the
orbifold singularity and other phenomena listed above. However, the CFT technique
is not applicable for studying M-theory on singular G2 and Spin(7) manifolds.
Moreover, as we mentioned in section 3.1, many interesting phenomena occur at
singularities which are not of the orbifold type, and to study the physics of those
we need some new methods.

6A large list of Go orbifold singularities can be found in [33].
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FIGURE 5. A cartoon representing Taub-NUT space as a circle
fibration over a 3-plane.

4.1. Low Energy Dynamics via ITA Duals. One particularly useful method
of analyzing M-theory on singular manifolds with special holonomy follows from
the duality between type IIA string theory and M-theory compactified on a circle
[53, 55]:

‘ ITA Theory S M-theory on S!

Among other things, this duality implies that any state in ITA theory can be
identified with the corresponding state in M-theory. In this identification, some of
the states acquire geometric origin when lifted to eleven dimensions. In order to
see this explicitly, let us write the eleven-dimensional metric in the form

(4.2) ds® = e*%‘z’gwdx”dx” + e%‘z’(dxu + A, dxt)?

Upon reduction to ten-dimensionsional space-time (locally parametrized by x,,),
the field ¢ is identified with the dilaton, A, with the Ramond-Ramond 1-form,
and g, with the ten-dimensional metric. Therefore, any IIA background that
involves excitations of these fields uplifts to a purely geometric background in eleven
dimensions. Moreover, from the explicit form of the metric (4.2) it follows that the
eleven-dimensional geometry is a circle fibration over the ten-dimensional space-
time, such that the topology of this fibration is determined by the configuration of
Ramond-Ramond 1-form field. This important observation will play a central role
in this section.

To be specific, let us consider a D6-brane in type ITA string theory. Since a
D6-brane is a source for the dilaton, for the Ramond-Ramond 1-form, and for the
metric, it is precisely the kind of state that uplifts to pure geometry. For example,
if both the D6-brane world-volume and the ambient space-time are flat, the dual
background in M-theory is given by the Taub-NUT space:

M-theory on ITA theory in flat space-time
Taub-Nut space with a D6-brane

The Taub-NUT space is a non-compact four-manifold with SU(2) holonomy.
It can be viewed as a circle fibration over a 3-plane; see Figure5. The S! fiber
degenerates at a single point — the origin of the R® — which is identified with the
location of the D6-brane in type ITA string theory. On the other hand, at large
distance the size of the ‘M-theory circle’ stabilizes at some constant value (related
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to the value of the string coupling constant in ITA theory). Explicitly, the metric
on the Taub-NUT space is given by [22]:

(4.3) ds%n = Hdi?*+ H *(dxy + A,da)?,
VxA = —ﬁH,
1
H = 1+—
+2r

This form of the metric makes especially clear the structure of the circle fibration.
Indeed, if we fix a constant-r sphere inside the R?, then it is easy to see that the
S! fiber has ‘winding number one’ over this sphere. This indicates that there is a
topological defect — namely, a D6-brane — located at r = 0, where the S! fiber
degenerates.

The relation between D6-branes and geometry can be extended to more general
manifolds that admit a smooth U(1) action. Indeed, if X is a space (not necessarily
smooth and compact) with a U(1) isometry, such that X/U(1) is smooth, then the
fixed point set, L, of the U(1) action must be of codimension 4 inside X [47, 43].
This is just the right codimension to identify L with the D6-brane locus in type
ITA theory on X/U(1):

ITA theory on X/U(1)

‘ M-theory on X ‘ <= :
with D6-branes on L

For example, if X is the Taub-NUT space, then the U(1) action is generated by
the shift of the periodic variable x1; in (4.3). Dividing by this action one finds
X/U(1) 2R3 and that L = {pt} € X indeed has codimension 4.

It may happen that a space X admits more than one U(1) action. In that
case, M-theory on X will have several ITA duals, which may look very different
but, of course, should exhibit the same physics. This idea was used by Atiyah,
Maldacena, and Vafa to realise geometric duality between certain IIA backgrounds
as a topology changing transition in M-theory [6]. We will come back to this in
section 5.

Now let us describe a particularly useful version of the duality between M-
theory on a non-compact space X and IIA theory with D6-branes on X/U(1) which
occurs when X admits a U(1) action, such that the quotient space is isomorphic to a
flat Euclidean space. Suppose, for example, that X is a non-compact G2 manifold,
such that

(4.4) X/U(1) =R
Then, the duality statement reads:

M-theory on non-compact I.IA the.o ry in flat space-
: — time with D6-branes on
G5 manifold X RY % I,

On the left-hand side of this equivalence the space-time is R* x X. On the other
hand, the geometry of space-time in ITA theory is trivial (at least topologically)
and all the interesting information about X is mapped into the geometry of the

"The part of the D-brane world-volume that is transverse to X is flat and does not play an
important réle in our discussion here.
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D6-brane locus L. For example, the Betti numbers of L are determined by the
corresponding Betti numbers of the space X [29]:

(45) b (L) = bk+2 (X), k>0
bo(L) bo(X)+1

Notice the shift in degree by 2, and also that the number of the D6-branes (= the
number of connected components of L) is determined by the second Betti number
of X. We will not present the derivation of this formula here. However, it is a
useful exercise to check (e.g. using the Lefschetz fixed point theorem) that the
Euler numbers of X and L must be equal, in agreement with (4.5).

The duality between M-theory on a non-compact manifold X and a configura-
tion of D6-branes in a (topologically) flat space can be used to study singular limits
of X. Indeed, when X develops a singularity, so does L. Moreover, L must be a
supersymmetric (special Lagrangian) submanifold in R® 22 C3 in order to preserve
the same amount of supersymmetry® as the G space X. Therefore, the problem of
studying the dynamics of M-theory on G5 singularities can be restated as a problem
of studying D6-brane configurations on singular special Lagrangian submanifolds
in flat space [8].

Following Atiyah and Witten [8], let us see how this duality can help us to
analyze one of the conical G2 singularities listed in Table 4.

ExXAMPLE 4.1. Consider an asymptotically conical G2 manifold X with SU(3)
/ U(1)? principal orbits and topology

(4.6) X ~2CP?*xR?

Assuming that M-theory on this space X admits a circle reduction to ITA theory
with D6-branes in flat space, we can apply the general formula (4.5) to find the
topology of the D6-brane locus L. For the manifold (4.6) we find the following
non-zero Betti numbers:

Betti numbers of X Betti numbers of L
b4 =1 — bQ =1
bQ =1 — b() =2

Therefore, we conclude that L should be a non-compact 3-manifold with two con-
nected components (since by = 2) and with a single topologically non-trivial 2-cycle
(since bo = 1). A simple guess for a manifold that has these properties is

(4.7) L= (S?xR)UR?

It turns out that there indeed exists a special Lagrangian submanifold in C* with
the right symmetries and topology (4.7); see [8] for an explicit construction of the
circle action on X that has L as a fixed point set. If we choose to parametrize
Re(C3) = R? and Im(C3) = R3 by 3-vectors ¢; and ¢, respectively, then one can
explicitly describe L as the zero locus of the polynomial relations [38]:

(48) L={d1- 62 = —1d1llal : 16113162 — 1) = p} U {161 — V362l = 0}

8In general, in a reduction from M-theory down to Type IIA one does not obtain the stan-
dard flat metric on X/U(1) = R® due to non-constant dilaton and other fields in the background.
However, one would expect that near the singularities of the D-brane locus L these fields exhibit
a regular behavior, and the metric on X/U(1) is approximately flat, ¢f. [8]. In this case the con-
dition for the Type ITA background to be supersymmetric can be expressed as a simple geometric
criterion: it says that the D-brane locus L should be a calibrated submanifold in X/U(1).
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FIGURE 6. Intersection of special Lagrangian D6-branes dual to a
G cone over the flag manifold SU(3)/U(1)2, and its three non-
singular deformations.

It is easy to see that the first component of this manifold looks like a hyperboloid
in C3 = R?® x R3. It has a ‘hole’ in the middle, resulting in the S? x R topology,
required by (4.7). The second component in (4.8) is clearly a 3-plane, which goes
through this hole, as shown in Figure 6.

When X develops a conical singularity L degenerates into a collection of three
planes,

(4.9) Leing = R3URUR?

intersecting at a single point, see Figure6. This can be seen explicitly by taking the
p — 0 limit in the geometry (4.8),

D61: q§1:0
1o V3.
D6, §¢1+7¢2:0
1- 3-
D6 51t 5 ¢2=0

which corresponds to the limit of a collapsing S? cycle.

Therefore, in this example the physics of M-theory on a conical G5 singularity
can be reduced to the physics of three intersecting D6-branes in type ITA string
theory. In particular, since D6-branes appear symmetrically in this dual picture,
one can conclude that there must be three ways of resolving this singularity, de-
pending on which pair of D6-branes is deformed into a smooth special Lagrangian
submanifold (4.8). This is precisely what Atiyah and Witten found in a more careful
analysis [8]. We will come back to this example later, in section 5.
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There is a similar duality that relates M-theory on Spin(7) manifolds to D6-
brane configurations on coassociative cycles [25]. In particular, if X is a non-
compact Spin(7) manifold with a U(1) action, such that

(4.10) X/U(1) =R"
then one finds the following useful duality:

M-th ITA theory in flat space-
-theory on non-compact . .
. . <= time with D6-branes on
Spin(7) manifold X R x I

where L is a coassociative submanifold in R”. Again, on the left-hand side the
geometry of space-time is R?® x X, whereas on the right-hand side space-time is
(topologically) flat and all the interesting information is encoded in the geometry
of the D6-brane locus L. The topology of the latter can be determined from the
general formula (4.5). Therefore, as in the G5 case, M-theory dynamics on singular
Spin(7) manifolds can be obtained by investigating D6-brane configurations on
singular coassociative submanifolds in flat space [29].

5. Topology Change in M-theory on Exceptional Holonomy Manifolds

5.1. Topology Change in M-theory. In this section we discuss topology
changing transitions, by which we mean a particular behavior of the manifold X
(and the associated physics) in the singular limit when one can go to a space with a
different topology. In Calabi-Yau manifolds many examples of such transitions are
known and can be understood using conformal field theory methods, see e.g. [4]
and references therein. Some of these transitions give rise to analogous topology
changing transitions in G2 and Spin(7) manifolds obtained from finite quotients
of Calabi-Yau spaces that we discussed in section 3.1. In the context of compact
manifolds with G holonomy this was discussed in [37, 48]. One typically finds
a transition between different topologies of X, such that the following sum of the
Betti numbers remains invariant:

(5.1) ba + bg = const

which is precisely what one would expect from the conformal field theory consid-
erations [51]. One can interpret the condition (5.1) as a feature of the mirror
phenomenon for Gy manifolds [2, 44, 32].

Here, we shall discuss topology change in non-compact asymptotically conical
G2 and Spin(7) manifolds of section 3.2, which are in a sense the most basic ex-
amples of singularities that reveal the peculiar aspects of exceptional holonomy.
Notice that all of these manifolds have the form

X = B x (contractible)
where B is a non-trivial cycle (a bolt), e.q. B = S3, S*, CP?, or something else.
Therefore, it is natural to ask:
“What happens if Vol(B) — 0 ¢”

In this limit the geometry becomes singular and, as we discussed earlier, there are
many possibilities for M-theory dynamics associated with it. One possibility is a
topology change, which is indeed what we shall find in some of the cases below.
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F1GURE 7. Conifold transition in type IIB string theory.

Although we are mostly interested in exceptional holonomy manifolds, it is
instructive to start with topology changing transitions in Calabi-Yau manifolds,
where one finds two prototypical examples:

The Flop is a transition between two geometries, where one two-cycle shrinks
to a point and a (topologically) different two-cycle grows. This process can be
schematically described by the diagram:

St — - — Spy

This transition is smooth in string theory [5, 56].
The Conifold transition is another type of topology change, in which a three-
cycle shrinks and is replaced by a two-cycle:

Sg—>'—>SZ

Unlike the flop, it is a real phase transition in the low-energy dynamics which can
be understood as the condensation of massless black holes [50, 26]. Let us briefly
recall the main arguments.

As the name indicates, the conifold is a cone over a five-dimensional base space
which has topology S? x S? (see Figure 7). Two different ways to desingularize
this space — called the deformation and the resolution — correspond to replacing
the singularity by a finite size S® or 82, respectively. Thus, we have two different
spaces, with topology 8% x R? and S2 x R*, which asymptotically look the same.

In type IIB string theory, the two phases of the conifold geometry correspond to
different branches in the four-dimensional A/ = 2 low-energy effective field theory.
In the deformed conifold phase, D3-branes wrapped around the 3-sphere give rise to
a low-energy field g, with mass determined by the size of the S2. In the effective four-
dimensional supergravity theory these states appear as heavy, point-like, extremal
black holes. On the other hand, in the resolved conifold phase the field ¢ acquires
an expectation value reflecting the condensation of these black holes. Of course, in
order to make the transition from one phase to the other, the field ¢ must become
massless somewhere and this happens at the conifold singularity, as illustrated in
Figure?7.

Now, let us proceed to topology change in G5 manifolds. Here, again, one finds
two kinds of topology changing transitions, which resemble the flop and the conifold
transitions in Calabi-Yau manifolds:

G5 Flop is a transition where a 3-cycle collapses and gets replaced by a (topo-
logically) different 3-cycle:

Sty — - — Sy
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Vol(S®) R

FIGURE 8. Quantum moduli space of M-theory on the G5 manifold
X with topology S x R*. Green lines represent the ‘geometric
moduli space’ parametrized by the volume of the S cycle, which
is enlarged to a smooth complex curve by taking into account the
C-field and quantum effects. The resulting moduli space has three
classical limits, which can be connected without passing through
the point where the geometry becomes singular (represented by
the dot in this picture).

Note that this is indeed very similar to the flop transition in Calabi-Yau manifolds,
where instead of a 2-cycle we have a 3-cycle shrinking. The physics is also similar,
with membranes playing the role of string world-sheet instantons. Remember that
the latter were crucial for a flop transition to be smooth in string theory. For a
very similar reason, the G5 flop transition is smooth in M-theory. This was first
realised by Acharya [1], and by Atiyah, Maldacena, and Vafa [6], for a 7-manifold
with topology

X 283 xR*

and studied further by Atiyah and Witten [8]. In particular, they found that M-
theory on X has three classical branches, related by triality permutation symmetry,
so that the quantum moduli space looks as shown on Figure8. Once again, the
important point is that there is no singularity in quantum theory.

Let us proceed to another kind of topology changing transition in manifolds
with G5 holonomy.

A Phase Transition, somewhat similar to a hybrid of the conifold and the
G- flop transition, can be found in M-theory on a G manifold with topology

X ~2CP? xR?

A singularity develops when the CP? cycle shrinks. As in the conifold transition,
the physics of M-theory on this space also becomes singular at this point. Hence,
this is a genuine phase transition [8]. Note, however, that unlike the conifold
transition in type IIB string theory, this phase transition is not associated with
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Vol(CP) ﬁ,ﬁ
V=

FIGURE 9. Quantum moduli space of M-theory on the G5 manifold
X with topology CP? x R3. Green lines represent the ‘geometric
moduli space’ parametrized by the volume of the CP? cycle, which
is enlarged to a singular complex curve by taking into account
the C-field and quantum effects. The resulting moduli space has
three classical limits. In order to go from one branch to another
one necessarily has to pass through the point where the geometry
becomes singular (represented by the dot in this picture).

condensation of any particle-like states in M-theory” on X. Indeed, there are no 4-
branes in M-theory, which could result in particle-like objects by wrapping around
the collapsing CP? cycle.

Like the G2 flop transition, this phase transition has three classical branches,
which are related by triality symmetry, see Figure9. The important difference, of
course, is that now one can go from one branch to another only through the singular
point. In this transition one CP? cycle shrinks and another (topologically different)
CP? cycle grows:

CP}y — - — CP},
One way to see that this is indeed the right physics of M-theory on X is to reduce
it to type 1A theory with D6-branes in flat space-time [8].

Finally, we come to the last and the hardest case of holonomy groups, namely
to Spin(7) holonomy.

The Spin(7) Conifold is the cone on SU(3)/U(1). It was conjectured in [31]
that the effective dynamics of M-theory on the Spin(7) conifold is analogous to
that of type IIB string theory on the usual conifold. Namely, the Spin(7) cone on
SU(3)/U(1) has two different desingularizations, obtained by replacing the conical
singularity either with a 5-sphere or with a CP?; see Figurel0. As a result, we
obtain two different Spin(7) manifolds, with topology

CP? xR* and S°xR?
which are connected via the topology changing transition

cP? — . —8§°

9Hovvever, such an interpretation can be given in type IIA string theory [31].
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F1GURE 10. Conifold transition in M-theory on a manifold with
Spin(7) holonomy.

As with the conifold transition [50, 26], the Spin(7) conifold has a nice interpreta-
tion in terms of the condensation of M5-branes. Namely, in the S® phase we have
extra massive states obtained upon quantization of the M5-brane wrapped around
the five-sphere. The mass of these states is related to the volume of the S®. At the
conifold point where the five-sphere shrinks, these M5-branes become massless as
suggested by the classical geometry. At this point, the theory may pass through
a phase transition into the Higgs phase, associated with the condensation of these
five-brane states; see FigurelO.

To continue the analogy with the Calabi-Yau conifold, recall that the moduli
space of type II string theory on the Calabi-Yau conifold has three semi-classical
regimes. The deformed conifold provides one of these, while there are two large-
volume limits of the resolved conifold, related to each other by a flop transition. In
fact, the same picture emerges for the Spin(7) conifold. In this case, however, the
two backgrounds differ not in geometry, but in the G-flux. It was shown in [29] that,
due to the membrane anomaly of [57], M-theory on X = CP? x R* is consistent
only for half-integral units of G4 through the CP? bolt. Namely, after the transition
from X =2 S5 x R?, the G-flux may take the values 1/2, with the two possibilities
related by a parity transformation [31]. Thus, the moduli space of M-theory on
the Spin(7) cone over SU(3)/U(1) also has three semi-classical limits: one with
the parity invariant background geometry S® x R3, and two with the background
geometry X = CP? x R?* where parity is spontaneously broken; see Figurell. The
last two limits are mapped into each other under parity transformation.

This picture is reproduced in the effective low-energy theory if we include in
the spectrum light states corresponding to M5-branes wrapped over the five-sphere:
Effective Theory: N = 1, D = 3 Maxwell-Chern-Simons theory with one
charged complex scalar multiplet ¢

Here, it is the Higgs field ¢ that appears due to quantizaion of the Mb-branes.
In this theory, different topological phases correspond to the Coulomb and Higgs
branches:

(5.2) S xR?® <= Coulomb branch
(5.3) CP? xR* <= Higgs branch
Further agreement in favor of this identification arises from examining the various

extended objects that exist in M-theory on CP? x R, obtained from wrapped M5 or
M2-branes. For example, we can consider an M2-brane over CP! inside CP? x R*.
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FIGURE 11. The moduli space of M-theory on the Spin(7) cone
over SU(3)/U(1) can be compared to the vacuum structure of a
system with spontaneous symmetry breaking. On this picture, the
G-flux is measured by k = [.p, G/27.

This non-BPS state has a semi-classical mass proportional to the volume of CP?,
and is electrically charged under the global U(1); symmetry of our gauge theory.
Therefore, this state can be naturally identified with a vortex. Note that this state
can be found only in the CP? phase (i.e. in the Higgs phase), in complete agreement
with the low-energy physics.

In view of the interesting phenomena associated to branes in the conifold ge-
ometry, and their relationship to the conifold transition [41, 40], it would be in-
teresting to learn more about the Spin(7) transition using membrane probes in
this background, and also to study the corresponding holographic renormalization
group flows. For work in this area, see [30, 45, 27].

5.2. Relation to Geometric Transition. In the previous section we de-
scribed the basic examples of topology changing transitions in exceptional holo-
nomy manifolds, and commented on the important aspects of M-theory dynamics
in these transitions. As we explain in this section, some of these transitions also
have a nice interpretation in type ITA string theory, realizing dualities between
backgrounds involving D6-branes and Ramond-Ramond fluxes in manifolds with
more restricted holonomy. Specifically, we will consider two cases:

e SU(3) — G5 : We start with a relation between the conifold transition in the
presence of extra fluxes and branes and the G5 flop transition in M-theory [6]. Note
that these two transitions are associated with different holonomy groups'® and,
in particular, with different amounts of unbroken supersymmetry. The relation,

10That is why we refer to this case as SU(3) — Ga.
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FIGURE 12. Geometric transition in ITA string theory connecting
D6-branes wrapped around S? in the deformed conifold geometry
and resolved conifold with Ramond-Ramond 2-form flux through
the S2.

however, appears when we introduce extra matter fields, represented either by D-
branes or by fluxes. They break supersymmetry further, therefore, providing a
relation between two different holonomy groups.

In order to explain how this works in the case of the conifold, let us consider type
ITA theory on the deformed conifold geometry, T*S? =2 83 xR3. This already breaks
supersymmetry down to A/ = 2 in four dimensions. One can break supersymmetry
further, to A" = 1, by wrapping a space-filling D6-brane around the supersymmetric
(special Lagrangian) S? cycle in this geometry. Then, a natural question to ask is:
“What happens if one tries to go through the conifold transition with the extra
D6-brane?”. One possibility could be that the other branch is no longer connected
and the transition is not possible. However, this is not what happens. Instead the
physics is somewhat more interesting. According to [54], the transition proceeds,
but now the two branches are smoothly connected, with the wrapped D6-brane
replaced by Ramond-Ramond 2-form flux through the S? cycle of the resolved
conifold; see Figurel2.

As we explained in section 4, both D6-branes and Ramond-Ramond 2-form
tensor fields lift to purely geometric backgrounds in M-theory. Therefore, the geo-
metric transition described above should lift to a transition between two purely
geometric backgrounds in M-theory (hence, the name). Since these geometries
must preserve the same amount of supersymmetry, namely AV = 1 in four dimen-
sions, we conclude that we deal with a G5 transition. In fact, it is the familiar flop
transition in M-theory on a G5 manifold [1, 6]:

X >~ 83 xR*

Indeed, if we start on one of the three branches of this manifold and choose the
‘M-theory circle’ to be the fiber of the Hopf bundle in the 3-sphere

St 8% 82
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we obtain the resolved conifold as a quotient space, X/U(1) = S? x RY. More
precisely, we obtain a resolved conifold with Ramond-Ramond 2-form flux and no
D6-branes because the circle action has no fixed points in this case. This gives
us one side of the brane/flux duality, namely the right-hand side on the diagram
below:

M-theory on Gs flop M-theory on Gs
manifold S?l) x R4 manifold S?Q) x R4
! !

ITA on S3 x R? with geometric transition ITA on S? x R* with
D6-brane on S? RR flux through S?

Now, let us follow the Go flop transition in M-theory on the manifold X 2
S3 x R*. As explained in the previous section, after the transition we obtain a
G2 manifold with similar topology, but the M-theory circle is now embedded in
R%, rather than in S3. Acting on each R? fiber, it yields R = R*/U(1) as a
quotient space with a single fixed point at the origin of the R* (see the discussion
of M-theory on the Taub-NUT space in section 4). Applying this to each fiber
of the G5 manifold X, we obtain the deformed conifold as the quotient space,
X/U(1) 2 S x R3, with the fixed point set L = S®. Since the latter is identified
with the location of the space-filling D6-brane, we recover the other side of the
brane/flux duality, illustrated in the above diagram.

