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Introduction

Joseph Daniel Harris, universally known as “Joe” in the algebraic geometry
community, celebrated his 60th birthday in 2011. On 25–28 August 2011, an al-
gebraic geometry conference, “A Celebration of Algebraic Geometry”, was held at
Harvard University with over 300 mathematicians participating.

This milestone was cause for celebration not only for Joe, but for all of us
who have been fortunate to know and work with Joe over the years, and for the
many more who have been touched by Joe’s research, his books, and his vivacious
lectures.

This is not the moment to catalogue Joe’s numerous accomplishments and ac-
colades. However, we would like to recall some of Joe’s most lasting impacts on our
subject. Joe Harris was both an undergraduate and graduate student at Harvard
University, completing his Ph.D thesis with Phillip Griffiths in 1978. During those
student years, Griffiths and Harris wrote together their textbook in complex ge-
ometry, “Principles of Algebraic Geometry”. This has been the textbook for both
complex algebraic geometry and complex differential geometry ever since, as well
as the source of many “Joe legends”.

Joe has over 100 published research articles. From the beginning, Joe was a su-
perstar in the subject of algebraic curves, particularly the moduli spaces of curves.
Signal achievements were Joe’s completion with Griffiths of the Brill-Noether the-
orem; the proof with Mumford, and then Eisenbud, that moduli spaces of curves
are of general type for g > 23; the many consequences of the theory of “limit linear
series” of Eisenbud-Harris; and the proof of the Severi conjecture on irreducibility
of Severi varieties of plane curves. But this captures only a small part of Joe’s
work: he has also worked on local differential geometry of algebraic varieties, vari-
ations of Hodge structure, extension of Thom-Porteous theory to the symmetric
and skew-symmetric setting, varieties of minimal degree, Noether-Lefschetz theory,
the Harris-Morrison slope conjecture, Cayley-Bacharach theory, the uniformity of
rational points of curves over number fields, the enumerative theory of plane curves
with specified contact orders (i.e., relative Gromov-Witten invariants of the pro-
jective plane, in modern parlance), unirationality of low degree varieties, rationally
connected varieties, and moduli spaces of rational curves on Fano manifolds, among
many others.

For many of us, equally remarkable is Joe’s unflagging support of younger math-
ematicians, reflected in his teaching and his mentoring. Joe served as the graduate
program director of the Harvard mathematics department for many years, shep-
herding generations of graduate students. Joe was the mentor for many Benjamin
Peirce instructors and other postdoctoral fellows. Joe has been the thesis advisor

ix



x INTRODUCTION

for about fifty Ph.Ds, and has about 120 total “mathematical descendants” accord-
ing to the Mathematics Genealogy Project. Joe’s graduate textbooks have become
instant classics: “Principles of Algebraic Geometry” with Griffiths, “Geometry of
Algebraic Curves” with Arbarello, Cornalba and Griffiths, “Representation Theory”
with William Fulton, “The Geometry of Schemes” with David Eisenbud, “Moduli of
Curves” with Ian Morrison, and “Algebraic Geometry, A First Course”. Recently,
Joe has turned his attention to an even broader audience of young people: with
long-time colleague Benedict Gross, Joe pioneered a quantitative reasoning course
for non-technically oriented undergraduates culminating in their textbook, “The
Magic of Numbers.”

The articles gathered in this volume are contributed from many of Joe’s col-
leagues, postdoctoral mentees and students. The topics reflect the breadth of Joe’s
own interests, indeed the breadth of “classical” algebraic geometry in our post-
classical era. From all of us whom Joe has led and inspired, we dedicate this
volume to Joe as a token of our gratitude.

The conference was funded by the National Science Foundation (DMS-1045217),
the Clay Mathematics Institute, and Harvard University. Its success is due in large
part to the tireless efforts of Irene Minder and the rest of the staff of the Harvard
Mathematics Department. We are grateful to Izzet Coskun for his contributions
to the planning of the conference, as well as the other members of the organizing
committee (David Ellwood, Benedict Gross, and David Smyth) and the scientific
committee (Dan Abramovich, Lucia Caporaso, Kieran O’Grady, and Rahul Pand-
haripande).

Brendan Hassett, James McKernan, Jason Starr, Ravi Vakil
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Abstract. In this paper we classify n-dimensional Fano manifolds with index
≥ n− 2 and positive second Chern character.
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1. Introduction

A Fano manifold is a smooth complex projective variety X having ample an-
ticanonical class, −KX > 0. This simple condition has far reaching geometric
implications. For instance, any Fano manifold X is rationally connected, i.e., there
are rational curves connecting any two points of X ([Cam92] and [KMM92a]).

The Fano condition −KX > 0 also plays a distinguished role in arithmetic
geometry. In the landmark paper [GHS03], Graber, Harris and Starr showed that
proper families of rationally connected varieties over curves always admit sections.
This generalizes Tsen’s theorem in the case of function fields of curves.

Theorem (Tsen’s Teorem). Let K be a field of transcendence degree r over an
algebraically closed field k. Let X ⊂ Pn

K be a hypersurface of degree d. If dr ≤ n,
then X has a K-point.

2010 Mathematics Subject Classification. Primary 14J45; Secondary 14M20.

c©2013 Carolina Araujo and Ana-Maria Castravet

1

Clay Mathematics Proceedings
Volume 18, 2013

c©2013

1



2 CAROLINA ARAUJO AND ANA-MARIA CASTRAVET

For hypersurfaces of degree d in Pn, being Fano or rationally connected is
equivalent to the numerical condition d ≤ n. So, for r = 1, [GHS03] replaces
the condition of X being a hypersurface of degree d ≤ n with the condition of X
being rationally connected. It turns out that rationally connected varieties form
the largest class of varieties for which such statement holds true when r = 1 (see
[GHMS02] for the precise statement).

Since then, there has been quite some effort towards finding suitable geometric
conditions on X that generalize Tsen’s theorem for function fields of higher dimen-
sional varieties. In [deJHS08], de Jong and Starr considered a possible notion
of rationally simply connectedness. They established a version of Tsen’s theorem
for function fields of surfaces, replacing the condition of X being a hypersurface of
degree d, d2 ≤ n, with the condition of X being rationally simply connected (see
[deJHS08, Corollary 1.1] for a precise statement). Several attempts have been
made to define the appropriate notion of rationally simply connectedness. Roughly
speaking, one would like to ask that a suitable irreducible component of the space
of rational curves through two general points of X is itself rationally connected.
However, in order to make the definition applicable, one is led to introduce some
technical hypothesis, which makes this condition difficult to verify in practice. It
is then desirable to have natural geometric conditions that imply rationally simply
connectedness. In this context, 2-Fano manifolds were introduced by de Jong and
Starr in [deJS06] and [deJS07]. In order to define these, we introduce some nota-
tion. Given a smooth projective variety X and a positive integer k, we denote by
Nk(X) the R-vector space of k-cycles on X modulo numerical equivalence, and by
NEk(X) the closed convex cone in Nk(X) generated by classes of effective k-cycles.
Recall that the second Chern character of X is

ch2(X) =
c1(X)2

2
− c2(X),

where ci(X) = ci(TX). We say that a manifold X is 2-Fano (respectively weakly
2-Fano) if it is Fano and ch2(X) · α > 0 (respectively ch2(X) · α ≥ 0) for every
α ∈ NE2(X) \ {0}.

Questions 1. Do 2-Fano manifolds satisfy some version of rationally simply
connectedness? Is this a good condition to impose on the general member of fi-
brations over surfaces in order to prove existence of rational sections (modulo the
vanishing of Brauer obstruction)?

Motivated by these questions, in [AC12], we investigated and classified cer-
tain spaces of rational curves on 2-Fano manifolds, and gave evidence for a positive
answer to Questions 1. In that work, we announced the following threefold classi-
fication.

Theorem 2. The only 2-Fano threefolds are P3 and the smooth quadric hy-
persurface Q3 ⊂ P4.

In this paper we write down a complete proof of Theorem 2. In fact, Theorem 2
will follow from a more general classification. Recall that the index iX of a Fano
manifold X is the largest integer dividing −KX in Pic(X). Our main result is the
following.

Theorem 3. Let X be a 2-Fano manifold of dimension n ≥ 3 and index iX ≥
n− 2. Then X is isomorphic to one of the following.

2



CLASSIFICATION OF 2-FANO MANIFOLDS WITH HIGH INDEX 3

• Pn.
• Complete intersections in projective spaces:

- Quadric hypersurfaces Qn ⊂ Pn+1 with n > 2;
- Complete intersections of quadrics X2·2 ⊂ Pn+2 with n > 5;
- Cubic hypersurfaces X3 ⊂ Pn+1 with n > 7;
- Quartic hypersurfaces in X4 ⊂ Pn+1 with n > 15;
- Complete intersections X2·3 ⊂ Pn+2 with n > 11;
- Complete intersections X2·2·2 ⊂ Pn+3 with n > 9.

• Complete intersections in weighted projective spaces:
- Degree 4 hypersurfaces in P(2, 1, . . . , 1) with n > 11;
- Degree 6 hypersurfaces in P(3, 2, 1, . . . , 1) with n > 23;
- Degree 6 hypersurfaces in P(3, 1, . . . , 1) with n > 26;
- Complete intersections of two quadrics in P(2, 1, . . . , 1) with n > 14.

• G(2, 5).
• OG+(5, 10) and its linear sections of codimension c < 4.
• SG(3, 6).
• G2/P2.

Here OG+(5, 10) denotes a connected component of the 10-dimensional or-
thogonal Grassmannian OG(5, 10) in the half-spinor embedding (see Section 6.2),
SG(3, 6) is a 6-dimensional symplectic Grassmannian (see Section 6.3), and G2/P2

is a 5-dimensional homogeneous variety for a group of type G2 (see Section 6.4).
In order to prove Theorem 3, we will go through the classification of Fano

manifolds of dimension n ≥ 3 and index iX ≥ n − 2, and check positivity of
the second Chern character for each of them. In the course of the proof, we also
determine (with two exceptions) which of these manifolds are weakly 2-Fano. We
summarize the results in the following Theorem.

Theorem 4. Let X be a weakly 2-Fano, but not 2-Fano, manifold of dimension
n ≥ 3 and index iX ≥ n− 2.

If ρ(X) = 1, then X is isomorphic to one of the following:

• Complete intersections in projective spaces:
- Complete intersections of quadrics X2·2 ⊂ P7;
- Cubic hypersurfaces X3 ⊂ P8;
- Quartic hypersurfaces in X4 ⊂ P16;
- Complete intersections X2·3 ⊂ P13;
- Complete intersections X2·2·2 ⊂ P12.

• Complete intersections in weighted projective spaces:
- Degree 4 hypersurfaces in P(2, 1, . . . , 1) with n = 11;
- Degree 6 hypersurfaces in P(3, 2, 1, . . . , 1) with n = 23;
- Degree 6 hypersurfaces in P(3, 1, . . . , 1) with n = 26;
- Complete intersections of two quadrics in P(2, 1, . . . , 1) with n = 14.

• Linear sections of codimension 1 in G(2, 5) and possibly codimension 2
(see Question 39).

• Linear sections of codimension 4 in OG+(5, 10).
• G(2, 6) and possibly linear sections of codimension 2 in G(2, 6) (see Ques-
tion 41).

• Linear sections of codimension 1 in SG(3, 6).
• Linear sections of codimension 1 in G2/P2 .

3



4 CAROLINA ARAUJO AND ANA-MARIA CASTRAVET

If ρ(X) > 1, then X is isomorphic to one of the following:

• Dimension n = 3:
- P1 ×P2;
- P(TP2);
- PP2

(
O(1)⊕O

) ∼= V7 (V7 is the blow-up of P3 at a point);

- PP2

(
O(2)⊕O

)
;

- P1 ×P1 ×P1;
- P1 × F1;
- PP1×P1

(
O(1, 1)⊕O

)
;

- The blow-up of V7 along the proper transform of a line l passing
through the center of the blow-up V7 → P3.

• Dimension n = 4:
- P2 ×P2;
- P1 ×P3;
- PP3

(
O(1)⊕O(−1)

)
;

- PQ3

(
O ⊕O(−1)

)
;

- PP3

(
E
)
, where E is the null-correlation bundle (see Section 9, case

(11));
- P1 ×P(TP2);
- P1 × V7;
- P1 ×P1 ×P1 ×P1.

• Dimension n > 4:
- P2 ×Q3;
- P3 ×P3.

The paper is organized as follows. In Section 2 we revise the classification of
Fano manifolds of high index. In Section 3, we check the 2-Fano condition for the
simplest ones: (weighted) projective spaces and complete intersections on them, and
Grassmannians. Most of the others can be described as double covers, blow-ups or
projective bundles over simpler ones. So in Section 4 we compute Chern characters
for these constructions. In Section 5, we revise some results from [AC12], which
describe certain families of rational curves on 2-Fano manifolds. These results are
then used in Section 6 to check the 2-Fano condition for certain Fano manifolds
described as complete intersections on homogeneous spaces. After all these compu-
tations, we are ready to prove Theorems 3 and 4. The proof occupies Sections 7, 8
and 9, with Section 10 being a summary. In Section 7, we address n-dimensional
Fano manifolds with index iX ≥ n − 2, except Fano threefolds and fourfolds with
Picard number ≥ 2. These are treated in Sections 8 and 9 respectively.

We remark that toric 2-Fano manifolds have been addressed in [Nob11], [Sat11]
and [Nob12]. At present, the only known examples are projective spaces.

Notation. Given a vector bundle E on a variety X, we denote by PX(E), or
simply P(E), the projective bundle of one-dimensional quotients of the fibers of E ,
i.e., P(E) = Proj(SymE).

We denote by G(k, n) the Grassmannian of k-dimensional subspaces of an n-
dimensional vector space V , and we always assume that 2 ≤ k ≤ n

2 . We write

0 → S → O ⊗ V → Q → 0

4



CLASSIFICATION OF 2-FANO MANIFOLDS WITH HIGH INDEX 5

for the universal sequence on G(k, n). For subvarieties X of G(k, n), we denote
by the same symbols σa1,...,ak

the restrictions to X of the corresponding Schubert
cycles.

Aknowledgements. We thank the referee for very useful suggestions. The first
named author was partially supported by CNPq and Faperj Research Fellowships.
The second named author was partially supported by the NSF grants DMS-1001157,
DMS-1160626 and a travel grant from the Association for Women in Mathematics.

2. Classification of Fano manifolds

In this section we discuss the classification of Fano manifolds. A modern survey
on this subject can be found in [IP99].

Notation. When X is an n-dimensional Fano manifold with ρ(X) = 1, we denote
by L the ample generator of Pic(X), and define the degree of X as dX := c1(L)

n.

For a fixed positive integer n, Fano n-folds form a bounded family ([KMM92b]).
For n ≤ 3, Fano n-folds are completely classified. The classification of Fano sur-
faces, also known as del Pezzo surfaces, is a classical result. They are P2, P1×P1,
and the blow-up S9−n of P2 at n points in general position, 1 ≤ n ≤ 8. It is easy
to check that among those only P2 is 2-Fano, and among the others only S8 = F1

and P1 ×P1 are weakly 2-Fano (see 4.3.1).
The classification of Fano threefolds of Picard number ρ = 1 was established by

Iskovskikh in [Isk77] and [Isk78]. There are 17 deformation types of these. The
classification of Fano threefolds of Picard number ρ ≥ 2 was established by Mori
and Mukai in [MM81] and [MM03]. There are 88 deformation types of those. We
will revise this list in Section 8.

In higher dimensions, there is no complete classification. On the other hand,
one can get results in this direction if one fixes some invariants of the Fano manifold.
For instance, we have the following result by Wísniewski.

Theorem 5 ([Wís91]). Let X be an n-dimensional Fano manifold with index
iX ≥ n+1

2 . Then X satisfies one of the following conditions:

• ρ(X) = 1;

• X ∼= P
n
2 ×P

n
2 (n even);

• X ∼= P
n−1
2 ×Q

n+1
2 (n odd);

• X ∼= P(T
P

n+1
2

) (n odd); or

• X ∼= P
P

n+1
2

(O(1)⊕O n−1
2 ) (n odd).

Fano manifolds of dimension n and index iX ≥ n − 2 have been classified. A
classical result of Kobayachi-Ochiai’s asserts that iX ≤ n+ 1, and equality holds if
and only if X 
 Pn. Moreover, iX = n if and only if X is a quadric hypersurface
Qn ⊂ Pn+1 ([KO73]). Fano manifolds with index iX = n− 1 are called del Pezzo
manifolds. They were classified by Fujita in [Fuj82a] and [Fuj82b]:

Theorem 6. Let X be an n-dimensional Fano manifold with index iX = n−1,
n ≥ 3.

(1) Suppose that ρ(X) = 1. Then 1 ≤ dX ≤ 5. Moreover, for each 1 ≤ d ≤ 4
and n ≥ 3, and for d = 5 and 3 ≤ n ≤ 6, there exists a unique deformation

5



6 CAROLINA ARAUJO AND ANA-MARIA CASTRAVET

class of n-dimensional Fano manifolds Yd with ρ(X) = 1, iX = n− 1 and
dX = d. They have the following description:
(i) Y5 is a linear section of the Grassmannian G(2, 5) ⊂ P9 (embedded

via the Plücker embedding).
(ii) Y4 = Q ∩Q′ ⊂ Pn+2 is an intersection of two quadrics in Pn+2.
(iii) Y3 ⊂ Pn+1 is a cubic hypersurface.
(iv) Y2 → Pn is a double cover branched along a quartic B ⊂ Pn (alter-

natively, Y2 is a hypersurface of degree 4 in the weighted projective
space P(2, 1, . . . , 1)).

(v) Y1 is a hypersurface of degree 6 in the weighted projective space
P(3, 2, 1, . . . , 1).

(2) Suppose that ρ(X) > 1. Then X is isomorphic to one of the following:
• P2 ×P2 (n = 4);
• P(TP2) (n = 3);
• P

(
OP2(1)⊕OP2

)
(n = 3); or

• P1 ×P1 ×P1 (n = 3).

An n-dimensional Fano manifold X with index iX = n − 2 is called a Mukai
manifold. The classification of such manifolds was first announced in [Muk89] (see
also [IP99] and references therein). First we note that, by Theorem 5, if n ≥ 5,
then n-dimensional Mukai manifolds have Picard number ρ = 1, except in the cases
of P3 ×P3, P2 ×Q3, P(TP3) and PP3(O(1)⊕O2).

So we start by considering n-dimensional Mukai manifolds X with ρ(X) = 1.
In this case there is an integer g = gX , called the genus of X, such that dX =
c1(L)

n = 2g − 2. The linear system |L| determines a morphism

φ|L| : X → Pg+n−2,

which is an embedding if g ≥ 4 (see [IP99, Theorem 5.2.1]).

Theorem 7. Let X be an n-dimensional Mukai manifold with ρ(X) = 1. Then
X has genus g ≤ 12 (g �= 11) and we have the following descriptions.

(1) If g = 12, then n = 3 and X is the zero locus of a global section of the
vector bundle ∧2S∗ ⊕ ∧2S∗ ⊕ ∧2S∗ on the Grassmannian G(3, 7).

(2) If 6 ≤ g ≤ 10, then X is a linear section of a variety

Σ
n(g)
2g−2 ⊂ Pg+n(g)−2

of dimension n(g) and degree 2g − 2, which can be described as follows:
(g=6) Σ6

10 ⊂ P10 is a quadric section of the cone over the Grassmannian
G(2, 5) ⊂ P9 in the Plücker embedding.

(g=7) Σ10
12 = OG+(5, 10) ⊂ P15 is a connected component of the orthogonal

Grassmannian OG(5, 10) in the half-spinor embedding.
(g=8) Σ8

14 = G(2, 6) ⊂ P14 is the Grassmannian G(2, 6) in the Plücker
embedding.

(g=9) Σ6
16 = SG(3, 6) ⊂ P13 is the symplectic Grassmannian SG(3, 6) in

the Plücker embedding.
(g=10) Σ5

18 = (G2/P2) ⊂ P13 is a 5-dimensional homogeneous variety for a
group of type G2.

6



CLASSIFICATION OF 2-FANO MANIFOLDS WITH HIGH INDEX 7

(3) If g ≤ 5, and the map φ|L| is an embedding, then X is a complete inter-
section as follows:

(g=3) X4 ⊂ Pn+1 a quartic hypersurface;
(g=4) X2·3 ⊂ Pn+2 a complete intersection of a quadric and a cubic;
(g=5) X2·2·2 ⊂ Pn+3 a complete intersection of three quadrics.

(4) If g ≤ 3, and the map φ|L| is not an embedding, then:

(g=2) φ|L| : X → Pn is a double cover branched along a sextic (alterna-
tively, X is a degree 6 hypersurface in the weighted projective space
P(3, 1, . . . , 1));

(g=3) φ|L| : X → Qn ⊂ Pn+1 is a double cover branched along the intersec-
tion of Q with a quartic hypersurface (alternatively, X is a complete
intersection of two quadric hypersurfaces in the weighted projective
space P(2, 1, . . . , 1)).

We will go through the classification of Mukai manifolds with Picard number
ρ ≥ 2 and dimension n ∈ {3, 4} in Sections 8 and 9.

3. First Examples

In this section we compute the first Chern characters for the simplest examples
of Fano manifolds with high index: (weighted) projective spaces and complete
intersection on them, and Grassmannians.

3.1. Projective spaces. Set h := c1(OPn(1)). Then

ch(Pn) = n+

n∑
k=1

n+ 1

k!
hk.

In particular, Pn is 2-Fano.

3.2. Weighted projective spaces. Let P = P(a0, . . . , an) be a weighted
projective space. We always assume that gcd(a0, . . . , an) = 1, and, for every i ∈
{0, . . . , n}, gcd(a0, . . . , âi, . . . an) = 1. Denote by H the effective generator of the
class group Cl(P) ∼= Z. Recall that H is an ample Q-Cartier divisor. From the
Euler sequence, on the smooth locus of P, we have:

ch(P) = n+
n∑

k=1

ak0 + . . .+ akn
k!

c1(H)k.

3.3. Zero loci of sections of vector bundles. Several Fano manifolds with
ρ(X) = 1 and high index are described as the zero locus X = Z(s) ⊆ Y of a global
section s of a vector bundle E on a simpler variety Y . So we investigate the 2-Fano
condition in this situation.

Lemma 8. Let Y be a smooth projective variety, and E a vector bundle on Y .
Let s be a global section of E , and X its zero locus Z(s). Assume that X is smooth
of dimension dim(Y )− rk(E). Then

chi(X) =
(
chi(Y )− chi(E)

)
|X .

Proof. Since the normal bundle NX|Y is E|X , the lemma follows from the
normal bundle sequence. �

7
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Special cases of these are complete intersections. If Y is a smooth projective
variety, and X is a smooth complete intersection of divisors D1, . . . , Dc in X, then
Lemma 8 becomes:

(3.1) chk(X) =
(
chk(Y )− 1

k!

∑
Dk

i

)
|X .

3.3.1. Complete intersections in Pn. Let X be a smooth complete inter-
section of hypersurfaces of degrees d1, . . . , dc in Pn. Then by (3.1):

chk(X) =
1

k!

(
(n+ 1)−

∑
dki

)
hk
|X .

It follows that

(i) X is 2-Fano if and only if
∑

d2i ≤ n.
(ii) X is weakly 2-Fano if and only if

∑
d2i ≤ n+ 1.

3.3.2. Complete intersections in weighted projective spaces. We use
the same notation and assumptions as in 3.2. Let X be a smooth complete in-
tersection of hypersurfaces with classes d1H, . . . , dcH in P, and assume that X is
contained in the smooth locus of P. Then the Chern character of X is given by

ch(X) = (n− c) +

n∑
k=1

ak0 + . . .+ akn −
∑

dki
k!

c1(H|X)k.

It follows that

(i) X is 2-Fano if and only if
∑

d2i <
∑

a2i .
(ii) X is weakly 2-Fano if and only if

∑
d2i ≤

∑
a2i .

3.4. Grassmannians. Consider the Grassmannian G(k, n) of k-dimensional
subspaces of an n-dimensional vector space V , and recall our convention that 2 ≤
k ≤ n

2 . Let S∗ denote the dual of the universal rank k vector bundle S on G(k, n).
The Chern classes of S∗ are given by:

ci(S∗) = σ1,...,1, (i ≥ 1)

where σa1,...,ak
denotes the usual Schubert cycle on G(k, n). Recall that σ1 is the

class of a hyperplane via the Plücker embedding and generates Pic(G(k, n)). Since
the tangent bundle of G(k, n) is given by

TG(k,n) = S∗ ⊗Q,

the Chern character of G(k, n) can be calculated from

ch(G(k, n)) = ch(S∗)ch(Q) = ch(S∗)
(
n− ch(S)

)
.

The Chern character of S∗ is given by

ch(S∗) = k + σ1 +
1

2
(σ2 − σ1,1) +

1

6
(σ3 − σ2,1 + σ1,1,1) + . . . .

As computed in [deJS06, 2.4]),

ch(G(k, n)) = k(n− k) + nσ1 +
(n+ 2− 2k

2
σ2 −

n− 2− 2k

2
σ1,1

)
+

+
n− 2k

6

(
σ3 − σ2,1 + σ1,1,1

)
+ . . . .

The cone NE2(G(k, n)) is generated by the dual Schubert cycles σ∗
2 and σ∗

1,1.
It follows that G(k, n) is 2-Fano if and only if n = 2k or 2k+ 1. Moreover, G(k, n)
is weakly 2-Fano if and only if n = 2k, 2k + 1 or 2k + 2.

8
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Remark 9. Complete intersections and, more generally, zero loci of vector
bundles on Grassmannians will be addressed in Section 6. We will need the following
formulas, obtained by standard Chern class computations:

ch(∧2(S∗)) =

(
k

2

)
+ (k − 1)σ1 +

(k − 1

2
σ2 −

k − 3

2
σ1,1

)
+

+
(k − 1

6
σ3 −

k − 4

6
σ2,1 +

k − 7

6
σ1,1,1

)
+ . . . ,

ch(Sym2(S∗)) =

(
k + 1

2

)
+ (k + 1)σ1 +

(k + 3

2
σ2 −

k + 1

2
σ1,1

)
+

+
(k + 7

6
σ3 −

k + 4

6
σ2,1 +

k + 1

6
σ1,1,1

)
+ . . . .

4. Chern class computations

From the classification of Fano manifolds with high index, we see that many of
those with ρ = 1 are described as double covers, while most of the ones with ρ > 1
are obtained from simpler ones by blow-ups and taking projective bundles. So in
this section we compute Chern characters for these constructions.

4.1. Double covers.

Lemma 10. Let f : X → Y be a finite map of degree 2 between smooth projective
varieties X and Y . Let R ⊂ X denote the ramification divisor, and B = f(R) ⊂ Y
the branch divisor. Then f∗(B) = 2R and there is an exact sequence:

0 → TX → f∗TY → O(2R)|R → 0.

The first and second Chern characters are related by

c1(X) = f∗(c1(Y )− 1

2
B
)
,

ch2(X) = f∗(ch2(Y )− 3

8
B2

)
.

Proof. This follows from the exact sequence:

0 → f∗ΩY → ΩX → O(−R)|R → 0.

�

As an immediate consequence of Lemma 10 we have the following.

Corollary 11. Let f : X → Y be a finite map of degree 2 between smooth
projective varieties X and Y . Let B ⊂ Y be the branch divisor. Then:

(i) X is Fano if and only if −KY − 1
2B is an ample divisor. In particular, if

X is Fano and B is nef, then Y is Fano.
(ii) X is 2-Fano (respectively weakly 2-Fano) if and only if X is Fano and

ch2(Y )− 3

8
B2 > 0 (respectively ≥ 0).

9
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4.2. Projective Bundles. The following two lemmas appear in [deJS06].
(Note that in [deJS06] the notation P(E) stands for Proj(SymE∗).)

Lemma 12. [deJS06, Lemma 4.1] Let X be a smooth projective variety and let
E be a rank r vector bundle on X. Denote by π : P(E) → X the natural projection
and set ξ = c1(Oπ(1)). Then

c1(P(E)) = π∗(c1(X) + c1(E∗)
)
+ rξ,

ch2(P(E)) = π∗(ch2(X) + ch2(E∗)
)
+ π∗c1(E∗) · ξ + r

2
ξ2.

Lemma 13. [deJS06, Proposition 4.3] Let X be a smooth projective variety
and let E be a rank 2 vector bundle on X. Denote by π : P(E) → X the natural
projection and set ξ = c1(Oπ(1)). Then

c1(P(E)) = 2ξ + π∗(c1(X)− c1(E)
)
,

ch2(P(E)) = π∗(ch2(X) +
1

2
(c1(E)2 − 4c2(E))

)
.

Therefore, ch2(P(E)) ≥ 0 if and only if

(4.1) ch2(X) +
1

2
(c1(E)2 − 4c2(E)) ≥ 0.

If dim(X) > 0, then P(E) is not 2-Fano. P(E) is weakly 2-Fano if it is Fano
and condition ( 4.1) holds.

As an immediate consequence of Lemma 13, we have the following criterion.

Corollary 14. Let X be a smooth projective variety and let L be a line bundle
on X. The projective bundle PX(O ⊕ L) is not 2-Fano and it is weakly 2-Fano if
and only if it is Fano and we have:

(4.2) ch2(X) +
1

2
c1(L)

2 ≥ 0.

In particular, ( 4.2) holds if X is weakly 2-Fano and L is nef. For example:

(i) PPn(O ⊕O(a)) is weakly 2-Fano if and only if |a| ≤ n.
(ii) PPn×Pm(O ⊕ O(a, b)) is weakly 2-Fano if and only if |a| ≤ n, |b| ≤ m,

and ab ≥ 0.

Example 15. Consider the Fano manifold X = P(TPn), n ≥ 2.
If n = 2, then X is not 2-Fano, but weakly 2-Fano by Lemma 13 since

ch2(P
2) +

1

2

(
c1(P

2)2 − 4c2(P
2)
)
= c1(P

2)2 − 3c2(P
2) = 0.

Suppose n ≥ 3. Denote by π : X → Pn the natural morphism, and let � ⊂ Pn

be a line. Consider the surface S in π−1(�), ruled over �, corresponding to the
surjection

TPn |� ∼= O(2)⊕O(1)⊕n−1 � O(1)⊕O(1).

Using the formula for ch2 from Lemma 12, one gets that ch2(X) · S = −1. Hence
X is not weakly 2-Fano.

Example 16. The exact same calculation as in Example 15 shows that

PPn(O(2)⊕O(1)⊕n−1)

is not weakly 2-Fano for n ≥ 3.

10
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Lemma 17. A product X × Y of smooth projective varieties is not 2-Fano. It
is weakly 2-Fano if and only if both X and Y are weakly 2-Fano.

Proof. This follows from the projection formula and the formula

ch2(X × Y ) = π∗
1ch2(X) + π∗

2ch2(Y ),

where π1 : X × Y → X and π2 : X × Y → Y are the two projections. Given two
curves B ⊂ X and C ⊂ Y , set S = B × C. Then ch2(X × Y ) · S = 0, and thus
X × Y is not 2-Fano. �

4.2.1. Complete intersections in products of projective spaces. Let Y
be a smooth divisor of type (a1, . . . , ar) in Pn1×. . .×Pnr , and set hi := c1(π

∗
iO(1)).

By a direct computation using the normal bundle sequence, we have:

ch2(Y ) =
1

2

r∑
i=1

(ni + 1− a2i )
(
h2
i

)
|Y −

∑
i<j

(aiaj)
(
hi · hj

)
|Y .

We compute some examples of intersection numbers ch2(Y ) · S, where

(4.3) S = h1
c1
|Y · . . . · hr

cr
|Y ,

∑
ci =

∑
ni − 3 (ci ≥ 0).

Example 18. Let Y be a divisor of type (a, b) on Pn×Pm (a, b > 0). It follows
from (4.3) that

ch2(Y ) · h1
n−2
|Y · h2

m−1
|Y =

b

2
(n+ 1− 3a2).

In particular, Y is not weakly 2-Fano if either 3a2 > n+ 1 or 3b2 > m+ 1.

Example 19. Let Y be a divisor of type (a, b, c) on P1 ×P1 ×P2. It follows
from (4.3) that

ch2(Y ) · h3|Y = −3abc.

In particular, if a, b, c > 0 then Y is not weakly 2-Fano.

Example 20. Let Y be a divisor of type (a1, . . . , ar) on (P1)r. It follows from
(4.3) that

ch2(Y ) · h1|Y · h2|Y . . . · hr−3|Y = −3ar−2ar−1ar.

In particular, if ai > 0 for all i = 1, . . . r, then Y is not weakly 2-Fano.

Example 21. Let Y be a complete intersection in Pn × Pm (m,n ≥ 2) of a
divisor D1 of type (a1, b1) and a divisor D2 of type (a2, b2). Then

ch2(Y ) =
1

2
(n+ 1− a1

2 − a2
2)h2

1|Y +
1

2
(m+ 1− b1

2 − b2
2)h2

2|Y −

−(a1b1 + a2b2)(h1 · h2)|Y .

It follows that

ch2(Y ) · h1
n−2
|Y · h2

m−2
|Y = 1 +

n+m

2
− 3

2
(a1b1 + a2b2)(a1b2 + a2b1).

In particular, Y is not weakly 2-Fano if (a1b1 + a2b2)(a1b2 + a2b1) >
n+m+2

3 .

11
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4.3. Blow-ups. The following Lemma appeared first in [deJS06]. See also
[Nob12] for a detailed computation.

Lemma 22. [deJS06, Lemma 5.1] Let X be a smooth projective variety and let

i : Y ↪→ X be a smooth subvariety of codimension c ≥ 2. Let f : X̃ → X be the
blow-up of X along Y and let E be the exceptional divisor. Denote by j : E ↪→ X̃
the natural inclusion map and set π = f|E : E → Y . Let N be the normal bundle

of Y in X. The Chern characters of X̃ are given by the following formulas:

c1(X̃) = f∗c1(X)− (c− 1)[E],

ch2(X̃) = f∗ch2(X) +
c+ 1

2
[E]2 − j∗π

∗c1(N).

4.3.1. Del Pezzo surfaces. Let Sd (1 ≤ d ≤ 9) denote a del Pezzo surface
of degree d, i.e., Sd is the blow-up of P2 at 9 − d points in general position. By
Lemma 22, we have

(4.4) ch2(Sd) = ch2(P
2)− 3

2
(9− d) =

3

2
(d− 8).

It follows that the only 2-Fano del Pezzo surface is P2, while S8 = F1 and P1×P1

(Lemma 17) are the only other weakly 2-Fano surfaces.
4.3.2. The case of threefolds. We compute several intersection numbers of

ch2(X̃) with surfaces in the case when X̃ is a blow-up of a threefold, first along a
smooth curve (Lemma 23), and then along points (Lemma 24).

Lemma 23. Let X be a smooth projective variety of dimension 3 and let C
be a smooth irreducible curve in X. Let X̃ be the blow-up of X along C, E the
exceptional divisor, and N the normal bundle of C in X. Then E3 = − deg(N)
and

ch2(X̃) · E = −1

2
deg(N).

Let T be a smooth surface in X and let T̃ be its proper transform in X̃.

(i) If T ∩ C is a 0-dimensional reduced scheme of length r, then

ch2(X̃) · T̃ = ch2(X) · T − 3r

2
.

(ii) If C ⊂ T and (C2)T denotes the self-intersection of C on T , then

ch2(X̃) · T̃ = ch2(X) · T +
3

2
(C2)T − deg(N).

Proof. By Lemma 22,

ch2(X̃) · E =
3

2
E3 −

(
j∗π

∗c1(N)
)
· E.

Set ξ = c1(OE(1)). Since E ∼= PC(N
∗), by [Ful98, Rmk. 3.2.4]) we have

ξ2 + π∗c1(N)ξ + π∗c2(N) = 0.

(Note that in [Ful98], the notation P(E) stands for Proj(SymE∗).)
It follows that ξ2 = − deg(N) and hence,

E3 = ξ2 = − deg(N).

If α is a cycle on E and D is a divisor on X, then

(4.5) j∗α ·D = (j∗D · α)E ,

12
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where (, )E denotes the intersection on E. Applying (4.5) for D = E and α =
π∗c1(N), it follows that(

j∗π
∗c1(N)

)
· E = −

(
ξ · π∗c1(N)

)
E
= − deg(N),

ch2(TX̃) · E = −3

2
deg(N) + deg(N) = −1

2
deg(N).

For Cases (i) and (ii), by Lemma 22, we have:

ch2(X̃) · T̃ = ch2(X) · T +
3

2
E2 · T̃ −

(
j∗π

∗c1(N)
)
· T̃ .

Consider now Case (i). Then T̃ is the blow-up of T along the r points in C ∩T ,

and E ∩ T̃ is the union of the r exceptional divisors of the blow-up T̃ → T . Since
T̃|E consists of fibers of π : E → C, it follows using (4.5) that(

j∗π
∗c1(N)

)
· T̃ = T̃|E · π∗c1(N) = 0.

As E2 · T̃ =
(
E2

|T̃
)
T̃
= −r, the result follows.

Consider now Case (ii). Then T̃ ∼= T and E ∩ T̃ is a section of π : E → C. By
(4.5) it follows that(

j∗π
∗c1(N)

)
· T̃ = T̃|E · π∗c1(N) = deg(N).

Since E2 · T̃ = (C2)T , the result follows. �
Lemma 24. Let X be a smooth projective variety of dimension 3, q ∈ X a

point, and X̃ the blow-up of X at q, with exceptional divisor E. Then E3 = 1 and

ch2(X̃) · E = 2.

Let T be a surface in X and let T̃ be its proper transform in X̃. If m ≥ 0 is
the multiplicity of T at q, then we have:

ch2(X̃) · T̃ = ch2(X) · T − 2m.

Proof. Since E|E is the tautological line bundle OE(−1) on E ∼= P2, it follows

that E3 =
(
OE(−1)2

)
E
= 1. By Lemma 22, we have:

ch2(X̃) · E = 2E3 = 2.

If T is a surface that contains q with multiplicity m, then

ch2(X̃) · T̃ = ch2(X̃) · (f∗T −mE) = ch2(X) · T − 2mE3 = ch2(X) · T − 2m.

�
As an immediate consequence of Lemmas 23 and 24, we have the following

criterion.

Corollary 25. Let X be a smooth projective variety of dimension 3 and X̃
be the blow-up of X along disjoint smooth curves C1, . . . , Ck and l distinct points.
If T is a smooth surface in X containing 0 ≤ s ≤ l of the blown-up points, and
intersecting ∪iCi along a zero-dimensional reduced scheme of length r, then

ch2(X̃) · T̃ = ch2(X) · T − 3r

2
− 2s.

In particular, X̃ is not weakly 2-Fano if

ch2(X) · T <
3r

2
+ 2s.

13
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The results in 4.3.2 (for example Corollary 25) give ways to check that some
blow-ups of threefolds are not weakly 2-Fano. Here we list a few more.

Corollary 26. Let the assumptions and notation be as in Lemma 23. Suppose
that either g(C) > 0 and −KX · C > 0, or C ∼= P1 and −KX · C > 2. Then

ch2(X̃) · E < 0.

In particular, if X is Fano and either g(C) > 0, or X has index iX ≥ 3, then

ch2(X̃) is not nef.
If C ∼= P1 and −KX · C = 2, then

ch2(X̃) · E = 0.

Proof. The result follows immediately from Lemma 23 since

deg(N) = deg(TX |C)− deg(TC) = −KX · C + 2g(C)− 2.

�

Lemma 27. Let X be a smooth projective threefold. Assume X has a semiample
divisor T such that

ch2(X) · T < 0.

Then any blow-up of X along points and smooth curves is not weakly 2-Fano.

Proof. By replacing T with a multiple, we may assume that |T | is a base-point
free linear system. In this case we can find a surface T that avoids any of the blown-
up points and intersects each of the blown-up curves in a reduced 0-dimensional
scheme of length r ≥ 0. By Lemma 25, we have:

ch2(X̃) · T̃ = ch2(X) · T − 3r

2
< 0.

In particular, X̃ is not weakly 2-Fano. �

As a consequence of Lemma 27, we have the following criterion.

Corollary 28. Let X be a smooth projective threefold with ρ = 1. If X is
not weakly 2-Fano, then any blow-up of X along points and smooth curves is not
weakly 2-Fano.

Corollary 29. Let f : X → Y be a finite map of degree 2 between smooth
projective threefolds with ample branch divisor B. Moreover, assume Y has a semi-
ample divisor T such that

ch2(Y ) · T ≤ 0.

Then any blow-up of X along points and smooth curves is not weakly 2-Fano.

Proof. By replacing T with a multiple, we may assume that |T | is base-point
free. Note that |f∗T | is also base-point free. By Lemma 10, we have:

ch2(X) · f∗(T ) =
(
ch2(Y )− 3

8
B2

)
· T < 0.

The result now follows from Lemma 27. �

14
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5. Families of rational curves on 2-Fano manifolds

In this section we revise some results from [AC12], to which we refer for details
and further references.

Let X be a smooth complex projective uniruled variety, and x ∈ X a general
point. There is a scheme RatCurvesn(X, x) parametrizing rational curves on X
passing through x, and it always contains a smooth and proper irreducible com-
ponent Hx. For instance, one can take Hx to be an irreducible component of
RatCurvesn(X, x) parametrizing rational curves through x having minimal degree
with respect to some fixed ample line bundle on X. We denote by πx : Ux → Hx

and evx : Ux → X the usual universal family morphisms, and set d := dim(Hx).
Since evx is proper and πx is a P1-bundle, we have a linear map

T1 = evx∗π
∗
x : N1(Hx) → N2(X),

which maps NE1(Hx) \ {0} into NE2(X) \ {0}.
The variety Hx comes with a natural polarization Lx, which can be defined as

follows. By [Keb02, Theorems 3.3 and 3.4], there is a finite morphism τx : Hx →
P(TxX

∗) that sends a point parametrizing a curve smooth at x to its tangent
direction at x. We then set Lx := τ∗xO(1).

The pair (Hx, Lx) is called a polarized minimal family of rational curves through
x, and reflects much of the geometry of X. It is well understood for homogeneous
spaces and complete intersections on them (see [Hwa01]). In [AC12], we computed
all the Chern classes of the varietyHx in terms of the Chern classes ofX and c1(Lx).
For instance,

(5.1) c1(Hx) = πx∗ev
∗
x

(
ch2(X)

)
+

d

2
c1(Lx).

In particular, if X is 2-Fano (respectively weakly 2-Fano), then −2KHx
− dLx is

ample (respectively nef). This necessary condition is also sufficient provided that
T1

(
NE1(Hx)

)
= NE2(X).

Example 30. We consider the special case of the Grassmannian G(k, n) (2 ≤
k ≤ n

2 ). The variety Hx of lines in G(k, n) that pass through a general point

x = [W ] can be identified with P(W )×P(V/W )∗ ∼= Pk−1 ×Pn−k−1, and the map

τx : Pk−1 × Pn−k−1 → P(TxX
∗) is the Segre embedding. So the polarization Lx

corresponds to a divisor of type (1, 1). We denote by π1 and π2 the projections

from Pk−1 ×Pn−k−1. The map

T1 : NE1(Hx) → NE2(G(k, n))

sends classes of lines in the fibers of π1 and π2, to the dual cycles σ∗
2 and σ∗

1,1,
respectively.

Now let X = H1 ∩ . . . ∩ Hc ⊆ G(k, n) be a smooth complete intersection of
hyperplane sections H1, . . . , Hc under the Plücker embedding, with c ≤ n− 2. We
may assume that x ∈ X is a general point, and consider the variety of lines in X,
Zx ⊂ Hx. Notice that Zx is a complete intersection of c divisors Di of type (1, 1)
in Hx:

Zx = D1 ∩ . . . ∩Dc ⊂ Hx
∼= Pk−1 ×Pn−k−1.

Claim.

(i) If c ≤ k − 1 and n > 2k, then Zx contains a line from a fiber of π2. In
particular, X contains a surface with class σ∗

1,1.

15
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(ii) If c < n− k − 1, then Zx contains a line from a fiber of π1. In particular,
X contains a surface with class σ∗

2 .

In particular, if c ≤ k − 1 and n > 2k, then the natural map

u2 : NE2(X) → NE2(G(k, n))

is surjective.

Proof. Let x0, . . . , xk−1 (respectively y0, . . . , yn−k−1) denote the coordinates

on Pk−1 (respectively on Pn−k−1). Each divisor Di has an equation of type:

x0F
(i)
0 + . . .+ xk−1F

(i)
k−1 = 0,

where F
(i)
j are linear forms in (yi). Clearly, if c < k − 1, then Zx contains a line

from any fiber of π2. By the same argument, if c < n− k − 1, then Zx contains a
line from any fiber of π1, and this proves (ii).

Note that if c = k − 1 and k ≤ n − k − 1, then the locus in Pn−k−1 where

the k minors of size (k − 1)× (k − 1) of the matrix of linear forms
(
F

(i)
j

)
vanish is

non-empty. This proves (i) and the claim follows. �
Note that inequalities (i) and (ii) are optimal. Indeed, consider the case when

X = H1 ∩H2 ⊂ G(2, 5). Let x0, x1 (respectively y0, y1, y2) denote the coordinates
on P1 (respectively on P2). The variety Zx is a complete intersection in P1 ×P2

of two divisors of type (1, 1):

D1 : x0F0 + x1F1 = 0,

D2 : x0G0 + x1G1 = 0,

where Fi, Gi are linear forms in (yi). Thus Zx is isomorphic to the smooth conic
F0G1 −F1G0 = 0 in P2, and Zx ⊂ P1 ×P2 is a curve of type (2, 2). It follows that
T1 : NE1(Zx) → NE2(X) maps the fundamental class of Zx to σ∗

2 + σ∗
1,1.

6. Complete intersections in homogeneous spaces

6.1. Complete intersections in Grassmannians. We apply the results
from Section 3.3 to the case when the ambient space is a Grassmannian.

Proposition 31. Consider a smooth complete intersection

X = (d1H) ∩ . . . ∩ (dcH) ⊆ G(k, n) (2 ≤ k ≤ n

2
, 1 ≤ c),

where H = σ1 is the class of a hyperplane class via the Plücker embedding.
The Chern character of X is given by:

ch(X) =
(
k(n− k)− c

)
+ (n−

∑
di)σ1+

(n+ 2− 2k −
∑

d2i
2

σ2 −
n− 2− 2k +

∑
d2i

2
σ1,1

)
+

+
(n− 2k −

∑
d3i

6

(
σ3 + σ1,1,1

)
− n− 2k +

∑
d3i

6
σ2,1

)
+ . . . .

Then X is Fano if and only if
∑

di < n. Moreover, X is not weakly 2-Fano if∑
d2i ≥ n− 2k + 2,

with the exception of the case when n = 2k, c = 2, d1 = d2 = 1, in which case X is
weakly 2-Fano (see also Proposition 32).
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Proof of Proposition 31. The formula for ch(X) follows from the formula
for ch(G(k, n)) computed in 3.4 and the formula for complete intersections from
3.3. The criterion for X to be Fano follows immediately.

To prove the last statement, we may assume X is Fano. If
∑

d2i ≥ n− 2k + 2
then ch2(X) = aσ2+ bσ1,1, with a, b ≤ 0. Note that b = 0 if and only if n = 2k and∑

d2i = 2, i.e., c = 2 and d1 = d2 = 1. In this case, ch2(X) = 0. But if b < 0, then
either a < 0, in which case ch2(X) · S < 0 for any surface S ⊂ X, or a = 0 and we
have: ∑

d2i = n− 2k + 2, ch2(X) = −(n− 2k)σ1,1|X (n > 2k).

Since σ1,1 · σdimG(k,n)−2
1 > 0 and σ1|X is ample, in the latter case X is not

weakly 2-Fano for

(6.1) ch2(X) · σdim(X)−2
1 < 0.

�

Proposition 32. Consider a smooth complete intersection

X = H1 ∩ . . . ∩Hc ⊆ G(k, n) (2 ≤ k ≤ n

2
, 1 ≤ c < n),

of hyperplane sections H1, . . . , Hc under the Plücker embedding. Then

ch2(X) =
n+ 2− 2k − c

2
σ2 −

n− 2− 2k + c

2
σ1,1.

Moreover:

(i) If c ≥ n− 2k + 2 (with c �= 2 if n = 2k) then X is not weakly 2-Fano.
(ii) If c ≤ k − 1 and n ≥ 2k + 2, then X is not weakly 2-Fano.
(iii) If n = 2k then X is (weakly) 2-Fano if and only if c = 1 (c = 1, 2).
(iv) If n = 2k + 1, then X is not 2-Fano; X is weakly 2-Fano if and only if

c = 1, and possibly when X = H1 ∩H2 ⊂ G(2, 5).

Proof. By Proposition 31, if c ≥ n−2k+2, and if we are not in the case when
n = 2k and c = 2, then X is not weakly 2-Fano. This gives (i). For (ii), note that
if c ≤ k− 1 then, by Example 30, the natural map u2 : NE2(X) → NE2(G(k, n)) is
surjective. If n− 2k − 2 + c > 0 and n > 2k, then part (ii) follows, since

ch2(X) · σ∗
1,1 = −n− 2k − 2 + c

2
< 0.

Part (iii) follows immediately, since if n = 2k then

ch2(X) =
2− c

2

(
σ2 + σ1,1

)
=

2− c

2
σ2
1 .

We now prove (iv). Assume that n = 2k + 1. We have:

ch2(X) =
3− c

2
σ2 +

1− c

2
σ1,1.

By (i), if c ≥ 3 then X is not weakly 2-Fano. Assume that c ≤ 2. If k ≥ 3,
then c ≤ 2 ≤ k−1. By Example 30, the natural map u2 : NE2(X) → NE2(G(k, n))
is surjective. It follows that, in this case, X is weakly 2-Fano if and only if the
coefficients of σ2 and σ1,1 in the formula for ch2(X) are non-negative, i.e., c = 1.
Note that X is not 2-Fano in this case, as ch2(X) · σ∗

1,1 = 0.
We are left to analyze what happens in the case when k < 3, i.e., the case of

G(2, 5). If c = 1 then ch2(X) = σ2 ≥ 0, and X is weakly 2-Fano. By Example 30,

17



18 CAROLINA ARAUJO AND ANA-MARIA CASTRAVET

the natural map u2 : NE2(X) → NE2(G(2, 5)) is surjective, and X is not 2-Fano
since ch2(X) · σ∗

1,1 = 0. Now assume c = 2. Then we have:

ch2(X) =
1

2
σ2 −

1

2
σ1,1.

By Example 30, X contains a surface S with class σ∗
2 + σ∗

1,1. Clearly, X is not
2-Fano, since ch2(X) · S = 0. �

6.2. Orthogonal Grassmannians. We fix Q a nondegenerate symmetric bi-
linear form on the n-dimensional vector space V . Let OG(k, n) be the subvariety
of the Grassmannian G(k, n) parametrizing linear subspaces that are isotropic with
respect to Q.

If n �= 2k then OG(k, n) is a Fano manifold of dimension k(2n−3k−1)
2 and ρ = 1.

On the other hand, OG(k, 2k) has two connected components [GH, p. 737]: If
Σ ⊂ V is a fixed isotropic subspace of dimension k in V , then one component
OG+(k, 2k), corresponds to [W ] ∈ OG(k, 2k) such that dim(W ∩ Σ) ≡ k (mod 2),
while the other component OG−(k, 2k) corresponds to those [W ] ∈ OG(k, 2k) such
that dim(W ∩ Σ) �≡ k (mod 2). The two components are disjoint and isomorphic.
Note also that

OG(k − 1, 2k − 1) ∼= OG+(k, 2k).

The orthogonal Grassmannian OG(k, n) is the zero locus in G(k, n) of a global
section of the vector bundle Sym2(S∗). Using this description and the formula for
ch
(
G(k, n)

)
described in 3.4, standard Chern class computations show that for any

component X of OG(k, n) we have:

ch(X) =
k(2n− 3k − 1)

2
+ (n− k − 1)σ1+

+
(n− 3k − 1

2
σ2 −

n− 3k − 3

2
σ1,1

)
+

+
(n− 3k − 7

6
σ3 −

n− 3k − 4

6
σ2,1 +

n− 3k − 1

6
σ1,1,1

)
+ . . . .

6.2.1. Complete intersections in OG+(k, 2k). Our main reference in what
follows is [Cos09]. We consider now one component OG+(k, 2k) of the orthogonal
Grassmannian OG(k, 2k). For the reader’s convenience, we recall the description
of Schubert varieties in OG+(k, 2k). Let

F1 ⊂ F2 ⊂ . . . ⊂ Fk

be an isotropic flag in V , with [Fk] ∈ OG+(k, 2k). This induces a second flag

Fk−1 ⊂ F⊥
k−1 ⊂ F⊥

k−2 ⊂ . . . ⊂ F⊥
1 ⊂ V.

Here, by abuse of notation, we denote by F⊥
k−1 an isotropic subspace of dimension

k parametrized by OG−(k, 2k) and such that Fk−1 ⊂ F⊥
k−1.

For each decreasing sequence

λ : k − 1 ≥ λ1 > λ2 > . . . > λs ≥ 0 (s ≤ k),

(where we assume k − s is even) we denote by

μ : k − 1 ≥ μs+1 > μs+2 > . . . > μk ≥ 0

18



CLASSIFICATION OF 2-FANO MANIFOLDS WITH HIGH INDEX 19

the sequence obtained by removing k− 1− λi from k− 1, . . . , 0. For each sequence
λ as above, we have a Schubert variety of codimension

∑
λi:

Ω0
λ = {[W ] ∈ OG(k, 2k) | dim(W ∩ Fk−λi

) = i, dim(W ∩ F⊥
μj
) = j}.

Let Ωλ be the closure of Ω0
λ and denote by τλ its cohomology class. The cohomology

of OG+(k, 2k) is generated by the classes τλ. In particular, b4(OG+(k, 2k)) = 1.

Claim 33. On OG+(k, 2k) we have σ2 = σ1,1 = 1
2σ

2
1 .

Proof. Since b4 = 1, it is enough to find a surface S in OG+(k, 2k) such that
σ2 · S = σ1,1 · S. Let S = Ωk−1,k−2,...,3,1 (the unique Schubert variety of dimension
2). One can show that σ2 · S = σ1,1 · S = 2. We leave this fun computation to the
reader. �

Proposition 34. OG+(k, 2k) is a 2-Fano manifold.
Consider a smooth complete intersection

X = (d1H) ∩ . . . ∩ (dcH) ⊆ OG+(k, 2k) (k ≥ 3),

where H = 1
2σ1 denotes a hyperplane section of the half-spinor embedding of

OG+(k, 2k). The Chern character of X is given by:

ch(X) =
k(k − 1)

2
+
(
2k − 2−

∑
di
)
H +

(4−∑
d2i

2

)
H2 + . . . .

Then X is Fano if and only if
∑

di < 2k − 2. Moreover, X is 2-Fano if and
only if all di = 1 and c ≤ 3. The only other cases when X is weakly 2-Fano are
when c = 4, d1 = . . . = d4 = 1 and c = 2, d1 = d2 = 2.

Proof. Since σ2
1 = σ2 + σ1,1, by Claim 33, we obtain

ch2(OG+(k, 2k)) =
1

2
σ2
1 .

In particular, OG+(k, 2k) is 2-Fano. Recall that a hyperplane section of OG+(k, 2k)
via the Plücker embedding is linearly equivalent to 2H, where H is a hyperplane
section of the spinor embedding [Muk95, Proposition 1.7]. It follows that 2H = σ1.
The result now follows from the formula for the Chern character of OG(k, n). �

6.3. Symplectic Grassmannians. We fix ω a non-degenerate antisymmet-
ric bilinear form on the n-dimensional vector space V , n even. Let SG(k, n) be
the subvariety of the Grassmannian G(k, n) parametrizing linear subspaces that
are isotropic with respect to ω. Then SG(k, n) is a Fano manifold of dimension
k(2n−3k+1)

2 and ρ(X) = 1. Notice that X is the zero locus in G(k, n) of a global

section of the vector bundle ∧2(S∗). Using this description and the formula for
ch
(
G(k, n)

)
described in 3.4, standard Chern class computations show that

ch(SG(k, n)) =
k(2n− 3k + 1)

2
+ (n− k + 1)σ1+

+
(n− 3k + 3

2
σ2 −

n− 3k + 1

2
σ1,1

)
+

+
(n− 3k + 1

6
σ3 −

n− 3k + 4

6
σ2,1 +

n− 3k + 7

6
σ1,1,1

)
+ . . . .
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20 CAROLINA ARAUJO AND ANA-MARIA CASTRAVET

6.3.1. Complete intersections in SG(k, 2k). The symplectic Grassmannian
SG(k, 2k) is a Fano manifold with b4 = 1. For example, note that b4

(
SG(k, 2k)

)
=

b4
(
OG(k, 2k+1)

)
(see for instance [BS02, Section 3.1]), and b4

(
OG(k, 2k+1)

)
= 1

(see Section 6.2.1).

Claim 35. On SG(k, 2k) we have σ2 = σ1,1 = 1
2σ

2
1 .

Proof. Since σ2
1 = σ2 + σ1,1, it is enough to prove that on SG(k, 2k) we have

σ2 = σ1,1. Since b4(SG(k, 2k)) = 1, we are done if we find a surface S in SG(k, 2k)
such that S ·σ2 = S ·σ1,1. Let x be a general point on SG(k, 2k) and let Hx denote
the space of lines on SG(k, 2k) that pass through x. Recall from [AC12, 5.5]) that

Hx
∼= Pk−1 ⊂ Pk−1 ×Pk−1

is the diagonal embedding. Let S be the surface in SG(k, 2k) corresponding to a

line in Hx
∼= Pk−1 via the map T1 : NE1(Hx) → NE2(SG(k, 2k)). It follows that

the class of S is σ∗
2 + σ∗

1,1. Clearly, S · σ2 = S · σ1,1 = 1. �

It follows from 6.3 that

ch(SG(k, 2k)) =
(k(k + 1)

2

)
+ (k + 1)σ1 +

1

2
σ2
1 + . . .

In particular, SG(k, 2k) is 2-Fano (as proved also in [AC12, 5.5]) and we have the
following consequence:

Proposition 36. Consider a smooth complete intersection

X = (d1H) ∩ . . . ∩ (dcH) ⊆ SG(k, 2k) (k ≥ 2, c ≥ 1),

where H = σ1 is a hyperplane section under the Plücker embedding.
The Chern character of X is given by:

ch(X) =
(k(k + 1)

2
− r

)
+ (k + 1−

∑
di)σ1 +

1−
∑

d2i
2

σ2
1 + . . .

Then X is Fano if and only if
∑

di < k. Moreover, X is weakly 2-Fano if and
only if c = d1 = 1. In this case X is not 2-Fano.

6.4. Complete intersections in homogeneous spaces G2/P2. If G is a
group of type G2, there exist two maximal parabolic subgroups P1 and P2 in G.
The quotient variety G/P1 is isomorphic to a 5-dimensional quadric Q ⊂ P6, and
G/P2 is a Mukai variety of genus g = 10 (see Theorem 7):

G2/P2 ⊂ P13.

One has b4(G2/P2) = 1 (see for instance [And11, Proposition 4.5 and Appendix
A.3]), and G2/P2 is 2-Fano by [AC12, 5.7.].

Recall from [Hwa01, 1.4.5] the polarized minimal family of rational curves
through a general point y ∈ G2/P2 is

(Hy, Ly) ∼= (P1,O(3)).

Let H denote the hyperplane class (the generator of the Picard group). We claim
that

ch2(G2/P2) =
1

2
H2.

This will follow from the following more general remark, applied to Y = G2/P2.
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CLASSIFICATION OF 2-FANO MANIFOLDS WITH HIGH INDEX 21

Remark 37 (Complete intersections in varieties with ρ(Y ) = b4(Y ) = 1). Let
Y be a Fano manifold with ρ(X) = 1, and H an ample generator of Pic(Y ). Let
y ∈ Y be a general point, and (Hy, Ly) a polarized minimal family of rational curves
through y, as defined in Section 5. Suppose that dim(Hy) ≥ 1. If b4(Y ) = 1, then
the map

T1 : NE1(Hy) → NE2(Y )

is clearly surjective. Let C ⊂ Hy be a complete curve, and S = T1([C]) the
corresponding surface class on Y . By (5.1), the second Chern character of Y is
given by:

ch2(Y ) = aH2, a ∈ 1

2
Z, a(H2 · S) = −(KHy

− d

2
Ly) · C.

In particular, a ≤ −(KHy
− d

2Ly) · C.
Now consider a complete intersection:

X = (d1H) ∩ . . . ∩ (dcH) ⊂ Y.

The natural map u2 : NE2(X) → NE2(Y ) is surjective. Thus, by (3.1), X is 2-Fano
(respectively weakly 2-Fano) if and only if it is Fano and

∑
d2i < 2a (respectively

≤ 2a).

We have the following consequence:

Proposition 38. A linear section H1 ⊂ G2/P2 is weakly 2-Fano, but not
2-Fano. A linear section H1 ∩H2 ⊂ G2/P2 is not 2-Fano.

7. Fano manifolds with high index and ρ = 1

In this section we address n-dimensional Fano manifolds X with index iX ≥
n− 2 and ρ(X) = 1. We also treat those with bigger Picard number for n > 4.

Recall from Section 3 that Pn and Qn ⊂ Pn+1 are 2-Fano for n ≥ 3.

7.1. Del Pezzo manifolds. We go through the classification in Theorem 6.
We first consider manifolds with ρ = 1.

7.1.1. Degree d = 5. We saw in Section 3.4 that the Grassmannian G(2, 5) is
2-Fano. Consider now a linear section

X = H1 ∩ . . . ∩Hc ⊂ G(2, 5) (c ≥ 1).

By Proposition 32(iv), if c = 3, the threefold X is not weakly 2-Fano. If c = 1,
then X is weakly 2-Fano, but not 2-Fano. If c = 2, then X is not 2-Fano. We could
not decide if in this case X is weakly 2-Fano. We raise the following:

Question 39. Is a linear section P7 ∩G(2, 5) ⊂ P9 weakly 2-Fano?

7.1.2. Degree d = 4. By 3.3.1, a del Pezzo variety of type Y4 is 2-Fano if and
only if n ≥ 6 and weakly 2-Fano if and only if n ≥ 5.

7.1.3. Degree d = 3. By 3.3.1, a del Pezzo variety of type Y3 is 2-Fano if and
only if n ≥ 8 and weakly 2-Fano if and only if n ≥ 7.

7.1.4. Degree d = 2. By Corollary 11(ii) or 3.3.2, del Pezzo varieties of type Y2

are 2-Fano (respectively weakly 2-Fano) if and only if n > 11 (respectively n ≥ 11).
7.1.5. Degree d = 1. By Corollary 3.3.2, del Pezzo varieties of type Y1 are

(weakly) 2-Fano if and only if n > 23 (n ≥ 23).
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7.1.6. Del Pezzo manifolds with ρ > 1. All the del Pezzo manifolds with
ρ > 1 are weakly 2-Fano but not 2-Fano. For P2 × P2 and P1 × P1 × P1 this
follows from Lemma 17, for P(OP2 ⊕ OP2(1)) from Corollary 14, and for P(TP2)
from Example 15.

Remark 40. We get the following classification of weakly 2-Fano del Pezzo
manifolds:

• All the del Pezzo manifolds with ρ > 1 are weakly 2-Fano.
• The only del Pezzo manifolds with ρ = 1 that are weakly 2-Fano are:

(d = 5) G(2, 5) and its linear sections of codimension 1 (and possibly codi-
mension 2, see Question 39);

(d = 4) Complete intersections of quadrics Q ∩Q′ ⊂ Pn+2 if n ≥ 5;
(d = 3) Cubic hypersurfaces Y3 ⊂ Pn+1 if n ≥ 7;
(d = 2) Degree 4 hypersurfaces in P(2, 1, . . . , 1) if n ≥ 11;
(d = 1) Degree 6 hypersurfaces in P(3, 2, 1, . . . , 1) if n ≥ 23.

7.2. Mukai manifolds.
7.2.1. Mukai manifolds of dimension > 4 and ρ > 1. Recall that the only

Mukai manifolds of dimension > 4 and ρ > 1 are P3 × P3, P2 × Q3, P(TP3) and
PP3(O(1)⊕O2). The manifolds P3 ×P3 and P2 ×Q3 are weakly 2-Fano but not
2-Fano by Lemma 17, while P(TP3) and PP3(O(1)⊕O2) are not weakly Fano by
Example 15 and Example 16, respectively.

Next we go through the classification of Mukai manifolds with ρ = 1 in Theo-
rem 7.

7.2.2. Genus g ≤ 5. Consider the case of complete intersections. By 3.3.1:

• X4 ⊂ Pn+1 is 2-Fano (respectively weakly 2-Fano) if and only if n ≥ 15
(respectively n ≥ 14).

• X2·3 ⊂ Pn+2 is 2-Fano (respectively weakly 2-Fano) if and only if n ≥ 11
(respectively n ≥ 10)

• X2·2·2 ⊂ Pn+3 is 2-Fano (respectively weakly 2-Fano) if and only if n ≥ 9
(respectively n ≥ 8).

Consider the case of double covers. Using Corollary 11, we have:

(i) A double cover X → Pn branched a long a sextic is 2-Fano (respectively
weakly 2-Fano) if and only if n ≥ 27 (respectively n ≥ 26).

(ii) A double cover X → Q ⊂ Pn+1 branched a long the intersection of the
quadric Q with a quartic hypersurafce, is 2-Fano (respectively weakly 2-
Fano) if and only if n ≥ 15 (respectively n ≥ 14).

7.2.3. Genus 6. A linear section X of Σ6
10 is isomorphic to one of the following

([IP99, Proposition 5.2.7]):

(i) A complete intersection in G(2, 5) of a linear subspace and a quadric.
(ii) A double cover of a smooth linear section Y of G(2, 5), branched along a

quadric section B of Y .

In Case (i), it follows from Proposition 31 that X is not weakly 2-Fano. Con-
sider now Case (ii). Set c := codim(Y ). Then X is not weakly 2-Fano by Corollary
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11, since we have:

ch2(Y )− 3

8
B2 =

3− c

2
σ2 +

1− c

2
σ1,1 −

3

8
(2σ1)

2 = − c

2
σ2 −

c+ 2

2
σ1,1,

(
ch2(Y )− 3

8
B2

)
· σ1

dim(Y )−2
|Y =

(
− c

2
σ2 −

c+ 2

2
σ1,1

)
· σ4

1 < 0.

7.2.4. Genus 7. By 6.2.1, the manifold OG+(5, 10) is 2-Fano and a linear
section of codimension c is 2-Fano (respectively weakly 2-Fano) if and only if c < 4
(respectively c ≤ 4).

7.2.5. Genus 8. We saw in Section 3.4 that the Grassmannian G(2, 6) is weakly
2-Fano. Let X ⊂ G(2, 6) be a linear section of codimension c. By Proposition 32,
if c ≥ 4 or c = 1, then X is not weakly 2-Fano. Assume that c = 3. Then

ch2(X) =
1

2
(σ2 − 3σ1,1).

By a straightforward calculation, σ6
1 = 9σ∗

2 + 5σ∗
1,1. It follows that

ch2(X) · σ1
3
|X = ch2(X) · σ6

1 = −3 < 0.

In particular, X is not weakly 2-Fano.
Assume now that c = 2. Then ch2(X) = σ2−σ1,1. By Example 30, the variety

Hx ⊂ P1 × P3 defined in Section 5 is isomorphic to a smooth quadric surface in
P3 (via the projection π2). The map T1 : NE1(Hx) → NE2(G(k, n)) sends the
classes of the lines in the two rulings of the quadric surface Hx to the classes σ∗

2

and σ∗
2 +σ∗

1,1. In particular, X is not 2-Fano, as ch2(X) · (σ∗
2 +σ∗

1,1) = 0. We could
not decide if in this case X is weakly 2-Fano. We raise the following:

Question 41. Is a linear section P12 ∩G(2, 6) ⊂ P14 weakly 2-Fano?

7.2.6. Genus 9. We saw in Section 6.3 that the symplectic Grassmannian
SG(k, 2k) is 2-Fano. By 6.3.1, a codimension c ≥ 1 linear section X of SG(k, 2k)
is not 2-Fano. The only case when X is weakly 2-Fano is for c = 1.

7.2.7. Genus 10. We saw in Section 6.4 that the variety G2/P2 is 2-Fano. By
Proposition 38, a codimension c ≥ 1 linear section in G2/P2 is not 2-Fano and it is
weakly 2-Fano if and only if c = 1.

7.2.8. Genus 12. By Remark 9,

c1(∧2(S∗)) = 2σ1, ch2(∧2(S∗)) = σ2.

It follows from Lemma 8 and the computation of ch(G(3, 7)) made in Section 3.4
that the Chern characters of the threefold X = X22 are given by:

c1(X) =
(
c1
(
G(3, 7)

)
− 3c1

(
∧2 (S∗)

))
|X = σ1|X ,

ch2(X) =
(
ch2

(
G(3, 7)

)
− 3ch2

(
∧2 (S∗)

))
|X = −3

2
σ2|X +

1

2
σ1,1|X .

Since ρ = 1 and dim(X) = 3, b4(X) = 1. In particular, the restrictions σ2|X and
σ1,1|X are multiples of the positive codimension 2-cycle

A := (σ2
1)|X .

We claim that

σ1,1|X =
5

11
A, σ2|X =

6

11
A.

To see this, it is enough to prove that(
σ2 · σ1)X = 12,

(
σ1,1 · σ1)X = 10,
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where (, )X denotes the intersection on X. Since X is the zero locus of a global
section of the rank 9 vector bundle E = (∧2(S∗))⊕3, it follows that(

σ2 · σ1)X = σ2 · σ1 · c9(E).
By a standard computation with Chern classes,

c9(E) = c3(∧2(S∗))3 =
(
c1(S∗)c2(S∗)− c3(S∗)

)3
= σ3

2,1.

It is a straightforward exercise in Schubert calculus to check that

σ3
2,1 = 4σ4,4,1 + 8σ4,3,2 + 2σ3,3,3.

It follows that
σ1 · σ3

2,1 = 12σ∗
2 + 10σ∗

1,1.

Then ch2(X) ·A = −13 < 0. Hence, X22 is not weakly 2-Fano.

Remark 42. We get the following classification of weakly 2-Fano Mukai man-
ifolds with ρ = 1:

(1) Complete intersection in projective spaces:
(g = 3) Degree 4 hypersurfaces in Pn+1 if n ≥ 15;
(g = 4) Complete intersections X2·3 ⊂ Pn+2 if n ≥ 11;
(g = 5) Complete intersections X2·2·2 ⊂ Pn+3 if n ≥ 9.

(2) Complete intersection in weighted projective spaces:
(g = 2) Degree 6 hypersurfaces in P(3, 1, . . . , 1) if n ≥ 26;
(g = 3) Complete intersections of two quadrics in P(2, 1, . . . , 1), n ≥ 14.

(3) With genus g ≥ 6:
(g = 7) OG+(5, 10) and linear sections of codimension c ≤ 4;
(g = 8) G(2, 6) and possibly a linear section of codimension 2 in G(2, 6) (see

Question 41);
(g = 9) SG(3, 6) and linear sections of codimension 1;

(g = 10) G2/P2 and linear sections of codimension 1.

8. Fano threefolds with Picard number ρ ≥ 2

By the results of Mori-Mukai [MM81] (see also [MM03]) there are 88 types
of Fano threefolds with Picard number ρ(X) ≥ 2, up to deformation. We will go
through the list in [MM81] and check that none of them is 2-Fano. We point
out those that are weakly 2-Fano. We recall the terminology and notation from
[MM81]:

(i) Vd (1 ≤ d ≤ 5) denotes a Fano 3-fold of index 2, with ρ(X) = 1 and degree
d (See Theorem 6).

(ii) W is a smooth divisor of P2 ×P2 of bidegree (1, 1). It is isomorphic to the
P1-bundle P(TP2) over P2, and appears as (32) in the following list.

(iii) The blow-up of P3 at a point is denoted by V7. It appears as (35) in the
following list. The smooth quadric in P4 is denoted by Q.
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(iv) Sd (1 ≤ d ≤ 7) is a del Pezzo surface of degree d. F1 is the blow-up of P2

at a point.

(v) All curves are understood to be smooth and irreducible, and all intersections
are understood to be scheme theoretic.

(vi) A divisor D (respectively a curve C) on the product variety

M = Pn1 × . . .×Pnm

is of multi-degree (a1, . . . , am) if OM (D) ∼= ⊗m
i=1π

∗
iOPni (ai) (respectively if C ·

π∗
iOPni (ai) = ai for all i = 1, . . . ,m), where πi is the projection of M onto the i-th

factor.

8.1. Fano 3-folds with ρ = 2. We go through the list in [MM81, Table 2]
and check that each Fano 3-fold in the list is not 2-Fano. We point out the cases
in which the 3-fold is weakly 2-Fano.

(1) The blow-up of V1 with center an elliptic curve which is an intersection of
two members of

∣∣− 1
2KV1

∣∣. This is not weakly 2-Fano by Corollary 26.

(2) A double cover of P1×P2 whose branch locus is a divisor of bidegree (2, 4).
Since P1 ×P2 is not 2-Fano, this is not weakly 2-Fano by Corollary 11(ii).

(3) The blow-up of V2 with center an elliptic curve which is an intersection of
two members of

∣∣− 1
2KV2

∣∣. This is not weakly 2-Fano by Corollary 26.

(4) The blow-up of P3 with center an intersection of two cubics. Since P3 has
index 4, this is not weakly 2-Fano by Corollary 26.

(5) The blow-up of V3 ⊂ P4 with center a plane cubic on it. This is not weakly
2-Fano by Corollary 26.

(6a) A divisor on P2×P2 of bidegree (2, 2) is not weakly 2-Fano by Example 18.

(6b) A double cover of W whose branch locus is a member of | −KW |. Since
W = P(TP2) is not 2-Fano by Lemma 13, its double cover is not weakly 2-Fano by
Corollary 11(ii).

(7) The blow-up of Q ⊂ P4 with center an intersection of two members of∣∣OQ(2)
∣∣. Since Q is a Fano threefold with index 3, this is not weakly 2-Fano by

Corollary 26.

(8) A double cover of V7 whose branch locus is a member B of | −KV7
|. Since

V7 = PP2(O ⊕O(1)) is not 2-Fano by Lemma 13, this 3-fold is not weakly 2-Fano
by Corollary 11(ii).

(9) The blow-up of P3 with center a curve of degree 7 and genus 5 which is an
intersection of cubics. This is not weakly 2-Fano by Corollary 26.
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(10) The blow-up of V4 ⊂ P5 with center an elliptic curve which is an inter-
section of two hyperplane sections. This is not weakly 2-Fano by Corollary 26.

(11) The blow-up of V3 ⊂ P4 with center a line on it. Since V3 has Picard
number 1 and is not weakly 2-Fano (see Section 7.1), this is not weakly 2-Fano by
Corollary 28.

(12) The blow-up of P3 with center a curve of degree 6 and genus 3 which is
an intersection of cubics. This is not weakly 2-Fano by Corollary 26.

(13) The blow-up of Q ⊂ P4 with center a curve of degree 6 and genus 2. This
is not weakly 2-Fano by Corollary 26.

(14) The blow-up of V5 ⊂ P6 with center an elliptic curve which is an inter-
section of two hyperplane sections. This is not weakly 2-Fano by Corollary 26.

(15) The blow-up of P3 with center an intersection of a quadric A and a cubic
B. This is not weakly 2-Fano by Corollary 26.

(16) The blow-up of V4 ⊂ P5 with center a conic on it. Since V4 has ρ = 1 and
is not weakly 2-Fano (see Section 7.1), this is not weakly 2-Fano by Corollary 28.

(17) The blow-up of Q ⊂ P4 with center an elliptic curve of degree 5 on it.
This is not weakly 2-Fano by Corollary 26.

(18) A double cover of P1 × P2 whose branch locus is a divisor of bidegree
(2, 2). Since P1 × P2 is not 2-Fano by Lemma 17, this is not weakly 2-Fano by
Corollary 11(ii).

(19) The blow-up of V4 ⊂ P5 with center a line on it. Since V4 has ρ = 1 and
is not weakly 2-Fano (see Section 7.1), this is not weakly 2-Fano by Corollary 28.

(20) The blow-up of V5 ⊂ P6 with center a twisted cubic on it. Since V5 has
ρ = 1 and is not weakly 2-Fano (see Section 7.1), this is not weakly 2-Fano by
Corollary 28.

(21) The blow-up of Q ⊂ P4 with center a twisted quartic (i.e., a smooth
rational curve of degree 4 which spans P4) on it. Since Q is a Fano threefold with
index 3, this is not weakly 2-Fano by Corollary 26.

(22) The blow-up of V5 ⊂ P6 with center a twisted conic on it. Since V5 has
ρ = 1 and is not weakly 2-Fano (see Section 7.1), this is not weakly 2-Fano by
Corollary 28.

(23) The blow-up of Q ⊂ P4 with center an intersection of A ∈ |OQ(1)| and
B ∈ |OQ(2)|. Since Q has index 3, this is not weakly 2-Fano by Corollary 26.

(24) A divisor on P2×P2 of bidegree (1, 2) is not weakly 2-Fano by Example 18.
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(25) The blow-up of P3 with center an elliptic curve which is an intersection
of two quadrics. Since P3 has index 4, this is not weakly 2-Fano by Corollary 26.

(26) The blow-up of V5 ⊂ P6 with center a line on it. Since V5 has ρ = 1 and
is not weakly 2-Fano (see Section 7.1), this is not weakly 2-Fano by Corollary 28.

(27) The blow-up of P3 with center a twisted cubic. Since P3 has index 4, this
is not weakly 2-Fano by Corollary 26.

(28) The blow-up of P3 with center a plane cubic. This is not weakly 2-Fano
by Corollary 26.

(29) The blow-up of Q ⊂ P4 with center a conic on it. Since Q has index 3,
this is not weakly 2-Fano by Corollary 26.

(30) The blow-up of P3 with center a conic. Since P3 has index 4, this is not
weakly 2-Fano by Corollary 26.

(31) The blow-up of Q ⊂ P4 with center a line on it. Since Q has index 3, this
is not weakly 2-Fano by Corollary 26.

(32) W ∼= P(TP2). This is not 2-Fano, but weakly 2-Fano by Example 15.

(33) The blow-up of P3 with center a line. Since P3 has index 4, this is not
weakly 2-Fano by Corollary 26.

(34) The product P1 ×P2 is not 2-Fano, but weakly 2-Fano by Lemma 17.

(35) V7
∼= PP2(O ⊕ O(1)). This is not 2-Fano, but weakly 2-Fano by Corol-

lary 14.

(36) The blow-up of the Veronese cone W4 ⊆ P6 with center the vertex, that
is the P1-bundle P(O ⊕O(2)) over P2. This is not 2-Fano, but weakly 2-Fano by
Corollary 14.

8.2. Fano 3-folds with ρ = 3. We go through the list in [MM81, Table 3]
and check that each Fano 3-fold in the list is not 2-Fano. We point out the cases
in which the 3-fold is weakly 2-Fano.

(1) A double cover of P1×P1×P1 whose branch locus is a divisor of tridegree
(2, 2, 2). Since P1×P1×P1 is not 2-Fano by Lemma 17, this is not weakly 2-Fano
by Corollary 11(ii).

(2) A member X of the linear system |Oπ(1)
⊗2 ⊗ O(2, 3)| on the P2-bundle

P(O ⊕ O(−1,−1)⊕2) over P1 × P1 such that X ∩ Y is irreducible, where Y is a
member of |Oπ(1)|.
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We prove that X is not weakly 2-Fano by a direct computation. Set E :=
O ⊕ O(−1,−1)⊕2 and let π : P(E) → P1 × P1 be the natural projection. If
π1, π2 are the two projections from P1 × P1, we set Hi = π∗

iO(1) (i = 1, 2). Set
ξ = c1(Oπ(1)). By Lemma 12 and formula (3.1),

ch2(P(E)) = 6π∗(H1 ×H2) + 2π∗(H1 +H2) · ξ +
3

2
ξ2,

ch2(X) =
(
2π∗(−H1 − 2H2) · ξ −

1

2
ξ2
)
|X .

We claim that ch2(X) · (π∗H1)|X < 0. This is a direct computation:

ch2(X) · (π∗H1)X = ch2(X) · π∗H1 ·
(
π∗(2H1 + 3H2) + 2ξ

)
= −15

2
.

(3) A divisor on P1 × P1 × P2 of tridegree (1, 1, 2) is not weakly 2-Fano by
Example 19.

(4) The blow-up of Y (No. (18) in the list for ρ = 2) with center a smooth fiber
of Y → P1×P2 → P2. Recall that Y → P1×P2 is a double cover branched along
a divisor of bidegree (2, 2). Apply Corollary 29 to deduce that this is not weakly
2-Fano.

(5) The blow-up of P1 ×P2 with center a curve C of bidegree (5, 2) such that
the composition C ↪→ P1×P2 → P2 is an embedding. Since −KP1×P2 ·C = 16 > 2,
this is not weakly 2-Fano by Corollary 26.

(6) The blow-up of P3 with center a disjoint union of a line and an elliptic
curve of degree 4. This is not weakly 2-Fano by Corollary 26.

(7) The blow-up of W with center an elliptic curve of degree 4. This is not
weakly 2-Fano by Corollary 26.

(8) A member X of the linear system |π∗
1g

∗O(1)⊗ π∗
2O(2)| on F1 ×P2, where

πi (i = 1, 2) is the projection onto the i-th factor and g : F1 → P2 is the blow-
up map. We prove that X is not weakly 2-Fano by a direct computation. Set
h1 := c1

(
π∗
1g

∗O(1)
)
and h2 := c1

(
π∗
2O(1)

)
. By (4.3.1), ch2(F1) = 0. By (3.1), we

have:

ch2(X) =
(
ch2(F1 ×P2)− 1

2
X2

)
|X =

(3
2
h2
2 −

1

2
(h1 + 2h2)

2
)
|X =

=
(
− 1

2
h2
1 −

1

2
h2
2 − 2h1h2

)
|X .

We claim that ch2(X) · h2|X < 0. This is a direct computation:

ch2(X) · h2|X = ch2(X) · h2 ·X = ch2(X) · h2 · (h1 + 2h2) = −3.

(9) The blow-up of the cone W4 ⊂ P6 over the Veronese surface R4 ⊂ P5 with
center a disjoint union of the vertex and a quartic curve in R4

∼= P2. Since the
center of the blow-up is a curve of genus 3, this is not weakly 2-Fano by Corollary 26.
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(10) The blow-up of Q ⊂ P4 with center a disjoint union of two conics on it.
Since Q has index 3, this is not weakly 2-Fano by Corollary 26.

(11) The blow-up of V7 with center an elliptic curve which is an intersection of
two members of of | − 1

2KV7
|. This is not weakly 2-Fano by Corollary 26.

(12) The blow-up of P3 with center a disjoint union of a line and a twisted
cubic. Since P3 has index 4, this is not weakly 2-Fano by Corollary 26.

(13) The blow-up of W ⊂ P2 × P2 with center a curve C of bidegree (2, 2)
on it such that the composition of C ↪→ W ↪→ P2 × P2 with the projection πi :
P2 ×P2 → P2 is an embedding for both i = 1, 2. Since −KW · C = 8, this is not
weakly 2-Fano by Corollary 26.

(14) The blow-up of P3 with center a union of a cubic in a plane S and a point
not in S. This is not weakly 2-Fano by Corollary 26.

(15) The blow-up of Q ⊂ P4 with center a disjoint union of a line and a conic
on it. Since Q has index 3, this is not weakly 2-Fano by Corollary 26.

(16) The blow-up of V7 with center the strict transform of a twisted cubic
passing through the center of the blow-up V7 → P3. Since −KV7

· C = 10, this is
not weakly 2-Fano by Corollary 26.

(17) A smooth divisor on P1 × P1 × P2 of tridegree (1, 1, 1) is not weakly
2-Fano by Example 19.

(18) The blow-up of P3 with center a disjoint union of a line and a conic. Since
P3 has index 4, this is not weakly 2-Fano by Corollary 26.

(19) The blow-up X of Q ⊂ P4 with center two points p and q on it which are
not collinear. By 3.3.1,

ch2(Q) =
1

2
h2
|Q.

It T̃ is the proper transform of a general hyperplane section T of Q that passes
through p, by Lemma 25, we have

ch2(X) · T̃ = ch2(Q) · T − 2 =
1

2
h3 − 2 = −1.

In particular, X is not weakly 2-Fano.

Remark 43. Moreover, note that T̃ is a base-point free divisor on X. It follows
from Corollary 27 that no blow-up of X along points and disjoint smooth curves is
weakly 2-Fano.

(20) The blow-up of Q ⊂ P4 with center two disjoint lines on it. Since Q has
index 3, this is not weakly 2-Fano by Corollary 26.
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(21) The blow-up of P1 × P2 with center a curve C of bidegree (2, 1). Since
−KP1×P2 · C = 7, this is not weakly 2-Fano by Corollary 26.

(22) The blow-up of P1×P2 with center a conic C in {t}×P2 (t ∈ P1). Since
−KP1×P2 · C = 6, this is not weakly 2-Fano by Corollary 26.

(23) The blow-up of V7 with center a conic C passing through the center of
the blow-up V7 → P3. Recall that V7 is the blow-up of P3 at a point. Since
−KV7

· C = 6, this is not weakly 2-Fano by Corollary 26.

(24) The fiber product X = W ×P2 F1 where W → P2 is the P1-bundle
P(TP2) and π : F1 → P2 is the blow-up map. This is not weakly 2-Fano: Since
X = PF1(π

∗TP2), by Lemma 13, ch2(X) ≥ 0 if and only if

ch2(F1) +
1

2
π∗(c1(P2)2 − 4c2(P

2)
)
≥ 0.

By Lemma 22, ch2(F1) = π∗ch2(P
2)+ 3

2E
2, where E is the exceptional divisor

of F1. Hence, X is not weakly 2-Fano, since

π∗(c1(P2)2 − 3c2(P
2)
)
+

3

2
E2 = −3

2
< 0.

(25) The blow-up of P3 with center two disjoint lines, that is, P(O(1, 0) ⊕
O(0, 1)) over P1 ×P1. This is not weakly 2-Fano by Corollary 14.

(26) The blow-up of P3 with center a disjoint union of a point and a line. Since
P3 has index 4, this is not weakly 2-Fano by Corollary 26.

(27) P1 ×P1 ×P1 is weakly 2-Fano and not 2-Fano by Lemma 17.

(28) P1 × F1 is weakly 2-Fano and not 2-Fano by Lemma 17.

(29) The blow-up X of V7 with center a line L on the exceptional divisor
E ∼= P2 of the blow-up π : V7 → P3 at a point p. The line L corresponds to a plane
Λ ⊂ P3 passing through p. By Lemma 22, we have:

ch2(V7) = 2(π∗h)2 + 2E2.

Let T be a plane through the point p, different from Λ. The proper transform
T̃ of T in X intersects L in a point. By Lemma 25,

ch2(X̃) · T̃ = ch2(V7) · T − 3

2
= (2(π∗h)2 + 2E2) · (π∗h− E)− 3

2
= −3

2
.

In particular, X̃ is not weakly 2-Fano.

(30) The blow-up X of V7 along the proper transform of a line l passing through
the center of the blow-up V7 → P3. We denote by π : X → P3 the composition of
the two blowups. By Lemma 23, we have ch2(X)·E = 0, where E is the exceptional
divisor over l. In particular, X is not 2-Fano.

We now prove that X is weakly 2-Fano. Since X is a toric variety, the cone
NE2(X) is generated by the exceptional divisor E, the proper transform E′ of the
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exceptional divisor of the blow-up V7 → P3 and the proper transform T of a plane
in P3 that contains l. To prove that X is weakly 2-Fano, it is therefore enough to
prove that ch2(X) · E′ ≥ 0 and ch2(X) · T ≥ 0. Using Lemma 23 and Lemma 24,
one easily computes that ch2(X) · E′ = 1

2 and ch2(X) · T = 0. Hence, X is weakly
2-Fano.

(31) The blow-up of the cone over a smooth quadric surface in P3 with center
the vertex, that is, the P1-bundle P(O ⊕ O(1, 1)) over P1 × P1. This is weakly
2-Fano and not 2-Fano by Corollary 14.

8.3. Fano 3-folds with ρ = 4. We go through the list in [MM81, Table 4],
[MM03] and check that each Fano 3-fold in the list is not 2-Fano. We point out
the cases in which the 3-fold is weakly 2-Fano.

(1) A smooth divisor on P1×P1×P1×P1 of tridegree (1, 1, 1, 1) is not weakly
2-Fano by Example 20.

(2) The blow-up of the cone over a smooth quadric surface S ⊂ P3 with center
a disjoint union of the vertex and an elliptic curve on S. This is not weakly 2-Fano
by Corollary 26.

(3) The blow-up of P1×P1×P1 with center a curve of tridegree (1, 1, 2). Since
−KP1×P1×P1 · C = 8, this is not weakly 2-Fano by Corollary 26.

(4) The blow-up of X (No. (19) in the list for ρ = 3) with center the strict
transform of a conic on Q passing through p and q. This is not weakly 2-Fano by
Remark 43.

(5) The blow-up of P1 × P2 with center two disjoint curves C1 and C2 of
bidegree (2, 1) and (1, 0) respectively. Since −KP1×P2 · C1 = 7, this is not weakly
2-Fano by Corollary 26.

(6) The blow-up of P3 with center three disjoint lines, that is, the blow-up of
P1 ×P1 ×P1 with center the tridiagonal curve. Since P3 has index 4, this is not
weakly 2-Fano by Corollary 26.

(7) The blow-up of W ⊂ P2 × P2 with center two disjoint curves C1 and C2

of bidegree (0, 1) and (1, 0). Since −KW · Ci = 3, this is not weakly 2-Fano by
Corollary 26.

(8) The blow-up of P1 × P1 × P1 with center a curve C of tridegree (0, 1, 1).
Since −KP1×P1×P1 · C = 4, this is not weakly 2-Fano by Corollary 26.

(9) The blow-up X of Y (No. (25) in the list for ρ = 3) with center an
exceptional line of the blowing up Y → P3. Recall that Y is the blow-up of
P3 along two disjoint lines. If T is the proper transform in Y of a plane in P3
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intersecting the two lines at general points, then by Corollary 25 we have:

ch2(Y ) · T = ch2(P
3) ·H − 3 = −1.

Since T is disjoint from the exceptional line blown-up,

ch2(X) · T̃ = ch2(Y ) · T = −1.

In particular, X is not weakly 2-Fano.

(10) P1 × S7 is not weakly 2-Fano by 4.3.1 and Lemma 17.

(11) The blow-up X of P1 × F1 with center {t} × C, where t ∈ P1 and C is
the exceptional curve of the first kind on F1. If F1 → P2 is the blow-up of a point
p ∈ P2, let T be the surface P1 × L, where L is the proper transform of a general
line through the point p. Since T intersects {t} × C in one point, it follows from
Corollary 25, that

ch2(X̃) · T̃ = ch2(P
1 × F1) · T − 3

2
= −3

2
.

In particular, X is not weakly 2-Fano.

(12) The blow-up X of Y (No. (33) in the list for ρ = 2) with center two
exceptional lines of the blowing-up Y → P3 along a line L. Let T be the proper
transform on Y of a plane in P3 that contains L. It follows from Lemma 22 that

ch2(Y ) · T = ch2(P
3) ·H +

3

2

(
L2

)
T
− deg(NL|P3) =

3

2
.

Let T̃ be the proper transform of T in X. Since T̃ intersects the blown-up
curves in two points, it follows by Corollary 25 that

ch2(X̃) · T̃ = ch2(Y ) · T − 3 = −3

2
.

In particular, X is not weakly 2-Fano.

(13) (See [MM03].) The blow-up of P1 × P1 × P1 with center a curve of
tridegree (1, 1, 3). Since −KP1×P1×P1 · C = 10, this is not weakly 2-Fano by
Corollary 26.

8.4. Fano 3-folds with ρ ≥ 5. We go through the list in [MM81, Table 3]
and check that each Fano 3-fold in the list is not weakly 2-Fano.

(1) The blow-up X of Y (No. (29) in the list for ρ = 2) with center three
exceptional lines of the blowing-up Y → Q along a conic C.

Let T be the proper transform on Y of a general hyperplane section of Q. Note
that T will intersect C in two points. It follows from Corollary 25 that

ch2(Y ) · T = ch2(Q) ·H − 3 = −2.

Since T is disjoint from the three exceptional lines of the blow-up, it follows
that ch2(X̃) · T̃ = ch2(Y ) · T = −2. In particular, X is not weakly 2-Fano.
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(2) The blow-up X of Y (No. (25) in the list for ρ = 3) with center two
exceptional lines l, l′ of the blow-up

φ : Y → P3

such that l, l′ lie on the same irreducible component of the exceptional set of φ.
Recall that φ is the blow-up of two disjoint lines L1 and L2 in P3.

Let T be the proper transform on Y of a general plane in P3 that intersects
both L1 and L2. It follows from Corollary 25 that

ch2(Y ) · T = ch2(P
3) ·H − 3 = −1.

Since T is disjoint from l and l′, ch2(X̃) · T̃ = ch2(Y ) · T = −1. In particular,
X is not weakly 2-Fano.

(3), (4) P1 × Sd is not weakly 2-Fano if d ≤ 6, by 4.3.1 and Lemma 17.

9. Fano fourfolds with index i ≥ 2 and Picard number ρ ≥ 2

By Theorem 6, the only Fano fourfold with index 3 and ρ > 1 is P2 × P2,
which is weakly 2-Fano, but not 2-Fano by Lemma 17. The classification of Fano
fourfolds of index 2 and ρ > 1 can be found in [IP99, Table 12.7]. We go through
this list, check that none of them is 2-Fano, and point out the cases in which the
4-fold is weakly 2-Fano. We use the same notation as in the previous section.

(1) P1 × V1. This is not weakly 2-Fano by Lemma 17.

(2) P1 × V2. This is not weakly 2-Fano by Lemma 17.

(3) P1 × V3. This is not weakly 2-Fano by Lemma 17.

(4) A double cover of P2 × P2 whose branch locus is a divisor of bidegree
(2, 2). Since P2 × P2 is not 2-Fano by Lemma 17, this is not weakly 2-Fano by
Corollary 11(ii).

(5) A divisor of P2 × P3 of bidegree (1, 2). This is not weakly 2-Fano by
Example 18.

(6) P1 × V4. This is not weakly 2-Fano by Lemma 17.

(7) An intersection Y of two divisors of bidegree (1, 1) on P3 ×P3. This is not
weakly 2-Fano by Example 21. With the same notation as in the example:

ch2(Y ) · (h1 · h2)|Y = −2.

(8) A divisor of P2 ×Q3 of bidegree (1, 1). By making a computation similar
to those in 4.2.1, one can check that this is not weakly 2-Fano.

(9) P1 × V5. This is not weakly 2-Fano by Lemma 17.
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(10) The blow-up of Q4 along a conic C which is not contained in a plane lying
on Q4. We claim that this is not weakly 2-Fano.

The normal bundle of C in Q4 is N ∼= O(2) ⊕ O(2) ⊕ O(2). Let π : X → Q4

denote the blow-up, and E ∼= P(N∗) the exceptional divisor. Consider the surface
S in E, ruled over C, corresponding to a surjection

N∗ ∼= O(−2)⊕O(−2)⊕O(−2) � O(−2)⊕O(−2).

Using the formula for ch2 from Lemma 22, one gets that ch2(X) · S = −2.

(11) PP3(E), where E is the null-correlation bundle on P3. Recall that c1(E) =
0 and c2(E) = h2. Therefore this is weakly 2-Fano but not 2-Fano by Lemma 13.

(12) The blow-up of Q4 ⊂ P5 along a line �. We claim that this is not weakly
2-Fano.

The normal bundle of � in Q4 is N ∼= O(1)⊕O(1)⊕O. Let π : X → Q4 denote
the blow-up, and E ∼= P(N∗) the exceptional divisor. Consider the surface S in E,
ruled over �, corresponding to the surjection

N∗ ∼= O ⊕O(−1)⊕O(−1) � O(−1)⊕O(−1).

Using the formula for ch2 from Lemma 22, one gets that ch2(X) · S = −2.

(13) PQ3(O(−1) ⊕ O), where Q3 ⊂ P4 is a smooth quadric. This is weakly
2-Fano but not 2-Fano by Lemma 13.

(14) P1 ×P3. This is weakly 2-Fano but not 2-Fano by Lemma 17.

(15)PP3(O(−1)⊕O(1)). This is weakly 2-Fano but not 2-Fano by Corollary 14.

(16) P1 ×W . This is weakly 2-Fano but not 2-Fano by Lemma 17.

(17) P1 × V7. This is weakly 2-Fano but not 2-Fano by Lemma 17.

(18) P1 ×P1 ×P1 ×P1. This is weakly 2-Fano but not 2-Fano by Lemma 17.

10. Proof of the main theorem

This section contains a guideline to the proof of Theorems 3 and 4.
The case of n-dimensional Fano manifolds with index iX ≥ n− 2, except Fano

threefolds and fourfolds with Picard number ≥ 2, is treated in Section 7. There
are two cases to consider: del Pezzo manifolds (Section 7.1) and Mukai manifolds
(Section 7.2).

We refer to Theorem 6 for a classification of del Pezzo manifolds. Del Pezzo
manifolds with ρ > 1 are analyzed in 7.1.6. The rest of Section 7.1 analyzes del
Pezzo manifolds with ρ = 1. A complete list of weakly 2-Fano del Pezzo manifolds
can be found in Remark 40.

We refer to Theorem 7 for a classification of Mukai manifolds with ρ = 1. If
n ≥ 5, then n-dimensional Mukai manifolds have Picard number ρ = 1, except in
the cases of P3 ×P3, P2×Q3, P(TP3) and PP3(O(1)⊕O2) (see Section 2 and the
remarks preceding Theorem 7). The latter cases are treated in 7.2.1. The rest of
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Section 7.2 analyzes Mukai manifolds with ρ = 1. A complete list of weakly 2-Fano
Mukai manifolds with ρ = 1 can be found in Remark 42.

We analyze separately Fano threefolds with ρ > 1 in Section 8 and Fano four-
folds with ρ > 1 in Section 9.

References

[And11] D. Anderson, Chern class formulas for G2 Schubert loci, Trans. Amer. Math. Soc.
Vol. 363 (2011), no. 12, 6615–6646. MR2833570 (2012g:14101)

[AC12] C. Araujo and A.-M. Castravet, Minimal rational curves on higher Fano manifolds,
Amer. J. of Math. Vol. 134 (2012), no. 1, 87–107. MR2876140

[BS02] N. Bergeron and F. Sottile, A Pieri-type formula for isotropic flag manifolds, Trans.
Amer. Math. Soc. Vol. 354 (2002), no. 7, 2659–2705. MR1895198 (2003a:14084)
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Abelian varieties associated to Gaussian lattices

Arnaud Beauville

To Joe Harris on his 60th birthday

Abstract. We associate to a unimodular lattice Γ , endowed with an auto-

morphism i of square −1 , a principally polarized abelian variety AΓ = ΓR/Γ.

We show that the configuration of i -invariant theta divisors of AΓ follows a

pattern very similar to the classical theory of theta characteristics; as a con-

sequence we find that AΓ has a high number of vanishing thetanulls. When

Γ = E8 we recover the 10 vanishing thetanulls of the abelian fourfold discov-

ered by R. Varley.

Introduction

A Gaussian lattice is a free, finitely generated Z[i] -module Γ with a positive

hermitian form Γ × Γ → Z[i] . Equivalently, we can view Γ as a lattice over Z

endowed with an automorphism i of square −1Γ . This gives a complex structure

on the vector space ΓR := Γ⊗ZR ; we associate to Γ the complex torus AΓ := ΓR/Γ.

As a complex torus AΓ is isomorphic to Eg , where E is the complex elliptic

curve C/Z[i] and g = 1
2 rkZ Γ. More interestingly, the hermitian form provides

a polarization on AΓ (see (1.3) below); in particular, if Γ is unimodular, A is a

principally polarized abelian variety (p.p.a.v. for short), which is indecomposable

if Γ is indecomposable.

The first non-trivial case is g = 4, with Γ the root lattice of type E8 (Example

1.2.1). The resulting p.p.a.v. is the abelian fourfold discovered by Varley [V] with

a different (and more geometric) description; it has 10 “vanishing thetanulls” (even

theta functions vanishing at 0), the maximum possible for a 4-dimensional inde-

composable p.p.a.v. In fact this property characterizes the Varley fourfold outside

the hyperelliptic Jacobian locus [D].

Our aim is to explain this property from the lattice point of view, and to extend

it to all unimodular lattices. It turns out that we can mimic the classical theory of

theta characteristics, replacing the automorphism (−1) by i . We will show:

• The group Ai of i -invariant points of AΓ is a vector space of dimension g

over Z/2; it admits a natural non-degenerate bilinear symmetric form b .

c©2013 Arnaud Beauville
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2 ARNAUD BEAUVILLE

• The set of i -invariant theta divisors of AΓ is an affine space over Ai , iso-

morphic to the space of quadratic forms on Ai associated to b (see (2.1)).

• Let Θ be an i -invariant theta divisor, and Q the corresponding quadratic

form. The multiplicity m0(Θ) of Θ at 0 satisfies

2m0(Θ) ≡ σ(Q) + g (mod. 8) ,

where σ is the Brown invariant of the form Q (2.1).

As a consequence, we obtain a high number of i -invariant divisors Θ with

m0(Θ) ≡ 2 (mod. 4); each of them corresponds to a vanishing thetanull. When Γ

is even, this number is 2
g
2−1(2

g
2 − (−1)

g
4 ) ; for g = 4 we recover the 10 vanishing

thetanulls of the Varley fourfold.

1. Gaussian lattices

1.1. Lattices. As recalled in the Introduction, a Gaussian lattice is a free

finitely generated Z[i] -module Γ endowed with a positive hermitian form1 H :

Γ × Γ → Z[i] . We write H(x, y) = S(x, y) + iE(x, y) ; S and E are Z -bilinear

forms on Γ, S is symmetric, E is skew-symmetric, and we have

S(ix, iy) = S(x, y) , E(ix, iy) = E(x, y) , E(x, y) = S(ix, y) .

We will rather view a Gaussian lattice as an ordinary lattice (over Z) with an

automorphism i such that i2 = −1Γ : the last formula above defines E , and we

have H = S + iE .

We have detS = detE = (detH)2 ; the lattice is unimodular when these

numbers are equal to 1. It is even if S(x, x) is even for all x ∈ Γ. We say that Γ

is indecomposable over Z[i] if it cannot be written as the orthogonal sum of two

nonzero Gaussian lattices; this is of course the case if Γ is indecomposable over Z ,

but the converse is false (Example 3 below).

1.2. Examples. 1) For g even, the lattice Γ2g is

Γ2g := {(xj) ∈ R2g | xj ∈
1

2
Z , xj − xk ∈ Z ,

∑
xj ∈ 2Z} .

The inner product is inherited from the euclidean structure of R2g , and the auto-

morphism i is given in the standard basis (ej) by

ie2j−1 = e2j ie2j = −e2j−1 for 1 ≤ j ≤ g .

The lattice Γ2g is unimodular, indecomposable when g > 2, and even if g is

divisible by 4. The first case g = 4 gives the root lattice E8 .

The automorphism i is unique up to conjugacy: for g = 4 this is classical [C],

and for g ≥ 6 this follows easily from the fact that Aut(Γ2g) is the semi-direct

product (Z/2)2g−1 �S2g , acting by permutation and even changes of sign of the

basis vectors (ej) .

1Our convention is that H(x, y) is C -linear in y .
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2) The Leech lattice Λ24 admits an automorphism of square −1 [C-S], also

unique up to conjugacy.

3) Let Γ0 be a lattice, and Γ := Γ0 ⊗Z Z[i] . The inner product of Γ0 extends

to an hermitian inner product on Γ, which is then a gaussian lattice. If Γ0 is

unimodular, resp. even, resp. indecomposable, Γ is unimodular, resp. even, resp.

indecomposable over Z[i] .

1.3. The abelian variety AΓ . Let Γ be a Gaussian lattice, of rank 2g over

Z . We put ΓR := Γ⊗ZR and AΓ := ΓR/Γ. The automorphism i defines a complex

structure on ΓR , so that AΓ is a complex torus. Since Γ is a free Z[i] -module, AΓ

is isomorphic to Eg , where E is the complex elliptic curve C/Z[i] .

The positive hermitian form H extends to ΓR , and its imaginary part E takes

integral values on Γ: this is by definition a polarization on AΓ . The polarization

is principal if and only if Γ is unimodular; the p.p.a.v. AΓ is indecomposable (i.e.

is not a product of two nontrivial p.p.a.v.) if and only if Γ is indecomposable over

Z[i] .

The multiplication by i on ΓR induces an automorphism of AΓ , that we simply

denote i . Conversely, let A = V/Γ be a complex torus, of dimension g , with an

automorphism inducing on T0(A) = V the multiplication by i . Then Γ is a Z[i] -

module, thus isomorphic to Z[i]g , so that A is isomorphic to Eg ; polarizations of

A correspond bijectively to positive hermitian forms on Γ.

2. Linear algebra over (Z/2)[i]

2.1. Linear algebra over Z/2 . We consider a vector space V over Z/2, of

dimension g , with a non-degenerate symmetric bilinear form b on V . The form

x �→ b(x, x) is linear. Two different situations may occur:

• b(x, x) = 0 for all x ∈ V ; in that case b is a symplectic form.

• b(x, x) is not identically zero; it is then easy (using induction on g ) to prove

that V admits an orthonormal basis with respect to b .

A quadratic form associated to b is a function q : V → Z/4 such that

q(x+ y) = q(x) + q(y) + 2b(x, y) for x, y ∈ V ,

where multiplication by 2 stands for the isomorphism Z/2 ∼−→ 2Z/4Z ⊂ Z/4Z .

Observe that this implies q(0) = 0 and q(x) ≡ b(x, x) (mod. 2). We denote

by Qb the set of quadratic forms associated to b ; Qb is an affine space over V , the

action of V being given by (α+ q)(x) = q(x) + 2b(α, x) for q ∈ Qb , α, x ∈ V .

When b is symplectic, q takes it values in 2Z/4Z ∼= Z/2; the corresponding

form q′ : V → Z/2 is a quadratic form associated to b in the usual sense, that is

satisfies q′(x+ y) = q′(x) + q′(y) + b(x, y) for x, y ∈ V .

The Brown invariant σ(q) ∈ Z/8 of a form q ∈ Qb has been introduced in

[B] as a generalization of the Arf invariant; it can be defined as follows. If b is

symplectic, we put σ(q) := 4Arf(q′) , where q′ : V → Z/2 is the form defined
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above. Otherwise b admits an orthonormal basis (e1, . . . , eg) ; we have q(ei) = ±1,

and we let g+ (resp. g− ) be the number of basis vectors ei such that q(ei) = 1

(resp. −1). Then σ(q) = g+ − g− (mod. 8).

2.2. Linear algebra over (Z/2)[i] . Let Γ be a unimodular Gaussian lattice

of rank 2g over Z . We put A2 := Γ/2Γ; this is naturally identified with the

2-torsion subgroup of AΓ . We have the following structures on A2 :

a) A2 is a free (Z/2)[i] -module of rank g . We put ε := 1 + i in (Z/2)[i] ;

then (Z/2)[i] = (Z/2)[ε] , with ε2 = 0. The subgroup Ai of i -invariant elements is

Ker ε = εA2 ; it is a vector space of dimension g over Z/2.

b) The form E induces on A2 a symplectic form e (the Weil pairing for AΓ ).

Since E(x, iy) = −E(ix, y) , we have, for α, β ∈ A2 ,

e(α, εβ) = e(εα, β) hence e(εα, εβ) = 0 ;

thus Ai is a Lagrangian subspace of A2 .

c) The form x �→ S(x, x) induces a quadratic form Q : A2 → Z/4 associated

with the bilinear symmetric form (α, β) �→ e(α, iβ) (2.1). In particular we have

Q(α) ≡ e(α, iα) (mod. 2).

Since S((1 + i)x, (1 + i)x) = 2S(x, x) , we have Q(εα) = 2Q(α) = 2e(α, iα) .

Lemma 1. Let q : A2 → Z/4 be an i-invariant quadratic form associated to e .

The formulas

b(εα, εβ) = e(α, εβ) , Qq(εα) = q(α)−Q(α) for α, β ∈ A2 ,

define on Ai = εA2 a non-degenerate symmetric form b and a quadratic form

Qq : Ai → Z/4 associated with b .

Proof : Since Ai = Ker ε is isotropic for e , the expression e(α, εβ) is a bilinear

function b of εα and εβ ; it is symmetric by b) . If e(α, εβ) = 0 for all β in A2 we

have α ∈ Ai because Ai is Lagrangian, hence εα = 0, so b is non-degenerate.

Put Q̃q(α) = q(α)−Q(α) ∈ Z/4 for α ∈ A2 . We have

Q̃q(α+ β) = Q̃q(α) + Q̃q(β) + 2e(α, εβ) .

Take β = εγ . Since q is i -invariant we have q(εγ) = 2e(γ, iγ) = Q(εγ) by c) ,

hence Q̃q(εγ) = 0 and Q̃q(α + εγ) = Q̃q(α) . Thus Q̃q defines a quadratic form

Qq on Ai associated to b .

Let Q(i)
e be the set of i -invariants quadratic forms on A2 associated to e . If

q ∈ Q(i)
e and α ∈ A2 , we have α + q ∈ Q(i)

e if and only if α belongs to A⊥
i = Ai ;

in other words, Q(i)
e is an affine subspace of Qe , with direction Ai .

Lemma 2. The map q �→ Qq is an affine isomorphism of Q(i)
e onto Qb .

Proof : We just have to prove the equality Qα+q = α +Qq for q ∈ Q(i)
e , α ∈ Ai .

Let β ∈ Ai ; we write β = εβ′ for some β′ ∈ A2 . Then

Qα+q(β) = 2e(α, β′) + q(β′)−Q(β′) = 2b(α, β) +Qq(β) .
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Remark 1. Let α ∈ A2 ; we have b(εα, εα) = e(α, εα) = e(α, iα) ≡ Q(α)

(mod. 2), hence the form b is symplectic if and only if Γ is even. In this case we

have e(α, iα) = 0 for all α ∈ A2 ; it follows that Q(i)
e is the set of forms vanishing

on Ai . Since Ai is Lagrangian for e , this implies that these forms, viewed as

quadratic forms A2 → Z/2, are all even (that is, their Arf invariant is 0).

3. i-invariant theta divisors

3.1. Reminder on theta characteristics. We first recall the classical theory

of theta characteristics on an arbitrary p.p.a.v. A = V/Γ. Let A2
∼= Γ/2Γ be the

2-torsion subgroup of A , T the set of symmetric theta divisors on A , and Qe the

set of quadratic forms on A2 associated to the Weyl pairing e . The Z/2-vector

space A2 acts on T by translation, and on Qe by the action defined in (2.1); both

sets are affine spaces over A2 , and there is a canonical affine isomorphism q �→ Θq

of Qe onto T . It can be defined as follows ([M], §2). Let γ ∈ Γ, and let γ̄ be its

class in A2 . For z ∈ V , we put

eγ(z) = iq(γ̄)eπH(γ,z+ γ
2 ) .

We define an action of Γ on the trivial bundle V ×C by γ.(z, t) = (z + γ, eγ(z)t) ;

then the quotient of V × C by this action is the line bundle OA(Θq) on A .

3.2. The main results. We go back to the abelian variety AΓ associated to

a Gaussian lattice Γ. We assume that Γ is unimodular. We use the notation of

(2.2). The isomorphism Qe
∼−→ T is compatible with the action of i , so i -invariant

theta divisors correspond to forms q ∈ Q(i)
e .

Let q ∈ Q(i)
e , and let L be the line bundle OAΓ

(Θq) . We have i∗L ∼= L ; we

denote by ι : i∗L → L the unique isomorphism inducing the identity of L0 . For

each α ∈ Ai , ι induces an isomorphism ι(α) : Lα → Lα .

Proposition 1. ι(α) is the homothety of ratio iQq(α) .

Proof : The isomorphism ι−1 : L ∼−→ i∗L corresponds to a linear automorphism j

of L above i :

L
j ��

��

L

��
AΓ

i �� AΓ .

Consider the automorphism j̃ : (z, t) �→ (iz, t) of ΓR × C . Since eiγ(iz) = eγ(z) ,

we have j̃(γ.(z, t)) = (iγ).j̃(z, t) . Thus j̃ factors through an isomorphism L → L
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above i which is the identity on L0 , hence equal to j ; that is, we have a commu-

tative diagram:

ΓR × C
j̃ ��

π

��

ΓR × C

π

��
L

j �� L

where π is the quotient map.

Let α ∈ Ai , and let γ be an element of Γ whose class (mod. 2Γ) is α . Then

δ := iγ
2 − γ

2 belongs to Γ. We have

j(π(
γ

2
, t)) = π(

iγ

2
, t) = π(

γ

2
, eδ(

γ

2
)−1t) ,

hence ι(α) = j(α)−1 is the homothety of ratio eδ(
γ
2 ) . Let β be the class of δ in

A2 . Since γ = −(1 + i)δ , we have α = εβ , hence

eδ(
γ

2
) = iq(β)e

π
2 H(δ,γ+δ) = iq(β)−H(δ,δ) = iQq(α) .

From ι : i∗L → L we deduce an isomorphism ι� : L ∼−→ i∗L , inducing on

global sections an automorphism of H0(AΓ, L) .

Proposition 2. ι� acts on H0(AΓ, L) by multiplication by e
iπ
4 (σ(Qq)+g) .

Note that σ(Qq) ≡ g (mod. 2) ([B], Thm. 1.20, (vi)), so this number is a

power of i .

Proof : Since dimH0(AΓ, L) = 1 it suffices to compute Tr ι� . This is given by the

holomorphic Lefschetz formula [A-B] applied to (i, ι) . Since Hi(AΓ, L) = 0 for

i > 0, we find

Tr ι� =
∑
α∈Ai

Tr ι(α)

(1− i)g
= (1− i)−g

∑
α∈Ai

iQq(α) .

We have (1 − i)−g = 2−
g
2 e

iπg
4 and

∑
α∈Ai

iQq(α) = 2
g
2 e

iπ
4 σ(Qq) ([B], Thm.

1.20, (xi)), hence the result.

Proposition 3. Let α ∈ Ai , and let mα(Θq) be the multiplicity of Θq at α .

We have

2mα(Θq) ≡ σ(Qq) + g − 2Qq(α) (mod. 8) .

Proof : Let θ be a nonzero section of H0(AΓ, L) . Choose a local non-vanishing

section s of L around α . We can write θ = fs in a neighborhood of α , with

f ∈ OAΓ,α . We have ι�(θ) = ikθ with 2k ≡ σ(Qq) + g (mod. 8) (Proposition 2),

hence

(i∗f)ι�(s) = ikfs .

We look at this equality in mm
α L/mm+1

α L , where mα is the maximal ideal of OAΓ,α

and m := mα(Θ). We have i∗f = imf (mod.mm+1
α ) , and ι�(s) = ι(α)s (mod.mαL) .

We obtain imι(α) = ik , hence the result in view of Proposition 1.
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Corollary. The number of i-invariant theta divisors Θ with m0(Θ) ≡ 2

(mod. 4) is

2
g
2−1(2

g
2 − (−1)

g
4 ) if Γ is even, and 2g−2 − 2

g
2−1 cos

πg

4
if Γ is odd;

each of these divisors corresponds to a vanishing thetanull.

Proof : According to the Proposition, we have m0(Θq) ≡ 2 (mod. 4) if and only if

σ(Qq) ≡ 4− g (mod. 8). When q runs over Q(i)
e , Qq runs over Qb (Lemma 2.2),

so we must find how many elements Q of Qb satisfy σ(Q) ≡ 4− g (mod. 8).

If Γ is even (so that g is divisible by 4), we identify Qb with the set of

quadratic forms Q : A2 → Z/2 associated with the symplectic form b ; the previous

congruence becomes Arf(Q) ≡ 1+ g
4 (mod. 2). There are 2

g
2−1(2

g
2 +1) such forms

with Arf invariant 0 and 2
g
2−1(2

g
2 − 1) with Arf invariant 1, hence the result.

Assume that Γ is odd; we choose an orthonormal basis (e1, . . . , eg) for b . The

forms Q ∈ Qb are determined by their values Q(ei) = ±1; the condition is that

the number g+ of +1 values satisfies

2g+ − g ≡ 4− g (mod. 8) , hence g+ ≡ 2 (mod. 4) .

The number of forms with the required property is thus the number of subsets

E ⊂ {1, . . . , g} with Card(E) ≡ 2 (mod. 4), that is(
g

2

)
+

(
g

6

)
+. . . =

1

4

[
(1+1)g+(1−1)g−(1+i)g−(1−i)g

]
= 2g−2−2

g
2−1 cos

πg

4
.

Thus we find a number of vanishing thetanulls asymptotically equivalent to

2g−1 when Γ is even, and 2g−2 when Γ is odd. These numbers are rather modest,

at least by comparison with the number of vanishing thetanulls of a hyperelliptic

Jacobian, which is asymptotically equivalent to 22g−1 . However, when Γ is even,

the vanishing thetanulls of AΓ have the particular property of being “syzygetic”

in the classical terminology, which just means that the corresponding quadratic

forms (3.1) lie in an affine subspace of Qe which consists of even forms (Remark

1). Such a subspace has dimension ≤ g , and it might be that the number given

by the Corollary in the even case is the maximum possible for a syzygetic subset

of vanishing thetanulls.

4. Complements

4.1. Automorphisms. The automorphism group of AΓ is the centralizer of

i in Aut(Γ). This group can be rather large: it has order 46080 for Γ = E8 and

2012774400 for Γ = Λ24 [C-S]. For the lattice Γ2g (Example 1.2.1) with g > 4, it

has order 22g−1g! .

For the lattice Γ = Γ0 ⊗Z Z[i] of Example 1.2.3, Aut(AΓ) is generated by i

and the group Aut(Γ0) . Note that there are examples of unimodular lattices (even

or odd) Γ0 with Aut(Γ0) = {±1} [Ba], so that Aut(AΓ) is reduced to {±1,±i} .
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4.2. Jacobians. We observe that for g > 1 the p.p.a.v. AΓ can not be a

Jacobian. Indeed, let C be a curve of genus g ; if JC ∼= AΓ , Torelli theorem

provides an automorphism u of C inducing either i or −i on JC , hence also on

T0(JC) = H0(C,KC)
∗ . Then u acts trivially on the image of the canonical map

C → P(H0(C,KC)
∗) ; this implies that u is the identity or that C is hyperelliptic

and u is the hyperelliptic involution. But in these cases u acts on H0(C,KC) by

multiplication by ±1, a contradiction.
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Abstract. The divisor theory for graphs is compared to the theory of linear
series on curves through the correspondence associating a curve to its dual
graph. An algebro-geometric interpretation of the combinatorial rank is pro-
posed, and proved in some cases.
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The goal of this paper is to apply the divisor theory for graphs to the theory
of linear series on singular algebraic curves, and to propose an algebro-geometric
interpretation for the rank of divisors on graphs. Let us begin with a simple ques-
tion.

What is the maximum dimension of a linear series of degree d ≥ 0 on a smooth
projective curve of genus g?

We know what the answer is. If d ≥ 2g − 1 by Riemann’s theorem every
complete linear series of degree d on every smooth curve of genus g has dimension
d − g. If d ≤ 2g − 2 the situation is more interesting: Clifford’s theorem states
that the answer is �d/2�, and the bound is achieved only by certain linear series on
hyperelliptic curves; see [3].

Now let us look at the combinatorial side of the problem. The dual graph of
any smooth curve of genus g is the (weighted) graph with one vertex of weight equal
to g and no edges, let us denote it by Gg. This graph admits a unique divisor of
degree d, whose rank, as we shall see, is equal to d− g if d ≥ 2g − 1, and to �d/2�
otherwise.

We draw the following conclusion: the maximum dimension of a linear series
of degree d on a smooth curve of genus g equals the rank of the degree d divisor on
the dual graph of the curve. In symbols, denoting by d the unique divisor of degree
d on Gg and by rGg

(d) its rank (see below),

(0.1) rGg
(d) = max{r(X,D), ∀X ∈ Mg, ∀D ∈ Picd(X)}
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2 LUCIA CAPORASO

where Mg is the moduli space of smooth projective curves of genus g. This is quite
pleasing for at least two reasons. First, the graph is fixed, whereas the curve varies
(in a moduli space of dimension 3g − 3 if g ≥ 2); also the divisor on Gg is fixed,

whereas Picd(X) has dimension g. Second: computing the rank of a divisor on
a graph is simpler than computing the dimension of a linear series on a curve; a
computer can do that.

Therefore we shall now ask how this phenomenon generalizes to singular curves.
For every graph G we have a family, Malg(G), of curves having dual graph equal
to G. We want to give an interpretation of the rank of a divisor on G in terms of
linear series on curves in Malg(G).

This is quite a delicate issue, as for such curves we do not have a good control
on the dimension of a linear series; in fact, as we shall see, both Riemann’s theorem
and Clifford’s theorem fail. Furthermore, asking for the maximal dimension of a
linear series of degree d is not so interesting, as the answer easily turns out to be
+∞. By contrast, the rank of a divisor of degree d ≥ 0 on a graph is always at most
equal to d. In fact, to set-up the problem precisely we need a few more details. Let
us assume some of them for now, and continue with this overview.

For any curve X having G as dual graph, we have an identification of the set
of irreducible components of X with the set of vertices, V (G), of G, and we write

(0.2) X = ∪v∈V (G)Cv.

The group of divisors of G is the free abelian group, DivG, generated by V (G).
Hence there is a natural map sending a Cartier divisor D on X to a divisor on G:

DivX −→ Div(G); D �→
∑

v∈V (G)

(degD|Cv
)v,

so that the divisor of G associated to D is the multidegree of D; the above map
descends to Pic(X) → Div(G), as linearly equivalent divisors have the same multi-
degree. Therefore we can write

(0.3) Pic(X) =
⊔

d∈Div(G)

Picd(X).

On the other hand, linearly equivalent divisors on G have the same rank, so
the combinatorial rank is really a function on divisor classes. Let δ ∈ Pic(G) be a
divisor class on G and write rG(δ) := rG(d) for any representative d ∈ δ.

How does rG(δ) relate to r(X,L) as X varies among curves having G as dual
graph, and L ∈ Pic(X) varies by keeping its multidegree class equal to δ? We
conjecture that the following identity holds:

(0.4) rG(δ) = max
X∈Malg(G)

{
min
d∈δ

{
max

L∈Picd(X)
{r(X,L)}

}}
.

An accurate discussion of this conjecture is at the beginning of Section 2. In
Section 1, after some combinatorial preliminaries, a comparative analysis of the
graph-theoretic and algebraic situation is carried out highlighting differences and
analogies; this also serves as motivation. In Section 2 we prove the above identity
in a series of cases, summarized at the end of the paper.

The techniques we use are mostly algebro-geometric, while the combinatorial as-
pects are kept at a minimum. The hope is, of course, that using more sophisticated
combinatorial arguments the validity range of above identity could be completely
determined.
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I am grateful to Margarida Melo and to the referee for some very useful remarks.

1. Combinatorial and algebraic rank

We apply the following conventions throughout the paper.
X is a projective algebraic curve over some algebraically closed field.
X is connected, reduced and has at most nodes as singularities.
G is a finite, connected, vertex weighted graph.
Capital letters D,E, . . . are Cartier divisors on curves.
Underlined lowercase letters d, e, . . . are divisors on graphs.
r(X,D) := h0(X,D)− 1 is the (algebraic) rank of D on X.
rG(d) is the (combinatorial) rank of d on G.
Div(∗) is the set of divisors on ∗, Div+(∗) the set of effective divisors.

Divd(∗) is the set of divisors of degree d, for d ∈ Z.

∼ is the linear equivalence on Divd(∗).
Pic(∗) := Div(∗)/ ∼ and Picd(∗) := Divd(∗)/ ∼.

1.1. Basic divisor theory on graphs. We begin by reviewing the combi-
natorial setting following [6] and [2]. The basic reference is [6], which deals with
loopless weightless graphs, we use the extension to general weighted graphs given
in [2]; see [1] for a different approach.

Let G be a (finite, connected, weighted) graph; we allow loops. We write V (G)
and E(G) for its vertex set and edge set; G is given a weight function ω : V (G) →
Z≥0. If ω = 0 we say that G is weightless. The genus of G is b1(G)+

∑
v∈V (G) ω(v).

We always fix an ordering V (G) = {v1, . . . , vγ}. The group of divisors of G is
the free abelian group on V (G):

Div(G) := {
γ∑

i=1

divi, di ∈ Z} ∼= Zγ .

Throughout the paper we identify Div(G) with Zγ , so that divisors on graphs are
usually represented by ordered sequences of integers, d = (d1, . . . , dγ); we write
d ≥ 0 if di ≥ 0 for every i = 1, . . . , γ.

We set |d| =
∑γ

i=1 di, so that Divd(G) = {d ∈ Div(G) : |d| = d}; also
Div+(G) := {d ∈ Div(G) : d ≥ 0}.

For v ∈ V (G) we denote by d(v) the coefficient of v in d, so that d(vi) = di.
If Z ⊂ V (G) we write d(Z) =

∑
v∈Z d(v) and dZ = (d(v), ∀v ∈ Z) ∈ Z|Z|. We

set Zc = V (G)� Z.
The local geometry of G can be described by its so-called intersection product,

which we are going to define. Fix two vertices v and w of G; we want to think of
v and w as “close” in G if they are joined by some edges. To start with we set, if
v �= w,

(v · w) := number of edges joining v and w.

So, the greater (v · w) the closer v and w. Next we set

(1.1) (v · v) = −
∑
w �=v

(v · w)

and the intersection product, Div(G) × Div(G) → Z, is defined as the Z-linear
extension of (v, w) �→ (v · w).

47



4 LUCIA CAPORASO

Given Z,W ⊂ V (G), we shall frequently abuse notation by writing (W · Z) =∑
w∈W,z∈Z(w · z). Notice that if v �∈ W the quantity (v ·W ) is the number of edges

joining v with a vertex of W , whereas if v ∈ W we have (v ·W ) ≤ 0.
We are going to study functions on G, and their divisors. A rational function f

on G is a map f : V (G) → Z. To define the associated divisor, div(f), we proceed
in analogy with classical geometry. We begin by requiring that if f is constant its
divisor be equal to 0. The set of rational functions on G is a group under addition;
so we require that if c : V (G) → Z is constant then div(f + c) = div(f). Now
we need to study the analogue of zeroes and poles, i.e. the local behaviour of a
function near each v ∈ V (G). We write

div(f) :=
∑

v∈V (G)

ordv(f)v

where ordv(f) ∈ Z needs to be defined so as to depend on the behaviour of f near
v, that is on the value of f at each w close to v, and on how close v and w are.
We are also requiring that ordv(f) be invariant under adding a constant to f , this
suggests that ordv(f) be a function of the difference f(v) − f(w), proportional to
(v · w). That was an intuitive motivation for the following definition

(1.2) ordv(f) :=
∑
w �=v

(f(v)− f(w))(v · w).

Loosely speaking, ordv(f) = 0 means f is locally constant at v, and ordv(f) > 0
(resp. ordv(f) < 0), means v is a local maximum for f (resp. a local minimum).

Notice the following useful simple fact.

Remark 1.1. Let Z ⊂ V (G) be the set of vertices where the function f takes
its minimum value. Then div(f)(Z) ≤ −(Z · Zc) and for every v ∈ Z we have
div(f)(v) ≤ 0.

Note that ordv(f) = − ord−f (v) and ordv(f) + ordv(g) = ordv(f + g). The
divisors of the form div(f) are called principal, and are easily seen to have degree
zero. Thus they form a subgroup of Div0(G), denoted by Prin(G).

Two divisors d, d′ ∈ Div(G) are linearly equivalent, written d ∼ d′, if d− d′ ∈
Prin(G). We write Pic(G) = Div(G)/ ∼; we usually denote an element of Pic(G)
by δ and write d ∈ δ for a representative; we also write δ = [d]. Now, d ∼ d′ implies
|d| = |d′| hence we set

Picd(G) = Divd(G)/ ∼
(often in the graph-theory literature the notation Jac(G) is used for what we here
denote by Pic(G) to stress the analogy with algebraic geometry).

The group Pic0(G) appears in several different places of the mathematical lit-
erature, with various names and notations; see for example [5], [15], [16].

It is well known that Picd(G) is a finite set whose cardinality equals the com-
plexity, i.e. the number of spanning trees, of the graph G.

Remark 1.2. The intersection product does not depend on the loops or the
weights of G, hence the same holds for Prin(G) and Pic(G).

To define the combinatorial rank we proceed in two steps, treating loopless,
weightless graphs first.
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Let G be a loopless, weightless graph, and d ∈ Div(G). Following [6], we define
the (combinatorial) rank of d as follows

(1.3) rG(d) = max{k : ∀e ∈ Divk+(G) ∃d′ ∼ d such that d′ − e ≥ 0}
with rG(d) = −1 if the set on the right is empty.

The combinatorial rank defined in (1.3) satisfies a Riemann-Roch formula (see
below) if the graph is free from loops and weights, but not in general. This is why
a different definition is needed for weighted graphs admitting loops. To do that
we introduce the weightless, loopless graph G• obtained from G by first attaching
ω(v) loops based at v for every v ∈ V (G), and then by inserting a vertex in every
loop edge. This graph G• (obviously free from loops) is assigned the zero weight
function. Now G and G• have the same genus.

As V (G) ⊂ V (G•) we have a natural injection ι : Div(G) ↪→ Div(G•). It is easy
to see that ι(Prin(G)) ⊂ Prin(G•), hence we have

(1.4) Pic(G) ↪→ Pic(G•).

We define the rank for a divisor d on any graph G as follows:

(1.5) rG(d) := rG•(ι(d))

where the right-hand-side is defined in (1.3).

Remark 1.3. If d ∼ d′ we have rG(d) = rG(d
′).

Example 1.4. The picture below represents G• for a graph having one vertex
of weight 1 and one loop based at a vertex of weight zero. We have Pic0(G) = 0 and
it is easy to check that Pic0(G•) ∼= Z/2Z⊕Z/2Z. Consider the divisor v ∈ Div(G);
then rG(v) = 0.

G = •
+1

v w◦ G• = ◦ ◦v w◦ ◦

Figure 1. Weightless loopless model of G

In our figures, weight-zero vertices are represented by a “◦”.
It is clear that different graphs may have the same G•, see for example the

picture in the proof of 2.7. Other examples will be given in the sequel, also during
some proofs.

1.2. Simple comparisons. As is well known, the combinatorial rank is the
analogue of the rank for a divisor on a smooth curve, in the following sense. If X
is smooth and D is a divisor on it we have

r(X,D) = h0(X,D)− 1 =

= max{k : ∀p1, . . . , pk ∈ X ∃D′ ∼ D : D′ − pi ≥ 0 ∀i = 1 . . . k}.
Now, if X is singular the above identity may fail, as the next example shows.
First, recall that two Cartier divisors, D and D′, on X are defined to be linearly
equivalent, in symbols D ∼ D′, if the corresponding line bundles, or invertible
sheaves, OX(D) and OX(D′), are isomorphic.
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Example 1.5. Let X = C1 ∪ C2 be the union of two smooth rational curves
meeting at a point (a node of X). Let q ∈ C2 be a smooth point of X; then
r(X, q) = 1 (see the next remark). Now, for any smooth point p of X lying on C1

we have q �∼ p (these two divisors have different multidegree).

We will use the following simple facts.

Remark 1.6. Let X = Z ∪ Y with Z and Y connected subcurves with no
common components, set k := |Z ∩ Y |. Pick L ∈ PicX, then:

(1) r(Z,LZ) + r(Y, LY )− k + 1 ≤ r(X,L) ≤ r(Z,LZ) + r(Y, LY ) + 1.
(2) If k = 1 we have r(X,L) = r(Z,LZ) + r(Y, LY ) + 1 if and only if LZ and

LY have a base point at the branch over Z ∩ Y .
(3) If degLZ < 0 we have r(X,L) = r(Y, LY (−Y · Z)), where Y · Z denotes

the degree-k divisor cut by Z on Y .

Let X be a nodal connected curve and G its dual graph. Recall that G is defined
so that the set of its vertices is identified with the set of irreducible components of
X (we always use notation (0.2)), the set of its edges is identified with the set of
nodes of X, and for v, w ∈ V (G) we have (v ·w) = |Cv ∩Cw|. The weight function
on G assigns to the vertex v the genus of the desingularization of the corresponding
component, Cv. The arithmetic genus of X is equal to the genus of its dual graph.

The divisor theory of G is best connected to the divisor theory of X by adding
to the picture variational elements, i.e. by considering one-parameter families of
curves specializing to X, as follows.

Let φ : X → B be a regular one-parameter smoothing of a curve X. That is, B
is a smooth connected one-dimensional variety with a marked point b0 ∈ B , X is a
regular surface, and φ−1(b0) ∼= X while φ−1(b) is a smooth curve for every b �= b0.
Such a φ determines a discrete subgroup TwφX of Pic0(X):

(1.6) Twφ X := {OX (D)|X , ∀D ∈ Div(X ) : SuppD ⊂ X}/ ∼= .

Elements of TwφX are called twisters. The multidegree map

deg : Twφ X −→ Zγ = Div(G)

has image, independent of φ, written

ΛX = deg (Twφ X) ⊂ Div0(G).

We now connect with the divisor theory of G. Write X = ∪vi∈V (G)Cvi ; it is obvious
that ΛX is generated by deg O(Cvi) for i = 1, . . . , γ. On the other hand we clearly
have

deg O(Cvi) = ((v1 · vi), . . . , (vγ · vi)) = −divfi

where fi : V (G) → Z is the function taking value +1 at vi and zero elsewhere.
Therefore degO(Cvi) ∈ Prin(G). Finally, as the set {div(fi), i = 1, . . . γ} generates
Prin(G), we obtain

ΛX = Prin(G).

For v ∈ V (G) we shall denote

(1.7) tv := deg O(Cv) = ((v1 · v), . . . , (vγ · v)) ∈ Prin(G).

By (1.1) any γ − 1 elements of type tv generate Prin(G).
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We denote by qφ : Pic(X) → Pic(X)/Twφ X the quotient map. Summarizing,
we have a commutative diagram

(1.8) Div(X) �� Pic(X)
deg

��

qφ

��

Div(G)

qG

��
Pic(X)/Twφ X �� Div(G)/PrinG = Pic(G).

We are going to use the diagram to compare the combinatorial rank rG(d) to
the algebraic rank r(X,L), where L is a line bundle on X. The next statement
summarizes a series of well known facts by highlighting opposite behaviours.

Proposition 1.7 (Differences in combinatorial and algebraic setting).
Let X be a reducible curve and G its dual graph.

(1) (a) For every d ∈ Z and d ∈ Divd(G) we have rG(d) ≤ max{−1, d}.
(b) For every d, n ∈ Z there exist infinitely many d with |d| = d such that

r(X,L) > n for every L ∈ Picd(X).
(2) (a) For any d, d′ ∈ Div(G) with d ∼ d′ (i.e. qG(d) = qG(d

′)) we have rG(d) =
rG(d

′).
(b) For every regular one-parameter smoothing φ of X there exist infinitely

many L,L′ ∈ Pic(X) with qφ(L) = qφ(L
′) and r(X,L) �= r(X,L′).

(3) (a) [6, Lemma 2.1] For any d, d′ ∈ Div(G) with rG(d) ≥ 0 and rG(d
′) ≥ 0 we

have
rG(d) + rG(d

′) ≤ rG(d+ d′).

(b) There exist infinitely many L,L′ ∈ Pic(X) with r(X,L) ≥ 0 and r(X,L′) ≥
0 such that

r(X,L) + r(X,L′) > r(X,L⊗ L′).

(4) (a) [6, Cor. 3.5](Clifford for graphs) For any 0 ≤ d ≤ 2g − 2 and any d ∈
Divd(G) we have

rG(d) ≤ d/2.

(b) For any 0 ≤ d ≤ 2g− 2 there exist infinitely many d with |d| = d such that

for any L ∈ Picd(X)
r(X,L) > d/2.

Remark 1.8. In [6] the authors work with loopless, weightless graphs, but it
is clear that the two above results extend, using definition (1.5).

Proof. Part (1). The assertion concerning rG follows immediately from the
definition. The second part follows from the next observation.

Let d = (d1, . . . , dγ) be any multidegree on X. For any integer m we pick
d′ = (d′1, . . . , d

′
γ) ∼ d such that d′1 ≥ m (for example d′ = d−deg OX((m+d1)C1)).

It is clear that for any n ∈ N we can choose m large enough so that for every

L′ ∈ Picd
′
(X) we have r(X,L′) ≥ n. In particular, for every L ∈ Picd(X), any

regular smoothing φ of X, there exists L′ ∈ Pic(X) such that qφ(L) = qφ(L
′) and

r(X,L′) ≥ n. From this argument we derive item (b) for parts (1), (2) and (4).
It remains to prove item (b) of part (3). Fix an irreducible component C of X

and set Z = X � C. Pick any effective Cartier divisor E on X with SuppE ⊂ Z
and such that, setting L′ = OX(E), we have

(1.9) r(X,L′) ≥ 1.
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Now pick m ≥ 2gC + k where gC is the arithmetic genus of C and k = |C ∩Z|. Let
d be a multidegree with dC = m and such that

dZ + deg
Z
OX(E) < 0.

In particular dZ < 0, hence for every L ∈ Picd X we have

r(X,L) = r(C,L(−C · Z)) = m− k − gC ≥ gC ≥ 0

(writing C · Z for the divisor cut on C by Z; see Remark 1.6). Now consider
L⊗ L′ = L(E). We have deg

Z
L(E) = dZ + deg

Z
OX(E) < 0 hence

r(X,L⊗ L′) = r(C,L(E − C · Z)) = r(C,L(−C · Z)) = r(X,L).

By (1.9), we have r(X,L⊗ L′) < r(X,L) + r(X,L′) and are done. �

We now mention, parenthetically but using the same set-up, a different type of
result on the interplay between algebraic geometry and graph theory, when families
of curves are involved. This is the Specialization Lemma of [8], concerning a regular
one-parameter smoothing φ : X → B of a curve X as before (so that X is the fiber
over b0 ∈ B). This lemma states that if L is a line bundle on the total space X
then, up to shrinking B near b0, for every b ∈ B � {b0} the algebro-geometric rank
of the restriction of L to the fiber over b is at most equal to the combinatorial rank
of the multidegree of the restriction of L to X. In symbols, for all b �= b0, we have
r(φ−1(b),L|φ−1(b)) ≤ rG(deg L|X). (This form is actually a generalization of the
one proved in [8]; see [1] and [2].) Apart from being interesting in its own right,
the Specialization Lemma has some remarkable applications, like a new proof of the
classical Brill-Noether theorem (see [3]) given in [11]. We view this as yet another
motivation to study the algebro-geometric meaning of the combinatorial rank.

A fundamental analogy between the algebraic and combinatorial setting is the
Riemann-Roch formula, which holds for every nodal curve X and every graph G.
The algebraic case is classical: let KX ∈ Pic(X) be the dualizing line bundle (equal
to the canonical bundle if X is smooth), then for any Cartier divisor D on X we
have

r(X,D)− r(X,KX(−D)) = degD − g + 1

where g is the arithmetic genus of X.
The same formula holds for graphs. To state it, we introduce the canonical

divisor, kG, of a graph G:

(1.10) kG :=
∑

v∈V (G)

(
2ω(v)− 2 + val(v)

)
v

where val(v) is the valency of v. If G is the dual graph of X we have

(1.11) kG = deg KX .

Theorem 1.9 (Riemann-Roch formula for graphs). Let G be a graph of genus

g; for every d ∈ Divd(G) we have

rG(d)− rG(kG − d) = d− g + 1.

This is [6, Thm 1.12] for loopless, weightless graphs; the extension to general
graphs can be found in [2].

From Riemann-Roch we immediatly derive the following facts.
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Remark 1.10. Let d ∈ Div0(G). Then rG(d) ≤ 0 and equality holds if and
only if d ∼ 0.

Let d ∈ Div2g−2(G). Then rG(d) ≤ g − 1 and equality holds if and only if
d ∼ kG.

1.3. Edge contractions and smoothings of nodes. Let S ⊂ E(G) be a
set of edges. By G/S we denote the graph obtained by contracting to a point (i.e.
a vertex of G/S) every edge in S; the associated map will be denoted by

σ : G → G/S.

There is an obvious identification E(G/S) = E(G) � S. The map σ induces a
surjection

σV : V (G) −→ V (G/S); v �→ σ(v).

For v ∈ V (G/S) we set ω(v) =
∑

v∈σ−1
V (v) ω(v) + b1(σ

−1(v)) for its weight, so that

ω(v) is the genus of the (weighted) graph σ−1(v). We refer to G/S as a contraction
of G; notice that G and G/S have the same genus. A picture can be found in
Example 1.13.

Remark 1.11. Contractions are particularly interesting for us, as they cor-
respond to “smoothings” of algebraic curves. More precisely, let φ : X → B be
a one-parameter family of curves having X as special fiber, and let n ∈ X be a
node; we say that φ is a smoothing of n if n is not the specialization of a node of
the generic fiber (i.e. if there is an open neighborhood U ⊂ X of n such that the
restriction of φ to U � n has smooth fibers). Let G be the dual graph of X and let
S ⊂ E(G) be the set of edges corresponding to nodes n such that φ is a smoothing
of n. Then, the contraction G/S is the dual graph of the fibers of φ near X. The
converse also holds, i.e. for any contraction G → G/S there exists a deformation
of X smoothing precisely the nodes corresponding to S.

Observe now that associated to σ : G → G/S there is a map

σ∗ : Div(G) −→ Div(G/S);
∑

v∈V (G)

nvv �→
∑

v∈V (G/S)

( ∑
v∈σ−1

V (v)

nv

)
v.

We need the following fact (essentially due to Baker-Norine, [7]).

Proposition 1.12. Let G be a graph, e ∈ E(G), and let σ : G → G/e be the
contraction of e. Then

(1) σ∗ : Div(G) → Div(G/e) is a surjective group homomorphism such that
σ∗(Prin(G)) ⊃ Prin(G/e).

(2) Pic(G) ∼= Pic(G/e) if and only if e is a bridge (i.e. a separating edge).
In this case the above isomorphism is induced by σ∗, and σ∗ preserves the
rank.

Proof. It is clear that σ∗ is a surjective homomorphism. Let v0, v1 ∈ V (G)
be the endpoints of e. Set G := G/e, now write V (G) = {v0, v1, . . . , vn} and
V (G) = {v1, . . . , vn} with σV (vi) = vi for i ≥ 1.

Denote by ti = ((v0 · vi), (v1 · vi), . . . , (vn · vi)) ∈ Prin(G) the principal divisor
corresponding to vi, defined in (1.7), and by ti the principal divisor of G corre-
sponding to vi. As we mentioned earlier, it suffices to show that ti ∈ σ∗(ΛG) for
i = 2, . . . , n. This follows from the identity

(1.12) σ∗(ti) = ti, ∀i = 2, . . . , n.
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Let us prove it for i = 2 (which is obviously enough). We have

σ∗(t2) = ((v0 · v2) + (v1, ·v2), (v2 · v2), . . . , (vn · v2)),
now (v0 ·v2)+(v1, ·v2) = (v1 ·v2) and (vi ·v2) = (vi ·v2) for every i ≥ 2 hence (1.12)
is proved.

Part (2). Suppose e is a bridge; then by [7, Lm. 5.7, Cor. 5.10] there is a
rank-preserving isomorphism Pic(G•) ∼= Pic(G•/e). Of course, G•/e = (G/e)•,
hence by (1.4), we obtain a rank preserving isomorphism Pic(G) ∼= Pic(G/e).

Assume e is not a bridge. Recall that for any d and any G the set Picd G has
cardinality equal to the complexity, c(G), of G. Therefore it is enough to prove that
G and G have different complexity. Now, it is easy to see that the contraction map
σ : G → G induces a bijection between the spanning trees of G and the spanning
trees of G containing e. On the other hand, since e is not a bridge, G admits a
spanning tree not containing e (just pick a spanning tree of the connected graph
G− e). We thus proved that c(G) > c(G), and we are done. �

We observed in Remark 1.11 that one-parameter families of curves correspond
to edge contractions of graphs. Now, in algebraic geometry the rank of a divisor
is an upper-semicontinuous function: given a family of curves Xt specializing to a
curve X, with a family of divisors Dt ∈ Div(Xt) specializing to D ∈ Div(X), we
have r(Xt, Dt) ≤ r(X,D).

Do we have a corresponding semicontinuity for the combinatorial rank? The
answer in general is no. By Proposition 1.12, contraction of bridges preserves the
rank. But the following example illustrates that the rank can both decrease or
increase if a non-bridge is contracted.

Example 1.13. Failure of semicontinuity under edge contractions. Consider
the contraction of the edge e4 ∈ E(G) for the graph G in the picture below.

◦
e2

v1 v2
e1

e3

v3
��

��
��

��
��

��
�� ◦

e4G = �� ◦
e2

w2

e1w1

e3

◦ = G/e4

◦

Figure 2. Contraction of e4

Let us first show that the combinatorial rank may decrease. Pick

d = (−2, 3,−1) ∈ Div(G);

then rG(d) = 0 as

d = −tv2 ∼ (0, 0, 0).

Now σ∗(d) = (−2, 2) and hence

rG/e4(σ∗(d)) = −1 < rG(d).

Now let us show that the combinatorial rank may go up. Consider d =
(1,−1, 1) ∈ Div(G); then one checks easily (or by Lemma 1.14) that rG(d) = −1.
Now σ∗(d) = (1, 0) hence rG/e4(1, 0) = 0 > rG(d).
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Let us give also an example with rG ≥ 0. Pick e = (1,−1, 2) so that

rG/e4(σ∗(e)) = rG/e4(1, 1) = 1.

Now e + tv3 = (1,−1, 2) + (1, 1,−2) = (2, 0, 0), hence rG(e) ≥ 0. To show that
rG(e) ≤ 0 we note that if we subtract (0, 0, 1) from e we get (1,−1, 1), which has
rank −1, as observed above.

A convenient computational tool is provided by the following Lemma, of which
we had originally a slightly less general version; the following version was suggested
by the referee.

Lemma 1.14. Fix an integer r ≥ 0 and let d ∈ Div(G) be such that for some v ∈
V (G) we have d(v) < r. Assume that for every subset of vertices Z ⊂ V (G)� {v}
we have d(Z) < (Z · Zc). Then rG(d) ≤ r − 1.

Proof. Since both hypotheses remain valid in G•, and rG(d) is defined as the
rank of d on G•, we can assume G weightless and loopless.

For notational consistency, write e ∈ Div1+(G) for the (effective) divisor corre-
sponding to v. By contradiction, suppose rG(d) ≥ r; hence rG(d − re) ≥ 0, but
d− re is not effective by hypothesis. Therefore for some nontrivial principal divisor
t = div(f) ∈ Prin(G) we have

0 ≤ d− re+ t.

We use Remark 1.1; let Z ⊂ V (G) be the set of vertices where f assumes its
minimum; then t(Z) ≤ −(Z · Zc). We have v �∈ Z, for otherwise t(v) ≤ 0 hence
(d − re+ t)(v) < r − r = 0 which is impossible. Therefore, by hypothesis, d(Z) <
(Z · Zc), which yields (as e(Z) = 0)

0 ≤ (d− re+ t)(Z) = d(Z)− re(Z) + t(Z) ≤ d(Z)− (Z · Zc) < 0,

a contradiction. �

2. Algebraic interpretation of the combinatorial rank

Let G be a graph of genus least 2. We say G is semistable if every vertex of
weight zero has valency at least 2, and we say G is stable if every vertex of weight
zero has valency at least 3. This terminology is motivated by the fact that a curve
X of arithmetic genus at least 2 is semistable, or stable, if and only if so is its dual
graph.

2.1. A conjecture. If G is a stable graph, the locus of isomorphism classes
of curves whose dual graph is G is an interesting subset of the moduli space of
stable curves, denoted Malg(G) ⊂ Mg; it is well known that Malg(G) is irreducible,
quasiprojective of dimension 3g − 3 − |E(G)|. More generally, i.e. for any graph,
we denote by Malg(G) the set of isomorphism classes of curves having G as dual
graph.

Let X ∈ Malg(G) and d ∈ Div(G), we denote

rmax(X, d) := max{r(X,L), ∀L ∈ Picd(X)}.

By Riemann-Roch we have

(2.1) rmax(X, d) ≥ max{−1, |d| − g}.

55



12 LUCIA CAPORASO

We want to study the relation between rG(d) and rmax(X, d). Now, the combina-
torial rank rG is constant in an equivalence class, hence we set, for any δ ∈ Pic(G)
and d ∈ δ

rG(δ) := rG(d).

On the other hand, we saw in Proposition 1.7 that the algebraic rank behaves badly
with respect to linear equivalence of multidegrees, indeed, it is unbounded on the
fibers of qφ. Therefore we set

r(X, δ) := min{rmax(X, d), ∀d ∈ δ}.
Now, having the analogy with (0.1) in mind, we state

Conjecture 1. Let G be a graph and δ ∈ Picd(G). Then

rG(δ) = max{r(X, δ), ∀X ∈ Malg(G)}.

We set

ralg(G, δ) := max{r(X, δ), ∀X ∈ Malg(G)},
so that the above conjecture becomes

(2.2) ralg(G, δ) = rG(δ).

We think of ralg(G, δ) as the “algebro-geometric” rank of the combinatorial class
δ. We shall prove that (2.2) holds in low genus and for d ≥ 2g − 2.

Remark 2.1. Stable and semistable curves are of fundamental importance in
algebraic geometry; see [4], [12], [14]. We shall see, as a consequence of Lemma 2.4,
that if Identity (2.2) holds for semistable graphs, it holds for any graph.

The following is a simple evidence for the conjecture.

Lemma 2.2. Conjecture 1 holds for δ = 0. More precisely for every G and
X ∈ Malg(G) we have rmax(X, d) = rG(δ) = 0.

Proof. We have rG(δ) = 0, of course. Now, as we explained in Subsection 1.2,
every d ∈ δ is the multidegree of some twister of X; pick one of them, T , so that
T ∈ Picd(X) ∩ Twφ(X) for some regular one-parameter smoothing φ. By upper-
semicontinuity of the algebraic rank, the twister T , being the specialization of the
trivial line bundle, satisfies r(X,T ) ≥ 0. On the other hand r(X,OX) = 0 and it
is easy to check that any other L ∈ Pic0(X) has rank −1; so we are done. �

Here is an example where Conjecture 1 holds, and the equality r(X, δ) = rG(δ)
does not hold for every X ∈ Malg(G).

Example 2.3. Let G be a binary graph of genus g ≥ 2, i.e. G is the graph with
two vertices of weight zero joined by g + 1 edges. (This graph is sometimes named
“banana” graph; we prefer the word binary for consistency with the terminology
used in other papers, such as [10].)

G = ◦
v1

eg+1

v2

e2

e1

◦
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Let d = (1, 1) ∈ Div(G). It is clear that rG(d) = 1.
Let now X be a curve whose dual graph is G, so X has two smooth rational

components intersecting in g + 1 points; we say X is a binary curve. It is easy to
check that Clifford’s theorem holds in this case (i.e. for this multidegree), hence

r(X,L) ≤ 1 for every L ∈ Pic(1,1)(X).
Suppose first that g = 2. Then we claim that for every such X we have

rmax(X, d) = 1 and there exists a unique L ∈ Pic(1,1)(X) for which r(X,L) = 1.
Indeed, to prove the existence it suffices to pick L = KX . The fact that there are
no other line bundles with this multidegree and rank follows from Riemann-Roch.

Now let g ≥ 2. We say that a binary curve X = C1 ∪ C2 is special if there is
an isomorphism of pointed curves

(C1; p1, . . . pg+1) ∼= (C2; q1, . . . qg+1)

where pi, qi are the branches of the i-th node of X, for i = 1, . . . g + 1 (if g = 2
every binary curve is special).

We claim that rmax(X, d) = 1 if and only if X is special, and in this case

there exists a unique L ∈ Pic(1,1)(X) for which r(X,L) = 1. We use induction on
g; the base case g = 2 has already been done . Set g ≥ 3 and observe that the
desingularization of a special binary curve at a node is again special.

Let ν1 : X1 → X be the desingularization of X at one node, so that X1 has
genus g−1. Let p, q ∈ X1 be the branches of the desingularized node. By induction
X1 admits a line bundle L1 of bidegree (1, 1) and rank 1 if and only if X1 is special,

and in this case L1 is unique. Next, there exists L ∈ Pic(1,1)(X) having rank 1 if
and only if X1 is special, ν∗1L = L1 and,

r(X1, L1(−p)) = r(X1, L1(−q)) = r(X1, L1(−p− q)) = 0;

moreover such L is unique if it exists (see [10, Lm. 1.4]). Therefore L1 = O(p+ q),
hence X is a special curve. The claim is proved.

Let us now consider d′ ∼ d with d′ �= d:

d′ = (1 + n(g + 1), 1− n(g + 1)).

By symmetry we can assume n ≥ 1. Then for any L ∈ Picd
′
X we have

r(X,L) = r(C1, LC1
(−C1 · C2)) = r(P1,O((n− 1)g + n)) = (n− 1)g + n ≥ 1.

Therefore, denoting by δ ∈ Pic(G) the class of d = (1, 1) we have r(X, δ) =
rmax(X, d) for every X ∈ Malg(G).

Here is a summary of what we proved.
Let G be a binary graph of genus g ≥ 2, d = (1, 1) and δ ∈ Pic(G) the class of d.
Pick X ∈ Malg(G), then

r(X, δ) = rmax(X, d) =

{
1 if X is special
0 otherwise.

And if X is special there exists a unique L ∈ Pic(1,1)(X) having rank 1.

2.2. Low genus cases. We use the following terminology. A vertex v ∈ V (G)
of weight zero and valency one is a leaf-vertex, and the edge e ∈ E(G) adjacent to
v is a leaf-edge. Note that a leaf-edge is a bridge.
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Let σ : G → G = G/e be the contraction of a leaf-edge. By Proposition 1.12
the map σ∗ : Div(G) → Div(G) induces an isomorphism

σ∗ : Pic(G)
∼=−→ Pic(G)

(abusing notation). Let X ∈ Malg(G), then the component Cv corresponding to the
leaf-vertex v is a smooth rational curve attached at a unique node; such components
are called rational tails. Now, we have a natural surjection

Malg(G) −→ Malg(G); X �→ X

where X is obtained from X by removing Cv. Here is a picture, useful also for
Lemma 2.4.

Z
X =

Cv
X =

Lemma 2.4. Let G be a graph and σ : G → G = G/e the contraction of a
leaf-edge. For every δ ∈ Pic(G) and every X ∈ Malg(G) we have, with the above
notation,

r(X, δ) = r(X, σ∗(δ)).

In particular, Identity (2.2) holds for G if and only if it holds for G.

Proof. Let v ∈ V (G) be the leaf-vertex of e and C = Cv ⊂ X the correspond-
ing rational tail; we write X = C ∪ Z with Z ∼= X, and identify Z = X from now
on. Pick d ∈ δ and set c = d(v); we define

d0 := d+ ctv

where tv ∈ Prin(G) was defined in (1.7). Hence d0(v) = 0 and d0 ∼ d. Notice that

σ∗(d) = σ∗(d
0). Now, since C ∩ Z is a separating node of X, there is a canonical

isomorphism PicX ∼= Pic(C) × Pic(Z) mapping L to the pair of its restrictions,
(LC , LZ). Hence we have an isomorphism

Picd
0

(X)
∼=−→ Picσ∗(d

0)(X); L �→ L := LZ ,

as for any L ∈ Picd
0

(X) we have LC = OC . Moreover, we have

r(X,L) = r(Z,LZ) = r(X,L)

by Remark 1.6. Therefore

(2.3) rmax(X, d0) = rmax(X, σ∗(d
0)).

Now we claim that for every d ∈ δ we have

(2.4) rmax(X, d) ≥ rmax(X, d0).

This claim implies our statement. In fact it implies that r(X, δ) can be computed
by looking only at representatives taking value 0 on C, i.e.

r(X, δ) = min{rmax(X, d0), ∀d0 ∈ δ};
now by (2.3) and the fact that σ∗ : Div(X) → Div(X) is onto we get

r(X, δ) = min{rmax(X, d), ∀d ∈ σ∗(δ)} = r(X, σ∗(δ))
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and we are done.
We now prove (2.4). By what we said before, line bundles on X can be written

as pairs (LC , LZ). Pick L ∈ Picd(X) and set L0 := (OC , LZ(cp)) where p = C∩Z ∈
Z and c = degC L as before. Hence L0 ∈ Picd

0

(X) and this sets up a bijection

Picd(X) −→ Picd
0

(X); L �→ L0.

We shall prove r(X,L) ≥ r(X,L0) for every L ∈ Picd(X), which clearly implies
(2.4). If c ≥ 0 we have

r(X,L) ≥ r(C,O(c)) + r(Z,LZ) = c+ r(Z,LZ)

and

r(X,L0) = r(Z,LZ(cp)) ≤ c+ r(Z,LZ);

combining the two inequalities we are done. If c < 0 we have

r(X,L) = r(Z,LZ(−p)) ≥ r(Z,LZ(−|c|p)) = r(X,L0).

The proof is finished. �

Let G have genus g ≥ 2 and let G be obtained after all possible leaf-edges
contractions; then G is a semistable graph. By the previous result we can assume
all graphs and curves of genus ≥ 2 semistable.

Corollary 2.5. Conjecture 1 holds if g = 0.

Proof. By Lemma 2.4 we can assume G has one vertex (of weight zero) and no

edges, so that the only curve in Malg(G) is P1. Now every δ ∈ Picd(G), has a unique

representative and rG(δ) = max{−1, d}. On the other hand Picd(P1) = {O(d)} and
r(P1,O(d)) = max{−1, d}. �

Another consequence of Lemma 2.4 is the following.

Proposition 2.6. Conjecture 1 holds if g = 1.

Proof. By Riemann-Roch we have, for every δ ∈ Picd(G)

rG(δ) =

⎧⎨
⎩

d− 1 if d ≥ 1
0 if δ = 0

−1 otherwise.

By Lemma 2.4 we can assume G has no leaves. If G consists of a vertex of weight
1 then a curve X ∈ Malg(G) is smooth of genus 1, and the result follows from
Riemann-Roch.

So we can assume G is a cycle with γ vertices, all 2-valent of weight zero, and
γ edges. Now, we have |Picd(G)| = γ (as the complexity of G is obviously γ). Let

us exhibit the elements of Picd(G) by suitable representatives:

Picd(G) = {[(d, 0γ−1)], [(d− 1, 1, 0γ−2)], . . . , [(d− 1, 0γ−2, 1)]}

where we write 0i = (0, . . . , 0) ∈ Zi. We need to show the above γ multidegrees are
not equivalent to one another; indeed the difference of any two of them is of type
±(0i, 1, 0j ,−1, 0k) which has rank −1 (by Lemma 1.14 for example).

Pick now X ∈ Malg(G). Assume d ≥ 1. By Riemann-Roch r(X,L) ≥ d− 1 for

any line bundle L of degree d, so it suffices to show that every δ ∈ Picd(G) has a

representative d such that for some L ∈ Picd(X) equality holds. Let d be any of
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the above representatives and pick L ∈ Picd(X). It is easy to check directly that
r(X,L) = d− 1 (or, one can apply [10, Lm. 2.5]), so we are done.

Suppose d ≤ 0; by Lemma 2.2 we can assume δ �= 0. Let d again be any of the
above representatives. One easily see that r(X,L) = −1 for every L ∈ Picd(X) (as
a nonzero section of OP1(1) cannot have two zeroes). Hence r(X, δ) = −1 = rG(δ)
for every X ∈ Malg(G). The result is proved. �

The proof of the next proposition contains some computations that could be
avoided using later results. Nevertheless we shall give the direct proof, which ex-
plicitly illustrates previous and later topics.

Proposition 2.7. Conjecture 1 holds for stable graphs of genus 2.

Proof. Let G be a stable graph of genus 2 and δ ∈ Picd(G). In some cases
rG(δ) is independent of G; namely if d < 0 then rG(δ) = −1, and if d ≥ 3 then
rG(δ) = d − 2 by [2, Thm 3.6]. For the remaining cases we need to know G. As
G is stable, it has at most two vertices; the case |V (G)| = 1 is treated just as for
higher genus, so we postpone it to Corollary 2.11. If |V (G)| = 2 there are only
two possibilities, which we shall treat separately. We shall use Remark 1.6 several
times without mentioning it.

Case 1. G has only one edge and both vertices of weight 1. Below we have a
picture of G together with its weightless model G•, and with a useful contraction
of G•:

G = •
+1 +1

• G• = ◦ ◦ e ◦ ◦ G•/e = ◦ ◦ ◦

Clearly, we can identify Pic(G) = Z. Next denoting by e the bridge of G•, by
Proposition 1.12 we have a rank preserving isomorphism

Pic(G•) ∼= Pic(G•/e).

Finally, since there is an injection Pic(G) ↪→ Pic(G•) we also have

Pic(G) ↪→ Pic(G•/e); [(d1, d2)] �→ [(0, d1 + d2, 0)]

where we ordered the vertices from left to right using the picture.
For any X ∈ Malg(G), we have X = Z ∪ Y with Z and Y smooth of genus 1,

intersecting at one point.
If d < 0 we pick the representative (0, d) ∈ δ. Then rmax(X, (0, d)) = −1, hence

r(X, δ) = −1 and we are done. If d ≥ 3 we pick (d1, d2) ∈ δ with d1 ≥ 1 and d2 ≥ 2
so that

rmax(X, (d1, d2)) = d1 − 1 + d2 − 1 = d− 2 = rG(δ);

by (2.1) we are done. The case δ = 0 is in 2.2. The remaining two cases, d = 1, 2 are
done in the second and third column of the table below. The combinatorial rank is
computed on G•/e. For the algebraic computations we used also the symmetry of
the situation. The two consecutive rows starting with rG(d) and rmax(X, d) prove
that r(X, δ) ≤ rG(δ); the last row shows that equality holds.
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[d] ∈ Pic(G) [(0, 1)] [(0, 2)]

[d•] ∈ Pic(G•/e) [(0, 1, 0)] [(0, 2, 0)]

rG(d) = 0 1

rmax(X, d) = 0 1

d′ ∼ d (a, 1− a) (a, 2− a)

rmax(X, d′) =

{
a− 1 ≥ 1 a ≥ 2
−a ≥ 1 a ≤ −1

⎧⎨
⎩

a− 1 ≥ 2 a ≥ 3
1 a = 1
1− a ≥ 2 a ≤ −1

Case 1 is finished.

Case 2. G is a binary graph, as in Example 2.3, with 3 edges. We have Pic0(G) ∼=
Z/3Z. If d < 0 or d ≥ 3 we know rG(δ); for the remaining cases we listed the
rank of each class in the table below, with a choice of representatives making the
computations trivial (by Lemma 1.14).

d = 0 rG(0, 0) = 0 rG(1,−1) = −1 rG(2,−2) = −1

d = 1 rG(0, 1) = 0 rG(1, 0) = 0 rG(2,−1) = −1

d = 2 rG(0, 2) = 0 rG(1, 1) = 1 rG(2, 0) = 0

Let now X ∈ Malg(G); we already described such curves in Example 2.3, where we
proved the result for δ = [(1, 1)], which we can thus skip, as well as δ = [(0, 0)]. We

follow the rows of the table. If d = 0 and a = 1, 2 we have for any L ∈ Pic(a,−a)(X),

(2.5) r(X,L) = r(P1,O(a− 3)) = −1 = rG(a,−a).

The case d = 0 is done. Next, rmax(X, (0, 1)) ≤ 0, and it is clear if L = O(p), with
p nonsingular point of X, we have r(X,L) = 0; hence rmax(X, (0, 1)) = 0. For the
other multidegrees in [(0, 1)] we have

r(X, (3a, 1− 3a)) =

{
r(P1,O(3a− 3) = 3a− 3 ≥ 0 if a ≥ 1
r(P1,O(−3a− 2) = −3a− 2 ≥ 1 if a ≤ −1.

So r(X, [(0, 1)]) = 0 = rG([(0, 1)]). As for the last class of degree 1, for every X and

L ∈ Pic(2,−1)(X) we have

r(X,L) = r(P1,O(−1)) = −1 = rG(2,−1)

hence this case is done.
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18 LUCIA CAPORASO

We are left with δ = [(0, 2)]; we claim r(X, δ) = 0 for every X. By Riemann-
Roch r(X,L) ≥ 0 for any L ∈ Pic2(X), so we need to prove that for some

d ∈ δ equality holds for every L ∈ Picd(X); choose d = (3,−1), then r(X,L) =
r(P1,O(3− 3)) = 0 as claimed.

To finish the proof notice that r(X, δ) = −1 if d < 0 (easily done arguing
as for (2.5)). Finally, we claim r(X, δ) = d − 2 if d ≥ 3. For this we pick for
δ a representative (d1, d2) with d1 ≥ 0 and d2 ≥ 3; then one checks easily that
rmax(X, (d1, d2)) = d− 2; by (2.1) we are done. �

2.3. High degree divisors and irreducible curves. Recall that we can
assume all graphs and curves semistable of genus at least 2. The following theorem
states that if d ≥ 2g − 2 then Identity (2.2) is true in a stronger form. First we
need the following.

Definition 2.8. Let G be a semistable graph of genus g ≥ 2, and let d ∈
Divd G. We say that d is semibalanced if for every Z ⊂ V (G) the following inequality
holds

(2.6) d(Z) ≥ kG(Z)d/(2g − 2)− (Z · Zc)/2

and if for every vertex v of weight zero and valency 2 we have d(v) ≥ 0.
We say that d is balanced if it is semibalanced and if for every vertex v of weight

zero and valency 2 we have d(v) = 1.

The reason for introducing this technical definition (the graph theoretic ana-
logue of [9, Def. 4.6]) is that for line bundles of semibalanced multidegree we have
extensions of Riemann’s, and partially Clifford’s, theorem, as we shall see in the
proof of the next theorem.

Theorem 2.9. Let G be a semistable graph of genus g and assume d ≥ 2g− 2.
Then for every δ ∈ Picd(G) the following facts hold.

(1) Conjecture 1 holds.
(2) There exists d ∈ δ such that rmax(X, d) = rG(d) for every X ∈ Malg(G).
(3) Every semibalanced d ∈ δ satisfies part (2).

Proof. We have that every δ ∈ PicG admits a semibalanced representative
(see [9, Prop. 4.12]). Therefore (3) implies (2), which obviously implies (1). We
shall now prove (3).

If d ≥ 2g − 1, by [2, Thm 3.6] we have rG(δ) = d− g.
On the other hand, by the Riemann-Roch theorem for curves, we have r(X,L) ≥

d− g for every line bundle L of degree d.
Now, by the extension of Riemann’s theorem to singular curves [10, Thm 2.3],

for every balanced representative d ∈ δ, and for every L ∈ Picd, we have

(2.7) r(X,L) = d− g.

Hence if d is balanced we are done. It remains to show that the theorem we just
used extends to semibalanced multidegrees. A balanced multidegree d is defined
as a semibalanced one, satisfying the extra condition d(v) = 1 for any vertex v of
weight zero and valency 2. Now it is simple to check that the proof of that theorem
never uses the extra condition, hence (2.7) holds also for any L of semibalanced
multidegree. This completes the proof in case d ≥ 2g − 1.

Now assume d = 2g − 2. By Remark 1.10 we have rG(δ) ≤ g − 1 with equality
if and only if δ is the canonical class. Let d ∈ δ be semibalanced. By [10, Thm 4.4]
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(an extension of Clifford’s theorem), if d is such that for every subcurve Z � X of
arithmetic genus gZ we have the following inequality

(2.8) d(Z) ≥ 2gZ − 1,

then we have rmax(X, d) ≤ g − 1 with equality if and only if d = degKX ; as
degKX = kG we will be done if (2.8) holds for every subcurve Z.

To prove that, we abuse notation writing Z ⊂ V (G) for the set of vertices
corresponding to the components of Z. As d is semibalanced we have

d(Z) ≥ kG(Z)− (Z · Zc)/2 = 2gZ − 2 + (Z · Zc)− (Z · Zc)/2

as by (1.11) we have kG(Z) = degZ KX = 2gZ − 2 + (Z · Zc). Therefore

d(Z) ≥ 2gZ − 2 + (Z · Zc)/2 ≥ 2gZ − 3/2,

(as (Z ·Zc) ≥ 1) which implies d(Z) ≥ 2gZ −1. So (2.8) holds and we are done. �

Corollary 2.10. Conjecture 1 holds if d ≤ 0.
To prove Conjecture 1 in all remaining cases it suffices to prove it for d ≤ g−1.

Proof. For d ∈ Div(G) set d∗ = kG − d so that |d∗| = 2g − 2 − d. Then, by
Riemann Roch, rmax(X, d) = rG(d) if and only if rmax(X, d∗) = rG(d

∗). Therefore
the Conjecture holds for [d] if and ony if it holds for [d∗].

If d ≤ 0 then |d∗| ≥ 2g − 2 and the Conjecture holds by Theorem 2.9. If d ≥ g
then |d∗| ≤ g − 2, so we reduced to the required range. �

Corollary 2.11. Conjecture 1 holds if |V (G)| = 1, i.e. if Malg(G) parame-
trizes irreducible curves.

Proof. The graph G consists of a vertex v of weight h and g−h loops attached
to v, with 0 ≤ h ≤ g; recall that we can assume g ≥ 2. Let δ = [d] ∈ PicG; we can
assume 1 ≤ d ≤ g − 1. By [2, Lemma 3.7] we have rG(d) =

⌊
d
2

⌋
.

Let now X ∈ Malg(G); as X is irreducible Clifford’s theorem holds, hence

r(X,L) ≤
⌊
d
2

⌋
for every L ∈ Picd(X). We must prove there exists X ∈ Malg(G)

admitting L ∈ Picd(X) for which equality holds. If d = 1 we take L = OX(p) with
p nonsingular point of X; then r(X,OX(p)) = 0. We are left with the case g ≥ 3; it
is well known that Malg(G) contains a hyperelliptic curve, X, and that there exists

L ∈ Picd(X) for which r(X,L) =
⌊
d
2

⌋
. So we are done. �

For convenience, we collect together all the cases treated in the paper.

Summary 2.12. Let G be a (finite, connectected, weighted) graph of genus g

and let δ ∈ Picd(G). Then Conjecture 1 holds in the following cases.

(1) g ≤ 1.
(2) d ≤ 0 and d ≥ 2g − 2.
(3) |V (G)| = 1.
(4) G is a stable graph of genus 2.
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A tour of stable reduction with applications

Sebastian Casalaina-Martin

To Joe Harris.

Abstract. The stable reduction theorem for curves asserts that for a family
of stable curves over the punctured disk, after a finite base change, the family
can be completed in a unique way to a family of stable curves over the disk.
In this survey we discuss stable reduction theorems in a number of different
contexts. This includes a review of recent results on abelian varieties, canon-
ically polarized varieties, and singularities. We also consider the semi-stable
reduction theorem and results concerning simultaneous stable reduction.

Introduction

The stable reduction theorem for curves [48, 101] asserts that given a family
of stable curves over the punctured disk, after a finite base change, the family
can be completed in a unique way to a family of stable curves over the disk. In
particular, the central fiber of the new family is determined, up to isomorphism,
by the original family. This theorem plays a central role in the study of curves.
A consequence is the fundamental result that the moduli space of stable curves is
compact. Qualitatively, the theorem provides control over degenerations of smooth
curves: when studying one-parameter degenerations, one may restrict to the case
where the limit has normal crossing singularities.

In [72, §3.C] Harris–Morrison give a beautiful treatment of the stable reduction
theorem from a computational perspective. They outline a proof of the theorem
that provides the reader with a method of completing this process in particular
examples, and importantly, of identifying the central fiber of the new family. The
aim of this survey is to complement [72, §3.C] with stable reduction problems in
other settings.

Roughly speaking, by a stable reduction problem we mean the problem of
determining a class of degenerations so that a family over the punctured disk can,
after a finite base change, be extended in a unique way to a family over the disk.

Typically the motivation will be a moduli problem, where one is given a partic-
ular class of geometric or algebraic objects that determine a non-compact moduli
space. The stable reduction problem can be viewed as providing a modular com-
pactification of the moduli space. In the language of stacks, stable reduction is
equivalent to the valuative criterion of properness for the moduli stack (see §2). In
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2 CASALAINA-MARTIN

§1, we work out an explicit motivating example. The main cases we will consider in
the survey are stable reduction for abelian varieties §5, curves §6, and canonically
polarized varieties §7.

Determining a class of degenerations that will provide a stable reduction the-
orem is often difficult. In this situation one can begin with the qualitative goal
of obtaining some level of control over degenerations. For instance, one may focus
on restricting the singularities of the central fiber, or controlling invariants such as
monodromy §4.

In this direction, semi-stable reduction is the problem of filling in (possibly
after a finite base change) a smooth family of schemes over the punctured disk to
a family where the total space is smooth, and the central fiber is a reduced scheme
with simple normal crossing singularities. Unlike the case of stable reduction, such a
completion will not be unique. On the other hand, the singularities (and topology)
of a semi-stable reduction will typically be much simpler than that of a stable
reduction.

The main result in this context is a theorem of Mumford et al. [82] stating
that semi-stable reductions exist in complete generality in characteristic 0 (see
§3). This plays a central role in many stable reduction theorems. In particular,
Kollár–Shepherd-Barron–Alexeev have developed an approach to the stable reduc-
tion problem using log canonical models of semi-stable reductions. We use the case
of curves §6 and canonically polarized varieties §7.3 to discuss this.

One can also consider the question of extending families over higher dimensional
bases. Given a stable reduction theorem one can then ask whether families over
a dense open subset of a scheme of dimension 2 or more can be extended after a
generically finite base change. We call this a simultaneous stable reduction problem.
For moduli spaces that are proper Deligne–Mumford stacks, it is well known that
simultaneous stable reductions always exist (Theorem 8.2, [54], [50]). However, in
general, this is a delicate problem. Explicitly describing such a generically finite
base change can be quite difficult.

We review simultaneous stable reduction in §8, where we focus on the cases
of abelian varieties and curves. One recent motivation for considering this type of
problem has to do with resolving birational maps between moduli spaces. The cases
arising in the Hassett–Keel pogram for the moduli space of curves have received a
great deal of attention recently; we review this in §8.5.

In light of the breadth of the topic, to prevent this survey from becoming too
lengthy, we have chosen to focus on a few cases that have a historic connection to
the stable reduction theorem for curves, capture the flavor of the topic in general,
and which point to some of the recent progress in the field. We also include a
number of examples. In the end, the material chosen reflects the author’s exposure
to the subject, and he apologizes to those people whose work was not included.

Acknowledgements. It is a pleasure to thank J. Achter, J. Alper, J. de Jong,
M. Fedorchuk, D. Grant, C. Hall, D. Jensen, J. Kass, J. Kollár, S. Kovács, R. Laza,
M. Lieblich, Z. Patakfalvi, R. Smith, R. Virk and J. Wise for discussions about
various topics covered in the survey that have greatly improved the exposition.
Special thanks are also due to J. Achter, J. Alper, D. Jensen, J. Kass, J. Kollár,
R. Laza, Z. Patakfalvi, R. Smith, R. Virk and the referee for detailed comments on
earlier drafts.
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STABLE REDUCTION 3

Notation and conventions.

1. A family of schemes f : X → B will be a flat, surjective, finite type
morphism of schemes, of constant relative dimension. The scheme B will be called
the base of the family and X the total space of the family. For a point b ∈ B, we
denote by Xb the fiber of f over b.

2. We will typically use the following notation for spectrums of discrete val-
uation rings (DVRs). For a DVR R we will use the notation K = K(R) for the
fraction field, and κ = κ(R) for the residue field. We will set S = SpecR, with
generic point η = SpecK and closed point s = Specκ.

3. IfB is noetherian, and the family f : X → B is of constant relative dimension
d, the discriminant, denoted Δ, is the 0-th Fitting scheme of the push-forward
of the structure sheaf of the d-th Fitting scheme of the coherent sheaf ΩX/B. The
discriminant parameterizes the singular fibers of the family. Typically, we consider
this in the case where either the d-th fitting scheme of ΩX/B is finite over B, or f
is proper; in these cases Δ is a closed subscheme of B.

4. Let X be a scheme over an algebraically closed field k, which is regular in
codimension one, and let D be an effective Weil divisor on X. We say D is in étale
(resp. Zariski or simple) normal crossing position if X is regular along the
support of D and for each closed point x ∈ Supp(D) there exists an étale morphism
(resp. an open inclusion) f : U → X such that for any u ∈ U with f(u) = x, there
is a local system of parameters u1, . . . , un for OU,u so that the pull-back of D via
the composition SpecOU,u → U → X, is defined by a product un1

1 · · ·unr
r , for some

0 ≤ r ≤ n and some non-negative integers n1, . . . , nr. We will say a divisor is nc,
(resp. snc) if it is in étale normal crossing (resp. simpe normal crossing) position.

5. A modification is a proper, birational morphism. An alteration is a
generically finite, proper, surjective morphism.

6. A germ will be the spectrum of a complete local ring A and we will use the
notation (X, x) with X = SpecA and x the maximal idea of A. A (germ of a) sin-
gularity will be a germ that is singular at x. We will typically focus on hypersur-
face singularities; by this we mean the case where X = Spec k[[x1, . . . , xn]]/(f),
f ∈ k[[x1, . . . , xn]] and k is a field. We will say a singularity is isolated if OX,x′ is
a regular local ring for all x′ ∈ X with x′ �= x.

1. An example via elliptic curves

In this section we start by briefly reviewing a stable reduction for a 1-parameter
family of elliptic curves degenerating to a cuspidal cubic, as described in Harris–
Morison [72, Ch. 3.C]. We then turn to the case of simultaneous stable reduction,
and give an explicit computation of a simultaneous stable reduction for a versal
deformation of a cuspidal cubic. In other words, we analyze all 1-parameter de-
generations at once. The presentation we give is a special case of a larger example
described by Laza and the author in [39] (related to well known work of Brieskorn
[32] and Tyurina [121, §3]; see also the recent work of Fedorchuk [53, §5], [54]) and
can be viewed as an extension of the discussion in Harris–Morrison [72, p.129-30].
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4 CASALAINA-MARTIN

1.1. Stable reduction for a pencil of cubics. Stable reduction concerns
one parameter degenerations. In this subsection we briefly review a stable reduction
for a family of non-singular plane cubics degenerating to a plane cubic with a cusp.
For brevity, we will leave out any computations. The reader is encouraged to read
[72, Ch. 3.C], where this example is worked out in detail (see also §1.3 and §4.1.2).