Thus, we explained that the geometric transition — which is a highly non-
trivial, non-perturbative phenomenon in string theory — can be understood as
a G4 flop transition in M-theory. Various aspects of this transition have been
discussed in [1, 6, 8, 11, 18, 13, 19, 7]. As we show next, there is a similar
relation between the phase transition in the G5 holonomy manifold X = CP? x R?
and the Spin(7) conifold transition, discussed in the previous section.

e G2 — Spin(7) : Consider type IIA string theory on the G2 holonomy mani-
fold

(5.4) CP? x R3

which is obtained by resolving the cone over SU(3)/U(1)?. As was discussed in
the previous section, the corresponding moduli space has three classical branches
connected by a singular phase transition. Motivated by the geometric transition in
the conifold example, one could wrap an extra D6-brane over the CP? cycle and ask
a similar question: “What happens if one tries to go through a phase transition?”.

Using arguments similar to [6], one finds that the transition is again possible,
via M-theory on a Spin(7) manifold [31]. More precisely, after the geometric tran-
sition one finds type ITA string theory in a different phase of the G manifold (5.4),
where the D6-brane is replaced by RR flux through CP! ¢ CP2. This leads to a
fibration:

S! < 85 — CcP?
Hence the M-theory lift of this configuration gives a familiar Spin(7) conifold,
X =2 8° xR

Similarly, one can identify the lift of CP? x R3 with a D6-brane wrapped around
CP? as the Spin(7) manifold CP? x R*, which is another topological phase of the
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FIGURE 13. Geometric transition in ITA string theory connecting
one branch of the Gy manifold CP? x R3, where D6-branes are
warpped around the CP? cycle and another branch, where D6-
branes are replaced by Ramond-Ramond 2-form flux through the
CP! c CP2.

Spin(7) conifold. Summarizing, we find that the conifold transition in M-theory on
a Spin(7) manifold is related to a geometric transition in ITA string theory on the
G2 manifold (5.4) with branes/fluxes, as shown in the diagram below:

M-theory on Spin(7) conifold transition M-theory on Spin(7)
manifold CP? x R* manifold S® x R3

! !
ITA on CP? x R3 with geometric transition ITA on CP? x R? with
D6-brane on CP? RR flux through CP*!

However, unlike its prototype with larger supersymmetry, this transition does

not proceed smoothly.

References

B.S. Acharya, On Realising N=1 Super Yang-Mills in M theory, hep-th/0011089.

. B.S. Acharya, On Mirror Symmetry for Manifolds of Fxceptional Holonomy, Nucl. Phys.

B524 (1998) 269; “Exceptional Mirror Symmetry 1-14,” in Winter School on Mirror Sym-
metry, Vector Bundles and Lagrangian Submanifolds, C. Vafa and S.-T. Yau, eds., AMS and
International Press, Boston, 2001.

. D.V. Alekseevsky, Riemannian Spaces with Exceptional Holonomy, Funct. Anal. Appl. 2

(1968) 97.
R. Brown and A. Gray, Riemannian Manifolds with Holonomy Group Spin(9), Differential
Geometry (in honor of Kentaro Yano), Tokyo (1972) 41.

. P. S. Aspinwall, B. R. Greene, D. R. Morrison, Spacetime Topology Change: The Physics of

Calabi-Yau Moduli Space, hep-th/9311186.

. P. Aspinwall, B. Greene and D. Morrison, Multiple Mirror Manifolds and Topology Change

in String Theory, Phys. Lett. B303 (1993) 249, hep-th/9301043.



10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

M-THEORY ON MANIFOLDS WITH EXCEPTIONAL HOLONOMY 157

. M. Atiyah, J. Maldacena and C. Vafa, An M-theory Flop as a Large N Duality, J. Math.
Phys. 42 (2001) 3209, hep-th/0011256.

. M. Aganagic and C. Vafa, G2 manifolds, mirror symmetry and geometric engineering,
arXiv:hep-th/0110171.

. M. Atiyah and E. Witten, M-Theory Dynamics On A Manifold Of Go Holonomy, Adv.
Theor. Math. Phys. 6 (2002) 1.

. R. Blumenhagen and V. Braun, Superconformal field theories for compact G2 manifolds,

JHEP 0112, 006 (2001) [arXiv:hep-th/0110232].

R. Blumenhagen and V. Braun, Superconformal field theories for compact manifolds with

Spin(7) holonomy, JHEP 0112, 013 (2001) [arXiv:hep-th/0111048].

A. Brandhuber, J. Gomis, S. S. Gubser and S. Gukov, Gauge theory at large N and new Ga

holonomy metrics, Nucl. Phys. B. 611, 179 (2001), hep-th/0106034.

M. Berger, Sur les groupes d’holonomie des variétés d comnexion affines et des variétés

riemanniennes, Bulletin de la Société Mathématique de France, 83 (1955) 279.

A. Brandhuber, G2 holonomy spaces from invariant three-forms, Nucl. Phys. B. 629, 393

(2002) [arXiv:hep-th/0112113].

R.L. Bryant, Metrics with Ezceptional Holonomy, Ann. Math. 126 (1987) 525.

R. Bryant, S. Salamon, On the Construction of some Complete Metrics with Exceptional

Holonomy, Duke Math. J. 58 (1989) 829.

Z. W. Chong, M. Cvetic, G. W. Gibbons, H. Lu, C. N. Pope and P. Wagner, General

metrics of G2 holonomy and contraction limits, Nucl. Phys. B. 638 (2002) 459. arXiv:hep-

th/0204064.

M. Cvetic, G.W. Gibbons, H. Lu, C.N. Pope, Cohomogeneity One Manifolds of Spin(7) and

G2 Holonomy, Phys. Rev. D65 106004 (2002).

M. Cvetic, G. W. Gibbons, H. Lu and C. N. Pope, M-theory conifolds, Phys. Rev. Lett. 88,

121602 (2002) [arXiv:hep-th/0112098].

M. Cvetic, G. W. Gibbons, H. Lu and C. N. Pope, A G2 unification of the deformed and

resolved conifolds, Phys. Lett. B. 534, 172 (2002) [arXiv:hep-th/0112138].

M. Cvetic, G. W. Gibbons, H. Lu, C. N. Pope, New Complete Non-compact Spin(7) Mani-

folds, Nucl. Phys. B620 (2002) 29, hep-th/0103155.

L. J. Dixon, J. A. Harvey, C. Vafa and E. Witten, Strings On Orbifolds. 1 and 2, Nucl. Phys.

B 261 (1985) 678; Nucl. Phys. B. 274 (1986) 285.

T. Eguchi and A. J. Hanson, Asymptotically Flat Selfdual Solutions To Euclidean Gravity,

Phys. Lett. B 74 (1978) 249; T. Eguchi, P. B. Gilkey and A. J. Hanson, Gravitation, Gauge

Theories And Differential Geometry, Phys. Rept. 66 (1980) 213.

T. Eguchi and Y. Sugawara, CFT description of string theory compactified on non-compact

manifolds with Go holonomy, Phys. Lett. B 519, 149 (2001) [arXiv:hep-th/0108091].

T. Eguchi and Y. Sugawara, String theory on G2 manifolds based on Gepner construction,

Nucl. Phys. B 630, 132 (2002) [arXiv:hep-th/0111012].

J. Gomis, D-Branes, Holonomy and M-Theory, Nucl. Phys. B606 (2001) 3, hep-th/0103115.

B. Greene, D. Morrison and A. Strominger, Black Hole Condensation and the unification of

String Vacua, Nucl. Phys. B451 (1995) 109, hep-th/9504145.

U. Girsoy, C. Nunez, M. Schvellinger, RG flows from Spin(7), CY 4-fold and HK manifolds

to AdS, Penrose limits and pp waves, JHEP 6, (2002) 015.

G. W. Gibbons, D. N. Page, C. N. Pope, Einstein Metrics on S%, R® and R* Bundles,

Commaun. Math. Phys 127 (1990) 529-553.

S. Gukov and J. Sparks, M theory on Spin(7) manifolds. I, Nucl. Phys. B625 (2002) 3,

hep-th/0109025.

S. Gukov and D. Tong, D-brane probes of G2 holonomy manifolds, Phys. Rev. D66 (2002)

087901. hep-th/0202125.

S. Gukov and D. Tong, D-brane probes of special holonomy manifolds, and dynamics of

N =1 three-dimensional gauge theories, JHEP 0204, 050 (2002), hep-th/0202126.

S. Gukov, J. Sparks and D. Tong, Conifold transitions and five-brane condensation in M-

theory on Spin(7) manifolds, Classical Quantum Gravity 20 (2003) 665. hep-th/0207244.

S. Gukov, S. T. Yau and E. Zaslow, Duality and fibrations on G2 manifolds, Turkish J.

Math. 7 (2003) 61. arXiv:hep-th/0203217.

Y.-H. He, G2 Quivers, JHEP 0302 (2003) 023.



158

34

35
36
37
38

39.

40.

41.

42.

43.
44.

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

SERGEI GUKOV

. N. Hitchin, Stable forms and special metrics, in Global Differential Geometry: The math-
ematical legacy of Alfred Gray (Bilbao, Spain 2000) 70 Contemp. Math. 288, AMS 2001.
math.DG/0107101.

. N. Hitchin, The geometry of three-forms in siz and seven dimensions, math.DG/0010054.

. R. Harvey and H.B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982) 47.

. D. Joyce, Compact Manifolds with Special Holonomy, Oxford University Press, 2000.

. D. Joyce, Special Lagrangian m-folds in C™ with symmetries, Duke Math. J. 115 (2002) 6.

math.DG/0008021.

A. Kovalev, Twisted connected sums and special Riemannian holonomy, J. Reine Ang. Math.

565 (2003) 125. math.dg/0012189.

I. R. Klebanov and M. J. Strassler, Supergravity and a confining gauge theory: Duality cas-

cades and chiSB-resolution of naked singularities, JHEP 0008, 052 (2000), hep-th/0007191.

I. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau

singularity, Nucl. Phys. B536, 199 (1998), hep-th/9807080.

H. Kanno, Y. Yasui, On Spin(7) holonomy metric based on SU(3)/U(1) I and II, J. Geom.

Phys. 43 (2002) 293-209, 310-326. hep-th/0108226 and hep-th/0111198.

J. Levine, Semi-Free Circle Actions on Spheres, Invent. Math. 22 (1973) 161.

J-H. Lee and N. C. Leung, Geometric Structures on Gz and Spin(7)-Manifolds,

math.DG/0202045.

A. Loewy, Y. Oz, Branes in Special Holonomy Backgrounds, Phys.Lett. B537 (2002) 147.

hep-th/0203092.

R. McLean, Deformations of Calibrated Submanifolds, Comm. Anal. Geom. 6 (1998) 705-

747.

D. Montgomery, L. Zippin, Topological transformation groups, New York: Interscience, 1955.

H. Partouche and B. Pioline, Rolling among G2 vacua, JHEP 0103 (2001) 005, [arXiv:hep-

th/0011130].

R. Roiban, C. Romelsberger and J. Walcher, Discrete torsion in singular G2-manifolds and

real LG, Adv. Theor. Math. Phys. 6 (2003) 207. arXiv:hep-th/0203272.

A. Strominger, Massless black holes and conifolds in string theory Nucl. Phys. B. 451, 96

(1995), hep-th/9504090.

S. Shatashvili, C. Vafa, Superstrings and Manifolds of Exceptional Holonomy, Selecta Math

(N. S.) 1 (1995) 347. hep-th/9407025.

K. Sugiyama and S. Yamaguchi, Cascade of special holonomy manifolds and heterotic string

theory, Nucl. Phys. B622, 3 (2002) [arXiv:hep-th/0108219].

P.K. Townsend, The eleven-dimensional supermembrane revisited, Phys. Lett. B350 (1995)

184.

C. Vafa, Superstrings and topological strings at large N, J. Math. Phys. 42 (2001) 2798,

hep-th/0008142.

E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B443 (1995) 85,

[arXiv:hep-th/9503124].

E. Witten, ” Phases of N = 2 Models in Two Dimensions’, Nucl. Phys. B403 (1993) 159,

hep-th/9301042.

E. Witten, On Flux Quantisation in M-Theory and the Effective Action, J. Geom. Phys. 22,

1 (1997), hep-th/9609122.

S.-T. Yau, On the Ricci curvature of a compact Kdhler manifold and the Monge-Ampére

equations. I, Commun. Pure Appl. Math. 31 (1978) 339.

JEFFERSON PHYSICAL LABORATORY, HARVARD UNIVERSITY, CAMBRIDGE, MA 02138, U.S.A.
E-mail address: gukov@tomonaga.harvard.edu



Clay Mathematics Proceedings
Volume 3, 2004

Special holonomy and beyond

Nigel Hitchin

ABSTRACT. Manifolds with special holonomy are traditionally associated with
the existence of parallel spinors, but Calabi-Yau threefolds and G2 manifolds
also arise naturally in the context of a nonlinear form of Hodge theory: finding
critical points of a natural functional defined on the differential p-forms in a
fixed cohomology class. The advantage of this point of view is that it gives
a natural approach to the moduli spaces of these structures, which appear as
open sets in the appropriate cohomology group, and also leads to other, less
familiar, geometric structures.

1. Invariant functionals and special holonomy

The list of special holonomy groups of Riemannian manifolds which emerged
from Berger’s work in the 1950’s was recognized later to contain all those manifolds
which possess covariant constant spinors, that is spinor fields ¢ with Vi = 0. They
are:

(1) SU(n): Calabi-Yau manifolds

(2) Sp(n):  hyperkédhler manifolds

(3) Ga: special manifolds in dimension 7
(4) Spin(7): special manifolds in dimension 8.

All of these are Einstein metrics with vanishing Ricci tensor. A second list of
special metrics consists of those with Killing spinors, spinor fields 1 satisfying
Vx1 = AX1. These are:

1) spheres

2) Einstein-Sasakian manifolds in dimension 2k + 1
3) 3-Sasakian manifolds in dimension 4k + 3

4) nearly Kéahler manifolds in dimension 6

5) weak holonomy G2 manifolds in dimension 7.

These are Einstein metrics with R;; = Ag;; and A > 0. The link between them,
established by Béar in 1993 [1], is that the Killing spinor on a manifold M™ extends
to become a covariant constant spinor on the (n + 1)-dimensional cone over M™.
In fact all of these geometries are defined by reference to a closed form or
collection of forms, and for some of them there is an alternative setting, independent
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of spinors or Riemannian metrics, which we shall present here. The approach is
very natural, but leads on to some geometrical structures which appear not to have
been considered before.

We know what a non-degenerate symmetric bilinear form is, and it gives us the
notion of a metric, but what is a non-degenerate exterior form? One answer is to
ask that it should be an element of the vector space APV* which lies in an open
orbit of the action of the general linear group GL(V). For example, GL(2n,R)
acts on A2R>" with an open orbit: the orbit consists of nondegenerate alternating
bilinear forms.

Now GL(V) acts on APV*, but dim APV* = n!/(n—p)!p! and dim GL(V) = n?
so in particular to get an open orbit we need

n! <02
(n—p)lp! —
which puts serious constraints on when this occurs. We list the possibilities be-
low, but first we note that the word “nondegenerate” has specific connotations for
bilinear skew forms so instead of using this word we make the

DEFINITION 1.1. If p € APV* lies on an open orbit under GL(V) it is called
stable.

Note that an open orbit in APV* implies the existence of an open orbit in A" PV*
by duality, so stability really occurs for pairs of forms in complementary dimensions.

There is a list, known in one form or another for many years, of when stable
forms arise:

(1) p=1 all n: stable = non-zero
(2) p=2all n: if n =2m+ 1 or 2m, then stable forms are of rank 2m when
considered as bilinear forms. The stabilizer subgroup in dimension 2m is
Sp(2m, R).
(3) p =3, n=6: stabilizer SL(3,C) or SL(3,R) x SL(3,R)
(4) p =3, n=T7: stabilizer Gy or its non-compact form
(5) p =3, n=_8: stabilizer SU(3),SU(2,1) or SL(3,R) in the adjoint repre-
sentation
and for the last three this means that we have normal forms at the linear algebra
level (for stabilizers SL(3,C), G2 and SU(3)) given by:

o dridxodrs — dyidysdrs — dyadysdr — dysdyidzs

[ ] (dl’ldl'g — dZ3d$4)dl'5 —+ (dl’ldl'g — dx4d$2)dl'6 —+ (dl’1d$4 - dxgdxg)dl'7 +
drsdxredxy

o dridaodrs—dxy (derdry+drsdas) —das(drrdes+daedry) +des(derdas+
dm4dm5) + dxg(d$4d$5 + d$6d$7)

Now stability implies that there is an open set U = GL(V)/H C APV*, and
the stabilizer H of a point in U is Sp(2m,R), G ... etc. Each one of these groups
preserves also a volume form (metric or symplectic) so there is a GL(V)-invariant
map

¢:U— A"V*.
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Invariance under the scalar matrices implies that
(N p) = A"6(p)
so ¢ is homogeneous of degree n/p, and extends to a continuous map
¢ APV* — A"V
which is smooth on the open set U C APV*. The derivative of ¢ at p is a linear
map from APV* to A”V* i.e.
D¢ € (APV*)* @ A"V™
But (APV*)* 2 A" PV* @ A"V so there is a unique
peANTPYT
such that the derivative can be expressed as
Do(p) = p A .
Note that if we take p = p, then Euler’s formula for homogeneous functions implies

that

pAp=—d(p)

n

p

This nonlinear algebraic operation p +— p is familiar enough in the concrete cases:

(1) for n = 6, p = 3, p is determined by the property that Q = p +ip is a
complex (3, 0)-form preserved by SL(3,C),

(2) forn="7,p=3or 4, p = *p, where * is the Hodge star operator for the

inner product on V,
(3) forn=8,p=3orp=>5,p=—*p.

EXAMPLE 1.2. Take the symplectic case of p = w € A2V*. Then w is stable
if it is nondegenerate, i.e. if w lies in the open set U defined by det w;; # 0. The
volume form is the usual Liouville volume ¢(w) = w™ (up to a universal scale).
Differentiating, we get

O =mwm e A2

m=1 — mw™ verifying the homogeneity.

and w A mw

Suppose now that we have a compact manifold M™, and a p-form p € QP (M)
which is stable at each point. This means that topologically we must have a re-
duction of the structure group of the tangent bundle to the stabilizer — one of the
groups in the list above. Then since p € C*°(M, APT*) we obtain

¢(p) € CF(M,A"T™).

Now define the diffeomorphism-invariant functional

B(p) = /M o(p).

We now ask the question: what is a critical point of the functional ®(p) = fM o(p)
for p a closed form in a fized cohomology class in HP(M,R)?
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This is a nonlinear version of Hodge theory. The answer is obtained by calcu-

lating the first variation:
s0(5) = [ Dolp)= [ prp.
M M

Because p is varying in a fixed cohomology class, p = da for some « and so

5<I>(p):/ ﬁAda::I:/ dp A a.
M M

The critical points which are stable forms therefore occur when
dp=0=dp.

EXAMPLE 1.3. Take the symplectic case. If w € Q%(M) lies in a fixed coho-
mology class in H?(M,R) then

P(w) = /M W™ = [w]™[M] = const.

so any symplectic form is a critical point. On the other hand suppose we take
the stable form p = w™~! as the basic object and only suppose that this one is
closed and lies in a fixed cohomology class in H>™~2(M,R). This time ®(p) is not
constant, and the critical points are where
dp=dw=20

or in other words when w is symplectic.

A critical point can never be an (isolated) Morse critical point since the func-
tional is invariant by the full group of diffeomorphisms of M. We can ask never-
theless if it is nondegenerate transverse to the action of Diff (M) — an infinite di-

mensional version of a Morse-Bott critical point. In the symplectic case of p = W™
above, we calculate the second variation to see this:

82®(p1, p2) = m(m — 1)/ W™ 2010
M

The degeneracy subspace is defined by 62®(p1, p2) = 0 for all po = do, which gives

0= (m— 1)/ W™ 20109 = / W1pe = / @1 A do.
M M M

So p; is in the degeneracy space iff dwy = 0.
Now recall the strong Lefschetz property:
Uw]™ 2 : H*(M,R) = H*"%(M,R)
for symplectic manifolds. We know that dw; = 0 and since
p1 = (m—1)w™ 20

if strong Lefschetz holds then p; exact implies w; is exact, i.e. w1 = da. In this
case we define the vector field X by ixw = a and then

(4')1 = EXw

which means that the variation is tangential to the action of Diff (M). The features
we encounter here are:

(1) @ is nondegenerate transverse to Diff (M) orbits if strong Lefschetz holds,
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(2) the local moduli space = open set in H*™~2(M,R),
(3) the Hessian of ® defines an indefinite metric on the moduli space.

Note that traditionally the local moduli space of symplectic structures is given by
the de Rham cohomology class [w] € H2(M,R) but [w] — [w™ 1] is a local diffeo-
morphism if strong Lefschetz holds, which brings the two points of view together.

A more interesting example than the symplectic one is the case of 3-forms in
six dimensions as in [6]. In this case p € A3T™* is the real part of a complex locally
decomposable form v, and ¢(p) = ivAv/2. Here p = Imv € A3T* and so v = p+ip
is a (3,0) form for an almost complex structure on M. The critical points of ® on
a class in H*(M,R) give

d(p+ip) =0

and this implies that the complex structure is integrable and v is a non-vanishing
holomorphic three-form. Thus M is given the structure of a complex threefold
with trivial canonical bundle (for example a Calabi-Yau manifold). The essential
features in this case are:

(1) @ is nondegenerate transverse to Diff (M) orbits if the d9-lemma holds,

(2) the local moduli space is isomorphic to an open set in H3(M, R), which
gives another proof in this dimension of the unobstructedness of moduli,

(3) the Hessian of @ defines an indefinite special Kdhler metric on the moduli
space.

In dimension 7, p € A3T* which is stable at each point defines an almost Ga-
structure and ¢(p) is the Riemannian volume of the Ga-metric. We find p = xp €
A*T*, with * the Hodge star operator of this metric and the critical points of ® are
where

dp=0=d=x*p.

This is known to be equivalent to the condition that p is covariant constant with
respect to the metric and so defines a metric with holonomy Go.

Using Hodge theory, the features here are that transverse nondegeneracy holds
and, as a consequence, the moduli space is an open set in H3(M,R). The Hessian
of ® again defines an indefinite metric on this space.

All of these structures clearly have a distinguished class of flat coordinates on
their moduli spaces. This would equally be true of the final structure thrown out
by the stability condition in dimension 8 if only we knew of a nontrivial example.
We study this geometry next nevertheless.

As noted above, p € A3T* defines the structure of the Lie algebra of SU(3) on
T. This means that we have a metric defined by the Killing form tr(XY") and the
3-form is then

p(X.Y.Z) = tx(X[Y, Z).
The integrand in the functional is then the Riemannian volume form ¢(p) and

p==xp € NT*
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Critical points of the functional on a cohomology class in H3(M,R) are therefore
given by

dp=0=d=x*p.
This is directly analogous to the Gy situation but there are essential differences, in
particular we do not get a metric of special holonomy since SU(3) does not appear
in Berger’s list.

One approach to this geometry is through triality in 8 dimensions. Recall that
there are three real 8-dimensional representations of Spin(8): the vector represen-
tation T' and the two half-spin representations S™, S~. These are permuted by an
outer automorphism A% : Spin(8) — Spin(8) of order three. Now we can Clifford
multiply a spinor ¢ € ST by a vector x € T to get -1 € S~ and since x is skew
adjoint in this action,

(1" wax ’lr/)) = (_332 w7w)
But in the Clifford algebra 2?2 = —(x, )1 so this expression is
e

If z,9 and z - ¢ all lived in the same space we would call this an orthogonal
multiplication. In fact, a simple weight calculation shows that, restricted to Ad :
SU(3) — Spin(8),

TS5t ~g

so we do get an orthogonal multiplication on the Lie algebra of SU(3), in fact it is:

7
A-B=wAB - wBA - —1tr(AB)1
OBA = g rAB)

where w = (1 +1iv/3)/2.
Thus if M® has an adjoint SU(3) structure, as described above, the SU(3)-
invariant isomorphism St 2 T defines a spin 3/2 field:
e C®(M,ST ®Ab).
This ¢, it turns out, satisfies the Rarita-Schwinger equation (see [7])
D=0, d* =0

where for the first equation we think of v as a spinor with values in the bundle
A' and apply the Dirac operator D and in the second we think of it as a one-form
with values in ST. Now take the second covariant derivative of ¢: this is a section
V2 € C°(ST @ A' @ A @ A!) or in more conventional terms

V2 = ik
Covariantly differentiate the equation Dy = 0 to obtain Ej ej Yk = 0 and then

contract to get
> et = 0.
i,j

Now differentiate d*1) = 0 which gives )" 1);.;; = 0 so that

> it = 0.
]
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Subtract the two displayed formulae and re-express ;. j; — 1;.;; using the curvature
tensor to get

Z Rij eﬂb]’ =0

i,
which implies that 8 of the 36 components of the Ricci tensor vanish. These
manifolds are not quite Einstein manifolds, clearly, but yet have some common
features. Unfortunately the only known compact example is the group manifold
SU(3), though one can find nontrivial local examples.

2. Cohomogeneity one metrics

Variational characterizations can be useful in a practical way in situations
of symmetry but unfortunately compact manifolds with holonomy SU(n), Gy or
Spin(7) have no continuous symmetries because the Ricci tensor vanishes and so
any Killing vector is covariant constant. The formalism described above can still be
used, however, and we shall see that, as in [5], [3], it provides a practical approach
to deriving differential equations, if not solving them.

The first aspect of this involves duality of spaces of forms. If dg € QP is exact
and v € Q7P is closed then by Stokes’ theorem

/Mdﬁ/wzo.

This implies that the natural pairing of p-forms and (n — p)-forms gives a formal
isomorphism

(22

exact

)r e QO

closed

and since d : Q" P — Q" P! has kernel the closed (n — p)-forms we formally have

(we are not concerned with distributions here)

~ On—p+1
(Q]ejxact)* = Q:;capct .

In the previous lecture we were restricting a functional to a cohomology class.
Now let’s consider the internal geometry of such a class

A={a e :da=0,[a] =a€ HP(M",R)}.

P
exact’

TA= Ax QP

exact*®

This is an affine space modelled on () and so its tangent bundle is trivial and

Using the duality above, its cotangent bundle is
T*A = "4 X (Q::mact)* = A X Qnierl'

exact

Bearing this in mind, let’s return to the 7-dimensional case, but now considering
4-forms instead of 3-forms. There are stable 4-forms and we can do the variational
approach of the last lecture and see G2 manifolds as critical points of a functional
on 4-forms in a given cohomology class, but the 4-form approach gives a bit more,
because we now have
* Q4

(Q4 exact

ezact)
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so A has a (flat indefinite) metric
(dn, dn) =/ n A dn.
M

To make use of this, first restrict to the trivial cohomology class. Then we have
two functionals:

(1) ®(dn) — the G2 volume
(2) Q(dn) = [,,n A dn — from the indefinite inner product.

We set up then a constrained variational problem — finding the critical points of ®
subject to the constraint Q(dn) = 1. The first variation gives:

5<I>(d7'7):/ xdn A dn
M

Qi) =2 [ iy
M
Using a Lagrange multiplier A and Stokes’ theorem the equations become

d(xp) = Ap

where p = dn.

A manifold with this structure is called a weak holonomy G4 manifold. Tt is
an Einstein manifold with positive scalar curvature and has a Killing spinor. As
such it defines an incomplete Spin(7) metric on the cone, but which also serves
as a model for asymptotically conical Spin(7) metrics. There are plenty of weak
holonomy G2 manifolds, since a 3-Sasakian manifold and its squashed deformation
provides an example and thanks to the work of Boyer, Galicki et al (see [2]) there
are infinitely many of these.

EXAMPLE 2.1. We can find homogeneous examples by applying the variational
approach to invariant forms. For example, S7 C H? is acted on by Sp(2) x Sp(1)
(acting by the quaternionic matrix on the left and the quaternionic scalar on the
right). This makes S7 — S* into a principal SU(2)-bundle with a1, a9, a3 the
components of a connection form (the 1-instanton bundle in fact) and wy,ws, ws the
components of the curvature form. The closed invariant 4-forms are then spanned
by do, dT where

o=a1 Naz N\ as, T=0o1 Nwy; +as ANwa + ag A ws.

This provides a two-dimensional vector space of invariant exact 4-forms xdo + ydr
on which we can define the two functionals and easily find the critical points, which
give the squashed 7-sphere.

In the case where the cohomology class A is non-trivial, () defines an indefinite
metric and we take the gradient vector field X = d¢ of ®(p). Since

/f/\d(p:/ *p N\ dg
M M
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we have X = d€ = d x p which yields the gradient flow equation:

% =dx*p.
But dp =0, so
d(xp ANdt+p) =0
and then

*p \Ndt+ p
satisfies precisely the algebraic condition to be the 4-form stabilized by Spin(7)
(not a “stable form” in the sense above.) Being closed, it defines a Riemannian
metric with holonomy Spin(7) on R x M, or a subinterval thereof.

ExXAMPLE 2.2. The formalism above can be used to give cohomogeneity one
examples of non-compact Spin(7) manifolds. Again using S7 as the 7-manifold with
symmetry group Sp(2) x Sp(1) one obtains the Bryant-Salamon Spin(7) manifold,
the first nontrivial complete example to be discovered. If we weaken the symmetry
to Sp(2) x U(1) then the invariant forms are spanned by

d(()él N ag A Oég), d(a1 ANwy +ag A wg), (013 /\W3).

With this, one can easily write the gradient flow which gives the system of ODE’s

solved by Cveti¢ et al [4]. Their solutions give in particular on M = R® an analogue

of the Taub-NUT metric and one on the total space ST — S* of the spin bundle
over the sphere. They each have the form

(r+£)%dr? Cr+30(r—10) 5, 1 D R

- 30)(r — )(Du; —(r® —£2)dQ2

(7’+3£)(7’—£) (7‘+£)2 o +4(T+ )(T )( Nz) +2(T ) 4

for a different range of values.

If we move now to six dimensions then the duality of forms tells us that
@ )=l

exact exact*®

Here we work with two objects — p € Q3 a stable form with stabilizer SL(3,C)

and w? € Q* with stabilizer Sp(6, R). Compatibility of these two forms leads to a

reduction of structure group to SU(3) and the compatibility conditions are:
whp=0, ¢(p) ="

The first says, from the complex point of view that w is of type (1,1), and from the
symplectic point of view that p is primitive. The second says that the norm of p is
constant.

We can consider here a constrained variational problem too, taking p = do € Q3
an exact 3-form and
c=w?=dB e Q*

an exact 4-form. The duality defines the bilinear pairing

B(p,w?) = /M da A\

and we have two functionals
(1) A(p,0) = ®(p) + (o) — the sum of volumes
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(2) Blp,o).
The critical points of A subject to B = 1 are given by the equations (after some
scale changes)
dp=w?, dw=p.
Interestingly, the compatibility conditions to reduce to SU(3) follow from these
equations, for firstly
WAp=wAdw=dw?/2=0.
It follows from this that w is type (1,1) so that w A p = 0 too. Then
W=wAdp=dwAp)—dwAp=pAp.

The structure on M® defined by this pair of forms is called a weak holonomy SU (3)
structure or nearly Kdhler structure. Here there are few known examples: S¢, CP3,
U(3)/T and S? x S3. The general class of manifolds of this type are Einstein with
positive scalar curvature and have Killing spinors.

To pursue the analogue of the gradient flow here we take two cohomology classes
A€ H3(M,R) and B € H*(M,R). Then T(Ax B) = Ax B x Q3 ... x Q% ..
The pairing

B(p,w”) :/ da A\
M
defines an indefinite metric as before, but more usefully a symplectic structure
w((p1,01), (p2,02)) = (p1,02) — (p2,01)
on A x B. We now take the function
H = &(p) — @(0)

and derive the Hamiltonian flow equations which are:

dp

E = dw

oo 0w
ot e T T

It happens that the compatibility conditions for SU(3) are preserved by the flow
and then
dtANw+p

defines a G4 metric on an interval of R x M?S.

EXAMPLE 2.3. In [3] the authors take M® = 53 x S3 and cohomology classes
" H3\M)=ZoZ, H'(M)=0.
Left-invariance of forms yields
p=nX1YX3 —moyos03+x1 (01 X3 X3 — 090337)
+ 2 cyclic terms
0 =1Y102%903%3+ Y2032301 21 + Y301 21 02 2o

The equations are then:
Y2Y3
n

Ty =
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mnxy + (m+n) ez + 21 (23 + 22 — 29)

VYL Y293

=

EXAMPLE 2.4. In [5] the authors take M% = S x T® for which
H¥M)=ZoZ, HY(M)=Z.
Left-invariance of forms gives:
p=nX1¥ Y3 —moyop03+ [T101 353
+ 2 cyclic terms]
0 =y1023203%3+Yy203%30131 +¥y301%102%2

The equations are then:

. Y2 Y3
r1 =
Y1
. mxa 3
Y1 =

VYLY2Y3

3. Generalized Calabi-Yau manifolds

We saw in the first Lecture that the Calabi-Yau condition could be derived
by a variational approach using 3-forms in six dimensions. In this lecture we shall
see how a variational approach using forms of arbitrary degree in six dimensions
produces a new differential geometric structure. It is perhaps easier to introduce
the structure first. This involves the Courant bracket on sections of T'® APT™*. If
X +E&Y +neC(T@®APT*) one defines

X &Y 4] = [X, Y]+ Loy — L& — gdlixn — iv€)

Unlike the Lie bracket on vector fields this has nontrivial automorphisms defined
by forms: if o € QP! and da = 0 then defining
AX 4+ =X+ ¢+ixa

one obtains

A(X +&6Y +1)) = [AX +€), A(Y +n)].

EXAMPLE 3.1. In the case p = 0 we have X + f,Y 4+ g € C*°(T) ® C* and one
finds

X+ /f,Y+g=[X,Y]+Xg—-Y/.
The automorphisms here are the closed 1-forms a € Q! where
AX+f) =X+ f+ixa

In fact this example has another interpretation as S'-invariant vector fields on
M x S, for if

d
X il
Tl
then the Lie bracket is equal to the Courant bracket. Moreover a gauge transfor-

mation g : M — S! defined by

(,€") = (2, g(2)e”)
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gives the automorphism of invariant vector fields
d 1 d
X+f——X —ixg 'dg)—
+fd9'—> +(f+l.lxg g)dﬂ

so that a = g~'dg/2mi is the closed 1-form defining it. Note however that o € Q!
in this case is closed with integral periods so that a general automorphism is a flat
connection and not just one gauge-equivalent to the trivial connection.

There is in fact a more general setting for this if we replace the product M x St
by a principal S'-bundle P over M. In that case we have an exact sequence of vector
bundles over M (the Atiyah sequence)

0—>1—>TP/51—>TM—>0.

The sections of TP/S* are the invariant vector fields on P and so have their own
Lie bracket. A connection on P is a splitting of the exact sequence: TP/G 2 T @1,
which therefore defines a bracket on sections of T'® 1. which is

X+ f,Y 49 —2F(X,Y)

where F' is the curvature of the connection. Now we see that a non-flat connection
defines a deformation of the bracket by a closed 2-form with integral periods.

It is the case p = 1 which will interest us:
X+EY+nelC™(TaoTr.
In this case the automorphisms are closed 2-forms
BeQ? dB=0

which play a role very close to that of the B-field in string theory. Concretely, the
automorphism is

AX 4+ =X+E&+ixB.
We can also twist the bracket by a closed 3-form H:
(X +&Y +n] +6ixiyH.

When H has integral periods it brings us close to the differential geometry of gerbes,
but this aspect will not be pursued here.

The vector bundle T' @ T™ has another structure defined on it apart from the
Courant bracket. The natural pairing between T and T™ defines an indefinite metric
on the bundle, with signature (n,n): for X + £ € T & T* the inner product is

(X +& X+ =—(X,8).

By naturality, any endomorphism of T preserves the inner product, but the full
orthogonal Lie algebra is
End7T & A*T* & A*T.

In particular a 2-form B, thought of as a map from T to T™*, lies in the Lie algebra.
The exponentiation of this action is

expB(X+&)=X+¢+ixB

which is just what we have seen in the context of the Courant bracket.
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More interesting than the vector representation is the spin representation,
which has a concrete form in our situation, because of the decomposition T ¢ T*
into maximal isotropic subspaces. We define the two spaces

St = ACT* @ (A"T)V/?

ST = AYT* @ (A"T)'/?
and the action of X + £ by Clifford multiplication as:

(X+8 -p=ixp+{Np

In this representation, the action of B € A2T* is
1
exp B(p) = (1+B+§B/\B+...)/\<p.

We can also consider the exterior forms alone as spinors, removing the line bundle
twist by (A"T)'/? (like Spin® structures). The spin representations S+ and S~
have an invariant symmetric or skew-symmetric form {(p, 1) defined on them. On
exterior forms this takes values in the one-dimensional space A™T™*. Concretely,
this is just the exterior product pairing, but with an alternating sign, sometimes
called in algebraic geometry the Mukai pairing.

Now we introduce a geometric structure compatible with this natural back-
ground. To motivate this recall one approach to the definition of a complex struc-
ture on a manifold of even dimension. An almost complex structure J : T" — T,
with J? = —1 has a +i eigenspace in 7' ® C which is a subbundle E satisfying the
following properties:

(1) TeC=FEaFE

(2) the sections of E are closed under the Lie bracket.
The Newlander-Nirenberg Theorem tells us that any such subbundle actually de-
fines an integrable complex structure. We now make a more general definition:

DEFINITION 3.2. A generalized complex structure on an even-dimensional
manifold is a subbundle £ C (T & T*) ® C such that
(1) (TeT*)®C=E&FE
(2) sections of E are closed under the Courant bracket
(3) E is isotropic with respect to the natural inner product on 7' ® T*.

The final isotropy condition has two connotations. On the one hand it says that
the almost complex structure J : T@®T* — T @ T is compatible with the indefinite
metric in the sense that the metric is pseudo-Hermitian. On the other, although it
is easy to let the words “closed under the Courant bracket” slip off the tongue, there
is a complication — the obstruction is only tensorial if E is isotropic. For example,
suppose that X + &£, Y + n are sections of E and consider for some function f

FX €Y ) = fIX + &Y 4]+ 5df AGixcn +iv€) = (V - f)(X +€).
Since

Slixn +iv€) = (X +6Y +1)

if F is isotropic then ixn + iy& = 0 and the obstruction to being closed under the
bracket lies in
A’E* ® E*.
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Without the isotropy condition, the embarrassing extra term df is involved.

A generalized complex structure is a reduction of the structure group of 7' T*
from SO(2n,2n) to U(n,n) together with an integrability condition. An ordinary
complex manifold is an example, where J = I on T and —I on T, but there are
more as we shall see.

Isotropic subspaces have a close connection with spinors. It is easy to see
that for any spinor ¢ the set of vectors X + & which annihilate ¢ is an isotropic
subspace, since Clifford multiplication has the characteristic property (X + £)? =
—(X + &, X +€)1. A pure spinor ¢ € ST is defined by the condition

U={X+4+€c(TaT)®C: (X+&) - -¢=0}
is maximally isotropic.

ExAMPLE 3.3. We can build up examples from the simplest situation:
(1) take the pure spinor 1 € AYT*; its maximal isotropic subspace is U = T' C
TeT*
(2) transform by B: one gets the pure spinor exp B(1) =1+ B+ 3B%+ .. ;
its maximal isotropic subspace is U = exp B(T))

A generalized complex structure is thus defined in a neighbourhood of each point by
a complex pure spinor field, well defined up to scalar multiplication. In our set-up
such a spinor for T'®T™ is a form of mixed degree on the manifold. In general there
is a complex line bundle, analogous to the canonical bundle, for which these locally
defined forms are local trivializations, but there is a situation where the pure spinor
is global:

DEFINITION 3.4. A generalized Calabi-Yau manifold is an even-dimensional
manifold M with a closed form p € Q°°/°¢ ® C which is a pure spinor and satisfies
(p, p) # 0 at each point.

In the definition, the pure spinor p defines a maximal isotropic subbundle £ C
(T'®T*) ® C and the condition (p, p) # 0 says that E® E = (T ®T*) ® C. One
can also prove the following:

LEMMA 3.5. The condition dp = 0 for a pure spinor p implies that sections of
the isotropic subbundle E C (T ® T*) ® C are closed under Courant bracket.

We see then that a generalized Calabi-Yau manifold is a particular case of a
generalized complex manifold. In practical terms it is often easier to check that a
form is closed rather than that a subbundle is closed under Courant bracket.

Surprisingly both complex and symplectic structures appear here, as in the
following examples:

(1) a Calabi-Yau manifold with non-vanishing holomorphic n-form p
(2) a symplectic manifold (M, w) with p = exp iw
(3) the B-field transform of a symplectic manifold

p = exp Bexpiw = exp(B + iw)

EXAMPLE 3.6. Here is the situation in dimension 2, in the compact case:
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(1) Odd type: p € QY(M), dp = 0, p A p # 0. There is no purity condition
here: the multiples of p define the (1, 0)-forms of a complex structure, and
then p is a non-vanishing holomorphic 1-form, so M? is an elliptic curve.

(2) Ewven type: here p = c+ [ (c constant, 5 a 2-form) such that

(c+pB,c+pB)y=cB—cB#0

This gives ¢ # 0 and Im (3/c) # 0 implies that §/c = B + iw where w is
a symplectic form, so

p = cexp(B + iw)
and M? is the B-field transform of a symplectic manifold.

In dimension 4, the purity condition is easy to state because of triality for SO(4, 4).
As we noted in Lecture 1, the vector representation and the two spin representa-
tions in eight dimensions are related by an outer automorphism. In the present
context this means that the internal structure of ST and S~ is simply that of an
8-dimensional vector space with an inner product — the spin quadratic form (¢, ¢)
— and a pure spinor is simply one that is null with respect to this.

EXAMPLE 3.7. Here then is the situation in dimension 4 in the compact case:
(1) Odd type: p= B+~ € Q' @ Q3, where 3,7 are closed and

BAy=0, BAF+BAY#O.
This implies that v = 8 A v and 3 defines a foliation by surfaces with a
transverse holomorphic 1-form, while Im (v) defines a symplectic form on
the leaves. An example is M* = M2 x M2, where M; is an elliptic curve,
and Ms a symplectic surface.
(2) Even type: p = c+ [+~ € Q°®Q? ® Q* where the null (purity) condition
is
52 = 2cy
If ¢ # 0, then
1
p=cexpfB=c+ 3+ %52
and as before, this is the B-field transform of a symplectic structure, but
if c=0, 2 =0 and is a closed, locally decomposable complex 2-form. It

defines the structure of a complex surface with nonvanishing holomorphic
2-form on M, which thus must be a torus or K3 surface.

Complex structures are not the only ones one can generalize in this way. Here
are some more obvious ones in 4 dimensions, determined by the number of spinors
fixed by a subgroup of Spin(4,4):

(1) SU(2,2) — SO(4,2):  generalized Calabi-Yau structure

(2) Sp(1,1) — SO(4,1): generalized hyperkéhler structure

(3) Sp(1) x Sp(1) — SO(4): generalized hyperkdhler metric
The last example applied to a K3 surface gives a geometrical structure whose moduli
space is a space of N = (4,4) conformal field theories [9].

The case of dimension 6 brings us back to the idea of open orbits of forms and
invariant functionals, which is where we started. In fact, as described in [8], this is
the context in which this author found these objects.
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Note that in general the dimension of the space of complex pure spinors for SO
(2m, 2m) is the dimension of Cexp B which is 1 +m(2m — 1). When m = 3, the
real dimension is therefore

2x16=32=dimS" =dimS~.
This numerical coincidence manifests itself in the more geometrical statement:

LEMMA 3.8. For the spin representations of Spin(6,6) in ST there is an in-
variant open set of real spinors ¢ such that ¢ = p+ p where p is a pure spinor with

(p,p) # 0.

As a consequence of this, (p, p) defines SO(6, 6)-invariant maps
¢ . Aev/odv* N AGV*

and on a compact manifold M% we get a functional

B(p) = /M 6(¢)

defined on even forms or odd forms, invariant under diffeomorphisms and, this time,
the action of the B-field ¢ +— exp Bep.

EXAMPLE 3.9. If p = po + p2 + ps4 + ps, then
{p,P) = pops — Pops — p2pa + P2pa.

Take ¢ = 1 — w?/2, where w is a symplectic form, then

1 1
p=exp(iv) =1+ iw — —w? —i-w?
2 6
and A
_%.3
8e) = Siw?.

So the functional @ is essentially the Liouville volume of the symplectic form.

We now address our version of nonlinear Hodge theory and ask: what is a
critical point of the functional

®0) = [ o)

for o a closed form in a fized cohomology class in H"/°4(M,R)? Just as in Lecture
1, the critical points are forms where ¢ = p 4+ p and

dp=20

which means that the critical points are generalized Calabi- Yau manifolds.

In this situation, there is a non-degeneracy condition for the critical points
which is both a generalization of the 9 lemma and of strong Lefschetz and implies
the existence of a unique nearby critical point in each nearby cohomology class,
so we deduce that the moduli space is an open set in H“’/Od(M7 R). The set-up
here however, is different from what we encountered before because we consider
structures modulo diffeomorphism and B-fields. In fact we have to take diffeomor-
phisms homotopic to the identity (which is normal as in Teichmiiller theory) and
also cohomologically trivial B-fields — exact 2-forms.
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To summarize, all the special geometries encountered above are in some way
associated to open orbits of groups. Such actions have in fact been classified and
in truth there are not many more, but to finish let me just point out that a real
form of the exceptional group Fr; in its 56-dimensional representation shares many
of the properties of the groups considered above, but I have no idea what sort of
special geometry this generates or even in what dimension.
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Constructing compact manifolds with exceptional holonomy
Dominic Joyce

ABSTRACT. The exceptional cases in Berger’s classification of Riemannian ho-
lonomy groups are G2 in 7 dimensions, and Spin(7) in 8 dimensions. Metrics
with these holonomy groups are Ricci-flat, and have many interesting geomet-
rical properties. We survey the known constructions of examples of compact
7- and 8-manifolds with holonomy G2 and Spin(7).

We first construct a compact, singular Riemannian orbifold X with holo-
nomy a proper subgroup of Gz or Spin(7), such as X = T7 /T for certain finite
groups I'. Then we resolve the singularities of X using ideas from Calabi—
Yau geometry and analytic techniques, to get a compact, nonsingular 7- or
8-manifold M with holonomy G2 or Spin(7).

1. Introduction

In the theory of Riemannian holonomy groups, perhaps the most mysterious
are the two exceptional cases, the holonomy group G, in 7 dimensions and the
holonomy group Spin(7) in 8 dimensions. This is a survey paper on the construction
of examples of compact 7- and 8-manifolds with holonomy G5 and Spin(7).