Fix an algebraically closed field k with characteristic not equal to 2 or 3 and
consider the family X → B = A1

k given by:

x2
2 + x3

1 + t3 = 0,

where t3 is the parameter on A1
k. The family is smooth away from t3 = 0, and the

central fiber has a cusp.

Figure 1. A degenerate family

The goal of stable reduction for curves is to replace the central fiber of X → B
with a stable curve. We will see via the theory of monodromy, and by a direct
computation, that this is not possible without a degree six base change. So let
B′ = Spec k[t′3] → A1

k be the degree six map given by t′3 �→ (t′3)
6. After base change

we obtain a new family X ′ = B′ ×B X → B′, which is also smooth away from the
central fiber, and has a cuspidal cubic as the central fiber. Let U = Spec k[t′3]t′3 .

By an appropriate sequence of birational transformations of the surface X ′

(e.g. [72, p.122-129] for a slight variation), one can obtain a new family X̂ → B′

that is isomorphic to X ′ over U , and such that the central fiber X̂0 of X̂ is a

non-singular curve. The family X̂ → B′ is called a stable reduction of the family

Figure 2. The stable reduction

X → B. For an explicit computation with equations, see §4.1.2 (and also §1.3).

1.2. A 2-parameter family of cubics. We will next consider a concrete
example of simultaneous stable reduction. While in general this is a more delicate
question than that of stable reduction, in this example we will be able to make
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STABLE REDUCTION 5

the simultaneous stable reduction completely explicit. We start by describing the
family of curves, which can be viewed as a versal deformation of a cuspidal cubic.

Fix an algebraically closed field k with characteristic not equal to 2 or 3. Con-
sider the family of curves

x2
2 + x3

1 + t2x1 + t3 = 0

with parameters t2 and t3. We denote the family by X → B. One can easily
check that the curve defined by the point (t2, t3) is non-singular if and only if
4t32−27t23 �= 0. The curve has a unique singularity, which is a node, if 4t32−27t23 = 0
and (t2, t3) �= (0, 0), and the curve has a unique singularity, which is a cusp, if
(t2, t3) = (0, 0). Despite the family technically being none of the following, we will
view it simultaneously as a family of projective curves of arithmetic genus one, a
degenerate family of abelian varieties, and a deformation of a cusp.

Figure 3. A degenerate family

Remark 1.1. To make this discussion precise we should take

X = Proj
A

2
k

(
k[t2, t3][X0, X1, X2]

(X0X2
2 +X3

1 + t2X2
0X1 +X3

0 t3)

)
⊆ P2

k × A2
k,

B = A2
k = Spec k[t2, t3], π : X → A2

k the morphism induced by the second projec-
tion P2

k × A2
k → A2

k, and σ∞ : A2
k → X the section at infinity given by the ring

homomorphism

k[t2, t3][X0, X1, X2]

(X0X2
2 +X3

1 + t2X2
0X1 +X3

0 t3)
→ k[t2, t3][X0]

defined by the ideal (X1, X2). We then obtain a diagram

(1.1) X � � ��

π

���
��

��
��

��
P2 × A2

k

π2

��

A2
k.

σ∞

��

The morphism π : X → A2
k is a flat family of projective curves of arithmetic genus

one. The section σ∞ defines a group scheme structure and polarization on the
generic fiber. This makes the generic fiber a principally polarized abelian scheme
of dimension one. Restricting to germs, we obtain a deformation of a cusp.
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6 CASALAINA-MARTIN

Let us make a few more informal observations. Set

G = X − {(0, 0, t2, t3) : 4t32 − 27t23 = 0}

(where here we are taking X to be the projective family). Then π : G → A2
k is a

family of commutative groups. The group parameterized by (t2, t3) is a copy of Gm,
if 4t32 − 27t23 = 0 and (t2, t3) �= (0, 0). The group is a copy of Ga, if (t2, t3) = (0, 0).
These are the groups of line bundles of degree zero on the corresponding fibers.
In fact G/A2

k is the relative (connected component of the) Picard scheme Pic0X/A2
k
,

andX/A2
k is the compactified (connected component of the) Picard scheme Pic

0

X/A2
k

(see Altman–Kleiman [18]).
For the purpose of this discussion, we view it as pathological that the central

fiber of the family π : X → A2
k has a cusp (and the central fiber of the family

Pic0X/A2
k
→ A2

k is an additive group). Our goal will be to modify the family so that

we may replace the central fiber with a nodal curve (or a copy of Gm in the case of
the family of groups, or a collection of smooth components meeting transversally
in the case of a singularity).

The problem can also be stated in stack-theoretic language. Let M1,1 be the
moduli stack of Deligne–Mumford stable, one-pointed curves of arithmetic genus
one, and let M1,1 be the coarse moduli space. The family X/A2

k defines a rational

map A2
k ��� M1,1 and we would like to give a resolution of this map.

1.3. Explicit simultaneous stable reduction. We now construct an ex-
plicit simultaneous stable reduction of the family. We will do this in several steps,
and then discuss a monodromy computation that sheds light on the problem.

1.3.1. Step 1: pulling back by a Weyl (group) cover. Consider the map

{a1 + a2 + a3 = 0} → A2
k

(a1, a2, a3) �→ (a1a2 + a1a3 + a2a3,−a1a2a3).

The families obtained are given by the diagram below.

(1.2) {a1 + a2 + a3 = x2
2 +

∏3
i=1(x1 − ai) = 0}

��

�� {x2
2 + x3

1 + t2x1 + t3 = 0}

��

{a1 + a2 + a3 = 0} �� A2
k.

Figure 4. The Weyl cover
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STABLE REDUCTION 7

There is still a unique fiber that is cuspidal, but the discriminant has been
replaced by a hyperplane arrangement of type A2, given by the equation

{(a2 − a3)
2(a1 − a3)

2(a1 − a2)
2 = 0}.

Set B′ → B to be the finite (Weyl) cover defined above, and set X ′ → B′ to be the
family obtained by pull-back. The Weyl group in this case is the group of type A2;
i.e. the permutation group Σ3.

1.3.2. Step 2: a wonderful blow-up. It is a general principle that putting the
discriminant locus into normal crossing position is beneficial (not only is a normal
crossing divisor easier to understand, there is also the Borel Extension Theorem
[29] for abelian varieties and the work of de Jong–Oort [47] and Cautis [40] for
stable curves, all of which will be discussed in more detail in §5 and §6).

We put the discriminant in this example into nc position by blowing up the
point that is the intersection of its three components. Explicitly, on one coordinate
patch, we consider the map

{1 + b2 + b3 = 0} → {a1 + a2 + a3 = 0}
(b1, b2, b3) �→ (b1, b1b2, b1b3).

Pulling the family back by this map gives the new family:

(1.3) {1 + b2 + b3 = x2
2 + (x1 − b1)

∏2
i=1(x1 − b1bi) = 0}

��

�� . . .

{1 + b2 + b3 = 0} �� . . . .

Figure 5. The wonderful blow-up

Denote the space obtained by this blow-up as B̃ → B′. We call this the

wonderful blow-up. Let X̃ → B̃ be the family obtained by pull-back. This restricts
to a family of cuspidal curves over the exceptional curve {b1 = 0}. Note that the
generic point of each irreducible component of the discriminant now parameterizes
curves with a unique singularity of type A1 or A2.

Remark 1.2. We will see below in §1.4 that over B̃ we can not replace the
cuspidal curves with stable curves. In other words, there does not exist a morphism
extending the rational map B̃ ��� M1,1. However, we can extend the map to the
moduli scheme (see §1.3.6); i.e. there is a morphism extending the rational map

B̃ ��� M1,1.
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8 CASALAINA-MARTIN

1.3.3. Step 3: a double cover. In order to obtain a family of stable curves, we
will need to take a double cover of the base, branched along the exceptional locus.
The double cover is not possible globally (the exceptional divisor does not admit a
square root), so we proceed locally. Consider the map

{1 + c2 + c3 = 0} → {1 + b2 + b3 = 0}

(c1, c2, c3) �→ (c21, c2, c3).

Pulling the family back by this map gives the new family:

(1.4) {1 + c2 + c3 = x2
2 + (x1 − c21)

∏2
i=1(x1 − c21ci) = 0}

��

�� . . .

{1 + c2 + c3 = 0} �� . . . .

Let us denote this finite cover by B̃′ → B̃ and let X̃ ′ → B̃′ be the family obtained
by pull-back.

1.3.4. Step 4: blowing up the cusp locus in the total space. There is a family of

cuspidal curves lying over the locus {c1 = 0}. In the total space X̃ ′, the locus of
cusps in the fibers is given as {c1 = x1 = x2 = 0}. Our goal will be to perform a
blow-up supported on this locus that will provide a family of semi-stable curves.

To do this, blow-up X̃ ′ along the ideal

I =
(
(c21, x1)

3, (c31, c1x1) · (x2), x
2
2

)
.

Let us denote the resulting family as BlI X̃
′ → B̃′. The blow-up replaces the

cuspidal curves with nodal curves consisting of two irreducible components: the
desingularization of the cuspidal curve, which is a copy of P1 sitting inside of the
blow-up Bl(x3

1,x
2
2)
A2

k, and a stable elliptic curve sitting inside of the weighted pro-

jective space P(1, 2, 3). We mention here that Hassett [73, §6.2] has determined the
tails arising from a much more general class of singularities; we will discuss these
results later in §10.

In short, we have locally (on the base) constructed an explicit semi-stable re-
duction of the cuspidal family, which is stable except in the fibers over the locus
{c1 = 0}, where it is nodal, but not stable.

1.3.5. Step 5: the relative dualizing sheaf. Finally, one can take the relative
canonical model (obtained via the relative dualizing sheaf) for the family of nodal
curves. Concretely, this will contract the extraneous P1s in the fibers, giving a

family of stable curves. Let us denote this family by X̂ → B̃′.

1.3.6. Summary. We now have a family X̂ → B̃′ of stable curves extending the

pull-back of the original family, where B̃′ is an alteration of B. By definition, we
obtain a morphism

B̃′ → M1,1 → M1,1.

The map B̃′ → B̃ is finite, so in fact there is a map B̃ → M1,1 (e.g. [40, Lem. 2.4]).
The locus {c1 = 0} can be identified with the λ-line, with corresponding family
given by y2 = x(x−1)(x−λ). The points λ = 0, 1,∞ correspond to the intersections
of the strict transforms of the hyperplane arrangement (the discriminant after the
Weyl cover). The restricted map {c1 = 0} → M1,1 can be identified with the map
from the λ-line to the j-line.
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STABLE REDUCTION 9

Figure 6. The simultaneous stable reduction

1.4. Obstructions. We have seen that there exists an extension of the ratio-
nal map B̃ ��� M1,1 to the moduli scheme B̃ → M1,1. We now show the rational

map B̃ ��� M1,1 to the moduli stack does not extend; i.e. there is no family of

stable curves over B̃ extending the pull-back of the original family.
We do this in the following way. Let S be the spectrum of a DVR with closed

point s and generic point η. We will find a morphism S → B̃ sending s to a closed
point of the exceptional divisor (i.e. {c1 = 0}, parameterizing the cuspidal locus)

and sending η to the generic point of B̃′ (i.e. the smooth locus). Then we will show
that the induced family of curves XS → S does not extend to a family of stable
curves; i.e. the composition S → B̃ ��� M1,1 does not extend to a morphism.

We will show in two ways that the general S → B̃ ��� M1,1 as above does not
extend to a morphism. The first is via a monodromy computation. The second
method is via a computation following an argument of Fedorchuk [54].

1.4.1. The monodromy obstruction. Consider the family X ′ → B′ obtained via
the Weyl cover, and the restriction (X ′)|L → L of this family to a generic line L

through the origin in B′. To show that there is no extension B̃ → M1,1 to the
moduli stack, it suffices to show that the restriction (X ′)|L → L does not extend
to a stable family of curves. To show this, observe that in the notation of §1.3.2,
the restriction (X ′)|L → L is a surface Zb2 with equation (locally near the A2

singularity):

(1.5) x2
2 + x3

1 − (b22 + b2 + 1)b21x1 − b2(1 + b2)b
3
1 = 0,

where b1 is a parameter for L and b2 is a (generic) fixed slope.
The surface Zb2 has aD4 singularity at the origin. This is also a cusp singularity

for X0, the central fiber of Zb2 viewed as a family of curves. Recall that the
standard resolution of a D4 surface singularity x2 = f3(y, z) is given by 4 blow-ups:
First blow-up the D4 singularity. This gives an exceptional divisor E0. The D4

singularity “splits” into three A1 singularities corresponding to the three roots of f3.
Then blow-up each A1 singularity. This introduces exceptional divisors E1, E2, E3,

giving the desired resolution. We associate to this a D̃4 graph (consisting of E0 the
central vertex, to which one attaches edges connecting the 4 vertices corresponding
to the curves X0, E1, E2 and E3).

The monodromy obstruction can be identified via the theory of elliptic fibra-

tions. From the D̃4 graph, we conclude that this is a type I∗0 degeneration in
Kodaira’s classification (see [24, §V.7, p.201]). It follows that the monodromy is
− Id (see [24, p.210]). We also direct the reader to the discussion of the elliptic
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10 CASALAINA-MARTIN

involution in [72, Ch. 2A], and to the monodromy computation made in §4.1.2. In
conclusion, the monodromy not being unipotent, the family does not extend to a
family of stable curves (this fact is reviewed in §5 and §6).

1.4.2. An obstruction via a direct computation. Again, our goal is to show that
the general map S → B̃ ��� M1,1 with closed point sent to the cuspidal locus, and
generic point sent to the smooth locus, does not extend to a morphism.

We follow an observation of Fedorchuk [54, Prop. 7.4]. Let S′ be the spectrum

of a DVR, which is a branched double cover of S admitting a morphism to B̃′.

Pulling back the family X̂ → B̃′ we obtain a family of stable curves X̂S′ → S′.

Fedorchuk’s observation is that it suffices to show that the total space X̂S′ is smooth.

Indeed, if there were a family of stable curves X̂S → S extending the pull-back of

the original family, then it would follow that X̂S′ was equal to S′ ×S X̂S . But then

the total space X̂S′ would have a singular point, giving a contradiction (the point

of X̂S at the node of the central fiber, locally given by xy − tn with n ≥ 1, would

be replaced with a singular point xy − t2n of X̂S′).
Fedorchuk’s approach is to construct a particular one-parameter family of genus

two curves degenerating to a cusp (his argument implies the result for families of
curves of arbitrary genus [54, Prop. 7.4]). Alternatively, with the work we have
done here in coordinates, one can show that the blow-up in the fourth step gives
a smooth total space when restricted to the general S′. Since the total space is a
smooth surface, and all of the curves blown down in the fifth step are (−1)-curves,
this does not introduce singularities in the total space.

2. Stable reduction and the valuative criterion for properness

We now consider stable reduction more abstractly, in terms of the valuative
criterion for properness for stacks. For readers not familiar with stacks, this is not
strictly necessary for the material in the subsequent sections. The main focus here
will be to review the fact that stable reduction is equivalent to the properness of
a moduli stack, and that for separated, finite type Deligne–Mumford stacks, the
properness of the coarse moduli space is equivalent to the properness of the stack.
In order to return quickly to a more concrete setting, we postpone a discussion of
simultaneous stable reduction in the language of stacks until §8.1.

2.1. The valuative criterion for properness of an algebraic stack. Fix
once and for all a scheme Z, and consider the étale site SchétZ (e.g. [52, Exa. 2.3.1,
p.27]). By a Z-sheaf, (resp. algebraic Z-space, resp. Z-stack), we will mean a sheaf

(resp. algebraic space, resp. stack) on SchétZ (e.g. [94, Def. 1.1, Def. 3.1]).

An algebraic (or Artin) Z-stack M over SchétZ is a Z-stack such that the
diagonal 1-morphism of Z-stacks Δ : M → M ×Z M is representable, separated
and quasi-compact, and there exists an algebraic Z-space U and a 1-morphism of
Z-stacks U → M that is surjective and smooth (e.g. [94, Def. 4.1]). Note that the
diagonal Δ is in fact of finite type (e.g. [94, Lem. 4.2]). An algebraic Z-stack M is
a Deligne–Mumford (DM) Z-stack if there is a an algebraic Z-space U ′ and a
1-morphism of Z-stacks U ′ → M that is surjective and étale (e.g. [94, Def. 4.1]).

Example 2.1. For a concrete example we will consider Mg, the DM C-stack

of genus g ≥ 2 curves over Schét
C
. This is a category whose objects are families

X → B of Deligne–Mumford stable, genus g curves, over a C-scheme B (see §6),
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and whose morphisms are given by pull-back diagrams. Recall that the moduli
stack “represents the moduli problem” in the following way: for a C-scheme B, a
morphism B → Mg is equivalent to a family X → B of stable, genus g curves, over
C.

We now state the valuative criteria for separateness and properness. We refer
the reader to [94, Def. 7.6, Def. 7.11] (see also [48, Def. 4.7, Def. 4.11], [123,
Def. 1.1]) for the respective definitions of separateness and properness, and we note
only that separated and finite type are assumed in the definition of properness.

Theorem 2.2 (Valuative Criterion for Separatedness). Let F : M → B be a
1-morphism of algebraic Z-stacks. Then F is separated if and only if for every
valuation ring R, with field of fractions K, and every 2-commutative diagram

(2.1) M

F

��

SpecR ��

x1

���
�

�
�

� x2

���
�

�
�

�
B

any isomorphism between x1|SpecK and x2|SpecK can be extended to an isomorphism
between x1 and x2. If moreover B is locally noetherian and F is locally of finite
type, then one need only consider discrete valuation rings R.

We direct the reader to [94, Prop. 7.8] (see also [48, Thm. 4.18]).

Remark 2.3. The criterion, and in particular the 2-commutivity, can be made
more explicit as follows. For all x1, x2 ∈ obMSpecR, all isomorphsims β : F (x1) →
F (x2) in BSpecR, and all isomorphisms α : (x1)|SpecK → (x1)|SpecK in MSpecK

such that F (α) = β|SpecK , there exists at least one (and in fact a single) iso-
morphism α̃ : x1 → x2 in MSpecR extending α (i.e. α̃|SpecK = α) and such that
F (α̃) = β. We also note that it suffices to take valuation rings that are complete,
and have algebraically closed residue field (see [94, Prop. 7.8]).

Theorem 2.4 (Valuative Criterion for Properness). Let F : M → B be a
separated, finite type 1-morphism of algebraic Z-stacks. Then F is proper if and
only if for every discrete valuation ring R, with field of fractions K, and every
2-commutative diagram

SpecK ��

��

M

F

��

SpecR �� B
there exists a finite extension K ′ of K, so that taking R′ to be the integral closure
of R in K ′, there is a 2-commutative diagram

(2.2) SpecK ′ ��

��

SpecK ��

��

M

F

��

SpecR′ ��

������������
SpecR �� B

extending the original diagram.

We direct the reader to [94, Thm. 7.10] (see also [48, Thm. 4.19]).
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Remark 2.5. It suffices to consider DVRs that are complete, and have alge-
braically closed residue field (see [94, Thm. 7.10]). If one removes the hypothesis
that F be separated, then the criterion (2.2) is equivalent to F being universally
closed (e.g. [94, Thm 7.10]).

Example 2.6. Let us make these criteria more concrete in the example of Mg,

g ≥ 2. We will use the fact that Mg is of finite type over C [48, Thm. 5.2] together
with the fact that C is noetherian to conclude that we need only consider DVRs.
Then using the fact that a morphism from a scheme to Mg is the same as family of
stable curves over the scheme, we may reinterpret the valuative criteria as follows.

Separatedness : Let R be a DVR with fraction fieldK. Set S = SpecR. Suppose
X → S (resp. Y → S) is a family of stable, genus g curves over S, with restriction
XK → SpecK (resp. YK → SpecK). Then the valuative criterion for separateness
requires that any K-isomorphism XK → YK extend to an S-isomorphism ofX/S →
Y/S.

Properness: Let R be a DVR with fraction field K. Let XK → SpecK be a
family of stable, genus g curves. Then the valuative criterion for properness requires
that there exist a finite extension K ′ of K such that setting R′ to be the integral
closure of R in K ′, there exists a family of stable curves X ′ → SpecR′ extending
the family XK′ = XK ×SpecK SpecK ′ → SpecK ′ (in the sense that X ′|K′ ∼= XK′).

In conclusion, the properness of Mg is equivalent to the fact that any family
of stable curves over the generic point of a DVR can be extended, possibly after
a generically finite base change, to a family of stable curves, and this extension is
unique up to isomorphism. This is exactly the statement of the Deligne–Mumford
stable reduction theorem, which we will review in §6.

Remark 2.7. In practice, a natural moduli problem (over a scheme Z) will
often lead to a separated, non-proper, algebraic Z-stack M of finite type over Z. A
stable reduction theorem for the moduli problem then consists of finding a proper
algebraic Z-stack M, containing M (ideally as a dense open substack). In general,
finding such stacks has proven to be quite difficult. One approach is to use GIT
to determine a (GIT-)stability condition, with the hope that the stable objects
will provide the correct class to define M; we discuss this further in §11. Another
approach, due to Kollár–Shepherd-Barron–Alexeev, which uses the Minimal Model
Program (MMP), has had a great deal of success lately; we discuss this further in
§7.

Remark 2.8. It may also happen that there are many such proper stacks M
from which to choose. Following Smyth (e.g. [119]), who has investigated this
question extensively for the moduli of curves, a useful way to frame the problem is
as follows. By considering all “degenerations” of objects in M, one may obtain a
“highly non-separated” algebraic Z-stack U , which containsM as an open substack.
Essentially by construction, the stack U should satisfy the valuative criterion (2.2).
One is then in the situation of identifying proper substacks M of U that contain
M. We direct the reader to Smyth [119] for more on this, especially for the case
of curves (see also [17],[16] where a notion weaker than properness is considered).

2.2. Moduli spaces. A moduli space for a stack is an algebraic space or
scheme that is as close as possible to the stack. More precisely, a categorical
moduli space for an algebraic Z-stack M is a Z-morphism π : M → M to an
algebraic Z-space such that π is initial for Z-morphisms to algebraic Z-spaces. This
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means that given any Z-morphism Φ : M → Y to an algebraic Z-space, there is a
unique Z-morphism η : M → Y making the following diagram commute

M Φ ��

π

��

Y

M

∃!η

���
�

�
�

We will call M a categorical moduli scheme if M is a Z-scheme.
A coarse moduli space (resp. scheme) is a categorical moduli space (resp.

scheme) satisfying the additional condition that for every algebraically closed field
k, the induced map |M(k)| → M(k) is a bijection, where |M(k)| is the set of
isomorphism classes of the groupoid MSpec k. For stacks with finite inertia there is
the following theorem of Keel–Mori. Recall that for an algebraic Z-stack M, the
inertia stack IZ(M) is the fiber product M ×M×ZM M, where both morphisms
M → M×Z M are the diagonal. An algebraic Z-stack is said to have finite inertia
if IZ(M) is finite over M. Note that by pull-back, a stack with finite diagonal, and
hence a separated, finite type DM stack (e.g. [123, Lem. 1.13]), has finite inertia.

Theorem 2.9 (Keel–Mori [81, Cor. 1.3]). Let M be an algebraic Z-stack,
locally of finite presentation, with finite innertia. Then there exists a coarse moduli
space π : M → M , with π proper. If M/Z is separated, then M/Z is separated. If
Z is locally notherian, then M/Z is locally of finite type. If Z is locally noetherian
and M/Z is of finite type with finite diagonal, then M/Z is proper if and only if
M/Z is proper.

For a proof, we direct the reader to Keel–Mori [81] (see also Conrad [44,
Thm. 1.1] and Olsson [110, Rem. 1.4.4]). We also direct the reader to the definition
of a tame stack in Abramovich–Olsson–Vistoli [4, Def. 3.1].

Remark 2.10. As a consequence of the theorem, one can prove a stable reduc-
tion theorem for a moduli problem (with a reasonable moduli stack) by showing
that the moduli stack admits a proper moduli space. One standard approach to
constructing a proper moduli space is via GIT (§11), where one will in fact typi-
cally obtain the stronger statement that the moduli space is projective. Note that
alternatively, for a proper moduli space, one can use positivity results of Kollár [84]
to establish the projectivity of the moduli space directly.

Example 2.11. AsMg is a proper DM C-stack, the Keel–Mori theorem implies

there is proper coarse moduli space Mg → Mg. In fact, the moduli space is a

projective variety over C. In §11, we will sketch a GIT construction of Mg due to
Gieseker [63]. By the valuative criteria, the existence of a projective coarse moduli
space provides another proof of stable reduction. Note also, that as an application
of the techniques in [84], Kollár gives an independent proof that Mg is projective
([84, Thm. 5.1]).

For more on algebraic stacks with positive dimensional stabilizers, the reader
is directed to Alper [15]. See especially the definition [15, Def. 4.1] of a good
moduli space. We point out that (under mild hypotheses) a good moduli space
is a categorical moduli space ([15, Thm. 6.6, Thm. 4.16(vi)]). If π : M → M
is a good moduli space, then π may fail to be separated, but it does satisfy the
valuative criterion (2.2); i.e. it is universally closed ([15, Thm. 4.16(ii)], see also [17,
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Prop. 2.17]). An illustrative example is the morphism π : [A1
k/Gm] → Spec k, for

an algebraically closed field k (see e.g. [15, Exa. 8.6]). This is a good (categorical)
moduli space, which is not coarse, and such that π is universally closed, but not
separated.

3. Semi-stable reduction

Semi-stable reduction is the process of filling in the central fiber of a family
of smooth varieties over the punctured disk with a reduced scheme with normal
crossing singularities. This is the natural generalization of filling in the central
fiber in a family of smooth curves with a nodal curve. A semi-stable reduction
provides a simple special fiber, which is useful from many points of view, such as
Hodge theory, period maps, and monodromy. On the other hand, unlike a stable
reduction, a semi-stable reduction is not unique.

In this section we discuss a theorem of Mumford et al. [82] that establishes
the existence of semi-stable reductions in characteristic zero. In the next section,
we will discuss the connection with monodromy, which plays a central role in the
stable reduction theorem for abelian varieties. In §7.3 we will use the semi-stable
reduction theorem in discussing an approach of Kollár–Shepherd-Barron–Alexeev
to establishing stable reduction theorems.

3.1. Semi-stable Reduction Theorem. We begin by stating the semi-stable
reduction theorem of Kempf–Knudsen–Mumford–Saint-Donat [82].

Theorem 3.1 (Semi-stable Reduction Theorem [82, Thm. p.53]). Assume
that char(k) = 0 and k = k. Let B be on open subset of a non-singular curve over
k, fix a point o ∈ B, and set U = B − {o}. Suppose that

π : X → B

is a surjective morphism of a variety X onto B such that the restriction πU : X|U →
U is smooth. Then there is a finite base change f : B′ → B, with B′ non-singular
and f−1(o) a single point o′, a non-singular variety X ′ and a diagram

(3.1) X ′
p

��

π′
		�

��
��

��
��

�




B′ ×B X ��

��

X

π

��

B′ f
�� B

satisfying the properties below.

(1) Setting U ′ = B′ − {o′}, p is an isomorphism over U ′.
(2) (π′)−1(o′) is a reduced scheme, which is an snc divisor on X ′.
(3) The morphism p is projective, and given as a blow-up of an ideal sheaf I

that is trivial away from the fiber over o′.

This result is used so frequently in stable reduction arguments, and parts of
the proof are so constructive, that it is worthwhile to sketch the outline here. One
of the key points is the following example.

Example 3.2. Consider the variety X in Spec k[x, t] = Ar+1
k defined by

t− xa1
1 · · ·xar

r .

We view X as a family π : X → B := Spec k[t], with central fiber D = π−1(0). For
each d ∈ N, set Bd = Spec k[t], and fd : Bd → B to be the map given by t �→ td.
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We define Xd to be the normalization of the pull-back of X via the map Bd → B.
In other words, we have a diagram

Xd νd

��

πd
		�

���
���

���




Bd ×B X ��

��

X

��

Bd
fd �� B

In this example, we will assume that

d = lcm(a1, . . . , ar) and gcd(d, a1, . . . , ar) = gcd(a1, . . . , ar) = 1,

and we will describe Xd and π−1
d (0). First, XBd

:= Bd ×B X is defined by

td − xa1
1 · · ·xar

r .

The assumption gcd(d, a1, . . . , ar) = gcd(a1, . . . , ar) = 1 implies that XBd
is the

image of the morphism

(3.2) Spec k[y] = Ar
k → Ar+1

k = Spec k[x, t]

given by (y1, . . . , yr) �→ (yd1 , . . . , y
d
r , y

a1
1 · · · yar

r ). The map (3.2) factors as

Ar
k → Ar

k = Spec k[z] → Ar+1
k

where the first map is given by (y1, . . . , yr) �→ (ya1
1 , . . . , yar

r ) and the second map is

given by (z1, . . . , zr) �→ (z
d/a1

1 , . . . , z
d/ar
r , z1 · · · zr). In short we have

Spec k[y] → Spec k[z] → XBd
= Spec

(
k[x, t]/(td − xa1

1 · · ·xar
r )

)
and the associated morphisms of rings are the inclusions:

(3.3) k[y1, . . . , yr] ⊇ k[ya1
1 , . . . , yar

r ] ⊇ k[yd1 , . . . , y
d
r , y

a1
1 · · · yar

r ].

Let us consider for a moment the special case where Spec k[z] → XBd
is bi-

rational. This will be the case, for instance, if either r = 2, or, more generally, if
a3 = · · · = ar = a1a2 (but will fail in general; e.g. the case X = V (t − x2

1x2x3)).
Then it follows from Zariski’s main theorem that

Spec k[z] → XBd

is the normalization νd : Xd → XBd
. The divisorD corresponds to (t) in k[x, t]/(td−

xa1
1 · · ·xar

r ), which corresponds to z1 · · · zr in k[z]. In conclusion, in this special case,
Xd is smooth and π−1

d (0) is a reduced, nc divisor.
In general, describing the normalization νd : Xd → XBd

is more complicated.
From the ring on the right in (3.3), one readily obtains a toric description of XBd

.
The normalization can then be described in terms of associated semi-groups (see
[82, p.101]). Using this approach, it is established in [82, Lem. 1, p.102, Lem. 2,
p.103] that π−1

d (0) is reduced, and the pair Xd and π−1(0) give rise to a toroidal
embedding without self-intersection. We discuss toroidal embeddings briefly in §9.
In the case where Xd is non-singular, we point out that this implies that π−1

d (0) is
nc.

Example 3.3. Again consider the variety X in Spec k[x, t] defined by t −
xa1
1 · · ·xar

r . Using the same notation as in the previous example, we will keep
the assumption that d = lcm(a1, . . . , ar), but will discard the assumption that
gcd(d, a1, . . . , ar) = gcd(a1, . . . , ar) = 1. The fibered product XBd

:= Bd ×B X
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is defined by td − xa1
1 · · ·xar

r . Setting e = gcd(d, a1, . . . , ar), this family decom-

poses as
∏

ζe=1

(
td/e − ζ

∏r
i=1 x

a1/e
1 · · ·xar/e

r

)
. Since d/e = lcm(a1/e, . . . , ar/e),

and gcd(d/e, a1/e, . . . , ar/e) = 1, we see that we can reduce to the case of (e copies
of) the previous example.

Example 3.4. Again consider the variety X in Spec k[x, t] defined by t −
xa1
1 · · ·xar

r . Using the same notation as above, set � = lcm(a1, . . . , ar), assume that
d = n ·� for some n ∈ N, and again discard the assumption that gcd(d, a1, . . . , ar) =
gcd(a1, . . . , ar) = 1. One can show (see e.g. [82, Lemma 2, p.103]) that Xd =
Bd ×B�

X�.

Remark 3.5. In summary, for the variety X ⊆ Spec k[x, t] defined by t −
xa1
1 · · ·xar

r , in the notation above if d = n · lcm(a1, . . . , ar) for some n ∈ N, then
Xd consists of e = gcd(a1, . . . , ar) connected components. On each of these com-
ponents, π−1

d (0) gives rise to a toroidal embedding without self-intersection. For
surfaces, the singularities appearing on Xd will be at worst of type A (the definition
of a type A singularity is recalled in §10).

We now briefly outline the Mumford et al. proof of the Semi-stable Reduction
Theorem (see [82, pp.98-108] for more details).

Sketch of the proof of the Semi-stable Reduction Theorem. Let
π : X → B be a morphism as in the statement of the theorem. Using the character-
istic zero assumption, perform a log resolution of the pair (X, π−1(o)). We obtain

a new family π̃ : X̃ → B, where π̃−1(o) is normal crossing (although it may not be
reduced). Setting � to be the lcm of the multplicities of the components of π̃−1(o),
make a base change of degree �, and then normalize the total space.

Call the space obtained Xν → B�. The claim is that Xν satisfies the conditions
of the theorem, with the possible exception that Xν may fail to be smooth (in
which case the central fiber may only induce a toroidal embedding without self
intersection, rather than being nc). Indeed, the question is étale local, so to describe

Xν we may reduce to the examples we have already considered, where X̃ is defined
by

t−
r∏

i=1

xa1
1 · · ·xar

r .

The remaining issue is to resolve the singularities of the total space of Xν (while
retaining the property that the central fiber induces a toroidal embedding without
self-intersection). This is done in [82, pp.104-108]; note that a further base change
may be required (see [82, p.107]). �

Remark 3.6. For the case of families of curves (where X is a surface), the total
space of Xν has type A singularities, and one can achieve the resolution in the final
step above by a sequence of blow-ups introducing chains of rational curves.

4. Monodromy

The monodromy representation is a topological invariant associated to a family
over a punctured disk. It is the essential invariant in the context of period maps
(see Remark 4.6), as well as for abelian varieties. In this section, we briefly review
the definition of monodromy, and then compute a few examples. We then state
the monodromy theorem. While there is an algebraic monodromy representation
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STABLE REDUCTION 17

for families over DVRs, for simplicity, we restrict to the case of monodromy in the
analytic setting.

4.1. Preliminaries on monodromy. Let X◦ → S◦ be a smooth family of
complex, projective varieties over the punctured disk. It is well known that for each
t1, t2 ∈ S◦, the fiber Xt1 is diffeomorphic to the fiber Xt2 (see e.g. [83, Thm. 2.3,
p.61]). In particular, the fibers are all homeomorphic, and the cohomology groups
H•(Xt,C) are isomorphic for all t ∈ S◦. Fix a base point ∗ ∈ S◦ and consider a
path γ : [0, 1] → S◦ that generates π1(S

◦, ∗). The family of groups H•(Xγ(τ),C),
τ ∈ [0, 1], determines an automorphism of H•(X∗,C). The induced homomorphism

π1(S
◦, ∗) → AutH•(X∗,C)

is called the (analytic) monodromy representation of the family.

Figure 7. Monodromy

For a family that extends to a smooth family over S, the monodromy rep-
resentation is trivial. In this sense, monodromy is an invariant that is meant to
detect something about the singularities of the central fiber of a degeneration. For
instance, ordinary double points (A1 singularities) give rise to the so called Picard–
Lefschetz transformations (see the example in §4.1.1). On the other hand, we note
that it is not the case that trivial monodromy implies that a family can be extended
to a smooth family over the disk. For an elementary example, see Remark 6.4. For
a more interesting example, see Friedman [56].

Recall that an endomorphism T of a finite-dimensional vector space V is said
to be unipotent (resp. quasi-unipotent) if there exist M ≥ 1 (resp. M,N ≥ 1)
such that (T − IdV )

M = 0 (resp. (TN − IdV )
M = 0).

4.1.1. A family of stable curves. Consider the family

x2
2 − (x2

1 − t)(x1 − 1);

i.e. a family of smooth elliptic curves degenerating to a nodal cubic. Set ∗ = 1/2
and let γ : [0, 1] → S◦ be a parameterization of the circle of radius 1/2. The family
of varieties lying over γ is a family of elliptic curves determined by the branch
locus {−

√
t,
√
t, 1,∞}. There is a basis of H1(X∗,C) for which the monodromy

representation is given by

MA1
=

(
1 1
0 1

)
.

See Carlson–Müler-Stach–Peters [35, p.18] for a detailed exposition of this. Note
that this matrix is unipotent. This transformation is in fact a special case of the
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18 CASALAINA-MARTIN

Picard–Lefschetz theorem describing the monodromy transformations for degener-
ations to A1 singularities (see e.g. [19, Ch.2, §1.5]).

4.1.2. A family of cuspidal curves. Consider the family

x2
2 − x3

1 − t;

i.e. a family of smooth elliptic curves degenerating to a cuspidal cubic. Again, set
∗ = 1/2 and let γ : [0, 1] → S◦ be a paramaterization of the circle of radius 1/2.
There is a basis of H1(X∗,C) for which the monodromy representation is given by

MA2
=

(
0 −1
1 1

)
.

Figure 8 shows the transformation of cycles on the copy of P1 lying below the elliptic

Figure 8. Monodromy for a cuspidal family

curve, with respect to the branch locus, for t = γ(0) = 1/2, t = γ(1/2) = −1/2 and
t = γ(1) = 1/2, respectively. Considering lifts of these cycles, one arrives at the
matrix above.

In this example, the monodromy representation is quasi-unipotent, but not
unipotent. Note additionally that M3

A2
= − Id. This implies that after pulling the

family back by a triple cover, the monodromy will be given by − Id. This new
family gives a special case of the monodromy obstruction computation made in
§1.4.1; in the notation of that section, this is the family given by taking t2 = 0.

Note further that since M6
A2

= Id, if we pull the family back by a six-fold cover,
the monodromy becomes trivial. This can be seen directly in the following way.
The family obtained after a six-fold cover is

x2
2 − x3

1 − t6.

Changing coordinates by x1 �→ x1t
2 and x2 �→ x2t

3 gives the family

x2
2 − x3

1 − 1.

In other words, after the degree six base change, the family can be extended to a
trivial family over S. (Note the j-invariant of the original family was equal to zero
for all t ∈ S◦.)

Remark 4.1. More generally, Kodaira has classified the degenerations of ellip-
tic curves, and their associated monodromy representations. We direct the reader
to [24, §V.7] for more details.

4.2. The monodromy theorem. The monodromy theorem is a general
statement about the monodromy representation of a family of projective manifolds
over the punctured disk. This will play an important role in regards to an extension
theorem of Grothedieck for abelian varieties, which we discuss in §5.

Theorem 4.2 (Monodromy Theorem). Let π◦ : X◦ → S◦ be a family of
smooth, complex, projective manifolds of dimension n over the punctured disk. For
each integer 0 ≤ k ≤ 2n, the monodromy representation

π1(S
◦, ∗) → AutHk(X∗,C)
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is quasi-unipotent.

The reader is directed to Griffiths [64, Rem. 3.2, p.236] for references, including
a discussion of the history of the theorem and a description of the many different
methods of proof (see also Grothendieck [68, Thm. 1.2, p.6] for the algebraic state-
ment).

Remark 4.3. The monodromy theorem implies that for a family of smooth,
complex, projective manifolds over the punctured disk, after a finite base change the
monodromy can be made unipotent. Indeed, if the generator of the monodromy
representation is given by the automorphism T , then (TN − Id)M = 0 for some
N,M . Thus after the base change given by t �→ tN , the monodromy will be
unipotent. We note that many of the proofs of the monodromy theorem provide
bounds on N and M .

Remark 4.4. If π : X → S is a generically smooth family of complex projective
varieties, such that X0 := π−1(0) is an snc divisor in X, then the monodromy repre-
sentation is unipotent (see the references in [64]). One can deduce the Monodromy
Theorem from this using the Semi-Stable Reduction Theorem [82] (Theorem 3.1).

Remark 4.5. As is evident in the previous remark, if π : X → S is a generically
smooth family of complex projective varieties, the topology of X0 is related to the
monodromy of the family. The Clemens–Schmid exact sequence makes this precise
(e.g. Morrison [100, p.109]). There is also a notion of vanishing cohomology for
isolated singularities on X0. There is a monodromy operator on the vanishing
cohomology, which is related to the monodromy of the family by an exact sequence.
We direct the reader to [68, p.V, 7-9] and [120, (1.4)] for more details.

Remark 4.6. Monodromy is the essential invariant in the context of period
maps. In particular, given a family X◦ → S◦ of smooth, projective varieties, then
via Hodge theory one obtains a period map S◦ → D/Γ, where D is the period
domain and Γ is an arithmetic group. The period map extends to a morphism
S → D/Γ if and only if the monodromy representation is finite; i.e. generated by a
root of the identity (e.g. [35, Thm. 13.4.5, p.355]).

5. Abelian varieties

In this section we return to the question of stable reduction, and consider the
case of abelian varieties. Historically, this was one of the first places where questions
about stable reduction were considered. The monodromy theorem discussed in the
previous section plays a central role, essentially due to the equivalence of categories
between abelian varieties and Hodge structures of weight 1.

Further motivation comes from the connection with the original proof of the
stable reduction theorem for curves in positive characteristic, which we discuss
further in the next section. In this section we also consider stable reduction in the
context of Alexeev’s moduli space of stable semiabelic pairs [9].

5.1. An example of stable reduction for a family of abelian varieties.
The family described in §1, viewed as a family of abelian varieties, gives a concrete
example of stable reduction. Historically, however, one of the motivations for the
development of the theory was to study abelian schemes over Q by reducing modulo
a prime p. Viewing the abelian scheme over Q as a family over the generic point

83



20 CASALAINA-MARTIN

of SpecZ, problems concerning reduction modulo a prime can be translated into
problems about extending abelian schemes over Q to schemes over SpecZ.

While a well known theorem of Fontaine [55, Cor., p.517] states there are no
abelian schemes over SpecZ, so there can not be an extension to an abelian scheme
over every prime, the stable reduction theorem addresses the question of extending
over a particular prime after a finite base change.

With this as motivation, we consider the following example, which is closely
related to the previous geometric examples, and emphasizes the connection between
the two settings. We will use the terminology of group schemes, which we review
in the next subsection.

Let X → SpecZ be the projective scheme defined by

y2 − x3 − 25αx− 125β = 0,

with α and β integers such that 4α3 + 27β2 is not divisible by 5. Let XQ be the
scheme obtained by base change to SpecQ. There is the usual group law on XQ

induced by the point at infinity (0 : 1 : 0). We are interested in understanding how
this fails to extend to a group law on X over SpecZ, and how one might attempt
to rectify this at a particular prime by taking a finite cover.

Concerning the group law, one can check directly that X → SpecZ fails to be
smooth over (at least) the primes 2, 3 and 5, so that XQ does not extend to a group
scheme over those points. In this example, we focus on the issue of extension over
(5). Let

X(5) → SpecZ(5)

be the scheme obtained from X by base change. The fiber over the generic point (0)
is XQ and we are interested in extending XQ to an abelian scheme over SpecZ(5).

Let XF5
be the fiber of X(5) over the closed point. Then XF5

is given by the
equation

y2 − x3 = 0,

which is singular at (0 : 0 : 1). We would like to describe a finite base change and
a modification of the family that is smooth.

Consider the finite, degree 2 morphism

B′ := SpecZ(5)[ζ]/(ζ
2 − 5) → SpecZ(5)

induced by the extension Q( 2
√
5)/Q. Pulling back X(5) we obtain a family X ′ → B′

defined by the equation

y2 − x3 − αζ4x− βζ6 = 0.

Making the change of coordinates x �→ ζ2x, y �→ ζ3y, we arrive at a family X̃ → B′

defined by

y2 − x3 − αx− β = 0.

This is smooth over the closed point (ζ) ∈ B′, and in fact there is a group law over
B′. Thus, after a finite, degree two, base change, we have modified our family to
give an abelian scheme over the base.

Remark 5.1. It is interesting to note the connection with the geometric case.
The example above was constructed to be the analogue of the linear family over
the Weyl cover (§1.4.1):

y2 + x3 − (b22 + b2 + 1)b21x− b2(1 + b2)b
3
1 = 0,
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where, roughly speaking, we replaced x2 with y, x1 with −x, set b1 = 5 and took
b2 general. We had seen that a degree two base change for the analytic family
would allow for stable reduction, and this is exactly what we have found here in
the arithmetic setting.

Remark 5.2. For completeness, we mention that the discriminant Δ and j-
invariant of X are

Δ = −16(4α3 + 27β2)(56) �= 0 and j = −1728(4α)356/Δ.

Note that j has non-negative valuation at 5. It is well known that from this data
one can deduce that the family does not have abelian reduction at 5, but does have
potentially abelian reduction there (see e.g. [118, VII Prop. 5.1, 5.5]).

5.1.1. Monodromy. Recall that the analytic monodromy representation of the
analogous family was given by the negative of the identity (§1.4.1). Although we
have not introduced the algebraic monodromy operator, we make the following ob-
servation. Since there is abelian reduction after a degree two base change, one can
immediately conclude that the algebraic monodromy operator is a square root of
the identity. One can then show the action on non-trivial, torsion points of suffi-
ciently high order (relatively prime to 2 and 5) is non-trivial. Thus the monodromy
operator is the negative of the identity, similar to the analogous analytic case. For
more on degenerations of elliptic curves and monodromy, we direct the reader to
the discussion of the Kodaira–Néron classification in [118, App. C.15].

5.2. Group scheme terminology. We now review some of the basic ter-
minology of group schemes, directing the reader to [31, §4.1] and [105, Ch.6] for
more details. For a scheme B, a B-group scheme is a group object in the cate-
gory of B-schemes (Sch /B). A standard example, which we will use frequently, is
Gm = SpecZ[t, t−1], with group law induced by the map

Z[t, t−1] → Z[t, t−1]⊗Z Z[t, t−1] given by t �→ t⊗ t.

For an arbitrary scheme B, we define Gm,B by base extension, and the induced
group law makes Gm,B a group object in the category of B-schemes. An (affine)
split B-torus T is a B-group scheme that is isomorphic as a B-group scheme to a
finite fibered product Gm,B ×B . . .×B Gm,B. An (affine) B-torus T is a B-group
scheme that is étale locally on B a split torus. We define B-subgroup schemes
in the obvious way (see e.g. [31, p.98]).

An abelian scheme over B is a B-group scheme that is smooth and proper
over B with connected fibers. It follows from the Rigidity Lemma that the group
law of an abelian scheme is commutative (see e.g. [105, Pro. 6.1, Cor. 6.4, p.115-6]).
It is a well known result that an abelian scheme over a field is projective ([124]).

Remark 5.3. In order to use the term variety consistently (within this paper),
we reserve the term abelian variety for an abelian group scheme over an alge-
braicaly closed field. (This is not standard, in that one usually does not require the
field to be algebraically closed.)

The best understood abelian schemes are Jacobians of curves. Recall that
associated to a smooth curve X over an algebraically closed field, there is an abelian
variety JX, called the Jacobian of X, parameterizing degree zero line bundles on
X. We note in addition that associated to a family of smooth curves X → B, there
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is an associated abelian scheme JXB over B, called the (relative) Jacobian of XB,
with geometric fibers that are the Jacobians of the associated curves.

A semi-abelian scheme GB over B is a smooth, separated, commutative B-
group scheme such that each fiber GB,b over b ∈ B is an extension of an abelian
scheme Ab by an affine torus Tb:

0 → Tb → GB,b → Ab → 0.

We direct the reader to [51, Cor. 2.11] for a statement on the global structure of
a semi-abelian scheme. Extensions of an abelian variety A/k by a torus T/k are

classified (up to isomorphism as extensions) by Hom
(
X(T ), Â

)
, where X(T ) =

Hom(T,Gm,k) is the character group and Â = Pic0(A) is the group of line bundles
on A algebraically equivalent to zero (see e.g. [115, Thm. 6, p.184]).

We now come to the topic of reduction. Let R be a DVR, let K be its field
of fractions, and let S = SpecR. Let AK be an abelian scheme over SpecK. We
say that AK has abelian (or good) reduction (resp. semi-abelian reduction)
if AK can be extended to a smooth, separated S-group scheme GS of finite type
over S such that the the fiber over the closed point s ∈ S is an abelian (resp. semi-
abelian) scheme over s. We will say that AK has potentially abelian (or good)
reduction (resp. potentially semi-abelian reduction) if there is a finite exten-
sion K ′ of K, so that the abelian scheme AK′ obtained by base change has abelian
(resp. semi-abelian) reduction.

5.3. Néron models. Néron models provide a natural context for discussing
the stable reduction theorem for abelian varieties. While the theory can be devel-
oped in more generality over Dedekind domains, we focus on the case of DVRs for
simplicity.

As above, let S = SpecR be the spectrum of a DVR with fraction field K.
Let XK be a smooth, separated K-scheme of finite type. A Néron model of
XK is an extension XS of XK over S that is a smooth, separated scheme of finite
type, satisfying the following universal property: for any smooth S-scheme YS and
any K-morphism fK : YK → XK there is a unique S-morphism fS : YS → XS

extending fK .

XK
�� XS

��

YK
��

���
��

��
��

��

fK

�����������

��

YS

��	
		

		
		

	

fS

∃!

�
�

�
�

SpecK �� S.

If a Néron model exists, it is unique up to unique isomorphism. While Néron models
do exist in a more general setting, we will focus here on the case of abelian schemes.
The main theorem in this situation is:

Theorem 5.4 (Néron [108]). Let AK be an abelian scheme over the field of
fractions K of a DVR R. Then AK admits a Néron model XS over S = SpecR.

We direct the reader also to [31, Cor. 2, p.16, Pro. 6, p.14] and Artin [21].
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Remark 5.5. From the universal property of the Néron model, it follows that
the K-group scheme structure on AK extends uniquely to a commutative S-group
scheme structure on XS . For group schemes, the condition that the Néron model be
of finite type and separated is superfluous (e.g. [31, p.12, Rem. 7, p.14]). Finally, it
is a result of Raynaud that the Néron model of an abelian scheme is quasi-projective
[112, Thm. VIII.2, p.120].

Remark 5.6. The special fiber of a Néron model of an abelian scheme need
not be connected. One such example is given by a smooth plane cubic degenerating
to a nodal plane cubic that is the union of a line and a smooth conic. The special
fiber XS,s of the Néron model can be computed using a result of Raynaud discussed
in the remark below. One can show XS,s fits into an exact sequence

0 → Gm → XS,s → Z/2Z → 0

(see e.g. Kass [80, §4.3]). There is always, however, an open S-subgroup scheme
of a Néron model of an abelian scheme AK that extends AK and has connected
central fiber. We will denote this by X◦

S .

Remark 5.7. As with abelian varieties, the best understood Néron models are
those associated to curves. One of the main tools is a theorem of Raynaud’s, relating
the Néron model of a Jacobian to the Picard functor. The following is a weaker
version of the theorem, given in Deligne–Mumford [48, Thm. 2.5], which is used in
the proof of the stable reduction theorem for curves. Assume the residue field of R
is algebraically closed. In the notation above, let CS be a generically smooth family
of nodal curves over S, with non-singular total space, and let AK be the Jacobian
of the generic fiber. Then the open S-subgroup scheme X◦

S of the Néron model XS

of AK , described above, represents the relative (connected component of the) Picard
functor.

Example 5.8. Assume the residue field of R is algebraically closed. Consider
a family C → S of smooth curves degenerating to an irreducible, stable curve Cs

with a single node. Let Cν
s be the normalization of Cs, and assume that Cs is

obtained from Cν
s by attaching points p, q ∈ Cν

s . The family of curves CK over K
determines a principally polarized abelian scheme XK = JCK , the Jacobian of the
curve. The special fiber of the open S-subgroup scheme X◦

S of the Néron model of
XK is an extension

0 → Gm → X◦
S,s → JCν

s → 0

determined by the data of the line bundle OCν
s
(p− q).

5.3.1. The group structure of the central fiber of the Néron model. In the no-
tation above, we have seen that the Néron model of an abelian scheme AK is a
commutative group scheme over S. To get a handle on how Néron models are
connected to the question of semi-abelian reduction, we will investigate the group
structure on the central fiber of the Néron model using a few basic facts from the
theory of algebraic groups (see also Serre [115]).

To begin, we recall Chevalley’s theorem [41, 113] (see esp. [31] and [43,
Thm. 1.1]): Let K be a field and let G be a smooth, connected algebraic K-group.
Then there exists a smallest (not necessarily smooth) connected linear subgroup L
of G such that the quotient G/L is an abelian scheme over K. Moreover, if K is
perfect, L is smooth and its formation is compatible with change of base field.
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In other words, if XS is the Néron model of AK , then the connected component
of the identity in the central fiber X◦

S,s fits into an exact sequence over s

0 → L → X◦
S,s → A → 0,

where L is a connected, commutative, linear s-group scheme and A is an abelian
s-group scheme.

We now turn our attention to the structure of linear algebraic groups. Let us
pull-back to the algebraic closure k̄ = κ(s), and denote the resulting group schemes

by L̄, X
◦
S,s and Ā respectively. L̄ being commutative, it is solvable (see e.g. [30,

Def., p.59]). There is the following standard theorem (e.g. [30, Thm. 10.6, p.137]):
For a connected, solvable, linear algebraic group L̄ over an algebraically closed field
k̄, the subset of unipotent elements L̄u is a (closed) connected, normal k̄-subgroup,
and the quotient is an affine torus. In the situation of the Néron model, this torus
can be obtained by pull-back from a torus over κ(s). Thus the (subgroup X◦

S,s of

the) Néron model is a semi-abelian scheme, if and only if L̄u is trivial.

Remark 5.9. The standard way to assert that L̄u is trivial is to assert that the
unipotent radical of L̄ is trivial. Indeed, for a connected, solvable group G over an
algebraically closed field, the radical RG is equal to the group G (the radical is the
largest connected, solvable, normal subgroup; e.g. [30, p.157]). Thus in this case
the unipotent radical (RG)u =: RuG (the set of unipotent elements of the radical)
is equal to the set Gu.

5.4. The stable reduction theorem. The stable reduction theorem plays
a central role in the study of abelian varieties, and also in the study of algebraic
curves. In light of the results of Néron, and the basic structure theorems for alge-
braic groups, the stable reduction theorem states that after a generically finite base
change, the unipotent radical of the central fiber of the Néron model can be made
trivial.

As described in the introduction to [48], the stable reduction theorem was
first proved independently by Grothendieck and Mumford in characteristic zero.
Grothendieck’s proof used the theory of étale cohomology, while Mumford’s proof
was derived from a stable reduction theorem for curves (in characteristic zero).
Grothendieck then extended his proof to all characteristics in [68, Thm. 6.1, p.21]
and Mumford provided an independent proof in characteristics other than 2 using
the theory of theta functions.

Theorem 5.10 (Grothendieck–Mumford Stable Reduction Theorem). Let S =
SpecR be the spectrum of a DVR with fraction field K. An abelian variety AK over
K has potential semi-abelian reduction over R.

In fact the theorem can be stated more generally for the case where AK is a
semi-abelian scheme. We refer the reader also to [31, Thm. 1, p.180], and to [51,
Thm. 2.6, p.9]. Grothendieck’s proof relies on the following frequently cited result,
which was the basis of the monodromy obstruction computation in §1.

Proposition 5.11 (Grothendieck [68, Prop. 3.5, p.350]). In the notation above,
AK has abelian (resp. semi-abelian) reduction if and only if the monodromy repre-
sentation is trivial (resp. unipotent).
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We direct the reader also to [31, Thm. 5, p.183]. The Grothendieck–Mumford
Stable Reduction Theorem follows from the proposition and the Monodromy The-
orem after the observation (see Remark 4.3) that quasi-unipotent monodromy can
be made unipotent after a finite base change.

5.5. Alexeev’s space of stable semiabelic pairs. One would like to derive
from the Grothendieck–Mumford Stable Reduction Theorem a properness state-
ment for a moduli space. This serves as motivation to introduce Alexeev’s com-
pactification [9] of the moduli space of principally polarized abelian varieties, where
such a statement holds.

Let us recall some definitions from [9] (we also direct the reader to Olsson
[110] for a related moduli problem). First a reduced scheme X is said to be semi-
normal if given any proper, bijective morphism f : X ′ → X from a reduced scheme
X ′ satisfying the property that κ(f(x′)) → κ(x′) is an isomorphism for all x′ ∈ X,
then f is an isomorphism (see e.g. [85, §7.2], [9, 1.1.6]). For instance, a nodal curve
is semi-normal, while a cuspidal curve is not.

A stable semiabelic variety ([9, 1.1.5]) is a semi-normal, equidimensional,
reduced scheme X over an algebraically closed field k, together with an action of
a connected semi-abelian scheme G/k of the same dimension, such that there are
only finitely many orbits for the G-action, and the stabilizer group scheme of every
point of X is connected, reduced and lies in the toric part of G.

A polarized stable semiabelic variety ([9, 1.1.8]) is a projective stable
semiabelic variety together with an ample invertible sheaf L. The degree of the
polarization is defined as h0(L). A stable semiabelic pair (X,Θ) consists of a
polarized stable semiabelic variety X with ample invertible sheaf L together with a
section θ ∈ H0(X,L) that does not vanish on any G-orbits. So in total, for a stable
semiabelic pair, we have the data (X,G,L, θ). We take Θ to be the zero set of θ,
and use the shorter notation (X,Θ) to indicate the connection to polarized abelian
varieties.

We now make the relative definition. For a scheme B, a stable semiabelic
pair over B, denoted (XB,ΘB), is the data

(XB, GB, LB, θB)

where XB
πB→ B is a projective, flat morphism, GB is a semi-abelian scheme over B

acting on XB, LB is a relatively ample line bundle on XB, θB ∈ H0(B, π∗LB), and
the restriction of this data to every geometric point b̄ → B is a stable semiabelic
pair over b̄. ([9, p.617]). One can show that π∗LB is locally free and that this push
forward commutes with arbitrary base change. The degree is defined to be the rank
of π∗LB .

For brevity, we do not give a precise definition of Alexeev’s stack ĀA
g , and say

only that it is a substack of the stack of all stable semiabelic pairs of degree 1
and dimension g. The stack ĀA

g contains a component that has Ag, the moduli
stack of principally polarized abelian varieties of dimension g, as a dense open
substack. Alexeev proves [9, Thm 5.10.1] that ĀA

g is a proper, algebraic (Artin)
stack over Z with finite diagonal. Moreover, the stack admits a coarse moduli
space, with a component that has normalization isomorphic to the second voronoi
compactification ĀV or

g [9, Thm. 5.11.6, p. 701]. To establish properness, Alexeev
proves the following stable reduction theorem for semiabelic pairs.
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Theorem 5.12 (Alexeev [9, Thm. 5.7.1, p.692]). Let S = SpecR be the spec-
trum of a DVR with fraction field K. Let (XK ,ΘK) be a stable semiabelic pair
over K. Then there is a finite extension K ′ of K, so that taking R′ to be the in-
tegral closure of R in K ′ and setting S′ = SpecR′, there exists a stable semiabelic
pair (XS′ ,ΘS′) over S′ extending the pull-back (XK′ ,ΘK′). Morover, the extension
(XS′ ,ΘS′) is unique up to isomorphism.

Remark 5.13. As a consequence, the central fiber (Xs′ ,Θs′) of (XS′ ,ΘS′) is
determined up to isomorphism by (XK ,ΘK).

Example 5.14. Assume the residue field of R is algebraically closed. Consider
a family C → S of smooth curves degenerating to an irreducible, stable curve Cs

with a single node. Let Cν
s be the normalization of Cs, and assume that Cs is

obtained from Cν
s by attaching points p, q ∈ Cν

s . The family of curves CK over K
determines a principally polarized abelian scheme (XK ,ΘK), where XK = JCK is
the Jacobian of the curve. Let (XS′ ,ΘS′) be a stable reduction of XK .

The central fiber can be described as follows. The degree zero Picard functor
applied to CS determines a semi-abelian scheme over S. The central fiber is the
semi-abelian scheme

0 → Gm → G → JCν
s → 0

determined by the data of the line bundle OCν
s
(p−q). The groupG can be completed

to a P1-bundle over JCν
s , with sections σ0 and σ∞. The fiber Xs′ is obtained

from this projective bundle by gluing the sections transversally, after shifting by
OCν

s
(p− q). Note that G acts on this space. We direct the reader to [10] for more

details, as well as a description of the polarization (see also [104]).

6. Curves

In this section we consider stable reduction for curves. We begin with the
Deligne–Mumford Stable Reduction Theorem. The main focus is on reviewing the
connection between stable reduction for curves and stable reduction for abelian
varieties. We also review a well known proof in characteristic zero using the semi-
stable reduction theorem, to motivate work of Kollar–Shepherd-Barron–Alexeev,
discussed later. Finally, we consider some recent “alternate” stable reduction the-
orems for curves, which have connections to the Hassett–Keel program.

6.1. Deligne–Mumford stable reduction. Recall that a stable curve X
over an algebraically closed field is a pure dimension 1, reduced, connected, com-
plete scheme of finite type, with at worst nodes as singularities, and with finite
automorphism group. The genus is defined as g = h1(X,OX). For a scheme B, a
stable curve X/B is a proper, flat morphism X → B whose geometric fibers are
stable curves.

Theorem 6.1 (Deligne–Mumford Stable Reduction [48]). Let S = SpecR be
the spectrum of a DVR with fraction field K. Let XK be a stable curve over K. Then
there is a finite extension K ′ of K, so that taking R′ to be the integral closure of R
in K ′ and setting S′ = SpecR′, there exists a stable curve XS′ over S′ extending
the pull-back XK′ . Morover, the extension XS′ is unique up to isomorphism.

Remark 6.2. As a consequence, the central fiber Xs′ of XS′ is determined up
to isomorphism by XK .
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In characteristic 0, the theorem is due to Mayer–Mumford [101]. It appears
that semi-stable reduction for curves in characteristic 0 was well known for some
time (e.g. [82, p.VIII]). The class of stable curves was then defined in [101, Def.,
p.7] (see also [105, p.228]), and the properness of the associated moduli space was
asserted there. The properness is equivalent to the stable reduction theorem, which
one establishes from the existence of a semi-stable reduction, and the birational
geometry of surfaces (we outline a well known argument below).

In positive characteristic, the first proof was due to Deligne–Mumford [48],
and was made via the stable reduction theorem for abelian varieties. The outline of
this proof is as follows. Take XK smooth for simplicity and consider the Jacobian
JK/K. The Grothendieck–Mumford Stable Reduction theorem implies this extends
to a family of semi-abelian varieties, at least after a finite base change. To complete
the proof, it is then shown:

Theorem 6.3 (Deligne–Mumford [48, Thm. 2.4]). A family of stable curves
XK/K extends to a family of stable curves over S if and only if the associated
family of Jacobians JK/K has semi-abelian reduction over S.

A key point of the proof is the result of Raynaud’s mentioned in Remark 5.7.
The fact that stable reduction for the family of curves implies stable reduction for
the family of Jacobians essentially follows directly from Raynaud’s result. Using
this half of Theorem 6.3, Mumford observed [48, p.75] that the stable reduction
theorem for abelian varieties can be deduced from the stable reduction theorem for
curves.

We direct the reader to [31, p.182] for a more detailed discussion. The outline
of the argument is as follows. An abelian scheme AK can be viewed as the quotient
of a product of Jacobians; i.e.

0 → A′
K → JK → AK → 0

where A′
K is an abelian scheme, and JK is a product of Jacobians (e.g. Serre [115,

Cor. p.180]). One then shows that in general, for such an extension of abelian
schemes, JK has semi-abelian reduction if and only if AK and A′

K do, completing
the proof. Finally, we note that Artin–Winters have given another proof of stable
reduction for curves in positive characteristic, which does not rely on the stable
reduction theorem for abelian varieties [22].

Remark 6.4. While unipotent monodromy for a one-parameter family of
smooth curves implies the family extends to a family of stable curves, trivial mon-
odromy does not necessarily imply that the central fiber of the extension is smooth.
For instance, a one-parameter family of smooth curves degenerating to a singular,
stable curve of compact type will have associated Jacobian that is an abelian scheme
over the base. Grothendieck’s theorem implies that the monodromy of the family
will be trivial. We direct the reader to Oda [109, Thm. 10] for a statement con-
cerning a related monodromy invariant that detects when a one-parameter family
can be extended to a smooth curve.

Remark 6.5. There is a stable reduction theorem for pointed curves as well.
Pointed curves provide a natural introduction to the important topic of moduli
spaces of pairs. For the sake of brevity, we have generally avoided this topic in the
presentation here. It will, however, be of central importance in §7.3 on slc models,
and it is worth noting this example as a precursor.
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6.1.1. Stable reduction in characteristic 0. To motivate some of the other exam-
ples considered in this survey (following the approach of Kollár–Shepherd-Barron–
Alexeev), it is instructive to sketch a proof of a special case of the stable reduction
theorem for curves in characteristic 0, using the semi-stable reduction theorem.
The goal is to emphasize the role of semi-stable reduction and relative canonical
models.

Sketch of stable reduction for curves in characteristic 0. For
simplicity we consider the case of a smooth family of curves

πK : XK → SpecK

(of genus g) over the generic point of S = SpecR, the spectrum of a DVR. Complete
this to a family of schemes π : X → S. Applying the semi-stable reduction theorem,
one obtains after a finite base change a family of nodal curves π′ : X ′ → S′. The
relative canonical model

ProjS′

⊕
n

π′
∗

(
ω⊗n
X′/S′

)
→ S′

is a family of stable curves extending the pull back of XK . Let us denote this by
πc : Xc → S′. Note that the relative canonical model of Xc/S′ is again Xc/S′. (In
short, we established the valuative criterion (2.2).)

Let us now show that the extension is unique up to isomorphism (i.e. that the
valuative criterion of separateness (2.1) holds). To do this, suppose there were two
stable reductions πc

1 : Xc
1 → S′ and πc

2 : Xc
2 → S′. The surfaces Xc

1 and Xc
2 are

birational by construction. The claim is they are in fact isomorphic over S′. We
outline the following standard proof of this in order to motivate similar statements
in other settings.

Resolving the singularities of the surfaces, resolving the resulting birational
map of smooth surfaces, and applying the Semi-stable Reduction Theorem again if
necessary, we may assume there is a diagram:

Z
φ1

����
��
��
�� φ2

��	
		

		
		

	

Xc
1

πc
1 ��














Xc
2

πc
2����

��
��
�

S′

where φ1, φ2 are sequences of blow-ups, Z is a smooth surface, and Z/S′ is a family
of nodal curves. One can show that (πc

1)∗ω
⊗n
Xc

1/S
′
∼= (πc

1 ◦ φ1)∗ω
⊗n
Z/S′ (see e.g. [72,

Ex. 3.108, p.156, p.84]) and similarly for the other side of the diagram. It follows
that

(πc
1)∗ω

⊗n
Xc

1/S
′
∼= (πc

1 ◦ φ1)∗ω
⊗n
Z/S′

∼= (πc
2 ◦ φ2)∗ω

⊗n
Z/S′

∼= (πc
2)∗ω

⊗n
Xc

2/S
′ .

Thus the relative canonical models of Xc
1/S

′ and Xc
2/S

′ agree, so in fact Xc
1 and

Xc
2 are isomorphic over S′. �
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6.2. Other stable reduction theorems for curves. Recently, especially in
connection with the Hassett–Keel program (see §8.5), there has been interest in
understanding alternate compactifications of (open subsets of) Mg. From the per-

spective of stacks, this is the question of determining alternate proper stacks MAlt

g

that contain (open substacks of) Mg as an open substack. From the perspective of
stable reduction, this is the problem of defining classes of curves for which a stable
reduction theorem holds. We direct the reader to Smyth [119] for more details
(see also [17],[16] where a notion weaker than properness is considered). Here we
consider Schubert’s space of pseudo-stable curves.

We recall the definitions from [114] (see also [75]). A pseudo-stable curve
X over an algebraically closed field k is a pure dimension 1, reduced, connected,
complete scheme of finite type, with at worst nodes and cusps as singularities, such
that the canonical line bundle is ample and every sub-curve of genus 1 meets the rest
of the curve in at least two points ([114, Def. p.297], [75, p.4473]). We note that
for g ≥ 3, pseudo-stable curves have finite automorphism groups ([114, p.312]).
The genus is defined as g = h1(X,OX). For a scheme B, a pseudo-stable curve
X/B is a proper, flat morphism X → B whose geometric fibers are pseudo-stable
curves.

There is the following stable reduction theorem for this class of curves.

Theorem 6.6 (Pseudo-Stable Reduction [114]). Let S = SpecR be the spec-
trum of a DVR with fraction field K. Let XK be a genus g ≥ 3, pseudo-stable curve
over K. Then there is a finite extension K ′ of K, so that taking R′ to be the integral
closure of R in K ′ and setting S′ = SpecR′, there exists a pseudo-stable curve XS′

over S′ extending the pull-back XK′ . Morover, the extension XS′ is unique up to
isomorphism.

For details we refer the reader to [75, §2] where the results in [114] are trans-

lated into the language of stacks. To be precise, for each g ≥ 3, define a stack Mps

g

whose objects are families of genus g, pseudo-stable curves, and whose morphisms
are given by pull-back diagrams. The results in [114] establish that Mps

g is a proper
DM stack.

7. Stable reduction in higher dimensions

We now consider the problem of stable reduction for higher dimensional vari-
eties. In general, determining a proper moduli stack, or even a separated moduli
stack, is quite difficult. The literature on this topic is vast, and we direct the
reader to Viehweg [122], Alexeev [7, 8], Kollár–Shepherd-Baron [91] and Kollár
[84, 87, 88].

The focus of this section is to outline the approach of Kollár–Shepherd-Barron–
Alexeev (KSBA). The basic idea is to utilize relative log-canonical models of the
semi-stable reduction to obtain the “stable” reduction. We discuss recent results
of Kollár [87] in §7.3 that extend the results cited above to give a stable reduction
theorem for canonically polarized varieties of any dimension. In §7.1 we discuss
an example indicating a few of the difficulties that arise for varieties with negative
kodaira dimension, and in §7.2 we discuss the case of K3 surfaces, for which a stable
reduction theorem is not known.

7.1. Negative Kodaira dimension. It has long been understood that mod-
uli spaces of non-canonically polarized schemes are in general, poorly behaved. In
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particular, in this subsection, we consider the case of varieties with negative Kodaira
dimension.

One of the immediate problems that arises is the existence of varieties with non-
discrete, affine automorphism groups. This immediately precludes the separateness
of any moduli stack containing such varieties (since the diagonal of the stack could
not be proper). We direct the reader to Kovács [92, §5.D] for a number of examples
and for further discussion.

For the convenience of the reader, we recall the following elementary exam-
ple ([92, Exa. 5.10]). Let us show in concrete terms, that any moduli stack
containing P1

k will fail the valuative criterion for separatedness. Let X = Y =
Projk[t] k[X0, X1, t] =

(
P1
k × A1

k

)
/A1

k. Over the open set U = Spec k[t]t, there is an

isomorphism XU → YU given by ([a0 : a1], b) �→ ([ba0 : a1], b). This clearly does not
extend to an isomorphism over A1

k. Passing to the DVR R = k[t](t), one sees the
valuative criterion for separateness fails. In fact, one can show that the valuative
criterion for separateness fails in this example even if one considers polarizations
(see [92, Exa. 5.10]).

For contrast, we direct the reader to Matsusaka–Mumford [98, Thm. 2] for a
general result on separateness of moduli spaces of polarized manifolds that are not
uni-ruled. Finally, we point out that there do exist separated moduli spaces of
certain uni-ruled varieties. For instance, there are separated moduli spaces of Fano
hypersurfaces of degree at least 3 ([105, Prop. 4.2, p.79]), and we direct the reader
to Benoist [26, Thm. 1.6] for some recent results on separateness of moduli stacks
of Fano complete intersections.

7.2. K3 surfaces. As another indication of the difficulties in establishing sta-
ble reduction theorems, we briefly discuss the case of K3 surfaces. We work over
C. Recall a K3 surface is a smooth, complex, projective surface X with KX

∼= OX

and q := h1(OX) = 0. A polarized K3 surface is a pair (X,L) with L an ample line
bundle. The degree of the polarization is defined to be d := L.L. Via Hodge theory,
one can construct a moduli space of polarized K3 surfaces of degree d, which we
will denote by F ◦

d , together with a period map

F ◦
d → Dd/Γd,

where Dd is a 19-dimensional, symmetric homogeneous domain of type IV , and Γd

is an arithmetic group. The morphism is injective (see [96]) and has image equal
to the complement of the quotient of an arithmetic hyperplane arrangement. Note
that including K3 surfaces with ADE singularities, one obtains a moduli space Fd

isomorphic to Dd/Γd [93, 111]. We refer the reader to [65, §2.5, Thm. 2.9], which
includes a concise overview of these results (and determines the Kodaira dimension
of these spaces), and [24, VIII] for more details and references.

The Satake–Bailly–Borel compactification F ∗
d := (Dd/Γd)

∗, as well as the

toroidal compactifications F d := Dd/Γd, provide projective compactifications of
the moduli of K3 surfaces. It is not known whether any of these are the coarse
moduli space for some proper stack of degenerations of K3 surfaces.

The first step towards constructing such a proper moduli space would be a
stable reduction theorem. A result in this direction is a refined semi-stable reduction
theorem due to Kulikov and Persson–Pinkham.
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Theorem 7.1 (Kulikov [93], Persson–Pinkham [111, Thm., p.45]). A family
of K3 surfaces over the punctured disk X◦ → S◦ admits a semi-stable reduction
X → S with central fiber X0 (a reduced, snc scheme) such that KX0

≡ 0.

An algebraic version due to Shepherd–Barron [117, Thm. 2, p.136] for families
of polarized K3 surfaces provides a projective completion of the family, where the
central fiber has slc (rather than snc) singularities. Some results due to Shah [116]
using GIT constructions have provided some “weak” forms of stable reduction in
some specific cases (in the sense of GIT; see §11). Unfortunately, none of these
provide a stable reduction theorem for K3 surfaces, even in the polarized case. We
refer the reader to [58] for a more extensive discussion of the topic.

Remark 7.2. Recently, combining the Shepherd–Barron result [117, Thm. 2,
p.136] with the KSBA strategy, Laza [95, Thm. 2.11] has constructed a proper
moduli space of stable (slc) K3 pairs (X,Δ). Essentially, rigidifying the moduli
problem further by choosing sections of the polarizations with mild singularities,
a stable reduction theorem is possible. We refer the reader to Laza [95] for more
details.

7.3. Canonically polarized varieties. We now consider stable reduction for
canonically polarized varieties. The main result is a recent theorem of Kollár [87],
which states that stable reduction holds for slc models. We begin by recalling some
of the definitions.

7.3.1. Preliminaries. In this section, all schemes will be taken to be reduced, of
finite type over C, and all points will be taken to be closed points, unless otherwise
stated. Recall a node of an equidimensional scheme X of dimension n is a point

x ∈ X such that ÔX,x
∼= C[[x1, . . . , xn+1]]/(x1x2) as C-algebras. X is said to

have at worst nodes in codimension 1 if there exists an open subset V ⊆ X with
codimX(X−V ) ≥ 2, with the property that for all x ∈ V , x is either a non-singular
point, or a node. For scheme X that is S2, X is nodal in codimension one if and
only if, in codimension one, it is both semi-normal and Gorenstein (see Kollár [89,
§5.1, p.196]).

We will want to discuss divisors on reducible, equidimensional, reduced schemes
X. AWeil divisorD on such a scheme is a finite, formal, integral, linear combination
of (not necessarily closed) points E ∈ X such that OX,E is a DVR. There is a notion
of linear equivalence for such divisors obtained via Weil divisorial subsheaves; we
direct the reader to Corti [45, (16.1.1), (16.2.2), p.171-2]. A Q-divisor is defined
similarly, with Q-coefficients. A Q-divisor D on X is said to be Q-Cartier if there
exists an m ∈ N such that mD is the Weyl divisor associated to a Cartier divisor.

For X a projective scheme, we denote by ω•
X the dualizing complex. We set

ωX := h−n(ω•
X), and call this the canonical sheaf of X. If X is Gorenstein in

codimension one, then associated to ωX is a linear equivalence class of Weil divisors
(see e.g. [45, (16.3.3), p.173]). We denote this equivalence class by KX and call
it the canonical divisor (class). We direct the reader also to [90, §5.5] and [89,
Def. 1.6, p.14] for more discussion.

Remark 7.3. In order to limit the length of this survey, we have suppressed the
notion of a pair in most of the topics covered. However, the utility of parameterizing
varieties together with a distinguished divisor goes back at least to the case of
principally polarized abelian varieties, where the canonical bundle is trivial, and
one substitutes the theta divisor in its place to provide a natural rigidity to the
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problem. Recently it has become clear that in many other situations it can be
beneficial to consider pairs (X,Δ) where X is a variety, and Δ is an effective
divisor so that KX + Δ is ample (see especially the work of Kollár and Alexeev
cited above). The notion of pairs will be central in what follows.

7.3.2. Semi log canonical models. We start by recalling the definition of log
canonical pairs. Let X be a projective, reduced, equidimensional, S2 scheme and
let Δ be an effective Q-divisor on X such that KX + Δ is Q-Cartier. With these
assumptions, we say that the pair (X,Δ) is log canonical (lc) if X is smooth
in codimension one (or equivalently X is normal) and there exists a log resolution
f : Y → X of (X,Δ) such that

(7.1) KY = f∗(KX +Δ) +
∑
i

aiEi,

where the Ei are f -exceptional divisors and ai ≥ −1 for every i. Note that the
equality in (7.1) is Q-equivalence of Q-Cartier divisors. We say that X is lc if the
pair (X, 0) is lc, where 0 is the trivial divisor (see e.g. [90] for more discussion).

With the assumptions above (in italics), we say that the pair (X,Δ) is semi log
canonical (slc) if X is nodal in codimension one (or equivalently, in codimension
one X is seminormal and Gorenstein), KX +Δ is Q-Cartier, and if ν : Xν → X is
the normalization of X and Θ is the Q-Weil divisor on X given by

(7.2) KXν +Θ = ν∗(KX +Δ),

then the pair (Xν ,Θ) is lc. Note that the equality in (7.2) is an equivalence, for
which we refer the reader to [89, (5.7.5), Def.-Lem. 5.10]. We say that X is slc if the
pair (X, 0) is slc, where 0 is the trivial divisor (see e.g. Abramovich–Fong–Kollár–
McKernen [2], Fujino [61], Kollár [87] and Kollár [89, §5.2] for more discussion).

A semi log canonical model (slc model) is an slc scheme X such that KX

is ample ([87, Def. 15]). In particular, if X is smooth, then it is an slc model if
and only if it is canonically polarized. A motivation for this definition also comes
from the cases of curves and surfaces. A semi log canonical model of dimension
one is a stable curve of genus g ≥ 2. A result of Kollár–Shepherd-Barron [91,
Cor. 5.7], Kollár [84, Cor. 5.6] and Alexeev [6] establishes that there is a proper
moduli space of semi log canonical models of dimension two (with fixed invariants
K2

X and χ(OX)). The valuative criterion for properness of the moduli space can be
established with an appropriate stable reduction theorem.

7.3.3. Kollár’s stable reduction theorem. Recently Kollár has established a sta-
ble reduction theorem for semi log canonical models of any dimension. The full
statement would require introducing the notion of relative semi log canonical mod-
els (and in particular the notion of reflexive hulls on non-normal schemes), which
we omit (see [87, Def. 28, 29]). Below we state a weaker version of this stable
reduction theorem, where the generic fiber of the family is lc. We sketch the parts
of the proof that are formally similar to the proof of the stable reduction theorem
that we sketched in the case of curves.

Theorem 7.4 (Kollár [87, 5.38]). Let B be on open subset of a non-singular
curve over C, fix a point o ∈ B, and set U = B − {o}. Suppose that

π : X → B

is a flat, projective, morphism with connected fibers, such that the restriction πU :
XU = X|U → U has lc fibers, and has πU -ample relative dualizing sheaf ωXU/U .
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Then there is a finite base change f : B′ → B, with B′ non-singular and f−1(o) a
single point o′, and a scheme

πc : Xc → B′

such that Xc and B′ ×B X are isomorphic over U ′ := B′ − o′, and the fiber
Xc

o′ = (πc)−1(o′) is an slc model. Moreover, the extension Xc/B′ is unique up
to isomorphism.

Sketch of the proof. Let π : X → B be as in the statement of Theorem
7.4. From the Semi-stable Reduction Theorem we obtain a diagram as in (3.1)
including a morphism π′ : X ′ → B′ satisfying the conclusions of Theorem 7.4,
except that the central fiber of the morphism π′ : X ′ → B′, which is normal
crossing, may not have ample canonical class (see Hacon–Xu [71] for the case where
the general fiber is lc, rather than smooth). From this point, motivated in part by
the case of curves, one considers

Xc := ProjB′

( ∞⊕
k=0

π′
∗

(
ω⊗k
X′/B′

))
.

A result of Birkar–Cascini–Hacon–McKernan [28, Thm. 1.2 (3)] implies that the

sheaf
⊕∞

k=0 π
′
∗(ω

⊗k
X′/B′) is finitely generated as an OB′-algebra (see also Hacon–

Xu [71] for the case where the general fiber is lc). In other words the projection
πc : Xc → B′ is a projective morphism that agrees with π′ : X ′ → B′ over U ′. One
can show that the central fiber of πc is an slc model ([87]).

It remains to show that πc : Xc → B′ is unique up to isomorphism. One does
this by establishing that any other projective morphism π̂c : X̂c → B′ with KX̂c a
Q-Cartier divisor, which agrees with πc : Xc → B′ over U ′, and which has central
fiber an slc model, is isomorphic to πc : Xc → B′ over B′. The proof in the case
where the generic fiber is smooth is formally similar to the proof we sketched in the
case of curves. We direct the reader to Kollár [Pro. 6, Def. 7, Def. 15, and pp.8-9]
for more details (see also [27, Lem. 2.7]). �

Remark 7.5. It is well known that a smooth, projective variety of general type
has a finite automorphism group (positive dimensional automorphism groups give
rise to rational curves or abelian varieties covering the variety). More generally, it
is a result of Iitaka that smooth, projective varieties of log general type have finite
automorphism groups [77, Lem. 1, p.87, Def. p.71]. Consequently, considering log
resolutions of each irreducible component of the normalization, one would expect
from (7.1) and Iitaka’s result that an slc model would have a finite automorphism
group; this is in fact the case [91, p.328], [89, Cor. 10.69], [27, Lem. 2.5].

Example 7.6. It is interesting to note the importance of having a condition
such as slc in the remark above. For instance, a plane quartic C consisting of two
smooth conics meeting in a single point, which is a tacnode, has ample canonical
bundle OC(1). However, the automorphism group of the curve is not finite (see
§11.3 below).

Remark 7.7. Fix a Hilbert function H : Z → Z, and let MH be the associated
category fibered in groupoids (over Schét

C
), with objects that are families of slc mod-

els with Hilbert function H, as defined in [87, Def. 29], and with morphisms given
by pull-back diagrams. It is shown in [27, Thm. 2.8] (using recently announced
results of Hacon–McKernan–Xu) that MH is a proper Deligne–Mumford C-stack.
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8. Simultaneous stable reduction

Simultaneous stable reduction can be viewed as the problem of stable reduction
over bases other than a DVR; i.e. extending families over higher dimensional bases.
In the language of stacks, it is the problem of resolving rational maps from schemes
to stacks. Typically a generically finite base change is needed to do this. The
problem is in general quite delicate, and closely related to the problem of resolving
period maps to coarse moduli schemes.

We discuss some well known results of Faltings–Chai [51] for abelian varieties,
and some more recent results of de Jong, de Jong–Oort, and Cautis for curves. An
explicit example of simultaneous stable reduction was given in §1, and we start this
section by discussing simultaneous stable reduction in the language of stacks.

8.1. Simultaneous stable reduction in the language of stacks. For a
separated, finite type, algebraic Z-stack M, the valuative criterion for properness
can be viewed as a question about resolving rational maps from the spectrums of
DVRs into M. More precisely, M is proper if and only if for every DVR R, every
rational map S = SpecR ��� M can be resolved after a generically finite base
change.

Simultaneous stable reduction is the problem of resolving rational maps from
higher dimensional schemes into the stack. Let us make this more precise. Given a
Z-scheme B, a dense open subset B◦ ⊆ B, and a Z-morphism

B◦ → M

(which we will refer to loosely as a rational Z-map B ��� M) we will say B◦ → M
(or B ��� M) admits a simultaneous stable reduction if there exists a Z-

alteration B̃ → B and a Z-morphism B̃ → M extending the original morphism
from B◦ in the sense that the following diagram is 2-commutative:

(8.1) B̃

��

�� � �
��

B̃ ×B B◦

��

�� M

B �� � �B◦

������������

Example 8.1. Let us review the example in §1 in this language. Recall we
were given a family X → B = A2

k of plane cubics (with a section), and an open
set U ⊆ B, so that the restriction XU → U was a family of elliptic curves. Such
a family induces a morphism U → M1,1 (which we think of as a rational map

B ��� M1,1). We explicitly described an alteration B̃′ → B with the property

that setting Ũ ′ = U ×B B̃′ to be the preimage, the pull-back XU ×U Ũ ′ extended

to a family of stable marked curves X̂ → B̃′. This gives a morphism B̃′ → M1,1

extending the original morphism U → M1,1 (in the sense of (8.1)).

For proper, algebraic Z-stacks over a noetherian scheme Z, with finite diag-
onal, simultaneous stable reductions exist quite generally. The following result,
which seems to be well known, was pointed out to the author by Fedorchuk ([54,
Rem. 7.3]).

Theorem 8.2 ([54, Rem. 7.3], [50, Thm. 2.7]). Let Z be a noetherian scheme,

and let M be a proper, algebraic Z-stack with finite diagonal M Δ−→ M ×Z M.
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Then any rational Z-map B ��� M from a quasi-compact, quasi-separated Z-
scheme B (or Noetherian Z-scheme B) admits a simultaneous stable reduction;
i.e. it can be resolved by an alteration.

Remark 8.3. Recall that the diagonal morphism of an algebraic Z-stack is
quasi-compact by assumption, and an algebraic Z-stack is Deligne–Mumford if and
only if the diagonal is unramified (e.g. [94, Thm. 8.1]). A quasi-compact, unrami-
fied morphism of schemes is quasi-finite. In other words, Deligne–Mumford Z-stacks
have quasi-finite diagonal (see also [123, Lem. 1.13 (i)], and [50, Rem. 2.5] for a con-
verse in characteristic 0). Recall also that an algebraic Z-stack locally of finite type
has diagonal that is locally of finite presentation (e.g. [66, Cor. 1.4.3.1]). Finally,
note that a separated stack has proper diagonal by definition; thus, since a proper,
quasi-finite morphism, locally of finite presentation, is finite ([67, Thm. 8.11.1]),
a separated, locally finite type algebraic Z-stack with quasi-finite diagonal in fact
has finite diagonal. In particular a separated, finite type, Deligne–Mumford stack
M/Z has finite diagonal (see also [123, Lem. 1.13 (ii)]).

The theorem is an immediate consequence of the following lemma of Fedorchuk
[54] and a theorem of Edidin–Hassett–Kresch–Vistoli [50].

Lemma 8.4 (Fedorchuk [54, Rem. 7.3]). Let Z be a noetherian scheme. Let M
be an algebraic Z-stack, proper over Z, that admits a finite, surjective Z-morphism

V → M
from a scheme V . Then any rational Z-map B ��� M from a quasi-compact, quasi-
separated Z-scheme B (or Noetherian Z-scheme B) admits a simultaneous stable
reduction; i.e. it can be resolved by an alteration.

Proof. The proof (following Fedorchuk [54]) is short and we include it here.
Consider the finite morphism V → M assumed in the statement of the lemma.
Note we obtain that V is proper over Z, since V is finite (and hence proper) over
M and we have assumed that M is proper over Z.

Let B◦ → M be the morphism inducing the rational map B ��� M. From
the definition of an algebraic stack, the diagonal is representable. Consequently,
B◦ ×M V is a scheme. We then have a commutative diagram

(8.2) B◦ ×M V ��

finite

��

V

finite

��

B◦ �� M.

Let B′ → B be a finite morphism extending B◦ ×M V → B◦; to obtain this
extension one can either use Zariski’s Main Theorem [67, EGA IV.3 Thm. 8.12.6,
p.45] or [52, Lem. 5.19, p.131] (in the latter case, one extends the push forward
of the structure sheaf of B◦ ×M V to a coherent sheaf on B and then takes the
relative spectrum). We thus obtain a rational map B′ ��� V .

Let B̃ be the closure of the graph of B◦×MV → V in B′×Z V . The morphism
B′×ZV → B′ is proper by base change, and a closed immersion is proper. It follows

that B̃ → B′ is proper, and also birational by construction. Thus the composition

B̃ → B′ → B

gives an alteration that resolves the map to M. �
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Remark 8.5. The assumption that the scheme B be quasi-compact and quasi-
separated, or that it be Noetherian, was used to ensure the existence of a finite cover
of B extending the given finite cover of B◦. Another approach could be to assume
that B is covered by the spectrums of Japanese rings. In this case, the appropriate
integral closures will be finitely generated, allowing for another construction of a
finite cover.

Combining the lemma with the following theorem of Edidin–Hassett–Kresch–
Vistoli [50] establishes Theorem 8.2.

Theorem 8.6 (Edidin et al. [50, Thm. 2.7]). Suppose Z is a noetherian scheme.
Let M be an algebraic Z-stack of finite type over Z. Then the diagonal

M → M×Z M
is quasi-finite if and only if there exists a finite, surjective Z-morphism V → M
from a (not necessarily separated) Z-scheme V .

From Theorem 8.2 we obtain the following corollary.

Corollary 8.7. Suppose that M is one of the following stacks:

(1) ĀA
g , the moduli of stable semi-abelic pairs degree 1 and dimension g;

(2) Mg (g ≥ 2), the moduli of stable, genus g curves;

(3) Mps

g (g ≥ 3), the moduli of pseudo-stable, genus g curves;

(4) MH , the moduli of slc models associated to a Hilbert function H;
(5) Pd, the moduli of degree d, stable slc K3 pairs.

Then any rational map B ��� M from a quasi-compact, quasi-separated scheme
B (or Noetherian scheme B) admits a simultaneous stable reduction; i.e. it can be
resolved by an alteration.

Remark 8.8. In concrete terms, the corollary says the following. Given a dense

open subset U ⊆ B, and a family XU → U , there exists an alteration B̃ → B so

that the pull-back of the family can be extended to a family over all of B̃.

Remark 8.9. Part (2) of the corollary is a special case of a theorem of de
Jong [46, Thm. 5.8]. We direct the reader there for more details, especially for a
discussion of the total space of the family.

In many cases it can be useful to have an explicit description of an alteration
giving a stable reduction. We will call this an explicit simultaneous stable
reduction. Along these lines, one of the first questions one can ask is whether a
rational map to a stack can be extended without an alteration. In particular, when
B is non-singular, and Δ = B − B◦ is an snc divisor, a theorem giving conditions
for the rational map to extend to B will be called an extension theorem.

Finally, when a stack admits a coarse moduli scheme, it can also be interesting
to consider the problem of resolving the induced rational map to the coarse moduli
scheme. One place these types of problems show up naturally is in resolving rational
(period) maps between coarse moduli schemes.

More precisely, suppose M1 and M2 are algebraic Z-stacks admitting coarse
moduli schemes M1 → M1 and M2 → M2. Suppose there is an open dense subset
U1 ⊆ M1, which admits morphisms U1 → M1 and U1 → M2. This induces a
rational map M1 ��� M2, and one may be interested in both a simultaneous stable
reduction for U1 → M2 as well as a resolution of the rational map M1 ��� M2. We
will consider both types of problems in what follows.
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8.2. Simultaneous stable reduction for abelian varieties. We begin by
considering extension theorems for abelian varieties. That is we consider the case
of extending families of abelian varieties over non-singular bases other than a DVR.
The main result we mention is due to Faltings–Chai [51].

Theorem 8.10 (Faltings–Chai Extension [51, Thm. 6.7, p.185]). Let B be a
regular scheme over a field of characteristic 0. Let Δ ⊆ B be an nc divisor. Let
AU be an abelian scheme over U = B−Δ, which extends to a semi-abelian scheme
AV over an open subscheme V containing U and the generic points of Δ. Then
AU extends uniquely to a semi-abelian scheme AB over B.

Remark 8.11. This fails in positive characteristic. A counter example when
the characteristic of the generic points of B are positive is given in [51, p.192]. A
counter example of Raynaud–Ogus–Gabber, when the characteristic of the generic
points of B are zero (but where other points have positive characteristic), is given
in de Jong–Oort [47, §6].

The Faltings–Chai theorem implies a special case of the Borel Extension The-
orem. Recall that we use the notation Ag for the stack of principally polarized
abelian varieties of dimension g. A morphism U → Ag corresponds to a family
AU → U of principally polarized abelian varieties. We denote the coarse moduli
space by Ag. We denote by A∗

g the Satake (Bailly–Borel) compactification, and by

Āg any one of Mumford’s toroidal compactifications. The most common toroidal
compactification we will use is the second Voronoi, which we will denote by ĀV or

g .
We direct the reader to [107] for more details on compactifications of Ag.

Theorem 8.12 (Borel Extension [29, Thm. A]). Let B be a regular scheme
over a field of characteristic 0. Let Δ ⊆ B be an nc divisor. Setting U = B −Δ,
then for any morphism f : U → Ag, the composition U → Ag → Ag extends to a
morphism B → A∗

g.

Borel’s proof uses hyperbolic complex analysis and holds more generally for
(locally liftable) holomorphic maps into Baily–Borel compactifications of arithmetic
quotients of bounded symmetric domains. Faltings–Chai [51, Cor. 6.11, p.191] also
prove the related statement for maps into the moduli space Ag[n] of principally
polarized abelian varieties with level n-structure for n ≥ 3. In this case they can
use [105, Thm. 7.9, Thm. 7.10, p.139] to conclude that the coarse moduli space is
quasi-projective and fine. In other words, in both this situation, as well as under
the assumptions of the Borel extension theorem as stated above, one may assume
there is a family of abelian varieties over U .

The argument from there is short. First, the extension statement is local.
One can also show that it suffices to establish extension after a finite base change
(e.g. [40, Lem. 2.4]). Thus we may take an étale base change, and assume we are
in the situation where B is regular and Δ has support defined by x1 · · ·xr, where
x1, . . . , xr form part of a system of local parameters. Taking the finite cover t1 =
xm1
1 , . . . , tr = xmr

r for appropriate values of m1, . . . ,mr, one uses the monodromy
theorem to get extension over the generic points of Δ. The result then follows from
the Faltings–Chai Extension Theorem.

Remark 8.13. The condition in the Borel Extension Theorem that there is a
family of abelian varieties over U (or more generally that the holomorphic map is
locally liftable to the bounded symmetric domain) is essential. More precisely, for
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B and U as in the theorem, given a morphism f : U → Ag, this need not extend
to a morphism B → A∗

g. An elementary example comes from the case of A1 and
A∗

1. We can identify A1 as the quotient H/ SL(2,Z) of the upper half plane by the
special linear group in the usual way, and it is well known that A∗

1 is isomorphic to
P1
C
. The map (C∗)2 → P1

C
given by (λ1, λ2) �→ [λ1 : λ2] clearly does not extend to

a morphism from C2.

Remark 8.14. It is natural to ask whether a statement like the Borel extension
theorem could hold for the toroidal compactifications of Ag, and indeed there is an
extension theorem due to Ash–Mumford–Rapaport–Tai [23] (see also Namikawa
[107, Thm. 7.29, p.78]) giving explicit conditions for morphisms to extend over
nc boundaries. In concrete examples these extension conditions can be difficult to
establish. We discuss some particular examples below.

8.3. Examples of period maps to Ag. We now consider the related problem
of resolving period maps into compactifications of the moduli scheme of abelian
varieties. In this section we will work over C. The most well known example is the
Torelli map for curves; i.e. the morphism

T : Mg → Ag

that sends a curve C to its principally polarized Jacobian (JC,ΘC). Let T : Mg →
Ag be the associated morphism of coarse moduli spaces. Torelli’s theorem states
that T is injective.

The boundary Δ in Mg is (up to finite quotient singularities) an nc divisor. As
a consequence of the Borel extension theorem, we obtain a morphism

T ∗ : Mg → A∗
g

extending T . For the toroidal compactifications of Ag, there are the general exten-
sion results mentioned above. In practice, these can be difficult to verify. It is a
result of Mumford and Namikawa [107], [106, §18] that T extends to a morphism

T
V or

: Mg → ĀV or
g .

Caporaso–Viviani describe the fibers of the morphism in [34]. In addition, it is

shown in Alexeev [10] that there is a morphism T V or
: Mg → ĀA

g extending
T . We direct the reader to Alexeev–Brunyate [12] for a proof that the Torelli
map for stable curves extends to a morphism to the first Voronoi compactification
(see also Gibney [62] for more on the image of the Torelli map to other toroidal
compactificiations).

We now turn our attention to the Prym map. We denote by Rg the moduli
stack of connected, étale double covers of non-singular curves of genus g. The Prym
map

Pr : Rg → Ag−1

takes a double cover π : C̃ → C to its principally polarized Prym variety (P,Ξ) (see
Mumford [102] for more details). We denote by Pr : Rg → Ag−1 the associated
morphism of coarse moduli spaces. It is well known that the map is dominant for
g ≤ 6 (see esp. [25]), and in the other direction, Friedman–Smith [59] and Kanev
[78] have shown that the map is generically injective for g ≥ 7.

There is a compactification, Rg, due to Beauville [25], consisting of admissible

double covers. The coarse moduli space Rg has (up to finite quotient singularities)
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an nc boundary. As a consequence, there is an extension

Pr∗ : Rg → A∗
g−1.

On the other hand, Friedman–Smith [60] have shown that the Prym map does
not extend to a morphism to ĀV or

g−1 (or any reasonable Toroidal compactification).
We direct the reader to Alexeev–Birkenhake–Hulek [11] for more details on the
indeterminacy locus of the Prym map to ĀV or

g−1.
The Clemens–Griffiths [42] period map for cubic threefolds provides another

interesting example. Recall that a cubic threefold is a smooth cubic hypersurface
X ⊆ P4. The intermediate Jacobian of X is the five dimensional complex torus
JX := H1,2(X)/H3(X,Z). This admits a principal polarization ΘX , given by the
hermitian form h on H1,2(X) defined by h(α, β) = 2i

∫
X
α ∧ β̄. Letting Mcub be

the moduli space of cubic threefolds, one obtains a morphism

J : Mcub → A5.

By virtue of the Clemens and Griffiths Torelli theorem [42] (see also Mumford
[102]), J is injective. We denote the image by I, and we direct the reader to
Casalaina-Martin–Friedman [37] for a geometric characterization of the abelian
varieties parameterized by I.

The space Mcub admits a GIT compactification

M cub = PH0(P4,OP4(3))// SL(5),

(see Allcock [13], Yokoyama [125]) and it is natural to consider extensions of the
period map J to M cub. Allcock–Carlson–Toledo [14] and Looijenga–Swierstra
[97] have shown that Mcub can be identified with an open dense subset of a
ten dimensional ball quotient B/Γ. They show moreover, that the rational map
M cub ��� (B/Γ)∗ to the Baily–Borel compactification, can be resolved by blowing

up a single point. We call the resulting space M̂cub.

Using the description of M̂cub given in [14, 97], Laza and the author describe

an explicit blow-up M̃cub of M̂cub, with discriminant an nc divisor [38]. The process
used to obtain the resolution is the same as that described for simultaneous stable
reduction for ADE curves below (see §8.5). The Borel extension theorem then gives
a morphism

J∗ : M̃cub → A∗
5.

Laza and the author use this extension of the period map together with results from

[102, 25, 37, 36] and the explicit description of M̃cub to describe the boundary of
the image of J∗ [38, Thm. 1.1].

Remark 8.15. An explicit resolution of the map M cub ��� ĀV or
5 is still not

known. Certain components of the boundary of the (closure of the) image have
been identified by Grushevsky–Salvati Manni [70] and Grushevsky–Hulek [69] via
the theory of theta functions.

8.4. Simultaneous stable reduction for curves. We again begin by con-
sidering extension theorems. In analogy with the Faltings–Chai extension theorem
for abelian varieties, we mention the following extension theorem of de Jong–Oort
[47].

Theorem 8.16 (de Jong–Oort Extension [47, Thm. 5.1]). Let B be a regular
scheme and Δ an nc divisor on B. Set U = B −Δ. A family of smooth curves of
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genus g ≥ 2 over U extends to a family of stable curves over B if it extends to a
family of stable curves over on open subset V containing each generic point of Δ.

In fact the theorem is more general, in that one can allow for a generically stable
family, so long as the topological type is locally constant on U . A similar result was
proven by Moret-Bailly [99], where it is required that a generically smooth family
extend to a smooth family over the generic points of Δ.

A consequence of the de Jong–Oort Extension Theorem is an analogue of the
Borel Extension Theorem for stable curves. Before stating the result, let us first
rephrase the previous theorem in the language of stacks. The theorem states that
given a morphism to the stack U → Mg, there is an extension B → Mg if and
only if there is an open set V ⊆ B containing U and the generic points of Δ and
an extension V → Mg.

Corollary 8.17 (Cautis [40, Thm. A]). Let B be a regular scheme and Δ
an nc divisor on B. Set U = B − Δ. Given a morphism U → Mg, there is an

extension B → Mg.

One obtains this corollary from the previous theorem in the same way as the
analogous statement was proven for semi-abelian varieties (i.e. in the way the Borel
Extension Theorem follows from the Faltings–Chai Extension Theorem).

An independent proof of the corollary was given by Cautis [40, Thm. A]. By
virtue ofMg being a separated Deligne–Mumford stack, it is immediate to prove the
de Jong–Oort Extension Theorem from the corollary using the Abramovich–Vistoli
purity lemma [5, Lemma 2.4.1].

8.5. Explicit simultaneous stable reduction for curves. Having estab-
lished the existence of alterations resolving rational maps to Mg, one can ask for
explicit alterations in specific settings. One place where this type of question arises
naturally is in the Hassett–Keel program for the moduli space of curves.

We will not discuss the details of the Hassett–Keel program here (see [75]),
but will simply note that in this program, projective varieties Mg(α), α ∈ [0, 1]∩Q

arise, which are conjectured to parameterize curves of genus g with prescribed
singularities (for 0 � α ≤ 1 this has been established in Hassett–Hyeon [75, 74]).
For “most” g and α there are birational maps

Mg(α) ��� Mg

to the moduli space of stable curves. It would be of interest to have explicit res-
olutions. In general, these birational maps will lift to rational maps to the stack
Mg(α) ��� Mg, and in this way we arrive at the related problem of simultaneous
stable reduction.

With this as motivation, we will consider the following problem. Given a gener-
ically smooth family of curves X → B with fibers having prescribed singularities,
give an explicit description of a resolution of the rational map B ��� Mg.

The specific case we will consider is where the singular fibers have at worst
ADE singularities (we review the definition of ADE singularities in §10). We call
such curves ADE curves, and we will consider the question (étale) locally.

Laza and the author have given a solution to this problem in [39] and Fedorchuk
has given an independent solution for singularities of type AD in [54]. Fedorchuk’s
proof is based on constructions of proper moduli spaces of hyperelliptic curves
H [k, �], where the boundary consists of certain curves with AD singularities at
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worst of type Ak and D�. The proof provides modular descriptions of the spaces
arising in the processes described below. We direct the reader to Fedorchuk [54]
for more details.

Below is the version of the result in [39]. Since we consider the resolution
question (étale) locally, it suffices to understand the case where X → B is a mini-
versal deformation of an ADE curve X0. The statement of the theorem uses the
notion of a Weyl cover, and wonderful blow-up; these are explicit maps, which can
be determined by the root systems associated to the singularities. We refer the
reader to [39, §2,3] for more details. The Weyl cover and wonderful blow-up in §1
are examples. For the statement of the theorem, we note that the wonderful blow-
up of the Weyl cover of B has the property that the pull-back of the discriminant
is an nc divisor, with irreducible components corresponding to curves with fixed
singularity type.

Theorem 8.18 (Casalaina-Martin–Laza [39], Fedorchuk [54]). Let X → B
be a mini-versal deformation of an ADE curve X0 with pa(X0) = g ≥ 2. The
wonderful blow-up of the Weyl cover of B resolves the rational moduli map to the
moduli scheme Mg, but fails to resolve the rational moduli map to the moduli stack

Mg along the A2n locus of the discriminant (n ∈ N). The addition of a stack
structure (generically Z/2Z stabilizers) along this locus resolves the moduli map to
Mg.

Remark 8.19. Let us elaborate on the final statement in the theorem con-
cerning stacks. There is a family of stable curves over the wonderful blow-up of
the Weyl cover, except over the locus parameterizing curves with A2n singularities.
This locus is a collection of divisors, and there is an obstruction to extending the
family over that locus. At the generic points, the obstruction becomes trivial after
taking a branched double cover.

We direct the reader to [39] for the proof.

Remark 8.20. As mentioned above in the section on period maps to the moduli
space of abelian varieties, the method of proof of this theorem has applications to
other situations including the study of the moduli space of cubic threefolds [38].

9. Simultaneous semi-stable reduction

The question of extending the Semi-stable Reduction Theorem to higher dimen-
sional bases is of course very natural, and was asked already in the introduction of
[82]. It has proven to be a difficult question; even the correct formulation of the
problem is not immediately clear. We discuss some recent progress due to de Jong
[46] and Abramovich–Karu [3].

9.1. A result of Abramovich–Karu. The first issue to address is what is
meant by semi-stable reduction for higher dimensional bases. We take the following
modification of the assumptions in the statement of the Semi-stable Reduction
Theorem as the starting point. We set B to be an open subset of a non-singular
variety, set U ⊆ B to be a non-empty open subset and suppose that π : X → B
is a surjective, projective morphism of a variety X onto B so that the restriction
πU : X|U → U is smooth.

Our goal is to find a diagram as in (3.1) with B′ nonsingular, f an alteration, p a
projective modification, so that all of the geometric fibers of π′ satisfy some natural
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conditions. For instance, at the very least, we would like all of the geometric fibers
of π′ to be reduced. Moreover, we could hope that all of the fibers have singularities
that look at worst like smooth components meeting “transversally”.

For instance, when dim(X) = dim(B) + 1, if one allows the total space X ′ to
be singular, then it is a result of de Jong [46, Thm. 5.8] that such a semi-stable
reduction exists. Moreover, de Jong shows that in this case if p is permitted to
be an alteration, rather than a modification, then X ′ can be taken to be smooth.
However, for families with higher dimensional fibers, it is not possible in general
to obtain a “semi-stable reduction” where the fibers all have singularities that at
worst look like smooth components meeting transversally. For instance, the two
parameter family of surfaces defined by

(9.1) (t1 − x1x2, t2 − x3x4)

precludes this (see Karu [79, Exa. 1.12, p.21]). Thus, in general, one needs a
different definition of “semi-stable reduction” to get a reasonable result.

In light of the presentation in [82], and the family (9.1) above (which has
fibers with at worst toric singularities), it is natural to change the focus to toroidal
structures. Using this language, we state a theorem of Abramovich–Karu, and then
discuss some definitions after the theorem.

Theorem 9.1 (Abramovich–Karu [3, Thm. 0.3]). Assume char(k) = 0 and
k = k̄. Let X → B be a surjective morphism of projective varieties over k, with
geometrically integral generic fiber. There exists a diagram as in (3.1) with X ′ a
projective variety, B′ nonsingular, f a projective alteration, p a projective strict
modification, π′ a toroidal morphism, and all of the geometric fibers of π′ equidi-
mensional and reduced.

A toroidal structure on a normal varietyX is an open subset UX ⊆ X, such that
for each x ∈ X, there is a toric variety Xσx

, a point s ∈ Xσx
and an isomorphism

ÔX,x
∼= ÔXσx ,s

that maps the ideal of X −UX to the idea of Xσx
− Tσx

where Tσx

is the torus of Xσx
. In other words, it is a variety together with an open set that

étale locally looks like a toric variety together with its embedded torus. A toroidal
morphism is defined in the obvious way (see e.g. [3, Def. 1.3, p.247]). We direct
the reader to [3, p.45] for the definition of a strict modification; we note that in the
case that X → B is flat, p will be a projective modification.

It is mentioned in [3, Rem. 1.1] that it may also be possible to address si-
multaneous semi-stable reduction using the language of log-structures, rather than
toroidal morphisms. We also direct the reader to [1], which addresses the case of
schemes over fields that are not algebraically closed. We conclude with the remark
that roughly speaking, the theorem says that simultaneous semi-stable reduction is
possible if one allows for toric singularities.

10. (Semi-)stable reduction for singularities

We now consider the (semi-)stable reduction problem locally and focus on sin-
gularities. The Mumford et al. Semi-stable Reduction Theorem for one-parameter
families ensures the existence of a semi-stable reduction for (generically smooth)
one-parameter families of singularities. The extensions to higher dimensional bases
due to Abramovich–Karu establish a certain form of existence in the simultaneous
case. Consequently, the problem we will consider here is describing in more detail
semi-stable reductions for specific singularities.
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Singularities of type ADE will appear frequently in what follows. Recall that
these are the singularities (of dimension n− 1, n ≥ 2) defined by the polynomials:

fAk
= xk+1

1 + x2
2 + . . .+ xk

n k ≥ 1

fDk
= x1(x

k−2
1 + x2

2) + x2
3 + . . .+ x2

n k ≥ 4
fE6

= x4
1 + x3

2 + x2
3 + . . .+ x2

n

fE7
= x2(x

3
1 + x2

2) + x2
3 + . . .+ x2

n

fE8
= x5

1 + x3
2 + x2

3 + . . .+ x2
n.

10.1. Local stable reduction for curve singularities. In this section we
discuss some recent work of Hassett [73] on local stable reduction for isolated,
locally planar singularities. The main results are descriptions of the tails arising in
the stable reduction process for curves.

10.1.1. Preliminaries on local stable reduction. A local stable reduction of an
isolated, plane curve singularity (Xo, x) is defined as follows. We consider

π : X → B

a one-parameter smoothing of (Xo, x), with Xo = π−1(o) for some o ∈ B; one
can obtain such a smoothing by observing that the singularity (Xo, x) will arise
on some plane curve, and the Hilbert scheme containing that curve is a projective
space with generic point parameterizing a smooth curve. We then perform semi-
stable reduction following Mumford et al. to obtain X̃ → B̃, where the central fiber
is in nc position. Set p : X̃ → B̃ ×B X. Finally, take the log canonical model of
(X̃, X̃o) relative to the morphism p.

We will denote the resulting family by Xc → B̃; this is called the local stable
reduction of the family X → B. Note that Xc agrees with B̃×B X away from the
central fiber. By construction, the local stable reduction provides a local picture of
the stable reduction for a one-parameter family of curves degenerating to a curve
with a singularity (Xo, x).

We now review the definition of the tail of the local stable reduction. The
central fiber of Xc → B̃, which we will denote Xc

o , can be decomposed as Xc
o =

Xν
o ∪ XT

o , where Xν
o is the normalization of Xo and XT

o := Xc
o −Xν

o . To fix
notation, set Xν

o ∩XT
o = {p1, . . . .pb} where b is the number of branches of Xo. The

pair (Xν
o , {p1, . . . , pb}) depends only on Xo and not on the choice of smoothing. On

the other hand, the pair (XT
o , {p1, . . . , pb}) may depend on the smoothing, and we

call this the tail of the local stable reduction of the family X → B.
10.1.2. A result of Hassett. We now mention Hassett’s result that the tails

arising in this process form subvarieties of the moduli space of curves. We will
use the notation Mg,(n) for the moduli space of stable curves of genus g, with n
unordered marked points.

Proposition 10.1 (Hassett [73, Prop. 3.2, p.176]). Let (Xo, x) be a plane
curve singularity with b branches. Let TXo

be the set of tails obtained from the local
stable reduction of each smoothing of Xo. The tails are connected, all of the same
arithmetic genus γ, and TXo

is naturally a (reduced) subscheme of Mγ,(b).

In order to describe the subscheme TXo
in more detail, Hassett considers the

problem of deforming the pairs (SpecC[[x, y]], Xo). He considers a process similar
to that in the construction of the local stable reduction, performing semi-stable
reduction for the pair (SpecC[[x, y]], Xo) and then taking a log-canonical model.
His results give explicit descriptions of tails that arise in stable reduction for a
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wide class of singularities, including the classes known as toric and quasi-toric
singularities (which include ADE singularities). For the sake of space, we restrict
to the special case of An singularities.

Theorem 10.2 (Hassett [73, Thm. 6.2,6.3, p.185-6]). Suppose that (Xo, x) is
a plane curve singularity of type An. Then the scheme TXo

is irreducible.

(1) If n = 2k, then TXo
is the closure of the locus of hyperelliptic curves of

genus k, with a marked Weierstrass point in Mk,1.
(2) If n = 2k + 1, then TXo

is the closure of the locus of hyperelliptic curves
of genus k with two conjugate marked points (i.e. interchanged by the
hyperelliptic involution) in Mk,(2).

Remark 10.3. One application of these results is to the Hassett–Keel program.
More precisely, the results can be used to provide a description of resolutions of
rational maps among various moduli spaces that arise in the program. We direct
the reader to [39, §4.2] for more discussion (see also §8.5 above).

10.2. Simultaneous resolution for simple surface singularities and the
Weyl cover. We now turn our attention to surface singularities, again over C.
While in general one would consider questions of semi-stable reduction, for surface
singularities of type ADE there is a result due to Brieskorn–Tyurina that one may
in fact find simultaneous resolutions of singularities.

First let us recall what is meant by a simultaneous resolution of singularities.
Let π : X → B be a flat morphism of schemes. A simultaneous resolution of
singularities of π is a commutative diagram

X ′ p−−−−→ X

π′
⏐⏐� π

⏐⏐�
B B

such that p is proper, π′ is smooth, and for every b ∈ B, the induced morphism
X ′

b → Xb is birational; i.e. it is a coherent way of resolving the singularities of the
fibers of π.

Let us now make the following observation ([90, Exa. 4.27, p.128]): If B is a
curve, and π is smooth over B − {o} for some o ∈ B, then π does not admit a
simultaneous resolution if Xo is a reduced curve, or dimXo ≥ 3 and Xo has at
worst isolated hypersurface singularities (see also Kollár–Shepherd-Barron [91] for
more on surfaces singularities and Friedman [57] for more on threefolds). With this
in mind, Brieskorn’s theorem on surface singularities becomes quite surprising.

Theorem 10.4 (Brieskorn–Tyurina). Let π : (X, x) → (B, o) be a flat mor-
phism of germs of singularities such that fiber (Xo, x) is an ADE surface sin-
gularity. Then there is a finite, surjective morphism (B′, o′) → (B, o) such that
π′ : X ′ := B′ ×B X admits a simultaneous resolution of singularities.

We direct the reader to Kollár–Mori [90, p.129] for a discussion of a number
of techniques that can be used to prove the theorem, as well as some references.
Brieskorn’s [33] Weyl group cover of the mini-versal deformation space of an ADE
singularity plays an important role. We briefly review this now. Let Xo be an
ADE singularity of type T (i.e. T = An, Dn or En). Let BT be a mini-versal
deformation space of Xo with discriminant ΔT . Define WT to be the Weyl group
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of type T and RT be the corresponding root system. Brieskorn shows there exists a
Galois cover f : B′

T → BT with covering group WT and ramification locus ΔT such
that f∗ΔT is an arrangement of hyperplanes determined by the root system RT .
The hyperplanes are in one-to-one correspondence with the roots in RT considered
up to ±1. The morphism f : B′

T → BT is called the Weyl (group) cover.

Remark 10.5. For surfaces, ADE singularities are exactly the canonical singu-
larities (see e.g. [90]). Thus this special case is enough to handle surface singularities
in many circumstances. We direct the reader to [91] for a complete description of
slc surface singularities.

11. Geometric invariant theory

One way of determining a class of objects that will provide a stable reduction
theorem for a moduli problem is via GIT. Typically, one will rigidify the moduli
problem to obtain a (projective) fine moduli scheme, and then take the quotient by
a reductive group to return to a (projective) scheme parameterizing isomorphism
classes of interest. The GIT semi-stable points naturally provide a class of ob-
jects where a weak form of stable reduction holds. We call this GIT semi-stable
completion (or weak stable reduction for GIT) and discuss it in more detail in §11.2.

If there are no strictly semi-stable points, then one typically obtains a stable
reduction theorem. Note also that the stability conditions obtained in this way will
depend on the rigidification, as well as the choice of linearization. Different choices
may lead to different stable reduction theorems. We discuss this further in §11.5.

11.1. Preliminaries on GIT. Let X be a projective variety over an alge-
braically closed field k. Let G be a linearly reductive algebraic group over k [105,
Def. 1.4, p.26] acting on X, and let L be an ample G-linearized line bundle on X
[105, Def. 1.6, p.30].

For n ∈ N and a section s ∈ H0(X,L⊗n), we set

Xs = {x ∈ X : s(x) �= 0}.
Recall from [105, Def. 1.7] that the set of semi-stable (resp. stable, resp. prop-
erly stable) points of X, denoted Xss (resp. Xs, resp. Xs

0), is the set of points
x ∈ X such that there exists a natural number n and a G-invariant section
s ∈ H0(X,L⊗n)G with s(x) �= 0 (resp. s(x) �= 0 and the action of G on Xs

closed, resp. s(x) �= 0, the action of G on Xs closed, and the dimension of the
stabilizer of x is equal to 0). We denote the orbit of x by G · x and the stabilizer of
x by Gx [105, p.3].

Mumford’s theorem [105, Theorem 1.10] defines the GIT quotient of X under
the group action. It states that there exists a (surjective) universally submersive
[67, 15.7.8, p.245], G-invariant morphism of k-schemes

φ : Xss → X//LG

that is a categorical quotient of Xss by the action of G [105, Def. 0.5, p.3]. This
satisfies the additional property that if x1 and x2 are closed points of Xss, then
φ(x1) = φ(x2) if and only if G · x1 ∩G · x2 ∩Xss �= ∅ ([105, p.40]). In particular,
the closed points of X//LG are in bijection with closed orbits of closed points in
Xss. There is an open subset (X//LG)◦ ⊆ X//LG with the property that Xs

0 =
φ−1(X//LG)◦ ([105, (1) p.37]), and the induced morphism

φ◦ : Xs
0 → (X//LG)◦
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is a geometric quotient; in particular the fibers over closed points are exactly the
orbits of the closed points of Xs

0 (see [105, Def. 0.6, p.4]). It is also shown that

X//LG = Proj

( ∞⊕
n=0

H0(X,L⊗n)G

)

(see [105, p.40], [49, Prop. 8.1, p.120]) so that X//LG is projective.

11.2. Weak stable reduction for GIT. As X//LG is projective, any map
from the generic point of a DVR to X//LG extends to the whole DVR. We now
consider the question of lifting such maps from X//LG to Xss.

More precisely, let R be a DVR over k, with fraction field K = K(R), and with
residue field κ(R) = k. Let S = SpecR, let η = SpecK be the generic point, and
let s = Specκ(R) be the special point. We will assume we are given a morphism

f : S → X//LG,

and we are interested in lifting f to Xss. The following result is often referred to
as semi-stable completion for GIT (Shah [116, Prop. 2.1, p.488], Mumford [103,
Lem. 5.3, p.57]).

Theorem 11.1 (Weak stable reduction for GIT). Let f : S → X//LG be a
morphism. There exists a finite extension K ′ of K, so that taking R′ to be the
integral closure of R in K ′ and setting S′ = SpecR′, there is a commutative diagram

(11.1) Xss

φ

��

S′ ��

g

��
S

f
�� X//LG.

Moreover, g may be chosen so that g(s′) lies in a closed orbit, where s′ is the closed
point of S′.

The essential point is the universal submersiveness of φ. Indeed, if one were
only to require that S′ → S be a surjective morphism of spectrums of DVRs
(and not necessarily a finite morphism), then the existence of such a lift g would
follow immediately from the definition of universal submersiveness (see e.g. [86,
Rem. 3.7.6, p.50] for a well-known converse). The additional fact that S′ → S can
be taken to be finite follows from the proof of Mumford [105, Lem., p.14].

Remark 11.2. Let us briefly consider weak stable reduction for GIT in the
context of stacks. The analogous statement is that the natural map from the
quotient stack π : [Xss/G] → X//LG is universally closed. While this can be
established by modifying the proof of weak stable reduction for GIT, it is also
a consequence of the more general fact that π : [Xss/G] → X//LG is a good
(categorical) moduli space ([15, Thm. 4.16 (ii), §13, Thm. 6.6]). Concretely, given
a map f : S → X//LG and a generic lift gη : SpecK → [Xss/G], then after a
generically finite base change, there is a lift g : S′ → [Xss/G] extending the pull
back of gη. Moreover, one may choose the lift so that the closed point of S′ is sent
to a closed point of [Xss/G] (corresponding to a closed orbit), and this point is
unique (see [17, §2]).
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Remark 11.3. Since X//LG is projective, it follows that [Xss/G] is universally
closed and of finite type over k (Remark 11.2). It is not always the case, however,
that [Xss/G] is separated. For instance, this will fail if Xss �= Xs

0 , as there will
be positive dimensional affine stabilizers preventing the diagonal from being proper
(see also [17, Exa. 2.15]). On the other hand, if [Xss/G] is separated, it follows that
it is also proper. Consequently, if M is a separated stack representing a moduli
problem and M ∼= [Xss/G], then there is a stable reduction theorem for the moduli
problem. (See also [17, Def. 2.1] for the more general notions of weakly separated
and weakly proper morphisms.)

11.3. GIT stable reduction for plane curves. In this section we consider
the example of plane quartic curves, worked out by Mumford [105, Ch.4 §2]. To
do this, we start with the associated Hilbert scheme X = PH0(P2,OP2(4)). There
is a natural action of PGL(3) given by change of coordinates; as is typical, for the
sake of simplicity we consider the action of G = SL(3) instead via the isogeny
SL(3) → PGL(3). The Hilbert scheme, being a projective space, comes equipped

with a polarization L = O(1) and a natural SL(3)-linearization. We set M
GIT

3 to
be the GIT quotient

M
GIT

3 := PH0(P2,OP2(4))//O(1)SL(3) = X//LG

Using the Hilbert–Mumford index, the following is worked out in [105, p.81-2]
(see also [20, Lem. 1.4]). Let C be a plane quartic corresponding to a point x ∈
PH0(P2,OP2(4)) = X.

(1) x ∈ Xs
0 if and only if C is non-singular, or C has only nodes and cusps as

singularities.
(2) x ∈ Xss −Xs

0 if and only if C is a double conic or C has a tacnode.
(3) x ∈ Xss −Xs

0 and has closed orbit if and only if C is a double conic or C
is the union of two conics, at least one of which is non-singular, and the
conics meet tangentially.

While there is not a universal family of curves over M
GIT

3 , there is a universal
family overX, and the weak stable reduction theorem for GIT implies the following.
Given any one-parameter family of plane quartics over a punctured disk, with fibers
of type (1)-(3) above, after a finite base change, the family can be filled in to a
family over the complete disk, with central fiber of type (1) or (3). Moreover, the
isomorphism class of such a central fiber is determined by the original family over
the punctured disk.

11.4. Deligne–Mumford stable reduction revisited. Gieseker’s con-
struction of the moduli space of stable curves as a GIT quotient of a Hilbert scheme
provides another proof of the Deligne–Mumford stable reduction theorem [63, p.i].

Let g ≥ 2 and ν ≥ 10. Set Hilbg,ν to be the irreducible component of the
Hilbert scheme containing the locus of ν-canonically embedded, genus g, non-
singular curves. Let Hg,ν ⊆ Hilbg,ν be the locus of (Deligne–Mumford) stable
curves. Set N = (2ν − 1)(g − 1) − 1 to be the dimension of ν-canonical space.
The group SL(N +1) acts on Hilbg,ν by change of basis. Gieseker has shown ([63,
Ch.2]) that there exists an SL(N+1)-linearized polarization Λ on Hilbg,ν such that

(11.2) Hg,ν = (Hilbg,ν)
s
0 = Hilbssg,ν .
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Consequently, one obtains Hilbg,ν //ΛSL(N+1) ∼= Mg [63, Thm. 2.0.2]. A key point
is the fact that a family X → B of (Deligne–Mumford) stable curves over a scheme
B can (after possibly replacing B by an appropriate open subset) be embedded in
PN
B as a flat family parameterized by a morphism B → Hilbg,ν (e.g. [63, p.13]).

The Deligne–Mumford stable reduction theorem (over k, and up to the uniqueness
statement) follows from (11.2) and the weak stable reduction theorem for GIT.

11.5. Comparing stability conditions. We now compare the GIT stable
reduction theorems arising from §11.3 and §11.4, and discuss the connection with
the spaces arising in the Hassett–Keel program.

Let us fix a DVR R, and consider a family X → S = SpecR of smooth plane
quartics degenerating to a quartic with a unique singularity, which is a tacnode
(A3). This is a family of GIT semi-stable curves in the sense of §11.3. However, the
central fiber is not a curve with closed orbit, and the family is not a GIT semi-stable
family in the sense of §11.4. The GIT stable reduction theorem states that after a
generically finite base change S′ → S, one can complete the family in two different
ways. In the sense of §11.3, one can complete the family so that the central fiber is
the union of two plane conics meeting in two points, which are tacnodes (see [76,
§3.4]). In the sense of §11.4, one can complete the family so that the central fiber
consists of a reducible stable curve obtained as the union of an elliptic curve (the
normalization of the tacnodal quartic) attached to another elliptic curve (the tail;
also called an elliptic bridge) at two points.

In short, on the one hand, we are requiring the central fiber to be a plane
quartic. On the other, we are requiring the central fiber to be a nodal curve (with
finite automorphisms). Both conditions give a “weak” stable reduction theorem,
albeit with very different central fibers. We direct the reader to Hassett–Hyeon
[75, 74] for more discussion of GIT stability of curves with respect to different
rigidifications, and linearizations. See also Smyth [119], Alper–Smyth–van der
Wyck [17] and Alper–Smyth [16] for a stack theoretic approach to this type of
problem.

In terms of the Hassett–Keel program (see §8.5), the space M
GIT

3 of §11.3 is
the space M3(17/28) [76] (and M3 = M3(1)). The spaces are birational, as both
contain dense open subsets corresponding to smooth, non-hyperelliptic curves. In
fact, the family of curves over the subset U corresponding to non-singular curves

with trivial automorphism group induces a rational map M
GIT

3 ��� M3. Resolving
this map is closely related to the simultaneous stable reduction for curves with
ADE singularities, discussed in §8.5 (see [38, §8] and [39, Cor. 3.6]).
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Math. Ann. 166 (1966), 76–102. MR0206973 (34:6789)

113



50 CASALAINA-MARTIN

33. , Singular elements of semi-simple algebraic groups, Actes du Congrès Interna-
tional des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris, 1971, pp. 279–284.
MR0437798 (55:10720)

34. L. Caporaso and F. Viviani, Torelli theorem for stable curves, J. Eur. Math. Soc. (JEMS)
13 (2011), no. 5, 1289–1329. MR2825165 (2012h:14016)

35. J. Carlson, S. Müller-Stach, and C. Peters, Period mappings and period domains, Cambridge
Studies in Advanced Mathematics, vol. 85, Cambridge University Press, Cambridge, 2003.

MR2012297 (2005a:32014)
36. S. Casalaina-Martin, Cubic threefolds and abelian varieties of dimension five. II, Math. Z.

260 (2008), no. 1, 115–125. MR2413346 (2009b:14090)
37. S. Casalaina-Martin and R. Friedman, Cubic threefolds and abelian varieties of dimension

five, J. Algebraic Geom. 14 (2005), no. 2, 295–326. MR2123232 (2006g:14071)
38. S. Casalaina-Martin and R. Laza, The moduli space of cubic threefolds via degenerations

of the intermediate Jacobian, J. Reine Angew. Math. 633 (2009), 26–65. MR2561195
(2011a:14071)

39. , Simultaneous semi-stable reduction for curves with ADE singularities, to appear in
Trans. Amer. Math. Soc., 2011. MR3020098

40. S. Cautis, The abelian monodromy extension property for families of curves, Math. Ann.
344 (2009), no. 3, 717–747. MR2501307 (2010j:14055)
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tures given at the “Institut des Hautes Études Scientifiques”, Bures-sur-Yvette, March-April
1976, Monographie de l’Enseignement Mathématique, No. 24. MR0450273 (56:8569)
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108. A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst.

Hautes Études Sci. Publ.Math. No. 21 (1964), 128. MR0179172 (31:3423)
109. T. Oda, Galois action on the nilpotent completion of the fundamental group of an algebraic

curve, Advances in number theory (Kingston, ON, 1991), Oxford Sci. Publ., Oxford Univ.
Press, New York, 1993, pp. 213–232. MR1368421 (97g:14027)

110. M. C. Olsson, Compactifying moduli spaces for abelian varieties, Lecture Notes in Mathe-
matics, vol. 1958, Springer-Verlag, Berlin, 2008. MR2446415 (2009h:14072)

116



STABLE REDUCTION 53

111. U. Persson and H. Pinkham, Degeneration of surfaces with trivial canonical bundle, Ann. of
Math. (2) 113 (1981), no. 1, 45–66. MR604042 (82f:14030)
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Dedicated to Joe Harris, with admiration on the occasion of his sixtieth birthday.

Abstract. We speculate on the relationship between the solvable monodromy
extension (SME) property and log canonical models. A motivating example is
the moduli space of smooth curves which, by earlier work, is known to have this
SME property. In this case the maximal SME compactification is the moduli
space of stable nodal curves which coincides with its log canonical model.

Contents

1. Introduction
2. Preliminaries
3. A general property
4. The case of surfaces
5. The case of higher dimensional varieties
6. Some final remarks
References

1. Introduction

On a late afternoon a few years ago, on the way back from one of his water
cooler trips, Joe Harris dropped by my alcove with the following problem on his
mind:

Given a family of smooth curves over an open subscheme U ⊂ S, when does it
extend to a family of stable curves over S?

We had not been discussing ideas directly along these lines, so this question took
me a little by surprise. It seemed like a very natural problem and it subsequently
became a part of my thesis. Using the language of moduli spaces, it can be restated
as follows:

Given an open subscheme U ⊂ S and a morphism f : U → Mg,n when does it

extend to a regular morphism S → Mg,n?
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2 SABIN CAUTIS

Here Mg,n denotes the moduli space of smooth genus g curves with n marked

points and Mg,n its Deligne-Mumford compactification. De Jong and Oort [JO]
show that if D := S \U is a normal crossing divisor then f : U → Mg,n extends to

a regular morphism S → Mg,n assuming it does this over the generic points of D.

Without this assumption one can still conclude that f extends to a map S → Mg,n

where Mg,n is the coarse moduli space.

In general, lifting a map S → Mg,n to Mg,n only requires taking a finite cover
of S (i.e. one does not need to blow up at all). From this point of view the second
answer above suffices. When working over C, it turns out to have the following
generalization.

Theorem 1.1. [C, Thm. A] Let U ⊂ S be an open subvariety of an irreducible,
normal variety S. A morphism U → Mg,n extends to a regular map S → Mg,n in
a Zariski neighbourhood of p ∈ S \ U if and only if the local monodromy around p
is virtually abelian.

1.1. The abelian/solvable monodromy extension property. Inspired
by this result we introduced in [C, Sect. 2] the abelian monodromy extension
(AME) property for a pair (X , X) consisting of a Deligne-Mumford stack X and a
compactification X of its coarse scheme. Roughly, X is an AME compactification
of X if U → X extends to a regular map S → X whenever the image of the induced
map π1(U) → π1(X ) on fundamental groups is virtually abelian. Here S is a small
analytic neighbourhood of a point (so this is a local condition on the domain but a
global condition on the target (X , X)).

Among all AME compactifications of some X there is a unique maximal one
which we denote Xame [C, Cor. 3.7]. This means that for any other AME com-
pactification X of X there exists a birational morphism Xame → X. For example,
Mg,n is the maximal AME compactification of Mg,n [C, Thm. 4.1].

Although the AME condition is quite strong, there are abundant examples of
pairs satisfying the AME property. More precisely:

Proposition 1.2. [C, Prop. 3.11] Let X ⊂ X be a dense, open immersion
such that X is a normal, complete variety. Then there exists an open Xo ⊂ X such
that (Xo, X) has the AME property.

In this paper we will consider the (very similar) solvable monodromy extension
(SME) property instead of the AME property. The definition is precisely the same
except that we replace “abelian” with “solvable” everywhere. Once again, if X has
the SME property then there exists a maximal SME compactification Xsme. In this
case, since any abelian group is solvable, X also has the AME property and there
exists a regular morphism Xame → Xsme.

1.2. Relation to log canonical models. If C is a smooth curve, then it
has the SME property if and only if it is stable (meaning that it has genus g > 1
or genus g = 1 with at least one puncture or genus g = 0 with at least three
punctures). Notice how these are precisely the curves of log general type.

We make the following two (completely wild) speculations:

Speculation #1. If X has the SME property then its log canonical model Xlc

(assuming it exists) is a compactification of X. In particular, X is of log general
type.
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Speculation #2. If X has the SME property then there exists a regular morphism
Xlc → Xsme extending the identity map on X.

In the case of surfaces we prove in Propositions 4.3 and 4.5 that this is indeed true.
It should also be possible to verify these speculations if X has a smooth log minimal
model.

For general higher dimensional varieties we describe a possible (but very sketchy)
approach to proving these two claims. Along the way we bring up some related
questions which may be of independent interest.

The final section gives a simple example showing that varieties of log general
type need not have the SME property. We also describe a potential application,
explained to me by Sean Keel, to partial resolution of singularities.

1.3. Acknowledgments. I would like to thank Maksym Fedorchuk, Brendan
Hassett, Johan de Jong and Sean Keel for helpful, interesting discussions and the
anonymous referee for finding a mistake and suggesting additional improvements
and references.

2. Preliminaries

We briefly discuss the two main concepts being related in this paper: the SME
property and log canonical pairs.

2.1. The solvable monodromy extension (SME) property. The solv-
able monodromy extension property is a direct analogue of the abelian monodromy
extension property from [C] (just take that definition and replace abelian with
solvable).

2.1.1. Local monodromy. We summarize the definition of local monodromy
from [C, Sec. 2.1]. Let X be an open subvariety of a normal variety X. Next,
consider an open subvariety U ⊂ S of a normal variety S together with a mor-
phism U → X. Fix a connected, reduced, proper subscheme T ⊂ S. Now choose a
sufficiently small analytic neighbourhood V of T . We define the local monodromy
around T as the image of fundamental groups

Im (π1(V ∩ U) → π1(X)) .

Since T is connected V ∩U is connected and so the image of π1(V ∩U) is defined
(up to conjugation) without having to choose a base point. Most commonly we will
take T to be a point p ∈ S \ U to obtain the local monodromy around p.

2.1.2. The SME property. Given an open embedding of normal varieties X ⊂
X, the pair (X,X) has the solvable monodromy extension (SME) property if given
any U ⊂ S as above the morphism U → X extends to a regular map S → X in a
neighbourhood of p whenever the local monodromy around p is virtually solvable
(recall that a group is virtually solvable if it contains a solvable subgroup of finite
index).

In this case X is complete and we say that X is an SME compactification of
X. We say X has the SME property if it has an SME compactification. One can
also define the SME property for stacks (see [C, Sec. 2.2.1]) but for simplicity we
will only consider varieties.
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2.1.3. Example: the moduli space of curves. The main example from [C] of a
variety with the AME property is the moduli space of curves (Theorem 1.1). It
turns out the moduli space of curves also has the SME property.

Corollary 2.1. Mg,n is the maximal SME compactification of Mg,n.

Proof. By [BLM, Theorem B] every solvable subgroup of π1(Mg,n) is virtu-
ally abelian. This means that Mame

g,n = Msme
g,n and the result follows from [C, Thm.

4.1] which states that Mg,n is the maximal AME compactification of Mg,n. �

2.2. Log canonical pairs. Consider a normal variety X with a compactifi-
cation X so that the boundary Δ := X \X is a normal crossing divisor. Note that
in general one may have to first resolve X in order to find such an X.

We say that X is of log general type if (KX +Δ) is big. Then, assuming finite
generation of the log canonical ring (say via the log minimal model program), the
log canonical model of X is

Xlc := Proj

⎛
⎝⊕

m≥0

H0(OX(m(KX +Δ))

⎞
⎠ .

If Xlc contains X as an open subscheme then we say that Xlc is the log canonical
compactification of X. Note that Xlc does not depend on the choice of X. By
construction, assuming X has (at worst) log canonical singularities, it follows that
Xlc also has (at worst) log canonical singularities.

In general, if C,C ′ are two curves inside some proper variety Y , we will say
that C and C ′ are numerically equivalent (denoted C ∼ C ′) if C ·D = C ′ ·D for
any Cartier divisor D ⊂ Y .

2.3. Some properties of AME compactifications. In [C, Sect. 3] we
proved various basic results about AME compactifications. The key facts we used
was that a subgroup of an abelian group is abelian and that the image of an abelian
group is abelian. These facts also hold for solvable groups. Subsequently, the results
from [C, Sect. 3] still hold if we replace “AME” with “SME”. We now state three
such results which we will subsequently use.

Lemma 2.2. [C, Cor. 3.3] Suppose (X,X) has the AME (resp. SME) property
and let Y ⊂ X be a closed, normal subscheme. If we denote by Y the normalization
of the closure of Y in X then the pair (Y, Y ) also has the AME (resp. SME)
property.

Lemma 2.3. [C, Prop. 3.10] If X has the AME (resp. SME) property and
i : Y → X is a locally closed embedding then there exists a regular morphism
Ysme → Xsme (resp. Yame → Xame) which extends i : Y → X.

Lemma 2.4. Suppose X has the SME property and let X be a compactification
of X equipped with a regular map π : X → Xsme. If C ⊂ X is a curve so that the
local monodromy around C is virtually solvable then π contracts C to a point.

Remark 2.5. In particular, this means that if X has the SME property then
its fundamental group is not virtually solvable. The analogous result for AME
varieties also holds.
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Proof. Choose a surface S ⊂ X, not contained in the boundary X \X, but
which contains C. Then the local monodromy around C ⊂ S is virtually solvable
and, by Lemma 2.2, S ∩X has the SME property. If we blow up S then the proper
transform C̃ of C still has this property. Moreover, blowing up sufficiently we can
assume that C̃2 < 0.

Thus we end up with C̃ ⊂ S′ where C̃2 < 0 and a map S′ → X which does not
contract C̃. Moreover, the local monodromy around C̃ ⊂ S′ is virtually solvable.
But, since C̃2 < 0, we can blow down C̃ to a point q ∈ S′′. Then the local
monodromy around q is virtually solvable. This means that, in a neighbourhood

of q, we get a regular map S′′ → Xsme. Subsequently, the composition S′ → X
π−→

Xsme contracts C̃ to a point. This means that π contracts C to a point. �

3. A general property

The following results, which we will apply later, serve as some indication that
varieties satisfying the SME property are of log general type.

Proposition 3.1. Let X be a normal variety and X some compactification
such that Δ := X \X is a divisor. If C ⊂ X is a rational curve such that

• C ∩X �= ∅ and C ⊂ Xsmooth,
• (KX +Δ) · C ≤ 0 and Δ · C ≥ 3

then there exists a curve B0 and a map F0 : C0 := P1 ×B0 → X such that

(i) F0(C0) is a surface,
(ii) F−1

0 (Δ) = {p1, . . . , pn} ×B0 for some fixed points p1, . . . , pn ∈ P1,
(iii) there exists a section σ of C0 → B0 with F0(σ) = p for some p ∈ X.

Proof. We will use the following non-trivial deformation theory result [M].

The deformation space of morphisms f : C̃ → X has dimension at least

−(KX · C) + (1− gC̃) · dim(X)

where C̃ is the normalization of C and gC̃ its genus. In our case gC̃ = 0 and
−KX ·C ≥ Δ·C so the space of deformations has dimension at least dim(X)+Δ·C.

Now consider such a family of deformations π : C → B where dim(B) ≥
dim(X) + Δ · C. Since the automorphism group of C̃ is 3-dimensional we can
restrict C to a smaller family C′ → B′ ⊂ B where dim(B′) = dim(B)− 3 and such
that for any fibre in C′ there are only finitely many other fibres with the same image
in X. Notice that here we need Δ · C ≥ 3 or else this family may be empty.

Suppose the general fibre of C′ intersects Δ in n ≥ 1 distinct points. If n ≥ 3
then, after possibly blowing up B′ and taking a finite cover, we obtain a map
B′ → M0,n to moduli space of genus zero curves with n marked points. Since

dim(M0,n) = n− 3 a generic fibre of this map has dimension at least

dim(B′)− n+ 3 ≥ dim(X) + Δ · C − n ≥ dim(X).

The restriction of C′ to such a fibre leaves us with a family of curves π′′ : C′′ → B′′

and a map F : C′′ → X. If n ≤ 2 then we take this to be the original family.
Since dim(C′′) = dim(B′′)+1 ≥ dim(X)+1 the general fibre of F has dimension

at least one. Choose a general point p ∈ F (C′′)∩X and let B′′′ := π′′(F−1(p)) ⊂ B′′.
Restricting C′′ gives us a family π′′′ : C′′′ → B′′′ with dim(B′′′) ≥ 1 with a map
F : C′′′ → X. After restricting even further we can assume for convenience that
dim(B′′′) = 1.
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Now, by construction, there exists an open subset B0 ⊂ B′′′ such that the
restriction of C′′′ to it is isomorphic to C0 := P1 × B0. We also have a map F0 :
C0 → X which takes ∪ipi × B0 to Δ and the rest to X (here p1, . . . , pn denote
our n marked points). Finally, after possibly pulling back to a finite cover of an
open subset of B0, there exists a section σ of C0 → B0 which is in the preimage of
p ∈ X. �

Corollary 3.2. Suppose X is smooth, has the AME property and denote by
X a simple, normal crossing compactification of X. If C ⊂ X is a rational curve
not contained in the boundary Δ := X \X, then (KX +Δ) · C > 0.

Proof. By Lemma 2.4 we know C ·Δ ≥ 3. So suppose (KX +Δ) ·C ≤ 0 and
consider the family C0 = (P1, p1, . . . , pn) × B0 → B0 as in Proposition 3.1. This
family comes equipped with a map F0 : C0 \ {∪ipi ×B0} → X and a section σ such
that F0(σ) = p ∈ X. Compactify B0 to some smooth curve B and C0 to the trivial
product C = (P1, p1, . . . , pn)×B.

Since Δ is simple, normal crossing, we have a regular map f : X → Xame which
extends the identity map on X. By the AME property, f ◦F0 : C0 → Xame extends
to a regular map F : C → Xame. Then F (σ) = p which means that σ does not
intersect any pi ×B0 (here σ denotes the closure of σ). This means that the image
of σ under the projection from C to (P1, p1, . . . , pn) is a single point q. Thus σ is
just {q} × B which means σ2 = 0. But this is impossible because F : C → Xame

contracts σ to a point. �

It would be interesting (and useful) to generalize Proposition 3.1 to curves C
of higher genus. In order to do that one needs a log version of the bend and break
lemma (since then the analogue of Corollary 3.2 would almost say that KX +Δ is
nef).

Question 1. Is there a log version of the bend and break lemma?

4. The case of surfaces

In this section suppose X is a normal surface and denote by X a simple normal
crossing compactification of X. We denote by Δ ⊂ X the boundary Δ := X \X.
In this case we have the following MMP for surfaces.

Theorem 4.1. [F, Thm. 3.3, 8.1] There exists a sequence of contractions

(X,Δ) = (X0,Δ0)
φ0−→ (X1,Δ1)

φ1−→ . . .
φk−1−−−→ (Xk,Δk) = (X∗,Δ∗)

such that each (Xi,Δi) is log-canonical and one of the following two things hold:

(i) KX∗ +Δ∗ is semi-ample or
(ii) there exists a morphism g : X∗ → B such that −(KX∗ +Δ∗) is g-ample

and dim(B) < 2.

Remark 4.2. The MMP states that in case (i) the divisor KX∗ + Δ∗ is nef.
Then by the abundance theorem for log-canonical surfaces, it is also semi-ample.

Proposition 4.3. If X is a normal surface which has an AME compactification
then X is of log general type.
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Proof. Since we are trying to prove X is of log general type we can remove
the singular locus of X and assume it is smooth. Now, compactify X and consider
a log minimal resolution (X,Δ). First we show that applying Theorem 4.1 we end
up in case (i).

Suppose to the contrary that we are in case (ii). Denote the composition of
contractions φ : (X,Δ) → (X∗,Δ∗) and denote by Eφ the exceptional locus. There
are two cases depending on whether dim(B) = 0 or dim(B) = 1.

If dim(B) = 0 then −(KX∗ + Δ∗) is ample. By [KeM, Cor. 1.6], X∗ \ Δ∗

is C×-connected which means that X is also C×-connected. But then, by [KeM,
Cor. 7.9], we find that π1(X) is virtually abelian. This is impossible since X has
the AME property. See also [Zh] for a similar approach.

If dim(B) = 1 then consider a connected component C of a general fibre of g.
Since X∗ is normal C is smooth. The image φ(Eφ) ⊂ X∗ has codimension 2 so

C ∩ φ(Eφ) = ∅. Hence C has a unique lift to X which we also denote C. Then

(4.1) (KX +Δ) · C = (KX∗ +Δ∗) · C < 0

because −(KX∗ + Δ∗) is g-ample. Since C is a fibre of g this means C2 = 0 and
hence

deg(KC) + Δ · C = (KX + C) · C +Δ · C < 0.

Since C is not contained in Δ we have Δ · C ≥ 0. Thus C has genus zero and
Δ ·C ≤ 1. So C intersects Δ in at most one point, meaning that A1 ⊂ C \Δ. This
is a contradiction since by Lemma 2.2, (C,Δ ∩ C) ⊂ (X,Δ) is an AME pair.

So we must be in case (i). Consider the map π : X∗ → B induced by KX∗+Δ∗.
We must show that dim(B) = 2. If dim(B) = 1 then consider a general fibre C of
π as above. Then

(KX +Δ) · C = (KX∗ +Δ∗) · C = 0

which is similar to equation (4.1). Then arguing as before, either C has genus one
and Δ · C = 0 or it has genus zero and Δ · C ≤ 2. In the first case C does not
intersect Δ and we get a contradiction by Lemma 2.2. Similarly, in the second case
C intersects Δ in at most two points, meaning that C× ⊂ C \Δ which is again a
contradiction by Lemma 2.2.

If dim(B) = 0 then KX∗ +Δ∗ is trivial. We have

KX +Δ = φ∗(KX∗ +Δ∗) +
∑
i

aiEi

where −1 ≤ ai ≤ 0 and {Ei} are the irreducible, exceptional divisors. The left
inequality follows since (X∗,Δ∗) is log canonical, while ai ≤ 0 is a consequence of
the fact (X,Δ) is a minimal log resolution (see [Ko1, Claim 66.3]).

Thus, either all ai are zero and Δ = 0 (which means KX is trivial) or some ai <

0 (which means κ(X) = −∞). The former cannot happen because the fundamental
group of X = X would be virtually abelian. In the second case, we can take any
rational curve C ⊂ X not contained in Δ. Then (KX +Δ) ·C =

∑
i ai(Ei ·C) < 0

which is a contradiction by Corollary 3.2.
Thus dim(B) = 2 and X must be of log general type. �

Corollary 4.4. Suppose X is a normal surface with at worst log canonical
singularities which has the AME property. Then Xlc is a compactification of X.
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Proof. Compactify X to X as in Theorem 4.1. By Proposition 4.3 L∗ :=
KX∗ + Δ∗ is semi-ample. It suffices to show that each φi as well as the map
induced by L∗ only contracts curves in the boundary.

Suppose φi contracts a curve C which does not lie in the boundary. Then
(KXi

+ Δi) · C ≤ 0 and C is either rational or an elliptic curve which does not

intersect Δi or sing(Xi). The second case is not possible since the local monodromy
around C would be abelian (contradicting the fact that X has the AME property).
The first case is not possible by Corollary 3.2.

The fact that the map induced by L∗ only contracts curves along the boundary
follows similarly. �

Proposition 4.5. Suppose X is a normal surface with at worst log canonical
singularities which has a maximal SME compactification Xsme. Then there is a
regular morphism Xlc → Xsme extending the identity map on X.

Proof. Denote by (X,Δ) a minimal simple normal crossing compactification
of X and denote by (Xlc,Δlc) its log canonical model. Then we have regular
morphisms

Xlc
π1←− X

π2−→ Xsme.

Consider a connected, exceptional curve E ⊂ X of π1. If π1(E) is a point which
does not intersect the boundary of Xlc then the local monodromy around E, is the
same as the local monodromy around π1(E) which, by Proposition 4.6 is virtually
solvable. Thus, by Lemma 2.4, it follows that π2 must contract E to a point and
hence π2 factors through π1.

If π1(E) intersect the boundary of Xlc then the type of singularity at π1(E) is
very restricted (see [KoM, Thm. 4.15] for a list of possible singularities). Locally
around π1(E), the complement of the boundary looks like the quotient of C2 \{x =
0} or C2 \ {x = 0, y = 0} by a finite group. Thus the monodromy is virtually
abelian and, again as above, π2 must contract E to a point and hence π2 factors
through π1. �

Proposition 4.6. Let X be a normal surface and x ∈ X a point. Then the
following are equivalent:

(i) X has an at worst log canonical singularity at x,
(ii) the local fundamental group of X around x is solvable or finite.

Proof. This follows by combining the results in [K] and [W]. �

5. The case of higher dimensional varieties

5.1. Generalizing Proposition 4.3. Suppose X is a normal variety of arbi-
trary dimension which has an AME compactification. We would like to show that
X is of log general type by imitating the proof of Proposition 4.3. For this purpose
we can assume X is smooth and we compactify it to some X so that Δ := X \X
is a simple normal crossing divisor.

The analogue of Theorem 4.1 in this case is the (partially conjectural) log MMP.
It states that there exists a sequence of birational maps

(X,Δ) = (X0,Δ0)
φ0��� (X1,Δ1)

φ1��� . . .
φk−1��� (Xk,Δk) = (X∗,Δ∗)

such that each (Xi,Δi) is a log-canonical pair and each φi is either a divisorial
contraction or a flip. As before, we denote the composition φ and note that φ−1
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has no exceptional divisors. The resulting pair (X∗,Δ∗) satisfies one of the following
two properties:

(i) KX∗ +Δ∗ is nef or
(ii) there exists a morphism g : X∗ → B such that −(KX∗ +Δ∗) is g-ample

and dim(B) < dim(X).

First we would like to argue that we must be in case (i). Assume instead that
we are in case (ii). If dim(B) > 0 consider a general fibre F and let ΔF := Δ∗|F .
Then KF

∼= KX∗ |F and hence KF + ΔF = (KX∗ + Δ∗)|F is anti-ample. But the
exceptional locus of φ−1 is codimension so there exists an open subset F o ⊂ F
which is not of log general type but which sits inside X and hence has an AME
compactification. By induction on the dimension of X this is impossible.

So we are left with considering the situation where dim(B) = 0. In this case
−(KX∗ +Δ∗) is ample. When X was a surface we used [KeM]. Two analogues of
such a result in higher dimensions were posed, for instance, during an open problem
session at the AIM workshop “Rational curves on algebraic varieties” (May 2007):

• Is the fundamental group of the smooth locus of a log Fano variety finite?
• Is a log Fano variety (X∗,Δ∗) log rationally connected? In other words,
is there a rational curve passing through any two given points which
intersects Δ∗ only once?

For us, an affirmative answer to a strictly easier question would suffice:

Question 2. If (X∗,Δ∗) is log Fano is there a rational curve which avoids any
given locus L of codimension at least 2?

Taking L to be the union of the exceptional locus of φ−1 and the singular locus we
lift such a curve to C ⊂ X. Then, by Corollary 3.2, we have

(KX∗ +Δ∗) · C = (KX +Δ) · C > 0

which contradicts the fact that −(KX∗ +Δ∗) is ample.
So, assuming the answer to Question 2 is “Yes”, we find that KX∗ + Δ∗ is

nef. The abundance conjecture, which was known in the case of surfaces (and also
threefolds [KMM]), would then imply that KX∗ + Δ∗ is semi-ample. So we can
consider the induced map π : X∗ → B.

If dim(X) > dim(B) > 0 then choose a general fibre F . Then, proceeding as
above, KF

∼= KX∗ |F and hence KF +ΔF is trivial (where ΔF := Δ∗|F ). Thus, by
induction on dim(X), this is a contradiction.

If dim(B) = 0 then KX∗ + Δ∗ is trivial. If X∗ were smooth then we would
get a contradiction as follows. If Δ∗ = 0 then X∗ is Calabi-Yau and hence its
fundamental group is virtually abelian. On the other hand, if Δ∗ �= 0 then choose
a point in X∗ which is not in the image of the exceptional locus of φ. By the bend
and break lemma we can find a rational curve C through this point. Then, since
(KX∗ +Δ∗) · C < 0, one can find a map F0 and in Proposition 3.1. Since C does
not belong to the image of the exceptional locus of φ, this map can be lifted to a
simple, normal crossing compactification of X where we get a contradiction as in
the proof of Corollary 3.2.

To push this argument through when X∗ is singular we could use an affirmative
answer to the following question:

Question 3. Suppose (X∗,Δ∗) is log Calabi-Yau, meaning that KX∗+Δ∗ is trivial:
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(i) If Δ∗ = 0, is the fundamental group of the smooth locus of X∗ virtually
abelian?

(ii) If Δ∗ �= 0, can you find a rational curve in X∗ which avoids the singular
locus and is not contained in the image of the exceptional locus of φ?

Having ruled out the cases dim(X) > dim(B) it follows that dim(X) = dim(B)
and X is of log general type.

5.2. Generalizing Proposition 4.5. Let (Xlc,Δlc) be the log canonical model
of X and resolve it to a simple normal crossing compactification (X,Δ). Subse-
quently we have the following regular morphisms

Xlc
π1←− X

π2−→ Xsme.

We would like to factor π1 as a sequence of extremal divisorial contractions

(X,Δ)
φ0−→ (X1,Δ1)

φ1−→ . . .
φk−1−−−→ (Xk,Δk) = (Xlc,Δlc)

and to show by induction that:

(i) π2 descends to a regular map Xi
pi−→ Xsme and

(ii) any curve C ⊂ Xi contracted by φi is also contracted by pi.

Notice that (ii) implies that pi descends to a regular map pi+1 : Xi+1 → Xsme (so
it suffices to prove (ii)).

Unfortunately, it is not at all clear how to do this. One obvious approach is
to hope that for a log canonical pair (X,Δ), the local fundamental group around a
point x ∈ X is virtually solvable. In the case of surfaces the answer to this question
was “yes” but, as the referee points out, [Ko2, Thm. 2] gives a counter-example
already in the case of 3-folds. In fact, [Ko2, Question 24] essentially asks if there
are any natural restrictions on such local fundamental groups.

6. Some final remarks

6.1. Two examples. Choose four points on P2 in general position and denote
by X the complement of the six lines through them. Then X has the SME property
with Xsme isomorphic to the blowup of P2 at these four points. In fact, X ∼= M0,5

parametrizing five points on P1 and this blowup is just Xsme
∼= M0,5.

On the other hand, choose n ≥ 4 lines in general position on P2 and letX be the
complement of their union. Then by an old result of Zariski [Za] the fundamental
group of X is abelian. Subsequently, X does not have the SME (or AME) property
even though it is of log general type (with log canonical model Xlc = P2).

6.2. Resolution of singularities. The following observation goes back to a
conversation with Sean Keel a few years ago.

Denote by X(r, n) the moduli space of n hyperplanes in Pr−1. X(r, n) has
a particular compactification X(r, n) known as Kapranov’s Chow quotient. Keel
and Tevelev [KT] point out that the singularities of the boundary of X(r, n) are
arbitrarily complicated.

On the other hand, one can show that X(r, n) is an SME compactification.
Hence, if Speculations #1 and #2 are correct, we obtain a regular map X(r, n)lc →
X(r, n) which gives a canonical way to (partially) resolve arbitrarily bad singulari-
ties.

Question 4. Is there a regular map X(r, n)lc → X(r, n)?
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Introduction

The pseudo-effective cone Eff(X) of a smooth projective variety X is a fun-
damental, yet elusive invariant. On one hand, a few general facts are known: the
interior of the effective cone is the cone of big divisors so, in particular, X is of
general type if and only if KX ∈ int(Eff(X)); less obviously [4], a variety X is
uniruled if and only if KX is not pseudo-effective and the dual of Eff(X) is the
cone of movable curves; and, the effective cone is known to be polyhedral for Fano
varieties. For further background, see [60]. On the other hand, no general structure
theorem is known and the calculation of Eff(X) is a daunting task even in some of
the simplest cases. For instance, the problem of computing the cone Eff(C(2)) for a
very general curve C of genus g is known to be equivalent to Nagata’s Conjecture,
see [16].

The aim of this paper is to survey what is known about the effective cones of
moduli spaces, with a focus on the moduli spaces Mg,n of stable curves, Ag of prin-

cipally polarized abelian varieties and Mg,n(X, β) of stable maps. Because related
moduli spaces often have an inductive combinatorial structure and the associated
families provide a rich cycle theory, the study of effective cones of moduli spaces
has often proven more tractable and more applicable than that of general algebraic
varieties.

For example, in the case of Mg, we may define, following [48], the slope s(D)
of a divisor class D of the form aλ − bδ − cirrδirr −

∑
i ciδi, with a and b positive,

all the c’s non-negative and at least one—in practice, almost always cirr—equal
to 0, to be a

b . We set s(D) = ∞ for divisors not of this form, for example, if
g ≥ 3, for the components Δirr and Δi. A fundamental invariant is then the slope
s(Mg) := inf{s(D) |D ∈ Eff(Mg)}. The Harris-Mumford theorem [50] on the

Kodaira dimension of Mg, is equivalent to the inequality s(Mg) < s(KMg
) = 13

2 ,

for g ≥ 24. For a long time, the conjecture of [48] that the inequality s(Mg) ≥
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6 + 12
g+1 holds, equality being attained only for the classical Brill-Noether divisors

whose classes were also computed in [50], was widely believed. Counterexamples
were provided in [32] for infinitely many g though all of these have slope greater
than 6. On the other hand, all the methods (cf. [48, 12, 76]) for bounding s(Mg)
from below for large g, yield only bounds that tend to zero with g. This sets the
stage for the following fundamental question:

Problem 0.1. Does the limit s∞ := lim
g→∞

s(Mg) exist, and, if so, what is it’s

value?

The authors know of no credible, generally accepted conjectural answer. The
first tends to guess that s∞ = 0, the second and third that s∞ = 6. Hedging his
guess, the third author has a dinner bet with the second, made at the 2009 MSRI
Program in Algebraic Geometry: the former wins if s∞ = 0, the latter if s∞ > 0,
and the bet is annulled should the limit not exist.

The argument for s∞ = 0 is that the papers cited above. which compute the
invariants of movable curves in Mg using tools as diverse tools as Hurwitz theory,

Teichmüller dynamics and Hodge integrals, do no better than s(Mg) ≥ O( 1g ).

Intriguingly, the first two methods, though apparently quite different in character,
suggest the same heuristic lower bound 576

5g for the slope; see Section 3 of this paper.

Is this coincidence or evidence for the refined asymptotic lim infg→∞ g s(Mg) =
576
5

conjectured by the first author in [12], and hence that s∞ = 0?
The argument for s∞ > 0 is that effective divisors of small slope are known to

have strong geometric characterizations: for instance, they must contain the locus
Kg of curves lying on K3 surfaces. Constructing any such divisors, let alone ones
of arbitrarily small slope, is notoriously difficult. In fact, for g ≥ 11, not a single
example of an effective divisor having slope less than 6+ 10

g is known. The current

state of knowledge concerning divisors of small slope is summarized in Section 2 of
the paper.

We invite the reader to take sides in this bet, or much better, settle it con-
clusively by computing s∞. To encourage work that might enable him to win, the
third author here announces the First Morrison Prize, in the amount of US$100, for
the construction of any effective divisor on Mg of slope less than 6, as determined
by a jury consisting of the present authors. One further question is to what extent
s∞ has a modular meaning. As pointed out in [48, p. 323], the inequality s∞ > 0
would imply a fundamental difference between the geometry of Mg and Ag and
provide a new geometric approach to the Schottky problem.

We now describe the contents of the paper. Section 1 recalls the classical
constructions of effective divisors on Mg, starting with Brill-Noether and Gieseker-
Petri divisors. Then we discuss the cases g ≤ 9, where a much better understanding
of the effective cone is available and alternative Mukai models of Mg are known to
exist. In Section 2, we highlight the role of syzygy divisors in producing examples
of divisors on Mg of small slope and discuss the link to an interesting conjecture of
Mercat [64] that suggests a stratification of Mg in terms of rank 2 vector bundles
on curves. Special attention is paid to the interesting transition case g = 11, which
is treated from the point of view both of Koszul cohomology and higher rank Brill-
Noether theory.

Section 3 is devoted to finding lower bounds on s(Mg) and the existing meth-
ods are surveyed. The common idea is to find a Zariski dense collection of 1-cycles
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Bμ, so that any effective divisor must intersect one of these curves non-negatively,

obtaining the bound s(Mg) ≥ infμ

(
Bμ·δ
Bμ·λ

)
. There are several methods of con-

structing these curves, e.g. by using simply-branched coverings of P1 and allowing
a pair of branch points to come together [48], by imposing conditions on curves in
projective spaces, especially canonical space [19, 41], as Teichmüller curves arising
from branched covers of elliptic curves [12], or as complete intersection of nef tau-
tological divisors on Mg, with intersection numbers evaluated via Gromov-Witten
theory [76].

In Section 4, we turn to moduli of abelian varieties and discuss the recent paper
[34] showing that the Andreotti-Mayer divisor N ′

0 of 5-dimensional ppav whose
theta divisor is singular at a pair of points which are not two-torsion computes the
slope of the perfect cone compactification A5 of A5 as s(A5) =

54
7 .

Section 5 is devoted almost exclusively to moduli spaces of curves of genus g =

0. We begin with a few cases—the space M̃0,n that is the quotient of M0,n by the
natural action of Sn induced by permuting the marked points and the Kontsevich
moduli spaces of stable maps M0,0(P

d, d)—in which unpublished arguments of
Keel make it easy to determine the effective cone completely. We then discuss
more systematically the space M0,0(P

d, d), sketching the sharper results of Coskun,
Harris and Starr [19] on their effective cones. We also review some of the results of
the first author with Coskun and Crissman concerning the Mori program for these
spaces, emphasizing the examples M0,0(P

3, 3) where [10] completely works out the
geometry of this program, giving an explicit chamber decomposition of the effective
cone in terms of stable base loci, and M0,0(P

4, 4) for which much, though not all,
the geometry is worked out in [13].

The rest of Section 5 deals with results for M0,n. For n ≤ 5, the naive guess
that the effective cone might be generated by the components of the boundary is
correct, and we recall the argument for this. But for larger n new extremal rays
appear. We first review the example of Keel and Vermeire [88] and the proof of
Hassett and Tschinkel [52] that, for n = 6, there are no others. The main focus of
this section is to give a brief guide to the ideas of Castravet and Tevelev [8] which
show just how rapidly the complexity of these effective cones grows.

We conclude this introduction by citing some work on effective divisors that
we have not reviewed. These include Rulla’s extensions in [79, 80] of the ideas in
§§5.1 to quotients by subgroups permuting only a subset of the marked points and
Jensen’s examples [53] for M5,1 and M6,1. In a very recent preprint, Cooper [17]

studies the moduli spaces of stable quotients Q1,0(P
n−1, d) of Marian, Oprea and

Pandharipande [62]. Because there is a surjection

Mg,n(P
n−1, d) → Qg,0(P

n−1, d),

this is relevant to §§5.2. In the case of g = 1 and n = 0 that Cooper considers,
the target Q1,0(P

n−1, d) is smooth with a rank 2 Picard group and she is able to
describe the effective (and nef) cones explicitly. In addition, we have not touched
upon connections with the F -conjecture, including Pixton’s exciting example [78] of
an effective divisor on M0,12 that intersects all topological 1-strata non-negatively
yet is not equivalent to an effective sum of boundary divisors. Finally, as this paper
is written the first author and Coskun are able to show that the effective cone of
M1,n is not finitely generated for n ≥ 3.
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Conventions and notation To simplify notation, we will ignore torsion classes
and henceforth use Pic

(
M

)
with no decoration for Pic

(
M

)
⊗Q. We set Eff

(
M

)
and

Nef
(
M

)
for the effective and nef cones of M . We denote by Mov(M) the cone of

movable divisors on M parametrizing effective divisors whose stable base locus has
codimension at least 2 in M . We write δirr for the class of the boundary component
of irreducible nodal curves, and, when there is no risk of confusion, we simplify
notation by omitting the limits of summations indexed by boundary components
consisting of reducible curves. We work throughout over C.

1. Geometric divisors on Mg

Any expression D = aλ − birrδirr −
∑

i biδi for an effective divisor D on Mg

(with all coefficients positive) provides an upper bound for s(Mg). Chronologically,
the first such calculations are those of the Brill-Noether divisors, which we briefly
recall following [50, 24].

Definition 1.1. For positive integers g, r, d ≥ 1 such that

ρ(g, r, d) := g − (r + 1)(g − d+ r) = −1,

we denote by Mr
g,d := {[C] ∈ Mg : W r

d (C) �= ∅} the Brill-Noether locus of curves
carrying a linear series of type grd.

It is known [25] that Mr
g,d is an irreducible effective divisor. The class of its

closure in Mg has been computed in [24] and one has the formula

[Mr

g,d] = cg,r,d

(
(g + 3)λ− g + 1

6
δirr −

∑
i

i(g − i)δi

)
,

where cg,r,d ∈ Q>0 is an explicit constant that can be viewed as an intersection

number of Schubert cycles in a Grassmannian. Note that s(Mr

g,d) = 6 + 12
g+1 , thus

implying the upper bound s(Mg) ≤ 6+ 12
g+1 , for all g such that g+1 is composite, so

that the diophantine equation ρ(g, r, d) = −1 has integer solutions. The initial Slope
Conjecture [48] predicted that the Brill-Noether divisors are divisors of minimal
slope. This turns out to be true only when g ≤ 9 and g = 11.

Observe that remarkably, for various r, d ≥ 1 such that ρ(g, r, d) = −1, the

classes of the divisors Mr

g,d are proportional. The proof given in [24] uses essential
properties of Picard groups of moduli spaces of pointed curves and it remains a
challenge to find an explicit rational equivalence linking the various Brill-Noether
divisors on Mg. The first interesting case is g = 11, when there are two Brill-

Noether divisors, namely M1

11,6 and M2

11,9. Note that when g = 2, the divisor Δ1

has the smallest slope 10 in view of the relation 10λ = δirr + 2δ1 on M2, see for
instance [49, Exercise (3.143)].

When g = 3, 5, 7, 8, 9, 11, there exist Brill-Noether divisors which actually de-
termine the slope s(Mg). This has been shown in a series of papers [48, 9, 85, 36]
in the last two decades. Some cases have been recovered recently in [19, 41].

For 3 ≤ g ≤ 9 and g = 11, it is well known [66] that a general curve of genus
g can be realized as a hyperplane section H of a K3 surface S of degree 2g − 2
in Pg. Consider a general Lefschetz pencil B in the linear system |H|. Blowing
up the 2g − 2 base points of B, we get a fibration S′ over B, with general fiber a
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smooth genus g curve. All singular fibers are irreducible one-nodal curves. From
the relation

χtop(S
′) = χtop(B) · χtop(F ) + the number of nodal fibers,

where F is a smooth genus g curve, we conclude that

B · δirr = 6g + 18, B · δi = 0 for i > 0.

Let ω be the first Chern class of the relative dualizing sheaf of S′ over B. By the
relation

12λ = δ + ω2

and

ω2 = c21(S
′) + 4(2g − 2) = 6g − 6,

we obtain that

B · λ = g + 1.

Consequently the slope of the curve B is given by

sB = 6 +
12

g + 1
.

Since the pencil B fills-up Mg for g ≤ 9 or g = 11, we get the lower bound

s(Mg) ≥ 6 + 12
g+1 in this range. The striking coincidence between the slope of the

Brill-Noether divisors Mr

g,d and that of Lefschetz pencil on a fixed K3 surface of
genus g has a transparent explanation in view of Lazarsfeld’s result [59], asserting
that every nodal curve C lying on a K3 surface S such that Pic(S) = Z[C], satisfies
the Brill-Noether theorem, that is, W r

d (C) = ∅ when ρ(g, r, d) < 0. In particular,

when ρ(g, r, d) = −1, the intersection of the pencil B ⊂ Mg with the Brill-Noether

divisor Mr

g,d is empty, therefore also, B · Mr

g,d = 0. This confirms the formula

s(Mr

g,d) = sB = 6 +
12

g + 1
.

This Lefschetz pencil calculation also shows [36] that any effective divisor D ∈
Eff(Mg) such that s(D) < 6 + 12

g+1 must necessarily contain the locus

Kg := {[C] ∈ Mg : C lies on a K3 surface}.
In particular, effective divisors of slope smaller than 6+ 12

g+1 have a strong geometric

characterization, hence constructing them is relatively difficult. If one views a
divisor on Mg as being given in terms of a geometric condition that holds in
codimension one in moduli, then in order for such a condition to lead to a divisor
of small slope on Mg, one must search for geometric properties that single out
sections of K3 surfaces among all curves of given genus. Very few such geometric
properties are known at the moment, for curves onK3 surfaces are known to behave
generically with respect to most geometric stratifications of Mg, for instance those
given by gonality or existence of special Weierstrass points.

For integers g such that g+1 is prime, various substitutes for the Brill-Noether
divisors have been proposed, starting with the Gieseker-Petri divisors. Recall that
the Petri Theorem asserts that for a line bundle L on a general curve C of genus
g, the multiplication map

μ0(L) : H
0(C,L)⊗H0(C,KC ⊗ L∨) → H0(C,KC)
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is injective. This implies that the scheme Gr
d(C) classifying linear series of type

grd is smooth of expected dimension ρ(g, r, d) when C is general. The first proof of
this statement was given by Gieseker whose argument was later greatly simplified
in [23]. Eventually, Lazarsfeld [59] gave the most elegant proof, and his approach
has the added benefit of singling out curves on very general K3 surfaces as the only
collections of smooth curves of arbitrary genus verifying the Petri condition. The
locus where the Gieseker-Petri theorem does not hold is the proper subvariety of
the moduli space

GPg := {[C] ∈ Mg : μ0(L) is not injective for a certain L ∈ Pic(C)} .
This breaks into subloci GPr

g,d whose general point corresponds to a curve C such
that μ0(L) is not injective for some linear series L ∈ W r

d (C). The relative position of
the subvarieties GPr

g,d is not yet well-understood. The following elegant prediction
was communicated to the second author by Sernesi:

Conjecture 1.2. The locus GPg is pure of codimension one in Mg.

Clearly there are loci GPr
g,d of codimension higher than one. However, in light

of Conjecture 1.2 they should be contained in other Petri loci in Mg that fill-up
a codimension one component in moduli. Various partial results in this sense are
known. Lelli-Chiesa [61] has verified Conjecture 1.2 for all g ≤ 13. It is proved
in [33] that whenever ρ(g, r, d) ≥ 0, the locus GPr

g,d carries at least a divisorial
component. Bruno and Sernesi [5] show that GPr

g,d is pure of codimension one for
relatively small values of ρ(g, d, r), precisely

0 < ρ(g, r, d) < g − d+ 2r + 2.

The problem of computing the class of the closure GPr

g,d has been completely solved
only when the Brill-Noether numbers is equal to 0 or 1. We quote from [24] (for
the case r = 1) and [32] (for the general case r ≥ 1).

Theorem 1.3. Fix integers r, s ≥ 1 and set d := rs + r and g := rs + s,
therefore ρ(g, r, d) = 0. The slope of the corresponding Gieseker-Petri divisor is
given by the formula:

s(GPr

g,d) = 6 +
12

g + 1
+

6(s+ r + 1)(rs+ s− 2)(rs+ s− 1)

s(s+ 1)(r + 1)(r + 2)(rs+ s+ 4)(rs+ s+ 1)
.

For small genus, one recovers the class of the divisor GP1
4,3 of curves of genus

4 whose canonical model lies on a quadric cone and then s(GP1

4,3) = 17
2 . When

g = 6, the locus GP1
6,4 consists of curves whose canonical model lies on a singular

del Pezzo quintic surface and then s(GP1

6,4) =
47
6 . In both cases, the Gieseker-Petri

divisors attain the slope of the respective moduli space.
We briefly recall a few other divisor class calculations. For genus g = 2k, Harris

has computed in [47] the class of the divisor D1 whose general point corresponds
to a curve [C] ∈ Mg having a pencil A ∈ W 1

k+1(C) and a point p ∈ C with

H0(C,A(−3p)) �= 0. This led to the first proof that Mg is of general type for even
g ≥ 40. This was superseded in [24], where with the help of Gieseker-Petri and
Brill-Noether divisors, it is proved that Mg is of general type for all g ≥ 24.

Keeping g = 2k, if σ : Hg,k+1 → Mg denotes the generically finite forgetful
map from the space of admissible covers of genus g and degree k + 1, then D1 is
the push-forward under σ of a boundary divisor on Hg,k+1, for the general point
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of the Hurwitz scheme corresponds to a covering with simple ramification. The
other divisor appearing as a push-forward under σ of a boundary locus in Hg,k+1 is
the divisor D2 with general point corresponding to a curve [C] ∈ Mg with a pencil
A ∈ W 1

k+1(C) and two points p, q ∈ C such that H0(C,A(−2p−2q)) �= 0. The class
of this divisor has been recently computed by van der Geer and Kouvidakis [86].

An interesting aspect of the geometry of the Brill-Noether divisors is that for
small genus, they are rigid, that is, [Mr

g,d] /∈ Mov(Mg), see for instance [33]. This

is usually proved by exhibiting a curve B ⊂ Mr

g,d sweeping out Mr

g,d such that

B · Mr

g,d < 0. Independently of this observation, one may consider the slope

s′(Mg) := inf{s(D) : D ∈ Mov(Mg)}

of the cone of movable divisors. For g ≤ 9, the inequality s′(Mg) > s(Mg) holds.

1.1. Birational models of Mg for small genus. We discuss models of Mg

in some low genus cases, when this space is unirational (even rational for g ≤ 6)
and one has a better understanding of the chamber decomposition of the effective
cone.

Example 1.4. We set g = 3 and let B ⊂ M3 denote the family induced
by a pencil of curves of type (2, 4) on P1 × P1. All members in this family are
hyperelliptic curves. A standard calculation gives that B · λ = 3 and B · δirr = 28,

in particular B · M1

3,2 = −1. This implies not only that the hyperelliptic divisor

M1

3,2 is rigid, but also the inequality s′(M3) ≥ sB = 28
3 . This bound is attained

via the birational map

ϕ3 : M3 ��� X3 := |OP2(4)|//SL(3)

to the GIT quotient of plane quartics. Since ϕ3 contracts the hyperelliptic divisor

M1

3,2 to the point corresponding to double conics, from the push-pull formula one

finds that s(ϕ∗
3(OX3

(1)) = 28
3 . This proves the equality s′(M3) =

28
3 > 9 = s(M3).

That s′(Mg) is accounted for by a rational map from Mg to an alternative
moduli space of curves of genus g, also holds for a few higher genera, even though
the geometry quickly becomes intricate.

Example 1.5. For the case g = 4, we refer to [40]. Precisely, we introduce the
moduli space X4 of (3, 3) curves on P1 × P1, that is, the GIT quotient

X4 := |OP1×P1(3, 3)|//SL(2)× SL(2).

There is a birational map ϕ : M4 ��� X4, mapping an abstract genus 4 curve
C to P1 × P1 via the two linear series g13 on C. The Gieseker-Petri divisor is

contracted to the point corresponding to triple conics. This shows that [GP1

4,3] ∈
Eff(M4) is an extremal point. By a local analysis, Fedorchuk computes in [40] that
s(ϕ∗

4(O(1, 1))) = 60
9 = s′(M4) > s(M4). Furthermore, the model X4 is one of the

log-canonical models of M4.

Mukai [66, 69, 68] has shown that general canonical curves of genus g = 7, 8, 9
are linear sections of a rational homogeneous variety

Vg ⊂ Pdim(Vg)+g−2.
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This construction induces a new model Xg of Mg having Picard number equal to

1, together with a birational map ϕg : Mg ��� Xg. Remarkably, s(ϕ∗
g(OXg

(1)) =

s′(Mg). The simplest case is g = 8, which we briefly explain.

Example 1.6. Let V := C6 and consider G := G(2, V ) ⊂ P(
∧2

V ). Codimen-
sion 7 linear sections of G are canonical curves of genus 8, and there is a birational
map

ϕ8 : M8 ��� X8 := G(8,

2∧
V )//SL(V ) ,

that is shown in [69] to admit a beautiful interpretation in terms of rank two
Brill-Noether theory. The map ϕ−1

8 associates to a general projective 7-plane H ⊂
P(
∧2 V ) the curve [G ∩ H] ∈ M8. In particular, a smooth curve C of genus

8 appears as a linear section of G if and only if W 2
7 (C) = ∅. Observing that

ρ(X8) = 1, one expects that exactly five divisors get contracted under ϕ8, and
indeed—see [37, 39]—

Exc(ϕ8) = {Δ1,Δ2,Δ3,Δ4,M
2

8,7} .
Using the explicit construction of ϕ8 one can show that the Brill-Noether divisor
gets contracted to a point. Thus X8 can be regarded as a (possibly simpler) model
of M8 in which plane septimics are excluded.

1.2. Upper bounds on the slope of the moving cone. If f : X ��� Y is a
rational map between normal projective varieties, then f∗(Ample(Y )) ⊂ Mov(X).
In order to get upper bounds on s′(Mg) for arbitrary genus, a logical approach

is to consider rational maps from Mg to other projective varieties and compute
pull-backs of ample divisors from the target variety. Unfortunately there are only
few known examples of such maps, but recently two examples have been worked
out. We begin with [33], where a map between two moduli spaces of curves is
considered.