All of the material described can be found in the author’s book [9]. Some, but
not all, is also in the papers [5, 6, 7, 8, 10, 11]. In particular, the most compli-
cated and powerful form of the construction of compact manifolds with exceptional
holonomy by resolving orbifolds 7" /T, and many of the examples, are given only
in [9] and not in any published paper.

The rest of this section introduces the holonomy groups Ga, Spin(7) and SU(m),
and the relations between them. Section 2 discusses constructions for compact 7-
manifolds with holonomy G5. Most of the section explains how to do this by
resolving the singularities of orbifolds 77 /T, but in § 2.5 we briefly discuss two
other methods starting from Calabi—Yau 3-folds.

Section 3 explains constructions of compact 8-manifolds with holonomy Spin(7).
One way to do this is to resolve orbifolds 7% /T, but as this is very similar in outline
to the GG material of § 2 we say little about it. Instead we describe a second
construction which begins with a Calabi-Yau 4-orbifold.

2000 Mathematics Subject Classification. 53C29.

(©2004 Clay Mathematics Institute
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1.1. Riemannian holonomy groups.

Let M be a connected n-dimensional manifold, g a Riemannian metric on M,
and V the Levi-Civita connection of g. Let x,y be points in M joined by a smooth
path ~. Then parallel transport along ~ using V defines an isometry between the
tangent spaces 1, M, T),M at x and y.

DEFINITION 1.1. The holonomy group Hol(g) of g is the group of isometries of
T, M generated by parallel transport around piecewise-smooth closed loops based
at z in M. We consider Hol(g) to be a subgroup of O(n), defined up to conjugation
by elements of O(n). Then Hol(g) is independent of the base point = in M.

The classification of holonomy groups was achieved by Berger [1] in 1955.

THEOREM 1.2. Let M be a simply-connected, n-dimensional manifold, and g
an irreducible, nonsymmetric Riemannian metric on M. Then either
(i) Hol(g) = SO(n),
(ii) n = 2m and Hol(g) = SU(m) or U(m),
(iii) n =4m and Hol(g) = ( ) or Sp(m) Sp(1),
(iv) n =7 and Hol(g) = G,
(v) n =28 and Hol(g) = Spi ( )

Now G5 and Spin(7) are the exceptional cases in this classification, so they are
called the exceptional holonomy groups. For some time after Berger’s classification,
the exceptional holonomy groups remained a mystery. In 1987, Bryant [2] used the
theory of exterior differential systems to show that locally there exist many metrics
with these holonomy groups, and gave some explicit, incomplete examples. Then
in 1989, Bryant and Salamon [3] found explicit, complete metrics with holonomy
G2 and Spin(7) on noncompact manifolds.

In 1994-5 the author constructed the first examples of metrics with holonomy
G2 and Spin(7) on compact manifolds [5, 6, 7]. These, and the more complicated
constructions developed later by the author [8, 9] and by Kovalev [12], are the
subject of this article.

1.2. The holonomy group G,.

Let (x1,...,27) be coordinates on R”. Write dx;; ; for the exterior form
dz; Adzj A -+ Adz; on R7. Define a metric go, a 3-form ¢ and a 4-form *pg on
R” by go = dz? + - - - + da2,

1) o = dxi93 + dx145 + dX167 + dxoas — dxo57 — dx347 — dx356 and

The subgroup of GL(7,R) preserving ¢ is the exceptional Lie group Gs. It also
preserves go,*@o and the orientation on R7. It is a compact, semisimple, 14-
dimensional Lie group, a subgroup of SO(7).

A Gs-structure on a 7-manifold M is a principal subbundle of the frame bundle
of M, with structure group G5. Each Gs-structure gives rise to a 3-form ¢ and a
metric g on M, such that every tangent space of M admits an isomorphism with
R7 identifying ¢ and g with ¢y and go respectively. By an abuse of notation, we
will refer to (g, g) as a Ga-structure.

*pg = dxyse7 + dXose7 + dXos45 + dX1357 — dX1346 — dX1256 — dX1247.

PROPOSITION 1.3. Let M be a 7-manifold and (p,g) a Ga-structure on M.
Then the following are equivalent:
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(i) Hol(g) C G2, and ¢ is the induced 3-form,
(ii) Vo =0 on M, where V is the Levi-Civita connection of g, and
(iii) dp =d*¢ =0 on M.

We call Vi the torsion of the Go-structure (¢,g), and when Vo = 0 the
Go-structure is torsion-free. A triple (M, ¢, g) is called a Go-manifold if M is a 7-
manifold and (¢, g) a torsion-free Go-structure on M. If g has holonomy Hol(g) C
G, then g is Ricci-flat.

THEOREM 1.4. Let M be a compact T-manifold, and suppose that (p,g) is
a torsion-free Ga-structure on M. Then Hol(g) = Gz if and only if m (M) is
finite. In this case the moduli space of metrics with holonomy Go on M, up to
diffeomorphisms isotopic to the identity, is a smooth manifold of dimension b>(M).

1.3. The holonomy group Spin(7).

Let R® have coordinates (x1,...,xs). Define a 4-form €y on R® by

Qo =dxq234 + dxX1256 + dX1278 + dX1357 — dX1368 — dX1458 — dX1467

(2)

The subgroup of GL(8,R) preserving € is the holonomy group Spin(7). It also
preserves the orientation on R® and the Euclidean metric go = dz? + -+ + da3. It
is a compact, semisimple, 21-dimensional Lie group, a subgroup of SO(8).

A Spin(7)-structure on an 8-manifold M gives rise to a 4-form  and a metric
g on M, such that each tangent space of M admits an isomorphism with R® iden-
tifying Q2 and g with Qg and gg respectively. By an abuse of notation we will refer
to the pair (€2, g) as a Spin(7)-structure.

—dxXa358 — dXo367 — dXo457 + dXo468 + dX3456 + dX3478 + dX5675.

PROPOSITION 1.5. Let M be an 8-manifold and (92, g) a Spin(7)-structure on
M. Then the following are equivalent:
(i) Hol(g) C Spin(7), and Q is the induced 4-form,
(ii) VQ =0 on M, where V is the Levi-Civita connection of g, and
(iii) dQ2 =0 on M.

We call VQ the torsion of the Spin(7)-structure (€2, g), and (2, g) torsion-free
if VQ = 0. A triple (M, Q, g) is called a Spin(7)-manifold if M is an 8-manifold and
(Q,9) a torsion-free Spin(7)-structure on M. If g has holonomy Hol(g) C Spin(7),
then g is Ricci-flat.

Here is a result on compact 8-manifolds with holonomy Spin(7).

THEOREM 1.6. Let (M,,g) be a compact Spin(7)-manifold. Then Hol(g) =
Spin(7) if and only if M is simply-connected, and b*(M) + b3 (M) = b*(M) +
201 (M) + 25. In this case the moduli space of metrics with holonomy Spin(7)
on M, up to diffeomorphisms isotopic to the identity, is a smooth manifold of
dimension 1+ b* (M).

1.4. The holonomy groups SU(m).

Let C™ = R?™ have complex coordinates (21, ..., 2y), and define the metric
go, Kahler form wg and complex volume form 6y on C™ by

3) go = \dzl|2 44 |dzm\2, wy = %(dzl ANdzy + -+ dzy, AdZy),

and 60y =dzi A--- Adzy,.
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The subgroup of GL(2m,R) preserving go,wp and 6y is the special unitary group
SU(m). Manifolds with holonomy SU(m) are called Calabi-Yau manifolds.

Calabi—Yau manifolds are automatically Ricci-flat and Ké&hler, with trivial
canonical bundle. Conversely, any Ricci-flat Kédhler manifold (M, J, g) with trivial
canonical bundle has Hol(g) C SU(m). By Yau’s proof of the Calabi conjecture
[16], we have:

THEOREM 1.7. Let (M, J) be a compact complex m-manifold admitting Kdhler
metrics, with trivial canonical bundle. Then there is a unique Ricci-flat Kdahler
metric g in each Kdhler class on M, and Hol(g) C SU(m).

Using this and complex algebraic geometry one can construct many examples of
compact Calabi—Yau manifolds. The theorem also applies in the orbifold category,
yielding examples of Calabi-Yau orbifolds.

1.5. Relations between G2, Spin(7) and SU(m).

Here are the inclusions between the holonomy groups SU(m), Ge and Spin(7):

SU@2)  —— SUB) —— G

! ! |

SU(2) x SU(2) — SU(4) — Spin(7).

We shall illustrate what we mean by this using the inclusion SU(3) — Ga. As
SU(3) acts on C3, it also acts on R @ C? 2 R, taking the SU(3)-action on R to be
trivial. Thus we embed SU(3) as a subgroup of GL(7,R). It turns out that SU(3)
is a subgroup of the subgroup G5 of GL(7,R) defined in § 1.2.

Here is a way to see this in terms of differential forms. Identify R @ C3 with
R” in the obvious way in coordinates, so that (1:1, (xo +ix3, 24 +ix5, 26 + wc7)) in
R @ C? is identified with (z1,...,27) in R7. Then @y = day Awy + Re fy, where ¢
is defined in (1) and wyg, 0y in (3). Since SU(3) preserves wy and 6, the action of
SU(3) on R” preserves ¢p, and so SU(3) C Gs.

It follows that if (M, J, h) is a Calabi—Yau 3-fold, then R x M and S! x M have
torsion-free Go-structures, that is, are GGa-manifolds.

PROPOSITION 1.8. Let (M, J,h) be a Calabi-Yau 3-fold, with Kdhler form w
and complex volume form 0. Let x be a coordinate on R or S'. Define a metric
g=dx?+h and a 3-form ¢ = dr Aw+Reb on R x M or S x M. Then (g, ) is
a torsion-free Ga-structure on R x M or S' x M, and *p = %w Aw —dz Alm6.

Similarly, the inclusions SU(2) < Gz and SU(4) — Spin(7) give:

PROPOSITION 1.9. Let (M, J, h) be a Calabi-Yau 2-fold, with Kahler form w
and complex volume form 6. Let (x1,x9,13) be coordinates on R® or T®. Define a
metric g = da? + dz3 + dz2 + h and a 3-form

(4) p=dry Adry Adzs +dzy Aw+dos ARef —dzs Almé

on R3 x M or T3 x M. Then (p,g) is a torsion-free Ga-structure on R3 x M or
T3 x M, and

(5) *@:%w/\w—i—dxg/\dxg/\w—dxl Adzs ARefd — dzy Adxg AIm6.
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PROPOSITION 1.10. Let (M, J, g) be a Calabi-Yau 4-fold, with Kihler form w
and complex volume form 6. Define a 4-form Q on M by Q = %w ANw—+Ref. Then
(Q, g) is a torsion-free Spin(7)-structure on M.

2. Constructing Gs-manifolds from orbifolds 77 /T

We now explain the method used in [5, 6] and [9, §11-§12] to construct ex-
amples of compact 7-manifolds with holonomy Gs5. It is based on the Kummer
construction for Calabi—Yau metrics on the K3 surface, and may be divided into
four steps.

Step 1. Let T7 be the 7-torus and (g, go) a flat Ga-structure on 77. Choose a
finite group ' of isometries of T7 preserving (¢o,go). Then the quotient
T7/T is a singular, compact 7-manifold, an orbifold.

Step 2. For certain special groups I' there is a method to resolve the singularities
of T7/T in a natural way, using complex geometry. We get a nonsingular,
compact 7-manifold M, together with a map m: M — T7 /T, the resolving
map.

Step 3. On M, we explicitly write down a 1-parameter family of Ga-structures
(¢, gt) depending on t € (0,€). They are not torsion-free, but have small
torsion when ¢ is small. As ¢t — 0, the Ga-structure (¢, g;) converges to
the singular Gy-structure 7* (g, go)-

Step 4. We prove using analysis that for sufficiently small ¢, the Ga-structure (¢, g¢)
on M, with small torsion, can be deformed to a Ga-structure (@, i), with
zero torsion. Finally, we show that g; is a metric with holonomy G2 on the
compact 7-manifold M.

We will now explain each step in greater detail.

2.1. Step 1: Choosing an orbifold.

Let (0, 90) be the Euclidean Ga-structure on R” defined in § 1.2. Suppose
A is a lattice in R7, that is, a discrete additive subgroup isomorphic to Z7. Then
R7/A is the torus 77, and (g, go) pushes down to a torsion-free Ga-structure on
T7. We must choose a finite group I' acting on 77 preserving (o, go). That is, the
elements of I' are the push-forwards to 77 /A of affine transformations of R” which
fix (0, go), and take A to itself under conjugation.

Here is an example of a suitable group I, taken from [9, §12.2].

EXAMPLE 2.1. Let (21,...,77) be coordinates on T7 = R /Z", where z; € R/Z.
Let (0, 90) be the flat Ga-structure on T7 defined by (1). Let o, 3 and v be the
involutions of T7 defined by

(6) (07 (x17' . 71‘7) | — (x17x27x3) —x4, —Ts, _xﬁv_x7)7
(7) ﬁ : (1317. .. ,3?7) — ($17—$2,_x3,x47x5, % - 1‘67—1;7),
(8) v (T, .., 7) — (—$1,$2,—ZIJ3,[E4, % — T, Tg, % — 7).

By inspection, «, 3 and v preserve (¢, go), because of the careful choice of exactly
which signs to change. Also, a? = 32 =42 =1, and «, 3 and v commute. Thus
they generate a group I' = (o, 3,7) = Z3 of isometries of T7 preserving the flat
Go-structure (¢, go)-
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Having chosen a lattice A and finite group I, the quotient 77/I" is an orbifold,
a singular manifold with only quotient singularities. The singularities of 77 /T
come from the fixed points of non-identity elements of I'. We now describe the
singularities in our example.

LEMMA 2.2. In Ezample 2.1, B, v, a3 and afy have no fived points on T7.
The fized points of «, 3, are each 16 copies of T3. The singular set S of T7 /T is
a disjoint union of 12 copies of T3, 4 copies from each of «,3,7. FEach component
of S is a singularity modelled on that of T3 x C?/{+£1}.

The most important consideration in choosing I' is that we should be able to
resolve the singularities of T7 /T within holonomy Gs. We will explain how to do
this next.

2.2. Step 2: Resolving the singularities.

Our goal is to resolve the singular set S of T7/I" to get a compact 7-manifold
M with holonomy G5. How can we do this? In general we cannot, because we have
no idea of how to resolve general orbifold singularities with holonomy G». However,
suppose we can arrange that every connected component of S is locally isomorphic
to either

(a) T3 x C?/G, for G a finite subgroup of SU(2), or
(b) St x C3/G, for G a finite subgroup of SU(3) acting freely on C3\ {0}.

One can use complex algebraic geometry to find a crepant resolution X of C2/G
or Y of C3/G. Then T3 x X or 8! x Y gives a local model for how to resolve the
corresponding component of S in 77 /T". Thus we construct a nonsingular, compact
7-manifold M by using the patches 7% x X or S x Y to repair the singularities
of T7/T. In the case of Example 2.1, this means gluing 12 copies of 7% x X into
T7/T, where X is the blow-up of C2/{#1} at its singular point.

Now the point of using crepant resolutions is this. In both case (a) and (b), there
exists a Calabi—Yau metric on X or Y which is asymptotic to the flat Euclidean
metric on C?/G or C3/G. Such metrics are called Asymptotically Locally Euclidean
(ALE). In case (a), the ALE Calabi—Yau metrics were classified by Kronheimer
[13, 14], and exist for all finite G C SU(2). In case (b), crepant resolutions of
C?/G exist for all finite G C SU(3) by Roan [15], and the author [10], [9, §8]
proved that they carry ALE Calabi—Yau metrics, using a noncompact version of
the Calabi Conjecture.

By Propositions 1.8 and 1.9, we can use the Calabi—Yau metrics on X or Y
to construct a torsion-free Go-structure on 73 x X or S! x Y. This gives a local
model for how to resolve the singularity 7% x C?/G or ' x C?/G with holonomy
G. So, this method gives not only a way to smooth out the singularities of 77 /T as
a manifold, but also a family of torsion-free Go-structures on the resolution which
shows how to smooth out the singularities of the Gs-structure.

The requirement above that S be divided into connected components of the
form (a) and (b) is in fact unnecessarily restrictive. There is a more complicated
and powerful method, described in [9, §11-§12], for resolving singularities of a more
general kind. We require only that the singularities should locally be of the form
R3 x C%2/G or R x C?/G, for G a finite subgroup of SU(2) or SU(3), and when
G C SU(3) we do not require that G act freely on C3\ {0}.

If X is a crepant resolution of C?/G, where G does not act freely on C3 \ {0},
then the author shows [9, §9], [11] that X carries a family of Calabi-Yau metrics
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satisfying a complicated asymptotic condition at infinity, called Quasi-ALFE metrics.
These yield the local models necessary to resolve singularities locally of the form R x
C3/G with holonomy Gy. Using this method we can resolve many orbifolds T /T,
and prove the existence of large numbers of compact 7-manifolds with holonomy Gs.
2.3. Step 3: Finding Gs-structures with small torsion.
For each resolution X of C2/G in case (a), and Y of C3/G in case (b) above,
we can find a 1-parameter family {h; : ¢ > 0} of metrics with the properties

(a) hyis a Kéhler metric on X with Hol(h;) = SU(2). Its injectivity radius sat-
isfies 6(ht) = O(t), its Riemann curvature satisfies HR(ht)Hco =02,
and hy = h + O(t*r~*) for large r, where h is the Euclidean metric on
C?/G, and r the distance from the origin.

(b) hyis Kahler on' Y with Hol(h;) = SU(3), where §(h:) = O(¢),
O(t=2), and hy = h + O(t%r~9) for large r.

R(ht)HCD =

In fact we can choose h; to be isometric to t2hq, and the properties above are easy
to prove.

Suppose one of the components of the singular set S of 77 /T is locally modelled
on T3 x C2/G. Then T® has a natural flat metric hys. Let X be the crepant
resolution of C2/G and let {h; : t > 0} satisfy property (a). Then Proposition 1.9
gives a 1-parameter family of torsion-free Gy-structures (¢, §¢) on T° x X with
Gt = hps + hy. Similarly, if a component of S is modelled on S x C3/G, using
Proposition 1.8 we get a family of torsion-free Ga-structures (@, g¢) on St x Y.

The idea is to make a Ga-structure (¢4, g;) on M by gluing together the torsion-
free Gy-structures (¢, G;) on the patches 7% x X and S' x Y, and (g, go) on T7/T.
The gluing is done using a partition of unity. Naturally, the first derivative of the
partition of unity introduces ‘errors’, so that (¢, g¢) is not torsion-free. The size of
the torsion Vi, depends on the difference ¢; — g in the region where the partition
of unity changes. On the patches T° x X, since hy —h = O(t*r~*) and the partition
of unity has nonzero derivative when r = O(1), we find that Vi, = O(¢*). Similarly
Vi = O(5) on the patches S' x Y, and so Vi, = O(t*) on M.

For small ¢, the dominant contributions to the injectivity radius 6(g¢) and
Riemann curvature R(g;) are made by those of the metrics hy on X and Y, so we
expect d(g¢) = O(t) and HR(gt)HcO = O(t~2) by properties (a) and (b) above. In
this way we prove the following result [9, Th. 11.5.7], which gives the estimates on
(¢¢, g¢) that we need.

THEOREM 2.3. On the compact T-manifold M described above, and on many
other 7T-manifolds constructed in a similar fashion, one can write down the following
data explicitly in coordinates:

e Positive constants Ay, As, Az and e,
o A Ga-structure (o, g¢) on M with dpy =0 for each t € (0,€), and
o A 3-form 1y on M with d*¢, = d*¢; for each t € (0,€).

These satisfy three conditions:

(i) l[eellee < Art?, [elloo < Art® and [|d ]| pae < Art'O/7,
(i) the injectivity radius 6(g:) satisfies 6(gr) = Aat,
(iii) the Riemann curvature R(g:) of g: satisfies HR(gt)HCO < Ast2.

Here the operator d* and the norms ||.||rz2, || .||r1a and || .||co depend on g;.
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One should regard 1; as a first integral of the torsion Vi, of (¢4, g¢). Thus the
norms |||/ r2, ||[¢¥tllco and ||d*9||p1e are measures of V;. So parts (1)—(iii) say
that the torsion Vi, must be small compared to the injectivity radius and Riemann
curvature of (M, g;).

2.4. Step 4: Deforming to a torsion-free G,-structure.

We prove the following analysis result.

THEOREM 2.4. Let Ay, As, Az be positive constants. Then there exist positive
constants k, K such that whenever 0 < t < k, the following is true.
Let M be a compact 7-manifold, and (p,g) a Ga-structure on M with dp=0.
Suppose Y is a smooth 3-form on M with d*v¢ = d*p, and
(1) [[9llze < Art*, [@lloo < Art'/? and [|d*¢| s < A,
(ii) the injectivity radius §(g) satisfies 6(g) = Ast, and
(iii) the Riemann curvature R(g) satisfies HR(g)HCo < Ast2.
Then there exists a smooth, torsion-free Ga-structure (@, g) on M with ||p—¢||co <
Kt1/2,

Basically, this result says that if (¢, g) is a Ga-structure on M, and the torsion
Vi is sufficiently small, then we can deform to a nearby Ga-structure (@, §) that is
torsion-free. Here is a sketch of the proof of Theorem 2.4, ignoring several technical
points. The proof is that given in [9, §11.6-§11.8], which is an improved version of
the proof in [5].

We have a 3-form ¢ with de = 0 and d*p = d*¢ for small 1, and we wish to
construct a nearby 3-form ¢ with dp = 0 and d*@ = 0. Set ¢ = ¢+ dn, where 7 is
a small 2-form. Then 7 must satisfy a nonlinear p.d.e., which we write as

(9) d*dn = —d* + d* F(dn),
where F' is nonlinear, satisfying F(dn) = O(|dn|?).

We solve (9) by iteration, introducing a sequence (n;)72, with 7o = 0, satisfying
the inductive equations
(10) d*dnjy1 = —d*¢ + d"F(dn;), d*nj41 = 0.
If such a sequence exists and converges to 1, then taking the limit in (10) shows
that n satisfies (9), giving us the solution we want.

The key to proving this is an inductive estimate on the sequence (1;)52,. The
inductive estimate we use has three ingredients, the equations

(11) [dnjt1lle < [¥llzz + Calldn;llzz [|dn;l o,
(12)  [[Vdngallpa < Co(d* )L + [ Vdn; | palldn;llco + ¢t *|dn;talr2),
(13) [dn;llco < C3(E/2(|Vdny|paa + 72| dn; | 12).

Here Cy, Cs, C3 are positive constants independent of ¢. Equation (11) is obtained
from (10) by taking the L*-inner product with 7;;; and integrating by parts. Using
the fact that d*¢ = d* and ||| = O(t), [¢| = O(t'/?) we get a powerful
estimate of the L2-norm of dn;;.

Equation (12) is derived from an elliptic regularity estimate for the operator
d + d* acting on 3-forms on M. Equation (13) follows from the Sobolev embedding
theorem, since Li*(M) embeds in C°(M). Both (12) and (13) are proved on small
balls of radius O(t) in M, using parts (ii) and (iii) of Theorem 2.3, and this is where
the powers of ¢ come from.
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Using (11)-(13) and part (i) of Theorem 2.3 we show that if
(14) dn; e < Cat*, [[Vdnyl|ia < Cs, and [[dn;flco < Kt'/2,

where Cy, Cs and K are positive constants depending on Cy,Cs,C3 and A1, and if
t is sufficiently small, then the same inequalities (14) apply to d7n;j4+1. Since 79 = 0,
by induction (14) applies for all j and the sequence (dn;)52, is bounded in the
Banach space L1*(A3T*M). One can then use standard techniques in analysis to
prove that this sequence converges to a smooth limit dn. This concludes the proof
of Theorem 2.4.