We fix an odd genus g := 2a + 1 ≥ 3 and set g′ := a
a+1

(
2a+2

a

)
+ 1. Since

ρ(2a + 1, 1, a + 2) = 1, we can define a rational map φa : Mg ��� Mg′ that
associates to a curve C its Brill-Noether curve φ([C]) := [W 1

a+2(C)] consisting
of pencils of minimal degree—that the genus of W 1

a+2(C) is is g′ follow from the
Harris-Tu formula for Chern numbers of kernel bundles, as explained in [24]. Note
that φ1 : M3 ��� M3 is the identity map, whereas the map φ2 : M5 ��� M11 has
a rich and multifaceted geometry. For a general [C] ∈ M5, the Brill-Noether curve
W 1

4 (C) is endowed with a fixed point free involution ι : L �→ KC⊗L∨. The quotient
curve Γ := W 1

4 (C)/ι is a smooth plane quintic which can be identified with the
space of singular quadrics containing the canonical image C ↪→ P4. Furthermore,
Clemens showed that the Prym variety induced by ι is precisely the Jacobian of
C! This result has been recently generalized by Ortega [73] to all odd genera.
Instead of having an involution, the curve W 1

a+2(C) is endowed with a fixed point
free correspondence

Σ :=
{
(L,L′) : H0(L′)⊗H0(KC ⊗ L∨) → H0(KC ⊗ L′ ⊗ L∨) is not injective

}
,

which induces a Prym-Tyurin variety P ⊂ Jac(W 1
a+2(C) of exponent equal to the

Catalan number (2a)!
a!(a+1)! and P is isomorphic to the Jacobian of the original curve

C.
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The main result of [33] is a complete description of the pull-back map φ∗
a at

the level of divisors implying the slope evaluation:

Theorem 1.7. For any divisor class D ∈ Pic(Mg′) having slope s(D) = s,

s(φ∗
a(D)) = 6 +

8a3(s− 4) + 5sa2 − 30a2 + 20a− 8as− 2s+ 24

a(a+ 2)(sa2 − 4a2 − a− s+ 6)
.

By letting s become very large, one obtains the estimate s′(Mg) < 6 + 16
g−1 .

A different approach is used by van der Geer and Kouvidakis [87] in even genus
g = 2k. We consider once more the Hurwitz scheme σ : Hg,k+1 → Mg. Associate
to a degree k + 1 covering f : C → P1 the trace curve

TC,f := {(x, y) ∈ C × C : f(x) = f(y)}.
For a generic choice of C and f , the curve TC,f is smooth of genus g′ := 5k2−4k+1.

By working in families one obtains a rational map χ : Hg,k+1 ��� Mg′ . Observe that

as opposed to of the map φa from [33], the ratio g′

g for the genera of the trace curve

and that of the original curve is much lower. The map σ∗χ
∗ : Pic(Mg′) → Pic(Mg)

is completely described in [86] and the estimate

s′(Mg) < 6 +
18

g + 2

is shown to hold for all even genera g. In conclusion, Mg carries moving divisors
of slope 6 +O

(
1
g

)
for any genus. We close by posing the following question:

Problem 1.8. Is it true that lim infg→∞ s(Mg) = lim infg→∞ s′(Mg)?

2. Syzygies of curves and upper bounds on s(Mg)

The best known upper bounds on s(Mg) are given by the Koszul divisors of
[30, 32] defined in terms of curves having unexpected syzygies. An extensive survey
of this material, including an alternative proof using syzygies of the Harris-Mumford
theorem [50] on the Kodaira dimension of Mg for odd genus g > 23, has appeared
in [31]. Here we shall be brief and concentrate on the latest developments.

As pointed out in [36] as well as earlier in this survey, any effective divisor
D ∈ Eff(Mg) of slope s(D) < 6 + 12

g+1 must necessarily contain the locus Kg of

curves lying on K3 surfaces. It has been known at least since the work of Mukai
[67] and Voisin [89] that a curve C lying on a K3 surface S carries special linear
series that are not projectively normal. For instance, if A ∈ W 1

� g+3
2 �(C) is a pencil

of minimal degree, then the multiplication map for the residual linear system

Sym2H0(C,KC ⊗A∨) → H0(C,K⊗2
C ⊗A⊗(−2))

is not surjective. One can interpret projective normality as being the Green-
Lazarsfeld property (N0) and accordingly, stratify Mg with strata consisting of
curves C that fail the higher properties (Np) for p ≥ 1, for a certain linear system
L ∈ W r

d (C) with h1(C,L) ≥ 2. This stratification of Mg is fundamentally different
from classical stratifications given in terms of gonality or Weierstrass points (for
instance the Arbarello stratification). In this case, the locus Kg lies in the smallest
stratum, that is, it plays the role of the hyperelliptic locus M1

g,2 in the gonal-
ity stratification! Observe however, that this idea, when applied to the canonical
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bundle KC (when of course h1(C,KC) = 1), produces exactly the gonality strati-
fication, see [31, 45] for details. Whenever the second largest stratum in the new
Koszul stratification is of codimension 1, it will certainly contain Kg and is thus a
good candidate for being a divisor of small slope. The main difficulty in carrying
out this program lies not so much in computing the virtual classes of the Koszul
loci, but in proving that they are divisors when one expects them to be so.

We begin by recalling basic definitions and refer to the beautiful book of
Aprodu-Nagel [1] for a geometrically oriented introduction to syzygies on curves.

Definition 2.1. For a smooth curve C, a line bundle L and a sheaf F on C,
we define the Koszul cohomology group Kp,q(C;F , L) as the cohomology of the
complex

p+1∧
H0(C,L)⊗H0(C,F ⊗ L⊗(q−1))

dp+1,q−1−→
p∧
H0(C,L)⊗H0(C,F ⊗ L⊗q)

dp,q−→

dp,q−→
p−1∧

H0(C,L)⊗H0(C,F ⊗ L⊗(q+1)).

It is a basic fact of homological algebra that the groups Kp,q(C;F , L) describe
the graded pieces of the minimal resolution of the graded ring

R(F , L) :=
⊕
q≥0

H0(C,F ⊗ L⊗q)

as an S := Sym H0(C,L)-module. Precisely, if F• → R(F , L) denotes the minimal
graded free resolution with graded pieces Fp = ⊕qS(−q)⊕bpq, then

dim Kp,q(C;F , L) = bpq , for all p, q ≥ 0.

When F = OC , one writes Kp,q(C,L) := Kp,q(C;OC , L).

Example 2.2. Green’s Conjecture [45] concerning the syzygies of a canonically
embedded curve C ↪→ Pg−1 can be formulated as an equivalence

Kp,2(C,KC) = 0 ⇔ p < Cliff(C).

Despite a lot of progress, the conjecture is still wide open for arbitrary curves.
Voisin has proved the conjecture for general curves of arbitrary genus in [90, 91].
In odd genus g = 2p + 3, the conjecture asserts that the resolution of a general
curve [C] ∈ M2p+3 is pure and has precisely the form:

0 → S(−g − 1) → S(−g + 1)⊕b1 → · · · → S(−p− 3)⊕bp+1 → S(−p− 1)⊕bp → · · ·

→ S(−2)⊕b3 → S(−2)⊕b1 → R(KC) → 0.

The purity of the generic resolution in odd genus is reflected in the fact that the
syzygy jumping locus

{[C] ∈ M2p+3 : Kp,2(C,KC) �= 0}

is a virtual divisor, that is, a degeneracy locus between vector bundles of the same
rank over M2p+3. It is the content of Green’s Conjecture that set-theoretically, this
virtual divisor is an honest divisor which moreover coincides with the Brill-Noether
divisor M1

g,p+2.
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One defines a Koszul locus on the moduli space as the subvariety consisting
of curves [C] ∈ Mg such that Kp,2(C,L) �= 0, for a certain special linear system
L ∈ W r

d (C). The case when ρ(g, r, d) = 0 is treated in the papers [30] and [32]. For
the sake of comparison with the case of positive Brill-Noether number, we quote a
single result, in the simplest case p = 0, when the syzygy condition K0,2(C,L) �=
0 is equivalent to requiring that the embedded curve C

|L|→ Pr lie on a quadric
hypersurface.

Theorem 2.3. Fix s ≥ 2 and set g = s(2s+1), r = 2s and d = 2s(s+1). The
locus in moduli

Zs :=
{
[C] ∈ Mg : K0,2(C,L) �= 0 for a certain L ∈ W r

d (C)
}

is an effective divisor on Mg. The slope of its closure in Mg is equal to

s(Zs) =
a

b0
=

3(16s7 − 16s6 + 12s5 − 24s4 − 4s3 + 41s2 + 9s+ 2)

s(8s6 − 8s5 − 2s4 + s2 + 11s+ 2)
.

This implies that s(Zs) < 6 + 12
g+1 . In particular s(Mg) < 6 + 12

g+1 , for all

genera of the form g = s(2s + 1). In the case s = 2, one has the set-theoretic
equality of divisors Z2 = K10 and s(Z2) = s(M10) = 7. This was the first instance
of a geometrically defined divisor on Mg having smaller slope than that of the
Brill-Noether divisors, see [36].

The proof of Theorem 2.3 breaks into two parts, very different in flavor. First
one computes the virtual class of Zs, which would then equal the actual class [Zs],
if one knew that Zs was a divisor on Mg. This first step has been carried out
independently and with different techniques by the second author in [32] and by
Khosla in [57]. The second step in the proof involves showing that Zs is a divisor. It
suffices to exhibit a single curve [C] ∈ Mg such that K0,2(C,L) = 0, for every linear
series L ∈ W r

d (C). By a standard monodromy argument, in the case ρ(g, r, d) = 0,
this is equivalent to the seemingly weaker requirement that there exist both a curve
[C] ∈ Mg and a single linear series L ∈ W r

d (C) such that K0,2(C,KC) = 0. This
is proved by degeneration in [32].

The case of Koszul divisors defined in terms of linear systems with positive Brill-
Noether number is considerably more involved, but the rewards are also higher. For
instance, this approach is used in [31] to prove that M22 is of general type.

We fix integers s ≥ 2 and a ≥ 0, then set

g = 2s2 + s+ a, d = 2s2 + 2s+ a,

therefore ρ(g, r, d) = a. Consider the stack σ : Gr
d → Mg classifying linear series

grd on curves of genus g. Inside the stack Gr
d we consider the locus of those pairs

[C,L] with L ∈ W r
d (C), for which the multiplication map

μ0(L) : Sym
2H0(C,L) → H0(C,L⊗2)

is not injective. The expected codimension in Gr
d of this cycle is equal to a + 1,

hence the push-forward under σ of this cycle is a virtual divisor in Mg. The case
a = 1 of this construction will be treated in the forthcoming paper [29] from which
we quote:

Theorem 2.4. We fix s ≥ 2 and set g = 2s2 + s+ 1. The locus

Ds := {[C] ∈ Mg : K0,2(C,L) �= 0 for a certain L ∈ W 2s
2s(s+1)+1(C)}
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is an effective divisor on Mg. The slope of its closure inside Mg equals

s(Ds) =
3(48s8 − 56s7 + 92s6 − 90s5 + 86s4 + 324s3 + 317s2 + 182s+ 48)

24s8 − 28s7 + 22s6 − 5s5 + 43s4 + 112s3 + 100s2 + 50s+ 12
.

We observe that the inequality

6 +
10

g
< s(Ds) < 6 +

12

g + 1
,

holds for each s ≥ 3. The case s = 3 of Theorem 2.4 is presented in [31] and
it proves that M22 is a variety of general type. Another very interesting case is
s = 2, that is, g = 11. This case is studied by Ortega and the second author in
[35] in connection with Mercat’s Conjecture in higher rank Brill-Noether theory.
In view of the relevance of this case to attempts of establishing a credible rank two
Brill-Noether theory, we briefly explain the situation.

We denote as usual by Fg the moduli space parametrizing pairs [S,H], where
S is a smooth K3 surface and H ∈ Pic(S) is a primitive nef line bundle with
H2 = 2g − 2. Over Fg one considers the projective bundle Pg classifying pairs
[S,C], where S is a smooth K3 surface and C ⊂ S is a smooth curve of genus g.
Clearly dim(Pg) = dim(Fg)+ g = 19+ g. Observe now that for g = 11 both spaces
M11 and P11 have the same dimension, so one expects a general curve of genus
11 to lie on finitely many K3 surfaces. This expectation can be made much more
precise.

For a general curve [C] ∈ M11, the rank 2 Brill-Noether locus

SUC(2,KC , 7) := {E ∈ UC(2, 20) : det(E) = KC , h0(C,E) ≥ 7}
is a smooth K3 surface. Mukai shows in [70] that C lies on a unique K3 surface
which can be realized as the Fourier-Mukai partner of SUC(2,KC , 7). Moreover,
this procedure induces a birational isomorphism

φ11 : M11 ��� P11, φ11([C]) :=
[

̂SUC(2,KC , 7), C
]

and the two Brill-Noether divisors M1

11,6 and M2

11,9 (and likewise the Koszul divi-
sor) are pull-backs by φ of Noether-Lefschetz divisors on F11.

Next we define the second Clifford index of a curve which measures the com-
plexity of a curve in its moduli space from the point of view of rank two vector
bundles.

Definition 2.5. If E ∈ UC(2, d) denotes a semistable vector bundle of rank
2 and degree d on a curve C of genus g, one defines its Clifford index as γ(E) :=
μ(E)− h0(C,E) + 2 and the second Clifford index of C by the quantity

Cliff2(C) := min
{
γ(E) : E ∈ UC(2, d), d ≤ 2(g − 1), h0(C,E) ≥ 4

}
.

Mercat’s Conjecture [64] predicts that the equality

(2.6) Cliff2(C) = Cliff(C)

holds for every smooth curve of genus g. By specializing to direct sums of line
bundles, the inequality Cliff2(C) ≤ Cliff(C) is obvious. Lange and Newstead have
proved the conjecture for small genus [58]. However the situation changes for g = 11
and the following result is proved in [35]:

Theorem 2.7. The Koszul divisor D2 on M11 has the following realizations:

(1) (By definition) {[C] ∈ M11 : ∃L ∈ W 4
13(C) such that K0,2(C,L) �= 0}.
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(2) {[C] ∈ M11 : Cliff2(C) < Cliff(C)}.
(3) φ∗

11(NL), where NL is the Noether-Lefschetz divisor of (elliptic) K3 sur-
faces S with lattice Pic(S) ⊃ Z ·H ⊕ Z · C, where C2 = 20, H2 = 6 and
C ·H = 13.

The closure D2 of D2 in M11 is a divisor of minimal slope

s(D2) = s(M11) = 7.

In [35], the second description in Theorem 2.7 is shown to imply that D2 is the
locus over which Mercat’s Conjecture fails. SinceD2 �= ∅, Mercat’s Conjecture in its
original form is false on M11. On the other hand, Theorem 2.7 proves equality (2.6)
for general curves [C] ∈ M11. Proving Mercat’s Conjecture for a general [C] ∈ Mg,
or understanding the loci in moduli where the equality fails, is a stimulating open
question.

Remark 2.8. Note that in contrast with lower genus, for g = 11 we have
s(M11) = s′(M11) = 7. Furthermore, the dimension of the linear system of effec-

tive divisors of slope 7 is equal to 19 (see [36]). The divisors M1

11,6, M
2

11,9 and D2

are just three elements of this 19-dimensional linear system.

3. Lower bounds on s(Mg)

In this section we summarize several approaches towards finding lower bounds
for s(Mg) when g is large. The idea is simple. One has to produce one-dimensional

collections of families C → B of genus g curves—in other words, curves B ∈ Mg—
such that the union of all the curves B is Zariski dense. For example, a single
moving curve B provides such a collection. No effective divisor D contain all such
B and, when B does not lie in D, the inequality B ·D ≥ 0 implies that the slope
sB := B·δ

B·λ is a lower bound for s(D), and hence that the infimum of these slopes is

a lower bound for s(Mg). The difficulty generally arises in computing this bound.
We discuss several constructions via covers of the projective line, via imposing
conditions on space curves, via Teichmüller theory and via Gromov-Witten theory,
respectively. Observe that when Mg is a variety of general type, it carries no
rational or elliptic moving curves.

3.1. Covers of P1 with a moving branch point. Harris and the third au-
thor [48] constructed moving curves inMg using certain Hurwitz curves of branched
covers of P1. Consider a connected k-sheeted cover f : C → P1 with b = 2g−2+2k
simply branch points p1, . . . , pb. If γi is a closed loop around pi separating it from
the other pj ’s, then, since pi is a simple branch point, the monodromy around γi
is a simple transposition τi in the symmetric group Sk on the points of a general
fiber. The product of these transpositions (suitable ordered) must be the identity
since a loop around all the pi is nullhomotopic, the subgroup they generate must
be transitive (since we assume that C is connected), and then covers with given
branch points are specified by giving the τi up to simultaneous Sk-conjugation.

Varying pb while leaving the others fixed, we obtain a one-dimensional Hurwitz
space Z. When pb meets another branch point, say pb−1, the base P1 degener-
ates to a union of two P1-components glued at a node s, with p1, . . . , pb−2 on one
component and pb−1 and pb on the other. The covering curve C degenerates to a
nodal admissible cover accordingly, with nodes, say, t1, . . . , tn. Such covers were
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introduced by Beauville for k = 2 [3] and by Harris and Mumford [50] for general
k; for a non-technical introduction to admissible covers, see [49, Chapter 3.G].

Locally around ti, the covering map is given by (xi, yi) → (u = xki
i , v = yki

i ),
where xi, yi and u, v parameterize the two branches meeting at ti and s, respectively.
We still call ki − 1 the order of ramification of ti. The data (n; k1, . . . , kn) can be
determined by the monodromy of the cover around pb−1 and pb.

When pb approaches pb−1, consider the product τ = τb−1τb associated to the
vanishing cycle β that shrinks to the node s as shown in Figure 1.

p1

pb−2

pb−1

pb

β
γ1

γb−2

γb−1

γb

Figure 1. The target P1 degenerates when two branch points meet

Without loss of generality, suppose τb = (12), i.e. it switches the first two
sheets of the cover, and suppose τb−1 = (ij). There are three cases:

(1) If τb−1 = τb, then τ = id. Consequently over the node s, we see k nodes
t1, . . . , tk arising in the degenerate cover, each of which is unramified;

(2) If |{i, j} ∩ {1, 2}| = 1, say (ij) = (13), then τ = (123), i.e. it switches the
first three sheets while fixing the others. We see k − 2 nodes t1, . . . , tk−2 arising in
the degenerate cover, such that t1 has order of ramification 3−1 = 2 and t2, . . . , tk−2

are unramified;
(3) If {i, j}∩{1, 2} = ∅, say (ij) = (34), then τ = (12)(34). We see k− 3 nodes

t1, . . . , tk−2 arising in the degenerate cover, such that t1 and t2 are both simply
ramified and t3, . . . , tk−2 are unramified.

Let f : Z → Mg be the moduli map sending a branched cover to (the stable
limit of) its domain curve. The intersection f∗Z ·δ can be read off from the descrip-
tion of admissible covers. For instance, if an admissible cover belongs to case (1),
it possesses k unramified nodes. Over the P1-component containing pb−1 and pb,
there are k − 2 rational tails that map isomorphically as well as a rational bridge
that admits a double cover. Blowing down a rational tail gives rise to a smooth
point of the stable limit, hence only the rational bridge contributes to the inter-
section with δ and the contribution is 2, since it is a (−2)-curve. The intersection
f∗Z · λ can be deduced from the relation 12λ = δ + ω2, where ω is the first Chern
class of the relative dualizing sheaf of the universal covering curve over Z, cf. [49,
Chapter 6.C] for a sample calculation.

Using these ideas, Harris and the third author obtained a slope formula for
sZ [48, Corollary 3.15] in terms of counts of branched covers in each of the three
cases, for which they provide only recursive formulae in terms of characters of the
symmetric group. More generally, enumerating non-isomorphic branched covers
with any fixed ramification is a highly non-trivial combinatorial Hurwitz counting
problem.
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Consider the case when 2k ≥ g+2. Since the Brill-Noether number ρ(g, 1, k) ≥
0, a general curve of genus g admits a k-sheeted cover of P1. Therefore, Z is
a moving curve in Mg. Assuming that, for g large, all ordered pairs of simple
transpositions are equally likely to occur as (τb−1, τb)—which seems plausible to
first order in k—leads to the estimate (cf. [48, Remark 3.23]) sZ � 576

5g (plus terms

of lower order in g) as g → ∞.

3.2. Linear sections of the Severi variety. A branched cover of P1 can be
regarded as a map to a one-dimensional projective space. One way to generalize

is to consider curves in P2. Let P(d) = P(
d+2
2 )−1 be the space of plane curves of

degree d. Consider the Severi variety V d,n
irr ⊂ P(d) defined as the closure of the

locus parameterizing degree d, irreducible, plane nodal curves with n nodes. The

dimension of V d,n
irr is N = 3d + g − 1, where g =

(
d−1
2

)
− n is the geometric genus

of a general curve in V d,n
irr . Let Hp ⊂ P(d) be a hyperplane parameterizing curves

that pass through a point p in P2. Now fix N −1 general points p1, . . . , pN−1 in the

plane. Consider the one-dimensional section of V d,n
irr cut out by these hyperplanes:

Cd,n
irr = V d,n

irr ∩Hp1
∩ · · · ∩HpN−1

.

Normalizing the nodal plane curves as smooth curves of genus g, we obtain

a moduli map from Cd,n
irr to Mg (after applying stable reduction to the universal

curve). The calculation for the slope of Cd,n
irr was carried out by Fedorchuk [41].

The intersection Cd,n
irr · δ can be expressed by the degree of Severi varieties. For

instance, let Nd,n
irr be the degree of V d,n

irr in P(d). Then Nd,n+1
irr corresponds to the

number of curves in Cd,n
irr that possesses n + 1 nodes. Each such node contributes

1 to the intersection with δirr. Therefore, we have

Cd,n
irr · δirr = (n+ 1)Nd,n+1

irr .

Moreover, the degree of Severi varieties was worked out by Caporaso and Harris [6,
Thereom 1.1], though again only a recursive formula is known.

The calculation of Cd,n
irr · λ is much more involved. Based on the idea of [6], fix

a line L in P2 and consider the locus of n-nodal plane curves whose intersections
with L are of the same type, namely, intersecting L transversely at a1 fixed points
and at b1 general points, tangent to L at a2 fixed points and at b2 general points,
etc. The closure of this locus is called the generalized Severi variety. A hyperplane
section of the Severi variety, as a cycle, is equal to a union of certain generalized

Severi varieties [6, Theorem 1.2] and Cd,n
irr degenerates to a union of linear sections

of generalized Severi varieties. The difficulty arising from this approach is that the
surface of the total degeneration admits only a rational map to Mg, which does
not a priori extend to a morphism, as would be the case over a one-dimensional
base. Treating a plane curve as the image of a stable map, Fedorchuk was able to
resolve the indeterminacy of this moduli map, take the discrepancy into account,

and eventually express Cd,n
irr · λ as a recursion [41, Theorem 1.11].

When the Brill-Noether number ρ(g, 2, d) = 3d − 2g − 6 is non-negative, a
general curve of genus g can be realized as a plane nodal curve of degree d. In

this case Cd,n
irr yields a moving curve in Mg. Fedorchuk evaluated the slope of

Cd,n
irr explicitly for d ≤ 16 and g ≤ 21, cf. [41, Table 1], which consequently

serves as a lower bound for s(Mg). In this range, the bounds decrease from 10
to 4.93 and Fedorchuk speculates that “even though we have nothing to say about
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the asymptotic behavior of the bounds produced by curves Cd,n
irr , it would not be

surprising if these bounds approached 0, as g approached ∞”.

3.3. Imposing conditions on canonical curves. We have discussed covers
of P1 and curves in P2 as means of producing moving curves in Mg. What about
curves in higher dimensional spaces? A natural way of embedding non-hyperelliptic
curves is via their canonical model. Coskun, Harris and Starr carried out this
approach and obtained sharp lower bounds for s(Mg) up to g ≤ 6 [19, §§ 2.3].

Let us demonstrate their method for the case g = 4. A canonical genus 4 curve
is a degree 6 complete intersection in P3, cut out by a quadric surface and a cubic
surface. The dimension of the family of such canonical curves is equal to 24. Passing
through a point imposes two conditions to a curve in P3 and intersecting a line
imposes one condition. Now consider the one-dimensional family B parameterizing
genus 4 canonical curves that pass through 9 general fixed points and intersect 5
general lines. Note that 9 general points uniquely determine a smooth quadric Q
containing them, and 5 general lines intersect Q at 10 points. Let C be a curve in
the family parameterized by B. If C is not contained in Q, then it has to intersect Q
at ≥ 9+5 = 14 points, contradicting that C ·Q = 12. Therefore, every curve in B is

contained in Q. Recall that the Gieseker-Petri divisor GP1

4,3 on M4 parameterizes

genus 4 curves whose canonical images lie in a quadric cone, and its slope is 17
2 .

Therefore, the image of B in M4 and the divisor GP1

4,3 are disjoint. Moreover, since

the points and lines are general, B is a moving curve in M4. As a consequence,
sB = 17

2 is a lower bound for s(M4). This bound is sharp and is attained by the

Gieseker-Petri divisor of genus 4 curves lying on singular quadric surface in P3 .
In general, the dimension of the Hilbert scheme of genus g canonical curves in

Pg−1 is g2+3g−4. Since g2+3g−4 = (g+5)(g−2)+6, we get a moving curve B,
for g ≥ 9 from the canonical curves that contain g + 5 general points and intersect
a general linear subspace Pg−7. Several difficulties arise in trying to imitate the
calculation of the slope of B. We have no detailed description of the geometry of
canonical curves for large g, and especially of their enumerative geometry. However,
this approach is sufficiently intriguing for us to propose the following:

Problem 3.1. Determine the lower bounds for s(Mg) resulting from comput-
ing the characteristic numbers of canonical curves of arbitrary genus g.

3.4. Descendant calculation of Hodge integrals. We have seen a number
of explicit constructions of moving curves in Mg. A rather different construction

was investigated by Pandharipande [76] via Hodge integrals on Mg,n. Let ψi be

the first Chern class of the cotangent line bundle on Mg,n associated to the ith
marked point. It is well known that ψi is a nef divisor class. Since a nef divisor
class is a limit of ample classes, any curve class of type

ψa1
1 · · ·ψan

n ,
n∑

i=1

ai = 3g − 4 + n

is a moving curve class in Mg,n. Pushing forward to Mg, we obtain a moving curve

in Mg whose slope is equal to

(3.2)

∫
Mg,n

ψa1
1 · · ·ψan

n · δ∫
Mg,n

ψa1
1 · · ·ψan

n · λ.
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In general, such an integral given by the intersection of tautological classes on
Mg,n is called Hodge integral. Pandharipande evaluated (3.2) explicitly for n = 1
and a1 = 3g − 3. The calculation was built on some fundamental results of Hodge
integrals from [28]. For example, normalize a one-nodal, one-marked irreducible
curve of arithmetic genus g to a smooth curve of genus g − 1 with three marked
points corresponding to the original marked point and the inverse images of the
node. Then we have ∫

Mg,1

ψ3g−3
1 · δirr =

1

2

∫
Mg−1,3

ψ3g−3
1 ,

where the coefficient 1
2 is because the normalization map Mg−1,3 → Δirr ⊂ Mg,1

is generically two to one. The Hodge integral on the right, as well as that in the
denominator of (3.2) are calculated in [28].

Putting everything together, Pandharipande obtains the lower bound, for all
g ≥ 2,

s(Mg) ≥
60

g + 4
.

It remains an interesting question to calculate (3.2) for general a1, . . . , an, but based
on low genus experiments, it seems that the case n = 1 and a1 = 3g − 3 provides
the best lower bound (cf. [76, §5, Conjecture 1]). So, any new bound arising from
this approach would be most likely of size O( 1g ) as g tends to ∞.

3.5. Covers of elliptic curves and Teichmüller curves. Recall that [48]
constructs moving curves using covers of P1. What about covers of curves of higher
genera? Suppose the domain curve has genus g and the target has genus h. If h > 1,
by the Riemann-Hurwitz formula, a d-sheeted cover satisfies 2g − 2 ≥ d(2h − 2),
hence there are only finitely many choices for d. An easy dimension count shows
that the Hurwitz space parameterizing all such covers (under the moduli map) is
a union of proper subvarieties of Mg. In principle there could exist an effective
divisor containing all of those subvarieties.

This leaves the case h = 1, which was studied by the first author in [11].
Let μ = (m1, . . . ,mk) be a partition of 2g − 2. Consider the Hurwitz space Td,μ
parameterizing degree d, genus g, connected covers π of elliptic curves with a unique
branch point b at the origin whose ramification profile is given by μ, i.e.

π−1(b) = (m1 + 1)p1 + · · ·+ (mk + 1)pk + q1 + · · ·+ ql,

where pi has order of ramification mi and qj is unramified. Over a fixed elliptic
curve E, there exist finitely many non-isomorphic such covers. If we vary the j-
invariant of E, the covering curves also vary to form a one-dimensional family,
namely, the Hurwitz space Td,μ is a curve.

The images of Td,μ for all d form a countable union of curves in Mg. We will
see below that Td,μ is a Teichmüller curve hence rigid. Nevertheless if k ≥ g − 1,

the union ∪dTd,μ forms a Zariski dense subset in Mg [11, Proposition 4.1]. In this
case the lim inf of the slopes of Td,μ as d approaches ∞ still provides a lower bound

for s(Mg) and since effective divisor can contain only finitely many Td,μ.
To calculate the slope of Td,μ, note that an elliptic curve can degenerate to

a one-nodal rational curve, by shrinking a vanishing cycle β to the node. The
monodromy action associated to β determines the topological type of the admissible
cover arising in the degeneration, which in principle indicates how to count the
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intersection number Td,μ · δ. Moreover, using the relation 12λ = δ + ω2 associated
to the universal covering map, one can also calculate Td,μ ·λ. This leads to a formula,
again recursive and difficult to unwind for the same reasons as the formulae in [48],
for the slope of Td,μ in [11, Theorem 1.15].

However, Td,μ can be regarded as a special Teichmüller curve, and this provides
a whole new perspective. Let H(μ) parameterize pairs (X,ω) such that X is a
genus g Riemann surface, ω is a holomorphic one-form on X and (ω)0 =

∑
mipi

for distinct points pi ∈ X. Note that integrating ω along a path connecting two
points defines a flat structure on X. In addition, integrating ω along a basis of the
relative homology group H1(X; p1, . . . , pk) realizes X as a plane polygon with edges
identified appropriately under affine translation. The reader may refer to [92] for
an excellent introduction to flat surfaces. Varying the shape of the polygon induces
an SL2(R) action on H(μ). Project an orbit of this action to Mg by sending (X,ω)
to X. The image is called a Teichmüller curve if it is algebraic. Teichmüller curves
possess a number of fascinating properties. They are geodesics under the Kobayashi
metric on Mg. They are rigid [63], hence give infinitely many examples of rigid
curves on various moduli spaces, in particular, on the moduli space of pointed
rational curves [12].

Consider a branched cover π : X → E parameterized in Td,μ, where E is the
square torus with the standard one-form dz. The pullback ω = π−1(dz) has divisor
of zeros

∑
i mipi. Therefore, (X,ω) yields a point in H(μ). Alternatively, one can

glue d copies of the unit square to realize X as a square-tiled surface endowed with
flat structure; Figure 2 shows an example.

5

1 2 3 4

Figure 2. A square-tiled surface for g = 2, d = 5 and μ = (2)

The SL2(R) action amounts to deforming the square to a rectangle, i.e. chang-
ing the j-invariant of E, hence the Hurwitz curve Td,μ is an invariant orbit under
this action. Indeed, Td,μ is called an arithmetic Teichmüller curve. Note that there
exist Teichmüller curves that do not arise from a branched cover construction and
their classification is far from complete. We refer to [65] for a survey on Teichmüller
curves from the viewpoint of algebraic geometry.

As a square-tiled surface, X decomposes into horizontal cylinders with various
heights and widths, which are bounded by horizontal geodesics connecting two zeros
of ω. For instance, the top square of the surface in Figure 2 admits a horizontal
cylinder of height and width both equal to 1, while the bottom four squares form
another horizontal cylinder of height 1 and width 4. Suppose the vanishing cycle
of E is represented by the horizontal core curve of the square. Then the core
curve of a horizontal cylinder of height h and width l shrinks to h nodes, each of
which contributes 1

l to the intersection Td,μ · δ by a local analysis. Denote by h
l

the modulus of such a cylinder. In general, the “average” number of modulus of
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horizontal cylinders in an SL2(R)-orbit closure is defined as the Siegel-Veech area
constant cμ associated to the orbit. See [27] for a comprehensive introduction to
Siegel-Veech constants.

The slope of Td,μ has an expression involving its Siegel-Veech constant [12,
Theorem 1.8], which also holds for any Teichmüller curve [14, §3.4]. Based on mas-
sive computer experiments, Eskin and Zorich believe that the Siegel-Veech constant
cμ approaches 2 as g tends to ∞ for Teichmüller curves in any (non-hyperelliptic)
H(μ). Assuming this expectation, the slope formula cited above implies that s(Td,μ)
grows as ∼ 576

5g for g � 0 and k ≥ g−1. We have seen this bound 576
5g in Section 3.1.

But the curves used in [48] are moving while Teichmüller curves are rigid! It would
be interesting to see whether this is only a coincidence having to do with some
property of branched covers or whether the bound 576

5g has a more fundamental

“hidden” meaning.
A final remark on Teichmüller curves is that their intersection numbers with

divisors on Mg can provide information about the SL2(R) dynamics on H(μ). For
instance, about a decade ago Kontsevich and Zorich conjectured, based on numer-
ical data, that for many low genus strata H(μ) the sums of Lyapunov exponents
are the same for all Teichmüller curves contained in that stratum. This conjec-
ture has been settled by the first author and Möller [14]. The idea is that the
three quantities—the slope, the Siegel-Veech constant and the sum of Lyapunov
exponents—determine each other, hence it suffices to show the slopes are non-
varying for all Teichmüller curves in a low genus stratum.

Consider, as an example, H(3, 1) in genus g = 3. If a curve C possesses a
holomorphic one-form ω such that (ω)0 = 3p1+p2 for p1 �= p2, then C is not hyper-
elliptic, since the hyperelliptic involution would switch the zeros. Consequently a
Teichmüller curve in H(3, 1) is disjoint from the divisor M1

3,2 of hyperelliptic curves
in M3. Checking that this remains true for the respective closures of these two loci
immediately implies that the slopes of all Teichmüller curves in H(3, 1) are equal

to s(M1

3,2) = 9. For a detailed discussion of the interplay between Teichmüller
curves and the Brill-Noether divisors, see [14]. Using similar ideas, the first au-
thor and Möller also settled the case of Teichmüller curves generated by quadratic
differentials in low genus in [15].

3.6. Moduli spaces of k-gonal curves. We end this section by discussing
various questions related to slopes on moduli spaces of k-gonal curves and we begin

with the case of hyperelliptic curves. Let Hg := M1

g,2 be the closure of locus

of genus g hyperelliptic curves in Mg. Alternatively, it is the admissible cover
compactification of the space of genus g, simply branched double covers of P1. We
have an injection ι : Hg ↪→ Mg. The rational Picard group of Hg is generated
by boundary components Ξ0, . . . ,Ξ[ g−1

2 ] and Θ1, . . . ,Θ[ g2 ]
(cf. [49, Chapter 6.C])

and [56] shows that these classes also generate Eff
(
Hg

)
. A general point of Ξi

parameterizes a double cover of a one-nodal union P1∪P1 branched at 2i+2 points
in one component and 2g − 2i in the other. A general point of Θi parameterizes a
double cover of P1 ∪P1 branched at 2i+1 points in one component and 2g− 2i+1
in the other. Cornalba and Harris [18] proved the following formulae:

ι∗(Δirr) = 2

� g−1
2 �∑

i=0

Ξi, ι∗(Δi) =
1

2
Θ2i+1 for i ≥ 1,
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ι∗(λ) =

� g−1
2 �∑

i=0

(i+ 1)(g − i)

4g + 2
Ξi +

� g
2 �∑

i=1

i(g − i)

4g + 2
Θi.

Since the smallest boundary coefficient in the expression of ι∗(λ) is g
(4g+2) for Ξ0 ≡

ι∗
(
Δirr

2

)
(modulo higher boundary terms), if we impose formally the same slope

problem to Hg, the lower bound for slopes of effective divisors on Hg is

2 · 4g + 2

g
= 8 +

4

g
.

Phrasing it differently, if B ⊂ Hg is any one-dimensional family of genus g curves
whose general member is smooth and hyperelliptic, then (8g + 4)B · λ ≥ gB · δ,
therefore sB ≤ 8+ 4

g , cf. [18] or [49, Corollary 6.24]. Note that this bound converges

to 8 as g approaches ∞. The maximum 8 + 4
g can be achieved by considering a

Lefschetz pencil of type (2, g + 1) on the quadric P1 × P1. Similar bounds were

obtained for trigonal families by Stankova [83]. If B ⊂ M1

g,3 is any one-dimensional
family of trigonal curve with smooth generic member, then

sB ≤ 36(g + 1)

5g + 1
.

A better bound sB ≤ 7 + 6
g is known to hold for trigonal families B ⊂ Mg not

lying in the Maroni locus of M1

g,3, that is, the subvariety of the trigonal locus
corresponding to curves with unbalanced scroll invariants. It is of course highly

interesting to find such bounds for the higher k-gonal strata M1

g,k. A yet unproven

conjecture of Harris, see [83, Conjecture 13.3], predicts that if B ⊂ M1

g,k is any
1-dimensional family with smooth generic member and not lying in a codimension

one subvariety of M1

g,k, then:

sB ≤
(
6 +

2

k − 1

)
+

2k

g
.

To this circle of ideas belongs the following fundamental question:

Problem 3.3. Fix g sufficiently large, so that Mg is of general type. Find

the smallest integer kg,max ≤ g+2
2 such that M1

g,k is a variety of general type for a

k ≥ kg,max. Similarly, find the largest integer 2 ≤ kg,min such that M1

g,k is uniruled
for all k ≤ kg,min. Is it true that

lim inf
g→∞

kg,min = lim inf
g→∞

kg,max?

Obviously a similar question can be asked for the Severi varietiesM2

g,d, or indeed for
all Brill-Noether subvarieties of the moduli space. To highlight our ignorance in this
matter, Arbarello and Cornalba [2], using a beautiful construction of Beniamino

Segre, showed that M1

g,k is unirational for k ≤ 5, but it is not even known that
kg,min ≥ 6 for arbitrarily large g. The best results in this direction are due to Geiss

[44] who proves the unirationality of M1

g,6 for most genera g ≤ 45.
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4. The slope of Ag

In view of the tight analogy with the case of Mg, we want to discuss questions
related to the slope of the moduli space Ag of principally polarized abelian varieties

(ppav) of dimension g. Let Ag be the perfect cone, or first Voronoi, compactifica-

tion of Ag and denote by D := Ag − Ag the irreducible boundary divisor. Then

Pic(Ag) = Q · λ1 ⊕Q · [D], where λ1 := c1(E) is the first Chern class of the Hodge
bundle. Sections of det(E) are weight 1 Siegel modular forms. Shepherd-Barron
[82] showed that for g ≥ 12, the perfect cone compactification is the canonical
model of Ag.

In analogy with the case of Mg, we define the slope of an effective divisor

E ∈ Eff(Ag) as

s(E) := inf
{a

b
: a, b > 0, aλ1 − b[D]− [E] = c[D], c > 0

}
,

and then the slope of the moduli space as the quantity

s(Ag) := inf
E∈Eff(Ag)

s(E).

SinceKAg
= (g+1)λ1−[D], it follows that Ag is of general type if s(Ag) < g+1, and

Ag is uniruled when s(Ag) > g+1. Mumford [71] was the first to carry out divisor

class calculations in Ag. In particular, he studied the Andreotti-Mayer divisor N0

on Ag consisting of ppav [A,Θ] having a singular theta divisor. Depending on
whether the singularity occurs at a torsion point or not, one distinguishes between
the components θnull and N ′

0 of the Andreotti-Mayer divisor. The following scheme-
theoretical equality holds:

N0 = θnull + 2N ′
0.

The cohomology classes of the components of N0 are given are computed in [71]:

[N
′
0] =

( (g + 1)!

4
+

g!

2
− 2g−3(2g + 1)

)
λ1 −

( (g + 1)!

24
− 22g−6

)
[D],

respectively
[θnull] = 2g−2(2g + 1)λ1 − 22g−5[D].

Using these formulas coupled with Tai’s results on the singularities of Ag, Mumford

concluded that Ag is of general type for g ≥ 7. Note that at the time, the result
had already been established for g ≥ 9 by Tai [84] and by Freitag [42] for g = 8.
On the other hand, it is well-known that Ag is unirational for g ≤ 5. The remaining
case is notoriously difficult. This time, the three authors refrain from betting on
possible outcomes and pose the:

Problem 4.1. What is the Kodaira dimension of A6?

The notion of slope for Ag is closely related to that of Mg via the Torelli map

τ : Mg ��� Ag,

sending a curve to its (generalized) Jacobian. The restriction of τ to the union of
Mg and the locus of one-nodal irreducible curves is an embedding. If a curve C
consists of a one-nodal union of two lower genus curves C1 and C2, then J(C) ∼=
J(C1) × J(C2), which does not depend on the position of the node. Therefore, τ
contracts Δi for i > 0 to a higher codimension locus in Ag. Moreover, we have that

τ∗(λ1) = λ, τ∗(D) = δirr.
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Therefore, if F is an effective divisor on Ag and that does not contain τ (Mg),

then τ∗(F ) and F have the same slope. If we know that s(Mg) ≥ ε for a positive
number ε, then any modular form of weight smaller than ε has to vanish on τ (Mg).
This would provide a novel approach to understand which modular forms cut out
Mg in Ag, and thus give a solution to the geometric Schottky problem. By work of
Tai [84] (explained in [46, Theorem 5.19]), the lower bound for slopes of effective
divisors on Ag approaches 0 as g tends to ∞, that is, limg→∞s(Ag) = 0. In fact,

there exists an effective divisor on Ag whose slope is at most

σg :=
(2π)2(

2(g!)ζ(2g)
)1/g .

Since ζ(2g) → 1 and (g!)1/g → g
e as g → ∞, we find that g σg → 68.31 . . ..

Although this is a bit bigger than the unconditional lower bound of 60 for g s(Mg)
of subsection 3.4, this shows that the slope of this divisor is smaller than the
heuristic lower bound 576

5g for s(Mg) emerging from [48] and [12] for large values

of g.
As for Mg, the slope of Ag is of great interest. The first case is g = 4 and it

is known [81] that s(A4) = 8, and the minimal slope is computed by the divisor

τ (M4) of genus 4 Jacobians. In the next case g = 5, the class of the closure of the
Andreotti-Mayer divisor is

[N
′
0] = 108λ1 − 14D,

giving the upper bound s(A5) ≤ 54
7 . Very recently, a complete solution to the slope

question on A5 has been found in [34] by Grushevsky, Salvati-Manni, Verra and
the second author. We spend the rest of this section explaining the following result:

Theorem 4.2. The slope of A5 is attained by N ′
0. That is, s(A5) =

54
7 . Fur-

thermore, κ(A5, N
′
0) = 0, that is, the only effective divisors on A5 having minimal

slope are the multiples of N
′
0.

The proof relies on the intricate geometry of the generically 27 : 1 Prym map

P : R6 ��� A5.

The map P has been investigated in detail in [22] and it displays some breathtak-
ingly beautiful geometry. For instance the Galois group of P is the Weyl group of
E6, that is, the subgroup of S27 consisting of permutations preserving the inter-
section product on a fixed cubic surface. The divisor N ′

0 is the branch locus of P ,
whereas the ramification divisor Q has three alternative realizations as a geometric
subvariety of R6, see [39] and [34] for details. One should view this statement as a
Prym analogue of the various incarnations of the K3 divisor K10 on M10, see [36]:

Theorem 4.3. The ramification divisor Q of the Prym map P : R6 → A5 has
the following geometric incarnations:

(1)
{
[C, η] ∈ R6 : Sym2H0(C,KC ⊗ η)

�

−→ H0(C,K⊗2
C )

}
.

(2)
{
[C, η] ∈ R6 : C has a sextic plane model with a totally tangent conic

}
.

(3)
{
[C, η] ∈ R6 : C is a section of a Nikulin surface

}
.

(4)
{
[C, η] ∈ R6 : Singst(Ξ) �= 0

}
.
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The first realization is the most straightforward and it relies on the description
of the differential of the Prym map via Kodaira-Spencer theory, see [22]. Descrip-
tion (4) refers to stable singularities of the theta divisor Ξ ⊂ P (C, η) associated to
the Prym variety. In particular, Ξ has a stable singularity if and only if the étale
double cover f : C̃ → C induced by the half-period η ∈ Pic0(C), η⊗2 = OC , carries

a line bundle L with Nmf (L) = KC with h0(C̃, L) ≥ 4. Description (3) concerns
moduli spaces of K3 surfaces endowed with a symplectic involution (Nikulin sur-
faces): see [39]. The equivalence (1) ⇔ (4) can be regarded as stating that Q is
simultaneously the Koszul and the Brill-Noether divisors (in Prym sense) on the
moduli space R6! By a local analysis, if π : R6 → M6 is the morphism forgetting
the half-period, one proves the following relation in Pic(R6):

(4.4) P ∗(N
′
0) = 2Q+ U + 20δ

′′

irr,

where U = π∗(GP1
6,4) is the anti-ramification divisor of P and finally, δ

′′

irr denotes
the boundary divisor class corresponding to Wirtinger coverings. Using the different
parametrizations of Q provided by Theorem 4.3, one can construct a sweeping
rational curve R ⊂ Q such that

R · U = 0, R · δ′′

irr = 0 and R · Q < 0.

Via a simple argument, this shows that in formula (4.4), the divisor Q does not

contribute to the linear system |P ∗(N
′
0)|. Similar arguments show that U and δ

′′

irr

do not contribute either, that is, N ′
0 is the only effective divisor in its linear system,

or equivalently κ(A5, N
′
0) = 0. In particular s(A5) = s(N

′
0) =

54
7 . This argument

shows that N ′
0 is rigid, hence s′(A5) > s(A5), so we ask:

Problem 4.5. What is s′(A5)?

A space related to both Mg and Ag is the universal theta divisors Thg → Mg,

which can be viewed as the universal degree g−1 symmetric product Mg,g−1//Sg−1

overMg. The following result has been recently established by Verra and the second
author in [38]:

Theorem 4.6. Thg is a uniruled variety for genus g ≤ 11 and of general type
for g ≥ 12.

The proof gives also a description of the relative effective cone of Thg over

Mg as being generated by the boundary divisor Δ̃0,2 corresponding to non-reduced
effective divisors of degree g − 1 and by the universal ramification divisor of the
Gauss map, that is, the closure of the locus of points [C, x1+· · ·+xg−1] for which the
support of the 0-dimensional linear series |KC(−x1−· · ·−xg−1)| is non-reduced. The
paper [38] also gives a complete birational classification of the universal symmetric
product Mg,g−2//Sg−2, showing that, once again, the birational character of the
moduli space changes around genus g = 12.

We close this section with a general comment. Via the Torelli map, the moduli
space of curves sits between Hg and Ag. In terms of lower bounds for slopes, Hg

and Ag behave totally different for large g: the former has lower bound converging
to 8, whereas the latter approaches 0. The failure to find of effective divisors with
small slope seems to suggest that Mg is “closer” to Hg, while the failure to find

moving curves seems to suggest that Mg is “closer” to Ag.
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5. Effective classes on spaces of stable curves and maps of genus 0

5.1. Symmetric quotients in genus 0. On M0,n itself, the components of
the boundary Δ are the loci ΔI , indexed by I ⊂ {1, 2, . . . , n} (subject to the iden-
tification ΔI = ΔI∨ and to the stability condition that both |I| and |I∨| be at least
2), whose general point parameterizes a reducible curve having two components
meeting in a single node and the marked points indexed by I on one side and those
indexed by I∨ on the other. These generate, but not freely, Pic

(
M0,n

)
, see [55].

The starting point for the study of effective cones in genus 0 is the paper of

Keel and McKernan [56]. In it, they consider the space M̃0,n that is the quotient

of M0,n by the natural action of Sn by permutations of the marked points. For

instance M̃0,2g+2 is isomorphic to the compactified moduli space of hyperelliptic

curves of genus g already discussed in this survey. The boundary Δ̃ of M̃0,n has

components Δ̃i that are simply the images of the loci Δi on M0,n defined as the
union of all ΔI with |I| = i for i between from 2 and � g

2�.

Lemma 5.1. Every Sn-invariant, effective divisor class D on M0,n is an ef-
fective sum of the boundary divisors Δi

Corollary 5.2. The cone Eff
(
M̃0,n

)
is simplicial, and is generated by the

boundary classes Δ̃i.

Proof of Lemma 5.1. Any Sn-invariant divisor D is clearly a linear combi-
nation

∑
biΔi so the point is to show that, if D is effective, then we can take the

bi all non-negative, and this is shown by a pretty induction using test curves. We
may assume that D contains no Δi since proving the result for the D′ that results
from subtracting all such contained components will imply the result for D.

As a base for the induction, pick an n-pointed curve
(
C, [pi, . . . , pn]

)
not in the

support of D and form a test family with base B ∼= C by varying pn, while fixing
the other pi. Since C is not in D, the curve B must meet D non-negatively. On
the other hand, B · Δ2 = (n − 1)—there is one intersection each time pn crosses
one of the other pi—and is disjoint from the other Δi. Hence, b2 ≥ 0.

Now assume inductively that bi ≥ 0. Choose a generic curve

C =
(
C ′, [p′1, . . . , p

′
i]
)
∪
(
C ′, [p′′1 , . . . , p

′′
n−i]

)
in Δi in which q′ on C ′ has been glued to q′′ on C ′′ and form the family B ∼= C ′′

by keeping q′ and the marked points on both sides fixed but varying q′′ (as in
[49, Example (3.136)]). As above B · D ≥ 0, B · Δj = 0 unless j is either i or
i + 1. And, as above, B · Δi+1 = n − i (we get one intersection each time q′′

crosses a p′′k), but now B lies in Δi so to compute B · Δi we use the standard
approach of [49, Lemma 3.94]. On the “left” side, the family over B is C ′ × C ′

and the section corresponding to q′ has self-intersection 0. On the “right” side, the
family is C ′′ × C ′′ ∼= P1 × P1 blown up at the points where the constant sections
corresponding to the p′′k meet the diagonal section corresponding to q′′ and hence
the proper transform of that section has self-intersection

(
2− (n− i)

)
. The upshot

is that B ·D = (n− i)bi+1 − (n− i− 2)bi completing the induction. �

In fact, this proof shows quite a bit more. It immediately gives the first in-
equalities in Corollary 5.3 and the others follow by continuing the induction and
using the identifications Δi = Δn−i.
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Corollary 5.3 ( [56, Lemma 4.8] ). If D =
∑

biΔi is an effective divisor class

on M̃0,n whose support does not contain any Δi (or, if D is nef), then (n−i)bi+1 ≥
(n− i− 2)bi for 2 ≤ i ≤ �n

2 � − 1 and ibi−1 ≥ (i− 2)bi for 3 ≤ i ≤ �n
2 �.

At this point, it is natural to hope that we might be able to replace the twiddles
in Corollary 5.2 with bars with a bit more work. We will see in §§5.3 that this is
far from the case.

Next, we give another application of Lemma 5.1, also due to Keel and kindly
communicated to us by Jason Starr, this time to the Kontsevich moduli spaces of
stable maps M0,0(P

d, d). A general map f in M0,0(P
d, d) has a smooth source

curve C with linearly non-degenerate image f(C) ⊂ Pd of degree d and hence is
nothing more than a rational normal curve. The space M0,0(P

d, 1) is just the

Grassmannian of lines in Pd. The philosophy is to view M0,0(P
d, d) as a natural

compactification of the family of such curves. For example, M0,0(P
2, 2) has an open

stratum consisting of plane conics. One boundary divisor arises when the curve C
becomes reducible, the map f has degree 1 on each component and image consists
of a pair of transverse lines. But there is a second component, in which the map
f degenerates to a double cover of a line in which the image is “virtually marked”
with the two branch points. These intersect in a locus of maps from a pair of lines
to a single line in which only the image of the point of intersection is “virtually
marked”.

This generalizes: Pic
(
M0,0(P

d, d)
)
is freely generated by effective classes Γi,

the closure of the locus whose generic map has a domain with two components on
which it has degrees i and d − i with 1 ≤ i ≤ �d

2�, and a class G, the degenerate

locus where f(C) lies in a proper subspace of Pd—see [75, Theorem 1].

Lemma 5.4. A class D = aG +
∑

i biΓi is effective if and only if a ≥ 0 and
each bi ≥ 0.

Proof. All we need to show is that effective classes have positive coefficients.
We start with a. Choose a general map g : P2 → Pd for which g∗

(
O(1)

)
= O(d) (i.e.

a generic d + 1-dimensional vector space V of degree d polynomials in the plane).
Then g sends a general pencil B of lines in P2 to a pencil of rational curves of degree
d. The image of a general element of this pencil will be a rational normal curve of
degree d, hence non-degenerate, so g(B) �⊂ G and hence g(B) ·G ≥ 0. No element
of the pencil will be reducible, hence g(B) ·Γi = 0. Since we can make any rational
normal curve a member of the pencil by suitably choosing V and B, this family
of test curves must meet any effective divisor, in particular, D, non-negatively. So
a ≥ 0.

To handle the bi, we use a remark of Kapranov [54] that the set K of maps
[f ] ∈ M0,0(P

d, d) whose image contains a fixed set of d+ 2 linearly general points

is disjoint from G (by construction) and may be identified with M0,d+2 (by using
the points as the markings), so that points of Γi ∩K correspond to those of Δi+1.
We can choose K not to lie in D by taking the (d + 2)-points to lie on a rational
normal curve not in D so K must induce an effective class DK on M0,d+2. But K
does not depend on the ordering of the d+2 points so DK is Sn-invariant and the
non-negativity of the bi follows from Lemma 5.2. �

We also note that the argument about B in the first paragraph of the proof
generalizes. If f is a stable map with domain C that is not in G or in any of the

EFFECTIVE DIVISORS ON MODULI SPACES OF CURVES 155



26 DAWEI CHEN, GAVRIL FARKAS, AND IAN MORRISON

Γi, then f(C) is an irreducible, non-degenerate curve of degree d in Pd, hence is
a rational normal curve. The translations of f by PGL(d + 1) will thus be the
locus of all rational normal curves, which is dense in M0,0(P

d, d). Thus, we get the
following, see [19, Lemma 1.8]:

Corollary 5.5. If B is any reduced, irreducible curve in M0,0(P
d, d) not lying

in G or any of the Γi, then B is a moving curve.

We will next look at sharpenings and extensions of these results.

5.2. Effective classes on M0,0(P
r, d). We computed Eff

(
M0,0(P

d, d)
)
above

in terms of the classes G and Γi in Lemma 5.4 above and we now want to discuss the
extensions of Coskun, Harris and Starr [19] to M0,0(P

r, d). Since there is no longer

any risk of confusion between boundaries in M0,n and M0,0(P
r, d), we will now

write Δi for the Γi defined above1. We begin by introducing two other important
effective classes on M0,0(P

r, d).

Definition 5.6.

(1) Let H be the locus of maps whose image meets a fixed codimension 2
linear subspace L ⊂ Pd.

(2) Let Δwt be the weighted total boundary defined by

Δwt =
∑
i

i(d− i)

d
Δi .

By a test curve argument ([19, Lemma 2.1]) using the curves Bk, 1 ≤ k ≤ �d
2�

defined as the one-parameter families of maps whose images contain a fixed set of
d + 2 linearly general points, and meet a fixed subspace of dimension k (and, if
k > 1, a second of dimension d− k), these classes are related by

(5.7) 2G =
(d+ 1)

d
H −Δwt .

By [43, Lemma 14], the general point of each Bk is a map with image a rational
normal curve and hence, by Corollary 5.5, all the Bk are moving curves. Since, for
k > 1, Bk, and only Bk, meets Δk, they are independent, and by construction,
degBk

(G) = 0 for all k. Hence the Bk are a set of moving curves spanning the null

space of G in the cone of curves of M0,0(P
r, d).

We can use (5.7) to identify

ud,r : Vd := span
C

{
H,Δi, i = 1, . . . �d

2
�
}
→ Pic

(
M0,0(P

r, d)
)

and view all the cones Eff
(
M0,0(P

r, d)
)
for a fixed d as living in Vd as well. The

next lemma asserts that these cones are nested and stabilize.

Lemma 5.8 ([19, Proposition 1.3]). The inclusions

Eff
(
M0,0(P

r, d)
)
⊂ Eff

(
M0,0(P

r+1, d)
)

hold for all r ≥ 2, with equality if r ≥ d.

1Note that [19] uses Ddeg and for our G and Δi,d−i for our Δi.
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Informally, maps to the complement U of a point p ∈ Pr+1 have codimension
r ≥ 2 in M0,0(P

r+1, d) so projection from p induces a map

h : Pic
(
M0,0(P

r, d)
)
→ Pic

(
M0,0(P

r+1, d)
)

sending effective divisors to effective divisors and compatible with the identifications
ud,r. This gives the inclusions. Equality follows for r ≥ d by producing inclusions

Eff
(
M0,0(P

r, d)
)
⊂ Eff

(
M0,0(P

d, d)
)
as follows. If D ∈ Eff

(
M0,0(P

r+1, d)
)
, then

the map associated to a general point of D has image spanning a d-plane W ⊂ Pr

and the pullback of D by any linear isomorphism j : Pd → W is an effective class
with the same coordinates in Vd. In the sequel, Lemma 5.8 lets us define new
effective classes for a fixed small r and obtain classes for all larger values and, to
simplify, we use the same notation for the prototypical class and its pullbacks.

We will refer the reader to [19, §3] for other complementary results—in par-
ticular, the construction of moving curves dual to the one-dimensional faces of
Eff

(
M0,0(P

d, d)
)
, either exactly, assuming the Harbourne-Hirschowitz conjecture,

or approximately to any desired accuracy without this assumption.
Because we have such an explicit description of Eff

(
M0,0(P

r, d)
)
, and like-

wise, from the sequel [20] of Nef
(
M0,0(P

r, d)
)
, it is possible, at least for small

values of r and d, to answer more refined questions. In particular, we can attempt
to understand the chamber structure of the stable base locus decomposition of
Eff

(
M0,0(P

r, d)
)
. The case r = d is particularly interesting and we conclude this

subsection by describing the results of Chen, Coskun and Crissman [10, 13] for
d = 3 and d = 4 which reveal interesting relations with other moduli spaces.

To start we need the rosters of additional effective classes exhibited as geometric
loci in Table 1. Then we need to give the coordinates of all these classes in terms
of the basis consisting of H and the boundaries. In fact, they are all of the form
aH + bΔ + bwtΔwt. The coefficients, also given in the table, summarize cases
worked out in §2 of [13] (where the coordinates of many tautological classes are
also computed) and earlier results in [21, 75, 74], all obtained by standard test
curve calculations.

Divisor Least r Description of general map
with smooth domain

a b bwt

T r f(C) is tangent to a fixed
hyperplane.

d−1
d 0 1

NL 2 f(C) has a node lying on a
fixed line.

(d−1)(2d−1)
2d 0 − 1

2

TN 2 f(C) has tacnode. 3(d−1)(d−3)
d 4 d− 9

TR 2 f(C) has triple point. (d−1)(d−2)(d−3)
2d −1 −d−6

2

NI 3 f(C) is not an isomor-
phism; a generic f(C) is
irreducible rational, of de-
gree d, with a single node.

(d−1)(d−2)
d 1 −d

2

Table 1. Other classes on M0,0(P
r, d) defined as geometric loci
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When d = r = 3, there is considerable collapsing. The loci TN and TR are
empty, NI = T and NL coincides with a class called F in [10] and defined as the
closure of the locus of maps meeting a fixed plane in two points collinear with a fixed
point. Writing M(α) := Proj

(⊕
m≥0 H

0
(
m(H + αΔ)

))
for the model of “slope”

α, this leads —cf. [10, Theorem 1.2] to which we refer for further details—to the
picture in Figure 3 of the chamber structure of Eff

(
M0,0(P

3, 3)
)
. In this figure,

each wall is labeled D : α with D a spanning class from the list above and α its
slope. Each chamber is labeled with the model, defined below, that arises as M(α)
in its interior with brackets (or parentheses) used to indicate of whether this is (or
is not) also the model on the corresponding wall.

G : −1
2

NL : −1
5

H : 0

T : 1

Δ : ∞

(
M0,0(P

3, 3)
)

[
M0,0(P

3, 3, 2)
)

(
H
)(

H′]

Figure 3. Chamber structure of Eff
(
M0,0(P

3, 3)
)

We will briefly describe the models and wall-crossing maps in the figure, refer-
ring to [10] for further details. We start at the bottom right with M0,0(P

3, 3, 2),
which is the space of 2-stable maps of Mustaţă and Mustaţă [72] in which maps
whose source has a degree 1 “tail” are replaced by maps of degree 3 on the “degree
2” component that have a base point at the point of attachment of the tail; the
map M0,0(P

3, 3) → M0,0(P
3, 3, 2) is the contraction of Δ by forgetting the other

end of the tail. The chamber bounded by T and H is, as is shown in [20], the Nef
cone of M0,0(P

3, 3).

The ray through H itself gives a morphism φ : M0,0(P
3, 3) → Chow(P3, 3)

by sending a map f to the cycle class of f(C) and this is the right side of a
flip that contracts the 8 dimensional locus P3 where f is a degree 3 cover of a
line and the 9 dimensional locus P1,2 on which f covers a pair of intersecting
lines with degrees 1 and 2. The Hilbert scheme of twisted cubics contains a 12-
dimensional component H whose general member is a twisted cubic (and a second
15-dimensional component—cf. [77]) and the left side of this flip is the cycle map
ψ : H → Chow(P3, 3) which contracts the 9-dimensional locus R ⊂ H of curves
possessing a non-reduced primary component.
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Finally, by [26, Lemma 2], every point of H (and not just those coming from
twisted cubics) is cut out by a unique net of quadrics, and hence there is a morphism
ρ : H → H′ ⊂ G(3, 10) that contracts G.

Already, when r = d = 4, the picture gets substantially more complicated, and
not simply because the dimension of this Eff

(
M0,0(P

4, 4)
)
is 3, In this case, the

stable base locus decomposition is no longer completely known. Again we refer
to [13, §2] for proofs and further details about the claims that follow, and for less
complete results about M0,0(P

r, d) for other values of r and d.

G

Δ′
1 Δ Δwt Δ2

NL

H

T

TR

P

NI

TN

Q

Figure 4. Chamber structure of Eff
(
M0,0(P

4, 4)
)

Figure 4 shows a slice in barycentric coordinates in the rays G, and the compo-
nents Δ′

1 := 3
4Δ1 and Δ2 of the weighted boundary Δwt (which give a slightly more

symmetric picture than using Δ1 and Δ2). Two extra classes appear as vertices.
The first is the class P = H +Δ1 + 4Δ2, which is shown in [20, Remark 5.1] to be
one of the 3 vertices of Nef

(
M0,0(P

4, 4)
)
—the other two are H and T . The second

is the class Q = 3H + 3Δ1 − 2Δ2 defined (up to homothety) as the ray in which
the Δ2−P−T -plane meets the Δ′

1−NI-plane.
In the figure, the white circles label these classes and those in Table 1. There are

no longer any coincidences between these classes but there quite a few coplanarities
visible in the figure as collinearities. The lines show the boundaries of chambers
in Eff

(
M0,0(P

4, 4)
)
(not necessarily the full set of chambers corresponding to the
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stable base locus decomposition) in terms of the classes above. The central triangle
shaded in dark gray is, as noted above, Nef

(
M0,0(P

4, 4)
)
.

A heavier line segment joins each of the three vertices of Eff
(
M0,0(P

4, 4)
)
to

an interior class. The two triangles formed by joining this edge to one of the two
other vertices are the locus of divisors whose stable base locus contains the common
vertex. For example, the triangle Δ2-P -TR is the chamber whose stable base locus
contains Δ2 but not G or Δ1. Together these triangles cover the complement of
the light gray quadrilateral which therefore contains the cone of moving divisors;
equality would follow if one could produce a locus with classQ and with no divisorial
base locus, as the defining descriptions in Table 1 provide for the other vertices.

5.3. The combinatorial extremal rays of Castravet and Tevelev. We
now focus on the space M0,n itself. Since the boundary divisors ΔI are an effective

set of generators of Pic
(
M0,n

)
, a natural question—rendered even more tempting

by Corollary 5.2—is whether they generate Eff
(
M0,n

)
. This is trivial for n = 3

and n = 4 when M0,n is respectively, a point and P1, and easy for n = 5.
Let us recall the argument from [52, Proposition 4.1] in the last case. Kapra-

nov’s construction [54] (or the weighted variant in [51]) exhibits M0,5, with the 5th

marked point distinguished, as the blowup of P2 in 4 general points pi. Denote by
L the class of a general line, by Ei the i

th exceptional divisor, and by E the sum of
the Ei. We can then identify Δ{i,5} with Ei and Δ{i,j} with L−Ei−Ej (these are
the proper transform of the lines through pi and pj , the other (−1)-curves). With

these identifications, the 5 maps M0,5 → M0,4 forgetting the ith marked point,
respectively correspond to the 5 (semiample) divisors L − Ei and 2L − E and the
5 blow-downs to P2 correspond to 2L− E + Ei and to L.

Brute force calculation shows that, in the vector space spanned by L and the
Ei, the cone C spanned by the 10 boundaries is dual to the cone spanned by these
10 semiample classes. Since the effective cone is the dual of the moving cone of
curves and the latter lies inside the dual of the semiample cone, this shows that the
boundaries generate Eff

(
M0,5

)
.

However, for any n ≥ 6, examples due to Keel and Vermeire [88] show that
there are effective classes Fσ that are not effective sums of the boundaries. For
n = 6, fix one of the 15 partitions σ of the marked points into three pairs—say
σ = (12)(34)(56) which we also view as determining an element in Sn. We can
associate to this choice a divisor in two ways. The first is as the fixed locus Fσ of
the involution of M0,6 given by σ. There is a map φ : M0,6 → M3 by identifying
the points in each pair to obtain a 3-nodal irreducible rational curve, and we also

obtain Fσ as φ∗(M1

3,2) where M1

3,2 is the closure in M3 of the hyperelliptic locus
in M3.

To analyze Fσ, the starting point is again an explicit model of M0,6 (one starts
by blowing up 5 general points in P4, and then blows up the proper transforms
of the 10 lines through 2 of these points). It is again straightforward to write
down expressions for the ΔI and for fixed loci like Fσ as combinations of classes
L, Ei and Eij defined in analogy with those above (cf. the table on p.79 of [88]).
Vermeire then gives an essentially diophantine argument with these coefficients to
show that Fσ is not an effective sum of boundaries. Pulling back Fσ by forgetful
maps, produces effective classes on M0,n for any n ≥ 6 that are not effective sums
of boundaries.
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In another direction, these examples are known be sufficient to describe only
Eff

(
M0,6

)
. Hassett and Tschinkel [52, Theorem 5.1] prove this by again showing

that the dual of the cone generated by these classes lies in the moving cone of
curves, for which the use of a tool like Porta which was convenient for n = 5 is now
essential. Castravet [7] gives another argument that, though quite a bit longer, can
be checked by hand, based on showing that the divisors of boundary components
and the Fσ generate the Cox ring of M0,6.

At this point, experts were convinced that Eff
(
M0,n

)
probably had many non-

boundary extremal rays but there was no clear picture of how they might be classi-
fied, indeed there were no new examples, until the breakthrough of Castravet and
Tevelev [8] in 2009, which provides a recipe for constructing such rays from irre-
ducible hypertrees Γ—combinatorial data whose definition we will give in a moment,
along with the related notions of generic and spherical duals—that they conjecture
yields them all.

Theorem 5.9 ([8, Theorem 1.5, Lemma 7.8 and Lemma 4.11]). Every hypertree
Γ of order n determines an effective divisor DΓ ⊂ M0,n.

(1) If Γ is irreducible, then DΓ is a non-zero, irreducible effective divisor
satisfying:
(a) DΓ is an extremal ray of Eff

(
M0,n

)
and meets M0,n.

(b) There is a birational contraction fΓ : M0,n ��� XΓ onto a nor-
mal projective variety XΓ whose exceptional locus consists of DΓ and
components lying in Δ.

(c) If Γ and Γ′ are generic and DΓ = DΓ′ , then Γ and Γ′ are spherical
duals.

(2) The pullback via a forgetful map M0,n → M0,m of the divisor DΓ on

M0,m associated to any irreducible hypertree of order m, which when n is
understood we will again (abusively) denote by DΓ, also spans an extremal
ray of Eff

(
M0,n

)
.

(3) If Γ is not irreducible, then every irreducible component of DΓ—if this
locus is nonempty—is pulled back via a forgetful map from the divisor
DΓ′ ⊂ M0,m of an irreducible hypertree Γ′ of order m < n.

The table below shows the number IH(n) of irreducible hypertrees of order n,
up to Sn-equivalence. For n = 5, this count must be 0 since all extremal rays
are boundaries. For n = 6, the unique DΓ yields the Keel-Vermeire divisors (cf.
Figure 5).

n 5 6 7 8 9 10 11

IH(n) 0 1 1 3 11 93 1027

As the table indicates, IH(n) grows rapidly with n. Empirically, most hyper-
trees are generic. So the upshot of Theorem 5.9 is to provide, as n increases, very
large numbers of new extremal effective divisors. As a complement, [8, §9] gives
examples of larger collections of non-generic irreducible hypertrees which give the
same ray in Eff

(
M0,n

)
.

Based, as far as the authors can tell on the cases n ≤ 6, Castravet and Tevelev
propose a very optimistic converse conjecture. We quote from [8, Conjecture 1.1]:

Conjecture 5.10. Every extremal ray of Eff
(
M0,n

)
is either a boundary di-

visor or the divisor DΓ of an irreducible hypertree Γ of order at most n.
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To our knowledge, more of the activity this has prompted has been devoted to
searching for a counterexample than for a proof. Aaron Pixton informs us that he
has an example (different from that of [78]) of a divisor D on M0,12 that is effective
and non-moving, and that is not equal to any irreducible hypertree divisor, but
whether this divisor lies outside the cone spanned by the hypertree divisors is not,
at the time of writing, clear.

We now turn to defining all the terms used above. We have taken the liberty
of introducing a few new terms like triadic (see below) for notions used or referred
to often, but not named in [8]. It will simplify our definitions to write <n> :=
{1, 2, . . . , n} (or any other model set of cardinality n).

Recall that a hypergraph Γ of order n consists of collection indexed by j ∈ <d>
of hyperedges Γj ⊂ <n>. We say that Γ′ is a sub-hypergraph of Γ if each of the
hyperedges Γ′

k is a subset of some hyperedge Γj . We start with the notion of
convexity of a hypergraph.

Definition 5.11.

(1) For any set S of hyperedges, let TS =
⋃

j∈S Γj , τS = |TS | − 2 and σS =∑
j∈S

(
|Γj | − 2

)
. We call Γ convex if for all S ⊂ <d>, τS ≥ σS . Taking

S to be a singleton, this implies that every hyperedge contains at least
3 vertices. We call Γ strictly convex if this inequality is strict whenever
2 ≤ |S| ≤ (d− 1).

(2) A hypertree is triadic if every hyperedge contains exactly 3 vertices (i.e.
τS = σS for S any hyperedge). For such a hypertree, convexity simply
says that any set S of hyperedges contains at least |S|+ 2 vertices.

Now we turn to the notions of hypertree and of irreducibility.

Definition 5.12.

(1) A hypertree Γ of order n is a hypergraph satisfying:
(a) Every vertex lies on at least 2 hyperedges.
(b) (Convexity) Γ is convex. In particular, every hyperedge contains at

least 3 vertices.
(c) (Normalization) τΓ = σΓ; that is, n− 2 =

∑
j∈<d>

(
|Γj | − 2

)
.

(2) A hypertree is irreducible if it is strictly convex.

Empirically, most hypertrees are triadic in which case the normalization con-
dition simply says that n = d + 2 and irreducibility says that any proper subset
of e ≥ 2 hyperedges contains at least e + 3 vertices. The use of the term “tree” is
motivated by the observation that a dyadic hypergraph (i.e. an ordinary graph) is
a tree exactly when n = d+ 1

Now we turn to the notion of genericity.

Definition 5.13. We let Conv(Γ) denote the set of all convex sub-hypergraphs
of Γ and define the capacity of Γ by

cap(Γ) := max
Γ′∈Conv(Γ)

σΓ′ .

Definition 5.14.

(1) A triple T of vertices that do not lie on any hyperedge of Γ but such that
any two do lie on a hyperedge is called a wheel2 of Γ.

2Here the term triangle might better capture the intuition.
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(2) If Γ is a triadic hypertree of order n and T is a triple of vertices that is
not a hyperedge, we can form a new triadic hypertree ΓT of order (n− 2)
by identifying the vertices in T and deleting any hyperedges containing 2
of these vertices.

(3) An irreducible triadic hypertree is generic if, whenever T is a triple that
is neither a hyperedge nor a wheel, we have cap(ΓT ) = n− 4.

An important source of generic triadic examples is provided by triangulations of
the 2-sphere in which each vertex has even valence, or equivalently whose triangles
can be 2-colored, say black and white, so that each edge has one side of each color.

Definition 5.15.

(1) For any 2-colorable spherical triangulation, the triangles of each color form
the set of hyperedges of a triadic hypertree—called a spherical hypertree—
on the full set of vertices, and we say this pair of hypertrees are spherical
duals (or, in [8], the black and white hypertrees of an even triangulation
of the sphere).

(2) Given a distinguished triangle in each of two spherical hypertrees, we may
form their connected sum by choosing colorings which make one triangle
white and the other black, deleting these two triangles, and glueing along
the exposed edges.

Lemma 5.16. A spherical hypertree is irreducible unless it is a connected sum.

Figure 5. The Keel-Vermeire hypertree

At the left of Figure 5, we show the simplest 2-colorable spherical triangulation
for which both the spherical duals give the irreducible triadic hypertree ΓKV of order
6 shown in the center. The divisor DΓKV

of this hypertree is the Keel-Vermeire
divisor. On the right, we show the hypertree given by taking the connected sum of
the black and white spherical duals. This is not irreducible by taking S to be the
set of hyperedges on the left or right side of the picture.

Proving Theorem 5.9 involves delicate combinatorial and geometric arguments
that are far too involved to give here. All we will attempt to do is to sketch the
main steps of the argument. Castravet and Tevelev [8] also prove many other
complementary results that we will not even cite here.

A key motivating idea, though one whose proof comes rather late in the devel-
opment, is that every irreducible hypertree has a planar realization, by which we
mean an injection of fΓ : <n> → P2 so that the set of lines in the plane containing
3 or more points of the image of fΓ is exactly the set of hyperedges of Γ. If so, and
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πp is the projection to P1 from a point p not on any of the lines through at least 2
of the points in this image, then the composition πp ◦ fΓ defines a set of n marked

points on P1 and hence a point [fΓ, p] ∈ M0,n. A typical realization and projection
for the Keel-Vermeire curve are shown in Figure 6.

Figure 6. Planar realization and projection of the Keel-Vermeire hypertree

The closure of the locus of all such points is defined to be DΓ and, by the time
the non-emptiness of this locus can be established, the fact that it is an irreducible
divisor has been established via a second description. Both planarity of hypertrees
and irreducibility of the loci DΓ are obtained as byproducts of a study of hypertree
curves and associated Brill-Noether loci. We will sketch the ideas in the simpler
case when Γ is triadic, simply hinting at the complications for general Γ.

The hypertree curve Σγ associated to a triadic hypertree Γ is obtained by
taking a copy of a 3-pointed P1 for each hyperedge of Γ and gluing all the points
corresponding to the vertex i to a single point pi as a scheme-theoretic pushout
(i.e. so that the branches look locally like the coordinate axes in an affine space of
dimension equal to the valence of the vertex). Note that Σγ has genus g = n− 3 =

d − 1 and the Picard scheme Pic1 of line bundles of degree 1 on each component
is (non-canonically) isomorphic to (Gm)g. For a hypertree whose vertices all have
valence 2, this curve is already stable (as in Figure 6). In general, to get a stable
model, it is necessary to replace each vertex of valence v ≥ 3 by a v-pointed copy
of P1 glued to the coincident components at its marked points, and to avoid adding
moduli, to fix the choice of this curve in some arbitrary way.

Now the connection to Brill-Noether theory enters. For a general smooth curve
Σ of genus g ≥ 2, there is a birational morphism ν : G1

g+1 → W 1
g+1 � Picg+1

(
Σ
)

sending a pencil of divisors of degree g + 1 to its linear equivalence class, and
whose exceptional divisor E lies over the codimension 3 locus W 2

g+1 of line bundles

with h0(L) ≥ 3. The general pencil D in G1
g+1 and in E is globally generated, so

the general pencil D in E can be obtained as the composition of the map to P2

associated to ν(E) with projection from a general point of P2.
The idea unifying all the steps above in [8] is to extend this picture to the

genus 0 hypertree curves ΣΓ above. Sticking to the simpler case of triadic Γ with
all vertices of valence 2, a linear system on ΣΓ is admissible if it is globally generated
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and sends the singularities to distinct points and an invertible sheaf is admissible
if its complete linear series is. Define Pic1 to be the set of admissible line bundles
having degree 1 on each component, define the Brill-Noether locus W r ⊂ Pic1 to be
the locus of admissible line bundles with h0(Σ, L) ≥ r+ 1, and define the locus Gr

to be the pre-image of W r under the natural forgetful map ν from pencils to line
bundles. Again, there are extra complications if the hypertree is not triadic (because
then the hypertree curves have moduli), or if there are vertices of higher valence
(in which case, sheaves in Pic1 are required to have degree 0 on the components
inserted as each such vertex).

The main line of argument of [8] may then be sketched as follows. Theorem
2.4 identifies M0,n with G1 and shows that ν is birational with exceptional locus
G2 (and compactifies this picture when Γ is not triadic). After an interlude in §3
devoted to computing the dimensions of images of maps generalizing this compact-
ification to hypergraphs that are not necessarily convex, Theorem 4.2 shows that
the divisor DΓ obtained by taking the closure of G2 in M0,n is non-empty and
irreducible and partially computes its class; a by product is the characterization
of the components of DΓ (Lemma 4.11) when Γ is not irreducible. Section 5 is
another interlude proving Gieseker stability (with respect to the dualizing sheaf) of
invertible sheaves in the (generalized) Pic1 which is then applied to complete the
construction of the birational contraction of Theorem 5.9 (cf. also Theorem 1.10).
The reconciliation of the descriptions of DΓ as the closure of the locus of plane
realizations (in particular, the existence of such realizations) and as the closure of
G2 is carried out in §6 (Theorem 6.2). Finally, that the divisor DΓ of a generic,
irreducible Γ determines it (up to spherical duals) is proved in §7.
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475, 1988. MR974412 (89j:14019)

[19] Izzet Coskun, Joe Harris, and Jason Starr. The effective cone of the Kontsevich moduli space.
Canad. Math. Bull., 51(4):519–534, 2008. http://www.math.sunysb.edu/∼jstarr/papers/.

MR2462457 (2009i:14013)
[20] Izzet Coskun, Joe Harris, and Jason Starr. The ample cone of the Kontsevich moduli space.

Canad. J. Math., 61(1):109–123, 2009. http://www.math.sunysb.edu/∼jstarr/papers/.
MR2488451 (2009j:14013)

[21] Steven Diaz and Joe Harris. Geometry of the Severi variety. Trans. Amer. Math. Soc.,
309(1):1–34, 1988. MR957060 (89i:14018)

[22] Ron Donagi and Roy Smith. The structure of the Prym map. Acta Math., 146:25–102, 1981.
MR594627 (82k:14030b)

[23] David Eisenbud and Joe Harris. A simpler proof of the Gieseker-Petri theorem on special
divisors. Invent. Math., 74(2):269–280, 1983.

[24] David Eisenbud and Joe Harris. The Kodaira dimension of the moduli space of curves of
genus ≥ 23. Invent. Math., 90(2):359–387, 1987. MR910206 (88g:14027)

[25] David Eisenbud and Joe Harris. Irreducibility of some families of linear series with Brill-
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Rational Self Maps of Calabi-Yau Manifolds

Xi Chen

Abstract. We prove that a very general Calabi-Yau (CY) complete intersec-
tion in Pn does not admit a nontrivial dominant rational self map, assuming
that the same holds for very general K3 surfaces of genus 3, 4 and 5. One of
the crucial steps of our proof makes use of Mumford’s result on the Chow ring
of zero-dimensional cycles on a surface with nontrivial holomorphic 2-forms.

1. Introduction

1.1. Statements of results. The main purposes of this paper is to prove the
following:

Theorem 1.1. There is no dominant rational self map φ : X ��� X of degree
deg φ > 1 for a very general complete intersection X in Pn of dimension dimX ≥ 2
and of type (d1, d2, ..., dr) satisfying d1 + d2 + ...+ dr ≥ n+ 1.

The proof is based on a degeneration argument by “splitting” X, introduced
by P. Griffiths and J. Harris in [G-H], along with induction on dimX. Eventually,
it is reduced to the case dimX = 2, i.e., the case of K3 surfaces. We assume the
following:

Theorem 1.2. There is no dominant rational self map φ : X ��� X of degree
deg φ > 1 for a very general projective K3 surface X of genus 3 ≤ g ≤ 5, i.e., a
very general complete intersection of type (4) in P3, (2, 3) in P4 or (2, 2, 2) in P5.

This was proved in [Ch] for K3 surfaces of all genus g ≥ 2, although we
only need g = 3, 4, 5 for Theorem 1.1. Indeed, most techniques needed for higher
dimensions have already developed in [Ch]. However, this paper is self-contained
with no other statement from [Ch] assumed except Theorem 1.2.

If we use the notations Rat(X) ⊃ Bir(X) ⊃ Aut(X) for the monoid of dominant
rational self maps φ : X ��� X, the group of birational self maps ϕ : X ��� X and
the automorphism group of X, respectively, the above theorem is equivalent to
saying that

(1.1) Rat(X) = Bir(X)

for a very general complete intersection X ⊂ Pn of CY or general type.
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In addition, it is well known that a birational map X ��� X induces an iso-
morphism in codimension one, i.e., φ : X\Z1

∼= X\Z2 is an isomorphism for some
Z1 and Z2 of codimension ≥ 2 in X, since X is smooth and KX is numerically
effective (nef) (see e.g. [Co, 2, (2.5)]). It follows that φ induces an automor-
phism φ∗ : Pic(X) ∼= Pic(X) of the Picard group together with an isomorphism
φ∗ : PH0(L) ∼= PH0(φ∗L) of the corresponding linear systems for each L ∈ Pic(X).
Combining this with the fact Pic(X) = Z by Lefschetz, we conclude that φ∗ = id
on Pic(X), i.e., φ∗L = L for all L ∈ Pic(X) and φ∗ : PH0(L) ∼= PH0(L) is an auto-
morphism of PH0(L). Consequently, when we embed X into PN with a very ample
L, φ is induced by an automorphism of PN and hence φ ∈ Aut(X). This proves
Bir(X) = Aut(X) for a smooth projective variety with KX nef and Pic(X) = Z.
Hence

(1.2) Rat(X) = Bir(X) = Aut(X)

for a very general complete intersection X ⊂ Pn of CY or general type.
Furthermore, since it is classically known that Aut(X) is trivial for “almost”

all complete intersections [M-M], we may put Theorem 1.1 in the following more
explicit form:

Corollary 1.3. For a very general complete intersection X ⊂ Pn of CY or
general type and dimX ≥ 2,

(1.3) Rat(X) = Bir(X) = Aut(X) = {1}.

1.2. Complete intersections of general type. Although our theorem is
stated for both complete intersections of CY and general type, the only nontrivial
part is the statement on CY complete intersections. The theorem is well known to
be true for complete intersections of general type. We give a quick proof of this
fact.

Proposition 1.4. Let X be a smooth projective variety of general type with
Hodge group

(1.4) H1,1(X,Q) = H2(X,Q) ∩H1,1(X) ∼= Q.

Then deg φ = 1 for every dominant rational map φ : X ��� X.

Proof. The indeterminacy of φ can be resolved by a sequence of blowups along
smooth centers by Hironaka’s resolution of singularities [H] (see also e.g. [K]). Let
f : Y → X be the resulting birational regular map with the commutative diagram

(1.5) Y
ϕ ��

f

��

X

X

φ

���
�

�
�

where Y is smooth and projective.
From this diagram, we derive the identity

(1.6) KY = f∗KX +
∑

a(Ek, X)Ek = ϕ∗KX +
∑

μlFl

where KX and KY are the canonical divisors of X and Y , respectively, a(Ek, X)
is the discrepancy of the exceptional divisor Ek with respect to X and Fl are the
ramification divisors of ϕ.
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By (1.6), we have

(1.7) KX = f∗ϕ
∗KX +

∑
μlf∗Fl

and hence

(1.8) f∗ϕ
∗KX = λKX

in H2(X,Q) for some 0 < λ ≤ 1, by (1.4) and the fact μl > 0. Thus

(1.9) KX · ϕ∗f
∗ξ = f∗ϕ

∗KX · ξ = λKX · ξ

for all ξ ∈ H2(X,Z). Clearly, this forces λ = deg φ = 1 since KX 
= 0. �

For a smooth complete intersectionX of general type in Pn, (1.4) holds trivially
for dimX = 1, for dimX ≥ 3 by Lefschetz and for dimX = 2 and X very general
by Noether-Lefschetz. Hence Theorem 1.1 actually holds for every smooth complete
intersection X ⊂ Pn of general type and dimX ≥ 3.

1.3. Background. For the background on rational self maps of K3 surfaces
and CY manifolds, please see the well-written paper [D].

Clearly, every variety X birational to a projective family of abelian varieties
or finite quotients of abelian varieties over some base B admits nontrivial rational
self maps given by the rational self maps of the generic fiber of X/B. Indeed, this
observation is one of the main motivations of studying the rational self maps in
the first place. As a consequence of Theorem 1.1, we see that a very general CY
complete intersection in Pn is not birational to a fibration of abelian varieties, which
is a known fact for K3 surfaces.

In higher dimensions, C. Voisin proved that a very general CY hypersurface
X ⊂ Pn cannot be covered by abelian varieties of dimension r ≥ 2 [V3], which
is a stronger statement than X is not birational to a fibration of abelian varieties
of dimension r ≥ 2. However, the case r = 1 is not known, to the best of our
knowledge. Indeed, we expect the following to hold:

Conjecture 1.5. For a very general complete intersection X ⊂ Pn of CY or
general type and dimX ≥ 3,

(1.10) Rat(Y ) = Bir(Y )

for every projective variety Y dominating X via a generically finite rational map
Y ��� X.

Obviously, this conjecture implies that a very general CY complete intersection
X ⊂ Pn of dimension ≥ 3 cannot be covered by elliptic curves, which is the weak
Clemens’ conjecture when X is a very general quintic 3-fold.

A bolder conjecture is that everything here including Theorem 1.1 and Conjec-
ture 1.5 holds for a very general projective CY manifold. Certainly, the techniques
developed here can be easily adapted to deal with other types of CY manifolds as
long as these manifolds admit suitable degenerations. On the other hand, Voisin
gives examples of CY varieties with Picard number one having dominant rational
self maps of degree > 1 [V2, Sec. 4.2] (see also [D-M, Theorem 3.4]).

Correspondingly, there is a similar story for generalizations of Clemens’ con-
jecture [V1, Remark 3.24].
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1.4. Conventions and Acknowledgments. We work exclusively over C and
with analytic topology wherever possible.

By a component of a variety, we mean an irreducible component unless we say
a connected component of a variety, which is a connected component of the variety
in the topological sense.

I am grateful to Prof. Keiji Oguiso for point it out to me the fact that Bir(X) =
Aut(X) for a Calabi-Yau manifold X with Picard rank one. I would also like to
thank the referee for many constructive suggestions.

2. Proof of Theorem 1.1

2.1. Degeneration. We start our proof by degenerating a complete inter-
section of type (d1, d2, ..., dr) to a union of two complete intersections of type
(d′1, d2, ..., dr) and (d′′1 , d2, ..., dr), respectively. More precisely, let W ⊂ Δ × Pn

be a family of complete intersections of type (d1, d2, ..., dr) over the disk Δ with the
properties that

• the central fiberW0 = S1∪S2, where S1 and S2 are smooth complete inter-
sections of type (d′1, d2, ..., dr−1, dr) and (d′′1 , d2, ..., dr−1, dr), respectively,
for some d′1, d

′′
1 ∈ Z+ satisfying d′1 + d′′1 = d1;

• S1 and S2 meet transversely along D = S1∩S2, where D is a very general
complete intersection of type (d′1, d

′′
1 , d2, ..., dr−1, dr) in Pn and hence

(2.1) Rat(D) = Bir(D) = Aut(D) = {1}
by induction;

• W is smooth outside of a smooth complete intersection Λ ⊂ D of type
(d′1, d

′′
1 , d1, d2, ..., dr−1, dr) in Pn and is locally given by xy = tz at every

point p ∈ Λ.

We can resolve the singularities of W by blowing up W along S1. Let X → W
be the blowup. It is not hard to see that the central fiber of X/Δ is X0 = R1 ∪R2,
where R1 is the blowup of S1 at Λ and R2

∼= S2.

2.2. Resolution of indeterminacy. Suppose that there is a dominant ra-
tional map φt : Xt ��� Xt of deg φt > 0 for every t 
= 0. We can extend it to a
dominant rational map φ : X ��� X, after a base change, with the commutative
diagram

(2.2) X
φ �����

��

X

����
��
��
��

Δ

Note that after a base change, X is locally given by

(2.3) xy = tm

for some positive integer m at every point p ∈ D. So X is Q-factorial and has
canonical singularities along D.

As in the proof of Proposition 1.4, we can resolve the indeterminacy of φ and
arrive at the diagram (1.5), while preserving the base Δ. In addition, we can make
Y0 into a divisor with simple normal crossings after a further base change by the
stable reduction theorem in [KKMS].
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Let ωX/Δ and ωY/Δ be the relative dualizing sheaves of X and Y over Δ,
respectively. We have the family version of (1.6):

(2.4) ωY/Δ = f∗ωX/Δ +
∑

a(Ek, X)Ek = ϕ∗ωX/Δ +
∑

μlFl

which plays a central role in our argument.
Since we have proved the theorem for Xt of general type, we assume that Xt ⊂

Pn is a CY complete intersection. In this case, we have
∑

a(Ek, X)Ek =
∑

μlFl

and (2.4) becomes

ωY/Δ = f∗ωX/Δ +
∑

μ(E)E =
∑

μ(E)E

= ϕ∗ωX/Δ +
∑

μ(E)E.
(2.5)

where μ is the function defined by μ(E) = a(E,X) for all irreducible divisors E ⊂ Y

satisfying f∗E = 0. For convenience, we let μ(R̃i) = 0 for i = 1, 2, where R̃i ⊂ Y
are the proper transforms of Ri under f .

Since X has at worse canonical singularities, we see that μ(E) ≥ 0 for all E.
And we claim the following:

Proposition 2.1. For a component E ⊂ Y0,

(2.6) μ(E) > 0 ⇒ ϕ∗E = 0.

To see this, we apply the following simple observation.

Lemma 2.2. Let X/Δ and Y/Δ be two flat families of complex analytic varieties
of the same dimension over the disk Δ. Suppose that X has reduced central fiber
X0 and Y is smooth. Let ϕ : Y → X be a proper surjective holomorphic map
preserving the base. Let S ⊂ Y0 be a reduced irreducible component of Y0 with
ϕ∗S 
= 0. Suppose that ϕ is ramified along S with ramification index ν > 1. Then
S has multiplicity ν in Y0. In particular, Y0 is nonreduced along S.

Proof. The problem is entirely local. Let R = ϕ(S), q be a general point on S
and p = ϕ(q). Let U be an analytic open neighborhood of p in X and let V be the
connected component of ϕ−1(U) that contains the point q. We may replace X and
Y by U and V , respectively. Then we reduce it to the case that R and S are the
only components of X0 and Y0, respectively, R and S are smooth and ϕ : S → R is
an isomorphism, in which case the lemma follows easily. �

Proof of Proposition 2.1. If ϕ∗E 
= 0, then ϕ is ramified along E with
ramification index μ(E) + 1 by (2.4) and Riemann-Hurwitz. This is impossible
unless μ(E) = 0 by the above lemma and the fact that Y0 is of simple normal
crossing. Consequently, (2.6) follows. �

We let S ⊂ Y0 be the union of components E with μ(E) = 0, i.e.,

(2.7) S =
∑

μ(E)=0

E.

Then it follows from (2.6) that

(2.8) ϕ∗S = (deg φ)(R1 +R2).

Since X is smooth outside of D, μ(E) > 0 if f(E) 
⊂ D and f∗E = 0. Conse-
quently, we have f(E) ⊂ D for every component E ⊂ S with f∗E = 0. Note that

R̃i ⊂ S.
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Actually, we can arrive at a precise picture of S as follows.

2.3. Structure of S. We may resolve the singularities of X by repeatedly
blowing up X along R1. By that we mean we first blow up X along R1, then we
blow up the proper transform of R1 and so on. Let η : X ′ → X be the resulting
resolution. We see that

(2.9) X ′
0 = P0 ∪ P1 ∪ ... ∪ Pm−1 ∪ Pm

where P0 and Pm are the proper transforms of R1 and R2, respectively, Pi are P1

bundles over D for 0 < i < m and Pi ∩ Pj 
= ∅ if and only if |i− j| ≤ 1. Note that
the relative dualizing sheaf of X ′/Δ satisfies

(2.10) ωX′/Δ = η∗ωX/Δ

and hence remains trivial.
We have the commutative diagram

(2.11) Y
ϕ ��

ν

���
�
�

f

���
��

��
��

� X

X ′ η �� X

φ

���
�
�

where ν = η−1 ◦ f . By (2.10), a(Pi, X) = 0 for all i. Note that the discrepancy
a(Pi, X) does not depends on the birational model of X. So we necessarily have the
proper transform ν−1

∗ (Pi) 
= 0. Otherwise, Pi would be the proper transform of an
exceptional divisor of some birational regular map Y ′ → Y and hence a(Pi, X) =
a(Pi, Y ) > 0 since Y is smooth. Contradiction. Consequently, there exist Qi ⊂ Y0

which are the proper transforms of Pi under ν for i = 0, 1, ...,m.
On the other hand, for every component Q ⊂ Y0 with Q 
∈ {Q0, Q1, ..., Qm}, we

have ν∗Q = 0 and hence a(Q,X) > 0 by the same argument as above. Therefore,
Qi are the only components of Y0 with μ(Qi) = 0. Consequently,

(2.12) S = Q0 +Q1 + ...+Qm−1 +Qm,

(2.13) f(Qi) = D for 0 < i < m

and

(2.14) ϕ∗S =

m∑
i=0

ϕ∗Qi = (degφ)(R1 +R2).

Obviously, Qi is birational to D × P1 for each 0 < i < m.

Note that Q0 = R̃1 and Qm = R̃2.
Let T be a component of Y0. Then by (2.5) and adjunction, we have

(2.15) ωT = (ωY/Δ + T )

∣∣∣∣
T

=
∑

μEE

∣∣∣∣
T

−
∑
E �=T
E⊂Y0

E

∣∣∣∣
T

where we write μE = μ(E); here we use the fact that T = −(Y0−T ) as Pic(Δ) = 0.
Hence

(2.16)
∑
E �⊂Y0

μEE

∣∣∣∣
T

= ωT +
∑
E �=S
E⊂Y0

(1 + μT − μE)E

∣∣∣∣
T
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Suppose that T = Q ⊂ S. Then (2.16) becomes

(2.17)
∑
E �=Q
E⊂Y0

(1− μE)E

∣∣∣∣
Q

= −ωQ +
∑
E �⊂Y0

μEE

∣∣∣∣
Q

Suppose that Q 
= Q0, Qm. Let Fp
∼= P1 be the fiber of f : Q → D over a general

point p ∈ D. Clearly, we have

(2.18) Fp · ωQ = −2

and hence

(2.19)
∑
E �=Q
E⊂Y0

(1− μE)E · Fp ≥ 2.

Therefore, each Qj (0 < j < m) meets at least two other Qi (0 ≤ i ≤ m) along
rational sections of Qj/D; and since Qj is the proper transform of Pj , it cannot
meet more than two among Qi. So we see that Qi form a “chain” in the same way
as Pi do. More precisely, we have

• Qi and Qi+1 meet transversely along a component Di of Qi ∩Qi+1 satis-
fying f(Di) = D for 0 ≤ i < m;

• Di, birational to D, are rational sections of f : Qi → D for 1 ≤ i ≤ m− 1
and f : Qi+1 → D for 0 ≤ i ≤ m− 2.

• f(Qi ∩Qj) 
= D for |i− j| > 1.

Next, we claim that

Proposition 2.3. For each 0 ≤ i ≤ m, we have

(2.20) either ϕ∗Qi 
= 0 or ϕ(Qi) = D.

Namely, every Qi either dominates one of R1 and R2 or is contracted onto D

by ϕ. Since R̃i, being Fano, cannot be mapped onto D, which is a CY manifold,
this implies that

(2.21) ϕ∗Q0 
= 0 and ϕ∗Qm 
= 0.

So ϕ does not contract either Q0 = R̃1 or Qm = R̃2.
Note that if X were smooth, we would already have that ϕ∗S 
= 0 for all S

with μ(S) = 0 by (2.5) and Riemann-Hurwitz. However, things are a little more
subtle here since X is singular.

Proof of Proposition 2.3. A natural thing to do is to resolve the indeter-
minacy of the rational map φ′ = η−1 ◦ φ ◦ η : X ′ ��� X ′ with the diagram

(2.22) Y ′

ν′

��

ϕ′

���
��

��
��

�

X ′ φ′
�����

η

��

X ′

η

��
X

φ ����� X

where we can make Y ′
0 into a divisor of simple normal crossing support [H]. Let

Q′
i ⊂ Y ′ be the proper transforms of Pi under ν′. Obviously, Q′

i are the proper
transforms of Qi under the birational map ν−1 ◦ ν′ : Y ′ ��� Y . To show that (2.20)
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holds for Qi, it suffices to show that the same thing holds for Q′
i when we map Y ′

to X via η ◦ ϕ′.
We have

(2.23) ωY ′/Δ = (ν′)∗η∗ωX/Δ +
∑

a(E,X)E

where E runs through all exceptional divisors of η ◦ ν′. By (2.10), we see that
a(Q′

i, X) = 0 for all 0 ≤ i ≤ m. Then we have ϕ′
∗Q

′
i 
= 0 by Riemann-Hurwitz and

the fact that X ′ is smooth. So each Q′
i dominates some Pj via ϕ′. If Q′

i dominates
P0 or Pm, then Q′

i dominates R1 or R2 via η ◦ ϕ′; if Q′
i dominates Pj for some

0 < j < m, then η(ϕ′(Q′
i)) = D. This proves (2.20). �

Corollary 2.4. Let 0 ≤ i < j ≤ m be two integers with the properties that
ϕ∗Qi 
= 0, ϕ∗Qj 
= 0 and ϕ∗Qk = 0 for all i < k < j. Then

(2.24) ϕ∗Dk = D and ϕDk
◦ f−1

Dk
= 1D

for all i ≤ k < j, where ϕDk
: Dk → D and fDk

: Dk → D are the restrictions of
ϕ and f to Dk, respectively. In particular,

(2.25) degϕDk
= 1

for all 0 ≤ k < m, i.e., ϕ maps each Dk birationally onto D.

Remark 2.5. This is the only place where the induction hypothesis is needed:
we need it to show that the dominant rational self map ϕDk

◦ f−1
Dk

: D ��� D is
an identity, while D ⊂ Pn is a very general complete intersection CY manifold of
lower dimension. Eventually, we will reduce Theorem 1.1 to the case of complete
intersection K3 surfaces where Theorem 1.2 is required.

Proof of Corollary 2.4. If ϕ∗Qk = 0, ϕ maps Qk onto D by Proposition
2.3; since D is a CY manifold, ϕ must contract the fibers of f : Qk → D. There-
fore, ϕ(Dk−1) = ϕ(Dk) = D. Hence ϕDk−1

◦ f−1
Dk−1

and ϕDk
◦ f−1

Dk
are dominant

rational self maps of D; by induction hypothesis (2.1), they must be identity maps.
Therefore, (2.24) follows easily when j − i > 1.

When j − i = 1, we will reduce it to the case j − i > 1 by applying a further
base change. That is, for some a > 1, there is Y ′ with the commutative diagram

(2.26) Y ′ δ ��

f ′

��

Y [a]

f		��
��
��
��

X [a]

and all the required properties, where X [a] = X ⊗C[[ a
√
t]] and Y [a] = Y ⊗C[[ a

√
t]].

Correspondingly, S ′ = Q′
0 +Q′

1 + ... +Q′
ma with Q′

ka the proper transform of Qk.
Obviously, ϕ′

∗Q
′
ia 
= 0, ϕ′

∗Q
′
ja 
= 0 and ϕ′

∗Q
′
k = 0 for all ia < k < ja and ϕ′ = ϕ ◦ δ.

It is also clear that (2.24) holds for (Y, f, ϕ) if it holds for (Y ′, f ′, ϕ′). Hence it
again follows easily from Proposition 2.3 as ja− ia > 1. �

We might want to “get rid of” Qi’s that are contracted by ϕ. Let X be the
variety obtained from X ′ by contracting all components Pi with ϕ∗Qi = 0. After a
possible further base change and stable reduction, we may assume that f : Y → X
factors through X ; namely, we resolve the indeterminacy of θ−1 ◦ f : Y ��� X
and then apply stable reduction so that Y0 remains a divisor with simple normal
crossings, where θ is the map X → X factored through by η : X ′ → X.
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Then we have the commutative diagram

(2.27) X ′ �� X θ �� X

��

φ ����� X

��
Y

ν



�
�
�
�
ε

��

��

f
����������

ϕ

�����������������
W ����� W

The choice of X guarantees that

(2.28) (ϕ ◦ ε−1)∗X0 = (degφ)X0.

We continue to denote the components of X0 by Pi. So X0 is the unions of Pi for i
satisfying ϕ∗Qi 
= 0.

Using the diagram (2.27), we can prove the following:

Proposition 2.6. Let Q = Qi ⊂ S be a component satisfying ϕ∗Q 
= 0 and let
Γ ⊂ Q be an irreducible subvariety of codimension one in Q such that ϕ(Γ) ⊂ D.
Then either Γ is one of Di−1 and Di or ϕ∗Γ = 0.

Proof. Otherwise, Γ 
= Di−1, Γ 
= Di and ϕ(Γ) = D. So Γ has nonnegative
Kodaira dimension and hence ε∗Γ 
= 0. Let G = ε(Γ). Since ϕ∗Q 
= 0, ε∗Q 
= 0 by
our construction of X . So P = ε(Q) is a component of X0. And since ε : Q → P is
birational, G 
= ε(Di−1), ε(Di). That is, G 
⊂ P ′ for all components P ′ 
= P of X0.
Therefore, ε−1(G) does not contain any component of S.

Let Σ be the union of components of Y0 that dominate G via ε and let q be
a general point on Γ, p = ε(q) and J = ε−1(p). By Zariski’s main theorem, J is
connected. If dim J = 0, then J = {q} and Σ = ∅.

Suppose that dimJ = 1. Since J is connected, Σ is connected. Let J1 ⊂ J be
the component of J containing q and let Σ1 ⊂ Σ be the component of Y0 containing
J1. Obviously, Γ ⊂ Σ1 and hence D ⊂ ϕ(Σ1). And since Σ1 
⊂ S, ϕ∗Σ1 = 0.
Therefore, ϕ(Σ1) = D. And since J1 ∼= P1 ⊂ Σ1, ϕ∗J1 = 0 and ϕ contracts Σ1

onto D along the fibers of ε : Σ1 → G. Let J2 
= J1 ⊂ J be a component of J with
J1 ∩ J2 
= ∅ and let Σ2 ⊂ Σ be the component of Y0 containing J2. Then Σ2 meets
Σ1 along a rational multi-section of Σ1/G. Therefore, ϕ(Σ2) = D and ϕ∗J2 = 0 by
the same argument as before. We can argue this way inductively that ϕ∗J = 0 and
ϕ(Σ◦) = D for every component Σ◦ ⊂ Σ.

Let r = ϕ(q) and K be the connected component of ϕ−1(r) containing the point
q. Obviously, J ⊂ K. We claim that J = K. Otherwise, there is a component
K◦ ⊂ K such that K◦ 
⊂ J and K◦∩J 
= ∅. Let T be a component of Y0 containing
K◦. Obviously, T 
⊂ Σ; otherwise, we necessarily have ε(K◦) = p and K◦ ⊂ J .
Also we cannot have T = Q; otherwise, K◦ ⊂ Q, q ∈ K◦ and ϕ∗K

◦ = 0, which is
impossible for a general point q ∈ Γ. We cannot have T = Q′ for some Q′ 
= Q ⊂ S,
either, since p ∈ ε(K◦) ⊂ ε(T ). Therefore, T 
⊂ S.

If J = {q}, then q ∈ K◦ since K◦ ∩ J 
= ∅; it follows that Γ ⊂ T and ε(T ) = G,
which is impossible since Σ = ∅.

Otherwise, suppose that dimJ = 1. Again since K◦ ∩ J 
= ∅, T ∩ Σ 
= ∅. If T
and Σ meet along a rational multi-section of Σ/G, ε(T ) = G, which is impossible
as we have proved that T 
⊂ Σ. Therefore, T ∩Σ is contained in the fibers of Σ/G.
And since T ∩ J 
= ∅, T ∩ Σ contains a component of J , which is impossible for a
general point p ∈ G. Therefore, J = K.

Let U ⊂ X be an analytic open neighborhood of r in X and V ⊂ Y be the
connected component of ϕ−1(U) containing J . Since q is a general point of Γ,
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ε(J) = p 
∈ Pj for all Pj ⊂ X0 and j 
= i. Consequently, V ∩ S = V ∩Q. Therefore,
ϕ∗M = 0 for all components M of V0 with M 
= V ∩Q. So V cannot dominate U .
Contradiction. �

2.4. Invariants αi and βi. Let Qi be a component of S. Suppose that Qi

dominates Rj via ϕ for some 1 ≤ j ≤ 2. Let ϕQi
: Qi → Rj be the restriction

of ϕ to Qi. Proposition 2.6 tells us that Di−1 and Di are the only components of
ϕ−1
Qi

(D) that dominate D via ϕ.
Let αi and βi−1 be the ramification indices of ϕQi

along Di and Di−1, respec-
tively, where we set D−1 = Dm = ∅, αm = β−1 = 0 and αi = βi−1 = 0 if ϕ∗Qi = 0.
Since ϕQi,∗ϕ

∗
Qi
D = (degϕQi

)D,

(2.29) degϕQi
= αi degϕDi

+ βi−1 degϕDi−1
= αi + βi−1

where degϕDi−1
= degϕDi

= 1 by (2.25).
Actually αi and βi−1 are very explicitly determined as follows.

Proposition 2.7. Let 0 ≤ i < j ≤ m be two integers with the properties that
ϕ∗Qi 
= 0, ϕ∗Qj 
= 0 and ϕ∗Qk = 0 for all i < k < j. Then

(2.30) αi = βj−1 =
m

j − i

and ϕ(Qi) 
= ϕ(Qj).

Proof. Let q be a general point on Di and U ⊂ X be an analytic open
neighborhood of ϕ(q) in X. Let V ⊂ Y be the connected component of ϕ−1(U)
containing q. Let T ⊂ V0 be a component of V ∩ Y0 satisfying T 
⊂ S. Since q
is a general point on Di, it is easy to see that ε(T ) = Pi ∩ Pj . Indeed, T is a P1

bundle over ε(T ) and ϕ contracts the fibers of T/ε(T ) and maps T onto D ∩ U .
Therefore, ε : V → V ′ = ε(V ) is proper and V ′ is open in X . In addition, since T
is contracted by ϕ along the fibers of T/ε(T ), the rational map ϕ ◦ ε−1 : V ′ ��� U
is actually regular.

Locally, at ε(q) ∈ Pi ∩ Pj , V ′ ⊂ X is given by xy = tj−i in the polydisk
ΔN

xyz...t with Pi = {x = 0} and Pj = {y = 0}. Similarly, at ϕ(q) ∈ D, U ⊂ X

is given by xy = tm in ΔN
xyz...t with R1 = {x = 0} and R2 = {y = 0}. The map

ϕ ◦ ε−1 is regular and finite and sends V ′ = {xy = tj−i} onto U = {xy = tm} while
preserving the base Δ = {|t| < 1}. It has to be the map sending (x, y, z, ..., t) to
(xa, ya, z, ..., t) or (ya, xa, z, ..., t) with a = m/(j− i). It follows that αi = βj−1 = a
and ϕ(Qi) 
= ϕ(Qj). �

Corollary 2.8. The following holds:

• αi 
= 1 and βi−1 
= 1 for all 0 < i < m.
• If degϕQ0

= 1 or degϕQm
= 1, then degϕ = 1.

Proof. The first statement follows directly from Proposition 2.7.
If degϕQ0

= 1, then α0 = degϕD0
= 1. By Proposition 2.7, we must have

βm−1 = 1 and ϕ∗Qk = 0 for all 0 < k < m. Hence degϕDm
= degϕD0

= 1 and
degϕQm

= 1 by (2.29). It follows that degϕ = 1.
Similarly, we can show that degϕ = 1 if degϕQm

= 1. �
Corollary 2.9. The following are equivalent:

• α0 = 1.
• βm−1 = 1.
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• αi = 1 for some 0 ≤ i ≤ m− 1.
• βj = 1 for some 0 ≤ j ≤ m− 1.
• ϕ∗Qi = 0 for all 1 ≤ i ≤ m− 1.
• deg φR1

= deg φ, where φR1
is the restriction of φ to R1.

• deg φR2
= deg φ, where φR2

is the restriction of φ to R2.
• deg φ = 1.

In particular, at least one of Qi (i 
= 0,m) is not contracted by ϕ if deg φ > 1.

Proof. This is more or less trivial. �

2.5. The case of hypersurfaces. Suppose that deg φ > 1. Then there exists
1 ≤ i ≤ m−1 such that Q = Qi dominates Rj via ϕ for some 1 ≤ j ≤ 2 by Corollary
2.9. To make our life a little easier, we can set j = 2 by replacing φ with φ2 if
necessary and applying the following observation:

Proposition 2.10. Suppose that deg φ > 1. For each j = 1, 2, there exists
1 ≤ i ≤ m− 1 such that ϕ(Qi) = Rj if and only if

(2.31) φ∗(R1 +R2) 
= (deg φ)Rj .

Proof. It is easy to see by (2.14) that (2.31) holds if ϕ(Qi) = Rj for some
1 ≤ i ≤ m− 1.

On the other hand, suppose that (2.31) holds. By Proposition 2.7, ϕ(Qi) = Rj

for some 1 ≤ i ≤ m− 1 if φ(R1) 
= φ(R2) or φ(R1) = φ(R2) 
= Rj .
If φ(R1) = φ(R2) = Rj , then it follows from (2.14) again that ϕ(Qi) = Rj for

some 1 ≤ i ≤ m− 1. �

Suppose that (2.31) fails for j = 2. That is,

(2.32) φ∗(R1 + R2) = (deg φ)R2.

Let φ2 = φ ◦ φ. It is easy to see that

(2.33) (φ2)∗(R1 +R2) = (deg φ)(degφR2
)R2 
= (deg φ2)R2

since deg φR2

= deg φ. So if (2.31) fails, it will hold for φ2. In conclusion, by

replacing φ by φ2 if necessary, we can always find 1 ≤ i ≤ m− 1 such that Q = Qi

dominates R2 via ϕ.

So far we have all the geometric facts about ϕQ = ϕQi
: Q → R2 that we need

to complete our proof:

A1. let Fp = f−1
Q (p) be the fiber of fQ : Q → D over a general point p ∈ D,

pi−1 = Fp ∩Di−1 and pi = Fp ∩Di; then

(2.34) ϕ(pi−1) = ϕ(pi) = p

due to (2.24);
A2. Di−1 and Di are the only components of ϕ−1

Q (D) that dominates D via
ϕ; consequently, there is a subvariety Z ⊂ D of codimension ≥ 1, inde-
pendent of p, such that

(2.35) ϕQ,∗Fp ·D = αiϕ(pi) + βi−1ϕ(pi−1) + Σ = (αi + βi−1)p+Σ

with Σ supported on Z, where ϕQ,∗ is the push-forward induced by ϕQ :
Q → R2.
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In summary, for p ∈ D general, i.e. p outside of a proper closed subvariety
Z ′′ ⊂ D, one has

(2.36) p =
1

αi + βi−1
(ϕQ,∗Fp ·D)− 1

αi + βi−1
Σ

in CH0(D,Q) by (2.35), where Σ lies in the image of CH0(Z,Q) → CH0(D,Q).
If ϕQi,∗Fp lies in the same class of CH1(R2,Q) for all p, which happens when

(2.37) CH1(R2,Q) = H2(R2,Q) = Q,

then ϕQ,∗Fp is a constant class in CH1(R2,Q) for all p and hence

(2.38) c0 =
1

αi + βi−1
(ϕQ,∗Fp ·D)

is a constant class in CH0(D,Q). We can certainly choose Z ′′ such that c0 lies
in the image of CH0(Z

′′,Q) → CH0(D,Q). It follows that the closed immersion
i : Z ′ = Z ∪ Z ′′ ↪→ D induces a surjection

(2.39) i∗ : CH0(Z
′,Q) → CH0(D,Q)

with codimD Z ′ ≥ 1. This cannot happen for a CY manifold D by Rŏıtman’s
generalization of Mumford’s classical results on Chow rings of zero-dimensional
cycles on surfaces [R1] (see also [Mu], [R2] and [B-S]):

Theorem 2.11 (Mumford, Rŏıtman, Bloch-Srinivas). Let X be a smooth pro-
jective variety of dimension n. If there exists i : Y ↪→ X such that dimY < n
and

(2.40) i∗ : CH0(Y,Q) → CH0(X,Q)

is surjective, then hn,0(X) = 0.

This gives us a quick proof for hypersurfaces, in particular, quintic 3-folds in
P4, since for hypersurfaces of degree d1 in Pn, we can do the splitting d′1 = d1 − 1
and d′′1 = 1. That is, R2

∼= Pn−1 is a hyperplane in Pn and hence (2.37) holds.

2.6. Completion of the proof. For complete intersections, we cannot guar-
antee (2.37). Indeed, (2.37) is only known for d2, ..., dr sufficiently small (we can
always take d′′1 = 1), in which case CH1(R) is generated by the lines on R = R2.

However, we can get around the problem by taking advantage of the fact that
D ⊂ R is a general member of the complete linear series |OR(D)|. Let D ⊂
|OR(D)| ×R be the incidence correspondence

(2.41) D = {(D′, p) : D′ ∈ |OR(D)|, p ∈ D′}.

We observe that R is Fano and hence rationally connected and the projection
D → R gives D the structure of a PN−1-bundle over R, since |OR(D)| = PN is base
point free. Therefore, D is rationally connected and hence

(2.42) CH0(D) = Z.

Since we can find QD′ dominating R with the properties A1-A2 for a general mem-
ber D′ ∈ |OR(D)|, there exist a dominant and generically finite map ρ : U →
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|OR(D)| and a smooth projective variety Q with the commutative diagram

(2.43) Q ϕ ��

f

��

R

(D ×ρ U)× P1 ��

∼

��							
D ×ρ U

where ϕ maps a general fiber Q of πU ◦ f : Q → D ×ρ U → U to R with the
properties A1-A2 and the existence of a birational map between (D ×ρ U) × P1

and Q is due to the fact that the fiber of πU ◦ f over a general point u ∈ U is a
P1-bundle Qu over Du := π−1

U (u) ∈ |OR(D)|. Here we use the notations πD and
πU for the projections D ×ρ U → D and D ×ρ U → U , respectively.

Let p = (D′, p) be a general point on D. The pre-image (πD ◦ f)−1(p) consists
of N copies of P1, say, Γ1,Γ2, ...,ΓN , where N = deg ρ. That is,

(2.44) (πD ◦ f)∗p = Γ1 + Γ2 + ...+ ΓN .

For each Γk, we have

(2.45) ϕ∗Γk ·D′ = (αi + βi−1)p+Σk

with Σk supported on Z, where Z is a subvariety of D′ of codimension ≥ 1, inde-
pendent of p. Therefore,

(2.46) ϕ∗((πD ◦ f)∗p) ·D′ = N(αi + βi−1)p+Σ

with Σ supported on Z. By (2.42), we still have a surjection (2.39) on D′. Since
the above argument works for a general member D′ ∈ |OR(D)|, it holds for D and
we are done.
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Variations on Nagata’s Conjecture

Ciro Ciliberto, Brian Harbourne, Rick Miranda, and Joaquim Roé

Abstract. Here we discuss some variations of Nagata’s conjecture on linear
systems of plane curves. The most relevant concerns non-effectivity (hence
nefness) of certain rays, which we call good rays, in the Mori cone of the blow-
up Xn of the plane at n ≥ 10 general points. Nagata’s original result was
the existence of a good ray for Xn with n ≥ 16 a square number. Using
degenerations, we give examples of good rays for Xn for all n ≥ 10. As

with Nagata’s original result, this implies the existence of counterexamples to
Hilbert’s XIV problem. Finally we show that Nagata’s conjecture for n ≤ 89
combined with a stronger conjecture for n = 10 implies Nagata’s conjecture
for n ≥ 90.

Contents

Introduction
1. Linear systems on general blow-ups of the plane
2. Hilbert’s 14-th problem and Nagata’s conjecture
3. The Mori cone viewpoint
4. Good rays and counterexamples to Hilbert’s 14-th problem
5. Existence of good rays
6. An application
References

Introduction

A fundamental problem in algebraic geometry is understanding which divisor
classes on a given variety have effective representatives. One of the simplest contexts
for this problem is that of curves in the plane, and here already it is of substantial
interest, and not only in algebraic geometry. For example, given n sufficiently
general points x1, . . . , xn in the complex plane C2, nonnegative integers m1, . . . ,mn

and an integer d, when is there a polynomial f ∈ C[x, y] of degree d vanishing to
order at least mi at each point xi? Although there is a conjectural answer to this
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notwithstanding any copyright notice. Roé was partially supported by the Spanish Ministerio de
Economı́a y Competitividad grant MTM 2009-10359.

c©2013 Ciro Ciliberto, Brian Harbourne, Rick Miranda and Joaquim Roé
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question (the (SHGH) Conjecture; see Conjecture 1.1 and also [19]), the conjecture
remains open after more then a half century of attention by many researchers.

This problem is closely related to the question of what self-intersections occur
for reduced irreducible curves on the surface Xn obtained by blowing up the pro-
jective plane at the n points xi. Blowing up the points introduces rational curves
(infinitely many, in fact, when n > 8) of self-intersection −1. Each curve C on Xn

corresponds to a projective plane curve DC of some degree d vanishing to orders mi

at the points xi; the self-intersection C2 is d2−m2
1−· · ·−m2

n. An example of a curve
DC corresponding to a curve C of self-intersection −1 on Xn is the line through
two of the points xi, say x1 and x2; in this case, d = 1, m1 = m2 = 1 and mi = 0
for i > 2, so we have d2 −m2

1 − · · · −m2
n = −1. According to the (SHGH) Conjec-

ture, these (−1)-curves should be the only reduced irreducible curves of negative
self-intersection (see Conjecture 2.3) but proving that there are no others turns out
to be itself very hard and is still open.

One could hope that a weaker version of this problem might satisfy the crite-
rion Hilbert stated in his address to the International Congress in Paris in 1900,
of being difficult enough “to entice us, yet not completely inaccessible so as not
to mock our efforts” (“uns reizt, und dennoch nicht völlig unzugänglich, damit
es unserer Anstrengung nicht spotte”). In fact, Nagata, in connection with his
negative solution of the 14-th of the problems Hilbert posed in his address, made
such a conjecture, Conjecture 2.1. It is weaker than Conjecture 2.3 yet still open
for every non-square n ≥ 10. Nagata’s conjecture does not rule out the occur-
rence of curves of self-intersection less than −1, but it does rule out the worst
of them. In particular, Nagata’s conjecture asserts that if there is a curve of de-
gree d with n ≥ 10 sufficiently general points of multiplicities m1, . . . ,mm, then
d2 ≥ nm2 must hold, where m = (m1 + · · · + mn)/n. Thus perhaps there are
curves with d2 −m2

1 − · · · −m2
n < 0, such as the (−1)-curves mentioned above, but

d2−m2
1−· · ·−m2

n is (conjecturally) only as negative as is allowed by the condition
that after averaging the multiplicities mi for n ≥ 10 one must have d2 − nm2 ≥ 0.

What our results here show is that in order to prove Nagata’s Conjecture for
all n ≥ 10 it is enough to prove it only for n < 90, if one can verify a slightly
stronger conjecture for n = 10. But what we hope is to persuade the reader that it
satisfies Hilbert’s criteria of being both enticing and challenging, and at least not
completely inaccessible!

Acknowledgements: The authors thank B. Totaro for useful comments and
the referee for his careful reading of the paper.

1. Linear systems on general blow-ups of the plane

1.1. Generalities. Fix n points x1, . . . , xn in the complex projective plane P2

(which will be often assumed to be in very general position and called general) and
nonnegative integers d,m1, . . . ,mn. We denote by L(d;m1, . . . ,mn), or simply by
(d;m1, . . . ,mn), the linear system of plane curves of degree d having multiplicity at
least mi at the base point xi, for 1 ≤ i ≤ n. Often we will use exponents to denote
repetition of multiplicities. Sometimes, we may simply denote L(d;m1, . . . ,mn) by
L.

The linear system (d;m1, . . . ,mn) is the projective space corresponding to a
vector subspace ad ⊂ H0(OP2(d)), and a = ⊕n

i=0ad is the homogeneous ideal, in
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the coordinate ring S = ⊕n
i=0H

0(OP2(d)) of P2, of the scheme Proj(S/a) denoted
by

∑n
i=1 mixi, usually called a fat points scheme.

The expected dimension of (d;m1, . . . ,mn) is defined to be

e(d;m1 . . . ,mn) = max {−1, v(d;m1 . . . ,mn)}
where

v(d;m1 . . . ,mn) =
d(d+ 3)

2
−

n∑
i=1

mi(mi + 1)

2

is the virtual dimension of the system. The system is said to be special if

h(d;m1 . . . ,mn) > e(d;m1 . . . ,mn)

where h(d;m1 . . . ,mn) := dim(L(d;m1, . . . ,mn)) is its true dimension. In particu-
lar, an empty linear system is never special.

We record the following definitions:

• (d;m1, . . . ,mn) is asymptotically non-special (ANS) if there is an integer y
such that for all nonnegative integers x ≥ y the system (xd;xm1, . . . , xmn)
is non-special;

• themultiplicities vector (m1 . . . ,mn) of nonnegative integers is stably non-
special (SNS) if the linear system (d;xm1, . . . , xmn) is non-special for all
positive integers d, x.

Consider the Cremona–Kantor (CK) group Gn generated by quadratic trans-
formations based at n general points x1, . . . , xn of the plane and by permutations of
these points (see [12]). The group Gn acts on the set of linear systems of the type
(d;m1, . . . ,mn). All systems in the same (CK)-orbit (or (CK)-equivalent) have
the same expected, virtual and true dimension. A linear system (d;m1, . . . ,mn) is
Cremona reduced if it has minimal degree in its (CK)-orbit. We note that (CK)-
orbits need not contain a Cremona reduced element if they are orbits of empty
linear systems, but orbits of non-empty linear systems always contain Cremona
reduced members. It is a classical result, which goes back to Max Noether (see,
e.g., [3]), that a non–empty system (d;m1, . . . ,mn) with general base points is Cre-
mona reduced if and only if the sum of any pair or triple of distinct multiplicities
does not exceed d. In this case the system is called standard and we may assume
m1 ≥ . . . ≥ mn.

1.2. General rational surfaces. Consider the blow-up f : Xn → P2 of the
plane at x1, . . . , xn, which we call a general rational surface. The Picard group
Pic(Xn) is the abelian group freely generated by:

• the line class, i.e., total transform L = f∗(OP2(1));
• the classes of the exceptional divisors E1, . . . , En which are contracted to
x1, . . . , xn.

More generally we may work in the R-vector space N1(Xn) = Pic(Xn)⊗Z R.
We will often abuse notation, identifying divisors on Xn with the correspond-

ing line bundles and their classes in Pic(Xn), thus passing from additive to mul-
tiplicative notation. We will use the same notation for a planar linear system
L = (d;m1, . . . ,mn) and its proper transform

L = dL−
n∑

i=1

miEi
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on Xn. With this convention the integers d,m1, . . . ,mn are the components with
respect to the ordered basis (L,−E1, . . . ,−En) of N1(Xn). The canonical divisor
on Xn is Kn = (−3;−1n) (denoted by K if there is no danger of confusion) and, if
(d;m1, . . . ,mn) is an ample line bundle on Xn, then (d;m1, . . . ,mn) is ANS.

Using the intersection form on N1(Xn), one can intersect and self-intersect
linear systems (d;m1, . . . ,mn). Given a linear system L = (d;m1, . . . ,mn), one has

v(d;m1, . . . ,mn) =
L2 − L ·K

2

and, if d ≥ 0, Riemann-Roch’s theorem says that

(1.1) L is special if and only if h0(L) · h1(L) > 0.

1.3. Special effects. Though (1.1) says that speciality is a cohomological
property, the only known reason for speciality comes from geometry in the following
way.

Assume we have an effective linear system L, i.e. h0(L) > 0, and suppose there
is an irreducible curve C of arithmetic genus g on Xn such that:

• h2(L(−C)) = 0, e.g. h0(L(−C)) > 0;
• h1(L|C) > 0, e.g. L · C ≤ g − 1 if g ≥ 2 and L · C ≤ g − 2 if g ≤ 1.

Then the restriction exact sequence

0 → L(−C) → L → L|C → 0

implies that

h1(L) ≥ h1(L|C) > 0

hence L is special. In this case C is called a special effect curve for L (see [2]). For
example, C is a special effect curve for L if g = 0 and L ·C ≤ −2, in which case C
sits in the base locus of L. But then C2 < 0 and therefore, if x1, . . . , xn are general
points, one has C2 = −1, i.e. C is a (−1)–curve (see [10]). In this case L is said
to be (−1)-special and contains −(L ·C)C in its fixed part. Thus, any (−1)–curve
C gives rise to infinitely many (−1)–special linear systems, e.g. all systems of the
type |nC|, with n a positive integer. Note that for 1 ≤ n ≤ 8 there are only finitely
many (−1)–curves on Xn, whereas if n ≥ 9 there are infinitely many (−1)–curves
on Xn.

1.4. The Segre–Harbourne–Gimigliano–Hirschowitz Conjecture. The
only known examples of special linear systems on a general rational surface Xn are
(−1)-special. This motivates the conjecture (see [27, 18, 15, 20, 7], quoted in
chronological order):

Conjecture 1.1 (Segre–Harbourne–Gimigliano–Hirschowitz (SHGH)). A lin-
ear system L on Xn is special if and only if it is (−1)-special.

It goes back to Castelnuovo that Conjecture 1.1 holds if n ≤ 9 (see [4]; more
recent treatments can be found in [24, 15, 18, 17]). The general conjecture remains
open.

Since standard linear systems are not (−1)-special (see [17, 20]), an equivalent
formulation of the (SHGH) conjecture is: a standard system of plane curves with
general base points is not special.

Recall that a linear system L is nef if L · L′ ≥ 0 for all effective L′. Since
the (CK)-orbit of a nef divisor always contains a Cremona reduced element and
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hence a standard element (see [17]), the (SHGH) conjecture implies the following
conjecture, which we regard as a weak form of (SHGH), a point-of-view justified
by Proposition 2.6(ii) below.

Conjecture 1.2. A nef linear system L on Xn is not special.

This conjecture is also open in general. The notion of nefness extends to ele-
ments in N1(Xn) and ξ ∈ N1(Xn) is nef if and only if λξ is nef for all λ > 0. Given
a nonzero ξ ∈ N1(Xn), the set [ξ] = {λξ : λ > 0} is called the ray generated by ξ.
Thus it makes sense to talk of nef rays.

2. Hilbert’s 14-th problem and Nagata’s conjecture

2.1. Hilbert’s 14-th problem. Let k be a field, let t1, . . . , tn be indetermi-
nates over k and let K be an intermediate field between k and k(t1, . . . , tn), i.e.

k ⊆ K ⊆ k(t1, . . . , tn).

Hilbert’s 14-th problem asks: is K∩ k[t1, . . . , tn] a finitely generated k-algebra?
Hilbert had in mind the following situation coming from invariant theory. LetG be a
subgroup of the affine group or of GL(n, k). Then G acts as a set of automorphisms
of the k-algebra k[t1, . . . , tn], hence on k(t1, . . . , tn), and we let K = k(t1, . . . , tn)

G

be the field of G-invariant elements. Then the question is: is

k[t1, . . . , tn]
G = K ∩ k[t1, . . . , tn]

a finitely generated k-algebra?
In [24], Nagata provided counterexamples to the latter formulation of Hilibert’s

problem. To do this he used the nefness of a certain line bundle of the form
(d;m1, . . . ,mn) (see §2.2 below).

Hilbert’s problem has trivially an affirmative answer in the case n = 1. The
answer is also affirmative for n = 2, as proved by Zariski in [30]. Nagata’s minimal
counterexample has n = 32 and dim(G) = 13. Several other counteraxamples have
been given by various authors, too long a story to be reported on here (see, e.g.,
[14, 23, 29]).

2.2. Nagata’s Conjecture. In his work on Hilbert’s 14-th problem, Nagata
made the following conjecture:

Conjecture 2.1 (Nagata’s Conjecture (N)). If n ≥ 9 and (d;m1, . . . ,mn) is
an effective linear system on Xn, then

(2.1)
√
n · d ≥ m1 + · · ·+mn

and strict inequality holds if n ≥ 10.

Using a degeneration argument, Nagata proved the following result, on which
his counterexamples to Hilbert’s 14-th problem rely:

Proposition 2.2. (N) holds if n = k2, with k ≥ 3.

Taking this into account, it is clear that (N) is equivalent to saying that the
Nagata class Nn = (

√
n, 1n), or the Nagata ray νn = [

√
n, 1n] it generates, is nef

if n ≥ 9. Note that it suffices to verify (N) for linear systems containing prime
divisors.
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Let C be an irreducible curve of genus g on Xn. If (SHGH) holds, then the
virtual dimension of OXn

(C) is nonnegative, which reads

(2.2) C2 ≥ g − 1.

In particular, (SHGH) implies the following conjecture:

Conjecture 2.3. If C is a prime divisor on Xn, then C2 ≥ −1 with g = 0
when C2 = −1.

Lemma 2.4. Conjecture 2.3 implies (N).

Proof. Suppose C is a prime divisor in (d;m1, . . . ,mn) violating (N), i.e.,
n ≥ 9 and

√
n · d < m1 + · · · +mn. Then, for m = (m1 + · · · +mn)/n and using

Cauchy–Schwartz inequality m2 ≤ (m2
1 + · · ·+m2

n)/n, we have

d2 < n
(m1 + · · ·+mn)

2

n2
= nm2 ≤ m2

1 + · · ·+m2
n.

Thus C2 < 0 and therefore C2 = −1 and C has genus 0 by Conjecture 2.3. But
now we have the contradiction 1 = −C ·Kn = 3d− (m1+ · · ·+mn) ≤

√
nd− (m1+

· · ·+mn) < 0. �

Hence Conjecture 2.3 can be regarded as a strong form of (N). The aforemen-
tioned result in [10] (that C2 ≥ −1 if C ⊂ Xn is irreducible and rational) yields
(2.2) if g = 0. If g = 1 and C2 = 0, then C is (CK)-equivalent to (3; 19, 0n−9) (see
[7]). Thus the following conjecture (see [16, Conjecture 3.6]) is at least plausible.

Conjecture 2.5 (Strong Nagata’s Conjecture (SN)). If C is an irreducible
curve of genus g > 0 on Xn, then C2 > 0 unless n ≥ 9, g = 1 and C is (CK)–
equivalent to (3; 19, 0n−9), in which case C2 = 0.

Proposition 2.6. We have the following:

(i) (SHGH) implies (SN) (in particular (SN) holds for n ≤ 9);
(ii) (SHGH) holds if and only if (SN) and Conjecture 1.2 both hold;
(iii) (SN) implies (N).

Proof. Part (i), hence also the forward implication of (ii), is clear. As for the
reverse implication in (ii), note thet (SN) implies Conjecture 2.3, and Conjecture 2.3
together with Conjecture 1.2 is the formulation of (SHGH) given in [18]. Finally
we prove part (iii), hence we assume n ≥ 9. Let C be an irreducible curve in
(d;m1, . . . ,mn) onXn. If C

2 ≥ 0 then d2 ≥ m2
1+· · ·+m2

n. By the Cauchy–Schwartz
inequality this implies (2.1). Equality holds if and only if m1 = · · · = mn = m and
d = m

√
n, hence n is a square, which is only possible if n = 9 by Proposition 2.2.

If C2 < 0, then g = 0 and C2 = −1, so that

C ·Nn = C · (Nn −Kn)− C ·Kn = (
√
n− 3)C · L+ 1 ≥ 1.

�

3. The Mori cone viewpoint

3.1. Generalities. A class ξ ∈ N1(Xn) is integral [resp. rational ] if it sits in
Pic(Xn) [resp. in Pic(Xn)⊗ZQ]. A ray in N1(Xn) is rational if it is generated by a
rational class. A rational ray in N1(Xn) is effective if it is generated by an effective
class.
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The Mori cone NE(Xn) is the closure in N1(Xn) of the set NE(Xn) of all
effective rays, and it is the dual of the nef cone Nef(Xn) which is the closed cone
described by all nef rays.

A (−1)-ray in N1(Xn) is a ray generated by a (−1)-curve, i.e., a smooth,
irreducible, rational curve C with C2 = −1 (hence C ·Kn = −1).

Mori’s Cone Theorem says that

NE(Xn) = NE(Xn)
� +Rn

where NE(Xn)
� [resp. NE(Xn)

�] is the subset of NE(Xn) described by rays gen-
erated by nonzero classes ξ such that ξ ·Kn ≥ 0 [resp. ξ ·Kn ≤ 0] and

Rn =
∑

ρ a (−1)−ray

ρ ⊆ NE(Xn)
�.

We will denote by NE(Xn)
� [resp. NE(Xn)

≺] the interior of NE(Xn)
� [resp.

NE(Xn)
�].

Concerning (SHGH), the situation is well understood for classes in Rn, in view
of this result (see [22]):

Theorem 3.1. A nef linear system on Xn with class in Rn is non-special.

The nonnegative cone Qn in N1(Xn) is the cone of classes ξ such that ξ ·L ≥ 0
and ξ2 ≥ 0, whose boundary, which is a quadric cone, we denote by ∂Qn. By
Riemann-Roch’s theorem one has Qn ⊆ NE(Xn). We will use the obvious notation
Q�

n ,Q�
n ,Q�

n ,Q≺
n to denote the intersection of Qn with NE(Xn)

� etc., and similarly
for ∂Qn.

The situation is quite different according to the values of n:

(i) The Del Pezzo case n ≤ 8. Here −Kn is ample, hence NE(Xn) = Rn.
There are only finitely many (−1)-curves on Xn, hence NE(Xn) is poly-
hedral and NE(Xn) ⊆ NE(Xn)

≺. If κn = [3, 1n] is the anticanonical ray,
then κn is in the interior of Qn.

(ii) The quasi Del Pezzo case n = 9. Here −K9 is an irreducible curve with
self-intersection 0. Hence κ9 is nef, sits on ∂Q9, and the tangent hyper-
plane to ∂Q9 at κ9 is the hyperplane κ⊥

9 of classes ξ such that ξ ·K9 = 0.
Then NE(X9)

� = κ9 and NE(X9) = κ9 + R9 ⊆ NE(X9)
�. There are in-

finitely many (−1)-curves on X9, and κ9 is the only limit ray of (−1)-rays.
The anticanonical ray κ9 coincides with the Nagata ray ν9.

(iii) The general case n ≥ 10. Here −Kn is not effective, and has negative
self-intersection 9−n. Hence κn lies off Qn, which in turn has non-empty
intersection with both NE(Xn)

� and NE(Xn)
≺. There are infinitely many

(−1)-curves on Xn, whose rays lie in NE(Xn)
≺ and their limit rays lie at

the intersection of ∂Qn with the hyperplane κ⊥
n . The Nagata ray νn sits

on ∂Q�
n . The plane joining the rays κn and νn is the homogeneous slice,

formed by the classes of homogeneous linear systems of the form (d;mn),
with d ≥ 0.

For information on the homogeneous slice, and relations between (N) and
(SHGH) there, see [9].

3.2. More conjectures. The following conjecture is in [11]. Taking into
account the aforementioned result in [10], it would be a consequence of (SN).
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Conjecture 3.2. If n ≥ 10, then

(3.1) NE(Xn) = Q�
n + Rn.

Let Dn = (
√
n− 1, 1n) ∈ N1(Xn) be the de Fernex point and δn = [

√
n− 1, 1n]

the corresponding ray. One has D2
n = −1, Dn ·Kn = n− 3

√
n− 1 = n2−9n+9

n+3
√
n−1

> 0

for n ≥ 8 and, if n = 10, Dn = −Kn. We will denote by Δ�
n [resp. Δ�

n ] the set of
classes ξ ∈ N1(Xn) such that ξ ·Dn ≥ 0 [resp. ξ ·Dn ≤ 0].

One has (see [11]):

Theorem 3.3. If n ≥ 10 one has:

(i) all (−1)-rays lie in the cone Dn := Qn − δn;
(ii) if n = 10, all (−1)-rays lie on the boundary of the cone Dn;
(iii) if n > 10, all (−1)-rays lie in the complement of the cone Kn := Qn−κn;
(iv) NE(Xn) ⊆ Kn +R;
(v) if Conjecture 3.2 holds, then

(3.2) NE(Xn) ∩Δ�
n = Qn ∩Δ�

n .

Remark 3.4. As noted in [11], Conjecture 3.2 does not imply that NE(Xn)
� =

Q�
n , unless n = 10, in which case this is exactly what it says (see Theorem 3.3(v)).

Conjecture 3.2 implies (N) but not (SN).

Consider the following:

Conjecture 3.5 (The Δ-conjecture (ΔC)). If n ≥ 10 one has

(3.3) ∂Qn ∩Δ�
n ⊂ Nef(Xn).

Proposition 3.6. If (ΔC) holds, then

(3.4) NE(Xn) ∩Δ�
n = Nef(Xn) ∩Δ�

n = Qn ∩Δ�
n .

Proof. By (3.3) and by the convexity of Nef(Xn) one has

Qn ∩Δ�
n ⊆ Nef(Xn) ∩Δ�

n .

Moreover Nef(Xn) ∩ Δ�
n ⊆ NE(Xn) ∩ Δ�

n . Finally (3.3) implies (3.2) because
NE(Xn) is dual to Nef(Xn). �

The following proposition indicates that Nagata-type conjectures we are dis-
cussing here can be interpreted as asymptotic forms of the (SHGH) conjecture.

Proposition 3.7. Let n ≥ 10.

(i) If (ΔC) holds, then all classes in Qn ∩ Δ�
n − ∂Qn ∩ Δ�

n are ample and
therefore, if integral, they are (ASN);

(ii) If (SN) holds, then a rational class in Q�
n − ∂Q�

n is (ASN) unless it has
negative intersection with some (−1)-curve.

Proof. Part (i) follows from Proposition 3.6 and the fact that the ample cone
is the interior of the nef cone (by Kleiman’s theorem, see [21]).

As for part (ii), if ξ ∈ Q�
n −∂Q�

n is nef, then it is also big. If C is an irreducible
curve such that ξ · C = 0, then C2 < 0 by the index theorem, hence C is a (−1)-
curve. Contract it, go to Xn−1 and take the class ξ1 ∈ N1(Xn−1) which pulls
back to ξ. Repeat the argument on ξ1, and go on. At the end we find a class
ξi ∈ N1(Xn−i) for some i ≤ n, which is ample by Nakai-Moishezon criterion, and
the (ASN) follows for ξ.

192



VARIATIONS ON NAGATA’S CONJECTURE 9

If ξ is not nef and C is an irreducible curve such that ξ · C < 0, then C2 < 0
hence C is a (−1)-curve. �

One can give a stronger form of (ΔC).

Lemma 3.8. Any rational, non-effective ray in ∂Qn is nef and it is extremal
for both NE(Xn) and Nef(Xn). Moreover it lies in ∂Q�

n .

Proof. Let ξ be a generator of the ray and let ξ = P + N be the Zariski
decomposition of ξ. Since the ray is not effective, one has P 2 = 0. Since ξ2 = 0,
then N2 = 0, hence N = 0, proving that ξ is nef.

Suppose that ξ = α + β, with α, β ∈ NE(Xn). Then ξ2 = 0, ξ · α ≥ 0 and
ξ · β ≥ 0, imply α2 = −α · β = β2 which yields that α and β are proportional.
This shows that the ray is extremal for NE(Xn). The same proof shows that it is
extremal also for Nef(Xn).

The final assertion follows by the Mori’s Cone theorem. �
A rational, non-effective ray in ∂Qn will be called a good ray. An irrational,

nef ray in ∂Qn will be called a wonderful ray. No wonderful ray has been detected
so far. The following is clear:

Lemma 3.9. Suppose that (δ;m1, . . . ,mn) generates either a good or wonderful
ray. If (d;m1, . . . ,mn) is an effective linear system then

d > δ =

√√√√ n∑
i=1

m2
i .

The following conjecture implies (ΔC).

Conjecture 3.10 (The strong Δ-conjecture (SΔC)). If n > 10, all rational

rays in ∂Qn ∩Δ�
n are non-effective. If n = 10, a rational ray in Q10 ∩Δ�

10 = Q�
10

is non–effective, unless it is generated by a curve (CK)–equivalent to (3; 19, 0).

Proposition 3.11. For n = 10, (SΔC) is equivalent to (SN).

Proof. If (SΔC) holds then clearly (SN) holds. Conversely, assume (SN)

holds, consider a rational effective ray in ∂Q�
10 and let C be an effective divisor in

the ray. Then C = n1C1 + · · ·+ nhCh, with C1, . . . , Ch distinct irreducible curves
and n1, . . . , nh positive integers. One has Ci · Cj ≥ 0, hence Ci · Cj = 0 for all
1 ≤ i ≤ j ≤ h. This clearly implies h = 1, hence the assertion. �

By the proof of Proposition 3.5, any good ray gives a constraint on NE(Xn),
so it is useful to find good rays. Even better would be to find wonderful rays. We
will soon give more reasons for searching for such rays (see §4).

Example 3.12. Consider the family of linear systems

B = {Bq,p := (9q2 + p2; 9q2 − p2, (2qp)9) : (q, p) ∈ N2, q ≤ p}
generating rays in ∂Q�

10. Take a sequence {(qn, pn)}n∈N such that limn
pn+qn

pn
=√

10. For instance take pn+qn
pn

to be the convergents of the periodic continued

fraction expansion of
√
10 = [3; 6], so that

p1 = 2, p2 = 13, p3 = 80, . . . q1 = 1, q2 = 6, q3 = 37, . . . .

The sequence of rays {[Bqn,pn
]}n∈N converges to the Nagata ray ν10. If we knew

that the rays of this sequence are good, this would imply (N) for n = 10.
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A way of searching for good rays is the following (see §5). Let (m1 . . . ,mn) be a

(SNS) multiplicity vector, with d =
√∑n

i=1 m
2
i an integer such that 3d <

∑n
i=1 mi.

Then [d;m1 . . . ,mn] is a good ray. We will apply this idea in §5.5.

4. Good rays and counterexamples to Hilbert’s 14-th problem

In this section we show that any good or wonderful ray for n ≥ 10 provides
a counterexample to Hilbert’s 14-th problem. The proof follows Nagata’s original
argument in [24], which we briefly recall.

Let F be a field. Let X = (xij)1≤i≤3;1≤j≤n be a matrix of indeterminates over F
and consider the field k = F[X] := F[xij ]1≤i≤3;1≤j≤n (we use similar vector notation
later). The points xj = [x1j , x2j , x3j ] ∈ P2

k, 1 ≤ j ≤ n, may be seen as n general
points of P2

F
. The subspace V ⊂ kn formed by all vectors b = (b1, . . . , bn) such that

X · bt = 0, is said to be associated to x1, . . . , xn.
Fix a multiplicities vector m = (m1, . . . ,mn) of positive integers and con-

sider the subgroup H of the multiplicative group (k∗)n formed by all vectors

c = (c1, . . . , cn) such that cm := cm1
1 · · · cmn

n = 1. We set δ =
√∑n

i=1 m
2
i .

Let u = (u1, . . . , un) and v = (v1, . . . , vn) be vectors of indeterminates over k,
and consider k[u,v]. The group G = H × V acts on the k-algebra k[u,v] in the
following way: if σ = (c,b) and c = c1 · · · cn, then

σ(ui) =
ci
c
(ui + bivi), σ(vi) = civi for 1 ≤ i ≤ n.

Theorem 4.1. If (δ;m1, . . . ,mn) generates a good or a wonderful ray, then the
k-algebra A = k[u,v]G is not finitely generated.

Proof. The elements t := vm and

wi =
n∑

j=1

xij(v1 · · · vj−1ujvj+1 · · · vn), for 1 ≤ i ≤ 3

are in A. Set w = (w1, w2, w3), which is a vector of indeterminates on k. Then
S := k[w] is the homogeneous coordinate ring of P2

k. Imitating the argument in
[24, Lemma 2], one proves that A = k[u,v] ∩ k(w, t) and, as a consequence (see
[24, Lemma 3]), that A consists of all sums

∑
i∈Z

ait
−i, such that ai �= 0 for finitely

many i ∈ Z, ai ∈ S for all i ∈ Z, and ai ∈ bi :=
⋂n

j=1 p
imj

j where pj is the
homogeneous ideal of the point xj .

By [24, Lemma 3], to prove that A is not finitely generated it suffices to show
that

(4.1) for all positive m ∈ Z, there is a positive � ∈ Z such that b�m �= bm�.

This is proved as in [24, Lemma 1]. Indeed, let α(q) be the minimum degree of a
polynomial in a homogeneous ideal q of S. Since

v(d;mm1, . . . ,mnn) =
d2 −m2δ2

2
+ . . . ,

where . . . denote lower degree terms, we have limm→∞
α(bm)

m ≤ δ. But because

(δ;m1, . . . ,mn) is nef, we have α(bm)
m ≥ δ for all positive integers m. Hence

limm→∞
α(bm)

m = δ. By Lemma 3.9, one has

α(b�m)

m�
=

α(bm)

m
> δ
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from which (4.1) follows. �

5. Existence of good rays

5.1. The existence theorem.

Theorem 5.1.1 (Existence Theorem (ET)). For every n ≥ 10, there are good
rays [d;m1, . . . ,mn] ∈ NE(Xn), with mi > 0 for all 1 ≤ i ≤ n.

The proof goes by induction on n (see §5.6). The induction step is based on
the following proposition:

Proposition 5.1.2. Set n = s + t − 1, with s, t positive integers. Assume
D = (δ;μ1, . . . , μs) ∈ Nef(Xs) with μ1, . . . , μs nonnegative, rational numbers. Let
ν1, . . . , νs be nonnegative rational numbers such that m1 =

∑s
i=1 μiνi is an integer,

and let d,m2, . . . ,mt be nonnegative rational numbers such that C = (d;m1, . . . ,mt)
generates a non-effective ray in N1(Xt). Then for every rational number η ≥ δ,
Cη = (d; ην1, . . . , ηνs,m2, . . . ,mt) generates a non-effective ray in N1(Xn).

The proof of Proposition 5.1.2 relies on a degeneration argument introduced
in [6] (see also [5, 9]), which is reviewed in §5.2. The next corollary shows how
Proposition 5.1.2 may be applied to inductively prove Theorem 5.1.1.

Corollary 5.1.3. Same setting as in Proposition 5.1.2. Assume that:

(i) C generates a good ray in N1(Xt);
(ii) D ∈ Nef(Xs) and D2 = 0.

Then Cδ ∈ ∂Q�
n is nef.

Proof. We use the vector notation μ = (μ1, . . . , μs), ν = (ν1, . . . , νs), and
denote by || ||p the �p norm of vectors. For η ≥ δ, one has

Cη ·Kn − C ·Kt = η||ν||1 −m1 = η||ν||1 − μ · ν ≥ η||ν||1 − ||ν||2||μ||2 =

= η||ν||1 − δ||ν||2 ≥ δ(||ν||1 − ||ν||2) ≥ 0.

Since C ·Kt ≥ 0, then also Cη ·Kn ≥ 0, hence Cδ ·Kn ≥ 0. Moreover

C2
η = C2 +m2

1 − η2
s∑

i=1

ν2i = C2 +
(
(

s∑
i=1

μ2
i )− η2

) s∑
i=1

ν2i

= C2 +
(
δ2 − η2)

s∑
i=1

ν2i ≤ C2 = 0,

in particular C2
δ = 0.

Assume Cδ is not nef, hence there is an irreducible curve E such that Cδ ·E < 0
and E2 < 0. Take η ≥ δ close to δ and rational. Set Eε = εE + Cη, with ε ∈ R.
One has E2

ε = ε2E2 + 2ε(Cη · E) + C2
η and (Cη · E)2 − C2

η · E2 > 0 because it is

close to (Cδ · E)2 > 0. Then

τ =
−(Cη · E)−

√
(Cη · E)2 − C2

η · E2

E2

is negative, close to 0 and such that E2
τ = 0, and E2

ε > 0 for ε < τ and close to τ .
Then for these values of ε the class Cη = Eε − εE would generate an effective ray,
a contradiction. �
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Remark 5.1.4. We will typically apply Proposition 5.1.2 and Corollary 5.1.3
with μ1 = . . . = μs = 1, δ =

√
s and ν1 = . . . = νs = m1

s . If either s = 4, 9 or
s ≥ 10 and (N) holds, then hypothesis (ii) of Corollary 5.1.3 holds. Hence, if C =
(d;m1, . . . ,mt) generates a good ray in N1(Xt), then C s

η
= (d; (m1

η )s,m2, . . . ,mt)

generates a noneffective ray for all rational numbers η ≤
√
s, therefore the ray

[d; (m1√
s
)s,m2, . . . ,mt] is either good or wonderful, in particular it is nef.

In this situation, if C is standard and s ≥ 9, then Cδ is also standard. The
same holds for s = 4 if 2d ≥ 3m1. This will be the case for the examples we will
provide to prove Theorem 5.1.1, so all of them will be standard.

The base of the induction, consists in exhibiting SNS multiplicity vectors for
10 ≤ n ≤ 12, giving rise to good rays as indicated at the end of § 3.2. They will
provide the starting points of the induction for proving Theorem 5.1.1 (see §5.6).
This step is based on a slight improvement of the same degeneration technique used
to prove Proposition 5.1.2 (see §5.4).

Remark 5.1.5. To the best of our knowledge, it is only for a square number of

points that SNS multiplicity vectors and good rays were known so far: i.e., [d; 1d
2

]

is a good ray (see [24]) and (1d
2

) is an SNS multiplicity vector for d ≥ 4 (see
[8, 13, 25]).

Example 5.1.6. Using the goodness of [d; 1d
2

] and applying Corollary 5.1.3,

we see that all rays of the form [dh;hd2−�, 1�h
2

], with d ≥ 4, h ≥ 1 and 0 ≤ � ≤ d2

integers, are good.

5.2. The basic degeneration. We briefly recall the degeneration we use to
prove Theorem 5.1.1 (see [5, 6, 9] for details).

Consider Y → D the family obtained by blowing up the trivial family D×P2 →
D over a disc D at a point in the central fiber. The general fibre Yu for u �= 0 is
a P2, and the central fibre Y0 is the union of two surfaces V ∪ Z, where V ∼= P2

is the exceptional divisor and Z ∼= F1 is the original central fibre blown up at a
point. The surfaces V and Z meet transversally along a rational curve E which is
the negative section on Z and a line on V .

Choose s general points on V and t − 1 general points on Z. Consider these
n = s + t − 1 points as limits of n general points in the general fibre Yu and blow
these points up in the family Y , getting a new family. We will abuse notation and
still denote by Y this new family. The blow-up creates n exceptional surfaces Ri,
1 ≤ i ≤ n, whose intersection with each fiber Yu is a (−1)-curve, the exceptional
curve for the blow-up of that point in the family. The general fibre Yu of the new
family is an Xn. The central fibre Y0 is the union of V blown-up at s general points,
and Z blown-up at t− 1 general points. We will abuse notation and still denote by
V and Z the blown-up surfaces which are now isomorphic to Xs, Xt respectively.

Let OY (1) be the pullback on Y of OP2(1). Given a vector (m1, . . . ,mn) of
multiplicities, a degree d and a twisting integer a, consider the line bundle

L(a) = OY (d)⊗OY (−m1R1)⊗ · · · ⊗ OY (−mnRn))⊗OY (−aV ).

Its restriction to Yu for u �= 0 is (d;m1, ...,mn). Its restrictions to V and Z are
LV = (a;m1, ...,ms), LZ = (d; a,ms+1, ...,mn) respectively. Every limit line bundle
of (d;m1, ...,mn) on Yt is the restriction to Y0 = V ∪ Z of L(a) for an integer a.

We will say that a line bundle L(a) is centrally effective if its restriction to both
V and Z is effective.
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Theorem 5.2.7 (The Basic Non-Effectivity Criterion (BNC), (see [9])). If there
is no twisting integer a such that L(a) is centrally effective, then (d;m1, ...,mn) is
non-effective.

5.3. The proof of the induction step. In this section we use (BNC) to give
the:

Proof of Proposition 5.1.2. . We need to prove that

(xd;xην1, . . . , xηνs, xm2, . . . , xmt)

is not effective for all positive integers x.
In the setting of §5.2, fix the multiplicities on V to be xην1, . . . , xηνs and on

Z to be xm2, . . . , xmt. We argue by contradiction, and assume there is a central
effective L(a). Then LV = (a;xην1, . . . , xηνs) is effective hence D · LV ≥ 0, i.e.
aδ ≥ xηm1, therefore a ≥ xm1. Since LZ = (xd; a, xm2, . . . , xmt) is effective, so is
(xd;xm1, xm2, . . . , xmt) which contradicts C = (d;m1, . . . ,mt) not being effective.

�

5.4. 2-throws. To deal with the base of the induction, we need to analyse the
matching of the sections of the bundles LV and LZ on the double curve. For this
we need a modification of the basic degeneration, based on the concept of a 2-throw,
described in [9], which we will briefly recall now. In doing this we will often abuse
notation, which we hope will create no problems for the reader.

Consider a degeneration of surfaces over a disc, with central fibre containing
two components X1 and X2 meeting transversally along a double curve R. Let E
be a (−1)-curve on X1 that intersects R transversally at two points. Blow it up
in the threefold total space of the degeneration. The exceptional divisor T ∼= F1

meets X1 along E, which is the negative section of T . The surface X2 is blown up
twice, with two exceptional divisors G1 and G2.

Now blow-up E again, creating a double component S ∼= P1×P1 of the central
fibre that meets X1 along E and T along its negative section. The blow-up affects
X2, by creating two more exceptional divisors F1 and F2 which are (−1) curves on
X2, while G1 and G2 become (−2)-curves. Blowing S down by the other ruling
contracts E on the surface X1. The curve R becomes nodal, and T changes into a
P2. The surface X2 becomes non-normal, singular along the identified (−1)-curves
F1, F2.

On X2 we introduced two pairs of infinitely near points corresponding to the
(−1)-curves Fi and Fi + Gi, which is also a curve with self-intersection −1, and
we call Fi and Fi + Gi a pair of infinitely near (−1)-curves, with 1 ≤ i ≤ 2. We
denote the assignment of multiplicities to a pair of infinitely near points as above by
[a, b], indicating a multiple point a and an infinitely near multiple point b, namely
−a(Fi +Gi)− bFi.

5.5. The base of the induction. The above discussion is general. In order
to deal with the base of the induction, we will now apply it to the degeneration
V ∪ Z described in section 5.2, with n = 10 (for the cases 11 ≤ n ≤ 12 the basic
degeneration, plus some more care on the matching, suffices). The proofs here are
quite similar to the ones in [5, 9], hence we will be brief.

197



14 CIRO CILIBERTO, BRIAN HARBOURNE, RICK MIRANDA, AND JOAQUIM ROÉ

5.5.1. The n = 10 case.

Proposition 5.5.8. The multiplicity vector (5, 49) is (SNS). In particular
B1,2 = (13; 5, 49) generates a good ray.

Proof. It suffices to prove that, for every positive integer x, (13x; 5x, (4x)9)
is non-effective and (13x+ 1; 5x, (4x)9) is non-special.

We will show that (15x; 6x, (4x)3, (5x)5, 4x) ((CK)-equivalent to (13x; 5x, (4x)9))
is not effective. We assume by contradiction that the linear system is effective for
some x.

Consider first the basic degeneration with s = 4, t = 7, endowed with the line
bundles L(a) as in §5.2 (whose restrictions to V and Z are LV = (a; 6x, (4x)3), LZ =
(15x; a, (5x)5, 4x)). Then perform the 2-throw of the (−1)-curve E = (3; 2, 16) on Z
(see §5.4). The normalization of V is a 8-fold blow up of P2, two of the exceptional
divisors being identified in V . More precisely, the normalization of V is the blow-up
of the plane at 8 points: 4 of them are in general position, 4 lie on a line, and two of
them are infinitely near. It is better to look at the surface Z before blowing down
E. Then Z ∼= X7. Finally, by executing the 2-throw we introduce a plane T .

We record that the pencil PV = (5; 3, 23, [1, 1]2) on the normalization of V and
the pencil PZ = (3; 2, 15, 0) on Z are nef.

We abuse notation and still denote by L(a) the pullback of this bundle to
the total space of the family obtained by the double blow-up of E (see §5.4).
For each triple of integers (a, b1, b2), we can consider the bundle L(a, b1, b2) =
L(a) ⊗ OY (−b1T − (b1 + b2)S). We will still denote by L(a, b1, b2) the pushout
of this bundle to the total space of the 2-throw family. Every limit line bundle of
(15x; 6x, (5x)5, (4x)4) has the form L(a, b1, b2).

We are interested in those L(a, b1, b2) which are centrally effective. Such sys-
tems were studied in [5, section 2], whose notation had μ = a, y = u = b1, y

′ =
v = b2, h = σ/2 = −L(a) · E/2 = −8x + a and several other parameters xi, zi
corresponding to 6 additional curves that were thrown, which we can safely equate
to 0. The effectivity of the restriction to S and T implies that b1 ≥ −8x + a,
b1+b2 ≥ −16x+2a, and the effectivity of the restriction to V , that −8x+a ≥ x > 0.
Then the computation of [5] shows that for every b1, b2 satisfying the preceding in-
equalities, the restriction of L(a, b1, b2) to Z and V are subsystems of the restriction
of L(a,−8x+ a,−8x+ a), namely

LZ = (63x− 6 a; 32x− 3 a, (21x− 2 a)5, 20x− 2 a)

and

LV = (a; 6x, (4x)3, [−8x+ a,−8x+ a]2).

It suffices to see that there is no value of a which makes both LZ and LV effective,
and for which there are divisors in these two systems which agree on the double
curve.

For L(a, b1, b2) to be centrally effective one needs

LZ · PZ = 20x− 2a ≥ 0, LV · PV = a− 10x ≥ 0.

This forces a = 10x and the restriction of L(a, b1, b2) to Z and V are equal to

LZ = (3x; 2x, x5, 0), LV = (10x; 6x, (4x)3, [2x, 2x]2),
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which means b1 = b2 = −8x+ a = 2x, hence the restriction of the line bundle to T
is trivial, and the systems LZ and LV are composed with the pencils PV and PZ ,
thus dim(LZ) = x, dim(LV ) = 2x.

Focusing on LV , we only need to consider the subspace of sections that match
along F1 and F2. Since the identification F1 = F2 is done via a sufficiently general
projectivity, this vector space has dimension 1 (see [9, §8] for details). Then, by
transversality on Z ∩ V = R (see [6, §3]), and since LZ|R has dimension x and
degree 2x, no section on Z matches the one on V to create a section on X0.

Now consider (13x+1; 5x, (4x)9) and its (CK)-equivalent system (15x+3; 6x+
2, (4x)3, 5x, (5x+1)4, 4x). A similar analysis as before, using a = 10x+ 1, leads to
the following limit systems on Z and V (trivial on T )

LZ = (3x+12; 2x+7, (x+4)4, x+3, 3), LV = (10x+1; 6x+2, (4x)3, [2x−1, 2x−2]2).

The system LZ is (CK)-equivalent to (x+5;x+2, 2, 14) so it is nef, non-empty
of the expected dimension (see [17]). The system LV is also non-empty of the
expected dimension: it consists of three lines plus a residual system (CK)-equivalent
to the nef system (2x + 3; 3, 2, 12, 2x − 2). Thus to compute the dimension of the
limit system as in [6], it remains to analyse the restrictions to R (or rather, the

kernel systems L̂Z , L̂V of such restrictions). Since both surfaces are anticanonical,

this can be done quite easily, showing that they are non-special with dim(L̂Z) =

2x + 4 and dim(L̂V ) = 10x − 7. Thus [6, 3.4, (b)], applies and non-speciality of
(15x+ 3; 6x+ 2, (4x)3, 5x, (5x+ 1)4, 4x) follows. �

5.5.2. The n = 11 case.

Proposition 5.5.9. The multiplicity vector (3, 210) is (SNS). In particular
(7; 3, 210) generates a good ray.

Proof. We prove that (7x+ δ; (2x)10, 3x) is non-effective for all x and δ = 0
and non-special for δ = 1.

Consider the basic degeneration as in §5.2, with s = 4, t = 8. Then L(a)
restrict as

LV = (a; (2x)4), LZ = (7x+ δ; a, (2x)6, 3x).

Look at the case δ = 0, where we want to prove non-effectivity. (BNC) does
not suffice for this, so we will compute the dimension of a limit system as in [6].
To do this, pick a = 4x. The systems LV and LZ are composed with the pencils
PV = (2; 14) and PZ = (7; 4, (2)6, 3) respectively (note that (7; 4, (2)6, 3) is (CK)-
equivalent to a pencil of lines), and dim(LV ) = 2x, dim(LZ) = x. The restriction
to R has degree 4x ≥ 2x+ x+ 1, so by transversality of the restricted systems [6,

§3], the limit linear system consists of the kernel systems L̂V = (4x− 1; (2x)4) and

L̂Z = (7x; 4x+1, (2x)6, 3x). These are non-effective, because they meet negatively
PV and PZ respectively. So (7x; (2x)10, 3x) is non-effective.

For δ = 1 pick again a = 4x. Then LV is the same, LZ = (7x+1; 4x, (2x)6, 3x)
and the kernel systems are both nef, hence they are non-special by [17]. Moreover
the restriction of LZ to R is the complete series of degree 4x. Again by transversality
as in [6, §3], the claim follows. �

5.5.3. The n = 12 case.

Proposition 5.5.10. The multiplicity vector (28, 14) is (SNS). In particular
(6; 28, 14) generates a good ray.
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Proof. We prove that (6x + δ;x4, (2x)8) is empty for all x and δ = 0 and
non-special for δ = 1.

Consider the degeneration of §5.2, with s = 4, t = 9. Then L(a) restrict as

LV = (a; (x)4), LZ = (6x; a, (2x)8).

Let us analyze the case δ = 0 for a = 2x. The system LZ consists of 2x
times the unique cubic E through the 9 points and LV is composed with the pencil
PV = (2, 14), and its restriction to R is composed with a general pencil of degree
2. By transversality it does not match the divisor cut out by 2xE on R and the
limit system is formed by the kernel systems. An elementary computation shows
that they are not effective.

For δ = 1 and a = 2x, LV is the same, whereas LZ = (6x + 1; (2x)9) and the

kernel L̂Z = (6x + 1; 2x + 1, (2x)8) are both nef, hence they are non-special by
[17]. As before, the restriction of LZ to R is the complete series of degree 2x, and
transversality gives the claim. �

Remark 5.5.11. (i) In Example 5.1.6 we saw that [dh;hd2−�, 1�h
2

], with 0 ≤
� ≤ h, and d ≥ 4, h ≥ 1, is a good ray. Proposition 5.5.10 shows that if d = 3,
h = 2, � = 1, the ray is still good. By Corollary 5.1.3, this implies that if d = 3,
h = 2, 1 ≤ � ≤ 9, the ray is still good. With a similar argument, one sees that all
cases d = 3, h ≥ 1, also give rise to good rays. We leave this to the reader.

(ii) For any integer d ≥ 6, take positive integers r, s such that d2 = 4s + r.
The ray generated by (d; 2s, 1r) on Xn is nef. Indeed, one has (d− 1)(d− 2) ≥ 2s,
so there exists an irreducible curve C of degree d with exactly s nodes p1, . . . , ps
([28], Anhang F). On the blow–up of the s nodes and r other points q1, . . . , qr of
the curve, the proper transform of the curve is a prime divisor of selfintersection
zero, thus nef.

If d = 2k is even then r = 4k2 − 4s is a multiple of four and (d; 2s, 1r) =

(2k; 2k
2−�, 14�) generates a good ray with � = k2 − s by example 5.1.6 (because of

(i) we may assume d > 6). This suggests that that the ray [d; 2s, 1r] may always
be good. To prove it, taking into account Corollary 5.1.3, it would suffice to show

that [2k + 1; 2k
2+k, 1] is good for all k ≥ 3.

5.6. The proof of the ET. For 10 ≤ n ≤ 12 the problem is settled by
Propositions 5.5.8, 5.5.9 and 5.5.10. To cover all n ≥ 13, we apply Corollary 5.1.3
with s = 4, D = (2; 14) and ν1 = . . . = ν4 = m1

4 (see Remark 5.1.4). For instance
one finds the good rays

[13 · 2h; 54, (5 · 2)3, . . . , (5 · 2h−1)3, (2h+2)9] if n = 10 + 3h, for h ≥ 1,

[7 · 2h; 34, (3 · 2)3, . . . , (3 · 2h−1)3, (2h+1)10] if n = 11 + 3h, for h ≥ 1,

[6 · 2h−1; (2)3, . . . , (2h−1)3, (2h)7, 18] if n = 12 + 3h, for h ≥ 1.

6. An application

Proposition 6.1. If (SN) holds for n = 10 and (N) holds for all n ≤ 89 then
(N) holds for all n ≥ 90.

The proof is based on the following:
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Lemma 6.2. Assume (SN) holds for n = 10. Let n = s1 + · · · + s10, where
s1, . . . , s10 are positive integers such that the Nagata ray νsi is nef for 1 ≤ i ≤ 10
and

(6.1) 3
√
n ≤

10∑
i=1

√
si.

Then νn is nef.

Proof. Consider the ray [
√
n,

√
s1, . . . ,

√
s10] which, by the hypotheses, is in

∂Q�
10. We can approximate it by a sequence {[dh,m1,h, . . . ,m10,h]}h∈N of good rays

(see Proposition 3.11). Make now an obvious multiple application of Corollary 5.1.3
with C = [dh,m1,h, . . . ,m10,h] and D each of the Nagata points νsi , for 1 ≤ i ≤ 10
(see Remark 5.1.4). We obtain that [dh, (

m1,h√
s1

)s1 , . . . , (
m10,h√

s10
)s10 ] is nef for all h ∈ N.

Since this ray tends to νn for h → ∞, the assertion follows. �

Proof of Proposition 6.1. We argue by induction. Let n ≥ 90, and write
n = 9h + k, with 9 ≤ k ≤ 17 and h ≥ 9. By induction both νh and νk are nef.
Moreover (6.1) is in this case 3

√
9h+ k ≤ 9

√
h+

√
k, which reads h ≥ 16

81k, which
is verified because k ≤ 17 and h ≥ 9. Then νn is nef by Lemma 6.2. �

Remark 6.3. Lemma 6.2 is reminiscent of the results in [1] and [26].
The hypotheses in Proposition 6.1 can be weakened. For instance, Lemma 6.2

implies that, if (SN) holds for n = 10, then ν13 is nef. Actually, it suffices to know

that [
√
13; 2, 19] is nef. As in Example 3.12, we may take a sequence {(qn, pn)}n∈N

such that pn+2qn
pn

are the convergents of the periodic continued fraction expansion

of
√
13 = [3; 13, 6], so that

p1 = 2, p2 = 3, p3 = 5, p4 = 20, . . . q1 = 1, q2 = 2, q3 = 3, q4 = 13 . . . .

The sequence of rays {[Bqn,pn
]}n∈N converges to ν13. If we knew that the rays of the

sequence are good, this would imply (N) for n = 13. Note that Bq1,p1
= (13; 5, 49)

generates a good ray by Proposition 5.5.8.
Similarly, if (SN) holds for n = 10, then νn is nef for n = 10h2, etc. We do not

dwell on these improvements here.
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Symplectic restriction varieties and geometric branching
rules

Izzet Coskun

To Joe, with gratitude, in celebration of his sixtieth birthday.

Abstract. In this paper, we introduce new, combinatorially defined subva-
rieties of isotropic Grassmannians called symplectic restriction varieties. We
study their geometric properties and compute their cohomology classes. In
particular, we give a positive, combinatorial, geometric branching rule for com-
puting the map in cohomology induced by the inclusion i : SG(k, n) → G(k, n).
This rule has many applications in algebraic geometry, symplectic geometry,
combinatorics, and representation theory. In the final section of the paper, we

discuss the rigidity of Schubert classes in the cohomology of SG(k, n). Sym-
plectic restriction varieties, in certain instances, give explicit deformations of
Schubert varieties, thereby showing that the corresponding classes are not
rigid.

1. Introduction

Specialization has been a fruitful technique since the beginning of enumerative
geometry. Enumerative geometry studies the problem of determining the number
of geometric objects (such as curves or linear spaces) satisfying constraints (such as
being incident to general linear spaces). Determining these invariants is often very
hard. However, if the constraints are in a special position, the problem may become
easier. The specialization technique consists of finding a special configuration of
constraints for which the answer to the enumerative problem becomes evident and
then relating the original problem to this simpler problem.

In the last three decades, Joe Harris has been a master at using specialization
to answer long standing problems of algebraic geometry. For example, Griffiths and
Harris in their celebrated paper [GH1], using an ingenious specialization, proved
the Brill-Noether Theorem by showing that Schubert cycles, which parameterize
linear spaces that intersect general secant lines of a rational normal curve, intersect
dimensionally properly. Later, Eisenbud and Harris, by specializing to a g-cuspidal
rational curve, gave a simple proof of the Gieseker-Petri Theorem [EH1], [EH2].
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More importantly, they developed the theory of limit linear series to systematically
study limits of linear systems under certain specializations [EH3]. The theory led to
rapid advances in Brill-Noether theory and our understanding of the moduli space of
curves [EH4]. In a parallel development, Griffiths and Harris used specializations to
give a new proof of the Noether-Lefschetz Theorem independent of Hodge theory
[GH2]. Harris also effectively used specialization to study the geometry of the
Severi varieties of nodal plane curves of degree d and genus g. He proved their
irreducibility [H] and, in joint work with Caporaso, computed their degrees [CH].

Inspired by Griffiths and Harris’ proof of the Brill-Noether Theorem, in the last
decade, Vakil and the author have used similar specializations to systematically
compute the structure constants of the cohomology of Grassmannians and flag
varieties [V], [C3], [C5], [CV]. Specializations have also been successfully applied
to study the cohomology of other homogeneous varieties. For example, the author
has computed the restriction coefficients and proved geometric branching rules for
Type B and D flag varieties [C2]. Given the prominent role that the specialization
technique has played in the work of Joe Harris and his students, it seems fitting
to include a paper calculating enumerative invariants by specialization in a volume
celebrating Joe Harris and his work.

The purpose of this paper is to compute the restriction coefficients and prove
geometric branching rules for Type C Grassmannians using specializations. The
extension to Type C flag varieties is straightforward, but in order to keep the
exposition in this paper short, we postpone the discussion to the companion paper
[C4].

Let V be an n-dimensional vector space over the complex numbers C. Let Q be
a non-degenerate skew-symmetric form on V . Since Q is non-degenerate, n must be
even, say n = 2m. A linear space W ⊂ V is called isotropic with respect to Q if for
every w1, w2 ∈ W , wT

1 Qw2 = 0. The symplectic isotropic Grassmannian SG(k, n)
parameterizes k-dimensional subspaces of V that are isotropic with respect to Q.

The isotropic Grassmannian SG(k, n) naturally includes in the Grassmannian
G(k, n). This inclusion i induces a map on cohomology

i∗ : H∗(G(k, n),Z) → H∗(SG(k, n),Z).

The cohomology groups of both G(k, n) and SG(k, n) have integral bases given
by Schubert classes. Given a Schubert class σκ in H∗(G(k, n),Z), i∗σκ can be
expressed as a non-negative linear combination

i∗σκ =
∑
λ,μ

cκλ;μσλ;μ

of the Schubert classes σλ;μ in H∗(SG(k, n),Z). The coefficients cκλ;μ are called
symplectic restriction or branching coefficients. These coefficients carry a lot of
geometric, combinatorial and representation theoretic information. For example,
they are closely related to computing moment polytopes and restrictions of rep-
resentations of SL(n) to Sp(n) (see [BS], [C2], [GS], [He], and [P]). The main
technical theorem of this paper gives a positive, geometric rule for computing re-
striction coefficients.

Theorem 1.1. Algorithm 3.29 gives a positive, geometric rule for computing
the symplectic restriction coefficients.
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More importantly, we will introduce a new set of varieties called symplectic
restriction varieties. These varieties parameterize isotropic subspaces that satisfy
rank conditions with respect to a not-necessarily isotropic flag. In Section 4, we
will specify the conditions that these flags need to satisfy and carefully define these
varieties. The reader may informally think of these varieties as varieties that inter-
polate between the restrictions of general Schubert varieties in G(k, n) to SG(k, n)
and Schubert varieties in SG(k, n).

The proof of Theorem 1.1 will proceed by a specialization. We will special-
ize the flag defining a Schubert variety in G(k, n) successively until we arrive at an
isotropic flag. We will show that at each stage of the specialization, the correspond-
ing restriction varieties break into a union of restriction varieties, each occurring
with multiplicity one. In Section 3, we will develop combinatorial objects called
symplectic diagrams to record the result of these specializations.

In earlier work, Pragacz gave a positive rule for computing restriction coeffi-
cients for Lagrangian Grassmannians [Pr1], [Pr2]. It is also possible to compute
restriction coefficients (in a non-positive way) by first computing the pullbacks of
the tautological bundles from G(k, n) to SG(k, n) and then using localization or
the theory of Schubert polynomials to express the Chern classes of these bundles in
terms of Schubert classes. To the best of the author’s knowledge, Algorithm 3.29
is the first positive, geometric rule for computing the restriction coefficients for all
isotropic Grassmannians SG(k, n).

While the combinatorics of symplectic restriction coefficients can be very com-
plicated, the beauty of the approach is that the computation depends on four very
simple geometric principles. We now explain these principles. Let Qr

d denote a d-
dimensional vector space such that the restriction of Q has corank r. Let Ker(Qr

d)
denote the kernel of the restriction of Q to Qr

d. Let Lj denote an isotropic sub-
space of dimension j with respect to Q. Let L⊥

j denote the set of w ∈ V such that

wTQv = 0 for all v ∈ Lj .

Evenness of rank. The rank of a non-degenerate skew-symmetric form is even.
Hence, d− r is even for Qr

d. Furthermore, if d = r, then Qr
d is isotropic.

The corank bound. Let Qr1
d1

⊂ Qr2
d2

and let r′2 = dim(Ker(Qr2
d2
) ∩ Qr1

d1
). Then

r1 − r′2 ≤ d2 − d1. In particular, d+ r ≤ n for Qr
d.

The linear space bound. The dimension of an isotropic subspace of Qr
d is

bounded above by �d+r
2 �. Furthermore, an m-dimensional linear space L satis-

fies dim(L ∩Ker(Qr
d)) ≥ m− �d−r

2 �.
The kernel bound. Let L be an (s + 1)-dimensional isotropic space such that
dim(L ∩ Ker(Qr

d)) = s. If an isotropic linear subspace M of Qr
d intersects L −

Ker(Qr
d), then M is contained in L⊥.

These four principles dictate the order of the specialization and determine the
limits that occur. Given a flag, we will specialize the smallest dimensional non-
isotropic subspace Qr

d, whose corank can be increased subject to the corank bound,

keeping all other flag elements unchanged. We will replace Qr
d with Q̃r+2

d . The
branching rule simply says that under this specialization, the limit L′ of a linear
space L satisfying rank conditions with respect to the original flag satisfies the same
rank conditions with the unchanged flag elements and either dim(L′∩Ker(Q̃r+2

d )) =

dim(L ∩Ker(Qr
d)) or dim(L′ ∩Ker(Q̃r+2

d )) = dim(L ∩Ker(Qr
d)) + 1. Furthermore,
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both of these cases occur with multiplicity one unless the latter leads to a smaller
dimensional variety or the former violates the linear space bound. See Sections 3
and 5 for an explicit statement of the rule and for examples.

The organization of this paper is as follows. In Section 2, we will recall basic
facts concerning the geometry of isotropic Grassmannians. In Section 3, we will
introduce the algorithm in combinatorial terms without reference to geometry. In
Section 4, we will define symplectic restriction varieties and explain the combi-
natorics in geometric terms. In Section 5, we will describe the specialization and
prove that the combinatorial game introduced in Section 3 computes the restriction
coefficients. In the last section, we will give an application of symplectic restriction
varieties to questions of rigidity.

Acknowledgements: The germs of the ideas in this paper date back to my con-
versations with Joe Harris while I was in graduate school. I would like to thank
him for his guidance and unfailing support.

2. Preliminaries

In this section, we recall basic facts concerning the geometry of isotropic Grass-
mannians.

Let n = 2m be a positive, even integer. Let V be an n-dimensional vector space
over C. Let Q be a non-degenerate, skew-symmetric form on V . By Darboux’s
Theorem, we can choose a basis for V such that in this basis Q is expressed as∑m

i=1 xi ∧ yi. A subspace W of V is called isotropic if wTQv = 0 for any two
vectors v, w ∈ W . The dimension of an isotropic subspace of V is at most m.
Given a vector space W , the orthogonal complement W⊥ of W is defined as the set
of v ∈ V such that vTQw = 0 for every w ∈ W . If the dimension of W is k, then
the dimension of W⊥ is n− k and the restriction of Q to W⊥ has rank n− 2k (or,
equivalently, corank k).