FIGURE 1. Betti numbers (b%,5%) of compact Ga-manifolds
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From Theorems 2.3 and 2.4 we see that the compact 7-manifold M constructed
in Step 2 admits torsion-free Ga-structures (@, g). Theorem 1.4 then shows that
Hol(g) = Gs if and only if 71 (M) is finite. In the example above M is simply-
connected, and so m (M) = {1} and M has metrics with holonomy G2, as we
want.

By considering different groups I acting on 77, and also by finding topologically
distinct resolutions M, ..., M}, of the same orbifold 77 /T', we can construct many
compact Riemannian 7-manifolds with holonomy G5. A good number of examples
are given in [9, §12]. Figure 1 displays the Betti numbers of compact, simply-
connected 7-manifolds with holonomy G2 constructed there. There are 252 different
sets of Betti numbers.

Examples are also known [9, §12.4] of compact 7-manifolds with holonomy G5
with finite, nontrivial fundamental group. It seems likely to the author that the
Betti numbers given in Figure 1 are only a small proportion of the Betti numbers
of all compact, simply-connected 7-manifolds with holonomy Gs.

2.5. Other constructions of compact G-manifolds.

Here are two other methods, taken from [9, §11.9], that may be used to con-
struct compact 7-manifolds with holonomy Gs. The first was outlined in [6, §4.3].

Method 1. Let (Y, J,h) be a Calabi-Yau 3-fold, with Kéhler form w and holo-
morphic volume form 6. Suppose o : Y — Y is an involution, satisfying o*(h) = h,
o*(J) = —J and o*(0) = 0. We call o a real structure on Y. Let N be the fixed
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point set of o in Y. Then N is a real 3-dimensional submanifold of Y, and is in
fact a special Lagrangian 3-fold.

Let S! = R/Z, and define a torsion-free Go-structure (¢, g) on S! x Y as in
Proposition 1.8. Then ¢ = dz A w + Re#, where z € R/Z is the coordinate on S!.
Define 6 : S' x Y — 8' x Y by 6((#,y)) = (—,0(y)). Then & preserves (¢, g)
and 6% = 1. The fixed points of ¢ in S* x Y are {Z, 3 +Z} x N. Thus (S' xY)/(5)
is an orbifold. Its singular set is 2 copies of IV, and each singular point is modelled
on R3 x R*/{+£1}.

We aim to resolve (S! x Y) /() to get a compact 7-manifold M with holonomy
Gs. Locally, each singular point should be resolved like R? x X, where X is an
ALE Calabi-Yau 2-fold asymptotic to C?/{=£1}. There is a 3-dimensional family
of such X, and we need to choose one member of this family for each singular point
in the singular set.

Calculations by the author indicate that the data needed to do this is a closed,
coclosed 1-form « on N that is nonzero at every point of N. The existence of a
suitable 1-form « depends on the metric on N, which is the restriction of the metric
gon Y. But g comes from the solution of the Calabi Conjecture, so we know little
about it. This may make the method difficult to apply in practice.

The second method is studied by Alexei Kovalev [12], and is based on an idea
due to Simon Donaldson.

Method 2. Let X be a projective complex 3-fold with canonical bundle Kx, and
s a holomorphic section of Ky which vanishes to order 1 on a smooth divisor D
in X. Then D has trivial canonical bundle, so D is T* or K3. Suppose D is a K3
surface. Define Y = X \ D, and suppose Y is simply-connected.

Then Y is a noncompact complex 3-fold with Ky trivial, and one infinite end
modelled on D x 8* x [0, 00). Using a version of the proof of the Calabi Conjecture
for noncompact manifolds one constructs a complete Calabi—Yau metric A on Y,
which is asymptotic to the product on D x 8! x [0, 00) of a Calabi-Yau metric on
D, and Euclidean metrics on S and [0,00). We call such metrics Asymptotically
Cylindrical.

Suppose we have such a metric on Y. Define a torsion-free Gao-structure (¢, g)
on 8! x Y as in Proposition 1.8. Then S' x Y is a noncompact Gy-manifold with
one end modelled on D x T? x [0, 00), whose metric is asymptotic to the product
on D x T? x [0,00) of a Calabi-Yau metric on D, and Euclidean metrics on T
and [0, 00).

Donaldson and Kovalev’s idea is to take two such products S x Y7 and S* x Y5
whose infinite ends are isomorphic in a suitable way, and glue them together to get
a compact 7-manifold M with holonomy G5. The gluing process swaps round the
S factors. That is, the S* factor in S! x Y is identified with the asymptotic S*
factor in Y5 ~ Dy x St x [0, 00), and vice versa.

3. Compact Spin(7)-manifolds from Calabi—Yau 4-orbifolds

In a very similar way to the G5 case, one can construct compact 8-manifolds
with holonomy Spin(7) by resolving the singularities of torus orbifolds 7%/T". This
is done in [7] and [9, §13-§14]. In [9, §14], examples are constructed realizing 181
different sets of Betti numbers. Two compact 8-manifolds with holonomy Spin(7)
and the same Betti numbers may be distinguished by the cup products on their
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cohomologies (examples of this are given in [7, §3.4]), so they probably represent
rather more than 181 topologically distinct 8-manifolds.

The main differences from the G5 case are, firstly, that the technical details of
the analysis are different and harder, and secondly, that the singularities that arise
are typically more complicated and more tricky to resolve. One reason for this is
that in the G5 case the singular set is made up of 1 and 3-dimensional pieces in a
7-dimensional space, so one can often arrange for the pieces to avoid each other,
and resolve them independently.

But in the Spin(7) case the singular set is typically made up of 4-dimensional
pieces in an 8-dimensional space, so they nearly always intersect. There are also
topological constraints arising from the fl—genus, which do not apply in the G5 case.
The moral appears to be that when you increase the dimension, things become more
difficult.

Anyway, we will not discuss this further, as the principles are very similar to
the G5 case above. Instead, we will discuss an entirely different construction of
compact 8-manifolds with holonomy Spin(7) developed by the author in [8] and [9,
§15], a little like Method 1 of § 2.5. In this we start from a Calabi-Yau 4-orbifold
rather than from T®. The construction can be divided into five steps.

Step 1. Find a compact, complex 4-orbifold (Y, J) satisfying the conditions:
(a) Y has only finitely many singular points p1, ..., pg, for k > 1.
(b) Y is modelled on C*/(i) near each p;, where i acts on C* by complex
multiplication.
(¢) There exists an antiholomorphic involution o : ¥ — Y whose fixed
point set is {p1,...,px}
(d) Y\ {p1,...,px} is simply-connected, and h*°(Y) = 0.

Step 2. Choose a o-invariant Kéhler class on Y. Then by Theorem 1.7 there exists
a unique o-invariant Ricci-flat Kahler metric g in this Kéhler class. Let w
be the Kéhler form of g. Let  be a holomorphic volume form for (Y, J, g).
By multiplying 6 by e’® if necessary, we can arrange that o*(6) = 6.

Define Q@ = 1w A w + Ref. Then (£2,g) is a torsion-free Spin(7)-
structure on Y, by Proposition 1.10. Also, (€2, g) is o-invariant, as c*(w) =
—w and 0*(0) = 6. Define Z = Y/(c). Then Z is a compact real 8-
orbifold with isolated singular points p1,...,px, and (£2,g) pushes down
to a torsion-free Spin(7)-structure (€, ¢g) on Z.

Step 3. Z is modelled on R®/G near each p;, where G is a certain finite subgroup
of Spin(7) with |G| = 8. We can write down two explicit, topologically
distinct ALE Spin(7)-manifolds X1, X» asymptotic to R®/G. Each car-
ries a 1-parameter family of homothetic ALE metrics h; for ¢ > 0 with
Hol(h:) = Za x SU(4) C Spin(7).

For j =1,...,k we choose i; = 1 or 2, and resolve the singularities
of Z by gluing in X;, at the singular point p; for j = 1,...,k, to get a
compact, nonsingular 8-manifold M, with projection 7 : M — Z.

Step 4. On M, we explicitly write down a 1-parameter family of Spin(7)-structures
(Q4, g¢) depending on t € (0,€). They are not torsion-free, but have small
torsion when ¢ is small. As ¢t — 0, the Spin(7)-structure (€2, g;) converges
to the singular Spin(7)-structure 7* (o, go).
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Step 5. We prove using analysis that for sufficiently small ¢, the Spin(7)-structure
(4, g¢) on M, with small torsion, can be deformed to a Spin(7)-structure
(Q, §¢), with zero torsion.

It turns out that if i; = 1 for j = 1,...,k we have m (M) = Z
and Hol(g;) = Zs x SU(4), and for the other 2* —1 choices of iy, ..., i) we
have w1 (M) = {1} and Hol(g;) = Spin(7). So g is a metric with holonomy
Spin(7) on the compact 8-manifold M for (i1,...,4) # (1,...,1).

Once we have completed Step 1, Step 2 is immediate. Steps 4 and 5 are
analogous to Steps 3 and 4 of § 2, and can be done using the techniques and
analytic results developed by the author for the first 7% /T' construction of compact
Spin(7)-manifolds, [7], [9, §13]. So the really new material is in Steps 1 and 3, and
we will discuss only these.

3.1. Step 1: An example.

We do Step 1 using complex algebraic geometry. The problem is that conditions
(a)-(d) above are very restrictive, so it is not that easy to find any Y satisfying all
four conditions. All the examples Y the author has found are constructed using
weighted projective spaces, an important class of complex orbifolds.

DEFINITION 3.1. Let m > 1 be an integer, and ag, a1, - - ., G, positive integers
with highest common factor 1. Let C™*! have complex coordinates (zg, ..., 2m),
and define an action of the complex Lie group C* on C™*! by

(20, 2m) — (U™ 20, . . ., U 2,,), for u € C*.
The weighted projective space CPy. . is (C™*1\ {0})/C*. The C*-orbit of
(20, .-, 2m) is written [2g, ..., 2m].
Here is the simplest example the author knows.
EXAMPLE 3.2. Let Y be the hypersurface of degree 12 in CP§,1,1,1,4,4 given by
Y = {[zo, ooy 25] € (CP?,LIJAA : 232 + 2%2 + 252 + z§2 + zi’ + zg’ = 0}.

Calculation shows that Y has trivial canonical bundle and three singular points p; =
[0,0,0,0,1, —1], p2 = [0,0,0,0,1,e™/3] and p3 = [0,0,0,0,1,e~"/3], all modelled
on C*/(i).

Now define amap ¢ : Y — Y by

o:lz0,...,25] — [Z1, —Z0, Z3, —Za2, Z5, Z4).

Note that o2 = 1, though this is not immediately obvious, because of the geometry
of (CP?,LLIAA' It can be shown that conditions (a)—-(d) of Step 1 above hold for Y
and o.

More suitable 4-folds Y may be found by taking hypersurfaces or complete
intersections in other weighted projective spaces, possibly also dividing by a finite
group, and then doing a crepant resolution to get rid of any singularities that we
don’t want. Examples are given in [8], [9, §15].

3.2. Step 3: Resolving R®/G.

Define o, 8 : R® — R® by

(0% (xla e 7x8) — (—.’L'2,$1, —Xx4,T3, —Te, Ts, —278,277),

B (x1,...,28) — (23, —x4, —1, T2, T7, —Tg, —T5, T¢).
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Then a, 3 preserve Qg given in (2), so they lie in Spin(7). Also a* = p* = 1,
a? = 3% and aff = Ba®. Let G = (a, ). Then G is a finite non-Abelian subgroup
of Spin(7) of order 8, which acts freely on R® \ {0}. One can show that if Z is
the compact Spin(7)-orbifold constructed in Step 2 above, then 7}, Z is isomorphic
to R8/G for j = 1,...,k, with an isomorphism identifying the Spin(7)-structures
(€2,9) on Z and (£, go) on R®/G, such that 3 corresponds to the o-action on Y.
In the next two examples we construct two different ALE Spin(7)-manifolds

(X1,9Q1,91) and (Xa, 2, g2) asymptotic to R®/G.
EXAMPLE 3.3. Define complex coordinates (z1,...,24) on R® by
(21, 22,23, 22) = (¥1 + @72, T3 + 14, T5 + P76, T7 + iT8),

Then go = |dz1|? + - - + |dz4|?, and Q = %wo Awp + Re(fy), where wy and 6y are
the usual Kihler form and complex volume form on C*. In these coordinates, o
and [ are given by

5 a:(z1,...,24) — (i21,129,123,124),

( ) ﬁ:(21,...724)D—>(227—51,24,—53).

Now C*/(a) is a complex singularity, as a € SU(4). Let (Y1, 71) be the blow-up
of C*/{(a) at 0. Then Y; is the unique crepant resolution of C*/{a). The action
of 8 on C*/(a) lifts to a free antiholomorphic map 3 : ¥; — Y; with 5% = 1.
Define X; = Y;/(8). Then X; is a nonsingular 8-manifold, and the projection
71 1 Y7 — C*/{a) pushes down to m : X1 — R¥/G.

There exist ALE Calabi—Yau metrics g; on Y7, which were written down ex-
plicitly by Calabi [4, p. 285], and are invariant under the action of 5 on Y;. Let
w1 be the Kahler form of g1, and 6; = 77 () the holomorphic volume form on Y;.
Define ©; = fw; Aw;y + Re(f1). Then (€4, 91) is a torsion-free Spin(7)-structure
on Y1, as in Proposition 1.10.

As B*(wy) = —w; and (*(01) = 6;, we see that 3 preserves (Q1,91). Thus
(€1, 91) pushes down to a torsion-free Spin(7)-structure (£24,¢91) on X;. Then
(X1,Q1,91) is an ALE Spin(7)-manifold asymptotic to R8/G.

EXAMPLE 3.4. Define new complex coordinates (wy, ...,ws) on R® by
(wla Wz, W3, 'U)4) = (*xl + ’l:l'g, To + 1x4, —T5 + ix'ﬁ Te + 7’1'8)

Again we find that gy = |dw;[?+- -+ |dws|? and Qg = 2wy Awp+Re(fp). In these
coordinates, a and [ are given by
a7 (wl, - ,w4) — (1172, —W1, Wy, —11)3),

(16) o
B (wy,...,wq) — (fwy, iws, iws, iwy).
Observe that (15) and (16) are the same, except that the roles of a, 3 are reversed.
Therefore we can use the ideas of Example 3.3 again.

Let Y3 be the crepant resolution of C*/(). The action of o on C*/(B) lifts to
a free antiholomorphic involution of Y. Let X5 = Y5 /(). Then Xs is nonsingular,
and carries a torsion-free Spin(7)-structure ({2, g2), making (Xs, s, g2) into an
ALE Spin(7)-manifold asymptotic to R®/G.

We can now explain the remarks on holonomy groups at the end of Step 5. The
holonomy groups Hol(g;) of the metrics g1, g2 in Examples 3.3 and 3.4 are both
isomorphic to Zy x SU(4), a subgroup of Spin(7). However, they are two different
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inclusions of Zs x SU(4) in Spin(7), as in the first case the complex structure is «
and in the second 3.

The Spin(7)-structure (£2,g) on Z also has holonomy Hol(g) = Zs x SU(4).
Under the natural identifications we have Hol(g1) = Hol(g) but Hol(g2) # Hol(g)
as subgroups of Spin(7). Therefore, if we choose i; =1 for all j = 1,...,k, then
Z and X;; all have the same holonomy group Z; x SU(4), so they combine to give
metrics ¢ on M with Hol(g;) = Zo x SU(4).

However, if i; = 2 for some j then the holonomy of g on Z and g;, on X;, are
different Zo x SU(4) subgroups of Spin(7), which together generate the whole group
Spin(7). Thus they combine to give metrics g on M with Hol(g;) = Spin(7).

3.3. Conclusions.

The author was able in [8] and [9, Ch. 15] to construct compact 8-manifolds
with holonomy Spin(7) realizing 14 distinct sets of Betti numbers, which are given
in Table 1. Probably there are many other examples which can be produced by
similar methods.

TABLE 1. Betti numbers (b2, b3, b%) of compact Spin(7)-manifolds

(4,33,200) (3,33,202) (2,33,204) (1,33,206) (0,33,208)
(1,0,908)  (0,0,910) (1,0,1202) (0,0,1294) (1,0, 2444)
(0,0,2446)  (0,6,3730) (0,0,4750) (0,0, 11662)

Comparing these Betti numbers with those of the compact 8-manifolds con-
structed in [9, Ch. 14] by resolving torus orbifolds 7%/T', we see that in these
examples the middle Betti number b* is much bigger, as much as 11662 in one
case.

Given that the two constructions of compact 8-manifolds with holonomy Spin(7)
that we know appear to produce sets of 8-manifolds with rather different ‘geogra-
phy’, it is tempting to speculate that the set of all compact 8-manifolds with ho-
lonomy Spin(7) may be rather large, and that those constructed so far are a small
sample with atypical behaviour.
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From Fano Threefolds to
Compact (GG>,-Manifolds

Alexei Kovalev

ABSTRACT. (G2-manifolds are 7-dimensional Riemannian manifolds whose met-
rics have holonomy group G2; these are necessarily Ricci-flat. We explain a
systematic way to construct examples of compact G2-manifolds by gluing a
pair of asymptotically cylindrical manifolds of holonomy SU(3) at their cylin-
drical ends. To obtain the latter SU(3)-manifolds one starts from complex
3-dimensional projective manifolds with ¢; > 0 (Fano threefolds) endowed
with an appropriate choice of the anticanonical K3 divisor. The resulting
G2-manifolds are topologically distinct from those previously constructed by
Joyce.

This article is an informal, introductory account of the ‘generalized connected
sum’ construction of compact Riemannian manifolds with holonomy G5. Full de-
tails and proofs the results can be found in the author’s paper [6]. A good reference
on the Riemannian holonomy groups, including G5 and the previously known con-
struction of compact Ga-manifolds, is the book by Joyce [4].

We briefly review in Section 1 the background results on G5 holonomy. The
method of construction of manifolds of holonomy G is explained in Section 2.
Section 3 explains how to obtain examples of this construction using the theory of
Fano threefolds and K3 surfaces, and contains a discussion of the results.

1. Synopsis on the holonomy group G;

The holonomy group Hol(g) of a Riemannian manifold (M, g) is defined as the
group of isometries of the tangent space T, M generated by parallel transport, using
the Levi-Civita connection of g, over closed loops based at z. Up to conjugation,
the holonomy group is well-defined as a subgroup of O(n), n = dim M. If M is
an oriented simply-connected Riemannian manifold, which is not locally isometric
to a Riemannian product or to a Riemannian symmetric space, then there are
very few groups which may occur as the holonomy of M, according to Berger’s
classification theorem. In fact, if in addition one assumes that the dimension of M
is odd then there are just two possibilities: either Hol(g) = SO(n) or dim M =7
and Hol(g) = Ga.
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The group G2 may be defined as the group of automorphisms of the cross-
product algebra on R7 arising from the identification of R” with the purely imagi-
nary octonions. It is a compact Lie group and a (proper) subgroup of SO(7). The
cross-product multiplication may be encoded by a 3-form ¢ € A3(R7)*,

wo(aabac) = <a/ X b7 C>a
or, explicitly,

(,00:65/\66/\67+(61/\62+63/\64)/\67
+(€1/\63—62/\64)/\€6+(€1/\64+62/\63)/\65,

(1.1)

where e; denote an orthonormal basis of (R7)*. Conversely, the formula
(1.2) 6(a, b) dvol; = (aspo) A (bapo) A @o.

expresses the Euclidean inner product in terms of ¢g and the volume form of R”.
The group G, is thus identified as the stabilizer of ¢y in the natural action of
GL(7,R) on A*(R7)*. The form ¢q is stable, in the sense of Hitchin [2] —the
GL(7,R)-orbit of g is open in A%(R")*.

A Gy-structure on a 7-manifold, M say, may be given by a 3-form ¢ such that
at each point p € M, ¢(p) is the image of ¢ induced by a linear isomorphism
T,M — R7. Denote by Q3 (M) the subset of 3-forms point-wise modelled on
¢o in the latter sense; elements of Q3 (M) will sometimes be referred to as the
Go-structure 3-forms. Note that Q3 (M) is an open subset of Q3(M) in the sup-
norm topology, a direct consequence of the stablity property of q.

Every 3-form ¢ € Q3 (M) defines an orientation and a Riemannian metric
g = g(¢) on M, as any Ga-structure is an instance of an SO(7)-structure. The
formula (1.2) determines g(y¢) explicitly, up to a conformal factor. The holonomy
group of g(¢) will be a subgroup of G5 if and only if the form ¢ is parallel, Vi = 0,
with respect to the Levi-Civita connection of g. The latter condition is equivalent
to the system of partial differential equations on ¢ [9, Lemma 11.5],

(1.3) dp =10 and dx,p=0.

The second equation in (1.3) is non-linear as the Hodge star %, is taken in the
metric g(¢) and depends on ¢. The holonomy reduction Hol(g(y)) C Gs implies
that g(¢) is Ricci-flat.

PROPOSITION 1.1 ([4, pp.244-245]). Suppose that a 7-manifold M is compact
and let p € Q3 (M). Then Hol(g(¢)) = G2 if and only if ¢ € Q3 (M) is a solution
to (1.3) and the fundamental group of M is finite.

We shall say that a Riemannian 7-manifold (M,g) is a Go-manifold if
Hol(g) = G2 and shall use a similar terminology for other holonomy groups.

The first examples of compact Go-manifolds were constructed in 1994-5 by
Joyce, using a generalized Kummer construction and resolution of singularities.
The most elaborate form of this construction can be found in [4]. Recently the
author obtained different examples of compact Ga-manifolds by a different method
[6] which we shall now describe.
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2. The generalized connected sum construction

Our compact Gz-manifolds are constructed by forming a carefully chosen gen-
eralized connected sum of two non-compact Riemannian manifolds with asymptot-
ically cylindrical ends. The construction develops an idea due to Donaldson.

Firstly, we produce a class of complete Ricci-flat Kéhler threefolds W of holo-
nomy SU(3) with an infinite cylindrical end asymptotic to the Riemannian product
D x S' x Rsg, where D is a K3 surface with a hyper-Kihler metric. This step re-
quires a proof of a non-compact version of the Calabi conjecture, which may be of
independent interest.

The Riemannian product W x S! carries a solution to (1.3). We consider a
pair of such 7-manifolds W; x S' and Wy x S'. For certain pairs of hyper-Kéhler
K3 surfaces D; ‘at the infinity of W;’ (i = 1,2), there is a way to join the two
7-manifolds W; x S' at their ends to obtain a compact 7-manifold M having finite
fundamental group and a 1-parameter family of Ga-structures ¢ compatible with
those on W; x St

A Ga-structure pp on M is obtained using cut-off functions, which introduce
error terms in the equations (1.3). These error terms are exponentially small in 7.
We use ‘stretching the neck’ analysis to prove a gluing theorem, obtaining a solution
to (1.3) on M from the solutions on W; x S*.

The three parts of the construction are described in more detail below.

2.1. Asymptotically cylindrical Calabi—Yau manifolds. The equations
(1.3) define a metric g(¢) whose holonomy group is only contained in G3. In
particular, the holonomy may be SU(3), a maximal subgroup of Gs.

We begin by introducing the holonomy SU (n) which will be needed in the cases
n =3 and n = 2. The group SU(n) consists of all the complex linear isomorphisms
of C™ preserving the standard Hermitian inner product and the complex volume.
So SU(n) is the stabilizer of the pair of forms on C"

wo = % (do1 Ndz1 + ... +dzn, NdZy,) and Qo=dz1 A+~ Ndzy,

under the action of GL(n, C). Note that both wy and Qg are stable differential forms
(have open orbits under the action of GL(2n,R)). A metric g on a real 2n-manifold
Z will have holonomy contained in SU(n) if and only if Z has an SU (n)-structure
(I,w, Q) parallel with respect to g. Here I is an orthogonal complex structure with
respect to g, and w and 2 are differential forms which are point-wise modelled on
wp and g, via a C-linear identification of tangent spaces to Z with C™. That is
to say, a g-parallel SU(n)-structure makes Z into a Kdhler complex n-fold with
the Kéhler form w € Q%1(Z), and Z has a nowhere vanishing holomorphic form
Q € Q™9(Z) such that Q A Q* is a constant multiple of w™. Such a Q is sometimes
called a holomorphic volume form. In particular, Z has trivial canonical bundle of
(n,0)-forms and ¢;(Z) = 0 and the Kahler metric is Ricci-flat.

Conversely, the following is a direct consequence of Yau’s proof of the Calabi
conjecture [12].

THEOREM 2.1. Let Z be a Kdhler complex n-fold with wy the Kdhler form
on Z and suppose that ¢1(Z) = 0. Then there exists on Z a unique Ricci-flat
Kiéhler metric such that its Kdhler form is given by wy + i00u for some smooth
real function uw on Z. If Z is simply-connected then the holonomy of this Ricci-flat
Kahler metric is contained in SU(n).



196 ALEXEI KOVALEV

Kéhler manifolds with holonomy in SU(n) are often called Calabi-Yau man-
ifolds. An important example is a K3 surface; recall that it may be defined as a
simply-connected complex surface with ¢; = 0. By Yau’s theorem, a K3 surface
admits a unique Ricci-flat Kéhler metric in every Kéhler class.

Now let n = 3. The group SU(3) is a subgroup of G5 consisting of all those
elements of G which fix a particular one-dimensional subspace in R7, thus it deter-
mines a decomposition R” = C3@R. Consider a Kéhler threefold W with holonomy
in SU(3) and let w, ) be respectively the Kéhler form and a holomorphic volume
form on W. Then on the 7-manifold W x S! the 3-form

(2.1) p=wAdf+ImQ

is in Q3 (W x S1) and defines a product metric, so W x S* has the same holonomy
as W. In this metric, one has *p = 3w Aw —ReQ A df and ¢ is a solution to (1.3)
on W x St

We are now ready to introduce the class of complete SU(3)-manifolds that we
need. Let W be a compact simply-connected Kihler threefold, with w’ € Q%!(WW)
the Kihler form. Let D be a K3 surface in W such that there is a holomorphic
section s of the anticanonical bundle K%l vanishing to order 1 on D. It is easy to

see that the complement W = W \ D has trivial canonical bundle.
Assume further that the normal bundle of D in W is trivial. Then W can be
written as the union of two pieces,

(2.2) W~ Wep U (D x S* x Ry)

a compact manifold W, with boundary and a cylindrical end attached along the
boundary D x S1. Note that the relation (2.2) is only a diffeomorphism of the un-
derlying real manifolds. The complex structure on the end of W is not isomorphic,
but only asymptotic to the ‘obvious’ product complex structure on D x S! x R,..

Let gp denote the Ricci-flat Kéhler metric on D in the Kéahler class [w'|p]
determined by the embedding in W. We prove that the following non-compact
version of the Calabi conjecture is true.

THEOREM 2.2. Let W and D be as above, so a K3 surface D is an anti-
canonical divisor and has trivial normal bundle in W. Suppose also that W is
simply-connected and the fundamental group of W = W \ D is finite.

Then W admits a complete Ricci-flat Kdhler metric gw. The Kdhler form and
holomorphic volume form of gw are exponentially asymptotic, along the cylindrical
end of W, to those of the product Ricci-flat Kéhler structure on D x S* xR, defined
using the metric gp on D. The holonomy of gw is SU(3).

There is nothing special to threefolds in the proof of Theorem 2.2 and the result
extends, with only minor modifications, to Kahler manifolds of arbitrary dimension.

We also remark at this point that previously a number of other non-compact
versions of the Calabi conjecture were proved by Tian and Yau, Bando and Koba-
yashi, and Joyce. These authors construct complete Ricci-flat Kéhler metrics as-
ymptotic at infinity to the quotient C"/I" of Hermitian C™ by a finite subgroup I’
of SU(n).

The main novelty of Theorem 2.2 is that it deals with the class of asymptot-
ically cylindrical manifolds. We build up on Theorem 5.2 in [11] using analysis
on exponentially weighted Sobolev spaces to work out the details of asymptotic
behaviour and provide control on the boundary data at infinity.
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2.2. K3 surfaces and a hyper-Kéahler rotation. A remarkable property
of a Ricci-flat Kéhler metric on a complex surface D is that such a metric is hyper-
Kdhler: the underlying real 4-manifold admits, in addition to the given complex
structure I, another complex structure J, such that IJ = —JI and the metric is
Kéhler with respect to J too. Further, K = I.J is also a complex structure on
D, and I,J, K satisfy the quaternionic relations (and define an identification of
each tangent space of D with the quaternions). The three respective Kéhler forms
K1,kJ,kK satisfy k% = n% = k%. There is a complete SO(3) symmetry between
1, J, K, in particular, they generate a 2-sphere of complex structures al + bJ + cK
on D, where a® + b% + ¢ = 1, and the metric is Kahler with respect to each of
these.

Let D be a Ricci-flat Kahler K3 surface and let x; be the Kahler form on D.
Then k; + ikg defines a holomorphic volume form on D. Considering on D the
complex structure .J we obtain in general a different Ricci-flat Kéhler K3 surface D ;.
It has Kéahler form k; and holomorphic volume form x; — ikx and is sometimes
called a hyper-Kihler rotation of D. Note that there is an S*-ambiguity in choosing
J, as one may take any bJ + cK instead with % + ¢? = 1.

Consider two asymptotically cylindrical SU(3)-manifolds W; and Wy satisfy-
ing the assertions of Theorem 2.2 and, respectively, let D;,Ds be the Ricci-flat
Kéhler K3 surfaces which determine the asymptotic model on the cylindrical ends
of Wy, Ws. For i = 1,2, let t; > 0 be the real parameter along the cylindrical end of
W, as defined by (2.2). Cut off at t; = T — 1 the Kéhler and holomorphic volume
form on each W; to their asymptotic model on the cylindrical end and consider
Wi(T) ~ Wept U (D; x ST x [0,T]). Then Wi (T') x S* is a manifold with boundary
D; x 8! x ST and with a Ge-structure form which on a collar neighbourhood of the
boundary is given by

(2.3) ©(py) = K7 ANdO1 + k) N dbsy + K Adt 4 dfy A dfy A dt.

Here we used (2.1) and the cylindrical asymptotic model w = &} + dfs A dt, Q =
(K'; 4+ ikl ) A (dB2 +1idt) of the Kahler and holomorphic volume forms on the end of
Wi. In particular, ¢(p,) is a solution to (1.3) on the cylinder (D; x S* x R) x S*.
Similar expressions hold for Wy x S1.

Now assume that the Ricci-flat Kéhler K3 surface D is isomorphic to a hyper-
Kéhler rotation of D;. Let f : D; ; — Dy denote the isomorphism. Then the
pull-back action of f on the K&hler forms is given by

Fr R R s e (<)
Define
(2.4) F: (y,01,09,t) € Dy x S* x S x [T —1,T] —
(f(y),02,601,2T —1—1t) € Dy x S* x S* x [T — 1,7
and join the two manifolds with boundary to construct a closed oriented 7-manifold
M = (Wy(T) x SY) Up (Wa(T) x S1),

using the map F to identify collar neighbourhoods of the boundaries. The compact
7-manifold M is a generalized connected sum with the neck having the cross-section
D x St x S'. We have F*o(p,) = ¢(p,), by the construction of F', therefore there
is a well-defined 1-parameter family of Gs-structures ¢ on M induced from those
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on W;(T) x S!, defined above using cut-off functions. Here the parameter T is
approximately half the length of the neck of M, measured by g(¢r).

The fundamental group of M is finite. This is because in the construction of M
the circle factor in Wy (T') x S* is identified with a circle in Wy and the circle factor
in Wo(T) x St is identified with a circle in Wy, and we assumed that 7 (W;) are
finite. Therefore, by Proposition 1.1 any solution ¢ € Q2 (M) of the equations (1.3)
will define on M a metric g(¢) of holonomy G.

2.3. The gluing theorem. A Gs-structure form @7 is constructed by patch-
ing the solutions of (1.3) when joining the two pieces of M. This uses cut-off
functions which introduce ‘error terms’ in the equations. In fact we can achieve
dpr = 0 for all T and satisfy one of the two equations in (1.3), but the term d*r pr
in general will not vanish. The error terms depend on the difference between the
SU(3)-structures on the end of W; and on its cylindrical asymptotic model, and we
have an estimate

Ild*r @rllLy < Cpre™T,
where 0 < A < 1. Here *7 denotes the Hodge star of the metric g(¢r).
We prove the following.

THEOREM 2.3. There exists Ty € R and for every T > Ty a unique smooth
2-form nr on M so that the following holds.
(1) |nrllcr < const-eHT, for some 0 < pu < 1, where the Ct-norm is defined using
the metric g(pr). In particular, o1 + dnr is in Q3 (M).
(2) The closed 3-form o + dnr satisfies

(25) d *or+dnr (QDT + d77T) =0.
and so o7 + dnr defines a metric of holonomy G on M.

The equation (2.5) can be rewritten, using the results of [4, §10.3] as a non-linear
elliptic PDE for 7. For small 7, this PDE has the form a(n) = ap + An+ Q(n) = 0,
where ay = d *7 o, the linear elliptic operator A = Ap is a compact perturbation
of the Hodge Laplacian of the form dd* + d*d + O(e~°T), and Q(n) = O(|dn|?).

The central idea in the proof of Theorem 2.3 may be informally stated as
follows. For small n, the map a(n) is approximated by its linearization and so there
is a unique small solution 7 to the equation a(n) = 0, for every small ag in the range
of A. This perturbative approach requires the invertibility of A and a suitable upper
bound on the operator norm ||Az"|, as T — oo. This bound determines what is
meant by ‘small’ ag in this paragraph.

As we actually need the value of dn rather than 7, there is no loss in restrict-
ing the equation (2.5) for 1 to the orthogonal complement of harmonic 2-forms
on M where the Laplacian is invertible. We use the technique of [5, §4.1] based on
Fredholm theory for the asymptotically cylindrical manifolds and weighted Sobolev
spaces to find an upper bound ||A}'|| < Ge?”. Here the constant G is independent
of T and ¢ > 0 can be taken arbitrary small. So, for large T', the growth of HA;l I
is negligible compared to the decay of ||d*7 7| and the ‘inverse function theorem’
strategy applies to give the required small solution nr. Standard elliptic methods
show that this nr is in fact smooth.
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3. Examples arising from Fano threefolds

For applications of the construction given in Section 2 we need, as a start, to
find Kéhler threefolds satisfying the hypotheses of Theorem 2.2.

3.1. Introduction to Fano threefolds. The following example is classical
in algebraic geometry.

The intersection of three generically chosen quadric hypersurfaces in CP% de-
fines a smooth Kahler threefold Xg. It is simply-connected and the characteristic
class ¢1(Xg) of its anticanonical bundle is the pull-back to Xg of the positive gen-
erator of the cohomology ring H*(CP®). That is to say, the anticanonical bundle
K;(; is the restriction to Xy of the tautological line bundle O(1) over CP®. It fol-
lows that any anticanonical divisor D on Xg is obtained by taking an intersection
D = XgN H with a hyperplane H in CPS. A generic such hyperplane section D is
a complex surface, isomorphic to a smooth complete intersection of three quadrics
in CP®. This is a well-known example of a K3 surface.

We next look at the normal bundle of Xg in D. An adjunction-type argument
shows that the normal bundle will be trivial if we can find another anticanonical
divisor D’ on Xg such that D’ does not meet D. But D’ = XgN H’ and the second
hyperplane section C = DN D' = Xg N H N H' is never empty—it is an algebraic
curve (intersection of three quadrics) in CP%. Fortunately, a suitable threefold can
be obtained by blowing up the curve C. The K3 divisor D lifts via the blow-up
map X5 — X to an isomorphic K3 surface D which is an anticanonical divisor in
Xg and has trivial normal bundle. Moreover, a Kihler metric on Xg may be chosen
so that D and D are isometric Kahler manifolds.

Finally, as both D and X§ are simply-connected we find that the only possibil-
ity for a nontrivial generator of 71(Xs \ D) would be a circle around D. But this
circle contracts in an exceptional curve as this curve meets D in exactly one point.
Hence Xy \ D is simply connected. The pair Xg, D now satisfies all the hypothe-
ses of Theorem 2.2, and so the quasiprojective threefold W = Xg \ D admits an
asymptotically cylindrical Ricci-flat Kéhler metric of holonomy SU(3).

The threefold Xg in the above example can be replaced by an arbitrary (smooth)
projective-algebraic threefold V' with ¢; (V') > 0, i.e. a Fano threefold. Fano three-
folds have been extensively studied over the past few decades and a lot is known
about them. In particular, they are simply-connected and a generic anticanonical
divisor D on a Fano threefold is a K3 surface [10]. It can be shown that the three-
folds f/\D are again simply-connected and we obtain, by application of Theorem 2.2
the following.

PROPOSITION 3.1. Let V be a Fano 3-fold, D € |— Ky | a K3 surface, and V the
blow-up of V along a self-intersection curve D-D, and D the proper transform of D.
Then V \ D has a complete Ricci-flat Kihler metric with holonomy SU(3). This
metric is asymptotic to the Riemannian product D x S* x Rsq, where the Ricci-flat
Kahler metric on D is in the Kahler class induced by the embedding in V.

3.2. Matching the K3 divisors. Let V7, V5 be Fano threefolds and Dy, Ds,
respectively, anticanonical K3 divisors on these. Recall that by Yau’s theorem each
of the Kéhler K3 surfaces D; has a uniquely determined Ricci-flat K&hler metric
in its Kahler class. If the two Ricci-flat Ké&hler structures in the Kéhler classes of
D; C V; are hyper-Kéhler rotations of each other then, in view of Proposition 3.1,
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we can proceed to the construction of a generalized connected sum M from V; \ D,
as described in Section 2.2. The 7-manifold M admits metrics of holonomy Gs
by Theorem 2.3. In this case, we shall say that a compact Gs-manifold M is
constructed from the pair of Fano threefolds V1 and V. Can we choose D1 and Dy
so as to satisfy the required hyper-Kéahler rotation condition?

We have the freedom to move a K3 surface in the anticanonical linear system
of V and to deform V in its algebraic family of Fano threefolds. Recall also from
Section 2.2 that there is an S'-family of choices for the second complex structure
J on each D;. It turns out that, with this freedom, a pair of ‘matching divisors’
Dy, Dy can always be found. We now briefly explain, ignoring some important
technical points, the ideas in the solution of the matching problem.

All the K3 surfaces are deformations of each other and are diffeomorphic as
real 4-manifolds. In particular, their second cohomology lattices are isomorphic
to the (unique) even unimodular lattice L of signature (3,19), known as the K3
lattice. Respectively, L ® C is isomorphic to the second cohomology with complex
coefficients and inherits the Hodge decomposition. A Kéhler isometry between
two K3 surfaces induces a so-called effective Hodge isometry between their second
cohomology lattices, preserving the Hodge decomposition and mapping the Kahler
class of one K3 to the Kahler class of the other. Surprisingly, the global Torelli
theorem for K3 surfaces asserts that the converse is also true: any effective Hodge
isometry between second cohomology of two K3 surfaces arises as the pull-back of
a unique biholomorphic map between these K3 surfaces [1, Ch.VIII]. The latter
map will necessarily be an isometry between Ricci-flat Kahler K3 surfaces because
of the uniqueness of a Ricci-flat Kéahler metric in a Kéhler class.

We can identify, using a version of the Kodaira—Spencer—Kuranishi deforma-
tion theory, the data of Hodge decomposition and Ké&hler class which occurs in
the anticanonical K3 divisors in a given algebraic family of Fano threefolds. The
problem of choosing a matching pair of K3 divisors D; in Fano threefolds V; then
reduces to a problem in the arithmetic of the K3 lattice.

The solution of this problem gives us the following general result.

THEOREM 3.2. For any pair of algebraic families V1,Vo of Fano threefolds there
exists (smooth) Vi € Vi, Vo € Vy such that a compact Go-manifold M can be
constructed from Vy,Va.

This Go-manifold satisfies

0 S bQ(M) S max{bg(Vl),bg(Vg)} -1

and
ba(M) + bs(M) = b3(Vi) — K§. + b3(Va) — K, +27.

EXAMPLE 3.3. A smooth complete intersection Xg of three quadrics in CP
has b2 = 1, b = 28, and —K? = 8. According to Theorem 3.2, an appropriate

choice of two such complete intersections Vé(l), 8(2) C CPS and of a hyperplane

section D; in each of the Vg(i) provides data for the construction of a compact G-
manifold M. We obtain by(M) = 0 and bs(M) = 99. Also M is simply-connected.
This Go-manifold is not homeomorphic to any of the examples constructed in [4].

3.3. Discussion of the results. There is a complete classification of smooth
Fano threefolds into 104 algebraic families [3, 8]. This provides 5,460 different
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pairs to form the generalized connected sums, leading to examples of compact
Go-manifolds. As any Fano threefold has 1 < b? < 10, we have

bZ(M) S 97

for any Go-manifold M constructed from a pair of Fanos. Further inspecting the
classification list of Fanos, we find that

39 < by(M) + bg(M) < 239

and, in particular, b3(M) > 30. (Recall that b! = 0 for any Gy-manifold, therefore
b2, b determine all the Betti numbers of M.)

It is an interesting question to identify the most general class of Kahler three-
folds W for which the hypotheses of Theorem 2.2 hold. If the anticanonical linear
systems on a pair of such W are ‘large enough’ then the connected sum defined in
Section 2 can be formed and will admit Gy-metrics. It seems that the blow-ups V
of smooth Fano threefolds discussed in this section can be generalized to include
at least manifolds obtained by resolution of singularities in some singular Fano
varieties.

A pair of Fano threefolds in general yields several topologically distinct compact
Go-manifolds. Example in [6, §8] shows two topologically distinct Ga-manifolds
constructed from a pair of CP? x CP'’s, realizing both of the values by(M) = 0
and be(M) = 1 allowed in this case by Theorem 3.2. Of course, the counting of
pairs of Betti numbers (b%,5%) only gives a lower estimate of the actual number of
topological types realized by our examples of compact Gs-manifolds.

In any event, the majority of smooth Fano threefolds have the Betti number
b? < 4 and respectively the Go-manifolds constructed from these have b?> < 3. On
the other hand, a majority of the compact Ga-manifolds constructed in [4] have
b?> > 3. Thus most of the compact Go-manifolds constructed from smooth Fano
threefolds can be easily identified as new examples, topologically distinct from those
previously known.

Another interesting property of the connected sum construction is that it ex-
hibits a new type of boundary point in the moduli space of all Go-metrics on the
given compact 7-manifold M. Any l-parameter family o1 + dnr of Ga-metrics
given by the gluing Theorem 2.3 defines a path in the moduli space. The boundary
point attained as T — oo corresponds to pulling apart a Gy-manifold at a cross-
section K3x (2-torus), obtaining a pair of asymptotically cylindrical pieces. The
approach to the boundary of the moduli space in this case involves no development
of singularities, nor a curvature growth. This becomes important in [7] where we
construct the first examples of fibrations of compact Go-manifolds by certain min-
imal submanifolds called coassociative calibrated submanifolds. The fibrations are
an odd-dimensional non-holomorphic analogue of the well-known elliptic fibrations
of K3 surfaces.
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An introduction to motivic integration
Alastair Craw

ABSTRACT. By associating a motivic integral to every complex projective vari-
ety X with at worst Gorenstein canonical singularities, Kontsevich [20] proved
that, when a crepant resolution of singularities ¢: Y — X exists, the Hodge
numbers of Y do not depend upon the choice of the crepant resolution. In
this article we provide an elementary introduction to the theory of motivic
integration, leading to a proof of the result described above. We calculate the
motivic integral of several quotient singularities and discuss these calculations
in the context of the cohomological McKay correspondence.

1. Introduction

The string-theoretic Mirror Symmetry Conjecture states that there exist mirror
pairs of Calabi—Yau varieties with certain compatibilities. For instance, if (X, X*)
is a smooth, projective mirror pair of dimension n, then we expect the relation

(1.1) hPa(X) = PP X¥)

to hold between their Hodge numbers. Mirror pairs are not smooth in general
and the compatibility relation (1.1) can fail to hold if either X or its mirror have
singularities. In this case, if there exist crepant resolutions ¥ — X and Y* — X*
then we expect the relation

(1.2) hPA(Y) = hmPa(y™)

to hold between the Hodge numbers of the smooth varieties Y and Y™* (recall that
a resolution ¢: Y — X is said to be crepant if Ky = ¢*Kx). However, it is not
obvious that the revised relation (1.2) is well defined: even if a crepant resolution
exists it is not necessarily unique. In particular, given two crepant resolutions
Y1 — X and Y5 — X, it is not clear a priori that the Hodge numbers of Y; and Y5
are equal.

Nevertheless, the consistency of string theory led Batyrev and Dais [5] to con-
jecture that for a variety X with only mild Gorenstein singularities, the Hodge
numbers of Y7 and Y5 are equal. In a subsequent paper [2], Batyrev used meth-
ods of p-adic integration to prove that the Betti numbers of Y7 and Y5 are equal.
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(©2004 Clay Mathematics Institute

203



204 ALASTAIR CRAW

Kontsevich [20] later proved that the Hodge numbers are equal by introducing the
notion of motivic integration.

This article provides an elementary introduction to Kontsevich’s theory of mo-
tivic integration. The first step is to construct the motivic integral of a pair (Y, D),
for a complex manifold Y and an effective divisor D on Y with simple normal
crossings. We define the space of formal arcs J(Y) of Y and associate a function
Fp defined on J(Y') to the divisor D. The motivic integral of the pair (Y, D) is
the integral of Fp over Ju (Y) with respect to a certain measure p on Joo(Y). This
measure is not real-valued. Indeed the subtlety in the construction is in defining
the ring R in which p takes values: R is a completion of the polynomial ring in the
formal variable L~! with values in the Grothendieck ring of algebraic varieties over
C (see Definition 2.11). We adopt the structure of the proof of Theorem 6.28 from
Batyrev [1] to establish the following user-friendly formula:

THEOREM 1.1 (formula for the motivic integral). Let Y be a complex manifold
of dimension n and D = _'_, a;D; an effective divisor on'Y with simple normal
crossings. The motivic integral of the pair (Y, D) is

o L-1 -n
(1.3) /J YFDd,U: > gl Hm L
oo (Y) JC{1,....r} jeJ
where we sum over all subsets J C {1,...,r} including J = 0.

The motivic integral of a complex algebraic variety X with Gorenstein canonical
singularities is defined to be the motivic integral of a pair (Y, D), where Y — X is
a resolution of singularities for which the discrepancy divisor D has simple normal
crossings. Crucially, this is well defined independent of the choice of resolution.