The Grassmannian SG(k, n) parameterizing k-dimensional isotropic subspaces
of V is a homogeneous variety for the symplectic group Sp(n). The Grassmannian
SG(m,n) parameterizing maximal isotropic subspaces has dimension

dim(SG(m,n)) =
m(m+ 1)

2
.

This can be seen inductively. The dimension of SG(1, 2) ∼= P1 is one since every
vector is isotropic with respect to Q. Consider the incidence correspondence

I = {(w,W ) | w ∈ P(W ) and [W ] ∈ SG(m,n)}

parameterizing a pair of a maximal isotropic subspace W and a point w of P(W ).
The first projection of the incidence correspondence I maps to P(V ) with fibers
isomorphic to SG(m− 1, n− 2). The second projection maps the incidence corre-
spondence to SG(m,n) with fibers isomorphic to P(W ). By the Theorem on the
Dimension of Fibers [S, I.6.7] and induction, we conclude that the dimension of

SG(m,n) is m(m+1)
2 .

The dimension of the isotropic Grassmannian SG(k, n) is

dimSG(k, n) =
m(m+ 1)

2
+

(m− k)(3k −m− 1)

2
= nk − 3k2 − k

2
.
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To see this, consider the incidence correspondence

I = {(W1,W2) | W1 ∈ SG(k, n),W2 ∈ SG(m,n),W1 ⊂ W2}

parameterizing two-step flags consisting of a k-dimensional isotropic space con-
tained in a maximal isotropic space. Since every k-dimensional isotropic space can
be completed to a maximal isotropic space, the first projection is onto SG(k, n).
The fibers of the first projection are isomorphic to the isotropic Grassmannian
SG(m− k, n− 2k). The second projection is onto SG(m,n) with fibers isomorphic
to G(k,m). The Theorem on the Dimension of Fibers [S, I.6.7] and the previous
paragraph imply the claim.

More generally, we will need to study spaces parameterizing k-dimensional
linear spaces isotropic with respect to a degenerate skew form Qr

n of corank r on an
n-dimensional vector space. Naturally, n−r needs to be even. Since the restriction
of Qr

n to a linear space complementary to its kernel is non-degenerate, we conclude
that the largest dimensional isotropic subspace has dimension r+ n−r

2 . Set h = n−r
2 .

Then the space of (r + h)-dimensional isotropic linear spaces with respect to Qr
n

is isomorphic to SG(h, 2h) and has dimension h(h+1)
2 . Considering the incidence

correspondence

I = {(W1,W2) | W1 ⊂ W2 isotropic with respect to Qr
n,

dim(W1) = k, and dim(W2) = h+ r},
we see that the space of k-dimensional isotropic subspaces of Qr

n has dimension
h(h+1)

2 + k(h+ r − k) if k ≥ h and h(h+1)
2 + k(h+ r − k)− (h−k)(h−k+1)

2 if k < h.

By Ehresmann’s Theorem [E] (see [Bo, IV.14.12]), the cohomology of SG(k, n)
is generated by the classes of Schubert varieties. Let 0 ≤ s ≤ k be a non-negative
integer. Let λ• : 0 < λ1 < λ2 < · · · < λs ≤ m be a sequence of increasing positive
integers. Let μ• : m > μs+1 > μs+2 > · · · > μk ≥ 0 be a sequence of decreasing
non-negative integers such that λi �= μj + 1 for any 1 ≤ i ≤ s and s < j ≤ k. Then
the Schubert varieties in SG(k, n) may be indexed by pairs of admissible sequences
(λ•;μ•). Fix an isotropic flag

F• = F1 ⊂ F2 ⊂ · · ·Fm ⊂ F⊥
m−1 ⊂ · · ·F⊥

1 ⊂ V.

The Schubert variety Σλ•;μ•(F•) is defined as the Zariski closure of the set of linear
spaces

{W ∈ SG(k, n) | dim(W ∩Fλi
) = i for 1 ≤ i ≤ s, dim(W ∩F⊥

μj
) = j for s < j ≤ k}.

In the literature, it is customary to denote Schubert classes in the cohomology
of SG(m,n) by strictly decreasing partitions m ≥ a1 > a2 > · · · > as > 0 of length
s ≤ m. In our notation, the sequence a• translates to the sequence λ• by setting
ai = m+1−λi. Note that when n = 2m, the sequence λ• determines the sequence
μ• by the requirement that λi �= μj+1 for any 1 ≤ i ≤ s and s < j ≤ m. Therefore,
it is common to omit the sequence μ• from the notation. We will not follow this
convention. In Schubert calculus, many authors prefer to record Schubert classes
so that the codimension will be easily accessible. Our notation has the advantage
that it is preserved under natural maps between Grassmannians arising from linear
embeddings between ambient vector spaces.
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We will index Schubert classes in the cohomology of the Grassmannian G(k, n)
by increasing sequences of non-negative integers a• : 0 < a1 < a2 < · · · < ak ≤ n.
The Schubert variety Σa•(F•) with respect to a flag F• parameterizes k-dimensional
subspaces W of V that satisfy dim(W ∩ Fai

) ≥ i for 1 ≤ i ≤ k.

3. A combinatorial game

In this section, we will introduce a combinatorial game that computes the
symplectic restriction coefficients. The purpose of this section is to explain the
mechanics of the rule without reference to geometry. In the next two sections,
we will interpret the game in geometric terms and prove that it computes the
symplectic restriction coefficients. The geometrically minded reader may wish to
look ahead at the next two sections.

Notation 3.1. Let 0 ≤ s ≤ k be an integer. A sequence of n natural numbers
of type s for SG(k, n) is a sequence of n natural numbers such that every number
is less than or equal to k− s. We write the sequence from left to right with a small
gap to the right of each number in the sequence. We refer to the gap after the
i-th number in the sequence as the i-th position. For example, 1 1 2 0 0 0 0 0 and
3 0 0 2 0 1 0 0 are two sequences of 8 natural numbers of types 1 and 0, respectively,
for SG(3, 8).

Definition 3.2. Let 0 ≤ s ≤ k be an integer. A sequence of brackets and
braces of type s for SG(k, n) consists of a sequence of n natural numbers of type s,
s brackets ] ordered from left to right and k − s braces } ordered from right to left
such that:

(1) Every bracket or brace occupies a position and each position is occupied
by at most one bracket or brace.

(2) Every bracket is to the left of every brace.
(3) Every positive integer greater than or equal to i is to the left of the i-th

brace.
(4) The total number of integers equal to zero or greater than i to the left of

the i-th brace is even.

Example 3.3. 11]200}0}00 and 300}20}10}0 are typical examples of sequences
of brackets and braces for SG(3, 8) that have the two examples from Notation 3.1
as their sequences of natural numbers. When writing a sequence of brackets and
braces, we often omit the gaps not occupied by a bracket or a brace.

Example 3.4. Let us give several non-examples to clarify Definition 3.2. The
first condition disallows diagrams such as ]0000} (the first bracket is not in a po-
sition), 0]]000, 000}}0, 00]}00 (two brackets, two braces, or a bracket and a brace
occupy the same position, respectively). The second condition disallows diagrams
such as 00}0]000 (a brace cannot be to the left of a bracket). The third condition
disallows diagrams such as 100}30}20}0 (3 is to the right of the third brace and 2 is
to the right of the second brace). The fourth condition disallows diagrams such as
1]2000}0}00 (the number of zeros to the left of the second brace, and the number
of zeros and twos to the left of the first brace are odd).

Notation 3.5. By convention, the brackets are indexed from left to right and
the braces are indexed from right to left. We write ]i and }i to denote the i-th
bracket and i-th brace, respectively. Their positions are denoted by p(]i) and p(}i).
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The position of a bracket or a brace is equal to the number of integers to its left.
For notational convenience, we declare that, in a sequence of brackets and braces
of type s for SG(k, n), the brace }k−s+1 denotes ]s and an integer in the sequence
equal to k − s + 1 should be read as 0. Let l(i) denote the number of integers in
the sequence that are equal to i. Let ri be the total number of positive integers less
than or equal to i that are to the left of }i. For 0 < j < i, let ρ(i, j) = p(}j)− p(}i)
and let ρ(i, 0) = n − p(}i). Equivalently, ρ(i, 0) (respectively, ρ(i, j)) denotes the
number of integers to the right of the i-th brace (respectively, to the right of the
i-th brace and to the left of the j-th brace).

Example 3.6. For the sequence of brackets and braces 300}20}10}0 for
SG(3, 8), the positions are p(}3) = 3, p(}2) = 5, p(}1) = 7. We have ri =
l(i) = 1, for 1 ≤ i ≤ 3, ρ(i, i− 1) = 2, for 2 ≤ i ≤ 3, and ρ(1, 0) = 1.

Example 3.7. For the sequence of brackets and braces 1]22]00}00}0 for
SG(4, 8), the positions are p(]1) = 1, p(]2) = 3, p(}2) = 5, p(}1) = 7. We have r1 =
l(1) = 1, l(2) = 2, and r2 = 3. Moreover, ρ(2, 1) = 2 and ρ(1, 0) = 1.

Definition 3.8. Two sequences of brackets and braces are equivalent if the
lengths of their sequence of numbers are equal, the brackets and braces occur at
the same positions, and the collection of digits that occur between any consecutive
brackets and/or braces are the same up to reordering.

Example 3.9. The sequences 1221]00200}000}00, 1122]20000}000}00 and the
sequences 003}02}01}0, 300}20}10}0 are equivalent pairs of sequences. We can
depict an equivalence class of sequences by the representative where the digits
are listed so that between any two consecutive brackets and/or braces the positive
integers precede the zeros and are listed in non-decreasing order. We will always use
this canonical representative and often blur the distinction between the equivalence
class and this representative.

Definition 3.10. A sequence of brackets and braces is in order if the sequence
of numbers consists of a sequence of non-decreasing positive integers followed by
zeros except possibly for one i immediately to the right of }i+1 for 1 ≤ i < k − s.
Otherwise, we say that the sequence is not in order. A sequence is in perfect order
if the sequence of numbers consists of non-decreasing positive integers followed by
zeros.

Example 3.11. The sequences 11]00]100}000, 1]20000}1}0}00, 122]100}00}00
are not in order. The sequences 300}20}10}000, 11]22]00}00}00, 1]33]0000}200}0}0
are in order. Furthermore, 11]22]00}00}00 is in perfect order.

Definition 3.12. A sequence of brackets and braces is saturated if l(i) =
ρ(i, i− 1) for 1 ≤ i ≤ k − s.

Example 3.13. The sequences 11]22]00}00}00 and 1]22]100}00}00 are satu-
rated, whereas, 22]00}00}00 and 1]0000}00}000 are not.

The next definition is a technical definition that plays a role in the proof and
is a consequence of the order in which the game is played. The reader can define a
symplectic diagram as a sequence of brackets and braces that occurs in the game
and refer to the conditions only when necessary.
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Definition 3.14. A symplectic diagram for SG(k, n) is a sequence of brackets
and braces of type s for SG(k, n) for some 0 ≤ s ≤ k such that:

(S1) l(i) ≤ ρ(i, i− 1) for 1 ≤ i ≤ k − s.
(S2) Let τi be the sum of p(]s) and the number of positive integers between ]s

and }i. Then
2τi ≤ p(}i) + ri.

(S3) Either the sequence is in order or there exists at most one integer 1 ≤ η ≤
k − s such that the sequence of integers is non-decreasing followed by a
sequence of zeros except for at most one occurrence of η between ]s and
}η+1 and at most one occurrence of i < η after }i+1.

(S4) Let ξj denote the number of positive integers between }j and }j−1. If
an integer i occurs to the left of all the zeros, then either i = 1 and
there is a bracket in the position following it, or there exists at most
one index j0 such that ρ(j, j − 1) = l(j) for j0 �= j > min(i, η) and
ρ(j0, j0 − 1) ≤ l(j0) + 2 − ξj0 . Moreover, any integer η violating order
occurs to the right of }j0 .

Remark 3.15. Conditions (S1) and (S2) are necessary to guarantee that sym-
plectic diagrams represent geometrically meaningful objects. Conditions (S3) and
(S4) are consequences of the order the game is played and describe the most com-
plicated possible diagrams that can occur. The reader can ignore these conditions.
They are necessary to carry out the dimension counts and to prove that the algo-
rithm is defined at each step. They are not needed in order to run the algorithm.

Example 3.16. Let us give some examples to clarify Definition 3.14. Condition
(S1) allows for diagrams such as 11]22]2]00}000}00 but disallows 22]3300}2}00}000
(there are two 3’s and three 2’s in the sequence but ρ(2, 3) = 1 and ρ(1, 2) =
2). Condition (S2) disallows diagrams such as 000]10}0 (r1 = 1, τ1 = 4, but
2 · 4 > 5 + 1). Condition (S3) allows for 2344]300}00}00}10}0 (a non-decreasing
sequence of positive integers 2344 followed by a sequence consisting of one 3, one
1 and zeros), but disallows 22]110000}2200}0000}00 (there are two 1s and two 2s
following the non-decreasing sequence 22) or 22]133]00}00}00}0 (there are two 3s
following the non-decreasing sequence 22). Condition (S4) allows for diagrams such
as 11]3300}00}1}000, 1]1]33]00}00}00}00, however, it disallows diagrams such as
144]00}00}00}00}0 (1 occurs in the initial non-decreasing part of the sequence, but
2 and 3 do not occur. 1 is not followed by a bracket and l(3) = 0 �= ρ(3, 2) = 2,
l(2) = 0 �= ρ(2, 1) = 2).

The next definition is crucial for the game and the reader should remember
these conditions.

Definition 3.17. A symplectic diagram is called admissible if it satisfies the
following additional conditions.

(A1) The two integers to the left of a bracket are equal. If there is only one
integer to the left of a bracket and s < k, then the integer is one.

(A2) Let xi be the number of brackets ]h such that every integer to the left of
]h is positive and less than or equal to i. Then

xi ≥ k − i+ 1− p(}i)− ri
2

.
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Example 3.18. Condition (A1) disallows diagrams such as 11]23]00}00}00}00
(the digits preceding the second bracket are not equal), 2]200}00}00 (there is a
bracket in position 1, but the first digit is not 1). Condition (A2) is hard to visualize
without resorting to counting. Let p be the position of the rightmost bracket such
that every digit to the left of p is positive and less than or equal to i. In words,
condition (A2) says that the total number of zeros and integers greater than i in
the sequence is at least twice the number of brackets and braces in positions p+ 1
through p(}i). The following diagrams violate condition (A2): 22}00}00 (x2 = 0,
p(}2) = r2 = 2, but 0 < 1), 200}2}00} (the number of braces up to p(}2) = 4 is
2; the number of zeros is 2, but 2 < 2 · 2), 11]33]00}00}1}000 (the total number of
brackets and braces between positions 3 and 9 = p(}1) is 4. The number of zeros
and integers greater than 1 is 6, but 2 · 4 > 6).

Remark 3.19. The admissible symplectic diagrams are the main combinato-
rial objects in this paper. They represent symplectic restriction varieties, which are
the main geometric objects of the paper and will be defined in the next section.
The symplectic diagram records a non-necessarily isotropic flag. The correspond-
ing symplectic restriction variety parameterizes isotropic spaces that satisfy certain
rank conditions with respect to this flag. The definition of an admissible sym-
plectic diagram reflects the basic facts about isotropic subspaces discussed in the
introduction, as we will see in the next section.

Definition 3.20. The symplectic diagram D(σλ;μ) associated to the Schubert
class σλ;μ in SG(k, n) is the saturated symplectic diagram in perfect order, where
the brackets occur at positions λ1, . . . , λs and the braces occur at positions n −
μs+1, · · · , n− μk.

Example 3.21. The symplectic diagram associated to σ2,4;4,2 in SG(4, 10) is
11]22]00}00}00.

Lemma 3.22. The diagram D(σλ;μ) is an admissible symplectic diagram.

Proof. Let n = 2m. Since 0 < λ1 < · · · < λs ≤ m < n−μs+1 < · · · < n−μk,
the brackets and braces occur in different positions and the brackets are to the left
of the braces. Since the sequence is saturated and in perfect order, the number
of integers in the sequence equal to i is μk−i+1 − μk−i+2 ≤ μs+1 < m (with the
convention that μk+1 = 0), for 1 ≤ i ≤ k− s and occur to the left of }k−s. Finally,
the number of integers equal to zero or greater than or equal to i to the left of }i
is n − 2μk−i+1 = 2(m − μk−i+1). Therefore, D(σλ;μ) satisfies all 4 conditions in
Definition 3.2.

By definition, D(σλ;μ) is saturated, so l(i) = ρ(i, i−1) and conditions (S1) and
(S4) hold. Since the diagram is in perfect order, (S3) holds and

τi = max(λs, μs+1) ≤ m.

On the other hand, p(}i) + ri = n− μk−i+1 + μk−i+1 = n = 2m ≥ 2τi. Therefore,
D(σλ;μ) satisfies all the conditions in Definition 3.14.

Finally, since λj �= μi + 1 for any i, j, the two integers preceding a bracket
must be equal. Furthermore, if λ1 = 1, μ1 ≥ 1. Hence, condition (A1) holds. For
1 ≤ i ≤ k−s, k− i+1− (p(}i)−ri)/2 = k− i+1+μk−i+1−m. From the sequence
0, 1, . . . ,m− 1, remove the integers λ1 − 1, λ2 − 1, . . . , λs − 1 to obtain a sequence
αm < αm−1 < · · · < αs+1. By assumption μk−i+1 = αj for some j ≥ k − i + 1.
Hence, k− i+1+μk−i+1−m ≤ αj − (m− j) = xi. To see the last equality, observe
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that xi is the number of integers λh that are less than or equal to μk−i+1 = αj .
This number is equal to the number of integers (αj − (m − j)) between 0 and αj

that do not occur in the sequence αm, . . . , αj . Hence, condition (A2) holds. We
conclude that D(σλ;μ) is an admissible symplectic diagram. �

The game is defined on admissible symplectic diagrams. We will see in the
next section that saturated admissible diagrams in perfect order represent Schubert
varieties in SG(k, n). The goal of the algorithm is to transform every admissible
symplectic diagram to a collection of saturated admissible diagrams in perfect order.
Given an admissible symplectic diagram D, we will associate to it one or two
sequences Da and/or Db of brackets and braces. Initially, neither Da nor Db has to
be admissible. We will shortly describe an algorithm that modifies Da and Db so
that they become admissible. The game records a degeneration of the flag elements
represented by D.

Definition 3.23. Let D be an admissible symplectic diagram of type s for
SG(k, n). For the purposes of this definition, read any mention of k − s + 1 as 0
and any mention of }k−s+1 as ]s.
(1) If D is not in order, let η be the integer in condition (S3) violating the order.

(i) If every integer η < i ≤ k− s occurs to the left of η, let ν be the leftmost
integer equal to η + 1 in the sequence of D. Let Da be the canonical
representative of the diagram obtained by interchanging η and ν.

(ii) If an integer η < i ≤ k − s does not occur to the left of η, let ν be the
leftmost integer equal to i+ 1. Let Da be the canonical representative of
the diagram obtained by swapping η with the leftmost 0 to the right of
}i+1 not equal to ν and changing ν to i.

(2) If D is in order but is not a saturated admissible diagram in perfect order, let
κ be the largest index for which l(i) < ρ(i, i− 1).

(i) If l(κ) < ρ(κ, κ − 1) − 1, let ν be the leftmost digit equal to κ + 1. Let
Da be the canonical representative of the diagram obtained by changing
ν and the leftmost 0 to the right of }k+1 not equal to ν to κ.

(ii) If l(κ) = ρ(κ, κ− 1) − 1, let η be the integer equal to κ − 1 immediately
to the right of }κ.
(a) If κ occurs to the left of η, let ν be the leftmost integer equal to κ

in the sequence of D. Let Da be the canonical representative of the
diagram obtained by changing ν to κ− 1 and η to zero.

(b) If κ does not occur to the left of η, let ν be the leftmost integer equal
to κ + 1. Let Da be the canonical representative of the diagram
obtained by swapping η with the leftmost 0 to the right of }κ+1 not
equal to ν and changing ν to κ.

Let p be the position in D immediately to the right of ν. If there exists a bracket
at a position p′ > p in Da, let q > p be the minimal position occupied by a bracket
in Da. Let Db be the diagram obtained from Da by moving the bracket at position
q to position p. Otherwise, Db is not defined.

Example 3.24. Let D = 2300}10}0}0, then η = 1 violates the order and ν = 2
and 3 occur to the left of it. Hence, we are in case (1)(i) and Da = 1300}20}0}0 is
obtained by swapping 1 and 2. Similarly, let D = 200]200}00}, then the second 2
violates the order and Da = 220]000}00}, Db = 22]0000}00}.
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Let D = 124400}00}1}0}00, the 1 in the ninth place violates the order and 3
does not occur to its left, so we are in case (1)(ii) and Da = 123400}10}0}0}00.

LetD = 22]00}00}00, thenD is in order and κ = 1. Since l(1) = 0 < ρ(1, 0)−1,
we are in case (2)(i) and Da = 12]00}10}00 and Db = 1]200}10}00.

LetD = 3300}200}0}, thenD is in order and κ = 3. Since l(3) = 2 = ρ(3, 2)−1,
we are in case (2)(ii)(a) and Da = 2300}000}0}.

Finally, let D = 330000}00}1}0, then D is in order and κ = 2. Since l(2) =
0 = ρ(2, 1)− 1 and 2 does not occur in the sequence, we are in case (2)(ii)(b) and
Da = 230000}10}0}0.

We will soon check that both Da and Db are symplectic diagrams; however,
they do not have to be admissible. We now describe algorithms for turning them
into admissible diagrams.

Algorithm 3.25. If Da is not an admissible symplectic diagram, perform the
following steps to turn it into an admissible diagram.

Step 1. If Da does not satisfy condition (A2), let i be the maximal index for which
condition (A2) fails. Define a new diagram Dc as follows. Let the two rightmost
integers equal to i in Da be in the places π1 < π2. Delete }i and move the i in
place π2 to place π1 +1. Slide the integers in places π1 < π < π2 and brackets and
braces in positions π1 < p < π2 one to the right. Add a bracket at position π1 + 1.
Subtract one from the integers i < h ≤ k − s; and if i = k − s, change the integers
equal to k − s to 0. Let Dc be the resulting diagram and replace Da with Dc. If
Da satisfies condition (A2), proceed to the next step.

Step 2. If Da fails condition (A1), let ]j be the smallest index bracket for which it
fails and let i be the integer preceding ]j . Change this i to i− 1 (k− s if i = 0) and
move }i−1 (}k−s if i = 0) one position to the left. Repeat this procedure until the
sequence of brackets and braces satisfies condition (A1). Let the resulting sequence
be Dc. In both steps, we refer to Dc as a quadric diagram derived from Da.

Algorithm 3.26. If Db does not satisfy condition (A1), run Step 2 of Algo-
rithm 3.25 on Db. Explicitly, let ]j be the minimal index bracket for which (A1)
fails. Let i be the integer immediately to the left of ]j . Replace i with i − 1 and
move }i−1 one position to the left. As long as the resulting sequence does not
satisfy condition (A1), repeat this process either until the resulting sequence is an
admissible symplectic diagram (in which case, this is the symplectic diagram derived
from Db) or two braces occupy the same position. In the latter case, no admissible
symplectic diagrams are derived from Db.

Example 3.27 (Examples of Algorithm 3.25). Let D = 22]33]00}00}00}00.
Then the diagram Da = 12]33]00}00}10}00 fails condition (A2) since x1 = 0 <
1 = 5 − (10 − 2)/2. Hence, according to Step 1 of Algorithm 3.25, we replace
Da with 11]1]22]00}00}000 (delete }1, move the 1 in position 9 to position 2 and
slide everything in positions 2-8 one position to the right, add a bracket in position
2, and subtract 1 from the integers greater than 1). The latter is an admissible
diagram.

Let D = 00}00}00. Then Da = 22}00}00 fails condition (A2) since x2 = 0 <
1 − (2 − 2)/2. Hence, Step 1 of Algorithm 3.25 replaces Da with 00]00}00 (delete
}2 and add a bracket in position 2), which is admissible.
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Similarly, ifD = 11]33]00}00}00}00, then the diagramDa = 11]23]00}20}00}00
fails condition (A2) since x2 = 1 < 2. Hence, according to Step 1 of Algorithm
3.25, we replace Da with 11]22]2]00}000}00, which is admissible.

If D = 22]2]200}0000}00, then the diagram Da = 12]2]200}1000}00 is not
admissible since it fails condition (A1) for ]1. Step 2 of Algorithm 3.25 replaces
Da first with 11]2]200}100}000 (change the 2 preceding ]1 to 1 and move }1 one
position to the right). Note that this diagram fails condition (A1) for ]2. Hence,
Step 2 replaces it with 11]1]200}10}0000 (change the 2 preceding ]2 to 1 and move
}1 one position to the left). This diagram is admissible, hence it is the diagram
derived from Da.

Example 3.28 (Examples of Algorithm 3.26). Let D = 11]33]00}00}00}00,
then Db = 11]2]300}20}00}00 fails condition (A1). Algorithm 3.26 replaces it with
11]1]300}20}0}000, which is admissible.

Let D = 00]0000}00}00}, then Db = 3]30000}00}00} does not satisfy condition
(A1) since the digit to the left of ]1 has to be 1. Algorithm 3.26 replacesDb first with
2]30000}0}000}, which still fails condition (A1). Hence, Algorithm 3.26 replaces
this diagram with 1]30000}0}00}0, which is admissible.

If D = 00]0000}2}0}, then Da = 30]2000}0}0} and Db = 3]20000}0}0}. They
both fail condition (A1). When we run Algorithm 3.26 on Db, we turn the 3 into
2 and slide }2 one position to the left. In that case, we obtain 1]30000}}00}.
Since two braces occupy the same position, no diagrams are derived from Db in
this case. When we run Algorithm 3.25 on Da, we obtain the admissible diagram
33]200}00}0}.

Let D be an admissible symplectic diagram and let ν be as in Definition 3.23.
Let π(ν) denote the place of ν in the sequence of integers. If p(]s) > π(ν), then
]xν−1+1 is the first bracket to the right of ν. If the integer to the immediate left of
]xν−1+1 is positive, let yxν−1+1 be this integer. Otherwise, let yxν−1+1 = k − s+ 1.
The condition p(]xν−1+1) − π(ν) − 1 = yxν−1+1 − ν plays an important role. In
words, this condition says that the number of values larger than ν or equal to zero
that the integers to the left of ]xν−1+1 attain is one more than the cardinality of
the set of integers consisting of zero and integers larger than ν occurring to the left
of ]xν−1+1. In view of conditions (S3), (S4) and (A1), a sequence satisfying this
equality looks like

· · · ν ν + 1 · · · ν + l − 1 ν + l ν + l] · · · or · · · ν ν + 1 · · · ν + l 00] · · · ,
where we have drawn the part of the sequence starting with the left most ν and
ending with ]xν−1+1. We are now ready to state the algorithm.

Algorithm 3.29. Let D be an admissible, symplectic diagram of type s for
SG(k, n). If D is saturated and in perfect order, return D and stop. Otherwise, let
Da and Db be defined as in Definition 3.23.

(1) If p(]s) ≤ π(ν) or p(]xν−1+1) − π(ν)− 1 > yxν−1+1 − ν in D, then return
the admissible symplectic diagrams that are derived from Da.

(2) Otherwise, return the admissible symplectic diagrams that are derived
from both Da and Db.

We run the algorithm on two symplectic diagrams.
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Example 3.30.

00}00}00 → 00]00}00 → 00]0]000

↓
1]100}00

In this example, first Da = 22}00}00 is not admissible since the diagram fails
condition (A2). Therefore, we replace it by 00]00}00. Next, Da = 10]10}00 and
Db = 1]100}00. Da is not admissible since it does not satisfy condition (A2). Hence,
we replace it by the admissible diagram 00]0]000. Db is admissible. Note that the
last two diagrams are saturated and in perfect order, so the algorithm terminates.
We will soon see that this calculation shows i∗σ2,4 = σ2,3; + σ1;2 in SG(2, 6).

Finally, we give a larger example in SG(3, 10) that illustrates the inductive
structure of the game.

Example 3.31.

300}20}10}000 → 200}00}10}000 → 200]00}10}000 → 1]0000}00}000

↓ ↓
100]00}00}000 1]2200}00}000
↙ ↘ ↓

100]0]000}000 11]200}0}0000 1]1200}10}000
↙ ↘ ↓ ↓

000]0]0]00000 11]00]100}000 11]11]00}0000 1]1100}00}000

↙ ↘ ↓
11]1]0000}000 11]11]00}0000 1]1100]00}000

We will see that this calculation shows i∗σ3,5,7 = σ3,4,5; + σ2,3;3 +2σ2,4;4 + σ1,5;3 in
H∗(SG(3, 10),Z).

Definition 3.32. A degeneration path is a sequence of admissible symplectic
diagrams

D1 → D2 → · · · → Dr

such thatDi+1 is one of the outcomes of running Algorithm 3.29 onDi for 1 ≤ i < r.

The main theorem of this paper is the following.

Theorem 3.33. Let D be an admissible symplectic diagram for SG(k, n). Let
V (D) be the symplectic restriction variety associated to D. Then, in terms of the
Schubert basis of SG(k, n), the cohomology class [V (D)] can be expressed as

[V (D)] =
∑

cλ;μσλ;μ,

where cλ;μ is the number of degeneration paths starting with D and ending with the
symplectic diagram D(σλ;μ).

Theorem 1.1 stated in the introduction is a corollary of Theorem 3.33.
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Definition 3.34. Let σa• be a Schubert class in G(k, n). If aj < 2j − 1 for
some 1 ≤ j ≤ k, then i∗σa• = 0 and we do not associate a symplectic diagram to
σa• . Suppose that aj ≥ 2j − 1 for 1 ≤ j ≤ k. Let u be the number of i such that
ai = 2i − 1. For j such that aj �= 2j − 1, let uj be the number of integers i < j
such that ai = 2i− 1. Let vj be the number of integers i > j such that ai = 2i− 1.
Then the diagram D(a•) associated to i∗σa• is a diagram consisting of u brackets
at positions 1, 2 · · · , u and a brace for each aj > 2j − 1 at position aj − uj + vj .
The sequence of integers consists of u integers equal to 1 followed by zeros except
for one integer equal to k − j − vj + 1 immediately following the first bracket or
brace to the right of }k−j−vj+1 (or in the first position if j + vj = 1) for each odd
aj > 2j − 1.

Example 3.35. The diagram D(σ3,5,7) in SG(3, 8) is 300}20}10}0. The dia-
gram D(σ1,3,6,7,10) in SG(5, 10) is 1]1]1]00}00}000. The diagram D(σ1,3,7,8,9,12) in
SG(6, 14) is 1]1]1]300}0}00}00000.

Remark 3.36. The reader will notice that D(σa•) is the diagram obtained by
running Algorithm 3.25 on the diagram that has a brace at positions aj and whose
sequence consists of zeros except for one k−j+1 immediately to the right of }k−j+2

when aj is odd.

Lemma 3.37. If aj ≥ 2j − 1 for 1 ≤ j ≤ k, then D(a•) is an admissible
symplectic diagram.

Proof. The brackets occur at positions 1, . . . , u. Let aj and aj+l be two
consecutive integers in the sequence a• satisfying ai > 2i − 1. Then the positions
of the corresponding braces are aj − uj + vj and aj+l − uj+l + vj+l. Since uj+l =
uj+ l−1 and vj+l = vj− l+1, the positions of the two braces differ by the quantity
β = aj+l − aj − 2l + 2. If l = 1, β > 0. If l > 1, then aj < aj+1 = 2j + 1. Since
aj+l ≥ 2j + 2l, β is also positive. The first brace corresponds to the smallest index
j0 such that aj0 > 2j0 − 1 and occurs at position aj0 − (j0 − 1) + (u − j0 + 1) =
u + aj0 − 2j0 + 2 ≥ u + 2. The number of positive integers less than or equal
to k − j − vj + 1 to the left of }k−j−vj+1 is u (respectively, u + 1) if aj is even
(respectively, odd). Hence, the number aj −uj +vj −u(−1) = aj −2uj(−1) (where
−1 occurs if aj is odd) of integers equal to zero or greater k− j − vj +1 to the left
of }k−j−vj+1 is even. Therefore, conditions (1)-(4) of Definition 3.2 hold.

By construction, l(i) ≤ 1 for i > 1 and l(1) = u(+1) depending on whether
the largest aj > 2j − 1 is even (or odd). In either case, one easily sees that
l(1) ≤ ρ(1, 0). The number of positive integers to the left of }k−j−vj+1 is equal to u
plus the number oj of odd al < aj such that al > 2l−1. Since 2(uj+oj) ≤ 2j ≤ aj ,
we have that 2(u+ oj) ≤ aj −uj + vj +u = aj +2vj and condition (S2) holds. The
sequence is in order and the only integers other than k − u occurring in the initial
part of the sequence are ones, which are followed by brackets. We conclude that all
the conditions in Definition 3.14 hold.

Since any bracket is preceded by 1, condition (A1) holds. Finally, for }k−j−vj+1,

the quantity j + vj − aj−uj+vj−u(−1)
2 = j + u − aj(−1)

2 ≤ u (where −1 occurs if
aj is odd) since aj > 2j − 1. We conclude that D(a•) is an admissible symplectic
diagram. �

The precise formulation of Theorem 1.1 is given by the following corollary.
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Corollary 3.38. Let σa• be a Schubert class in G(k, n). If aj < 2j − 1
for some 1 ≤ j ≤ k, then set i∗σa• = 0. Otherwise, let D(σa•) be the diagram
associated to σa• . Express

i∗σa• =
∑

cλ;μσλ;μ

in terms of the Schubert basis of SG(k, n). Then cλ;μ is the number of degeneration
paths starting with D(σa•) and ending with the symplectic diagram D(σλ;μ).

Proof. In Lemma 4.20, we will prove that the intersection of SG(k, n) with a
general Schubert variety in G(k, n) with class σa• is a restriction variety of the form
V (D(σa•)). The corollary is immediate from this lemma and Theorem 3.33. �

We conclude this section by proving that Algorithm 3.29 is well-defined and
terminates. The proof of Theorem 3.33 is geometric and will be taken up in the
next two sections.

Proposition 3.39. Algorithm 3.29 replaces an admissible symplectic diagram
with one or two admissible symplectic diagrams.

Proof. If D is a saturated symplectic diagram in perfect order, then the algo-
rithm returns D and there is nothing further to check. We will first check that Da

and Db are (not necessarily admissible) symplectic diagrams. The diagram Db is
obtained from Da by moving a bracket to the left. Conditions (2), (3), (4) of Defi-
nition 3.2 and conditions (S1), (S2), (S3) and (S4) of Definition 3.14 are preserved
under moving a bracket to the left. Since ν �= 1 is the leftmost integer in D equal
to a given integer, by condition (A1) for D, there cannot be a bracket at position
p in D or Da. Hence, condition (1) is satisfied for Db. We conclude that if Da is a
symplectic diagram, then Db is also a symplectic diagram. We will now check that
Da is a symplectic diagram in each case.

In case (1)(i), by condition (S3) for D, let η be the unique integer that violates
the order. Since η is violating the order, η is to the left of }η+1. Da is obtained
by swapping η and ν, the leftmost integer equal to η + 1. This operation does not
change the positions of the brackets and braces and keeps l(i) fixed for every i.
After the swap, every integer i is still to the left of }i for every i since η was to the
left of }η+1. Furthermore, the operation also preserves or decreases τi for every i.
We thus conclude that conditions (1) through (4) of Definition 3.2 and condition
(S1), (S2) and (S4) of Definition 3.14 hold for the diagram Da. After the swap, η is
part of the non-decreasing initial sequence in Da. Hence, the diagram Da is either
in order or η + 1 is the only integer violating the order. Condition (S3) holds for
Da. We conclude that Da is a symplectic diagram.

In case (1)(ii), let η be the unique integer that violates the order. Assume that
η < i ≤ k − s does not occur to the left of η. Then i does not occur anywhere
in the sequence and, in condition (S4) for D, i = j0. We claim that the i-th and
(i − 1)-st braces in D must look like · · · }iη}i−1 · · · . By conditions (S3) and (S4)
for D, η is to the right of }i and to the left of }η+1. If η is between }i+h and }i+h−1

for h �= −1, then since ρ(i + h, i + h − 1) = l(i + h) by condition (S4), the parity
in condition (4) is violated for }i+h−1. We conclude that η is between }i and }i−1.
Furthermore, 1 ≤ ρ(i, i − 1) ≤ l(i) + 2 − ξi = 1 by condition (S4). The formation
of Da does not affect conditions (1) through (3) in Definition 3.2. Condition (4)
holds for Da since the formation of Da changes the number of integers that are
equal to zero or greater than j to the right of }j only when j = i and for }i it
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changes the number by two. Since the formation of Da only increases l(i) by one
and decreases or preserves l(j) for j �= i, Da satisfies (S1). Similarly, τi increases
by one and all other τj remain fixed or decrease. On the other hand, ri increases
by two, hence Da satisfies condition (S2). There is one exception. If i = k − s and
every integer to the left of ]s is positive, τk−s increases by two. Then, τk−s = rk−s,
hence 2τk−s ≤ p(}k−s) + rk−s and Da satisfies (S2). The diagram Da is either
in order or η is still the only integer violating the order, hence Da satisfies (S3).
Finally, the formation of Da changes l(i) = 1 and decreases l(i+1) by one. Hence,
l(i) = ρ(i, i− 1) for Da. By condition (S4) for D, we have that ρ(j, j − 1) = l(j) in
Da for any j for which the equality held for D except for j = i+ 1. Furthermore,
ξi+1 = 1 in Da, so ρ(i+ 1, i) = l(i+ 1) + 1 = l(i+ 1) + 2− ξi+1 in Da. Hence (S4)
holds for Da. We conclude that Da is a symplectic diagram.

From now on assume that D is in order. Then there cannot be i ≥ κ such that i
is immediately to the right of }i+1. Suppose there exists such an i. The number χ(i)
and χ(i+1) of zeros and integers greater than i, respectively i+1, to the left of }i,
respectively }i+1, has to be even. However, χ(i) = χ(i+1)+ l(i+1)+ρ(i+1, i)−1.
Since by assumption ρ(i+ 1, i) = l(i+ 1), we conclude that either χ(i) or χ(i+ 1)
cannot be even leading to a contradiction.

In case (2)(i), changing ν to κ and the first zero to the right of }κ+1 does not
change the positions of brackets and braces, it decreases l(κ+1) by one and increases
l(κ) by two. Furthermore, the sequence Da is still in order, unless κ = k − s and
there are zeros to the left of ]s. In the latter case, the κ to the right of ]s is the
unique integer violating order. Since by assumption l(κ) < ρ(κ, κ − 1) − 1 in D,
l(κ) ≤ ρ(κ, κ − 1) in Da. The parity of the integers equal to zero or greater than
i also remains constant for all 1 ≤ i ≤ k − s. We conclude that conditions (1)
through (4) in Definition 3.2 and conditions (S1) and (S3) in Definition 3.14 hold
for Da. The quantity τi remains constant for i > κ and increases by one for i ≤ κ
unless κ = k−s, l(k−s) ≥ p(]s) and τk−s increases by two. In the latter case, τk−s

is less than or equal to both rk−s and p(}k−s) and (S2) holds. In the former case,
rκ increases by two, hence (S2) holds for the index κ. Since ρ(κ, κ− 1) < l(κ)− 1,
(S2) also holds for indices i < κ. If there exists an index i < κ in D such that
i is not a 1 followed by a bracket, then in condition (S4) for D, we have that
j0 = κ. Furthermore, ρ(κ, κ− 1) = l(κ) + 2. Hence, the formation of Da preserves
the equalities in condition (S4) except for j = κ or κ + 1. In Da, we have that
ρ(κ, κ− 1) = l(κ) and ρ(κ+1, κ) = l(κ+1)+1 = l(κ+1)+2− ξκ+1. We conclude
that condition (S4) holds for Da. Therefore, Da is a symplectic diagram.

Finally, the argument showing thatDa is a symplectic diagram in case (2)(ii)(a)
is identical to the argument in case (1)(i) and the argument in case (2)(ii)(b) is
identical to the case (1)(ii), so we leave them for the reader. We conclude that
both Da and Db are symplectic diagrams. However, they need not be admissible.
We now check that Algorithms 3.25 and 3.26 preserve the fact that the resulting
sequences are symplectic diagrams and output admissible symplectic diagrams.

Da may fail to be admissible either because it fails condition (A1) or (A2) in
Definition 3.17. The formation of Da from D does not change the quantities xh,
p(}h). In cases (1)(i) and (2)(ii)(a) the quantity rh either remains the same or
decreases. Hence, in these cases Da satisfies condition (A2). In case (1)(ii), rh
remains the same or decreases except for ri, which increases by two. Hence, the
inequality in condition (A2) can only be violated for the index i by one. If it is
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violated, we conclude that in D, we have xi = k−i+1− p(}i)−ri
2 . Recall that in this

case D looks like · · · }iη}i−1 · · · . Since i does not appear in D, xi = xi−1. Writing
the inequality in (A2) for D and the index i − 1 and noting that ri−1 = ri + 1

and p(}i−1) = p(}i) + 1, we see that xi = xi−1 ≥ k − i + 2 − p(}i)−ri
2 = xi + 1.

Since D satisfies (A2), this is a contradiction. We conclude that Da satisfies (A2)
also in the case (1)(ii). By similar reasoning, in cases (2)(i) and (2)(ii)(b), Da can
violate the inequality in (A2) only for the index κ by one. After Step 1 of Algorithm
3.25, all the inequalities in condition (A2) remain unchanged or improve and }κ
is eliminated. We conclude that after Step 1, the resulting diagram satisfies (A2).
When the inequality in (A2) is violated for Da, it is violated for the index κ by at
most 1. When we form Db in cases (2)(i) and (2)(ii)(b), xκ also increases by one.
Hence, Db, when it exists, always satisfies (A2).

Observe that the operation in Step 1 of Algorithm 3.25 preserves the fact that
Da is a symplectic diagram. By construction, conditions (1)-(4) and (S1) and
(S2) hold. The diagram resulting after Step 1 is in order, hence (S3) holds. The
operation renames l(i) as l(i − 1) for i > κ + 1 and ρ(i + 1, i) as ρ(i, i − 1) for
i > κ + 1. The operation does not change the quantities l(i) and ρ(i, i − 1) when
i < κ and replaces l(κ) and l(κ + 1) with their sum under the name l(κ). The
quantities ρ(κ, κ−1) and ρ(κ+1, κ) are replaced by ρ(κ, κ−1)+ρ(κ+1, κ)−1 and
renamed ρ(κ, κ − 1). Hence, the equalities in condition (S4) are preserved. Since
(A1) also holds for the resulting diagram Dc, we conclude that if Da fails condition
(A2), then Step 1 of Algorithm 3.25 produces an admissible symplectic diagram.

Observe that changing a digit to the left of a bracket and moving a brace one
unit to the left, increases xi and ri by one and decreases p(}i) by one. Hence, it
preserves the inequality in condition (A2). It also preserves the conditions (1)
through (4) and (S1) through (S4), with the possible exception of (1) in case
p(}i+1) = p(}i) − 1. Condition (A1) is violated for Da when there is a bracket
in position p(ν) + 1 and it is violated only for that bracket. After l applications of
Step 2 of Algorithm 3.25, Condition (A1) is still violated if there exists brackets at
positions p(ν)+1, p(ν)+2, · · · , p(ν)+ l. Since there are a finite number of brackets,
this process stops and the resulting diagram satisfies condition (A1). In this case,
the only brace that moves is }ν−1. Since l(ν) ≤ ρ(ν, ν − 1) in D, the intermediate
sequences and the resulting sequence all satisfy condition (1). If Db does not satisfy
condition (A1), then the only bracket that can violate it is the one in position p(ν).
In this case, Algorithm 3.26 successively decreases the integer to the right of the
bracket in p(ν) by one until it either becomes equal to the integer to its right or to
one in case there isn’t an integer to its right. Hence, this algorithm terminates in
finitely many steps. A diagram might violate condition (1) in the process, but in
that case the diagram is discarded. Hence, after finitely many steps either the dia-
gram is discarded or results in an admissible symplectic diagram. We conclude that
Algorithm 3.29, replaces D with one or two admissible symplectic diagrams. �

Proposition 3.40. After finitely many applications of Algorithm 3.29, every
admissible symplectic diagram is transformed to a collection of admissible symplectic
diagrams in perfect order.

Proof. If the diagram D is not in order, after one application of the algorithm
either the diagram is in order or the integer violating the order increases or the po-
sition of the integer violating the order in the sequence decreases. Since these steps
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cannot go on indefinitely, after finitely many steps, the diagram is in order. Fur-
thermore, during the process either the number of braces decreases or the number
of positive integers less than or equal to i, for 1 ≤ i ≤ k − s in the initial part of
the sequence remains constant or increases. If the diagram is in order, then at each
application of the algorithm either the number of braces decreases or the number
of positive integers less than or equal to i, for 1 ≤ i ≤ k − s, in the initial part
of the sequence increases. Since these cannot go on indefinitely, we conclude that
repeated applications of the algorithm transform an admissible symplectic diagram
into a collection of admissible symplectic diagrams in perfect order. Hence, the
algorithm terminates in finitely many steps. �

4. Symplectic restriction varieties

In this section, we interpret admissible symplectic diagrams geometrically. We
introduce symplectic restriction varieties and discuss their basic geometric proper-
ties.

Recall that Q denotes a non-degenerate skew-symmetric form on a vector space
V of dimension n. Let Lnj

denote an isotropic subspace of Q of dimension nj . Let
Qri

di
denote a linear space of dimension di such that the restriction of Q to it has

corank ri. Let Ki denote the kernel of the restriction of Q to Qri
di
.

Definition 4.1. A sequence (L•, Q•) is a partial flag of linear spaces Ln1
�

· · · � Lns
� Q

rk−s

dk−s
� · · · � Qr1

d1
such that

• dim(Ki ∩Kh) ≥ ri − 1 for h > i.
• dim(Lnj

∩Ki) ≥ min(nj , dim(Ki ∩ Q
rk−s

dk−s
) − 1) for every 1 ≤ j ≤ s and

1 ≤ i ≤ k − s.

The main geometric objects of this paper will be sequences satisfying further
properties.

Definition 4.2. A sequence is in order if

• Ki ∩Kh = Ki ∩Ki+1, for all h > i and 1 ≤ i ≤ k − s, and
• dim(Lnj

∩Ki) = min(nj , dim(Ki∩Qrk−s

dk−s
)), for 1 ≤ j ≤ s and 1 ≤ i < k−s.

A sequence (L•, Q•) is in perfect order if

• Ki ⊆ Ki+1, for 1 ≤ i < k − s, and
• dim(Lnj

∩Ki) = min(nj , ri) for all i and j.

Definition 4.3. A sequence (L•, Q•) is called saturated if di + ri = n, for
1 ≤ i ≤ k − s.

The next definition is the analogue of Definition 3.14 and is a consequence of
the order of specialization.

Definition 4.4. A sequence (L•, Q•) is called a symplectic sequence if it sat-
isfies the following properties.

(GS1) The sequence (L•, Q•) is either in order or there exists at most one integer
1 ≤ η ≤ k − s such that

Ki ⊆ Kh for h > i > η and Ki ∩Kh = Ki ∩Ki+1 for i < η and h > i.

Furthermore, if Kη ⊆ Kk−s, then

dim(Lnj
∩Ki) = min(nj , dim(Ki ∩Q

rk−s

dk−s
)) for i < η and
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dim(Lnj
∩Ki) = min(nj , dim(Ki ∩Q

rk−s

dk−s
)− 1) for i ≥ η.

If Kη �⊆ Kk−s, then

dim(Lnj
∩Ki) = min(nj , dim(Ki ∩Q

rk−s

dk−s
)) for all i.

(GS2) If α = dim(Ki ∩Q
rk−s

dk−s
) > 0, then either i = 1 and nα = α or there exists

at most one j0 such that, for j0 �= j > min(i, η), rj − rj−1 = dj−1 − dj .
Furthermore,

dj0−1 − dj0 ≤ rj0 − rj0−1 + 2− dim(Kj0−1) + dim(Kj0−1 ∩Q
rj0
dj0

)

and Kη �⊂ Q
rj0
dj0

.

Remark 4.5. Given a sequence (L•, Q•), the basic principles concerning skew-
symmetric forms imply inequalities among the invariants of a sequence. The even-
ness of rank implies that di − ri is even for every 1 ≤ i ≤ k− s. The corank bound
implies that ri−dim(Qri

di
∩Ki−1) ≤ di−1−di. The linear space bound implies that

2(ns + ri − dim(Ki ∩Lns
)) ≤ ri + di for every 1 ≤ i ≤ k− s. These inequalities are

implicit in the sequence (L•, Q•).

Remark 4.6. For a symplectic sequence (L•, Q•), the invariants nj , ri, di to-
gether with the dimensions dim(Lnj

,Ki) and dim(Qrh
dh
∩Ki) determine the sequence

(L•, Q•) up to the action of the symplectic group. This will become obvious when
we construct these sequences by choosing bases.

Definition 4.7. A symplectic sequence (L•, Q•) is admissible if it satisfies the
following additional conditions:

(GA1) nj �= dim(Lnj
∩Ki) + 1 for any 1 ≤ j ≤ s and 1 ≤ i ≤ k − s.

(GA2) Let xi denote the number of isotropic subspaces Lnj
that are contained

in Ki. Then

xi ≥ k − i+ 1− di − ri
2

.

The translation between sequences and symplectic diagrams. Symplectic
sequences can be represented by symplectic diagrams introduced in §3. An isotropic
linear space Lnj

is represented by a bracket ] in position nj . A linear space Qri
di

is represented by a brace } in position di such that there are exactly ri positive
integers less than or equal to i to the left of the i-th brace. Finally, dim(Lnj

∩Ki)
and dim(Qrh

dh
∩Ki), h > i, are recorded by the number of positive integers less than

or equal to i to the left of ]j and }h, respectively.

Example 4.8. 11]200}0}00 records a sequence L2 ⊂ Q3
5 ⊂ Q2

6, where L2 ⊂
Ker(Q2

6). In the diagram, there is one bracket that occurs in position 2. There are
two braces that occur in positions 5 and 6. We thus conclude that the sequence
contains one isotropic subspace of dimension 2 (L2) and two non-isotropic subspaces
of dimensions 5 (Q5) and 6 (Q6). There are two integers equal to 1 and one integer
equal to 2 in the sequence. Hence, the corank of the restriction of Q to the six
(respectively, five) dimensional subspace Q2

6 (Q
3
5) is two (three). Finally, since every

integer to the left of the bracket is equal to one, we conclude that L2 ⊂ Ker(Q2
6).

More explicitly, given a symplectic sequence (L•, Q•), the corresponding sym-
plectic diagram D(L•, Q•) is determined as follows: The sequence of integers begins
with dim(Ln1

∩ K1) integers equal to 1, followed by dim(Ln1
∩ Ki) − dim(Ln1

∩

223



20 IZZET COSKUN

Ki−1) integers equal to i, for 2 ≤ i ≤ k − s, in increasing order, followed by
n1 − dim(Ln1

∩ Kk−s) integers equal to 0. The sequence then continues with
dim(Lnj

∩K1)− dim(Lnj−1
∩K1) integers equal to 1, followed by dim(Lnj

∩Ki)−
max(dim(Lnj−1

∩Ki), dim(Lnj
∩Ki−1)) integers equal to i in increasing order, fol-

lowed by nj−max(nj−1, dim(Lnj
∩Kk−s)) zeros for j = 2, . . . , s in increasing order.

The sequence then continues with dim(Q
rk−s

dk−s
∩K1)−dim(Lns

∩K1) integers equal

to 1, followed by dim(Q
rk−s

dk−s
∩Ki)−max(dim(Q

rk−s

dk−s
∩Ki−1), dim(Lns

∩Ki)) inte-

gers equal to i in increasing order, followed by zeros until position dk−s. Between
positions di and di−1 (i > k−s), the sequence has dim(Q

ri−1

di−1
∩K1)−dim(Qri

di
∩K1)

integers equal to 1, followed by dim(Q
ri−1

di−1
∩Kh)−max(dim(Qri

di
∩Kh), dim(Q

ri−1

di−1
∩

Kh−1)) integers equal to h in increasing order, for h ≤ i−1, followed by zeros until
position di−1. Finally, the sequence ends with n− d1 zeros. The brackets occur at
positions nj and the braces occur at positions di.

Proposition 4.9. The diagram D(L•, Q•) is a symplectic diagram of type s
for SG(k, n). Furthermore, if (L•, Q•) is admissible, then D(L•, Q•) is admissible.

Proof. By construction each bracket or brace occupies a position. Since n1 <
n2 < · · · < ns < dk−s < · · · < d1, a position is occupied by at most one bracket
or brace. Since nj < di for every 1 ≤ j ≤ s and 1 ≤ i ≤ k − s, every bracket
occurs to the left of every brace. By construction, it is clear that dim(Lnj

∩ Ki)
and dim(Qrh

dh
∩Ki), for h ≥ i, are recorded by the number of positive integers less

than or equal to i to the left of ]j and }h, respectively. Hence, every integer equal
to i occurs to the left of }i. Finally, the total number of integers equal to zero
or greater than i to the left of }i is equal to the rank of the restriction of Q to
Qri

di
. Since this rank is necessarily even, the total number of integers equal to zero

or greater than i to the left of }i is even. This shows that we have a sequence of
brackets and braces of type s.

The sequence of brackets and braces is a symplectic diagram. The corank
bound implies that ri − dim(Qri

di
∩ Ki−1) ≤ di−1 − di. The left hand side of the

inequality is represented by the number of integers equal to i in the sequence. The
right hand side of the inequality is equal to the number of integers between }i and
}i−1. We thus get the inequality l(i) ≤ ρ(i, i − 1) required by Condition (S1) in
Definition 3.14. By the linear space bound, the largest dimensional linear space
contained in Qri

di
has dimension bounded by (di + ri)/2. The invariant ri is equal

to both the number of positive integers less than or equal to i contained to the left
of }i and dim(Ki). The span of Lns

and the kernels Kh for h ≥ i is an isotropic
subspace of Qri

di
. The dimension of this subspace is denoted by τi and is equal to

the sum of p(]s) and the number of positive integers between ]s and }i. Hence,
2τi ≤ p(}i) + ri and condition (S2) of Definition 3.14 holds.

If the sequence is in (perfect) order, then the corresponding sequence of brackets
and braces is in (perfect) order. Assume the sequence is not in order. The definition
of a sequence implies that, for i < k − s, there can be at most one i which is not
to the left of }k−s. Suppose the sequence satisfies Condition (GS1). Then, there
exists an integer η such that for i > η those integers that are not to the left of
}k−s are to the immediate left of }i+1. Furthermore, condition (GS1) implies that
the positive numbers up to η are in non-decreasing order and η is the only integer
violating the order. Thus condition (S3) is satisfied. Finally, condition (GS2)
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directly translates to condition (S4). We conclude that the sequence of brackets
and braces is a symplectic diagram.

If the sequence (L•, Q•) is admissible, then the corresponding symplectic dia-
gram is also admissible. Let i be the minimal index such that Lnj

⊂ Ki. If there
isn’t such an index, let i = k − s + 1. If i > 1, then condition (GA1) implies that
dim(Lnj

∩Ki−1) ≤ nj − 2. Hence, the two integers preceding ]j are equal to i (or 0

if i = k− s+1). If i = 1, then all the integers preceding ]j are equal to 1. Further-
more, if nj = 1, condition (GA1) implies that Lnj

⊂ Ki for all 1 ≤ i ≤ k − s. We
conclude that condition (A1) holds. The invariant xi is equal to both the number
of isotropic subspaces Lnj

contained in Ki and the number of brackets such that

every integer to the left of it is positive and less than or equal to i. Since di = p(}i),
conditions (A2) and (GA2) are exactly the same. This concludes the proof of the
proposition. �

Remark 4.10. Proposition 4.9 also explains the definition of a symplectic dia-
gram in geometric terms. Condition (4) of Definition 3.2 is implied by the evenness
of rank and simply states that di − ri has to be even. As discussed in the proof of
Proposition 4.9, condition (S1) is a translation of the corank bound and condition
(S2) is implied by the linear space bound.

Conversely, we can associate an admissible sequence to every admissible sym-
plectic diagram. By Darboux’s Theorem, we can take the skew-symmetric form
to be defined by

∑m
i=1 xi ∧ yi. Let the dual basis for xi, yi be ei, fi such that

xi(ej) = δji , yi(fj) = δji and xi(fj) = yi(ej) = 0. Given an admissible symplectic
diagram, we associate e1, . . . , ep(]s) to the integers to the left of ]s in order. We
then associate ep(]s)+1, . . . , er′ to the positive integers to the right of ]s and left of

}k−s in order. Let ei1 , . . . , eil be vectors that have so far been associated to zeros.
Then associate fi1 , . . . , fil to the remaining zeros to the left of }k−s in order. If
there are any zeros to the left of }k−s that have not been assigned a basis vector,
assign them er′+1, fr′+1, . . . , er′′ , fr′′ in pairs in order. Continuing this way, if there
is a positive integer between }i+1 and }i, associate to it the smallest index basis
element eα that has not yet been assigned. Assume that the integers equal to i+1
have been assigned the vectors ej1 , . . . , ejl . Assign to the zeros between }i+1 and
}i, the vectors fj1 , . . . , fjl . If there are any zeros between }i+1 and }i that have not
been assigned a vector, assign them eα+1, fα+1, . . . , eβ , fβ in pairs until the zeros
are exhausted. Let Lnj

be the span of the basis elements associated to the integers

to the left of ]j . Let Qri
di

be the span of the basis elements associated to the integers

to the left of }i. We thus obtain a sequence (L•, Q•) whose associated symplectic
diagram is D.

Example 4.11. To 11]233]0000}00}0}00 we associate the sequence of vectors

e1, e2, e3, e4, e5, e6, f6, e7, f7, f4, f5, f3, f1, f2.

Then L2 is the span of e1, e2, L5 is the span of e1 through e5, Q
5
9 is the span of e1

through e7 and f6, f7, Q
3
11 is the span of e1 through e7 and f4 through f7. Finally,

Q2
12 is the span of Q3

11 and f3.
To 22]33]0000}00}100}0 we associate the sequence of vectors

e1, e2, e3, e4, e5, f5, e6, f6, f3, f4, e7, f1, f2, f7.
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L2 is the span of e1, e2, L4 is the span of e1 through e4, Q4
8 is the span of e1

through e6 and f5, f6, Q
2
10 is the span of Q4

8 and f3, f4 and Q1
13 is the span of Q2

10

and e7, f1, f2.
Finally, to 22]300]300}00}100}0 we associate the sequence of vectors

e1, e2, e3, e4, e5, e6, f4, f5, f3, f6, e7, f1, f2, f7.

Then L2 is the span of e1 and e2, L5 is the span of e1 through e5, Q
4
8 is the span

of e1 through e5 and f4, f5, Q
2
10 is the span of Q4

8 and f3, f6. Finally, Q1
13 is the

span of all the vectors but f7.

Remark 4.12. Notice that equivalent symplectic diagrams correspond to per-
mutations of the basis elements that do not change the vector spaces in (L•, Q•).

Remark 4.13. The construction of a symplectic sequence (L•, Q•) from a sym-
plectic diagram D is well-defined. By condition (S2), the number of zeros to the left
of ]s is less than or equal to the number of zeros between ]s and }k−s. Hence, we
can choose vectors fi1 , . . . , fil corresponding to the vectors ei1 , . . . , eil . Similarly, if
there does not exist a positive integer between }i+1 and }i, then by condition (S1),
l(i+1) ≤ ρ(i+1, i). We can, therefore, associate vectors fj1 , . . . , fjl to the zeros be-
tween }i+1 and }i. If there exists a positive integer between }i+1 and }i, then there
is only one positive integer between them by condition (S3). If l(i+1) = ρ(i+1, i),
then condition (4) is violated. Hence, l(i + 1) < ρ(i + 1, i) and we can associate
vectors fj1 , . . . , fjl to the zeros between }i+1 and }i. Thus the construction of the
sequence makes sense. It is now straightforward to check that the sequence associ-
ated to an admissible symplectic diagram is an admissible sequence. Furthermore,
the two constructions are inverses of each other.

We are now ready to define symplectic restriction varieties.

Definition 4.14. Let (L•, Q•) be an admissible sequence for SG(k, n). Then
the symplectic restriction variety V (L•, Q•) is the Zariski closure of the locus in
SG(k, n) parameterizing

{W ∈ SG(k, n) | dim(W ∩ Lnj
) = j for 1 ≤ j ≤ s, dim(W ∩Qri

di
) = k − i+ 1

and dim(W ∩Ki) = xi for 1 ≤ i ≤ k − s}.
Remark 4.15. The geometric reasons for imposing conditions (A1) and (A2)

in Definition 3.17 are now clear. Condition (A1) is an immediate consequence of
the kernel bound. If dim(Lnj

∩Ki) = nj−1 and a linear space of dimension k−i+1
intersects nj in dimension j and Ki in dimension j − 1, then the linear space is
contained in L⊥

nj
. Hence, we need to impose condition (A1).

The inequality

xi ≥ k − i+ 1− di − ri
2

is an easy consequence of the linear space bound. We require the k-dimensional
isotropic subspaces to intersect Qri

di
in a subspace of dimension k − i + 1 and to

intersect the singular locus of Qri
di

in a subspace of dimension xi. By the linear
space bound, any linear space of dimension k − i + 1 has to intersect the singular
locus in a subspace of dimension at least k − i+ 1− di−ri

2 , hence the inequality in
condition (A2) holds.

Example 4.16. The two most basic examples of symplectic restriction varieties
are:
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(1) A Schubert variety Σλ;μ in SG(k, n), which is the restriction variety as-
sociated to a symplectic diagram D(σλ;μ), and

(2) The intersection Σa• ∩ SG(k, n) of a general Schubert variety in G(k, n)
with SG(k, n), which is the restriction variety associated to D(a•).

In general, symplectic restriction varieties interpolate between these two examples.

Lemma 4.17. A symplectic restriction variety corresponding to a saturated and
perfectly ordered admissible sequence is a Schubert variety in SG(k, n). Conversely,
every Schubert variety in SG(k, n) can be represented by such a sequence.

Proof. Let F1 ⊂ · · · ⊂ F⊥
1 ⊂ V be an isotropic flag. If Σλ,μ is a Schubert

variety defined with respect to this flag, then the symplectic restriction variety
defined with respect to the sequence Lnj

= Fλj
and Qri

di
= F⊥

μk−i+1
is a saturated

and perfectly ordered admissible sequence.
Conversely, suppose that the sequence (L•, Q•) is a saturated and perfectly

ordered admissible sequence. Since the sequence is saturated, we have that Qri
di

=

K⊥
i . Since the sequence is in perfect order, we have that dim(Lnj

∩ Ker(Qri
di
)) =

min(ri, nj). Consequently, the set of linear spaces {Lnj
,Ker(Qri

di
)} can be ordered

by inclusion, or equivalently, by dimension. Then the resulting partial flag can be
extended to an isotropic flag. By condition (GA1) of the definition of an admissible
sequence, we have that nj �= ri + 1 for any i, j. Hence, the symplectic restriction
variety defined with respect to (L•, Q•) is the Schubert variety Σλ•;μ• , where λj =
nj , for 1 ≤ j ≤ s, and μi = rk−i+1, for s < i ≤ k. �

Remark 4.18. By Lemma 4.17, the saturated symplectic diagrams in perfect
order represent Schubert varieties.

Next, we show that the intersection of a general Schubert variety Σ with the
symplectic Grassmannian SG(k, n) (when non-empty) is a restriction variety.

Lemma 4.19. Let Σ be the Schubert variety defined with respect to a general
partial flag Fa1

⊂ · · · ⊂ Fak
. Then Σ ∩ SG(k, n) �= ∅ if and only if ai ≥ 2i − 1 for

1 ≤ i ≤ k.

Proof. Suppose ai < 2i− 1 for some i. If [W ] ∈ Σ ∩ SG(k, n), then W ∩ Fai

is an isotropic subspace of Q∩Fai
of dimension at least i. Since Fai

is general, the
corank of Q ∩ Fai

is 0 or 1 and equal to ai modulo 2. By the linear space bound,
the largest dimensional isotropic subspace of Q ∩ Fai

has dimension less than or
equal to i− 1. Therefore, W cannot exist and Σ ∩ SG(k, n) = ∅.

Conversely, let ai = 2i− 1 for every i. Then G1 = F1 is isotropic, G2 = F⊥
1 in

F3 is the unique two-dimensional isotropic subspace of Q ∩ F3 containing G1. By
induction, we see that Gi = G⊥

i−1 is the unique subspace of dimension i isotropic
with respect to Q∩ F2i−1 that contains Gi−1. Continuing this way, we construct a
unique isotropic subspaceW of dimension k contained in Σ∩SG(k, n). If ai ≥ 2i−1,
the vector space W just constructed is still contained in Σ ∩ SG(k, n), hence this
intersection is non-empty. �

Lemma 4.20. Let Σ be the Schubert variety defined with respect to a general
partial flag Fa1

⊂ · · · ⊂ Fak
such that ai ≥ 2i− 1. Then Σ∩SG(k, n) = V (D(a•)).

Proof. Let ai = 2i − 1, then since Fai
is general, the restriction of Q to

Fai
has a one-dimensional kernel Ki. By the linear space bound, any i-dimensional
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isotropic subspace W contained in Fai
contains Ki. For each j such that aj > 2j−1,

recall that uj is the number of i < j such that ai = 2i − 1 and vj is the number
of i > j such that ai = 2i − 1. Let K be the span of one-dimensional kernels
Ki for each ai = 2i − 1. Then dim(K) = u and any k-dimensional subspace W
contained in Σ ∩ SG(k, n) contains K. For j such that aj > 2j − 1, let Gj+vj =

Span(Faj
,K) ∩ K⊥. The dimension of Gj+vj is aj − uj + vj . The corank of the

restriction of Q to Gj+vj is u + δ(aj), where δ(aj) = 0(1) if aj is even (odd).
Furthermore, any isotropic linear space contained in Σ∩ SG(k, n) intersects Gj+vj

in a subspace of dimension at least j+ vj . From this description and the definition
of V (D(a•)), it is now clear that Σ ∩ SG(k, n) = V (D(a•)). �

Proposition 4.21. Let (L•, Q•) be an admissible sequence. Then V (L•, Q•)
is an irreducible subvariety of SG(k, n) of dimension

(4.1) dim(V (L•, Q•)) =
s∑

j=1

(nj − j) +
k−s∑
i=1

(di − 1− 2k + 2i+ xi).

Proof. The proof is by induction on k. When k = 1, if the sequence consists of
an isotropic linear space Ln1

, then the corresponding symplectic restriction variety
is PLn1

hence it is irreducible of dimension n1 − 1. If the sequence consists of one
non-isotropic subspace Qr1

d1
, then the corresponding symplectic restriction variety is

also projective space of dimension d1−1. In both cases, the varieties are irreducible
of the claimed dimension. This proves the base case of the induction.

If the sequence does not contain any skew-symmetric forms, then the corre-
sponding restriction variety is isomorphic to a Schubert variety in the ordinary
Grassmannian G(k, n). In that case, it is well known that Schubert varieties are

irreducible and have dimension
∑k

j=1(nj − j) [C3].

Observe that omitting Qr1
d1

from an admissible sequence (L•, Q•) for SG(k, n)

gives rise to an admissible sequence (L′
•, Q

′
•) for SG(k − 1, n). There is a natural

surjective morphism f : V 0(L•, Q•) → V 0(L′
•, Q

′
•) that sends a vector space W to

W ∩ Qr2
d2

(or W ∩ Lnk−1
if s = k − 1). By induction, V (L′

•, Q
′
•) is irreducible of

dimension
∑s

j=1(nj − j)+
∑k−s

i=2 (di − 1− 2k+2i+xi). The fibers of the morphism

f over a point W ′ correspond to choices of isotropic k-planes W that contain W ′

and are contained in Qr1
d1
. This is a Zariski dense open subset of projective space

of dimension d1 − 2(k − 1)− 1 + x1. Hence, by the Theorem on the Dimension of
Fibers [S, I.6.7], V (L•, Q•) is irreducible of the claimed dimension. This concludes
the proof of the proposition. �

5. The geometric explanation of the combinatorial game

In this section, we will prove the combinatorial rule by interpreting it geomet-
rically. The transformation from an admissible diagram D to Da records a one-
parameter specialization of the restriction variety V (D). The algorithm describes
the flat limit of this specialization.

The specialization. We now explain the specialization. There are several cases
depending on whether D is in order and whether l(κ) < ρ(κ, κ − 1) − 1 or not.
In the previous section, given an admissible quadric diagram D, we associated an
admissible sequence by defining each of the vector spaces (L•, Q•) as a union of
basis elements that diagonalize the skew-symmetric form Q. All our specializations
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will replace exactly one of the basis elements v = eu or v = fu for some 1 ≤ u ≤ m
with a vector v(t) = eu(t) or v(t) = fu(t) varying in a one-parameter family. For
t �= 0, the resulting set of vectors will be a new basis for V , but when t = 0 two of
the basis elements will become equal. Since each linear space in (L•, Q•) is a union
of basis elements, we get a one-parameter family of vector spaces (L•(t), Q•(t)) by
replacing every occurrence of the vector v with v(t) for t �= 0. Correspondingly,
we have a one-parameter family of restriction varieties V (L•(t), Q•(t)). Since these
varieties are projectively equivalent as long as t �= 0, we obtain a flat one-parameter
family. Our task is to describe the limit when t = 0.

In case (1)(i), D is not in order, η is the unique integer violating the order, and
ν is the leftmost integer equal to η+1. Suppose that under the translation between
symplectic diagrams and sequences of vector spaces, eu is the vector associated to
η and ev is the vector associated to ν. Then consider the one-parameter family
obtained by changing ev to ev(t) = tev + (1− t)eu and keeping every other vector
fixed. When the set of basis elements spanning a vector space Lnj

or Qri
di

contains

ev, Lnj
(t) or Qri

di
(t) is the span of the same basis elements except that ev is replaced

with ev(t). Otherwise, Lnj
(t) = Lnj

or Qri
di
(t) = Qri

di
.

In case (1)(ii), D is not in order, η is the unique integer violating the order,
i > η does not occur in the sequence to the left of η and ν is the leftmost integer
equal to i + 1. Let eu be the vector associated to η and let ev be the vector
associated to ν. Consider the one-parameter family obtained by changing fv to
fv(t) = tfv +(1− t)eu. When the set of basis elements spanning a vector space Lnj

or Qri
di

contains fv, Lnj
(t) or Qri

di
(t) is the span of the same basis elements except

that fv is replaced with fv(t). Otherwise, Lnj
(t) = Lnj

or Qri
di
(t) = Qri

di
.

In case (2)(i), D is in order and l(κ) < ρ(κ, κ− 1)− 1. Suppose that ev is the
vector associated to ν, the leftmost κ+ 1. Let eu and fu be two vectors associated
to zeros between }κ and }κ−1. These exist since l(κ) < ρ(κ, κ−1)−1. Consider the
one-parameter specialization replacing fv with fv(t) = tfv+(1−t)eu. When the set
of basis elements spanning a vector space Lnj

or Qri
di

contains fv, Lnj
(t) or Qri

di
(t)

is obtained by replacing fv with fv(t). Otherwise, Lnj
(t) = Lnj

or Qri
di
(t) = Qri

di
.

In case (2)(ii)(a), D is in order and l(κ) = ρ(κ, κ−1)−1. Let ν be the leftmost
integer equal to κ and suppose that ev is the vector associated to ν. Let eu be
the vector associated to the κ − 1 following }κ. Then let ev(t) = tev + (1 − t)eu.
When the set of basis elements spanning a vector space Lnj

or Qri
di

contains ev,

Lnj
(t) or Qri

di
(t) is obtained by replacing ev with ev(t). Otherwise, Lnj

(t) = Lnj
or

Qri
di
(t) = Qri

di
.

Finally, in case (2)(ii)(b), D is in order, l(κ) = ρ(κ, κ− 1) − 1 and there does
not exist an integer equal to κ to the left of κ. Let ev be the vector associated to
ν, the leftmost integer equal to κ + 1 and let eu be the vector associated to κ− 1
to the right of }κ. Then let fv(t) = tfv + (1− t)eu. When the set of basis elements
spanning a vector space Lnj

or Qri
di

contains fv, Lnj
(t) or Qri

di
(t) is obtained by

replacing fv with fv(t). Otherwise, Lnj
(t) = Lnj

or Qri
di
(t) = Qri

di
.

The flat limits of the vector spaces are easy to describe. If Lnj
or Qri

di
does not

contain the vector v, then Lnj
(t) = Lnj

and Qri
di
(t) = Qri

di
for all t �= 0. Hence, the

flat limit Lnj
(0) = Lnj

and Qri
di
(0) = Qri

di
. Similarly, if Lnj

or Qri
di

contains both of

the basis elements spanning v(t), then Lnj
(t) = Lnj

and Qri
di
(t) = Qri

di
for all t �= 0.

Then in the limit Lnj
(0) = Lnj

and Qri
di
(0) = Qri

di
. A vector space changes under
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the specialization only when it contains the vector with coefficient t and does not
contain the vector with coefficient (1− t). In this case, in the limit t = 0, the flat
limit Lnj

(0) or Qri
di
(0) is obtained by replacing in Lnj

or Qdi
the basis element with

coefficient t with the basis element with coefficient (1− t).

Notice that in each of these cases, the set of limiting vector spaces is depicted
by the symplectic diagram Da. In case (1)(i), if η is between }a and }a−1 and ν
is between ]b and ]b+1 (respectively, between ]s and }k−s), the vector spaces Lnj

for j ≤ b (respectively, j ≤ s) and Qri
di

for i < a are unaffected. In all the other
vector spaces, ev is replaced by eu. The effect on symplectic diagrams is to switch
η and ν as in the definition of Da. In case (1)(ii), assume that η is between }i and
}i−1. The linear spaces other than Qri

di
remain unchanged under the degeneration.

In Qri
di

the vector fv is replaced by eu. Note that this increases the corank of

the restriction of Q to Qri
di
(0) by two since now both vectors eu and ev in the

kernel. This has the effect of changing ν to i and a zero between }i+1 and }i to
η as in the definition of Da. In case (2)(i), all the vector spaces but Qrκ

dκ
remain

unchanged. The degeneration replaces fv in Qrκ
dκ

by eu. This increases the corank

of the restriction of Q to Qrκ
dκ
(0) by two since both eu and ev are now contained in

the kernel of the restriction. The corresponding symplectic diagram is obtained by
changing ν and a zero between }κ+1 and }κ to κ as in the definition of Da. The
cases (2)(ii)(a) and (b) are analogous to the cases (1)(i) and (1)(ii), respectively.

For the rest of the paper, we use the specialization just described.

Example 5.1. For concreteness, consider the restriction variety associated
to 200}000}00 in SG(2, 8) parameterizing isotropic subspaces that intersect A =
Span(e1, e2, f2) and are contained in B = Span(ei, fi), 1 ≤ i ≤ 3. The first special-
ization is given by tf2 + (1 − t)e3. In the limit, A1 = A(0) = Span(e1, e2, e3) and
B(0) = B. This changes the diagram to 000]000}00. The corresponding restric-
tion variety parameterizes linear spaces that intersect A(0) and are contained in B.
The next specialization is given by tf1 + (1 − t)e4. In the limit, A1(0) = A1 and
B1 = B(0) = Span(e1, e2, e3, e4, f2, f3). This changes the diagram to 100]100}00.
The corresponding restriction variety parameterizes linear spaces that intersect A1

and are contained in B1. The final specialization is given by te2 + (1− t)e4. In the
limit, A2 = A1(0) = Span(e1, e4, e3) and B1(0) = B1. This changes the diagram
to 110]000}00. The flat limit of the restriction varieties has two components. The
linear spaces may intersect Span(e1, e4), in which case we get the restriction variety
associated to the diagram 11]0000}00. Otherwise, by the kernel bound, the linear
spaces have to be contained in A⊥

2 . In this case, we get the restriction variety
associated to the diagram 111]00}000. The reader should convince themselves that
this is precisely the outcome of Algorithm 3.29.

We are now ready to state and prove the main geometric theorem.

Theorem 5.2. (The Geometric Branching Rule) The flat limit of the special-
ization of V (D) is supported along

⋃
V (Di), where V (Di) is a symplectic restriction

variety associated to a diagram Di obtained by running Algorithm 3.29 on D. Fur-
thermore, the flat limit is generically reduced along each V (Di). In particular, the
equality

[V (D)] =
∑

[V (Di)]

holds between the cohomology classes of symplectic restriction varieties.
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proof of theorem 3.33 assuming theorem 5.2. By Proposition 3.39, Al-
gorithm 3.29 replaces each admissible symplectic diagram by one or two admissible
symplectic diagrams. Hence, the algorithm can be repeated. By Proposition 3.40,
after finitely many steps, the algorithm terminates leading to a collection of sat-
urated admissible symplectic diagrams in perfect order. By Lemma 4.17, each of
these diagrams represent a Schubert variety. Therefore, Theorem 3.33 is an imme-
diate corollary of Theorem 5.2. �

Proof of Theorem 5.2. The proof of Theorem 5.2 has two steps. First, we
interpret the algorithm as the specialization described in the beginning of this sec-
tion. Let V (D) denote the initial symplectic restriction variety. Let V (D(t)) denote
the one-parameter family of restriction varieties described in the specialization and
let V (D(0)) be the flat limit at t = 0. We show that V (D(0)) is supported along
the union of restriction varieties V (Di), where Di are the admissible symplectic
diagrams derived from D via Algorithm 3.29. In the second step, we verify that
the support of the flat limit contains each V (Di) and the flat limit is generically
reduced along each V (Di). This suffices to prove the theorem.

We now analyze the specialization to conclude that the support of V (D(0)) is
the union of symplectic restriction varieties V (Di). The proof is by a dimension
count. In order to restrict the possible irreducible components of V (D(0)), we find
conditions that the linear spaces parameterized by V (D(0)) have to satisfy. We
then observe that these conditions already cut out the symplectic varieties V (Di)
and that each V (Di) has the same dimension as V (D). The following observation
puts strong restrictions on the support of the flat limit.

Observation 5.3. The linear spaces parameterized by V (D(t)) intersect the
linear spaces Lnj

(t) (respectively, Qri
di
(t)) in a subspace of dimension at least j

(respectively, k − i + 1). Similarly, they intersect Ker(Qri
di
(t)) in a linear space

of dimension at least xi. Since intersecting a proper variety in at least a given
dimension is a closed condition, the linear spaces parameterized by V (D(0)) have to
intersect the linear spaces Lnj

(0) (respectively, Qri
di
(0)) in a subspace of dimension

at least j (respectively, k − i + 1). Furthermore, they intersect Ker(Qri
di
(0)) in a

subspace of dimension at least xi.

Let Y be an irreducible component of V (D(0)). We can construct a sequence
of vector spaces Fu1

⊂ · · · ⊂ Fuk
such that the locus Z parameterizing linear

spaces with dim(W ∩ Fuj
) ≥ j contains Y . We have already seen that the linear

spaces Lnj
(0) and Qri

di
(0) are the linear spaces recorded by the symplectic diagram

Da. Let z1, . . . , zn be the ordered basis of V obtained by listing the basis elements
associated to Da from left to right. Let Fu be the linear space spanned by the basis
elements z1, · · · , zu. Let Fu1

⊂ · · · ⊂ Fuk
be the jumping linear spaces for Y , that

is the linear spaces of the form Fu such that dim(W ∩ Fu) > dim(W ∩ Fu−1) for
the general isotropic space W parameterized by Y . Observation 5.3 translates to
the inequalities uj ≤ nj for j ≤ s and ui ≤ dk−i+1 for s < i ≤ k. Hence, we can
obtain a sequence depicting the linear spaces Fu1

, . . . , Fuk
by moving the braces and

brackets in the diagram Da to the left one at a time. By the proof of Proposition
4.21, Equation (4.1) gives an upper bound on the dimension of the locus Z (note
that we used the fact that the sequence is admissible in the proof only to deduce
the equality).
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We now estimate the dimension of Z. Let (La
•, Q

a
•) denote the linear spaces

depicted by the diagram Da. We obtain the sequence defining Z by replacing linear
spaces in (La

•, Q
a
•) by smaller dimensional ones.

• If we replace a linear space La
ni

of dimension ni in (La
•, Q

a
•) with a linear

space Fui
not contained in (La

•, Q
a
•) but containing La

ni−1
, then according

to Equation (4.1) the dimension changes as follows. Let yai be the index
of the smallest index linear space Qrl

dl
such that La

ni
⊂ Kl. Similarly, let

yui be the smallest l such that Fui
⊂ Kl. The left sum in Equation (4.1)

changes by ui − na
i . The quantities xl increase by one for yui ≤ l < yai .

Hence, the sum on the right increases by yai −yui . Hence, the total change
in dimension is ui − na

i + yai − yui . By condition (S4) of Definition 3.14
for Da and condition (A1) for D, in Da, there is at most one missing
integer among the positive integers to the left of the brackets and the
two integers preceding all brackets but possibly ]xν−1+1 are equal. We
conclude that if we move any bracket to the left except for ]xν−1+1, we
strictly decrease the dimension. Furthermore, if we move ]xν−1+1 to the
left, we strictly decrease the dimension unless in D we have the equality
p(]xν−1+1)− π(ν)− 1 = yxν−1+1 − ν, so that the decrease in the position
resulting by shifting the bracket in Da is equal to the increase in the
number of linear spaces Qrl

dl
containing Fui

in their kernel.

• If we replace the linear space Qri,a
di

of dimension dai in (La
•, Q

a
•) with a non-

isotropic linear space Fuk−i+1
of dimension dui containing Q

ri−1,a
di−1

, then, by

Equation (4.1), the dimension changes as follows. Let xu
i be the number

of linear spaces that are contained in the kernel of the restriction of Q
to Fuk−i+1

. Then the dimension changes by dui − dai − xa
i + xu

i . We have
that dui − dai − xa

i + xu
i ≤ 0 with strict inequality unless the number of

linear spaces contained in the kernel of Fuk−i+1
increases by an amount

equal to dai − dui . The latter can only happen if condition (A1) is violated
for the diagram so that increasing the dimension of the kernel by one can
increase the number of linear spaces contained in the kernel.

• Finally, if we replace the linear spaceQ
rk−s,a
dk−s

of dimension dak−s in (La
•, Q

a
•)

with an isotropic linear space Fus+1
containing Lns

, then the first sum in
Equation (4.1) changes by us+1 − s − 1. The second sum changes by
−dak−s + yus+1 − xa

k−s + (2s+ 1), where yus+1 denotes the number of non-
isotropic subspaces containing Fus+1

in the kernel of the restriction of Q.
Hence, the total change is

−dak−s + us+1 − xa
k−s + yus+1 + s.

If xa
k−s = s − j < s, then yus+1 = 0. Since by the linear space bound

us+1 + j + 1 ≤ dk−s, we conclude that the dimension strictly decreases.
If xk−s = s, then the change is strictly negative unless rk−s = dk−s and
dk−s = us+1.

The dimension count shows that V (D) and V (Da) have the same dimension.
When p(]xν−1+1)− π(ν)− 1 = yxν−1+1 − ν in D, V (Db) and V (Da) have the same
dimension. Furthermore, Step 2 of Algorithm 3.25 and Algorithm 3.26 preserve
the dimension of the variety. By Equation (4.1), Step 1 of Algorithm 3.25 also
preserves the dimension. If condition (A2) is violated for Da for the index i, then
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by Proposition 3.39, we have that 2xi = 2k − 2i− di + ri. On the other hand, the
operation in Step 1 of Algorithm 3.25 changes the left sum in Equation (4.1) by
ri+(s−xi)−s−1 = ri−xi−1, since it adds a new bracket of size ri and increases
the positions of the brackets with index xi + 1, . . . , s. It changes the left sum by
−di + 1− xi + 2k − 2(k − s) + 2(k − s− i) since it removes the brace with index i
and increases the positions and xl for the braces with indices l = i + 1, . . . , k − s.
We conclude that the change in dimension is ri − 2xi − di + 2k − 2i = 0. We
conclude that every variety V (Di) associated to V (D) by Algorithm 3.29 has the
same dimension as V (D).

We can now determine the support of the flat limit of the specialization. Since
in flat families the dimension of the fibers are preserved, Y has the same dimen-
sion as V (D). Hence, our dimension calculation puts very strong restrictions on
Z. First, suppose that either xν−1 = s or p(}xν−1+1) − π(ν) − 1 > yxν−1+1 − ν
in D. If Da is admissible, then by our dimension counts, replacing an isotropic
or non-isotropic linear space in (La

•, Q
a
•) with a smaller dimensional linear space

produces a strictly smaller dimensional locus. We conclude that the general linear
space parameterized by Y satisfies exactly the rank conditions imposed by (La

•, Q
a
•).

Hence, Y is contained in V (Da). Since both are irreducible varieties of the same
dimension, we conclude that Y = V (Da). If Da is not admissible, then it either vi-
olates condition (A1) or (A2). If Da fails condition (A2), then xi < k− i+1− di−ri

2
for some i. Since the linear spaces parameterized by Y have to intersect Qri

di
in a

subspace of dimension k− i+1, by the linear space bound, we conclude that these
linear spaces have to intersect Ki in a subspace of dimension at least xi + 1. In
Da, there is only one integer i that is not in the beginning non-decreasing part of
the sequence of integers. Geometrically, the linear spaces La

nj
or Q

rj ,a
dj

either con-

tain or are contained in Ki or intersect Ki in a codimension one linear space. Let
Fa1

⊂ Fa2
⊂ · · · ⊂ Fal

be a partial flag such that Fah
intersects M in a codimension

one subspace of M . Let M = Ga0+1 ⊂ Ga1+1 ⊂ · · · ⊂ Gal+1 be the partial flag
where Gah+1 is the span of Fah

and M for h ≥ 1. The locus of linear spaces of
dimension xi + l + 1 that intersect Fah

in a subspace of dimension at least xi + h
and intersect M in a subspace of dimension at least xi+1 is equivalent to the locus
of linear spaces that intersect the vector spaces Gah+1 in subspaces of dimension
at least xi + 1+ h. Notice that the diagram Dc formed in Step 1 of the Algorithm
3.25 depicts the linear spaces

Ln1
, . . . , Lnxi

,Ki, Span(Ki, Lnxi+1
), · · · , Span(Ki, Q

ri+1

di+1
), Q

ri−1

di−1
, · · · , Qr1

d1
.

Hence, by the linear space bound Y must be contained in V (Dc). By Proposition
3.39, Dc is an admissible symplectic diagram. Hence, V (Dc) is an irreducible
variety that has the same dimension as Y . We conclude that Y = V (Dc). On the
other hand, if Da satisfies condition (A2) but fails condition (A1), then it fails it for
the bracket with index xν−1 + 1 and the index ν. By the kernel bound, any linear
space that intersects Lnxν−1+1

in a subspace away from the kernel of Q restricted

to Q
rν−1

dν−1
has to be contained in L⊥

nxν−1+1
. The latter vector space is depicted in a

symplectic diagram by changing ν to ν − 1 and shifting }ν−1 one unit to the right
as in Step 2 of Algorithm 3.25. This argument applies as long as condition (A1)
fails for the resulting sequence. We conclude that Y has to be contained in V (Dc).
Since Y and V (Dc) are irreducible varieties of the same dimension, we conclude
that Y = V (Dc).
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Now suppose that xν−1 < s and p(}xν−1+1) − π(ν) − 1 = yxν−1+1 − ν in D.
Then, by our dimension count, replacing the linear space Lnxν−1+1

by a linear space

Fuxν−1+1
corresponding to a bracket of the form

· · · a a+ 1 . . . ν − 1 ν ν + 2 . . . ν + l − 1 ν + l ν + l] · · · →
· · · a]a+ 1 . . . ν − 1 ν ν + 2 . . . ν + l − 1 ν + l ν + l · · ·

produces a locus Z that has the same dimension as Y . Replacing any other
linear space results in a smaller dimensional locus. However, unless Fuxν−1+1

=

Ker(Qrν
dν
) ∩ Lnxν−1+1

not all linear spaces parameterized by Z can be in the flat

limit. Observe that W⊥(t) intersects Lnxν−1+1
∩Ker(Qra

da
) in a subspace of dimen-

sion at least π(a) + 1 for every W (t) ∈ V (D(t)). By upper semi-continuity, the
same has to hold of the flat limit at t = 0. Hence, unless a = ν, we obtain a
smaller dimensional variety. We conclude that Y ⊂ V (Db). If Db is admissible,
then both varieties are irreducible of the same dimension and we conclude that
Y = V (Db). If Db is not admissible, then by Proposition 3.39, Db satisfies con-
dition (A2) but fails condition (A1). Furthermore, it fails condition (A1) only for
the bracket · · · a ν] · · · . By the kernel bound, the linear spaces parameterized of
dimensions k − a, k − a + 1, . . . , k − ν + 2 contained in Q

ra+1

da+1
, . . . , Q

rν−1

dν−1
, respec-

tively, are contained in (Lnxν−1+1
∩ Ker(Qra

da
))⊥ in Q

ra+1

da+1
, . . . , Q

rν−1

dν−1
. Algorithm

3.26 replaces the linear spaces Q
ra+1

da+1
, . . . , Q

rν−1

dν−1
with (Lnxν−1+1

∩ Ker(Qra
da
))⊥ in

Q
ra+1

da+1
, . . . , Q

rν−1

dν−1
, respectively. Hence, Y is contained in V (Dc). Finally, if during

the process two braces occupy the same position, then the resulting locus Z has
strictly smaller dimension by our dimension counts so does not lead to a locus Z
containing Y . Since in all other cases Y and V (Dc) are irreducible varieties of the
same dimension, we conclude that Y = V (Dc). This completes the proof that the
support of the flat limit of the specialization is contained in the union of V (Di),
where Di are the admissible symplectic diagrams associated to D by Algorithm
3.29.

Finally, there remains to check that each of the irreducible components occur
with multiplicity one. This is an easy local calculation. The point here is that
taking the option Da at each stage of the algorithm leads to a Schubert variety.
Similarly, taking the option Db at all allowed places in the algorithm leads to a
Schubert variety. The classes of these two Schubert varieties occur in the class of
V (D) with multiplicity one. Therefore, by intersecting V (D) with the dual of these
Schubert varieties, we can tell the multiplicity of V (Da) and V (Db).

First, in each of the five cases we can assume that η = 1. Let U be the Zariski
open set of our family of restriction varieties parameterizing linear spaces W (t) such

that dim(W (t) ∩Q
rη(t)
dη

(t)) = k − η + 1. Let Z be the family of symplectic restric-

tion varieties obtained by applying the specialization to the admissible sequence
(L′

•, Q
′
•) (represented by D′) obtained from (L•, Q•) by omitting the linear spaces

Qr1
d1
, . . . , Q

rη−1

dη−1
. Then there exists a natural morphism f : U → Z sending W (t)

to W (t) ∩Q
rη(t)
dη

(t), which is smooth at the generic point of each of the irreducible

components of the fiber of Z at t = 0. The fibers f over W ′ ∈ Z is the linear spaces
of dimension k that contain W ′ and satisfy the appropriate rank conditions with
respect to the linear spaces Qr1

d1
, . . . , Q

rη−1

dη−1
. Notice that running Algorithm 3.29

on D′ results in the same outcome as running in D and removing the braces with
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indices i < η. Hence, we can do the multiplicity calculation for the family Z. We
may, therefore, assume that η = 1.

In all the cases, the argument is almost identical with very minor variations.
We will give it in the hardest case, case (2)(i), and leave the minor modifications in
the other cases to the reader. In case (2)(i), by a similar argument, we may further
assume that κ = 1, dκ + rκ = n − 2, xκ = 0 and s ≤ 1. The most interesting
case is when s = 1 and 2dk−s ≥ n. Let y1 be the minimal index l such that Ln1

is contained in Ker(Qrl
dl
). We will check that the multiplicities are one by finding a

cycle that intersects V (D) in one point and exactly one of the limits in one point.
If Da is admissible, then consider the Schubert variety Σ defined with respect to a
general isotropic flag with the following invariants

λi = n− di + 2 for κ = 1 ≤ i ≤ l − 1, λi = n− di + 1 for l ≤ i ≤ k − 1,

and μk = n− n1 + 1.

If Da satisfies condition (A2) but not (A1), change the definition of λ1 so that
λ1 = n− d1 + 2. If Da fails condition (A2), change the definition of Σ so that

λi = n− di+1 + 1 for 1 ≤ i ≤ l − 2, λi = n− di+1 for l − 1 ≤ i ≤ k − 2,

and μk−1 = n− n1, μk = n− rκ + 1.

By Kleiman’s Transversality Theorem [K1], it is immediate that both Σ ∩ V (D)
and Σ∩V (Da) consist of a single reduced point, whereas Σ∩V (Db) is empty. Since
Σ requires the k-plane to be contained in a linear space of dimension n − n1 + 1
and V (Db) requires the linear space to intersect a linear space of dimension less
than n1, these conditions cannot be simultaneously satisfied for general choices of
linear spaces. Hence, Σ ∩ V (Db) is empty. On the other hand, the intersection
Ln1

∩ F⊥
μk

consists of a one-dimensional vector space W1 and Qri
di

∩ Fλi
consist

of one-dimensional linear spaces contained in W⊥
1 when l ≤ i ≤ k − 1 and two-

dimensional linear spaces not contained in W⊥
1 when 1 ≤ i ≤ l − 1. Since any

linear space contained in V (D) ∩ Σ or V (Da) ∩ Σ must intersect all these linear
spaces in one-dimensional subspaces, we conclude that the k-dimensional linear
space satisfying conditions imposed by V (D) and Σ or V (Da) and Σ are uniquely
determined. It follows that the multiplicity of V (Da) is one.

Similarly, if p(]1) − π(2) − 1 = y1 − 2, then Db is admissible. Let Ω be the
Schubert variety defined with respect to a general isotropic flag with the following
invariants:

λi = n− di + 1 for 1 ≤ i ≤ k − 1, μk = r1.

By Kleiman’s Transversality Theorem [K1], it is immediate that both Ω ∩ V (D)
and Ω ∩ V (Db) consist of a single reduced point, whereas Ω ∩ V (Da) is empty.
The conditions imposed by Ω and V (Da) cannot be simultaneously satisfied, hence
Ω ∩ V (Da) is empty. On the other hand, Fλi

∩ Qri
di

by construction are one-

dimensional subspaces that need to be contained in any W contained in Ω ∩ V (D)
or Ω ∩ V (Db). These determine (k− 1)-dimensional subspace W ′ of W . Lb

n1
∩ F⊥

μ1

is also a one-dimensinonal subspace Λ that needs to be contained in W . Since
Λ ⊂ (W ′)⊥, this uniquely constructs W ∈ Ω ∩ V (Db). Similarly, Ln1

∩ F⊥
μ1

is
a y1-dimensional linear space. However, the intersection of this linear space with
(W ′)⊥ is one-dimensional and must be contained in W . This uniquely constructs
W in V (D) ∩ Ω. We leave the minor modifications necessary in the other cases to
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the reader (see [C2] for more details in the orthogonal case). This concludes the
proof of the theorem. �

6. Rigidity of Schubert classes

In this section, as an application of Algorithm 3.29, we discuss the rigidity of
Schubert classes in SG(k, n). Let G be an algebraic group and let P be a parabolic
subgroup. Let X = G/P be the corresponding homogeneous variety. A Schubert
class c in the cohomology of X is called rigid if the only projective subvarieties of
X representing c are Schubert varieties. A Schubert class c in the cohomology of
X is called multi rigid if the only projective subvarieties of X representing kc, for
any positive integer k, are unions of k Schubert varieties. For details about rigidity
of Schubert classes we refer the reader to the papers [B], [Ho1], [RT], [C1] and
[C6].

In many cases, symplectic restriction varieties provide explicit deformations of
Schubert classes showing that the corresponding Schubert classes are not rigid. The
following example is typical.

Example 6.1. The Grassmannian SG(1, n) is isomorphic to Pn−1. Hence, all
the Schubert varieties PLnj

are linear spaces. However, note that not all linear
spaces are Schubert varieties. Points and codimension one linear spaces are always
Schubert varieties. The restriction of Q to a codimension one linear space has a
one-dimensional kernel W , hence it is of the formW⊥. We conclude that points and
codimension one linear spaces are rigid. Linear spaces PM with 1 < dim(M) < n−1
do not have to be isotropic, hence the corresponding Schubert classes are not rigid
since they can be deformed to non-isotropic linear spaces.

The following theorem generalizes this example.

Theorem 6.2. Let σλ•;μ• be a Schubert class in the cohomology of SG(k, n).

(1) If s = 0 and μj > k − j + 1 for some j, then σλ•;μ• = σμ• is not rigid.
(2) If s ≥ 1 and λs > max(μs+1, λs−1 + 1), then σλ•;μ• is not rigid.

Proof. In both cases, we find a symplectic restriction variety that has the
same class as the Schubert variety but is not a Schubert variety. First, suppose that
s = 0. Consider a general Schubert variety Σa• inG(k, n) with class σa• , where aj =
n−μj . Then the cohomology class of the restriction variety V (Da•) is the Schubert
class σμ• . To prove this run Algorithm 3.29 on the diagram D(a•). Since n− μj ≥
m+ j > 2j− 1, the diagram D(a•) does not have any brackets. Furthermore, since
the Schubert variety already satisfies condition (A2), any intermediate diagram
satisfies (A2). Hence, there are no brackets in any of the intermediate diagrams
(a position of the bracket cannot be larger than m). Therefore, the intermediate
diagrams automatically satisfy condition (A1). We conclude that the algorithm
only produces Da and at each stage Da is admissible. The formation of Da does
not change the position of the braces. Hence, whenDa becomes saturated in perfect
order, V (Da) equals a Schubert variety with class σμ• . If μj > k − j + 1 for some
j, then V (Da•) is not a Schubert variety. Let j be the largest index such that
μj > k − j + 1. If j = k, then the span of the linear spaces parameterized by
V (Da) is not isotropic. Hence, V (Da) cannot be a Schubert variety. If j < k, then
the linear space Q

rj
dj

is distinguished and is not isotropic. Hence, V (Da) is not a

Schubert variety.
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Now assume that s ≥ 1 and λs > max(μs+1, λs−1 + 1). Consider the following
partial flag:

Fλ1
⊂ · · · ⊂ Fλs−1

⊂ Qλs−2
λs

⊂ F⊥
μs+1

⊂ · · · ⊂ F⊥
μk
,

where Fi are isotropic subspaces and Qλs−2
λs

is a non-isotropic space contained in

F⊥
λs−1

. By our assumption that λs > max(μs+1, λs−1 + 1) such a sequence exists.

Let Y be the Zariski closure of the locus of k-dimensional isotropic subspaces W
that satisfy dim(W ∩ Fλi

) = i for 1 ≤ i < s, dim(W ∩ F⊥
μj
) = j for s < j ≤ k and

dim(W ∩ Qλs−2
λs

) = s. Then the cohomology class of Y is σλ•;μ• , but Y is not a
Schubert variety. To calculate the class of Y , we run Algorithm 3.29 on the partial
flag defining Y . If we omit the linear spaces F⊥

μs+1
, . . . , F⊥

μk
, we obtain an admissible

sequence. The sequence is in order, so we are in case (2)(i) with κ = k − s + 1.
The Algorithm only produces Da, which does not satisfy condition (A2). Step 1 of

Algorithm 3.25, replaces Qλs−2
λs

with Fλs
and the result is a Schubert variety. We

conclude that the class of Y is σλ•,μ• . However, since Qλs−2
λs

is not isotropic, Y is
not a Schubert variety. This concludes the proof. �

Corollary 6.3. (1) If the Schubert class σn−μ1,...,n−μk
in the cohomol-

ogy of G(k, n) can be represented by a smooth subvariety of G(k, n), then
the Schubert class σ;μ1,...,μk

can also be represented by a smooth subvariety
of SG(k, n).

(2) If there exists an index i < k such that m − i − 1 > μi > μi+1 + 2 or if
there exists an index 1 < i < k such that m−i > μi−1 = μi+1 > μi+1+2,
then σ;μ1,...,μk

cannot be represented by a smooth subvariety of SG(k, n).
(3) If the Schubert class σλ1,...,λk

in the cohomology of G(k,m) can be repre-
sented by a smooth subvariety of G(k,m), then the Schubert class σλ1,...,λk;

in the cohomology of SG(k, n) can be represented by a smooth subvariety
of SG(k, n).

(4) If there exists an index i < k such that i < λi < λi+1 + 2 or an index
1 < i < k − 1 such that i − 1 < λi−1 = λi − 1 < λi+1 − 2, then σλ1,...,λk;

cannot be represented by a smooth subvariety of SG(k, n).

Proof. By Theorem 6.2, the Schubert class σ;μ1,...,μk
is the class of the re-

striction variety D(σn−μ1,...,n−μk
). If σn−μ1,...,n−μk

can be represented by a smooth
subvariety Y of G(k, n), then, by Kleiman’s Transversality Theorem [K1], for a gen-
eral translate of Y , Y ∩ SG(k, n) is a smooth subvariety of SG(k, n) representing
the Schubert class σ;μ1,...,μk

. This proves (1).

A Schubert variety in SG(k, n) with class σλ1,...,λk; parameterizes k-dimensional
subspaces of a maximal isotropic spaceW , hence it is also a subvariety ofG(k,W ) =
G(k,m) with class σλ1,...,λk

. If the latter class can be represented by a smooth
subvariety Y of G(k,W ), then Y also represents the class σλ1,...,λk; in SG(k, n).
This proves (3).

The Schubert variety Σ parameterizing k-dimensional isotropic subspaces con-
tained in a fixed maximal isotropic space W is a smooth subvariety of SG(k, n)
isomorphic to G(k,m) that has cohomology class σm−k+1,...,m;. If Y is a smooth
subvariety representing σ;μ1,...,μk

, then, by Kleiman’s Transversality Theorem, the
intersection of Σ with a general translate of Y is a smooth subvariety of G(k,m)
representing the class σm−μ1,...,m−μk

. Therefore, Theorem 1.6 of [C1] implies (2).
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Under the inclusion i : SG(k, n) → G(k, n), a Schubert variety Σ in SG(k, n)
with class σλ1,...,λk; is a Schubert variety of G(k, n) with class σλ1,...,λk

. If the
former class can be represented by a smooth subvariety Y of SG(k, n), then i(Y ) is
a smooth subvariety that represents the latter class in G(k, n). Hence, if the latter
class cannot be represented by a smooth subvariety of G(k, n), then Y cannot exist.
Therefore, Theorem 1.6 of [C1] implies (4).

�
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Riemann-Roch for Deligne-Mumford stacks

Dan Edidin

It is a pleasure to dedicate this article to my teacher, Joe Harris.

Abstract. We give a simple proof of the Riemann-Roch theorem for Deligne-
Mumford stacks using the equivariant Riemann-Roch theorem and the localiza-
tion theorem in equivariant K-theory, together with some basic commutative
algebra of Artin local rings.

1. Introduction

The Riemann-Roch theorem is one of the most important and deep results in
mathematics. At its essence, the theorem gives a method to compute the dimension
of the space of sections of a vector bundle on a compact analytic manifold in terms
of topological invariants (Chern classes) of the bundle and manifold.

Beginning with Riemann’s inequality for linear systems on curves, work on the
Riemann-Roch problem spurred the development of fundamental ideas in many
branches of mathematics. In algebraic geometry Grothendieck viewed the classical
Riemann-Roch theorem as an example of a transformation between K-theory and
Chow groups of a smooth projective variety. In differential geometry Atiyah and
Singer saw the classical theorem as a special case of their celebrated index theorem
which computes the index of an elliptic operator on a compact manifold in terms
of topological invariants.

Recent work in moduli theory has employed the Riemann-Roch theorem on
Deligne-Mumford stacks. A version of the theorem for complex V -manifolds was
proved by Kawasaki [Kaw] using index-theoretic methods. Toen [Toe] also proved
a version of Grothendieck-Riemann-Roch on Deligne-Mumford stacks using coho-
mology theories with coefficients in representations. Unfortunately, both the state-
ments and proofs that appear in the literature are quite technical and as a result
somewhat inaccessible to many working in the field.

The purpose of this article is to state and prove a version of the Riemann-
Roch theorem for Deligne-Mumford stacks based on the equivariant Riemann-Roch
theorem for schemes and the localization theorem in equivariant K-theory. Our
motivation is the belief that equivariant methods give the simplest and least tech-
nical proof of the theorem. The proof here is based on the author’s joint work with
W. Graham [EG2, EG3, EG4] in equivariant intersection theory and equivariant
K-theory. It requires little more background than some familiarity with Fulton’s
intersection theory [Ful] and its equivariant analogue developed in [EG1].
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2 DAN EDIDIN

The contents of this article are as follows. In Section 2 we review the algebraic
development of the Riemann-Roch theorem from its original statement for curves to
the version for arbitrary schemes proved by Baum, Fulton and MacPherson. Our
main reference for this materia, with some slight notational changes, is Fulton’s
intersection theory book [Ful].

In Section 3 we explain how the equivariant Riemann-Roch theorem [EG2]
easily yields a Grothendieck-Riemann-Roch theorem for representable morphisms
of smooth Deligne-Mumford stacks.

Section 4 is the heart of the article. In it we prove the Hirzebruch-Riemann-
Roch theorem for smooth, complete Deligne-Mumford stacks. Using the example of
the weighted projective line stack P(1, 2) as motivation, we first prove (Section 4.2)
the result for quotient stacks of the form [X/G] with G diagonalizable. This proof
combines the equivariant Riemann-Roch theorem with the classical localization
theorem in equivariant K-theory and originally appeared in [EG3]. In Section 4.3
we explain how the non-abelian localization theorem of [EG4] is used to obtain the
general result. We also include several computations to illustrate how the theorem
can be applied.

In Section 5 we briefly discuss the Grothendieck-Riemann-Roch theorem for
Deligne-Mumford stacks and illustrate its use by computing the Todd class of a
weighted projective space.

For the convenience of the reader we also include an Appendix with some basic
definitions used in the theory.

Acknowledgment: The author is grateful to the referee for a very thorough
reading of an earlier version of this article.

2. The Riemann-Roch theorem for schemes

The material in Sections 2.1 - 2.3 is well known and further details can be found
in the book [Ful].

2.1. Riemann-Roch through Hirzebruch. The original Riemann-Roch the-
orem is a statement about curves. If D is a divisor on a smooth complete curve C
then the result can be stated as:

l(D)− l(KC −D) = degD + 1− g

where KC is the canonical divisor and l(D) indicates the dimension of the linear
series of effective divisors equivalent to D. Using Serre duality we can rewrite this
as

χ(C,L(D)) = degD + 1− g.

where L(D) is the line bundle determined by D. Or, in slightly fancier notation

(1) χ(C,L(D)) = deg c1(L(D)) + 1− g.

The Hirzebruch-Riemann-Roch theorem extends (1) to arbitrary smooth com-
plete varieties.

Theorem 2.1 (Hirzebruch-Riemann-Roch). Let X be a smooth projective va-
riety and let V be a vector bundle on X. Then

(2) χ(X,V ) =

∫
X

ch(V ) Td(X)
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RIEMANN-ROCH FOR DELIGNE-MUMFORD STACKS 3

where ch(V ) is the Chern character of V , Td(X) is the Todd class of the tangent
bundle and

∫
X

is refers to the degree of the 0-dimensional component in the product.

The Hirzebruch version of Riemann-Roch yields many useful formulas. For
example, if X is a smooth algebraic surface then the arithmetic genus can be com-
puted as

(3) χ(X,OX) =
1

12

∫
X

c21 + c2 =
1

12
(K2 + χ)

where χ is the topological genus.

2.2. The Grothendieck-Riemann-Roch theorem. This theorem extends
the Hirzebruch-Riemann-Roch theorem to the relative setting. Rather than con-
sidering Euler characteristics of vector bundles on smooth, complete varieties we
consider the relative Euler characteristic for proper morphisms of smooth varieties.

Let f : X → Y be a proper morphism of smooth varieties. The Chern character
defines homomorphisms ch: K0(X) → Ch∗ X ⊗ Q, and ch: K0(Y ) → Ch∗ Y ⊗
Q. Likewise, there are two pushforward maps: the relative Euler characteristic
f∗ : K0(X) → K0(Y ) and proper pushforward f∗ : Ch∗(X) → Ch∗(Y ). Since we
have 4 groups and 4 natural maps we obtain a diagram - which which does not
commute!

(4)
K0(X)

ch→ Ch∗(X)⊗Q

f∗ ↓ f∗ ↓
K0(Y )

ch→ Ch∗(Y )⊗Q

The Grothendieck-Riemann-Roch theorem supplies the correction that makes (4)
commutative. If α ∈ K0(X) then

(5) ch(f∗α) Td(Y ) = f∗ (ch(α) Td(X)) ∈ Ch∗(Y )⊗Q.

In other words the following diagram commutes:

(6)
K0(X)

chTd(X)→ Ch∗(X)⊗Q

f∗ ↓ f∗ ↓
K0(Y )

chTd(Y )→ Ch∗(Y )⊗Q

Since Td(Y ) is invertible in Ch∗(Y ) we can rewrite equation (5) as

(7) ch(f∗α) = f∗ (ch(α) Td(Tf ))

where Tf = [TX]− [f∗TY ] ∈ K0(X) is the relative tangent bundle.

Example 2.2. Equation (7) can be seen as a relative version of the Hirzebruch-
Riemann-Roch formula, but it is also more general. For example, it can also be
applied when f : X → Y is a regular embedding of codimension d. In this case a
more refined statement holds. If N is the normal bundle of f and V is a vector
bundle of rank r on X then the equation

c(f∗V )) = 1 + f∗P (c1(V ), . . . , cr(V ), c1(N), . . . cd(N))

holds in Ch∗(Y ) where P (T1, . . . , Td, U1, . . . , Ud) is a universal power series with
integer coefficients.

This result is known as Riemann-Roch without denominators and was conjec-
tured by Grothendieck and proved by Grothendieck and Jouanolou.
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4 DAN EDIDIN

2.3. Riemann-Roch for singular schemes. If Z ⊂ X is a subvariety of
codimension k then ch[OZ ] = [Z] + β where β is an element of Ch∗(X) supported
in codimension strictly greater than k. Since Td(X) is invertible in Ch∗(X) the
Grothendieck-Riemann-Roch theorem can be restated as follows:

Theorem 2.3. The map τX : K0(X) → Ch∗(X)⊗Q defined by

[V ] �→ ch(V ) Td(X)

is covariant for proper morphisms of smooth schemes1 and becomes an isomorphism
after tensoring K0(X) with Q.

The Riemann-Roch theorem of Baum, Fulton and MacPherson generalizes
previous Riemmann-Roch theorems to maps of arbitrary schemes. However, the
Grothendieck group of vector bundles K0(X) is replaced by the Grothendieck group
of coherent sheaves G0(X).

Theorem 2.4. [Ful, Theorem 18.3, Corollary 18.3.2] For all schemes X there
is a homomorphism τX : G0(X) → Ch∗(X)⊗Q satisfying the following properties:

(a) τX is covariant for proper morphisms.
(b) If V is a vector bundle on X then τX([V ]) = ch(V )τX(OX).
(c) If f : X → Y is an lci morphism with relative tangent bundle Tf then for

every class α ∈ G0(Y ) τXf∗α = Td(Tf ) ∩ f∗τ (α).
(d) If Z ⊂ X is a subvariety of codimension k then τ (OZ) = [Z] + β where

β ∈ Ch∗(X) is supported in codimension strictly greater than k.
(e) The map τX induces an isomorphism G0(X)⊗Q → Ch∗(X)⊗Q.

Remark 2.5. If X is smooth then K0(X) = G0(X) and using (c) we see that
τX(OX) = Td(X) and thereby obtain the Hirzebruch and Grothendieck Riemann-
Roch theorems. In [Ful] the Chow class τX(OX) is called the Todd class of X.

Remark 2.6. Theorem 2.4 is proved by a reduction to the (quasi)-projective
case via Chow’s lemma. Since Chow’s lemma also holds for algebraic spaces, the
Theorem immediately extends to the category of algebraic spaces.

3. Grothendieck Riemann-Roch for representable morphisms of
quotient Deligne-Mumford stacks

The goal of this section explain how the equivariant Riemann-Roch theorem
3.1 yields a Grothendieck-Riemann-Roch theorem for representable morphisms of
Deligne-Mumford quotient stacks.

3.1. Equivariant Riemann-Roch. If G is an algebraic group acting on a
scheme X then there are equivariant versions of K-theory, Chow groups and Chern
classes (see the appendix for definitions). Thus it is natural to expect an equivari-
ant Riemann-Roch theorem relating equivariant K-theory with equivariant Chow
groups. Such a theorem was proved in [EG2] for the arbitrary action of an alge-
braic group G on a separated algebraic space X. Before we state the equivariant
Riemann-Roch theorem we introduce some further notation.

The equivariant Grothendieck group of coherent sheaves, G0(G,X), is a mod-
ule for both K0(G,X), the Grothendieck ring of G-equivariant vector bundles, and

1This means that if f : X → Y is a proper morphism of smooth schemes then f∗◦τX = τY ◦f∗
as maps K0(X) → Ch∗(Y )⊗ Q.
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R(G) = K0(G, pt), the Grothendieck ring of G-modules. Each of these rings has a
distinguished ideal, the augmentation ideal, corresponding to virtual vector bundles
(resp. representations) of rank 0. A result of [EG2] shows that the two augmen-

tation ideals generate the same topology on G0(G,X) and we denote by ̂G0(G,X)
the completion of G0(G,X)Q with respect to this topology.

The equivariant Riemann-Roch theorem generalizes Theorem 2.4 as follows:

Theorem 3.1. There is a homomorphism τX : G0(G,X) →
∏∞

i=0 Ch
i
G(X)⊗Q

which factors through an isomorphism ̂G0(G,X) →
∏∞

i=0 Ch
i
G(X) ⊗ Q. The map

τX is covariant for proper equivariant morphisms and when X is a smooth scheme
and V is a vector bundle then

(8) τX(V ) = ch(V ) Td(TX − g)

where g is the adjoint representation of G.

Remark 3.2. The K-theory class TX − g appearing in (8) corresponds to the
tangent bundle of the quotient stack [X/G]. If G is finite then g = 0 and if G is
diagonalizable (or more generally solvable) then g is a trivial representation of G
and the formula τX(V ) = ch(V ) Td(TX) also holds.

Example 3.3. If X = pt and G = C∗ then R(G) is the representation ring of
G. Since G is diagonalizable the representation ring is generated by characters and
R(G) = Z[ξ, ξ−1] where ξ is the character of weight one. If we set t = c1(ξ) then the
map τX is simply the exponential map Z[ξ, ξ−1] → Q[[t]], ξ �→ et. The augmentation
ideal of R(G) ism = (ξ−1). If we tensor withQ and complete at the idealm then the

completed ring R̂(G) is isomorphic to the power series ring Q[[x]] where x = ξ − 1.
The map τX is the isomorphism sending x to et − 1 = t(1 + t/2 + t2/3! + . . .).

3.2. Quotient stacks and moduli spaces.

Definition 3.4. A quotient stack is a stack X equivalent to the quotient [X/G]
where G ⊂ GLn is a linear algebraic group and X is a scheme (or more generally
an algebraic space2).

A quotient stack is Deligne-Mumford if the stabilizer of every point is finite
and geometrically reduced. Note that in characteristic 0 the second condition is
automatic.

A quotient stack X = [X/G] is separated if the action of G on X is proper -
that is, the map σ : G×X → X ×X, (g, x) �→ (gx, x) is proper. Since G is affine σ
is proper if and only if it is finite. In characteristic 0 any separated quotient stack
is automatically a Deligne-Mumford stack.

The hypothesis that a Deligne-Mumford stack is a quotient stack is not par-
ticularly restrictive. Indeed, the author does not know any example of a separated
Deligne-Mumford stack which is not a quotient stack. Moreover, there are a num-
ber of general results which show that “most” Deligne-Mumford stacks are quotient
stacks [EHKV, KV]. For example if X satisfies the resolution property - that is,
every coherent sheaf is the quotient of a locally free sheaf then X is quotient stack.

It is important to distinguish two classes of morphisms of Deligne-Mumford
stacks, representable and non-representable morphisms. Roughly speaking, a mor-
phism of Deligne-Mumford stacks X → Y is representable if the fibers of f are

2The fact that X is an algebraic space as opposed to a scheme makes little difference in this
theory.
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schemes. Any morphism X ′ → X from a scheme to a Deligne-Mumford stack is
representable. If X = [X/G] and Y = [Y/H] are quotient stacks and f : X → Y is
representable then X is equivalent to a quotient [Z/H] (where Z = Y ×YX )and the
map of stacks X → Y is induced by an H-equivariant morphism Z → Y . Thus, for
quotient stacks we may think of representable morphisms as those corresponding
to G-equivariant morphisms.

The non-representable morphisms that we will encounter are all morphisms
from a Deligne-Mumford stack to a scheme or algebraic space. Specifically we
consider the structure map from a Deligne-Mumford stack to a point and the map
from a stack to its coarse moduli space.

Every Deligne-Mumford stack X is finitely parametrized. This means that there
is finite surjective morphism X ′ → X where X is a scheme. Thus we can say that
a separated stack X is complete if it is finitely parametrized by a complete scheme.

A deep result of Keel and Mori [KM] implies that every separated Deligne-
Mumford stack X has a coarse moduli space M in the category of algebraic spaces.
Roughly speaking, this means that there is a proper surjective (but not repre-
sentable) morphism p : X → M which is a bijection on geometric points and sat-
isfies the universal property that any morphism X → M ′ with M ′ an algebraic
space must factor through p. When X = [X/G] then the coarse moduli space M
is the geometric quotient in the category of algebraic spaces. When X = Xs is the
set of stable points for the action of a reductive group G then M is the geometric
invariant theory quotient of [MFK].

The map X → M is not finite in the usual scheme-theoretic sense, because
it is not representable, but it behaves like a finite morphism in the sense that if
f : X ′ → X is a finite parametrization then the composite morphism X ′ → M is
finite. Note, however, that if we define deg p by requiring deg p deg f = degX ′/M
then deg p may be fractional (see below).

Since p is a bijection on geometric points, some of the geometry of the stack X
can be understood by studying the coarse space M . Note, however, that when X
is smooth the space M will in general have finite quotient singularities.

3.2.1. K-theory and Chow groups of quotient stacks. If X is a stack then we
use the notation K0(X ) to denote the Grothendieck group of vector bundles on X
and we denote by G0(X ) the Grothendieck group of coherent sheaves on X . If X
is smooth and has the resolution property then the natural map K0(X ) → G0(X )
is an isomorphism.

If X = [X/G] then K0(X ) (resp. G0(X )) is naturally identified with the
equivariant Grothendieck ring K0(G,X) (resp. equivariant Grothendieck group
G0(G,X).

Chow groups of Deligne-Mumford stacks were defined with rational coefficients
by Gillet [Gil] and Vistoli [Vis] and with integral coefficients by Kresch [Kre].
When X = [X/G] Kresch’s Chow groups agree integrally with the equivariant
Chow groups Ch∗G(X) defined in [EG1]. The proper pushforward of rational Chow
groups p : Ch∗(X ) ⊗ Q → Ch∗(M)⊗ Q is an always an isomorphism [Vis, EG1].
In particular this means that if X = [X/G] is a Deligne-Mumford stack then every
equivariant Chow class can be represented by a G-invariant cycle on X (as opposed

to X × V where V is a representation of G). Consequently Chk(X ) ⊗ Q = 0 for
k > dimX .
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The theory of Chern classes in equivariant intersection theory implies that a
vector bundle V on X = [X/G] has Chern classes ci(V ) which operate on Ch∗(X ).
If X is smooth then we may again view the Chern classes as elements of Ch∗(X ). If
X is smooth and Deligne-Mumford the Chern character and Todd class are again
maps K0(X ) → Ch∗(X )⊗Q.

Every smooth Deligne-Mumford stack has a tangent bundle. If X = [X/G] is
a quotient stack then the map X → [X/G] is a G-torsor so the tangent bundle to
X corresponds to the quotient TX/g where g is the adjoint representation of G. In
particular under the identification of Ch∗(X ) = Ch∗G(X), c(TX ) = c(TX)c(g)−1.
If G is finite or diagonalizable then g is a trivial representation so ct(g) = 1. Thus,
the Chern classes of TX are just the equivariant Chern classes of TX in these cases.

3.2.2. Restatement of equivariant Riemann-Roch for Deligne-Mumford quotient
stacks. As already noted, when G acts properly then ChiG(X)Q = 0 for i >
dim[X/G] so the infinite direct product in Theorem 3.1 is just Ch∗(X ) where
X = [X/G]. A more subtle fact proved in [EG2] is that if G acts with finite
stabilizers (in particular if the action is proper) then G0(G,X) ⊗ Q is supported

at a finite number of points of Spec(R(G) ⊗ Q). It follows that ̂G0(G,X) is the
same as the localization of the R(G) ⊗ Q-module G0(G,X) ⊗ Q at the augmen-
tation ideal in R(G) ⊗ Q. For reasons that will become clear in the next section
we denote this localization by G0(G,X)1 (or K0(G,X)1). Identifying equivariant
K-theory with the K-theory of the stack X = [X/G] we will also write K0(X )1
and G0(X )1 respectively. Theorem 3.1 implies the following result about smooth
Deligne-Mumford quotient stacks.

Theorem 3.5. There is a homomorphism τX : G0(X ) → Ch∗(X ) ⊗ Q which
factors through an isomorphism G0(X )1 → Ch∗(X )⊗Q. The map τX is covariant
for proper representable morphisms and when X is a smooth and V is a vector
bundle then

(9) τX(V ) = ch(V ) Td(X )

4. Hirzebruch Riemann-Roch for quotient Deligne-Mumford stacks

At first glance, Theorem 3.5 looks like the end of the Riemann-Roch story for
Deligne-Mumford stacks, since it gives a stack-theoretic version of the Grothendieck-
Riemann-Roch theorem for representable morphisms and also explains the relation-
ship between K-theory and Chow groups of a quotient stack. Unfortunately, the
theorem cannot be directly used to compute the Euler characteristic of vector bun-
dles or coherent sheaves on complete Deligne-Mumford stacks.

The problem is that the Euler characteristic of a vector bundle V on X is
the K-theoretic direct image f!V :=

∑
(−1)iHi(X , V ) under the projection map

f : K0(X ) → K0(pt) = Z. However, the projection map X → pt is not repre-
sentable - since if it were then X would be a scheme or algebraic space.

A Hirzebruch-Riemann-Roch theorem for a smooth, complete, Deligne-Mumford
stack X should be a formula for the Euler characteristic of a bundle in terms of
degrees of Chern characters and Todd classes. In this section, which is the heart of
the paper, we show how to use Theorem 3.5 and generalizations of the localization
theorem in equivariant K-theory to obtain such a result. Henceforth, we will work
exclusively over the complex numbers C.
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4.1. Euler characteristics and degrees of 0-cycles. If V is a coherent
sheaf on X = [X/G] then the cohomology groups of V are representations of G and
we make the following definition.

Definition 4.1. If V is a G-equivariant vector bundle on X then Euler char-
acteristic of V viewed as a bundle on X = [X/G] is

∑
i(−1)i dimHi(X,V )G where

Hi(X,V )G denotes the invariant subspace. We denote this by χ(X , V ).

Note that, if dimG > 0 thenX will never be complete, so Hi(X,V ) need not be
finite dimensional. Nevertheless, if X is complete then Hi(X,V )G is finite dimen-
sional as it can be identified with the cohomology of the coherent sheaf Hi(M,p∗V )
under the proper morphism p : X → M from X to its coarse moduli space.

If G is linearly reductive (for example if G is diagonalizable) then the coho-
mology group Hi(X,V ) decomposes as direct sum of G-modules and Hi(X,V )G

is the trivial summand. In this case it easily follows that the assignment V �→∑
i(−1)i dimHi(X,V )G defines an Euler characteristic homomorphismK0(G,X) →

Z. The identification of vector bundles on X withG-equivariant bundles onX yields
an Euler characteristic map χ : K0(X ) → Z. When the action of G is free and X is
represented by a scheme, this is the usual Euler characteristic.

However, even if G is not reductive but acts properly on X then the assignment
V �→

∑
i(−1)i dimHi(X,V )G still defines an Euler characteristic map χ : K0(X ) →

Z. This follows from Keel and Mori’s description of the finite map [X/G] → M =
X/G as being étale locally in M a quotient [V/H] → V/H where V is affine and
H is finite (and hence reductive because we work in characteristic 0).

The above reasoning also applies to G-linearized coherent sheaves on X and
we also obtain an Euler characteristic map χ : G0(X ) → Z. These maps can be
extended by linearity to maps χ : K0(X )⊗ F → F (resp. G0(X )⊗ F → F ) where
F is any coefficient ring.

Example 4.2. If G is a finite group let BG = [pt /G] be the classifying stack
parametrizing algebraic G coverings. The identity morphism pt → pt factors as
pt → BG → pt where the first map is the universal G-covering and which associates
to any scheme T the trivial covering G× T → T . The map BG → pt is the coarse
moduli space map and associates to any G-torsor Z → T to the ground scheme T .

The map pt → BG is representable and the pushforward in map K0(pt) →
K0(BG) is the map Z → R(G) which sends the a vector space V to the represen-
tation V ⊗ C[G] where C[G] is the regular representation of G.

Since the C[G] contains a copy of the trivial representation with multiplicity
one, it follows that, with our definition, the composition of pushforwards Z =
K0(pt) → R(G) = K0(BG) → Z = K0(pt) is the identity - as expected.

4.1.1. The degree of a 0-cycle. Some care is required in understanding 0-cycles
on a Deligne-Mumford stack. The reason is that a closed 0-dimensional integral
substack η is not in general a closed point but rather a gerbe. That is, it is iso-
morphic after étale base change to BG for some finite group G. Assuming that the
ground field is algebraically closed then the degree of [η] is defined to be 1/|G|.

If X = [X/G] is a complete Deligne-Mumford quotient stack then 0-dimensional
integral substacks correspond to G-orbits of closed points and we can define for a
closed point x ∈ X deg[Gx/G] = 1/|Gx| where Gx is the stabilizer of x.

Example 4.3. The necessity of dividing by the order the stabilizer can be seen
by again looking at the factorization of the morphism pt → BG → pt when G is a
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finite group. The map pt → BG has degree |G| so the map BG → pt must have
degree 1

|G| .

4.2. Hirzebruch-Riemann-Roch theorem for quotients by diagonal-
izable groups. The goal of this section is to understand the Riemann-Roch the-
orem in an important special case: separated Deligne-Mumford stacks of the form
X = [X/G] where X is a smooth variety and G ⊂ (C∗)n is a diagonalizable group.
We will develop the theory using a very simple example - the weighted projective
line stack P(1, 2).

4.2.1. Example: The weighted projective line stack P(1, 2), Part I. Consider
the weighted projective line stack P(1, 2). This stack is defined as the quotient
of [A2 � {0}/C∗] where C∗ acts with weights (1, 2); i.e., λ(v0, v1) = (λv0, λ

2v1).
Because X = A2 � {0} is an open set in a two-dimensional representation, every
equivariant vector bundle on X is of the form X × V where V is a representation
of C∗. In this example we consider two line bundles on P(1, 2) - the line bundle L
associated to the weight one character ξ of C∗ and the line bundle O associated to
the trivial character.

Direct calculation of χ(P(1, 2),O) and χ(P(1, 2), L): It is easy to com-
pute χ(P(1, 2), L) and χ(P(1, 2),O) directly. The coarse moduli space of P(1, 2)
is the geometric quotient (A2 � {0})/C∗. Even though C∗ no longer acts freely
the quotient is still P1 since it has a covering by two affines SpecC[x2

0/x1] and
SpecC[x1/x

2
0], where x0 and x1 are the coordinate functions on A2. The Euler

characteristic pushforward K0(P(1, 2)) → K0(pt) = Z factors through the proper
pushforward K0(P(1, 2)) → K0(P

1). Consequently, we can compute χ(P(1, 2), L)
and χ(P(1, 2),O) by identifying the images of these bundles on P1. A direct com-
putation using the standard covering of A2�{0} by C∗ invariant affines shows that
both L and O pushforward to the trivial bundle on P1. Hence

χ(P(1, 2), L) = χ(P(1, 2),O) = 1

An attempt to calculate χ(P(1, 2),O) and χ(P(1, 2), L) using Riemann-
Roch methods: Following Hirzebruch-Riemann-Roch for smooth varieties we
might expect to compute χ(P(1, 2), L) as

∫
P(1,2)

ch(L) Td(P(1, 2)). To do that we

will use the presentation of P(1, 2) as a quotient by C∗. The line bundle L corre-
sponds to the pullback to A2 of the standard character ξ of C∗ and the tangent
bundle to the stack P(1, 2) fits into a weighted Euler sequence

0 → 1 → ξ + ξ2 → TP(1, 2) → 0

where 1 denotes the trivial character of C∗ and again ξ is the character of C∗ of
weight 1. If we let t = c1(ξ) then

ch(L) Td(P(1, 2)) = (1 + t)(1 + 3t/2) = 1 + 5t/2

Now the Chow class t is represented by the invariant cycle [x = 0] on A2 and the
corresponding point of P(1, 2) has stabilizer of order 2. Thus∫

P(1,2)

ch(L) Td(P(1, 2)) = 1/2(5/2) = 5/4

which is 1/4 too big. On the other a hand then again χ(P(1, 2),O) = 1 but∫
P(1,2)

ch(O) Td(P(1, 2)) = 3/4
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is too small by 1/4. In particular

(10)

∫
P(1,2)

ch(O + L) Td(P(1, 2)) = 2

which is indeed equal to χ(P(1, 2),O + L).
Equation (10) may seem unremarkable but is in fact a hint as to how to obtain

a Riemann-Roch formula that works for all bundles on P(1, 2).
4.2.2. The support of equivariant K-theory. To understand why (10) holds we

need to study K0(P(1, 2) as an R(C∗)-module. Precisely,

K0(P(1, 2)) = K0(C
∗,A2 � {0}) = Z[ξ, ξ−1]/(ξ2 − 1)(ξ − 1).

This follows from the fact that A2 is a representation of C∗ so K0(C
∗,A2) =

R(C∗) = Z[ξ, ξ−1] where again ξ denotes the weight one character of C∗. Because
we delete the origin we must quotient by the ideal generated by the K-theoretic
Euler class of the tangent space to the origin. With our action, A2 is the represen-
tation ξ + ξ2 so the tangent space of the origin is also ξ + ξ2. The Euler class of
this representation is (1− ξ−1)(1− ξ−2) which generates the ideal (ξ2 − 1)(ξ − 1).

From the above description we see that K0(C
∗,A2 � {0})⊗ C is an Artin ring

supported at the points 1 and −1 of SpecR(G)⊗C = C∗. The vector bundle O+L
on P(1, 2) corresponding to the element 1 + ξ ∈ R(C∗) is supported at 1 ∈ C∗ and
the formula

χ(P(1, 2),O + L) =

∫
P(1,2)

(ch(O + L) Td(P(1, 2))

is correct. On the other hand the class of the bundle O decomposes as [O]1+[O]−1

where [O]1 = 1/2(1 + ξ) is supported at 1 and [O]−1 = 1/2(1− ξ) is supported at
−1. In this case the integral

∫
P(1,2)

ch(O) Td(P(1, 2)) computes χ(P(1, 2), [O]1).

This phenomenon is general. If α ∈ K0(G,X)⊗Q, denote by α1 the component
supported at the augmentation ideal of R(G).

Corollary 4.4. [EG4, cf. Proof of Theorem 6.8] Let G be a linear algebraic
group (not necessarily diagonalizable) acting properly on smooth variety X. Then
if α ∈ K0(X )⊗Q

(11)

∫
X
ch(α) Td(X ) = χ(X , α1).

Proof. Since the equivariant Chern character map factors through K0(G,X)1
it suffices to prove that

(12)

∫
X
ch(α) Td(X ) = χ(X , α)

for α ∈ K0(G,X)1. To prove our result we use the fact that every Deligne-Mumford
stack X is finitely parametrizable. Translated in terms of group actions this means
that there is a finite, surjective G-equivariant morphism X ′ → X such that G acts
freely on X ′ and the quotient X ′ = [X ′/G] is represented by a scheme. (This result
was first proved by Seshadri in [Ses] and is the basis for the finite parametrization
theorem for stacks proved in [EHKV].) The scheme X ′ is in general singular3, but
the equivariant Riemann-Roch theorem implies the following proposition.

3If the quotient X/G is quasi-projective then a result of Kresch and Vistoli [KV] shows that
we can take X′ to be smooth, but this is not necessary for our purposes.
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Proposition 4.5. Let G act properly on X and let f : X ′ → X be a fi-
nite surjective G-equivariant map. Then the proper pushforward f∗ : G0(G,X ′) →
G0(G,X) induces a surjection G0(G,X ′)1 → G0(G,X)1, where G0(G,X)1 (resp.
G0(G,X)1) denotes the localization of G0(G,X)⊗Q (resp. G0(G,X ′)⊗Q) at the
augmentation ideal of R(G)⊗Q.

Proof of Proposition 4.5. Because G acts properly on X and X ′ → X is
finite (hence proper) it follows that G acts properly on X ′. Thus Ch∗G(X

′)⊗Q and
Ch∗G(X)⊗Q are generated by G-invariant cycles. Since f is finite and surjective any
G-invariant cycle on X is the direct image of some rational G-invariant cycle on X ′;
i.e., the pushforward of Chow groups f∗ : Ch∗G(X

′) → Ch∗G(X) is surjective after
tensoring with Q. Hence by Theorem 3.5 the corresponding map f∗ : G0(G,X ′)1 →
G0(G,X)1 is also surjective. �

NowG acts freely onX ′ soG0(G,X ′)⊗Q is supported entirely at the augmenta-
tion ideal of R(G)⊗Q. Therefore we have a surjection G0(G,X ′)⊗Q → G0(G,X)1.
Since X is smooth, we can also identify K0(G,X)1 with G0(G,X)1 and express the
class α ∈ K0(G,X)1 as α = f∗β. Since f is finite we see that χ(X ′, α) = χ(X , β).
Since X ′ is a scheme, we know by the Riemann-Roch theorem for the singular
schemes that χ(X ′, β) =

∫
X ′ τX ′(β). Applying the covariance of the equivariant

Riemann-Roch map for proper equivariant morphisms we conclude that∫
X
ch(α) Td(X ) =

∫
X ′

τX ′(β) = χ(X , β) = χ(X , α).

�

4.2.3. The localization theorem in equivariant K-theory. Corollary 4.4 tells us
how to deal with the component of G0(G,X) supported at the augmentation ideal.
We now turn to the problem of understanding what to do with the rest of equivariant
K-theory. The key tool is the localization theorem.

The correspondence between diagonalizable groups and finitely generated abe-
lian groups implies that if G is a complex diagonalizable group then R(G)⊗C is the
coordinate ring of G. Since the R(G)⊗Q-module G0(G,X)⊗Q is supported at a
finite number of closed points of SpecR(G)⊗Q it follows that G0(G,X)⊗C is also
supported at a finite number of closed points of G = SpecR(G)⊗C. If h ∈ G then
we denote by G0(G,X)h the localization of G0(G,X) ⊗ C at the corresponding
maximal ideal of R(G) ⊗ C. In the course of the proof of [Tho3, Theorem 2.1]
Thomason showed that G0(G,X)h = 0 if h acts without fixed point on X. Hence
h ∈ SuppG0(G,X) implies that Xh 	= ∅. Since G is assumed to act with finite
stabilizers (because it acts properly) it follows that h must be of finite order if
h ∈ SuppG0(G,X).

If X is a smooth scheme then we can identify G0(G,X) = K0(G,X) and
the discussion of the above paragraph applies to the Grothendieck ring of vector
bundles.

Let Xh be the fixed locus of h ∈ G. If X is smooth then Xh is a smooth closed
subvariety of X so the inclusion ih : X

h → X is a regular embedding. Since the
map ih is G-invariant the normal bundle Nh of Xh → X comes with a natural
G-action. The key to understanding what happens to the summand G0(G,X)h is
the localization theorem:
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Theorem 4.6. Let G be a diagonalizable group acting on a smooth variety X.
The pullback i∗h : G0(G,X) → G0(G,Xh) is an isomorphism after tensoring with C

and localizing at h. Moreover, the Euler class of the normal bundle, λ−1(N
∗
h), is

invertible in G0(G,Xh)h and if α ∈ G0(G,X) then

α = (ih)∗

(
i∗hα

λ−1(N∗
h)

)

Remark 4.7. The localization theorem in equivariant K-theory was originally
proved by Segal in [Seg]. The version stated above is essentially [Tho3, Lemma
3.2].

4.2.4. Hirzebruch-Riemann-Roch for diagonalizable group actions. The local-
ization theorem implies that if α ∈ G0(G,X)h then

χ(X , α) = χ([Xh/G],
i∗hα

λ−1N∗
h

).

Thus if α ∈ G0(G,X)h then we can compute χ([X/G], α) by restricting to the fixed
locus Xh. This is advantageous because there is an automorphism of G0(G,Xh)
which moves the component of a K-theory class supported at h to the component
supported at 1 without changing the Euler characteristic.

Definition 4.8. Let V be a G-equivariant vector bundle on a space Y and
suppose that an element h ∈ G of finite order acts trivially on Y . LetH be the cyclic
group generated by h and let X(H) be its character group. Then V decomposes
into a sum of h-eigenbundles ⊕ξ∈X(H)Vξ for the action of H on the fibres of V →
Y . Because the action of H commutes with the action of G (since G is abelian)
each eigenbundle is a G-equivariant vector bundle. Define th([V ]) ∈ K0(G, Y ) ⊗
C to be the class of the virtual bundle

∑
ξ∈X(H) ξ(h)Vξ. A similar construction

for G-linearized coherent sheaves defines an automorphism th : G0(G, Y ) ⊗ C →
G0(G, Y )⊗ C.

The map th is compatible with the automorphism of R(G) ⊗ C induced by
the translation map G → G, k �→ kh and maps the localization K0(G, Y )h to the
localization K0(G, Y )1. The analogous statement also holds for the corresponding
localizations of G0(G, Y )⊗ C.

The crucial property of th is that it preserves invariants.

Proposition 4.9. If G acts properly on Y and Y/G is complete then

χ([Y/G], β) = χ([Y/G], th(β)).

Proof. Observe that if V = ⊕ξ∈X(H)Vξ then the invariant subbundle V G

is contained in the H-weight 0 submodule of V . Since th(E) fixes the 0 weight
submodule we see that the invariants are preserved. �

Combining the localization theorem with Proposition 4.9 we obtain Hirzebruch-
Riemann-Roch for actions of diagonalizable groups.

Theorem 4.10. [EG3, cf. Theorem 3.1] Let G be a diagonalizable group acting
properly on smooth variety X such that the quotient stack X = [X/G] is complete.
Then if V is an equivariant vector bundle on X

(13) χ(X , V ) =
∑

h∈SuppK0(G,X)

∫
[Xh/G]

ch

(
th(

i∗hV

λ−1(N∗
h)

)

)
Td([Xh/G]).
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4.2.5. Conclusion of the P(1, 2) example. Since K0(P(1, 2)) = Z[ξ]/(ξ2−1)(ξ−
1), we see that K-theory is additively generated by the class 1, ξ, ξ2. We use
Theorem 4.10 to compute χ(P(1, 2), ξl). First

χ(P(1, 2), ξl1) =

∫
P(1,2)

ch(ξ1) Td(P(1, 2)) =

∫
P(1,2)

(1 + lt)(1 + 3/2t)

=

∫
P(1,2)

(l + 3/2)t =
(2l + 3)

4
.

Now we must calculate the contribution from the component supported at −1. If
we let X = A2 � {0} then X−1 is the linear subspace {(0, a)|a 	= 0}. Because
C∗ acts with weight 2 on X−1 the stack [X−1/C∗] is isomorphic to the classifying
stack BZ2 and KC∗(X−1) = Z[ξ]/(ξ2 − 1) while Ch∗

C∗(X−1) = Z[t]/2t where again
t = c1(ξ) and

∫
[X−1/C∗] 1 = 1/2. Using our formula we see that

χ(P(1, 2), ξl−1) =

∫
[X−1/C∗]

ch

(
(−1)lξl

1 + ξ−1

)
Td([X−1/C∗]).

Since c1(ξ) is torsion, the only contribution to the integral on the 0-dimensional
stack [X−1/C∗] is from the class 1 and we see that χ(P(1, 2), ξl−1) = (−1)l/4, so we
conclude that

χ(P(1, 2), ξl) =
2l + 3 + (−1)l

4
.

In particular, χ(P(1, 2),O) = χ(P(1, 2), L) = 1. Note however that χ(P(1, 2), L2) =
2.

Exercise 4.11. You should be able to work things out for arbitrary weighted
projective stacks. The stack P(4, 6) is known to be isomorphic to the stack of
elliptic curve M1,1 and so K0(M1,1) = Z[ξ]/(ξ4 − 1)(ξ6 − 1). Hence K0(M1,1) is

supported at ±1,±i, ω, ω−1, η, η−1 where ω = e2πi/3 and η = e2πi/6. Use Theorem
4.10 to compute χ(M1,1, ξ

k). This computes the dimension of the space of level
one weight k-modular forms. The terms in the sum will be complex numbers but
the total sum is of course integral.

4.2.6. Example: The quotient stack [(P2)3/Z3]. To further illustrate Theorem
4.10 we consider Hirzebruch-Riemann-Roch on the quotient stack X = [(P2)3/Z3]
where Z3 acts on (P2)3 by cyclic permutation. This example will serve as a warm-up
for Section 4.3.1 where we consider the stack [(P2)3/S3].

Our goal is to compute χ(X , L) where L = O(m) � O(m) � O(m) viewed as
a Z3-equivariant line bundle on (P2)3. To make this computation we observe that
Ch∗(X ) = Ch∗

Z3
((P2)3) is generated by Z3 invariant cycles. It follows that every

element Ch∗(X )⊗Q is represented by a symmetric polynomial (of degree at most
6) in the variables H1, H2, H3, where Hi is the hyperplane class on the i-th copy of
P2.

As before we have that

(14) χ(X , L1) =

∫
X
ch(L) Td(X ).

Since X → (P2)3 is a Z3 covering we can identify TX with T ((P2)3) viewed as
Z3-equivariant vector bundle. Using the standard formula for the Todd class of
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projective space we can rewrite equation (14) as

(15) χ(X , L1) =

∫
X

3∏
i=1

(1 +mHi +m2H2
i /2)(1 + 3Hi/2 +H2

i ).

The only term which contributes to the integral on the right-hand side of (15) is
(H1H2H3)

2. Now if P ∈ P3 is any point then (H1H2H3)
2 is represented by the

invariant cycle [P×P×P ]. Since Z3 fixes this cycle we see that
∫
X [P×P×P ] = 1/3

and conclude that

(16) χ(X,L1) = 1/3
(
coefficient of (H1H2H3)

2
)
.

Expanding the product in (15) shows that
(17)

χ(X , L1) = 1/3
(
1 + 9m/2 + 33m2/4 + 63m3/8 + 33m4/8 + 9m5/8 +m6/8

)
.

Since R(Z3)⊗C = C[ξ]/(ξ3−1) we may identify SpecR(Z3)⊗C as the subgroup
μ3 ⊂ C∗ and compute the contributions to χ(X , L) from the components of L
supported at ω = e2πi/3 and ω2.

For both ω and ω2 the fixed locus of the corresponding element of Z3 is

the diagonal Δ(P2)3
Δ
↪→ (P2)3. The group Z3 acts trivially on the diagonal so

KZ3
(Δ(P2)3) = K0(P

2) ⊗ R(Z3). Under this identification, the pullback of the

tangent bundle of (P2)3 is TP2 ⊗ V where V is the regular representation of Z3

corresponding to the action of Z3 on a 3-dimensional vector space by cyclic permu-
tation. Hence

Δ∗(T (P2)3)) = TP2 ⊗ 1+ TP2 ⊗ ξ + TP2 ⊗ ξ2

where ξ is the character of Z3 with weight ω = e2πi/3. The Z3-fixed component
of this Z3 equivariant bundle is the tangent bundle to fixed locus Δ(P2)3 and its

complement is the normal bundle. Thus TΔ(P2)3 = TP2⊗1 and NΔ = (TP2⊗ ξ)+

(TP2 ⊗ ξ2). Computing the K-theoretic Euler characteristic gives:

λ−1(N
∗
Δ) = λ−1(T

∗P2 ⊗ ξ2)λ−1(T
∗P2 ⊗ ξ)

= (1− T ∗
P2 ⊗ ξ2 +KP2 ⊗ ξ)(1− T ∗

P2 ⊗ ξ +KP2 ⊗ ξ2).

(Here we use the fact that ξ∗ = ξ−1 = ξ2 in R(Z3).) Because the above expression
is symmetric in ξ and ξ2, applying the twisting operator for either ω or ω2 yields

t(λ−1(N
∗
Δ)) = (1− ω2T ∗P2 ⊗ ξ2 + ωKP2 ⊗ ξ)(1− ωT ∗P2 ⊗ ξ + ω2KP2).

Expanding the product in K-theory gives:

(18) t(λ−1)(N
∗
Δ) = 1 +K2

P2 + (T ∗P2)2 − (T ∗P2 −KP2 + T ∗P2KP2)⊗ (ωξ + ω2ξ).

Expression (18) simplifies after taking the Chern character because the Chern
classes of any representation are torsion. Precisely,

ch(t(λ−1(N
∗
Δ))) = 9− 27H + 99H2/2.

where H is the hyperplane class on Δ(P2)3 . Also note that Δ∗L = O(3m)⊗1 where
1 denotes the trivial representation of Z3. Hence t(Δ∗L) = Δ∗L and

(19)

χ(X , Lω) =
∫
[Δ(P2)3/Z3]

ch(O(3m) ch(t(λ−1(N
∗
Δ)

−1Td(P2)

= 1/3
(
coefficient of H2

)
= 1/3(1 + 3m/2 +m2/2)
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with the same answer for χ(X , Lω2). Putting the pieces together we see that

(20) χ(X , L) = 1 + 5m/2 + 37m2/12 + 21m3/8 + 11m4/8 + 3m5/8 +m6/24.

Remark 4.12. Note that we have quick consistency check for our computation
- namely that χ(X , L) is an integer-valued polynomial in m. The values of χ(X , L)
for m = 0, 1, 2, 3 are 1, 11, 76, 340.

4.3. Hirzebruch Riemann-Roch for arbitrary quotient stacks. We now
turn to the general case of quotient stacks X = [X/G] with X smooth and G an
arbitrary linear algebraic group acting properly4 on X. Again G0(X ) ⊗ C is a
module supported a finite number of closed points of SpecR(G)⊗C. For a general
group G, R(G) ⊗ C is the coordinate ring of the quotient of G by its conjugation
action. As a result, points of SpecR(G) ⊗ C are in bijective correspondence with
conjugacy classes of semi-simple (i.e. diagonalizable) elements in G. An element
α ∈ G0(G,X) decomposes as α = α1+αΨ2

+ . . .+αΨr
where αΨr

is the component
supported at the maximal ideal corresponding to the semi-simple conjugacy class
Ψr ⊂ G. Moreover, if a conjugacy class Ψ is in SuppG0(X )⊗C then Ψ consists of
elements of finite order.

By Corollary 4.4 if X = [X/G] is complete then χ(X , α1) =
∫
X ch(α) Td(X ).

To understand what happens away from the identity we use a non-abelian version of
the localization theorem proved in [EG4]. Before we state the theorem we need to
introduce some notation. If Ψ is a semi-simple conjugacy class let SΨ = {(g, x)|gx =
x, g ∈ Ψ}. The condition the G acts properly on X implies that SΨ is empty for
all but finitely many Ψ and the elements of these Ψ have finite order. In addition,
if SΨ is non-empty then the projection SΨ → X is a finite unramified morphism.

Remark 4.13. Note that the map SΨ → X need not be an embedding. For
example if G = S3 acts onX = A3 by permuting coordinates and Ψ is the conjugacy
class of two-cycles, then SΨ is the disjoint union of the three planes x = y, y = z,
x = z.

If we fix an element h ∈ Ψ then the map G×Xh → SΨ, (g, x) �→ (ghg−1, gx)
identifies SΨ as the quotient G ×Z Xh where Z = ZG(h) is the centralizer of
the semi-simple element h ∈ G. In particular G0(G,SΨ) can be identified with
G0(Z,X

h). The element h is central in Z and if β ∈ G0(G,SΨ) we denote by βcΨ

the component of β supported at h ∈ SpecZ under the identification described
above. It is relatively straightforward [EG4, Lemma 4.6] to show that βcΨ is in
fact independent of the choice of representative element h ∈ ψ, and thus we obtain
a distinguished “central” summand G0(G,SΨ)cΨ in G0(G,SΨ).

Theorem 4.14 (Non-abelian localization theorem). [EG4, Theorem 5.1] The
pullback map f∗

Ψ : G0(G,X) → G0(G,SΨ) induces an isomorphism between the lo-
calization of G0(G,X) at the maximal ideal mΨ ∈ SpecR(G) ⊗ C corresponding
to the conjugacy class Ψ and the summand G0(G,SΨ)cΨ in G0(G,SΨ). Moreover,

4Because we work in characteristic 0, the hypothesis that G acts properly implies that the
stabilizers are linearly reductive since they are finite. In addition every linear algebraic group
over C has a Levy decomposition G = LU with L reductive and U unipotent and normal. If G
acts properly then U necessarily acts freely because a complex unipotent group has no non-trivial
finite subgroups. Thus, if we want, we can quotient by the free action of U and reduce to the case
that G is reductive.
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the Euler class of the normal bundle, λ−1(Nf∗
Ψ
) is invertible in G0(G,SΨ)cΨ and if

α ∈ G0(G,X)mΨ
then

(21) α = fΨ∗

(
f∗αcΨ

λ−1(N∗
f )

)
.

The theorem can be restated in way that is sometimes more useful for calcula-
tions. Fix an element h ∈ Ψ and again let Z = ZG(h) be the centralizer of h in G.
Let ι! : G0(G,X) → G0(Z,X

h) be the composition of the restriction of groups map

G0(G,X) → G0(Z,X) with the pullback G0(Z,X)
i∗h→ G0(Z,X

h). Let βh denote
the component of β ∈ G0(Z,X

h) in the summand G0(Z,X
h)mh

. Let g (resp. z)
be the adjoint representation of G (resp. Z). The restriction of the adjoint rep-
resentation to the subgroup Z makes g a Z-module, so g/z is a Z-module. Since
SΨ = G ×Z Xh, under the identification G0(G,SΨ) = G0(Z,X

h) the class of the
conormal bundle of the map fΨ is identified with N∗

ih
− g/z∗. Thus we can restate

the non-abelian localization theorem as follows:

Corollary 4.15. Let ι! be the composite of fΨ∗ with the isomorphism

G0(Z,X
h) → G0(G,SΨ).

Then for α ∈ G0(G,X)mΨ

(22) α = ι!

(
(ι!α)h · λ−1(g/z

∗
)

λ−1(N∗
ih
)

)
.

The element h ∈ Z(h) is central, and as in the abelian case we obtain a twisting
map th : G0(Z,X

h) → G0(Z,X
h) which maps the summand G0(Z,X

h)h to the
summand G0(Z,X

h)1 and also preserves invariants.
We can then obtain the Riemann-Roch theorem in the general case. Let 1G =

Ψ1, . . . ,Ψn be conjugacy classes corresponding to the support of G0(G,X) as an
R(G) module. Choose a representative element hr ∈ Ψr for each r. Let Zr be the
centralizer of h in G and let zr be its Lie algebra.

Theorem 4.16. Let X = [X/G] be a smooth, complete Deligne-Mumford quo-
tient stack. Then for any vector bundle V on X

(23) χ(X , V ) =
n∑

r=1

∫
[Xhr/Zr ]

ch

(
thr

(
[i∗rV ] · λ−1(g

∗/z∗r)

λ−1(N∗
ir
)

)

)
Td([Xhr/Zr])

where ir : X
hr → X is the inclusion map.

4.3.1. A computation using Theorem 4.16: The quotient stack [(P2)3/S3]. We
now generalize the calculation of Section 4.2.6 to the quotient Y = [Y/S3] where
the symmetric group S3 acts on Y = (P2)3 by permutation. Again we will compute
χ(Y , L) where L = O(m)�O(m)�O(m) viewed as an S3-equivariant line bundle
on (P2)3. As was the case for the Z3 action the S3-equivariant rational Chow group
is generated by symmetric polynomials in H1, H2, H3 where Hi is the hyperplane
class on the i-th copy of P2. The calculation of χ(Y , L1) is identical to the one we
did for the stack X = [(P2)/Z3] except that the cycle [P ×P ×P ] has stabilizer S3

which has order 6. Thus,
(24)

χ(X , L1) = 1/6
(
1 + 9m/2 + 33m2/4 + 63m3/8 + 33m4/8 + 9m5)/8 +m6/8

)
.
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Now SpecR(S3)⊗C consists of 3 points, corresponding to the conjugacy classes of
{1}, Ψ2 = {(12), (13), (23)} and Ψ3 = {(123), (132)}. We denote the components
of L at the maximal ideal corresponding to Ψ2 and Ψ3 by L2 and L3 respectively,
so that L = L1 + L2 + L3.

The computation of χ(Y , L3) is identical to the computation of χ(X , Lω) in
Section 4.2.6. If we choose the representative element ω = (123) in Ψ3 then
ZS3

(ω) = 〈ω〉 = Z3. Again Y ω = Δ(P2)3 and the tangent bundle to (P2)3 re-

stricts to the Z3-equivariant bundle TP
2⊗V where V is the regular representation.

Hence (see (19))

(25) χ(Y , L3) = 1/3(1 + 3m/2 +m2/2)

To compute χ(Y , L2) choose the representative element τ = (12) in the con-
jugacy class Ψ = (12). Then ZS3

(τ ) = 〈τ 〉 = Z2 and the fixed locus of τ is

Y τ = Δ(P2)2 × P2 Δ12
↪→ (P2)3 where Δ(P2)2 ⊂ (P2)2 is the diagonal. The action of

Z2 is trivial and the tangent bundle to (P2)3 restricts to (TP2 ⊗ V )� TP2 where V
is now the regular representation of Z2 so NΔ12

= (TP2 ⊗ ξ)� TP2 where ξ is the
non-trivial character of Z2. Since ξ is self-dual as a character of Z2 we see that

(26) λ−1(N
∗
Δ12

) = (1− (T ∗P2 ⊗ ξ) +KP2)

Applying the twisting operator yields

(27) t(λ−1(N
∗
Δ12

) = (1 + T ∗P2 ⊗ ξ +KP2)

Taking the Chern character we have

ch(t(λ−1(N
∗
Δ12

))) = 4− 6H + 6H2

where H is the hyperplane class on the diagonal P2. The restriction of L to Y τ is
the line bundle (O(2m)⊗ 1)�O(m). Thus,

χ(X , L2) =

∫
[Xτ/Z2]

ch(O(2m)�O(m) ch(t(λ−1(N
∗
Δ)

−1 Td(Y τ )

= 1/2
(
coefficient of H2H2

3

)
= 1/2(1 + 3m+ 13m2/4 + 3m3/2 +m4/4)

Adding the Euler characteristics of L1, L2, L3 gives

χ(Y , L) = 1 + 11m/4 + 19m2/6 + 33m3/16 + 13m4/16 + 3m5/16 +m6/48

which is again an integer-valued polynomial in m.
4.3.2. Statement of the theorem in terms of the inertia stack. The computation

of χ(X , α) does not depend on the choice of the representatives of elements in
the conjugacy classes and Theorem 4.16 can be restated in terms of the SΨ and
correspondingly in terms of the inertia stack.

Definition 4.17. Let IX = {(g, x)|gx = x} ⊂ G ×X be the inertia scheme.
The projection IX → X makes IX into a group scheme over X. If the stack [X/G]
is separated then IX is finite over X.

The group G acts on IX by g(h, x) = (ghg−1, gx) and the projection IX → X
is G-equivariant with respect to this action. The quotient stack IX := [IX/G] is
called the inertia stack of the stack X = [X/G] and there is an induced morphism
of stacks IX → X . Since G acts properly on X then the map IX → X is finite and
unramified.
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Since G acts with finite stabilizers a necessary condition for (g, x) to be in IX
is for g to be of finite order.

Proposition 4.18. If Ψ is a conjugacy class of finite order then SΨ is closed
and open in IX and consequently there is a finite G-equivariant decomposition
IX =

∐
Ψ SΨ.

Since IX has a G-equivariant decomposition into a finite disjoint sum of the
SΨ we can define a twisting automorphism t : G0(G, IX) ⊗ C → G0(G, IX) ⊗ C

and thus a corresponding twisting action on G0(IX ). If V is a G-equivariant vector
bundle on IX then its fiber at a point (h, x) is ZG(h)-module Vh,x and t(V ) is the
class in G0(G, IX)⊗C whose “fiber” at the point (h, x) is the virtual ZG(h)-module
⊕ξ∈X(H)ξ(h)(Vh,x)ξ where H is the cyclic group generated by h.

The Hirzebruch-Riemann-Roch theorem can then be stated very concisely as:

Theorem 4.19. Let X = [X/G] be a smooth, complete Deligne-Mumford quo-
tient stack and let f : IX → X be the inertia map. If V is a vector bundle on X
then

χ(X , V ) =

∫
IX

ch

(
t(

f∗V

λ−1(N∗
f )

)

)
Td(IX )

5. Grothendieck Riemann-Roch for proper morphisms of
Deligne-Mumford quotient stacks

In the final section we state the Grothendieck-Riemann-Roch theorem for ar-
bitrary proper morphisms of quotient Deligne-Mumford stacks.

5.1. Grothendieck-Riemann-Roch for proper morphisms to schemes
and algebraic spaces. The techniques used to prove the Hirzebruch-Riemann-
Roch for proper Deligne-Mumford stacks actually yield a Grothendieck-Riemann-
Roch result for arbitrary separated Deligne-Mumford stacks relative to map X → M
where M is the moduli space of the quotient stack X = [X/G].

Theorem 5.1. [EG4, Theorem 6.8] Let X = [X/G] be a smooth quotient stack
with coarse moduli space p : X → M . Then the following diagram commutes:

G0(X )
IτX→ Ch∗(IX )⊗ C

p∗ ↓ p∗ ↓
G0(M)

τM→ Ch∗(M)⊗ C

.

Here IτX is the isomorphism that sends the class in G0(X ) of a vector bundle

V to ch
(
t( f∗V

λ−1(N∗
f )
)
)
Td(IX ) and τM is the Fulton-MacPherson Riemann-Roch

isomorphism.

Remark 5.2. If X is satisfies the resolution property then every coherent sheaf
on X can be expressed as a linear combination of classes of vector bundles.

Using the universal property of the coarse moduli space and the covariance of
the Riemann-Roch map for schemes and algebraic spaces we obtain the following
Corollary.
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Corollary 5.3. Let X = [X/G] be a smooth quotient stack and let X → Z
be a proper morphism to a scheme or algebraic space. Then the following diagram
commutes:

G0(X )
IτX→ Ch∗(IX )⊗ C

p∗ ↓ p∗ ↓
G0(Z)

τZ→ Ch∗(Z)⊗ C.

5.1.1. Example: The Todd class of a weighted projective space. If X is an arbi-
trary scheme we define the Todd class, td(X), of X to be τX(OX) where τX is the
Riemann-Roch map of Theorem 2.4. If X is smooth, then td(X) = Td(TX), and
for arbitrary complete schemes χ(X,V ) =

∫
X
ch(V ) td(X) for any vector bundle V

on X.
In this section we explain how to use Theorem 5.1 to give a formula for the

Todd class of the singular weighted projective space P(1, 1, 2). The method can be
extended to any simplicial toric variety, complete or not, [EG3]. (See also [BV] for
a computation of the equivariant Todd class of complete toric varieties using other
methods.)

The singular variety P(1, 1, 2) is the quotient of X = A3 � {0} where C∗ acts
with weights (1, 1, 2). This variety is the coarse moduli space of the corresponding
smooth stack P(1, 1, 2). A calculation similar to that of Section 4.2.2 shows that
K0(P(1, 1, 2)) = Z[ξ]/(ξ−1)2(ξ2−1) and Ch∗(P(1, 1, 2)) = Z[t]/2t3 where t = c1(ξ).

The stack P(1, 1, 2) is a toric Deligne-Mumford stack (in the sense of [BCS])
and the weighted projective space P(1, 1, 2) is the toric variety X(Σ) where Σ is
the complete 2-dimensional fan with rays by ρ0 = (−1,−2), ρ1 = (1, 0), ρ2 = (0, 1).
This toric variety has an isolated singular point P0 corresponding to the cone σ01

spanned by ρ0 and ρ1.

σ02

σ02

ρ0

����
��
��
��
��
��
��
�

ρ1 ��

ρ2

��

σ01

(−1,−2)

Each ray determines a Weil divisor Dρi
which is the image of the fundamental

class of the hyperplane xi = 0. With the given action, [x0 = 0] = [x1 = 0] = t
and [x2 = 0] = 2t. Since the action of C∗ on A3 is free on the complement of
a set of codimension 2, the pushforward defines an isomorphism of integral Chow
groups Ch1(P(1, 1, 2)) = Ch1(P(1, 1, 2)). Thus, Ch1(X(Σ) = Z and Dρ0

≡ Dρ1

while Dρ2
≡ 2Dρ0

. Also, Ch2(X(Σ)) = Z is generated by the class of the singular
point P0 and [P0] = 2[P ] for any non-singular point P .
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The tangent bundle to P(1, 1, 2) fits into the Euler sequence

0 → 1 → 2ξ + ξ2 → TP(1, 1, 2) → 0

so c1(TP(1, 1, 2)) = 4t and c2(TP(1, 1, 2)) = 15t2. Thus

Td(P(1, 1, 2)) = 1 + 2t+ 21/12t2

and pushing forward to P(1, 1, 2) gives a contribution of 1 + 2Dρ0
+ 21/24P0 to

td(P(1, 1, 2)).
Now we must also consider the contribution coming from the fixed locus of

(−1) acting on A3 � {0}. The fixed locus is the line x0 = x1 = 0 and the normal
bundle has K-theory class 2ξ. After twisting by −1 we obtain a contribution of

(28) p∗

[
ch

(
1

(1 + ξ−1)2

)
Td([X−1/C∗])

]

Since [X−1/C∗] is 0-dimensional and has a generic stabilizer of order 2 we obtain
an additional contribution of 1/2 rk(1/(1 + ξ−1)2)[P0] = (1/2× 1/4)[P0] = 1/8[P0]
to td(P(1, 1, 2)). Combining the two contributions we conclude that:

td(P(1, 1, 2)) = 1 + 2Dρ0
+ [P0]

in Ch∗(P(1, 1, 2)).

5.2. Grothendieck-Riemann-Roch theorem for Deligne-Mumford quo-
tient stacks. Suppose that X = [X/G] and Y = [Y/H] are smooth Deligne-
Mumford quotient stacks and f : X → Y is a proper, but not-necessarily repre-
sentable morphism. The most general Grothendieck-Riemann-Roch result we can
write down is the following:

Theorem 5.4. [EK] The following diagram of Grothendieck groups and Chow
groups commutes:

G0(X )
IτX→ Ch∗(IX )⊗ C

f∗ ↓ f∗ ↓
G0(Y)

IτY→ Ch∗(IY)⊗ C

Remark 5.5. A proof of this result using the localization methods of [EG3,
EG4] will appear in [EK]. A version of this Theorem (which also holds in some
prime characteristics) was proved by Bertrand Toen in [Toe]. However, in that
paper the target of the Riemann-Roch map is not the Chow groups but rather a
“cohomology with coefficients in representations.” Toen does not explicitly work
with quotient stacks, but his hypothesis that the stack has the resolution property
for coherent sheaves implies that the stack is a quotient stack.

In [EK] we will also give a version of Grothendieck-Riemann-Roch for proper
morphisms of arbitrary quotient stacks.

6. Appendix on K-theory and Chow groups

In this section we recall some basic facts about K-theory and Chow groups
both in the non-equivariant and equivariant settings. For more detailed references
see [Ful, FL, Tho1, EG1].
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6.1. K-theory of schemes and algebraic spaces.

Definition 6.1. Let X be an algebraic scheme. We denote by G0(X) the
Grothendieck group of coherent sheaves on X and K0(X) the Grothendieck group
of locally free sheaves; i.e vector bundles.

There is a natural map K0(X) → G0(X) which is an isomorphism when X is a
smooth scheme. The reason is that if X is smooth every coherent sheaf has a finite
resolution by locally free sheaves. For a proof see [Ful, Appendix B8.3].

Definition 6.2. If X → Y is a proper morphism then there is a pushforward
map f∗ : G0(X) → G0(Y ) defined by f∗[F ] =

∑
i(−1)i[Rif∗F ]. When Y = pt,

then G0(Y ) = Z and f∗(F) = χ(X,F).

The Grothendieck group K0(X) is a ring under tensor product and the map
K0(X)⊗G0(X) → G0(X), ([V ],F) �→ F ⊗ V makes G0(X) into a K0(X)-module.
If f : X → Y is an arbitrary morphism of schemes then pullback of vector bundles
defines a ring homomorphism f∗ : K0(Y ) → K0(X).

When f : X → Y is proper, the pullback for vector bundles and the pushforward
for coherent sheaves are related by the projection formula. Precisely, if α ∈ K0(Y )
and β ∈ G0(X) then

f∗(f
∗α · β) = α · f∗β

in G0(Y ).

There is large class of morphisms X
f→ Y , for which there are pullbacks

f∗ : G0(Y ) → G0(X) and pushforwards f∗ : K0(X) → K0(Y ). For example, if
f is flat, the assignment [F ] �→ [f∗F ] defines a pullback f∗ : G0(Y ) → G0(X).

Suppose that every coherent sheaf on Y is the quotient of a locally free sheaf (for
example if Y embeds into a smooth scheme). If f : X → Y is a regular embedding
then the direct image f∗V of a locally free sheaf has a finite resolution W. by
locally free sheaves. Thus we may define a pushforward f∗ : K0(X) → K0(Y ) by
f∗[V ] =

∑
i(−1)i[Wi] in this case. Also, if X and Y are smooth then there is a

pushforward f∗ : K0(X) → K0(Y ). When X and Y admit ample line bundles then
there are pushforwards f∗ : K0(X) → K0(Y ) for any proper morphism of finite
Tor-dimension.

Definition 6.3. The Grothendieck ring K0(X) has an additional structure as
a λ-ring. If V is a vector bundle of rank r set λk[V ] = [ΛkV ]. If t is parameter define
λt(V ) =

∑r
k=0 λ

k[V ]tk ∈ K0(X)[t] where t is a parameter. The class λ−1(V
∗) =

1− [V ∗] + [Λ2V ∗] + . . .+ (−1)r[ΛrV ∗] is called the K-theoretic Euler class of V .

Although, K0(X) is simpler to define and is functorial for arbitrary morphisms,
it is actually much easier to prove results about the Grothendieck group G0(X).
The reason is that G-functor behaves well with respect to localization. If U ⊂ X
is open with complement Z then there is an exact sequence

G0(Z) → G0(X) → G0(U) → 0.

The definitions of G0(X) and K0(X) also extend to algebraic spaces as does the
basic functoriality of these groups. However, even if X is a smooth algebraic space
there is no result guaranteeing that X satisfies the resolution property meaning that
every coherent sheaf is the quotient of a locally free sheaf. Thus it is not possible
to prove that the natural map K0(X) → G0(X) is actually an isomorphism. (Note
however, that there no known examples of smooth separated algebraic spaces where
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the resolution property provably fails, c.f. [Tot].) In this case one can either replace
K0(X) with the Grothendieck group of perfect complexes or work exclusively with
G0(X).

6.2. Chow groups of schemes and algebraic spaces.

Definition 6.4. If X is a scheme (which for simplicity we assume to be equi-

dimensional) we denote by Chi(X) the Chow group of codimension i-dimensional

cycles modulo rational equivalence as in [Ful] and we set Ch∗(X) = ⊕dimX
i=0 Chi(X)

.

As was the case for the Grothendieck group G0(X), if f : X → Y is proper then
there is a pushforward f∗ : Ch∗(X) → Ch∗(Y ). The map is defined as follows:

Definition 6.5. If Z ⊂ X is a closed subvariety let W = f(Z) with its reduced
scheme structure

f∗[Z] =

{
[K(Z) : K(W )][W ] if dimW = dimZ

0 otherwise

}

where K(Z) (resp. K(W )) is the function field of Z (resp. W ).
If X is complete then we denote the pushforward map Ch∗ X → Ch∗(pt) = Z

by
∫
X
.

Because we index our Chow groups by codimension, the map f∗ shifts degrees.
If f : X → Y has (pure) relative dimension d then f∗(Ch

k(X)) ⊂ Chk+d(Y ).

There is again a large class of morphisms X
f→ Y for which there are pullbacks

f∗ : Ch∗(Y ) → Ch∗(X). Some of the most important examples are flat morphisms
where the pullback is defined by f∗[Z] = [f−1(Z)], regular embeddings and, more
generally, local complete intersection morphisms.

We again have a localization exact sequence which can be used for computation.
If U ⊂ X is open with complement Z then there is a short exact sequence

Ch∗(Z) → Ch∗(X) → Ch∗(U) → 0

Definition 6.6. If X is smooth (and separated) then the diagonal Δ: X →
X ×X is a regular embedding. Pullback along the diagonal allows us to define an
intersection product on Ch∗(X) making it into a graded ring, called the Chow ring.

If [Z] ⊂ Chk(X) and [W ] ⊂ Chl(X) then we define [Z] · [W ] = Δ∗([Z × W ]) ∈
Chk+l(X).

Any morphism of smooth varieties is a local complete intersection morphism,
so if f : X → Y is a morphism of smooth varieties then we have a pullback
f∗ : Ch∗ Y → Ch∗ X which is a homomorphism of Chow rings.

The theory of Chow groups carries through completely to algebraic spaces
[EG1, Section 6.1].

6.3. Chern classes and operations. Associated to any vector bundle V on
a scheme X are Chern classes ci(V ), 0 ≤ i ≤ rkV . Chern classes are defined as

operations on Chow groups. Specifically ci(V ) defines a homomorphism Chk X →
Chk+i X, α �→ ci(V )α, with c0 taken to be the identity map and denoted by 1.
Chern classes are compatible with pullback in the following sense: If f : X → Y
is a morphism for which there is a pullback of Chow groups then ci(f

∗V )f∗α =
f∗(ci(V )α).
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Chern classes of a vector bundle V may be viewed as elements of the operational
Chow ring A∗X = ⊕i=0A

iX defined in [Ful, Definition 17.3]. An element of c ∈
AiX is a collection of homomorphisms c : Ch∗(X ′) → Ch∗+k(X ′) defined for any
morphism of schemes X ′ → X. These homomorphisms should be compatible with
pullbacks of Chow groups and should also satisfy the projection formula f∗(cα) =
cf∗α for any proper morphism of X-schemes f : X ′′ → X ′ and class α ∈ Ch∗(X ′′).
Composition of morphisms makes A∗X into a graded ring and it can be shown that
AkX = 0 for k > dimX.

If X is smooth, then the map A∗X → Ch∗ X, c �→ c([X]) is an isomorphism of
rings where the product on Ch∗ X is the intersection product. In particular, if X is
smooth then the Chern class ci(V ) is completely determined by ci(V )[X] ∈ Chi(X)

so in this way we may view ci(V ) as an element of Chi(X).

The total Chern class c(V ) of a vector bundle is the sum
∑rkV

i=0 ci(V ). Since
c0 = 1 and ci(V ) is nilpotent for i > 0 the total Chern class c(V ) is invertible in
A∗X. Also, if 0 → V ′ → V → V ′′ → 0 is a short exact sequence of vector bundles
then c(V ) = c(V ′)c(V ′′), so the assignment [V ] �→ c(V ) defines a homomorphism
from the Grothendieck group K0(X) to the multiplicative group of units in A∗X.

6.3.1. Splitting, Chern characters and Todd classes. If V is a vector bundle on
a scheme X, then the splitting construction ensures that there is a scheme X ′ and a
smooth, proper morphism f : X ′ → X such that f∗ : Ch∗ X → Ch∗ X ′ is injective
and f∗V has a filtration 0 = E0 ⊂ E1 ⊂ . . . Er = f∗V such that the quotients
Li = Ei/Ei−i are line bundles. Thus c(f∗V ) factors as

∏r
i=1(1 + c1(Li)). The

classes αi = c1(Li) are Chern roots of V and any symmetric expression in the αi is
the pullback from Ch∗ X of a unique expression in the Chern classes of V .

Definition 6.7. If V is a vector bundle on X with Chern roots α1, . . . αr ∈
A∗X ′ for some X ′ → X then the Chern character of V is the unique class ch(V ) ∈
A∗X ⊗ Q which pulls back to

∑r
i=0 exp(αi) in A∗(X ′) ⊗ Q. (Here exp is the

exponential series.)
Likewise the Todd class of V is the unique class Td(V ) ∈ A∗X ⊗Q which pulls

back to
∏r

i=0
αi

1−exp(−αi)
in A∗(X ′)⊗Q.

The Chern character can be expressed in terms of the Chern classes of V as

(29) ch(V ) = rkV + c1 + (c21 − c2)/2 + . . .

and the Todd class as

(30) Td(V ) = 1 + c1/2 + (c21 + c2)/12 + . . .

Because Ak(X) = 0 for k > dimX the series for ch(V ) and Td(X) terminate for
any given scheme X and vector bundle V .

If V and W are vector bundles on X then ch(V ⊕ W ) = ch(V ) + ch(W ) and
ch(V ⊗W ) = ch(V ) ch(W ) so the Chern character defines a homomorphism of rings
ch: K0(X) → A∗X⊗Q.We also have that Td(V ⊕W ) = Td(V ) Td(W ) so we obtain
a homomorphism Td: K0(X) → (A∗X⊗Q)	 from the additive Grothendieck group
to the multiplicative group of units in A∗X ⊗Q.

When X is smooth we interpret the target of the Chern character and Todd
class to be Ch∗ X.

6.4. Equivariant K-theory and equivariant Chow groups. We now turn
to the equivariant analogues of Grothendieck and Chow groups.

263



24 DAN EDIDIN

6.4.1. Equivariant K-theory. Most of the material on equivariant K-theory can
be found in [Tho1] while the material on equivariant Chow groups is in [EG1].

Definition 6.8. Let X be a scheme (or algebraic space) with the action of
an algebraic group G. In this case we define K0(G,X) to be the Grothendieck
group of G-equivariant vector bundles and G0(G,X) to be the Grothendieck group
of G-linearized coherent sheaves.

As in the non-equivariant case there is pushforward of Grothendieck groups
G0(G,X) → G0(G, Y ) for any proper G-equivariant morphism. Similarly, there is
a pullback K0(G, Y ) → K0(G,X) for any G-equivariant morphism X → Y . There
are also pullbacks inG-theory for equivariant regular embeddings and equivariant lci
morphisms. There is also a localization exact sequence associated to a G-invariant
open set U with complement Z.

The Grothendieck groupK0(G,X) is a ring under tensor product and G0(G,X)
is a module for this ring. The equivariant Grothendieck ring K0(G, pt) is the
representation ring R(G) of G. Since every scheme maps to a point, R(G) acts on
both G0(G,X) and K0(G,X) for any G-scheme X. The R(G)-module structure on
G0(G,X) plays a crucial role in the Riemann-Roch theorem for Deligne-Mumford
stacks.

If V is a G-equivariant vector bundle then ΛkV has a natural G-equivariant
structure. This means that wedge product defines a λ-ring structure on K0(G,X).
In particular we define the equivariant Euler class of a rank r bundle V by the
formula

λ−1(V
∗) = 1− [V ∗] + [Λ2V ∗]− . . .+ (−1)r[ΛrV ∗].

Results of Thomason [Tho2, Lemmas 2.6, 2.10, 2.14] imply that if X is normal
and quasi-projective or regular and separated over the ground field (both of which
implies that X has the resolution property) and G acts on X then X has the G-
equivariant resolution property. It follows that ifX is a smooth G-variety then every
G-linearized coherent sheaf has a finite resolution by G-equivariant vector bundles.
Hence K0(G,X) and G0(G,X) may be identified if X is a smooth scheme.

The Grothendieck groups G0(G,X) and K0(G,X) are naturally identified with
the corresponding Grothendieck groups of the categories of locally free and coherent
sheaves on the quotient stack X = [X/G].

Remark 6.9 (Warning). If X is complete then there are pushforward maps
K0(G,X) → K0(G, pt) = R(G) and G0(G,X) → K0(G, pt) = R(G) that as-
sociate to a vector bundle V (resp. coherent sheaf F) the virtual representa-
tion

∑
(−1)iHi(X,V ) (resp.

∑
(−1)iHi(X,F).). Although V may be viewed

as a vector bundle on the quotient stack X = [X/G] the virtual representation∑
(−1)iHi(X,V ) is not the Euler characteristic of V as a vector bundle on X .

6.4.2. Equivariant Chow groups. The definition of equivariant Chow groups
requires more care and is modeled on the Borel construction in equivariant coho-
mology. If G acts on X then the i-th equivariant Chow group is defined as Chi(XG)
where XG is any quotient of the form (X ×U)/G where U is an open set in a rep-
resentation V of G such that G acts freely on U and V�U has codimension more
than i. In [EG1] it is shown that such pairs (U,V) exist for any algebraic group

and that the definition of ChiG(X) is independent of the choice of U and V.
Because equivariant Chow groups are defined as Chow groups of certain schemes,

they enjoy all of the functoriality of ordinary Chow groups. In particular, if X
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is smooth then pullback along the diagonal defines an intersection product on
Ch∗G(X).

Remark 6.10. Intuitively an equivariant cycle may be viewed as a G-invariant
cycle on X ×V where V is some representation of G. Because representations can
have arbitrarily large dimension Chi(X) can be non-zero for all i.

If G acts freely then a quotient X/G exists as an algebraic space and ChiG(X) =

Chi(X/G). More generally, ifG acts with finite stabilizers then elements of ChiG(X)⊗
Q are represented by G-invariant cycles on X and consequently ChiG(X) = 0 for
i > dimX − dimG.

As in the non-equivariant case, an equivariant vector bundle V on a G-scheme
defines Chern class operations ci(V ) on Ch∗G(X). The Chern class naturally live in
the equivariant operational Chow ring A∗

G(X) and as in the non-equivariant case
the map A∗

G(X) → Ch∗G(X), c �→ c[X] is a ring isomorphism if X is smooth.
We can again define the Chern character and Todd class of a vector bundle

V . However, because ChiG(X) can be non-zero for all i, the target of the Chern

character and Todd class is the infinite direct product Π∞
i=0Ch

i
G(X)⊗Q.

When G acts on X with finite stabilizers then ChiG(X)⊗Q is 0 for i > dimX−
dimG so in this case the target of the Chern character and Todd class map is
Ch∗G(X).
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68 (1992), no. 3, 447–462. MR1194949 (93m:19007)
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The Regularity of the Conductor

David Eisenbud and Bernd Ulrich

Dedicated to Joe Harris, who has taught us so much, on the occasion of his 60th Birthday

Abstract. We bound the Castelnuovo-Mumford regularity and syzygies of
the ideal of the singular set of a plane curve, and more generally of the con-
ductor scheme of certain projectively Gorenstein varieties.

1. Introduction

This note was inspired by a letter from Remke Kloosterman asking whether
the following result (now essentially Proposition 3.6 in Kloosterman [2013]) was
known:

Theorem 1.1. Suppose that C ⊂ P2
C is a reduced plane curve of degree d over

the complex numbers, and suppose that the only singularities of C are ordinary
nodes and cusps, i.e., have local analytic equations xy = 0 or y2 − x3 = 0. If
Γ ⊂ P2

C denotes the set of points at which C has nodes, then reg IΓ ≤ d − 1, and
the minimal number of homogeneous generating syzygies of degree d is precisely the
number of irreducible components of C minus 1.

In case C is irreducible this result simply says that the regularity of the set
of nodal points of C is bounded by d − 2. Since the regularity of the set of nodal
points is bounded by the regularity of the set of all the singular points, this is a
consequence of the classical “completeness of the adjoint series” (see Section 4).

In the general case, Kloosterman’s proof is based on delicate arguments of
Dimca [1990] about the mixed Hodge theory of singular hypersurfaces. Aside from
the application to arithmetic geometry that Kloosterman makes, his result seemed
to us interesting and important because it sheds some light on the famous problem
of understanding the restrictions on the positions of the nodes of a plane curve,
about which little is known (see Section 8).

It is the purpose of this note to give a simple expression for the regularity of
the conductor ideal that extends Kloosterman’s result in a way not limited to char-
acteristic zero or to curves; it is a statement about any finite birational extension
of a quasi-Gorenstein ring by a Cohen-Macaulay ring. The proof, given in the next
section, involves only considerations of duality.
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Specializing to the case of plane curves, we can use the extra strength of our
result to extend Theorem 1.1 to curves with arbitrary singularities (Corollaries 3.3
and 3.4). Here is a special case of that result:

Corollary 1.2. Suppose that C ⊂ P2
K is a reduced plane curve of degree d

over an algebraically closed field K. If Γ denotes any set of singular points of C,
then reg IΓ ≤ d − 1. If, moreover, Γ contains the points (if any) at which distinct
irreducible components of C meet and all these points of intersection are ordinary
nodes, then the minimal number of homogeneous generating syzygies of IΓ of degree
d is precisely the number of irreducible components of C minus 1.

Theorem 1.1 follows because the set Γ in the Theorem contains the points at
which distinct components of the curve meet.

Another ideal related to the singular set and the conductor is the Jacobian ideal
of the plane curve. This ideal is an “almost complete intersection” in characteristic
zero. If the curve has only ordinary nodes as singularities, then the conductor ideal
is the saturation of the Jacobian ideal. We prove a general result (Proposition 5.2)
about the syzygies of an almost complete intersection with perfect saturation that
implies, in the situation of a degree d plane curve f = 0 with only nodes, that the
syzygies of the partial derivatives of f have degree at least 2d−3, and a little more
(Corollary 5.1); this generalizes a result of Dimca and Sticlaru [2011] that, again,
was originally proven by Hodge theory.

Besides the conductor one can measure the difference between a standard
graded algebra A and a (partial) normalization B by the size of the A-module
B/A. We also give bounds on the regularity of this module (and on the regularity
of B as an A-module) in the case where both A and B are Cohen-Macaulay and A
is reduced (Proposition 3.8).

The fact that the number of components of a plane curve appears in a for-
mula for the regularity of the conductor suggests that there might be a simple
relation between the conductor of a reducible hypersurface and the conductors of
its components; such a relation is given in Proposition 6.1.

2. Notation and Conventions

Throughout we let S = K[x0, . . . , xr] be a polynomial ring over a field K. If
M is a finitely generated graded S-module, we write regM for the (Castelnuovo-
Mumford) regularity of M and indeg M for the infimum of {i | Mi �= 0}. Let
X be a subscheme of Pr

K with saturated homogeneous ideal IX and homogeneous
coordinate ring A = S/IX . We define regX := reg IX = regA + 1. If A ⊂ B is a
ring extension, we denote by

CB/A := annA(B/A) ⊂ A and

C
′
B/A := annS(B/A) ⊂ S ,

the conductor of B into A, regarded as an ideal of A or of S, respectively. Note
that A/CB/A = S/C′

B/A.

When X is reduced and B = A is the normalization of A, we write CX or C′
X

instead of CB/A or C′
B/A. These are homogeneous ideals of codimension at least 1

and 1 + codimX, respectively.
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3. Regularity

Recall that a homogeneous ideal I ⊂ S is called perfect if S/I �= 0 is a Cohen-
Macaulay ring or, equivalently, if the projective dimension of the S-module S/I is
codim I.

Theorem 3.1. Let X ⊂ Pr
K be a reduced scheme of codimension c with ho-

mogeneous coordinate ring A, and assume that A is Gorenstein. Let A be the
normalization of A. Write S = K[x0, . . . , xr] for the homogeneous coordinate ring
of Pr

K . Suppose B is a graded Cohen-Macaulay ring with A � B ⊂ A.
The conductor ideal C′

B/A ⊂ S is perfect of codimension c+ 1 and

regC′
B/A = regX − 1− indeg(B/A) ;

in particular, if X is geometrically reduced and irreducible, then regC′
B/A < regX−

1 .
Moreover, TorSc (C

′
B/A,K)regC′

B/A
+c is K-dual to (B/A)indeg(B/A); in particular,

the c-th syzygy module of C′
B/A has precisely dimK(B/A)indeg(B/A) homogeneous

minimal generators of highest degree.

Under mild hypotheses we can use Theorem 3.1 to extract information about
the codimension 1 components of the singular locus of X. The module S/C′

X is
supported precisely on these components. If the codimension 1 components are
generically only nodes and cusps (that is, after we localize at such a component,
complete, and extend the residue field to its algebraic closure, they become nodes
and cusps), then the conductor ideal is generically radical; and since the conductor
ideal is perfect, it is equal to the reduced ideal of the union of the codimension
1 components of the singular locus; thus this reduced scheme has regularity ≤
regX − 1.

We remind the reader that regularity has a simple interpretation for perfect
ideals:

Proposition 3.2. Suppose that I ⊂ S is a homogeneous perfect ideal of codi-
mension c with 1 ≤ c ≤ r, and let I be the corresponding ideal sheaf on Pr

K . The
following statements are equivalent:

(1) regS/I ≤ m;
(2) The c-th syzygies of S/I are generated in degrees ≤ m+ c;
(3) Hr−c+1(I(m+ c− r)) = 0;
(4) The value of the Hilbert function dimK(S/I)e is equal to the corresponding

value of the Hilbert polynomial of S/I for all e ≥ m+ c− r.

Moreover, if m = regS/I, the number of highest syzygies of S/I (or I) of
highest degree can be computed in terms of cohomology via a natural isomorphism

TorSc (S/I,K)m+c
∼= Hr−c+1(I(m+ c− r − 1)).

Proof. The equivalence of the first four statements is standard (see for exam-
ple Eisenbud [2005], Section 4). For the last statement, note that under the given
hypothesis the minimal homogeneous free S-resolution of S/I has length c, and the
highest degree of a c-th homogeneous generating syzygy of S/I is m + c. Writing
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−∗ for K-duals, we obtain that

TorSc (S/I,K)m+c
∼= ((K ⊗S ExtcS(S/I, S))−m−c)

∗

∼= (ExtcS(S/I, S)−m−c)
∗

∼= (Extc−1
S (I, S)−m−c)

∗ .

Since S(−r − 1) is the canonical module of S, local duality shows that the last of
these is naturally isomorphic to Hr−c+1(I(m+ c− r − 1)). �

If X is a reduced curve in P2
K , then X is arithmetically Gorenstein, and the

normalization of X is Cohen-Macaulay. Moreover, there are many Cohen-Macaulay
rings between the homogeneous coordinate ring of X and its normalization. We
can exploit this situation to improve Theorem 1.1:

Corollary 3.3. If X ⊂ P2
K is a reduced singular plane curve of degree d over

a perfect field K, then

regC′
X = d− 1− inf{m | h0(OX(m)) >

(
m+ 2

2

)
} ,

and the minimal number of homogeneous generating syzygies of C′
X of degree d is

one less than the number of components of X over the algebraic closure of K. Thus
regC′

X < d− 1 if and only if X is geometrically irreducible, and in particular

reg((SingX)red) ≤ d− 1 ,

with strict inequality when X is geometrically irreducible.

In case K is algebraically closed and X is reducible, the result becomes attrac-
tively simple:

Corollary 3.4. Suppose that K is algebraically closed and that X ⊂ P2
K is

a reduced but reducible curve. Let I ⊂ S = k[x0, x1, x2] be the saturated ideal of
the subscheme of the conductor scheme where at least two components meet. If J
is any unmixed ideal in S with C′

X ⊂ J ⊂ I, then J has regularity d − 1 and the
minimal number of homogeneous generating syzygies of J of degree d is one less
than the number of components of X.

In general the length δ of the conductor scheme of a plane curve of degree d
ranges from 0 to

(
d
2

)
—the latter being the case when the curve is a union of lines.

The regularity of a set of δ points in P2
K ranges from δ down to about

√
2δ. Thus

the statement that the regularity of the conductor is bounded by d− 1 (or d− 2 in
the case of geometrically irreducible curves) is quite strong.

Theorem 3.1 says in particular that the reduced ideal of a set of singular points
on a reduced plane curve of degree d has regularity at most d − 1, and regularity
at most d− 2 if the curve is geometrically reduced and irreducible. Here is another
version of this statement:

Corollary 3.5. If I ⊂ K[x0, x1, x2] is the reduced ideal of a finite set of points
in P2

K , then the symbolic square I(2) contains no nonzero reduced form of degree
≤ reg I and no geometrically reduced and irreducible form of degree ≤ reg I + 1.

This consequence of Corollary 3.3 seems to beg for generalization. What can
one say for higher symbolic powers, or more variables? A famous conjecture of
Nagata states that if J is the defining ideal of δ general points in P2 then the
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smallest degree of a form contained in J (m) is at least m
√
δ (see for example Har-

bourne [2001] for a discussion and recent results). Our result for m = 2 deals only
with reduced forms, but with arbitrary sets of points.

Example 3.6. Let S = K[x0, x1, x2] be the homogeneous coordinate ring of
P2
K , and let M be a generic map

M : S(−7)⊕ S(−8) −→ S(−5)3.

Let I be the ideal generated by the three 2× 2 minors of M , which have degree 5.
From the formulas in Eisenbud [2005], Chapter 3 one sees that I is the homogeneous
ideal of a set Γ of 19 reduced points. Further, M is the matrix of syzygies on the
ideal I, and thus reg I = 7.

Using Macaulay2 one can check that the smallest degree of a curve passing
doubly through the points of Γ is 10, and that there is such a curve X of degree 10
whose singularities consist of ordinary nodes at the 19 points of I. From Corollary
3.3 we see that X is irreducible and that the normalization X has h0(OX(1)) = 3;
that is, X is not the projection of a nondegenerate curve of degree 10 in P3

K .

We can prove a weaker version of Theorem 3.1 without the Cohen-Macaulay
assumption on A. Recall that a positively graded Noetherian K-algebra A with
homogeneous maximal ideal A+ and graded canonical module ωA is called quasi-
Gorenstein if ωA

∼= A(a) for some a ∈ Z, called the a-invariant of A. By local
duality, a = regHdimA

A+
(A), so, in case A is generated in degree 1, we have a +

dimA ≤ regA, with equality when A is Gorenstein.

Theorem 3.7. Let X ⊂ Pr
K be a geometrically reduced scheme with homoge-

neous coordinate ring A. Suppose that B is a graded Cohen-Macaulay ring with
A � B ⊂ A.

If A is quasi-Gorenstein, then CB/A is a Cohen-Macaulay A-module and an
unmixed ideal in A of codimension 1. Moreover, regC′

B/A ≤ regX.

We can also say something about the regularity of the ring B, considered as a
graded module over A; see also Ulrich and Vasconcelos [1990], the proof of 2.1(b).

Proposition 3.8. Let X ⊂ Pr
K be a reduced scheme with homogeneous coordi-

nate ring A. Suppose that B is a graded Cohen-Macaulay ring with A � B ⊂ A.
If A is Cohen-Macaulay, then the A-module B/A is Cohen-Macaulay of codi-

mension 1. Furthermore,

reg(B/A) ≤ regX − 2 and regB ≤ regX − 1 .

We now proceed to the proofs.

Proof of Theorem 3.1. To simplify the notation we write C′ for C′
B/A and

C for CB/A. We have C ∼= HomA(B,A). Since B is a finite Cohen-Macaulay A-

module and dimA B = dimA, we have Ext1A(B,A) = 0. Therefore, applying the
long exact sequence in Ext·A(−, A) to the short exact sequence

0 → A −→ B −→ B/A → 0 ,

we obtain a homogenous isomorphism A/C ∼= Ext1A(B/A,A). Since A is Gorenstein,
we have ωA = A(a). Thus

A/C ∼= Ext1A(B/A, ωA)(−a) .
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As A is a Cohen-Macaulay S-module of codimension c, local duality (or the change
of rings spectral sequence) in turn gives

Ext1A(B/A, ωA) ∼= Ext1+c
S (B/A, ωS)

∼= Ext1+c
S (B/A, S)(−r − 1) ,

and we conclude that

A/C ∼= Ext1+c
S (B/A, S)(−a− r − 1) .

From the above short exact sequence it also follows that B/A is a Cohen-
Macaulay S-module of codimension c + 1 and hence has a minimal homogeneous
free S-resolution F· of length c+ 1. Now the isomorphism

S/C′ ∼= A/C ∼= Ext1+c
S (B/A, S)(−a− r − 1)

implies that dualizing F· into S(−a − r − 1) gives a minimal homogeneous free
S-resolution of S/C′. In particular, C′ is a perfect ideal of codimension c+ 1 and

TorSc (C
′,K) ∼= TorSc+1(S/C

′,K) ∼= HomK(B/A⊗S K,K)(−a− r − 1) .

Since A is Cohen-Macaulay, the degree shift can be rewritten as

−a− r − 1 = −a− dimA− c

= − regA− c

= − regX + 1− c .

It follows that the two graded vector spaces

TorSc (C
′,K)(regX − 1 + c) and (B/A)⊗A K

are dual to one another.
The maximal generator degree of the former controls the regularity of C′ be-

cause this ideal is perfect. Therefore

regC′ = maxdeg TorSc (C
′,K)− c

= − indeg(B/A) + regX − 1 ,

as claimed. If X is geometrically reduced and irreducible, then A0 = K = (A)0
and therefore indeg(B/A) > 0. The remaining assertions of the Theorem are now
clear as well. �

Proof of Corollary 3.3. The last statements follow immediately from the
formulas for the regularity of C′

X and the number of its degree d syzygies, so we
prove those.

LetA be the homogeneous coordinate ring ofX. Form < d we have dimK Am =(
m+2
2

)
, so the formula for regC′

X follows at once from the one given in Theorem 3.1.

If B = A, then the number of homogeneous generating syzygies of C′
X of de-

gree d is dimK(B/A)0, again by Theorem 3.1. On the other hand, (B/A)0 =
H0(π∗OX/OX) and the dimension of this K-vector space is one less than the num-
ber of components of X over the algebraic closure of K. �

Proof of Corollary 3.4. Suppose that X has e irreducible components.
Let A be the homogeneous coordinate ring of X and let B′ be the direct product
of the homogeneous coordinate rings of the irreducible components of X, a “partial
normalization” of A. Notice that I ⊂ C′

B′/A. By Theorem 3.1 the ideal C′
B′/A has

regularity d−1 and its syzygy module has exactly e−1 homogeneous basis elements
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of degree d. The same holds true for the conductor C′
X . Proposition 3.2 implies

that the regularity and the number of syzygies of top degree are both monotonic in
the sequence of ideals C′

X ⊂ J ⊂ I ⊂ C′
B′/A, yielding the desired formulas for the

regularity and the number of degree d syzygies of J . �

Proof of Corollary 1.2. From Corollary 3.3 we know that reg IΓ ≤ d− 1
and that this inequality is strict for irreducible curves. If the curve is reducible
and its components meet in ordinary nodes, then the part of the conductor scheme
concentrated at the points of intersection is the reduced scheme of the intersection
points itself, so we may apply Corollary 3.4. �

Before proving Theorem 3.7 we need a lemma on conductors, see also Kunz
[2005], 17.6. Generalizing our previous notation, we write CB/A := A :A B for
the conductor of any ring extension A ⊂ B. Again, CB/A is the unique largest
B-ideal contained in A, and, whenever A is Noetherian, this ideal contains a non
zerodivisor of B if and only if the extension A ⊂ B is finite and birational.

Lemma 3.9. Let A ⊂ B ⊂ C be extensions of rings. If CB/A = Bu for some
non zerodivisor of C, then

CC/A = CC/B CB/A .

Proof. For any rings A ⊂ B ⊂ C the inclusion CC/B CB/A ⊂ CC/A follows
from the definition of the conductor. If CB/A = Bu, for some non zerodivisor u ∈ C,
then CC/A ⊂ CB/A = Bu and we may write CC/A = Cu for some subset C of B.
This subset is a C-ideal because CC/A is a C-ideal and u is a non zerodivisor of C.
It follows that C ⊂ CC/B and therefore CC/A ⊂ CC/B u ⊂ CC/B CB/A. �

Proof of Theorem 3.7. Since X is geometrically reduced, we may extend
the ground field and assume that it is algebraically closed. We may then choose a
homogeneous Noether normalization inside A over which the total ring of quotients
of A is separable, and thus birational to a homogeneous hypersurface ring A′ ⊂ A
that contains the Noether normalization.

Write ωA = A(a) and ωA′ = A′(a′). We claim that CA/A′ is generated by a
homogeneous non zerodivisor u on B of degree a′ − a. This is because

CA/A′ ∼= HomA′(A,A′) ∼= HomA′(A,ωA′(−a′)) ∼= ωA(−a′) ∼= A(a− a′).

It follows from Lemma 3.9 that CB/A′ = CB/A u. By Theorem 3.1 the A′-module
A′/CB/A′ is Cohen-Macaulay of codimension 1, so CB/A′ is a maximal Cohen-
Macaulay A′-module. Therefore CB/A is also a maximal Cohen-Macaulay module
over A′ and thus over A. This also shows that CB/A is an unmixed ideal in A of
codimension 1, because ωA and hence A satisfies Serre’s condition S2.

For the second statement, notice that

regC′
B/A = reg(S/C′

B/A) + 1 = reg(A/CB/A) + 1 .

The exact sequence

0 → CB/A −→ A −→ A/CB/A → 0

in turn shows that

reg(A/CB/A) ≤ max{regCB/A − 1, regA} .
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Since CB/A′ = CB/A u with u a homogeneous non zerodivisor on B of degree a′−a,
we see that regCB/A = regCB/A′ + a− a′ . Combining this with the two displayed
inequalities we obtain

regC′
B/A ≤ max{regCB/A′ + a− a′, regA+ 1} .

Again, the exact sequence

0 → CB/A′ −→ A′ −→ A′/CB/A′ → 0

gives

regCB/A′ ≤ max{reg(A′/CB/A′) + 1, regA′} = max{C′
B/A′ , a′ + dimA′} .

Finally, we apply Theorem 3.1 to the extension A′ ⊂ B ⊂ A′ = A and obtain

regC′
B/A′ ≤ a′ + dimA′ .

Combining the last three displayed inequalities we deduce

regC′
B/A ≤ max{a+ dimA, regA+ 1} = regA+ 1 = regX ,

as desired. �

Proof of Proposition 3.8. One sees immediately, as in the proof of Theo-
rem 3.1, that B/A is a Cohen-Macaulay A-module of codimension 1. As for the
other claims, we may assume that the ground field K is infinite. In this case A ad-
mits a homogeneous Noether normalization A′. Since the Cohen-Macaulay rings A
and B are finitely generated graded modules over the polynomial ring A′, it follows
that they are maximal Cohen-Macaulay modules and hence free. Thus

0 → A −→ B

is a homogeneous free resolution of minimal length of the A′-module B/A. As the
latter module is Cohen-Macaulay, its regularity can be read from the last module in
the minimal homogeneous free resolution. It follows that regA′ B/A ≤ regA′ A− 1.
Since A is finite over A′, the regularity of an A-module is the same as its regularity
as an A′-module. Therefore regA B/A ≤ regA − 1, which also implies regA B ≤
regA. �

4. Completeness of the Adjoint Series

If X is irreducible, then Theorem 1.1 can be deduced from a classical result
known as the “completeness of the adjoint series”. We will explain how below, but
first we explain the meaning of the terms.

An adjoint of degree e is a form of degree e satisfying an “adjoint condition”
at each singularity. For example, at an ordinary node or cusp the adjoint condition
is simply to vanish at the point; if the singularity is an ordinary k-fold point, then
the adjoint condition is vanishing to order k − 1. In general the adjoint condition
is to be contained in the local conductor ideal at the point. Thus, from our point
of view, an adjoint is simply a form of degree e contained in CX .

The adjoint conditions at the singular points of X give rise to a divisor D on
X, namely the zero locus of the pull-backs of all the (local) functions satisfying the
adjoint conditions. The completeness of the adjoint series is the statement that the
natural inclusion of (CX)e, the space of adjoints of degree e, to H0(OX(e)(−D)),
is an isomorphism. From our point of view this is just the statement that CX is
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an ideal of both A, the coordinate ring of X, and B = ⊕eH
0(OX(e)), so that the

natural inclusion C ⊂ CB is in fact an equality.
We can now deduce the case of Theorem 1.1 when the curve X is irreducible.

First, it suffices to show that the set Γ of all singular points of X has regularity
≤ d− 2, since then any subset has regularity ≤ d− 2 as well. To do this we must
show that H1(IΓ(d − 3)) = 0. So it suffices to show that the nodes and cusps
impose independent conditions on the forms of degree d− 3.

Under the hypothesis of the Theorem that X has only ordinary nodes and

cusps, IΓ = C̃′
X . In this case, the “completeness of the adjoint series” says that the

vector space of forms of degree d − 3 vanishing on Γ gives the complete canonical
series on X, and thus has dimension genus(X), which is(

d− 1

2

)
− deg Γ = dimSd−3 − deg Γ;

that is, the conditions imposed by Γ are independent, as required.

5. Syzygies of an Almost Complete Intersection

In the case where X is a plane curve with only ordinary nodes as singularities,
the conductor ideal is the unmixed part of the Jacobian ideal, the ideal of partial
derivatives of the defining equation ofX, and we can derive a surprising consequence
for the syzygies of these partial derivatives:

Corollary 5.1. Let X ⊂ P2
K be a reduced curve of degree d over an al-

gebraically closed field whose characteristic is not a divisor of d. Write S =
K[x0, x1, x2] for the homogeneous coordinate ring of P2

K . Assume that the defining
equation of X is F (x0, x1, x2) = 0 and that X has only ordinary nodes as singular-
ities. If

2∑
i=0

Gi
∂F

∂xi
= 0

is a homogeneous relation in S, then degGi ≥ d− 2 whenever Gi �= 0, and equality
is possible if and only if X is reducible.

This result was proven independently, in characteristic zero, in Dimca and
Sticlaru [2011] (Theorem 4.1), using Hodge theory. We deduce it from a much more
general statement about almost complete intersections given in Proposition 5.2.

Proposition 5.2. Let S = K[x0, . . . , xr] be a polynomial ring over a field
and let I ⊂ S be a homogeneous perfect ideal of codimension g. Let f1, . . . , fg+1

be homogeneous elements of I such that f1, . . . , fg form a regular sequence. Set
a := (f1, . . . , fg) ⊂ J := (f1, . . . , fg+1). If I is the unmixed part of J , meaning the
intersection of the primary components of J having codimension g, then

ωS/I = ((a : fg+1)/a)(−r − 1 +

g∑
i=1

deg fi) .

Furthermore,

regS/I = regS/a− indeg((a : fg+1)/a) ,

and if fg+1 has maximal degree among the fi, this can be written as

regS/I = regS/a− indeg(I1(φ)/a) ,
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where φ is a matrix of homogeneous syzygies of f1, . . . , fg+1 and I1(φ) denotes the
ideal generated by the entries of φ.

Proof. We have

regS/I = − indeg ωS/I + dimS/I

since S/I is Cohen-Macaulay, and by linkage

ωS/I = ((a : I)/a)(−r − 1 +

g∑
i=1

deg fi) .

Thus, using the fact that regS/a = −g +
∑g

i=1 deg fi, we obtain

regS/I = regS/a− indeg((a : I)/a) .

Since a is unmixed,

a : I = a : fg+1 ,

proving the first two assertions.
If fg+1 has maximal degree among the fi, then the non-zero elements in the last

row of the syzygy matrix φ, which are the generators of a : fg+1, have the lowest
degree among the non-zero entries of their respective column. The columns with
zero last entry, on the other hand, are relations on the regular sequence f1, . . . , fg
and hence have entries in a. It follows that

indeg((a : fg+1)/a) = indeg(I1(φ)/a) .

�

We are now ready to prove Corollary 5.1.

Proof. Our assumption on the characteristic implies that F is contained in
the ideal of S generated by ∂F

∂x0
, ∂F
∂x1

, ∂F
∂x2

. If X is smooth, this ideal has codimension
at least 3 and X is irreducible. Otherwise we apply Proposition 5.2 with r = 2,
I = C′

X , and J = ( ∂F
∂x0

, ∂F
∂x1

, ∂F
∂x2

). One has J ⊂ I, and equality holds locally at
every prime ideal of codimension two because all singularities of X are ordinary
nodes. Since I is unmixed, we conclude that I is the unmixed part of J . After a
linear change of variables we may assume that ∂F

∂x0
, ∂F
∂x1

is a regular sequence of two
forms of degree d− 1. Thus the Proposition shows that

regS/I = 2(d− 2)− indeg(I1(φ)/a) .

Finally, according to Corollary 3.3 one has regS/I ≤ d − 2, and equality holds if
and only if X is reducible. �

6. The Conductor of a Reducible Hypersurface

The estimates obtained in Section 3 point to a difference between the reducible
and the irreducible case. In the present section we study this phenomenon by
relating the conductor ideal of a reducible subscheme to the conductor ideals of
its irreducible components. This is done in the next proposition. Our proof is an
adaptation of arguments in Kunz [2005], 17.6, 17.11, 17.12, where the case of local
rings of plane curve singularities is treated.
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Proposition 6.1. If X ⊂ Pr
K is a reduced hypersurface with distinct irreducible

components Xi, then

C
′
X =

∑
i

C
′
Xi

∏
j �=i

IXj
.

Proof. We write F , Fi for the defining homogeneous polynomials of X, Xi

in the polynomial ring S := K[x0, . . . , xr], Gi :=
∏

j �=i Fj , and A, Ai for the

homogeneous coordinate rings S/(F ), S/(Fi). Consider the ring extensions

A ⊂ B := ×iAi ⊂ C := A = B = ×iAi .

Further, write ei for the ith idempotent of B and notice that Aiei = Aei = Sei,
B =

∑
i Sei, 1A =

∑
i ei.

Clearly CC/B = ×iCAi/Ai
=

∑
i C

′
Xi

ei.

Next, we claim that CB/A = B(
∑

iGiei). Indeed, the image of an element
H ∈ S in A belongs to CB/A if and only if SHei ⊂ A for every i, which means that
for every i there exists Hi ∈ S so that Hi ≡ HmodFi and Hi ≡ 0modGi. This is
equivalent to Hei ∈ SGiei. Hence indeed CB/A =

∑
iSGiei = B(

∑
iGiei), where

the last equality holds because the ei are orthogonal idempotents.
Since the B-ideal CB/A is generated by a single non zerodivisor of C, it follows

that CC/A = CC/B CB/A according to Lemma 3.9. Therefore

C′
X 1A = CC/A = (

∑
i
Giei)(

∑
i

C′
Xi

ei)

=
∑
i

GiC
′
Xi

ei

= (
∑
i

GiC
′
Xi

)(
∑
i

ei)

= (
∑
i

GiC
′
Xi

) 1A .

We deduce that C′
X =

∑
i GiC

′
Xi

because the ideals on both sides of the equation
contain F . �

Corollary 6.2. In the setting of Proposition 6.1 we write S := K[x0, . . . , xr]
and d := degX, di := degXi. For every i there is an exact sequence

0 → S(−d) −→ C
′
∪j �=iXj

(−di)⊕ C
′
Xi

(−d+ di) −→ C
′
X → 0 .

In particular,

regC′
X ≤ maxi{d− 1, regC′

Xi
+ d− di}.

Proof. We write F = FiGi as in the previous proof. We will construct the
desired sequence in the more precise form

0 → SF −→ FiC
′
∪j �=iXj

⊕GiC
′
Xi

−→ C′
X → 0 .

Proposition 6.1 gives FiC
′
∪j �=iXj

+GiC
′
Xi

= C′
X , so we may take the right hand map

in the desired sequence to be addition, and it suffices to show that

FiC
′
∪j �=iXj

∩GiC
′
Xi

= SF.
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The right hand side of this equation is contained in the left hand side because
C′
∪j �=iXj

� Gi and C′
Xi

� Fi. The reverse inequality holds because Fi and Gi are

relatively prime, and thus

FiC
′
∪j �=iXj

∩GiC
′
Xi

⊂ FiS ∩GiS = FiGiS = FS .

The assertion about the regularity of C′
X follows from the exact sequence, using

induction on the number of irreducible components of X. �

Corollary 6.3. Let X ⊂ P2
K be a reduced plane curve over an algebraically

closed field with distinct irreducible components Xi and write JXi
for the saturated

ideals defining the reduced singular sets (SingXi)red ⊂ P2
K . If X has only ordinary

nodes and cusps as singularities, then the ideal∑
i

JXi

∏
j �=i

IXj

is the saturated ideal defining the reduced singular set (SingX)red ⊂ P2
K .

Proof. Because of the assumption on the singularities, the conductor ideals
C′
X and C′

Xi
are reduced. Now apply Proposition 6.1. �

7. Examples of Resolutions of Singular Sets

We exhibit two situations in which we can specify the resolution of the singular
ideal of a plane curve completely. The third example shows that the bound coming
from Bézout’s Theorem can be much less sharp than that of Corollary 3.3. In this
section X ⊂ P2

K will always be a reduced curve over an algebraically closed field
K.

Example 7.1. Suppose that X ⊂ P2
K , given by F = 0, is the union of more

than 1 distinct smooth components Xi meeting transversely; in other words, X has
smooth irreducible components and only ordinary nodes as singularities. Suppose

that the equation of Xi is Fi = 0, so that F =
∏�

i=1 Fi. According to Corollary 6.3
for instance, the reduced singular set of X has homogeneous ideal generated by the
� products

Gi :=
∏
j �=i

Fj .

It follows, in particular, that the ideal I generated by the Gi has codimension 2.
Hence this ideal is the flat specialization of the perfect ideal

({gi :=
∏
j �=i

xj | 1 ≤ i ≤ �}) ⊂ K[x1, . . . , x�] .

Since all the products xigi are equal to
∏�

j=1 xj , we have � − 1 syzygies of the
form xi+1gi+1 − xigi on the gi, and these generate all the syzygies. Thus I is also
perfect and its homogeneous minimal free resolution over the polynomial ring S in
3 variables has the form

0 → ⊕�−1
i=1S(−d) −→ ⊕�

i=1S(−d+ di) −→ I → 0 ,

where d = degX and di = degXi. In particular, we see directly that reg I = d− 1
as claimed.
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Example 7.2. Let X ⊂ P2
K be a rational curve of degree d ≥ 2 with only

ordinary nodes and cusps as singularities, so that (SingX)red consists of
(
d−1
2

)
distinct points. We claim that the minimal free resolution of the saturated ideal
I := I(SingX)red has the form

0 → S(−d+ 1)d−2 −→ S(−d+ 2)d−1 −→ I → 0 ,

and thus reg I = d− 2. As regC′
X ≥ reg I and X is irreducible, it also follows that

regC′
X = d− 2 and h0(OX(1)) > 3, according to Corollary 3.3.
To see the claim about the resolution, we first note that no curve of degree d−3

can pass through all the nodes of X. This is because such a curve would meet X in
a scheme of degree at least 2

(
d−1
2

)
= (d− 1)(d− 2), whereas by Bézout’s Theorem

the intersection scheme could only be of length d(d− 3) < (d− 1)(d− 2).
Because I is the ideal of a reduced set of points, any linear form x that vanishes

at none of the points is a non zerodivisor modulo I. If we reduce I modulo x we
get a homogeneous ideal of finite colength

(
d−1
2

)
, not containing any form of degree

d − 3, in the polynomial ring in 2 variables. The only such ideal is the (d− 2)-nd
power of the maximal homogeneous ideal, and this has minimal free resolution as
above. Since reducing modulo a linear non zerodivisor preserves the shape of the
resolution, we are done.

Example 7.3. In some cases, the regularity bound given in Corollary 3.3 can
be deduced simply from Bézout’s Theorem. For example, suppose that X ⊂ P2

K is
an irreducible curve of degree d and the singular set of X is the transverse complete
intersection of curves E and F of degrees e < f , respectively. In this case Corollary
3.3 asserts in particular that reg(E ∩F ) = e+ f − 1 ≤ d− 2, that is, e+ f < d. By
Bézout’s Theorem, the degree of E ∩X is de. But E meets X with multiplicity at
least 2 at each of the ef points of E∩F , so 2ef ≤ de, or e+f < 2f ≤ d as claimed.

On the other hand, suppose I ⊂ K[x0, x1, x2] is the ideal generated by the
m × m minors of a generic m + 1 × m matrix M whose first column consists of
generic forms of degree 2m − 1 and whose other entries are generically chosen
quadratic forms. From the formulas in Eisenbud [2005], Chapter 3 we see that

• I is generated by m+ 1 forms of degree 4m− 3;
• I is the ideal of a set Δ consisting of

δ = 20

(
m− 1

2

)
+ 18m− 17

reduced points;
• reg I = 6m− 5.

If X is an irreducible curve singular at all the points of Δ, then we can find a linear
combination of the m+1 generators of I defining a curve that meets X in a scheme
of length at least m+2δ, so Bézout’s Theorem shows that the degree d of any such
curve X satisfies

d ≥ m+ 2δ

4m− 3
,

which, after substituting the value of δ, becomes d ≥ 5m−2. However, Corollary 3.3
shows that in fact we must have d ≥ reg I+2 = 6m−3. (In experiments, the minimal
degree in these circumstances—given that the matrix M is chosen generally—for
the first values of m ≥ 2 seems actually to be equal to 8m− 6.)
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8. Other results on the situation of the nodes

Coolidge [1939] says that “One of the most important unsolved probems in the
whole theory of plane curves [is] the situation of the permissible singular points.”
But we know of very few results shedding light on this problem. In fact, other than
the results of Kloosterman and of this paper the only references of which we are
aware are:

• On pp 389 ff Coolidge gives some results for rational curves of degrees 6
and 7 in P2

K .
• A result of Arbarello and Cornalba [1981] shows that vanishing doubly
at δ nodes imposes independent conditions on forms of degree d whenever(
d+2
2

)
≥ 3δ.
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Abstract. We analyze GIT stability of nets of quadrics in P4 up to projective
equivalence. Since a general net of quadrics defines a canonically embedded

smooth curve of genus 5, the resulting quotient M
G

:= G(3, 15)ss//SL(5) gives

a birational model of M5. We study the geometry of the associated contraction

f : M5 ��� M
G
, and prove that f is the final step in the log minimal model

program for M5.

1. Introduction

A canonically embedded non-hyperelliptic, non-trigonal smooth curve of genus
5 is a complete intersection of 3 quadrics in P4 [ACGH85, Ch.V]. Thus, the Grass-
mannian of nets in PH0(P4,OP4(2)) � P14 gives a natural compactification of the
open Hilbert scheme of non-hyperelliptic, non-trigonal smooth canonical curves of
genus 5, and the corresponding GIT quotient

M
G
:= G(3, 15)ss// SL(5)

is a projective birational model of M5. In this paper, we study the geometry of

M
G

and show that the natural birational contraction f : M5 ��� M
G

represents
the final stage of the log minimal model program for M5.

The main portion of the paper is devoted to a GIT stability analysis of nets of
quadrics in P4. The GIT stability analysis for pencils of quadrics in P4 appears in
[AM99], where it is shown that a pencil of quadrics in P4 is semi-stable if and only
if the associated discriminant binary quintic is non-zero and has no triple roots, and
in [MM93]. More generally a pencil of quadrics in Pn is semi-stable if and only if
the associated discriminant binary (n+1)-form is non-zero and is GIT-semi-stable
with respect to the natural SL(2)-action [AM99, Theorem 5]. The GIT analysis
for nets of quadrics turns out to be more involved. In particular, as Remark 3.21
shows, there is no natural correspondence between SL(5)-stability of a net and
SL(3)-stability of the associated discriminant quintic curve.

We prove that a semi-stable net defines a locally planar curve of genus 5 embed-
ded in P4 by its dualizing sheaf, and give a description of the singularities occurring
on such curves.
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2 MAKSYM FEDORCHUK AND DAVID ISHII SMYTH

Main Theorem 1. A net is semi-stable if and only if it defines a locally planar
genus 5 curve satisfying one of the following conditions:

(1) C is a reduced quadric section of a smooth quartic del Pezzo in P4, but C
is not one of the following:
(a) A union of an elliptic quartic curve and two conics meeting in a pair

of triple points.
(b) A union of two elliptic quartics meeting along an A5 and an A1

singularities.
(c) A curve with a 4-fold point with two lines as its two branches.
(d) A union of two tangent conics and an elliptic quartic meeting the

conics in a D6 singularity and two nodes.
(e) A curve with a D5 singularity such that the hyperelliptic involution of

the normalization exchanges the points lying over the D5 singularity.
(f) C contains a conic meeting the residual genus 2 component in an

A7 singularity and the attaching point of the genus 2 component is a
Weierstrass point.

(g) A degeneration of one of the six curves listed above.
(2) C is non-reduced and it degenerates isotrivially to one of the following

curves:
(a) The balanced ribbon, defined by

(1.1) (ac− b2, ae− 2bd+ c2, ce− d2).

(b) A double twisted cubic meeting the residual conic in two points, de-
fined by

(1.2) (ad− bc, ae− c2 + L2, be− cd),

where L is a general linear form.
(c) A double conic meeting the residual rational normal quartic in three

points, defined by

(1.3) (ad− bc, ae− c2 + bL1 + dL2, be− cd),

where L1 and L2 are general linear forms. In particular, we have a
semi-stable triple conic with two lines

(1.4) (ad− bc, ae+ bd− c2, be− cd).

(d) Two double lines joined by two conics, defined by

(1.5) (ad, ae+ bd− c2, be).

We should make a comment on the shortcomings of this result. While this
theorem gives in principle a complete characterization of the singularities arising on

curves in M
G
, it does not give a satisfactory description of the functor represented

by M
G
. The difficulty is that a complete characterization of the functor of semi-

stable curves necessarily involves the global geometry of the curves in question in
a way that defies uniform description. For example, A1 and A5 singularities are
generally allowed, except in the unique case when two elliptic quartics meet in A1

and A5 singularities. Similarly, D5 singularities are generally allowed, except in the
case when the hyperelliptic involution on the normalization exchanges points lying
over the singularity.

282



STABILITY OF GENUS FIVE CANONICAL CURVES 3

As a by-product of our GIT analysis, we obtain a good understanding of the

geometry of the birational map f : M5 ��� M
G
. To state our first result in this

direction, let us define the A
{1}
5 -locus to be the locus of curves in M

G
which can

be expressed as the union of a genus 3 curve and a smooth rational curve meeting
along an A5 singularity. The significance of these curves lies in the fact that their
stable limits are precisely curves in Δ2 ⊂ M5 with a genus 2 component attached
at a non-Weierstrass point. Our main results regarding the birational geometry of
f can now be summarized in the following theorem.

Main Theorem 2. The birational map f : M5 ��� M
G

is a rational contrac-
tion, contracting the following divisors:

(1) f contracts Δ1 and exhibits the generic point of Δ1 as a fibration over the

A2-locus in M
G
.

(2) f contracts Δ2 and exhibits the generic point of Δ2 as a fibration over the

A
{1}
5 -locus in M

G
.

(3) f contracts the trigonal divisor Trig5 ⊂ M5 to the single point given by
Equation (1.4).

In addition, f flips various geometrically significant loci in the boundary of M5

to associated equisingular strata in M
G
, as summarized in Table 1. Detailed proofs

of the assertions made in this table would take us rather far afield into the intricacies
of stable reduction; thus, we leave these assertions without proof and merely offer
the table as a guide to future exploration of f . We refer the reader to [HM98]
for a beautiful introduction to stable reduction, [Has00] for the results concerning
stable reduction of planar curve singularities, and the recent survey [CM12] for an
in-depth guide to stable reduction.

Finally, we study the contraction f : M5 ��� M
G

from the perspective of the
minimal model program. Recall that

M5(α) := Proj
⊕
m≥0

H0(M5, �m(KM5
+ αδ)�), α ∈ [0, 1] ∩Q,

and that as α decreases from 1, the corresponding birational models constitute
the log minimal model program for M5 [Has05, HH09, HH13]. Our final result

interprets the contraction f : M5 ��� M
G

as the final step of this program.

Main Theorem 3.
(1) The moving slope of M5 is 33/4, realized by the divisor

f∗O(1) ∼ 33λ− 4δ0 − 15δ1 − 21δ2,

where ∼ denotes the numerical proportionality.

(2) There is a natural isomorphism M
G � M5(α), for all α ∈ (3/8, 14/33] ∩

Q, identifying f : M5 ��� M
G

with the final step of the log MMP for M5. In
particular, M5(3/8) is a point.

In Table 1, we have listed the α-invariants, as defined in [AFS10], of some
singularities appearing on curves parameterized by M5(14/33) in order to indicate
the anticipated threshold values of α at which the transformations should occur in
the course of the log MMP for M5. The reader should also refer to [AFS10] for

the definition of the notations A
{1}
5 , D

{1,2}
6 , A3/4, A3/5.

283



4 MAKSYM FEDORCHUK AND DAVID ISHII SMYTH

Table 1. Conjectural outline of the log MMP for M5.

α Singularity Type Locus in M5(α+ ε)

9/11 A2 elliptic tails attached nodally

7/10 A3 elliptic bridges attached nodally

2/3 A4 genus 2 tails attached nodally at a Weierstrass point

19/29 A
{1}
5 genus 2 tails attached nodally

19/29 A3/4 genus 2 tails attached tacnodally at a Weierstrass point

12/19 A3/5 genus 2 tails attached tacnodally

17/28 A5 genus 2 bridges attached nodally at conjugate points

5/9 D4 elliptic triboroughs attached nodally

5/9 D5 genus 2 bridges attached nodally at a

Weierstrass and free point

5/9 D
{1,2}
6 genus 2 bridges attached nodally at two free points

double lines

25/44 A10, A11 hyperelliptic curves

ribbons

1/2 double twisted irreducible nodal curves with hyperelliptic normalization

cubics, D
{1,2}
8

14/33 4-fold point genus 3 triboroughs

14/33 triple conics trigonal curves

Note that while we now have a nearly complete description of the log MMP
for M4 [HL10, Fed12, CMJL12], we have no construction of the intermediate
models M5(α) for 14/33 < α ≤ 2/3. Table 1 gives a rather ominous indication of
the potential complexity of this task.

Let us now give a roadmap of the paper. In Section 2, we describe GIT-unstable
nets of quadrics. We first describe a complete, finite set {ρi}12i=1 of destabilizing
one-parameter subgroups (Theorem 2.1), and then provide geometric descriptions
of the nets of quadrics destabilized by ρi for each 1 ≤ i ≤ 12 (Theorem 2.10). In
Section 3, we combine a geometric study of quartic surfaces in P4 with Theorem
2.10 to obtain a positive description of semi-stable nets of quadrics (Theorems 3.1
and 3.2). Finally, in Section 4 we use our semi-stability results to give proofs of
Main Theorems 1, 2, 3.

Acknowledgements. We are profoundly grateful to Joe Harris for introduc-
ing us to the subject of algebraic geometry, for generously sharing his love of the
discipline and his unique creative style. Our understanding and appreciation of
Geometric Invariant Theory also owes a great deal to the papers and lectures of
Brendan Hassett, David Hyeon, and Ian Morrison. We wish to thank each of these
individuals, as well as Jarod Alper, Anand Deopurkar, David Jensen, Radu Laza,
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and David Swinarski, for numerous conversations and suggestions relating to the
contents of this paper.

2. GIT analysis

2.1. GIT preliminaries. Set V :=H0
(
P4,O(1)

)
and let W :=H0

(
P4,O(2)

)
�

Sym2 V be the vector space of quadratic forms. To a net of quadrics Λ=
(
Q1, Q2, Q3

)
in W , we associate its Hilbert point

[Λ] := [Q1 ∧Q2 ∧Q3] ∈ G
(
3,W

)
⊂ P

3∧
W.

We denote by [̃Λ] := Q1 ∧Q2 ∧Q3 a lift of [Λ] to
∧3 W .

Recall that Λ is said to be semi-stable if 0 /∈ SL(5) · [̃Λ], and stable if in

addition SL(5) · [̃Λ] is closed. GIT gives a projective quotient G(3,W )ss// SL(5),
where G(3,W )ss ⊂ G

(
3,W

)
is the open locus of semi-stable nets, and the main

objective of this paper is to give a geometric description of G(3,W )ss.
The standard tool for such analysis is the Hilbert-Mumford numerical criterion

[MFK94, Theorem 2.1]. In our situation, the statement of the numerical criterion
may be formulated as follows: Let ρ : C∗ → SL(5) be a one-parameter subgroup
(1-PS), acting diagonally on a basis {a, b, c, d, e} of V with weights {ā, b̄, c̄, d̄, ē},
satisfying:

• ā+ b̄+ c̄+ d̄+ ē = 0,
• ā ≥ b̄ ≥ c̄ ≥ d̄ ≥ ē,
• Not all weights {ā, b̄, c̄, d̄, ē} are 0.

We call such an action normalized. The basis {a, b, c, d, e} induces a basis of
∧3 W ,

with Plücker coordinates as basis elements. The ρ-weight of a quadratic monomial
m = xy is wρ(m) = x̄+ ȳ and the ρ-weight of a Plücker coordinate m1 ∧m2 ∧m3

is
∑3

i=1 wρ(mi). We say that a net Λ is ρ-semi-stable (resp., ρ-stable) if there
exists a Plücker coordinate that does not vanish on [Λ] with non-negative (resp.,
positive) ρ-weight. With this notation, the numerical criterion simply asserts that
Λ is semi-stable (resp., stable) if and only if Λ is ρ-semi-stable (resp., ρ-stable) for
all 1-PS’s.

A priori, the numerical criterion requires one to check ρ-semi-stability for all
1-PS’s. However, there necessarily exists a finite set of numerical types of 1-PS’s
{ρi}Ni=1 such that the union of the ρi-unstable points is G(3, 15) \ G(3, 15)ss. The
first main result of this section, Theorem 2.1, describes such a set of 1-PS’s ex-
plicitly. The second main result of this section, Theorem 2.10, gives geometric
characterizations of the nets destabilized by each ρi in our list. Finally, in Sec-
tion 3, we use this result to describe the semi-stable locus G(3, 15)ss ⊂ G(3, 15)
explicitly.

2.2. Notation and conventions. Throughout this section, we use the fol-
lowing notation. Given a basis {a, b, c, d, e} of V , we consider two orderings on the
set of quadratic monomials in W . There is the lexicographic ordering, which is
complete, and which we denote by lex. Then there is the ordering, denoted by �,
according to which m1 � m2 if and only if wρ(m1) ≥ wρ(m2) for any normalized
1-PS acting diagonally on {a, b, c, d, e}. Note that

m1 � m2 =⇒ m1 �lex m2.
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6 MAKSYM FEDORCHUK AND DAVID ISHII SMYTH

Finally, given a normalized 1-PS acting on {a, b, c, d, e}, there is a complete
ordering ρ on the quadratic monomials in W defined as follows: m1 ρ m2 if and
only if one of the following conditions hold:

(1) wρ(m1) > wρ(m2)
(2) wρ(m1) = wρ(m2) and m1 lex m2.

For any quadric Q ∈ W , we let inlex(Q) denote the initial monomial of Q with
respect to lex and, if ρ is a normalized 1-PS acting on {a, b, c, d, e}, we let inρ(Q)
denote the initial monomial of Q with respect to ρ.

For any net Λ, we may choose a basis {Q1, Q2, Q3} such that inlex(Q1) lex

inlex(Q2) lex inlex(Q3). We call such a basis of Λ normalized.
Finally, given a basis {a, b, c, d, e} of V , we define the distinguished flag O ⊂

L ⊂ P ⊂ H ⊂ PV as follows:

O : b = c = d = e = 0,

L : c = d = e = 0,

P : d = e = 0,

H : e = 0.

2.3. Classification of destabilizing subgroups.

Theorem 2.1. Suppose that Λ is semi-stable with respect to every one-parameter
subgroup of the following numerical types:

(1) ρ1 = (1, 1, 1, 1,−4).
(2) ρ2 = (2, 2, 2,−3,−3).
(3) ρ3 = (3, 3,−2,−2,−2).
(4) ρ4 = (4,−1,−1,−1,−1).
(5) ρ5 = (3, 3, 3,−2,−7).
(6) ρ6 = (4, 4,−1,−1,−6).
(7) ρ7 = (9, 4,−1,−6,−6).
(8) ρ8 = (7, 2, 2,−3,−8).
(9) ρ9 = (12, 7, 2,−8,−13).

(10) ρ10 = (9, 4,−1,−1,−11).
(11) ρ11 = (14, 4,−1,−6,−11).
(12) ρ12 = (13, 8, 3,−7,−17).

Then Λ is semi-stable.

Remark 2.2. In fact, our proof gives a slightly stronger statement. Namely,
Λ is semi-stable with respect to a fixed torus T if and only if it is semi-stable with
respect to all one-parameter subgroups in T of the numerical types {ρi}12i=1.

Preliminary observations. Fix a net Λ which is ρi-semi-stable for each {ρi}12i=1.
By the numerical criterion, to prove that Λ is semi-stable, it suffices to show that
Λ is semi-stable with respect to an arbitrary 1-PS χ : C∗ → SL(5). Without loss
of generality, we can assume that χ is normalized, acting diagonally on the basis
{a, b, c, d, e} with weights (ā, b̄, c̄, d̄, ē), satisfying ā ≥ b̄ ≥ c̄ ≥ d̄ ≥ ē. To prove
the theorem, we must exhibit a Plücker coordinate that does not vanish on Λ and
has non-negative χ-weight. More explicitly, if (Q1, Q2, Q3) is a normalized basis
of Λ, we must exhibit non-zero quadratic monomials m1,m2,m3 in the variables
{a, b, c, d, e} which appear with non-zero coefficient in Q1 ∧ Q2 ∧ Q3 and satisfy
wχ(m1) + wχ(m2) + wχ(m3) ≥ 0. We begin with two preparatory lemmas.
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Lemma 2.3. The normalized basis (Q1, Q2, Q3) of Λ satisfies the following:

(i) Q3 /∈ (e2),
(ii) (Q1, Q2, Q3) �⊂ (d, e), and either (Q2, Q3) /∈ (d, e) or Q3 /∈ (d, e)2.
(iii) (Q2, Q3) �⊂ (c, d, e)2, and either (Q1, Q2, Q3) �⊂ (c, d, e) or Q3 /∈ (c, d, e)2.
(iv) inlex(Q1) = a2 or inlex(Q1), inlex(Q2) ∈ (a).

Proof. (i), (ii), (iii), (iv) follow immediately from ρ1, ρ2, ρ3, ρ4-semi-stability
of Λ, respectively. �

Lemma 2.4. If b̄ ≤ 0, then Λ is χ-semi-stable.

Proof. First, suppose inlex(Q1) = a2. Then inlex(Q2) � be and inlex(Q3) �
de by Lemma 2.3(iii) and (i), respectively. In addition, ρ2-semi-stability implies
that if Q3 ∈ (d, e)2, then Q2 /∈ (d, e). Thus, either inlex(Q3) � ce or Q2 contains
a term � c2. In the latter case, we obtain a Plücker coordinate of weight at least
2ā + 2c̄ + d̄ + ē = −2b̄ − d̄ − ē > 0, since b̄ ≤ 0 and ē < 0. In the former case,
ρ1-semi-stability implies that we cannot have (Q2, Q3) ⊂ (e), so Q2 or Q3 contains
a term � d2. We obtain a Plücker coordinate of weight at least 2ā+ 2d̄+ c̄ + ē =
−2b̄− c̄− ē > 0. Thus, Λ is χ-stable.

Next, suppose inlex(Q1) �= a2. Then we have inlex(Q1) � ad, inlex(Q2) � ae,
inlex(Q3) � de by Lemma 2.3(i) and (iv). If inlex(Q2) � ad, we are done since we
have a Plücker coordinate of weight 2ā + c̄ + 2d̄ + ē = −2b̄ − c̄ − ē > 0. Assume
inlex(Q2) = ae. Then ρ7-semi-stability implies that either Q3 contains a term � ce
or inlex(Q1) � ac. In either case, we obtain a Plücker coordinate of weight at least
2ā+ c̄+ d̄+ 2ē = −2b̄− c̄− d̄ ≥ 0. We conclude that Λ is χ-semi-stable. �

We can now begin the proof of the main theorem.

Proof of Theorem 2.1. We consider separately the following three cases:

(I) O is not in the base locus of Λ;
(II) O is in the base locus of Λ but L is not;
(III) L is in the base locus of Λ.

Case I: O is not a base point. We have inlex(Q1) = a2. Lemma 2.3(iii)
implies that inlex(Q2) � be. If Q3 has a term � cd, then Λ is χ-stable because
2ā+ (b̄+ ē) + (c̄+ d̄) = ā > 0. We assume that Q3 has no term � cd. By ρ5-semi-
stability, Q2 has a term � cd. Now, if Q3 has a term � be, then Λ is again χ-stable.
So we assume that Q3 has no term � be.

First, assume Q2 has a term � bd. If inlex(Q3) = ce, then Λ is χ-stable since
2ā + (b̄ + d̄) + (c̄ + ē) = ā > 0. Otherwise, inlex(Q3) ∈ {d2, de} and, by Lemma
2.3(ii), Q2 must have a term � c2. Thus, if Λ is not χ-semi-stable, we must have
2ā+ (b̄+ d̄) + (d̄+ ē) = ā+ d̄− c̄ < 0 and 2ā+2c̄+ (d̄+ ē) = ā+ c̄− b̄ < 0. This is
clearly impossible.

From now on, we suppose Q2 has no term � bd and Q3 ∈ (ce, d2, de, e2). Since
Λ is ρ6-semi-stable, Q3 contains a d2 term. If, in addition, inlex(Q3) = ce, then
recalling that Q2 has a term � cd, we have Plücker coordinates of weights at least

2ā+ (c̄+ d̄) + (c̄+ ē) = ā+ c̄− b̄,

2ā+ (b̄+ ē) + 2d̄ = ā+ d̄− c̄,

2ā+ (b̄+ ē) + (c̄+ ē) = ā+ ē− d̄.
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The three expressions cannot be simultaneously non-positive, so Λ is χ-stable.

It remains to consider the case inlex(Q3) = d2. By Lemma 2.3(ii), Q2 contains
a term � c2. Thus, if Λ is not χ-semi-stable, we have 2ā+(b̄+ ē)+2d̄ = ā+ d̄− c̄ < 0
and 2ā+ 2c̄+ 2d̄ = −2(b̄+ ē) < 0. This is clearly impossible.

Case II: O is a base point but L is not in the base locus.

Claim 2.5. Without loss of generality, we may assume Q1, Q2, Q3 satisfy the
following conditions:

(1) inlex(Q1), inlex(Q2) ∈ {ab, ac, ad, ae} and Q3 ∈ (b, c, d, e)2.
(2) Q1 has a term � b2, but Q2, Q3 have no term � b2.
(3) Q3 ∈ (be, ce, d2, de, e2).
(4) Q2 has a term � cd.

Proof of Claim. Indeed, (1) is immediate from Lemma 2.3(iv) using the
assumption that O is a basepoint. If Q3 /∈ (b, c, d, e)2, then inlex(Q3) � ae and Λ
is χ-stable as (ā+ c̄) + (ā+ d̄) + (ā+ ē) > 0.

For (2), the assumption that L is not in the base locus implies that Q1, Q2, or
Q3 must have a term � b2. We now deal with the case when Q2 or Q3 has a term
� b2. If Q3 has a term � b2, then Λ is χ-stable since (ā + ē) + (ā + d̄) + (2b̄) =
ā+ b̄− c̄ ≥ ā > 0. If Q2 has a term � b2, we consider two cases: If Q3 has a term
� ce, then we are done by Lemma 2.4 since (ā+ d̄) + 2b̄+ (c̄+ ē) = b̄. Otherwise,
Q3 ∈ (d, e)2. If inlex(Q1) = ad, then this contradicts ρ7-semi-stability. Thus
inlex(Q1) � ac. We are now done by Lemma 2.4 since (ā+ c̄) + (2b̄) + (d̄+ ē) = b̄.

Finally, to prove (3), we recall that Q3 ∈ (b, c, d, e)2. By Lemma 2.4, Q3 is
χ-semi-stable if it has a term � cd, as (2b̄) + (ā+ ē) + (c̄+ d̄) = b̄. �

We subdivide the further analysis into six cases according to the initial mono-
mials of inlex(Q1) and inlex(Q2).

Case II.1: inlex(Q1) = ad and inlex(Q2) = ae. By (2) Q2 has no term � b2.
Since Λ is ρ11 = (14, 4,−1,−6,−11)-semi-stable, we see that Q3 /∈ (ce, d2, de, e2).
It follows by (3) that inlex(Q3) = be.

By ρ8 = (7, 2, 2,−3,−8)-semi-stability, Q2 has a term � c2. We now consider
two subcases, according to whether Q3 has a d2 term.

If Q3 has a d2 term, we have Plücker coordinates of χ-weights

(ā+ d̄) + (ā+ ē) + (b̄+ ē) = ā+ ē− c̄,

(ā+ d̄) + 2c̄+ (b̄+ ē) = c̄,

2b̄+ 2c̄+ 2d̄ = −2(ā+ ē).

Evidently, these expressions cannot be simultaneously negative, so Λ is χ-semi-
stable.

If Q3 has no term � d2, then by ρ10 = (9, 4,−1,−1,−11)-semi-stability, Q2

has a term � bd. Thus, we have Plücker coordinates with χ-weights at least

(ā+ d̄) + (ā+ ē) + (b̄+ ē) = ā+ ē− c̄,

(ā+ d̄) + 2c̄+ (b̄+ ē) = c̄,

(ā+ d̄) + (b̄+ d̄) + (b̄+ ē) = b̄+ d̄− c̄.

Evidently, these expressions cannot be simultaneously negative so Λ is χ-semi-
stable.
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Case II.2: inlex(Q1) = ac and inlex(Q2) = ae. Since Q2 has no b2 term, ρ7-
semi-stability implies inlex(Q3) � ce.

Suppose first Q2 has a term � bd. By ρ10-semi-stability, either Q3 has a be
term or Q3 has a d2 term. If Q3 has a be term, then Λ is semi-stable by Lemma
2.4 since (ā+ c̄) + (b̄+ d̄) + (b̄+ ē) = b̄.

If Q3 has a d2 term, then we have Plücker coordinates of weights at least

(ā+ c̄) + (ā+ ē) + (c̄+ ē) = −2(b̄+ d̄),

(ā+ c̄) + (b̄+ d̄) + (c̄+ ē) = c̄,

2b̄+ (ā+ ē) + 2d̄ = b̄+ d̄− c̄.

Evidently, these cannot all be negative so Λ is χ-semi-stable.
Suppose now Q2 has no term � bd. Then by ρ5-semi-stability Q2 has a term

� cd and by ρ10-semi-stability Q3 has a d2 term.
Finally, by ρ12 = (13, 8, 3,−7,−17)-semi-stability, either Q2 has a c2 term or

Q3 has be term.
If Q3 has be term, recalling that Q1 has a b2 term, we have Plücker coordinates

of weights at least

(ā+ c̄) + (ā+ ē) + (b̄+ ē) = ā+ ē− d̄,

(ā+ c̄) + (ā+ ē) + (2d̄) = ā+ d̄− b̄,

(ā+ c̄) + (c̄+ d̄) + (b̄+ ē) = c̄.

2b̄+ (ā+ ē) + (2d̄) = b̄+ d̄− c̄.

One of these is non-negative so Λ is χ-semi-stable.
If Q2 has a c2 term, then we have Plücker coordinates of weights at least

(ā+ c̄) + (ā+ ē) + (c̄+ ē) = −2(b̄+ d̄),

2b̄+ (ā+ ē) + 2d̄ = b̄+ d̄− c̄,

2b̄+ 2c̄+ 2d̄ = −2(ā+ ē).

One of these is non-negative so Λ is χ-semi-stable.
Case II.3: inlex(Q1)=ac and inlex(Q2)=ad. By ρ7-semi-stability, inlex(Q3) �

ce. Hence, there is a Plücker coordinate of weight at least 2b̄+(ā+ d̄)+ (c̄+ ē) = b̄
and we are done by Lemma 2.4.

Case II.4: inlex(Q1) = ab and inlex(Q2) = ae. By ρ5-semi-stability, Q2 has a
term � cd. If inlex(Q3) = be, then we are done by Lemma 2.4 as (ā+ b̄)+ (c̄+ d̄)+
(b̄+ ē) = b̄. Assume Q3 ∈ (ce, d2, de, e2). We consider the following three subcases
cases:

Suppose Q3 has d2 term but no ce term. Then Q2 has a term � c2 by Lemma
2.3(ii). We have Plücker coordinates with weights at least (ā+ b̄) + (ā+ ē) + 2d̄ =
ā + d̄ − c̄ and (ā + b̄) + 2c̄ + 2d̄ = c̄ + d̄ − ē ≥ c̄. Evidently, these cannot both be
negative.

Suppose Q3 has both d2 and ce terms. We have Plücker coordinates with
weights (ā + b̄) + (ā + ē) + 2d̄ = ā + d̄ − c̄ and (ā + b̄) + (c̄ + d̄) + (c̄ + ē) = c̄.
Evidently, these cannot both be negative.

Finally, suppose Q3 has no d2 term. Then by ρ6-semi-stability Q2 has a term �
bd. IfQ3 has a ce term, then we are done by Lemma 2.4 as (ā+b̄)+(b̄+d̄)+(c̄+ē) = b̄.
We may now assume Q3 = de. By Lemma 2.3(ii), Q2 has a term � c2. Then we
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have Plücker coordinates with weights at least

(ā+ b̄) + (ā+ ē) + (d̄+ ē) = ā+ ē− c̄,

(ā+ b̄) + 2c̄+ (d̄+ ē) = c̄,

(ā+ b̄) + (b̄+ d̄) + (d̄+ ē) = b̄+ d̄− c̄.

Evidently, these cannot be simultaneously negative.
Case II.5: inlex(Q1) = ab and inlex(Q2) = ad. If Q3 has a term � ce, then

Λ is χ-stable since (ā + b̄) + (ā + d̄) + (c̄ + ē) = ā > 0. Assume Q3 ∈ (d, e)2. By
Lemma 2.3(ii), Q2 has a term � c2. So we have Plücker coordinates of weights at
least (ā+ b̄)+2c̄+(d̄+ ē) = c̄ and (ā+ b̄)+ (ā+ d̄)+ (d̄+ ē) = ā+ d̄− c̄. Evidently,
these cannot be simultaneously negative.

Case II.6: Finally, if inlex(Q1) = ab and inlex(Q2) = ac, then Λ is χ-stable
since (ā+ b̄) + (ā+ c̄) + (d̄+ ē) = ā > 0.

Case III: L is in the base locus.

Claim 2.6. Without loss of generality, we may assume Q1, Q2, Q3 satisfy the
following conditions:

(1) inlex(Q1), inlex(Q2) ∈ {ac, ad, ae}.
(2) inlex(Q3) ∈ {bd, be}.

Proof. Indeed, (1) follows from Lemma 2.3(iv) using Q1, Q2 ∈ (c, d, e). For
(2), note that Lemma 2.3(iii) implies Q3 /∈ (c, d, e)2, and that Λ is χ-stable if either
inlex(Q3) � bc or inlex(Q3) � ae. �

We consider three cases according to the initial monomials inlex(Q1) and inlex(Q2):

Case III.1: Suppose inlex(Q1) = ac, inlex(Q2) = ad. Then Λ is χ-stable since
(ā+ c̄) + (ā+ d̄) + (b̄+ ē) = ā > 0.

Case III.2: Suppose inlex(Q1) = ac, inlex(Q2) = ae. If inlex(Q3) = bd, then
Λ is χ-stable. Assume inlex(Q3) = be. By ρ6-semi-stability, Q2 has a term � bd.
Since (ā+ c̄) + (b̄+ d̄) + (b̄+ ē) = b̄, we are done by Lemma 2.4.

Case III.3: inlex(Q1) = ad, inlex(Q2) = ae. We consider separately two sub-
cases: inlex(Q3) = bd and inlex(Q3) = be.

Case III.3(a): If inlex(Q3) = bd, there is a Plücker coordinate of weight (ā +
d̄)+(ā+ ē)+(b̄+ d̄) = ā+ d̄− c̄. Thus, Λ will be semi-stable if we can find a Plücker
coordinate of weight at least c̄. By Lemma 2.3(ii), one of Q1, Q2, Q3 contains a term
� c2. If Q3 contains a term � c2, then we have a Plücker coordinate of weight at
least (ā+ d̄)+(ā+ ē)+2c̄ = ā− b̄+ c̄ ≥ c̄. If Q2 contains a term � c2, then we have
a Plücker coordinate of weight (ā+ d̄)+2c̄+(b̄+ d̄) = c̄+ d̄− ē ≥ c̄. If Q1 contains a
term � c2, then we have a Plücker coordinate of weight (2c̄)+ (ā+ ē)+ (b̄+ d̄) = c̄.
We are done.

Case III.3(b): If inlex(Q3) = be, we use ρ6-semi-stability to see that Q2 has a
term � bd. Therefore, there is a Plücker coordinate of weight (ā+ d̄)+(ā+ ē)+(b̄+
ē) = ā+ ē− c̄ and a Plücker coordinate of weight at least (ā+ d̄)+(b̄+ d̄)+(b̄+ ē) =
b̄+d̄− c̄. To prove semi-stability, it suffices to exhibit a Plücker coordinate of weight
at least c̄.

By Lemma 2.3(ii), one of Q1, Q2, Q3 contains a term � c2. If Q3 contains a
term � c2, then we have a Plücker coordinate of weight (ā + d̄) + (ā + ē) + 2c̄ =
ā+c̄−b̄ ≥ c̄. If Q2 contains a term � c2, then we have a Plücker coordinate of weight
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(ā+ d̄)+(2c̄)+(b̄+ ē) = c̄. It remains to consider the case when only Q1 has a term
� c2. By ρ8-semi-stability, Q3 has a term � cd, and by ρ9-semi-stability Q1 has a
term � bc. We obtain a Plücker coordinate with weight (b̄+ c̄)+(ā+ ē)+(c̄+ d̄) = c̄.
At last, we are done. �

2.4. Classification of Unstable Points. In this section, we give geometric
description of the strata in G(3, 15) destabilized by each of the 1-PS’s enumerated
in Theorem 2.1. For ease of exposition, we analyze the first four 1-PS’s separately
from the final eight.

Lemma 2.7. A net Λ is destabilized by one of {ρi}4i=1 iff it satisfies one of the
following conditions with respect to a distinguished flag O ⊂ L ⊂ P ⊂ H ⊂ P4.

(1) ρ1 = (1, 1, 1, 1,−4):
(a) A pencil of Λ contains H, or
(b) An element of the net is singular along H.

(2) ρ2 = (2, 2, 2,−3,−3):
(a) Λ contains P , or
(b) A pencil of Λ contains P , and an element of the pencil is singular

along P .
(3) ρ3 = (3, 3,−2,−2,−2):

(a) Λ contains L, and an element of Λ is singular along L, or
(b) A pencil of Λ is singular along L.

(4) ρ4 = (4,−1,−1,−1,−1):
(a) Λ contains O, and a pencil of Λ is singular at O.

Proof. In case (4), the only triple of initial ρ4-weights with negative sum is
(3,−2,−2) and (−2,−2,−2). However, the stratum of nets with initial weights
(−2,−2,−2) is in the closure of the stratum of nets with initial weights (3,−2,−2).
Evidently, any quadric of weight 3 contains O, while any quadric of weight −2 is
singular at O. Thus, the net with initial ρ4-weights (3,−2,−2) has a base point at
O and contains a pencil of quadrics singular at O. The proofs of cases (1)–(3) are
similar. �

On the basis of this partial analysis, we may already conclude the important fact
that a semi-stable net has a pure one-dimensional intersection, and hence defines a
connected curve with local complete intersection singularities.

Corollary 2.8. If a net of quadrics in P4 is semi-stable, then the correspond-
ing intersection is connected and purely one-dimensional.

Proof. Fulton-Hansen connectedness theorem [FH79] gives the first state-
ment. If the intersection fails to be purely one-dimensional, then either a pencil
of quadrics in the net contains a hyperplane, in which case the net is destabilized
by ρ1, or we may choose a basis {Q1, Q2, Q3} of the net, such that S := Q1 ∩ Q2

is a quartic surface and one of its irreducible components is contained entirely in
Q3. Because RS := C[a, b, c, d, e]/(Q1, Q2) has dimension 3, RS is Cohen-Macaulay
and so the ideal (Q1, Q2) is saturated. Thus S cannot lie entirely inside Q3. We
conclude that there must be an irreducible component S′ ⊂ S of degree at most 3
which is contained in Q3. If degS′ = 1, then the net contains a plane and is thus
destabilized by ρ2. If degS′ = 2, then the span of S′ is a hyperplane and a pencil
of quadrics in the net contains this hyperplane. Such a net is destabilized by ρ1.
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Finally if degS′ = 3, then the classical classification of surfaces of minimal de-
gree due to del Pezzo [dP85] implies that S′ is a rational normal scroll ; see [EH87]
for a modern proof of this result and [Har92] for an introduction to scrolls. We
have two cases to consider. If S′ is smooth, then the net is projectively equivalent
to (ad−bc, ae−bd, ce−d2) (see [Har92, Lecture 9]) and is destabilized by ρ3. If S

′

is singular, then it must be a cone over a rational normal cubic curve. If O denotes
the vertex of the cone, then we must have a pencil of quadrics singular at O. Such
a net is destabilized by ρ4.

�
The following lemma is an unenlightening but straightforward combinatorial

stepping stone to the geometric analysis in Theorem 2.10.

Lemma 2.9. Suppose Λ is ρk-unstable for k ∈ {5, . . . , 12} but is ρj-semi-stable
for 1 ≤ j ≤ k− 1. Let m1,m2,m3 be the initial monomials of Λ with respect to ρk.
Then (wρk

(m1), wρk
(m2), wρk

(m3)) must be one of the following triples:

(5) ρ5 = (3, 3, 3,−2,−7):
• (6,−4,−4)

(6) ρ6 = (4, 4,−1,−1,−6):
• (8,−2,−7)
• (3,−2,−2)

(7) ρ7 = (9, 4,−1,−6,−6):
• (8, 3,−12)

(8) ρ8 = (7, 2, 2,−3,−8):
• (4,−1,−6)

(9) ρ9 = (12, 7, 2,−8,−13):
• (4,−1,−6)

(10) ρ10 = (9, 4,−1,−1,−11):
• (8,−2,−7)

(11) ρ11 = (14, 4,−1,−6,−11):
• (8, 3,−12)

(12) ρ12 = (13, 8, 3,−7,−17):
• (16,−4,−14)

Proof. The proof is purely algorithmic. Consider ρk = (ā, b̄, c̄, d̄, ē) for 5 ≤
k ≤ 12 and suppose w1 ≥ w2 ≥ w3 is the triple of ρk-initial weights of a ρk-unstable
net Λ. Lemma 2.3 translates into the following conditions satisfied by w1, w2, w3:

(C1) If d̄ �= ē, then w3 > 2ē.
(C2) w1 ≥ 2c. Moreover, if w2 < 2c̄, then w3 ≥ c̄+ ē.
(C3) w2 ≥ b̄+ ē. Moreover, if w1 < 2b̄, then w2 ≥ ā+ ē and w3 ≥ b̄+ ē.
(C4) If w1 �= 2ā, then w1 ≥ ā+ d̄ and w2 ≥ ā+ ē.

Now for each ρk, we list all triples of ρk-initial weights that have negative sum and
satisfy (C1)–(C4). We will do only Case (12), by far the most involved, and leave
the rest as an exercise to the reader.

The set of possible ρ12 = (13, 8, 3,−7,−17)-weights of quadratic monomials is

{26, 21, 16, 11, 6, 1,−4,−9,−14,−24,−34}.
Suppose w1 ≥ w2 ≥ w3 are initial ρ12-weights of ρ12-unstable Λ and Λ is ρi-stable
for i = 1, . . . , 4. By (C1), w3 ≥ −24. If w1 = 26, then the triples with negative
sum are (26,−14,−14), which violates (C3), and (26,−4,−24), which violates (C2).
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Suppose w1 < 26. Then w1 ≥ 6 and w2 ≥ −4 by (C4). The triples with negative
sum satisfying these conditions are

• (21, 1,−24), which violates (C2);
• (16,−4,−14);
• (16, 6,−24);
• (11,−4,−9);
• (11, 1,−14), which violates (C3);
• (6,−4,−4);
• (6, 1,−9);
• (6, 6,−14), which violates (C3).

Finally, one can easily check that the following statements hold: A net with ρ12-
initial weights (16, 6,−24) is ρ7 = (9, 4,−1,−6,−6)-unstable. A net with ρ12-
initial weights (11,−4,−9) is ρ8 = (7, 2, 2,−3,−8)-unstable. A net with ρ12-initial
weights (6,−4,−4) is ρ9 = (12, 7, 2,−8,−13)-unstable. A net with ρ12-initial
weights (6, 1,−9) is destabilized by ρ8 = (7, 2, 2,−3,−8) after the coordinate change
c ↔ b. �

Theorem 2.10. A curve C which is a complete intersection of three quadrics
is unstable if and only if it is (a degeneration of) one of the following curves:

(1) C is a double structure on an elliptic quartic curve in P3.
(2) C consists of a union of a double conic and two conics.
(3) C has a non-reduced structure along a line L and the residual curve C ′

meets L in at least degC ′ − 2 points.
(4) C has a point O with a three dimensional Zariski tangent space, i.e. C is

not locally planar.
(5) C contains a degenerate double structure on a conic, i.e. the double struc-

ture is contained in P3.
(6)

(a) C consists of a union of an elliptic quartic curve and two conics
meeting along a pair of triple points.

(b) C contains a double line that meets the residual arithmetic genus one
component in three points.

(7) C consists of two elliptic quartics meeting in an A5 singularity and a node.
(8) C contains a planar 4-fold point whose two branches are lines.
(9) C contains a double line and the residual genus two curve is tangent to it.

(10) C consists of two tangent conics and an elliptic quartic meeting the conics
in a D6 singularity and two nodes.

(11) C has D5 singularity and the hyperelliptic involution on the normalization
of C exchanges the points lying over the D5 singularity.

(12) C contains a conic meeting the residual genus two component in an A7

singularity and the attaching point is a Weierstrass point on the genus
two component.

Proof. For each of {ρi}12i=1, we shall give a geometric description of the ρi-
unstable stratum. Suppose C is a 1-dimensional complete intersection of three
quadrics and let Λ be its homogeneous ideal. The analysis for {ρi}4i=1 proceeds
via Lemma 2.7 (note that parts (1a) and (2a) of the lemma do not apply as they
describe intersections with a higher-dimensional component).
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(1) By Lemma 2.7 (1b), a curve C is ρ1-unstable if and only if Λ contains a
double hyperplane. If Λ contains a double hyperplane, then C is a non-reduced
curve with a double structure along an elliptic quartic curve in P3. Conversely,
given a curve C with a double structure along a necessarily degenerate elliptic
quartic, let H be the hyperplane containing Cred. Since the restriction of Λ to H
is at most two dimensional, we must have an element Q ∈ Λ which contains H. If
rankQ = 2, then our curve would be a reducible union of two degenerate quartic
curves. We conclude that rankQ = 1, and so Λ contains a double hyperplane.

(2) By Lemma 2.7 (2b), C is ρ2-unstable if and only if a pencil of Λ contains
a plane P and an element of the pencil is singular along P . Let Q2, Q3 generate
the pencil, with Q3 singular along P . We have Q3 = H1 ∪ H2, a union of two
hyperplanes, with P = H1 ∩H2. Since P ⊂ Q2, we must have Q2 ∩H1 = P ∪ P1

and Q2 ∩H2 = P ∪P2 where P1 and P2 are planes. In sum, Q2∩Q3 = P1∪P ∪P2,
where the plane P occurs in the intersection with multiplicity two. It follows that
C = Q1 ∩Q2 ∩Q3 consists of the union of two conics (Q1 ∩ P1 and Q1 ∩ P2) and a
double conic (Q1 ∩ P ). Conversely, given such a curve, if we let H1 and H2 denote
the hyperplanes spanned by each reduced conic with the double conic, then H1∪H2

contains the curve, so we recover an element Q3 of the net singular along P , the
span of the double conic. Furthermore, since all elements of the net contain the
double conic, the quadrics containing P form a pencil.

(3) By Lemma 2.7 (3), C is ρ3-unstable in two cases:

(a) The net contains a line L and there is a quadric singular along L.
(b) There is a pencil of quadrics singular along a line L.

Suppose there is a pencil of quadrics singular along a line L. Let O′ ∈ L ∩ Q3.
Then O′ is a base point of the net and a pencil of the net is singular at O′. It
follows by Lemma 2.7 (4) that the net is destabilized by ρ4. Hence, it suffices to
consider the case when the net contains L and there is a quadric Q3 singular along
L. Then C is generically non-reduced along L. Let C ′ be the subcurve of C residual
to L. Note that every hyperplane containing L intersects Q3 in two planes and the
intersection of Q1 ∩ Q2 with each of these planes is the union of L and at most a
single other point. It follows that every hyperplane containing L intersects C ′ in
at least degC ′ − 2 points lying on L. Therefore, C ′ meets L in degC ′ − 2 points.

Conversely, suppose C has a multiple structure along L and the residual curve
C ′ intersects L in degC ′ − 2 points. Then the projection of C ′ away from L is a
conic. It follows that C ′ \L lies on a rank 3 quadric Q singular along L. Finally, a
non-reduced component supported on L lies on Q. Since C is Cohen-Macaulay, it
follows that C lies on Q.

(4) By Lemma 2.7 (4), C is ρ4-unstable if and only if O is a base point of the
net, and the net contains a pencil of quadrics singular at O. If we choose generators
Q1, Q2, Q3 with Q2, Q3 singular at O, then TOC = TOQ1 ∩ TOQ2 ∩ TOQ3 = TOQ1

implies dimTOC ≥ 3. Conversely, if O ∈ C such that dimTOC ≥ 3, then O is a
base point of the net and there is a pencil of quadrics singular at O.

Consider now {ρi}12i=5. For each triple of ρi-initial weights from Lemma 2.9,
the locus of nets having these initial weights is an irreducible locally closed set. In
what follows we describe the generic point of each of them.

(5) ρ5 = (3, 3, 3,−2,−7). By Lemma 2.9, it suffices to consider a ρ5-unstable
net with initial ρ5-weights (6,−4,−4). Such a net has generators (Q1, Q2, Q3) such
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that Q2 = d2 + eL, where L is a linear form, and Q3 ∈ (e). Evidently, C contains
the double conic (Q1, e, d

2) contained in the hyperplane (e).
Conversely, if C contains a double structure on a conic contained in a hyper-

plane H, then we may take (e) to be the ideal of H and (d, e) to be the ideal of
the plane spanned by the underlying conic. It is clear that the restriction of Λ to
H must contain the double plane d2. Thus the ideal of C contains a quadric in (e)
and a linearly independent quadric in (d2) + (e). It follows that C is destabilized
by ρ5.

(6) ρ6 = (4, 4,−1,−1,−6). There are two possible triples of initial ρ6-weights:
(8,−2,−7) and (3,−2,−2).

If the initial weights are (8,−2,−7), then there is a basis of Λ of the form
(Q1, Q2, Q3), where Q2 ∈ (c, d)2 + (e) and Q3 = eL(c, d, e). If we let H ′ be the
hyperplane L(c, d, e) = 0, then H ′ ∩ Q1 ∩ Q2 is an elliptic normal curve, while
H ∩ Q1 ∩ Q2 is a pair of conics. All three components meet in the two points of
L ∩Q1.

Conversely, given a curve C of this form, let H ′ be the hyperplane spanned by
the elliptic normal curve, and H the hyperplane spanned by the pair of conics. Let
d = 0 and e = 0 be the equations ofH ′ andH, respectively. ThenQ3 := de ∈ Λ, and
the restriction of Λ to H contains a rank 2 quadric singular along a line contained
in H ′. Thus we can choose the coordinate c so that the ideal of C can be written
as (Q1, Q2, Q3), where Q2 ∈ (c, d)2 + (e). Thus C is destabilized by ρ6.

If the initial weights are (3,−2,−2), then the net is generated by quadrics
Q1 ∈ (c, d, e) and Q2, Q3 ∈ (c, d)2 + (e). For a general such net, we can choose
coordinates so that (Q2, Q3) = (ae + c2, be + d2). This pencil cuts out a Veronese
quadric with a double line along c = d = e = 0 (cf. Lemma 3.5). Being a quadric
section of this Veronese, C must be a union of a double line and an elliptic sextic
meeting the double line in three points.

Conversely, suppose C has a double line component meeting the residual com-
ponent of arithmetic genus one in three points. Take a quadric in the net with a
vertex on the double line and let e = 0 be the tangent hyperplane to this quadric.
Then the scheme-theoretic intersection of C with e = 0 is a double line in P3.
Assuming that the line is c = d = e = 0, we conclude that in appropriately cho-
sen coordinates the net is (Q1, Q2, Q3), where Q1 ∈ (c, d, e), Q2 = ae + c2, and
Q3 = be+ d2. Such a net is destabilized by ρ6.

(7) ρ7 = (9, 4,−1,−6,−6). By Lemma 2.9, we have only need to consider initial
weights (8, 3,−12). Then the generators of the net can be written as

Q1 = ac+ b2 + c2 mod (d, e),

Q2 = ad+ bc mod (c, d, e)2,

Q3 = de.

The two elliptic quartics are Q1 = Q2 = d = 0 and Q1 = Q2 = e = 0. De-
homogenizing with respect to a, we see that locally at O, we have c = b2 + R1,
d = bc + R2 = b3 + bR1 + R2, and de = 0. This translates into (e − nb3)e = 0
locally at O, which is an A5 singularity. Restricting to d = e = 0, we see that the
two elliptic quartics intersect at O and one other point. The claim follows.

(8) ρ8 = (7, 2, 2,−3,−8). A general net with ρ8-initial weights (4,−1,−6) has
generators Q1 = ad + Q1(b, c, d, e), Q2 = ae + dL1(b, c, d) + eL2(b, c, d, e), and
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16 MAKSYM FEDORCHUK AND DAVID ISHII SMYTH

Q3 = eL3(b, c, d, e) + d2. After an appropriate change of variables, the generators
can be rewritten as

Q1 = ad+Q1(b, c, d, e),

Q2 = ae+ bd,

Q3 = ce+ d2.

Note that {d = e = 0} ∩C = {Q1(b, c) = 0} is the union of two lines meeting at O.
From the above, we deduce that d = R(b, c) and e = bd = bR(b, c) for some power
series R(b, c) with a quadratic initial form. Now ce+ d2 = 0 translates into

R(b, c)(bc+R(b, c)) = 0,

which defines an ordinary 4-fold planar point.
Conversely, suppose Λ is a net defining a curve C with a 4-fold planar point

O whose two branches are lines. Let L1, L2 be the lines and C ′ be the residual
sextic. Then C ′ has geometric genus one and a node at O. Let π : P4 ��� P3 be
the projection from O, Set C ′′ = π(C ′) and pi = π(Li) for i = 1, 2. Let p3 and p4
the images of the tangent lines to the branches of C ′ at O. Then C ′′ is a genus
one quartic in P3 and p1, p2 are points lying on its chord p3p4. Being a genus one
quartic, C ′′ lies on a pencil of quadrics in P3 and hence there is a quadric in P3

containing C ′′ together with the 4 collinear points p1, p2, p3, p4. This gives a rise
to a singular quadric Q3 in P4 that has a vertex at O, contains C ′′, and contains
the plane P spanned by L1 and L2. Since the quadrics in Λ containing P form a
pencil, we conclude that there is a quadric Q2 ∈ Λ that contains P and which is
linearly independent with Q3.

Summarizing, we can choose coordinates so that P is given by d = e = 0 and
find a basis of Λ consisting of Q1 = ad+Q1(b, c, d, e), Q2 = ae+ bd,Q3 = dL+ eM ,
where L and M are linear forms in (b, c, d, e). The resulting local analytic equation
at O is R(b, c)(bM(b, c, d, e) − L(b, c, d, e)) = 0, where R(b, c) is power series with
a quadratic initial form. This equation defines a triple point unless L(b, c, d, e) ∈
(d, e). Therefore L(b, c, d, e) ∈ (d, e), and Λ is destabilized by ρ8 = (7, 2, 2,−3,−8).

(9) ρ9 = (12, 7, 2,−8,−13). By Lemma 2.9, we have to consider nets with
initial weights (4,−1,−6). Such a net is generated by

Q1 = ad+ c2 mod (c, d, e)2,

Q2 = ae+ bd mod (d, e)(c, d, e),

Q3 = be+ cd mod (d, e)2.

Restricting to P , we see that the net has a double structure along L and Lmeets the
residual genus 2 curve D in a single point O : b = c = d = e = 0. Dehomogenizing
with respect to a, we see that the singularity at O is locally analytically c2(b2−c) =
0. Thus L is tangent to D at O.

Conversely, if a locally planar complete intersection C contains a double line
tangent to the residual genus 2 component, then after an appropriate change of
coordinates, the ideal of C is (Q1, Q2, Q3), where Q1 = ad + c2 mod (c, d, e)2,
Q2 = ae+ bd, and Q3 = be+ cd. Such a net is destabilized by (12, 7, 2,−8,−13).

(10) ρ10 = (9, 4,−1,−1,−11). Consider nets with initial ρ10-weights (8,−2,−7).
The generators for such a net can be chosen to be Q1 = ac + b2 + Q1(b, c, d, e),
Q2 = ae+Q2(c, d, e), Q4 = be. The net defines a reducible curve. Along the plane
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STABILITY OF GENUS FIVE CANONICAL CURVES 17

b = e = 0, the two components meet in three points defined by Q2(c, d) = ac +
Q1(c, d) = 0. Restricting to e = 0, we obtain a reducible quartic Q2(c, d) = Q1 = 0,
which is a union of two conics. Restricting to b = 0, we obtain an elliptic quartic
meeting the two conics in a D6 singularity and two nodes.

(11) ρ11 = (14, 4,−1,−6,−11). By Lemma 2.9, the only relevant triple of
initial weights is (8, 3,−12). The general net with ρ11-initial weights (8, 3,−12) is
generated, after an appropriate change of coordinates, by

Q1 = ad− b2 −R1(c, d, e)

Q2 = ae− bc−R2(c, d, e)

Q3 = ce− d2.

Dehomogenizing with respect to a, we can write the first two equations as d =
b2 +R1(c, d, e) and e = bc+R2(c, d, e).

Now we plug into the equation Q3 to get a local equation for the plane curve
singularity at O:

bc2 + cR2(c, d, e)− b4 − 2b2R1(c, d, e)−R2
1(c, d, e) = 0,

which defines a D5 singularity.
Furthermore, the hyperelliptic involution induced on the normalization of C by

the projection away from L interchanges the points lying over the singularity.

(12) ρ12 = (13, 8, 3,−7,−17). By Lemma 2.9, the only possible triple of ρ12-
initial weights is (16,−4,−14). After an appropriate coordinate change, the net is
generated by

Q1 = ac+ b2 + aR1(d, e) +R2(c, d, e),

Q2 = ae+ cd,

Q3 = ce+ d2,

where R1 is a linear form and R2 is a quadratic form. The resulting curve has a
conic component C1 in the plane P and C1 meets the residual component C2 at
the point O in a singularity with the local analytic equation d(b4 − d) = 0, that is
an A7 singularity. By setting c = −t3, d = t2, e = t, we see that C2 is given by the
equation

b2 − t3 +R1(t
2, t) +R2(t

3, t2, t) = 0.

In other words, the projection away from L realizes C2 as the genus two double
cover of P1 ramified at O. �

3. Geometry of semi-stable curves

Notation. To a net of quadrics in P4 and a choice of its basis (Q1, Q2, Q3),
we associate the quintic polynomial det(xQ1 + yQ2 + zQ3). The PGL(3)-orbit of
the corresponding quintic plane curve is an invariant of the net, which we call the
discriminant quintic.

Since a semi-stable net defines a complete intersection by Corollary 2.8, we will
use words “net” and “curve” interchangeably. In particular, the discriminant Δ(C)
of a semi-stable curve C is the discriminant quintic of its defining net of quadrics.
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3.1. Main Results. In this section, we use the instability results of the pre-
vious section to give an explicit description of semi-stable curves. Our main results
are the following two theorems classifying reduced and non-reduced semi-stable
curves.

Theorem 3.1. A reduced semi-stable curve is a quadric section of a smooth
quartic del Pezzo in P4. Conversely, a quadric section C of a smooth quartic del
Pezzo in P4 is unstable if and only if

(1) C is non-reduced, or
(2) C is a union of an elliptic quartic and two conics meeting in a pair of

triple points, or
(3) C is a union of two elliptic quartics meeting along an A5 and an A1

singularities, or
(4) C has a 4-fold point with two lines as its two branches, or
(5) C is a union of two tangent conics and an elliptic quartic meeting the

conics in a D6 singularity and two nodes, or

(6) C has a D5 singularity with pointed normalization (C̃, p1, p2) and p1 is

conjugate to p2 under the hyperelliptic involution of C̃, or
(7) C contains a conic meeting the residual genus 2 component in an A7 sin-

gularity and the attaching point of the genus 2 component is a Weierstrass
point, or

(8) C is a degeneration of curves in (1)–(7).

Theorem 3.2 (Non-reduced semi-stable). Let N ⊂ M
G

be the image of the
locus of non-reduced semi-stable curves. Then N has the following decomposition
into irreducible components:

N = N1 ∪N2 ∪N3 ∪N4,

where

(1) N1 consists of a single point parameterizing the balanced genus 5 ribbon
described by Equation (1.1).

(2) N2 parameterizes curves with a double twisted cubic meeting the residual
conic in two points described by Equation (1.2).

(3) N3 parameterizes curves with a double conic component meeting the resid-
ual rational normal quartic in three points described by Equation (1.3).

(4) N4 consists of a single point parameterizing the semi-stable curve with two
double lines joined by conics described by Equation (1.5).

Our analysis proceeds by investigation of the discriminant quintic and is mo-
tivated by the following easy result on the relationship between a curve and its
discriminant:

Lemma 3.3. Let C be a complete intersection of three quadrics in P4. Then
Δ(C) is reduced if and only if C lies on a smooth quartic del Pezzo in P4.

Proof. Let Λ be the net of quadrics containing C. If Δ(C) is reduced, then
C lies on a smooth quartic del Pezzo, defined by any pencil 	 ⊂ Λ transverse
to Δ(C). Conversely, if C lies on a smooth quartic del Pezzo P in P4, then the
pencil of quadrics containing P has a reduced discriminant. It follows that Δ(C)
is reduced. �

298
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In Corollary 3.17 and Proposition 3.18, we will show that a semi-stable curve
C is reduced if and only if its discriminant Δ(C) is reduced. This, together with
Theorem 2.10, leads to a fairly concrete description of reduced semi-stable curves
as divisors on smooth del Pezzos given in Theorem 3.1. On the other hand, if C is
non-reduced our analysis breaks into two cases, according to whether Δ(C) has a
double line or a double conic. In each case, we find a distinguished quartic surface
containing C, which enables us to describe C rather explicitly. The surfaces arising
in this analysis are described in Section 3.2.

3.2. Special quartic surfaces in P4. Four quartic surfaces, each a complete
intersection of two quadrics in P4, play a special role in our analysis of semi-stable
curves. Before describing them, let us briefly recall the classification of pencils
of quadrics, or, equivalently quartic del Pezzo surfaces, by their Segre symbols
[HP52, AM99]:

Definition 3.4. Let 	 = {Q(t) | t ∈ P1} be a pencil of quadrics in P4, not all
singular. Suppose 	 has exactly k singular elements Q1, . . . , Qk. The Segre symbol
of 	 is a double array

Σ =
(
(aij)1≤j≤mi

)
1≤i≤k

,

where
∑

j≥r aij is the minimum order of vanishing at [Qi] of (6−r)×(6−r) minors

of 	, considered as a function of t; in particular,
∑mi

j=1 aij is the multiplicity of [Qi]

in the discriminant Δ(	).

Two quartic del Pezzo surfaces with projectively equivalent discriminants are
projectively equivalent if and only if their Segre symbols are equal; see [AM99,
Theorem 2] or [HP52, p.278]. Therefore, if Σ is a Segre symbol, we can speak of
a del Pezzo surface P (Σ).

3.2.1. Special del Pezzos. We consider two special del Pezzo surfaces P0 :=
P (1, (1, 1), (1, 1)) and P1 := P (1, 2, 2). We recall from [AM99, Lemma 3] that P1

is the anti-canonical embedding of the blow-up of P2 at points {p, q1, r1, q2, r2} on
a smooth conic, with ri infinitesimally close to qi, for i = 1, 2; and that P0 is the
anti-canonical embedding of the blow up of P2 at points {p, q1, r1, q2, r2}, where ri
is infinitesimally close to qi, for i = 1, 2, and p is the intersection of the lines qiri.

Note that P1 isotrivially specializes to P0. Indeed, if we choose coordinates
x, y, z on P2 so that z = 0 is the line q1q2 and x = 0 (resp., y = 0) is the line q1r1
(resp., q2r2), then the degeneration can be realized by the one-parameter subgroup
of PGL(3) acting on P2 via t · [x : y : z] = [tx : ty : t−2z].

3.2.2. Veronese quartic. The third quartic surface of interest is described in
the following lemma.

Lemma 3.5 (Non-linearly normal Veronese). Let V ⊂ P4 be the surface defined
by the ideal (ac − b2, ce − d2). Then V is a projection of a Veronese surface in
P5. Moreover, V has two pinch point singularities (local equation uv2 = w2) at
[0 : 0 : 0 : 0 : 1] and [1 : 0 : 0 : 0 : 0] as well as simple normal crossing along the
line b = c = d = 0. If an irreducible double quartic curve C on V is cut out by a
quadric, then C is either a double hyperplane section or C is projectively equivalent
to the balanced ribbon IR = (ac− b2, ce− d2, ae− 2bd+ c2).

Proof. Evidently, V is the image of [x : y : z] �→ [x2 : xy : y2 : yz : z2], which
is a projection of the Veronese in P5. The statement about singularities follows
from a local computation.
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Every irreducible double quartic curve on V must be the image of a double conic
on P2. Suppose that the conic has equation f(x, y, z) = 0. The double quartic is a
quadric section if and only if f2(x, y, z) ∈ Sym2 C[x2, xy, y2, yz, z2]. In particular,
f2(x, y, z) cannot have x3z and xz3 monomials. Thus either f(x, y, z) has no xz
term or it has no x2 and z2 terms. In the former case, f(x, y, z) = 0 is a hyperplane
section of V . Suppose now f(x, y, z) has no x2 or z2 term but has xz term. Then
we can write f(x, y, z) = xz + yL(x, z) + λy2. After a linear change of variables
on P2 inducing a compatible linear change of variables in P4, we can assume that
f(x, y, z) = xz + λy2. If λ = 0, then f2(x, y, z) = ae and it defines a union of two
double conics. This contradicts the irreducibility assumption. Thus, we can assume
that f(x, y, z) = xz−y2, so that (xz−y2)2 = x2z2−2xzy2+y4 = ae−2bd+c2. �

3.2.3. Reducible quartic. The final quartic of special interest to us is the re-
ducible union of a plane with a cubic scroll, which arises in Part (1) of the following
lemma.

Lemma 3.6. Suppose 	 is a pencil of quadrics containing a common plane and
with no common singular points. Then 	 is one of the following up to projectivity:

(1) 	 = (ad− bc, be− cd), defining a union of a plane with a cubic scroll. The
vertices of the quadrics in 	 trace out the conic b = d = ae− c2 = 0.

(2) 	 = (ad− μb2, be− cd), where μ ∈ C. The vertices of the rank 4 quadrics
in 	 trace out the line b = d = e = 0.

Proof. Suppose a pencil of quadrics contains a plane b = d = 0. Then the
general form of the pencil is bL1 − dL2 = bL3 − dL4 = 0. Since the pencil does not
have a common singular point, the set given by b = d = L1 = L2 = L3 = L4 = 0 is
empty. Without loss of generality, we can assume that b, d, L2, L3, L4 are linearly
independent and choose coordinates so that L2 = a, L3 = e, L4 = c. Thus
	 = (ad− bL1, be − cd). Changing coordinates, we can assume that L1 = λc+ μb.
If λ �= 0, a further change of coordinates: a′ := λa, c′ := λc + μb, b′ := λb,
e′ := e+ (μ/λ)d, d′ := d gives I = (a′d′ − b′c′, b′e′ − c′d′).

Finally, if λ = 0, then the pencil is (ad− μb2, be− cd). �
3.3. Non-reduced discriminants of semi-stable curves. We proceed to

give a complete classification of semi-stable curves with non-reduced discriminants.
An important implication of our analysis is the fact that a semi-stable curve with
a non-reduced discriminant is itself non-reduced.

3.3.1. Discriminants of pencils and nets of quadrics in P4. We begin with a
series of simple lemmas, whose proofs we omit.

Lemma 3.7. Suppose Q1 is a rank 4 quadric. Then det(Q1 + tQ2) has a root
of multiplicity two at t = 0, or is identically zero, if and only if Q2 vanishes at the
vertex of Q1.

Lemma 3.8. A pencil 	 of quadrics in P4 consists of singular quadrics only if:

(A) Quadrics in 	 have a common singular point; or
(B) Quadrics in 	 contain a common plane; or
(C) Restricted to a common hyperplane, the quadrics in 	 are singular along

a line;

Furthermore, if 	 satisfies (C) but not (A) or (B), then up to projectivity 	 =
(ac− b2, ce− d2), defining the Veronese quartic V .
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Lemma 3.9. A pencil 	 of quadrics in P3 consists of singular quadrics if and
only if:

(A) Quadrics in 	 have a common singular point; or
(B) Restricted to a common plane, quadrics in 	 contain a double line. The

general such 	 is, up to projectivity, (be, ce− d2).

Next, we analyze the possibilities for non-reduced discriminants of semi-stable
curves.

Proposition 3.10. A discriminant quintic of a semi-stable net Λ has a double
line if and only if (up to projectivity) (ae− bd, ad− bc) ⊂ Λ and Λ is of the form

(ad− bc, be− cd, ae− c2 + bL1 + dL2)

In particular, such Λ contains a double conic.

Proof. Suppose 	 is a double line in Δ(C). The analysis proceeds according
to possibilities for 	 enumerated in Lemma 3.8.

(A) Suppose all elements of 	 are singular at a point O. By Lemma 3.7, 	 can
be a double line of Δ(C) in two cases: either O is a base point of Λ or all quadrics
in 	 have rank ≤ 3. The former case is impossible by Lemma 2.7 (4). In the latter
case Lemma 3.9 says that either all quadrics in 	 are singular along a line, in which
case Λ is destabilized by Lemma 2.7 (3) or 	 is up to projectivity (a degeneration
of) (be, ce− d2), in which case Λ is destabilized by ρ5 = (3, 3, 3,−2,−7).

(B) Suppose 	 is a pencil of quadrics containing a plane, say b = d = 0, and
having no common singular points. Then by Lemma 3.6 either 	 = (ad−bc, be−cd)
or 	 = (ad− b2, be− cd), up to projectivity. However, if 	 = (ad− b2, be− cd), then
the singular points of quadrics in 	 trace out the line b = d = e = 0, which must
then fall in the base locus of the net because 	 is a double line of Δ(C). Such a net
is destabilized by the 1-PS with weights (4,−1, 4,−6,−1).

If 	 = (ad − bc, be − cd), then b = d = ae − c2 = 0 is the conic along which
elements of 	 are singular, so this conic must be in the base locus of Λ. The claim
follows.

(C) Suppose that we are not in the cases (A) or (B). Then 	 = (ae−c2, be−d2),
up to projectivity. Since the generic quadric in 	 has rank 4 and the vertices of
quadrics in 	 vary along c = d = e = 0, we deduce that c = d = e = 0 must be in
the base locus of the net. Such Λ is destabilized by ρ6 = (4, 4,−1,−1,−6). �

The converse to the above result is the following.

Proposition 3.11. A semi-stable curve with a double conic component is
projectively equivalent to the intersection of the quadrics Q1 = ad − bc,Q2 =
be− cd,Q3 = ae− c2 + bL1 + dL2, where Li are not simultaneously zero.

Proof. Let C be a semi-stable curve with a double structure supported on a
smooth conic X. Denote by Λ the associated net of C. Let 	 ⊂ Λ be the pencil of
quadrics containing the plane PX spanned by X. Note that any quadric not in 	
intersects PX in X, and so is smooth along X. Since every point of X is a singular
point of C, for every point of X there must be a quadric in 	 singular at that point.
It follows that X is traced out by vertices of quadrics in 	. (We note in passing that
this implies that 	 appears with multiplicity 2 in Δ.) By Lemma 3.6, we must have
	 = (ad− bc, be− cd). Then the singular points of quadrics in 	 trace out the conic
b = d = ae− c2 = 0. It follows that Λ = (ad− bc, be− cd, ae− c2 + bL1 + dL2). �
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Remark 3.12. In Proposition 3.11, the intersection of Q1 and Q2 is the union
of the plane b = d = 0 and the cubic scroll (ad−bc, be−cd, ae−c2). The scroll is the
blow-up of P2 at a point and is embedded in P4 by 2H −E, where H is the class of
a line and E is the class of the (−1)-curve. The scroll meets the plane b = d = 0 in
the conic ae− c2 = 0. The quadric Q3 intersects the scroll in this conic (of class H
on the scroll) and in a curve of class 3H−2E, which is a rational normal quartic in
P4 meeting the conic b = d = ae− c2 = 0 in three points. Thus any curve described
by Proposition 3.11 looks like a double conic meeting a rational normal quartic in
three points.

Proposition 3.13. The discriminant quintic of a semi-stable curve C has a
double conic only in the following cases:

(1) Up to projectivity, the net of quadrics containing C is

IR := (ac− b2, ae− 2bd+ c2, ce− d2).

(2) Up to projectivity, the net of quadrics containing C is

IDL := (ad, ae+ bd− c2, be).

(3) The curve C has a double line meeting the residual genus 2 curve in 2
points; such C isotrivially degenerates to the curve defined by IDL.

(4) The curve C contains a double twisted cubic and is defined by Equation
(1.2).

Proof. Let C be a curve with a discriminant Δ(C) = 2q + 	, where q is a
conic and 	 is the residual pencil.

Case 1: Suppose first that the generic quadric in q has rank 3. The further
analysis breaks into the cases enumerated by Lemma 3.8:

(A) All quadrics in 	 have a common singular point; or
(B) All quadrics in 	 contain a common plane; or
(C) 	 = (ac− b2, ce− d2), defining the Veronese quartic V .

Observation: Before proceeding with a case-by-case analysis, we make an elemen-
tary observation about conics in Λ. Namely, suppose q ⊂ Λ is a conic. Suppose
[Q1] and [Q2] are two distinct point on q and let [Q3] ∈ Λ be the point of the
intersection of the tangent lines to q at [Q1] and [Q2]. Then q can be explicitly
parameterized by P1 via [s : t] �→ [s2Q1 + t2Q2 + stQ3]. We also note that Q1, Q2,
and Q3 obtained by this construction span the net.

Case (A): The quadrics in 	 have a common singular point b = c = d = e = 0.
We can assume that 	 = (Q2, Q3) and Q1 = a2 + Q1(b, c, d, e). Note that with
this choice of coordinates, every quadric in the net can be written as a linear
combination of a2 and a quadric in variables b, c, d, e. Since elements of q have
generic rank 3, all elements of q have form λa2 + R(b, c, d, e), where λ ∈ C and
R(b, c, d, e) are generically rank 2 quadrics with no common singular point. In
particular, it follows that quadrics corresponding to q ∩ 	 are rank 2 quadrics in
variables b, c, d, e.

Given any two points [Q1], [Q2] ∈ q, we can choose coordinates b, c, d, e so that
Q1 = bc (mod a2) and Q2 = de (mod a2). By the observation above every element
of q can be written as s2Q1 + t2Q2 + stQ3, where [s : t] ∈ P1, and where [Q3] is
the point of intersection of the tangent lines to q at [Q1] and [Q2]. Set Q3 := Q3

(mod a). Then s2bc+ t2de+ stQ3 is a rank 2 quadric for all [s : t] ∈ P1.
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Claim 3.14. Q3 = μbe + 1
μcd, possibly after an appropriate renaming of vari-

ables.

Proof. Let M be the symmetric matrix associated to s2bc+ t2de+ stQ3. An-
alyzing t5s and s5t terms of the 3×3 minors of M , we see that Q3 ∈ (bd, be, cd, ce).
Writing Q3 = xbd + ybe + zcd + wce, the upper-left 3 × 3 minor of M is 2xzs4t2.
Hence xz = 0. Similarly, one shows that xy = zw = yw = 0. Without loss of
generality, we can assume x = w = 0. Computing the remaining 3 × 3 minors we
obtain y(1− yz) = z(1− yz) = 0. The claim follows. �

We now consider separately two subcases:
Case (A.1): 	 is tangent to q. We take [Q1] to be the point of tangency and [Q2]

to be any point on the conic. By above, we can assume that Q1 = de, Q2 = bc+a2,
and Q3 = be + cd. (The last equality comes from Q3 = be + cd and Q3 ∈ 	). This
net is destabilized by ρ2 = (2, 2, 2,−3,−3).

Case (A.2): 	 is not tangent to q. Let q ∩ 	 = {[Q1], [Q2]}. As above, we let
[Q3] be the point of intersection of tangents to q at [Q1] and [Q2]. Letting Q1 = bc
and Q2 = de, we can write Q3 = μbe + 1

μcd+ a2 by Claim 3.14. By appropriately

renaming and scaling the variables, we obtain the net IDL.

Case (B): The quadrics in 	 contain a plane P and have no common singular
points. If 	 intersects q in two distinct points, then we are in case (A). (Indeed, the
quadrics in q ∩ 	 have rank 3 and any two rank 3 quadrics containing a common
plane have a common singular point.)

Suppose 	 is tangent to q. Let [Q1] be the point of tangency. Then Q1 has
rank at most 3 and contains the plane P . We can choose coordinates so that P
has equation d = e = 0 and Q1 = ce + λd2, for some λ ∈ C. Let [Q2] ∈ q � 	 and
let [Q3] ∈ 	 be the point of intersection of the tangents to q at [Q1] and [Q2] (note
that the tangent line to q at [Q1] is 	). Then Q3 = dL1+eL2, for some linear forms
L1, L2. Since Q1 and Q3 have no common singular points, the system of equations
c = d = e = L1 = L2 = 0 has no solutions. Thus we can we can assume L1 = b and
L2 = a.

All quadrics in q have form s2Q1 + t2Q2 + stQ3, where [s : t] ∈ P1 and have
rank 3 by our assumption. The analysis of t7s terms in the vanishing 4× 4 minors
of the symmetric matrix of s2Q1 + t2Q2 + stQ3 shows that Q2 ∈ (c, d, e).

It follows that Λ = (Q1, Q2, Q3), where Q1 = ce + λd2, Q2 = ae + bd, and
Q3 ∈ (c, d, e). Thus Λ is destabilized by ρ3 = (3, 3,−2,−2,−2).

Case (C): Suppose 	 = (ac−b2, ce−d2). By the observation above, there exists
Q3 such that s2(ac−b2)+t2(ce−d2)+stQ3 has rank 3 for s and t. The vanishing of
the 4× 4 minors of the symmetric matrix of s2(ac− b2)+ t2(ce−d2)+ stQ3 implies
that Q3 = ae− 2bd+ c2. Hence the net is IR = (ac− b2, ae− 2bd+ c2, ce− d2).

Case 2: We now consider the case when the generic quadric in q has rank
4. Taking a general pencil in Λ, we see that C lies on the del Pezzo P (1, 2, 2).
Furthermore, by Lemma 3.7 the vertices of quadrics in q form a curve D in the
base locus of the net. In particular, C is non-reduced.

We now proceed to consider different cases according to the degree of D.
• If D is a line, then we are done by Proposition 3.15 below, which describes

all semi-stable curves containing a double line on P (1, 2, 2).
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• If D is a conic, then we are done by Proposition 3.11, which describes all
semi-stable curves containing double conics.

• If D is a twisted cubic, then the residual component of C is a conic. Let
	 ⊂ Λ be the pencil of quadrics containing the plane spanned by this conic. The
intersection of the quadrics in 	 is a union of a plane and a cubic scroll. The
general such 	 has equation (ad− bc, be− cd) (cf. Lemma 3.6) with the scroll being
(ad− bc, be − cd, ae− c2). Since every double twisted cubic on a scroll is a double
hyperplane section, we conclude that every semi-stable curve with a double twisted
cubic component is a degeneration of a curve defined by Equation (1.2).

• If D is a quartic, then by Theorem 2.10 (1) D must be a rational normal
quartic. We now consider the possibilities for 	 enumerated in Lemma 3.8. Case
(B) is clearly impossible. In Case (A), all quadrics in 	 are singular at some point
O. In this case, D lies on a cone over E ⊂ P3 with a vertex at O, where E is a
complete intersection of two quadrics in P3. Since the arithmetic genus of E is 1
and E is a projection of a rational normal quartic, we see that E is singular. We
conclude that O lies on a chord (or a tangent line) of D. This immediately leads
to a contradiction, as D is a complete intersection of three quadrics not passing
through O.

Finally, in Case (C) D lies on the Veronese (ac − b2, ce − d2). By Lemma 3.5
the ideal of C is IR. This finishes the proof. �

3.3.2. Double lines. Let π : S → P2 be the blow up of a plane at five points
{p, q1, r1, q2, r2}, with ri infinitesimally close to qi for i = 1, 2. Set E0 := π−1(0)
and let π−1(qi) = Fi ∪ Gi, where F1, F2 are the (−2)-curves and G1, G2 are the
(−1)-curves on S. Denote by H the class of a line on S. If φ : S → P4 is the
anti-canonical map, then φ(S) is the del Pezzo P1 described in Section 3.2.1.

Proposition 3.15. Let C be a semi-stable curve on P1 with a double line
component. Then C isotrivially degenerates to the curve defined by

IDL = (ad, ae+ bd− c2, be).

Proof. Suppose 2L+R ∈ |− 2KS | is a divisor on S such that φ(2L+R) is a
semi-stable curve and φ(L) is a line. Then L is a (−1)-curve and R meets L in four
points, counting multiplicities. But by Theorem 2.10 (3) φ(L) cannot meet φ(R)
in four or more points. It follows that one of the irreducible components of R is a
(−2)-curve meeting L. The only (−1)-curves meeting (−2)-curves on S are, up to
symmetries:

(i) L = G1 meeting the (−2) curve F1.
(ii) L = H − F1 −G1 − F2 −G2 meeting both (−2)-curves F1 and F2.

However, in case (i), we see that R − F1 has arithmetic genus one and meets
L + F1 in three points. It follows that φ(R) = φ(R − F1) meets the double line
φ(L) = φ(L + F1) in three points. It follows that C is unstable by Theorem 2.10
(6)(b).

In case (ii), we see that R − F1 − F2 = 4H − 2E0 − F1 − 2G1 − F2 − 2G2 is a
genus two curve meeting L+ F1 + F2 in 2 points. Recall that there is an isotrivial
degeneration of P1 to P0. Under this degeneration, L is fixed and the limit of the
residual genus two component is

(H − F1 − 2G1 − E0)︸ ︷︷ ︸
(-2)-curve

+(H − F2 − 2G2 − E0)︸ ︷︷ ︸
(-2)-curve

+2E0 + (H − E0) + (H − E0).
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It follows that under the degeneration of P1 to P0, C is a union of two double lines
of class E0 and H−F1−G1−F2−G2, respectively, and two conics of class H−E0.
A simple computation shows that in appropriate coordinates C is given by the ideal
IDL = (ad, ae+ bd− c2, be). �

We summarize the discussion of this section in the following result.

Proposition 3.16. Suppose C is a semi-stable curve. If Δ(C) is non-reduced,
then C is non-reduced.

Proof. Δ(C) is non-reduced if and only if it has a double line or a double
conic. The result now follows immediately from Propositions 3.10 and 3.13. �

Corollary 3.17. A reduced semi-stable curve lies on a smooth quartic del
Pezzo.

Proof. By Proposition 3.16, the discriminant of a reduced semi-stable curve
is reduced and so the curve lies on a smooth quartic del Pezzo by Lemma 3.3. �

Conversely, we now prove Part (1) of Theorem 3.1 stating that a semi-stable
curve on a smooth quartic del Pezzo is necessarily reduced.

Proposition 3.18. Suppose C is a semi-stable curve. If C lies on a smooth
quartic del Pezzo, then C is reduced.

Proof. Suppose C lies on a smooth quartic del Pezzo S and let 	 be the pencil
of quadrics containing S. To prove that C is reduced, we argue by contradiction.
Suppose that C has a non-reduced irreducible component D. Then for every point
p ∈ D, there is a quadric in the ideal of C that is singular at p. Since quadrics
in 	 cannot be singular along D, we deduce that the ideal of C contains a single
quadric that is singular along all of D. This leads to a contradiction using Lemma
2.7. Indeed, if D is a line, then C is destabilized by ρ3 = (3, 3,−2,−2,−2); if D
is a conic, then C is destabilized by ρ2 = (2, 2, 2,−3,−3); if D is a twisted cubic,
then C is destabilized by ρ1 = (1, 1, 1, 1,−4). �

3.4. Proofs of Theorem 3.1 and 3.2.

Proof of Theorem 3.1. To finish the proof of Theorem 3.1, we observe that
Parts (2)–(7) follow from Theorem 2.10 (6)(a), (7), (8), (10), (11), (12), respectively.

�
Proof of Theorem 3.2. To prove Theorem 3.2, we note that a non-reduced

semi-stable curve has a non-reduced discriminant by Proposition 3.18 and Lemma
3.3. It follows from Propositions 3.10 and 3.13 that a non-reduced semi-stable curve
degenerates isotrivially to a curve in N1 ∪N2 ∪N3 ∪N4.

We note that N1 and N4 each consist of a single point, hence irreducible. To
prove irreducibility of N2 and N3, we recall that a semi-stable curve with a double
twisted cubic component is, up to projectivity, given by Equation (1.2):

(ad− bc, ae− c2 + L2, be− cd).

Similarly, a semi-stable with a double conic component is, up to projectivity, given
by Equation (1.3):

(ad− bc, ae− c2 + bL1 + dL2, be− cd),

Irreducibility of the space of linear forms implies irreducibility of N2 and N3.
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We proceed to prove the semi-stability of the general point of Ni (i = 1, . . . , 4)
using the Kempf-Morrison criterion [AFS13, Proposition 2.4].

Proposition 3.19. The ideals IR, IDT , IT , IDL, defined by

IR := (ac− b2, ae− 2bd+ c2, ce− d2),

IDT := (ad− b2, ae− bd+ c2, be− d2),

IT := (ad− bc, ae+ bd− c2, be− cd),

IDL := (ad, ae+ bd− c2, be),

are semi-stable.

Proof. Each of the ideals is stabilized by a certain 1-PS acting diagonally
with respect to the distinguished basis {a, b, c, d, e}. Indeed, they are stabilized by
(2, 1, 0,−1,−2), (3, 1, 0,−1,−3), (2, 1, 0,−1,−2), and (2, 1, 0,−1,−2), respectively.
By the Kempf-Morrison criterion [AFS13, Proposition 2.4], it therefore suffices to
check that these curves are semi-stable with respect to 1-PS’s acting diagonally
with respect to this basis. By Theorem 2.1 (see also Remark 2.2), it suffices to
check the given finite list of 1-PS’s acting diagonally with respect to this basis,
and this is an easy exercise. We should remark that semi-stability of the balanced
ribbon IR is a special case of a more general [AFS13, Theorem 4.1]. �

Observing that IR ∈ N1, IDT ∈ N2, IT ∈ N3, IDL ∈ N4 finishes the proof of
Theorem 3.2. �

Remark 3.20. We note that IT = (ad− bc, ae + bd − c2, be − cd) contains no
rank 3 quadric. Thus [FJ11, Theorem 2.1] provides an easier, independent proof
for the semi-stability of IT .

Remark 3.21. We observe that the discriminant quintic of IT is 2y3(xz− y2),
which is unstable under the natural SL(3)-action on the space of plane quintics.

4. Proofs of the main results

In this section we prove Main Theorems 1–3 from the introduction. Main
Theorem 1 follows immediately from Theorems 3.1 and 3.2.

Proof of Main Theorem 2. The divisor of singular complete intersections

in M
G

is irreducible. Furthermore, from Main Theorem 1, its general point cor-
responds to a one-nodal curve on a smooth quartic del Pezzo. It follows that the

inverse rational map f−1 : M
G ��� M5 does not contract divisors and so f is a

contraction.
By Theorem [Has00, Theorem 6.2 and Theorem 6.3], the general curve in Δ1

arises as a stable limit of a genus 5 curve with an A2 singularity and the general

curve in Δ2 arises as a stable limit of the general curve in the A
{1}
5 -locus. It follows

that Δ1 and Δ2 are generically fibered over A2- and A
{1}
5 -loci, respectively.

It remains to prove that the trigonal divisor is contracted to a single point
given by Equation (1.4). Recall that a general smooth trigonal curve of genus 5
has a very ample canonical line bundle and its canonical embedding lies on a cubic
scroll, whose homogeneous ideal is (ad − bc, ae − c2, be − cd), up to projectivities.
A trigonal curve on the scroll is cut out by two linear independent cubics

(aR1 − bR2 + cR3, cR1 − dR2 + eR3),
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where R1, R2, R3 are quadrics in C[a, b, c, d, e]. In particular, a general trigonal
curve is obtained by taking {Ri}3i=1 to be general.

Proposition 4.1. The rational map f : M5 ��� M
G

contracts the trigonal
divisor Trig5 to the point

IT := (ad− bc, ae+ bd− c2, be− cd) ∈ M
G
.

Proof. Since Trig5 is a divisor, f is defined at the generic point of Trig5.
Hence to show that f contracts Trig5 to a point, we need to show that a general
trigonal curve arises as a stable limit for some deformation of IT .

Consider the family of nets Λt = (Q1(t), Q2(t), Q3(t)) defined by

Q1(t) = be− cd+ t2R1(a, b, c, d, e),

Q2(t) = ae− c2 + t2R2(a, b, c, d, e),

Q3(t) = ad− bc+ t2R3(a, b, c, d, e),

where R1, R2, R3 are general quadrics. Then for t �= 0, Λt defines a smooth non-
trigonal curve Ct of genus 5, while Λ0 = (ad− bc, ae − c2, be − cd) defines a cubic
scroll in P4. Let C0 be the flat limit of {Ct}t�=0 as t → 0. Using linear syzygies
among the quadrics containing the scroll, we see that

F1 :=
1

t2
(
aQ1(t)− bQ2(t) + cQ3(t)

)
|t=0 = aR1 − bR2 + cR3,

F2 :=
1

t2
(
cQ1(t)− dQ2(t) + eQ3(t)

)
|t=0 = cR1 − dR2 + eR3

are cubics in the ideal of C0. Since R1, R2, R3 were chosen generically, we conclude
that C0 is a general smooth trigonal curve.

It now suffices to show that the limit of {Λt}t�=0 in M
G

is the point IT . Let
ρt ∈ PGL(5) be given by ρt·[a : b : c : d : e] = [a : t−1b : c : t−1d : e]. Set Λ′

t := ρt·Λt.
Then the flat limit of Λ′

t as t → 0 is Λ′
0 = (ad−bc, ae−c2+R2(0, b, 0, d, 0), be−cd).

Since R2 was chosen to be a general quadric, S(b, d) := R2(0, b, 0, d, 0) has rank 2.
We claim that, without loss of generality, we may take R2(0, b, 0, d, 0) = bd+ηd2

for some scalar η. This implies that Λ′
0 is semi-stable and that its orbit closure

contains IT , since the limit as t → ∞ of (ae− bc, ae− c2 + bd+ ηd2, be− cd) under
the one-parameter subgroup (t2, t, 1, t−1, t−2) is IT = (ad− bc, ae− c2+ bd, be− cd).

It remains to show that we may take R2(0, b, 0, d, 0) = bd+ ηd2. Let S(b, d) =
L1(b, d)L2(b, d), where L1 and L2 are linearly independent linear forms. Without
loss of generality, L1(b, d) = d + μb, where μ ∈ C. Make the following coordinate
change:

a′ := a,

b′ := b,

c′ := c+ μa,

d′ := d+ μb,

e′ := e+ 2μc+ μ2a.

307



28 MAKSYM FEDORCHUK AND DAVID ISHII SMYTH

Let M(b′, d′) = λb′ + νd′ be the linear form such that M(b′, d′) = L1(b, d). Note
that λ �= 0. After scaling, we can assume that λ = 1. Then

a′d′ − b′c′ = ad− bc,

b′e′ − c′d′ = be− cd− μ(ad− bc),

a′e′ +M(b′, d′)d′ − (c′)2 = ae− c2 + L1(b, d)L2(b, d),

as desired. �

Proof of Main Theorem 3. By Main Theorem 2, f is a contraction. We
compute f∗O(1) using two methods.

The most straightforward way is to write down three test families along which
f is regular and which are contracted by f . Consider the following families in M5:

(1) A family T1 of elliptic tails attached to a fixed general pointed genus 4
curve. We have λ · T1 = 1, δ0 · T1 = 12, δ1 · T1 = −1, δ2 · T1 = 0.
Furthermore, deformations of T1 cover Δ1.

(2) A family T2 of genus 2 tails attached to a fixed general pointed genus
3 curve at a non-Weierstrass point; see [FS13, Section 4.4] for a precise
description of the construction. We have λ · T3 = 3, δ0 · T3 = 30, δ2 · T3 =
−1, δ1 · T3 = 0. Furthermore, deformations of T2 cover Δ2.

(3) A family T3 of curves in Trig0 satisfying λ ·T3 = 4, δ0 ·T3 = 33, δi ·T3 = 0
for i = 1, 2. Such a family exists by [DP12], where it is also shown that
deformations of T3 cover Trig5.

By Main Theorem 2, f contracts each Ti. Namely, f(T1) is a semi-stable
cuspidal curve, f(T2) is a semi-stable curve in the A1

5-locus, and f(T3) = [IT ].
Therefore, assuming that f is regular along each Ti, we have f∗O(1).Ti = 0 for
each i = 1, 2, 3. Writing f∗O(1) = aλ− bδ0 − cδ1 − dδ2 and intersecting both sides
with Ti, we obtain

f∗O(1) ∼ 33λ− 4δ0 − 15δ1 − 21δ2

as desired. Unfortunately, proving f is regular along each Ti directly would require
several rather subtle stable reduction calculations. Thus, we give an alternative
computation of f∗O(1), which implies the desired regularity a posteriori.

Let D ⊂ M
G

be the divisor of nets containing rank 3 quadrics. Note that,
IR ∈ D (see Proposition 3.19 for the definition of IR). In particular, D is non-empty.
D is irreducible because the divisor of nets in G(3, 15) containing a rank 3 quadric
is irreducible. By Remark 3.20, IT /∈ D, and since IT lies in the closure of A2- and

A
{1}
5 -loci, we conclude that f−1D does not contain Δ1, Δ2, or Trig5. It follows

that f−1D is the divisor of genus 5 curves with a vanishing theta-null. By [TiB88,
Proposition 3.1], the class of this divisor is proportional to 4(33λ−4δ0−15δ1−21δ2).
This proves Part (1) of the theorem.

To prove Part (2), simply observe that

KM5
+

14

33
δ ∼

(
33λ− 4δ0 − 15δ1 − 21δ2

)
+ 11δ1 + 17δ2

and

KM5
+

3

8
δ ∼

(
8λ− δ0 − 4δ1 − 6δ2

)
+ 3δ1 + 5δ2,
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where 8λ − δ0 − 4δ1 − 6δ2 is an effective multiple of the divisor class of Trig5 by
Brill-Noether Ray Theorem [HM98, Theorem 6.62]. �
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This paper is dedicated to Joe Harris on the occasion of his 60th birthday.

Abstract. Given a family of Abelian varieties over a positive-dimensional
base, we prove that for a sufficiently general curve in the base, every rational
section of the family over the curve is contained in a unique rational section
over the entire base.

1. Main results

The starting point for this article is the following theorem.

Theorem 1.1. [4] Let π : X → B be a proper morphism of complex varieties.
If π admits a a section when restricted to a very general sufficiently positive curve
in B, then there exists a subvariety Z ⊂ X dominating B whose general fiber is
rationally connected.

We call such a Z a pseudosection of π. The relevance of pseudosections is
that they will force the existence of sections over a generic curve, since families of
rationally connected varieties over a curve have sections. Of course, the sections
produced by this argument will then be contained in the corresponding Z.

Surprisingly, the proof of this theorem does not establish the following stronger
statement.

Conjecture 1.2. If π : X → B is a morphism of complex varieties, then for
a very general, sufficiently positive curve C ⊂ B, every section of the restricted
family XC = π−1(C) → C takes values in a pseudosection.

This is a birational problem: for any dense, Zariski open U ⊂ B, a positive
answer for π : π−1(U) → U implies a positive answer for X → B. In particular,
we may replace B by its smooth locus. Thus in all that follows, unless explicitly
stated otherwise, we assume that B is smooth.

Conjecture 1.2 appeared in [4], as well as the special case where X is a family
of Abelian varieties over B. In this special case we get a simpler prediction: for
a very general, sufficiently positive curve C ⊂ B, the restriction map on sections,
X(B) → XC(C), is bijective. One special feature is the Weil extension theorem:
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2 GRABER AND STARR

every rational section extends to a regular section on the entire smooth locus.
Because of this, and in order to conform to classical terminology, we shall frequently
refer to regular sections as “global rational sections”. The purpose of this paper is
to prove this prediction, with a stronger than expected bound on the meaning of
“sufficiently positive.”

To state our result precisely, we need to introduce some notation. Fix a gener-
ically finite, generically unramified morphism f : B → Pn. We then define

• an f -line is a curve of the form f−1(L) for a line L ⊂ Pn,
• an f -conic is a curve of the form f−1(C) for C a plane conic in Pn.
• an f -line-pair is a curve of the form f−1(L1 ∪L2) where the Li are a pair
of incident lines in Pn.

• an f -planar surface is a surface in B of the form f−1(Π) for a 2-plane
Π ⊂ Pn.

By Bertini’s Theorem, for a sufficiently general line L, respectively conic C,
plane Π, the inverse image f−1(L), resp. f−1(C), f−1(Π), is smooth. We will
generally suppress the f in the terminology, but obviously these notions are mean-
ingless in the absence of a choice of f .

Let k be an uncountable algebraically closed field. We remind the reader that a
subset of a scheme is general, resp. very general, if it contains a dense, open subset,
resp. the intersection of a countable collection of dense, open subsets. A property
of points in a scheme holds at a general point, resp. a very general point, if the set
of points where it holds is general, resp. very general.

Theorem 1.3. Let B be a integral, normal, quasi-projective k-scheme of di-
mension b ≥ 2. Let A be an Abelian scheme over B. For a very general line-pair
C in B, the map

A(B) → A(C)

is a bijection. The theorem also holds with C a very general planar surface in B.
If char(k) = 0, this also holds with C a very general conic in B.

Remark 1.4. We make a few remarks.

(1) It is perhaps worth remarking that if we take B to be smooth, then A(B) =
A(K(B)) is the usual Mordell-Weil group of A over the function field of
B, and similarly for A(C) if C is a general conic (or any other smooth
curve).

(2) If B is a locally closed subset of PN , then one way to produce a generically
finite, generically unramified morphism to Pn is via generic projection. In
this case, a very general f -line with respect to a general projection is just
a very general linear section curve. A very general conic will just be a
general linear section of the intersection of B with a very general quadric.

(3) There is nothing special about line-pairs, resp. conics. The proof works
for any type of curve which is at least as “complex” as line-pairs, resp.
conics. In particular, in characteristic zero, we can replace conics with
“curves of degree at least 2.”

(4) The proof of the characteristic zero portion of this theorem uses a partial

compactification of the pair (B,A) to a Néron model (B̃, Ã). A general

line-pair, resp. conic, C in B̃ is projective. Thus, using the Hilbert scheme

for instance, the sections of C×
˜B Ã over C are the k-points of a naturally

defined group k-scheme ΣC . If char(k) = 0, this is a reduced group
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RESTRICTION OF SECTIONS 3

scheme. But if char(k) > 0, this group scheme is sometimes nonreduced,
cf. [8, Proposition 3]. This is one reason for the char(k) = 0 hypothesis
for conics. To extend our argument to positive characteristic, one would
need to prove there exists a homomorphism of group schemes over B

ΣC ×k B̃ → Ã

splitting the restriction map. We do not know whether such a splitting
always exists.

(5) In [3], N. Fakhruddin has proven a weaker version of the characteristic zero
case of this theorem under the hypothesis that A → B is a proper Abelian
scheme and B admits a compactification with boundary in codimension
at least 2. It is interesting that it is exactly the divisorial component of
the boundary that causes most of the difficulties in our argument, given
that our methods are completely different.

Via a standard descent argument, we get as a corollary a strengthening of a
theorem from [4].

Corollary 1.5. With A and B as above, for every nonzero element [T ] ∈
H1

ét(B,A), for C a very general line-pair or a very general planar surface, the
restriction [T |C ] ∈ H1

ét(C,C ×B A) is nonzero. In characteristic zero, we can also
take C to be a very general conic.

Remark 1.6. The group H1
ét(B,A) is a torsion group. The subgroup

H1
ét(B,A)′ ⊂ H1

ét(B,A)

of elements whose order is not divisible by char(k) is countable (it is the whole
group if char(k) = 0). Therefore, Corollary 1.5 implies that for C a very general
line-pair, resp. a very general conic in characteristic zero, the restriction map

H1
ét(B,A)′ → H1

ét(C,C ×B A)′

is injective.

In the last section, we give some examples related to the theorem and the
corollary to indicate limits to possible generalizations.

Proposition 1.7. (i) There exists a family of elliptic curves E → U
over a dense open U ⊂ P2 so that for every line L in P2, the mapping

E(P2) → E(L ∩ U)

is not surjective.
(ii) There exist B and A such that every dense open subset of the parameter

space of conics contains a conic C in B for which

A(B) → A(C)

is not surjective.
(iii) There exist B and A such that for every conic C in B the map

H1
ét(B,A) → H1

ét(C,A)

is not surjective.
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4 GRABER AND STARR

(iv) If char(k) = p is positive, there exist B and A such that for every line
pair C, resp. conic C, the map

H1
ét(B,A) → H1

ét(C,A)

is not injective. More precisely, there exists an A-torsor T over B (de-
pending on C) whose order equals p and whose restriction C ×B T is a
trivial C ×B A-torsor over C.

Acknowledgments. We are very grateful to A. J. de Jong who pointed out
that a purely inseparable Bertini result as in Corollary 2.2 must exist, who rec-
ommended replacing an earlier argument by an application of the Néron extension
property, and who explained to us Moret-Bailly’s counterexamples from [8]. We
also thank the anonymous referees for their comments.

2. A Bertini theorem

One consequence of the classical Bertini theorem is that sections of a finite,
separable cover of a quasi-projective scheme B of dimension ≥ 2 are detected by
the restriction of the cover to a general hyperplane section of B. In this section we
recall this and extend the result to covers which may not be separable.

Theorem 2.1. [5, Théorème 4.10, 6.10] Let B be an integral scheme and let
f : B → PN

k be a finite type morphism. If f is generically unramified, then for a
general hyperplane H, B ×

P
N
k
H is geometrically reduced. If dim(f(B)) ≥ 2, then

for a general hyperplane H, B ×P
N
k
H is geometrically irreducible.

A straightforward consequence is the separable case of the following result. We
also explain the inseparable case.

Corollary 2.2. Let B be an integral scheme of dimension ≥ 2 and let f :
B → PN

k be a generically unramified, finite type morphism. Let g : X → B be a
generically finite morphism. For a general hyperplane H ⊂ PN

k , the restriction map
from the set of rational sections of g over B to the set of rational sections of

gH : X ×
P
N
k
H → B ×

P
N
k
H

is a bijection.

Proof. If g has a rational section, its restriction to B ×
P
N
k
H is a rational

section of gH for general H. By Noetherian induction, it suffices to consider the
case that X is irreducible. If g is not dominant, the result is clear. If g has a
rational section, then g is birational and again the result is clear. Thus assume g is
dominant and has no rational section. To prove the corollary, we must prove that
also gH has no rational sections for H a general hyperplane.

Because g is dominant, there is an extension of fraction fields

g∗ : k(B) → k(X).

Because g is generically finite, this is a finite field extension. Because there is no
rational section, it is a nontrivial field extension, i.e., it has degree d > 1.

Case I. k(X)/k(B) is separable. If k(X)/k(B) is separable, then the com-
position g ◦f : X → PN

k is generically unramified. By Theorem 2.1 applied to f ◦ g,
for a general H, X ×P

N
k
H is integral. By generic flatness, the morphism

gH : X ×P
N
k
H → B ×P

N
k
H
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RESTRICTION OF SECTIONS 5

is generically finite and flat of degree d. Thus k(B ×
P
N
k
H) → k(X ×

P
N
k
H) is a

finite field extension of degree d > 1. Since the extension is not degree 1, it has no
splitting. Thus gH has no rational section.

Case II. k(X)/k(B) is not separable. In this case, the differential of g is
not surjective at a general point of X. It follows that the same is true of gH for a
general H. This precludes the possibility of a section of gH . �

3. Elementary reductions

The next reduction uses part of the theory of Chow’s K/k-trace. We review
the part that we need.

Definition 3.1. Let B be an integral, smooth, quasi-projective scheme over
an algebraically closed field k. Let A be an Abelian scheme over B. A Chow B/k-
trace of A is an initial pair (TrB/k(A), u) of an Abelian k-scheme TrB/k(A) and a
morphism of Abelian schemes over B,

u : B ×k TrB/k(A) → A,

i.e., for every pair (A0, v) of an Abelian k-scheme A0 and a morphism of Abelian
schemes over B,

v : B ×k A0 → A,

there exists a unique morphism of Abelian k-schemes

w : A0 → TrB/k(A)

such that v = u ◦ (IdB × w).

The basic result concerning the Chow trace is the following.

Theorem 3.2. [7, §VIII.3], [2]

(i) For every integral, smooth, quasi-projective k-scheme B and every Abelian
scheme A over B, there exists a Chow B/k-trace of A.

(ii) Let E be an integral, smooth, quasi-projective k-scheme and let E → B be
a dominant k-morphism such that k(B) is separably closed in k(E). The
induced morphism of Abelian k-schemes

w : TrB/k(A) → TrE/k(E ×B A)

is an isomorphism.

Remark 3.3. A dense open immersion U → B satisfies the condition in (ii).
Taking the limit over all dense open subsets of B, the Chow trace depends only
on the field extension k(B)/k and the Abelian k(B)-scheme A⊗OB

k(B). Usually
the Chow trace is formulated for pairs (K/k,AK) of a field extension K/k and an
Abelian K-scheme. It is more useful for us to formulate it as above.

The Chow trace is closely related to the property of isotriviality of an Abelian
scheme.

Definition 3.4. Let B be an integral, smooth, quasi-projective k-scheme. An
Abelian scheme A over B is non-isotrivial, resp. strongly non-isotrivial, if for the
geometric generic point of B ×k B,

(p, q) : Spec κ → B ×k B
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6 GRABER AND STARR

the Abelian κ-schemes

Ap := Spec κ×p,B A, Aq := Spec κ×q,B A

are not isomorphic, resp. there is no nonzero morphism of Abelian κ-schemes

Ap → Aq.

Lemma 3.5. Let B be an integral, smooth, quasi-projective k-scheme. An
Abelian scheme A over B is strongly non-isotrivial if and only if Trk(B)sep/k(A⊗OB

k(B)sep) is zero.

Proof. First of all, dual to the morphism of Abelian varieties

u : Trk(B)sep/k(Ak(B)sep)⊗k k(B)sep → Ak(B)sep ,

there is a morphism

v : Ak(B)sep → Trk(B)sep/k(Ak(B)sep)⊗k k(B)sep

such that v ◦ u is multiplication by some positive integer N . Denote by p∗v and
q∗u the pullbacks of these morphisms by the morphisms p, q : Specκ → B. If
Trk(B)sep/k(Ak(B)sep) is nonzero, the composition

Ap
p∗v−−→ Trk(B)sep/k(Ak(B)sep)⊗k κ

q∗u−−→ Aq

is a nonzero homomorphism.
Denote by ep, eq : k(B)sep → κ the field monomorphism associated to projection

p, resp. q. Then, conversely, every nonzero homomorphism

Ap → Aq

factors through

Trep(Aq)⊗k(B)sep,ep κ → Aq.

By Theorem 3.2, this second map is precisely

e∗qu : Trk(B)sep/k(Ak(B)sep)⊗k κ → Aq.

So if there is a nonzero homomorphism Ap → Aq (or symmetrically Aq → Ap),
then Trk(B)sep/k(Ak(B)sep) is nonzero. �

Lemma 3.6. Let B be an integral, smooth, quasi-projective k-scheme of dimen-
sion b ≥ 1. Let Q be an Abelian scheme over B. If TrB/k(Q) = 0, then there are
at most countably many sections of Q over B.

Proof. Let B be a normal, projective scheme containing B as a dense, open
subscheme. Let Q → B be a projective morphism whose restriction over B equals
Q. There is a Chow variety parametrizing cycles in Q. The Chow variety has count-
ably many irreducible components, for the usual reason (countably many Hilbert
polynomials, etc.). The claim is that every cycle Z ⊂ Q for which Z → B is
birational gives an isolated point of the Chow variety.

Towards this claim, let T be an irreducible, quasi-projective curve and let
Z ⊂ Q×k T be a cycle such that Z → B×k T is birational. Replacing T by a dense
open subset if necessary, assume T is smooth. Then Z ∩ (B ×k T ) is the graph of
a B-rational transformation,

F : B ×k T ��� Q.
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By [6, Theorem VI.1.9.3], this rational transformation is regular. Fix a point t0 ∈ T
and denote

G : B ×k T → Q, G(q, t) = F (q, t)− F (q, t0).

Denote by

e : T → Alb(T )

the Albanese morphism sending t0 to 0. Then, by the universal property of the
Albanese, the morphism G factors through

IdB × e : B ×k T → B ×k Alb(T ).

Because TrB/k(Q) is trivial, by the universal property of the trace, the induced
homomorphism of Abelian schemes over B,

G̃ : B ×k Alb(T ) → Q

is the zero homomorphism. Thus G is the zero map, i.e.,

F (q, t) = F (q, t0)

for every (q, t) ∈ B ×k T . Thus Z ∩ (B ×k T ) is independent of t ∈ T . Since Z is
the closure of Z ∩ (B ×k T ), the same holds for Z, i.e., Z = Z0 ×k T for a cycle
Z0 ⊂ Q. Therefore every k-morphism from an irreducible, quasi-projective curve
T to the Chow variety parametrizing rational transformations Z is constant. In
other words, every cycle Z ⊂ Q with Z → B birational gives an isolated point of
the Chow variety. �

Corollary 3.7. Let B be an integral, smooth, quasi-projective k-scheme and
let A be an Abelian scheme over B. There exists a dense open subscheme U ⊂ B,
a finite, étale, Galois morphism U ′ → U , an Abelian k-scheme A0, an Abelian
scheme Q over U ′ and an isogeny of Abelian schemes over U ′,

u = u0 ⊕ uQ : (U ′ ×k A0)×U ′ Q → U ′ ×B A,

with the following properties.

(i) The pair (A0, u0) is a Chow U ′/k-trace of U ′ ×B A.
(ii) For every dense open subset V of U and every finite, étale, Galois mor-

phism V ′ → V ×U U ′, the induced map of Abelian k-schemes

A0 = TrU ′/k(U
′ ×B A) → TrV ′/k(V

′ ×B A)

is an isomorphism.
(iii) The Abelian scheme Q is strongly non-isotrivial.
(iv) The quotient of U ′ ×B A by U ′ ×k A0 is isomorphic to Q in such a way

that the composition

Q
uQ−−→ U ′ ×B A

quotient−−−−−→ Q

is the multiplication by N isogeny for some positive integer N .
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8 GRABER AND STARR

4. Proof of the main theorem

Throughout this section we assume that B is a smooth k-variety, and A is an
Abelian scheme over B. We fix a generically finite morphism f : B → Pn so that
we can talk about lines and line-pairs in B. In fact, up to replacing B by a dense
open subscheme (which changes none of the results), we may assume that f is a
finite, étale morphism onto a dense, Zariski open subset U ⊂ Pn.

To begin, we prove the first part of our theorem for strongly non-isotrivial
families of Abelian varieties. This is essentially the same argument as in [4] but it
is somewhat easier in this context.

Proposition 4.1. Let A be a strongly nonisotrivial Abelian scheme over B.
Over a very general line-pair X in B, any section of AX is contained in a unique
section of A.

Proof. Fix a general point b ∈ B and consider the family D of f -lines through
b. The restriction of the universal curve CDb

→ D maps birationally onto B. Over
D we have a universal parameter space for sections of A over f -lines. Technically,
the scheme structure on this parameter space depends on the choice of projective
compactifications of B and A; however, as explained presently, we care only about
an associated subset of A that is independent of this choice. The parameter space
is a countable union of subschemes, and each subscheme that dominates D is gener-
ically finite over D. (This follows easily from the fact that over a generic f -line,
the restricted family of Abelian varieties will still be strongly non-isotrivial, and
hence have a finitely generated group of rational sections.) Denote the union of the
closures of the images of these schemes in A by Ω. Thus Ω is a countable union of
closed subvarieties; this set is independent of the choice of projective compactifica-
tions of A and B.

If we choose a very general element L2 of D, and consider the countable set
of sections of A over that curve, then each section that is not contained in Ω can
meet Ω in at most a countable set of points. We conclude that over a very general
point of L2 any section of A over L2 that meets Ω is contained in Ω. Thus, if we
choose a very general point of L2, and if we connect it to b via the unique f -line
L1, then we find that any section over the resulting line-pair will have the property
that its values over L1 are contained in Ω (by definition of Ω), and hence its values
over L2 are contained in Ω. But by the Bertini Theorem, Corollary 2.2, any section
of Ω over L2 (which is a very general f -linear curve) extends to a unique section
of Ω and hence of A. Moreover, since a point of intersection of L1 and L2 is very
general in B, it follows that every irreducible component of Ω whose image contains
this point is, in fact, étale over that point, and any two distinct components of Ω
have disjoint fibers over this point. Hence the section over L1 extends to the same
unique section. �

A very similar argument would establish the analogous lemma for A a trivial
family of Abelian varieties over B with line pairs replaced by “triangles.” To obtain
the desired result seems to require a slightly more elaborate approach. We break
this into a series of lemmas.

Lemma 4.2. Let A0 be an Abelian variety over k. Let U be a Zariski open
subset of Pn and let T → U be an A0 torsor. If T becomes trivial upon restriction
to the intersection of U with a general line, then T is trivial.
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Proof. We work by induction on n with the case of n = 1 vacuous. Fix a
general hyperplane H, and trivialize T over H ∩ U . Now fix a general point p not
on H. For a general line L through p, there will be a unique section of T over L
which takes the value 0 at L ∩H (with respect to our fixed trivialization.) These
distinguished sections then sweep out a rational section of T over all of Pn. �

We now introduce some extra notation. As before we have a dense, Zariski open
U ⊂ Pn and a finite, étale morphism f : B → U . We set Y = B ×Pn B = B ×U B.
Given an Abelian scheme A over Pn and a rational section s of f∗A, we set ∂s to
be the Cech boundary of s, that is to say the rational section of the pullback of A
to Y given by the difference of the section pulled back under the two projections
to B. In particular, at a general point of Y , which will be of the form (b1, b2), the
value of ∂s is just s(b1)− s(b2).

There is an analogous boundary operator for sections over lines, and formation
of the boundary commutes with restriction of sections.

Lemma 4.3. Fix an Abelian variety A0, a connected curve C and a finite map
f : C → P1. Given a family of morphisms st : C → A0, over a connected, reduced
base T , the associated family of boundaries ∂st : C ×P1 C → A0 is constant.

Proof. Because A0 is separated, it suffices to prove this over a dense open
subset of T . By the valuative criterion of properness, for a projective compactifi-
cation C of C, st extends to a morphism on C for t in a dense open subset of T .
Thus, without loss of generality, assume that C is projective.

The tangent space to the space of morphisms from C to A0 is given by the
sections of s∗TA0. But all of these deformations come from translating the fixed
section elements of A0. Thus each connected component of the Hom scheme is just
a copy of A0 and comes from translations of a fixed morphism. As translation does
not affect the boundary, the result follows. �

For the next three results, we let A0 be a fixed Abelian variety over k and let
A = B ×A0 be the corresponding trivial family of Abelian varieties over B.

Lemma 4.4. Let C be a very general line pair in B. For every section s of A
over C, the boundary ∂s extends to a unique section t of A over Y .

Proof. The proof here is identical to the proof of Proposition 4.1. The key
point is that by virtue of the previous lemma, the images of boundaries of sections
over lines in Y through a fixed y again sweep out a countable union of subschemes
of Y ×A0 which are finite over Y . �

Lemma 4.5. Let t : Y → A be a section of A over Y . Assume that for a general
line L ⊂ Pn, there exists a section sL : f−1L → A whose boundary ∂sL equals the
restriction tL of t over Y ×Pn L. Then there exists a section s : B → A such that
t = ∂s, and s is unique up to a constant section.

Proof. We consider the problem of producing such a section s. Let U be an
open subset of Pn over which f is étale. Fix a general point p ∈ U , and consider the
finite set f−1(p) = {b1, . . . , bd}. If we choose a value s(b1), then the equation ∂s = t
determines the values of the other bi uniquely. Indeed, they are overdetermined, but
the existence of a section sL over a general line implies the existence of a solution.
Given a solution, we can always add a constant from A without affecting ∂s. We
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10 GRABER AND STARR

conclude that solving the equation ∂s = t is equivalent to trivializing an A0 torsor
over U . By Lemma 4.2 we are done. �

Combining Lemmas 4.4 and 4.5 immediately yields the desired analogue of
Proposition 4.1.

Proposition 4.6. For a trivial Abelian scheme A = A0 × B over B, every
section over a very general line-pair in B is contained in a unique section over all
of B.

Combining the strongly isotrivial case with the trivial case, we can now prove
the main theorem for line pairs.

Theorem 4.7. For every Abelian scheme A → B, every section over a very
general line pair X is contained in a unique section over all of B.

Proof. By Corollary 3.7 we can find an open set V ⊂ B and a finite étale
Galois cover V ′ → V such that the pullback of A to V ′ is isogenous to a product
of a strongly nonisotrivial family of Abelian varieties and a trivial family. First we
will prove the theorem for the pullback family, A′ → V ′. Let u : A′ → Q × A0 be
the isogeny. Let s be a section of A′

X . Then u(s) is a section of Q × A0. By the
lemmas above, u(s) is the restriction of a unique section S over all of V ′. However,
the preimage u−1(S(V ′)) of S(V ′) in A′ is generically finite over V ′. By Corollary
2.2, every section of u−1(S(V ′)) over X extends to a unique section over all of A′.

We conclude that the theorem holds for A′ over V ′. Denote by G be the Galois
group of the Galois covering V ′ → V . Then the sections A(V ) over V are precisely
the G-invariants, A′(V ′)G, of the sections A(V ′) over V ′. Similarly, AX(X) equals
A′

X′(X ′)G. Since the map A′(V ′) → A′(X ′) is an isomorphism, so is the map on
G-invariants. �

Corollary 4.8. For every Abelian scheme A → B, for a very general planar
surface S ⊂ B, the restriction map A(B) → A(S) is an isomorphism.

Proof. Applying Theorem 1.3 to both S and B and using the fact that a very
general line-pair X in a very general planar surface S is a very general line-pair in
B, we find a line pair X such that A(X) = A(B) and A(X) = A(S). �

The hardest part of the argument is to deduce that in characteristic zero,
line-pairs can be replaced by smooth conics. The idea of the proof is quite simple:
specialize conics to line-pairs. To make effective use of this we will need the existence
of Néron models. Much of the rest of this paper can be generalized from Abelian
varieties to arbitrary varieties without rational curves. However, without the strong
control of degenerations provided by Néron models, we see no way to prove an
analogue of the theorem for conics.

First, we remind the reader of the definitions and fundamental existence result
regarding Néron models in this setting.

Definition 4.9. Let T be an integral, normal, separated, one dimensional,
Noetherian scheme. A smooth, finite type, separated morphism X → T has the
Néron extension property if for every triple (Y → T, U, sU ) of

(i) a smooth morphism Y → T ,
(ii) a dense, open subset U ⊂ T ,
(iii) and a T -morphism sU : Y ×T U → X,
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there exists a T -morphism s : Y → X whose restriction to Y ×T U equals sU . If
X → T has the Néron extension property, then it is called a Néron model, or a
Néron model of its generic fiber.

When working with schemes of dimension greater than 1, it is natural to refor-
mulate this as follows.

Definition 4.10. Let T be an integral, regular, separated, Noetherian scheme
of dimension b ≥ 1. A smooth, finite type, separated morphism X → T has the
(variant) Néron extension property if for every triple (Y → T, U, sU ) of

(i) a smooth morphism Y → T ,
(ii) a dense, open subset U ⊂ T ,
(iii) and a T -morphism sU : Y ×T U → X,

there exists a pair (V, sV ) of

(i) an open subset V ⊂ T containing U and all codimension 1 points of T
(ii) and a T -morphism sV : Y ×T V → X whose restriction to Y ×T U equals

sU .

If X → T has the Néron extension property, then it is called a (variant) Néron
model, or a (variant) Néron model of its generic fiber.

Obviously this definition agrees with the usual definition when T is one dimen-
sional. Also, when they exist, (variant) Néron models are unique in codimension
1. Indeed, let X1 → T and X2 → T be (variant) Néron models. Let U ⊂ T be a
dense, open subset. Let U×T X1

∼= U ×T X2 be a T -isomorphism. By the (variant)
Néron extension property, there exists an open subset V ⊂ T containing U and all
codimension 1 points and a T -isomorphism V ×T X1

∼= V ×T X2 extending the
isomorphism over U . Thus, Néron models are unique in codimension 1.

The basic result about existence of Néron models is the following.

Theorem 4.11. [1, Theorem 3, p.19] Let T be an integral, normal, separated,
one-dimensional, Noetherian scheme. Let B ⊂ T be a dense open subset. Let A →
B be an Abelian scheme. There exists a Néron model Ã over T whose restriction
over B equals A.

Of course this implies the existence of (variant) Néron models in the usual way.

Corollary 4.12. Let W be an integral, regular, separated, Noetherian scheme
of dimension b ≥ 1. Let B be a dense open subset of W and let A be an Abelian

scheme over B. There exists an open subset B̃ of W containing B and all codi-

mension 1 points and a (variant) Néron model Ã over B̃ whose restriction over B
equals A.

Proof. The complement W \B is a quasi-compact closed, Noetherian scheme.
It has only finitely many generic points. Thus it contains at most finitely many
codimension 1 points of W . For every such codimension 1 point η of W , the
scheme T = SpecOW,η is an integral, normal, separated, one-dimensional, Noether-

ian scheme. By Theorem 4.11, there exists a Néron model Ãη of the pullback of A
to T . By limit arguments, there exists an open affine Wη ⊂ W containing η and
a smooth, finite type, separated morphism Xη → Wη whose base change to T is
the Néron model and whose base change to Wη ∩ B equals the restriction of A.
Moreover, up to shrinking Wη, we may assume that Wη contains no generic point
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of W \B other than η. Thus for two distinct codimension 1 points, η1 and η2, the
intersection Wη1

∩Wη2
is contained in B. Since the morphisms Xη1

and Xη2
both

equal the restriction of A over Wη1
∩Wη2

, these morphisms glue to a smooth, finite

type, separated morphism Ã → B̃ over the union B̃ of B and each of the opens
Wη.

Now let (Y → B̃, U, sU ) be a triple as in Definition 4.10. Denote by V the

maximal open subscheme of B̃ over which sU extends to a W -morphism sV to Ã.

For every codimension 1 point η of B̃ \ B, by the N’eron extension property of

Ãη, the base change of sU over SpecOW,η extends to a morphism to Ã. By limit

theorems, there exists an open affine Vη ⊂ B̃ containing η and an extension of sU
over Vη. Thus Vη is contained in V , i.e., η is contained in V . Therefore V contains

every codimension 1 point of B̃. �

Because of this, we will no longer make any distinction between the original
definition of Néron models and the variant definition above. Also, we would like to
clarify one point of confusion identified by the referees. It is tempting to imagine
that for a Néron model X → T , for every smooth morphism Y → T , also the
base change Y ×T X → Y is a Néron model; in particular, this would imply that
the restriction of X to a “sufficiently general” closed subscheme of T is also a
Néron model. Unfortunately, in general there is no such base change property of
Néron models. For instance, let T be the spectrum of the DVR, OT = k[t]〈t〉
with fraction field K = k(t), let T̃ be the spectrum of the finite, flat extension,
O

˜T = Spec(k[t]〈t〉)[y]/〈y2 − t〉 with fraction field L = k(y), and let X be P1
L,

considered as a T -scheme. The claim is that X is a Néron model. The point is
that for every smooth scheme Y → T , if there exists a morphism sK : YK → XK ,

then the composition with projection X → T̃ is a T -morphism that extends to an
open subscheme U of Y containing every generic point η of the closed fiber Yk, by

the valuative criterion of properness. However, since T̃ → T is ramified and factors
through SpecOY,η → T , also this morphism is ramified. The conclusion is that Yk

is empty, so that the Néron extension property is vacuously true. On the other
hand, there are plenty of smooth morphisms Y → T such that the pullback of X
is not a Néron model, e.g., the projective space over K, Y = PHomK(K⊕2,K⊕2),
containing the automorphism group PGL2,K of P1

K as a dense open subscheme.
The corresponding universal automorphism of P1

K over PGL2,K , or rather the
pullback to an automorphism of P1

L, does not extend over the discriminant divisor
in Y . Thus, to make this very clear, we are not asserting that Néron models are
compatible with smooth base change, nor that the restriction of a Néron model over
a “sufficiently general” closed subscheme of T is still a Néron model. Rather, we will
apply the Néron extension property to a carefully constructed smooth morphism
Y → T .

Just to simplify notation, we will assume from now on that B is a smooth
surface (which we are free to do in any case by Corollary 4.8.) We fix a projective
completion W of B so that f : B → P2 extends to W and choose a Néron model

Ã → B̃ as above. Note that B̃ is simply the complement of a finite set of points in
W .

Now the space of conics in W is P5 and the space of line-pairs X ⊂ P5 is the
discriminant locus. We denote the open locus of conics or line pairs contained in

B̃ by P5
0 and X0 respectively. Over P5

0 we have a universal space of sections over
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conics. That is to say, there is a scheme H, and a diagram

Ã

π
��

CH

��

��

�����������������
C ��

��

B̃

H
Φ �� P5

0

with the left square cartesian, which is universal for the problem of lifting conics
from B to A. The scheme H is locally of finite type, but may have infinitely many
irreducible components. The key lemma that we need is the following.

Lemma 4.13. In characteristic zero, any irreducible component H0 of H which
dominates P5 also dominates X . That is, the intersection of the image Φ(H0) with
X contains a dense open subset of X .

Remark 4.14. To put it differently, this lemma is stating that sections over
conics specialize to sections over line-pairs. On completely general grounds, given
any degeneration of a conic to a line-pair, X, any section over the general conic
will specialize to a stable section over X, that is, a section over each irreducible
component of X, together with a tree of rational curves over each node of X,
connecting the corresponding sections, and some collection of trees of π-contracted
rational curves attached to the section over other points of X. Moreover, since the
nodes of X will be at general points of B, over which there are no rational curves
in the fiber of π, we conclude that any section over a general conic will specialize
to a section over X with trees of rational curves attached over those points of X

which meet the locus in B̃ over which the fiber fails to be an Abelian variety. The
content of the lemma then, is that in fact no such trees occur, at least generically.

Proof. Consider the following diagram:

CX ��

��

C ��

��

B

X �� P5

where C is the universal conic and CX is the universal line-pair with the nodes deleted
so that the leftmost vertical morphism is smooth. Also, the map from C to B as well
as the composition map from CX to B are smooth, since they arise by base change
from the corresponding maps when B = P2 where the smoothness is obvious.

We choose a compactification H of H0 such that Φ extends to Φ : H → P5, and

so that H is regular at a general point of Φ
−1

(X ). Set HX = Φ
−1

(X )red. Since the
characteristic is 0, we have the generic smoothness theorem: there exists a dense
open set V ⊂ HX ∩H

reg
so that the restricted morphism Φ : HX → X is smooth

on V . Consider the following diagram.
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14 GRABER AND STARR

CHX
��

���
��

��
��

�

��

B

HX

���
��

��
��

� CX

��

����������

X
We see that over V , CHX

→ B is smooth. Then by the regularity of H, it follows

that there is an open set U ⊂ CH containing Φ
−1

(V ) such that the restriction
U → B is smooth. We include this diagram to clarify the situation.

A

��

CX

��

CV ��

��

�� U ��

��

ρ

���
�

�
�

B

HX V ���� H

Now if we apply the Neron property to the rational map U → A, we find that
outside a codimension 2 subset ζ ⊂ B, it extends to a regular morphism. Since any
codimension two subset in B is avoided by a general line-pair, it follows that the
rational map ρ which was a priori defined over H0 extends to a regular map over
an open set of CH which contains the preimage of a dense open subset of X . Then,
since we have already mentioned that we can extend any such rational map over
the nodes of the line-pair, the universal property of H implies the lemma. �

Theorem 4.15. Over a field of characteristic zero, over a very general conic
C, every section of AC over C is the restriction of a unique section of A over B.

Proof. First, denoting by Y the scheme parameterizing rational sections of A
over B, there is a natural rational map P5 × Y ��� H. We observe that the image
of this map is a union of irreducible components of H. This follows immediately
from the fact that over a very general point of X , this rational map is regular and
in fact an isomorphism (at least on reduced subschemes) by Theorem 4.7.

Now, by way of contradiction, suppose that the theorem is false. Then there
exists an irreducible component of H dominating P5 such that a generic section
parameterized by this component is not the restriction of a section. By Lemma 4.13,
this component dominates X . But then we see that this component intersects one
of the distinguished irreducible components mentioned above. This quickly yields
a contradiction, since it implies that the fiber of H over a very general point of X
is nonreduced. As H is a group scheme locally of finite type, this violates Cartier’s
theorem on reducedness of locally finite type group schemes in characteristic 0.

�

5. Examples

In this section we give some examples demonstrating limits to further general-
ization of Theorem 1.3 and Corollary 1.5.
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Example (i). Let B be a smooth quadric in P3
k and let f be projection from

a general point outside of B. Let A0 be an ordinary elliptic curve over k and let
A = B ×k A0. Then

H0
ét(B,B ×k A0) = A0(k).

Since f conics are curves of type (2,2) on B, every open subset of the space of
conics contains curves C isogenous to A0. For these, the map

A0(k) → H0
ét(C,C ×k A0)

is not surjective. Thus, it is necessary to use very general conics in Theorem 1.3 –
general conics do not suffice.

Example (ii). Fix a field k and let p be a point of P2
k. Let B be the space

of smooth cubic curves passing through p. Thus B is an open subset of P8. Let
A → B be the universal smooth cubic curve passing through p, which becomes
an Abelian scheme upon declaring p to be the origin. Now it is easy to see that
A(B) = Z but if we fix a general line L ⊂ B, then L corresponds to a pencil of
plane cubics with nine base points. These give rise to sections of AL → L which
are not restrictions of sections over all of B, so we see that Theorem 1.3 would not
hold with line pairs or conics replaced with lines. (Note that we can replace P8 by
P2 in this example by choosing a very general plane in P8 by virtue of Theorem 1.3
although it is also easy to argue this directly.)

Example (iii). The restriction map

H1
ét(B,A) → H1

ét(C,C ×B A)

can fail to be surjective for all line pairs, resp. all conics. For an example, let B be
a smooth quadric surface, let f be projection to the plane. and let A = B ×k A0,
where A0 is a simple Abelian k-variety of dimension g ≥ 2. Let l be an integer not
divisible by char(k). Associated to the multiplication map of group schemes over
B

0 �� B ×k A0[l] �� B ×k A0
multl �� B ×k A0

�� 0

there is a long exact sequence of cohomology groups part of which is

0 → H0
ét(B,B ×k A0)⊗ Z/lZ → H0

ét(B,B ×k A0[l]) → H1
ét(B,B ×k A0)[l] → 0.

Because Alb(B) = 0,
H0

ét(B,B ×k A0) = A0(k).

Because A0 is divisible, the exact sequence above gives

H1
ét(B,B ×k A0)[l] ∼= H1

ét(B,B ×k A0[l]) ∼= H1
ét(B,Z/lZ)⊕2g.

A similar argument applies to conics and line pairs in B. Of course the Albanese
variety of a (2,2) curve on a quadric is not zero. But because A0 is a simple Abelian
variety of dimension g ≥ 2, every morphism from C to A0 is a constant morphism.
Thus

H1
ét(C,C ×k A0)[l] ∼= H1

ét(C,C ×k A0[l]) ∼= H1
ét(C,Z/lZ)

⊕2g.

Thus the restriction homomorphism on l-torsion is equivalent to

H1
ét(B,Z/lZ)⊕2g → H1

ét(C,Z/lZ)
⊕2g.

Now
H1

ét(B,Z/lZ) = 0

whereas
H1

ét(C,Z/lZ) = (Z/lZ)⊕2
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16 GRABER AND STARR

for a (2,2) curve and

H1
ét(C,Z/lZ) = Z/lZ

for a line pair. Thus the restriction map is not surjective.
Example (iv). This example is similar. Let B = A2

k and let f : A2
k ↪→ P2

k

be the usual inclusion. Let A0 be an Abelian k-variety having a nonzero p-torsion
k-point,

a ∈ A0(k)[p] \ {0},
e.g., A0 is an ordinary elliptic curve over k. Let A0 → A1 be the étale isogeny of
Abelian varieties whose kernel is generate by a. There is an exact sequence

0 �� Z/pZ
a �� A0

�� A1
�� 0.

This gives rise to a long exact sequence. For the same reason as in Example (i),
the induced map

H1
ét(A

2
k,Z/pZ) → H1

ét(A
2
k,A

2
k ×k A0)[p]

is an injection. Thus to produce an A0-torsor over A
2
k of order p whose restriction

to C is trivial, it suffices to produce a Z/pZ-torsor T over A2
k whose restriction to

C is trivial. Let f ∈ k[x, y] be a polynomial function on A2
k vanishing on C and

whose degree d is not divisible by p.
Let T → A2

k be the Artin-Schreier cover determined by the ring homomorphism

k[x, y] → k[x, y, t]/〈tp − t− f〉.
Because d is not divisible by p, there is no element g ∈ k[x, y] such that gp−g−f = 0.
Since k[x, y] is normal and tp − t − f is a monic polynomial in t, also there is no
element g ∈ k(x, y) such that gp − g − f = 0. Thus T is integral and so T → A2

k is
a nontrivial torsor. On the other hand, since f is zero on C,

C ×A
2
k
T ∼= C × Spec k[t]/〈tp − t〉,

which is the trivial Z/pZ-torsor over C. Thus

H1
ét(A

2
k,A

2
k ×k A0)[p] → H1

ét(C,C ×k A0)[p]

is not injective.
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Math. (2) 52 (2006), no. 1-2, 37–108. MR2255529 (2007e:14068)

[3] Najmuddin Fakhruddin, Restriction of sections of abelian schemes, preprint, 2003.
MR1995861 (2004f:14038)

[4] Tom Graber, Joe Harris, Barry Mazur, and Jason Starr, Rational connectivity and sections

of families over curves, Ann. Sci. École Norm. Sup. (4) 38 (2005), 671–692. MR2195256
(2006j:14044)
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Mathématique de France, Paris, 1981, pp. 125–140. MR642675 (83c:14020)

Department of Mathematics, California Institute of Technology, Pasadena, Cali-

fornia 91125

E-mail address: graber@caltech.edu

Department of Mathematics, Stony Brook University, Stony Brook, New York

11794

E-mail address: jstarr@math.sunysb.edu

327





Clay Mathematics Proceedings

Correspondence and Cycle Spaces:
A result comparing their cohomologies

Mark Green and Phillip Griffiths

Outline.

1 Introduction
2 Correspondence and cycle spaces
3 The comparison theorem
4 Variants and applications

1. Introduction

Let G be a reductive, semi-simple Lie group, B ⊂ G a Borel subgroup and X =
G/B the corresponding flag manifold. LetG0 be a connected real form that contains
a compact maximal torus T ; this means in particular that the complexified Lie
algebra t⊗RC =: h is a Cartan subalgebra corresponding to a Cartan subgroup H ⊂
G. By a flag domain D we mean an open G0-orbit G0(x0) of G acting on X whose
isotropy group is compact. Flag manifolds and flag domains have over the years
played a central role in representation theory, both finite and infinite dimensional
([Sch2], [Sch3], [BE], [FHW] and the references cited therein). Recently they,
together with more general homogeneous complex manifolds G0/L where L ⊃ T
and L is the compact centralizer of a circle S1 ⊂ T , have appeared in Hodge theory
in the form of Mumford-Tate domains [GGK1]. For the case G0 = U(2, 1), the
corresponding Mumford-Tate domains have also appeared in very interesting recent
work on arithmetic automorphic representation theory ([C1], [C2], [C3]). In the
recent exposition [GGK2] of aspects of that work, together with extensions of it,
certain constructions concerning the complex geometry of flag domains arose. These
constructions play a central role in the use of Penrose transforms ([BE], [EGW],
[C2]). In the exposition [GGK2], in special cases they were used under the term
correspondence spaces. In that work the general construction and properties of these
spaces, together with their relation to the cycle spaces [FHW] that have been in
use since the mid-to-late 1960’s ([Sch1] and [GS]), were discussed. The primary
purpose of the present paper is to give the formal definition and some properties of
the correspondence space W and to state and prove a result relating the complex
geometry of W to that of the cycle space U.

To give the informal statement of the result we first comment that both W

and U are used to relate the cohomology H∗(D,Lμ) of homogeneous line bundles
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2 M. GREEN AND P. GRIFFITHS

Lμ → D to global, holomorphic objects. In the case of the correspondence space
W the object is a holomorphic de Rham cohomology group, and it is therefore a
quotient of spaces of global holomorphic sections of vector bundles. In this case
there is the isomorphism [EGW]

(1.1) H∗(D,Lμ) ∼= H∗(Γ(W,Ω•
π(Lμ)); dπ

)
.

In the examples considered so far, there are canonical “harmonic” representatives
for classes on the RHS, so that in particular cohomology classes on the LHS can be
“evaluated” at points of W. For D a Mumford-Tate domain, W has an arithmetic
structure (think of CM points in a Shimura variety), and the main result of [GGK2]
concerns classes in H∗(D,Lμ) that take arithmetically defined values at arithmetic
points of W.

The “correspondence space” arises from the following consideration: The equiv-
alence classes of homogeneous complex structures on G0/T are indexed by W/WK

where W,WK are the Weyl groups of G,G0 respectively. We denote these by Dw,
w ∈ W/WK . The universality property of W gives diagrams

(1.2)

W

π

����
��
�� π′

��
��

��
��

Dw Dw′ .

Using (1.1) applied to Dw and Dw′ the existence of certain canonical classes on W

gives multiplication mappings

Hq
(
Γ(Ω•

π(Lμ)); dπ
)
→ Hq′

(
Γ(Ω•

π′(L′
μ′)); dπ′

)
which lead to Penrose transforms

Hq(Dw, Lμ) → Hq′(Dw′ , L′
μ′).

One may think of this as an analogue of the maps on ordinary cohomology in
classical algebraic geometry induced by a cycle on W in a diagram (1.2) where the
objects are algebraic varieties.

In the case of the cycle space U there is always a map

Hq(D,Lμ) → H0(U, F 0,q
μ )

where the F p,q
μ →U are holomorphic vector bundles whose rank is hq(Z,ΛpNZ/D(Lμ)).

There are conditions under which this map is injective and a description of its image
(cf. [FHW], Theorem (3.4) and Corollary (3.5) below).

The main result of this paper is to relate the two global holomorphic objects
which realize H∗(D,Lμ). The result applies only in the case that D is non-classical,
meaning that it does not fibre holomorphically or anti-holomorphically over an
Hermitian symmetric domain. This is the primary case of interest in [C1], [C2],
[C3], [GGK2] as it is the situation where new geometric and arithmetic phenomena
occur. The result is the

Theorem 1.1. In case D is non-classical there is a spectral sequence with{
Ep,q

1 = H0(U, F p,q
μ )

Ep,q
∞ = GrpHp+q

(
Γ(W,Ω•

π(Lμ)); dπ
)
.
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CORRESPONDENCE AND CYCLE SPACES 3

For D non-classical we have U ⊂ G/K and there are maximal compact subva-
rieties Zu ⊂ D, u ∈ U given by the translates by g ∈ G of Z = K/T where gZ ⊂ D.
Denoting by NZ/D the normal bundle of Z in D, the proof of the theorem will yield
the

Corollary 1.2. If Hk(Z,Λq−k+1NZ/D(Lμ)) = 0 for 0 � k � q − 1, then

Hq
(
Γ(W,Ω•

π(Lμ)); dπ
) ∼= ker{H0(D,F 0,q

μ )
d1−→ H0(D,F 1,q

μ ) }.
When the isomorphism (1.1) is used on the LHS this corollary is closely related

to the result in [WZ].
The original motivation for much of the work that this paper is drawing from

was concerned not with theHq(D,Lμ) but rather with the automorphic cohomology
groups Hq(Γ\D,Lμ) where Γ ⊂ G0 is a discrete, co-compact and neat subgroup.
In section 4.1 we will show that the equation (1.1), and the results (1.1) and (1.2)
remain valid as stated when the spaces are factored by Γ. The main new ingredient
used here is a result from [BHH] which shows that the quotient space Γ\U is Stein.

In section 4.2 we shall show that the de Rham cohomology

H∗(Γ(W,Ω•
π(Lμ)); dπ

)
may be written as n-cohomology H∗(n,OGW)−μ for a G0-module OGW. The spec-
tral sequence (1.1) may then be interpreted as the Hochschild-Serre spectral se-
quence for nc ⊂ n where nc = n ∩ k for k the complexification of Lie algebra of the
maximal compact subgroup K0 of G0.

1

The differentials
dr : E

p,q
r → Ep+r,q−r+1

r

are linear differential operators of degree r, and we shall give a result (Theorem
(4.4)) defining and computing their symbols. We shall also describe the character-
istic varieties in our two examples.

In section 4.3 we shall analyze the spectral sequence in the special case of the
two examples discussed in [GGK2]. This analysis will include determination of
the symbol sequence and characteristic varieties for the linear PDE systems whose
solutions are the Harish-Chandra module Vμ+ρ with infinitesimal character χμ+ρ

where μ + ρ is in the closure of the anti-dominant Weyl chamber. Of particular
interest here are the cases where μ+ ρ is singular, in which case Vμ+ρ is a limit of
discrete series. The PDE systems have quite a different character than when μ+ ρ
is regular, as is not surprising due to the much greater intricacy of n-cohomology
in these cases.

This paper is a companion work to [GGK2], one which completes a definition
promised there and which relates the global holomorphic realization of cohomology
that was an essential ingredient in [GGK2] to the other one that has appeared
in the literature. The general context for this work is the relation between rep-
resentation theory and the geometry of complex homogeneous manifolds. This is
a vast and rich subject and we have chosen to refer to the references in some of
our primary sources, specifically [Sch2], [Sch3], [BE] and [FHW], for excellent
expositions of the general theory and for guides to the literature. We also note
[Sch1], where much of the connection between homogeneous complex manifolds
and representation theory had its origin.

1The subscript “c” for nc refers to “compact,” as nc is the direct sum of the negative root
spaces corresponding to the compact roots.
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This paper is dedicated to Joe Harris on the occasion of his 60th birthday. The
talk that the second author of this paper gave at Joe’s 60th conference had the theme
that understanding in depth “elementary” examples that have a rich geometry is
both interesting in its own right and serves to suggest interesting general structures.
The examples presented in that talk were based on [GGK2] and are recalled briefly
in this paper. We feel that the theme mentioned above is very harmonious with
Joe’s approach to mathematics.

Notations.

• G is a reductive, semi-simple Lie group with Lie algebra g;
• H ⊂ G is a Cartan subgroup with Lie algebra h;
• B ⊂ G is a Borel subgroup with associated flag manifold X = G/B;
• G0, with Lie algebra g0, is a real form of G;
• we assume that the real formH0 ofH is a compact maximal torus T ⊂ G0;
we shall use the notations H0 and T interchangeably;

• K0 ⊂ G0 is a maximal compact subgroup with T ⊂ K0 and complexifica-
tion K ⊂ G;

• Φ,Φ+,Φc,Φn are respectively the roots, positive roots, compact roots and
non-compact roots of (g, h);

• W,WK are the Weyl groups of (G,H), (K0, T ) respectively;
• it is known that the homogeneous complex structures Dw on G0/T are

parametrized by w ∈ W/WK ; they are the open orbits of G0 acting on X;
• we shall denote by D one of the Dw and by Z ∼= K0/T ∼= K/BK , where

BK = K ∩B, is a maximal compact subvariety of D;
• the root space decomposition of g is denoted

g = h⊕
(

⊕
α∈Φ

g
α

)

where gα is the α-root space;
• we have ⎧⎨

⎩
b = h⊕ n

n = ⊕
α∈Φ+

g−α;

• the Cartan decomposition of g is

g = k⊕ p;

we have {
p = p+ ⊕ p−

n = nc ⊕ p−

where p+ = ⊕
α∈Φ+

nc

gα, p− = p+ and nc = ⊕
α∈Φ+

c

g−α;

• the compact maximal torus is

T = t/L,

where L is a lattice, and we denote by

Γ ⊂ ǐt

the weight lattice, which up to a factor of 2π is identified with Hom(L,Z);
• given a weight μ there is a corresponding character χμ of T which induces

a homogeneous line bundle Lμ → G0/T ;
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• Lμ → G0/T is made into a holomorphic line bundle over D in the usual
way; i.e., by extending it to a holomorphic character χμ : H → C∗ and
then extending it to B via the map B → H.

2. Correspondence and cycle spaces

Cycle spaces and correspondence spaces first arose from special cases of flag
domains D, cycle spaces initially in the context of Hodge theory and then repre-
sentation theory, correspondence spaces in the context of integral geometry and
Penrose-type transforms. Both the cycle spaces U and correspondence spaces W

considered here are open subsets in G-homogeneous projective algebraic varieties,
and the basic diagram relating D,W and U is an open subset of a diagram of
G-homogeneous algebraic varieties. For later reference we now record this diagram:

(2.1)

G/H

��

G/BK

����
��
��

��
��

��
��

�

G/B G/K.

The space G/H is sometimes called the enhanced flag variety. Double homo-
geneous space fibrations in the lower part of the diagram are classical in integral
geometry [Ch]. We note the following general properties:

(2.2a)
The fibres of G/BK → G/B and of G/H → G/BK

are contractible affine algebraic varieties;

(2.2b)
The fibres of G/BK → G/K are projective
algebraic varieties.

Discussion. (see [FHW] for detailed proofs): From

b = bK ⊕ p−

where bK = b ∩ k one may show that

exp: p+
∼−→ B/BK

is a bi-holomorphic map. A similar argument works for

bK = h⊕ n
+.

Finally, K/BK is the flag variety for K.

The definition of the correspondence space derives from Matsuki duality be-
tween G0-orbits OGo

and K-orbits OK in the flag variety X ([FHW] and [Sch3]).
We recall that the pair (OG0

,OK) are Matsuki dual if the intersection OG0
∩OK con-

sists of exactly one K0-orbit. The relation “contained in the closure of” partially
orders the set of K-orbits as well as the set of G0-orbits, and the duality

{G0-orbits in X} ←→ {K-orbits in X}
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6 M. GREEN AND P. GRIFFITHS

reverses the closure relationships. For x0 ∈ X such that G0(x0) = OG0
is open, or

equivalently K(x0) = OK is compact, we set

WG = { g ∈ G : gOK ∩ OG0
�= ∅ and is compact }0/H.

Here, { }0 denotes the connected component of the identity. Since H ⊂ K this
definition makes sense and WG ⊂ G/H is an open set.

Theorem-Definition 2.1. For an open G0-orbit WG is independent of x0.
We denote it by W and define it to be the correspondence space associated to
(G0, H).

We recall here our blanket assumption that D is non-classical; i.e., it does not
fibre holomorphically or anti-holomorphically over an Hermitian symmetric domain.

The property in the theorem is called universality. We will infer it from a
similar property for the cycle space U, to which we now turn. Set

UG = { g ∈ G : gOK ⊂ OG0
}0/K.