The motivic integral induces a stringy E-function

(1.4) Eg(X):= > E(DS)- H(mf)ﬁ%

JC{1,..,r} jeJ

which is also independent of the choice of resolution (see Warning 3.4). The E-
polynomials E(D9) encode the Hodge-Deligne numbers of open strata D C Y,
and the stringy F-function records these numbers with certain ‘correction terms’
written in parentheses in formula (1.4). When ¥ — X is a crepant resolution the
correction terms disappear leaving simply the terms E(D9) whose sum is the E-
polynomial of Y. As a result, when a crepant resolution Y — X exists, the function
E(X) encodes the Hodge numbers of Y, thereby establishing Kontsevich’s result
on the equality of Hodge numbers. It is important to note however that crepant
resolutions do not exist in general. To get a better feeling for the stringy E-function
of varieties admitting no crepant resolution we calculate Eg(X) for several 4- and
6-dimensional Gorenstein terminal cyclic quotient singularities.

We conclude this article with an application of motivic integration, namely
the proof by Batyrev [3, 4] of the cohomological McKay correspondence conjec-
ture which we now recall. A celebrated result of John McKay [22] states that the
graph of ADE type associated to a Kleinian singularity C?/G can be constructed
using only the representation theory of the finite subgroup G C SL(2,C). This
establishes a one-to-one correspondence between a basis for the cohomology of the
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minimal resolution Y of C2/G and the irreducible representations of G. In partic-
ular, the Euler number e(Y) is equal to the number of irreducible representations
(or conjugacy classes) of G. Reid [27] proposed the following generalisation:

CONJECTURE 1.2 (The McKay correspondence). For G C SL(n,C) a finite
subgroup, suppose that the quotient variety X := C"/G admits a crepant resolution
p:Y — X. Then H*(Y,Q) has a basis consisting of algebraic cycles corresponding
one-to-one with conjugacy classes of G. In particular, the Euler number of Y equals
the number of conjugacy classes of G.

Batyrev proved this result using the theory of motivic integration. The key step
in the proof is to show that the stringy E-function of the quotient C"/G coincides
with the ‘orbifold E-function’ of the pair (C",G) (see §5.2 for the definition). We
present a simple, direct proof of the conjecture for a finite Abelian subgroup G C
SL(n, C) to illustrate the simplicity of Batyrev’s approach in this case.

The original references on motivic integration are by Batyrev [1, §6] and Denef
and Loeser [14]. The more recent article by Looijenga [21] provides a detailed
survey of motivic integration.

Acknowledgements I'd like to thank the organisers of the 2002 Clay Mathematics
Institute School on Geometry and String Theory held at the Isaac Newton Institute
in Cambridge, especially Miles Reid who originally encouraged me to write this
article (which has existed in roughly the present form since November 1998). Also,
thanks to Willem Veys and to Victor Batyrev for useful comments.

2. Construction of the motivic integral
2.1. The space of formal arcs of a complex manifold.

DEFINITION 2.1. Let Y be a complex manifold of dimension n. A k-jet over a
point y € Y is a morphism

i SpecCle]/(z") — Y

with v, (SpecC) = y. Once local coordinates are chosen, the space of k-jets over
y € Y can be viewed as the space of n-tuples of polynomials of degree k whose
constant terms are zero. Let Ji(Y) denote the bundle over Y whose fibre over
y € Y is the space of k-jets over y. A formal arc over y € Y is a morphism

vy: SpecClz] — Y
with 7, (SpecC) = y. Once local coordinates are chosen, the space of formal arcs
over y € Y can be viewed as the space of n-tuples of power series whose constant
terms are zero. Let J(Y) denote the bundle whose fibre over y € Y is the space
of formal arcs over y. For each k € Z> the inclusion C[2]/(z**1) — C[z] induces
a surjective map

Tk Joo(Y) — Ji(Y),
where m: Joo(Y) — Y sends v, to the point y.

Recall that a subset of a variety is constructible if it is a finite, disjoint union
of (Zariski) locally closed subvarieties.

DEFINITION 2.2. A subset C' C Jo(Y) of the space of formal arcs is called a
cylinder set if C =, '(By,) for k € Z>o and By, C J(Y) a constructible subset.
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It’s clear that the collection of cylinder sets forms an algebra of sets (see [28,
p. 10]), i.e., Joo (Y) = my 1 (V) is a cylinder set, as are finite unions and complements
(and hence finite intersections) of cylinder sets.

2.2. The function Fp associated to an effective divisor.

DEFINITION 2.3. Let D be an effective divisor on Y and ¢ a local defining
equation for D on a neighbourhood U of a point y € Y. For an arc v, over a point
u € U, define the intersection number ~, - D to be the order of vanishing of the
formal power series g(7,(z)) at z = 0. Let

Fp: JOO(Y) —)ZZOUOO

be the function defined by Fp(v,) = v - D. Write D = Z;Zl a;D; as a linear
combination of prime divisors. Then g decomposes as a product g = H:=1 gi" of
defining equations for D;, hence Fp = Z;Zl a;Fp,. Furthermore

(2.1) Fp,(w) =0 <= u¢ D; and Fp,(y,) =00 < 7, C D;.

Our ultimate goal is to integrate the function Fp over Jo(Y), so we must
understand the nature of the level set Fj,'(s) C Jo(Y) for each s € Zsq U oo.
With this goal in mind, we introduce a partition of F'j, 1(s).

DEFINITION 2.4. For D ="', a;D; and J C {1,...,r} any subset, define

- mjeJDj ifJ?é@ o ._ .
DJ._{ 7 g7 and Dji=Dj\ U b

These subvarieties stratify Y and define a partition of the space of arcs into cylinder
sets:

Y= || Dy and J(V)= || m'(DY).
JC{1,...,r} JC{1,...,r}

For any s € Z>¢ and any subset J C {1,...,r}, define
Mjs = {(ml,...7mT) €75, | Zaimi =swithm; >0& j € J}.
It now follows from (2.1) that
Yu €5 H(DF) N Fp'(s) <= (Fp,()s--- Fp, (7)) € Mys.
As a result we produce a finite partition of the level set
(2.2) Fyls)= | LI (Niew Pl mo).
JC{1,...,r} (my,....mp)EM s

ProPOSITION 2.5. If D is an effective divisor with simple normal crossings
then Fr'(s) is a cylinder set (see Definition 2.2) for each s € L.

Recall (see [19, p. 25]) that a divisor D = Y, a;D; on Y has only simple
normal crossings if at each point y € Y there is a neighbourhood U of y with

coordinates z1, ..., 2, for which a local defining equation for D is
(2.3) g=z""- z;ljy for some j, < n.

PROOF OF PROPOSITION 2.5. A finite union of cylinder sets is cylinder and we
have a partition (2.2) of F;'(s), so it is enough to prove that ﬂizl’mrFBI(mi) is a

i
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cylinder set! for some J C {1,...,r} and (m1,...,m,) € M;,. Cover Y by finitely
many charts U on which D has a local equation of the form (2.3), and lift to cover
Joo(Y) = Umy H(U). We need only prove that the set

Uniyooim, 1= mi:l,...rFlil (m;) N Wal(U)

is cylinder. In the notation of (2.3), if J € {1,...,j,} then DS NU = ( which
forces Up,,....m,. C wal(Df} NU) to be empty, and hence a cylinder set. We suppose
therefore that J C {1,...,7,}, thus |J| < n holds by (2.3).

The key observation is that by regarding arcs v, as n-tuples (p1(2),...,pn(2))
of formal power series with zero constant terms, the equality Fp,(y,) = m; is
equivalent to a condition on the truncation of the power series p;(z) to degree m;.
Indeed, since D; is cut out by z; = 0 on U, it follows that Fp,(7,) equals the order
of vanishing of p;(z) at = = 0. Thus 7, € FB} (m;) if and only if the truncation
of p;i(z) to degree m; is of the form c¢,,, 2™, with ¢,,, # 0. Truncating all n of the
power series to degree ¢ := max{m; |j € J} produces n — |J| polynomials of degree
t with zero constant term and, for each j € J, a polynomial of the form

m(pj(2)) =0+ +0+ Cm; 2™+ C(m]‘Jrl)ij-i_1 ot

where ¢,,; € C* and ¢, € C for all & > m;. The space of all such n-tuples is
isomorphic to CH™= 17D s (C*)I71 x Ct71=25e5 ™3 hence

(2.4) Ui eomp = 1 (U N DF) x € B x (€)1

The set (UNDY) x Ct2jes™i x (C*)IVl'is constructible, so Um,,....m,. is a cylinder
set. This completes the proof of the proposition. ([l

It is worth noting that F; ! (00) is not a cylinder set. Indeed, suppose otherwise,
so there exists a constructible subset By, C Ji(Y) for which Fp,'(c0) = 7} ' (By).
Each arc v, € F[_,l(oo) is an n-tuple of power series, at least one of which is
identically zero, whereas each v, € 77,;1(3;6) is an n-tuple of power series whose
terms of degree higher than k may take any complex value, a contradiction.

PROPOSITION 2.6. FBl(oo) s a countable intersection of cylinder sets.

PRrROOF. Observe that

(2.5) Fpl(oo) = ) m 'me(Fp' ()
k€Z>o

because a power series is identically zero if and only if its truncation to degree k is
the zero polynomial, for all k € Zs. It is easy to see that the sets m1,(Fp,"(c0)) C
J,(Y) are constructible. O

2.3. A measure p on the space of formal arcs. In this section we define
a measure 4 on Jo(Y) with respect to which the function Fp is measurable. The
measure is not real-valued, so we begin by constructing the ring in which u takes
values.

1Finite intersections of cylinder sets are cylinder, so we could reduce to proving the result
for Ff)l(ml) However we require (2.4) in §2.4.
K
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DEFINITION 2.7. Let V¢ denote the category of complex algebraic varieties.
The Grothendieck group of V¢ is the free Abelian group on the isomorphism classes
[V] of complex algebraic varieties modulo the subgroup generated by elements of
the form [V] —[V'] = [V \ V'] for a closed subset V' C V. The product of varieties
induces a ring structure [V] - [V'] = [V x V'], and the resulting ring denoted by
Ko(Vc) is the Grothendieck ring of complex algebraic varieties. Let

[ ]: ObVe — Ko(Ve)

denote the natural map sending V to its class [V] in the Grothendieck ring. This
map is universal with respect to maps which are additive on disjoint unions of
constructible subsets, and which respect products.

Write 1 := [point] and L := [C] (see Appendix A: the class of C in Ko(V¢)
corresponds to the Lefschetz motive L). Then

C)=[Cl-[{o}] =L -1

Also, if f: Y — X is a locally trivial fibration w.r.t. the Zariski topology and F' is
the fibre over a (closed) point then [Y] = [F x X].

DEFINITION 2.8. Let Ko(Vc)[L™!] := S™'Ko(Vc) denote the ring of fractions
of Ko(Vc) with respect to the multiplicative set S := {1,L,L2,...}.

DEFINITION 2.9. Recall that cylinder sets in Jo(Y") are subsets 7 '(By,) C
Joo(Y') for k € Z>g and for By, C Ji(Y') a constructible subset. The function

1 {cy]inder sets in JOO(Y)} — Ko(Ve)[L™Y
defined by

assigns a ‘measure’ to each cylinder set.

It is straightforward to show that

l
ﬁ(Uilei) = Zﬁ(CZ) for cylinder sets Cy,...,C;
i=1

because the map [ | introduced in Definition 2.7 is additive on disjoint unions of
constructible sets. For this reason we call i a finitely additive measure.

REMARK 2.10. Proposition 2.5 states that for s € Zs, the level set F5'(s) is a
cylinder set, and is therefore fi-measurable, i.e., i(F*(s)) is well defined. However,
Fp is not pi-measurable because Fj !(o0) is not cylinder. To proceed, we extend Ji
to a measure y with respect to which Fj,'(co) is measurable.

The following discussion is intended to motivate the definition of u (see Def-
inition 2.12 to follow). The set Jo(Y) \ Fj,'(00) is a countable disjoint union of
cylinder sets

(2.6) Joo(Y)\ my tmo(Fpt(00)) L |_| (3 e (Fpt(00)) \ W,C_jlwkH(FBl(oo))).
k€Zso

To see this, take complements in equation (2.5). Our goal is to extend p to a
measure u defined on the collection of countable disjoint unions of cylinder sets so
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that the set Jo.(Y)\ F5*(00), and hence its complement Fj*(c0), is p-measurable.
One would like to define

(2.7) ﬂ(Uz‘eNCi) = Z,u(C’i) = Zﬁ(C’Z) for cylinder sets C4,...,Cj.

€N €N

However, countable sums are not defined in Ko(Vc)[L™!]. Furthermore, given a
countable disjoint union C' = | |, Cj, it is not clear a priori that x(C') defined by
formula (2.7) is independent of the choice of the C;.

Kontsevich [20] solved both of these problems at once by completing the ring
Ko(Vc)[L™1], thereby allowing appropriate countable sums, in such a way that the
measure of the set C' = | |, C; is independent of the choice of the C;, assuming
that u(C;) — 0 as ¢ — oo.

€N

DEFINITION 2.11. Let R denote the completion of the ring Ko(Vc)[L ] with
respect to the filtration

D PR (Ve)IL Y 2 FORo(Ve) L 2 P Eo(Ve) L] 2 -

where for each m € Z, F™Kq(Vc)[L ™} is the subgroup of Ko(Vc)[L™!] generated
by elements of the form

V]-L™* for i—dimV >m.
The natural completion map is denoted ¢: Ko(Vc)[L™!] — R.

By composing g with the natural completion map ¢, we produce a finitely
additive measure with values in the ring R, namely ¢ o i (which we will also denote
) that sends

T (Br) = 6 (1B] - L)

Given a sequence of cylinder sets {C;} one may now ask whether or not 11(C;) — 0
as ¢ — oco. We are finally in a position to define the measure p on the space of
formal arcs.

DEFINITION 2.12. Let C denote the collection of countable disjoint unions of
cylinder sets |_|;.C; for which fi(C;) — 0 as i — oo, together with the complements
of such sets. Extend i to a measure

w:C— R

by defining

|_| C; — Zﬁ(ci)-

i€N i€N
It is nontrivial to show (see [14, §3.2] or [1, §6.18]) that this definition is independent
of the choice of the C;.

PROPOSITION 2.13. Fp is u-measurable, and pu(Fp*(c0)) = 0.

PrOOF. We prove that Fj,'(c0) (in fact its complement) lies in C. It’s clear
from (2.6) that we need only prove that u(m, 'm(Fp'(00))) — 0 as k — oc.
Lemma 2.14 below reveals that u(m, 'mp(Fp'(00))) € ¢(FF*1Ko(Ve)[L™1]) which,
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by the nature of the topology on R, tends to zero as k tends to infinity. This proves
the first statement. Using (2.6) we calculate

(28) u(Jo(Y)\ Fp'(00)) = A(Joo(Y) \ mg 'mo(Fp ' (00)))
+ Z (7, L (Fpt(00)) \ W,C_jlﬂkH(FBl(oo))) .
k€Zsg
This equals ju(Joo(Y)) — limy_oo 1 (m 'mx(F5 "' (00))). By the above remark, this
is simply p1(Joo(Y)), so u(Fpt(oc)) = 0 as required. O

LEMMA 2.14. fi(n) 'm(Fp ' (00))) € FFFUKo(Ve)[L7Y

PRrROOF. It is enough to prove the result for a prime divisor D, since Fgl(oo) is
the union of sets F Bil(oo). Choose coordinates on a chart U in which D is (z; = 0).
Each v, € F5'(00) N7y ' (U) is an n-tuple (pi(2),...,pn(2)) of power series over
y € UN D such that pi(z) is identically zero. Truncating these power series to
degree k leaves n — 1 polynomials of degree k with zero constant term, and the zero
polynomial 7 (py(z)). The space of all such polynomials is isomorphic to C*~D* 5o
that 7, (Fp, " (00) N7y 1 (U)) = (UND)x C*= V. Thus [1(Fp ' (00)] = [D]-[C(*~DH]
and

[re(F5 (00)] - L6+
= [D] CL(r=Dk  ,—n(k+1)
[D] - L~ (+k)
This lies in F**!1 K, (Ve)[L™!] since D has dimension n — 1. O

fi(my i (Fpp ' (00))

2.4. The motivic integral of a pair (Y, D).

DEFINITION 2.15. Let Y be a complex manifold of dimension n, and choose
an effective divisor D = Y"_, a;D; on Y with only simple normal crossings. The
motivic integral of the pair (Y, D) is

Fpdp = w(Fpt(s)) - L=°.
/‘]°O(Y) SEZ%):UOO ( ¥ )

Since the set F;'(00) C Joo(Y) has measure zero (see Proposition 2.13), we need
only integrate over J.,(Y) \ Fp*(00), so we need only sum over s € Zx.

We now show that the motivic integral converges in the ring R introduced in
Definition 2.11. In doing so, we establish a user-friendly formula.

THEOREM 2.16 (formula for the motivic integral). Let Y be a complex manifold
of dimension n and D = >"'_, a;D; an effective divisor on Y with only simple
normal crossings. The motivic integral of the pair (Y, D) is

/Jmm Fodu= 2. H L%H -

TS,y }

where we sum over all subsets J C {1,...,r} including J = 0.
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PROOF. In the proof of Proposition 2.5 we cover Y by sets {U} and prove that

Niz1... . Fp(mi) Ny ' (U) is a cylinder set of the form
! ((U N D2) x Ct"=Eies ™ x ((C*)‘J') .
Since the map [ | introduced in Definition 2.7 is additive on a disjoint union
of constructible subsets, take the union over the cover {U} of Y to see that
ﬂi:l,...rFD_,il(mi) = 7Tt_1(Bt) where
[Bi] = D3 x €t e (©)Y1] = [D5) - L Zoe s (L - 1),

Since p (m; ' (By)) = [By] - L~ we have

1 (Mic,r P ms) ) = [DS] - L7 Zoes s (L= 1)L

Now use the partition (2.2) of F,'(s) to compute the motivic integral:

Z 1 (FBI(S)) L8

SE€L>0

- Z Z Z H (mi=1,4..rF[_)il(mi)) LT e M

SE€EL>o JCA1,...,r} (m1,....my)EM s

= > X > [D5]- (L—p)MT L= L (et hms

SE€EL>o JCA1,...,r} (m1,....my)EM s jeJ
= Z [Df}] . H ((]L — 1) . Emj>0 ]L—(aj+1)mj) LT
JcA{1,...,r} jeJ
(o) 1 —n
= Z [DJ]'H<(L_1)'<1L—(aj+1)_1>)'L
JcA{1,...,r} jeJ
o L-1 —n
- Z (D3] HLaJ-+1_1 L
Jc{1,...,r} JjE€J

O

WARNING 2.17. There is a small error in the proof of the corresponding result
in Batyrev [1, §6.28] which leads to the omission of the L™" term.

COROLLARY 2.18. The motivic integral of the pair (Y, D) lies in the subring

¢(EKo(Ve)[L™1]) [{Lil— 1}1‘6N]

of the ring R introduced in Definition 2.11.

2.5. The transformation rule for the integral. The discrepancy divisor
W = Ky, — a*Ky of a proper birational morphism «: Y’ — Y between smooth
varieties is the divisor of the Jacobian determinant of a. The next result may
therefore be viewed as the ‘change of variables formula’ for the motivic integral.

THEOREM 2.19. Let a: Y/ — Y be a proper birational morphism between
smooth varieties and let W := Ky — o* Ky be the discrepancy divisor. Then

/ Fp d,u:/ Forpyw dp.
Joo (V) Joo (Y)



212 ALASTAIR CRAW

PrOOF. Composition defines maps a;: Ji(Y') — J,(Y) for each t € Z>o U oo.
An arc in Y which is not contained in the locus of indeterminacy of o~ ' has a
birational transform as an arc in Y’. In light of (2.1) and Proposition 2.13, a, is
bijective off a subset of measure zero.

The sets Fy,'(k), for k € Zso, partition Joo(Y’) \ Fy'(00). Thus, for any
s € Z>o we have, modulo the set Fv}l(oo) of measure zero, a partition

(2.9) Fpl(s)= | | @ec(Crs) where Cyo:=Fy'(k)NEl(s).
kEZZo

The set Cy, 5 is cylinder and, since the image of a constructible set is constructible (
[24, p. 72]), the set as(Ch,s) is cylinder. Lemma 2.20 below states that pu(Cl. ) =
11( oo (Cr,s)) - LF. We use this identity and the partition (2.9) to calculate

[ Fotn= X non(C) L7 = Y (0 L
Joo (Y

k,SEZZO ’C,SEZZD
Set 8" := s+ k. Clearly | |y<<y Ck,s'—k = F(;*lDJrW(s'). Substituting this into the
above leaves
/ Fpdp = Z w(Folppw(sh)) - L =/ Fopyw dp,
Joo (Y) = Joo (V')
as required. O
LEMMA 2.20. M(Ck,s) = u(aoo(Ck)s)) Lk,

DISCUSSION OF PROOF. Both Cj s and oo (Cy s) are cylinder sets so there exists
t € Z>o and constructible sets B; and By in Joo(Y”) and J(Y) respectively such
that the following diagram commutes:

Cris CIu(Y) 22 ayo(Crs) C Jo(Y)
¢ Tt
Bl c (YY) 2% B C Ji(Y).

We claim that the restriction of oy to Bj is a Ck-bundle over B;. It follows that
[Bl] = [C*] - [B] and we have

,U(Clc,s) — [B{t] . L—(n-‘rnt) _ [Bt] -]Lk .]L—(n-i-nt) _ M(aoo(ck7s)) . Lk

as required. The proof of the claim is a local calculation which is carried out in [14,
Lemma 3.4(b)]. The key observation is that the order of vanishing of the Jacobian
determinant of a at v, € Cy s is Fw(vy) = k. O

DEFINITION 2.21. Let X denote a complex algebraic variety with at worst
Gorenstein canonical singularities. The motivic integral of X is defined to be the
motivic integral of the pair (Y, D), where ¢: Y — X is any resolution of singularities
for which the discrepancy divisor D = Ky —p* K x has only simple normal crossings.

Note first that the discrepancy divisor D is effective because X has at worst
Gorenstein canonical singularities. The crucial point however is that the motivic
integral of (Y, D) is independent of the choice of resolution:

PROPOSITION 2.22. Let p1: Y7 — X and @o: Yo — X be resolutions of X
with discrepancy divisors Dy and Do respectively. Then the motivic integrals of the
pairs (Y1, D1) and (Yo, D3) are equal.
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PRrROOF. Form a ‘Hironaka hut’
P2

Yo — Y2
() l \ l p)
i & X

and let Dy denote the discrepancy divisor of ¢q: Yy — X. The discrepancy divisor
of 1/)i is DO — 17[};sz Indeed
Ky, = ¢3(Kx)+ Do =] 0¢i(Kx)+ Do=1;(Ky, — D;) + Do
= GI(Ky,) + (Do — ¥ Dy).
The maps ©;: Yy — Y; are proper birational morphisms between smooth projec-
tive varieties so Theorem 2.19 applies:

/ Fp,dp = / Fy:p,4(Do—y; D) it = / Fp, dp..
oo (Yi) Joo (Yo) Joo (Yo)

This proves the result. O

3. Hodge numbers via motivic integration

This section describes how the motivic integral of X gives rise to the so-called
“stringy F-function” which encodes the Hodge-Deligne numbers of a resolution
Y - X.