We note that the term { }0 is the same as for WG; we have given this description
because the cycle spaces associated to D = G0/T initially arose as

{ gZ : g ∈ G and gZ ⊂ D },

which is the set of translates gZ of the maximal compact subvariety Z = K0/T by
g ∈ G such that gZ remains in D (cf. [Sch1] and [GS]). The universality of W is
a consequence of

Theorem (universality, [FHW]). For open G0-orbits, UG is independent of
x0.

The proof of this theorem is based on Matsuki duality.
Before turning to the basic diagram and the properties of W and U, we have

previously noted that the open G0-orbits Dw are indexed by the elements w ∈
W/WK . Equivalently, a complex structure Dw on G0/T is given by a choice Φ+

w

of positive roots, and two such G0-homogeneous complex structures Dw, Dw′ are
equivalent if w ≡ w′ modWK . Each Dw has a distinguished point xw ∈ Dw as
follows:

If x0 ∈ G/B is the identity coset, then

xw = wx0w
−1 ∈ Dw.

It follows that Dw = G0(xw) and the compact K-orbit Zw ⊂ Dw given by the
duality theorem is Kxw = wZw−1 where Z = K0/T ⊂ G0/T .

We will now describe the basic diagram for D. By the remark just given there
will be a corresponding basic diagram for each Dw. Letting {Zu, u ∈ U} be the
family of maximal compact subvarieties Zu ⊂ D parametrized by U, we define the
incidence correspondence I ⊂ D × U by

I = {(x, u) : x ∈ Zu}.

334



CORRESPONDENCE AND CYCLE SPACES 7

Definition 2.2. The basic diagram is

(2.3)

W

πI

��
π

����
��
��
��
��
��
��

π′

��
��
��
��
��
��
��
��

I

πD
		��
��
��
��

πU
��	

		
		

		
	

D U.

The maps are those induced by the maps in (2.1), where we note the inclusion

I ⊂ G/BK .

Theorem 2.3.

(1) W is a Stein manifold;
(2) the fibres of W → D are contractible;
(3) the fibres of W → I are contractible.

Proof. For G0 of Hermitian type, and recalling our assumption that D is
non-classical, this result largely follows from the results in [FHW]. Specifically, we
have that:

• U is Stein ([FHW], Corollary 6.3.3); and
• the fibres of π′ : W → U are affine algebraic varieties.2

The latter statement follows by observing that (2.3) is an open subset of (2.1), and
W ⊂ G/H is the inverse image of U ⊂ G/K. A similar argument applies to W → I,
where a typical fibre is B/BK . From [FHW], (6.23), in case G0 is of Hermitian
type the fibres I → D are contractible. This case covers the two examples discussed
below. The general case when G0 is not of Hermitian type is more complex and
will be discussed elsewhere. �

Example 2.4. U(2, 1)3 ([EGW], [C1], [C2] and [GGK2]).

• H is the standard Hermitian form on C3 with matrix diag(1, 1,−1) and

U(2, 1) = { g ∈ GL(3,C) : tḡHg = H };

• points p ∈ P2 are given by homogeneous column vectors p = t[p1, p2, p3]
and lines l ∈ P̌2 by homogeneous row vectors l = [l1, l2, l3];

• the unit ball B ⊂ P2 is given by {p : tpHp < 0}; Bc = P2\Cl(B) is the
complement of the closed ball;

• the flag variety is described as the standard incidence correspondence
X = {(p, l) : 〈l, p〉 = 0} in P2 × P̌2.

2The fibre π
′−1(u0) ∼= K/H is the enhanced flag variety of Z = Zu0 . It is a general result

[Bo] that the quotient by the Cartan subgroup H of the affine variety K is again an affine algebraic
variety. We note that K is reductive with center contained in H, so the quotient is the same as
one of a semi-simple complex linear group by a Cartan subgroup.

3We use U(2, 1) rather than SU(2, 1) because U(2, 1) is the Mumford-Tate group of a generic
polarized Hodge structure with Hodge numbers h3,0 = 1, h2,1 = 2 and having an action by
Q(

√
−d) (cf. [GGK1]).
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8 M. GREEN AND P. GRIFFITHS

There are three flag domains given as open orbits of U(2, 1) acting on X and
which may be pictured as follows:

B

l

p
B

l

p

D D D

B

p

l

Here, D is non-classical and D′, D′′ are classical. For example, (p′, l′) → p′ fibres
D′ over the ball with P1 fibres.

The enhanced flag variety GL(3,C)/H is given by the set of projective frames,
defined as triples of points p, p′, p′′ ∈ P2 where p ∧ p′ ∧ p′′ �= 0.

The correspondence space is pictured by

W = �

p′ �p′′

� p

, p p′′ ⊂ Bc

where p p′′ is the line joining p and p′′. The maps W → D,D′, D′′ are given by

p, p′, p′′ →

⎧⎪⎨
⎪⎩
(p, p p′) ∈ D

(p′, p′ p)∈ D′

(p, p p′′)∈ D′′.

The cycle space U is pictured by

U = �

p′

�
�
�
�
�
�
�
�
�� L

From the picture we see that U ∼= B×B where B is the conjugate complex structure
on B and is isomorphic to the set of lines not meeting the closure of B. The
corresponding compact subvariety Z(p′, L) ∼= P1 is given by {(p, l)} ⊂ D in the
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picture

Z(p′, L) = �

p′

�
�
�
�
�
�
�
�
�� L���������������

�

p

l

The incidence correspondence I = {(p, l), (p′, L)} ⊂ D × U is as pictured in the
above figure. The map W → I is given by

p, p′, p′′ −→ �

p′

�
�
�
�
�
�
�
�
�
�
�

p′′

L

���������������

�

p
l

The maps I → D, I → U are given by

�

p′

�
�
�
�
�
�
�
�
�� L���������������

�

p

l

�
��

πD �
��

πU

�

p′

��������������
l

�
�
�
�
�
�
�
�
��

�

p′

L

All of the properties in the basic diagram (2.3) may be readily verified from the
above pictures. The standard root diagram for U(2, 1) is where the compact roots
are labelled • and the Weyl chambers C,C ′, C ′′ correspond to the complex struc-
tures D,D′, D′′. Here, C is non-classical and C ′, C ′′ are classical.
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• •
C

C

C

••

Figure 1

Example 2.5. Sp(4) ([GGK2]).

• Q is the alternating form on V = C4 with matrix

( −1
−1

1
1

)
;

• σ : V → V is a conjugation defined in the standard basis v1, v2, v3, v4 by
σv1 = iv4, σv2 = iv3 (and then σv3 = iv2, σv4 = iv1);

• H is the Hermitian form defined by H(u, v) = iQ(u, σv);
• H(v, σv) = 0 defines a real quadric hypersurfaceQH ⊂ P3 which we picture

as

;

• Sp(4) = Autσ(V,Q) is a real form of Aut(V,Q);
• a Lagrange flag is a flag (0) ⊂ F1 ⊂ F2 ⊂ F3 ⊂ V where dimFj = j and
with F2 = F⊥

2 , F3 = F⊥
1 , the ⊥ being with respect to Q;

• a Lagrange flag is given projectively by a pair (p,E) where p ∈ P3 and
E ⊂ P3 is a Lagrange line

�������
�

p

E

(think of p = [F1], E = [F2]);
• a Lagrange frame is a basis f1, f2, f3, f4 for V for which Q(fi, fj) is the

above matrix Q;
• a Lagrange quadrilateral is a projective frame p1, p2, p3, p4 for P3 where
pi = [fi] for a Lagrange frame f1, f2, f3, f4.
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CORRESPONDENCE AND CYCLE SPACES 11

The flag variety X is the set of Lagrange flags. The enhanced flag variety is
the set of Lagrange quadrilaterals. We may picture a Lagrange quadrilateral as

�

�

�

�

p1 E12 p2

E13 E24

p3 E34 p4

where the depicted lines Eij = pi pj are Lagrangian lines in P3. The diagonal lines
are not Lagrangian.

The correspondence space W is the set of Lagrange quadrilaterals positioned
relative to the real hyperquadric QH as in the picture

p
3

p
4

p
1

p
2

E13

E24

E12

E34

.

W =

The pictured Lagrangian lines Eij are of three types

• E12 lies “inside” QH, meaning that H < 0 on the corresponding La-
grangian 2-plane Ẽ12 in V ;

• E13 meets QH in a real circle; as a consequence H has signature (1, 1) on

Ẽ13; E24 has a similar property;
• E34 lies “outside” QH, meaning that H > 0 on Ẽ34.

There are eight orbits of the four Lagrange flags in the above picture; thus we
have (p1, E12) and (p2, E12) associated to E12. These orbits give eight complex
structures on GR/T , of which four pairs are equivalent under the action of WK .
The four types may be pictured as the orbits of

< 0 > 0

< 0

> 0

(1,1)

(1,1)
Dw’s =

D′′ D′′′ D D′
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The notations mean that H < 0, H > 0 on the first two, H has signature (1, 1) on
the second two, and on the two where H has signature (1, 1) we have indicated the
sign of H on the marked points. Here, D and D′ are non-classical and D′′, D′′′ are
classical.

The cycle space is pictured as

U =

							
< 0 E








> 0 E′

Here E, E′ are Lagrangian lines on which H
∣∣
E
< 0, H

∣∣
E′ > 0 respectively (think of

E as “inside” QH and E′ as “outside”). The corresponding cycle Z(E,E′) in D is

{(p, p p⊥)}

Z(E,E′) =

�

��
�
�
�
�
��

p
E

E′
p⊥

where p ∈ E and p⊥ ∈ E′ is the unique point in E′ with Q(p, p⊥) = 0.
The standard root diagram for Sp(4) is

•

•

C

C

C

•

•

•

•

C

where the compact roots are marked • and the Weyl chambers corresponding
to the complex structures are as indicated. Here, C and C ′ are non-classical and
C ′′, C ′′′ are classical.

3. The comparison theorem

Let D = G0/T be a flag domain and

Lμ → D
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CORRESPONDENCE AND CYCLE SPACES 13

a holomorphic line bundle defined by a weight μ ∈ Λ. As will now be explained,
over each of the correspondence and cycle spaces there are global holomorphic
objects to which the sheaf cohomology groups Hq(D,Lμ) map. In the case of W
the mapping is an isomorphism and the holomorphic object is a quotient of global
holomorphic sections of a holomorphic vector bundle. In the examples of interest
to us there will usually be distinguished representatives of equivalence classes in
the quotient space. In the case of the cycle space there are conditions under which
the mapping is injective and the image can be identified; the global holomorphic
object is sections of a bundle. The objective of this section is to relate these two
ways of realizing Hq(D,Lμ).

We begin by recalling the result from [EGW]. Let M , N be a complex mani-
folds and

π : M → N

a holomorphic submersion. We identify holomorphic vector bundles and their
sheaves of sections. For F → N a holomorphic vector bundle we let

• π−1F be the pullback to M of the sheaf F ;
• π∗F be the pullback to M of the bundle F .

We may think of π−1F ⊂ π∗F as the sections of π∗F that are constant along the
fibres of M → N .

Next we let Ωq
π be the sheaf over M of relative holomorphic q-forms. We have

0 → π∗Ω1
N → Ω1

M → Ω1
π → 0,

and this defines a filtration FmΩq
M with

Ωq
π
∼= Ωq

M/F qΩq
M .

In local coordinates (xi, yα) on M such that π(xi, yα) = (yα), FmΩq
M are the

holomorphic differentials generated over Ωq−m
M by terms dyα1 ∧ · · · ∧ dyαm . Thus

FmΩq
M = image{π∗Ωm

N ⊗Ωq−m
M → Ωq

M}. From this description we see that we have

d : FmΩq
M → FmΩq+1

M ,

and consequently there is an induced relative differential

dπ : Ω
q
π → Ωq+1

π .

Setting Ωq
π(F ) = Ωq

π ⊗OM
π∗F , since the transition functions of π∗F may be taken

to involve only the yα’s, we may define

dπ : Ω
q
π(F ) → Ωq+1

π (F )

to obtain the complex (Ω•
π(F ); dπ). Using the holomorphic Poincaré lemma with

holomorphic dependence on parameters one has the resolution

(3.1) 0 → π−1F → Ω0
π(F )

dπ−→ Ω1
π(F )

dπ−→ Ω2
π(F ) → · · · .

Denoting by H∗(M,Ω•
π(F )) the hypercohomology of the complex (Ω•

π(F ), dπ), from
(3.1) we have

(3.2) H∗(M,π−1F ) ∼= H∗(M,Ω•
π(F )).

We denote by
H∗(Γ(M,Ω•

π(F )); dπ
)

the de Rham cohomology groups arising by taking the global holomorphic sections
of the complex (Ω•

π(F ); dπ).
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Theorem 3.1. Assume that M is Stein and the the fibres of M → N are
contractible. Then

H∗(N,F ) ∼= H∗(Γ(M,Ω•
π(F )); dπ

)
.

Discussion. Using the spectral sequence

Ep,q
2 = Hq

dπ

(
Hp(M,Ω•

π(F ))
)
⇒ Hp+q

(
M,Ω•

π(F )
)

and the assumption that M is Stein to have Hp(M,Ω•
π(F )) = 0 for p > 0 gives

(3.3) H∗(M,π−1F ) ∼= H∗(Γ(M,Ω•
π(F )); dπ

)
.

Next, in the situations with which we shall be concerned, the submersion M →
N will be locally over N a topological product. Then by the contractibility of the
fibres the direct image sheaves

Rq
π(π

−1F ) = 0 for q > 0.

The Leray spectral sequence thus gives

(3.4) Hq(N,F ) ∼= Hq(M,π−1F );

here the LHS is Hq(N,R0
π(π

−1F )) = Hq(N,F ). Combining (3.3) and (3.4) gives
the theorem.

Note 3.2. The second part of this argument is due to Buchdahl; cf. (14.2.3)
in [FHW].

Using Theorem (2.3) we now apply this result to W
π−→ D and F = Lμ to have

the

Corollary 3.3. Hq(D,Lμ) ∼= Hq
(
Γ(W,Ω•

π(Lμ)); dπ
)
.

In this way, the coherent cohomology Hq(D,Lμ) is realized by global, holomor-
phic data. As noted above, in examples considered in [GGK2] there are canonical
“harmonic” representatives of classes in the RHS of the corollary.

To state our main result we first define bundles

F p,q
μ → U

as follows: For u ∈ U let Zu ⊂ D be the corresponding maximal compact subvariety.
Let F p,q

μ = Rq
πU

(Ωp
πD

(Lμ)). Then the fibre

F p,q
μ,u = Hq(Zu,Λ

pNZu\D(Lμ)).

Theorem 3.4. There exists a spectral sequence with{
Ep,q

1 = H0(U, F p,q
μ ), and

Ep,q
∞ = GrpHp+q

(
Γ(W,Ω•

π(Lμ)); dπ
)
.

Using (3.3) we have the following result that is implicit in [WZ].

Corollary 3.5. There exists a spectral sequence with{
Ep,q

1 = H0(U, F p,q
μ )

Ep,q
∞ = GrpHp+q(D,Lμ).

If H0(Z,Λq+1NZ/D(Lμ)) = · · · = Hq−1(Z,Λ2NZ/D(Lμ)) = 0, then

(3.5) Hq(D,Lμ) ∼= ker{H0(U, F 0,q
μ )

d1−→ H0(U, F 1,q
μ ) }.
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Thus under the vanishing condition in the corollary, the coherent cohomology
Hq(D,Lμ) is, in a different way from (3.3), realized as a global, holomorphic object.

The differential d1 is a linear, first order differential operator whose symbol will
be identified below following the proof of Theorem (3.4).

Proof of Theorem (3.4). Referring to the basic diagram (3.3) we have on
W the exact sequence of relative differentials

(3.6) 0 → π∗
IΩ

1
πD

→ Ω1
π → Ω1

πI
→ 0.

This induces a filtration on Ω•
π, and hence one on the complex

Γ
(
W,Ω•

π(Lμ); dπ
)
.

This filtration then leads to a spectral sequence abutting to

H∗(Γ(W,Ω•
π(Lμ)); dπ).

We will identify the E1-term with that given in the statement of the theorem.
The first observation is that in this spectral sequence we have{

Ep,q
0

∼= Γ
(
W,Ωq

πI
⊗ π∗

IΩ
p
πD

(Lμ)
)

d0 = dπI
.

Thus {
Ep,q

1
∼= Hq

(
Γ(W,Ω•

πI
⊗ π∗

IΩ
p
πD

(Lμ)); dπI

)
d1 is induced by dπ.

By [EGW] applied to W
πI−→ I we have{

Ep,q
1

∼= Hq
(
I,Ωp

πD
(Lμ)

)
d1 is induced by dπ.

Since U is Stein, and the sheaves Rq
πU

Ωp
πD

(Lμ) are coherent, the Leray spectral

sequence applied to I
πU−−→ U and Ωp

πD
(Lμ) gives{

Ep,q
1

∼= H0
(
U, Rq

πU
Ωp

πD
(Lμ)

)
d1 is induced by dπ.

It remains to establish the identification

(3.7) Rq
πU

Ωp
πD

(Lμ) ∼= F p,q
μ .

This will be done by identifying the various tangent spaces at the reference point
(x0, u0) ∈ I. For this we will identify locally free sheaves F with vector bundles
and denote by Fp the fibre at the point p. We then have the identifications

• Tx0
D = n+;

• Tx0
Z = n+c ;

• NZ/D,x0
= p+;

• Tu0
U = p+ ⊕ p−;

• T(x0,u0)I = n+c ⊕ p+ ⊕ p−

and T(x0,u0)I maps to Tx0
D = n+ = n+c ⊕ p+ and Tu0

U = p+ ⊕ p− by the evident
projections.

It follows that

• Ω1
πD,(x0,u0)

= p−∗ ∼= p+ = NZ/D,x0

where the isomorphism is via the Cartan-Killing form. �
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The proof also allows us to identify the symbol σ(d1) of the differential operator
d1, as follows: Recall that

σ(d1) : F
0,q
u0

⊗ T ∗
u0
U → F 1,q

μ,u0
,

or using the definition of the F p,q
μ

(3.8) σ(d1) : H
q(Z,Lμ)⊗ T ∗

u0
U → Hq(Z,NZ/D(Lμ)).

Using the identification T ∗
u0
U ∼= p∗ ∼= p we have the inclusion

(3.9) p ↪→ H0(Z,NZ/D)

given geometrically by considering X ∈ p ⊂ g as a holomorphic vector field along
Z and then taking the normal part of X. Combining this with the evident map

Hq(Z,Lμ)⊗H0(Z,NZ/D) → Hq(Z,NZ/D(Lμ))

gives the symbol map (3.8).
This assertion will be proved when we revisit the symbol issue in section 4.2

(cf. Theorem 4.4).

4. Variants and applications

4.1. Quotienting by a discrete group. Let Γ ⊂ G0 be a discrete, co-
compact and neat subgroup. A principal motivation for [GGK2] was to understand
the geometric and arithmetic properties of the automorphic cohomology groups
Hq(Γ\D,Lμ), objects that had arisen many years ago but whose above mentioned
properties had to us remained largely mysterious until the works [C1], [C2], and
[C3]. In studying the automorphic cohomology groups it is important to be able
to take the quotient of the basic diagram (2.3) by Γ, which is then

(4.1)

Γ\W

π




























πI

��
π′

��
��

��
��

��
��

��
��

��

Γ\I

π0
����
��
��
��

πU








Γ\D Γ\U.

Here we note that the group G0 acts equivariantly on the diagram (2.3), and so the
above quotient diagram is well-defined. The basic result concerning it is

Theorem 4.1. Γ\W is Stein, and the fibres of π, πD and πI are contractible.

Proof. We first note that because Γ is assumed neat, any γ of finite order is
the identity. Therefore, no γ ∈ Γ, γ �= e, has a fixed point acting on D or on U. For
D this is because the isotropy subgroup of G0 fixing any point x ∈ D is compact.
For u ∈ U, if γ fixes u then it maps the compact subvariety Zu ⊂ D to itself, so
again γ is of finite order. It follows that the fibres in (4.1) are biholomorphic to
those in the basic diagram (2.3).

The next, and crucial, step is the result in [BHH] (cf. also 6.3.3 in [FHW]) that
there exist strictly plurisubharmonic functions on U that are exhaustion functions
modulo G0. As in the proof in loc. cit., this induces a strictly plurisubharmonic
exhaustion function of Γ\U, which is therefore a Stein manifold. Then Γ\W → Γ\U
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is a fibration over a Stein manifold with affine algebraic varieties as fibres, which
implies that Γ\W is itself Stein. �

The proof of Theorem (3.4) then applies verbatim to give

(4.2) H∗(Γ\D,Lμ) ∼= H∗(Γ(Γ\W,Ω•
π(Lμ)); dπ

)
.

The double appearance of the notation Γ in the RHS is unfortunate, but we hope
that the meaning is clear. We also have a spectral sequence with

(4.3)

{
Ep,q

1 = H0(Γ\U, F p,q
μ )

Ep,q
∞ = GrpHp+q(Γ\D,Lμ).

4.2. n-cohomology interpretation. A familiar theme in the study of coho-
mology of homogeneous spaces and their quotients is to represent that cohomology
by Lie algebra cohomology. For flag domains one considers n-cohomology where
n is the direct sum of the negative root spaces. Even though W is not a homo-
geneous space for G0, we will show that the global de Rham cohomology groups
H∗(Γ(W,Ω•

π(Lμ)); dπ
)
can be realized as n-cohomology for a certain G0-module

OGW. Using this interpretation we will then observe that our spectral sequence is
just the familiar Hochschild-Serre spectral sequence.

The definition of OGW is as follows: From the basic diagrams (2.1), (2.3) we
obtain

(4.4)

GW

��

⊂ G

f
��

W

πI

��

π

��

⊂ G/H

��

I

πD

��

⊂ G/BK

��

D ⊂ G/B.

Definition 4.2. GW = f−1(W) is the open subset of G lying over W in the
diagram (4.4), and

OGW = Γ(GW,OGW
)

is the algebra of holomorphic functions on GW.

As we shall discuss below, OGW is a somewhat strange object but it is not as
intractable as the definition might suggest. Since GW ⊂ G is G0-invariant, OGW is
a G0-module and therefore n-cohomology with coefficients in OGW is well-defined.

In fact, since

D = G0(x0) ⊂ G/B

and

W = { g ∈ G : gK(x0) ⊆ D }/H
we have

G0W ⊆ W, WK ⊆ W
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18 M. GREEN AND P. GRIFFITHS

where K is acting on W on the right. Thus, G0 and K act on OGW by{
(gh)(w) = h(gw) g ∈ G0, h ∈ OGW, w ∈ GW

(hk)(w) = h(wk) k ∈ K.

Because GW ⊂ G is an open set; in fact it is {g ∈ G : gK(x0) ⊆ D}, the Lie algebra
g, viewed as left invariant vector fields on G, acts on OGW on the left. When g

is viewed as right invariant vector fields it acts on OGW on the right. These two
actions commute, and we will use the right action of n to define H∗(n,OGW). These
groups then have an action of G0 on the left and an action of H on the right.

Theorem 4.3.

(1) There is the natural identification

H∗(Γ(W,Ω•
π(Lμ)); dπ

) ∼= H∗(n,OGW)−μ.

(2) The Hochschild-Serre spectral sequence associated to the sub-algebra nc ⊂
n coincides with the spectral sequence given in Theorem (3.4).

Proof. The notation ( )−μ on the RHS of the isomorphism above means the
following: The Cartan subgroup H acts on the right on GW and therefore acts
on the complex (Λ•n∗ ⊗ OGW, δ) that computes Lie algebra cohomology. Then
H∗(n,OGW)−μ is that part of H∗(n,OGW) that transforms by the character χ−1

μ

of H corresponding to the weight −μ. This enters the picture because holomorphic
sections of π∗Lμ → W are given by holomorphic functions on GW that transform
by χμ under the right action of H.

The proof of (1) in the above theorem is basically the observation from the
proof of Theorem (3.4), and using the identification (3.6), that we have the natural
identification of complexes

(4.5) Γ
(
W,Ω•

π(Lμ); dπ
) ∼= (Λ•

n
∗ ⊗ OGW; δ)−μ.

Here “natural” means that the action of G0 on the LHS in (4.5) is given by the
G0-module structure of OGW.

Turning to (2) in the theorem, here the basic observation is that when pulled
back to GW, the exact sequence (3.6) is the dual to the restriction to GW ⊂ G of
the exact sequence of homogeneous vector bundles over G/H given by the exact
sequence of H-modules

0 → nc → n → p
− → 0.

From this we may infer (2) in the theorem. �
For later use we note that using the above identifications and p−∗ ∼= p+ via the

Cartan-Killing form,

(4.6) Ep,q
1 = Hq(nc,Λ

p
p
+ ⊗ OGW)−μ.

Using this interpretation we shall now compute the symbol σ(d1) of

d1 : H
0
(
U, Rq

πU
Ωp

πD
(Lμ)

)
→ H0

(
U, Rq

πU
Ωp+1

πD
(Lμ)

)
.

Following the notation from section 3 and the identification there of the fibre of
the vector bundle F p,q

μ,u0
→ U and tangent space Tu0

U at the reference point, and

identifying Zu0
with Z to simplify the notation, the symbol σ(d1) of the 1st-order

linear differential operator is a map

σ(d1) : H
q
(
Z,ΛpNZ/D(Lμ)

)
⊗ p∗ → Hq

(
Z,Λp+1NZ/D(Lμ)

)
.
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Theorem 4.4. With the identifications p∗ ∼= p given by the Cartan-Killing
form and inclusion p ↪→ H0(Z,NZ/D) the symbol is given by

σ(d1)ϕ⊗X = ϕ ∧X.

Here, on the LHS we have X ∈ p and ϕ ∈ Hq(Z,ΛpNZ/D(Lμ)), and on the

RHS X is the corresponding normal vector field in H0(Z,NZ/D). The map is

Hq(Z,ΛpNZ/D(Lμ))⊗H0(Z,NZ/D) → Hq(Z,Λp+1NZ/D(Lμ)) induced by ΛpNZ/D⊗
NZ/D → Λp+1NZ/D.

Proof. To compute the symbol on ϕ⊗X, we take a section f of F p,q defined
near u0 with f(u0) = 0 and whose linear part is ϕ⊗X. Then by definition

σ(d1)ϕ⊗X = (d1f)(u0).

We shall give the computation when p = 0, q = 1 as this will indicate how the
general case goes. Pulled back to GW we may write

f =
∑

α∈Φ+
c

fαω
−α

where the fα are holomorphic functions that vanish along the inverse image of Zu0
.

Then
d1f =

∑
⎧

⎨

⎩

α∈Φ+
c

β∈Φ+
nc

(fαX−β)ω
−β ∧ ω−α +

∑
α∈Φ+

c

fαdπω
−α.

The first term is the right action on fα by the left invariant vector field X−β. The
second term vanishes along the inverse image of Zu0

. As for the first term, under
the pairing (

normal vector fields
to Zu0

)
⊗
(
holomorphic functions
vanishing along Zu0

)
→ OZ0

when evaluated along Zμ0
the first term is the value along Zu0

of∑
⎧

⎨

⎩

α∈Φ+
c

β∈Φ+
nc

fαX−βαXβ ⊗ ω−α

where Xβ ⊗ ω−α ∈ p+ ⊗ n∗ and fαX−β

∣∣
Z0

∈ OZ0
. �

Discussion. The G0-module OGW is certainly not a Harish-Chandra, or HC,
module, but it does have an interesting structure, reflecting the fact that W is a
mixed algebro-geometric/complex analytic object, as we now explain.

The fibres of
W

π′

��

⊂ G/H

��

U ⊂ G/K

are affine algebraic varieties isomorphic to the enhanced flag variety K/H. We
may smoothly and equivariantly compactify G/H so that each fibre g−1(u), u ∈ U,
is the complement of a divisor with normal crossings. Then we may consider the

G0-invariant sub-algebra OGalg
W ⊂ OGW of functions that are rational along each
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20 M. GREEN AND P. GRIFFITHS

fibre, and by truncating Laurent series we may write OGalg
W as the union of G0-

submodules that are fibrewise K-finite acting on the right. Thus as a G0-module
over the G0-module O(U) = Γ(U,OU) we see that OGW has a reasonable structure.

As for the G0-module O(U), from [FHW] we see that U has the function-
theoretic characteristics of a bounded domain of holomorphy (contractible, Stein,
Kobayashi hyperbolic). In fact, for G0 of Hermitian type, U ∼= Ω × Ω where Ω is
an Hermitian symmetric domain and where G0 acts diagonally. Again, O(U) is not
a HC-module but it seems to be a reasonable object to study. It will be further
discussed in a future work. Here we shall illustrate it in the case of SU(2, 1).

Example 4.5. We represent elements of G = SL(3,C) as

g =

⎛
⎝z1 w1 u1

z2 w2 u2

z3 w3 u3

⎞
⎠ = (z, w, u).

Taking as Hermitian form H = diag(1, 1,−1), GW ⊂ G is defined by the con-
ditions {

H(w) < 0

H(z ∧ w) > 0.

The map GW → W is given by

(z, w, u) → �

w

��
��
��
� u

��
��
��
�
z

the dashed line indicating that the line zu lies in Bc. The space OGW is spanned
by the functions

wi
1w

j
2w

k
3 (z2u3 − z3u2)

l(z3u1 − z1u3)
m(z1u2 − z2u1)

nzp1z
q
2z

r
3u

a
1u

b
2u

c
3

where

i, j, i+ j + k, l,m, l +m+ n, p, q, r, a, b, c ≥ 0.

There are relations among the generators, such as(
z2u3 − z3u2

z1u2 − z2u1

)
(z1u2 − z2u1) = z2u3 − z3u2.

4.3. Symbol maps for the two examples. In this section we shall discuss
the symbol sequence and characteristic variety for each of our two examples. Before
doing this we shall briefly explain the italicized terms.

In general, over a complex manifoldM suppose we are given holomorphic vector
bundles Ei → M and linear, 1st order differential operators Pi : Ei → Ei+1 that
form a complex

(4.7)

{
E1

P1−→ E2
P2−→ E3 → · · · → Em → 0,

Pi+1 ◦ Pi = 0.
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This general framework was the object of study of an extensive and rich theory
developed by Spencer and his collaborators in the 1960’s (cf. [BCG3], especially

Chapters IX and X). In that theory, one assumes that E1
P1−→ E2 is involutive

with solution sheaf Θ, and then one seeks to construct the remaining terms in
the above sequence that gives an exact sequence of sheaves which then provides
a “resolution” of Θ. For each x ∈ M and ξ ∈ T ∗

xM , the pointwise symbol maps
σ(Pi) : Ei,x ⊗ T ∗

xM → Ei+1,x give a complex, called the symbol sequence,

E1,x
σ(P1)(ξ)−−−−−→ E2,x

σ(P2)ξ−−−−→ E3,x → · · · → Em,x

whose cohomology is an important invariant of the situation (4.7). Also central to
the theory is the characteristic variety Ξ ⊂ PT ∗

xM defined by

Ξ = { [ξ] ∈ PT ∗M : kerσ(P1)(ξ) �= 0 }.

Roughly speaking one has

• Ξ = PT ∗M means that the PDE system defining Θ is underdetermined;
• codimΞ = 1 means that the PDE system is determined;
• codimΞ > 1 means that it is overdetermined;
• Ξ = ∅ means that the PDE is maximally overdetermined or holonomic.

In this latter case the sections of Θ over M are a finite dimensional vector space.
We observe that

Rq
πU

π∗
DLμ

d1−→ Rq
πU

Ω1
πD

(Lμ)
d1−→ Rq

πU
Ω2

πD
(Lμ) → · · ·

is a complex of the type (4.7) whose symbol sequence and characteristic variety are
naturally associated to the spectral sequence (3.4). Although we do not know if the
first d1 is involutive or what the characteristic variety is in general, we shall now
discuss the latter for our two examples.

In fact, to a general complex (4.7) there is naturally associated a spectral
sequence leading to a definition of “secondary characteristic varieties.” We suspect
this construction may appear in the literature; we shall give and illustrate it in the
situation studied here.

We will omit reference to the character μ and denote by

Fp,q = sheaf of holomorphic sections of F p,q → U

= Rq
πU

Ωp
πD

(L)

with stalks Fp,q
u for u ∈ U. For mu ⊂ OU,u the maximal ideal, we define

GrkFp,q
u =

mk
u ⊗ OU,uF

p,q
u

mk+1 ⊗OU,u
F p,q
u

.

This is a locally free coherent sheaf over U whose typical fibre is

Skp∗ ⊗Hq
(
Z,∧pNZ/D(L)

)
.

Combining the above identification p∗ ∼= p with the inclusion

p ↪→ H0(Z,NZ/D),

the cup-products give maps

Sk
p⊗Hq

(
Z,∧p

NZ/D
(L)

)
→ Sk−1

p⊗Hq
(
Z,∧p+1NZ/D(L)

)
.
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22 M. GREEN AND P. GRIFFITHS

The composition of these maps for k followed by k − 1 is zero, and thus we have
for each k a complex of sheaves

GrkF 0,q → Grk−1F 1,q → · · · → Grk−rF r,q

where r = min(k, codimD Z) and where the maps are OU-linear. For k = 1 this is
just the symbol map. For k = 2 it is

Gr2F 0,q d1 ��

d2

������������� Gr1F 1,q d1 �� Gr0F 2,q

Gr2F 0,q−1 �� Gr1F 1,q−1 �� Gr0F 2,q−1.

Here we continue to denote by σ1(ξ) the natural maps induced by the usual symbol
σ1(ξ) when k = 1.

The maps in the fibres at u depend only on ξ ∈ T ∗
uU. In a typical fibre we have

k = 1 ξ ⊗Hq(Z,L)
σ1(ξ)

�� Hq
(
Z,NZ/D(L)

)

k = 2 ξ(2)Hq(Z,L)
σ1(ξ)

��

σ2(ξ)

������������������ ξ ⊗Hq
(
Z,NZ/D(L)

) σ1(ξ)
�� Hq

(
Z,∧2NZ/D(L)

)

ξ(2) ⊗Hq−1(Z,L) �� ξ ⊗Hq
(
Z,NZ/D(L)

)
�� Hq−1

(
Z,∧2NZ/D(L)

)
.

Definition 4.6. The secondary symbol σ2(ξ) is defined by the dotted arrow
above. The secondary characteristic variety Ξ2 is defined by

Ξ2 = {ξ : σ1(ξ) = 0, σ2(ξ) = 0}.

The definition of σ2(ξ) is clearly related to the differential d2 in our spectral
sequence. Recall that d2 is a linear differential operator of degree � 2 defined on
ker d1. We are not aware of how one may define the symbol of such an operator;
the above is one possible construction defined on decomposable elements ξ(2) where
σ1(ξ) = 0; i.e., ξ ∈ Ξ. In the discussion below of Sp(4) we shall abuse notation
and denote by σ(d2) the above construction extended in the special case (i) there
to not necessarily decomposable elements in p(2). This discussion is not meant to
be rigorous or definitive, but rather our interest is to illustrate interesting behavior
of Harish-Chandra modules associated to degenerate, or close to being degenerate
in the sense that μ+ ρ is near to a wall, discrete series and limits of such.

SU(2, 1): As complex manifolds, we have Z = U(2)/T ∼= SU(2)/TS where TS =

SU(2)∩T . As homogeneous complex manifolds they are distinct and have different
sets of homogeneous vector bundles (cf. section II.A in [GGK2] for a discussion
and illustration of this point). Here, for simplicity we shall use Z = SU(2)/TS,

4

and we denote by W ∼= C2 the standard representation of SU(2) with W (n) being
the nth symmetric product. We then have

W = H0(OZ(1)).

4In the case of Sp(4) discussed below, in order to be able to use weight considerations we
shall need to use the homogeneous complex manifold Z = U(2)/T .
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From [GGK2], (A.IV.F.6) we have the identification of holomorphic vector bundles
over Z

NZ/D
∼= OZ(1)⊕ OZ(1).

Setting

degLμ

∣∣
Z
= k,

we then have the following tables of the fibres of Rq
πU

Ωp
πD

(Lμ) → U (here q is the

y-axis and p is the x-axis, and W (j) = 0 for j < 0):

k = −l − 2, l > 0 W (l)∗
2
⊕W (l−1)∗ W (l−2)∗

0 0 0

k = −2
W (0) 0 0

0 0 W (0)

k = −1
0 0 0
0 0 0

k � 0
0 0 0

W (k)
2
⊕W (k+1) W (k+2)

Using the identification {
p = H0(Z,NZ/D) = W ⊕W

p∗∼= p, as in Theorem (4.4),

we shall analyze the various cases.
k = −l − 2: The symbols are then

⎧⎨
⎩
(i) W (l)∗ ⊗

( 2
⊕W

)
→

2
⊕W (l−1)∗

(ii)
( 2
⊕W (l−1)∗

)
⊗
( 2
⊕W

)
→ W (l−2)∗ .

These may be identified as follows:

(i) P ⊗ (w ⊕ w′) −→ P �w ⊕ P �w′ P ∈ W (l)∗ ;w,w′ ∈ W

(ii) (P ⊕ P ′)⊗ (w ⊕ w′) −→ P �w′ − P ′�w P, P ′ ∈ W (l−1)∗ .

It follows that (i) is injective unless w,w′ are linearly dependent, and by a Koszul-
type argument except in this case we have image (i) = kernel (ii). This gives the

Conclusion 4.7. For k � −3 the characteristic variety Ξ is a quadric in P3;
hence codimΞ = 1. For ξ non-characteristic the symbol sequence is exact.

k � 0: The symbols are then maps

(i) W (k) ⊗
( 2
⊕W

)
→

2
⊕W (k+1);

(ii)
( 2
⊕W (k+1)

)
⊗
( 2
⊕W

)
→ W (k+2).
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They may be identified as follows:

(i) P ⊗ (w ⊕ w′) → Pw ⊕ Pw′ P ∈ W (k);w,w′ ∈ W

(ii) (P ⊕ P ′)⊗ (w ⊕ w′) → Pw′ − P ′w P, P ′ ∈ W (k+1);w,w′ ∈ W.

It follows that (i) is injective, unless of course w = w′ = 0, and then the symbol
sequence is exact.

Conclusion 4.8. For k � 0 the characteristic variety Ξ is empty, and the
symbol sequence is exact.

We observe that by (3.5) in the cases k � −2 and k � 0 the maps

H1(D,Lμ) ↪→ H0(U, R1
πU

π∗
DLμ) k � −2

−H0(D,Lμ) ↪→ H0(U, R0
πU

π∗
DLμ) k � 0

are injective. For k � −3 and k � 0 the image is just

ker{d1 : H0(URq
πU

π∗
DLμ) → H0(U, Rq

πU
Ω1

πD
(Lμ))}.

For k = −2 a very interesting special circumstance, to be discussed below, arises.
We also note that from the above conclusion we have that when k � 0

dimH0(D,Lμ) < ∞.

Remark 4.9. For a general D = G0/T we will have

(4.8) dimHq(D,Lμ) < ∞ 0 � q < d = dimK0/T

provided that for Z = K0/T and non-zero ξ ∈ p the map

(4.9) Hq(Z,Lμ)
ξ−→ Hq(Z,NZ/D(Lμ))

is injective, where we are using the inclusion p ↪→ H0(Z,NZ/D). We note that
(4.8) is not true for D classical and q = 0 (take any μ such that μ+ρ is dominant),
and it is not true for D non-classical and q = d (take any μ such that μ + ρ is
anti-dominant). In general, the LHS is known by the Borel-Weil-Bott theorem.
For the RHS there is a composition series for NZ/D whose line bundle factors are

the Lβ where β ∈ Φ+
nc is a positive non-compact root. Thus, at least in principal,

one might hope to analyze the map (4.9).5 We are not aware of any case of a
non-classical D where it fails to be injective for non-zero ξ.

We note finally that

Lemma 4.10. If μ is in the anti-dominant Weyl chamber and NZ/D → Z is
ample, then there is a filtration F pHq(D,Lμ) such that for q < d, the associated
graded has dimGr•Hq(D,Lμ) < ∞.

Proof. The filtration

F pLμ = I
p
Z ⊗

OZ

Lμ

of Lμ leads to a spectral sequence abutting to H∗(D,Lμ) and, using that F pLμ/
F p+1Lμ

∼= Symp N∗
Z/D(Lμ), with E1-terms given by

Ep,q
1 = Hp+q(Z,GrpLμ) = Hp+q(Z, Symp N∗

Z/D(Lμ)).

5As is evident from the works of Schmid (cf. the references in [Sch2]) and from part IV of
[FHW] the combinatorics of the extension data in the composition series are quite intricate.
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By the ampleness assumption

Ep,q
1 = 0 for 0 � q < d, p � p0(μ),

which gives the conclusion. �

The condition of ampleness is rare but does occur, especially in low dimensional
examples including the two discussed in this paper. We suspect that in fact (4.8)
is valid, but to be able to conclude this one needs ∩pF

pHq(D,Lμ) = (0).
Returning to the general discussion of the symbol map for SU(2, 1), in many

ways the most interesting is the case k = −2: Then we have for the symbol a map

(4.10) σ(d2) ·W (0) ⊗ p∗(2) → W (0).

Calculations that are in progress for a separate work indicate that

The symbol map (4.8) is given by

σ(d2)P = 1
2 〈P,Ω〉 , P ∈ p

∗(2)

where Ω ∈ g(2) is the Casimir operator.

Here we are writing g = p⊕ k and thinking of p∗(2) ⊂ g∗(2).
Representation-theoretic interpretation:6 Referring to the root diagram

in Figure 1 where C is the positive Weyl chamber for the non-classical complex
structure on U(2, 1)/T , for weights μ such that for ρ = 1

2 (
∑

α∈Φ∗ α) we have

(4.11) μ+ ρ ∈ −C;

i.e., μ + ρ is anti-dominant, Schmid has shown that H1(D,Lμ) is the HC-module
Vμ+ρ with infinitesimal character χμ+ρ. Since

(4.11) ⇒ degLμ � −3

from the discussion above and the results of [Sch2] we have

Lemma 4.11. For a weight μ satisfying (4.11), the HC-module associated to
the discrete series representation with Harish-Chandra character Θμ+ρ is realized
as the kernel of the linear, 1st order differential operator above whose characteristic
variety is a quadric in P3.

For the weight μ = −ρ, so that Lμ

∣∣
Z
= ωZ is the canonical bundle, H1(D,L−ρ)

is the HC-module associated to the totally degenerate limit of discrete series (TDLDS)
(0, C) with infinitesimal character χ0 = 0 and corresponding to the non-classical
Weyl chamber C. We expect to then have the conclusion

Conclusion 4.12. The HC-module associated to the TDLDS V0 is the kernel
of the scalar, linear 2nd order PDE given above whose symbol is (1/2)Ω where Ω is
the Casimir operator.

Sp(4): In discussing SU(2, 1) we have been treating Z = U(2)/T as the homo-

geneous space SU(2)/TS where TS = SU(2) ∩ T . For Sp(4) weight considerations

6These will be more extensively discussed in joint work in preparation with Matt Kerr which
is a sequel to [GGK2].

353



26 M. GREEN AND P. GRIFFITHS

require that we use the full U(2) symmetry group. In the weight diagram

−2e2

�

+

�

−e1 − e2

�

−2e1

•e2 − e1

�

2e2

�

+
e1 + e2

�+ 2e1

•+ e1 − e2

we have labelled the positive roots for the Weyl chamber C corresponding to our
non-classical complex structure D by +, and the compact roots by • . We denote
by Lk1e1+k2e2 → D the U(2)-homogeneous line bundle given by the character of T
corresponding to the weight k1e1 + k2e2. We then set

• W = U(2)-module H0(Z,Le1);
• δ = U(2)-module Λ2W given by the character of U(2) with weight e1+e2;

• W
(n)
k = U(2)-module Symn W ⊗ δk.

Then we have as U(2)-modules

(4.12)

• H0(Z,Lk1e1+k2e2) = W
(k1−k2)
k2

(= 0 if k1 > k2);

• H1(Z,Lk1e1+k2e2) = W
(k2−k1−2)
k1+1 (= 0 if k2 > k1 + 2);

• W
(n)∗

k = W
(n)
−n−k;

• W
(n)
k ⊗W

(m)
l = ⊕

i�0
W

(n+m−2i)
i+k+l if m ≤ n.

From the root diagram we may infer that for the normal bundle NZ/D → Z we
have as U(2)-homogeneous vector bundles

(4.13)

{
NZ/D = L−2e2 ⊕N ′

0 → Le1+e2 → N ′ → L2e1 → 0.

Using this we see that as U(2)-modules

(4.14) H0(Z,NZ/D) = W
(2)
0 ⊕W

(2)
−2︸ ︷︷ ︸

p

⊕W
(0)
1 .

Here, we have the inclusion p ↪→ H0(Z,NZ/D) given by the terms over the bracket,
and there is one “extra” deformation of Z; i.e., not coming from moving Z by G,

corresponding to W
(0)
1 . Since H1(Z,NZ/D) = 0, this extra infinitesimal deforma-

tion of Z ⊂ D is unobstructed (cf. Part IV in [FHW] for a general discussion of
this point).
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For the line bundle Lμ = Lk1e1+k2e2 we have{
degLμ = k1 − k2

ωZ = Le2−e1 (⇒ degωZ = −2).

The following tables show where the non-zero groups Hq(Z,ΛpNZ/D(Lμ)) occur.
The specific U(2)-modules can be identified using (4.12) and (4.13), and this will
be done in two cases of particular interest.

k � −5:
∗ ∗ ∗ ∗
0 0 0 0

.

Here, the term in the upper right-hand position is zero if k = −5. It may be checked
that

μ+ ρ anti-dominant ⇒ k � −5.

Thus, the HC module associated to the discrete series have the above picture. The
spectral sequence degenerates at E2, which is a general phenomenon.

k = −4:
∗ ∗ ∗ 0
0 0 0 ∗

k = −3:
∗ ∗ 0 0
0 0 ∗ ∗

k = −2:
∗ 0 0 0
0 ∗ ∗ ∗

k = −1:
0 0 0 0
0 ∗ ∗ ∗

k ≥ 0:
0 0 0 0
∗ ∗ ∗ ∗

The cases k � −5, which include the discrete series, and k � 0 where the charac-
teristic variety Ξ = ∅ and dimH0(D,Lμ) < ∞, are similar to the SU(2, 1) example
discussed above. Here we only analyze two particularly interesting cases:

(1) L−ρ = L−2e1+e2 corresponding to a TDLDS;
(2) L−3e1+e2 corresponding to a non-degenerate limit of discrete series

(NDLDS).

In case (2) the picture for μ = −3e1 + e2 and μ+ ρ is

�
�
�
�
�
��

�
�
�
�
�

�

� �

�

�

�

�

� ∗
μ+ρ

↓∗ μ

The arrow means that the NDLDS is associated to a non-classical, anti-dominant
Weyl chamber; that is it is a non-holomorphic NDLDS.
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Case (1): The picture here is

W
(1)
−1 W

(1)
0 0 0

0 0 W
(1)
−1 W

(1)
0

We have as above

p = W
(2)
0 ⊕W

(2)
−2

∼= p∗.

Dualizing the symbol map

W
(1)
−1 ⊗ p∗ → W

(1)
0

for d1 : E
0,1
1 → E0,2

1 at our reference point gives, using p ∼= p∗,

W
(1)
−1 ⊗W

(1)
−1 → p = W

(2)
−2 ⊕W

(2)
0 .

By consideration of weights we end up in the W
(2)
−2 -factor. This map is thus

H0(Z,O(1))⊗H0(Z,O(1)) → H0(Z,O(2)).

Unwinding the dualities, we see that the non-zero part of the symbol is a map

V ⊗ S2V ∗ �� V ∗

∈ ∈

u⊗ q �� u�q

where V is a 2-dimensional vector space. This map is an isomorphism if, and only
if, q ∈ S2V ∗ is a non-singular quadric. This gives the

Conclusion 4.13. The characteristic variety Ξ ⊂ P(W
(2)
0 ⊕W

(2)
−2 ) is the pro-

jectivization of (non-singular quadric in W
(2)
0 )⊕W

(2)
−2 .

This is a singular quadric in Pp∗. Since d1 : E
1,0
1 → E1,1

1 is a determined linear
PDE system it is consistent that codimΞ = 1.

Turning to d2, since for a 1st order determined linear PDE P : E → E′ whose
characteristic variety is a hypersurface, the solutions that vanish to 2nd order at a
point define a linear subspace

Fx ⊂ Ex ⊗ S2T ∗
xM

that projects onto Ex in the sense that the natural map Fx ⊗ S2TxM → Ex is
surjective as explained above, we may consider the symbol of d2 as a map

σ(d2) : W
(1)
−1 ⊗ S2

p → W
(1)
−1 .

Now by (4.12)

S2p = S2W
(2)
0 ⊕

(
W

(2)
0 ⊗W

(2)
−2

)
⊕ S2W

(2)
−2 .

By weight considerations, onlyW
(2)
0 ⊗W

(2)
−2 , which contains the map id

W
(2)
0

: W
(2)
0 →

W
(2)
0 , is going to map W

(1)
−1 to W

(1)
−1 . Then by (4.12)

(4.15)

⎧⎪⎨
⎪⎩
Hom(W

(1)
−1 ,W

(1)
−1 ) = W

(2)
−1 ⊕W

(0)
0

W
(2)
−2 ⊗W

(2)
0 = W

(4)
−2 ⊕W

(2)
−1 ⊕W

(0)
0︸ ︷︷ ︸ .
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Thus the only potentially non-zero piece of σ(d2) arises from the term over the
brackets. In fact, since

p = W
(2)
0 ⊕W

(2)
−2

and
q ∈ W

(2)
0

∼= S2V ∗

has rank one, taking for example q = z∗21 and z2 ∈ ker d1 ⊂ V then

q ⊕ p ∈ S2V ⊕ S2V ∗

maps to Hom(W
(1)
−1 ,W

(1)
−1 ) by

p = az21 + bz1z2 + cz22

q ⊗ p → 2az∗1 ⊗ z1 + bz∗1 ⊗ z2

and z2 → 0 under q ⊗ p. Thus z2 ∈ ker d2 so that we are led to the

Conclusion 4.14. Viewing the symbol as a map

Hom
(
W

(1)
−1 ,W

(1)
−1

)
→ S2

p,

from (4.15), the only non-zero part is a map

W
(2)
−1 ⊕W

(0)
0 → W

(2)
−1 ⊕W

(0)
1 .

This map is a constant c times the identity.

We suspect, but have not proved, that c �= 0; i.e., the characteristic variety of d2 is
non-trivial. The relation, if any, between the symbol σ(d2) and the Casimir operator
is not yet understood by the authors. The case where c = 0 will be commented on
at the end of this section.

Case (2): Here the picture is

W
(2)
−2 W

(0)
−2 ⊕W

(2)
−1 ⊕W

(0)
0 W

(0)
−1 0

0 0 0 W
(0)
0

This is derived from (4.12) and (4.13), and for the E2,0
1 and E2,1

1 terms uses that
in the cohomology sequence

0 → L−2e1 → N ′ ⊗ L−2e2 ⊗ L−2e1+e2 → L−e1−e2 → 0

we have
H0(Z,L−e1−e2)

∼−→ H1(Z,L−2e1).

Using p ∼= p∗, for the symbol

(4.16) σ(d1) : E
0,1
1 ⊗ p → E1,1

1

we have

W
(2)
−2 ⊗ p =

(
W

(2)
−2 ⊗W

(2)
0

)
⊕
(
W

(2)
−2 ⊗W

(2)
−2

)

∼=
(
W

(4)
−2 ⊕W

(2)
−1 ⊕W

(0)
0︸ ︷︷ ︸

)
⊕
(
W

(4)
−4 ⊕W

(2)
−3 ⊕W

(0)
−2︸ ︷︷ ︸

)
.

By weight considerations, only the terms over the brackets can map to something
non-zero under d1. Thus the symbol map is(

W
(2)
−2 ⊗W

(2)
0︸ ︷︷ ︸

)
⊕
(
W

(2)
−2 ⊗W

(2)
−2︸ ︷︷ ︸︸ ︷︷ ︸

)
→

(
W

(2)
−1 ⊕W

(0)
0︸ ︷︷ ︸

)
⊕W

(0)
−2︸ ︷︷ ︸︸ ︷︷ ︸
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where the terms over the single and double brackets correspond under the symbol
map and may be seen to be surjective. In fact, using from (4.12) that

W
(2)
0

∼= W
(2)∗

−2

the map over the double brackets is just contraction of Q1 ∈ W
(2)
−2 with Q2 ∈ W

(2)
0

twisted by δ2.
The map over the single brackets is of the general form

S2V ⊗ S2V → (V ⊗ V )⊗ (V ⊗ V ) → V ⊗ Λ2V ⊗ V → Λ2V ⊗ S2V

together with

S2V ⊗ S2V → Λ2V ⊗ S2V

where V is a 2-dimensional vector space. Together these two maps give

S2V ⊗ S2V → V ⊗ Λ2V ⊗ V → Λ2V ⊗ V ⊗ V.

In coordinates and taking the above duality into account, the map is(∑
i,j

aijz
∗
i z

∗
j

)
⊗
(∑

k,l

bklzkzl

)
→

∑
i,k

(∑
j

aijbjk

)
z∗i zk.

There are three cases depending on the rank of Q2 =
∑

k,l bklzkzl.

Rank Q2 = 2: Taking Q2 = z1z2, the above map on Q1 =
∑

i,j z
∗
i z

∗
j is⎧⎪⎨

⎪⎩
z∗21 → z∗1 ⊗ z2

z∗22 → z∗2 ⊗ z1

z∗1z
∗
2→ z∗1 ⊗ z2 + z∗2 ⊗ z1.

In this case there is no kernel contracting with Q2.
Rank Q2 = 1: Taking Q2 = z21 we have⎧⎪⎨

⎪⎩
z∗21 → 2z∗1 ⊗ z1

z∗1z
∗
2→ 2z∗2 ⊗ z1

z∗22 → 0.

Now

p = W
(2)
0 ⊕W

(2)
−2

where Q2 ∈ W
(2)
0 and Q1 ∈ W

(2)
−2 . Then

• Q2 = z1z2 mapping to the kernel of the ︸︷︷︸ part of d1 is zero;
• Q2 = z21 mapping to the kernel of the ︸︷︷︸ part of d1 is z∗22 ;

• Q2 = 0 mapping to the kernel of the ︸︷︷︸ part of d1 is all of W
(2)
−2 .

If now Q2 = z21 , then for Q1 = az∗21 + bz∗1z
∗
2 + cz∗22 the kernel of the

︸︷︷︸︸︷︷︸ part of d1
takes z∗22 to 2cz2. So there is one further condition on Q1, namely c = 0, to have
a non-trivial ker d1. If Q2 = 0, then Q1 contracts to zero with a codimension � 2

subspace of W
(2)
−2 for any Q1. Thus the characteristic variety has codimension 2.

Rank Q2 = 0: Then contracting with Q1 we always get a rank 2 kernel. But
Q2 = 0 is a codimension 3 condition.

Conclusion 4.15. The characteristic variety Ξ of the symbol map (4.16) has
codimΞ = 2.
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This is consistent with d1 = E0,1
1 → E1,1

1 being an overdetermined PDE system.

Remarks concerning degenerate symbols: We begin with the general

Observation 4.16. Schmid’s result [Sch2] that Hr(D,Lμ) = 0 for r > d =
dimZ implies conditions on the differentials in the spectral sequence in Theorem
(3.4).

Specifically, no terms in Ep,q
1 can survive to Ep,q

∞ if p+ q > d.
As we shall now discuss, this has implications for the symbol maps. For this

we make the following

Convention. If P : E → F is a differential operator of order � k whose
symbol mapping E ⊗ SkT ∗M → F is zero, then P has order � k − 1. We define
the symbol of P : E → F to be the first non-zero map E ⊗ SlT ∗M → F .

Referring to the discussion below (4.14), if c = 0 then d2 is a differential
operator of order � 1. If it is truly of order 1, then the symbol is a map

W
(2)
−1 ⊕W

(0)
0 → W

(2)
−2 ⊕W

(2)
0 ,

which by weight considerations must be zero. Thus, d2 is a scalar operator

W
(1)
−1 → W

(1)
−1

which must be a multiple of the identity. We again suspect, but have not proved,
that if this situation does occur then the multiple is non-zero.

When we turn to case (ii), from (4.16) the mapping

d2 : ker d1 ∩E1,1
1 → E3,0

1

must be an isomorphism. By our convention above, the symbol σ(d2) must be
non-zero. The various cases where d2 is of actual order 2, 1, 0 can be analyzed using
weight considerations, but we shall not do so here.

We conclude with a remark about the case k � −5, where the picture is

∗ ∗ ∗ ∗
0 0 0 0

In this case we have an exact sequence

(4.17) 0 → H0(D,Lμ) → E0,1
1

d1−→ E1,1
1

d1−→ E2,1
1 → E3,1

1 → 0.

Now Ep,q
1 = H0

(
U, Rq

πU
Ωp

πD
(Lμ)

)
, and since U is a Stein manifold we believe it

follows that setting Θμ = ker{ d1 : R1
πU

π∗
DLμ → R1

πU
Ω1(Lμ) } we have over U the

exact sheaf sequence

0 → Θμ → R1
πU

π∗
DLμ

d1−→ R1
πU

Ω1(Lμ)

d1−→ R1
πU

Ω2
πD

(Lμ)
d1−→ R1

πU
Ω3

πD
(Lμ) → 0.

Although we have not tried to analyze this, it seems interesting and reasonable that
this should be a Spencer resolution as in [BCG3], Chapter X. In fact, this could
be a general phenomenon for the discrete series.
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Geometry of theta divisors — a survey

Samuel Grushevsky and Klaus Hulek

Abstract. We survey the geometry of the theta divisor and discuss various
loci of principally polarized abelian varieties (ppav) defined by imposing condi-
tions on its singularities. The loci defined in this way include the (generalized)
Andreotti-Mayer loci, but also other geometrically interesting cycles such as
the locus of intermediate Jacobians of cubic threefolds. We shall discuss ques-
tions concerning the dimension of these cycles as well as the computation of

their class in the Chow or the cohomology ring. In addition we consider the
class of their closure in suitable toroidal compactifications and describe degen-
eration techniques which have proven useful. For this we include a discussion
of the construction of the universal family of ppav with a level structure and
its possible extensions to toroidal compactifications. The paper contains nu-
merous open questions and conjectures.

Introduction

Abelian varieties are important objects in algebraic geometry. By the Torelli
theorem, the Jacobian of a curve and its theta divisor encode all properties of the
curve itself. It is thus a natural idea to study curves through their Jacobians. At the
same time, one is led to the question of determining which (principally polarized)
abelian varieties are in fact Jacobians, a problem which became known as the
Schottky problem. Andreotti and Mayer initiated an approach to the Schottky
problem by attempting to characterize Jacobians via the properties of the singular
locus of the theta divisor. This in turn led to the introduction of the Andreotti-
Mayer loci Nk parameterizing principally polarized abelian varieties whose singular
locus has dimension at least k.

In this survey paper we shall systematically discuss loci within the moduli space
Ag of principally polarized abelian varieties (ppav), or within the universal family
of ppav Xg, defined by imposing various conditions on the singularities of the theta
divisor. Typically these loci are defined by conditions on the dimension of the
singular locus or the multiplicity of the singularities or both. A variation is to ask
for loci where the theta divisor has singularities of a given multiplicity at a special
point, such as a 2-torsion point. We shall discuss the geometric relevance of such
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2 SAMUEL GRUSHEVSKY AND KLAUS HULEK

loci, their dimension, and their classes in the Chow ring of either Ag or a suitable
compactification. In some cases we shall also discuss the restriction of these loci
to the moduli space Mg of curves of genus g. Needless to say, we will encounter
numerous open problems, as well as some conjectures.

An approach that was successfully applied to the study of these loci in a number
of cases is to study these loci by degeneration, i.e. to investigate the intersection of
the closure of such a locus with the boundary of a suitable compactification. This
requires a good understanding of the universal family Xg → Ag, and its possible
extension to the boundary, as well as understanding the same for suitable finite
Galois covers, called level covers. This is a technically very demanding problem. In
this survey we will discuss the construction of the universal family in some detail
and we will survey existing results in the literature concerning the extension of
the universal family to toroidal compactifications, in particular the second Voronoi
compactification. We will also explain how this can be used to compute the classes
of the loci discussed above, in the example of intermediate Jacobians of cubic three-
folds.

1. Setting the scene

We start by defining the principal object of this paper:

Definition 1.1. A complex principally polarized abelian variety (ppav) (A,Θ)
is a smooth complex projective variety A with a distinct point (origin) that is an
abelian algebraic group, together with the first Chern class Θ := c1(L) of an ample
bundle L on A which has a unique (up to scalar) section , i.e. dimH0(A,L) = 1.

We denote Ag the moduli stack of ppav up to biholomorphisms preserving
polarization. This is a fine moduli stack, and we denote π : Xg → Ag the universal
family of ppav, with the fiber of π over some (A,Θ) being the corresponding ppav.
Note that since any ppav has the involution −1 : z �→ −z, the generic point of Ag

is stacky, and for the universal family to exist, we have to work with stacks. In fact
the automorphism group of a generic ppav is exactly Z/2Z, and thus geometrically
as a variety the fiber of the universal family over a generic [A] ∈ Ag is A/ ± 1,
which is called the Kummer variety.

We would now like to define a universal polarization divisor Θg ⊂ Xg: for this
we need to prescribe it (as a line bundle, not just as a Chern class) on each fiber,
and to prescribe it on the base, and both issues are complicated. Indeed, notice
that translating a line bundle L on an abelian variety A by a point a ∈ A gives a
line bundle t∗aL on A of the same Chern class as L. In fact for a ppav (A,Θ) the

dual abelian variety Â := Pic0(A) is isomorphic to A— the isomorphism is given by

the morphism A → Â, a �→ t∗aL⊗L−1. Thus the Chern class Θ determines the line
bundle L uniquely up to translation. It is thus customary to choose a “symmetric”
polarization on a ppav, i.e. to require (−1)∗L = L. However, for a given Θ = c1(L)
this still does not determine L uniquely: L can be further translated by any 2-
torsion point on A (points of order two on the group A). We denote the group of
2-torsion points on A by A[2].

Thus the set of symmetric polarizations on A forms a torsor over A[2] (i.e. is an
affine space over Z/2Z of dimension 2g), and there is in fact no way to universally
choose one of them globally over Ag.
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Moreover, to define the universal polarization divisor, we would also need to
prescribe it along the zero section in order to avoid ambiguities coming from the
pullback of a line bundle on the base. The most natural choice would be to require
the restriction of the universal polarization to the zero section to be trivial, but
this is not always convenient, as one would rather have an ample bundle Θg ⊂ Xg

(rather than just nef globally, and ample on each fiber of the universal family).
We shall now describe the analytic approach to defining the universal theta

divisor on Ag, and hence restrict solely to working over the complex numbers. We
would, however, like to point out that this is an unnecessary restriction and that
there are well developed approaches in any characteristic – the very first example
being the Tate curve [Tat67] in g = 1. In fact Ag and toroidal compactifications
can be defined over Z. We refer the reader to [FC90], [Ale02] and [Ols08]. The
basis of these constructions is Mumford’s seminal paper [Mum72] and the ana-
lysis of suitable degeneration data, which take over the role of (limits of) theta
functions in characteristic 0. We will later comment on the relationship between
moduli varieties in the analytic, respectively the algebraic category and stacks.

Recall that the Siegel upper half-space of genus g is defined by

Hg := {τ ∈ Mat(g × g,C)| τ = τ t, Im(τ ) > 0}
(where the second condition means that the imaginary part of τ is positive definite).
To each point τ ∈ Hg we can associate the lattice Λτ ⊂ Cg (that is, a discrete
abelian subgroup) spanned by the columns of the g × 2g matrix Ωτ = (τ,1g). The
torus Aτ = Cg/Λτ carries a principal polarization by the following construction:
the standard symplectic form defines an integral pairing J : Λτ ⊗ Λτ → Z, whose
R-linear extension to Cg satisfies J(x, y) = J(ix, iy). The form

H(x, y) = J(ix, y) + iJ(x, y)

then defines a positive definite hermitian form H > 0 on Cg whose imaginary
part is the R-linear extension of J . Indeed, using the defining properties τ = τ t

and Im(τ ) > 0 of Siegel space, the fact that H is hermitian and positive definite
translates into the Riemann relations

Ωt
τJ

−1Ωτ = 0, iΩt
τJ

−1Ωτ > 0.

By the Lefschetz theorem H ∈ H2(Aτ ,Z) ∩H1,1(Aτ ,C) is the first Chern class of
a line bundle L and the fact that H > 0 is positive definite translates into L being
ample. We refer the reader to [BL04] for more detailed discussions.

There are many choices of lattices which define isomorphic ppav. To deal with
this problem, one considers the symplectic group Sp(g,Z) consisting of all integer
matrices which preserve the standard symplectic form. This group acts on the
Siegel space by the operation

γ =

(
A B
C D

)
: τ �→ (Aτ +B)(Cτ +D)−1

where A,B,C and D are g × g blocks. It is easy to see that Aτ
∼= Aγ◦τ , with

the isomorphism given by multiplication on the right by (Cτ +D)−1. The points
of the quotient Sp(g,Z)\Hg are in 1-to-1 correspondence with isomorphism classes
of ppav of dimension g. This quotient is an analytic variety with finite quotient
singularities, and by a well-known result of Satake [Sat56] also a quasi-projective
variety. Indeed, it is the coarse moduli space associated to the moduli stack of
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ppav. By misuse of notation we shall also denote it by Ag, and specify which we
mean whenever it is not clear from the context. By an abuse of notation we will
sometimes write τ ∈ Ag, choosing some point τ ∈ Hg mapping to its class [τ ] ∈ Ag

(otherwise the notation [τ ] is too complicated).
To define principal polarizations explicitly analytically, we consider the Rie-

mann theta function

θ(τ, z) :=
∑
n∈Zg

e(ntτn/2 + ntz),

where we denote e(x) := exp(2πix) the exponential function. This series converges
absolutely and uniformly on compact sets in Hg. For fixed τ the theta function
transforms as follows with respect to the lattice Λτ : for m,n ∈ Zg we have

(1) θ(τ, z + n+ τm) = e(−1

2
mτ tm−mtz)θ(τ, z).

Moreover, the theta function is even in z:

(2) θ(τ,−z) = θ(τ, z).

For fixed τ ∈ Hg the zero locus {θ(τ, z) = 0} is a divisor in Aτ , and the associated
line bundle L defines a principal polarization on Aτ , i.e. the first Chern class c1(L) ∈
H2(Aτ ,Z) = Hom(Λ2Λτ ,Z) equals the Riemann bilinear form discussed above.
Since the theta function is even, the line bundle L is symmetric, i.e. (−1)∗(L) ∼= L.

The situation becomes more difficult when one works in families. For this, we
consider the group Sp(g,Z) � Z2g where the semi-direct product is given by the
natural action of Sp(g,Z) on vectors of length 2g. This group acts on Hg × Cg by

(γ, (m,n)) : (τ, z) �→ (γ ◦ τ, (z + τm+ n)(Cτ +D)−1)

where n,m ∈ Zg. Note that for γ = 1 this formula simply describes the action of the
lattice Λτ on Cg. We would like to say that the quotient Xg = Sp(g,Z)�Z2g\Hg×Cg

is the universal abelian variety over Ag. This is true in the sense of stacks, but not
for coarse moduli spaces: note in particular that (−1, (0, 0)) acts on each fiber by
the involution z �→ −z. Further complications arise from points in Hg with larger
stabilizer groups.

We would like to use the Riemann theta function to define a polarization on
this “universal family”. However, this is not trivial. The transformation formula of
θ(τ, z) with respect to the group Sp(g,Z) is difficult and requires the introduction
of generalized theta functions which we will discuss below, for details see [Igu72,
pp. 84,85]. It is, however, still true that the Chern class of the line bundle associated
to the divisor {θ(τ, z) = 0} ⊂ Aτ is the same as the Chern class of {θ(γ ◦ τ, γ ◦ z) =
0} ⊂ Aγ◦τ ∼= Aτ , although the line bundles are in general not isomorphic. The
point is that a symmetric line bundle representing a polarization is only defined up
to translation by a 2-torsion point, and there is no way of making such a choice
globally over Ag.

This problem leads to considering generalizations of the classical Riemann theta
function. For each ε, δ ∈ R2g we define the function

θ

[
ε
δ

]
(τ, z) :=

∑
n∈Zg

e((n+ ε)tτ (n+ ε)/2 + (n+ ε)t(z + δ)).

Note that for ε = δ = 0 this is just the function θ(τ, z) defined before. The pair
m = (ε, δ) is called the characteristic of the theta function. For the transformation
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behavior of these functions with respect to translation by Λτ we refer the reader to
[Igu72, pp. 48,49].

This function defines a section of a line bundle Lε,δ which differs from the line
bundle L = L0,0 defined by the standard theta function by translation by the point
ετ + δ ∈ Aτ . In particular the two line bundles have the same first Chern class
and represent the same principal polarization. Of special interest to us is the case
where ε, δ are half-integers, of which we think then as ε, δ ∈ ( 12Z/Z)

g, in which case
the line bundle Lε,δ is symmetric. We then call the characteristic (ε, δ) even or odd

depending on whether 4ε · δ is 0 or 1 modulo 2. The function θ

[
ε
δ

]
(τ, z) is even

or odd depending on whether the characteristic is even or odd. The value at z = 0
of a theta function with characteristic is called theta constant with characteristic
— thus in particular all theta constants with odd characteristic vanish identically.

The action of the symplectic group on the functions θ

[
ε
δ

]
(τ, z) is given by the theta

transformation formula, see [Igu72, Theorem 5.6] or [BL04, Formula 8.6.1], which
in particular permutes the characteristics. This too shows that there is no way of
choosing a symmetric line bundle universally over Ag.

In order to circumnavigate this problem we shall now consider (full) level struc-
tures, which lead to Galois covers of Ag. Level structures are a useful tool if one
wants to work with varieties rather than with stacks. The advantage is twofold.
Firstly, one can thus avoid problems which arise from torsion elements, or more
generally, non-neatness of the symplectic group Sp(g,Z). Secondly, going to suit-
able level covers allows one to view theta functions and, later on, their gradients,
as sections of bundles. One can thus perform certain calculations on level covers of
Ag and, using the Galois group, then interpret them on Ag itself. We shall next
define the full level � covers of Ag and discuss the construction of universal families
over these covers.

Definition 1.2. The full level � subgroup of Sp(g,Z) is defined by

Γg(�) := {γ ∈ Sp(g,Z)| γ ≡ 12g mod �}.

Note that this is a normal subgroup since it is the kernel of the projection
Sp(g,Z) → Sp(g,Z/�Z). We call the quotient

Ag(�) := Γg(�)\Hg

the level � cover. There is a natural map Ag(�) → Ag of varieties which is Galois
with Galois group PSp(g,Z/�Z).

One wonders whether the theta function transforms well under the action of
Sp(2g,Z) on Hg, i.e. if there is a transformation formula similar to (1) relating its
values at τ and γ ◦ τ . To put this in a proper framework, we define

Definition 1.3. A holomorphic function F : Hg → C is called a (Siegel)
modular form of weight k with respect to a finite index subgroup Γ ⊂ Sp(2g,Z) if

F (γ ◦ τ ) = det(Cτ +D)kF (τ ) ∀γ ∈ Γ, ∀τ ∈ Hg

(and for g = 1, we also have to require suitable regularity near the boundary of
Hg).

It then turns out that theta constants with characteristics are modular forms of
weight one half with respect to Γg(4, 8), the finite index normal theta level subgroup,
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such that Γg(8) ⊂ Γg(4, 8) ⊂ Γg(4), and in fact the eighth powers of theta constants
are modular forms of weight 4 with respect to all of Γg(2), see [Igu72] for a proper
development of the theory.

The geometric meaning of the variety Ag(�) is the following: it parameterizes
ppav with a level � structure. A level � structure is an ordered symplectic basis
of the group A[�] of �-torsion points of A, where the symplectic form comes form
the Weil pairing on A[�]. Thus a level � structure is equivalent to a choice of
a symplectic isomorphism A[�] ∼= (Z/�Z)2g where the right-hand side carries the
standard symplectic form. We shall also come back to level structures in connection
with Heisenberg groups in Section 4.

Indeed, if � ≥ 3, then Ag(�) is a fine moduli space. To see this we define the
groups

Gg(�) := Γg(�)� (lZ)2g � Sp(g,Z)� Z2g.

Note that Sp(g,Z)� Z2g/Gg(�) ∼= Sp(g,Z/�Z)� (Z/�Z)2g.

Definition 1.4. We define the universal family

Xg(�) := Gg(�)\Hg × Cg.

This definition makes sense for all �. Note that, as a variety, Xg(1) is the
universal Kummer family. For � ≥ 3 the group Gg(�) acts freely, and Xg(�) is an
honest family of abelian varieties over Ag(�). We note that for τ ∈ Ag(�) the fiber
Xg(�)τ = Cg/�Λτ

∼= Aτ = Cg/Λτ as ppav.
The family Xg(�) is indeed a universal family for the moduli problem: the points

given by Λτ in each fiber define disjoint sections of Xg(�) and the sections given by
τm+n withm,n ∈ {0, 1}g give, properly ordered, a symplectic basis of the �-torsion
points and thus a level � structure in each fiber. The group Sp(g,Z)�Z2g/Gg(�) ∼=
Sp(g,Z/�Z)� (Z/�Z)2g acts on Xg(�) with quotient Xg. Under this map each fiber
Xg(�)τ maps (2·(�)2g)-to-1 to the fiber (Xg)τ , the map being given by multiplication
by � followed by the Kummer involution.

The next step is to define a universal theta divisor. Provided that the level
� is divisible by 8, the theta transformation formula [Igu72, Theorem 5.6] shows
that the locus {θ(τ, z) = 0} defines a divisor Θg on the universal family Xg(�),
which is �2 times a principal divisor on each fiber. We would like to point out that
the condition 8|� is sufficient to obtain a universal theta divisor, but that we could
also have worked with smaller groups, namely the theta groups Γg(4�, 8�). For a
definition we refer the reader to [Igu72, Section V]. We would also like to point
out that the group Sp(g,Z)�Z2g/Gg(�) acts on the theta divisor Θg on Xg(�), but
does not leave it invariant, in particular the theta divisor does not descend to Xg

in the category of analytic varieties.
The previous discussion took place fully in the analytic category but the re-

sulting analytic varieties are in fact quasi-projective varieties (see Section 4). In
fact the spaces Ag and Ag(�) are coarse, and if � ≥ 3, even fine, moduli spaces
representing the functors of ppav and ppav with a level �-structure respectively.
We can thus also think of Ag(�) → Ag as a quotient of stacks, which we want to
do from now on.

Unlike in the case of varieties the universal stack family Xg over the stack Ag

carries a universal theta divisor. In our notation we will not usually distinguish
between the stack and the associated coarse moduli space, but will try to make it
clear which picture we use.
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At this point it is worth pointing out the connection between level structures
and the Heisenberg group, resp. the theta group. To do this we go back to thinking
of the fibers Xg(�)τ ∼= Aτ of the universal family Xg(�) as ppav. As such they also
carry � times a principal polarization and we choose a line bundle Lτ representing
this multiple of the principal polarization. Then Lτ is invariant under pullback by
translation by �-torsion points, in other words Aτ [�] = ker(λLτ

: Aτ → Pic0(Aτ )).
Using the level � structure on Aτ , we can identify Aτ [�] ∼= (Z/�Z)2g. Translations
by this group leave the line bundle Lτ invariant, but the action of this group on
Aτ does not lift to the total space of Lτ . In order to do this, we must extend the
group (Z/�Z)2g to the Heisenberg group H� of level �. This is a central extension

1 → μ� → H� → (Z/�Z)2g → 0.

Here the commutators of H� act as homotheties by roots of unity of order �. If we
consider the induced action of the Heisenberg group on the line bundle L⊗�

τ , which
represents �2 times the principal polarization, then the commutators act trivially
and thus this line bundle descends to Pic0(Aτ ) ∼= Aτ where it represents a principal
polarization. This is exactly the situation described above. If we choose Lτ to be
symmetric, then we can further extend the Heisenberg group by the involution ι.
Instead of working with a central extension by μ�, one can also consider the central
extension by C∗. In this way one obtains the (symmetric) theta group. For details
we refer the reader to [BL04, Section 6].

The smallest group for which we can interpret theta functions as honest sec-
tions of line bundles is the group Γg(4, 8). We shall however see later that many
computations can in fact be done on the level 2 cover Ag(2) — see the discussion
in Section 2.

The reason that we have taken so much trouble over the definition of the uni-
versal family is that it is essential for much of what we will discuss in this paper.
It will also be important for us to extend the universal family to (partial) com-
pactifications of Ag. This is indeed a very subtle problem to which we will come
back in some detail in Section 4. This will be crucial when we discuss degeneration
techniques in Section 6.

Example 1.5. For a smooth algebraic genus g curve C we denote Jac(C)
its Jacobian. The Jacobian can be defined analytically (by choosing a basis for
cycles, associated basis for holomorphic differentials, and constructing a lattice in
Cg by integrating one over the other) or algebraically, as Picg−1(C) or as Pic0(C).
We note that Pic0(C) is naturally an abelian variety, since adding degree zero
divisors on a curve gives a degree zero divisor; however there is no natural choice
of an ample divisor on Pic0(C) (the polarization class is of course well-defined).
On the other hand, Picg−1(C) has a natural polarization — the locus of effective
divisors of degree g − 1 — but no natural choice of a group law. Thus to get both
polarization and the group structure one needs to identify Pic0(C) with Picg−1(C),
by choosing one point R ∈ Picg−1(C) as the origin — a natural choice for R is the
Riemann constant. Alternatively, one could view Picg−1(C) as a torsor over the
group Pic0(C).

We would like to recall that the observation made above is indeed the start-
ing point of Alexeev’s work [Ale02]. Instead of looking at the usual functor of
ppav, Alexeev considered the equivalent functor of pairs (P,Θ) where P is an
abelian torsor acted on by the abelian variety A = Pic0(P ), and Θ is a divisor
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with h0(P,Θ) = 1. It is the latter functor that Alexeev compactifies, obtaining his
moduli space of stable semiabelic varieties, which we will further discuss later on.

For future reference we recall the notion of decomposable and indecomposable
ppav. We call a principally polarized abelian variety (A,Θ) decomposable if it is a
product (A,Θ) ∼= (A1,Θ1) × (A2,Θ2) of ppav of smaller dimension, otherwise we
call it indecomposable. We also note that decomposable ppav cannot be Jacobians
of smooth projective curves. However, if we consider a nodal curve C = C1∪C2 with
Ci, i = 1, 2 two smooth curves intersecting in one point, then Jac(C) ∼= Jac(C1) ×
Jac(C2) is a decomposable ppav.

The locusAdec
g of decomposable ppav is a closed subvariety ofAg, it is the union

of the images of the product maps Ai×Ag−i inAg. Its complementAind
g = Ag\Adec

g

is open.

2. Singularity loci of the theta divisor

We are interested in loci of ppav whose theta divisor satisfies certain geomet-
ric conditions, in particular we are interested in the loci of ppav with prescribed
behavior of the singular locus of the theta divisor. Working over the Siegel upper
half-space, we define for a point τ ∈ Hg the set

T (g)
a (τ ) := {z ∈ Aτ | multzθ(τ, z) ≥ a}

or more generally

T (g)
a

[
ε
δ

]
(τ ) := {z ∈ Aτ | multzθ

[
ε
δ

]
(τ, z) ≥ a}.

This means that we consider the singularities of the theta divisor in the z direction.
If we replace τ by a point γ ◦ τ , γ ∈ Sp(g,Z), which corresponds to the same

ppav in Ag, then the locus T
(g)
a

[
ε
δ

]
(γ ◦ τ ) is obtained from T

(g)
a

[
ε′

δ′

]
(τ ) (where

[ε, δ] = γ ◦ [ε′, δ′] is the affine action on characteristics) by applying the linear map
(Cτ +D)−1, which establishes the isomorphism Aτ → Aγ◦τ .

Thus the generalized Andreotti-Mayer locus

F
(g)
a,b := {τ ∈ Ag | dimT (g)

a (τ ) ≥ b}

is well-defined (i.e. this condition defines a locus on Hg invariant under the action
of Sp(g,Z)). We will often drop the index (g) if it is clear from the context. Recall

that the usual Andreotti-Mayer loci N
(g)
k := F2,k in our notation were defined in

[AM67] as the loci of ppav for which the theta divisor has at least a k-dimensional
singular locus. These were introduced because of their relationship to the Schottky
problem, as we will discuss in the next section. The generalized Andreotti-Mayer
loci are often denoted N �

k := F�+1,k in our notation, but since we will often need to
specify the genus in which we are working, we prefer the F notation.

Varying the point τ ∈ Ag, we would also like to define a corresponding cycle

T
(g)
a ⊂ Xg in the universal family. For this we go to the level cover Ag(8). For each

(ε, δ) ∈ ( 12Z/Z)
g the set

T (g)
a

[
ε
δ

]
=

{
(τ, z) ∈ Xg(8) | (τ, z) ∈ T (g)

a

[
ε
δ

]
(τ )

}
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is well-defined, and since the fiber dimension is upper semi-continuous in the Zariski
topology, this is a well-defined subscheme of Xg(8). The Galois group Sp(g,Z/8Z)

of the cover Ag(8) → Ag permutes the cycles T
(g)
a

[
ε
δ

]
, and thus we obtain a cycle

T
(g)
a ⊂ Xg in the universal family over the stack.

Remark 2.1. The Riemann theta singularity theorem describes the singular-

ities of the theta divisor for Jacobians of curves. In particular our locus T
(g)
a

restricted to the universal family of Jacobians of curves (i.e. the pullback of Xg

to Mg), gives the Brill-Noether locus Wa−1
g−1 . The Brill-Noether loci have been

extensively studied, and their projections to Mg give examples of very interest-
ing geometric subvarieties, see for example [ACGH85] for the foundations of the
theory, and [Far01] for more recent results.

We shall also need the concept of odd and even 2-torsion points. The 2-torsion
points of an abelian variety Aτ = Cg/(Zgτ + Zg) are of the form ετ + δ where
ε, δ ∈ ( 12Z/Z)

g. It is standard to call a 2-torsion point even if 4ε · δ = 0, and
odd if this is 1, exactly as in the case of our notion of even or odd characteristics.
This can be formulated in a more intrinsic way: if L is a symmetric line bundle
representing the principal polarization of an abelian variety A, then the involution
ι : z �→ −z can be lifted to an involution on the total space of the line bundle L.
A priori there are two such lifts, but we can choose one of them by asking that
ι∗(s) = s, where s is the (up to scalar) unique section of L. The even, resp. odd,
2-torsion points are then those where the involution acts by +1, resp. −1 on the
fiber. The number of even (resp. odd) 2-torsion points is equal to 2g−1(2g + 1)
(resp. 2g−1(2g − 1)), see [BL04, Chapter 4, Proposition 7.5]. Applying this to the
Riemann theta function θ and the line bundle defined by it, we obtain our above

notion of even and odd 2-torsion points. Replacing θ by θ

[
ε
δ

]
means shifting by

the 2-torsion point ετ + δ (and multiplying by an exponential factor that is not
important to us), and thus studying the properties of θ at the point ετ + δ is

equivalent to studying the properties of θ

[
ε
δ

]
at the origin.

We have already pointed out that the non-zero 2-torsion points define an irre-
ducible family over Ag. However, if the level � is even, then the 2-torsion points
form sections in Xg(�) and in this case we can talk about even and odd 2-torsion
points in families.

We note that the group Γg(8)/Γg(2) acts on the functions θ

[
ε
δ

]
(τ, z) by certain

signs. This does not affect the vanishing of this theta function, or of its gradient
with respect to z, and thus we can often work on Ag(2), rather than on Ag(4, 8) or
Ag(8).

Example 2.2. Note that by definition we have T
(g)
1 = Θ (more precisely, the

union of all the 22g symmetric theta divisors), as this is the locus of points where
θ is zero; thus F1,k = Ag for any k ≤ g − 1, and F1,g = ∅. In general we have

T
(g)
a+1 ⊆ T

(g)
a .
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We can think of T
(g)
2 as the locus of points (τ, z) such that the theta divisor

Θτ ⊂ Aτ is singular at the point z; following Mumford’s notation, we think of this

as the locus S := SingvertΘ := T
(g)
2 .

From the heat equation

(3)

∂2θ

[
ε
δ

]
(τ, z)

∂zj∂zk
= 2πi(1 + δjk)

∂θ

[
ε
δ

]
(τ, z)

∂τjk
.

we see that the second z-derivatives of θ(τ, z) vanish if and only if all the first order

τ -derivatives vanish. Thus we have T
(g)
3 = SingΘg is the locus of singularities of

the global theta divisor, as a subvariety of Xg.

3. Loci in Ag defined by singularities of the theta divisor

In this section we collect known results and numerous open questions about
the properties of the loci of ppav with singular theta divisors defined above. The
first result says that the theta divisor of a generic ppav is smooth:

Theorem 3.1 ([AM67]). For a generic ppav the theta divisor is smooth,
i.e. N0 � Ag.

Thus one is led to ask about the codimension of N0 in Ag. To this end, note

that S = T
(g)
2 ⊂ Xg is the common zero locus of the theta function and its g partial

derivatives with respect to z. It follows that codimXg
S ≤ g + 1, and in fact the

dimension is precisely that:

Theorem 3.2 ([Deb92]). The locus S = T
(g)
2 is purely of codimension g + 1,

and has two irreducible components Snull := S ∩ Xg[2]
even (where Xg[2]

even ⊂ Xg

denotes the universal family of even 2-torsion points), and the “other” component
S′.

Moreover, since the map π from T
(g)
2 onto its image has fibers of dimension at

least k over Nk, this implies that the codimension of (any irreducible component
of) Nk within Ag is at least k + 1. The k = 1 case of this result is in fact due to
Mumford, who obtained it by an ingenious argument using the heat equation:

Theorem 3.3 ([Mum83a]). codimAg
N1 ≥ 2.

It thus follows that both components of S = T
(g)
2 project generically finitely

on their image in Ag, and this implies the earlier result of Beauville:

Theorem 3.4 ([Bea77]). The locus N0 is a divisor in Ag.

In fact scheme-theoretically we have (this was also first proved in [Mum83a])

N0 = θnull + 2N ′
0 = π(Snull) ∪ π(S′),

where θnull ⊂ Ag denotes the theta-null divisor — the locus of ppav for which an
even 2-torsion point lies (and thus is a singular point of) the theta divisor, and N ′

0

denotes the other irreducible component of N0, i.e. the closure of the locus of ppav
whose theta divisor is singular at some point that is not 2-torsion.

We note that unlike T
(g)
2 , which is easily defined by g + 1 equations in Xg,

it is not at all clear how to write defining equations for N1 = F2,1 inside Ag. In
particular, note that if the locus SingΘτ locally at z has dimension at least one, then
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the g second derivatives of the theta function of the form ∂v∂ziθ(τ, z), where v is a
tangent vector to SingΘτ at z, must all vanish — but this is of course not a sufficient
condition. Still, one would expect that N1 has high codimension. However, this,
and questions on higher Andreotti-Mayer loci, are exceptionally hard, as there are
few techniques available for working with conditions at an arbitrary point on a
ppav, as opposed to the origin or a 2-torsion point. Many open questions remain,
and are surveyed in detail in [CM08b, section 4] and in [Gru09, section 7]. We
briefly summarize the situation.

The original motivation for Andreotti and Mayer to introduce the loci Nk was
their relationship to the Schottky problem.

Theorem 3.5 ([AM67]). The locus of Jacobians Jg is an irreducible compo-
nent of Ng−4; the locus of hyperelliptic Jacobians Hypg is an irreducible component
of Ng−3.

In modern language, this result follows by applying the Riemann-Kempf theta
singularity theorem on Jacobians. Generalizing this to singularities of higher mul-
tiplicity, we have as a corollary of Martens’ theorem

Proposition 3.6. Hypg = F
(g)
k,g−2k+1 ∩ Jg, while F

(g)
k,g−2k+2 ∩ Jg = ∅.

One also sees that Ng−2 ∩Jg = ∅, and thus it is natural to ask to describe this
locus (note that clearly Ng−1 = ∅). We shall give the answer below. A novel aspect
was brought to the subject by Kollár who considered the pair (A,Θ) from a new
perspective, proving

Theorem 3.7 (Kollár, [Kol95, Theorem 17.3]). The pair (A,Θ) is log canoni-
cal. This implies that the theta function cannot have a point of multiplicity greater

than g, i.e. T
(g)
g+1 = ∅ = F

(g)
g+1,0, and, more generally, F

(g)
k,g−k+1 = ∅.

The extreme case Fg,0 was then considered by Smith and Varley who charac-
terized it as follows:

Theorem 3.8 (Smith and Varley [SV96]). If the theta divisor has a point of
multiplicity g, then the ppav is a product of elliptic curves: Fg,0 = Symg(A1).

Ein and Lazarsfeld took Kollár’s result further and showed:

Theorem 3.9 (Ein-Lazarsfeld, [EL97, Theorem 1]). If (A,Θ) is an irreducible
ppav, then the theta divisor is normal and has rational singularities.

As an application they obtained:

Theorem 3.10 (Ein and Lazarsfeld [EL97, Corollary 2]). The locus F
(g)
k,g−k is

equal to the locus of ppav that are products of (at least) k lower-dimensional ppav.

If k = g then this implies the result by Smith and Varley, if k = 2, then this
gives a conjecture of Arbarello and de Concini from [ADC87], namely:

Theorem 3.11 (Ein-Lazarsfeld [EL97]). Ng−2 = Adec
g .

In general very little is known about the loci Nk, or even about their dimension.
The expectation is as follows:
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Conjecture 3.12 (Ciliberto-van der Geer [CvdG00], [CvdG08]). Any
component of the locus Nk whose general point corresponds to a ppav with endo-
morphism ring Z (in particular such a ppav is indecomposable) has codimension at
least (k+1)(k+2)/2 in Ag, and the bound is only achieved for the loci of Jacobians
and hyperelliptic Jacobians with k = g − 4 and k = g − 3 respectively.

Ciliberto and van der Geer prove this conjecture in [CvdG08] for k = 1, and in
[CvdG00] they obtain a bound of k+2 (or k+3 for k > g/3) for the codimension
of Nk, but the full statement remains wide open.

Many results about the Andreotti-Mayer loci are known in low genus; in par-
ticular it is known that this approach does not give a complete solution to the
Schottky problem: already in genus 4 we have

Theorem 3.13 ([Bea77]). In genus 4 we have N
(4)
0 = J4 ∪ θnull. The locus

N
(4)
1 is irreducible, more precisely N

(4)
1 = Hyp4.

The situation is also very well understood in genus 5, see [CM08b, Table 2].

The varieties F
(5)
l,k are empty for l + k > 5. If l + k = 5 then Fl,k parameterizes

products of k ppav. Moreover we had already seen that F2,0 = N0 = θnull+2N ′
0 is a

divisor. To describe the remaining cases, we introduce notation: for i1+ . . .+ir = g
we denote by Ai1,··· ,ir ⊂ Ag the substack that is the image of the direct product
Ai1 × · · · × Air . We also denote Hypi1,··· ,ir := Hypg ∩Ai1,··· ,ir .

Proposition 3.14. In genus 5, the generalized Andreotti-Mayer loci are as
follows:

(i) F
(5)
0,4 = A1,1×Hyp3, F

(5)
1,3 = Hyp1,4 ∪Hyp2,3 ∪A1,1,3, F

(5)
2,2 = Hyp5 ∪A1,4∪

A2,3.

(ii) F
(5)
0,3 = IJ ∪ (A1× θ4null)∪Hyp1,4, F

(5)
1,2 = J5 ∪A1,4 ∪A∪B ∪C, where IJ

denotes the closure in A5 of the locus of intermediate Jacobians of cubic
threefolds, the component A has dimension 10, and the components B and
C have dimension 9.

The most interesting cases here are those of F0,3, which goes back to Casalaina-
Martin and Laza [CML09], and F1,2, which is due to Donagi [Don88, Theorem
4.15] and Debarre [Deb88, Proposition 8.2]. The components A,B and C can be
described explicitly in terms of Prym varieties. The above results for genus 4 and 5
led to the following folk conjecture, motivated, to the best of our knowledge, purely
by the situation in low genus:

Conjecture 3.15. (1) All irreducible components of Ng−4 except the lo-
cus of Jacobians Jg are contained in the theta-null divisor θnull.

(2) The equality Ng−3 = Hypg ∪Adec
g holds (recalling Adec

g = Ng−2, this is
equivalent to Ng−3 \Ng−2 = Hypg).

Moreover, one sees that in the locus of indecomposable ppav the maximal
possible multiplicity of the theta divisor is at most (g+1)/2, and we are led to the
following folk conjecture:

Conjecture 3.16. T
(g)

� g+3
2 � ⊂ X dec

g .

This conjecture is known to hold for g ≤ 5. Indeed, for g ≤ 3 we haveAind
g = Jg,

and by the Riemann theta singularity theorem the statement of the conjecture holds
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for Jacobians. Similarly, by the Prym-Riemann theta singularity theorem, this also
holds for Prym varieties, and can also be shown to hold for their degenerations in
Aind

g : see [CM09], [CM08a], [CMF05], [CM08b]. Since the Prym map to Ag

is dominant for g ≤ 5, the conjecture therefore holds for g in this range. A more
general question in this spirit was raised by Casalaina-Martin:

Question 3.17 ([CM08b, Question 4.7]). Is it true that Fk,g−2k+2 ⊂ Adec
g ?

While studying singularities of theta divisors at arbitrary points appears very
hard, geometric properties of the theta divisor at 2-torsion points are often easier
to handle: using the heat equation one can translate them into conditions on the
ppav itself. Moreover, as we shall see, the resulting loci are of intrinsic geometric
interest. We will therefore now concentrate on such questions.

Definition 3.18. We denote by T
(g)
a [2] := T

(g)
a ∩ Xg[2]

odd/even the set of 2-
torsion points of multiplicity at least a lying on the theta divisor, where the parity
odd/even is chosen to be the parity of a.

This definition is motivated by the fact that the multiplicity of the theta func-
tion at a 2-torsion point is odd or even, respectively, depending on the parity of the

point. We have already encountered the first non-trivial case, a = 2, when T
(g)
2 [2]

is the locus of even 2-torsion points lying on the universal theta divisor, and thus

π(T
(g)
2 [2]) = θnull ⊂ Ag is the theta-null divisor discussed above. Already the next

case turns out to be much more interesting and difficult, and we now survey what
is known about it.

Indeed, we denote I(g) := π(T
(g)
3 [2]). Geometrically, this is the locus of ppav

where the theta divisor has multiplicity at least three at an odd 2-torsion point;
analytically, this is to say that the gradient of the theta function vanishes at an odd
2-torsion point. Beyond being natural to consider in the study of theta functions,
this locus has geometric significance. In particular, for low genera we have

I(3) = A1,1,1; I(4) = Hyp1,3,

which are very natural geometric subvarieties of A3 and A4, while for genus 5

I(5) = IJ ∪
(
A1 × θ

(4)
null

)
,

where IJ denotes the closure in A5 of the locus IJ of intermediate Jacobians
of cubic threefolds (this subject originated in the seminal paper of Clemens and
Griffiths [CG72]; see [CMF05], [CM08a], [CML09], [GSM09], [GH11a] for

further references). In any genus, A1 × θ
(g−1)
null is always an irreducible component

of I(g) (see [GSM09]), but for g > 4 the locus I(g) is reducible.

The loci T
(g)
3 [2] and T

(g)
3 , and the gradients of the theta function at higher

torsion points, were studied by Salvati Manni and the first author in [GSM04],
[GSM06], where they showed that the values of all such gradients determine a
ppav generically uniquely. Furthermore, in [GSM09] Salvati Manni and the first
author (motivated by their earlier works [GSM08] and [GSM07] on double point
singularities of the theta divisor at 2-torsion points) studied the geometry of these
loci further, and made the following

Conjecture 3.19 ([GSM09]). The loci F
(g)
3,0 = π(T

(g)
3 ) and I(g) := π(T

(g)
3 [2])

are purely of codimension g in Ag.
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The motivation for these conjectures comes from the cases g ≤ 5 discussed
above, and also from some degeneration considerations that we will discuss in Sec-

tion 6. In our joint work [GH11b] we proved the above conjecture for T
(g)
3 [2] for

g ≤ 5 directly, without using the beautiful elaborate geometry of intermediate Ja-
cobians and degenerations of the Prym map that was used in [CMF05], [CM08a]
to previously obtain the proof. Our method was by degeneration: we studied in
detail the possible types of semiabelic varieties that can arise in the boundary of
the moduli space, and described the closure of the locus I(g) in each such stratum;
the details are discussed in Section 6.

4. Compactifications of Ag

Compactifications of Ag have been investigated extensively, and there is a vast
literature on this subject. We will not even attempt to summarize this, but will re-
strict ourselves to recalling the most important results in so far as they are relevant
for our purposes. The first example of such a compactification is the Satake com-
pactification of Ag, constructed in [Sat56], which was later generalized by Baily
and Borel from the Siegel upper half-space to arbitrary bounded symmetric do-
mains [BB66]. The idea is simple: theta constants can be used to embed Ag into
some projective space, and the Satake compactification ASat

g is the closure of the
image of this embedding. Another way to express this is that the Satake compact-
ification is the Proj of the graded ring of modular forms, or in yet other words,
that one uses a sufficiently high multiple of the Hodge line bundle to embed Ag in
a projective space, and then takes the closure. This argument also shows that Ag

is a quasi-projective variety. Set theoretically the Satake compactification is easy
to understand:

(4) ASat
g = Ag � Ag−1 �Ag−2 � · · · � A0,

but it is non-trivial to equip this set-theoretic union with a good topology and
analytic or algebraic structure. The boundary of ASat

g has codimension g, and the
compactification is highly singular at the boundary.

To overcome the disadvantages of the Satake compactification, Mumford et
al. [AMRT75] introduced the concept of toroidal compactifications. Unlike the
Satake compactification, the boundary of a toroidal compactification is a divisor
in it. There is no canonical choice of a toroidal compactification: in fact toroidal
compactifications of Ag depend on a fan, that is a rational partial polyhedral de-
composition of the (rational closure of the) cone of positive definite real symmetric
g × g matrices. There are three known such decompositions (which can be refined
by taking subdivisions), namely the first Voronoi or perfect cone decomposition, the
central cone decomposition, and the second Voronoi decomposition. Each of these
leads to a compactification of Ag, namely APerf

g , Acent
g , and AVor

g respectively. The

central cone compactification is also denoted Acent
g = AIgu

g since it coincides with
Igusa’s blow-up of the Satake compactification along its boundary.

By now the geometric meaning of all these compactifications has been under-
stood. Shepherd-Barron [SB06] proved that APerf

g is a canonical model of Ag in
the sense of the minimal model program if g ≥ 12. Finally Alexeev [Ale02] showed
that AVor

g has a good modular interpretation, we will comment on this below. The
toroidal compactification obtained from a fan with some cones subdivided can be
obtained from the original toroidal compactification by a blow-up, and thus by
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choosing a suitably fine subdivision of the fan one can arrange that all cones are
basic. The corresponding toroidal compactification would then have only finite quo-
tient singularities due to non-neatness of the group Sp(g,Z) — we refer to this as
stack-smooth. For g ≤ 3 all three compactifications coincide and are stack-smooth.

For g = 4 the perfect cone and the Igusa compactification coincide: AIgu
4 = APerf

4 ,
but are not stack-smooth, whereas AVor

4 is. In genus g = 4, 5 the second Voronoi
decomposition is a refinement of the perfect cone decomposition, i.e. AVor

g is a

blow-up of APerf
g for g = 4, 5, but in general neither is a refinement of the other,

and all three fans are different.
We also recall that any toroidal compactification Ator

g admits a natural con-

tracting map to the Satake compactification, p : Ator
g → ASat

g . Pulling back the
stratification (4) of the Satake compactification thus defines a stratification of any
toroidal compactification, and the first two strata of this, A′

g = p−1(Ag � Ag−1),
are of special interest. Indeed, A′

g is called Mumford’s partial compactification, and
is the same for all toroidal compactifications. As a stack, it is the disjoint union of
Ag and the universal family Xg−1.

In Section 6 we shall discuss degeneration techniques which require the exis-
tence of a universal family over a toroidal compactification of Ag. This is a very
difficult and delicate problem, which has a long history. The first approach is due
to Namikawa [Nam76a], [Nam76b] who constructed a family over AVor

g (�) that
carries 2� times a principal polarization. Chai and Faltings [FC90, Chapter VI]
constructed compactifications of the universal family over stack-smooth projective
toroidal compactifications of Ag.

In [Ale02] Alexeev introduced a new aspect into the theory, namely the use
of log-geometry. He defined the functor of stable semiabelic pairs (X,Θ) consisting
of a variety X that admits an action of a semiabelian variety (i.e. an extension of
an abelian variety of dimension g − k by a torus (C∗)k) of the same dimension,
and an effective ample Cartier divisor Θ ⊂ X fulfilling the following conditions: X
is seminormal, the group action has only finitely many orbits, and the stabilizer
of any point is connected, reduced, and lies in the toric part of the semiabelian
variety. The prime example is that of a principally polarized abelian variety acting
on itself by translation, together with its theta divisor. This functor is represented
by a scheme APg which has several components, one of which — the principal

component Pg — contains the moduli space Ag of ppav. It is currently unclear

whether Pg is normal, but it is known that its normalization is isomorphic to AVor
g .

For a discussion of the other components appearing in APg, also called ET for
“extra-type”, we refer the reader to [Ale01]. In either case the universal family on
Pg can be pulled back to give a universal family over AVor

g . We would like to point
out that Alexeev’s construction is in the category of stacks. If we want to work with
schemes (and restrict ourselves to ppav and their degenerations), then we obtain
the following: for every point in the projective scheme that represents Pg we can
find a neighborhood on which, after a finite base change, we can construct a family
of stable semiabelic varieties (SSAV). We note that Alexeev’s construction can lead
to families with non-reduced fibers for g ≥ 5. Alexeev’s theory has been further
developed by Olsson [Ols08], who modified the functor used by Alexeev in such a
way as to single out the principal component through the definition of the functor.
Olsson also treats the cases of non-principal polarizations and level structures.
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Yet another approach was pursued by Nakamura. In fact Nakamura proposes
two different constructions. His first approach uses GIT stability. In [Nak98]
he defines the functor of projectively stable quasi-abelian schemes (PSQAS). For
every � ≥ 3 this functor is represented by a projective moduli scheme SQg(�) over
which a universal family exists. Nakamura’s theory also extends to non-principal
polarizations. It should, however, be noted that, as in Alexeev’s case, the fibers of
this universal family can in general be non-reduced. Also the total space SQg(�)
is known not to be normal, see [NS06]. The universal family over SQg(�) has a
polarization which is � times a principal polarization, as well as a universal level �
structure (see our discussion in Section 1).

In his second approach Nakamura [Nak10] introduces the functor of torically
stable quasi-abelian schemes (TSQAS). For a given level � this is represented by
a projective scheme SQg(�)

toric, which, for � ≥ 3, is a coarse moduli space for
families of TSQAS over reduced base schemes. There is no global universal family
over SQg(�)

toric, but there is locally a universal family after possibly taking a finite
base change. The advantage of these families is that all fibers are reduced. By
[Nak10] there is a natural morphism SQg(�)

toric → SQg(�) which is birational
and bijective. Hence both schemes have the same normalization, which is in fact
isomorphic to the second Voronoi compactification AVor

g (�).
The structure of the semiabelic varieties in question can be deduced from the

constructions in [AN99] and [Ale02]. Indeed, every point in AVor
g lies in a stratum

corresponding to some unique Voronoi cone. Let g′, for 0 ≤ g′ ≤ g, be the maximal
rank of a matrix in this cone. Then g′ is the torus rank of the associated semiabelic
variety and the Voronoi cone defines a Delaunay decomposition of the real vector
space Rg′

which determines the structure of the torus part of the semiabelic variety.
This picture also allows one to read off the structure of the polarization on the
semiabelic variety, which is in fact given as a limit of the Riemann theta function.
In general these constructions turn out to be rather complicated, especially when
the rank of the torus part increases. The geometry for most cases of torus rank up
to 5 is studied in detail, explicitly, in [GH11b].

The construction of universal families is subtle, as one can see already in genus
1. Here one has the well-known universal elliptic curve S(�) → X(�) = AVor

1 (�)
over the modular curve of level �. If � is odd, then this coincides with Nakamura’s
family of PSQAS, if � is even it is different. In the latter case the two families are
related by an isogeny, see [NT01]. The main technical problems in higher genus,
such as non-normality or non-reduced fibers, arise from the difficult combinatorics
of the Delaunay polytopes and Delaunay tilings in higher dimensions.

Finally we want to comment on the connection with the moduli space of curves.
Torelli’s theorem says that the Torelli map Mg → Ag, sending a curve C to its
Jacobian Jac(C), is injective as a map of coarse moduli schemes (note, however,
that as every ppav has an involution −1, and not all curves do, for g ≥ 3 as a map
of stacks the Torelli map is of degree 2, branching along the hyperelliptic locus).

Mumford and Namikawa investigated in the 1970’s whether this map extends
to a map from Mg to a suitable toroidal compactification, and it was shown in
[Nam76a], [Nam76b] that this is indeed the case for the second Voronoi com-
pactification, i.e. that there exists a morphism Mg → AVor

g . Recently Alexeev and
Brunyate [AB11] showed that an analogous result also holds for the perfect cone
compactification, i.e. there exists a morphism Mg → APerf

g extending the Torelli
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map. Moreover, they showed that there is a Zariski open neighborhood of the image
of the Torelli map, where AVor

g and APerf
g are isomorphic. Melo and Viviani [MV11]

further showed that the Voronoi and the perfect cone compactification agree along
the so called matroidal locus. Finally, Alexeev et al [AB11], [ALT+11] proved

that the Torelli map can be extended to the Igusa compactification AIgu
4 if and

only if g ≤ 8. We also recall that the extended Torelli map is no longer injective
for g ≥ 3: the Jacobian of a nodal curve consisting of two irreducible components
attached at a node forgets the point of attachment. The fibers of the Torelli map on
the boundary of Mg were analyzed in detail by Caporaso and Viviani in [CV11].

5. Class computations and intersection theory on Xg

In the cases where one knows the codimension of the loci Ta or Fa,b, one could
then ask to compute their class in the cohomology or Chow rings of Xg or Ag,
respectively.

The cohomology ring H∗(Ag) and the Chow ring CH∗(Ag) are not fully known
for g ≥ 4, and are expected to contain various interesting classes (in particular non-
algebraic classes in cohomology). One approach to understanding geometrically
defined loci within Ag is by defining a suitable tautological subring of Chow or
cohomology, and then arguing that the classes of such loci would lie in this subring.

Definition 5.1. We denote by E := π∗(ΩXg/Ag
) the rank g Hodge vector bun-

dle, the fiber of which over a ppav (A,Θ) is the space of holomorphic differentials
H1,0(A,C). We then denote by λi := ci(E) the Hodge classes, considered as ele-
ments of the Chow or cohomology ring of Ag. The tautological ring is then defined
to be the subring (of either the Chow or the cohomology ring of Ag) generated by
the Chern classes λi.

It turns out, see [Mum77], [FC90] that the Hodge vector bundle extends to
any toroidal compactification Ator

g of Ag, and thus one can study the ring generated
by λi in the cohomology or Chow “ring” of a compactification. We note, however,
that an arbitrary toroidal compactification will in general be singular, and thus it
is a priori unclear whether there is a ring structure on the Chow groups. We can,
however, consider Chern classes of a vector bundle as elements in the operational
Chow groups of Fulton and MacPherson. All operations with Chern classes will thus
be performed in this operational Chow ring, and the resulting classes will then act
on cycles by taking the cup product. Taking the cup product with the fundamental
class, we can also associate Chow homology classes to Chern classes and, by abuse
of notation, we will not distinguish between a Chern class and its associated Chow
homology class. We refer to [Ful98, Chapter 17] and the references therein for
more details on the operational Chow ring.

It turns out that, unlike the case of the moduli of curves Mg where the tauto-
logical ring is not yet fully known, and there is much ongoing research on Faber’s
conjectures [Fab99b], the tautological rings for Ator

g and Ag can be described com-
pletely.

Theorem 5.2 (van der Geer [vdG99] for cohomology, and [vdG99] and Es-
nault and Viehweg [EV02] for Chow). For a suitable toroidal compactification Ator

g ,

the tautological ring of Ator
g is the same in Chow and cohomology, and generated

by the classes λi subject to one basic relation

(1 + λ1 + . . .+ λg)(1− λ1 + . . .+ (−1)gλg) = 1.
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This implies that additive generators for the tautological ring are of the form
∏

λεi
i

for εi ∈ {0, 1}, and that all even classes λ2k are expressible polynomially in terms
of the odd ones.

Moreover, the tautological ring of the open part Ag is also the same in Chow
and cohomology, and obtained from the tautological ring of Ator

g by imposing one
additional relation λg = 0.

Remark 5.3. Notice that from the above theorem it follows that the tautolog-
ical ring of Ator

g−1 is isomorphic to the tautological ring of Ag. We do not know a
geometric explanation for this fact. We also refer to the next section of the text, and
in particular to Question 6.1 for further questions on possible structure of suitably
enlarged tautological rings of compactifications.

In low genus the entire cohomology and Chow rings are known. Indeed, the
Chow rings of A2 and Ator

2 (recall that for g = 2, 3 all known toroidal compactifica-
tions coincide) were computed by Mumford [Mum83b] (and are classically known
to be equal to the cohomology, see [HT10] for a complete proof of this fact), while
the cohomology ring of the Satake compactification of A2 was computed by Hain.
The cohomology of A3 and its Satake compactification was computed by Hain
[Hai02], the Chow ring of A3 and its toroidal compactification was computed by
van der Geer [vdG98], and the second author and Tommasi [HT10] computed the
cohomology ring of Ator

3 , which turns out to also equal its Chow ring. It turns out
that for g = 2, 3 the cohomology and Chow rings of Ag are equal to the tautologi-
cal rings. Finally, the second author and Tommasi [HT11] computed much of the
cohomology of the (second Voronoi) toroidal compactification AVor

4 ; in particular
they showed that H12(A4) contains a non-algebraic class, as does H6(A3), as was
shown by Hain [Hai02]. We also refer the reader to van der Geer’s survey article
[vdG11]. The methods of computing the cohomology and Chow rings in low genus
make extensive use of the explicit geometry, and extending them to higher genus
currently appears to be out of reach. However, another natural question, which may
possibly give an inductive approach to studying the cohomology by degeneration,
is to define a tautological ring for the universal family:

Definition 5.4. We define the tautological rings of Xg to be the subrings of the
Chow and cohomology rings (with rational coefficients) generated by the pullbacks
of the Hodge classes π∗λi, and the class [Θg] of the universal theta divisor given by
the theta function (see Section 1).

Note that Θg ⊂ Xg here denotes the (ample) universal theta divisor defined
by theta function, but computationally it is often easier to work with the universal
theta divisor that is trivial along the zero section — we denote this line bundle by
Tg. Since theta constants are modular forms of weight one half we have the relation

(5) [Tg] = [Θg]− π∗(
λ1

2
)

for the classes of these divisors in PicQ(Xg).
Then the cohomology tautological ring of Xg is described simply as follows:

Theorem 5.5. The cohomology tautological ring of Xg is generated by the pull-
back of the tautological ring of Ag and the class of the universal theta divisor triv-
ialized along the zero section, with one relation [Tg]

g+1 = 0.
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Proof. Indeed, from the results of Deninger and Murre [DM91] it follows (see
[Voi11, Prop. 0.3] for more discussion) that for the universal family π : Xg → Ag

there exists a multiplicative decomposition Rπ∗Q = ⊕iR
iπ∗Q[−i]. Since Tg is

trivialized along the zero section, under the decomposition the class [Tg] only has
one term lying in R2, and by the multiplicativity of the decomposition, [Tg]

g+1

would then have to lie in R2g+2, which is zero, as the fibers of π have real dimension
2g. We note also that it follows that the class [Tg]

g is actually equal to g! times the
class of the zero section of π, given by choosing the origin on each ppav. By the
projection formula it is clear that any class of the form [Tg]

iπ∗C for C a tautological
class on Ag and i ≤ g, is non-trivial, and thus there are no further relations. �

It is natural to conjecture that the above description also holds for the tauto-
logical Chow ring of Xg.

Of course one cannot expect the tautological ring of Xg to be equal to the full
cohomology or Chow ring, and thus the following question is natural

Question 5.6. Compute the cohomology and Chow rings of Xg and their com-

pactifications Xg over AVor
g for small values of g.

The Chow and cohomology groups of toroidal compactifications of Ag and those

of Xg are closely related: as we have already seen in Section 4, Mumford’s partial
compactification is the union of Ag and Xg−1, and hence the topology of Xg−1

contributes to that of Mumford’s partial compactification A′
g. This relationship is

an example of a much more general phenomenon. Recall that the Satake compacti-
fication ASat

g is stratified as in (4). Taking the preimage of this stratification under

the contracting morphism p : Ator
g → ASat

g defines a stratification of any toroidal

compactification by taking the strata p−1(Ag−i \ Ag−i−1). Such a stratum is itself
stratified in such a way that each substratum is the quotient of a torus bundle
over a (g − i)-fold product of the universal family Xg−i → Ag−i by a finite group.
This idea can be used to try to compute the cohomology of Ator

g inductively, and
this is the approach taken in [HT11]. The computation of the cohomology of the
various strata then is closely related to computing the cohomology of local systems
on Ag−i, or rather the invariant part of it under a certain finite group.

While computing the entire cohomology or Chow rings seems out of reach, one
could study the stable cohomology: the limit of Hk(Ag) (or for compactifications)
for g � k. The stable cohomology of Ag (equivalently, of the symplectic group)
was computed by Borel [Bor74], and the stable cohomology of ASat

g was computed
by Charney and Lee [CL83], using topological methods. There are currently two
research projects, [GS12] and [GHT12], under way, aiming to show the existence
of and compute some of the stable cohomology of APerf

g . The difference between
the classes [Tg]

g/g! and the zero section on the partial compactification of Xg was
explored in [GZ12],

We have already pointed out that for g = 2, 3 the compactifications AVor
g and

APerf
g coincide. It should also be pointed out that Xg is not stack-smooth, already

for g = 2. The Chow ring of X2 (and more or less for X2, up to some issues
of normalization) is computed by van der Geer [vdG98], while the results of the
second author and Tommasi [HT11] on the cohomology of AVor

4 similarly go a long
way towards describing the Chow and cohomology of X3.
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The above results on the decomposition theorem and the zero section also
imply the earlier results of Mumford [Mum83a] and van der Geer [vdG99] on
the pushforwards of the theta divisor: recalling from (5) the class [Tg] of the theta
divisor trivialized along the zero section, we have

π∗([Tg]
g) = g! · [1]; π∗([Tg]

g+a) = 0 ∀a �= 0.

Using (5), from the projection formula it then follows that

π∗([Θg]
g) = g! · [1]; π∗([Θg]

g−a) = 0;

π∗([Θg]
g+a) =

(
g + a

g

)
2−ag!λa

1 ∀a > 0.

One can now try to compute the classes of various loci we defined, and in

particular ask whether they are tautological on Xg. By definition T
(g)
1 is the theta

divisor, i.e. T
(g)
1 = Θg. We can also compute the class of the locus T

(g)
2 , since it

is a complete intersection, defined by the vanishing of the theta function and its
z-gradient. The gradient of the theta function is a section of the vector bundle
E⊗Θg: this is to say the gradient of the theta function is a vector-valued modular
form for a suitable representation of the symplectic group, see [GSM04]. We thus
obtain

Proposition 5.7. The class of T
(g)
2 can be computed as

[T
(g)
2 ] = cg(E⊗Θg) ∩ [Θg] =

g∑
i=0

λi[Θg]
g−i+1 ∈ CHg+1(Xg,Q)

(recall that Θg is not trivialized along the zero section). By pushing this formula to
Ag, using the above expressions for pushforwards, we recover the result of Mumford
[Mum83a]:

[N0] = π∗[T
(g)
2 ] =

(
(g + 1)!

2
+ g!

)
λ1 ∈ CH1(Ag,Q).

For the locus T
(g)
3 , the situation seems much more complicated, as the codi-

mension is not known, and in particular it is not known to be equidimensional or a

locally complete intersection. However, the situation is simpler for T
(g)
3 [2] — it is

given locally in Xg by 2g equations (that the point z is odd 2-torsion, and that the
corresponding gradient of the theta function vanishes). If we consider its projection
I(g) ⊂ Ag(2), it is locally given by the g equations, that the gradient of the theta
function vanishes when evaluated at the corresponding 2-torsion point. For future
use, we denote

(6) fm(τ ) := gradzθ(τ, z)|z=m = gradzθ(τ, z + τε+ δ)z=0

= e(−εtτε/2− εtδ − εtz)gradzθ

[
ε
δ

]
(τ, z)|z=0

where m = τε + δ2, for ε, δ ∈ ( 12Z/Z)
g, is an odd 2-torsion point. As discussed

above, the gradient of the theta function is a section of E ⊗ Θg; the gradient
of the theta function evaluated at a 2-torsion point can be thus considered as a
restriction of this vector bundle to the zero section of Xg → Ag. We thus have

fm ∈ H0(Ag(4, 8),E ⊗ detE1/2). Recall that theta constants are only modular
forms for the group Γg(4, 8); however, the action of Γg(2)/Γg(4, 8) preserves the
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characteristic and only changes signs; thus the zero locus {fm = 0} is well-defined
on Ag(2).

Therefore, if Conjecture 3.19 holds, the locus I(g) is of codimension g in Ag,
and locally a complete intersection, given by the vanishing of a gradient fm for
some m. Summing over all such m yields the following

Theorem 5.8 ([GH11a, Theorem 1.1]). If Conjecture 3.19 holds in genus g,
then the class of the locus I(g) is equal to

[I(g)] = 2g−1(2g − 1)

g∑
i=0

λg−i

(
λ1

2

)i

.

We notice that the locus of Jacobians Jg is very special in Ag from the point
of view of the geometry of the theta divisor. Indeed, the theta divisor of Jacobians
has a singular locus of dimension at least g − 4, and also may have points of

high multiplicity. Thus, as is to be expected, the loci T
(g)
a do not intersect them

transversely.

In particular, only looking at 2-torsion points, and at the loci T
(g)
a [2], is equiva-

lent to looking at curves with a theta-characteristic (considered as a line bundle on
the curve that is a square root of the canonical line bundle) with a large number of
sections. The algebraic study of theta characteristics on algebraic curves is largely
due to Mumford [Mum71] and Harris [Har82]. It is natural to look at the loci
Mk

g of curves of genus g having a theta characteristic with at least k + 1 sections
and the same parity as k + 1. The connection with what we have just discussed is
the (set-theoretic) equality

(7) Mk
g = I

(g)
k+1 ∩Mg

where we define I
(g)
k ⊂ Ag to be the locus of ppav whose theta divisor has a point

of multiplicity k at a 2-torsion point (whose parity is even or odd depending on the

parity of k); in particular I
(g)
3 = I(g) in our notation, and thus M2

g is its intersection
withMg. The above equation is a consequence of the Riemann singularity theorem.
The following problem was raised by Harris

Question 5.9 (Harris). Determine the dimension of the loci Mk
g .

It is known that Mk
g is non-empty if and only if k ≤ (g− 1)/2; Harris [Har82]

proved that then the codimension (of any component) of Mk
g in Mg is at most

(k + 1)/2, Teixidor i Bigas [TiB87] proved an upper bound of 3g − 2k + 2 for the
dimension of all components of Mk

g , and thus showed in particular that M2
g =

I(g) ∩Mg in Mg is of pure codimension 3. This also shows that this intersection
is highly non-transverse. (Teixidor i Bigas also showed that Mk

2k+1 has precisely
expected dimension, and that for g �= 2k + 1 and k ≥ 3 a better bound on the
codimension can be obtained.)

Question 5.10. Compute the class of Mk
g , i.e. of the preimage of I

(g)
k+1 in Mg,

as well as that of its closure in Mg. This question is non-trivial already for k = 2
and g ≥ 5, for example the class of the codimension 3 locus M2

5 is of clear interest.

In a recent work [FGSMV11] of Farkas, Salvati Manni, Verra, and the first
author, class computations and geometric descriptions were also given for the loci

381



22 SAMUEL GRUSHEVSKY AND KLAUS HULEK

of ppav within N0 whose theta divisor has a singularity that is not an ordinary
double point.

As we have seen, one of the main problems one encounters is to prove that
certain cycles have the expected codimension. One approach to this, which has
been used successfully in several situations, is to go to the boundary. Instead of
g-dimensional ppavs one can then work with degenerations. Salvati Manni and the
first author investigated in [GSM09] the boundary of the locus I(g) in the partial
compactification A′

g, in particular proving that its intersection with the boundary
is codimension g within ∂A′

g (which is further evidence for Conjecture 3.19 ). Going
further into the boundary of a suitable toroidal compactification, the degenerations
can be quite complicated, they are not normal and not necessarily irreducible.
However, the normalization of such a substratum has the structure of a fibration,
with fibers being toric varieties, over abelian varieties of smaller dimension — and
as such is often amenable to concrete calculations. Ciliberto and van der Geer
[CvdG08] described explicitly the structure of the polarization divisors and their
singularities for the locus of semiabelic varieties of torus rank 2, thus proving the
k = 1 case of their Conjecture 3.12. This is closely related to taking limits of theta
functions, resp. to working with the Fourier-Jacobi expansion of these functions.
In our work [GH11b] we have described completely the geometric structure of all
strata of semiabelic varieties that have codimension at most 5 in APerf

g , which in
principle gives a method to study any locus in Ag, of codimension at most 5, by
degeneration. For this reason we shall now discuss degeneration techniques and
results.

6. Degeneration: technique and results

In the previous section of the text we discussed the problem of computing the
homology (or Chow) classes of various geometrically defined loci in Ag. While
computing a divisor class basically amounts to computing one coefficient, that of
the generator λ1 of Pic(Ag), for higher codimension loci the problem is much harder,
and to the best of our knowledge Proposition 5.8 is the only complete computation
of a homology (or Chow) class of a higher-codimension geometric locus for g ≥ 4. In
particular, Proposition 5.8 shows that the class of the locus I(g) (if it is of expected
codimension, i.e. if Conjecture 3.19 holds) is tautological. In general this is not
clear for the classes of geometric loci in Ag, but one can consider the problem of
computing the projection of such a class to the tautological ring. Faber [Fab99a]
in particular computed the projection of the class of the locus Jg of Jacobians to
the tautological ring, for small genus.

In general a much harder problem still is to consider the classes of closures of
various loci in suitable toroidal compactifications Ator

g . Denoting δ ∈ H2(Ator
g ) the

class of the closure of the boundary of the partial compactification, we note that
since δ is certainly non-tautological (as it is not proportional to λ1), it is natural
to expect that classes of closures of various loci would not be tautological. The
following loosely-phrased problem is thus very natural:

Question 6.1. Define a suitable extended tautological ring, of either the Chow
or cohomology groups, of some toroidal compactification Ator

g , containing the tau-
tological ring, δ, and the classes of various geometrically defined loci (for example
of various boundary substrata, see below).
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While we cannot answer the question above, in [GH11a], [GH11b] we studied
the closure of I(g) in APerf

g for g ≤ 5, and also described its projection to the
tautological ring. Our result is

Theorem 6.2 ([GH11a]). For g ≤ 5, we have the following expression for the

class of the closure I(g) in CHg(APerf
g ):

(8) [I(g)] =
1

N

∑
m∈( 1

2Z/Z)
2g
odd

g∑
i=0

p∗

⎛
⎝λg−i

(
λ1

2
− 1

4

∑
n∈Zm

δn

)i
⎞
⎠

where p : APerf
g (2) → APerf

g is the level cover, N = | Sp(g,Z/2Z)| and Zm is the set

of pairs of non-zero vectors ±n ∈ ( 12Z/Z)
2g such that m + n is an even 2-torsion

point. We recall that the irreducible components Dn of the boundary of APerf
g (2)

correspond to non-zero elements of (Z/2Z)2g ≡ ( 12Z/Z)
2g, and denote their classes

δn := [Dn].

When trying to define a suitable extended tautological ring on a toroidal com-
pactification Ator

g , one encounters several problems. The first is that Ator
g will in

general be singular, also as a stack, as is the case with the Voronoi compactification
AVor

g for g ≥ 5 and the perfect cone compactification APerf
g for g ≥ 4, and thus we

cannot expect to have a ring structure on Chow classes.
This difficulty could be overcome by taking a suitable refinement to obtain a

basic fan, which then leads to a stack-smooth toroidal compactification. The draw-
back is that no natural examples of basic fans exist for g ≥ 5. Moreover, such
a refinement would introduce numerous new boundary substrata whose geometric
meaning is unclear. One possible solution, proposed by Ekedahl and van der Geer
[EvdG05], is to consider a tautological module, the pushforward of such a ring
to the Satake compactification. While natural, this tautological module could not
capture all the information of the toroidal compactification, and possible degener-
ations, which may be more subtle. Independently, it would be of great interest to
understand the topology of the Satake compactification itself.

Another approach is to try and define a tautological subring of the operational
Chow ring, i.e. to define a suitable collection of geometrically meaningful vector
bundles on Ator

g and then take the subring of the operational Chow ring which
is generated by these classes. Since by [Mum77], [FC90] the Hodge bundle E

extends to every toroidal compactifications we would naturally always obtain the
classes λi = ci(E). On APerf

g the boundary δ is an irreducible Cartier divisor,
whose first Chern class one would naturally include in an extended tautological ring.
Evaluating the elements of the extended tautological ring on the fundamental cycle
one would obtain Chow homology classes which could be considered as tautological
classes.

A natural class of candidates for such tautological Chow classes arises as fol-
lows: let Ator

g (�) be the level � cover of Ator
g . Then the boundary is no longer

irreducible (not even for the case of APerf
g ), say δ =

∑
δn. It should, however,

be noted that although δ is a Cartier divisor this is in general no longer true for
the δn. Only certain sums of these, e.g. the one appearing in (10) are guaranteed
to be Cartier. Nevertheless, we can obtain interesting geometric loci from these.
The first example is the sum

∑
n	=m δnδm. In the case of the perfect cone com-

pactification APerf
g this is exactly the class of the complement of APerf

g \ A′
g of the
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partial compactification. One can now go on and study the possible combinatorics
of intersections of boundary divisors δi, and we investigated this in [GH11a].

Indeed, one would like the extended tautological ring to contain all polynomials
in the δn that are invariant under the action of Sp(g,Z/2Z). The action of the
symplectic group on tuples of theta characteristics was fully described by Salvati
Manni in [SM94]: two tuples lie in the same orbit if and only if they can be
renumbered n1, . . . , nk and m1, . . . ,mk in such a way that: the parity of ni is the
same as the parity of mi; there exists a linear relation with an even number of
terms ni1 + . . .+ ni2l = 0 if and only if mi1 + . . .+mi2l = 0.

It follows that the ring of polynomials in δn invariant under the action of the
symplectic group is generated by expressions of the form

∑
|I|⊂( 1

2Z/Z)
2g;|I|=i,f1(I)=...=fji (I)=0

∏
m∈I

δam

where each fj(I) is a sum of an even number of characteristics in I (i.e. a linear
relation), and moreover the parities of all the characteristics are prescribed a priori.

We often want to prove results about some toroidal compactification Ator
g . If

we want to use degeneration techniques, then we want to be able to compare this to
AVor

g , over which we have a universal family. The compactification Ator
g has various

boundary strata, each corresponding to a suitable cone in the fan, and if such a
cone is shared with AVor

g , we know that the corresponding stratum parameterizes
semiabelic varieties of a certain toric type. This is of particular interest in the case
of APerf

g . For g ≤ 3 we know that AVor
g and APerf

g coincide, while for g = 4, 5 AVor
g is

a blow-up of APerf
g . Moreover, by [AB11] we know that the two compactifications

coincide in an open neighborhood of the locus of Jacobians, and by [MV11] their
intersection is the matroidal locus, but in general they are different.

Using the relationship between the two compactifications we showed, by explicit

computations, that for g ≤ 4 the class [I(g)] indeed lies in the ring generated by the

λi and the classes of the boundary strata. However, for [I(5)], an explicit formula
for which is given by (8), we could not prove such a result. Studying a subring of
the cohomology (or Chow) of APerf

g including the λi and the classes of the boundary
strata is thus of obvious interest. In particular for g = 5 it could either turn out

that the class of [I(5)] lies in this subring — showing this would perhaps involve
somehow relating the boundary classes and the Hodge classes — or this could be
another class that may need to be added to a suitable extended tautological ring.

We would now like to comment on the proof of Theorem 6.2 by degeneration
methods. One could imagine that this is a straightforward extension of Theorem
5.8. Indeed, the components of the preimage of the locus I(g) on the level cover
Ag(2) are given by the vanishing of various gradients of the theta function at 2-
torsion points, i.e. by equations fm = 0. Thus one could try to investigate the
behavior of each fm at the boundary of APerf

g , and determine which bundle it is a
section of. However, the geometry of the situation is very subtle. Indeed, on Ag(2)

the locus I(g) can also be defined by the vanishing of the gradients of odd theta
functions with characteristics at zero, i.e. by equations

(9) Fm := gradzθm(τ, z)|z=0 = 0,

and it is not a priori clear which of these equations should be used at the boundary.
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To deal with this, one first needs to show that fm (and Fm) extend to sections
of some vector bundle on the partial compactification of Ag — this is reasonably
well-known, and can be done by a direct calculation of the Fourier-Jacobi expansion
of the theta function (that is, of the Taylor series in the q-coordinate). It turns
out that Fm defined by (9) vanishes identically on a boundary component δn of
APerf

g (2) if and only if n ∈ Zm (recall that Zm was defined in Theorem 6.2).
Moreover, in this case the generic vanishing order of Fm on δn is 1/4 in the

normal coordinate q := exp(2πiτ11) (where the boundary component is locally given
as τ11 = i∞ in the Siegel space). Comparing fm and Fm by (6) one concludes that
the fm extend to sections

(10) fm ∈ H0

(
A′

g(4, 8),E⊗ detE1/2 ⊗ (−
∑

n∈Zm

Dn/4)

)

on the partial compactification not vanishing on the generic point of any boundary
component. We now use the fact that the codimension of APerf

g \ A′
g in APerf

g is

equal to two (this is not the case for AVor
g ), and thus by Hartogs’ theorem fm extend

to a section of the above vector bundle on all of APerf
g (4, 8).

Since on Ag(4, 8) the components of the preimage of I(g) are given by vanishing

of the fm, it follows that on APerf
g (4, 8) the closure I(g) of I(g) is contained in the

zero locus of the fm. A priori it could happen that the locus {fm = 0} on APerf
g (4, 8)

has other irreducible components, but we conjecture that is not so:

Conjecture 6.3. The locus {fm = 0} ⊂ APerf
g (4, 8) has no irreducible compo-

nents contained in the boundary.

If this conjecture holds, it implies that we have I(g) = p({fm = 0}) (recall that
p denotes the level cover). Theorem 6.2 then follows by computing the class of the
locus {fm = 0}, as the zero locus of a section of a vector bundle.

We do not know a general approach to this conjecture, or to similar more general
results about the degenerations of the loci defined by vanishing of the gradients of
the theta function. The evidence that we have comes from a detailed investigation
of the cases of small torus rank. One of the main results of [GH11b] is

Theorem 6.4 ([GH11b]). The conjecture above holds for g ≤ 5.

To prove this conjecture, we investigated in detail all strata in the boundary of
APerf

g that have codimension at most 5. Using the fact that for g ≤ 5 the Voronoi

compactification AVor
g admits a morphism to APerf

g , it follows that all these strata
parameterize suitable families of semiabelic varieties of torus rank up to 5, with
determined type of the toric bundle and gluing. By examining these strata case by
case, describing their semiabelic polarization (or theta) divisors, we could compute
the extension fm on each such boundary stratum explicitly. In [GH11b] we then
proved that fm on such a boundary stratum of APerf

g may not have a vanishing

locus that is of codimension at most 5 in APerf
g , thus proving the above theorem.

However, to attempt to prove the conjecture for g ≥ 6, a different approach may
be required, especially as it is no longer true that AVor

g admits a morphism to

APerf
g , and thus it is not known whether there exists a universal family over APerf

g ,
where the computations of the degenerations of the gradients of the theta functions
could be carried out. However, our techniques and results of [GH11b] are still of
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independent use, as they provide a way to study any locus in Ag of codimension at
most 5 by taking its closure in APerf

g and considering degenerations.

Remark 6.5. At this point we would like to take the opportunity to point
out and correct an error in the proof of Theorem 6.4. given in [GH11b]. There
we stated that the only codimension 5 stratum in β5 is that corresponding to the
standard cone 〈x2

1, . . . x
2
5〉, which however turns out not to be true for g = 5. Indeed,

there are two such cones. Apart from the standard cone, we also have to consider

σ1 = 〈x2
1, . . . x

2
4, (2x5 − x1 − x2 − x3 − x4)

2〉.
It follows immediately from the definition of the perfect cone decomposition that σ1

belongs to it. Moreover, it does not lie in the GL(5,Z) orbit of the standard cone,
since its generators do not give a basis of the space of linear forms in 5 variables.
This also implies that σ1 is not in the matroidal locus, see [MV11, Section 4]. The
fact that, up to GL(5,Z)-equivalence, this is the only other cone of dimension 5
containing rank 5 matrices follows from [E-VGS10, p. 7, Table 1] (note that n in
this table is the dimension of the cone minus 1), which in turn was confirmed by a
computer search, which was performed by M. Dutour Sikiric .

Although the generators of σ1 do not form a basis of the space of linear forms,
the cone σ1 itself is still a basic cone since its generators are part of a basis of
Sym2(Z5). However, since σ1 is not contained in the matroidal locus, it is also
not contained in the second Voronoi decomposition by [MV11, Theorem A] and
hence we cannot argue with properties of the theta divisor on semi-abelic varieties
as we did for all the other strata in the proof given in [GH11b]. Nevertheless, it
is possible to give a direct proof that the sections fm do not vanish identically on
the stratum corresponding to σ1. For this we consider the toric variety Tσ1

. Since
σ1 is basic of dimension 5 it follows that Tσ1

∼= (C∗)5 × C10. Let tij = e2πiτij . We

consider the basis Uij of Sym2(Z) where Uii = x2
i and Uij = 2xixj for i �= j. We

denote the dual basis by U∗
ij . A straightforward calculation shows that the dual

cone σ∨
1 is generated by the following elements:

U∗
55 − 4U∗

12, U∗
25 + 2U∗

12, U∗
35 + 2U∗

12, U
∗
45 + 2U∗

12,

U∗
13 − U∗

12, U∗
14 − U∗

12, U∗
23 − U∗

12, U∗
24 − U∗

12, U∗
34 − U∗

12, U∗
15 − U∗

25,

U∗
11 − U∗

12, U∗
22 − U∗

12, U∗
33 − U∗

12, U∗
44 − U∗

12, U
∗
12,

where the first 10 generators are orthogonal to σ1 and the last 5 generators are
orthogonal to 4 of the generators and pair with the remaining generator to 1.
Hence we obtain coordinates for Tσ1

∼= (C∗)10 × C5 by setting

s1 = t55t
−4
12 , s2 = t25t

2
12, s3 = t35t

2
12, s4 = t45t

2
12, s5 = t13t

−1
12

s6 = t14t
−1
12 , s7 = t23t

−1
12 , s8 = t24t

−1
12 , s9 = t34t

−1
12 , s10 = t15t

−1
25

as coordinates on the torus (C∗)10, and

T1 = t11t
−1
12 , T2 = t22t

−1
12 , T3 = t33t

−1
12 , T4 = t44t

−1
12 , T5 = t12

as coordinates on the space C5. From this one can express the tij in terms of
the coordinates si, Tj and this in turn enables one to compute the Taylor series

expansion of the sections fm in the coordinates si, Tj for each of the 16 · 31 = 496
odd 2-torsion points m. A computer calculation shows they they never vanish
identically when restricted to T1 = . . . = T5 = 0.
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Remark 6.6. Note that one could attempt to follow a similar approach to

Conjecture 3.19 for T
(g)
3 , for low genus. However, in this case one needs to study

suitable conditions for the singularities of semiabelic theta divisors arising from
tangencies of lower-dimensional theta divisors. For the case of torus rank up to 2
this was done by Ciliberto and van der Geer [CvdG08], but it is not clear how far
this can be extended into the boundary, as it requires a detailed understanding of
the possible geometries of intersections of translates of the theta divisor.
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Singular curves and their compactified Jacobians

Jesse Leo Kass

Abstract. We survey the theory of the compactified Jacobian associated to
a singular curve. We focus on describing low genus examples using the Abel
map.

In this article we study how to assign a degenerate Jacobian, called a compact-
ified Jacobian, to a singular curve. The title of this article is intended to recall
Mumford’s book “Curves and their Jacobians” [Mum75]. That book contains a
beautiful introduction to the geometric theory of the Jacobian variety associated to
a smooth curve, and the present article is intended to be a survey of the analogous
theory for a singular curve, written in a similar spirit. The focus is on providing
examples and indicating various technical issues. We omit many proofs and instead
direct the interested reader to the literature.

The main goal of this article is to show how the Abel map can be used to
describe the compactified Jacobian J̄d

X associated to a singular curve X. One novel
feature of this article is that we link the theory of the Abel map to the theory
of linear systems of generalized divisors. Such a link is certainly well-known to
experts (see [Har86, Rmk. 1.6.5]), but we develop the relation in greater depth
than has previously been done in the literature. We also discuss several examples
that have not appeared in the literature before. The most interesting example
is the compactified Jacobian of a genus 2 non-Gorenstein curve, which is studied
throughout the paper but especially in Example 5.0.11.

Most of the results in this paper are not due to the author. Many mathe-
maticians have contributed to the body of work discussed, but the author owes a
particularly large mathematical debt to Allen Altman, Steve Kleiman, and Robin
Hartshorne. The theory of generalized divisors was developed by Hartshorne in
[Har86], [Har94], and [Har07], and the Abel map that we study here was con-
structed by Altman–Kleiman in [AK80]. Kleiman’s article [Kle05] was also very
helpful in writing Section 1.

The reader who has looked below at the “Conventions” section may have no-
ticed that in this paper the term “curve” always refers to an irreducible and reduced
curve. It is possible to assign a compactified Jacobian J̄d

X to, say, a reducible curve
X, but both the definition of J̄d

X and the associated Abel map then become more
complicated. One major barrier to constructing an Abel map for a reducible curve
is that the theory of linear systems on a reducible curve has undesirable properties,
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2 JESSE LEO KASS

which are discussed in [Har07, Rmk. 2.9]. There is, however, a growing body of
work (e.g. [CE07, CCE08, CP10]) on constructing an Abel map for a reducible
but reduced curve. The papers just cited also provide a guide to the literature on
compactified Jacobians of reducible curves. Much less is known about assigning a
compactified Jacobian to a non-reduced curve, and in particular, there seems to be
no literature on constructing an Abel map for such a curve.

0.1. Organization. This paper is organized as follows. In Section 1 we recall
some basic facts about the Jacobian variety associated to a smooth curve. The
material developed there is our model for the theory of the compactified Jacobian
associated to a singular curve. We begin discussing singular curves in Section 2,
where we define the generalized Jacobian of a singular curve. This variety typically
fails to be proper, and so we are naturally led to compactify the generalized Jaco-
bian. This is done in Section 3. At the end of that section we show by example that
the most naive approach to constructing an Abel map into the compactified Jaco-
bian fails. The rest of the article is devoted to constructing a suitable Abel map.
We recall the theory of generalized divisors in Section 4 and then we apply that
theory to construct the Abel map in Section 5. Finally, Section 6 is an appendix
that contains some facts about the dualizing sheaf that are used in this article.

0.2. Personal Remarks. A few personal words about this article. I wrote
this article for the proceedings for the conference “A Celebration of Algebraic Ge-
ometry,” held in honor of Joe Harris’ 60th birthday. Joe was my adviser in graduate
school, and I hope that this article demonstrates Joe’s influence on me as a math-
ematician.

During my last year in graduate school, William Fulton told me about working
with Joe when Joe first moved to Brown University. Fall semester that year Joe
taught a topics course on Brill–Noether theory. After reviewing the necessary
definitions, Joe begin by working out the theory of special divisors on a genus 2
curve. The next day of class was spent on genus 3 curves, which took up one lecture,
and Joe then moved on to genus 4 curves, which took a bit more class time. Fulton
said that he expected Joe to soon run out of examples and then state and prove
the general Brill–Noether Theorem.

Joe continued doing examples until the Thanksgiving break.
Right before the break, he was discussing curves whose genera was in the double

digits. When he returned from break, he apologized and explained that he had run
out of examples. It was only then that he stated and proved the Brill–Noether
Theorem. Fulton cited this as an example of Joe’s excellent mathematical taste:
explicitly working through such a large class of curves provided incredible insight
into Brill–Noether theory, insight that is not conveyed by just proving general
theorems.

In the present article, we will certainly not get to singular curves with double
digit genera, but I hope the choice of material shows the influence of Joe’s good
taste. We will work out examples of compactified Jacobians associated to curves
of low genus, and the selection of examples was influenced by [ACGH85], a book
that Joe co-authored. Indeed, the examples in Section 1 are all answers to exercises
in [ACGH85], and the examples studied later are chosen as examples analogous
to the ones from Section 1.
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SINGULAR CURVES AND THEIR COMPACTIFIED JACOBIANS 3

Conventions

• The letter k denotes an algebraically closed field.
• If V is a k-vector space, then PV is the Grassmannian of 1-dimensional
quotients of V .

• If T is a k-scheme, then we write XT for X ×k T .
• If T and X are k-schemes, then a T -valued point of X is a k-morphism

T → X.
• A variety is a finite type, separated, and integral k-scheme.
• A curve is a finite type, separated, integral, and projective k-scheme of
pure dimension 1.

• The genus g of a curve X is g := 1− χ(OX).
• The symbol k(X) denotes the field of fractions (or field of rational
functions) of a curve X.

• The symbol K denotes the locally constant sheaf associated to k(X).
• The symbol Kω denotes the locally constant sheaf of rational 1-forms.
• IfX is a k-scheme and F , G are twoOX -modules, then we write Hom(F,G)

for the sheaf of homomorphisms from F to G.

1. The Jacobian

Here we discuss the Jacobian variety Jd
X of a smooth curve X. We begin by

discussing three different approaches to constructing Jd
X . Of these approaches, one

uses the Abel map, and we also review the properites of this map. After recalling
the definition, we conclude this section by describing the Abel map of a curve of
genus at most 4. In the subsequent sections of this article we will work to extend
results of this section from smooth curves to singular curves.

The most succinct definition of the Jacobian J0
X of a smooth curve X requires

us to assume that the ground field k is the field of complex numbers k = C. If X
is a smooth projective complex curve, then the associated Jacobian is the complex
torus

J0
X := H1(Xan,OX)/H1(Xan,Z).

We write Xan for the space X with the analytic or classical topology (rather
than the Zariski topology). The group H1(Xan,Z) is considered as a subgroup

of H1(Xan,OX) using the map induced by the natural inclusion Z
2πi−→ OX . This

inclusion is part of a short exact sequence

(1) 0 → Z → OX → O∗
X → 0,

which provides us with an alternative description of J0
X . An inspection of the

associated long exact sequence shows that there is a canonical isomorphism

(2) J0
X

∼= ker(H1(Xan,O∗
X)

c1−→ H2(Xan,Z)),

where c1 is the 1st Chern class map.
The group H1(Xan,O∗

X) is canonically isomorphic to the set of isomorphism
classes of line bundles, and under this isomorphism, the 1st Chern class map cor-
responds to the degree map, so the points of J0

X are in natural bijection with the
degree 0 line bundles on X.

This description suggests a way of defining J0
X over an arbitrary ground field:

J0
X is the moduli space of degree 0 line bundles. In slightly more generality, if d
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4 JESSE LEO KASS

is any integer, then we define the degree d Jacobian, or the moduli space of line
bundles of degree d, as follows.

Definition 1.0.1. The Jacobian functor Jd,�
X : k-Sch → Set of degree d is

the étale sheaf associated to the functor that assigns to a k-scheme T the set
of isomorphism classes of line bundles L on XT that have the property that the
restriction of L to every fiber of XT → T has degree d. The Jacobian variety Jd

X

of degree d is the k-scheme JX that represents Jd,�
X .

Our definition of Jd,�
X is somewhat unsatisfactory. Because Jd,�

X is the sheafi-
fication of the functor parameterizing isomorphism classes of line bundles and not

the functor itself, it is not immediately clear what the functor Jd,�
X parametrizes.

For example, a line bundle L on XT defines a T -valued point of Jd,�
X (for a suitable

d, provided the degree of the restriction of L to the fiber of XT → T over t ∈ T is
constant as a function of t, but it is not immediate from the definition that every

T -valued point of Jd,�
X is defined by some L. Similarly, it is unclear when two line

bundles L and M on XT define the same T -valued point.
A very careful discussion of this topic can be found in [Kle05]. In this arti-

cle, the distinction between the functor parameterizing line bundles on X and its
associated sheaf will be largely irrelevant for the following reason: when T equals

Spec(K) for K an algebraically closed field, Jd,�
X (T ) equals the set of isomorphisms

classes of degree d line bundles on XT , which is what one should naively expect.
(This is [Kle05, Ex. 2.3].)

In an arithmetic context, however, it is important to distinguish between the
functor parameterizing line bundles and its sheafification because when K fails

to be algebraically closed there may be K-valued points of Jd,�
X that cannot be

represented by line bundles. (See [Kle05, Ex. 2.4] for an example.)

In any case, to make use of Definition 1.0.1, we need to prove that Jd,�
X can

be represented by a k-scheme. In general, a standard approach to proving repre-
sentability of a functor is to use a theorem of Artin. In [Art74, Art69], Artin
gave a criteria for a functor to be representable by an algebraic space, and one
approach to proving that a functor can be represented by a scheme is to first prove
representability by an algebraic space by verifying Artin’s criteria and then to prove
that the resulting algebraic space is actually a scheme by some other means.

In the specific case of Jd,�
X , this strategy was carried out by Artin in [Art69].

He first proved that Jd,�
X is representable by an algebraic space by verifying that

the functor satisfies Artin’s criteria ([Art69, Thm. 7.3, p. 67]; see also [Art74,
p.186-187]). Artin then proved that this algebraic space is a k-scheme by proving
more generally that any torsor for a locally finite type group space over k is actually
a scheme [Art69, Lem. 4.2, p. 43].

A second approach to proving that Jd,�
X is representable is to make use of the

Abel map. While this approach to proving representability is not as general as the
first approach, it has the advantage of providing more insight into the geometry of
Jd
X . Let us review this construction, beginning with the definition of the symmetric

power.

Definition 1.0.2. The symmetric productX(d) is defined to be the quotient
of the d-fold self-product X × · · · ×X of X by the action of the symmetric group
Symd given by permuting factors.
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Recall that the quotient of a quasi-projective variety V by a finite group always
exists as a quasi-projective variety (by, say, [Mum70, p. 66]). Hence the symmetric
power X(d) of a smooth curve is a projective variety of dimension d. This symmetric
power is also smooth, but this is more difficult to establish. A proof of smoothness
can be found in e.g. [FG05, Thm. 7.2.3]. The symmetric power of a smooth curve
also has a moduli-theoretic interpretation.

Definition 1.0.3. The Hilbert functor Hilbd,�X of degree d is defined by

setting Hilbd,�(T ) equal to the set of T -flat closed subschemes Z ⊂ XT with the
property that every fiber of Z → T has degree d.

Lemma 1.0.4. The k-scheme X(d) represents Hilbd,�X .

Proof. We will prove this lemma under the additional assumption that Hilbd,�X

can be represented by some k-scheme HilbdX . To begin, let us construct a natural

transformation X(d) → Hilbd,�X . It is enough to construct a Symd-invariant trans-

formation X × · · · ×X → Hilbd,�X , and we construct this second transformation by
exhibiting the corresponding closed subscheme Z ⊂ (X × · · · ×X)×X.

We define Z to be the multi-diagonal that consists of tuples (p1, . . . , pd, q)
with pi = q for some i. Working on the level of local rings, one can show that
Z → X×· · ·×X is flat and finite of degree d. Because Z is visibly Symd-invariant,

this subscheme induces the desired transformation X(d) → Hilbd,�X . To complete
the proof, we need to show that this transformation is an isomorphism.

First, observe that X(d)(K) → Hilbd,�X (K) is injective for any algebraically
closed field K. Indeed, this observation is just the statement that no two fibers of
X × X(d) ⊃ Z → X(d) are equal as subschemes, a statement that can be verified
by working affine locally and writing out the ideal of Z in terms of symmetric
polynomials. (Show that the fiber of Z → X(d) over the point that is the image of
(p1, . . . , pd) is a closed subscheme supported on {p1, . . . , pd} and then compute the
length of OZ,pi

.)

Now a similar explicit computation shows thatX(d) → HilbdX is an isomorphism

over the locus in HilbdX parameterizing reduced subschemes, so the morphism is bi-
rational. The morphism is also quasi-finite because we have just shown that it
is injective on K-points. Thus X(d) → HilbdX is a quasi-finite, birational mor-
phism. Furthermore, both the target and the source of the morphism are smooth
and proper. Indeed, we made this observation about X(d) just after defining the
variety, and one can verify that HilbdX is smooth and proper by using the functorial
characterization of these properties. We can conclude by Zariski’s Main Theorem
that X(d) → HilbdX is an isomorphism. �

By the lemma, we can identify X(d) with Hilbd,�X when X is smooth. The

symmetric power is still defined whenX is singular, but thenX(d) may not represent
the Hilbert functor. In Section 5 we will describe how the symmetric power of a
singular curve is related to the Hilbert functor.

The closed subschemes Z ⊂ XT that correspond to elements of HilbdX(T ) are all
effective relative Cartier divisors. That is, locally the ideal of Z ⊂ XT is generated
by a single element. Indeed, this is a consequence of the proof of Lemma 1.0.4, but
the fact can also be proven directly (see [Kle05, Lem. 9.3.4]). Linear equivalence
classes of Cartier divisors are in natural bijection with isomorphism classes of line
bundles, and the Abel map A : X(d) → Jd

X is a manifestation of this relation.
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Before defining the Abel map, let us review the definition of a Cartier divisor
from [Har77, Chap. 2, Sect. 5]. We define a Cartier divisor D to be a global
section of the quotient sheaf K∗/O∗

X , where K∗ is the locally constant sheaf of
nonzero rational functions. Because Cartier divisors are sections of an abelian
sheaf, we can form the minus −D of a Cartier divisor D and the sum D + E
of D and a second Cartier divisor E. As a section of a quotient sheaf, D can be
represented by a collection (fi, Ui)i∈I consisting of open subsets {Ui}i∈I that cover
X and rational functions {fi}i∈I that have the property that fif

−1
j is regular on

Ui ∩ Uj . To this data we can associate a nonzero coherent subsheaf

ID ⊂ K,

namely the subsheaf generated by fi on Ui.
The reader may verify that the correspondence D �→ ID defines a bijection

between the set of global sections of K∗/O∗
X and the set of nonzero coherent sub-

sheaves ID ⊂ K that are locally principal. (In fact, nonzero subsheaves of K are
always locally principal; this can be proven using, say, the classification of f.g. mod-
ules over a DVR.) Thus we can think of Cartier divisors as nonzero subsheaves of
K rather than as global sections of K∗/O∗

X . We will work with Cartier divisors as
subsheaves in this article.

A Cartier divisor D is said to be effective if we have ID ⊂ OX . In other
words, an effective Cartier divisor is a 0-dimensional closed subscheme. A rational
function f defines a Cartier divisor, the Cartier divisor OX · f ⊂ K, and we denote
this divisor by div(f). We say that two Cartier divisors D and E are linearly
equivalent if D = E +div(f) for some rational function f . The set of all effective
divisors linearly equivalent to a given divisor D is denoted by |D| and called the
complete linear system associated to D.

The divisors of the form div(f) naturally form a subgroup of the group of all
Cartier divisors. In fact, the rule D �→ ID defines a surjective group homomor-
phism from the group of Cartier divisors to the group of isomorphism classes of line
bundles, and the kernel of this map is precisely the subgroup consisting of divisors
of the form div(f). Thus a linear equivalence class of Cartier divisors is the same
thing as an isomorphism class of line bundles. In slightly different form, this is
[Har77, Prop. 6.13].

The complete linear system |D| associated to a Cartier divisor naturally has
the structure of a projective space. Indeed, consider the OX -linear dual L(D) :=
Hom(ID,OX) of ID. The natural map H0(X,L(D)) → Hom(ID,OX) is an isomor-
phism, and the rule that sends a nonzero global section of L(D) to the image of the
corresponding homomorphism ID → OX defines a bijection PH0(X,L(D)) ∼= |D|.
We use L(D) to define the Abel map.

Definition 1.0.5. If D ∈ Hilbd,�X (T ) (for some k-scheme T ), then we define

L(D) := Hom(ID,OXT
). The d-th Abel map A : X(d) → Jd

X is defined by the
rule D �→ L(D).

Because ID is a line bundle, the formation of L(D) commutes with base change,
so the Abel map is well-defined.

By definition, the fiber of A over [L] ∈ Jd
X is the set of divisors D satisfying

L(D) ∼= L. In other words, A−1([L]) = PH0(X,L). This equality holds on the
level of schemes, though this is perhaps not clear from the work we have done so
far. A proof of scheme-theoretic equality and other technical results describing the
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structure of A can be found in [Kle05, Sect. 9.3] (esp. Thm. 9.3.13). In any case,
it follows from those structural results that A fibers X(d) over Jd

X by projective
spaces of possibly varying dimension.

What dimensions can these projective spaces have? The dimension dim |D| is
controlled by the Riemann–Roch Formula. Define a canonical divisor K to be a
divisor with the property that L(K) = ω, the dualizing sheaf of X. Given a Cartier
divisor D, an adjoint divisor adjD is defined to be a Cartier divisor satisfying
L(adjD) = Hom(L(D), ω) or equivalently a divisor linearly equivalent to K − D.
The Riemann–Roch Formula relates dim | adjD| to dim |D|. The formula states

dim |D| − dim | adjD| = d+ 1− g,

where d is the degree of D.
To use this formula, we need information about adjD = K−D. The canonical

divisor K has degree 2g− 2, so if D has degree d > 2g− 2, then adjD has negative
degree, which forces dim | adjD| = −1. To study | adjD| for d ≤ 2g−2, we introduce
the canonical map.

Assume g ≥ 1. (The case g = 0 can be dealt with separately.) The canonical
divisor K of a curve of genus g ≥ 1 is base-point free (by [Har77, Prop. 5.1]), and
so K determines a morphism X → PH0(X,L(K))∨ to projective space that we
call the canonical map. The image is a curve when g ≥ 2, and we call this curve
the canonical curve. This curve is a curve in Pg−1 as dimH0(X,L(K)) = g.
In terms of the canonical map, the adjoint linear system | adjD| associated to
an effective divisor D can be described as the set of hyperplanes in Pg−1 whose
preimage contains D. Using this description and the Riemann–Roch Formula, one
can prove that

(3) dim |D| =
{
−1 if d < g

d− g if d ≥ g

for a general effective divisor D of degree d and for every divisor when d ≥ 2g − 1.
We give the proof later in Section 4, where we prove a more general statement as
Corollary 4.1.16.

For the purpose of constructing Jd
X , the most important fact about Cartier

divisors is that dim |D| = d−g for every divisor of degree d > 2g−2. In other words,

for such a degree, the fibers of A : X(d) → Jd,�
X are all Pd−g’s. Given the existence

of the Jacobian Jd
X , the stronger technical results about A in [Kle05, Sect. 9.3],

which were mentioned earlier, show that A : X(d) → Jd
X is a Pd−g-bundle.

If we do not assume that Jd
X exists, then we can use the above fact about

Cartier divisors to construct the scheme. It is enough to construct Jd
X for d >> 0,

and for such a d, we can define Jd
X to be the quotient of X(d) by the relation of

linear equivalence. For this to be a valid definition, however, we must show that
the quotient of X(d) exists as a k-scheme.

In general, the quotient of a k-scheme by an equivalence relation may not exist
as a k-scheme, but linear equivalence is a particularly nice equivalence relation: the
equivalence classes are smooth and projective subschemes of X(d). More formally,
the relation is smooth and projective in the sense that the graph R ⊂ X(d) ×X(d)

of the equivalence relation has the property that the two projection morphisms
R → X(d) are smooth and projective. The quotient of a quasi-projective k-scheme
by such an equivalence relation always exists, as can be shown using an elementary
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argument (that realizes the quotient as a subscheme of a suitable Hilbert scheme).
We direct the reader to [Kle05, Lem. 4.9] for details about the construction of
the quotient by a smooth and projective relation and to [Kle05, Thm. 4.8] for the
proof that the quotient of X(d) is Jd

X . In any case, this gives a second construction
of the Jacobian.

The analytic construction from the beginning of this section showed that not
only does the Jacobian exist, but it has the structure of a g-dimensional com-
plex torus. We can now show that J0

X is the algebro-geometric analogue of a
g-dimensional complex torus: J0

X is a g-dimensional abelian variety. Recall this
means J0

X is a smooth proper variety of dimension g that has group scheme struc-
ture. The group structure on J0

X comes from the tensor product, and one can

deduce the remaining properties from the fact that X(d) is a smooth projective
variety of dimension d by using A : X(d) → Jd

X for d >> 0.

So far we have just made use of the Abel maps A : X(d) → Jd
X for d sufficiently

large, but the Abel maps for small values of d are also of interest. The Abel map
of degree d = g is particularly interesting because X(g) → Jg

X is birational. We

can thus describe the Jacobian Jg
X in terms of the symmetric power X(g) and the

exceptional locus of the Abel map A : X(g) → Jg
X .

The Abel map of degree d = g − 1 is also distinguished.

Definition 1.0.6. The image of A : X(g−1) → Jg−1
X is the theta divisor Θ.

The map A : X(g−1) → Jg−1
X is birational onto its image, so Θ ⊂ Jg−1

X is
a subscheme of codimension 1, hence is a locally principal divisor that can be
shown to be ample. Historically, the geometric study of Jacobian varieties has been
dominated by the study of their theta divisors. We conclude this section by showing
how the geometry of Θ encodes the geometry of Jd

X by describing the theta divisor
for curves of genus at most 4.

Somewhat more generally, we will describe the Abel maps

A : X(g) → Jg
X and

A : X(g−1) → Θ.

The locus C1
d ⊂ X(d) of points [D] satisfying dim |D| ≥ 1 is closed, and the re-

striction of the Abel map to the complement X(d) \ C1
d is an isomorphism onto its

image. We will describe the structure of the Abel map by describing the subset
C1

d ⊂ Jd
X and the contraction C1

d → Jd
X .

We derive such a description using the Riemann–Roch Formula. By that for-
mula, an effective divisorD of degree d = g−1 satisfies dim |D| ≥ 1 (i.e. [D] ∈ C1

g−1)
if and only if dim | adjD| ≥ 1 or equivalently there are two distinct canonical di-
visors that contain D. Similarly, an effective divisor D of degree d = g satisfies
dim |D| ≥ 1 if and only if | adjD| ≥ 0 or equivalently some canonical divisor con-
tains D.

These observations demonstrate the key role played by the canonical divisor K
in describing C1

d . The canonical divisor of a low genus curve is well-understood.
Indeed, effective canonical divisors are the preimages of hyperplanes under the
canonical map, and the canonical map of a curve of genus at most 4 is computed
in [Har77, Chap. 4, Sect. 6]. We now describe the Jacobian of a low genus curve.

Example 1.0.7 (Genus 1). The canonical divisor of a genus 1 curve X is
trivial. In particular, C1

g = ∅, and so the Abel map A : Hilb1X = X → J1
X is
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an isomorphism. Now J1
X does not have natural group structure, but J0

X does,
so if we fix a point p0 ∈ X, then we can identify X = J1

X with J0
X by tensoring

with OX(−p0), and this identification makes X into a group with identity p0. In
a different form, this group law is often introduced in a first course in algebraic
geometry. The map associated to the complete linear system |3p0| embeds X as a
cubic curve in the plane, and the group law coming from the isomorphism X ∼= J0

X

is the group law that is defined using the tangent-chord construction (as in, say,
[Har77, p. 321]).

The theta divisor Θ ⊂ J0
X is not very interesting. The only effective degree 0

divisor is the empty divisor, so we have Θ = {[OX ]}.

Example 1.0.8 (Genus 2). Every genus 2 curve is hyperelliptic, and the effec-
tive canonical divisors K are the fibers of the degree 2 map f : X → P1 to the line.
These fibers K = f−1(t) are exactly the effective divisors of degree g = 2 that move
in a positive dimensional linear system. Indeed, if [D] ∈ C1

g , then, as we observed
earlier, D is contained in a canonical divisor, and hence equal to a canonical divisor
by degree considerations. This classification shows that C1

g is a rational curve

P1 = C1
g ⊂ X(g),

and this curve is contracted to a point by the Abel map.
What about Θ ⊂ Jg−1

X ? No degree 1 = g−1 divisor D can satisfy dim |D| ≥ 1.
Indeed, again using the observations we made after stating the Riemann–Roch
Formula, we see that any such divisor would be contained in two distinct fibers of
f , which is absurd. We can conclude that the Abel map A : X(g−1) = X → Jg−1

X

is injective, so the theta divisor is

X = Θ ⊂ Jg−1
X ,

an embedded copy of the curve.

Example 1.0.9 (Genus 3). The genus 3 curves fall into two classes: the hyper-
elliptic curves and the non-hyperelliptic curves. We will first consider the case of
hyperelliptic curves, which are similar to the genus 2 curves that we just discussed.

Let X be a genus 3 hyperelliptic curve with degree 2 map f : X → P1 to
the line. The effective canonical divisors of X are the divisors of the form K =
f−1(t1) + f−1(t2) for t1, t2 ∈ P1. From this description, we can conclude that the
elements [D] of C1

g are the divisors of the form f−1(t0)+p0 for t0 ∈ P1 and p0 ∈ X.
Furthermore, these divisors satisfy

dim |f−1(t0) + p0| = 1

by the Riemann–Roch Formula (as there is a unique canonical divisor containing
f−1(t0) + p0). Indeed, the divisors f−1(t) + p0 with t ∈ P1 exhaust the effective
divisors linearly equivalent to f−1(t0) + p0.

How does this classification of divisors translate into a description of A : X(g) →
Jg
X? The exceptional locus C1

g is isomorphic to the surface X ×P1, and the Abel
map collapses this surface to the curve X by projection onto the first factor.

What about the theta divisor Θ ⊂ Jg−1
X ? The exceptional locus C1

g−1 of

A : X(2) → Θ is the locus of effective degree g−1 = 2 divisors D that are contained
in two distinct canonical divisors. From our description of K, we see that these are
exactly the divisors of the form f−1(t), t ∈ P1, and all these divisors are linearly
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equivalent. In other words, the exceptional locus is a rational curve

P1 = C1
g−1 ⊂ X(g−1)

that is contracted to a point. Set-theoretically, this is the same as the description
of the degree g Abel map X(g) → Jg

X of a genus 2 curve. There is, however,
an important difference: when X is a genus 2 curve, the image of the rational
curve P1 ⊂ X(2) is a smooth point, but when X is a genus 3 hyperelliptic curve,
the image is a singularity of Θ. This is a consequence of a general result — the
Riemann Singularity Theorem — that computes the multiplicity of Θ as

mult[L] Θ = h0(X,L).

Two proofs of this result can be found in [ACGH85, Chap. 6].
What about non-hyperelliptic curves? The canonical map of a non-hyperelliptic

curve X of genus 3 embeds X as a degree 4 plane curve X ⊂ P2, and the effective
canonical divisors are just the divisors that are the intersection of X with a line
� ⊂ P2. From this description of the canonical divisors, we see that [D] ∈ C1

g if
and only if D lies on a line � (which is necessarily unique). We can define a map
π : C1

g → X as follows. Given [D] ∈ C1
g , there is a unique line � containing D, and

we can write � ∩X = D + q0 for some point q0 of X. We set π([D]) = q0.
The fiber π−1(q0) of π over a point is a P1, the projective line parameterizing

lines � ⊂ P2 containing q0. In particular, we see that C1
g is a surface. The Abel

map A : X(g) → Jg
X contracts the fibers of π, so the image of C1

g is a curve:

X = A(C1
g ) ⊂ Jg

X .

We now turn our attention to the theta divisor. We have C1
g−1 = ∅. Indeed,

no effective degree g − 1 = 2 divisor is contained in two distinct canonical divisors
because two distinct lines meet in a single point. In particular, the theta divisor is
a smooth projective surface:

X(g−1) = Θ ⊂ Jg−1
X .

This is a special case of Marten’s Theorem. That theorem states that if X is a
curve of genus g, g ≥ 3, then we have

dimΘsing =

{
g − 3 if X is hyperelliptic;

g − 4 otherwise.

This statement, along with various generalizations, is proven in [ACGH85, Chap. 4,
Sect. 5].

Example 1.0.10 (Genus 4). The structure of the Abel map of a genus 4 hyper-
elliptic curve is similar to the structure of the Abel map of a genus 3 hyperelliptic
curve, so we will only discuss the non-hyperelliptic case. The canonical map of a
non-hyperelliptic genus 4 curve X embeds the curve in space X ⊂ P3. As a space
curve, X is the complete intersection of a (non-unique) cubic hypersurface and a
(unique) quadric surface, which we denote by Q. The quadric surface Q is either
smooth or a cone over a plane curve of degree 2. The shape of the quadric influences
the structure of the Abel map, so we consider these two cases separately.

Suppose first that Q is smooth. Then the quadric Q must be isomorphic to
P1 × P1 embedded by the complete linear system |O(1, 1)|. The description of
C1

g is similar to the description we gave for a non-hyperelliptic genus 3 curve. By
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the Riemann–Roch Formula, the exceptional locus C1
g ⊂ X(g) of A : X(g) → Jg

X is

the locus of effective degree 4 divisors that are contained in a hyperplane h ⊂ P3,
which is necessarily unique (for otherwise D would be contained in a line that lies
on Q by degree considerations, but the intersection of a line lying on Q with X is a
divisor of degree 3). We describe C1

g by constructing a map π : C1
g → X(2). Given

[D] ∈ C1
g , let h ⊂ P3 be the unique hyperplane containing D. The intersection

h ∩X is a degree 6 effective divisor that we can write as h ∩X = D + E for some
effective divisor E of degree 2. We set π([D]) = [E]. The fibers of the resulting
map π : C1

g → X(2) are P1’s, so C1
g is a smooth 3-fold. The Abel map contracts C1

g

to the surface
X(2) = A(C1

g ) ⊂ Jg
X

by contracting each fiber π−1([E]) to a point.

What about the degree 3 = g−1 Abel map A : X(g−1) → Jg−1
X ? If [D] ∈ X(g−1)

satisfies dim |D| ≥ 1, then D lies on two distinct hyperplane sections, and hence lies
on their intersection which is a line � ⊂ P3. We can construct divisors satisfying
this condition by using the geometry of the quadric surface Q. Given a line � on
the quadric surface, the intersection D := � ∩X is a degree 3 effective divisor, so
[D] ∈ C1

g−1. In fact, these points exhaust C1
g−1. If [D] ∈ C1

g−1, then the unique line
� containing D must be contained in Q because otherwise Q ∩ � would be a degree
2 closed subscheme that contains the degree 3 effective divisor D, which is absurd.
The lines on Q consist of two 1-dimensional linear systems (the lines {t} ×P1 and
the lines P1 × {t}). We thus have

P1 ∪P1 = C1
g−1 ⊂ X(3).

Each curve is contracted to a point of Θ which is a singularity. This shows that Θ
is singular at exactly two points.

What about the case where the quadric Q containing X is singular? The
structure of the degree g Abel map A : X(g) → Jg

X is as before; the map contracts

a threefold C1
g ⊂ X(g) that is a P1-bundle over X(2). The structure of the degree

g − 1 Abel map A : X(g−1) → Θ, however, is different. The argument used in the
previous case remains valid except now Q contains only one 1-dimensional linear
system of lines. Recall that Q is the cone over a smooth plane quadric Y ⊂ P3.
The lines � on Q are the lines that join a point on Y to the vertex of the cone. Thus

P1 = C1
g ⊂ X(g−1).

This curve is contracted to the unique singularity of Θ. (Warning: We have only
defined C1

g as a set, and the locus naturally has non-reduced scheme structure.)

This completes our discussion of Jacobians of smooth curves. The remainder
of the article is devoted to extending this theory of the Jacobian to singular curves.

2. Generalized Jacobians of Singular Curves

How should the Jacobian of a singular curve be defined? One approach is to
simply repeat Definition 1.0.1, which is the definition of the Jacobian of a smooth
curve.

Definition 2.0.11. Given a curveX, the generalized Jacobian functor Jd,�
X

of degree d is defined to be the étale sheaf associated to the functor that assigns
to a k-scheme T the set of isomorphism classes of lines bundles L on XT that
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have the property the restriction of L to any fiber of XT → T has degree d. The

generalized Jacobian variety is the k-scheme that represents Jd,�
X .

This generalized Jacobian can be constructed by, for example, using Artin’s
Criteria. However, the generalized Jacobian has a major deficiency: it is not proper.

Consider the generalized Jacobian of a genus 1 curve X with a node p0 ∈ X.
We observed in Example 1.0.7 that the degree 1 line bundles on a smooth genus 1
curve are all of the form L(p) for p ∈ X a point, and this fact remains valid for X
provided we require that p lies in the smooth locus. Thus we have

J1
X =X \ {node}

∼=P1 \ {0,∞}.

In particular, J1
X is not proper. This suggests a question: how to compactify J1

X

to a proper k-scheme?
We answer this question in Section 3. Before studying compactifications of

Jd
X , let’s first examine the structure of the scheme. The generalized Jacobian J0

X

is a smooth connected g-dimensional quasi-projective variety that admits a group
scheme structure coming from the tensor product. This group structure can be
described in terms of the singularities of X.

When k = C, we described the group of k-points J0
X(k) of the Jacobian co-

homologically as a kernel in Eq. (2). In that displayed equation, the terms in the
exact sequence were cohomology groups that we interpreted as sheaf cohomology
computed with respect to the analytic (or classical) topology and the curve X was
a smooth curve. However, our computation remains valid if we let X be a singular
curve over an arbitrary k provided we replace the analytic topology with the étale
topology. Let us explain this.

In what follows, we only use the very basic properties of the étale topology, and
the reader unfamiliar with this formalism is directed to [BLR90, Sect. 8.1]. We
write Tét for the étale site of a scheme. Given a smooth curve X over k = C, the
isomorphism Eq. (2) is constructed by first constructing an isomorphism between
the group of line bundles of arbitrary degree and the group H1(Xan,O∗

X) and then
observing that this isomorphism identifies the degree map on line bundles with the
Chern class map c1 : H

1(Xan,O∗
X) → H2(Xan,Z). These facts remain valid when

X has singularities and k = C. If k is an arbitrary field, then Xan does not make
sense, but there is an isomorphism between the group of line bundles and the étale
cohomology group H1(Xét,O∗

X) that identifies the degree map with a map valued
in H2(Xét,Z�(1)) (for � a prime distinct from the characteristic). More generally,

if we define Pic�X/k to be the disjoint union of all the Jd,�
X ’s, then this functor is

isomorphic to the 1st higher direct image of O∗
X under the structure morphism

Xét → két. This result is due to Grothendieck, and a recent discussion of the
identification can be found in [Kle05, Sect. 2].

The reason for introducing this cohomological formalism is that it makes it easy
to relate the generalized Jacobian J0

X of X to the Jacobian J0
Xν of the normalization

Xν . Let ν : Xν → X be the normalization map. The homomorphism ν−1O∗
X →

OXν given by pulling back by ν is adjoint to a homomorphism O∗
X → ν∗(O∗

Xν )
that is injective and an isomorphism away from the singular locus. The cokernel F
is supported on Xsing and fits into a short exact sequence

(4) 0 → O∗
X → ν∗(O∗

Xν ) → F → 0.

402



SINGULAR CURVES AND THEIR COMPACTIFIED JACOBIANS 13

Consider the associated long exact sequence relating the higher direct images
of these sheaves under Xét → két. We just explained that the 1st direct image of

O∗
X is Pic�X/k. Similarly, the 1st direct image of ν∗O∗

X is Pic�Xν/k as ν is finite.

The natural map Pic�X/k → Pic�Xν/k is surjective as the cokernel injects into the

1st direct image of F , which is zero as F has 0-dimensional support. For the
same reason, the direct image of F is the locally constant sheaf F associated to

the group H0(Xét,F). The connecting homomorphism F → Pic�X/k is injective as

O∗
X → ν∗O∗

Xν is easily seen to induce an isomorphism on direct images (the only
global functions on X, Xν are constants). To summarize, we can extract from the
long exact sequence on higher direct images a short exact sequence

(5) 0 → F → Pic�(X/k) → Pic�(Xν/k) → 0.

As Pic�(X/k) → Pic�(Xν/k) respects degree maps, we can also write

(6) 0 → F → J0
X → J0

Xν → 0.

This is the desired description of the generalized Jacobian J0
X : it is an extension of

the abelian variety J0
Xν by the commutative group variety F Let us examine the

structure of F .
Label the singularities of X as q1, . . . , qn and then label the points of the fiber

ν−1(qi) as pi,j , j = 1, . . . ,mi. We defined F to be the locally constant étale sheaf
associated to H0(Xét,F), and this group of sections is isomorphic to the direct sum
of the stalks of F :

(7) H0(Xét,F) =
⊕

(O∗
X,pi,1

⊕ · · · ⊕ O∗
X,pi,mi

)/O∗
X,qi .

Here the stalks are taken with respect to the étale topology, and the group O∗
X,qi

is embedded diagonally.
The quotients appearing in Eq. (7) are unchanged if we replace the unit groups

O∗
X,qi

and O∗
Xν ,pi,j

with the unit groups Ô∗
X,qi

and Ô∗
Xν ,pi,j

in the appropriate

completions. In particular, the structure of F depends only on the analytic type of
the singularities of X. Let’s now compute F for some specific singularities.

Example 2.0.12 (The Node). The node O = k[[x, y]]/(xy) has normalization

isomorphic to the product Õ = k[t]]× k[[t]]. An isomorphism

Õ∗/O∗ ∼= k∗

is given by the rule (f, g) ∈ Õ∗ �→ f(0)/g(0). In other words, the associated
algebraic group is the multiplicative group Gm. More generally, if X is a nodal
curve, then F = ker(J0

X → J0
Xν ) is a multiplicative torus Gδ

m of dimension equal
to the number of nodes δ.

Example 2.0.13 (The Cusp). If O = k[[x, y]]/(y2 − x3) is the cusp, then the

quotient Õ∗/O∗ is isomorphic to the additive group k+. In particular, if X is a
curve with only cusps as singularities, then F is an additive torus Gδ

a of dimension
equal to the number of cusps δ.

Example 2.0.14 (The Tacnode). Like the node, the normalization of the tac-

node O = k[[x, y]]/(y2 − x4) is the product Õ = k[[t]] × k[[t]] of two power se-

ries rings. An isomorphism Õ∗/O∗ ∼= k∗ ⊕ k+ is given by the rule (f, g) �→
(f(0)/g(0), f ′(0)/f(0) − g′(0)/g(0)). Here f ′(t) and g′(t) are the formal deriva-
tives. In particular, each tacnode of X contributes a factor of Gm ×Ga to F .
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14 JESSE LEO KASS

This concludes our discussion of examples. A more detailed description of F
can be found in [BLR90, Sect. 9.1]. Rather than discussing that description, we
turn our attention to the problem of compactifying the generalized Jacobian.

3. Compactified Jacobians of Singular Curves

In the special case of the genus 1 nodal curve X from the beginning Section 2,
it is clear how to compactify the associated generalized Jacobian J1

X . We described
that generalized Jacobian as

(8) J1
X

∼= X \ {node},
and we can construct a compactification J̄1

X ⊃ J1
X by defining

(9) J̄1
X

∼= X.

In this section, we will describe how to interpret this compactification J̄1
X in terms

of moduli and then how to generalize that interpretation to arbitrary curves.
We can give a moduli-theoretic interpretation of the compactification (9) as

follows. Let p0 ∈ X be the node. In the isomorphism (8), a point p ∈ X \ {p0}
corresponds to [L(p)] ∈ J1

X , where L(p) is the OX -linear dual of the ideal Ip of
p. When p = p0, the ideal Ip0

is not a line bundle, but we can still define L(p0)
by L(p0) := Hom(Ip0

,OX). The compactification J̄1
X parameterizes degree 1 line

bundles on X and the sheaf L(p0). Both the line bundles L(p) and the sheaf L(p0)
are examples of rank 1, torsion-free sheaves, a class of sheaves that we now define.

Definition 3.0.15. A coherent sheaf I on a curve X is torsion-free if for
every local section f of OX and every local section s of I satisfying f · s = 0, we
have f = 0 or s = 0. The sheaf I is said to be rank 1 if there exists a dense open
subset U ⊂ X such that I|U is isomorphic to OU .

The degree of a rank 1, torsion-free sheaf is defined as follows.

Definition 3.0.16. If I is a rank 1, torsion-free sheaf, then the degree deg(I)
of I is defined by

deg(I) := χ(I)− χ(OX).

The compactified Jacobian is defined in the expected manner.

Definition 3.0.17. The degree d compactified Jacobian functor J̄d,�
X is

defined to be the étale sheaf associated to the functor that assigns to a k-scheme
T the set of isomorphism classes of OT -flat, finitely presented OXT

-modules I on
XT that have the property that the restriction of I to any fiber of XT → T is a
rank 1, torsion-free sheaf of degree d. The degree d compactified Jacobian is the

k-scheme that represents J̄d,�
X .

By [AK80, Thm. 8.1], the compactified Jacobian exists as a projective k-
scheme. Since every line bundle is a rank 1, torsion-free sheaf, we have Jd

X ⊂ J̄d
X ,

and so J̄d
X compactifies the generalized Jacobian Jd

X . This compactification is
particularly well behaved when X has only planar singularities. For such a curve,
Altman–Iarrobino–Kleiman have proven that the compactified Jacobian J̄d

X is an
irreducible variety that contains the generalized Jacobian as a dense open subset
[AIK77].

The compactified Jacobian has undesirable properties when X has a non-planar
singularity. In this case, Kleiman–Kleppe [KK81] have proven that J̄d

X has at
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SINGULAR CURVES AND THEIR COMPACTIFIED JACOBIANS 15

least two irreducible components. The generalized Jacobian is contained in a single
irreducible component, so the compactified Jacobian of a curve with a non-planar
singularity has the undesirable property of having extra components.

The compactified Jacobian of a singular curve can be constructed using tech-
niques similar to those used to construct the Jacobian of a smooth curve. In Sec-
tion 1, we sketched two different proofs that the Jacobian of a non-singular curve
exists. The first proof used Artin’s Criteria to construct the Jacobian. The author
expects this proof can be modified to prove the existence of the compactified Ja-
cobian of a singular curve (but additional care must be taken in showing that the
relevant algebraic space is actually a scheme — the compactified Jacobian is not a
group scheme).

In any case, we are more interested in generalizing the second construction of
the Jacobian. In the second construction, given a smooth curve X, we fixed a suf-
ficiently large integer d and then constructed Jd

X as the quotient of the symmetric

power X(d) by the relation of linear equivalence. The quotient scheme exists es-
sentially because the relevant equivalence classes are Pd−g’s, and the quotient map
X(d) → Jd

X is then the Abel map.
In [AK80], Altmann–Kleiman construct the compactified Jacobian by extend-

ing the theory of linear equivalence and of the Abel map to singular curves. This
extension is, however, non-trivial. As we now demonstrate, the most naive approach
to constructing the Abel map of a singular curve fails.

Given a singular curve X, let X
(d)
sm denote the d-th symmetric power of the

smooth locus ofX. Applied toX
(d)
sm , the construction from the proof of Lemma 1.0.4

produces a regular map
A : X(d)

sm → Jd
X

or equivalently a rational map

A : X(d) ��� J̄d
X .

However, this second rational map may not be a regular map; the locus of indeter-
minacy may be non-empty. We show this by example.

Example 3.0.18. We exhibit a singular curve X with the property that the
map A : X(2) ��� J̄2

X is not a regular map. Let X be a general genus 2 curve
that has a single node p0 ∈ X. That is, let X be the projective curve that contains
U := Spec(k[x, y]/(y2−x2(x−a1) . . . (x−a4)) (for some distinct, nonzero constants
a1, . . . , a4 ∈ k) and is smooth away from U . The maximal ideal (x, y) ⊂ OU

corresponds to the node p0 ∈ X. The curve X admits a degree 2 morphism π : X →
P1 that extends the ring map k[t] → OU defined by t �→ x. We will show that
A : X(2) ��� J̄2

X is undefined at the point [2p0] ∈ X(2).

Our strategy is to construct two maps f1, f2 : Spec(k[[t]]) → X(2) out of the for-
mal disc with the property that the closed point 0 ∈ Spec(k[[t]]) is sent to [2p0] and
the generic point does not map into the locus of indeterminacy of A. Since A is well-
defined at the image of the generic point, the composition A◦fi : Spec(Frac k[[t]]) →
J̄2
X is defined and hence extends to a morphism Spec(k[[t]]) → J̄2

X by the valua-
tive criteria of properness. Write g̃i for this extension. We will show directly that
g̃1(0) �= g̃2(0). However, if A was a regular map, then we would have g̃1(0) =
A([2p0]) and g̃2(0) = A([2p0]), which is absurd.

We now construct the maps f1, f2 : Spec(k[[t]]) → X(2) by exhibiting corre-

sponding algebra maps (OU ⊗ OU )
Sym2 → k[[t]]. Set

√
(t− a1) . . . (t− a4) equal
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16 JESSE LEO KASS

to the power series that is the usual Taylor series expression for the square root of
(t− a1) . . . (t− a4). (Choose

√
ai for i = 1, . . . , 4 arbitrarily.)

The map f1 is defined to be the regular map that corresponds to the algebra
homomorphism (OU ⊗ OU )

Sym2 → k[[t]] that is the restriction of the map OU ⊗
OU → k[[t]] defined by

x⊗ 1 �→ 0,

y ⊗ 1 �→ 0,

1⊗ x �→ t,

1⊗ y �→ t
√
(t− a1) . . . (t− a4).

Intuitively, this is the formal arc that sends a parameter t to an unordered pair of
points that consists of p0 and a point in X that tends to p0 as t tends to 0.

Similarly, we define f2 to be the regular map that corresponds to the algebra
homomorphism defined by

x⊗ 1 �→ t,

y ⊗ 1 �→ t
√
(t− a1) . . . (t− a4),

1⊗ x �→ t,

1⊗ y �→ −t
√
(t− a1) . . . (t− a4).

Intuitively, this is the formal arc that sends the parameter value t to the two points
in π−1(t).

Both maps have the property that 0 maps to [2p2] and the generic point maps
to a point where X(d) ��� J̄2

X is regular. To complete this example, we need to
show that g̃1(0) �= g̃2(0).

By construction, the composition Spec(Frac k[[t]])
f1−→ X(2) A��� J̄2

X corre-
sponds to the line bundle on X ⊗ Frac k[[t]] that is the pullback of O(1) under
π ⊗ 1: X ⊗ Frac k[[t]] → P1 ⊗ Frac k[[t]]. This line bundle extends to the pullback
of O(1) under π ⊗ 1: X ⊗ k[[t]] → P1 ⊗ k[[t]], and so the extension g̃1 of A ◦ f1
must satisfy g̃1(0) = [π∗(O(1))]. The composition A ◦ f2 : Spec(Frac k[[t]]) → J̄2

X

corresponds to a sheaf that fails to be locally free. This property persists under
specialization, so if g̃2(0) = [I], then I must fail to be locally free. In particular,
g̃2(0) �= g̃1(0). We can conclude that A : X(2) → J̄2

X is not a regular map.

The above example shows that, to define a suitable Abel map for a singular
curve, we must replace X(d) with a blow-up that resolves the indeterminacy of
X(d) ��� J̄d

X . In Section 5, we resolve this indeterminacy by a blow-up that is a
moduli space that parameterizes generalized divisors, objects we discuss in the next
section.

4. Generalized Divisors

Here we develop the theory of generalized divisors in analogy with the theory
of Cartier divisors. Recall that on a smooth curve a line bundle is equivalent to a
linear equivalence class of Cartier divisors (see Sect. 1). Our goal is to define more
general divisors on a singular curve so that a rank 1, torsion-free sheaf is equivalent
to a linear equivalence class of these more general divisors. We define two types
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of divisors that generalize Cartier divisors: generalized divisors and generalized ω-
divisors. On a Gorenstein curve, generalized divisors are essentially equivalent to
generalized ω-divisors, but the two divisors are fundamentally different on a non-
Gorenstein curve, and it is only generalized ω-divisors that behave as one expects
by analogy with Cartier divisors. The material in this section is derived from
Hartshorne’s papers [Har86], [Har94], and [Har07].

4.1. Generalized Divisors. Let X be an integral curve. We begin by defin-
ing a generalized divisor on X.

Definition 4.1.1. Let K denote the sheaf of total quotient rings of X. That
is, K is the field of rational functions, considered as a locally constant sheaf. A
generalized divisor D on X is a nonzero subsheaf ID ⊂ K that is a coherent
OX -module. If additionally ID is a line bundle, then we say that D is a Cartier
divisor. We say that a generalized divisor D is effective if ID ⊂ OX .

An effective generalized divisor on X is just a 0-dimensional closed subscheme
Z ⊂ X. In particular, every closed point p ∈ X defines a generalized divisor that,
by abuse of notation, we denote by p. A second source of generalized divisors is
rational functions. A rational function f generates a subsheaf OX · f ⊂ K, and
we write div(f) for the corresponding generalized divisor. The generalized divisor
div(1) is written 0.

Many of the familiar operations on Cartier divisors extend to generalized divi-
sors.

Definition 4.1.2. The sum D+E of two generalized divisors D and E is the
subsheaf ID+E ⊂ K generated by local sections of the form fg with f ∈ ID and
g ∈ IE . The minus −D of a generalized divisor D is the subsheaf I−D ⊂ K whose
local sections are elements f ∈ K satisfying f · ID ⊂ OX .

Remark 4.1.3. Our definitions of sum and minus are different from the defini-
tions found on [Har07, p. 88]. There Hartshorne defines ID+E to be the ω-reflexive
hull of the module generated by the elements fg rather than the module itself and
similarly with I−D. His definition is, however, equivalent to the one just given
because the module generated by the fg’s is ω-reflexive by Lemma 4.2.7 below.

The sum operation is easily seen to make the set of generalized divisors into a
commutative monoid with identity 0. More precisely, properties of sum and minus
are summarized by the lemma below.

Lemma 4.1.4. The sum and minus operations have the following properties:

(a) sum is associative and commutative;
(b) D + 0 = D;
(c) D +−D = 0 provided D is Cartier;
(d) −(D + E) = −D +−E provided E is Cartier.

Proof. This is [Har07, Prop. 2.2]. �

In the last two parts of Lemma 4.1.4, it is necessary to assume that one of
the divisors is Cartier. The sum operation is not well-behaved when applied to
non-Cartier divisors, as is shown by the examples in [Har94, Sect. 3].

We now define linear equivalence.
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18 JESSE LEO KASS

Definition 4.1.5. Two generalized divisors D and E are linearly equivalent
if there exists a rational function f with D = E + div(f). Given D, the associated
complete linear system |D| is the set of all effective generalized divisors linearly
equivalent to D.

Linear equivalence is immediately seen to define an equivalence relation on the
set of generalized divisors. The lemma below provides an alternative characteriza-
tion of linear equivalence.

Lemma 4.1.6. The following relations between generalized divisors and rank 1,
torsion-free sheaves hold:

(a) D is linearly equivalent to E if and only if ID is isomorphic to IE;
(b) every rank 1, torsion-free sheaf I is isomorphic to ID for some generalized

divsior D;
(c) ID ⊗ IE ∼= ID+E provided E is Cartier;
(d) I−D

∼= Hom(ID,OX).

Proof. Conditions (a) and (b) are [Har07, Prop. 2.4], and the reader may
find a proof of Condition (d) in [Har94, Lem. 2.2]. To prove Condition (c), it is
enough to prove that the natural surjection ID⊗IE → ID+E is injective. Injectivity
can be checked locally, so we may assume IE is principal, in which case injectivity
is immediate. �

To study |D|, we make the following definition.

Definition 4.1.7. Write I∨ := Hom(I,OX) for the OX-linear dual of a co-
herent OX -module I. The sheaf L(D) associated to a generalized divisor D is
defined by L(D) := I∨D. An adjoint generalized divisor adjD of the gener-
alized divisor D is a generalized divisor satisfying L(adjD) = Hom(L(D), ω). A
canonical generalized divisor K is an adjoint divisor of 0 (so L(K) = ω).

A canonical divisor exists when ω is reflexive (e.g. when X is Gorenstein).
Indeed, by Lemma 4.1.6 we can write IK = ω∨ for some generalized divisor K. We
then have L(K) = (ω∨)∨, which equals ω by reflexivity. Thus K is a canonical
divisor.

WhenX is Gorenstein, ω is not only reflexive but in fact locally free, soK exists
and is Cartier. The canonical divisor K is base-point free when g ≥ 1 by [Har86,
Thm. 1.6], and so it determines a canonical map X → PH0(X,L(K))∨ = Pg−1.
The image of this morphism is a curve provided g ≥ 2, and in this case, we define the
image to be the canonical curve. There is a definition of the canonical curve and
the canonical map of a non-Gorenstein curve (see e.g. [KM09]), but the definitions
are more complicated, and we do not study them here.

The assumption that X is Gorenstein also implies that the adjoint divisor of
a given divisor D exists as we can take adjD := K + −D. Just as with a smooth
curve, the elements of | adjD| are the preimages of hyperplanes in canonical space
Pg−1 that contain D.

When X is non-Gorenstein, an adjoint divisor adjD of a divisor D may not
exist, and when it exists, it may not be unique even up to linear equivalence because
we cannot recover IadjD from its dual L(adjD). We can, however, recover IadjD
when this sheaf is reflexive because then IadjD ∼= L(adjD)∨. The following lemma
shows that IadjD is always reflexive when X is Gorenstein.

408



SINGULAR CURVES AND THEIR COMPACTIFIED JACOBIANS 19

Lemma 4.1.8. If X is Gorensten, then every rank 1, torsion-free sheaf is re-
flexive. That is, the natural map I → (I∨)∨ is an isomorphism. In fact, we have

D = −(−D)

for all generalized divisors D.

Proof. This is [Har86, Lem. 1.1]. �

The lemma is false if we omit the hypothesis that X is Gorenstein.

Example 4.1.9. We provide an example of a curve whose dualizing sheaf is
not reflexive. Take X to be the curve in Example 6.0.15. This is a genus 2 curve
with a unique singularity p0 that is unibranched and non-Gorenstein.

We compute ω∨ and (ω∨)∨. Let Kω denote the locally constant sheaf of rational
1-forms. Write ∂t for the functional (Kω)|X1

→ K|X1
that sends dt to 1 and similarly

for ∂s : (Kω)|X2
→ K|X2

. A computation shows that the image of any functional
ω|X1

→ OX1
is contained in the subsheaf of regular functions that vanish at the

singularity p0, so ω∨ can be described as the sheaf generated by t6∂t, t
7∂t, t

8∂t
on X1 and by ∂s on X2. The same reasoning shows that (ω∨)∨ is generated by
dt/t3, dt/t2, dt/t on X1 and by ds on X2. In particular, ω → (ω∨)∨ is not an
isomorphism because dt/t is not in the image.

The curve from the above example does not admit a canonical divisor. Indeed,
we have seen that the reflexivity of ω is a sufficient condition for the existence of
K, but it is also a necessary condition because every dual module is reflexive. As
the dualizing module of the curve in Example 4.1.9 is not reflexive, this curve does
not admit a canonical divisor.

We now develop the properties of complete linear systems. The sheaf L(D) =
Hom(ID,OX) has the property that the natural map

H0(X,Hom(ID,OX)) → Hom(ID,OX)

is an isomorphism. (Indeed, this holds quite generally when ID is replaced by
an arbitrary coherent sheaf.) We use this observation in the following lemma to
describe |D| in terms of a cohomology group.

Lemma 4.1.10. Let D be a generalized divisor. Then the rule that sends a
nonzero global section of L(D) to the image of the corresponding homomorphism
ID → OX defines a bijection

(10) PH0(X,L(D)) ∼= |D|.

Proof. Under the hypothesis that X is Gorenstein, this is stated on [Har86,
p. 378, top], but the fact remains valid when X is non-Gorenstein. To show that the
map is well-defined, we need to show that any nonzero homomorphism φ : ID → OX

is injective. Such a φ must be generically nonzero because OX is torsion-free.
Because both ID and OX are rank 1, we can conclude that φ is in fact generically
an isomorphism. In particular, the kernel is supported on a proper closed subset of
X. But the only such subsheaf of ID is the zero subsheaf as ID is torsion-free, so
φ is injective.

Given that the map (10) is well-defined, it is immediate that the map is sur-
jective. To show injectivity, we argue as follows. Suppose that we are given
two nonzero global sections σ1 and σ2 that correspond to two homomorphisms
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φ1, φ2 : ID → OX with the same image. We have just shown that φ2 is in-
jective, so this homomorphism is an isomorphism onto its image. If we write
φ−1
2 : im(φ1) = im(φ2) → ID for the inverse homomorphism, then α := φ−1

2 ◦ φ1

satisfies φ1 = φ2 ◦ α. The only automorphisms of ID are the maps given by mul-
tiplication by nonzero scalars by [AK80, Cor. 5.3, Lem. 5.4]. If α is given by
multiplication by c ∈ k∗, then φ1 = c · φ2 or equivalently σ1 = c · σ2. In other
words, σ1 and σ2 define the same point of PH0(X,L(D)), showing injectivity. This
completes the proof. �

Motivated by the previous lemma, we now study the cohomology of L(D). The
most important numerical invariant controlling the cohomology is the degree.

Definition 4.1.11. The degree deg(D) of a generalized divisor D is defined
by deg(D) := − deg(ID).

Lemma 4.1.12. The degree function has the following properties:

(a) if D is an effective generalized divisor, then deg(D) is the length of OD;
(b) deg(D + E) = deg(D) + deg(E) provided E is Cartier;
(c) deg(−D) = − deg(D) provided X is Gorenstein;
(d) if D is linearly equivalent to E, then deg(D) = deg(E).

Proof. Property (a) follows from the additivity of the Euler characteristic χ,
and Property (d) is immediate from Lemma 4.1.6(a). Property (b) follows from
the more general identity χ(ID ⊗ I⊗n

E ) = n deg(IE) + χ(ID) which is e.g. p. 295
and Corollary 2, p. 298 of [Kle66, Chap. 1]. Property (b) and coherent duality
imply Property (c). Indeed, if X is Gorenstein, then Hom(ID, ω) = I∨D⊗ω. By (b),
deg(ω) + χ(I∨D) = χ(I∨D ⊗ ω), and χ(Hom(ID, ω)) = −χ(ID) by coherent duality.
We now deduce (c) by elementary algebra.

�

Remark 4.1.13. When X is Gorenstein, Hartshorne defines the degree differ-
ently on [Har86, p. 2], but the two definitions coincide by [Har94, Prop. 2.16].

One consequence of Lemma 4.1.12(c) is that

deg(L(D)) = deg(D)

when X is Gorenstein (as I−D = L(D)). When X is non-Gorenstein, this equality
can fail, as the example below shows.

Example 4.1.14. We give an example where deg(L(D)) �= deg(D) or equiva-
lently deg(−D) �= − deg(D). Consider the non-Gorenstein genus 2 curve X from
Example 6.0.15 and the generalized divisor D = p0 that is the singularity. We have
deg(p0) = 1, but we claim deg(−p0) = −2. The sheaf Ip0

is the ideal generated by
(t3, t4, t5) on X1 and by (1) on X2. A direct computation shows that I−p0

is the
subsheaf of K generated by (1, t, t2) on X1 and by (1) on X. The degree of L(p0)
is 2 = 1 + deg(p0), not deg(p0). (To compute the degree, observe that OX ⊂ I−D

has colength 2.)

While we always have |D| = PH0(X,L(D)), the dimension of |D| is only well-
behaved when X is Gorenstein. First, we have the following form of the Riemann–
Roch Formula.
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Proposition 4.1.15. If X is Gorenstein and D is a generalized divisor, then
we have

dim |D| − dim | adjD| = deg(D) + 1− g.

Proof. This is [Har86, Thm. 1.3, 1.4], and with our definition of degree, the
equation is a consequence of Eq. (15). �

We now use the Riemann–Roch Formula to compute dim |D|.

Corollary 4.1.16. Assume X is Gorenstein. Then the equation

(11) dim |D| =
{
−1 if d < g;

d− g if d ≥ g.

holds for every generalized divisor D of degree d > 2g − 2.
Furthermore, if D is a divisor of degree d ≤ 2g − 2, then there exists a degree

0 Cartier divisor E such that D + E satisfies Eq. (11).

Remark 4.1.17. In Section 5, we will introduce the moduli space of effective
generalized divisors of degree d, called the Hilbert scheme HilbdX . The present

corollary implies that the locus of divisors satisfying Eq. (11) is dense in HilbdX
(i.e. Eq. (11) is satisfied by a general effective D of degree d).

Proof. Suppose first that D is a generalized divisor of degree d > 2g−2. Then
the degree of adjD is 2g− 2−d < 0, and it follows from degree considerations that
the only homomorphism IadjD → OX is the zero homomorphism. In other words,
| adjD| = ∅, and the claim immediately follows from the Riemann–Roch Formula.

Now suppose that D is a given generalized divisor of degree d ≤ 2g−2. Choose
an integer e large enough so that d+ e > 2g − 2 and then choose a Cartier divisor
A that is the sum of e distinct points lying in the smooth locus Xsm. We claim
that there exist distinct points p1, . . . , pe ∈ Xsm such that D + A − p1 − · · · − pe
satisfies Eq. (11).

We construct the pi’s by induction. It is enough to show that if B is a
generalized divisor with dim |B| > 1, then there exists a point p ∈ Xsm with
h0(X,L(B−p)) = h0(X,L(B))−1. Fix a nonzero section σ ∈ H0(X,L(B)). Then
the image σ(p) ∈ k(p) ⊗ L(B) of σ in the fiber L(B) at p is zero for only finitely
many points p. Pick a point p in the smooth locus of X such that σ(p) �= 0.
Then h0(X,L(B − p)) = h0(X,L(B)) − 1 because H0(X,L(F − p)) is the kernel
of the nonzero homomorphism H0(X,L(F )) → k(p) ⊗ L(F ). This completes the
proof. �

The corollary is false without the Gorenstein assumption.

Example 4.1.18. Let X be the non-Gorenstein genus 2 curve from Exam-
ple 6.0.15. If p0 ∈ X is the singularity, then for any 4 general points p1, p2, q1, q2 ∈
X, the divisors p0+p1+p2 and p0+ q1+ q2 are linearly equivalent. Indeed, assume
the points all lie in X1 and are respectively given by the ideals (t−a1), (t−a2), (t−
b1), (t− b2). Then

p0 + p1 + p2 = p0 + q1 + q2 + div(f) for f =
(t− a1)(t− a2)

(t− b1)(t− b2)
.

This shows that dim |p0 + p1 + p2| ≥ 2 > 1 = d− g for d = deg(p0 + p1 + p2) even
though d > 2g − 2.
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A more satisfactory theory of linear systems on a non-Gorenstein curve can be
constructed by changing the definition of divisor.

4.2. Generalized ω-divisors. We now define generalized ω-divisors and de-
velop their properties in analogy with generalized divisors. The definition is as
follows.

Definition 4.2.1. Let ωK be the sheaf of rational 1-forms. A generalized ω-
divisor Dω on X is a nonzero subsheaf IDω

⊂ ωK that is a coherent OX -module.
We say that a generalized ω-divisor Dω is Cartier if IDω

is a line bundle. A
generalized ω-divisor is effective if IDω

⊂ ω.

(We denote generalized ω-divisors with a subscript ω to avoid confusing them
with generalized divisors.)

When X is Gorenstein, the definition of a generalized ω-divisor is essentially
equivalent to the definition of a generalized divisor. Indeed, for such anX, tensoring
with the dualizing sheaf ω defines a bijection between the set of generalized ω-
divisors and generalized divisors that preserves properties such as effectiveness. No
such bijection exists when X is non-Gorenstein, and the remainder of this section
is devoted to demonstrating to the reader that generalized ω-divisors behave better
than generalized divisors.

Unlike effective generalized divisors, effective generalized ω-divisors do not cor-
respond to closed subschemes of X. However, given a point p ∈ X, the subsheaf
Ip · ω ⊂ ω of 1-forms that vanish at p defines an effective ω-divisor that we denote
by pω. (Later in this section we will define the degree of an ω-divisor, and the
reader is warned that pω may not have degree 1 when p is a singularity.) The
submodule ω ⊂ Kω defines an effective generalized ω-divisor that we denote 0ω.
The ω-divisor div(η) associated to a rational 1-form η ∈ Kω is defined by setting
div(η) := OX · η ⊂ Kω.

We can define basic operations on generalized ω-divisors in analogy with the
operations we defined on generalized divisors, although there are a few complica-
tions.

Definition 4.2.2. We define the sum D + Eω of a generalized divisor D and
a generalized ω-divisor Eω by setting ID+Eω

⊂ Kω equal to the subsheaf generated
by elements of the form fη with f a local section of ID and η a local section of IEω

.
(The sum of two generalized ω-divisors is not well-defined.) The negation n(Dω) of
a generalized ω-divisor is the generalized divisor defined by setting In(Dω) ⊂ K equal
to the subsheaf generated by elements f that have the property that f · IDω

⊂ ω.
Swapping the roles of K and Kω, we get the definition of the negation n(D) of a
generalized divisor.

Lemma 4.2.3. The sum and negation operations have the following properties:

(a) sum is associative (i.e. (D + E) + Fω = D + (E + Fω);
(b) 0 +Dω = Dω;
(c) D + n(D) = 0ω for every Cartier divisor D and n(Dω) + Dω = 0ω for

every Cartier ω-divisor Dω;
(d) n(D + Eω) = n(Eω) + n(D) provided D or Eω is Cartier.

Proof. The proof is analogous to the proof of Lemma 4.1.4. We leave the
details to the interested reader. �
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Definition 4.2.4. Two generalized ω-divisors Dω and Eω are said to be lin-
early equivalent if there exists a rational function f such that Dω = div(f)+Eω.
The set of all effective generalized ω-divisors linearly equivalent to a given general-
ized ω-divisor is written |Dω| and called the associated complete linear system.

Lemma 4.2.5. The following relations between generalized ω-divisors and rank
1, torsion-free sheaves hold:

(a) two generalized ω-divisors Dω and Eω are linearly equivalent if and only
if IDω

∼= IEω
;

(b) every rank 1, torsion-free sheaf is isomorphic to IDω
for some generalized

ω-divisor Dω;
(c) ID+Eω

∼= ID ⊗ IEω
provided either D or Eω is Cartier;

(d) In(D) = Hom(ID, ω) and In(Eω) = Hom(IEω
, ω).

Proof. The proof is entirely analogous to the proof of Lemma 4.1.6. �
Proceeding as we did with generalized divisors, we now define the canonical

and adjoint divisors.

Definition 4.2.6. Write I∗ := Hom(I, ω) for the ω-linear dual of a coherent
OX -module I. The sheaf M(Dω) associated to a generalized ω-divisor is defined
by M(Dω) := I∗Dω

. An adjoint generalized ω-divisor adjDω of a generalized ω-
divisor Dω is a generalized ω-divisor satisfying M(adjDω) = Hom(M(Dω), ω). A
canonical generalized ω-divisor Kω is an adjoint ω-divisor of 0ω (so M(Kω) =
ω).

The lemma below implies that an adjoint ω-divisor of a generalized ω-divisor
exists and is unique up to linear equivalence. In particular, every curve admits a
canonical ω-divisorKω. We do not study the relation betweenKω and the canonical
map here.

Lemma 4.2.7. A rank 1, torsion-free sheaf I is ω-reflexive. That is, the natural
map

I → (I∗)∗

is an isomorphism. More generally, n(n(Dω)) = Dω for every generalized ω-divisor
Dω and n(n(D)) = D for every generalized divisor D.

Proof. This is [Har07, Lem. 1.4]. �
We now develop the theory of the complete linear system associated to a ω-

divisor.

Lemma 4.2.8. Let Dω be a generalized ω-divisor. Then the rule that sends a
nonzero global section of M(Dω) to the image of the corresponding homomorphism
IDω

→ ω defines a bijection

PH0(X,M(Dω)) ∼= |Dω|.

Proof. The proof is analogous to the proof of Lemma 4.1.10. The details are
left to the interested reader. �

Definition 4.2.9. The degree of a generalized ω-divisor Dω is defined by
deg(Dω) := deg(ω)− deg(IDω

).

Lemma 4.2.10. The degree function has the following properties:
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(a) if Dω is an effective generalized ω-divisor, then deg(Dω) equals the length
of the quotient module ω/IDω

;
(b) deg(D + Eω) = deg(D) + deg(Eω) provided D or Eω is Cartier;
(c) deg(n(D)) = − deg(D) and deg(n(Dω)) = − deg(Dω);
(d) if Dω is linearly equivalent to Eω, then deg(Dω) = deg(Eω).

Proof. The proof of this lemma is similar to the proof of Lemma 4.1.12. �

We can use the lemma to conclude that

deg(M(Dω)) = deg(Dω).

For generalized divisors, the analogous equality only holds when X is Gorenstein.
We now state the Riemann–Roch Formula.

Proposition 4.2.11. We have

dim |Dω| − dim | adjDω| = deg(Dω) + 1− g.

Proof. This is a consequence of coherent duality (14).
�

Having established a version of the Riemann–Roch Formula for generalized ω-
divisors, we can now describe dim |Dω| just as we did for divisors on a smooth
curve.

Corollary 4.2.12. The equation

(12) dim |Dω| =
{
−1 if d < g;

d− g if d ≥ g.

holds for every generalized ω-divisor Dω of degree d > 2g − 2
Furthermore, if Dω is a ω-divisor of degree d ≤ 2g − 2, then there exists a

degree 0 Cartier divisor E such that E +Dω satisfies Eq. (12).

Remark 4.2.13. As with Corollary 4.1.16, the second part of the present corol-
lary implies that the general effective ω-divisor satisfies Eq. (12). To be precise, in

Section 5 we will introduce the Quot scheme Quotdω which is a projective k-scheme
that parameterizes effective generalized ω-divisors of degree d, and the present
corollary implies that the locus of ω-divisors satisfying Eq. (12) is dense in QuotdX .

Proof. Replace generalized divisors with ω-divisors in the proof of Corol-
lar 4.1.16. �

4.3. Examples. We now study generalized divisors on a singular curve of
low genus. Our goal is to provide examples similar to those given at the end of
Section 1 in order to illustrate the differences and similarities between divisors on
non-singular curves and divisors on singular curves. We focus on describing divisors
of degree d = g − 1 and d = g.

Example 4.3.1 (Genus 1). A genus 1 curve X is always Gorenstein with trivial
canonical divisor K = 0. The only effective generalized divisor of degree 0 = g − 1
divisor is the empty divisor 0, and a degree 1 = g effective divisor is a point p ∈ X.
No divisor of degree g − 1 or g moves in a positive dimensional linear system.
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Example 4.3.2 (Genus 2). Here we first encounter non-Gorenstein curves.
Let us first dispense with the Gorenstein case, which is analogous to the smooth
case. If X is a Gorenstein curve of genus 2, then X admits a degree 2 morphism
f : X → P1 whose fibers f−1(t) are exactly the effective canonical divisors K
([KM09, Prop. 3.2]). Arguing as in Example 1.0.8, we see that no degree 1 = g−1
divisor moves in a positive dimensional linear system, and the effective degree 2 = g
divisors that satisfy dim |D| ≥ 1 are exactly the effective canonical divisors.

What about the non-Gorenstein curves? We will just consider the curveX from
Example 6.0.15 (which is a representative example). Recall that X is a rational
curve with a unique singularity p0 ∈ X that is unibranched and non-Gorenstein.
We saw in Example 4.1.18 that generalized divisors on X do not behave as they do
on a Gorenstein curve: there exists a degree d = 2g − 1 generalized divisor D with
dim |D| > d − g, and this cannot happen on a Gorenstein curve. Let us examine
generalized divisors of degree 1 = g − 1 and 2 = g.

A degree 1 = g − 1 divisor D = p must satisfy dim |D| = 0. This is [AK80,
Thm. 8.8]. If dim |p| > 0, then p would necessarily be linearly equivalent to a point
q lying in the smooth locus and any non-constant function with at worst a pole at
q would define an isomorphism X ∼= P1, which is impossible.

There are degree 2 = g divisors that move in a positive dimensional linear
system. If p, q ∈ X are points distinct from the singularity p0, then a modification
of the construction from Example 4.1.18 shows that p0 + p is linearly equivalent
to p0 + q, so dim |p0 + p| ≥ 1. In fact, dim |p0 + p| = 1. We can prove this as
follows. Take p1 to be the point in X2 defined by the ideal (s). Then Ip0+p1

is the
ideal generated by (t3, t4, t5) on X1 and by (s) on X2. A computation shows that
L(p0 + p1) is the subsheaf of K generated by (1, t, t2) on X1 and by (s−1) on X2,
and this rank 1, torsion-free sheaf is isomorphic to the direct image ν∗O(1) of the
line bundle O(1) under the normalization map ν : P1 = Xν → X. In particular,
h0(X,L(p0 + p1)) = 2, so dim |p0 + p1| = 1.

What are all the elements of |p0 + p1|? In addition to the divisors p0 + p, the
linear system |p0 + p1| contains a non-reduced divisor: the non-reduced divisor D0

whose ideal ID0
is

ID0
=

{
(t4, t5, t6) on X1;

(1) on X2.

Indeed, D0 lies in |p0+p1| as D0 = p0+p1+div(t−1). The generalized divisors that
we have constructed are all the effective degree 2 divisors that move in a positive
dimensional linear system. Let us prove this statement.

There are no degree 2 Cartier divisors that move in a positive dimensional
linear system because the existence of such a divisor would imply the existence of
a non-constant degree 2 morphism X → P1, forcing X to be Gorenstein ([KM09,
Prop. 2.6]). To handle non-Cartier divisors, we need to do more work.

We claim that if E is an effective generalized divisor of degree 2 that does not
lie in |p0 + p1| and is not Cartier, then L(E) is the subsheaf of K generated by
1, t, t2 on X1 and by 1 on X2. This subsheaf is isomorphic to the direct image ν∗O
of the structure sheaf of the normalization, so any such E satisfies h0(L(E)) = 1
or equivalently dim |E| = 0. Thus the claim implies that the elements of |p0 + p1|
are exactly the degree 2 divisors that move in a positive dimensional linear system
as we wished to show.
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We prove the claim by direct computation. If E does not lie in |p0 + p1| and is
not Cartier, then E must be supported at the singularity p0, so we can pass from
X to the open affine X1. By considering the dimension of OE = OX1

/IE , we see
that the ideal IE of E must contain the square of the maximal ideal (t3, t4, t5) and
a 2-dimensional subspace W of k · t3 + k · t4 + k · t5. Certainly the elements 1, t, t2

are all contained in L(E), so L(E) contains Oν
X1

= k[t]. To complete the proof of
the claim, we need to show that L(E) is no larger.

Thus suppose f ∈ L(E). Write f as a Laurent series in t. Because D0 �= E, the
vector space W must contain an element of the form t3+at4+bt5. If multiplication
by f ∈ k(X) maps t3 + at4 + bt5 into OX1

, then the Laurent series of f must be
of the form c−3t

−3 + c0 + c1t
1 + . . . . However, W must also contain an element

of the form ct4 + dt5 with c and d not both zero. By examining the coefficients of
(ct4 + dt5)f , we see that c−3 = 0. This proves the claim, completing our discussion
of generalized divisors on X.

Generalized ω-divisors on X are easier to analyze because we can use the
Riemann–Roch Formula. Effective canonical ω-divisors Kω are ω-divisors of de-
gree 2 = g that move in a positive dimensional linear system. Indeed, Kω has
degree 2 and satisfies

dim |Kω| =dimH0(X,M(Kω))− 1

=dimH0(X,ω)− 1

=1.

The canonical ω-divisors are the only ω-divisors of degree g that move in a positive
dimensional linear system. If deg(Dω) = g and dim |Dω| > 0, then by the Riemann–
Roch Formula, adjDω is a ω-divisor of degree 0 that satisfies | adjDω| �= ∅. This
is only possible if adjDω = 0 (as degree considerations show that any nonzero
global section of IadjDω

defines an isomorphism with OX). We can conclude that
Dω = Kω.

What about the generalized ω-divisors of degree 1 = g − 1? A point p ∈ X
distinct from p0 defines an effective ω-divisor pω of degree 1. There are additional
effective ω-divisors of degree 1 that correspond to quotients supported at the singu-
larity p0. In Example 6.0.15 of the Appendix we compute a presentation of ω, and
from that presentation, we see that the stalk ω/Ip0

·ω of ω at p0 is a 2-dimensional
k-vector space. There is thus a 1-dimensional family of quotients of ω supported
at p0, corresponding to the surjections ω/Ip · ω → k.

None of these ω-divisors moves in a positive dimensional linear system. Indeed,
fix a point q ∈ X distinct from the singularity p0. If Dω is a ω-divisor of degree
1 = g−1 with dim |Dω| > 0, then −q+Dω is a degree 0 ω-divisor that is effective, so
−q+Dω is linearly equivalent to 0ω. We can conclude that Dω is linearly equivalent
to qω. In particular, Dω must be Cartier. As in the case of generalized divisors,
if we fix two linearly independent global sections of M(Dω), then these sections
define an isomorphism X ∼= P1, which is impossible. This completes our study of
genus 2 curves.

Example 4.3.3 (Genus 3). The classification of non-Gorenstein curves of genus
g becomes complicated once g ≥ 3, so we now focus on the Gorenstein case. As
in the smooth case, if X is a Gorenstein curve of genus 3, then the canonical map
X → P2 is either an embedding of X as a plane curve of degree 4 or a degree
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2 map onto a plane quadric curve, in which case X is hyperelliptic (by [KM09,
Thm. 4.13]). We begin by analyzing the hyperelliptic case.

IfX is hyperelliptic with degree 2 map to the line f : X → P1, then the effective
canonical divisors are the divisors of the form K = f−1(t1)+f−1(t2) for t1, t2 ∈ P1.
Arguing as in Example 1.0.9, we see that the degree 2 = g−1 effective divisors that
are contained in a positive dimensional linear system are the divisors f−1(t) with
t ∈ P1, and the degree 3 = g effective divisors with this property are the divisors
p+ f−1(t) for p ∈ X. In particular, every degree g − 1 effective generalized divisor
that moves in a positive dimensional linear system is Cartier, but this is not true
for degree g divisors. If p0 ∈ X is a singularity, then p0 + f−1(t) for t ∈ P1 is not
Cartier but dim |p0 + f−1(t)| = 1.

What about when X is non-hyperelliptic? The curve is then a degree 4 plane
curve X ⊂ P2, and the effective canonical divisors are restrictions of lines K =
� ∩X. As in the hyperelliptic case, the analysis we gave for non-singular curves at
the end of Section 1 extends to the present case. No effective generalized divisor
of degree g − 1 moves in a positive dimensional linear system, but an effective
generalized divisor of degree g moves in a positive dimensional linear system when
it is contained in a line, so e.g. three points p0, p1, p2 of X that lie on a line satisfy
dim |p0 + p1 + p2| = 1. In particular, if p0 is a node of X, then p0 + p1 + p2 is an
effective generalized divisor of degree g that is not Cartier but moves in a positive
dimensional linear system.

Example 4.3.4 (Genus 4). Here we only study a few specific examples of genus
4 curves. On a curve of genus g < 4, every effective generalized divisor D of degree
g − 1 that moves in a positive dimensional linear system is Cartier. This remains
true on the general curve of genus g = 4, but not on certain special genus 4 curves.
We focus on describing divisors on these special curves.

A singular hyperelliptic curve of genus 4 is an example of a special curve. If
f : X → P1 is the degree 2 map to P1, then the effective canonical divisors are
the divisors of the form K = f−1(t1) + f−1(t2) + f−1(t3). We can conclude that
the degree g − 1 divisors that move in a positive dimensional linear system are the
divisors of the form p0 + f−1(t) for p0 ∈ X and t ∈ P1. In particular, the divisor
p0 + f−1(t) is not Cartier when p0 ∈ X is a singularity.

What about the non-hyperelliptic case? If X is a non-hyperelliptic Gorenstein
curve of genus 4, then the canonical map realizes X as a degree 6 space curve
X ⊂ P3. Just as in the smooth case, X is the complete intersection of a (non-
unique) cubic hypersurface and a (unique) quadric hypersurface Q. If the two
hypersurfaces are general, then X is smooth, but X can have singularities when
the hypersurfaces are special. Consider the case where Q is the cone over a plane
quadric curve Y with vertex p0 ∈ P3 and the cubic hypersurface contains p0 but is
otherwise general. The curve X then has a unique node that is the vertex p0 of Q.

The effective canonical divisors of X are the divisors of the form K = h ∩ X
for h ⊂ P3 a hyperplane. Our analysis in Example 1.0.10 shows that an effective
degree 3 = g−1 generalized divisor D moves in a positive dimensional linear system
precisely when D is contained in a line � ⊂ Q that lies on the quadric surface. Every
such line meets X in 3 points, one of which is the vertex p0. The lines on Q are
exactly the lines joining a point of the plane curve Y to the vertex p0. If the
(set-theoretic) intersection of a line and X consists of the points p0, p1, p2, then
p0 + p1 + p2 is a degree g − 1 effective generalized divisor that moves in a positive
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dimensional linear system, and the general divisor with this property is of the form
p0+p1+p2 for a suitable line. Because p0 ∈ X is a node, p0+p1+p2 is not Cartier.
Thus every degree g − 1 generalized divisor that moves in a positive dimensional
linear system fails to be Cartier.

5. The Abel map

At the end of Section 3, we posed the problem of defining an Abel map as-
sociated to a singular curve. There are two motivations. First, a theory of the
Abel map provides us with a tool for constructing and describing the compactified
Jacobian J̄d

X . Second, a theory of the Abel map allows us to define and study the

theta divisor Θ ⊂ J̄g−1
X associated to a singular curve.

Example 3.0.18 demonstrated that the most naive approach to constructing an
Abel map fails: If X(d) is the d-th symmetric power of a curve, then the rule that
assign to d general points p1, . . . , pd the line bundle OX(p1 + · · · + pd) defines a
rational map

A : X(d) ��� J̄d
X ,

but this map may not be regular. In the example, the 2nd Abel map A : X(2) ��� J̄2
X

is undefined at a unique point.
Lemma 1.0.4 suggests an alternative approach to constructing the Abel map.

For a smooth curve X, the symmetric power X(d) can be interpreted as the moduli
space of effective Cartier divisors of degree d, and the Abel map A : X(d) → Jd

X

can be interpreted as the map that sends a divisor D to its associated line bundle
L(D). When X is singular, the symmetric power no longer has such a moduli
theoretic interpretation. Here we resolve the indeterminacy of A : X(d) ��� J̄d

X by

constructing an Abel map out of a moduli space that maps to X(d).
Our discussion from Section 4 suggests two possibilities for the moduli space:

the moduli space of effective generalized divisors and the moduli space of effective
generalized ω-divisors. We will see that there are two different Abel maps cor-
responding to the two different types of divisors. The two maps are essentially
equivalent when X is Gorenstein but have different properties in general. We begin
by defining the relevant moduli spaces.

Effective generalized divisors are parameterized by the Hilbert scheme HilbdX
which is defined to be the k-scheme that represents the Hilbert functor Hilbd,�X

defined in Definition 1.0.3. (There X was assumed to be smooth, but the definition
remains valid when X is singular.) Generalized ω-divisors are parameterized by a
Quot scheme that we now define.

Definition 5.0.5. The Quot functor Quotd,�ω of degree d is defined by setting

Quotd,�ω (T ) equal to the set of isomorphism classes of T -flat quotients q : ωT � Q of
the dualizing sheaf with the property that the restriction Q to any fiber of XT → T
has length d. The Quot scheme Quotdω of degree d is the k-scheme that represents

Quotd,�ω .

A quotient map q : ω → Q is equivalent to the inclusion ker(q) ↪→ ω which

defines a generalized ω-divisor, so Quotdω is the moduli space of effective generalized
ω-divisors of degree d. For the remainder of the section, we will write Dω rather
than [q] for an element of Quotdω to emphasize the connection with generalized
ω-divisors.
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The moduli spaces HilbdX and Quotdω both exist as projective k-schemes by a
theorem of Grothendieck ([AK80, Thm. 2.6]). The construction realizes both of
these moduli spaces as suitable subschemes of a Grassmannian variety.

The Hilbert scheme and the Quot scheme are related to the symmetric power by
the Hilbert–Chow morphism. Suppose that D ⊂ X is a degree d closed subscheme.
Given p ∈ X, write �p(D) for the length of OD,p. With this definition, we can
associate to D the point in the symmetric power

(13) [
∑

�p(D) · p] ∈ X(d).

We would like to assert that there is a morphism

ρ : HilbdX → X(d)

with the property that ρ is defined by Eq. (13) as a set-map. We also like to assert

the existence of an analogous morphism ρ : Quotdω → X(d) out of the Quot scheme.
These assertions are surprisingly difficult to prove. The difficulty is that our

construction ofX(d) does not provide direct access to the scheme’s functor of points.
One approach to constructing ρ is to describe the functor of points of X(d) in a way
that makes it possible to interpret Eq. (13) as the definition of a transformation of
functors. A detailed discussion of this approach can be found in the thesis of David
Rydh ([Ryd08a] and esp. [Ryd08b, Sect. 6]).

Rydh attributes this construction of ρ, which he calls the Grothendieck–Deligne
norm map, to Grothendieck and Deligne ([SGA73, Exposé XVII, 6.3.4]). In this
approach, one first identifies X(d) with the space of divided powers. The space
of divided powers has a moduli-theoretic interpretation in terms of multiplicative
polynomial laws, and ρ is then constructed as the morphism that sends a closed
subscheme to the multiplicative law given by a determinant construction. A similar
construction produces a morphism ρ : Quotdω → X(d) out of the Quot scheme.
There are other approaches to constructing ρ, using e.g. projective geometry, and
we direct the interested reader to [Ryd08b, Sect. 6] for a review of the relevant
literature.

We will try to resolve the indeterminacy of the Abel map A : X(d) ��� Jd
X by

constructing morphisms HilbdX → J̄d
X and Quotdω → J̄d

X that factor as HilbdX
ρ−→

X(d) A��� J̄d
X and QuotdX

ρ−→ X(d) A��� J̄d
X . We will always be able to construct a

suitable morphism out of Quotdω, but we will only be able to construct a morphism

out of HilbdX when X is Gorenstein.
Before constructing the morphisms, we warn the reader that ρ is not always a

resolution of indeterminacy in the usual sense because ρ is not always birational.
The Hilbert–Chow morphism is an isomorphism over the locus parameterizing d
distinct points ([Ive70, Thm. II.3.4]). When the singularities of X are planar, the

locus of distinct points in HilbdX is dense, so ρ is a birational map. The Hilbert–
Chow morphism is not birational when X has a singularity of embedding dimension
3 or more. Indeed, when X has such a singularity, HilbdX is reducible, and the locus
of d distinct points is contained in a single component. The other components are
collapsed by ρ, so ρ is not birational. The issue with Quotdω is similar.

In any case, we now define Abel maps associated to singular curves.

Definition 5.0.6. The Abel map

Ah : HilbdX → J̄−d
X
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out of the Hilbert scheme is defined by the rule

[D] �→ [ID],

where ID is the ideal of the closed subscheme D ⊂ XT . The Abel map

Aq : Quotdω → J̄2g−2−d
X

out of the Quot scheme is defined by the rule

[Dω] �→ [IDω
],

where IDω
is the kernel of the quotient map corresponding to Dω.

These are the Abel maps that are constructed in [AK80], and they enjoy many
of the properties that we would like the Abel map to have. For example, if D is an
effective generalized divisor, then the fiber A−1([ID]) containing [D] is equal to the
complete linear system |D|, and the same remains true if we let D be a generalized

ω-divisor and replace HilbdX with Quotdω.
From this description of A, we can conclude from Corollary 4.1.16 that if d ≥

2g− 1 and X is Gorenstein, then the fibers of A : HilbdX → J̄−d
X are all Pd−g’s, and

in fact, this Abel map is smooth of relative dimension d − g ([AK80, Thm. 8.6]).
Example 4.1.18 shows that this is not true when X is non-Gorenstein, but if we
replace HilbdX with QuotdX , then we recover the property that A : QuotdX → J̄−d

X is
smooth with Pd−g fibers ([AK80, Thm. 8.4]), as is suggested by Corollary 4.2.12.

With this property of the Abel map, we can now construct the compactified
Jacobian of a singular curve from the Quot scheme in the same manner that we
constructed the Jacobian of a smooth curve from the symmetric power. If we fix
d ≥ 2g − 1, then linear equivalence partitions Quotdω into equivalence classes that
are all isomorphic to Pd−g. In fact, linear equivalence is a smooth and projec-
tive equivalence relation on Quotdω. We can conclude that the quotient exists as
a scheme, and this quotient is the compactified Jacobian J̄d

X . This argument is
roughly the construction of J̄d

X given in [AK80, Thm. 8.5].
The Abel map in Definition 5.0.6 however suffers from one deficiency: it does

not quite resolve the indeterminacy ofA : X(d) ��� J̄d
X . The Abel map Ah : HilbdX →

J̄−d
X sends a closed subscheme D consisting of d general points to the ideal sheaf

ID, but the composition HilbdX
ρ−→ X(d) A��� J̄d

X sends D to L(D).
This is not just an issue of convention. In Example 4.1.14, we saw an example

of a generalized divisor D of degree d with the property that the degree of L(D)
is d + 1. Since the degree of a rank 1, torsion-free sheaf is locally constant in flat
families, we can conclude that the rule D �→ L(D) does not define a morphism

HilbdX → J̄d
X when X is the curve from the example.

That curve is non-Gorenstein, and there are no problems provided we restrict
our attention to Gorenstein curves. Given [D] ∈ HilbdX(T ) (for some T ), form the
sheaf

L(D) := Hom(ID,OXT
),

If X is Gorenstein, then for any rank 1, torsion-free sheaf I, Ext1(I,OX) vanishes
by [HK71, 6.1]. In particular, this group vanishes when I is the restriction of ID to
a fiber of XT → T , so we can conclude by [AK80, Thm. 1.10] that L(D) is T -flat
and its formation commutes with base-change. (This is essentially [EGK00, 2.2].)
We can thus make the following definition.
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Definition 5.0.7. Assume X is Gorenstein. Given a k-scheme T and [D] ∈
HilbdX(T ), set L(D) := Hom(ID,OXT

) where ID is the ideal of D. The modified

Abel map A∨
h : HilbdX → J̄d

X is defined by the rule D �→ L(D).

The modified Abel map is well-defined by the preceding discussion. Fur-
thermore, unlike Ah, the modified Abel map A∨

h resolves the indeterminacy of

A : X(d) ��� J̄d
X in the sense described earlier.

When X is non-Gorenstein, our discussion of generalized divisors from the
previous section suggests that we should try to define a modified Abel map out of
Quotdω rather than HilbdX . We can always do this. By [EGK00, 2.2] the sheaf

M(Dω) := Hom(IDω
, ωT )

associated to Dω ∈ Quotdω(T ) is always T -flat and its formation commutes with
base-change. We can therefore make the following definition.

Definition 5.0.8. Given a k-scheme T and Dω ∈ Quotdω(T ), set M(Dω) :=

Hom(IDω
, ωT ). The modified Abel map A∗

q : Quotdω → J̄d
X out of the Quot

scheme is defined by the rule
Dω �→ M(Dω)

As with the modified Abel map out of the Hilbert scheme, this modification of
the Abel map resolves the indeterminacy of A : X(d) ��� J̄d

X .
Having constructed Abel maps, we can now use these maps to define and study

the theta divisor. Imitating the construction for smooth curves, we make the fol-
lowing definition.

Definition 5.0.9. The theta divisor Θ ⊂ J̄g−1
X of a curve X is defined to be

the image of A∗
q : Quotg−1

ω → J̄g−1
X with the reduced scheme structure.

We are abusing language in calling Θ a divisor because it is not known in
general whether Θ is always a divisor. The subscheme Θ is known to be a Cartier
divisor when the singularities of X are planar. For such an X, Soucaris [Sou94] and
Esteves [Est97] have proven that Θ is not only a Cartier divisor, but in fact Θ is
an ample Cartier divisor. They prove this statement by constructing and studying
Θ using the formalism of the determinant of cohomology.

Soucaris uses the same formalism to construct a subscheme in J̄g−1
X when X is

a curve with arbitrary singularities, but then it is not known whether his subscheme
coincides with Θ, and it is not known whether his subscheme is a Cartier divisor.
By construction, Soucaris’ subscheme is locally defined by a single equation, and
Soucaris proves that the subscheme does not contain an irreducible component of
J̄g−1
X [Sou94, Thm. 8]. (His argument is essentially our Corollary 4.2.12.) This

does not quite show that Soucaris’ subscheme is a Cartier divisor. To show that,
it is necessary to also prove that the subscheme does not contain any embedded
component of J̄g−1

X , a result that is unknown. More generally, it is not known

whether J̄g−1
X can have embedded components or even whether J̄g−1

X can be non-
reduced.

It is also not known whether Soucaris’ subscheme equals Θ when X has non-
planar singularities. The two subschemes are supported on the same subset of J̄g−1

X ,
so to show equality, it is enough to prove that Soucaris’ subscheme is reduced.

There is a third subscheme of J̄g−1
X that we can define: the image of the Abel

map Ah : Hilbg−1
X → J̄

−(g−1)
X . This subscheme can be identified with Θ when X
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is Gorenstein, but we will see in Example 5.0.11 that the two subschemes can be
different in general.

We conclude by describing the Abel map in some low genus examples. With
the theory of the Abel map that we have developed, this will be a straightforward
application of the results from the end of Section 4. As in Section 1, we let C1

d ⊂
HilbdX denote the subset of effective generalized divisors D with dim |D| ≥ 1 and

similarly with C1
d ⊂ Quotdω.

Example 5.0.10 (Genus 1). If X is a genus 1 curve, then the singularities of
X are planar and hence Gorenstein. In Example 4.3.1, we showed that C1

g = ∅,
so the Abel map A∨

h : Hilb1X = X → J̄1
X is an isomorphism. When X is a nodal

curve, this recovers the moduli-theoretic interpretation of the compactification of
the generalized Jacobian from the beginning of Section 3. The theta divisor Θ =
{[OX ]} ⊂ J̄0

X consists of a single point that lies in the smooth locus.

Example 5.0.11 (Genus 2). In describing the structure of the Abel map, we
need to distinguish between Gorenstein curves and non-Gorenstein curves. When
X is a Gorenstein curve, we showed in Example 4.3.2 that C1

g is the rational curve

P1 = C1
g ⊂ HilbgX that consists of effective canonical divisors K. The Abel map A∨

h

contracts this curve to the point {[ω]} ⊂ Jg
X of the generalized Jacobian. The locus

C1
g−1 is empty, so the theta divisor Θ ⊂ J̄g−1

X is an embedded copy of Hilbg−1
X ,

which is just X itself. Thus the structure of the Abel map is the same as for a
smooth genus 2 curve except the geometry of both the source and the target are
more complicated.

What happens when X is non-Gorenstein? We will only consider the non-
Gorenstein curve X with a unique unibranched singularity p0 ∈ X from Exam-
ple 6.0.15. For this curve, we can consider both the Abel map Ah out of the Hilbert
scheme and the Abel map A∗

q out of the Quot scheme. We begin by describing Ah.

The locus C1
g ⊂ HilbgX is the rational curve that parameterizes elements of |p+ p0|

(where p �= p0). This curve is contracted by the Abel map Ah : HilbgX → J̄−g
X , and

away from this curve, Ah is an isomorphism. The locus C1
g−1 ⊂ Hilb1X is empty, so

X = Hilb1X → J̄
−(g−1)
X is an embedding.

Let us now turn our attention to the Abel map A∗
q out of the Quot scheme. This

Abel map contracts the rational curve P1 = Cg
1 ⊂ Quotgω parameterizing effective

canonical ω-divisors to the point [ω] ∈ J̄2
X and is an isomorphism away from C1

g .

The locus C1
g−1 ⊂ Quotg−1

ω is empty, so A∗
q : Quotg−1

X → J̄1
X is an embedding. How

does A∗
q compare with Ah?

In degree g, both Abel maps contract a rational curve P1, but the contractions
are different. The image of P1 under Ah is [Ip+p0

] ∈ J̄−g
X which is a singularity,

but the image of P1 under A∗
q is the smooth point [ω] of J̄g

X .
To see that [Ip+p0

] is a singularity, we estimate the tangent space dimension.

The tangent space T[p+p0](Hilb2X) is the sum of the tangent spaces Tp(X) and

Tp0
(X), so dimT[p+p0](Hilb2X) = 4. We can conclude that dimT[Ip+p0

](J̄
−g
X ) ≥ 3

because the kernel of

T(Ah) : T[p+p0](Hilb2X) → T[Ip+p0
](J̄

−g
X )

is the 1-dimensional space

Hom(Ip+p0
,OX)/Hom(Ip+p0

, Ip+p0
) = H0(X,L(p+ p0))/H

0(X,OX).
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Now the point [Ip+p0
] lies in the closure of the line bundle locus, so either [Ip+p0

]
lies on the intersection of two irreducible components or the local dimension of
J̄−g
X at [Ip+p0

] is 2 < 3 ≤ dimT[Ip+p0
](J̄

−g
X ). In either case, we can conclude that

[Ip+p0
] ∈ J̄−g

X is a singularity.
Tangent space techniques can also be used to prove that [ω] ∈ J̄g

X is a smooth
point, and the reader is directed to the proof of [Kas12, Thm. 2.7] for the compu-

tation. In [Kas12], the author also enumerates the irreducible components of J̄−g
X .

There are two.
The Abel maps in degree g − 1 are also different. Both Ah and A∗

q are embed-

dings of curves but of different curves. The morphism Ah embeds Hilbg−1
X which

is isomorphic to the irreducible curve X. The morphism A∗
q , on the other hand,

embeds Quotg−1
X , and this scheme is not isomorphic to X. As g − 1 = 1, the Quot

scheme Quotg−1
ω is isomorphic to Pω, the projectivization of ω. From the presenta-

tion of ω in Example 6.0.15 of Section 6, we see that Quotg−1
ω = Pω is a curve with

two irreducible components, one whose general element corresponds to a quotient
supported at the singularity p0 and one whose general element corresponds to a
quotient supported on the smooth locus Xsm. The image A∗

q(Quotg−1
ω ) is the theta

divisor Θ, so this example shows that Θ and Ah(Hilbg−1
X ) may not be isomorphic

as schemes.

Example 5.0.12 (Genus 3). We only consider Gorenstein curves, and we con-
sider the hyperelliptic curves and the non-hyperelliptic curves separately. If X is
a singular hyperelliptic curve of genus 3, then our description of complete linear
systems on X in Example 4.3.3 shows that C1

g is isomorphic to X × P1, and the

Abel map A∨
h : C

1
g → J̄g

X collapses the P1 factor. In particular, the image A∨
h (C

1
g )

is a copy of X.
The locus C1

g−1 ⊂ Hilbg−1
X is the rational curve that parameterizes effective

canonical divisors. As in the smooth case, this curve is blown down to a point
{[ω]} ⊂ Θ that is a singularity by [CMK12, Prop. 6.1]. The point [ω] is the only
point on the theta divisor with positive dimensional preimage under A∨

h , but it is
not the only singularity. The theta divisor is also singular at points corresponding
to sheaves that fail to be locally free. This is another consequence of [CMK12,
Prop. 6.1].

What if X is non-hyperelliptic? The canonical map then embeds X as a degree
4 plane curve, and we showed in Example 4.3.3 that the elements of C1

g are effective
generalized divisors of degree 3 that are contained in a line. Arguing as in the
smooth case (Example 1.0.9), we can construct a map C1

g → X with P1-fibers that

are collapsed by A∨
h : HilbgX → J̄g

X . We can conclude that A∨
h (C

1
g ) is a copy of X.

The locus C1
g−1 is empty, so Θ is an embedded copy of Hilb2X .

Example 5.0.13 (Genus 4). Here we just describe the degree g − 1 Abel map
associated to the special singular curves that we studied in Example 4.3.4. Consider
first the special non-hyperelliptic curve X that lies on a singular quadric Q ⊂ P3.
From our description in Example 4.3.4, we see that C1

g−1 ⊂ Hilbg−1
X is the rational

curve that parameterizes effective degree g − 1 generalized divisors that lie on a
ruling of the quadric surface Q ⊂ P3. This curve is contracted to a point by A∨

h .
Recall that every element of C1

g−1 is a divisor that is not Cartier. This is a new
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phenomenon: this is the first example of a point on the theta divisor that is not a
line bundle and has positive dimensional preimage under A∨

h .
The theta divisor of a singular hyperelliptic curve of genus 4 contains similar

points. For such a curve, the work we did in Example 4.3.4 shows that C1
g−1 is

isomorphic to X ×P1, and the Abel map A∨
h collapses the second P1 factor. The

image of A∨
h is thus a copy of X ⊂ Θ, and the singularities of X correspond to

points on the theta divisor that are not line bundles and have positive dimensional
preimage.

In [CMK12], the author and Casalaina-Martin computed the multiplicity of
the theta divisor of a nodal curve at a point. In general, if X is a nodal curve and
[I] ∈ Θ, then the main theorem of that paper asserts

multI Θ = 2n · h0(X, I),

where n is number of nodes at which I fails to be locally free. When X is the special
genus 4 non-hyperelliptic curve and [I] ∈ Θ is the image of C1

g−1, the theorem states
that [I] ∈ Θ is a multiplicity 4 point.

6. Appendix: The dualizing sheaf and coherent duality

The dualizing sheaf ω of a curve plays an important role in the study of com-
pactified Jacobians and generalized divisors. Here we recall the definition and the
basic properties of ω. Two references for this material are [AK70] and [Har77,
Chap. III, Sect. 7].

The dualizing sheaf ω of a curve X is defined as follows. Given a point p ∈ Xν

of the normalization of X, fix a uniformizer t of Xν at p. We define the residue
Resp(η) of a rational 1-form η at p as follows. In the local ring OXν ,p, we can write
η as

η = (b(t) + a−1t
−1 + a−2t

−2 + . . . )dt

for b(t) ∈ OXν ,p and an ∈ k. We define

Resp(η) := a−1.

The functional Resp is independent of the choice of t (though the proof is non-trivial
when char(k) > 0). The dualizing sheaf can be defined in terms of residues.

Definition 6.0.14. The dualizing sheaf ω of the curve X is defined to be
the sheaf whose sections η ∈ H0(U, ω) over an open subset U ⊂ X are rational
1-forms η with the property that∑

ν(p)=q

Resp(fη) = 0

for all regular functions f ∈ H0(U,OX) and all points q ∈ U .

The dualizing module admits a distinguished functional t : H1(X,ω) → k
(whose definition we omit) that induces an isomorphism

Extn(F, ω) ∼= H1−n(X,F )∨

for every coherent sheaf F and every integer n. This statement is the Coherent
Duality Theorem (see [AK70, Chap. IV, Sect. 5] or [Har77, Thm. 7.6]). By
general formalism, the pair (ω, t) is unique up to a unique isomorphism.

We can say even more when F is a rank 1, torsion-free sheaf. If F = I is a
rank 1, torsion-free sheaf, then the natural map Hn(X,Hom(I, ω)) → Extn(I, ω) is
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an isomorphism for all n because the higher cohomology sheaves Extn(I, ω), n > 0,
vanish [HK71, 6.1]. In particular, if I = M(Dω) is the rank 1, torsion-free sheaf
associated to a generalized ω-divisor, then coherent duality takes the form

(14) Hn(X,M(adjDω)) ∼= H1−n(X,M(Dω))
∨

Similarly, if X is Gorenstein (so the adjoint of a generalized divisor exists), then
for every generalized divisor D, we have

(15) Hn(X,L(adjD)) ∼= H1−n(X,L(D))∨.

We conclude this section by computing the dualizing sheaf of a specific non-
Gorenstein curve.

Example 6.0.15. Define X to be the curve constructed by gluing the affine
curves

X1 := Spec(k[t3, t4, t5]),

X2 := Spec(k[s])

by the isomorphism t = s−1. This is a rational curve of genus 2 with a unique
singularity that is non-Gorenstein and unibranched.

Using Definition 6.0.14, we see that the dualizing sheaf ω is the subsheaf of the
sheaf ωK of rational 1-forms generated by

dt/t3, dt/t2 on X1;(16)

ds on X2.
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[FG05] Barbara Fantechi and Lothar Göttsche, Local properties and Hilbert schemes of points,
Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc.,
Providence, RI, 2005, pp. 139–178. MR2223408

[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate
Texts in Mathematics, No. 52. MR0463157 (57:3116)

[Har86] , Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math.
Kyoto Univ. 26 (1986), no. 3, 375–386. MR857224 (87k:14036)

[Har94] , Generalized divisors on Gorenstein schemes, Proceedings of Conference on
Algebraic Geometry and Ring Theory in honor of Michael Artin, Part III (Antwerp,
1992), vol. 8, 1994, pp. 287–339. MR1291023 (95k:14008)

[Har07] , Generalized divisors and biliaison, Illinois J. Math. 51 (2007), no. 1, 83–98
(electronic). MR2346188 (2008j:14010)

[HK71] Jürgen Herzog and Ernst Kunz (eds.), Der kanonische Modul eines Cohen-Macaulay-
Rings, Lecture Notes in Mathematics, Vol. 238, Springer-Verlag, Berlin, 1971, Seminar
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On the Göttsche Threshold

Steven L. Kleiman, Vivek V. Shende, and
with an appendix by Ilya Tyomkin

Abstract. For a line bundle L on a smooth surface S, it is now known that
the degree of the Severi variety of cogenus-δ curves is given by a universal
polynomial in the Chern classes of L and S if L is δ-very ample. For S
rational, we relax the latter condition substantially: it suffices that three key
loci be of codimension more than δ. As corollaries, we prove that the condition

conjectured by Göttsche suffices if S is P2 or S is any Hirzebruch surface, and
that a similar condition suffices if S is any classical del Pezzo surface.

1. Introduction

Fix δ ≥ 0. Fix a smooth irreducible projective complex surface S, and a line
bundle L. Let |L| be the complete linear system, and |L|δ ⊂ |L| the Severi variety,
the locus of reduced curves C of cogenus δ; so δ is the genus drop, δ := paC − pgC,

or δ = χ(O
˜C) − χ(OC) where C̃ is the normalization. Let |L|δ+ ⊂ |L|δ be the

sublocus of δ-nodal curves. Often enough when S is rational, |L|δ+ is open and

dense in |L|δ, so that deg |L|δ+ = deg |L|δ; see Proposition 1.2 below.

The degree deg |L|δ+ can be found recursively if S is the plane [28, Theorem
3C.1], [7, Theorem 1.1], if S is any Hirzebruch (rational ruled) surface [35, §8], or if
S is any classical del Pezzo surface (that is, its anticanonical bundle is very ample)
[35, §9]. If δ and S are arbitrary, but L is sufficiently ample, then by [23, 24], by
[34], or by [21], there’s a universal polynomial Gδ(S,L) in the Chern classes of S
and L with

(+) deg |L|δ+ = Gδ(S,L).

Further, set r := dim |L|. In those cases, deg |L|δ+ is the number of δ-nodal
curves through r − δ general points, and each curve is counted with multiplicity 1
by [19, Lemma (4.7)]. See [20] for a brief survey of related work and open problems.

Given δ and S, for precisely which L does (+) hold? It is known [21, Theorem
4.1] that (+) holds if L is δ-very ample, that is if, for any subscheme Z ⊂ S of
length δ+1, the restriction map H0(L) → H0(L|Z) is surjective. In particular, (+)
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2 S. KLEIMAN, V. SHENDE, AND WITH AN APPENDIX BY I. TYOMKIN

holds for S = P2 and L = O(d) if d ≥ δ. Previously, this bound had been confirmed
by F. Block [6, Theorem 1.3], who also coined the term Göttsche threshold for the
value of d at which (+) begins to hold. However, as conjectured by Göttsche [13,
Conjecture 4.1, Remark 4.4] and proved by Block [6, Theorem 1.4] for δ = 3, . . . , 14,
in fact the threshold appears to be �δ/2�+ 1 if δ ≥ 3; whereas, it is 1 if δ = 0, 1, 2.
Göttsche [13, Remark 4.3, 4.4] also conjectured a value for the threshold if S is any
Hirzebruch surface.

Here we prove Göttsche’s conjectured value is at least an upper bound on the
threshold if S is P2 or if S is any Hirzebruch surface, and we prove a similar bound
if S is any classical del Pezzo surface; see Corollaries 1.3, 1.4, 1.6 and Remark 1.5
stated just below. Although we cannot say exactly when the bound is tight, in
Remark 1.5 we show it isn’t if S is the first Hirzebruch surface, the blowup of P2 at
a point. We derive those results directly from our main results, Theorem 1.1 and
Proposition 1.2, stated next.

Note that the term immersed is used here in the sense of differential geometry;
specifically, we call an embedded curve D ⊂ S immersed if D is reduced and the

tangent map T
˜D → TS is injective, where D̃ is the normalization.

Theorem 1.1. Assume S is rational with canonical class K. Let V be a closed
subset of |L| that contains every D ∈ |L| such that either

(1) D is nonreduced, or
(2) D has a component D1 with −K ·D1 ≤ 0, or
(3) D has a nonimmersed component D1 with −K ·D1 = 1.

Then the closure of |L|δ − V has codimension δ at all its points (if any), and its
sublocus of immersed curves is open and dense, and is smooth off V . Further, if
codimV > δ, then |L|δ has codimension δ at all its points, and deg |L|δ = Gδ(S,L).

Proposition 1.2. Under the conditions of Theorem 1.1, assume D ∈ V also
if either

(4) D has a component D1 with a point of multiplicity at least 3 and with
−K ·D1 ≤ 3, or

(5) D has two components D1, D2 with a common point that is double on D1

and with −K ·D1 = 1 or −K ·D2 = 1, or
(6) D has two components D1, D2 with a common point that is double on D1

and on D2 and with −K ·D1 = 2 and −K ·D2 = 2, or
(7) D has two components D1, D2 with a common point that is double on D1

and simple on D2 and with −K ·D1 = 2, or
(8) D has three components D1, D2, D3 with a common point that is simple

on each and with −K ·D1 = 1, or
(9) D has two components D1, D2 with a common point that is simple on

each and at which they are tangent and with −K ·D1 = 1, or
(10) D has a component D1 with a nonnodal double point and with −K ·D1 ≤ 2.

Then in the closure of |L|δ − V , its sublocus of nodal curves is open and dense.
Further, if codimV > δ, then |L|δ+ is open and dense in |L|δ, and (+) holds.

Corollary 1.3. Assume S = P2 and L = O(d). If d ≥ �δ/2� + 1, then (+)
holds.

Corollary 1.4. Assume S is the Hirzebruch surface with section E of self-
intersection −e with e ≥ 0. Assume these subloci of |L| have codimension more
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ON THE GÖTTSCHE THRESHOLD 3

than δ: (1) the nonreduced curves, (2) if e ≥ 1, the curves with E as a component.
Then (+) holds.

Remark 1.5. Göttsche [13, Remark 4.3, 4.4] stated without proof that the
codimension condition of Corollary 1.4 is equivalent to essentially this condition:
say L = O(nF +mE) where F is a ruling, and set p := n− em; then either m = 0,
p = 1, and δ = 1 or

(1.5.1) m+ p ≥ 1 and δ ≤
{
min(2m, p) if e ≥ 1,

min(2m, 2p) if e = 0.

In fact, more is true; the proof of this equivalence plus the main results yield the
following statements. Assume e ≥ 1 and m ≥ 2 and p ≥ 0. Assume the nonreduced
D ∈ |L| appear in codimension more than δ, or equivalently,

(1.5.2) δ ≤ min(2m, 2p+ e+ 1).

Assume δ ≥ p+ e too. Then there are curves in |L|δ with E as a component, and
they form a component of |L|δ of codimension δ− e+ 1; the other components are
of codimension δ. Lastly, if e = 1, then deg |L|δ = Gδ(S,L); further, (+) holds at
least if δ = p+ 1 too.

Corollary 1.6. Assume S is a classical del Pezzo surface. Assume these
subloci of |L| have codimension more than δ: (1) the nonreduced curves, (2) the
curves with a −1-curve as a component. Then (+) holds.

Section 2 derives the three corollaries from the theorem and the proposition.
It also proves the remark. Section 3 proves four lemmas about the Severi variety
and the relative Hilbert scheme. Section 4 uses those lemmas to prove the theorem
and the proposition, which are the main results.

Throughout, δ, S, L, K, and so forth continue to be as above. In particular,
C denotes a reduced member of |L|, and D an arbitrary member. In addition, Γ
denotes an arbitrary reduced curve on S, usually integral, but not always.

As some loci may be empty, we adopt the convention that the empty set has
dimension −1, and so codimension 1 more than the dimension of the ambient space.
Thus, in the theorem and the proposition, the hypothesis codimV > δ ≥ 0 implies
that dim |L| ≥ 0; in particular, L is nontrivial.

2. Proof of the corollaries and the remark

Before addressing the corollaries and the remark, we prove the following lemma,
which we use to handle the bounds in Corollary 1.3 and Remark 1.5.

Lemma 2.1. Assume that S is rational and that D ∈ |L|. Then H2(S, L) = 0
and dim |L| ≥ D · (D − K)/2. Equality holds and H1(S, L) = 0 if this condition
obtains: every component Γof D satisfies −K ·Γ ≥ 1, and every Γ that is a −1-curve
appears with multiplicity 1.

Proof. Since S is integral, H0(S, OS) = 1. Since S is rational, Hq(S, OS) = 0
for q = 1, 2. Hence the Riemann–Roch theorem yields

(2.1.1) dim |L| = D · (D −K)/2 + dimH1(S, L)− dimH2(S, L).

Thus it suffices to study the vanishing of H1(S, L) and H2(S, L).

431



4 S. KLEIMAN, V. SHENDE, AND WITH AN APPENDIX BY I. TYOMKIN

Given a component Γ of D, let mΓ denote its multiplicity of appearance. Set
m :=

∑
mΓ, and proceed by induction on m. Suppose m = 0. Then D = 0. So

L = OS . Hence in this case, both groups vanish.
Suppose m ≥ 1. Fix a component Γ, and set L′ := L(−Γ). Form the standard

sequence 0 → L′ → L → L|Γ → 0, and take cohomology to get this sequence:

Hq(S, L′) → Hq(S, L) → Hq(S, L|Γ) for q = 1, 2.

By induction, H2(S, L′) = 0. As Γ is a curve, H2(Γ, L|Γ) = 0. Thus H2(S, L) = 0,
as desired.

Assume the stated condition obtains. Then by induction, H1(S, L′) = 0. Thus,
it suffices to show H1(Γ, L|Γ) = 0.

Let KΓ be the canonical class. By adjunction, OΓ(KΓ) = OΓ(Γ +K). So

H1(Γ, L|Γ) = H1(Γ, OΓ(D − Γ +KΓ −K)).

The latter group is dual to H0(Γ, OΓ(−D + Γ + K)), which vanishes as desired,
since Γ is integral and since, as shown next, (−D + Γ+K) · Γ < 0.

First, by hypothesis, K ·Γ < 0. Second, if mΓ = 1, then D−Γ does not contain
Γ, and so (−D + Γ) · Γ ≤ 0. Finally, suppose mΓ ≥ 2. Then, by hypothesis, Γ is
not a −1-curve; so Γ2 	= −1 if K · Γ = −1. But (Γ + K) · Γ = degKΓ ≥ −2. So
Γ2 ≥ −K ·Γ− 2 ≥ −1. Hence Γ2 ≥ 0. Thus again (−D+Γ) ·Γ ≤ 0, as desired. �

Note in passing that, if L = OS(mΓ) where Γ is a −1-curve and m ≥ 1, then
(2.1.1) yields dimH1(S, L) = m(m− 1)/2.

Proof of Corollary 1.3. Note degK = −3; so −K ·Γ ≥ 3 for every integral
curve Γ on S, and −K ·Γ ≥ 9 if Γ is singular. So no D ∈ |L| satisfies any of (2)–(10)
of Theorem 1.1 and Proposition 1.2. Thus it remains to consider (1).

The nonreduced D ∈ |L| are of the form D = A+ 2B with A, B effective. Set
b := degB. Fix b ≥ 1. Then these D form a locus of dimension dim |A|+ dim |B|,
so of codimension b(4d− 5b+ 3)/2 owing to Lemma 2.1. But d ≥ 2b. So

b(4d− 5b+ 3)/2− (2d− 1) = (b− 1)(4d− 5b− 2)/2

≥ (b− 1)(3b− 2)/2 ≥ 0.

Therefore, when b = 1, the codimension achieves its minimum value, namely, 2d−1.
This value is more than δ, as desired. �

Proof of Corollary 1.4. For the following basic properties of Hirzebruch
surfaces, see [15, Chapter V, §2]. Let F be a ruling. Then every curve Γ is equivalent
to nF + mE with n, m ≥ 0. Suppose Γ is integral and Γ 	= E. Then n > 0 and
n−me ≥ 0. Further, −K = (e+ 2)F + 2E. Finally, F 2 = 0 and F · E = 1.

Hence −K ·Γ = n+(n−me)+2m. Suppose −K ·Γ ≤ 3. Then either n = 1 and
m = 0, or n, m, e = 1. In first case, −K ·Γ = 2; further, Γ = F , so Γ is smooth. In
the second case, −K · Γ = 3; further, Γ · F = 1, whence Γ is smooth. On the other
hand, E is smooth, and −K · E = 2− e. So if −K · E ≤ 1, then e ≥ 1.

In |L| consider the locus of D with a component Γ such that −K · Γ ≤ k.
By the above, if k = 1, then Γ = E and e ≥ 1. So by hypothesis, the locus
has codimension more than δ. Further, if k = 3, then Γ is smooth. Thus all
the hypotheses of Theorem 1.1 and Proposition 1.2 obtain; whence, (+) holds, as
asserted. �
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ON THE GÖTTSCHE THRESHOLD 5

Proof of Remark 1.5. Fix a section G of S complementary to E. Then G is
equivalent to eF +E, so that L = O(pF +mG). Let’s see that, if there’s a D ∈ |L|,
then m ≥ 0; further, p ≥ 0 if also either e = 0 or e ≥ 1 and D doesn’t contain E.
Indeed, as |F | has no base points, m = D · F ≥ 0. If e = 0, then S = P1 × P1;
whence by symmetry, p ≥ 0. If e ≥ 1, then p = D · E ≥ 0.

Note that, if the nonreduced D ∈ |L| form a locus of codimension more than
δ, then dim |L| ≥ 0; in particular, L is nontrivial. Then m ≥ 0. Further, if some
D ∈ |L| doesn’t contain E, then p = D · E ≥ 0. In particular, if the codimension
condition of Corollary 1.4 obtains, then m, p ≥ 0. On the other hand, if (1.5.1)
obtains, then m, p ≥ δ ≥ 0. Thus to prove the remark, we may assume m, p ≥ 0
and m+ p ≥ 1.

If m = 0 and p = 1, then dim |L| = 1, no D ∈ |L| contains E, and every D
is reduced; whence, then the codimension condition of Corollary 1.4 obtains if and
only if δ ≤ 1, if and only if either δ = 1 or (1.5.1) obtains. If m = 0 and p ≥ 2,
then dim |L| ≥ 2, no D ∈ |L| contains E, and the nonreduced D form a locus of
codimension 1. Hence, then the codimension condition of Corollary 1.4 obtains if
and only if δ = 0, if and only if (1.5.1) obtains. Thus, to complete the proof, we
may assume m ≥ 1; further, if e = 0, then by symmetry, we may assume p ≥ 1 too.

The proof of Corollary 1.4 yields −K · F = 2 and −K · G = e + 2. Also
L = O(pF +mG) and m, p ≥ 0. So Lemma 2.1 yields this formula:

dim |L| = pm+ p+m+me(1 +m)/2.

The D ∈ |L| containing E are of the form D = A+ E with A effective. Set

(2.1.2) L′ := OS

(
(p+ e)F + (m− 1)G

)
.

Then A ∈ |L′|. But we now assume p ≥ 0 and m ≥ 1. So Lemma 2.1 yields

dim |L′| = pm− 1 +m+me(1 +m)/2 ≥ 1.

If e ≥ 1, then dim |E| = 0 as E2 = −e (whereas if e = 0, then dim |E| = 1); so
the D ∈ |L| containing E form a nonempty locus of codimension exactly p = 1:

dim |L| − dim |L′| = p+ 1.

Thus, if e ≥ 1, then the D ∈ |L| containing E appear in codimension more than δ
if and only if δ ≤ p.

By the same token, if e ≥ 1 and if m ≥ 2, then the A ∈ |L′| containing E
appear in codimension p+ e+1. Conversely, if e ≥ 1 and if there exists such an A,
then m−2 = (A−E) ·F ≥ 0. Thus if e ≥ 1, then there exists a D ∈ |L| containing
2E if and only if m ≥ 2; if so, then these D form a locus of codimension 2p+ e+2.

Given a nonreduced D ∈ |L|, say D = A+ 2B with A,B effective and B 	= 0.
Say B is equivalent to aF + bG. Then A is equivalent to (p− 2a)F + (m − 2b)G.
Since A and B are effective, m − 2b ≥ 0 and b ≥ 0. If e ≥ 1, assume D does not
contain E. Then p− 2a ≥ 0 and a ≥ 0 for any e. Hence, for fixed a and b, these D
form a locus of dimension dim |A|+ dim |B|; so Lemma 2.1 yields its codimension
to be

ε(a, b) := 2pb+ 2am− 5ab+ a+ b+ (1 + 4m− 5b)be/2.

The above analysis assumed given some D and A and B. However, given
a, b ≥ 0 such that p− 2a ≥ 0 and m− 2b ≥ 0, set

A := (p− 2a)F + (m− 2b)G, B := aF + bG, D := A+ 2B.
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6 S. KLEIMAN, V. SHENDE, AND WITH AN APPENDIX BY I. TYOMKIN

Then A and B are effective. Also, D ∈ |L|, and D does not contain E. Further,
B 	= 0 if a+ b ≥ 1. So the above analysis yields a locus of nonreduced members of
|L| of codimension ε(a, b).

Note ε(0, 1) = 2p+ 1 + 2e(m− 1). But p ≥ 2a and m ≥ 2b. So if b ≥ 1, then

ε(a, b)− ε(0, 1) = (2p+ 1)(b− 1) + a(2m− 5b+ 1)

+ (4m− 5b− 4)(b− 1)e/2

≥ (3a+ 1 + (3b− 4)e/2)(b− 1).

The latter term is nonnegative. Further,

ε(a, 0) = a(2m+ 1) ≥ ε(1, 0) = 2m+ 1.

Thus min ε(a, b) = min
(
ε(1, 0), ε(0, 1)

)
= min

(
2m+ 1, 2p+ 1 + 2e(m− 1)

)
.

Suppose e = 0. Then we are assuming m, p ≥ 1. Hence the nonreduced
D ∈ |L| form a nonempty locus of codimension exactly min

(
2m+1, 2p+1

)
. Thus

the codimension condition of Corollary 1.4 obtains if and only if (1.5.1) obtains, as
asserted.

Suppose e ≥ 1 and the codimension condition of Corollary 1.4 obtains. In this
case, we assume m ≥ 1 and p ≥ 0. Then, as proved above, δ ≤ p. So if p ≤ 1, then
δ ≤ 2m. If p ≥ 2, take a := 1 and b := 0; then the codimension condition yields
ε(1, 0) > δ. But ε(1, 0) = 2m+ 1. Thus (1.5.1) obtains, as asserted.

Conversely, suppose e ≥ 1 and (1.5.1) obtains. Then, as proved above, the
D ∈ |L| containing E appear in codimension more than δ. Also, the nonreduced
D ∈ |L| not containing E appear in codimension min

(
2m+1, 2p+1+2e(m− 1)

)
.

But we assume m−1 ≥ 0. Thus the codimension condition of Corollary 1.4 obtains,
as asserted.

Finally, assume e ≥ 1 and m ≥ 2. Then 2e(m − 1) ≥ e + 1. Let W be the
locus of all nonreduced curves. Then codimW = min(2m + 1, 2p + e + 2). Thus
codimW > δ if and only if (1.5.2) obtains, as asserted. Assume (1.5.2) does obtain.

Assume δ ≥ p+ e too. Set δ′ := δ − p− e. Then δ′ ≤ p+ 1 as δ ≤ 2p+ e + 1;
so δ′ ≤ p + e as e ≥ 1. Further, δ ≤ 2m, so δ′ ≤ 2m − p − e. Hence δ′ ≤ 2m − 2,
except possibly if p = 0; but then, δ′ ≤ 1, so after all δ′ ≤ 2m− 2 as m ≥ 2.

Consider the L′ of (2.1.2). By the above analysis, the Severi variety |L′|δ′ is
nonempty and everywhere of codimension δ′ in |L′|, so of codimension δ − e+ 1 in

|L|. Further, |L′|δ′ contains a dense open subset of curves A not containing E. Set
D := A+E. ThenD ∈ |L|δ as paD = paA+paE+A·E−1 and pgD = pgA+pgE−1
by general principles. Conversely, given a D ∈ |L|δ containing E, set A := D − E;

then, plainly, A ∈ |L′|δ′ , and A does not contain E.
Recall that codimW > δ; further, if Γ is an integral curve with −K ·Γ ≤ 1, then

Γ = E. Let V be the union of W and the locus of D ∈ |L| containing E. Then by
Theorem 1.1, the closure of |L|δ − V has codimension δ everywhere. Consequently,
there are D ∈ |L|δ containing E, and they form a component of |L|δ of codimension
δ − e+ 1; the other components of |L|δ are of codimension δ, as asserted.

Lastly, assume e = 1 in addition. Then −K · E = 1 and E is immersed. Thus
Theorem 1.1 yields deg |L|δ = Gδ(S,L), as asserted.

Further, by Proposition 1.2, the nodal curves form an open and dense subset
of |L|δ −V . Assume δ = p+1 also. Then δ′ = 0. So the D ∈ |L|δ containing E are
the D ∈ |L| of the form A+E where A ∈ |L′|−V . The A that meet E transversally
form a dense open sublocus, because the restriction map H0(S, L) → H0(S, L|E)
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ON THE GÖTTSCHE THRESHOLD 7

is surjective as H1(S, L) = 0 by Lemma 2.1. Hence the nodal locus is open and
dense in |L|δ. Thus (+) holds, as asserted. �

Proof of Corollary 1.6. Since S is a classical del Pezzo surface, we may
regard S as embedded in a projective space with −K as the hyperplane class. Let
Γ ⊂ S be an integral curve. Suppose −K · Γ = 1. Then Γ is a line. So adjunction
yields Γ2 = −1. Hence Γ is a −1-curve. In |L| consider the locus of D with a
component D1 such that −K · D1 = 1; by hypothesis, this locus therefore has
codimension more than δ. If −K · Γ = 2, then Γ is an integral plane conic, so
smooth. Finally, if −K · Γ = 3, then Γ is either a twisted cubic, so smooth, or
else an integral plane cubic, so has no point of multiplicity at least 3. Thus all
the hypotheses of Theorem 1.1 and Proposition 1.2 obtain; whence, (+) holds, as
asserted. �

3. Four lemmas

We now set the stage to prove Theorem 1.1 and Proposition 1.2. First off, we
recall some basic deformation theory from [8] and [14].

Fix the reduced curve C ∈ |L|. There exist a smooth (analytic or étale) germ

(Λ, 0) := (Def loc(C), 0)

and a family CΛ

/
Λ realizing a miniversal deformation of the singularities of C; that

is, given any family CB

/
B and point b ∈ B such that the fiber Cb is a multigerm of

C along its singular locus Σ, there exists a map of germs (B, b) → (Λ, 0) such that
the multigerm (CB,Σ) is the pullback of the multigerm (CΛ,Σ). The tangent map
TbB → T0Λ is canonical. Further, there is an identification

(3.0.1) T0Λ = H0(C, OC/J)

where J is the Jacobian ideal of C, the first Fitting ideal of its Kähler differentials.
Denote the cogenus of C by δ(C) and the normalization map by

n : C̃ → C.

So δ(C) = dimH0(n∗O ˜C

/
OC). Denote the locus of a ∈ Λ with δ(Ca) = δ(C) by

Λδ(C). It is called the equigeneric locus or δ-constant stratum. Its codimension is
δ(C). Its reduced tangent cone (C0Λ

δ)red is a vector space; namely,

(3.0.2) (C0Λ
δ)red = H0(C, A/J)

under the identification (3.0.1). Here A denotes the conductor ideal sheaf; namely,

A := Hom(n∗O ˜C , OC).

The following lemma regarding A is fundamental. It is more or less well known.

Lemma 3.1. Denote by K
˜C the canonical class of C̃. Then

(3.1.1) A · n∗OS(C) = O
˜C(K ˜C − n∗K)

where, doing double duty, n also denotes the composition n : C̃ → C ↪→ S.

Let M̃ be a line bundle on C̃, and C̃1, . . . , C̃h be the components of C̃. Then

(3.1.2) dimH1
(
C, A · n∗M̃ ⊗ OS(C)

)
≤

∑h
i=1 max

(
0, 1 + deg

(
M̃−1(n∗K)

∣∣C̃i

))
.
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8 S. KLEIMAN, V. SHENDE, AND WITH AN APPENDIX BY I. TYOMKIN

Proof. By adjunction, OC(KC) = OC ⊗ OS(C + K). And relative duality
yields

n∗O ˜C(K ˜C) = Hom(n∗O ˜C , OC(KC)) = A⊗ OC(KC).

Hence A ⊗ OS(C) = n∗O ˜C(K ˜C) ⊗ OS(−K). But n is finite, and that equation is
just the image under n∗ of (3.1.1). Thus (3.1.1) holds.

By the same token, H1(C, A · n∗M̃ ⊗ OS(C)) = H1(C̃, M̃(K
˜C − n∗K)). By

duality, the right side is just H0(C̃, M̃−1(n∗K))∨; whence, (3.1.2) holds. �
Since C ∈ |L|, the tangent map TC |L| → T0Λ is just this restriction map:

(3.1.3) H0(S, L)
/
ImH0(S,OS) → H0(C, OC/J).

Consequently, using Lemma 3.1, we can prove the following results about the Severi
variety and the Hilbert scheme. The results about the Severi variety are already
known in various forms, see [4, (10.1), p. 845], [7, Proposition 2.21 p. 355], [32,
Theorem 2.8, p. 8], [35, Theorem 3.1, p. 59], and [38, Theorem 1, p. 215; Theorem
2, p. 220]. However, our particular approach and results appear to be new.

Lemma 3.2. Assume C ∈ |L|δ. Set λ := dimKer(H1(S, OS) → H1(S, L)) and
α := dimKer(H1(C, A · OC(C)) → H1(C,OC(C))). Then

δ − α− λ ≤ dimC |L| − dimC |L|δ ≤ δ and(3.2.1)

(CC |L|δ)red ⊂ H0(C̃, O
˜C(K ˜C − n∗K)).(3.2.2)

In addition, assume λ = 0 and α = 0. Then

(3.2.3) (CC |L|δ)red = H0(C̃, O
˜C(K ˜C − n∗K)).

Finally, assume C is immersed too. Then |L|δ is smooth at C.

Proof. Plainly, |OS(C)|δ is, locally at C, the preimage of the equigeneric locus
Λδ in Λ := Def loc(C). As codimension cannot increase on taking a preimage from
a smooth ambient target, the right-hand bound holds in (3.2.1).

In general, let f : X → Y be a map of schemes, x ∈ X a point, y := f(x) ∈ Y
the image. Plainly, f induces maps of tangent spaces Tf : Tx(X) → Ty(Y ) and
tangent cones Cx(X) → Cy(Y ), so a map of reductions Cx(X)red → Cy(Y )red.

Thus Cx(X)red ⊂ T−1
f (Cy(Y )red). Now, take |L|δ → Λδ for f , and take C for

x. Therefore, (CC |L|δ)red lies in the preimage of (C0Λ
δ)red in TC |L|δ. However,

TC |L|δ ⊂ TC |L|. Thus (CC |L|δ)red lies in the preimage of (C0Λ
δ)red in TC |L|.

Further, the tangent map TC |L| → TCΛ is given by this composition:

(3.2.4) θ : H0(S, L)
/
ImH0(S,OS)

η
↪−→ H0(C, OC(C))

ν−→ H0(C, OC/J).

Therefore, (3.0.2) and the injectivity of η yield

(3.2.5) (CC |L|δ)red ⊂ θ−1 H0(C, A/J) ⊂ ν−1H0(C, A/J).

Consider the following composition:

(3.2.6) ξ : H0(C, OC(C))
ν−→ H0(C, OC/J)

ρ−→ H0(C, OC/A).

The left-exactness of H0 yields H0(C, A/J) = Ker ρ and H0(C, A ·OC(C)) = Ker ξ.
But ν−1Ker ρ = Ker ξ. Hence ν−1H0(C, A/J) = H0(C, A · OC(C)). But (3.1.1)

implies H0(C, A · OC(C)) = H0(C̃, O
˜C(K ˜C − n∗K)). Thus (3.2.2) holds.

The above considerations also yield ν−1H0(C, A/J) = Ker ξ. So (3.2.5) yields

(3.2.7) dimC |L|δ = dim(CC |L|δ)red ≤ dimKer ξ.
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On the other hand, the long exact cohomology sequences involving η and ξ yield

− dim |L|+ dimH0(C, OC(C))− λ = 0(3.2.8)

dimKer ξ − dimH0(C, OC(C)) + dimH0(C, OC/A)− α = 0.(3.2.9)

But dimH0(C, OC/A) = δ. Thus, combined, (3.2.7) and (3.2.8) and (3.2.9) yield
the left-hand bound in (3.2.1).

In addition, assume λ = 0 and α = 0. To prove (3.2.3), let’s show both sides
of (3.2.2) are of the same dimension. The left-hand side is of dimension dim |L|− δ
by (3.2.1). On the other hand, (3.2.8) and (3.2.9) yield dimKer ξ = dim |L| − δ,
and the considerations after (3.2.6) show Ker ξ is equal to the right-hand side, as
desired.

Finally, assume C is immersed too. Then Λδ is smooth at C by Theorem
2.59(1)(c) of [14, p. 355]. So T0Λ

δ = H0(C, A/J) by (3.0.2). Always, TC |L|δ maps
into T0Λ

δ; so TC |L|δ lies in the preimage T of T0Λ
δ in TC |L|. But T is a vector

space of codimension δ owing to the above analysis; indeed, T = θ−1 H0(C, A/J),
and in (3.2.5), the two extreme terms are of codimension δ. But codimTC |L|δ ≤ δ
by (3.2.1). Thus dimTC |L|δ = dimC |L|δ. Thus |L|δ is smooth at C. �

In the remaining two lemmas, we assume S is regular ; that is, H1(S, OS) = 0.
As a consequence, in Theorem 1.1 and Proposition 1.2, instead of assuming S is
rational, we may assume S is regular. But the “generalization is illusory,” as noted
in [30, (v), p. 116] in a similar situation. Indeed, assume dim |L| ≥ 1, else L holds
little interest. Assume C ∈ |L| − V . Let C ′ be its variable part, so that |C ′| has
no fixed components. Then C ′ is nonzero and nef. Hence H0(S, mK) = 0 for all
m ≥ 1; else, K · C ′ ≥ 0, but −K · Γ ≥ 1 for every component Γ of C ′ as C /∈ V .
Since H1(S, OS) = 0, Castelnuovo’s Criterion implies S is rational.

The first lemma below addresses the immersedness of a general member of |L|δ.
The discussion involves another invariant of the reduced curve C on S, namely, the
(total) multiplicity of its Jacobian ideal J, or what is the same, the colength of its
extension JO

˜C to the normalization of C. This invariant was introduced by Teissier
[31, II.6′, p. 139] in order to generalize Plücker’s formula for the class (the degree
of the dual) of a plane curve.

This invariant was denoted κ(C) by Diaz and Harris [8, (3.2), p. 441], but they
defined it by the formula

κ(C) = 2δ(C) +m(C)

where m(C) denotes the (total) ramification degree of C̃/C. The two definitions
are equivalent owing to the following formula, due to Piene [27, p. 261]:

(3.2.10) JO
˜C = A · R

where R is the ramification ideal.
The invariant κ(C) is upper semicontinuous in C; see [31, p. 139] or [8, bot.,

p. 450]. So |L|δ always contains a dense open subset |L|δκ on which κ(C) is locally
constant, termed an equiclassical locus in [8].

By definition, C is immersed if and only if m(C) = 0. Thus if C ∈ |L|δκ, then
κ(C) ≥ 2δ, and C is immersed if and only if κ(C) = 2δ. Further, if so, then every
curve D in every component of |L|δκ containing C is immersed.

Lemma 3.3. Assume S regular, and C ∈ |L|δκ. Assume −K · C1 ≥ 1 for every
component C1 of C. If some C1 is not immersed, then −K · C1 = 1.
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Proof. Fix a C1. Assume C1 is not immersed, but −K ·C1 ≥ 2. Then there’s

a point P̃ in the normalization of C1 at which n ramifies. Set A′ := A ·n∗O ˜C(−P̃ ).
Then owing to Lemma 3.1, the restriction map

H0(C, OC(C)) → H0(C, OC/A
′)

is surjective. Since S is regular, the following restriction map too is surjective:

H0(S, L) → H0(C, OC(C)).

Set H := n∗(JO ˜C). Then A′ ⊃ H owing to Piene’s Formula (3.2.10). But
H ⊃ J. Set Λ := Def loc(C). It follows, as in the proof of Lemma 3.2, that the
image of TC |L| in T0Λ is transverse to A′/J. Thus the image of |L| in Λ contains
a 1-parameter equigeneric family whose tangent space at 0 is transverse to A′/J
inside A/J.

Diaz and Harris [8, (5.5), p. 459] proved that H/J is the reduced tangent cone
to the locus of equiclassical deformations. Thus the above 1-parameter family exits
|L|δκ while remaining in |L|δ, contrary to the openness of |L|δκ in |L|δ. �

Finally, we consider the smoothness over C of the relative Hilbert scheme of
a family. To be precise, given a family of curves with parameter space B and

total space CB , denote by C
[n]
B the relative Hilbert scheme of n points. Further, if

B ⊂ |L|, take CB to be the total space of the tautological family.

Lemma 3.4. Assume S regular, and −K · C1 ≥ 1 for every component C1 of
C. Fix n ≥ 0. Then the relative Hilbert scheme C

[n]
|L| is smooth over C along the

Hilbert scheme C [n] of C over C.

Proof. The proof has three steps: (1) show that C
[n]
Λ is smooth over C along

C [n]; (2) show that, for any point z ∈ C [n], the image in T0Λ of the tangent space
TzC

[n]
Λ contains A/J in T0Λ; and (3) show that C

[n]
|L| is smooth over C along C [n].

The hypothesis that S is regular and −K ·C1 ≥ 1 is not used in the first two steps.

Step (1) was done in [29, Proposition 17]. Here’s the idea. First, embed C
[n]
Λ in

S[n] ×Λ, where S[n] is the Hilbert scheme. The latter is smooth by Fogarty’s theo-
rem. Form the tangent bundle-normal bundle sequence (constructed barehandedly
as (6) in [29]); it’s the dual of the Second Exact Sequence of Kähler differentials
[15, Proposition 8.12, p. 176] . It shows the question is local analytic about the
singularities of C, as the smoothness in question is equivalent to the surjectivity
of the right-hand map owing to [11, (17.12.1)]. So we may replace C by an affine
plane curve {f = 0}.

Take a vector space V of polynomials containing f and also every polynomial of
degree at most n. Form the tautological family CV/V. Its relative Hilbert scheme
C
[n]
V

is smooth over C along C [n] owing to the analogous tangent bundle-normal
bundle sequence; its right-hand map is surjective by choice of V. Finally, as Λ is

versal, there’s a map of germs λ : (V, 0) → (Λ, 0) such that C
[n]
V

is the pullback of

C
[n]
Λ . It’s smooth as the map on tangent spaces is surjective. Thus C

[n]
Λ is smooth

over C along C [n], as desired.
To do Step (2), we may assume that z represents a subscheme Z of C supported

on its singular locus Σ, because the map of tangent spaces (essentially the map on
the left in [29, (6)] ) is the product of the corresponding maps at the various points
p in the support of Z, and these maps are clearly surjective at the p where C is
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smooth. Set O := OC,Σ, and let I ⊂ O be the ideal of Z. Then TzC
[n]
Λ is the

set of first-order deformations of the inclusion map I ↪→ O. Further, the map

TzC
[n]
Λ → T0Λ forgets the inclusion, and just keeps the deformation of O.
Let J be the Jacobian ideal of O, the ideal of Σ. Then (3.0.1) yields T0Λ = O/J .

Further, let A be the conductor ideal of O.

The map TzC
[n]
Λ → T0Λ factors through the set D(O, I) of first-order defor-

mations of the pair (O, I) with I viewed as an abstract O-module. The map
D(O, I) → T0Λ was studied by Fantechi, Göttsche and van Straten in [10, Sec.
C]; they showed that, in O/J , the image of this map contains A/J .

It remains to show TzC
[n]
Λ → D(O, I) is surjective. So take (O′, I ′) ∈ D(O, I).

As O is Gorenstein, Ext1O(I, O) = 0. Hence, since deformations are flat, the Prop-
erty of Exchange [1, Theorem (1.10)] implies this natural map is bijective:

HomO(I
′, O′)⊗O′ O ∼−→ HomO(I, O).

So the inclusion map I ↪→ O lifts to a map I ′ → O′. The latter is injective and its
cokernel is flat owing to the Local Criterion of Flatness, as O′ is flat and I ′ → O′

reduces to an injection with flat cokernel, namely, I ↪→ O.
Finally, consider Step (3). Since Λ is versal, there exists a map of germs

(|L|, C) → (Λ, 0) such that the germ (C
[n]
|L|, z) is the pullback of the germ (C

[n]
Λ , z),

which is smooth over C by Step (1). Since (|L|, C) and (Λ, 0) are smooth over C,
the pullback (C

[n]
|L|, z) is therefore smooth over C by general principles, if the images

in T0Λ of the tangent spaces TC |L| and TzC
[n]
Λ sum to T0Λ.

Owing to (3.1.3) and to Step (2), the latter holds if this composition is surjec-
tive:

H0(S, L) → H0(C, OC(C)) → H0(C, OC/A).

However, the first map is surjective as S is regular, and the second map is surjective

by Lemma 3.1 with M̃ = O
˜C owing to the hypothesis −K · C1 ≥ 1. �

4. Proof of the main results

Theorem 1.1 can now be proved by revisiting the construction in [21] of the
universal polynomial Gδ(S,L) and making use of the lemmas in the preceding
section.

Proof of Theorem 1.1. First, (3.2.1) gives codimC |L|δ ≤ δ for all C ∈ |L|δ.
Also, H1(S, OS) = 0 as S is rational, and by (3.1.2), if C ∈ (|L|δ − V ), then
H1(C, A ·OC(C)) = 0; hence, if C ∈ (|L|δ−V ), then (3.2.1) yields codimC |L|δ ≥ δ.
Therefore, if codimV > δ, then codimC |L|δ = δ for all C in the closure

(
|L|δ−V

)
,

and then
(
|L|δ − V

)
= |L|δ.

Note that Lemma 3.3 and the discussion before it imply that, if C ∈
(
|L|δ−V

)
,

then C ∈ |L|δκ if and only if C is immersed, and that |L|δκ is open and dense in |L|δ.
Further, the last assertion of Lemma 3.2 now implies |L|δκ is smooth at C if C /∈ V .

It remains to compute deg |L|δ assuming codimV > δ. Denote by g the com-
mon arithmetic genus paD of the D ∈ |L|. Bertini’s theorem [15, Corollary 10.9, p.

274] yields a δ-plane P ⊂ |L| avoiding V
⋃(

|L|− |L|δκ
)
and such that C

[n]
P

is smooth

over C for n ≤ g. But C
[n]
P

is, by [2, Theorem 5, p. 5], cut out of P × S[n], where

S[n] is the Hilbert scheme, by a transversally regular section of the rank-n bundle
L[n] that is obtained by pulling L back to the universal family and then pushing
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it down. Hence the topological Euler characteristic χ(C
[n]
P
) can be computed by

integrating polynomials in the Chern classes of L[n] and S[n]. But, as Ellingsrud,
Göttsche, and Lehn [9] show, such integrals admit universal polynomial expressions
in the Chern classes of S and L.

Following [18], define nh(P) by this relation:∑∞
n=0 q

nχ(C
[n]
P
) =

∑g
h=−∞ nh(P)q

g−h(1− q)2h−2.

For D ∈ |L|, define nh(D) similarly. By additivity of the Euler characteristic, these
definitions are compatible: χ(P, nh) = nh(P) where nh : P → Z is the constructible
function b �→ nh(Cb). By [26, Appendix B.1], if D is reduced of geometric genus
g̃, then nh(D) = 0 for h < g̃(D). Thus the nh(P) admit universal polynomial
expressions.

For each ε, Lemma 3.2 implies |L|ε is of codimension ε at every D ∈ (|L|ε−V ).
So |L|ε − V is empty if ε > dim |L|. Further, replacing P by a more general δ-plane
if neccessary, we may assume P

⋂
|L|ε is empty if δ < ε ≤ dim |L|. Then there are

only finitely many D ∈ P of cogenus δ, and none of greater cogenus. Thus

ng−δ(P) =
∑

D∈P∩|L|δ ng̃(D).

Alternatively, instead of using (3.2.1) to bound the codim |L|ε, we could use
[25, Corollary 9], which asserts that, given any family of locally planar curves whose
nth relative Hilbert scheme is smooth over C and any ε ≤ n, the curves of cogenus
ε form a locus of codimension at least ε in the base.

Finally, as each D ∈ P ∩ |L|δ is immersed, ng̃(D) = 1 by [29, Eqn. 5] plus
[5, Proposition 3.3]. Alternatively, this statement follows from [29, Theorem A],
because |L|δ is smooth at D. Thus ng−δ(P) = deg |L|δ. �

Lastly, we prove Proposition 1.2, which provides conditions under which the
nodal curves in the Severi variety |L|δ form a dense open subset |L|δ+. It is well

known that |L|δ+ is open and dense if S is the plane; see [38, Theorem 2, p. 220]
and [4, (10.7), p. 847] and [7, Proposition 2.2, p. 355]. Similar arguments work if S
is a Hirzebruch surface; see [35, Proposition 8.1, p. 74]. The broadest statement is
given in [32, Theorem 2.8, p. 8].

However, even that statement is not broad enough to cover our needs. More-
over, our approach appears to be new in places. In addition, the appendix develops
the ideas in [32] further, so as to provide another proof of Proposition 1.2 and the
codimension statement in Theorem 1.1.

Proof of Proposition 1.2. Clearly, deg |L|δ+ = deg |L|δ if |L|δ+ is open and
dense in |L|. Thus Theorem 1.1 and the first assertion of Proposition 1.2 yield the
second.

To prove the first assertion, assume C ∈ |L|δ, fix P ∈ C, and consider the local
Milnor number μ(C,P ), which vanishes if C is smooth at P . It is, by [14, Theorem
2.6(2), p. 114], upper semicontinuous in this sense: there is an (analytic or étale)
neighborhood B of the point in |L|δ representing C and a neighborhood U of P in
the tautological total space CB such that, for each b ∈ B,

(4.0.1) μ(C,P ) ≥
∑

Q∈Cb∩U μ(Cb, Q).

So the total Milnor number μ(C) :=
∑

z μ(C, z) too is upper semicontinuous in C.
Therefore, |L|δ always contains a dense open subset |L|δμ on which μ(C) is

locally constant. So fix C ∈ |L|δμ. Then after B is shrunk, equality holds in (4.0.1).
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Therefore, there is a section B → CB along which the family is equisingular by work
of Zariski’s [36, 37], of Lê and Ramanujam’s [22] and of Teissier’s— see both [14,
Proposition 2.62, p. 359] and [31, Theorem 5.3.1, p. 123], as well as the historical
note [31, 5.3.10, p. 129].

Consider Milnor’s Formula μ(C) = 2δ −
∑

Q∈C(r(Q) − 1) where r(Q) is the

number of branches of C at Q; see [14, Proposition 3.35, p. 208]. It implies μ(C) ≥
δ, with equality if and only if C is δ-nodal. So the nodal locus |L|δ+ is always a

union of components of |L|δμ. Thus to complete the proof of Proposition 1.2, it

suffices to show |L|δμ − V consists of nodal curves. So assume C ∈ |L|δμ − V .

First of all, C is immersed by Lemma 3.3. So Lemma 3.2 implies |L|δκ is smooth

at C with tangent space equal to H0(C̃, O
˜C(K ˜C − n∗K)).

Form the composition B → CB → S of the above equisingular section and of the
projection. Denote the preimage of P ∈ S by B′. Evidently, dimC B−dimC B′ ≤ 2.

By equisingularity, P has the same multiplicity m on every D ∈ B′. Denote by
S′ the blowup of S at P , by E the exceptional divisor, by C ′ the strict transform
of C. Set L′ := OS′(C ′) and δ′ := δ −m(m− 1)/2. Taking strict transforms gives

a map B′ → |L′|δ′ . It is injective as taking images gives an inverse.

Denote by n′ : C̃ → C ′ the normalization map, by K ′ the canonical class of S′.

Then (3.2.2) yields (CC′ |L′|δ′)red ⊂ H0(C̃, O
˜C(K ˜C − n′∗K ′)). Therefore,

dimH0(C̃,O
˜C(K ˜C − n∗K))− dimH0(C̃, O

˜C(K ˜C − n′∗K ′))(4.0.2)

≤ dimC |L|δ − dimC′ |L′|δ′ = dimC B − dimC B′ ≤ 2.(4.0.3)

The groups in (4.0.2) belong to the long exact cohomology sequence arising
from

0 → O
˜C(K ˜C − n′∗K ′) → O

˜C(K ˜C − n∗K) → On′∗E → 0.

Further, H1(C̃, O
˜C(K ˜C −n∗K)) = 0 by (3.1.2) as C /∈ V . Hence (4.0.2) is equal to

(4.0.4) dimH0(On′∗E)− dimH1(C̃, O
˜C(K ˜C − n′∗K ′)).

But deg(n′∗E) = m; so dimH0(On′∗E) = m.

Denote by C1, . . . , Ch the components of C, by C̃i the normalization of Ci. Set

ki := −K · Ci and mi := mult(P, Ci) = deg(n′∗E|C̃i) ≥ 0.

Now, n′∗K ′ = n∗K + n′∗E. Therefore, (3.1.1) and (3.1.2) yield

dimH1(C̃, O
˜C(K ˜C − n′∗K ′)) ≤

∑h
i=1 max(0, 1− ki +mi).

Note m =
∑h

i=1 mi. Consequently, (4.0.4) and (4.0.3) yield

(4.0.5)
∑h

i=1 si ≤ 2 where si := mi −max(0, 1− ki +mi).

Note mi ≥ si ≥ 0 for all i, as 0 ≤ max(0, 1− ki +mi) ≤ mi since ki ≥ 1 owing
to (2) of Theorem 1.1. Also, si = 0 if ki = 1 for any i and any mi; conversely,
if si = 0 and mi ≥ 1, then ki = 1. Further, mi = si if and only if ki ≥ mi + 1,
as both conditions are obviously equivalent to max(0, 1 − ki + mi) = 0. Clearly,
ki ≤ mi + 1 if and only if si = ki − 1.

Using (4.0.3), let’s now rule out m ≥ 3. Aiming for a contradiction, assume

(4.0.6) m1 ≥ · · · ≥ mh and m1 + · · ·+mh = m ≥ 3.
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Now, (4.0.5) yields s1 ≤ 2 as si ≥ 0 for all i. So ifm1 ≥ 3, thenm1−2 ≤ 1−k1+m1;
whence, k1 ≤ 3, contrary to (4) of Proposition 1.2. Thus (4.0.6) yields
2 ≥ m1 ≥ m2 ≥ 1.

Suppose m1 = 2. Then (5) of Proposition 1.2 rules out k1 = 1 and k2 = 1.
So k1 ≥ 2 and k2 ≥ 2. Suppose k1 = 2. Then s1 = 1. So s2 ≤ 1. If m2 = 2,
then k2 = 2, contrary to (6) of Proposition 1.2. If m2 = 1, then already k1 = 2 is
contrary to (7) of Proposition 1.2. Suppose k1 ≥ 3. Then s1 = 2. So s2 = 0. So
k2 = 1. But this case was already ruled out. Thus the case m1 = 2 is ruled out
completely.

Lastly, suppose m1 = 1. Then (4.0.6) yields m2 = 1 and m3 = 1 too. So
(8) of Proposition 1.2 yields ki ≥ 2 for i = 1, 2, 3. Hence si = 1 for i = 1, 2, 3,
contradicting (4.0.5). Thus m = 2, as claimed.

Finally, given m = 2, let’s show P is a simple node. Since C is immersed at P ,
it is locally analytically given by an equation of the form y2 = x2k for some k ≥ 1.

Denote by P̃ , Q̃ ∈ C̃ the points above P on the branches with equations y = xk

and y = −xk. Then (3.1.1) and (3.1.2) imply

dimH1(C̃, O
˜C(K ˜C − n∗K − P̃ − Q̃)) = 0,

because ki ≥ 1 for all i owing to (2) of Theorem 1.1 and because either ki ≥ 2 for

i = 1, 2 if P̃ ∈ C̃1 and Q̃ ∈ C̃2 owing to (9) of Proposition 1.2 or k1 ≥ 3 if P̃ , Q̃ ∈ C̃1

owing to (10) of Proposition 1.2. Hence the following restriction map is surjective:

H0(C̃, O
˜C(K ˜C − n∗K)) � H0(C̃, O

˜P+ ˜Q).

Therefore, there’s a section of O
˜C(K ˜C − n∗K) that doesn’t vanish at P̃ , but

does at Q̃. Correspondingly, there’s a first-order deformation of C. Say it’s given
locally by y2 − x2k + εg(x, y). Then g(t, tk) is of degree k, but g(t,−tk) is of
degree k + 1. Clearly, any such g is, up to scalar multiple, necessarily of the form
g(x, y) = xk + y + O(xk+1, y2). However, the Jacobian ideal of the singularity is
〈y, x2k−1〉. This ideal must contain g(x, y) as the deformation under consideration
is equisingular and as the Jacobian ideal is equal to the equisingular ideal by [14,
Lemma 2.16, p. 287]. Hence k = 1. Thus P is an simple node of C, as desired. �

Appendix A. An alternative proof by Ilya Tyomkin

Our goal is to use the deformation theory of maps to provide an alternative
proof of Proposition 1.2 and the codimension statement in Theorem 1.1. The
general idea goes back to Arbarello and Cornalba [3], but the proof contains new
ingredients, most of which were introduced in [32].

A.1. Notation. Let δ, S, L, K, |L|δ, |L|δ+ be as in the Introduction. Again,
we work over the complex numbers C, but as is standard, we denote the residue
field at a point p by k(p). Moreover, as our treatment is purely algebraic, all
the statements and proofs are valid over an arbitrary algebraically closed field of
characteristic 0.

Given a morphism f : X → Y , and p1, . . . , pr ∈ X points where X is smooth,
Def(X, f ; p) denotes the functor of deformations of (X, f ; p1, . . . , pr); i.e., if (T, 0)
is a local Artinian C-scheme, then Def(X, f ; p)(T, 0) is the set of isomorphism

classes of this data: (XT , fT ; p
1
T , . . . , p

r
T ; ι) where XT is T -flat, each piT : T → XT
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is a section, fT : XT → Y × T is a T -morphism, and ι is an isomorphism

ι : (X0, f0; p
1
0, . . . , p

r
0)

∼−→ (X, f ; p1, . . . , pr).

Let Def1(X, f ; p) denote the set of first-order deformations Def(X, f ; p)(T, 0) where
T := Spec(C[ε]) and C[ε] is the ring of dual numbers.

If X and Y are smooth, set Nf := Coker(TX → f∗TY ); it’s the normal sheaf.

A.2. Three Lemmas.

Lemma A.1. Let (C; p1, . . . , pr) be a smooth curve with marked points, and
f : C → S a map that does not contract components of C. Then there is a natural
exact sequence

0 →
⊕r

i=1 Tpi(C) → Def1(C, f ; p) → H0(C,Nf) → 0.

Proof. Consider the forgetful map φ : Def1(C, f ; p) → Def1(C, f). It is sur-

jective by the infinitesimal lifting property, since C is smooth at all the pi. Its
kernel is canonically isomorphic to

⊕r
i=1 Def1(pi → C), so to

⊕r
i=1 TpiC. Finally,

since TC → f∗TS is injective, Def1(C, f) = Ext1(LC/S,OC) = H0(C,Nf), where
LC/S is the cotangent complex of f : C → S; see [17, (2.1.5.6), p. 138; Proposition
3.1.2, p. 203; Theorem 2.1.7, p. 192] or [16, pp. 374–376]. �

Lemma A.2. Let C be a smooth curve, f : C → S a map, D ⊂ S a closed curve.
Set Z := D ×S C, and assume Z is reduced and zero-dimensional. Let g : Z → D
be the inclusion, and set T := Spec(C[ε]) and (ZT , gT ) := (CT , fT )×S×T (D × T ).

Then sending (CT , fT ) to (ZT , gT ) defines a map dψ : Def1(C, f) → Def1(Z, g).
Furthermore, dψ(H0(C,Ntor

f )) = 0.

Proof. To prove dψ is well defined, it suffices to show that ZT is T -flat. Let
0 ∈ T be the closed point, q ∈ Z ⊂ ZT a preimage of 0, and h = 0 a local equation of
D at f(q). Then there exists an exact sequence 0 → OCT ,q → OCT ,q → OZT ,q → 0
where the first mapmh is the multiplication by f∗

T (h). Also,mh⊗k(0) : OC,q → OC,q

is injective, since the locus of zeroes of f∗(h) in C is of codimension 1, and so
f∗(h) ∈ OC,q is not a zero-divisor. Thus, OZT ,q is flat by the local criterion of
flatness [12, Corollary 5.7]. Thus dψ is well defined.

As Z is reduced, Z
⋂
Supp(Ntor

f ) = ∅. Set U := C\Supp(Ntor
f ). Then dψ factors

through Def1(U, f |U ) = Nf (U) =
(
Nf/N

tor
f

)
(U). Thus dψ(H0(C,Ntor

f )) = 0. �

Lemma A.3. Let W be an algebraic variety, CW → W a flat family of reduced

curves, C̃W → CW the normalization, and ZW ⊂ C̃W a reduced closed subvariety
quasi-finite over W . Then there exists an étale morphism U → W and sections

si : U → C̃U such that the following two conditions hold: (1) CU → U is equinor-

malizable, i.e., C̃U → U is flat and C̃u → Cu is the normalization for any u ∈ U ;
and (2) ZU → U is étale and ZU = ∪r

i=1si(U).

Proof. The generic fiber C̃η is normal since normalization commutes with
arbitrary localizations. Then it is geometrically normal, since the characteristic is

zero; and hence C̃η → η is smooth by flat descent. Then C̃W → W is generically
smooth by generic flatness theorem, i.e., there exists an open dense subset U0 ⊂ W

such that C̃U0
→ U0 is smooth. In particular, C̃U0

→ U0 is flat and has normal

fibers. But, C̃u → Cu is finite for any u ∈ U0, and hence the normalization.
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Furthermore, for any étale map U → U0, the family CU → U is equinormalizable
since normalization commutes with étale base changes.

The morphism ZW → W is finite, and ZW is reduced. Thus, Zη → η is finite
and étale since the characteristic is zero. Hence, after shrinking U0, we may assume
that ZU0

→ U0 is finite and étale. Then there exists an étale morphism U → U0

such that ZU is the disjoint union of deg(Zη → η) copies of U and the map ZU → U
is the natural projection. Hence U is as needed. �

A.3. The results.

Proposition A.4. Let W ⊆ |L|δ be an irreducible subvariety, CW → W the

tautological family of curves, C̃W → CW the normalization, fW : C̃W → S the
natural morphism, and 0 ∈ W a general closed point. Assume that C0 is reduced.

(1) Then there exists a natural embedding T0(W ) ↪→ H0(C̃0,Nf0/N
tor
f0

).

(2) If −K.C ≥ 1 for any irreducible component C ⊆ C0, then

(A.4.1) dim(W ) ≤ h0(C̃0,Nf0/N
tor
f0 ) ≤ −K.C0 + pg(C0)− 1.

(3) If (A.4.1) is an equality and −K.C > 1 for an irreducible component C of
C0, then C is immersed.

(4) If (A.4.1) is an equality and −K.C > 1 for any irreducible component C

of C0, then Nf0 is invertible and T0(W ) → H0(C̃0,Nf0) is an isomorphism.

Proof. Pick a smooth irreducible closed curve D ⊂ S in a very ample linear
system such that h0(S,L(−D)) = 0. Then D ∩ Cw is finite for any w ∈ W , and
is reduced for almost all w ∈ W by Bertini’s theorem. In particular, D ∩ C0 is

reduced since 0 ∈ W is general. Hence the projection ZW := C̃W ×S D → W
is finite, since it is a projective morphism with finite fibers. Let g0 : Z0 → D
be the closed immersion. Then, by Lemma A.2 and Lemma A.3, there exists a
commutative diagram

(A.4.2) T0(W )� �

��

�� Def1(C̃0, f0)

��

�� H0(C̃0,Nf0/N
tor
f0

)

��

TZ0
(|L⊗ OD|) �

�
�� Def1(Z0, g0) H0(Z0,Ng0)

where T0(W ) → TZ0
(|L ⊗ OD|) is injective since W ⊆ |L| ⊆ |L ⊗ OD| by the

choice of D; and TZ0
(|L ⊗ OD|) → Def1(Z0, g0) is injective since TZ0

(|L ⊗ OD|)
is a subspace of the space of first-order embedded deformations of g0(Z0) ⊂ D,

and the latter is canonically isomorphic to
⊕

p∈g0(Z0)
Tp(D) = Def1(Z0, g0). Thus,

the composition T0(W ) → H0(Z0,Ng0) is injective, and hence so is T0(W ) →
H0(C̃0,Nf0/N

tor
f0

) as asserted by (1).

(2) The first inequality in (A.4.1) follows from (1). Since both sides of the
second inequality in (A.4.1) are additive with respect to unions, we may assume
that C0 is irreducible. Let 0 → Nf0/N

tor
f0

→ F be an invertible extension such that

c1(F) = c1(Nf0). By the assumption, c1(F) = c1(Nf0) = c1(ω ˜C0
)−K.C0 > c1(ω ˜C0

).

Thus, h0(C̃0,Nf0/N
tor
f0

) ≤ h0(C̃0,F) = c1(F) + 1 − pg(C0) = −K.C0 + pg(C0) − 1

by Riemann–Roch theorem, since h0(C̃0,F
∨ ⊗ ω

˜C0
) = 0; and hence (A.4.1) holds.

(3) Once again, we may assume that C0 is irreducible. To prove that C0

is immersed, it is sufficient to show that Ntor
f0

= 0. Assume to the contrary that
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Ntor
f0

	= 0. Pick an invertible extension 0 → Nf0/N
tor
f0

→ F with c1(F) = c1(Nf0)−1.

By the assumption, c1(F) = c1(Nf0) − 1 = c1(ω ˜C0
) −K.C0 − 1 > c1(ω ˜C0

). Thus,

h0(C̃0,Nf0/N
tor
f0

) ≤ h0(C̃0,F) = c1(F) + 1 − pg(C0) = −K.C0 + pg(C0) − 2 by
Riemann–Roch theorem, which is a contradiction.

(4) Note that by (3) we have: Ntor
f0

= 0, and hence Nf0 is invertible. Then

by (2), dim(T0(W )) = h0(C̃0,Nf0/N
tor
f0

) = h0(C̃0,Nf0). Thus, (1) implies that

T0(W ) ↪→ H0(C̃0,Nf0) = H0(C̃0,Nf0/N
tor
f0

) is an isomorphism. �

Remark A.5. By definition, δ := pa(C0)− pg(C0). Hence, if S is rational and
−K.C0 ≥ 1, then the adjunction formula and Lemma 2.1 yield

−K.C0 + pg(C0)− 1 = C0.(C0 −K)/2− δ = dim |L| − δ.

Proposition A.6. Fix a point q ∈ S, and a curve E ⊂ S. Let W ⊆ |L|δ be an

irreducible subvariety, CW → W the tautological family of curves, C̃W → CW the

normalization, fW : C̃W → S the natural morphism, and 0 ∈ W a general closed
point. Assume that C0 is reduced and immersed, dim(W ) = −K.C0 + pg(C0) − 1,
and −K.C ≥ 1 for any irreducible component C of C0.

(1) If −K.C > 1 for any irreducible component C of C0, then q /∈ C0.

(2) Let q0 ∈ C0 be a point of multiplicity at least three, and p1, p2, p3 ∈ C̃0 three
distinct preimages of q0. Then there exists an irreducible component C ⊆ C0 such

that −K.C ≤
∣∣∣C̃ ∩ {p1, p2, p3}

∣∣∣.
(3) Let q0 ∈ C0 be a singular point with at least two tangent branches, and

p1, p2 ∈ C̃0 the preimages of q0 on these branches. Then there exists an irreducible

component C ⊆ C0 such that −K.C ≤
∣∣∣C̃ ∩ {p1, p2}

∣∣∣.
(4) If −K.C > 1 for any irreducible component C of C0, then any branch of

C0 intersects E transversally. Furthermore, if Csing
0 ∩ E 	= ∅, then there exists an

irreducible component C ⊆ C0 such that Csing ∩E 	= ∅ and −K.C = 2.

Proof. First, note that Nf0 is invertible since C0 is immersed. Thus, the

embedding T0(W ) ↪→ H0(C̃0,Nf0/N
tor
f0

) = H0(C̃0,Nf0) of Proposition A.4 (1) is

an isomorphism by Proposition A.4 (2). Then h0(C̃0,Nf0) = −K.C0+pg(C0)−1 =

χ(Nf0), and hence h1(C̃0,Nf0) = 0. Let AW ⊂ CW be the locus of singular points of

the fibers CW → W . Set ZW := ν−1(AW )∪f−1
W (q∪E) ⊂ C̃W , where ν : C̃W → CW

is the normalization. Then ZW ⊂ C̃W is locally closed, and ZW → W has finite
fibers. Thus, by Lemma A.3, there exists an étale neighborhood U of 0 and disjoint

sections si : U → C̃U such that ZU = ∪r
i=1si(U). Set pi := si(0). Then the

isomorphism T0(W ) → H0(C̃0,Nf0) = Def1(C̃0, f0) factors through Def1(C̃0, f0; p)

for any 1 ≤ i1 < · · · < im ≤ r, where p = (pi1 , . . . , pim).
Consider the exact sequence of Lemma A.1

0 → ⊕m
j=1

(
T

˜C0
⊗ k(pij )

)
→ Def1(C̃0, f0; p) → H0(C̃0,Nf0) → 0,

the restriction map γ : H0(C̃0,Nf0) → ⊕m
j=1

(
Nf0 ⊗ k(pij )

)
, and the forgetful map

β : Def1(C̃0, f0; p) → ⊕m
j=1Def1(pij , f0|pij ) = ⊕m

j=1

(
f∗
0TS ⊗ k(pij )

)
.
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18 S. KLEIMAN, V. SHENDE, AND WITH AN APPENDIX BY I. TYOMKIN

Then the following diagram is commutative:

(A.6.1) T0(W ) �� Def1(C̃0, f0; p)

��

β
��
⊕m

j=1

(
f∗
0TS ⊗ k(pij )

)
π

��

T0(W )
∼ �� H0(C̃0,Nf0)

γ
��
⊕m

j=1

(
Nf0 ⊗ k(pij )

)
From the long exact sequence of cohomology associated to the short exact se-

quence of sheaves 0 → Nf0(−
∑m

j=1 p
ij ) → Nf0 → ⊕m

j=1Nf0 ⊗k(pij ) → 0 we obtain:

Ker(γ) = H0(C̃0,Nf0(−
∑m

j=1 p
ij )), and Coker(γ) ⊆ H1(C̃0,Nf0(−

∑m
j=1 p

ij )).

Thus, the map γ is not surjective if and only if h1(C̃0,Nf0(−
∑m

j=1 p
ij )) 	= 0, since

h1(C̃0,Nf0) = 0. In particular, if γ is not surjective then there exists an irreducible
component C ⊆ C0 such that c1(Nf0(−

∑m
j=1 p

ij )|
˜C) ≤ c1(ω ˜C), or, equivalently,

−K.C ≤ |C̃ ∩ {pij}mj=1|.
Let q0 ∈ C0 be either a singular point, or a point of intersection C0 ∩ E, or

q0 = q. Assume that ν(si(0)) = q0 for 1 ≤ i ≤ m. Since 0 ∈ W is general,
ν ◦ si = ν ◦ sj for all 1 ≤ i ≤ j ≤ m. Set ij := j, and consider diagram (A.6.1).
For any 1 ≤ j ≤ m, the tensor product f∗

0TS ⊗ k(pj) is canonically isomorphic to
Tq0(S) = Def1(q0 → S), and β factors through the diagonal map Δ: Tq0(S) →⊕m

j=1

(
f∗
0TS ⊗ k(pj)

)
. Hence Im(γ) ⊆ Im(π ◦Δ).

(1) Assume to the contrary that q ∈ C0, and set q0 := q. Without loss of
generality, ν(s1(0)) = q0. Set m := 1, and consider diagram (A.6.1). Then the

image of T0(W ) in Def1(p1, f0|p1) is trivial since q is fixed. Thus, γ is the zero
map, and hence there exists an irreducible component C ⊆ C0 such that −K.C ≤ 1,
which is a contradiction.

(2) Assume that q0 ∈ C0 is a singular point of multiplicity at least three.
Without loss of generality, s1(0), s2(0), s3(0) are preimages of q0. Set m := 3, and
consider diagram (A.6.1). Then dim(Im(γ)) ≤ dim(Im(π ◦Δ)) = 2 < 3, and hence
γ is not surjective. Thus, there exists an irreducible component as asserted.

(3) Assume that C0 has at least two tangent branches at q0. Without loss of
generality, s1(0), s2(0) are the preimages of q0 on the tangent branches. Set m := 2,
and consider diagram (A.6.1). Then dim(Im(γ)) ≤ dim(Im(π ◦Δ)) = 1 < 2, and
hence γ is not surjective. Thus, there exists an irreducible component as asserted.

(4) Assume that q0 ∈ C0∩E. Then q0 /∈ Esing by (1). Without loss of generality,

s1(0) is a preimage of q0. Assume to the contrary that df0(Ts1(0)(C̃0)) = Tq0(E).
Set m := 1, and consider diagram (A.6.1). The image of γ belongs to the image
of Def1(q0 → E) = Tq0(E) → Nf0 ⊗ k(p1), which is zero. Thus, there exists
an irreducible component C ⊂ C0 such that −K.C ≤ 1, which is a contradiction.
Hence no branch of C0 is tangent to E. Assume now that q0 ∈ Csing

0 . Without loss of
generality, s1(0) and s2(0) are preimages of q0. Set m := 2, and consider diagram
(A.6.1). The image of γ belongs to the image of Tq0(E) → ⊕2

i=1

(
Nf0 ⊗ k(pi)

)
,

which is at most one-dimensional. Thus, γ is not surjective, and hence there exists

an irreducible component C ⊆ C0 such that −K.C ≤ |C̃ ∩ {p1, p2}| ≤ 2. However,

−K.C ≥ 2 by the assumption. Hence p1, p2 ∈ C̃, q0 ∈ Csing, and −K.C = 2. �

A.4. Conclusions and final remarks. First, let us prove the assertion about
the codimension in Theorem 1.1: The upper bound follows easily from the fact
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that the locus of equigeneric deformations in the space of all deformations has
codimension δ, as explained at the very beginning of the proof of Lemma 3.2. The
lower bound follows from Proposition A.4 (2) and Remark A.5 applied to every
irreducible component W ⊆ |L|δ \ V .

Second, let us prove the most difficult part of Proposition 1.2, namely the
nodality of a general curve in |L|δ \V : Pick an irreducible component W ⊆ |L|δ \V ,
and let 0 ∈ W be a general closed point. Then dim(W ) = −K.C0 + pg(C0)− 1 by
Theorem 1.1 and Remark A.5. Furthermore, C0 is immersed by Proposition A.4
(3) and assumption (3) of Theorem 1.1. By Proposition A.6 (2), if C0 has a point
of multiplicity at least three, then we get a contradiction to assumption (4), or (5),
or (6), or (7), or (8) of Proposition 1.2. Similarly, by Proposition A.6 (3), if C0 has
a singular point with at least two tangent branches, then we get a contradiction to
assumption (9) or (10) of Proposition 1.2. Thus, C0 is nodal.

Third, note that Proposition A.4 and Proposition A.6 imply few previously
known results about families of curves on algebraic surfaces such as [38, Theo-
rem 2, p. 220], [3, (3.1), p. 95], [4, (10.7), p. 847], [7, Proposition 2.2, p. 355], [35,
Proposition 8.1, p. 74], and [32, Theorem 2.8, p. 8].

Finally, let us mention that in positive characteristic Proposition A.4 and
Proposition A.6 are no longer true. It was shown in [33] that there exist S,L,W
as in the Propositions such that: (a) for any étale morphism U → W the fam-
ily CU is not equinormalizable, (b) dim(W ) = −K.C0 + pg(C0) − 1, and (c) all
curves Cw are non-immersed, have tangent branches, and intersect each other non-
transversally. However, at least for toric surfaces S, it was shown that the bound
dim(W ) ≤ −K.C0 + pg(C0)− 1 holds true in arbitrary characteristic.
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Curve Counting à la Göttsche

Steven L. Kleiman

Abstract. Summary of a Problem Session held August 25, 2011, updated

September 13, 2012.

Let nδ be the number of δ-nodal curves lying in a suitably ample complete
linear system |L| and passing through appropriately many points on a smooth
projective complex algebraic surface. Often nδ is referred to as a Severi degree. A
major problem is to understand the behavior of nδ, specifically to finish off Lothar
Göttsche’s mostly proved 1997 conjectures [17] and then go on to treat the new
refinements by Göttsche and Vivek Shende [18], [19].

The general area has been very active for over fifteen years, and is now busier
and more exciting than ever before. Among many other people involved have been
Joe Harris himself, some of his students, and some of theirs. The area is unusually
broad—embracing ideas from physics, symplectic differential geometry, complex
analytic geometry, algebraic geometry, tropical geometry, and combinatorics.

Problem number one is to find the two power series

B1(q), B2(q) ∈ Z[[q]]

appearing in Göttsche’s remarkable formula for the generating function of the nδ.
The formula expresses the function, so the nδ, in terms of the four basic numerical
invariants of the system and the surface. In fact, nδ is a polynomial in the four.
See (1) and (4) and (5) below.

Göttsche [17, Rmk. 2.5(2)] computed the coefficients of B1(q) and B2(q) up to
degree 28 on the basis of the recursive formula for the nδ of the plane due to Lucia
Caporaso and Harris [8, Thm. 1.1]. (A different recursion had been given earlier by
Ziv Ran [34, Thm. 3C.1].) Göttsche checked the result against much of what was
known, including Ravi Vakil’s enumeration [40] for the Hirzebruch surfaces (that
is, the rational ruled surfaces).

The problem is to find a closed form for each Bi(q), or a functional equation.
Second, given δ, how ample is suitable, so that nδ has the predicted value?

After all, for any system, the polynomial yields a number, but it isn’t always nδ.
For example, consider plane curves of degree d. If d = 1, then n3 is the number of

2010 Mathematics Subject Classification. 14N10 (Primary); 14C20, 14H20 (Secondary).
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3-nodal lines, namely 0, but the polynomial yields 75. Considering the geometry,
Göttsche [17, Cnj. 4.1, Rmk. 4.4] conjectured the polynomial works if d ≥ δ/2 + 1.

The latter conjecture was proved for δ ≤ 8 by Ragni Piene and the author [25,
Thm. 3.1] using algebraic methods, then for δ ≤ 14 by Florian Block [4, Prp. 1.4].
He built on ideas of Sergey Fomin and Grigory Mikhalkin [15, Thm. 5.1], who
used tropical methods to set up the enumeration from scratch and to validate its
predictions for d ≥ 2δ. In principle, the problem is purely combinatorial: to show
formally the Caporaso–Harris recursion yields a polynomial in d for d ≥ δ/2 + 1.

On any surface, Martijn Kool, Shende, and Richard Thomas [27, Prp. 2.1]
proved it suffices for L to be δ-very ample. Piene and the author [24, Thm. 1.1]
proved it suffices for L to be of the form M⊗m⊗N where M is very ample, m ≥ 3δ,
and N is spanned, provided δ ≤ 8. Both results were inspired by Göttsche’s [17,
Prp. 5.2]; in turn, Göttsche had been inspired by Harris and Rahul Pandharipande’s
paper [20], which treats the case δ ≤ 3 in the plane.

In fact, Göttsche conjectured the polynomial works for plane curves of degree d
iff d ≥ δ/2+1. And Block proved, for 3 ≤ δ ≤ 14, that �δ/2�+1 is, indeed, a thresh-
old, as he called it; namely, it is the least integer d∗ such that the polynomial works
for d ≥ d∗. Further, Göttsche conjectured a similar statement for the Hirzebruch
surfaces. Shende and the author [26] proved that, above Göttsche’s conjectured
threshold, the polynomials work for the plane and for the Hirzebruch surfaces and
that a similar statement holds for the classical del Pezzo surfaces; moreover, there’s
at least one case where the polynomial works below the conjectured threshold too.

Sometimes, the curves are required to belong to a general linear subsystem
of |L| rather than to pass through appropriately many points. However, the latter
condition does yield a general subsystem by Piene and the author’s [24, Lem. (4.7)].

The problem is to determine just when the polynomial yields nδ.
Third, what about nonlinear systems? After all, Gromov–Witten theory fixes

not the linear equivalence class, but the homology class, and this class determines
the four basic invariants, (1) below. Jim Bryan and Naichung Conan Leung [5,
Thm. 1.1] handled primitive complete nonlinear systems on generic Abelian surfaces
for all δ. They used symplectic methods. Piene and the author [25, § 5] obtained
similar results algebraically, but for δ ≤ 8.

Israel Vainsencher [39, § 6.2] treated a remarkable system. His parameter space
was the Grassmannian of P2 in P4. His surface was P2, but moving in P4. His curves
arose by intersecting the moving P2 with a fixed general quintic 3-fold X. Thus he
found X contains 17,601,000 irreducible 6-nodal quintic plane curves. Piene and
the author [25, Thm. 4.3] validated the number. Pandharipande [11, (7.54)] noted
each curve has six double covers previously unconsidered in mirror symmetry.

Given any suitably general algebraic system of curves on surfaces, Piene and
the author [25, Thm. 2.5 and Rmk. 2.7] found on the parameter space the class of
the curves with δ nodes for δ ≤ 8 and conjectured the formula generalizes to any δ.

The problem is to generalize the formula for nδ, in (4), to algebraic systems.
Fourth, what about higher singularities? This question is related to the pre-

vious one, about algebraic systems. For example, given a system, consider those
curves with a triple point and δ double points. Their number can be viewed as the
number of curves with δ double points in the following system: take the subsystem
of curves with a triple point, and resolve the locus of triple points. This exam-
ple was treated for 0 ≤ δ ≤ 3 by Vainsencher and by Piene and the author [24,
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Thm. 1.2]. A substantial amount of work has been done; see Maxim Kazarian’s
paper [21], Dmitry Kerner’s papers [22], [23], Jun Li and Yu-Jong Tzeng’s paper
[28], Jørgen Rennemo’s paper [35] and their references.

The problem is to enumerate the curves of fixed global equisingularity type
lying in a given algebraic system—that is, to find on the parameter space the class
of these curves.

Fifth, what about positive characteristic? Sometimes an enumeration is more
tractable modulo a prime. Thus Göttsche [16, Thm. 0.1] found the Betti numbers
of the Hilbert schemes of points on a smooth surface. (In [13, pp. 175–178], he and
Barbara Fantechi discuss other proofs and refinements of the result.) This result,
combined with others, led to the celebrated formula of Shing-Tung Yau and Eric
Zaslow [41, p. 5] enumerating rational curves on a K3 surface. They developed
ideas of Cumrun Vafa et al.: see [37, p. 438] for a similar formula; see [38, p. 44] for
the use of Göttsche’s result; see [3, p. 437] for the use of varying Jacobians. In turn,
Arnaud Beauville [1] and Fantechi, Göttsche, and Duco van Straten [14] developed
the ideas in [41] further, and Xi Chen [9, Thm. 1] proved the curves are nodal.

The Yau–Zaslow formula too inspired Göttsche to develop his conjectures. For
K3 surfaces and Abelian surfaces, B1(q) and B2(q) disappear, leaving explicit for-
mulas in any geometric genus. These formulas were proved for primitive classes on
generic such surfaces by Bryan and Leung; see [6] for a lovely survey.

The problem is to determine just when Göttsche’s conjectures hold in positive
characteristic.

To define the Bi(q), denote the surface by S, and its canonical bundle by K.
The four basic invariants are these numbers:

(1) x := L2, y := L ·K, z := K2, t := c2(S).

For δ ≤ 6, Vainsencher [39, § 5] worked out formulas for the nδ, getting enormous
polynomials in x, y, z, t. Afterwards, it was natural to conjecture this statement:

(2) The number nδ is given by a universal polynomial of degree δ in Q[x, y, z, t].

For plane curves of degree d, we have (x, y, z, t) = (d2,−3d, 9, 3). So Philippe
Di Francesco and Claude Itzykson [12, p. 85] conjectured nδ is given by a polynomial

in d of a certain shape for
(
d−1
2

)
≥ δ. Youngook Choi [10, p. 12] established their

conjecture for d ≥ δ on the basis of Ran’s work [34]. Göttsche [17, § 4] refined the
conjecture. Given (2) in the form of (4) below, Nikolay Qviller [33, § 4] established
most of Göttsche’s refinements concerning the shape.

In full generality, (2) was given a symplectic proof and an algebraic proof by
Ai-ko Liu [29], [30]. It was recently given new proofs by Tzeng [36, Thm. 1.1] and
Kool, Shende, and Thomas [27, Thm. 4.1]; the former is purely algebraic, whereas
the latter also relies on topology. These new proofs have caused quite a stir!

Göttsche [17, Cnj. 2.1] did conjecture (2) in full generality, but his elaboration
is far more important. First, he proved (2) is equivalent to this statement:

(3)
∑

nδu
δ = Ax

1A
y
2A

z
3A

t
4 for some Ai ∈ Q[[u]].

The Ai are the exponentials of their logarithms. Hence (3) is equivalent to this:

(4) nδ = Pδ(a1, . . . , aδ)/δ! where
∑

δ≥0 Pδu
δ/δ! = exp

(∑
κ≥1 aκu

κ/κ!
)

for some linear forms aκ(x, y, z, t). The polynomials Pδ were studied extensively
in 1934 by Eric Temple Bell [2]. Piene and the author [24, p. 210] determined aκ
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for κ ≤ 8, and found its coefficients to be integers. Recently, Qviller [33, Thm. 2.4]
(see [32, § 6] too) proved the coefficients are always integers.

The Bi(q) appear in the next formula, the Göttsche–Yau–Zaslow Formula:

(5)
∑

nδu(q)
δ = B1(q)

zB2(q)
yB3(q)

χB4(q)
−ν/2

where u(q), B3(q), B4(q) ∈ Z[[q]] are explicit quasi-modular forms and where

χ := χ(L) = (x− y)/2 + ν and ν := χ(OS) = (z + t)/12.

Göttsche [17, Cnj. 2.4] conjectured (5). He [17, Rmks. 2.5(1), 3.1] noted (5) implies
(2) and generalizes the Yau–Zaslow Formula. Tzeng [36, Thm. 1.2] derived (5) from
(3) via Bryan and Leung’s work on K3 surfaces [7, Thm. 1.1] and via Piene and the
author’s [25, Lem. 5.3]; the latter provides enough suitably ample primitive classes.

Finally, Göttsche and Shende were inspired by Kool, Shende, and Thomas’s
work to conjecture, among many other statements, refinements [19, Cnj. 75] of the
Caporaso–Harris and Vakil recursions. Further, Göttsche and Shende [19, Cnj. 5, 7]
refine (5) with this conjecture: there should be polynomials nδ(v) ∈ Z[v] and power
series with polynomial coefficients u(v, q), Bi(v, q) ∈ Q[v, v−1][[q]] such that∑

nδ(v) u(v, q)
δ = B1(v, q)

zB2(v, q)
yB3(v, q)

χB4(v, q)
−ν/2

and such that putting v = 1 recovers (5). Again u(v, q) and B3(v, q) and B4(v, q)
are known; however, it is an open problem to find the geometric meaning of nδ(v).

If S is a real toric variety, then nδ(−1) is conjectured in [19, Cnj. 90] to be
the tropical Welschinger invariant—the number of real δ-nodal curves lying in a
suitably ample real complete linear system and passing through a subtropical set of
appropriately many real points, each curve counted with an appropriate sign. The
notion of subtropical set was introduced and studied by Mikhalkin in [31]. This
conjecture is also stated by Block and Göttsche in a paper currently being written;
further, there the conjecture is proved for δ ≤ 8 using methods like those in [4]

The refined problem number one is to find B1(v, q) and B2(v, q).
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Threshold,” Clay Math. Proc. 18 (2013) (this volume), 427–448.

27. Kool, Martijn, Shende, Vivek, Thomas, Richard, “A short proof of the Göttsche conjecture,”
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36. Tzeng, Yu-Jong, “A Proof of the Göttsche–Yau–Zaslow Formula,” J. Differential Geom. 90.3
(2012), 439–472; arXiv:1009.5371v3. MR2916043

37. Vafa, Cumrun, Instantons on D-branes, Nuclear Phys. B 463 (1996), no. 2-3, 435–442.
MR1393649 (97h:81180)

455



6 STEVEN L. KLEIMAN

38. Vafa, Cumrun, and Witten, Edward, A strong coupling test of S-duality, Nuclear Phys. B
431 (1994), no. 1-2, 3–77. MR1305096 (95k:81138)

39. Vainsencher, Israel, Enumeration of n-fold tangent hyperplanes to a surface, J. Alg. Geom. 4
(1995), 503–526. MR1325790 (96e:14063)

40. Vakil, Ravi, Counting curves on rational surfaces, Manuscripta Math. 102 (2000), no. 1,
53–84. MR1771228 (2001h:14069)

41. Yau, Shing-Tung, and Zaslow, Eric, BPS states, string duality, and nodal curves on K3,

Nuclear Phys. B 471 (1996), no. 3, 503–512. MR1398633 (97e:14066)

Dept. of Math., 2-278 MIT, 77 Mass. Ave., Cambridge, Massachusetts 02139

E-mail address: Kleiman@math.MIT.edu

456



Clay Mathematics Proceedings

Mnëv-Sturmfels universality for schemes

Seok Hyeong Lee and Ravi Vakil

Abstract. We prove a scheme-theoretic version of Mnëv-Sturmfels Univer-
sality, suitable to be used in the proof of Murphy’s Law in Algebraic Geometry
[Va, Main Thm. 1.1]. Somewhat more precisely, we show that any singularity
type of finite type over Z appears on some incidence scheme of points and
lines, subject to some particular further constraints.

This paper is dedicated to Joe Harris on the occasion of his birthday, with

warmth and gratitude.

1. Introduction

Define an equivalence relation ∼ on pointed schemes generated by the following:
if (X,P ) → (Y,Q) is a smooth morphism of pointed schemes (P ∈ X, Q ∈ Y ) —
i.e. a smooth morphism π : X → Y with π(P ) = Q — then (X,P ) ∼ (Y,Q). We
call equivalence classes singularity types, and we call pointed schemes singularities.
We say that Murphy’s Law holds for a (moduli) scheme M if every singularity type
appearing on a finite type scheme over Z also appears on M . (This use of the
phrase “Murphy’s Law” is from [Va, §1], and earlier appeared informally in [HM,
p. 18]. Folklore ascribes it to Mumford.)

Definition 1.1. Define an incidence scheme of points and lines in P2
Z
as a lo-

cally closed subscheme of (P2
Z
)M × (P2∨

Z
)N = {p1, . . . , pM , l1, . . . , lN} parametrizing

M labeled points and N labeled lines, satisfying the following conditions.

(i) p1 = [0, 0, 1], p2 = [0, 1, 0], p3 = [1, 0, 0], p4 = [1, 1, 1].
(ii) We are given some specified incidences: for each pair (pi, lj), either pi is

required to lie on lj , or pi is required not to lie on lj .
(iii) The marked points are required to be distinct, and the marked lines are

required to be distinct.
(iv) Given any two marked lines, there is a marked point required to be on

both of them (necessarily unique, given (iii)).
(v) Each marked line contains at least three marked points.

Note that even though our definition over Z, these conditions may force us into
positive characteristic. For instance, the Fano plane point-line configuration would
force us into characteristic 2.

The goal of this paper is to establish the following.

2010 Mathematics Subject Classification. Primary 14J10; Secondary 14N20, 14B12.
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Theorem 1.2 (Mnëv-Sturmfels Universality Theorem for Schemes). The dis-
joint union of all incidence schemes (over all possible M , N , and data of the form
described in Definition 1.1) satisfies Murphy’s Law.

Theorem 1.2 appeared as [Va, Thm. 3.1], as an essential step in proving [Va,
Main Thm. 1.1], which stated that many important moduli spaces satisfy Murphy’s
Law. A number of readers of [Va] have pointed out to the second author that the
references given in [Va] and elsewhere in the literature do not establish the precise
statement of Theorem 1.2, and that it is not clear how to execute the glib paren-
thetical assertion (“The only subtlety ...,” [Va, p. 577, l. 3-5]) to extend Lafforgue’s
argument [L, Thm. I.14] to obtain the desired result. (In particular, our problem
is that Lafforgue does not require (iv) in his moduli spaces, as it is not needed for
his purposes. If we then add marked points to all pairwise intersections of lines in
Lafforgue’s construction, then it is not clear that (iii) holds in the configurations
he constructs, and we suspect it does not always hold.)

This paper was written in order to fill a possible gap in [Va], or at least to
clarify details of an important construction. We hope this paper will be of use to
those studying the singularities of moduli spaces not covered by [Va] (the moduli
space of vector bundles, [P], or the Hilbert scheme of points, [E], say). Although
no one familiar with this area would doubt that Theorem 1.2 holds, or how the
general idea should go, we will see that some care is needed to rigorously establish
it. In particular, our argument is characteristic-dependent.

1.1. Key features in the argument. Given any polynomials f1, . . . , fr ∈
Z[x1, . . . , xn], our goal is to build a smooth cover of

SpecZ[x1, . . . , xn]/(f1, . . . , fr)

by (open subsets of) incidence schemes, by encoding the variables and relations in
incidence relations. We build the relations by combining “atomic” calculations en-
coding equality, negation, addition, and multiplication. We point out new features
of the argument we use, in order to ensure 1.1(iii) in particular. We perform each
“atomic” calculation on a separate line of the plane, to avoid having too many im-
portant points on a single line, because points on a line must be shown to not over-
lap. We need various cases to deal with when the “variable” in question is “near” 0
or 1 (i.e. has value 0 or 1 at a given geometric point Q of Z[x1, . . . , xn]/(f1, . . . , fr),
but is not required to have that value “near” Q). Furthermore, the “usual” con-
struction of addition and multiplication runs into problems in characteristic 2 due
to unintended coincidences of points, so some care is required in this case (see §4.6).

1.2. Algebro-geometric history. Vershik’s “universality” philosophy (e.g.
[Ve, Sect. 7]) has led to a number of important constructions in many parts of
mathematics. One of the most famous is Mnëv’s Universality Theorem [M1, M2].
It was independently proved by Bokowski and Sturmfels [BS, S1, S2]. We follow
Belkale and Brosnan [BB, §10] in naming the result after both Mnëv and Sturmfels.
(The idea is more ancient; von Staudt’s “algebra of throws” goes back at least to
[Ma], see also [Ku].)

Lafforgue outlined a proof of a scheme-theoretic version in [L, Thm. I.14].
Keel and Tevelev used this construction in [KT] (see §1.8 and Theorem 3.13 of
that article). Another algebro-geometric application of Mnëv’s theorem (this time
in its manifestation in the representation problem of matroids) was Belkale and
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Brosnan’s surprising counterexample to a conjecture of Kontsevich, [BB]. More
recently Payne applied this construction in [P] to toric vector bundles, and Erman
applied it in [E] to the Hilbert scheme of points. (These examples are representative
but not exhaustive.)
Acknowledgments. We thank the two referees for their thoughtful suggestions.
The second author thanks A. J. de Jong, M. Roth, and of course J. Harris.

2. Structure of the construction

2.1. Strategy. Fix a singularity (Y,Q) of finite type over SpecZ. We will
show that there exists a point P of some incidence schemeX (i.e. some configuration
of points and lines, as described in Definition 1.1), along with a smooth morphism
π : (X,P ) → (Y,Q) of pointed schemes. Because smooth morphisms are open, it
suffices to deal with the case where Q is a closed point of Y . Then the residue field
κ(Q) has finite characteristic p. (The reduction to characteristic p is not important;
it is done to allow us to construct a configuration over a fixed infinite field. Those
interested only in the characteristic 0 version of this result will readily figure out
how to replace Fp with Q or C.)

By replacing Y with an affine neighborhood of Q, we may assume Y is affine,
say Y = SpecZ[x1, . . . , xn]/(f1, . . . , fr). The morphism

SpecFp[x1, . . . , xn]/(f1, . . . , fr) → SpecFp[x1, . . . , xn]/(f1, . . . , fr)

is surjective by the Lying Over Theorem. Choose a pre-image

Q ∈ SpecFp[x1, . . . , xn]/(f1, . . . , fr)

of Q — say the (closed) point (x1, . . . , xn) = (q1, . . . , qn), where �q ∈ F
n

p .
We make the following constructions.

(a) We describe a configuration of points and lines over Fp, which is thus an Fp-

valued point P of an incidence scheme X.
(b) The incidence scheme X will be an open subscheme of an affine scheme X ′, and
we construct (a finite number of) coordinates onX ′, which we nameX1, . . . , Xn, Y1,
. . . , Ys subject only to the relations fi(X1, . . . , Xn) = 0 (1 ≤ i ≤ r). We thus have
a smooth morphism π : X → Y given by Xi �→ xi. Letting XK = X×SpecZ SpecK

for K = Fp and Fp, and similarly for YK and πK , we have a diagram:

X
Fp

��

π
Fp

��

XFp
��

πFp

��

X � � open ��

π

��

X ′ Y ×Z As
Z

�����
���

���
���

���
�

Y
Fp

�� YFp
�� Y

In the course of the construction, we will not explicitly name the variables Yj , but
whenever a free choice is made this corresponds to adding a new variable Yj .

(c) We will have π
Fp
(P ) = Q. Thus the image of π includes Q.

2.2. Notation and variables for the incidence scheme. The traditional
(and only reasonable) approach is to construct a configuration of points and lines
encoding this singularity, by encoding the “atomic” operations of equality, negation,
addition, and multiplication. The most difficult desideratum is 1.1(iii).

Our incidence scheme will parametrize points and lines of the following form.
In the course of this description we give names to the relevant types of points and
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lines, and give our chosen coordinates. We will later describe our particular point
P ∈ X

Fp
.

The first type of points are p1 through p4 (see 1.1(i)). We call these anchor
points. We interpret P2 in the usual way: p2p3 is the line at infinity, and p1 is the
origin; lines through p3 are called horizontal. The first type of lines in our incidence
scheme are the lines pipj . We call these anchor lines.

The next type of line, which we call variable-bearing lines, will be required to
pass through p3 = [1, 0, 0] (they are “horizontal”), and not through p1, p2, or p4.
Each variable-bearing line is parametrized by where it meets the y-axis (which is
finite, as the lines do not pass through p2 = [0, 1, 0]). Thus for each variable-bearing
line li, we have a coordinate yi. In order to satisfy 1.1(iii), we will always arrange
that the yi are distinct and not 0 or 1. These yi will be among the Yj of 2.1(b)
above.

Each variable-bearing line li has a framing-type Fri, which is a size two subset
of {−1, 0, 1} if p > 2, and of {0, 1, j} where j is a chosen solution of j2 + j − 1 = 0
(see §4.6.3 for more) if p = 2. Each variable-bearing line li contains (in addition to
p3) the following three distinct marked points:

• two framing points Pi,s, where s ∈ Fri; and
• one variable-bearing point Vi.

The point Pi,s we parametrize by its x-coordinate, which we confusingly name yi,s
(because it will be one of the “free” variables Yi of 2.1(b)). The variable-bearing
point Vi we parametrize using the isomorphism li → P1 obtained by sending p3
to ∞, and Pi,s to s for s ∈ Fri. We denote this coordinate xi. (In our construc-
tion, these coordinates will be either among those Xi of 2.1(b) above, or will be
determined by the other variables.) A variable-bearing line over Fp of framing-type

Fri, whose variable-bearing point carries the variable xi = q ∈ Fp, we will call a
(Fri, q)-line or a (Fri, xi)-line.

We have a number of additional configurations of points and lines, called con-
necting configurations, which are required to contain a specified subset of the above-
named points, and required to not contain the rest. These will add additional free
variables (which, in keeping with 2.1(b) above, we call Yj for an appropriate j),
and will (scheme-theoretically) impose a single constraint upon the x-variables:

• xa = xb (an equality configuration)
• xa = −xb (a negation configuration),
• xa + xb = xc (an addition configuration), or
• xaxb = xc (a multiplication configuration).

Finally, for each pair of above-named lines that do not have an above-named
point contained in both, we have an additional marked point at their intersection
(in order that 1.1(iv) holds), which we call bystander points. In our construction,
we never have more than two lines meeting at a point except at the previously-
named points, and the only lines passing through the previously-named points are
the ones specified above. The name “bystander points” reflects the fact that they
play no further role, and no additional variables are needed to parametrize them.

2.3. Reduction to four problems. We reduce Theorem 1.2 to four atomic
problems.
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We construct the expression for each fi sequentially, starting with the variables
xi and the constant 1 (which we name x0 to simplify notation later), and using nega-
tion of one term or addition or multiplication of two terms at each step. Somewhat
more precisely, we make a finite sequence of intermediate expressions, where each
expression is the negation, sum, or product of earlier (one or two) expressions. We
assign new variables xn+1, xn+2, . . . for each new intermediate expression. Those
additional variables xk will come along with a single equation — negation, addi-
tion, or multiplication — describing how xk is obtained from its redecessor(s). In
case of sum and product, we additionally require two predecessors to be different,
even in case of adding or multiplying same expression. Finally, for the variable xa

representing the final expression fi (one for each fi), we add the equation xa = 0.
These simple equations (which we call gi) are equivalent to our original equations
fi = 0, so we have (canonically)

(2.1) Z[x1, . . . , xn]/(f1, . . . , fr) ∼= Z[x1, . . . , xn, xn+1, . . . , xm]/(g1, g2, . . . , gr′)

where each gj is of the form xa − xb, xa + xb, xa + xb − xc, xaxb − xc, or xa. As
one example of this procedure:

Z[x1, x2, x3]

(x1x2 + x2
3 − 2)

∼= Z[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10]/I

where I = (x4 − x1x2, x5 − x3, x6 − x3x5, x7 − x4 − x6, x8 − 1, x9 − 1, x10 − x8 −
x9, x7 − x10).

We now construct our configuration over Fp. Via (2.1), we interpret Q as

a geometric point of SpecZ[x1, . . . , xm]/(g1, g2, . . . , gr′), and we let qi ∈ Fp be
coordinates of xi for all i. For each i ∈ {1, . . . ,m}, we choose two distinct q’s in
{−1, 0, 1} or {0, 1, j} (according to whether p > 2 or p = 2) distinct from qi; this
will be the framing-type Fri of xi. We place (generally chosen) variable-bearing
lines li, one for each xi for i ∈ {1, . . . ,m}, with framing points (corresponding
to the framing-type Fri) chosen generally on li, then with variable-bearing points
chosen so that the coordinate of the variable point for the line li is qi.

We then sequentially do the following for each simple equation gj . For each
gj involving variables xa, xb (and possibly xc), we place a corresponding config-
uration joining variable-bearing points for those variables and enforcing (scheme-
theoretically) the equation gj . We will do this in such a way that the connecting
configuration passes through no points or lines it is not supposed to. We will of
course do this by a general position argument.

We are thus reduced to four problems, which we describe below (with italicized
titles) after setting the stage for them. Suppose we are given a configuration of
points and lines in the plane, including the anchor points pi, and the anchor lines
pipj (1 ≤ i < j ≤ 4) (and hence implicitly a point of some incidence scheme). Note
that this incidence scheme is quasiaffine, say U ⊂ SpecA:

• the non-vertical lines (those non-anchor lines not containing p2 = [0, 1, 0])
y = mx+ b are parametrized by m and b;

• vertical lines (those non-anchor lines passing through p2) x = a are
parametrized by a;

• those points (x, y) = (a, b) not on the line at infinity are parametrized by
a and b;

• and those non-anchor points [1, c, 0] on the line at ∞ are parametrized by
c.
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The conditions of §1.1 are clearly locally closed.
Here now are the four problems.
Equality problem. If we have two variable-bearing lines la and lb with coordi-

nates xa and xb, we must show that we may superimpose an equality configuration
(i.e. add more points and lines), where except for the framing and variable- earing
points on these two lines la and lb, no point of the additional configuration lies on
any pre-existing lines, and no line in the additional configuration passes through
any pre-existing points (including pre-existing bystander points — pairwise inter-
sections of pre-existing lines). Furthermore, the addition of this configuration must
add only open conditions for added free variables and xa, xb, and enforce exactly
(scheme-theoretically) the equation xa = xb. More precisely, we desire that the
morphism from the new incidence scheme to the old one is of the following form:

U ′

��

� � open �� SpecA[y1, . . . , yN ]/(xa − xb)

��

U ��� � open
�� SpecA

(for some value of N).
Negation problem: the same problem, except with xa = −xb replacing xa = xb.
Addition problem: the analogous problem, except xc = xa + xb (a 	= b).
Multiplication problem: the analogous problem, except xc = xaxb (a 	= b).

3. The configurations

We now describe the configurations needed to make this work.

3.1. Building blocks for the building blocks: five configurations. The
building blocks we use are shown in Figures 2–5. The figures follow certain con-
ventions. (See Figure 1 for a legend.) Lines that appear horizontal are indeed so
— they are required to pass through p3 = [1, 0, 0]. The horizontal lines often have
(at least) three labeled points, which suggest an isomorphism with P1. The dashed
lines (and marked points thereon) are those that are in the configuration before we
begin. The points and lines marked with a box are added next, and involve free
choices (two coordinates for each boxed point, one for the each boxed horizontal
line). The remaining points and lines are then determined. The triangle indicates
the “goal” of the construction, if interpreted as constructing midpoint, addition,
multiplication, and so forth (which is admittedly not our point of view).

previously constructed lines and points

(other points and lines are determined)

freely chosen points and horizontal lines

“goal”

Figure 1. Legend for Figures 2–5

The first building block, parallel shift, gives the projection from a point X of
three points (P1, V, P2) on the horizontal line l onto (P ′

1, V
′, P ′

2) on the horizontal
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line l′. Invariance of cross-ratio under projection gives

(P1, V ;P2, p3) = (P ′
1, V

′;P ′
2, p3)

(where (·, ·; ·, ·) throughout the paper means cross-ratio, or moduli point in M0,4),
so if l and l′ are lines of the same framing-type, with (P1, P2) and (P ′

1, P
′
2) the

corresponding framing points and V and V ′ the variable-bearing points, then the
coordinates of V and V ′ are the same (scheme-theoretically). Note that we are
adding three free variables (two for the point, one for the line), plus an open con-
dition to ensure no unintended incidences with preexisting points and lines.

V P2

P ′
1 V ′

l

X

P1

P ′
2

l′

Figure 2. Parallel shift

The second building block, midpoint (Figure 3), will be used for constructing
the midpoint M of two distinct points A and B on line l (where p3 is considered
as usual to be infinity). This construction will be used outside characteristic 2. (In
p = 2, the diagram is misleading: XY passes through p3, resulting in M = p3.) We
have equality of cross-ratios

(A,M ;B, p3) = (A′,M ′;B′, p3) (projection from X)

= (B,M ;A, p3) (projection from Y )

= 1/(A,M ;B, p3) (property of cross-ratio)

so (A,M ;B, p3) is either 1 or −1. For p 	= 2 and A 	= B, it is straightforward to
verify that M 	= p3 so (A,M ;B, p3) 	= 1. Thus (A,M ;B, p3) = −1, so M is the
“midpoint” of AB. (More precisely: given any isomorphism of l with P1 identifying
p3 with ∞, the coordinate of M is the average of the coordinates of A and B. In
classical language, M is the harmonic conjugate of p3 with respect to A and B.)

l
M

X

A B

Y

A′ M ′ B′
l′

Figure 3. Midpoint

The generic addition configuration (Figure 4) deals with addition xa + xb in
the “generic” case where xa, xb, and xa + xb are distinct from 0 and 1, and the
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framing-type of their lines are all {0, 1}. Given two lines la and lb with variables
xa, xb, with framing points (Pa,0, Pa,1) and (Pb,0, Pb,1) on la and lb respectively,
we choose a general horizontal line l′ and a general point X, and superimpose the
construction shown in Figure 4. If the line l′ is given the framing-type Fr = {0, 1}
with framing points P ′

0 and P ′
1, the reader will readily verify that the coordinate of

V ′ is x′ = xa+xb, and that this equation is precisely what is (scheme-theoretically)
enforced by the configuration.

la

l′

lb

Pa,0 Va Pa,1

P ′
0 V V ′

Pb,0

P ′
1

X

Pb,1Vb

Figure 4. Generic addition

The generic multiplication configuration (Figure 5) constructs/enforces multi-
plication xc = xaxb in the “generic” case where xa, xb, and xaxb are distinct from
0 and 1, and the framing-type of their lines are all {0, 1}. As with the “generic
addition” case, given two lines la and lb with variables xa, xb, with framing points
(Pa,0, Pa,1) and (Pb,0, Pb,1) on la and lb respectively, we choose a general horizontal
line l′ and a general point X, and superimpose the construction shown in Figure 5.
If the line l′ is given the framing-type Fr = {0, 1} with framing points P ′

0 and P ′
1,

the reader will readily verify that the coordinate x′ of V ′ is xaxb, and that this
equation is precisely what is (scheme-theoretically) enforced by the configuration.
The main part of the argument is that

xa = (Pa,0, Va;Pa,1, p3) = (P ′
0, V ;P ′

1, p3)

and
(P ′

0, V
′;V, p3) = (Pb,0, Vb;Pb,1, p3) = xb

yield
x′ = (P ′

0, V
′;P ′

1, p3) = (P ′
0, V

′;V, p3)(P
′
0, V ;P ′

1, p3) = xaxb.

We remark that we are parallel-shifting the point Vb from lb to l′ to avoid accidental
overlaps of points in our later argument.

4. Putting everything together

We now put the atomic configurations together in various ways in order to solve
the four problems of §2.3. We begin with the case p 	= 2, leaving the case p = 2
until §4.6.

4.1. Relabeling. Before we start, we note that it will be convenient to use
the same framing points but a different framing-type to change the value of the
variable “carried” by the line. For example, a ({0, 1}, q)-line may be interpreted as
a ({0,−1},−q)-line (as (0, 1; q,∞) = (0,−1;−q,∞)).
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Pb,0 Pb,1

la

l′

lb

Vb

VP ′
0

Pa,0 Va Pa,1

P ′
1

V ′

X

Figure 5. Generic multiplication

4.1.1. Initial framing. Before we start, we “construct −1 on the x-axis”. More
precisely, on the x-axis, we have identified the points 0 := [0, 0, 1] = p1 and 1 :=
[1, 0, 1] = p2p4 ∩ p1p3. We use the midpoint construction (Figure 3) to construct
−1 := [−1, 0, 1] as well (using M = 0, B = 1, A = −1).

We now construct equality, negation, addition, and multiplication.

4.2. Equality: enforcing xa = xb. We enforce equality xa = xb as follows.
4.2.1. First case: same framing-type. Suppose first that two variables xa and

xb are of same framing-type {s1, s2}. Then after a general choice of horizontal
line l′, we parallel shift (Figure 2) (Pa,s1 , Va, Pa,s2) onto (P ′

1, V
′, P ′

2) on l′, using
a generally chosen projection point X. Then for X ′ = P ′

1Pb,s1 ∩ P ′
2Pb,s2 , we shift

(Pb,s1 , Vb, Pb,s2) onto (P
′
1, V

′′, P ′
2) on l′, usingX ′ as projection point. The reader will

verify that if we impose the codimension 1 condition that V ′ = V ′′, we enforce the
equality xa = xb. The reader will verify that with the general choice of projection
point X and line l′, the newly constructed points will miss any finite number of
previously constructed points and lines (except for those in the Figure); and the
newly constructed lines will miss any finite number of previously constructed points
(except for those in the Figure, and of course p3) — we will have no “unintended
coincidences”. This can be readily checked in all later constructions (an essential
point in the entire strategy!), but for concision’s sake we will not constantly repeat
this.

4.2.2. Second case: different framing-type. Next, suppose that xa and xb have
different framing-type, say {sa,1, sa,2} and {sb,1, sb,2} respectively (two distinct sub-
sets of {−1, 0, 1}). Then qa = qb is not in {−1, 0, 1}. We apply parallel shift (Fig-
ure 2) to move xa to a generally chosen horizontal line l′. We then parallel shift
the points −1, 0, and 1 on the x-axis to l′, so we have marked points on l′ that
can be identified (with the obvious isomorphism to P1) with ∞ = p3, −1, 0, 1, and
qa = qb. Then (using the subset {sb,1, sb,2} of the marked points on l′) l′ and lb
have same framing-type and we can apply previous construction.

We remark that in this and later constructions, we can take xa or xb (or, later,
xc) to be the constants 0 or 1, by treating the x-axis as a variable-bearing line. For
example, to take xa ≡ 1, treat the x-axis as a ({−1, 0}, 1)-line.

4.2.3. Remark: choosing framing-type freely. The argument of §4.2.2 shows
that given a variable “carried by” a variable-bearing line, we can change the
framing-type of the line it “lives on”, at the cost of moving it to another gen-
erally chosen horizontal line (so long as the value of the variable does not lie in the
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new framing-type of course). From now on, given a variable, we freely choose a
framing-type to suit our purposes at the time.

4.3. Negation: enforcing xb = −xa. We now explain how to enforce xb =
−xa. Suppose xa is carried on a line with framing-type {s1, s2}, and xb is carried
on a line with framing-type {−s1,−s2} (possible as qa = −qb — here we use Re-
mark 4.2.3). We enforce xb = −xa by adding the equality configuration (first case,
§4.2.1), except interpreting line lb as an ({s1, s2, },−qb)-line (the relabel construc-
tion, §4.1).

4.4. Addition: enforcing xa + xb = xc.
4.4.1. First case: “(general) + (general) = (general)”. Suppose qa, qb, qc are all

distinct from 0 and 1. We apply parallel shifts to move the three relevant variable-
bearing lines onto generally chosen lines, and then superimpose the “generic addi-
tion” configuration of Figure 4. (The parallel shifts are to guarantee no unintended
coincidences.)

4.4.2. Second case: “1+(general) = (general)”. Suppose next that qa = 1, and
qb and qb are neither 0 nor 1. Then qc 	= −1 (or else qb would be 0). The equation
we wish to enforce may be rewritten as −xc + xb = −xa, and −xc, xb, and −xa

are all distinct from 0 and 1. (Here we use p 	= 2, as we require −1 	= 1.) We
thus accomplish our goal by applying the negation configuration to xa and xc, then
applying the first case of the addition construction, §4.4.1.

4.4.3. Third case: “0 + (general) = (general)”. Suppose that qa = 0, and qb
and qc are not in {−1, 0, 1, 2}. We take the framing-sets on la and lc to be {−1, 1}
(using Remark 4.2.3). As in §4.1, we interpret/relabel the ({−1, 1}, xa)-line la as a
({0, 1}, x′

a)-line (where x′
a = (xa +1)/2) and the ({−1, 1}, xc)-line as a ({0, 1}, x′

c)-
line (where x′

c = (xc+1)/2). We take the framing-set {0, 1} on lb. We parallel shift
xb onto a general horizontal line l′b, then use the midpoint construction (Figure 3)
to construct the midpoint of Vb and Pb,0 on l′b, so we have constructed the variable
xb/2, which we name x′

b. The equation we wish to enforce, xa + xb = xc, is
algebraically equivalent to x′

a + x′
b = x′

c, and the values of x′
a, x

′
b, and x′

c are all
distinct from 0 and 1, so we can apply the construction of the first case of addition,
§4.4.1.

4.4.4. Fourth case: everything else. We begin by adding two extra free variables
s and t on two generally chosen horizontal lines. More precisely, for s, we pick a
generally chosen horizontal line li, and three generally chosen points Pi,0, Pi,1, and
Vi on it, and define s = (Pi,0, Pi,1;Vi, p3), so li is a ({0, 1}, s)-line. We do the same
for t. Using the previous cases of addition, we successively construct xa + s, xb + t,
(xa + s) + (xb + t), s+ t, and xc + (s+ t). (Because s and t were generally chosen,
one of the three previous cases can always be used.) Then we impose the equation

(xa + s) + (xb + t) = xc + (s+ t)

(using the third case of addition, §4.4.3, twice). Thus we have scheme-theoretically
enforced xa + xb = xc as desired.

4.5. Multiplication: enforcing xaxb = xc. As with addition, we deal with
a “sufficiently general” case first, and then deal with arbitrary cases by translating
by a general value.
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4.5.1. First case: “(general)× (general) = (general)”. Suppose qa, qb, qc 	= 0, 1.
We parallel shift all variables xa, xb, xc to generally chosen lines l′a, l

′
b, and l′c (to

avoid later unintended incidences), and then superimpose the generic multiplication
configuration to impose xc = xaxb (where l′a, l

′
b, and l′c here correspond to la, lb,

and l′ in Figure 5).
4.5.2. Second case: everything else. To enforce xaxb = xc, we proceed as fol-

lows. We add two extra free variables u and v as in §4.4.4. We then use the addition
constructions of §4.4.1–4.4.4 to construct xa + u and xb + v (on generally chosen
horizontal lines). We use the construction of §4.5.1 to construct (xa + u)(xb + v),
uv, (xa + u)v, and (xb + v)u (each on generally chosen lines). Finally, we use the
addition constructions (several times) to enforce

(xa + u)(xb + v) + uv = xc + (xa + u)v + (xb + v)u.

The result then follows from the algebraic identity

(a+ c)(b+ d) + cd = ab+ (a+ c)d+ (b+ d)c.

4.6. Characteristic 2. As the above constructions at several points use −1 	=
1, the case p = 2 requires a variant strategy.

4.6.1. Addition and multiplication: general cases (§4.4.1, §4.5.1). We begin by
noting that the general cases of addition and multiplication, given in §4.4.1 and
§4.5.1 respectively, work as before (where qa, qb, and qc are all distinct from {0, 1},
and the framing-type is taken to be {0, 1} in all cases).

4.6.2. Relabeling (§4.1), and the first case of equality (§4.2.1). Relabeling (§4.1)
works as before. Equality in the case of same framing-type (§4.2.1) does as well.

4.6.3. Initial framing. In analogy with the initial framing of §4.1.1, before we
begin the construction, we construct j and 1−j = j2 on the x-axis as follows. More
precisely, we will add whose points on the x-axis which we label j and k, as well as
configurations forcing the coordinates to satisfy j2 + j − 1 = 0, and k = j2. (We
then hereafter call the point k by the name j2.) It is important to note that this
construction of j is étale over SpecZ away from [(5)], and in particular at 2; thus
this choice will not affect the singularity type.

We construct these points as follows. Choose j ∈ F4 \ F2, and place a marked
point at j on the x-axis. Construct the product of j with j by parallel shifting j
separately onto two generally chosen horizontal lines, and then using the construc-
tion of §4.6.1, i.e. §4.5.1 (possible as j and j2 are distinct from 0 and 1). Then
construct 1−j using the relabeling trick of §4.1 (§4.6.2): parallel shift 0, 1, and j to
a generally chosen line, then reinterpret the ({0, 1}, j)-line as a ({1, 0}, 1− j)-line,
and parallel-shift it back to the x-axis. Finally, we use the equality configuration
(the “same framing-type” case, §4.6.2 = §4.2.1) to enforce j2 = 1− j.

4.6.4. Equality in general (§4.2.2), and freely choosing framing-type (Remark
4.2.3). Now that we have constructed j, the second case of the equality construction
works (with {−1, 0, 1} replaced by {0, 1, j}), and we may choose framing-type freely
on lines as observed in Remark 4.2.3.

4.6.5. Addition, second case: “1 + (general) = (general)”, cf. §4.4.2. Suppose
qa = 1, and qb and qc are not in {0, 1, j}. Then use the general case of multiplication
(§4.6.1, i.e. §4.5.1) to construct (on separate general horizontal lines) q′b = qb/j and
q′c = qc/j. By considering the ({0, j}, xa)-line as a ({0, 1}, xa/j)-line (§4.6.2, i.e.
§4.1), construct (on a general horizontal line, using parallel shift) x′

a = xa/j. Then
impose x′

a + x′
b = x′

c using the general case of addition (§4.6.1)
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12 SEOK HYEONG LEE AND RAVI VAKIL

4.6.6. Addition, third case: “0 + (general) = (general)”, cf. §4.4.3. Suppose
qa = 0, qb /∈ {0, 1, j, j2}, and qc /∈ {1, j}. Then construct x′

a = (xa − 1)/j2 (on
a general horizontal line of framing-type {0, 1}) by considering the ({1, j}, xa)-line
(carrying the variable xa) as a ({0, 1}, (xa − 1)/j2)-line (as j − 1 = j2). Similarly,
construct x′

c = (xc − 1)/j2. Using the general multiplication construction (§4.6.1,
i.e. §4.5.1) twice, construct x′

b = xb/j
2 (by way of the intermediate value of xb/j).

Then impose x′
a + x′

b = x′
c (using the general addition construction of §4.6.1, i.e.

§4.4.1), and note that this is algebraically equivalent to xa + xb = xc.
4.6.7. Addition and multiplication, final cases: everything else (§4.4.4, §4.5.2).

These now work as before.
4.6.8. Negation (§4.3). Finally, negation can be imposed by constructing the

configuration imposing xa + xb = 0 (using the final case of addition).
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Gromov-Witten theory and Noether-Lefschetz theory
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Abstract. Noether-Lefschetz divisors in moduli spaces of K3 surfaces are
the loci corresponding to Picard rank at least 2. We relate the degrees of
the Noether-Lefschetz divisors in 1-parameter families of K3 surfaces to the
Gromov-Witten theory of the 3-fold total space. The reduced K3 theory and
the Yau-Zaslow formula play an important role. We use results of Borcherds
and Kudla-Millson for O(2, 19) lattices to determine the Noether-Lefschetz
degrees in classical families of K3 surfaces of degrees 2, 4, 6 and 8. For the
quartic K3 surfaces, the Noether-Lefschetz degrees are proven to be the Fourier
coefficients of an explicitly computed modular form of weight 21/2 and level 8.
The interplay with mirror symmetry is discussed. We close with a conjecture
on the Picard ranks of moduli spaces of K3 surfaces.
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0. Introduction

0.1. K3 families. Let C be a nonsingular complete curve, and let

π : X → C

be a 1-parameter family of nonsingular quasi-polarizedK3 surfaces. Let L ∈ Pic(X)
denote the quasi-polarization of degree∫

K3

L2 = l ∈ 2Z>0.

The family π yields a morphism,

ιπ : C → Ml,
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2 DAVESH MAULIK AND RAHUL PANDHARIPANDE

to the 19 dimensional moduli space of quasi-polarized K3 surfaces of degree l. A
review of the definitions can be found in Section 1.

0.2. Noether-Lefschetz numbers. Noether-Lefschetz numbers are defined
by the intersection of ιπ(C) with Noether-Lefschetz divisors in Ml. Noether-
Lefschetz divisors can be described via Picard lattices or Picard classes. We briefly
review the two approaches.