3.1. Encoding Hodge—Deligne numbers. Deligne [8, 9] showed that the
cohomology groups H*(X,Q) of a complex algebraic variety X carry a natural
mixed Hodge structure. This consists of an increasing weight filtration

0=W_1 CWyC-- C Wy =HX,Q)
on the rational cohomology of X and a decreasing Hodge filtration
HYX,C)=F'2>F'D>...DFFDFFl =0

on the complex cohomology of X such that the filtration induced by F'® on the
graded quotient Gr}¥ H*(X) := W;/W,_, is a pure Hodge structure of weight I.
Thus

Gr H*(X)® C= FPGr)Y H*(X) @ Fl-r+1 Gr)" H*(X)
where F? Gr]" H*(X) denotes the complexified image of FP? N W; in the quotient
W;/W;—1 ® C. The integers

PP (HE (X, ©)) = dime (F? Grlf}, H*(X) 0 F2 Gryy, HE(X))

are called the Hodge—Deligne numbers of X. For a smooth projective variety X
over C, Gr}¥ H*(X,Q) = 0 unless | = k in which case the Hodge Deligne numbers
are the classical Hodge numbers hP7(X).

Danilov and Khovanskii [12] observed that cohomology with compact support
HF(X,Q) also admits a mixed Hodge structure and they encode the corresponding
Hodge—Deligne numbers in a single polynomial:

DEFINITION 3.1. The E-polynomial E(X) € Z[u,v] of a complex algebraic
variety X of dimension n is defined to be

Z Z V¥R (HE (X, C)) uP vi.

0<p,q<n 0<k<2n
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Evaluating E(X) at w = v = 1 produces the standard topological Euler number
ec(X) =e(X).
THEOREM 3.2 ([12]). Let X,Y be complex algebraic varieties. Then
(i) of X = || X; is stratified by a disjoint union of locally closed subvarieties
then the E-polynomial is additive, i.e., E(X)=> E(X;).
(ii) the E-polynomial is multiplicative, i.e., E(X xY) = E(X) - E(Y).
(iil) of f: Y — X is a locally trivial fibration w.r.t. the Zariski topology and F
is the fibre over a closed point then E(Y) = E(F) - E(X).

See Danilov and Khovanskii [12] for a proof.

3.2. Kontsevich’s theorem. Theorem 3.2 asserts that the map E: V¢ —
Z[u,v] associating to each complex variety X its E-polynomial is additive on a
disjoint union of locally closed subvarieties, and satisfies E(X xY) = E(X)-E(Y).
It follows from the universality of the map [ ] introduced in Definition 2.7 that
FE factors through the Grothendieck ring of algebraic varieties, inducing a function
E: Ko(Vc) — Z[u,v]. By defining (L) := (uv)~!, this extends to?

E: Ko(Vo)[L™Y] — Z[u,v, (uv) ™).

PROPOSITION 3.3. The map E can be extended uniquely to the subring

sty ()]

of the ring R introduced in Definition 2.11.

PROOF. The kernel of the completion map ¢: Ko(Vc)[L™1] — R is

(3.1) () F"Ko(Ve)[L™'].

For [V]-L~" € F™Ky(Vc)[L™Y, the degree of the E-polynomial E ([V]-L~%) is
2dimV — 2i < —2m. The E-polynomial of an element Z in the intersection (3.1)
must therefore be —oo; that is, E(Z) = 0. Thus E annihilates ker ¢ and hence
factors through ¢ (Ko(Vc)[L™!]). Defining E(1/(L" —1)) := 1/((uv)* —1) for i € N
establishes the result. (]

By Corollary 2.18 the motivic integral of the pair (Y, D) lies in the subring of
Proposition 3.3. We now consider the image of the integral under E.

WARNING 3.4. As Warning 2.17 states, the derivation of the motivic integral
in [1] contains a small error which leads to the omission of an L™" term. However,
in practise it is extremely convenient to omit this term (!). As a result, we define
the stringy E-function to be the image under F of the motivic integral times ™. In
short, our stringy E-function agrees with that in [1], even though our calculation
of the motivic integral differs.

20ne can use this function to define a finitely additive Z[u, v, (uv)~!]-valued measure fip :=
E o pi on cylinder sets given by Tl';l(Bk) — E(By) - (wv)~"(F+1) | then construct the stringy
E-function directly. This is the approach adopted by Batyrev [1, §6].
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DEFINITION 3.5. Let X be a complex algebraic variety of dimension n with
at worst Gorenstein canonical singularities. Let ¢: Y — X be a resolution of
singularities for which the discrepancy divisor D = Z:zl a;D; has only simple
normal crossings. The stringy E-function of X is

Est(X)ZE</J (Y)FDd,u-IL”> Z E(D3) - H(M:;ZJ% ’

JC{1,...,r} jeJ
where we sum over all subsets J C {1,...,r} including J = 0.

THEOREM 3.6 ( [20]). Let X be a complex projective variety with at worst
Gorenstein canonical singularities. If X admits a crepant resolution p:Y — X
then the Hodge numbers of Y are independent of the choice of crepant resolution.

r

ProOOF. The discrepancy divisor D = >, _;a;D; of the crepant resolution
@:Y — X is by definition zero, so the motivic integral of X is the motivic integral
of the pair (Y,0). Since each a; = 0 it’s clear that

Ey(X) = ZJQ{I,.A.,T}E(D(O]) = E(Y).

The stringy F-function is independent of the choice of the resolution ¢. In par-
ticular, E(Y) = Ex(X) = E(Y3) for 9 : Yo — X another crepant resolution. It
remains to note that E(Y") determines the Hodge-Deligne numbers of Y, and hence
the Hodge numbers since Y is smooth and projective. (Il

4. Calculating the motivic integral

To perform nontrivial calculations of the stringy FE-function we must choose
varieties which admit no crepant resolution. A nice family of examples is provided
by Gorenstein terminal cyclic quotient singularities.

4.1. Toric construction of cyclic quotient singularities. Consider the
action of the cyclic group G = Z/r € GL(n,C) generated by the diagonal matrix®

g = diag (62”“1/’“7 e eQWia“/r) with 0< o <,

where i = \/—1. The quotient C"/G is the cyclic quotient singularity of type
1(oq,...,a,). This fractional notation derives from the construction of C"/G as
an affine toric variety as we now describe (see Reid [26, §4] for more details).

Write M = Z™ for the lattice of Laurent monomials in z1,...,z,, and N for
the dual lattice with basis e1,...,e,. Let ¢ = Rype; + -+ + R>pe,, denote the
positive orthant in N ® R with dual cone o¥ € M ® R. The overlattice

(4.1) N:=N+Z- -Yo,...,00)

is dual to M := Hom(N,Z). A Laurent monomial in x1,...,x, lies in the sublat-
tice M C M if and only if it is invariant under the action of the group G. Re-
stricting to Laurent monomials with only nonnegative powers leads to the equality

Clxy,...,2,]¢ = Cle¥ N M], and hence
C"/G = Spec Clzy,...,2,]% = Spec C[oV N M] =: U,.

3Tt is convenient to assume that ged(r,a1,...,85,...,an) =1forall j =1,...,n to ensure
that the group action is ‘small’. The notation &; means that o is omitted.
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In order to consider only Gorenstein terminal cyclic quotient singularities we impose
certain restrictions on the type !(au,...,ay). Watanabe [31] showed that for a
small subgroup G C GL(n,C), the quotient C"/G is Gorenstein if and only if
G C SL(n,C). Thus,

U, is Gorenstein <= > a; =0 mod r.

To determine when U, is terminal we recall the discrepancy calculation for cyclic
quotients following Reid [25, 26] (see also Craw [7]). Write O for the unit box in
N®R = R", i.e., the unit cell of the sublattice N = Z". Each element g € G = N/N
has a unique representative

vy = 557 (@1(9),- - an(g)) € NND;

here v, denotes both the vector in N ® R and the lattice point in N. For each
primitive vector v, € N N0, the simplicial subdivision of ¢ at v, determines a toric
blow-up ¢: Y = Xy, — U, = X of the cyclic quotient. The exceptional divisor is
the closed toric stratum® V(1) C Y, where 7 is the ray with primitive generator v,.
Adjunction for the toric blow-up ¢ is

* 1 -
(4.2) Ky =¢"Kx + —Zaj(g)—l V(r),
r(9) =
where the equality here denotes numerical equivalence. Therefore

<
U, is terminal <= Z ——a;(g) > 1 for each g € G.

7(9)

j=1

That is, U, is terminal when every point v, € N N[ lies above the hyperplane

Before proceeding to the examples we recall the simple formula that computes
the E-polynomial of the toric variety Xy determined by a fan ¥ in N ® R.

PROPOSITION 4.1. For a toric variety Xs, of dimension n we have
(4.3) E(Xs) =Y dp- (w—1)""",
k=0

where dy, is the number of cones of dimension k in X.

PrOOF. The Hodge numbers of P! are well known and, by Theorem 3.2, we
compute E(C*) = E(P') — E({0}) — E({cc}) = uwv — 1. The E-polynomial is
multiplicative so E((C*)"~*) = (uv—l)n_k. The action of the torus T" ~ (C*)" on
Xy induces a stratification of Xy, into orbits of the torus action O, =2 ((C*)n_dimT,
one for each cone 7 € . The result follows from Theorem 3.2(i). g

4The cones in ¥ containing 7 as a face define a fan denoted Star(7) in the vector space
N(7) ® R, where N(7) := N/(7 N N). The toric variety V(7) := Xgtar(s) is the closure of the
orbit Or. See Fulton [16, p. 52] for a nice picture.
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4.2. The examples. For a finite subgroup G C SL(n,C) with n = 2 or 3, the
Gorenstein quotient C"/G admits a crepant resolution®, so the stringy E-function
of C"/@G is simply the E-polynomial of the crepant resolution. We therefore begin
by considering 4-dimensional quotient singularities of type %(17 r—1,a,7 —a) with
ged(r,a) = 1. Morrison and Stevens [23, Theorem 2.4(ii)] prove that these are the
only Gorenstein terminal 4-fold cyclic quotient singularities.

REMARK 4.2. In each example below we calculate both E(Y) and Eg (C"/G)
after resolving the singularity ¢: Y — C"/G. Note that E(Y) is not equal to
the E-polynomial of the exceptional fibre D = »~1(7(0)), for 7: C* — C"/G the
quotient map. Indeed,

E(Y)=E{Y\D)+ E(D)=(w)" -1+ E(D).
The point is that the E-polynomial encodes the Hodge—Deligne numbers of com-
pactly supported cohomology, yet

HZ(D,C) = H*(D,C) = H*(Y,C) # H(Y,C);

the first equality holds because D is compact, and the isomorphism is induced by
a deformation retraction of Y onto D C Y.

ExAMPLE 4.3. Write X = U, for the quotient singularity of type %(1, 1,1,1),
i.e., for the quotient of C* by the action of G = Z/2, where the nontrivial element
acts diaginally as —1. Add the ray 7 generated by the vector v = %(1, 1,1,1) to the
cone o, then take the simplicial subdivision of ¢. This determines a toric resolution
¢: Y — X with a single exceptional divisor D = V(1) = P3. The discrepancy of D
is 1 by (4.2). Using Proposition 4.1 we calculate

E(Y) E(Y\ D)+ E(P?)
= ((uv)4 —1) + ((w)® + (uw)* +uv + 1)
= (uv)* + (w)?® + (uv)? + uv.
Compare this with the stringy E-function:

uv — 1

Es(X) = E(Y \ D) + E(P%) - (w2 =1

= (uv)* + (uwv)?.

ExXAMPLE 4.4. Write X = U, for the quotient singularity of type %(1, 2,1,2).
Add rays 71 and 75 generated by the vectors v; = £(1,2,1,2) and vo = 1(2,1,2,1)
respectively to the cone o, then take the simplicial subdivision of . The resulting
fan 3 is determined by its cross-section Ay := oN(>_ x; = 2) illustrated in Figure 1.

There are eight 3-dimensional simplices in As (four contain a face of the tetra-
hedron and four contain the edge joining vy to vy). Each of these simplices deter-
mines a 4-dimensional cone in 3 which is generated by a basis of the lattice N, so
Y = Xy, — U, is a resolution. The union of all eight 3-dimensional simplices in A,
contains eighteen faces, fifteen edges and six vertices. Write dj for the number of
cones of dimension k in X, so

d4 = 8, d3 = 18, dQ = 15, dl = 6, d() =1 (the origin in N®R )

5The moduli space Y = G -Hilb(C™) of G-clusters in C" is a crepant resolution for n = 2, 3.
See Bridgeland, King and Reid [6] for definitions and details.
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FIGURE 1. The simplex Ay for %(1, 2,1,2)

Apply Proposition 4.1 to compute
E(Y) = (uwv)* 4 2(uv)? + 3(uv)? + 2uv.
To compute Eg(X) observe that for j = 1,2 the exceptional divisor D; := V(7;)

has discrepancy 1 by (4.2). Write dy(7;) for the number of cones of dimension k in
the fan Star(r;) defining V'(7;), so

ds(tj) =6; da(m;) =9; di(1j) =5; do(7;) =1 (the origin in N(7;)).
Proposition 4.1 gives
E(D;) = (w)® + 2(uv)® + 2(uv) + 1 for j = 1,2.

Similarly, the fan Star({r,72)) contains four faces, four edges and one vertex so
Proposition 4.1 gives E(D; N Dy) = (uv)? 4+ 2(uv) + 1. As a result

e E(Dj)=E(Y \ (D1UDs)) = (uw)*—1.

o E(D{yy) = E(D},,) = E(Dj) — E(D1N Dy) = (uv)?® + (uv)?.

o E(D{, ) =E(D1NDy) = (uv)? + 2(uv) + 1.
Now compute the stringy E-function using formula (3.2):

Eq(X) = (w)'—1+E(DY,)- ((;‘5)%_11) +E(Dpyy) - ((55)%)

o w—1\>
B0 (1)
= (w) + 2(uv)?.

ExampLE 4.5. Let X = U, denote the cyclic quotient singularity of type
(1,3,1,3). Add rays 71, 7o and 73 generated by the vectors v; = i(l, 3,1,3) and

1
4
vy = i(Q 2,2,2) and vz = %(3, 1,3,1) respectively to the cone o, then take the

simplicial subdivision of ¢. The cross-section As of the resulting fan ¥ has three
colinear points in the interior of the tetrahedron but is otherwise similar to that
shown in Figure 1. There are twelve 3-dimensional simplices in Ay containing 26
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faces, 20 edges and 7 vertices. Proposition 4.1 calculates
E(Y) = (w)* + 3(uv)® + 5(uv)? + 3uv.

For j = 1,2, 3 the divisors D; := V(7;) have discrepancy 1 by (4.2). Following the
method of Example 4.4 we calculate

E(D1) = E(D3) = (uv)?® 4 2(uv)? + 2(uwv) + 1

and E(D; N Dy) = E(DyN D3) = (uv)?+2(uv) + 1. To compute the E-polynomial
of D5 observe that

ds3(m2) =8; do(m2) =12; di(12) =6; do(72) =1 (the origin in N(72)),
where dj(72) denotes the number of cones of dimension k in Star(rz). It follows
from Proposition 4.1 that

E(Ds) = (uw)® + 3(uwv)? + 3(uv) + 1.
Finally, since D; N D3 = ) we have E(Dy N D3) = E(DyNDyND3) =0. As a
result

E(D§) = E(Y \ (D1 U Dy U Ds)) = (uv)* — 1.
E(DYyy) = E(Dgyy) = (uv)® + (uv)*.

E(D{yy) = (uv)? + (uwv)? — (uv) — 1.

E(D({)Lz}) = E(Df{)2,3}) = (uv)? +2(uv) + 1.
E(Df{)1,3}) = E(Df{)1,2,3}> = 0.

Apply formula (3.2) to compute Eg(X) = (uv)?* + 3(uv)?.

REMARK 4.6. The above examples feature only exceptional divisors with dis-
crepancy 1. To obtain examples of Gorenstein terminal cyclic quotient singularities
which admit resolutions containing divisors having discrepancy larger than one we
must work in dimension higher than four.

ExAMPLE 4.7. Let X = U, denote the cyclic quotient singularity of type
%(1,1,1,...,1) where n := dim X = kr for some k € Z (by assuming that r
divides n we ensure that X is Gorenstein). Add a single ray 7 generated by the
vector vy = %(1, 1,1,...,1) to the cone o, then take the simplicial subdivision of
o. This determines a toric resolution ¢: Y — X with a single exceptional divisor
D = V(1) =2 P*"L. The discrepancy of D is k — 1 by (4.2). Using Proposition 4.1
we calculate

E(YY) = E{XY\D)+E®@P")
((wo)® = 1) + ((wo)* "+ (w)" > + -+ +uwv + 1)
= (w)" 4 (uwv)"" '+ 4 uw.
Compare this with the stringy E-function:

uv — 1
(uv)k — 1
= (w)"+ (uv)”*’C 4+ (uv)Qlc + (uv)k

Eq(X) = EXY\D)+EP" ).

ExAMPLE 4.8. Let X = U, denote the cyclic quotient singularity of type
$(1,2,1,2,1,2) (compare Example 4.4). Add rays 7, and 7, generated by the
vectors v = £(1,2,1,2,1,2) and v = 3(2,1,2,1,2,1) respectively to the cone
o, then take the simplicial subdivision of . Both v; and vy lie in the simplex
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Az :=oN(>_ x; = 0) of the resulting fan ¥ so the corresponding exceptional divisors
Dy and D, each have discrepancy 2 by (4.2). The cross-section Ag is difficult to
draw (it is 5-dimensional!) but, using Figure 1 as a guide, one can show that

de =15; ds =48; dy=68; d3=056; doy=28;, di=28; dy=1,
where dj;, denotes the number of cones of dimension k£ in X. Hence
E(Y) = (w)® + 2(uw)® + 3(uv)* + 4(uv)® + 3(uv)? + 2(uv).
As with Example 4.4, for j = 1, 2 write di(7;) for the number of cones of dimension
k in Star(7;), so
ds(15) = 12; da(7;) = 30; d3(1;) = 34; dao(7j) = 21; di(75) = 7; do(75) = 1.
Proposition 4.1 gives
E(D;) = (w)® + 2(uv)* + 3(uv)® + 3(ww)? + 2(uwv) + 1 for j = 1,2.

Similarly, counting simplices in the fan Star({r, 72)) gives

E(Dy N Dy) = (uv)* + 2(uv)® + 3(uv)? + 2(uv) + 1.
Now compute the stringy E-function using formula (3.2):

uv — 1

Eg(X) = (u0)®—1+ E( fl})~<m>+E( fz})'<($)+_l1>

w—1 \>
- 500 ()
= (w)® + 2(uv)>.

REMARK 4.9. The stringy E-function of a Gorenstein canonical quotient sin-
gularity C™/G can be calculated in terms of the representation theory of the finite
subgroup G C SL(n,C) using a simple formula due to Batyrev [3, 4] (see also
Denef and Loeser [15]). To state the formula, note that each g € G is conjugate to
a diagonal matrix

(44) g=diag (e%ml(-‘])/r(g), e ,62”0‘"(9)/’“(9)> with 0 < «a;(g) < r(g),

where r(g) is the order of g and i = v/—1. To each conjugacy class [g] of the group
G we associate an integer in the range 0 < age[g] < n — 1 defined by

1 n
agelg] := — a;(g).
= 757 200
In particular, for the diagonal action introduced in §4.1, the age grading on the
cyclic group G corresponds to the slicing of the unit box 0 C Nr = R” into
polytopes Ay :==o N (> x; =k) for k=0,...,n — 1. The formula for the stringy
E-function of the quotient C"/G is simply

(4.5) E4(C"/G) = Z (uv)"—2eeld],

[9]1€Conj(G)
where we sum over the conjugacy classes of G. For example, the nontrivial element
g of the group G = Z/2 acting on C* in Example 4.3 has age two because vy =
1(1,1,1,1) € Ay. Formula (4.5) gives Ey(C*/G) = (uv)* + (uv)? as shown in §4.2.
Observe that the same holds for the other examples of §4.2.
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5. The McKay correspondence

In this section we discuss formula (4.5) in the wider context of the cohomological
McKay correspondence.

5.1. The McKay correspondence conjecture. Motivated by string theory,
Dixon et al. [10] introduced the orbifold Euler number for a finite group G acting
on a manifold M. This number can be written in the form

e(M,G)= > e(M?/C(g)),

[g]€Conj(G)

where the sum runs over the conjugacy classes of G, e denotes the topological Euler
number, MY is the fixed point set of g and C(g) is the centraliser of g (this version
of the formula is due to Hirzebruch and Héofer [18]). Observe that the orbifold
Euler number is the standard topological Euler number of the disjoint union

M/G= || M?/Cg).
[g)€Conj(G)

Dixon et al. [11] formulated what became known as the “physicists’ Euler number
conjecture”:

CONJECTURE 5.1. If M/G is a Gorenstein Calabi-Yau variety which admits a
crepant resolution Y — M/G then e(Y) = e(M, G).

Hirzebruch and Héfer [18] observed that for a finite subgroup G C U(n) acting
on M = C"™, the orbifold Euler number is equal to the number of conjugacy classes
of G because every fixed point set M9 is contractible. For G C SU(2,C), the
classical McKay correspondence states that the second Betti number bo(Y") of the
minimal resolution ¥ — C2/G equals the number of nontrivial conjugacy classes
of G. As a result, the equality

(5.1) e(Y)=0b(Y)+1= #{Conjugacy classes of G} =e(C?,Q)

can be viewed as a version of the McKay correspondence. Inspired by this obser-
vation, Reid [27] formulated Conjecture 1.2.

5.2. The orbifold E-function. Following the introduction of the orbifold
Euler number, Vafa [30] and Zaslow [32] considered the orbifold Hodge numbers

m(g)
(5.2) hP9 (M, G) = Z Z dime HP—#eelala—agelol (Ar. (g) /C(g)),
[9]€Conj(G) i=1

where M9 = Mi(g) U ---U Mp,(4)(g) are the smooth connected components of the
fixed-point set. These numbers are the standard (compactly supported) Hodge

numbers of ]\/47& shifted according to the age® of the appropriate conjugacy class.
It is natural to introduce the orbifold analogue of the F-polynomial.

6In this context, the age of a conjugacy class is called the Fermionic shift number.
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DEFINITION 5.2. The orbifold E-function of the pair (M, G) is

Eorb(M, G) = Z(_l)P+q hp’q(M7 G) uP o7
| m(g)
=YY BMig)/Cle)) - (wn)eeld,

[g)€Conj(G) i=1

where E denotes the standard E-polynomial. When E,.(M, Q) is evaluated at
u = v = 1 we produce the orbifold Euler number e(M, G).

REMARK 5.3. Note that the second formula for E..,(M,G) given in Defini-
tion 5.2 follows from a straightforward substitution. In the special case M = C"
and G C GL(n, C), the fixed-point set M9 is an affine subspace of dimension equal
to n —rank(g — id) = n — age[g] — age[g™!]. As a result,

Eon(C",G) = Y (uo)noeel = N7 (el

[91€Conj(G) [9]€Conj(G)
where the final equality follows from summing over conjugacy classes [g~!].

5.3. McKay correspondence via motivic integration. Batyrev proved
Conjecture 1.2 by first establishing that the stringy E-function coincides with the
orbifold E-function. That is, he proved formula (4.5):

THEOREM 5.4 ([3]). Let G C SL(n,C) be a finite subgroup. Then
Est (CH/G) == Eorb ((Cn, G) = Z (uv)nfage[g]’
[g]€Conj(G)
where the sum runs over conjugacy classes of G.

PROOF OF THE ABELIA