Let (L, v) be a rank 2 integral lattice with an even symmetric bilinear form

〈, 〉 : L× L → Z

and a distinguished primitive vector v ∈ L satisfying

〈v, v〉 = l.

The invariants of (L, v) are the discriminant � ∈ Z and the coset

δ ∈
(

Z

lZ

)
/± .

If the data are presented as

Lh,d =

(
l d
d 2h− 2

)
, v =

(
1
0

)
,

then the discriminant is

�l(h, d) = − det

∣∣∣∣ l d
d 2h− 2

∣∣∣∣ = d2 − 2lh+ 2l

and the coset is

δ = d mod l ∈
(

Z

lZ

)
/± .

Two lattices (Lh,d, v) and (Lh′,d′ , v′) are equivalent if and only if

�l(h, d) = �l(h
′, d′) and δh,d = δh′,d′ .

However, not all pairs (�, δ) are realized.
The first type of Noether-Lefschetz divisor is defined by specifying a Picard

lattice. Let

P�,δ ⊂ Ml

be the closure of the locus of quasi-polarized K3 surfaces (S,L) of degree l for
which (Pic(S), L) is of rank 2 with discriminant � and coset δ. By the Hodge
index theorem, P�,δ is empty unless � > 0.

The second type of Noether-Lefschetz divisor is defined by specifying a Picard
class. In case �l(h, d) > 0, let

Dh,d ⊂ Ml

have support on the locus of quasi-polarized K3 surfaces (S,L) for which there
exists a class β ∈ Pic(S) satisfying∫

S

β2 = 2h− 2 and

∫
S

β · L = d.

More precisely, Dh,d is the weighted sum

(1) Dh,d =
∑
�,δ

μ(h, d |�, δ) · [P�,δ]
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GROMOV-WITTEN THEORY AND NOETHER-LEFSCHETZ THEORY 3

where the multiplicity

μ(h, d |�, δ) ∈ {0, 1, 2}
is defined to be the number of elements β of the lattice (L, v) associated to (�, δ)
satisfying

(2) 〈β, β〉 = 2h− 2 and 〈β, v〉 = d.

If no lattice corresponds to (�, δ), the multiplicity μ(h, d |�, δ) vanishes and P�,δ

is empty. If the multiplicity is nonzero, then

�| �l (h, d).

Hence, the sum on the right of (1) has only finitely many terms.
As relation (1) is easily seen to be triangular, the divisors P�,δ and Dh,d are

essentially equivalent. However, the divisors Dh,d will be seen to have better formal
properties.

A natural approach to studying the divisors Dh,d is via intersections with test
curves. In case �l(h, d) > 0, the Noether-Lefschetz number NLπ

h,d is the classical
intersection product

(3) NLπ
h,d =

∫
C

ι∗π[Dh,d].

If �l(h, d) < 0, the divisor Dh,d vanishes by the Hodge index theorem. A definition
of NLπ

h,d for all values �l(h, d) ≥ 0 is given by classical intersection theory in the
period domain for K3 surfaces in Section 1.

The divisibility of a nonzero element β of a lattice is the maximal positive
integer m dividing β. Refined divisors Dm,h,d are defined by

Dm,h,d =
∑
�,δ

μ(m,h, d |�, δ) · [P�,δ]

where the multiplicity

μ(m,h, d |�, δ) ∈ {0, 1, 2}
is the number of elements β of divisibility m of the lattice (L, v) associated to (�, δ)
satisfying (2). Refined Noether-Lefschetz number are defined by

NLπ
m,h,d =

∫
C

ι∗π[Dm,h,d].

0.3. Invariants. We will study three types of invariants associated to a 1-
parameter family π of quasi-polarized K3 surfaces in case the total space X is
nonsingular:

(i) the Noether-Lefschetz numbers of π,
(ii) the Gromov-Witten invariants of X,
(iii) the reduced Gromov-Witten invariants of the K3 fibers.

The Noether-Lefschetz numbers (i) are classical intersection products while the
Gromov-Witten invariants (ii)-(iii) are quantum in origin.

The Gromov-Witten invariants (ii) of the 3-fold X and the reduced Gromov-
Witten invariants (iii) of a K3 surface are defined via integration against virtual
classes of moduli spaces of stable maps. We view both of these Gromov-Witten
theories in terms of the associated BPS state counts defined by Gopakumar and
Vafa [19, 20].
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4 DAVESH MAULIK AND RAHUL PANDHARIPANDE

Let nX
g,d denote the Gopakumar-Vafa invariant of X of genus g for π-vertical

curve classes of degree d with respect to L. Let rg,m,h denote the Gopakumar-Vafa
reduced K3 invariant of genus g and curve class β ∈ H2(K3,Z) of divisibility m
satisfying ∫

K3

β2 = 2h− 2.

A review of these quantum invariants is presented in Section 2.
A geometric result intertwining the invariants (i)-(iii) is derived in Section 3 by

a comparison of the reduced and usual deformation theories of maps of curves to
the K3 fibers of π.

Theorem 1. For d > 0,

nX
g,d =

∑
h

∞∑
m=1

rg,m,h ·NLπ
m,h,d.

Theorem 1 is the main geometric result of the paper. The proof is given in
Section 3.

0.4. Applications. Since Theorem 1 relates three distinct geometric invari-
ants, the result can be effectively used in several directions.

An application for studying reduced invariants of K3 surfaces is given in [27].
A central conjecture discussed in Section 2.3 is the independence1 of rg,m,h on m.
In genus 0, the independence is the non-primitive Yau-Zaslow conjecture proven in
[27] as a consequence of Theorem 1.

The approach taken there is the following. For a specific 1-parameter family of
K3 surfaces, known in the physics literature as the STUmodel, the BPS states nSTU

0,d

are known by proven mirror transformations and the Noether-Lefschetz numbers
NLSTU

m,h,d can by exactly determined. Theorem 1 is then used in [27] to solve for
r0,m,h:

r0,m,h = r0,1,h,
∑
h≥0

r0,1,h =
∏
n≥1

1

(1− qn)24
.

The genus 1 results

r1,m,h = r1,1,h = − h

12
r0,1,h

are an easy consequence, see Section 2.3. We write rg,m,h = rg,h independent of m
for g = 0, 1.

Using [27], the genus 0 and 1 specialization takes a much simpler form.

Corollary 1. For g ≤ 1 and d > 0,

nX
g,d =

∞∑
h=g

rg,h ·NLπ
h,d.

By Corollary 1, the Gromov-Witten invariants nX
g,d are completely determined

by the Noether-Lefschetz numbers of π for any 1-parameter family of quasi-polarized
K3 surfaces. The result may be viewed as giving a fully classical interpretation of
the Gromov-Witten invariants of X in π-vertical classes.

1If m2 does not divide 2h− 2, then rg,m,h = 0. The independence is conjectured only when

m2 divides 2h− 2. When we write rg,m,h, the divisibility condition is understood to hold.
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Theorem 1 can also be used to constrain the Noether-Lefschetz degrees them-
selves. An important approach to the Noether-Lefschetz numbers (already used in
the STU calculation) is via results of Borcherds [7] and Kudla-Millson [29]. The
Noether-Lefschetz numbers of π are proven to be the Fourier coefficients of a vector-
valued modular form.2 For several classical families of K3 surfaces, Corollary 1 in
genus 0 provides an alternative method of calculating the Noether-Lefschetz num-
bers via the invariants nX

0,d. Together, we obtain a remarkable sequence of identities

intertwining hypergeometric series from mirror transformations (calculating nX
0,d)

and modular forms. The Harvey-Moore identity [22] for the STU model is a special
case.

As a basic example, we provide a complete calculation of the Noether-Lefschetz
numbers for the family of K3 surfaces determined by a Lefschetz pencil of quartics
in P3. The required mirror symmetry calculations (iii) for the quartic pencil have
long been established rigorously [17, 18]. We give the derivation of the Noether-
Lefschetz numbers via Gromov-Witten calculations in Section 5. The resulting
hypergeometric-modular identity follows immediately in Section 5.5. A second ap-
proach to calculating Noether-Lefschetz numbers directly via more sophisticated
modular form techniques is explained for quartics and several other classical fami-
lies in Section 6.

Once the Noether-Lefschetz numbers are calculated for the 1-parameter family
π, Corollary 1 yields the genus 1 Gromov-Witten invariants of X in π-vertical
classes. There are very few methods for the exact calculation of genus 1 invariants
in Calabi-Yau geometries.3 Corollary 1 provides a new class of complete solutions.

0.5. Heterotic duality. In rather different terms, approach (i)-(iii) was pur-
sued in the string theoretic work of Klemm, Kreuzer, Riegler, and Scheidegger [26]
with the goal of calculating the BPS counts nX

g,d from the genus 0 values nX
0,d. Het-

erotic duality was used in [26] for (i) since the connection to the intersection theory
of the Noether-Lefschetz divisors

Dh,d ⊂ Ml

and the work of Borcherds was not made. The perspective of [26] can be turned
upside down by using Gromov-Witten theory to calculate the Noether-Lefschetz
numbers. On the other hand, modularity allows the calculations of [26] to be
pursued in much greater generality.

In fact, the back and forth here between heterotic duality and mathematical
results is older. Borcherds’ paper on automorphic functions [6] which underlies
[7] was motivated in part by the work of Harvey and Moore [22, 23] on heterotic
duality. The first higher genus results for K3 fibrations were by Mariño and Moore
[38].

Finally, we mention the circle of ideas here can be considered for interesting
isotrivial families of K3 surfaces with double Enriques fibers [28, 39]. While het-
erotic duality arguments apply there, Borcherds’ result does not directly apply.

2While the paper [7, 29] have considerable overlap, we will follow the point of view of
Borcherds.

3See [54] for a different mathematical approach to genus 1 invariants for complete
intersections.
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0.6. Modular forms. Let A and B be modular forms of weight 1/2 and level
8,

A =
∑
n∈Z

q
n2

8 , B =
∑
n∈Z

(−1)nq
n2

8 .

Let Θ be the modular form of weight 21/2 and level 8 defined by

222Θ = 3A21 − 81A19B2 − 627A18B3 − 14436A17B4

−20007A16B5 − 169092A15B6 − 120636A14B7

−621558A13B8 − 292796A12B9 − 1038366A11B10

−346122A10B11 − 878388A9B12 − 207186A8B13

−361908A7B14 − 56364A6B15 − 60021A5B16

−4812A4B17 − 1881A3B18 − 27A2B19 +B21.

We can expand Θ as a series in q
1
8 ,

Θ = −1 + 108q + 320q
9
8 + 50016q

3
2 + 76950q2 . . . .

The modular form Θ first appeared in calculations of [26].
Let π be the family of quasi-polarized K3 surfaces determined by a Lefschetz

pencil of quartics in P4. Let Θ[m] denote the coefficient of qm in Θ.

Theorem 2. The Noether-Lefschetz numbers of the quartic pencil π are coef-
ficients of Θ,

NLπ
h,d = Θ

[
�4(h, d)

8

]
.

0.7. Classical quartic geometry. Let V be a 4-dimensional C-vector space.
A quartic hypersurface in P(V ) is determined by an element of P(Sym4V ∗). Let

U ⊂ P(Sym4V ∗)

be the Zariski open set of nonsingular quartic hypersurfaces. Since [S] ∈ U corre-
sponds to a polarized K3 surface of degree 4, we obtain a canonical morphism

φ : U → M4.

If �4(h, d) > 0, the pull-back

Dh,d = φ−1(Dh,d) ⊂ U

is a closed subvariety of pure codimension 1. As a Corollary of Theorem 2, we
obtain a complete calculation of the degrees of the hypersurfaces

Dh,d ⊂ P(Sym4V ∗).

Corollary 2. If �4(h, d) > 0, the degree of Dh,d is

deg(Dh,d) = Θ

[
�4(h, d)

8

]
−Ψ

[
�4(h, d)

8

]

where the correction term is

Ψ = 108
∑
n>0

qn
2

.
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The correction term, obtained from the contribution of the nodal quartics, is
explained in Section 5.6. Formulas for the degrees of

φ−1(P�,δ) ⊂ P(Sym4V ∗)

are easily obtained from (1) and a parallel nodal analysis. While Corollary 2 answers
a classical question about the Hodge theory of quartic K3 surfaces, the method of
proof is modern.

0.8. Outline. In Section 1, we give a precise definition of Noether-Lefschetz
numbers and establish several elementary properties. The definitions of BPS invari-
ants for 3-folds and reduced Gromov-Witten invariants of K3 surfaces are recalled
in Section 2. Two central conjectures about the reduced theory of K3 surfaces are
stated in Section 2.3. The proof of Theorem 1 is presented in Section 3.

We review of the work of Borcherds on Heegner divisors and explain the ap-
plication to families of K3 surfaces in Section 4. The results are applied with
Theorem 1 to prove Theorem 2 via mirror symmetry calculations in Section 5. A
direct approach to Noether-Lefschetz degrees for classical familes of K3 surfaces
of degrees 2, 4, 6, and 8 is given in Section 6 via a deeper study of vector-valued
modular forms. Finally, in Section 7, we state a conjecture regarding Picard ranks
of moduli spaces of K3 surfaces of degree l .
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1. Noether-Lefschetz numbers

1.1. Picard lattice. Let S be a K3 surface. The second cohomology of S is
a rank 22 lattice with intersection form

(4) H2(S,Z)
∼
= U ⊕ U ⊕ U ⊕ E8(−1)⊕ E8(−1)

where

U =

(
0 1
1 0

)

and

E8(−1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 1 0 0 0 0 0
0 −2 0 1 0 0 0 0
1 0 −2 1 0 0 0 0
0 1 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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8 DAVESH MAULIK AND RAHUL PANDHARIPANDE

is the (negative) Cartan matrix. The intersection form (4) is even.
The divisibility of β ∈ H2(S,Z) is the maximal positive integer dividing β. If

the divisibility is 1, β is primitive. Elements with equal divisibility and norm are
equivalent up to orthogonal transformation of H2(S,Z), see [51].

The Hodge decomposition of the second cohomology of S

H2(S,Z)⊗Z C = H2,0(S,C)⊕H1,1(S,C)⊕H0,2(S,C)

has dimensions (1, 20, 1). The Picard lattice of S is

Pic(S) = H2(S,Z) ∩H1,1(S,C).

1.2. Quasi-polarization. A quasi-polarization on S is a line bundle L with
primitive Chern class c1(L) ∈ H2(S,Z) satisfying∫

S

L2 > 0 and

∫
S

L · [C] ≥ 0

for every curve C ⊂ S. A sufficiently high tensor power Ln of a quasi-polarization
is base point free and determines a birational morphism

S → S̃

contracting A-D-E configurations of (−2)-curves on S [47]. Hence, every quasi-
polarized K3 surface (S,L) is algebraic.

Let X be a compact 3-dimensional complex manifold equipped with a holo-
morphic line bundle L and a holomorphic map

π : X → C

to a nonsingular complete curve. The triple (X,L, π) is a family of quasi-polarized
K3 surfaces of degree l if the fibers (Xξ, Lξ) are quasi-polarized K3 surfaces satis-
fying ∫

Xξ

L2
ξ = l

for every ξ ∈ C. The family (X,L, π) yields a morphism,

ιπ : C → Ml,

to the moduli space of quasi-polarized K3 surfaces of degree l.
We will often refer to the triple (X,L, π) just by π. Associated to π is the

projective variety X̃ obtained from the relative quasi-polarization,

X → X̃ ⊂ P(R0π∗(L
n)∗) → C,

for sufficiently large n. The complex manifold X may be a non-projective small

resolution of the singular projective variety X̃.

1.3. Period domain. Let V be a rank 22 integer lattice with intersection
form 〈, 〉 obtained from the second homology of a K3 surface,

V
∼
= U ⊕ U ⊕ U ⊕ E8(−1)⊕ E8(−1).

A 1-dimensional subspace C · ω ∈ V ⊗Z C satisfying

(5) 〈ω, ω〉 = 0 and 〈ω, ω〉 > 0

determines a Hodge structure of type (1, 20, 1) on V ,

V ⊗Z C = V 2,0 ⊕ V 1,1 ⊕ V 0,2 = C · ω ⊕ (C · ω ⊕ C · ω)⊥ ⊕ C · ω.
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Conversely, a Hodge structure of type (1, 20, 1) determines a 1-dimensional subspace
C · ω satisfying (5).

The moduli space MV of Hodge structures of type (1, 20, 1) on V is therefore
an analytic open set of the 20-dimensional nonsingular isotropic quadric Q,

MV ⊂ Q ⊂ P(V ⊗Z C).

The moduli space MV is the period domain.
For nonzero β ∈ V , let DV

β ⊂ MV denote the locus of Hodge structures for

which β ∈ V 1,1. Certainly,

DV
β = MV ∩ β⊥ ⊂ P(V ⊗Z C)

where β⊥ is the linear space orthogonal to β. Hence, DV
β is simply a 19-dimensional

hyperplane section of MV .

1.4. Local systems. Let (X,L, π) be a quasi-polarized family of K3 surfaces
over a nonsingular curve C. Let

V = R2π∗(Z) → C

denote the rank 22 local system determined by the middle cohomology of the fibra-
tion

π : X → C.

The local system V is equipped with the fiberwise intersection form 〈, 〉.
Let MV be the π-relative moduli space of Hodge structures

μ : MV → C

with fiber

μ−1(ξ) = MVξ .

The moduli space MV is a complex manifold, and μ is a locally trivial fibration in
the analytic topology.

Duality and homological push-forward yield a canonical map

ε : V → H2(X,Z)

where the right side can be viewed as a trivial local system. Let H2(X,Z)π denote
the kernel of the projection map

π∗ : H2(X,Z) → H2(C,Z).

For h ∈ Z and γ ∈ H2(X,Z)π, we will define a Noether-Lefschetz number NLπ
h,γ

for the K3 fibration π.
Informally, NLπ

h,γ counts the number of points ξ ∈ C for which there exists an

integral class β ∈ Vξ of type (1, 1) satisfying

〈β, β〉 = 2h− 2 and ε(β) = γ.

The formal definition is given in Section 1.5.
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1.5. Classical intersection. Define the relative divisor

DV
h,γ ⊂ MV

by the set of Hodge structures which contain a class β ∈ Vξ of type (1, 1) satisfying

〈β, β〉 = 2h− 2 and ε(β) = γ.

When MV is trivialized4 over a Euclidean open set U ⊂ C,

MVU = MV × U,

the subset DV
h,γ restricts to

DVU

h,γ = ∪β DV
β × U

where the union is over all β ∈ V satisfying

〈β, β〉 = 2h− 2 and ε(β) = γ.

Hence, DV
h,γ ⊂ MV is a countable union of divisors.

The Noether-Lefschetz number is defined by a tautological intersection product.
The family π determines a canonical section

σ : C → MV .

where
σ(ξ) = [H2,0(Xξ,C)] ∈ MVξ

is the Hodge structure determined by the K3 surface Xξ. Let

(6) NLπ
h,γ =

∫
C

σ∗[DV
h,γ ].

The divisor DV
h,γ may have infinitely many components. However, by the finiteness

result of Proposition 1, NLπ
h,γ is well-defined.

While NLπ
h,γ is a classical intersection number, an excess calculation is required

in case σ(C) ⊂ DV
h,γ . The informal counting interpretation is not always well-

defined.

Proposition 1. NLπ
h,γ is finite.

Proof. Let L be the quasi-polarization on X. If there exists a point ξ ∈ C
for which Lξ is ample, then L is π-relatively ample over an open set of C. If Lξ is
never ample, then the morphism

X → X̃ ⊂ P(R0π∗(L
n))

for sufficiently large n contracts divisors on X which intersect the generic fiber Xξ

in (-2)-curves. After modification5 of L by these contracted divisors, a new quasi-
polarization L′ of X may be obtained which is π-relatively ample over a nonempty
open set of C.

We assume now (after possible modification) the quasi-polarization L is π-
relatively ample over a nonempty open set U ⊂ C. Let

d =

∫
γ

L

4We take trivializations obtained from trivializing R2π∗(Z) compatibly with ε .
5A base change of π : X → C is not required since the modification can be averaged over the

symmetries of the (-2)-curve configuration.
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be the degree of γ. Let

l =

∫
Xξ

L2
ξ > 0

be the degree of the K3 fibers of π.
Let β ∈ Vξ of type (1, 1) satisfy

〈β, β〉 = 2h− 2 and ε(β) = γ.

We will prove

σ(C) ⊂ MV

intersects only finitely many components of DV
h,γ .

Let k be an integer satisfying

d+ lk > 0 and lk2 + 2dk + 2h− 2 > −4.

The first step is to show

β̃ = β + kc1(Lξ)

is an effective curve class on Xξ by Riemann-Roch.
Let Lβ̃ denote the unique line bundle on Xξ with

c1(Lβ̃) = β̃.

By Serre duality,

H2(Xξ, Lβ̃) = H0(Xξ, L
∗
β̃
)∗

Since

〈c1(L∗
β̃
), Lξ〉 ≤ −d− lk < 0,

h0(Xξ, L
∗
β̃
) vanishes. Then, by Riemann-Roch,

h0(Xξ, Lβ̃) ≥ χ(Xξ, Lβ̃)− h2(Xξ, Lβ̃)

= χ(Xξ, Lβ̃)

=
1

2
〈β̃, β̃〉+ 2

> 0.

Hence, β̃ is an effective curve class on Xξ.
Consider first the open set U ⊂ C over which L is π-relatively ample. Let

H → U

be the π-relative Hilbert scheme parameterizing of curves in Xξ∈U of degree

〈β̃, c1(Lξ)〉 = d+ lk

and Euler characteristic

χ(Xξ,OXξ
)− χ(Xξ, L

∗
β̃
) = −1

2
〈β̃, β̃〉 = −1

2
(lk2 + 2dk + 2h− 2).

The scheme H is projective over U and of finite type.
An irreducible component Hirr ⊂ H either dominates U or maps to a point

ξ ∈ U . In the former case, the classes of curves represented by Hirr yield a finite
monodromy invariant subset of V . In the latter case, the curves represented by
Hirr yield a single element of Vξ.
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12 DAVESH MAULIK AND RAHUL PANDHARIPANDE

After shifting the finiteness statements back by kc1(Lξ), we obtain the finiteness
of the intersection geometry

(7) σ(C) ∩ DV
h,γ

over U ⊂ C. Indeed, the dominant components Hirr correspond to finitely many
excess intersections and the non-dominant components correspond to finitely many
true intersections.

Finally consider the complement Uc ⊂ C. The complement is a finite set. For
each ξc ∈ U c, let Lc

ξc be an ample line bundle. The above arugment using the
ample bundles Lc

ξc for the fibers Xξc shows there are finitely many intersections in

(7) over Uc ⊂ C as well.
We conclude the intersection geometry is finite over all of C and the product

NLπ
h,γ =

∫
C

σ∗[DV
h,γ ]

is well-defined. �

Let γL denote the push-forward of the ample class on the fibers,

γL = c1(L) ∩ [Xξ] ∈ H2(X,Z)π.

By an elementary comparison,

σ∗[DV
h,γ ] = σ∗[DV

h+d+ l
2 ,γ+γL

].

We obtain the following result.

Proposition 2. NLπ
h,γ = NLπ

h+d+ l
2 ,γ+γL

.

The proof of Proposition 1 show the vanishing of the Noether-Lefschetz number
for high h.

Proposition 3. For fixed γ, the numbers NLπ
h,γ vanish for sufficiently high h.

The Noether-Lefschetz numbers NLh,γ(π) have non-trivial dependence on γ
despite the linear equivalence

DV
β
∼= DV

β′

on MV . The Noether-Lefschetz numbers involve also the twisting of the local
system V over C.

1.6. Refinements. The Noether-Lefschetz numbers NLπ
h,d defined in Section

0.3 are obtained from the relation

(8) NLπ
h,d =

∑
∫

γ
L=d

NLπ
h,γ .

The finiteness of the sum on the right is a consequence of the negative definite-
ness of the intersection matrix of divisors in Xξ contracted by Lξ. The invariants
NLπ

h,γ may be viewed as a refinement of NLπ
h,d with the nonvanishing discriminant

hypothesis lifted.
Further refined Noether-Lefschetz numbers may be defined with respect to any

additional monodromy invariant data. For example, the divisibility m of an element
β ∈ Vξ is a monodromy invariant. Let

DV
m,h,γ ⊂ MV
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be the divisor of Hodge structures which contain a class β ∈ Vξ of type (1, 1) of
divisibility m satisfying

〈β, β〉 = 2h− 2 and ε(β) = γ.

We define

NLπ
m,h,γ =

∫
C

σ∗[Dm,h,γ ].

The relation

(9) NLπ
h,γ =

∑
m≥1

NLπ
m,h,γ

certainly holds.

1.7. Intersection theory of Ml. Let v ∈ V be a vector of norm l, and let

MV
v = v⊥ ∩MV .

Let Γ denote the group of orthogonal transformations of the lattice V , and let

Γv ⊂ Γ

be the subgroup fixing v. The moduli space of quasi-polarized K3 surfaces of degree
l is the quotient

Ml = MV
v /Γv.

The moduli space is a nonsingular orbifold. We refer the reader to [14] for a more
detailed discussion.

In case �l(h, d) �= 0, the above construction of Ml shows the definitions of the
Noether-Lefschetz number by (3) and (8) agree.

2. Gromov-Witten theory

2.1. BPS states for 3-folds. Let (X,L, π) be a quasi-polarized family of
K3 surfaces. While X may not be a projective variety, X carries a (1, 1)-form ωK

which is Kähler on the K3 fibers of π. The existence of a fiberwise Kähler form is
sufficient to define Gromov-Witten theory for vertical classes

0 �= γ ∈ H2(X,Z)π.

The fiberwise Kähler form ωK is obtained by a small perturbation of the quasi-
Kähler form obtained from the quasi-polarization. The associated Gromov-Witten
theory is independent of the perturbation used.6

LetMg(X, γ) be the moduli space of stable maps from connected genus g curves
to X. Gromov-Witten theory is defined by integration against the virtual class,

(10) NX
g,γ =

∫
[Mg(X,γ)]vir

1.

The expected dimension of the moduli space is 0.
The Gromov-Witten potential FX(λ, v) for nonzero vertical classes is the series

FX =
∑
g≥0

∑
0
=γ∈H2(X,Z)π

NX
g,γ λ2g−2vγ

6See [30, 36] for treatments of Gromov-Witten invariants for fiberwise Kähler geometry.
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where λ and v are the genus and curve class variables. The BPS counts nX
g,γ of

Gopakumar and Vafa are uniquely defined by the following equation:

FX =
∑
g≥0

∑
0
=γ∈H2(X,Z)π

nX
g,γ λ2g−2

∑
d>0

1

d

(
sin(dλ/2)

λ/2

)2g−2

vdγ .

Conjecturally, the invariants nX
g,γ are integral and obtained from the cohomology

of an as yet unspecified moduli space of sheaves on X.

2.2. Reduced theory. Let C be a connected, nodal, genus g curve. Let S be
a K3 surface, and let β ∈ Pic(S) be a nonzero class. The moduli space MC(S, β)
parameterizes maps from C to S of class β. Let

ν : C ×MC(S, β) → MC(S, β)

denote the projection, and let

f : C ×MC(S, β) → S

denote the universal map. The canonical morphism

(11) R•ν∗(f
∗S)∨ → L•

MC

determines a perfect obstruction theory on MC(S, β), see [2, 3, 34]. Here, L•
MC

denotes the cotangent complex of MC(S, β).
Let ΩS denote the cotangent bundle of S. Let Ων and ων denote respectively

the sheaf of relative differentials of ν and the relative dualizing sheaf of ν. There
are canonical maps

(12) f∗(ΩS) → Ων → ων

The sections of the canonical bundle H0(S,KS) determine a 1-dimensional space
of holomorphic symplectic forms. Hence, there is a canonical isomorphism

TS ⊗H0(S,KS)
∼
= ΩS

where TS is the tangent bundle. We obtain a map

f∗(TS) → ων ⊗ (H0(S,KS))
∨

and a map

(13) R•ν∗(ων)
∨ ⊗H0(S,KS) → R•ν∗(f

∗TS)
∨.

From (13), we obtain the cut-off map

ι : τ≤−1R
•ν∗(ων)

∨ ⊗H0(S,KS) → R•ν∗(f
∗TS)

∨.

The complex τ≤−1R
•ν∗(ων)

∨ ⊗ H0(S,KS) is represented by a trivial bundle of
rank 1 tensored with H0(S,KS) in degree −1. Consider the mapping cone C(ι) of
ι. Certainly R•π∗(f

∗TS)
∨ is represented by a two term complex. An elementary

argument using nonvanishing β �= 0 shows the complex C(ι) is also two term.
By Ran’s results7 on deformation theory and the semiregularity map, there is

a canonical map

(14) C(ι) → L•
MC

7The required deformation theory can also be found in a recent paper by M. Manetti [37].
A different approach to the construction of the reduced virtual class is available in [48].
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induced by (11), see [46]. Ran proves the obstructions to deforming maps from C
to a holomorphic symplectic manifold lie in the kernel of the semiregularity map.
After dualizing, Ran’s result precisely shows (11) factors through the cone C(ι).

The map (14) defines a new perfect obstruction theory on MC(S, β). The
conditions of cohomology isomorphism in degree 0 and the cohomology surjectivity
in degree −1 are both induced from the perfect obstruction theory (11). We view
(11) as the standard obstruction theory and (14) as the reduced obstruction theory.

Following [2, 3], the morphism (14) is an obstruction theory of maps to S
relative to the Artin stack Mg of genus g curves. A reduced absolute obstruction
theory

(15) E• → L•
Mg(S,β)

is obtained via a distinguished triangle in the usual way, see [2, 3, 34]. The
obstruction theory (15) yields a reduced virtual class

[Mg(S, β)]
red ∈ Ag(Mg(S, β),Q)

of dimension g.

2.3. BPS for K3 surfaces. Let (S, ωK) be a K3 surface with a Kähler form
ωK . Let β ∈ Pic(S) be a nonzero class of positive degree∫

β

ωK > 0.

We are interested in the following reduced Gromov-Witten integrals,

(16) Rg,β =

∫
[Mg(S,β)]red

(−1)gλg.

Here, the integrand λg is the top Chern class of the Hodge bundle

Eg → Mg(S, β)

with fiber H0(C, ωC) over moduli point

[f : C → S] ∈ Mg(S, β).

See [15, 21] for a discussion of Hodge classes in Gromov-Witten theory.
The definition of the BPS counts associated to the Hodge integrals (16) is

straightforward. Let α ∈ Pic(S) be a primitive class of positive degree with respect
to ωK . The Gromov-Witten potential Fα(λ, v) for classes proportional to α is

Fα =
∑
g≥0

∑
m>0

Rg,mα λ2g−2vmα.

The BPS counts rg,mα are uniquely defined by the following equation:

Fα =
∑
g≥0

∑
m>0

rg,mα λ2g−2
∑
d>0

1

d

(
sin(dλ/2)

λ/2

)2g−2

vdmα.

We have defined BPS counts for both primitive and divisible classes.
The string theoretic calculations of Katz, Klemm and Vafa [24] via heterotic

duality yield two conjectures.

Conjecture 1. The BPS count rg,β depends upon β only through the square∫
S
β2.
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Assuming the validity of Conjecture 1, let rg,h denote the BPS count associated
to a class β satisfying ∫

S

β2 = 2h− 2.

Conjecture 1 is rather surprising from the point of view of Gromov-Witten theory.
By deformation arguments, the invariants Rg,β depend upon both the divisibility
m of β and

∫
S
β2. Hence, BPS counts rg,m,h depending upon both the divisibility

and the norm are well-defined unconditionally.

Conjecture 2. The BPS counts rg,h are uniquely determined by the following
equation:

∑
g≥0

∑
h≥0

(−1)grg,h(y
1
2 − y−

1
2 )2gqh =

∏
n≥1

1

(1− qn)20(1− yqn)2(1− y−1qn)2
.

As a consequence of Conjecture 2, rg,h vanishes if g > h and

rg,g = (−1)g(g + 1).

The first values are tabulated below:

rg,h h = 0 1 2 3 4

g = 0 1 24 324 3200 25650
1 −2 −54 −800 −8550
2 3 88 1401
3 −4 −126
4 5

The right side Conjecture 2 is related to the generating series of Hodge numbers
of the Hilbert schemes of points Hilb(S, n). The genus 0 specialization of Conjecture
2 recovers the Yau-Zaslow formula∑

h≥0

r0,hq
h =

∏
n≥1

1

(1− qn)24

related to the Euler characteristics of Hilb(S, n).
The Conjectures are proven in very few cases. A mathematical approach to

the genus 0 Yau-Zaslow formula following [52] can be found in [4, 12, 16]. The
Yau-Zaslow formula is proven for primitive classes β by Bryan and Leung [10]. If
β has divisibility 2, the Yau-Zaslow formula is proven by Lee and Leung in [31].
Using Theorem 1, a complete proof of the Yau-Zaslow formula for all divisibilities
is given in [27]. Since

R1,β =

∫
[M1(S,β)]red

−λ1 = −〈β, β〉
24

R0,β ,

we obtain

r1,h = − h

12
r0,h

and Conjectures 1 and 2 for genus 1 from the genus 0 results.
Conjecture 2 for primitive classes β is connected to Euler characteristics of the

moduli spaces of stable pairs on K3 by the correspondence of [44, 45]. A proof of
Conjecture 2 for primitive classes is given in [40].
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3. Theorem 1

3.1. Result. Consider a quasi-polarized family of K3 surfaces of degree l as
in Section 1.2,

π : X → C .

We restate Theorem 1 in terms of γ ∈ H2(X,Z)π following the notation of Section
1.4.

Theorem 1. For γ �= 0,

nX
g,γ =

∑
h

∞∑
m=1

rg,m,h ·NLπ
m,h,γ .

3.2. Proof. Since the formulas relating the BPS counts to Gromov-Witten
invariants are the same for X and the K3 surface, Theorem 1 is equivalent to the
analogous Gromov-Witten statement:

(17) NX
g,γ =

∑
h

∞∑
m=1

Rg,m,h ·NLπ
m,h,γ

for γ �= 0.
Following the notation of Section 1.5, let σ denote the section

σ : C → MV

determined by the Hodge structure of the K3 fibers

σ(ξ) = [H0(X,KXξ
)] ∈ MVξ .

For each ξ ∈ C, let

Vξ(m,h, γ) ⊂ Vξ

be the set of classes with divisibility m, square 2h− 2, and push-forward γ. Let

Bξ(m,h, γ) = { β ∈ Vξ(m,h, γ) | σ(ξ) ∈ β⊥ }.

By Proposition 1, the set Bξ(m,h, γ) is finite.
Equation (17) is proven by showing the contributions of the classes Bξ(m,h, γ)

to both sides are the same. The set

B(m,h, γ) =
⋃

Bξ(m,h, γ) ⊂ V

can be divided into two disjoint subsets

B(m,h, γ) = Biso(m,h, γ) ∪B∞(m,h, γ).

The elements of Biso(m,h, γ) are isolated while the elements of B∞(m,h, γ) form
a finite local system over C,

(18) ε : B∞(m,h, γ) → C.

We address the contributions of the isolated issues and the local system separately.
Consider first the local system (18). The contribution of ε to the Gromov-

Witten invariant NX
g,γ is the integral

NX
g,ε =

∫
[Mg(X,ε)]vir

1
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where Mg(X, ε) ⊂ Mg(X, γ) is the connected component8 of the moduli space of
stable maps which represent curve classes in ε. Alternatively,

(19) NX
g,ε =

∫
[Mg(π,ε)]vir

cg(E
∗
g ⊗ TC)

where Mg(π, ε) ⊂ Mg(π, γ) is a connected component of the relative moduli space
of maps. By standard arguments [15], the difference in the absolute and relative
obstruction theories is E∗

g ⊗ TC and hence yields the Hodge integrand in (19).
The family π determines a canonical line bundle

K → C

with fiber H0(Xξ,KXξ
) over ξ ∈ C. By the construction of the reduced class in

Section 2.2,

[Mg(π, ε)]
vir = c1(K

∗) ∩ [Mg(π, ε)]
red

where, on the right side, the reduced virtual class for the relative moduli space of
maps appears. Expanding (19) yields

NX
g,ε =

∫
[Mg(π,ε)]red

cg(E
∗
g ⊗ TC) · c1(K∗)

=

∫
[Mg(K3,mα)]red

(−1)gλg ·
∫
B∞(m,h,γ)

c1(K
∗)

= Rg,m,h ·
∫
B∞(m,h,γ)

c1(K
∗).

In the second equality, α is primitive and satisfies

〈mα,mα〉 = 2h− 2.

The contribution of the local system ε to the Noether-Lefschetz numberNLπ
m,h,γ

is much easier to calculate. The local system represents an excess intersection con-
tribution ∫

B∞(m,h,γ)

c1(Norm)

where Norm is the line bundle with fiber

Hom(H0(Xξ,KXξ
),C · β)

at β ∈ B∞(m,h, γ) lying over ξ ∈ C. Over B∞(m,h, γ), the fibration C · β is a
trivial line bundle. Hence, the excess contribution of B∞(m,h, γ) to NLπ

m,h,γ is∫
B∞(m,h,γ)

c1(K
∗).

We conclude the contributions of B∞(m,h, γ) to the left and right sides of equation
(17) exactly match.

We consider now the contributions of the isolated classes Biso(m,h, γ) to the
two sides of (17). Let

β ∈ B iso(m,h, γ)

8By connected component, we mean both open and closed. Formally, the condition is usually
stated as a union of connected components.
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be an isolated class lying over ξ ∈ C. We trivialize MV over a Euclidean open set
U ⊂ C as in Section 1.5. The local intersection of the section σ with the divisor

D
Vξ

β × U ⊂ MVξ × U

has an isolated point corresponding to (β, ξ). The local intersection multiplicity may
not be 1. However, by deformation equivalence of the Gromov-Witten contributions
on the left side of (17) and the intersection products on the right side of (17), we may
assume the local intersection multiplicity is 1 after local holomorphic perturbation
of the section σ. Then, the contribution of the isolated class β to NLπ

m,h,γ is
certainly 1.

The final step is to show the contribution of the isolated class β with intersection
multiplicity 1 to NX

g,γ is simply Rg,m,h. The result is obtained by a comparison of
obstruction theories.

By the multiplicity 1 hypothesis, a connected component of the moduli space
of stable maps to X coincides with the moduli stable of stable maps to fiber Xξ,

(20) Mg(Xξ, β) ⊂ Mg(X, γ).

At the level of points, the assertion is obvious. The multiplicity 1 conditions pro-
hibits any infinitesimal deformations of maps away from the fiber Xξ and implies
the scheme theoretic assertion.

From the fibration π, we obtain an exact sequence

(21) 0 → TXξ
→ TX |Xξ

→ TC,ξ → 0,

and an induced map

ι̃ : R•ν∗(f
∗TXξ

)∨ → T ∗
C,ξ

where the second complex is a trivial bundle in degree −1. Following the notation
of Section 2.2, we have a canonical map

ι : H0(Xξ,KXξ
) → R•ν∗(f

∗TXξ
)∨

where the first complex is a trivial bundle with fiber H0(Xξ,KXξ
) in degree −1.

By Lemma 1 below, the composition

ι̃ ◦ ι : H0(Xξ,KXξ
) → T ∗

C,ξ

is an isomorphism. Hence, by sequence (21), the obstruction theories R•ν∗(f
∗TX)∨

and C(ι) differ by only by the Hodge bundle Eg ⊗ T ∗
C,ξ. We conclude

[Mg(Xξ, β)]
virX = (−1)gλg ∩ [Mg(Xξ, β)]

red

where the virtual class on the left is obtained from the obstruction theory of maps
to X via (20). The contribution of the isolated class β to NX

g,γ is thus Rg,h,m.
Since the contributions of Biso(m,h, γ) to the left and right sides of equation

(17) also match, the proof of Theorem 1 is complete. �

Lemma 1. The composition

ι̃ ◦ ι : H0(Xξ,KXξ
) → T ∗

C,ξ

is an isomorphism.
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Proof. Consider the differential of the period map at ξ,

TC,ξ → H1(TXξ
) → Hom(H0(KXξ

), H1(ΩXξ
)).

The multiplicity 1 condition implies that the image of this map is not contained
in the tangent space to the hyperplane β⊥ = 0. More explicitly, if we apply the
cup-product pairing of H1(ΩXξ

) with the class β ∈ H2(Xξ,Z), the composition

TC,ξ → H0(KXξ
)∗ ⊗H1(ΩXξ

)
β∪−−→ H0(KXξ

)∗ ⊗ C

is nonzero. This sequence can be included in the diagram

TCξ
�� H1(TXξ

) ��

��

H0(KXξ
)∗ ⊗H1(ΩXξ

)
β∪ ��

��

H0(KXξ
)∗

TCξ
�� R•ν∗(f

∗TXξ
) �� H0(KXξ

)∗ ⊗R•ν∗(f
∗ΩXξ

) �� H0(KXξ
)∗

where the vertical maps are given by base-change morphisms and the bottom row
is the map (ι̃◦ ι)∗. Standard comparison results imply that this diagram commutes.
Since the top row is nonvanishing, so is the bottom row. �

3.3. Conjectures 1 and 2 revisited. The proof of Conjectures 1 and 2 in
the following case allows us to bound from below the h summation in Theorem 1.

Lemma 2. If
∫
K3

β2 < 0, then rg,β = 1 if

g = 0 and

∫
K3

β2 = −2

and rg,β = 0 otherwise.

Proof. Let S be a K3 surface, and let β ∈ Pic(S) be primitive with∫
S

β2 = −2.

We may assume β is represented by an isolated −2 curve P ⊂ S. Let

π : X → �0

be a 1-parameter deformation of S over the disk �0 for which β fails (even in-
finitesimally) to remain algebraic. By the proof of Theorem 1, the reduced invari-
ants rg,m,β are obtained9 from the contribution of P to the BPS state counts of
X. Since P is a rigid (−1,−1) curve, P contributes a single BPS state [15]. We
conclude

rg,m,β = 1

if (g,m) = (0, 1) and rg,m,β = 0 otherwise.
If β ∈ Pic(S) is primitive with square 2h − 2 strictly less than −2, then all

reduced invariants rg,m,β vanish. The proof is obtained by considering elliptically
fibered K3 surfaces S → P1. Let

[s], [f ] ∈ Pic(S)

be the classes of a section and a fiber respectively. Then,

[s] + h[f ], −[s]− h[f ] ∈ Pic(S)

9The local NL intersection number here is 1.
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are both primitive with square 2h− 2. Since the moduli spaces

Mg (S,m([s] + h[f ])) , Mg (S,m(−[s]− h[f ]))

are easily seen to be empty, all reduced invariants rg,m,β vanish. �

By Lemma 2, the integrals rg,m,h<0 all vanish. Hence, Theorem 1 may be
written as

nX
g,γ =

∑
h≥0

∞∑
m=1

rg,m,h ·NLπ
m,h,γ .

If Conjecture 1 and the vanishing rg,h for g > h of Conjecture 2 hold, then

rg,h = rg,m,h

and Theorem 1 implies the following result. by relation (9).

Theorem 1*. For γ �= 0,

nX
g,γ =

∑
h≥g

rg,h ·NLπ
h,γ .

The asterisk here indicates the dependence of Theorem 1∗ upon Conjectures 1
and 2.

3.4. Invertibility. Theorem 1∗ and Conjecture 2 imply the BPS states nX
g,γ

of the total space contain exactly the same information as the Noether-Lefschetz
numbers NLπ

h,γ .

Proposition 4*. For classes γ ∈ H2(X,Z)π of positive degree, the invariants
{nX

g,γ}g≥0 determine the Noether-Lefschetz numbers {NLπ
h,γ}h≥0 in terms of the

invariants {rg,h}g,h≥0.

Proof. Fix γ ∈ H2(X,Z)π. By Proposition 2, the numbers NLπ
h,γ vanish for

h > htop. So we need only determine

NLπ
0,γ , . . . NLπ

htop,γ .

The equations

nX
g,γ =

htop∑
h=g

rg,h ·NLπ
h,γ

for g = 0, . . . , htop of Theorem 1∗ are triangular and invertible by Conjecture 2. �

4. Modular forms

4.1. Overview. We explain here work of Borcherds [7] relating Noether-
Lefschetz numbers to Fourier coefficients of modular forms.10 His results apply
in great generality to arithmetic quotients of symmetric spaces associated to the
orthogonal group O(2, n) for any n. While we are mainly interested in the case
of O(2, 19), we will first explain the statement in full generality. Other values of
n play a role, for example, in studying 1-parameter families of K3 surfaces with
generic Picard rank at least 2.

10Borcherds’ original result is modular only up to a Gal(Q/Q)-action. The strengthening of

[7] by the more recent rationality result of [41] removes the Gal(Q/Q) issue.
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4.2. Vector-valued modular forms of half-integral weight. We first sum-
marize standard facts and notation regarding modular forms of half-integral weight.
In order to make sense of the modular transformation law with half-integer expo-
nents, a double cover of the standard modular group SL2(Z) is required.

The metaplectic groupMp2(R) is the unique connected double cover of SL2(R).
The elements of Mp2(R) can be written in the form((

a b
c d

)
, φ(τ ) = ±

√
cτ + d

)

where

(
a b
c d

)
∈ SL2(R) and φ(τ ) is a choice of square root of the function cτ+d

on the upper-half plane H. The group structure is defined by the product

(A1, φ1(τ )) · (A2, φ2(τ )) = (A1A2, φ1(A2τ )φ2(τ )) .

Here, we write Aτ for the usual action of SL2(R) on τ ∈ H.
The group Mp2(Z) is the preimage of SL2(Z) under the projection map

π : Mp2(R) → SL2(R).

It is generated by the two elements

T =

((
1 1
0 1

)
, 1

)
, S =

((
0 −1
1 0

)
,
√
τ

)
,

where
√
τ denotes the choice of square root with positive real part.

Suppose we are given a representation ρ of Mp2(Z) on a finite-dimensional
complex vector space V with the property that ρ factors through a finite quotient.
Given k ∈ 1

2Z, we define a modular form of weight k and type ρ to be a holomorphic
function

f : H → V

such that, for all g = (A, φ(τ )) ∈ Mp2(Z), we have

f(Aτ ) = φ(τ )2k · ρ(g)(f(τ )).
For k ∈ Z and ρ trivial, this reduces to the usual transformation rule.

If we fix an eigenbasis {vγ} for V with respect to T , we can take the Fourier
expansion of each component of f at the cusp at infinity. That is, we write

f(τ ) =
∑
γ

∑
k∈Z

ck,γq
k/Rvγ ∈ V

where

q = e2πiτ

and R is the smallest positive integer for which TR ∈ Ker(ρ). The function f is
holomorphic at infinity if ck,r = 0 for k < 0. The space Mod(Mp2(Z), k, ρ) of
holomorphic modular forms of weight k and type ρ is finite-dimensional.

Given an integral lattice M with an even bilinear form 〈, 〉 with signature (2, n),
we associate to M the following unitary representation of Mp2(Z). Let

M∨ ⊂ M ⊗Q

denote the dual lattice and M∨/M the finite quotient. The pairing 〈, 〉 extends
linearly to a Q-valued pairing on M∨. The functions 1

2 〈γ, γ〉 and 〈γ, δ〉 descend to
Q/Z-valued functions on M∨/M .
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We construct a representation ρM of Mp2(Z) on the group algebra C[M∨/M ].
It suffices to define ρM in terms of the action of the generators T and S with respect
to the standard basis vγ for γ ∈ M∨/M ,

ρM (T )vγ = e2πi
〈γ,γ〉

2 vγ ,

ρM (S)vγ =

√
i
n−2

√
|M∨/M |

∑
δ

e−2πi〈γ,δ〉vδ .

Let N denote the smallest positive integer for which N〈γ, γ〉/2 ∈ Z for all
γ ∈ M∨. The representation factors through a double cover of SL2(Z/NZ). We
will be primarily interested in the dual representation ρ∗M of Mp2(Z) on C[M∨/M ].
We have given the action of ρM to match Borcherds’ notation.

4.3. Heegner divisors. Given the lattice M of type (2, n) as before, consider
the Hermitian symmetric domain

D = {ω ∈ P(M ⊗Z C) | 〈ω, ω〉 = 0, 〈ω, ω̄〉 > 0}

naturally associated to M . We will study the quotient

(22) XM = D/ΓM

of D by the arithmetic subgroup of O(2, n)

ΓM = {g ∈ Aut(M) | g acts trivially on M∨/M} .

The quotient (22) is a quasi-projective algebraic variety.
For every n ∈ Q<0 and γ ∈ M∨/M , we associate a divisor class yn,γ ∈ Pic(XM )

as follows. Given an element v ∈ M∨, there is an associated hyperplane

v⊥ = {ω ∈ D | 〈ω, v〉 = 0} .

Both 〈v, v〉 and the residue class v mod M are invariant under the action of ΓM .
Therefore, if we fix n ∈ Q and γ ∈ M∨/M , the set of v ∈ M∨ with

1

2
〈v, v〉 = n, v ≡ γ mod M

is also ΓM -invariant. The union over the set of the associated hyperplanes∑
1
2 〈v, v〉 = n

v ≡ γ mod M

v⊥

is ΓM -invariant and descends to an algebraic divisor

yn,γ =

⎛
⎝ ∑

1
2 〈v,v〉=n, v≡γ mod M

v⊥

⎞
⎠ /ΓM .

The yn,γ are the Heegner divisors of XM . Because of the symmetry v⊥ = (−v)⊥,
there is a redundancy

yn,γ = yn,−γ

in our notation, and yn,γ is multiplicity 2 everywhere if 2γ ≡ 0 mod M .
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In the degenerate case where n = 0, we have the following prescription. The
line bundle O(−1) on D ⊂ P(M ⊗Z C) admits a natural ΓM action and therefore
descends to a line bundle K on XM . If n = 0 and γ = 0, we set

y0,0 = K∗.

If n = 0 and γ �= 0, we set yn,γ = 0.
We place the Heegner divisors in a formal power series ΦM (q) with coefficients

in Pic(XM )⊗ C[M∨/M ]. More precisely, we consider the generating function

Φ(q) =
∑

n∈Q≥0

∑
γ∈M∨/M

y−n,γq
nvγ ∈ Pic(XM )[[q1/N ]]⊗Z C[M∨/M ].

The main result of [7] together with the refinement of [41] yield the following
Theorem.

Theorem ([7],[41]). Let M have signature (2, n). The generating function
Φ(q) is an element of

Pic(XM )⊗Z Mod(Mp2(Z), 1 +
n

2
, ρ∗M ).

As a consequence, given any linear functional

λ : Pic(XM )⊗ C → C,

the contraction λ(ΦM (q)) is the Fourier expansion of a vector-valued modular form
of weight 1 + n

2 and type ρ∗M .
Borcherds’ proof uses the singular theta lift of [6] to construct automorphic

forms on XM starting from vector-valued meromorphic modular forms on the upper
half-plane. The zeroes and poles of these automorphic forms lie precisely along the
Heegner divisors with multiplicity determined by the singular part of the initial
modular form. Each such lifting gives a relation in Pic(XM ). The total collection
of relations arising in this way are encoded in the modularity statement.

In [6], Borcherds only shows that ΦM (q) lies in a certain Galois closure of the
space of modular forms. For the representations ρ arising in [6], MacGraw proves
in [41] that Mod(Mp2(Z), k, ρ) admits a basis with rational coefficients. Therefore,
the Galois closure does not enlarge the space.

4.4. Application to K3 surfaces. Let V be the rank 22 lattice obtained
from the second cohomology of a K3 surface with fixed polarization L of norm
l. In order to apply Borcherds’ results to the moduli spaces Ml, we consider the
lattice of signature (2, 19)

M = L⊥ = {v ∈ V | 〈L, v〉 = 0} .
A direct check yields

M ∼= Zw ⊕ U2 ⊕ E8(−1)2

where 〈w,w〉 = −l. Therefore

M∨/M = Z/lZ

and is generated by 1
lw. Here, we will write ρl for the representation ρM .

From the definitions, we find Aut(V, L) = ΓM , so we have the identification

Ml = XM .

We claim the Heegner divisors correspond precisely to our Noether-Lefschetz divi-
sors.
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Lemma 3. We have Dh,d = yn,γ , where

n = −Δl(h, d)

2l
and γ ≡ d(

1

l
w) mod M.

Proof. The Noether-Lefschetz divisor Dh,d is the quotient by ΓM of the union
of hyperplanes ∑

〈β, β〉 = 2h− 2

〈L, β〉 = d

β⊥.

It therefore suffices to establish a bijection between the two sets of hyperplanes.
Given an element β ∈ V satisfying

〈β, β〉 = 2h− 2, 〈β, L〉 = d,

let v = β − d
l L ∈ M ⊗Z Q be the projection of β to M = L⊥. A direct calculation

shows

1

2
〈v, v〉 = h− 1− d2

2l
= −�l(h, d)

2l
,

v ≡ d · (1
l
w) mod M .

Conversely, given v ∈ M∨ satisfying the above conditions,

β = v +
d

l
L

gives the inverse construction. Since β⊥ = v⊥, we obtain the result. �

It is important for our applications that the constant term y0,0 of ΦM (q)
matches with the line bundle K∗ from our excess calculation in the proof of Theo-
rem 1. This occurs because automorphic forms can be viewed as sections of powers
of K∗ on Ml.

Let π be a 1-parameter family of quasi-polarized K3 surfaces of degree l, and
let ι be the associated morphism to moduli space:

π : X → C,

ι : C → Ml.

We can apply Borcherds’ theorem to the functional on Pic(Ml) given by

D �→
∫
C

ι∗D.

Corollary 3. There is a vector-valued modular form of weight 21/2 and type
ρ∗l ,

Φπ(q) =

l−1∑
r=0

Φπ
r (q)vr ∈ C[[q1/2l]]⊗ C[Z/lZ],

with nonzero coefficients determined by the equality

NLπ
h,d = Φπ

r

[
�l(h, d)

2l

]

where r ≡ d mod l.
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4.5. Quartic K3 surfaces. We now apply Borcherds’ modularity to the study
of K3 surfaces of degree 4. If l = 4, the isomorphism class of a rank two lattice
(L, v) with primitive polarization 〈v, v〉 = l is determined only by the discriminant
�.

Given a 1-parameter family π : X → C of quasi-polarized K3 surfaces of degree
4, we have the generating function

Φπ(q) = Φπ
0 (q)v0 +Φπ

1 (q)v1 +Φπ
2 (q)v2 +Φπ

3 (q)v3

which is a modular form of weight 21/2 and type ρ∗4 by Corollary 3.
Consider the scalar-valued power series

φπ(q) = Φπ
0 (q) +

1

2
Φπ

1 (q) + Φπ
2 (q) +

1

2
Φπ

3 (q).

By chasing definitions, we see φπ(q) has the following property:

(23) NLπ
h,d = φπ

[
�4(h, d)

8

]
.

The factor of 1/2 is included to correct for the redundancy

Φπ
1 (q) = Φπ

3 (q).

Proposition 5. The function φπ(q) is a homogeneous polynomial of degree 21
in

A =
∑
n∈Z

q
n2

8 and B =
∑
n∈Z

(−1)nq
n2

8 .

Proof. While the vector Φπ(q) is modular with respect to the full metaplectic

group, φπ(q) is a priori only modular with respect to the subgroup Γ̃(8) = Ker(ρ∗4).
However, we can write φπ(q) as a sum

φπ(q) =
3

4
φ+(q) +

1

4
φ−(q)

where
φ+(q) = Φπ

0 (q) + Φπ
1 (q) + Φπ

2 (q) + Φπ
3 (q),

φ−(q) = Φπ
0 (q)− Φπ

1 (q) + Φπ
2 (q)− Φπ

3 (q).

Consider the congruence subgroup of SL2(Z)

Γ0(8) =

{(
a b
c d

)
∈ SL2(Z) | b ≡ 0 mod 8

}
.

A direct calculation of the representation ρ∗4 shows that φ+(q) and φ−(q) are mod-
ular forms of weight 21/2 with respect to

Γ̃0(8) =
{
(A, φ) ∈ Mp2(Z) | A ∈ Γ0(8)

}
and distinct characters

χ+, χ− : Γ̃0(8) → C∗.

Moreover, A and B are modular forms of weight 1/2 with respect to Γ̃0(8) and the
same characters χ+ and χ− respectively.

We will not describe χ± explicitly. While they are distinct, their squares are
equal and χ = χ2

+ = χ2
− descends to a character

χ : Γ0(8) → C∗.
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The character χ is specified completely by the following evaluations:

χ(Γ1(8)) = 1, χ

(
−1 0
0 −1

)
= −1, χ

(
3 8
1 3

)
= −1

where

Γ1(8) =

{(
a b
c d

)
∈ SL2(Z) | b ≡ 0 mod 8, a ≡ d ≡ 1 mod 8

}
.

Consider the space Mod(Γ0(8), 11, χ) of holomorphic modular forms of weight
11 and type χ. The space Mod(Γ0(8), 11, χ) is 12-dimensional space with basis

A22, A20B2, · · · , A2B20, B22.

Both φ+(q) · A and φ−(q) · B lie in Mod(Γ0(8), 11, χ). Since A22/B and B22/A
are not holomorphic at the boundary, we conclude φ±(q) are each homogeneous
polynomials of degree 21 in A and B and therefore so is φπ(q). �

5. Lefschetz pencil of quartics

5.1. Quartics. A general Lefschetz pencil of quartics can be viewed as a hy-
persurface of type (4, 1),

(24) π : X4,1 ⊂ P3 × P1 → P1

where the last projection is onto the second factor. Unfortunately, π contains 108
nodal fibers, so the family (24) does not fit the specifications of Section 1.2.

A family of quasi-polarized K3 surfaces of degree 4 can be obtained from the
Lefschetz pencil π by the following construction. Let

(25) ε : C53
2−1−→ P1

be the genus 53 hyperelliptic curve branched over the 108 points of P1 corresponding
to the nodal fibers of π. The family

ε∗(X4,1) → C53

has 3-fold double point singularities over the 108 nodes of the fibers of the original
family π. Let

π̃ : X̃ → C53

be obtained from a small resolution

X̃ → ε∗(X4,1).

Then, π̃ is easily seen to be a family of quasi-polarized K3 surfaces of degree 4.
The quasi-polarization is the pull-back of OP3(1).

5.2. Invariants. The Noether-Lefschetz numbers are defined in Section 1 only
for the family π̃. However, for convenience, we define

NLπ
g,d =

1

2
NLπ̃

g,d .

Instead of a curve class γ, the degree d against the polarization is taken as the
second subscript.

The family π̃ may be viewed as twice the Lefschetz pencil of quartics. Let

π4,2 : X4,2 ⊂ P3 × P1 → P1

be the family obtained from a nonsingular Calabi-Yau hypersurface. The family
π4,2 may also be viewed as twice the Lefschetz pencil.
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Lemma 4. n
˜X
g,d = n

X4,2

g,d .

Proof. It suffices to prove the analogous statement for Gromov-Witten in-
variants. Consider the degeneration of X4,2 to the union

X4,1 ∪K3 X4,1

of two (4, 1) hypersurfaces along a smooth K3 surface. The degeneration formula
of [32, 33] implies

N
X4,2

g,d = 2N
X4,1/K3
g,d

where the latter term denotes the Gromov-Witten theory of X4,1 relative to the K3
fiber. Since the Gromov-Witten theory of K3×P1 vanishes, the trivial degeneration

X4,1 ∪K3 (K3× P1)

yields the equality of relative and absolute invariants

N
X4,1

g,d = N
X4,1/K3
g,d .

To study the small resolution π̃, consider the family of double covers

εt : Ct �→ P1

ramified at 108 generic points which specializes to our particular double cover (25)
as t → 0. The behavior of Gromov-Witten theory in the conifold transition from

Xt = ε∗t (X4,1)

to X̃ has been calculated by Li and Ruan [32]:

N
˜X
g,d = NXt

g,d .

By degenerating the base Ct to two copies of P1, we have a degeneration of Xt

to two copies of X4,1 attached at 54 smooth K3 fibers. As before, we apply the
degeneration formula and the identification of relative and absolute invariants to
obtain the equality

N
˜X
g,d = NXt

g,d = 2N
X4,1

g,d = N
X4,2

g,d .

�
Instead of studying the Gromov-Witten invariants of X̃, we may study the

Gromov-Witten invariants of X4,2.

5.3. Mirror symmetry.
5.3.1. Overview. The genus 0 invariants of X4,2 are determined from hyperge-

ometric series by the mirror transformation. The mirror formulas of Candelas, de
la Ossa, Green, and Parkes [11] have been proven mathematically in many settings
[17, 18, 35]. In particular, the case of X4,2 is understood rigorously. We follow
the notation of [43].

5.3.2. Potential. Let the variables T1, T2 correspond to the hyperplane classes

H1 ⊂ P3, H2 ⊂ P1

respectively. The genus 0 potential of X4,2 for classes restricted from P3 × P1 is

F(T1, T2) =
1

3
T 3
1 + 2T 2

1 T2 +
∑

d1,d2≥0, (d1,d2) 
=(0,0)

N
X4,2

0,(d1,d2)
ed1T1ed2T2

where we follow the Gromov-Witten notation of Section 2. The curve class (d1, d2)
is not a fiber class for π4.2 if d2 > 0.
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5.3.3. Hypergeometric series. Let t1, t2 be new variables. Define the hypergeo-
metric series Ii,j(t1, t2) by

3∑
i=0

1∑
j=0

Ii,j(t1, t2)H
i
1H

j
2 =

∑
d1,d2≥0

e(H1+d1)t1e(H2+d2)t2
Π4d1+2d2

r=0 (4H1 + 2H2 + r)

Πd1
r=1(H1 + r)4 Πd2

r=1(H2 + r)2
.

The right side, taken mod H4
1 and H2

2 , is valued in H∗(P3 × P1,Q). Formally,

Ii,j(t1, t2) ∈ Q[[t1, e
t1 , t2, e

t2 ]].

The functions Ii,j(t) form a solution of the Picard-Fuchs differential equation asso-
ciated to the mirror geometry.

5.3.4. Mirror transformation. The mirror transformation is defined using two
auxiliary functions. Let

F (et1 , et2) =

∞∑
d1=0

∞∑
d2=0

ed1t1ed2t2
(4d1 + 2d2)!

(d1!)4(d2!)2
,

and let

Ga,b(e
t1 , et2) =

∞∑
d1=0

∞∑
d2=0

ed1t1ed2t2
(4d1 + 2d2)!

(d1!)4(d2!)2

( ad1+bd2∑
r=1

1

r

)

for a, b ≥ 0.
The mirror transformation relating the variables Ti and ti is determined by the

following equations:

T1 = t1 +
4(G4,2(e

t1 , et2)−G1,0(e
t1 , et2))

F (et1 , et2)
,

T2 = t2 +
2(G4,2(e

t1 , et2)−G0,1(e
t1 , et2))

F (et1 , et2)
.

Exponentiation yields

eT1 = et1 · exp
(
4(G4,2(e

t1 , et2)−G1,0(e
t1 , et2))

F (et1 , et2)

)
,

eT2 = et2 · exp
(
2(G4,2(e

t1 , et2)−G0,1(e
t1 , et2))

F (et1 , et2)

)
.

Together, the above four equations define a change of variables from formal series in
T1, e

T1 , T2, e
T2 to formal series in t1, e

t1 , t2, e
t2 . The mirror transformation is easily

seen to be invertible.
5.3.5. Genus 0 invariants. The genus 0 potential F is determined by mirror

symmetry,

F(T1(t1, t2), T2(t1, t2)) =(
2I1,1 − I2,0

I1,0

)(
I3,0
I1,0

)
+ 2

(
I2,0
I1,0

)(
I2,1
I1,0

)
− 2

(
I3,1
I1,0

)
.

The arguments of the functions on the right side are understood to be t1 and t2.

The genus 0 BPS states n
X4,2

0,d are determined by F .
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5.4. Proof of Theorem 2. Consider twice the Lefschetz pencil of quartics

π̃ : X̃ → C53.

Corollary 1 in genus 0 is

(26) n
˜X
0,d =

∞∑
h=0

r0,h ·NLπ̃
h,d .

We now solve for the Noether-Lefschetz numbers of π̃. By (23),

NLπ̃
h,d = φπ̃

[
�4(h, d)

8

]

where φπ̃(q) is a homogeneous polynomial of degree 21 in A and B. We need
only 22 equations to determine φπ̃(q). Using the mirror symmetry calculation of

n
˜X
0,d, equation (26) provides infinitely many relations. In particular, φπ̃(q) is easily

determined by linear algebra.
The precise formula for φπ̃ is 2Θ where Θ is given in Section 0.6 since π̃ is twice

the Lefschetz pencil of quartics. The modular form Θ was first computed in [26].

5.5. Modular identity. Equation (26) may be viewed as a rather intricate
relation between hypergeometric functions (after mirror transformation) on the left
and modular forms on the right. Let

G(q) = −2

q
+ 168 +

∑
d≥1

n
X4,2

0,d q
d2

8

be the generating function determined by the property

∞∑
d=1

∞∑
k=1

n
X4,2

0,d

1

k3
edkT1 =

(
F(T1, T2)−

1

3
T 3
1 − 2T 2

1 T2

)
|eT2=0

where F is determined as above.

Corollary 4. We have the equality

G(q) = 2
Θ(q)

Δ(q)
,

where Θ(q) is given in Section 0.6 and

Δ(q) = q

∞∏
n=1

(1− qn)24 .

Such relations are produced by Theorem 1 for many classical examples. For
any 1-parameter family of K3 surfaces obtained via a toric complete intersection,
there is an associated identity of special functions. The relation obtained from the
STU model studied in [27] is the Harvey-Moore identity. In fact, the Harvey-Moore
identity is the only one for which a direct proof (avoiding Theorem 1) is known.
The proof is due to Zagier and can be found in [27].
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5.6. Proof of Corollary 2. Let π be the Lefschetz pencil of quartic K3
surfaces. The difference between NLπ

h,d and the degree of

Dh,d ⊂ P(Sym4(V ∗))

is simply the contribution of the nodal quartics. The nodal quartics contribute to
NLπ

h,d but not the hypersurface Dh,d.

Using the relation NLπ
h,d = 1

2NLπ̃
h,d, we can study instead the doubled family.

The Picard lattice of each of the 108 fibers of π̃ corresponding to the original nodal
fibers of π is

(27)

(
4 0
0 −2

)
.

We use here the genericity of the Lefschetz pencil π.
The equation 〈β, L〉 = d is solvable in the lattice (27) if and only if d is divisible

by 4. Then, 〈β, β〉 = 2h− 2 is solvable if and only if

4(
d

4
)2 − 2n2 = 2h− 2

in which case there are two solutions. In the solvable cases,

�4(h, d) = 8n2.

Hence, the contribution of the nodal fiber to the Noether-Lefschetz numbers of π̃
is

Ψ(q) = 108 · 2
∑
n>0

qn
2

.

The Corollary follows by halving. �

6. Direct Noether-Lefschetz calculations

6.1. Overview. We apply Corollary 3 to directly study K3 surfaces of low
degree via a more sophisticated approach to modular forms. The key idea is to
construct a basis of the space of vector-valued modular forms of Corollary 3 instead
of working with the much larger space of scalar-valued modular forms as in Section
4.5. For many classical families, the dimensions of the associated spaces of vector-
valued modular forms are very small. The Noether-Lefschetz numbers can often be
specified by a few classical calculations. In particular, we see another derivation of
Theorem 2.

6.2. Rankin-Cohen brackets. Since each component of a vector-valued mod-
ular form is a half-weight modular form of level 2l, we can use a basis of the latter
to construct all vector-valued modular forms. In practice, however, the method is
tedius since the dimensions of the spaces of scalar-valued modular forms are much
larger. We will instead apply the following shortcut for low degree K3 surfaces.

Let f(q) and g(q) be scalar-valued level N modular forms on the upper-half
plane H of weights k1 and k2 respectively. For each integer n ≥ 0, the n-th Rankin-
Cohen bracket is a bilinear differential operator defined by the expression

[f(q), g(q)]n =

n∑
r=0

(−1)r
(
n+ k1 − 1

n− r

)(
n+ k2 − 1

r

)
f (r)(q) · g(n−r)(q),

499



32 DAVESH MAULIK AND RAHUL PANDHARIPANDE

where f (r) denote r applications of the differential operator

d

dτ
= q

d

dq
.

For n = 0, the 0-th bracket is just multiplication.
The key feature of Rankin-Cohen brackets is the preservation of modularity.

Suppose we are given a representation ρ of Mp2(Z) on V , a modular form f ∈
Mod(Mp2(Z), k1, ρ) of weight k1 and type ρ, and a scalar-valued modular form
g ∈ Mod(SL2(Z), k2) of weight k2 and level 1. Let

f(q) =
∑
γ

fγ(q)vγ ∈ V

denote the decomposition of f into components with respect to some basis of V .
For each integer n ≥ 0, the Rankin-Cohen bracket is a holomorphic function on H
with values in V defined by

[f, g]n(q) =
∑
γ

[fγ(q), g(q)]nvγ .

We then have the following result.

Lemma 5. [f, g]n(q) ∈ Mod(Mp2(Z), k1 + k2 + 2n, ρ).

Proof. For scalar-valued modular forms, a proof is given in [53]. Since g is
scalar-valued and level 1, the same argument translates to the vector-valued context
without change. �

6.3. Bases of modular forms. Following the notation of Corollary 3, we
now look for modular forms of weight 21/2 and type ρ∗l for even

l = 2, 4, 6, 8 .

From the dimension formula given in Section 7 below,

dim(Mod(Mp2(Z), 21/2, ρ
∗
l )) = 2, 3, 4, 5

for l = 2, 4, 6, 8 respectively. We are only interested11 in the subspace

Mod0(Mp2(Z), 21/2, ρ
∗
l )

of forms
∑

fi(q)vi where fr(q) is a cusp form for r �= 0. In the l = 8 case, we have
a 4-dimensional subspace.

We can use Rankin-Cohen brackets to construct explicit bases. Indeed, for each
l, there is a canonical weight 1/2 modular form given by the Siegel theta function
(see [6], Section 4),

θ(l)(q) =

l−1∑
i=0

∑
s∈Z

q
(ls+i)2

2l vi ∈ Mod(Mp2(Z), 1/2, ρ
∗
l ).

Therefore, for n = 0, 1, 2, 3, Lemma 5 gives us a modular form,

F l
n(q) = [θ(l)(q), E10−2n(q)]n ∈ Mod(Mp2(Z), 21/2, ρ

∗
l ),

of weight 21/2 where E2k(q) denotes Eisenstein series of weight 2k.
Using the explicit formula for Rankin-Cohen brackets and the dimension for-

mula, the following Lemma is obtained by calculating the initial Taylor coefficients.

11The cusp condition is obtained from Borcherds’ results and was omitted in the statement
of Corollary 3 for simplicity.
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Lemma 6. For l = 2, 4, 6, the modular forms

F l
n(q) = [θ(l)(q), E10−2n(q)]n, n = 0, . . . , l/2

form a basis of Mod(Mp2(Z), 21/2, ρ
∗
l ). For l = 8, the modular forms for n =

0, . . . , 3 form a basis of the subspace Mod0(Mp2(Z), 21/2, ρ
∗
l ).

6.4. Classical families of K3 surfaces. A general K3 surface of degree
l = 2, 4, 6, 8 is either a branched cover of P2 (for l = 2) or a complete intersection in
projective space. We obtain 1-parameter families of quasi-polarized K3 surfaces of
degree l by taking a generic Lefschetz pencil of these constructions (and resolving
singularities as discussed in Section 5.1). Because the space of vector-valued forms
is of low dimension, we only need a few classical constraints to completely determine
the associated modular form. In fact, we will use only the following constraints:

(i) the degree of the Hodge bundle R2π∗O (the coefficient of q0v0),
(ii) the number of nodal fibers (the coefficient of q1v0),
(iii) vanishing obtained from Castelnuovo’s bound in Lemma 7 below.

The following result is a special case of Castelnuovo’s bound for projective
curves [1].

Lemma 7. Given a K3 surface with very ample bundle L and an primitive
curve class β, we have the inequality

〈β, β〉 ≤ 2

(
L · β − 1

2

)
− 2 .

We now apply these constraints for 1-parameter families of K3 given by Lef-
schetz pencils for l = 2, 4, 6, 8.

• Degree 2 K3 surfaces

A generic K3 surface of degree 2 is a double cover of P2 branched along a
nonsingular sextic plane curve. Consider a family

R ⊂ P1 × P2

of sextics defined by a generic hypersurface of type (2, 6). Let X be the double
cover of P1 × P2 ramified over R. Since all the singular fibers of

R → P1

are irreducible and nodal, the associated family

π : X → P1

of K3 surfaces is smooth except for finitely many fibers with nodal singularities.
The degree of the Hodge bundle is −1 by a Riemann-Roch calculation. The

number of nodal fibers of π is 150, twice the degree of the discriminant locus of
sextics. Since we have a 2-dimensional space of forms, the generating series of
Noether-Lefschetz numbers is the vector-valued modular form

−→
Θ(q) = −F

(2)
0 (q)− 1

2
F

(2)
1 (q).

In the case of l = 2, the discriminant Δ of a rank 2 lattice with degree 2
polarization determines the coset class δ by δ = Δ mod 2. So there is no loss of

information if we replace
−→
Θ(q) by the sum of the components Θ(q) =

−→
Θ0 +

−→
Θ1.
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If we consider the theta functions

U =
∑
n∈Z

qn
2/4, V =

∑
n∈Z

(−1)nqn
2/4,

we can express Θ as a polynomial function of U and V :

Θ(q) =
1

1024
(U21 − 12U17V 4 − 402U13V 8 − 572U9V 12 − 39U5V 16)

= −1 + 150q + 1248q5/4 + 108600q2 + 332800q9/4 + 5113200q3 · · · .

To see equivalence of the two expressions, we observe both are modular forms of
weight 21/2 with respect to Γ(4) and check the agreement of sufficiently many
coefficients.

• Degree 4 K3 surfaces

A generic K3 surface of degree 4 is a quartic hypersurface in P3. If we take
a generic Lefschetz pencil of such quartics, the degree of the Hodge bundle is −1.
Using Lemma 7, the Noether-Lefschetz degrees associated to the lattices(

4 1
1 0

)
,

(
4 2
2 0

)

both vanish. Indeed, by choosing a generic pencil, we can assume all fibers con-
taining these Picard lattices have very ample quasi-polarization. The coefficients
of q0v0, q

1/8v1, and q1/2v2 determine

−→
Θ(q) = −F

(4)
0 (q)− 5

4
F

(4)
1 (q)− 16

21
F

(4)
2 (q).

Again, as in the degree 2 case, we can recover all Noether-Lefschetz degrees
from

Θ(q) =
−→
Θ0(q) +

−→
Θ1(q) +

−→
Θ2(q).

In terms of

A =
∑
n∈Z

qn
2/8, B =

∑
n∈Z

(−1)nqn
2/8,

we recover the expression for Θ(q) given in Section 0.6 since both are modular forms
of weight 21/2 and level 8 which agree on initial terms.

• Degree 6 K3 surfaces

A generic K3 surface of degree 6 is the intersection of a quadric and cubic
hypersurface in P4. We have two basic families. We can fix a quadric and take a
Lefschetz pencil of cubics or vice versa. In each case, we have vanishings associated
to the lattices (

6 1
1 0

)
,

(
6 2
2 0

)

from the Castelnuovo bound. Along with the Hodge bundle degree and the number
of nodal fibers, we completely determine the Noether-Lefschetz series.
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For the first family, the Hodge and nodal degrees are −1 and 98 respectively.
We obtain the series

−→
Θ(q) = −F

(6)
0 (q)− 49

24
F

(6)
1 (q)− 8

3
F

(6)
2 (q)− 12

5
F

(6)
3 (q).

For the second family, the Hodge and nodal degrees are −1 and 7. We obtain the
series

−→
Θ(q) = −F

(6)
0 (q)− 17

8
F

(6)
1 (q)− 22

7
F

(6)
2 (q)− 18

5
F

(6)
3 (q).

One can read off other classical calculations from our results. For example,
the number of surfaces containing elliptic plane curves or containing lines are the
Noether-Lefschetz degrees associated to the lattices(

6 3
3 0

)
,

(
6 1
1 −2

)

respectively. In the first family, the degrees are 0 and 168 respectively. In the
second family, the degrees are 10 and 198. In both cases, the numbers agree with
earlier enumerative calculations.

• Degree 8 K3 surfaces

A generic K3 surface of degree 8 is the intersection of three quadric hypersur-
faces in P5. The basic family comes from fixing two quadrics and allowing the third
to vary in a Lefschetz pencil. Again, the series is determined by the Hodge term,
the nodal term, and the two Castelnuovo vanishings from Lemma 7. The Hodge
term is given by −1, and the number of nodal fibers is 80. We find

−→
Θ(q) = −F

(8)
0 (q)− 49

18
F

(8)
1 (q)− 128

27
F

(8)
2 (q)− 256

45
F

(8)
3 (q).

Again, we can read off that the number of fibers containing a line is 128, agreeing
with the classical calculation.

For all the classical examples discussed above, the mirror symmetry calculation
of the genus 0 Gromov-Witten invariants is solvable in terms of hypergeometric
functions. In each case, Theorem 1 yields a remarkable identity with hypergeometric
functions (after mirror transformation) on the left and modular forms on the right,
as in Section 5.5.

The lower Noether-Lefschetz degrees in the above classical examples can often
be pursued by alternative methods. In particular, matches with our modular form
calculations have been found in [5, 13].

7. Picard rank of Ml

The Picard ranks of the moduli spaces of quasi-polarized K3 surfaces Ml are
unknown. By an argument of O’Grady, the ranks can grow arbitrarily large [42].
Let

(28) Pic(Ml)
NL ⊗Q ⊂ Pic(Ml)⊗Q

denote the span of the Noether-Lefschetz divisors Dh,d. We make the following
conjecture.
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Conjecture 3. The inclusion is an isomorphism,

Pic(Ml)
NL ⊗Q ∼= Pic(Ml)⊗Q.

Bruinier has calculated the dimension of the space Pic(Ml)
NL⊗Q in equations

(6-7) of [8]. If Conjecture 3 holds, we obtain a formula for the Picard rank of Ml.
We now recount Bruinier’s formula for the span of the Noether-Lefschetz divi-

sors. By Borcherds’ work, we have a map

(29) Mod(Mp2(Z), 21/2, ρ
∗
l )

∗ → Pic(Ml)⊗ C.

Let Cusp(Mp2(Z), 21/2, ρ
∗
l ) denote the subspace of cusp forms — modular forms

for which the Fourier coefficients c0,γ vanish for all γ. The map (29) induces a map

(30) Cusp(Mp2(Z), 21/2, ρ
∗
l )

∗ → (Pic(Ml)⊗ C)/CK,

where K is the Hodge bundle on Ml. Bruinier shows the map (30) is injective
[8]. Specifically, if L is a (2, n) lattice containing two copies of U as direct sum-
mands, Bruinier shows that every relation among Heegner divisors is obtained from
Borcherds’ theta lifting. Therefore,

dim Pic(Ml)
NL ⊗Q = 1 + dim Cusp(Mp2(Z), ρ

∗
l , 21/2).

A direct calculation of the dimension of the space of cusp forms via Riemann-
Roch yields the following evaluation [8]:

dim Pic(Ml)
NL ⊗Q = 1 +

31

24
+

31

48
l − 1

8
√
l
Re(G(2, 2l))

− 1

6
√
3l
Re(e−2πi 19

24 (G(1, 2l) +G(−3, 2l)))

−
l/2∑
k=0

{
k2

2l

}
− C,

where G(a, b) denotes the quadratic Gauss sum

G(a, b) =

b−1∑
k=0

e−2πi ak2

b ,

the braces {, } denote fractional part, and C is the cardinality of the set

{
k | 0 ≤ k ≤ l

2
,
k2

2l
∈ Z

}
.

For l = 2, 4, 6, the formula yields

dim Pic(Ml)
NL ⊗Q = 2, 3, 4

respectively. For l = 2 and 4, we have agreement with the Picard ranks of Ml

calculated in [25, 49, 50]. Hence, the inclusion (28) is an isomorphism in at least
the first two cases.
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Numerical Macaulification
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Dedicated to Joe Harris on the occasion of his 60th birthday

Abstract. An unpublished example due to Joe Harris from 1983 (or ear-
lier) gave two smooth space curves with the same Hilbert function, but one of
the curves was arithmetically Cohen-Macaulay (ACM) and the other was not.
Starting with an arbitrary homogeneous ideal in any number of variables, we
give two constructions, each of which produces, using a finite number of basic
double links, an ideal with the Hilbert function of a codimension two ACM
subscheme. We call the subscheme associated to such an ideal “numerically
ACM.” We study the connections between these two constructions, and in
particular show that they produce ideals with the same Hilbert function. We
call the resulting ideal from either construction a “numerical Macaulification”
of the original ideal. Specializing to the case where the ideals are unmixed
of codimension two, we show that (a) every even liaison class, L, contains
numerically ACM subschemes, (b) the subset, M, of numerically ACM sub-
schemes in L has, by itself, a Lazarsfeld-Rao structure, and (c) the numerical
Macaulification of a minimal element of L is a minimal element of M. Finally,

if we further restrict to curves in P3, we show that the even liaison class of
curves with Hartshorne-Rao module concentrated in one degree and having
dimension n contains smooth, numerically ACM curves, for all n ≥ 1. The
first (and smallest) such example is that of Harris. A consequence of our re-
sults is that the knowledge of the Hilbert function of an integral curve alone
is not enough to decide whether it contains zero-dimensional arithmetically
Gorenstein subschemes of arbitrarily large degree.

1. Introduction

A natural, and very old, problem is to determine what information can be ob-
tained about an algebraic variety, X, based on knowledge of its Hilbert function,
possibly with some reasonable additional assumptions on X. There is a vast litera-
ture on this subject (see, e.g., [3], [13], [18], [24]). It is sometimes the case that one
can determine whether or not X is arithmetically Cohen-Macaulay (ACM), based
on the Hilbert function (e.g., when X is a line). An old example due to Joe Harris
[12] shows a limitation to this, by exhibiting two smooth curves in P3 with the
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2 JUAN MIGLIORE AND UWE NAGEL

same Hilbert function, but one ACM and the other not. Harris’s example consists
of two curves of degree 10 and genus 11, where the non-ACM one is in the liaison
class of a set of two skew lines. In Section 2 we recall this example.

The ACM property provides an important distinction between two curves, even
irreducible ones with the same Hilbert function. For instance, if X is a reduced,
irreducible ACM curve then it has arithmetically Gorenstein subsets of arbitrarily
large degree [14]. However, if X is irreducible but not ACM then we will see that
there is a bound on the degree of an arithmetically Gorenstein zero-dimensional
subscheme that it contains (Proposition 6.8). Thus, the question of whether the
number of degrees of arithmetically Gorenstein subschemes of an integral curve
is finite or infinite cannot be solved (in general) only from knowing the Hilbert
function of the curve.

In this note we will develop a different approach to this problem than that of
Harris. In Lemma 3.6 we give several equivalent conditions for a standard graded
algebra to have the same Hilbert function as that of a Cohen-Macaulay ideal of
codimension two. Some are from the perspective of the graded Betti numbers, and
some from the perspective of the Hilbert function, especially the h-vector. These
lead to Algorithm 4.3 in Section 4 that starts with an arbitrary homogeneous ideal
and produces, after a finite number of repetitions of a construction called basic
double linkage, an ideal with the Hilbert function of an ACM codimension two
subscheme. We call such an ideal numerically ACM. For a later application we also
provide an alternative algorithm (cf. Algorithm 4.6) that also takes an arbitrary
ideal to one with the Hilbert function of an ACM codimension two subscheme. In
fact, we show that its resulting ideal has the same Hilbert function as the ideal
obtained from the original ideal via Algorithm 4.3 (see Proposition 4.9) though it
typically has more minimal generators than the latter. We give examples in Section
7.

In the event that our original ideal is the ideal of an unmixed codimension two
subscheme of Pn, we show something more: if L is an even liaison class of codi-
mension two subschemes of Pn then the subset, M, of numerically ACM schemes
in L satisfies a Lazarsfeld-Rao property much like that satisfied by L itself. This
is Theorem 5.11. To achieve this, we combine results about the Lazarsfeld-Rao
property in L with an analysis of the change of the Hilbert function when carrying
out Algorithm 4.6.

In Section 6 we generalize the example of Harris, following our approach, and
show in Theorem 6.3 that in any liaison class of space curves corresponding to
a Hartshorne-Rao module of diameter one and dimension n, there are smooth,
maximal rank, numerically ACM curves. The example of Harris is the first case,
n = 1.

2. Harris’s original example

With his permission, we first give the example, due to Joe Harris, of two smooth
curves C, C ′ with the same Hilbert function, one ACM and the other not. We quote
directly from [12].

The point is, to say the Hilbert function is the same for C and C ′ is to say the
ranks of the maps

ρn : H0(P3,O(n)) → H0(C,O(n)) and ρ′n : H0(P3,O(n)) → H0(C ′,O(n))
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NUMERICAL MACAULIFICATION 3

are the same for all n (of course the degree and genus of C and C ′ must therefore be
the same); but to say that C is ACM and C ′ is not means that ρn is surjective for
all n, while ρ′n is not, for some n. Thus we must have h0(C,O(n)) �= h0(C ′,O(n))
for some n; since it would be simplest if C,C ′ were linearly normal, we might as
well take n = 2 here. Finally (just as a matter of personal preference) let’s arrange
for C ′ to be semicanonical — i.e. KC′ = OC′(2), so that h0(OC′(2)) = g — while
C is not, so h0(OC(2)) = g − 1. If we at the same time assume that C,C ′ do not
lie on quadric surfaces, this then says that g = 11, d = 10.

For C ′, take S a quartic containing two skew lines L1, L2, and let C ′ be a
general member of the linear system C ′ ∈ |OS(2)(L1 + L2)|. Since L2

i = −2 on S,
C ′ · Li = 0, — i.e. C ′ is disjoint from Li — so that, inasmuch as KS = OS ,

KC′ = OC′(C ′) = OC′(2)

so C ′ is semicanonical. Note that C ′ lies on no cubic surfaces T : if it did, we could
write S ·T = C ′ +D and then on S we would have OS(D+L1 +L2) = OS(1); but
L1 and L2 do not lie in a hyperplane. Thus the Hilbert function of C ′ is

h(1) = 4
h(2) = 10
h(3) = 20
h(4) = 30

· · ·
h(n) = 10n− 10 (= Hilbert polynomial)

You may also recognize C ′ as being residual, in the intersection of two quartic
surfaces S and T , to a curve of type (2, 4) on a quadric; the Hilbert function and
semicanonicality can be deduced from this.

As for C, let now S be a quartic surface containing a smooth, non-hyperelliptic
curve D of degree 6 and genus 3 in P3, and let C be a member of the linear
series C ∈ |OS(1)(D)|. Since D does lie on a cubic surface U , and we can write
U ∩ S = D + E where E is again a septic of genus 3, C can be described as the
curve residual to a non-hyperelliptic sextic of genus 3 in a complete intersection of
quartics — i.e. C ∈ |OS(4)(−E)|. C is thus linked to a twisted cubic, and so is
ACM; likewise, since D lies on no quadrics we see that the Hilbert function of C is
equal to that of C ′.

3. Background

We will consider homogeneous ideals in the polynomial ring R = K[x0, . . . , xn]
or projective subschemes X ⊂ Pn := Pn whose codimension is at least two, where
K is an infinite field. Thus, if I ⊂ R is an ideal of codimension c then the projective
dimension of R/I satisfies

c ≤ pd(R/I) ≤ n+ 1

and so pd(I) ≤ n.
The following result will be a key tool throughout this note (cf., e.g, [18] for a

proof).

Lemma 3.1. Let I ⊂ R be any non-zero ideal. Let F ∈ I be any non-zero
element of degree d, and let G ∈ R be a general form of degree a. Consider the
ideal J = G · I + (F ). Then
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4 JUAN MIGLIORE AND UWE NAGEL

(a) J has codimension two.

(b) If I has a minimal free resolution

0 → Fn → Fn−1 → · · · → F1 → I → 0

then J has a free resolution

0 → Fn(−a) → Fn−1(−a) → · · · → F3(−a) →
F2(−a)

⊕
R(−d− a)

→
F1(−a)

⊕
R(−d)

→ J → 0.

The only possible cancellation is a copy of R(−a − d) between the first
and second free modules, which occurs if and only if there is a minimal
generating set for I that includes F .

(c) Let a = 〈F,G〉. We have the formula for the Hilbert functions:

hR/J(t) = hR/I(t− a) + hR/a(t).

(d) There are graded isomorphisms between local cohomology modules with
support in the maximal ideal m = (x0, . . . , xn)

Hi
m(R/J) ∼= Hi

m(R/I)(−a)

whenever i ≤ n− 2.

(e) If we have I = IX , the saturated ideal of a subscheme X ⊂ Pn, then J is
also a saturated ideal, defining a codimension two subscheme X1.

(f) If X is unmixed of codimension two, then the degree of X1 is ad+degX,
and, as sets, X1 is the union of X and the complete intersection of F and
G. Furthermore, in this case X is linked to X1 in two steps.

Definition 3.2. The ideal J produced in Lemma 3.1 will be called a basic
double link of I of type (d, a). We also sometimes call a the height of the basic
double link.

Notice that if X is not unmixed of codimension two then the construction given in
Lemma 3.1 is not actually related to linkage, but we retain the terminology since it
is the standard one. We also note that basic double linkage has been generalized,
in the context of Gorenstein liaison, to a construction called basic double G-linkage
– cf. [14].

Consider a free resolution

0 → Fn → · · · → F1 → R → R/I → 0.

Let D be the associated Betti diagram. It is well-known that the Hilbert function
of R/I can be computed from D, and that any free summand R(−a) that occurs
in consecutive Fi does not contribute to the Hilbert function computation, and so
can be canceled from the numerical computation, even if removing it produces a
diagram that is not the Betti diagram of any module. Several papers have used
the idea of formally canceling free summands in this way, in order to obtain useful
numerical information (e.g. [8], [23], [7], [17]). We make a small extension of this
idea by applying it to a diagram that may or may not be a Betti diagram.
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NUMERICAL MACAULIFICATION 5

Definition 3.3. Consider a finite diagram, D = (di,j), with 0 ≤ j ≤ n, 0 ≤ i,
d0,0 = 1, and di,0 = 0 for i ≥ 2. A numerical reduction of D is a diagram obtained
as follows. Whenever di,j > 0 and di−1,j+1 > 0, let d = min{di,j , di−1,j+1}. Then
replace di,j by di,j − d and replace di−1,j+1 by di−1,j+1 − d. Two ideals, I1 and
I2, are numerically equivalent if their Betti diagrams admit the same numerical
reduction.

Clearly two numerically equivalent ideals have the same Hilbert function. Note
that a given diagram may have more than one numerical reduction.

Remark 3.4. Fix integers

s1 ≥ s2 ≥ · · · ≥ sν−1 > 0, r1 ≥ r2 ≥ · · · ≥ rν > 0

such that
∑ν

j=1 rj =
∑ν−1

i=1 si. Consider the (ν − 1)× ν integer matrix

A = (si − rj).

Notice that the columns are non-decreasing from bottom to top, and the rows are
non-decreasing from left to right. Sauer [24] remarks without proof (page 84) that
there is an ACM curve Y ⊂ P3 with free resolution

(3.1) 0 →
ν−1⊕
i=1

R(−si) →
ν⊕

j=1

R(−rj) → IY → 0

if and only if the entries of the main diagonal of A are non-negative. We make some
additional remarks.

(1) If we restrict to minimal free resolutions, then we have the stronger con-
dition that the entries of the main diagonal are strictly positive.

(2) If we do not restrict to minimal free resolutions, then the criterion of Sauer
is not correct. For instance, choosing s1 = 4 and r1 = r2 = 2 clearly gives
the Koszul resolution for a complete intersection of type (2, 2), but adding
a trivial summand R(−1) to both free modules produces a non-minimal
free resolution with a negative entry on the main diagonal.

We will adjust Sauer’s criterion. It works equally well for ACM codimension
two subvarieties of Pn. Before stating the result, let us introduce some notation.
We denote the Hilbert function of R/I by hR/I(j) = dimK [R/I]j . A sequence
(h0, h1, . . .) of non-negative integers is called an O-sequence if it is the Hilbert
function of some standard graded K-algebra A, that is, hj = hA(j) for all j. O-
sequences can also be characterized by an explicit numerical growth condition (see,
e.g., [6, Theorem 4.2.10]).

If I has codimension two, then the Hilbert series of R/I can be written as∑
j≥0

hR/I(j)z
j =

h0 + h1z + · · ·+ hez
e

(1− z)n−1
,

where he �= 0. Then h = (h0, . . . , he) is called the h-vector of R/I. Equiva-
lently, the h-vector is the list of non-zero values of the (n − 1)st difference of
the Hilbert function, Δn−1hR/I , where ΔhR/I(j) = hR/I(j) − hR/I(j − 1) and

ΔihR/I = Δ(Δi−1hR/I) if i ≥ 1. Abusing terminology, in this note the following
convention is helpful.

Definition 3.5. If I ⊂ R is a homogenous ideal whose codimension is at least
two, then we define the h-vector of R/I to be the non-zero values of Δn−1hR/I .
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6 JUAN MIGLIORE AND UWE NAGEL

Then we have:

Lemma 3.6. Let I ⊂ R be a homogeneous ideal whose codimension is at least
two. Consider a (not necessarily minimal) free resolution of R/I:

0 →
⊕
k≥1

(−cn,k) →
⊕
k≥1

(−cn−1,k) → · · · →
⊕
k≥1

(−c2,k) →

⊕
k≥1

(−c1,k) → R → R/I → 0.

Let

s = {si} = {cp,q | p is even}, r = {rj} = {cp,q | p is odd},
and assume that the sets s and r are ordered so that

s1 ≥ s2 ≥ · · · ≥ sν−1, r1 ≥ r2 ≥ · · · ≥ rν .

Note that
ν∑

j=1

rj = 1 +
ν−1∑
i=1

si.

Assume that sν−1 > rν ≥ 1. Then the following conditions are equivalent:

(a) I has the same Hilbert function as that of a CM ideal of codimension two.
(b) The h-vector of R/I is an O-sequence.
(c) For every integer k ≥ rν ,

#{ri | ri ≤ k} > #{sj | sj ≤ k}.
(d) For all i = 1, . . . , ν − 1, si ≥ ri.
(e) There is a (CM) ideal J ⊂ R of codimension two having a free resolution

of the form

(3.2) 0 →
ν−1⊕
i=1

R(−si) →
ν⊕

j=1

R(−rj) → J → 0

As preparation for its proof we need:

Lemma 3.7. Using the notation of the preceding lemma, the h-vector of R/I
can be computed using, for each k, the formula

(3.3) h(k) = k + 1−
∑
ri≤k

(k − ri + 1) +
∑
sj≤k

(k − sj + 1).

It follows that

(3.4) h(k + 1) = h(k) + 1−#{ri | ri ≤ k + 1}+#{sj | sj ≤ k + 1}.

Proof. The additivity of vector space dimension along exact sequences pro-
vides for each integer k

hR/I(k) = hR(k)−
∑
i

hR(k − ri) +
∑
j

hR(k − sj).

The claim follows by passing to the (n− 1)st differences as Δn−1hR(k) = k + 1 if
k ≥ 0. �

Now we are ready to come back to Lemma 3.6.
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NUMERICAL MACAULIFICATION 7

Proof of Lemma 3.6. This is probably known to specialists. However, for
the convenience of the reader we provide a brief argument.

If R/J is Cohen-Macaulay of dimension n− 1, then its h-vector is the Hilbert
function of R/(I, �1, . . . , �n−1), where �1, . . . , �n−1 ∈ R are general linear forms.
Thus, (b) is a consequence of (a).

Lemma 3.7 shows that (c) follows from (b) because the h-vector is weakly
decreasing after it stopped to increase strictly.

It is elementary to check that (c) provides (d).
Assume Condition (d) is true. Then let A = (ai,j) be the (ν − 1) × ν matrix

such that ai,i = xsi−ri
0 , ai,i+1 = x

si−ri+1

1 , and ai,j = 0 if j �= i, i+1. Then the ideal
J generated by the maximal minors of A has codimension two and a free resolution
of the form (3.2), establishing Condition (e).

Condition (a) follows from (e) as I and J have the same Hilbert function. �

Remark 3.8. In Lemma 3.6 we used the h-vector of R/I, which, by abuse of
notation, we defined to be the (n− 1)st difference of the Hilbert function. Equiva-
lently, we could have used the γ-character, which is the nth difference of the Hilbert
function. The conditions in Lemma 3.6 are also equivalent to the positivity of the
γ-character as defined in [16, Definition V.1.1]. Moreover, using γ-characters, the
equivalence of conditions (a) and (b) in Lemma 3.6 is shown in [16, Theorem V.1.3].

We need the following consequence of Lemma 3.6.

Corollary 3.9. (a) Fix integers s1 ≥ s2 ≥ · · · ≥ sν−1 > 0 and r1 ≥
r2 ≥ · · · ≥ rν > 0 such that

∑ν
j=1 rj =

∑ν−1
i=1 si. Consider the (ν − 1)× ν

integer matrix A = (si − rj). Then there is a codimension two subscheme
Y ⊂ Pn with minimal free resolution (3.1) if and only if the entries of the
main diagonal of A are strictly positive.

(b) Let s and r be sets satisfying the conditions in (a). Suppose that equal
entries are added to both sets, all ≥ rν (corresponding to the addition
of trivial summands R( ) to both free modules in the resolution). Let
f(t) = #{i | si ≤ t} and g(t) = #{j | rj ≤ t}. Then, for all t ≥ rν , we
have g(t) > f(t).

4. Numerical Macaulification: Two Algorithms

In this section we will introduce some terminology used throughout the paper.
The main goal of the section, though, is to give two algorithms to produce, from an
arbitrary ideal I of height ≥ 2, a numerically ACM ideal, using only basic double
linkage. The Hilbert functions of the two resulting ideals turn out to be equal. Thus
we will call the end result of these constructions the numerical Macaulification of
I. The result is numerically unique but not unique as an ideal, since there are two
algorithms, and even within one algorithm there are several choices of polynomials
(of fixed degree).

Definition 4.1. A homogeneous ideal J ⊂ R is numerically r-ACM if R/J has
the Hilbert function of some codimension r ACM subscheme of Pn. When r = 2
we will simply say that J is numerically ACM.

The main result of this section is the following.
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8 JUAN MIGLIORE AND UWE NAGEL

Theorem 4.2. If I is an ideal whose codimension is at least two, then there is
a finite sequence of basic double links, starting from I, that results in an ideal that
is numerically ACM.

To achieve this, we give two algorithms. Then we will compare the algorithms
to see that they result in ideals with the same Hilbert function.

Algorithm 4.3. Let I ⊂ R be a homogeneous ideal of height ≥ 2. Consider a
minimal free resolution of R/I:

0 →
⊕
k≥1

(−cn,k) →
⊕
k≥1

(−cn−1,k) → · · · →
⊕
k≥1

(−c2,k) →

⊕
k≥1

(−c1,k) → R → R/I → 0.

(1) Let

s = {si} = {cp,q | p is even}, r = {rj} = {cp,q | p is odd},
and assume that the sets s and r are ordered so that the entries are non-
increasing. Note that 1 +

∑
si =

∑
rj .

(2) Remove equal elements rj and si pairwise one at a time. For convenience
of notation, we will still call the sets s and r. So now we may assume that
s and r are disjoint sets.

(3) Form the matrix A = (si−rj). Let {−d1, . . . ,−d�} be the negative entries
of A on the main diagonal. Assume for convenience that they are ordered
according to non-decreasing values of rj . (That is, we are taking the
negative entries of the main diagonal beginning from the bottom right
and moving up and left, regardless of the values of the dk.)

(4) (Main step) Say that −d1 = si1 − ri1 < 0 (since it is on the main
diagonal). Using general polynomials, let J be the ideal obtained from I
by a basic double link of type (ri1 , d1).

(5) Repeat steps (1) – (4) for J . Continue repeating until there are no longer
negative entries on the main diagonal.

Proposition 4.4. This algorithm terminates, and the result is an ideal that is
numerically ACM. Thus, we define the resulting ideal to be a numerical Macaulifi-
cation of I.

Proof. Observe first that thanks to Lemma 3.1, the Betti numbers (up to one
possible cancellation) and hence the Hilbert function of the resulting ideal depend
only on the degrees of the polynomials used. Let I be the original ideal, and J the
result of performing steps (1) to (4). As a result of step (2), associated to I are the
sets s = {si} and r = {rj}, with no common entries. Then J has a (not necessarily
minimal) free resolution with Betti numbers giving new lists

s′ = {si + d1} ∪ {ri1 + d1}, r′ = {rj + d1} ∪ {ri1}.
(Note that {si+d1} and {rj+d1} contain, in general, more than one element, while
{ri1 +d1} and {ri1} are sets with one single element.) Thus s′ contains at least one
si1 + d1 = ri1 and at least one ri1 + d1, and r′ contains at least one ri1 + d1 and at
least one ri1 . In performing step (2) for J , we remove these two entries from both
lists. One checks that as the result of this removal, the new matrix A is obtained
from the original one by removing row i1 and column i1. Thus the new matrix has
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NUMERICAL MACAULIFICATION 9

the same entries on the main diagonal as the original one, except that one negative
entry (namely −d1) has been removed. Thus the algorithm terminates. But one
result of the algorithm are two lists, s′ and r′, satisfying the conditions of Lemma
3.6. (Notice that the construction guarantees that A will have no entries that are
equal to 0, in particular on the main diagonal.) Since the Hilbert function of R/J
(where J is the result of the completion of the algorithm) can be computed from
r′ and s′ and seen to be the same as that of the ACM subscheme determined by r′

and s′, the result follows from Lemma 3.6. �

Example 4.5. Let I = (w3, x3) ∩ (y3, z3) ⊂ k[w, x, y, z]. This curve has Betti
diagram

0 1 2 3

-------------------------

0: 1 - - -

1: - - - -

2: - - - -

3: - - - -

4: - - - -

5: - 4 - -

6: - - - -

7: - - 4 -

8: - - - -

9: - - - 1

-------------------------

Tot: 1 4 4 1

and h-vector (1, 2, 3, 4, 5, 6, 3, 0,−3,−2,−1).
The two lists s and r are

s = {9, 9, 9, 9}, r = {12, 6, 6, 6, 6}
so the matrix has the form

(4.1) A =

⎡
⎢⎢⎣

−3 3 3 3 3

−3 3 3 3 3
−3 3 3 3 3
−3 3 3 3 3

⎤
⎥⎥⎦

with only one negative entry in the main diagonal. Thus we perform only one basic
double link, using degG = 3 and degF = 12. The h-vector of the resulting ideal,
J , is computed using Lemma 3.1:

1 2 3 4 5 6 3 0 −3 −2 −1
1 2 3 3 3 3 3 3 3 3 3 3 2 1
1 2 3 4 5 6 7 8 9 6 3

and Betti diagram

0 1 2 3

-------------------------

0: 1 - - -

1: - - - -

...

7: - - - -
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8: - 4 - -

9: - - - -

10: - - 4 -

11: - 1 - -

12: - - - 1

13: - - 1 -

-------------------------

Tot: 1 5 5 1

Algorithm 4.6. Let I ⊂ R = K[x0, . . . , xn] be a homogeneous ideal of height
≥ 2. Assume for convenience that I contains no linear forms (otherwise use a
smaller R). Let hR/I be the Hilbert function of R/I, and consider the (n − 1)-nd
difference

a = Δn−1hR/I = (1, a1, . . . , ae)

where ae is the last non-zero value and a1 ≤ 2. Note that this is a finite sequence,
and if I has codimension two then this is the h-vector of R/I. Repeat the following
step until a becomes is an O-sequence:

(∗)

If a is not an O-sequence then set ae+1 = 0 and let i be the smallest index
such that ai ≤ i and ai < ai+1. Let F ∈ I be a form of degree i+ 2, and
let J = L · I + (F ), with L a general linear form. Set b to be the (n− 1)-nd
difference of hR/J .

Note that again this algorithm uses basic double links, but this time always of
type (d, 1) for different d. We illustrate its idea.

Example 4.7. Let C be the general union of a line C1, a plane cubic C2, and
a curve C3 that is linked to a line in a complete intersection of type (4, 8). The
Betti diagram for R/IC has the form

0 1 2 3

-------------------------

0: 1 - - -

1: - - - -

2: - - - -

3: - - - -

4: - - - -

5: - 2 1 -

6: - - - -

7: - 2 3 1

8: - - - -

9: - 2 1 -

10: - 1 - -

11: - 1 5 2

12: - 1 3 2

-------------------------

Tot: 1 9 13 5

The two lists s and r are

s = {14, 14, 14, 13, 13, 13, 13, 13, 11, 9, 9, 9, 7},
r = {15, 15, 14, 14, 13, 12, 11, 10, 10, 10, 8, 8, 6, 6}.

Thus, the h-vector of the original curve is
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[1, 2, 3, 4, 5, 6, 5, 5, 3, 4, 2, 0, -3, -2]

Following Algorithm 4.6, we perform four basic double links, using, successively,
forms F1, . . . , F4 of degree degF1 = 10, degF2 = 14+1 = 15, degF3 = 15+1+1 =
17, and degF4 = 15 + 1 + 1 + 1 = 18. The h-vectors of the successive basic double
links are

[1, 2, 3, 4, 5, 6, 7, 6, 6, 4, 4, 2, 0, -3, -2]

-------------------------------

[1, 2, 3, 4, 5, 6, 7, 8, 7, 7, 5, 5, 3, 1, -2, -2]

-------------------------------

[1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 8, 6, 6, 4, 2, -1, -1]

-------------------------------

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 9, 7, 7, 5, 3]

whereby we recognize that only the last has the Hilbert function of an ACM curve.
We remark that each of these h-vectors is obtained by shifting the previous h-vector
by one and adding a vector consisting of (degFi) 1’s. For example, the first h-vector
above is obtained by

1 2 3 4 5 6 5 5 3 4 2 0 −3 −2
1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 6 6 4 4 2 0 −3 −2

The effect of this first basic double link is to “fix” the growth from 3 to 4 (from
degree 8 to degree 9) in the original h-vector, which violates maximal growth of the
Hilbert function. This illustrates the idea of the proof of the next result; indeed, a
basic double link using a form of smaller degree would be “wasted,” since it would
not serve to change any part of the h-vector that fails to be an O-sequence, and any
basic double link using a form of larger degree would forever eliminate our ability
to “fix” the impossible growth from 3 to 4, since subsequent basic double links use
forms of strictly larger degrees. Thus in order to obtain a numerically ACM curve
in the fewest possible steps, the first basic double link must be using a form of
degree 10. The other three basic double links are similarly forced. For purposes
of comparing with Algorithm 4.3, in Example 7.4 we give the Betti table of the
numerically ACM curve thus obtained.

Proposition 4.8. Algorithm 4.6 terminates, and the result is an ideal J ′ that
is numerically ACM. Furthermore, the degrees of the forms F used in the repeated
applications of step (*) are strictly increasing.

Proof. Observe that if we apply step (*), b is obtained by the computation

1 2 a2 a3 . . . ai ai+1 . . . ae
1 1 1 1 1 . . . 1
1 2 3 a2 + 1 a3 + 1 . . . ai + 1 ai+1 . . . ae

By assumption, this is an O-sequence up to and including degree i+ 1 (where the
value is bi+1 = ai + 1), and the possible failure to be an O-sequence from (now)
degree i+ 1 to degree i+ 2 has decreased by one. If it is still not an O-sequence in
this degree (because bi+1 = ai + 1 < ai+1 = bi+2), for the next step we choose F
of degree (i+ 1) + 2 = i + 3, so the degrees of the forms are strictly increasing. If
ai + 1 = ai+1 then degF increases even more in the next application of step (*).

As long as ai+1 < i + 2, we shall define the deficit in degree i to be δi =
max{0, ai+1−ai} and the deficit to be δ =

∑
δi. An algebra is numerically ACM if
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12 JUAN MIGLIORE AND UWE NAGEL

and only if its deficit is zero. Clearly each application of step (*) reduces the deficit
by one, hence the result follows. �

We now compare the results of Algorithms 4.3 and 4.6 when they are applied
to the same ideal.

Proposition 4.9. Let I be a homogeneous ideal that is not Cohen-Macaulay
and whose codimension is at least two. Then the numerical Macaulification J pro-
duced from I by Algorithm 4.3 has the same Hilbert function as the ideal J ′ produced
from I by Algorithm 4.6. Furthermore,

∑
di = δ, where δ is the number of basic

double links applied in that algorithm and

Hi
m(R/J) ∼= Hi

m(R/J ′)

whenever i ≤ n− 2.

Proof. In order to show the claim about the Hilbert function it is enough
to prove that the two ideals have the same (n − 1)-nd differences of their Hilbert
functions. Since all ideals involved except possibly I have codimension two, we will
refer to these (n − 1)-nd differences as h-vectors. Let s = {s1 ≥ · · · ≥ sν−1} and
r = {r1 ≥ · · · ≥ rν} be the sequences of integers obtained after applying Steps (1)
and (2) of Algorithm 4.3. In the proof of Proposition 4.8 we have seen that the
smallest number of basic double links of type (t, 1) that can be used to obtain a
numerically Cohen-Macaulay ideal starting with I is the deficit

δ =
∑
i≥rν

max{0, hi+1 − hi}

and that Algorithm 4.6 uses exactly δ such basic double links. Note that rν is the
least index i such hi ≤ i. Moreover, we know the h-vector of the ideal J ′ obtained
by Algorithm 4.6. Indeed, denote by (1, h1, . . . , he) the h-vector of R/I, and let m
be the smallest index i such that i ≥ rν and hi < hi+1. Then the first entries of
the h-vector (1, h′

1, . . . , h
′
e+δ) of R/J ′ are given by

h′
i =

{
i+ 1 if i < δ

hi−δ + δ if δ ≤ i ≤ m+ δ

Suppose that the original h-vector failed to be an O-sequence in another degree.
Denote by m′ the smallest index i such that i > m and hi < hi+1. Then the next
entries of the h-vector of R/J ′ are given by

h′
i = hi−d + δ′ whenever m+ δ < i ≤ m′ + δ,

where

δ′ =
∑
i>m

max{0, hi+1 − hi}.

Continuing in this fashion we get the h-vector of R/J ′.
We now analyze Algorithm 4.3. To simplify notation, let k be the largest index

such that rk > sk, and set d = d1 = rk − sk. Then the main step of Algorithm
4.3 says that we should perform a basic double link of type (rk, d). Denote the

resulting ideal by J̃ . We want to compare the h-vectors of R/I and R/J̃ .
By the choice of k, we know that rk > sk ≥ sk−1 > rk−1. This implies that

whenever sk ≤ j ≤ rk − 1

#{ri | ri ≤ j} = ν − k
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and

#{si | si ≤ j} ≥ ν − k.

Hence Lemma 3.7 provides

(4.2) hsk−1 < hsk < · · · < hrk−1

and that m = sk − 1 is the smallest index i such that i ≥ r1 and hi < hi+1.
Since d = rk − sk < rk, a complete intersection of type (rk, d) has h-vector

(1, 2, . . . , d, d, . . . , d, d− 1, . . . , 2, 1),

where the last entry is in degree d + rk − 2. Hence, by Lemma 3.1 the h-vector

(1, a1, . . . , as) of R/J̃ satisfies

(4.3) ark−1+j = hsk−1+j +max{0, d− j}

whenever j ≥ 0. This means, in particular, that hsk−1 is increased by d, hsk is
increased by d− 1, . . . , hrk−2 is increased by 1. Comparing with Equation (4.2), it
follows that the deficit of the original ideal I is decreased, in one step, by a total of
d = d1 = rk − sk. Repeating the argument we see that the basic double links used
in Algorithm 4.3 reduce the deficit by

∑
di. Since the result of this algorithm is

numerically Cohen-Macaulay by Proposition 4.4, i.e., the deficit for the h-vector of
R/J is zero, we conclude that

δ =
∑
ri>si

(ri − si) =
∑

di.

Applying Lemma 3.1, the result about the local cohomology modules follows.
It remains to show that R/J and R/J ′ have the same h-vector. Indeed, we

have seen above that the first basic double link used in Algorithm 4.3 reduces the
deficit by one in each of d consecutive degrees beginning with the leftmost possible
degree. If needed, the second basic double link similarly reduces the deficit begin-
ning with the then leftmost possible degree. Comparing with the above description
for obtaining the h-vector of J ′ from the one of I, it follows that the numerical
Macaulification J computed by Algorithm 4.3 has the same h-vector as J ′. This
concludes our argument. �

Example 4.10. If we apply Algorithm 4.6 to the curve in Example 4.5, we
make the following computation to get the h-vector of the resulting numerically
ACM curve:

1 2 3 4 5 6 3 0 −3 −2 −1
1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 6 3

which agrees with the one given in Algorithm 4.3.

Although the results of Algorithms 4.3 and 4.6 are numerically equivalent, the
numerical Macaulification produced by the former algorithm will typically have
fewer minimal generators than the result of the latter algorithm.
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14 JUAN MIGLIORE AND UWE NAGEL

5. The Lazarsfeld-Rao property

The goal of this section is to understand the role played by the numerically
ACM schemes within a fixed even liaison class of codimension two subschemes of
Pn. It has been shown in a sequence of papers including [15], [1], [16], [19] and [21]
that any such even liaison class satisfies the so-called Lazarsfeld-Rao property (LR-
property), recalled below. In this section we show that within an even liaison class,
the subclass of ideals that are numerically ACM itself satisfies a Lazarsfeld-Rao
property. Throughout this section, we consider unmixed codimension two ideals.

We first recall the Lazarsfeld-Rao property, summarized as follows.

Theorem 5.1 (Lazarsfeld-Rao (LR) Property). Let L be an even liaison class
of unmixed codimension two subschemes of Pn. Assume that the elements of L are
not ACM, so that, for all X ∈ L, we have M i :=

⊕
t H

i(Pn, IX(t)) �= 0 for at least
one i, 1 ≤ i ≤ n − 2. Then we have a partition L = L0 ∪ L1 ∪ L2 ∪ . . . , where
L0 is the set of those X ∈ L for which M i has the leftmost possible shift, and Lh

is the set of those elements of L for which M i is shifted h places to the right (this
partition does not depend on the choice of i). Furthermore, we have

(a) If X1, X2 ∈ L0 then there is a flat deformation from one to the other
through subschemes all in L0, which furthermore preserves the Hilbert
function.

(b) Given X0 ∈ L0 and X ∈ Lh (h ≥ 1), there exists a sequence of basic
double link schemes (see Lemma 3.1 and Definition 3.2) X0, X1, . . . , Xt

such that for all j, 1 ≤ j ≤ t, Xj is a basic double link of Xj−1, and X is a
deformation of Xt through subschemes all in Lh, all of which furthermore
have the same Hilbert function.

Remark 5.2. In the literature, it is sometimes stated that the deformations
are through subschemes “with the same cohomology” (referring to the cohomology
of the ideal sheaf). This is equivalent to what we have stated, since the fact that
they lie in the same Lh fixes the i-th cohomology for 1 ≤ i ≤ dimX, the preser-
vation of the Hilbert function fixes the zeroth cohomology, and then the equality
of the Hilbert polynomials fixes the (dimX + 1)-st cohomology (and the rest are
determined by Pn).

We begin by recalling some technical results that will be important in this
section. They were not originally formulated in this generality, but the same proofs
work.

Lemma 5.3 ([5], Proposition 3.1). Let L be an even liaison class of codimension
two subschemes of Pn, and let X,Y ∈ Lh be elements such that X and Y have the
same Hilbert function. Then there exists an irreducible flat family {Xs}s∈S of
codimension two subschemes of Pn to which both X and Y below. Moreover, S can
be chosen so that for all s ∈ S, Xs ∈ Lh and Xs has the same Hilbert function as
X and Y .

We remark that the conclusion that Xs ∈ Lh is a very strong one: it means
that all the elements of the flat family are in the same even liaison class, and their
modules have the same shift.

Lemma 5.4 ([5] Corollary 3.4). If X,Y are codimension two subschemes of
Pn, both in Lh, and if the general hyperplane section of X has the same Hilbert
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NUMERICAL MACAULIFICATION 15

function as the general hyperplane section of Y , then X and Y belong to the same
flat family, with the properties described in Lemma 5.3.

Lemma 5.5 ([5], Corollary 3.9 (b)). Let I be an ideal (not necessarily of codi-
mension two). Then the ideal obtained from I by a basic double link of type (d, a) is
numerically equivalent to the ideal obtained from I by a sequence of a basic double
links of type (d, 1). In particular, these ideals have the same Hilbert function.

Lemma 5.6 ([5], in proof of Lemma 5.2). Let I be an ideal. Define a0 =
min{t | [I]t �= 0}. Let a, b ≥ a0 be integers. Assume that b �= a0. Let J1 be the ideal
obtained from I by a sequence of two basic double links, first of type (a, 1) and then
of type (b, 1) (assume that this is possible). Then it is also possible to do a sequence
of basic double links of types (b− 1, 1) and (a+ 1, 1), resulting in an ideal J2 that
is numerically equivalent to J1.

Lemma 5.7 ([5], Section 5). Let L be an even liaison class of codimension
two subschemes. Let X0 be an arbitrary minimal element of L. Let X ∈ L be an
arbitrary element. Assume that X ∈ Lh. Let a be the initial degree of IX0

. Then
associated to X is a uniquely determined sequence of integers (b, g2, g3, . . . , gr) such
that

(1) b ≥ 0;
(2) a < g2 < · · · < gr;
(3) b+ r − 1 = h;
(4) X is numerically equivalent to the scheme obtained from X0 by a sequence

of basic double links of types

(a, b), (g2, 1), (g3, 1), . . . , (gr, 1).

Lemma 5.7 implies that up to numerical equivalence (i.e. in this case, up
to flat deformation preserving the cohomology of the ideal sheaf, and in particular
preserving the Hilbert function), we only have to consider sequences of basic double
links as in (4), i.e. beginning with a minimal element and satisfying conditions (1),
(2), (3).

The following observation is a consequence of Lemma 3.1.

Lemma 5.8. If I is numerically ACM and J is the result of applying any basic
double link to I, then J is again numerically ACM.

The next result gives a class of curves, all of which fail to be numerically ACM.

Lemma 5.9. Let L be an even liaison class of curves in P3. Then the minimal
elements of L are not numerically ACM.

Proof. Let C be a minimal curve. We know that all minimal curves have
the same minimal free resolution. In fact, let M(C) denote the Hartshorne-Rao
module of C. Combining a result of Rao ([22] Theorem 2.5) with a result of
Martin-Deschamps and Perrin ([16] Proposition 4.4), we see that there are free
modules F4, F3, F2, F1, F0 and F fitting into the following minimal free resolutions:

0 → F4 → F3 → F2 → F1 → F0 → M(C) → 0

0 → F4 → F3 → F → IC → 0

(See also [19].) Let

F4 =
⊕

R(−ci), F3 =
⊕

R(−bi) F =
⊕

R(−ai).
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16 JUAN MIGLIORE AND UWE NAGEL

Since M(C) is Cohen-Macaulay, we have max{ci} > max{bi}. As IC is a height
two ideal, we have max{bi} > max{ai}. It follows that in the matrix A constructed
in Algorithm 4.3, the (1, 1) entry of the matrix A is < 0. Thus C is not numerically
ACM. �

We believe that Lemma 5.9 continues to hold for equidimensional codimension
two subschemes, but we do not have a proof. Thus, we propose:

Conjecture 5.10. Let L be an even liaison class of codimension two sub-
schemes of Pn (n ≥ 4). Then the minimal elements of L are not numerically ACM.

We will prove a Lazarsfeld-Rao structure theorem for the numerically ACM
elements of an even liaison class L. We illustrate the idea with an example.

Theorem 5.11. Let L be a codimension two even liaison class of subschemes of
Pn. Let M be the subset of L consisting of numerically ACM subschemes. Then M
also satisfies the LR property. That is, there are minimal elements of M, unique
up to flat deformation preserving the cohomology of the ideal sheaf (hence also the
Hilbert function), and every element of M can be produced from a minimal one
by a sequence of basic double links followed by a flat deformation preserving the
cohomology.

Furthermore, the numerical Macaulification of any minimal element in L is a
minimal element in M.

Proof. In this proof we will heavily use the fact that L has the LR property.
We also use the fact that without loss of generality we can assume that our sequence
of basic double links is performed with degG = 1 and degFi strictly increasing. We
also use the fact that if C is a minimal element with h-vector (1, 2, h2, . . . , hk) (with
hi not necessarily non-negative) and a basic double link of type (t, 1) is performed,
then the h-vector of the resulting curve is obtained by shifting that of C by one,
and adding a vector of (degF ) ones as in the previous example. Finally, recall that
C is numerically ACM if and only if its h-vector is an O-sequence.

First we produce the minimal elements of M using Algorithm 4.6. Let C0 be a
minimal element of L, and let h = (1, 2, h2, h3, . . . , he) be its h-vector (recall that
minimal elements of L all have the same h-vector). If all the minimal elements of
L are numerically ACM then it follows from Lemma 5.8 and the LR-property for L
that M = L, hence M has the LR-property. (In the case of curves in P3, we have
seen in Lemma 5.9 that minimal elements are never numerically ACM.)

So assume that the minimal elements are not numerically ACM. By Lemma 5.9,
h is not an O-sequence. Thus there is a least degree i such that hi < hi+1 (possibly
hi < 0 as well). Each application of the step (∗) of Algorithm 4.6 reduces the deficit
by 1 in the leftmost possible degree, and we ultimately obtain an O-sequence, hence
a numerically ACM subscheme. This subscheme has deficiency modules (which are
not all zero) shifted δ places to the right of that of C0, where δ is the number of
basic double links applied.

To prove the LR-property for M, we must show that

(a) no sequence of fewer than δ basic double links (always with degG = 1)
achieves a numerically ACM subscheme;

(b) the (strictly increasing) degrees of the forms obtaining a numerically ACM
subscheme in δ steps is uniquely determined;
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(c) any sequence of basic double links using forms of strictly increasing degrees
and ending with a numerically ACM subscheme is numerically equivalent
to another sequence whose first δ steps are the ones from above (but now
the remaining steps are not necessarily using forms of strictly increasing
degree).

Parts (a) and (b) give us that the minimal shift of M can be obtained using
this procedure, and the elements lie in a flat family since they have the same Hilbert
function and cohomology. Part (c) says that any element of M can be obtained
from a minimal element using basic double linkage. We do not claim that any
element of M can be obtained from a minimal element using basic double links of
strictly increasing degree!

We make two observations at this point. First, if instead of applying step (∗)
of Algorithm 4.6, we make a choice of F of degree > i+ 2, it results in a situation
where no subsequent sequence of basic double links using forms of strictly increasing
degree can be numerically ACM, since there will always be a step in the h-vector
where the deficit is positive. Second, if we choose F to be of degree < i + 2, the
number of steps remaining to obtain a numerically ACM subscheme does not drop.
These observations together imply (a) and (b).

For (c), suppose that C is a numerically ACM subscheme in L that is obtained
from a minimal element by some sequence of basic double links using forms of
strictly increasing degree (after possibly a number of basic double links using forms
of least degree), and then deforming. Let δ be the deficit of the minimal element.
By the above observations, there are precisely δ of the basic double links that
reduce the deficit by one; the others do not change the deficit. Consider the first
deficit-reducing basic double link. If it is actually the first basic double link, leave
it alone and consider the second deficit-reducing basic double link. If all of the
deficit-reducing basic double links come at the beginning of the sequence of basic
double links, there is nothing to prove. Otherwise, suppose that the i-th deficit-
reducing basic double link is the first one that is not at the i-th step, and suppose
that it comes at the (i + k)-th step. Taking the (i + k − 1)-st and (i + k)-th
basic double links, we can apply Lemma 5.6, resulting in a new sequence where
the first (i + k − 2) basic double links are unchanged, and the (i + k − 1)-st one
is deficit-reducing. Continuing in this way, we produce a new sequence where the
first i basic double links are all deficit-reducing. Then we move to the next deficit-
reducing basic double link, and in this way ultimately we produce the desired result
of all δ basic double links coming at the beginning of the sequence (but possibly
losing the property of being strictly increasing). �

6. A class of smooth numerically ACM curves

In this section we give a class of smooth numerically ACM space curves that
contains Harris’s example as a special case. We will find such an example in the
liaison class Ln consisting of curves whose Hartshorne-Rao module is Kn, i.e. is
n-dimensional, concentrated in one degree. The example of Joe Harris is the case
n = 1. It will first be necessary to recall some facts. Except as indicated, all of
these results can be found in (or deduced from) [3].

Our main tool is a result from [3] that is stated in the language of numerical
characters. The numerical character of a curve was introduced by Gruson and
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Peskine [11]. Rather than give the definition, we give an equivalent formulation
from [9] that is more useful to us in our setting.

Let C be a curve in P3 and let H be a general hyperplane. Let h be the h-vector
of the hyperplane section Z = C ∩H. Suppose that σ is the initial degree of IZ in
the coordinate ring of H = P2. Then h reaches a maximum value of σ in degree
σ − 1 (and possibly beyond). The numerical character of C is a σ-tuple of integers
defined as follows: First, if Δh takes a negative value −k in degree t then there are
k occurrences of t in the numerical character. These account for all the entries of
the numerical character. However, we list the entries of the numerical character in
non-increasing order. For example, if Z has h-vector

(1, 2, 3, 4, 5, 6, 7, 8, 8, 6, 5, 5, 3, 2, 1)

then σ = 8 and the numerical character is (15, 14, 13, 12, 12, 10, 9, 9). Notice that
there is a gap (there is no 11), corresponding to the fact that 5 occurs twice in the
h-vector.

Since Kn is self-dual, we may view Ln as an even liaison class. The minimal
elements of Ln form a flat family (thanks to the LR-property) and the general
element is smooth. All minimal elements have degree 2n2 and arithmetic genus
1
3 (2n− 3)(2n− 1)(2n+ 1). The Hartshorne-Rao module of such a curve occurs in
degree 2n− 2. The ideal is generated by forms of degree 2n, and there are 3n+ 1
such generators. The h-vector of a minimal curve is

(6.1) (1, 2, 3, 4, . . . , 2n− 1, 2n,−n).

Since the Hartshorne-Rao module occurs in degree 2n− 2 and the initial degree of
the ideal is 2n, any minimal curve has maximal rank.

The h-vector of the general hyperplane section of such a curve is

(6.2) (1, 2, 3, 4, . . . , 2n− 2, 2n− 1, n);

in particular, the initial degree is σ = 2n − 1 and there are n generators of that
degree. The numerical character of the curve is

(2n, . . . , 2n︸ ︷︷ ︸
n

, 2n− 1, . . . , 2n− 1︸ ︷︷ ︸
n−1

).

Given a curve C and its numerical character (n0, n1, . . . , nσ−1) with n0 ≥ n1 ≥
· · · ≥ nσ−1, we define for any integer i

Ai = #{j|nj = i}.

One of the main results of [3] is the following:

Theorem 6.1 ([3], Theorem 5.3). Let N = (n0, n1, . . . , nσ−1) be a sequence of
integers without gaps satisfying

• n0 ≥ n1 ≥ · · · ≥ nσ−1 ≥ σ;
• σ ≥ 2n− 1;
• Aσ ≥ n− 1;
• Aσ+1 ≥ n, and if Aσ+1 = n then At = 0 for all t > σ + 1.

Then there exists a smooth maximal rank curve C ∈ Ln with numerical character
N .
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Another result proved there, which will be useful to us, is the following. Note
that it was shown much earlier by Gruson and Peskine [11] that the general hyper-
plane section of an integral curve in P3 has a numerical character that is without
gaps. This turns out to be equivalent to the observation by Joe Harris [13] that
the h-vector of the general hyperplane section of an irreducible curve in P3 is of
decreasing type.

Theorem 6.2 ([3], Corollary 3.6, Notation 3.7). Let Y ∈ Ln be a smooth
maximal rank curve, and let N(Y ) = (n0, n1, . . . , nσ−1) be its numerical character.
Then the sufficient conditions listed in Theorem 6.1 are also necessary.

We first produce a minimal numerically ACM curve in Ln (which will not be
smoothable in Ln). According to the algorithm in Theorem 5.11, since we begin
with the h-vector (6.1) for the minimal curve, we must perform a series of n basic
double links, using forms in the ideal of degrees 2n + 2, 2n + 3, . . . , 3n + 1. The
resulting curve, Y , is numerically ACM. Its Hartshorne-Rao module occurs in degree
(2n − 2) + n = 3n − 2 and the initial degree of IY is (2n) + n = 3n. Thus Y also
has maximal rank.

To compute the h-vector of the general hyperplane section of Y , we begin with
the h-vector of the general hyperplane section of the minimal curve in Ln, namely
(6.2), and perform the same sequence of basic double link calculations using forms
of degrees 2n+2, 2n+3, . . . , 3n+1. We obtain that the general hyperplane section
of Y has h-vector

(1, 2, 3, . . . , 3n− 2, 3n− 1, 2n, n)

where the 2n occurs in degree 3n− 1. This translates to a numerical character

(3n+ 1, . . . , 3n+ 1︸ ︷︷ ︸
n

, 3n, . . . , 3n︸ ︷︷ ︸
n

, 3n− 1, . . . , 3n− 1︸ ︷︷ ︸
n−1

)

with σ = 3n−1. Notice that this does not satisfy the last condition of Theorem 6.1,
hence by Theorem 6.2 we cannot find a smooth Y with these numerical properties.
However, if we perform one more basic double link, using a form in IY of degree
3n+ 1, we obtain a curve C ′ with Hartshorne-Rao module in degree 3n− 1, initial
degree of IC′ equal to 3n+ 1 (hence C ′ has maximal rank). Its general hyperplane
section has h-vector

(1, 2, 3, . . . , 3n, 2n+ 1, n),

so the numerical character of C ′ is

(6.3) (3n+ 2, . . . , 3n+ 2︸ ︷︷ ︸
n

, 3n+ 1, . . . , 3n+ 1︸ ︷︷ ︸
n+1

, 3n, . . . , 3n︸ ︷︷ ︸
n−1

).

Now σ = 3n, and we observe that this numerical character does satisfy the condi-
tions of Theorem 6.1. The degree of C ′ can be obtained by adding the entries in
the h-vector:

degC ′ =
9n2 + 9n+ 2

2
.

At this point we have a curve C ′ ∈ Ln that is numerically ACM and also satisfies
the conditions of Theorems 6.1 and 6.2. This is not quite enough to guarantee that
C ′ lies in an irreducible flat family of numerically ACM elements of Ln, the general
one of which is smooth. A priori, it is conceivable that there are several families,
all of whose general hyperplane sections have the described Hilbert function, but
some of which have elements that are numerically ACM and others of which have
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general elements that are smooth, but none having both. (This could happen if
different shifts of the Hartshorne-Rao module are involved.) Our next observation
is a uniqueness result that eliminates this danger.

Observe that starting with the h-vector of the general hyperplane section of
the minimal curve, given in (6.2), if we perform basic double links using forms of
strictly increasing degrees, the only way to obtain the numerical character (6.3) is
via the given sequence of n+1 basic double links. Thus in Ln, there is only one flat
family of curves with this numerical character, namely the one containing C ′, which
is numerically ACM. But the property of being numerically ACM is preserved in
the flat family, and by Theorem 6.1 this flat family contains a smooth curve, C.

We have thus shown:

Theorem 6.3. The liaison class Ln contains a smooth, maximal rank, numer-

ically ACM curve C of degree 9n2+9n+2
2 . C is the smooth curve of least degree in

Ln that is numerically ACM, but it does not have least degree simply among the
numerically ACM curves in Ln.

Notice that when n = 1, we obtain Harris’s curve of degree 10.

Remark 6.4. Consider a pair of skew lines C ⊂ P3. It is a minimal curve in
L1, and it is not an ACM curve. A numerical Macaulification of C is obtained by
performing a basic double link of type (4, 1). By Theorem 5.11, the resulting curve
D is a minimal numerical ACM curve in L1. Nollet showed in [20] that D cannot
be flatly deformed within its liaison class to an integral curve.

Question 6.5. Does Harris’s curve have the smallest possible degree among
integral numerically ACM (but not ACM) curves in P3?

Question 6.6. We believe that at least for curves in P3, every even liaison class
contains smooth numerically ACM elements. Does every even liaison class of locally
Cohen-Macaulay, codimension two subschemes of Pn contain smooth numerically
ACM elements?

Remark 6.7. We wonder if the smooth numerically ACM curves in Ln, or
perhaps in any even liaison class of curves in P3, satisfy some sort of Lazarsfeld-
Rao property, similar to what was studied in [20] (without regard to the numerically
ACM property). Since our main tool here involves only maximal rank curves in Ln,
we do not know the answer to this question. We remark that thanks to the results
in [4], a result similar to Theorem 6.3 is probably possible for smooth, maximal
rank arithmetically Buchsbaum curves whose Hartshorne-Rao module has diameter
two.

As mentioned in the introduction, smooth curves, even having the same Hilbert
function, can behave very differently depending on whether they are ACM or not.
The following gives an interesting illustration. On an integral ACM curve, there
are Gorenstein sets of points with arbitrarily large degree (see [14]). This in no
longer true on non-ACM curves, even if we just ask for zero-dimensional schemes.

Proposition 6.8. Let C be an integral non-ACM curve in Pn. Then there
is an integer N , depending only on the regularity of IC , such that C contains
no arithmetically Gorenstein zero-dimensional scheme of degree > N . In fact,
N = degC · reg IC has this property.
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Proof. Let Z ⊂ C be a zero-dimensional scheme. Let F• be the minimal free
resolution of IC , and let G• be the minimal free resolution of IZ . The length of
both F• and G• is n− 1 (the former since C is not ACM).

Let d = reg IC . In particular, all the minimal generators of IC have degree ≤ d.
In fact, in the Betti diagram for F•, the last non-zero row is the d-th one.

Now assume that |Z| > d·degC. Since C is integral, any hypersurface of degree
≤ d that contains Z also contains C, so any minimal generator of IZ that is not in
IC has degree > d. Consequently, the first d rows of the Betti diagram for IZ are
precisely the Betti diagram for IC . It also follows that the largest twist of Gn−1

is strictly larger than the largest twist of Fn−1. But the summands of Fn−1 are
also summands of Gn−1. Thus Gn−1 has at least two summands, so Z cannot be
arithmetically Gorenstein. �

7. Examples

We illustrate our algorithms and results by a few more examples, and we raise
some questions that, we believe, deserve further consideration.

Example 7.1. Let C1 be the scheme in P3 defined by the cube of the ideal of
a general line. Let C2 and C3 be general complete intersections of types (1, 2) and
(4, 8) respectively. Let C = C1 ∪ C2 ∪ C3. The Betti diagram for R/IC is

0 1 2 3

-------------------------

0: 1 - - -

1: - - - -

2: - - - -

3: - - - -

4: - - - -

5: - - - -

6: - - - -

7: - 4 3 -

8: - 4 7 3

9: - - - -

10: - - - -

11: - 5 4 -

12: - 4 8 4

13: - - 4 3

-------------------------

Tot: 1 17 26 10

and the h-vector of R/IC is (1, 2, 3, 4, 5, 6, 7, 8, 5, 1, 4, 4,−1,−6,−3). We illustrate
the two algorithms, and why they produce numerically equivalent results. We begin
with the first algorithm.

Collecting our lists of {ri} and {si}, we obtain

{si} 15 15 15 15 14 14 14 14 14 14 14 14 13 13 13 13
{ri} 16 16 16 15 15 15 15 13 13 13 13 12 12 12 12 12

10 10 10 10 10 10 10 9 9 9
11 11 11 9 9 9 9 8 8 8 8
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However, we first remove duplicates and re-align the lists:

{si} 14 14 14 14 14 14 14 14 10 10 10 10 10 10 10
{ri} 16 16 16 12 12 12 12 12 11 11 11 9 8 8 8 8

The negative entries of the main diagonal of the matrix are precisely those integers
for which si < ri. We thus immediately see that we will need three basic double
links of height 2 and three of height 1, a fact that was not at all evident before
removing the duplicates. More careful analysis shows that in fact the sequence of
basic double links consists of types

(11, 1), (12, 1), (13, 1), (19, 2), (21, 2), and (23, 2).

Notice that the sum of the heights of the basic double links is 1+1+1+2+2+2 = 9.
As for the second algorithm, we begin with the h-vector

( 1, 2, 3, 4, 5, 6, 7, 8, 5, 1, 4, 4, −1, −6, −3. )

We look for places where the value in one degree is smaller than that in the next
degree. The total deficit is 3 + 3 + 3 = 9, which is equal to the sum of the heights,
i.e. the sum of the absolute values of the negative entries on the main diagonal
of the matrix. In fact, Algorithm 4.6 gives that we must use a sequence of basic
double links of type (di, 1) where di takes the values 11, 12, 13, 18, 19, 20, 22, 23,
24.

The resulting curve from the first approach in the same flat family of the
even liaison class as the curve resulting from the second approach because the two
curves have the same Hilbert function by Proposition 4.9. Alternatively, we can see
this by replacing the basic double links used in the first algorithm by numerically
equivalent basic double links. First, using Lemma 5.5 three times we see that we
have a sequence of basic double links of type (di, 1) with di taking the values 11,
12, 13, 19, 19, 21, 21, 23, 23. Applying Lemma 5.6 six times to this 9-tuple gives
sequentially the 9-tuples

11 12 13 19 19 21 21 23 23
11 12 13 18 20 21 21 23 23
11 12 13 18 20 20 22 23 23
11 12 13 18 19 21 22 23 23
11 12 13 18 19 21 22 22 24
11 12 13 18 19 21 21 23 24
11 12 13 18 19 20 22 23 24

where the last row represents the same sequence of basic double links prescribed
(in the end) by the first approach.

We note that in general it seems rather complicated to show directly that the
sequences of basic double links used in Algorithms 4.3 and 4.6 are numerically
equivalent.

Example 7.2. Let I ⊂ k[w, x, y, z] be the ideal of a set Z of 11 general points
in P3. The Betti diagram for R/I is

0 1 2 3

-------------------------

0: 1 - - -

1: - - - -

2: - 9 12 3
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3: - - - 1

-------------------------

Tot: 1 9 12 4

Even though I has codimension three, we can still apply Algorithm 4.3 to I.
We perform a sequence of basic double links of type (5, 1), (6, 1), (7, 1) and (9, 2),
obtaining an ideal with Betti diagram

0 1 2 3

-------------------------

0: 1 - - -

1: - - - -

2: - - - -

3: - - - -

4: - - - -

5: - - - -

6: - - - -

7: - 9 12 3

8: - 4 3 1

9: - - 1 -

-------------------------

Tot: 1 13 16 4

and h-vector [1, 2, 3, 4, 5, 6, 7, 8].

Example 7.3. Let Z be a set of 11 general points in P3 as in Example 7.2,
and let I be the ideal generated by a general set of four forms in IZ of degree 4. I
defines Z scheme-theoretically, but is not saturated. The Betti diagram for R/I is

0 1 2 3 4

------------------------------

0: 1 - - - -

1: - - - - -

2: - - - - -

3: - 4 - - -

4: - - - - -

5: - - - - -

6: - - 6 - -

7: - - - - -

8: - - 1 - -

9: - - 3 16 9

------------------------------

Tot: 1 4 10 16 9

Applying Algorithm 4.3 involves a sequence of seven basic double links, resulting
in a Betti diagram
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0 1 2 3 4

------------------------------

0: 1 - - - -

1: - - - - -

...

19: - - - - -

20: - 4 - - -

21: - - - - -

22: - - - - -

23: - - 6 - -

24: - 3 - - -

25: - - 1 - -

26: - 1 3 16 9

27: - 3 7 - -

------------------------------

Tot: 1 11 17 16 9

and an h-vector

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 18, 15, 12, 9, 9, 9, 9, 9].

Example 7.4. The Betti diagram of the curve studied in Example 4.7 is

0 1 2 3

-------------------------

0: 1 - - -

1: - - - -

2: - - - -

3: - - - -

4: - - - -

5: - - - -

6: - - - -

7: - - - -

8: - - - -

9: - 2 1 -

10: - - - -

11: - 2 3 1

12: - 1 - -

13: - 1 1 -

14: - 1 - -

15: - 1 5 2

16: - 2 4 2

17: - 2 2 -

-------------------------

Tot: 1 12 16 5

One can verify that this gives a matrix with only positive entries in the main
diagonal (after removing redundant terms), and so the curve is numerically ACM.

Remark 7.5. Using the methods of this paper, many ACM Hilbert functions
of curves can be obtained starting from non-ACM curves. It would be interesting
to know which ACM Hilbert functions do not occur in this way, i.e. which force
the curve to be ACM (a trivial example is if it is a plane curve). Is it a finite list?
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How does the question change if we restrict to smooth or integral curves? This
question has been studied from the point of view of the Hilbert function of the
general hyperplane section (see e.g. [10]) but this is a different question!

Remark 7.6. It will be noted that all of our numerically ACM subschemes
have codimension two. It would be interesting to find a construction that produces
numerically ACM subschemes of higher codimension. In this paper we have heavily
used methods and results that apply only to codimension two, so it is unlikely that
results as complete as those given here will be obtained for higher codimension.
Still, it is an interesting problem.
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The non-nef locus in positive characteristic
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Dedicated to Joe Harris on the occasion of his sixtieth birthday

Abstract. We give an analogue in positive characteristic of the description

of the non-nef locus from [ELMNP]. In this case, the role of the asymptotic
multiplier ideals is played by the asymptotic test ideals. The key ingredient
is provided by a uniform global generation statement involving twists by such
ideals.

1. Introduction

LetX be a smooth, projective variety over an algebraically closed field k. IfD is
a divisor on X, then for every positive integer m we may consider the closed subset
Bs(mD), the base-locus of the linear system |mD|. The intersection

⋂
m≥1 Bs(mD)

is equal to Bs(�D) for � divisible enough; this is the stable base locus B(D) of D.
By definition, we have B(D) = B(rD) for every positive integer r, and using this
one extends in the obvious way the definition of B(D) to the case when D is a
Q-divisor.

The stable base locus is a very interesting invariant, but it is quite subtle: for
example, two numerically equivalent divisors can have different stable base loci. A
related subset is the non-nef locus, defined as follows. If D is an R-divisor on X,
then

B−(D) :=
⋃
A

B(D + A),

where the union is over all ample R-divisors A such that D + A is a Q-divisor. It
follows from the definition that B−(D) only depends on the numerical equivalence
class of D, and B−(D) is empty if and only if D is nef.

This locus was studied in [ELMNP] over a ground field of characteristic zero.
The key tool in this study is the asymptotic multiplier ideal and a certain uniform
global generation result for twists by such ideals. In that context, the global gen-
eration statement is a consequence of vanishing theorems of Kodaira-type and of
Castelnuovo-Mumford regularity. The main point of the present paper is that a
similar uniform global generation result also holds in positive characteristic, if one
replaces the asymptotic multiplier ideal by the asymptotic test ideal (despite the
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fact that in positive characteristic Kodaira’s vanishing theorem and its generaliza-
tions may fail).

We recall that test ideals give an analogue in positive characteristic of multi-
plier ideals in characteristic zero. They were introduced by Hara and Yoshida in
[HY] using a generalization of tight closure theory, and it was noticed from the
beginning that they satisfy similar formal properties with those of multiplier ideals
in characteristic zero. Furthermore, there are some very interesting results and
open problems concerning the connection between multiplier ideals and test ideals
via reduction mod p. We refer to §3 for the definition of test ideals and to [ST] for
a more comprehensive overview.

As it is the case for multiplier ideals in characteristic zero, for a divisor D on a
variety X in positive characteristic with OX(D) of non-negative Iitaka dimension,
one can use an asymptotic construction to obtain asymptotic test ideals τ (λ· ‖ D ‖)
for every λ ∈ R≥0. The following is our main technical result (see Theorem 4.1
below).
Theorem A. Let X be a smooth projective variety over an algebraically closed
field of positive characteristic and let H be an ample divisor on X, with OX(H)
globally generated. If D and E are divisors onX such that OX(D) has non-negative
Iitaka dimension, and λ ∈ Q≥0 is such that E − λD is nef, then the sheaf

τ (λ· ‖ D ‖)⊗OX
OX(KX + E + dH)

is globally generated for every d ≥ dim(X) + 1.
Here KX denotes a canonical divisor on X. For the corresponding result in

characteristic zero, in which τ (λ· ‖ D ‖) is replaced by the asymptotic multiplier
ideal J (λ· ‖ D ‖), see [Laz, Corollary 11.2.13]. It was Schwede who first noticed
in [Sch] that one can use an argument due to Keeler [Kee] and Hara (unpub-
lished) to obtain global generation statements involving test ideals. The idea is to
use Castelnuovo-Mumford regularity and the fact that by pushing-forward via the
Frobenius morphism one can reduce the desired vanishings to Serre’s asymptotic
vanishing. Our argument follows the one in [Sch], with some modifications coming
from the fact that we need to consider test ideals of not necessarily locally principal
ideals, and we have the extra nef divisor E − λD to deal with (in order to do this,
we use Fujita’s vanishing theorem instead of Serre’s asymptotic vanishing).

Once we have the above uniform global generation statement and its corollaries,
the basic results describing B−(D) for a big divisor D follow as in [ELMNP].
Recall that given a closed point x ∈ X1 and a big divisor D on X, one defines the
asymptotic order of vanishing ordx(‖ D ‖) by

ordx(‖ D ‖) := inf
m≥1

ordx |mD|
m

= lim
m→∞

ordx |mD|
m

,

where ordx |mD| is the order of vanishing at x of a general element in |mD|. The
following are the main properties of this function (see Theorem 6.1 below).
Theorem B. Let X be a smooth projective variety over an algebraically closed
field of positive characteristic, and x a closed point on X.

i) For every big divisor D, the asymptotic order of vanishing ordx(‖ D ‖)
only depends on the numerical class of D.

1In the main body of the paper we will deal with an arbitrary irreducible proper closed subset
Z ⊂ X, not just with points.
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ii) The function D → ordx(‖ D ‖) extends as a continuous function to the
cone of big divisor classes Big(X)R.

In characteristic zero, this was also proved by Nakayama in [Nak]. As a con-
sequence of Theorems A and B, we obtain the following description of the non-nef
locus (see Theorem 6.2 below).
Theorem C. Let X be a smooth projective variety over an algebraically closed
field of positive characteristic and x a closed point on X. For a big divisor D, the
following are equivalent:

i) x does not lie in the non-nef locus B−(D).
ii) There is a divisor G on X such that x does not lie in the base locus of

|mD +G| for every m ≥ 1.
iii) There is a real number M such that ordx |mD| ≤ M for every m with

|mD| non-empty.
iv) ordx(‖ D ‖) = 0.
v) For every m ≥ 1, the ideal τ (‖ mD ‖) does not vanish at x.

At the boundary of the big cone, the situation is more complicated. If D is a
pseudo-effective R-divisor, then D + A is big for every ample R-divisor A. As in
[Nak], we define σx(D) := supA ordx(‖ D + A ‖), where A varies over all ample
R-divisors. This is tautologically a lower semi-continuous function on the pseudo-
effective cone, but it is not continuous in general. Following an idea of Hacon, we
show that for every λ ∈ R≥0, there is a unique minimal element in the set of ideals
τ (λ· ‖ D + A ‖), where A is as above. We denote this ideal by τ+(λ· ‖ D ‖). The
following theorem gives the description of the non-nef locus for pseudo-effective
divisors.
Theorem D. Let X be a smooth projective variety over an algebraically closed
field of positive characteristic and x a closed point on X. If D is a pseudo-effective
R-divisor on X, then the following are equivalent:

i) x does not lie in the non-nef locus B−(D).
ii) σx(D) = 0.
iii) For every m ≥ 1, the ideal τ+(m· ‖ D ‖) does not vanish at x.

The paper is organized as follows. In §2 we review, following [ELMNP], the
definition and elementary properties of the asymptotic order function and of the
non-nef locus. In §3 we recall the definition of test ideals and of its asymptotic ver-
sion. We prove here that given an arbitrary graded sequence of ideals, its asymptotic
order of vanishing along a subvariety can be computed from the orders of vanishing
of the corresponding sequence of asymptotic test ideals. Section 4 contains the
proof of our key technical result, Theorem A. Some applications to asymptotic test
ideals and their F - jumping numbers are given in the following section. In §6 we
deduce the results stated in Theorems B and C above, while the last section of the
paper contains the description of the non-nef locus for pseudo-effective R-divisors.

Acknowledgment. I am indebted to Karl Schwede for several inspiring con-
versations on the results of his preprint [Sch] and for comments on a preliminary
version of this note. I would also like to thank Rob Lazarsfeld for many discussions
over the years on multiplier ideals and asymptotic invariants. Last but not least, I
am grateful to the anonymous referees for their comments.
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2. Non-nef loci and asymptotic orders of vanishing

In this section we review, following [ELMNP], the definition of the non-nef
locus and of the asymptotic order of vanishing of a divisor along a subvariety. Let
X be a smooth variety2 over an algebraically closed field k (in this section we make
no restriction on the characteristic).

Recall that a graded sequence of ideals on X consists of a sequence a• =
(am)m≥1 of ideals of OX (all ideals are assumed to be coherent) that satisfies

(2.1) am1
· am2

⊆ am1+m2

for all m1,m2 ≥ 1. We assume that all our graded sequences are nonzero, that is,
am 	= 0 for some m ≥ 1.

The most interesting examples of graded sequences arise as follows. Suppose
that X is complete, and that D is a divisor on X such that OX(D) has non-negative
Iitaka dimension. Let a|mD| be the ideal defining the base locus of OX(mD), that
is, evaluation of sections induces a surjective map

H0(X,OX(mD))⊗OX → a|mD| · OX(mD).

In this case aD• = (a|mD|)m≥1 is a graded sequence of ideals (note that some a|mD|
is nonzero by the assumption on the Iitaka dimension of OX(D)).

Suppose now that X is not necessarily complete and Z is an irreducible proper
closed subset of X. For a nonzero ideal a on Z we denote by ordZ(a) the order
of vanishing of a along Z; in other words, if OX,Z is the local ring of X at the
generic point of Z, having maximal ideal mZ , then ordZ(a) is the largest r such
that a · OX,Z ⊆ mr

Z . By convention, we put ordZ(0) = ∞. It is clear that given
two ideals a and a′ on X, we have

(2.2) ordZ(a · a′) = ordZ(a) + ordZ(a
′).

If a• is a graded sequence of ideals on X, then the asymptotic order of vanishing
of a• along Z is

ordZ(a•) := inf
m≥1

ordZ(am)

m
.

It is easy to deduce from properties (2.1) and (2.2) that ordZ(a•) = limm→∞
ordZ(am)

m ,
where the limit is over those m such that am is nonzero (see for example [JM,
Lemma 2.3]).

If X is complete and D is a divisor on X such that OX(D) has non-negative
Iitaka dimension, then we consider the graded sequence aD• = (a|mD|)m≥1.

The asymptotic order of vanishing ordZ( a
D
• ) is denoted by ordZ( ‖ D ‖ ).

Since ordZ( ‖ D ‖ ) is the limit of the corresponding normalized orders of
vanishing, we have the equality ordZ( ‖ mD ‖ ) = m · ordZ( ‖ D ‖ ) for every
positive integer m. Given a Q-divisor D with h0(X,OX(mD)) 	= 0 for some
positive integer m such that mD has integer coefficients, we can therefore define
ordZ( ‖ D ‖ ) := 1

m ordZ( ‖ mD ‖ ). It is clear that this is well-defined and
ordZ(‖ λD ‖) = λ · ordZ(‖ D ‖) for every λ ∈ Q≥0.

Remark 2.1. If D and E are divisors on X such that both OX(D) and OX(E)
have non-negative Iitaka dimension, we have a|mD| ·a|mE| ⊆ a|m(D+E)| for every m.

2We assume that all varieties are irreducible and reduced.
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This easily implies

ordZ(‖ D + E ‖) ≤ ordZ(‖ D ‖) + ordZ(‖ E ‖).

We now turn to the definition of the stable base locus and of the non-nef locus.
Suppose that X is a smooth projective variety. We denote by N1(X)R the finite-
dimensional real vector space of numerical equivalence classes of R-divisors on X,
and by Big(X)R the big cone, that is, the open cone of big R-divisor classes. The
closure of the big cone is the cone of pseudo-effective divisor classes.

For a divisor D on X, we denote by Bs(D) the base-locus of |D| (with the
reduced scheme structure). It is clear that for every positive integers m and r,
we have Bs(rmD) ⊆ Bs(mD), hence the Noetherian property implies that the
intersection

⋂
m≥1 Bs(mD) is equal to Bs(�D) if � is divisible enough. This is the

stable base locus of D, denoted by B(D). It is clear that B(D) = B(rD) for every
positive integer r. Therefore we can define B(D) for a Q-divisor D as B(rD), where
r is any positive integer such that rD has integer coefficients.

Suppose now that D is an R-divisor on X. The non-nef locus of D (called
restricted base locus in [ELMNP]) is the union

B−(D) =
⋃
A

B(D +A),

where the union is over all ample R-divisors A such that D+A is a Q-divisor. The
properties in the following proposition are simple consequences of the definition,
see [ELMNP, §1].

Proposition 2.2. Let D1 and D2 be R-divisors on X.
i) B−(D1) = B−(λD1) for every λ > 0.
ii) If D1 and D2 are numerically equivalent, then B−(D1) = B−(D2).
iii) The non-nef locus B−(D1) is empty if and only if D1 is nef.
iv) If D1 is a Q-divisor, then B−(D1) ⊆ B(D1).
v) We have B−(D1 +D2) ⊆ B−(D1) ∪B−(D2).
vi) If (Am)m≥1 is a sequence of ample R-divisors with each D+Am having rational

coefficients, and such that the classes of the Am converge to zero in N1(X)R, then
B−(D) =

⋃
m≥1 B(D +Am) =

⋃
m≥1 B−(D +Am).

It is not known whether B−(D) is always a Zariski closed subset of X, though
property vi) above shows that it is a countable union of closed subsets. This
property also implies that if the ground field k is uncountable, then B−(D) = X if
and only if D is not pseudo-effective.

3. Asymptotic test ideals

We start by reviewing the definition of test ideals. These ideals have been
introduced and studied in [HY]. Since we only deal with smooth varieties, we use
an alternative definition from [BMS], which is more suitable for our applications
(this description goes back to [HT, Lemma 2.1]). Suppose that X is a smooth
n-dimensional variety over an algebraically closed field k of characteristic p > 0
(in fact, for what follows it is enough to assume k perfect). Let ωX denote the
sheaf of n-forms on X. We denote by F : X → X the Frobenius morphism, that is
given by the identity on the topological space, and by taking the p-power on regular
functions.
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The key object is the trace map Tr = TrX : F∗(ωX) → ωX . This is a surjective
map that can be either defined as a trace map for duality with respect to F , or as
coming from the Cartier isomorphism. Given algebraic coordinates x1, . . . , xn on
an open subset U of X, the trace map is characterized by

Tr(xi1
1 · · ·xin

n dx1 ∧ · · · ∧ dxn) = x
i1−p+1

p

1 · · ·x
in−p+1

p
n dx1 ∧ · · · ∧ dxn,

where the monomial on the right-hand side is understood to be zero if one of the
exponents is not an integer. Iterating this map e times we obtain a surjective map
Tre : F e

∗ (ωX) → ωX .
Given an ideal b in OX and e ≥ 1, the image Tre(b · ωX) can be written as

b[1/p
e] · ωX for some ideal b[1/p

e] in OX . This is not the definition in [BMS],
but it can be easily seen to be equivalent to the definition therein via [BMS,
Proposition 2.5]. For example, when a is the ideal defining a smooth divisor E on
X, we have (am)[1/p

e] = OX(−m/pe�E), where u� denotes the largest integer
≤ u.

Given a nonzero ideal a on X and λ ∈ R≥0, one shows that

(
a
�λpe�

)[1/pe]

⊆
(
a
�λpe+1�

)[1/pe+1]

for every e ≥ 1. Here we put �u� for the smallest integer ≥ u. By the Noetherian
property, there is an ideal τ (aλ), the test ideal of a of exponent λ, that is equal

to
(
a�λp

e�)[1/pe]
for e � 0. One can show that if r is a positive integer, then

τ (arλ) = τ ((ar)λ). Furthermore, we have a ⊆ τ (a).
Test ideals share many of the properties of the multiplier ideals. If a ⊆ b, then

τ (aλ) ⊆ τ (bλ) for every λ. We have τ (aλ) = OX if 0 ≤ λ � 1. For λ > μ we have
τ (aλ) ⊆ τ (aμ). Given λ ≥ 0, there is ε > 0 such that τ (aλ) = τ (aμ) for μ with

λ ≤ μ ≤ λ+ ε. One says that λ > 0 is an F -jumping number of a if τ (aλ) 	= τ (aλ
′
)

for every λ′ < λ. It is known that the set of F -jumping numbers of a is a discrete
set of rational numbers. For the proof of all these properties, we refer to [BMS].

A nice feature of the theory is that the Subadditivity Theorem for multiplier
ideals (see [Laz, Theorem 9.5.20]) has an analogue in this setting. This says that
for every nonzero ideals a and b and every λ ≥ 0, we have

(3.1) τ ((a · b)λ) ⊆ τ (aλ) · τ (bλ).
In particular, we have τ (amλ) ⊆ τ (aλ)m for every positive integer m. For a proof
see [BMS, Proposition 2.11].

One can similarly define a mixed test ideal: given nonzero ideals a and b in OX

and λ, μ ∈ R≥0, there is an ideal τ (aλbμ) that is equal to (a�λp
e�b�μp

e�)[1/p
e] for

e � 0. One can show that for every λ and μ, there is ε > 0 such that τ (aλbμ) =

τ (aλ
′
bμ

′
) if λ ≤ λ′ ≤ λ + ε and μ ≤ μ′ ≤ μ + ε (this follows by adapting the

argument in the non-mixed case, see the proof of [BMS, Proposition 2.14]). The
notion of mixed test ideals will only come up in the proof of Proposition 3.1 iv)
below.

It is straightforward to define an asymptotic version of test ideals, proceeding
in the same way as in the case of multiplier ideals (this has been noticed already
in [Ha], where the construction was used to compare symbolic powers with usual
powers of ideals in positive characteristic). Suppose that a• is a graded sequence of
ideals on X (recall that we always assume that some am is nonzero) and λ ∈ R≥0.
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If m and r are positive integers such that am is nonzero, then

τ (aλ/mm ) = τ ((arm)λ/mr) ⊆ τ (aλ/mr
mr ),

where the inclusion follows from arm ⊆ amr. It follows from the Noetherian property

that there is a unique ideal τ (aλ•) such that τ (a
λ/m
m ) ⊆ τ (aλ•) for all m (such that

am is nonzero), with equality if m is divisible enough. This is the asymptotic test
ideal of a• of exponent λ. We collect in the next proposition some easy properties
of asymptotic test ideals. The proof follows the case of multiplier ideals (see [Laz,
§11.2]).

Proposition 3.1. Let a• and b• be two graded sequences of ideals on X.

i) We have τ (aλ•) ⊆ τ (aμ• ) for every λ ≥ μ.
ii) We have τ (amλ

• ) ⊆ τ (aλ•)
m for all positive integers m.

iii) For every λ ∈ R≥0, there is ε > 0 such that τ (aλ•) = τ (aμ• ) for all μ with
λ ≤ μ ≤ λ+ ε.

iv) If there is a nonzero ideal c on X such that c · am ⊆ bm for all m � 0,
then τ (aλ•) ⊆ τ (bλ•) for all λ ∈ R≥0.

Proof. The assertions in i) and ii) follow from the definition of asymptotic
test ideals, using the corresponding properties in the case of test ideals. For iii), let

m be such that τ (aλ•) = τ (a
λ/m
m ). There is ε > 0 such that τ (a

λ/m
m ) = τ (a

(λ+ε)/m
m ) ⊆

τ (aλ+ε
• ), which proves iii).

For iv), given λ ∈ R≥0 let us choose m such that τ (aλ•) = τ (a
λ/m
m ). If � � 0,

then
τ (aλ•) = τ (aλ/mm ) = τ (cλ/m�aλ/mm )

= τ ((ca�m)λ/m�) ⊆ τ ((cam�)
λ/m�) ⊆ τ (b

λ/m�
m� ) ⊆ τ (bλ•).

�
We say that λ > 0 is an F -jumping number of a• if τ (aλ•) 	= τ (aμ• ) for every

μ < λ. We will see in §5 that if a• is associated to a divisor on a projective variety,
then the set of F -jumping numbers of a• is discrete.

If a• is a graded sequence as above, we also consider b• = (bm)m≥1, where
bm = τ (am• ). Note that am ⊆ τ (am) ⊆ bm for every m. The sequence b• is not a
graded sequence, but Proposition 3.1 ii) implies that bmr ⊆ brm for every m, r ≥ 1.
Furthermore, we have bm1

⊆ bm2
for m1 > m2. It is easy to deduce that if Z is an

irreducible proper closed subset of X, then

ordZ(b•) := sup
m

ordZ(bm)

m
= lim

m→∞

ordZ(bm)

m

(see [JM, Lemma 2.6]).

Proposition 3.2. If a• is a graded sequence of ideals on X and b• is the
corresponding sequence of asymptotic test ideals, then for every irreducible proper
closed subset Z of X, we have ordZ(a•) = ordZ(b•).

Proof. Since am ⊆ bm for every m, it is clear that we have ordZ(am) ≥
ordZ(bm) for all m, hence ordZ(a•) ≥ ordZ(b•). In order to prove the reverse

inequality, given m ≥ 1, let us choose r such that bm = τ (a
1/r
mr ). It follows from

Proposition 3.3 below that

ordZ(b•) ≥
ordZ(bm)

m
>

ordZ(amr)

mr
− codim(Z,X)

m
≥ ordZ(a•)−

codim(Z,X)

m
.
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Since this holds for every m ≥ 1, we deduce that ordZ(b•) ≥ ordZ(a•), which
completes the proof of the proposition. �

The next proposition is an instance of the fact that “the test ideal is contained
in the multiplier ideal”, which goes back to [HY, Theorem 3.4]. We give a direct
proof, since the argument is particularly transparent in our setting.

Proposition 3.3. If a is a nonzero ideal on X and Z is an irreducible proper
closed subset of X, then for every λ ∈ R≥0 we have

ordZ(τ (a
λ)) > λ · ordZ(a)− codim(Z,X).

Proof. Since construction of test ideals commutes with restriction to an open
subset, after replacing X by a suitable open neighborhood of the generic point of
Z, we may assume that Z is smooth. Let π : Y → X be the blow-up of X along Z,
with exceptional divisor E. If c = codim(Z,X), then the relative canonical divisor
KY/X is equal to (c− 1)E.

We have a commutative diagram

(3.2)

F e
∗π∗(ωY )

π∗(Tr
e
Y )−−−−−→ π∗(ωY )

F e
∗ (ρ)

⏐⏐

⏐⏐
ρ

F e
∗ (ωX)

TreX−−−−→ ωX

in which the vertical maps are isomorphisms. Note that if J is an ideal in OY , then
ρ(π∗(J · ωY )) = π∗(J · OY (KY/X)) · ωX .

Given the nonzero ideal a in OX , we put b = a · OY , and consider M :=
F e
∗ (a

m · ωX). Since KY/X is effective, we have F e
∗ (ρ)

−1(M) ⊆ F e
∗π∗(b

m · ωY ), and
using the commutativity of the above diagram to compute TreX(M) gives

(am)[1/p
e] ⊆ π∗(OY (KY/X) · (bm)[1/p

e]).

If s = ordZ(a), then b ⊆ OY (−sE), and since E is nonsingular we have

OY (KY/X) · (bm)[1/p
e] ⊆ OY ((c− 1− ms/pe�)E).

For a fixed λ ∈ R≥0, let us take m = �λpe� with e � 0, so that ms/pe� = λs�,
and we conclude

ordZ(τ (a
λ)) = ordZ((a

�λpe�)[1/p
e]) ≥ λs� − c+ 1,

which is equivalent with the inequality in the proposition. �

In the following sections we will be interested in the case when X is projective
and D is a divisor on X such that h0(X,OX(mD)) 	= 0 for some positive integer m.
We then denote by τ (λ· ‖ D ‖) the asymptotic test ideal of exponent λ associated to
the graded sequence (a|mD|)m≥1. If D is a Q-divisor such that h0(X,OX(mD)) 	= 0
for some m such that mD is integral, then we put τ (λ· ‖ D ‖) := τ (λ/r· ‖ rD ‖)
for every r such that rD has integer coefficients. If λ = 1, then we simply write
τ (‖ D ‖). It is clear from definition that if λ ∈ Q≥0, then τ (λ· ‖ D ‖) = τ (‖ λD ‖)
(note that when λ = 0, both sides are trivially equal to OX). In particular, we
see using Proposition 3.1 i) that if D is as above and λ1 ≤ λ2 are in Q≥0, then
τ (‖ λ2D ‖) ⊆ τ (‖ λ1D ‖).
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4. A uniform global generation result

In this section we prove the main technical result of the paper. Let X be a
smooth projective variety over an algebraically closed field k of positive character-
istic. We denote by KX a canonical divisor (that is, we have OX(KX) � ωX).
We put n = dim(X), and consider an ample divisor H on X, such that OX(H) is
globally generated.

Theorem 4.1. With the above notation, let D and E be divisors on X, and
λ ∈ Q≥0. If OX(D) has non-negative Iitaka dimension, and E − λD is nef, then
the sheaf

τ (λ· ‖ D ‖)⊗OX
OX(KX + E + dH)

is globally generated for every d ≥ n+ 1.

The proof that we give below follows the proof of [Sch, Theorem 4.3], which
in turn makes use of an argument of Keeler [Kee] and Hara (unpublished). In our
proof we also use of the following theorem of Fujita [Fuj]. If F is a coherent sheaf on
X and A is an ample divisor, then there is �0 such thatHi(X,F⊗OX

OX(�A+P )) =
0 for every i ≥ 1, every � ≥ �0, and every nef divisor P .

Proof of Theorem 4.1. By definition of the asymptotic test ideal, we can
find m such that if am is the ideal defining the base-locus of |mD|, then we have

τ (λ· ‖ D ‖) = τ (a
λ/m
m ). Let us fix such m. For e � 0 we have τ (a

λ/m
m ) =

(a
�λpe/m�
m )[1/p

e], and therefore there is a surjective map

(4.1) F e
∗ (a

�λpe/m�
m ⊗OX

OX(KX)) → τ (λ· ‖ D ‖)⊗OX
OX(KX).

By tensoring with OX(E + dH) and using the projection formula, we obtain the
surjective map
(4.2)

F e
∗ (a

�λpe/m�
m ⊗OX

OX(KX + pe(E + dH))) → τ (λ· ‖ D ‖)⊗OX
OX(KX +E + dH).

On the other hand, we have by definition a surjective map

H0(X,OX(mD))⊗k OX(−mD) → am,

hence a surjective map

(4.3) W ⊗k OX(−m�λpe/m�D) → a�λp
e/m�

m ,

where W = Sym�λpe/m�H0(X,OX(mD)). Tensoring (4.3) with the line bundle
OX(KX +pe(E+dH)) and pushing forward by F e (note that F e

∗ is exact since the
Frobenius morphism is affine), we obtain a surjective map
(4.4)

W⊗kF
e
∗OX(KX+pe(E+dH)−m�λpe/m�D) → F e

∗ (a
�λpe/m�
m ⊗OXOX(KX+pe(E+dH))).

It follows from the surjective maps (4.2) and (4.4) that in order to complete the
proof of the theorem, it is enough to show that for e � 0, the sheaf

F e
∗OX(KX + pe(E + dH)−m�λpe/m�D)

is globally generated. In fact, it is enough to show that this sheaf is 0-regular
in the sense of Castelnuovo-Mumford regularity with respect to the ample glob-
ally generated line bundle OX(H) (we refer to [Laz, §1.8] for basic facts about
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Castelnuovo-Mumford regularity). Therefore, it is enough to show that if e � 0,
then

(4.5) Hi(X,OX(−iH)⊗OX
F e
∗OX(KX + pe(E + dH)−m�λpe/m�D)) = 0

for all i with 1 ≤ i ≤ n.
Using again the projection formula and the fact that F e is affine, we obtain

Hi(X,OX(−iH)⊗OX
F e
∗OX(KX + pe(E + dH)−m�λpe/m�D))

� Hi(X,F e
∗OX(KX + pe(E + (d− i)H)−m�λpe/m�D))

� Hi(X,OX(KX + pe(E + (d− i)H)−m�λpe/m�D)).

Note that by assumption d− i ≥ 1 for i ≤ n.
Claim. We can find finitely many divisors T1, . . . , Tr onX that satisfy the following
property: for every e, there is j such that the difference peE −m�λpe/m�D− Tj is
nef. If this is the case, then by applying Fujita’s vanishing theorem to each of the
sheaves Fj = OX(KX + Tj) and to the ample divisor (d− i)H we obtain

Hi(X,OX(KX + pe(E + (d− i)H)−m�λpe/m�D)) = 0

for all i with 1 ≤ i ≤ n and all e � 0. Therefore in order to finish the proof, it is
enough to check the assertion in the claim.

Let us write λ = a
b , for non-negative integers a and b, with b nonzero. For

every e ≥ 1, we write pe = mbs+ t, for non-negative integers s and t, with t < mb.
In this case �λpe/m� = as+ � at

bm�, hence

peE −m�λpe/m�D = ms(bE − aD) +

(
tE −m

⌈
at

bm

⌉
D

)
,

and the claim follows since bE − aD is nef by assumption, and t can only take
finitely many values. This completes the proof of the theorem. �

Remark 4.2. In Theorem 4.1, we may allow D to be a Q-divisor: in this case
we may simply replace D by mD and λ by λ/m, with m divisible enough.

5. Applications to asymptotic test ideals of divisors

In this section we give some consequences of Theorem 4.1 to general properties
of asymptotic test ideals. From now on, we always assume that X is a smooth
projective variety over an algebraically closed field k of characteristic p > 0. Our
first result says that the asymptotic test ideals of a big Q-divisor only depend on
the numerical equivalence class of the divisor.

Proposition 5.1. If D and E are numerically equivalent big Q-divisors on X,
then

τ (λ· ‖ D ‖) = τ (λ· ‖ E ‖)
for every λ ∈ R≥0.

Proof. The proof follows as in the case of multiplier ideals in characteristic
zero, see [Laz, Example 11.3.12]. After replacing D and E by multiples, we may
clearly assume that both D and E have integer coefficients. Let H be a very ample
divisor and n = dim(X). Since D is big, there is a positive integer � such that
�D − (KX + (n+ 1)H) is linearly equivalent with an effective divisor G. It follows
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from Theorem 4.1 that τ (‖ (m− �)D ‖)⊗OX
OX(mE−G) is globally generated for

every m ≥ �, hence τ (‖ (m− �)D ‖) is contained in the ideal a|mE−G|. Therefore

OX(−G) · τ (‖ (m− �)D ‖) ⊆ a|G| · a|mE−G| ⊆ a|mE|

and we deduce

OX(−G) · a|mD| ⊆ OX(−G) · τ (‖ mD ‖) ⊆ OX(−G) · τ (‖ (m− �)D ‖) ⊆ a|mE|

for every m ≥ �. Proposition 3.1 iv) implies τ (λ· ‖ D ‖) ⊆ τ (λ· ‖ E ‖) for every
λ ∈ R≥0, and the reverse inclusion follows by symmetry. �

Proposition 5.2. If D is a divisor on X such that OX(D) has non-negative
Iitaka dimension, then the set of F -jumping numbers of the graded sequence of
ideals (a|mD|)m≥1 is discrete.

Proof. It is enough to show that for every λ0 > 0, there are only finitely
many different values for τ (λ· ‖ D ‖), with λ < λ0. Furthermore, it follows from
Proposition 3.1 iii) that it is enough to only consider λ ∈ Q≥0.

Let H be a very ample divisor on X and let dim(X) = n. We also fix a divisor
A such that both A and A− λ0D are nef (for example, A could be a large multiple
of an ample divisor). In this case A− λD is nef for every λ with 0 ≤ λ ≤ λ0. For
every such λ which is rational, Theorem 4.1 implies that

τ (λ· ‖ D ‖)⊗OX
OX(KX +A+ (n+ 1)H)

is globally generated. In particular, its space of global sections Vλ, which is a
linear subspace of V := H0(X,OX(KX + A+ (n+ 1)H)), determines τ (λ· ‖ D ‖).
Furthermore, if λr < . . . < λ1 < λ0, then Vλ1

⊆ . . . ⊆ Vλr
. Since V is finite-

dimensional, this clearly bounds the number of distinct values for τ (λ· ‖ D ‖) with
λ < λ0. �

In characteristic zero, Hacon used global generation results to attach a type
of asymptotic multiplier ideal to a pseudo-effective divisor. The analogous con-
struction works also in positive characteristic, as follows. Suppose that D is a
pseudo-effective R-divisor on X. For every ample R-divisor A, the sum D + A is
big. In particular, if D + A is a Q-divisor, then we may consider τ (λ· ‖ D + A ‖)
for every λ ∈ R≥0.

Proposition 5.3. For every pseudo-effective R-divisor D and all λ ∈ R≥0,
there is a unique minimal element, that we denote by τ+(λ· ‖ D ‖), among all
ideals of the form τ (λ· ‖ D + A ‖), where A varies over the ample R-divisors such
that D + A is a Q-divisor. Furthermore, there is an open neighborhood U of the
origin in N1(X)R such that

τ+(λ· ‖ D ‖) = τ (λ· ‖ D +A ‖)
for every ample divisor A with D+A a Q-divisor and such that the class of A lies
in U .

Proof. Note first that if A1 and A2 are ample divisors with both D+A1 and
D + A2 having Q-coefficients and such that A1 − A2 is ample, then a|m(D+A2)| ⊆
a|m(D+A1)| for all m � 0. This implies

τ (λ· ‖ D + A2 ‖) ⊆ τ (λ· ‖ D +A1 ‖).
Choose a very ample divisor H on X and put n = dim(X). Suppose now that

B is a fixed ample divisor such that B − λD is ample. If A is an ample R-divisor
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such that D + A is a Q-divisor and B − λ(D + A) is ample, then Theorem 4.1
implies that

τ (λ· ‖ D +A ‖)⊗OX
OX(KX + (n+ 1)H +B)

is globally generated (if λ is not rational, then we apply the theorem to some rational
λ′ > λ such that B−λ′(D+A) is still ample and τ (λ· ‖ D+A ‖) = τ (λ′· ‖ D+A ‖)).
In particular, we see that τ (λ· ‖ D +A ‖) is determined by the subspace

WA := H0(X, τ (λ· ‖ D +A ‖)⊗OX
OX(KX + (n+ 1)H +B))

⊆ W := H0(X,OX(KX + (n+ 1)H +B)).

Since W is finite dimensional, we can find some A as above such that WA is
minimal among all such subspaces. Given any ample A1 such that D + A1 is a
Q-divisor, we may choose an ample A2 such that both A − A2 and A1 − A2 are
ample Q-divisors. As we have seen, this implies

(5.1) τ (λ· ‖ D+A2 ‖) ⊆ τ (λ· ‖ D+A1 ‖) and τ (λ· ‖ D+A2 ‖) ⊆ τ (λ· ‖ D+A ‖).
Note that B − λ(D + A2) is ample, and the second inclusion in (5.1) implies in
particular that WA2

⊆ WA. By the minimality in the choice of A we have, in fact,
WA = WA2

, and therefore

τ (λ· ‖ D +A2 ‖) = τ (λ· ‖ D +A ‖) ⊆ τ (λ· ‖ D +A1 ‖).
This shows that τ (λ· ‖ D+A ‖) satisfies the minimality requirement in the propo-
sition.

Suppose now that U consists of the classes of those E such that A−E is ample.
In this case U is an open neighborhood of the origin in N1(X)R which satisfies the
last assertion in the proposition. Indeed, if A′ is ample such that D + A′ is a Q-
divisor and the class of A′ lies in U , then the argument at the beginning of the proof
gives the inclusion τ (λ· ‖ D + A′ ‖) ⊆ τ (λ· ‖ D + A ‖), while the reverse inclusion
follows from the minimality of τ (λ· ‖ D +A ‖), which we have proved. �

In the next proposition we list several properties of this new version of asymp-
totic test ideals.

Proposition 5.4. LetD be a pseudo-effectiveR-divisor onX and let λ ∈ R≥0.

i) If E is a pseudo-effective R-divisor on X, numerically equivalent to D,
then

τ+(λ· ‖ D ‖) = τ+(λ· ‖ E ‖).
ii) If μ ≥ λ, then

τ+(μ· ‖ D ‖) ⊆ τ+(λ· ‖ D ‖).
iii) If B is a nef R-divisor, then

τ+(λ· ‖ D ‖) ⊆ τ+(λ· ‖ D +B ‖).
iv) We have τ+(λ· ‖ D ‖) = τ+(‖ λD ‖).

Proof. The assertion in i) follows from definition, once we note that if A is
ample, then we can write D+A = E + (A+D−E) and A+D−E is ample. The
inclusion in ii) follows from definition and the fact that for every ample R-divisor
A such that D +A has rational coefficients, we have

τ (μ· ‖ D +A ‖) ⊆ τ (λ· ‖ D +A ‖).
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In order to prove iii), let A be ample such that D +B +A is a Q-divisor, and
the class of A in N1(X)R is in a small enough neighborhood of the origin, so that

τ+(λ· ‖ D +B ‖) = τ (λ· ‖ D +B +A ‖).

Since B is nef, A + B is ample, hence we can find an ample divisor A′ such that
A+B −A′ is ample and D +A′ is a Q-divisor. In this case

τ (λ· ‖ D +B +A ‖) ⊇ τ (λ· ‖ D +A′ ‖) ⊇ τ+(λ· ‖ D ‖),

where the first inclusion follows from the fact that a|m(D+A+B)| ⊇ a|m(D+A′)| for
all m divisible enough.

Let us now prove iv). Suppose that A is an ample divisor such that D + A
has rational coefficients and the class of A in N1(X)R lies in a sufficiently small
neighborhood of the origin. If λ′ > λ is rational and close enough to λ (depending
on A), then

τ+(λ· ‖ D ‖) = τ (λ· ‖ D +A ‖) = τ (λ′· ‖ D +A ‖) = τ (‖ λ′(D +A) ‖).

On the other hand, the difference λ′(D + A) − λD = (λ′ − λ)D + λ′A is ample if
λ′ − λ is small enough, hence

τ+(‖ λD ‖) ⊆ τ (‖ λ′(D +A) ‖) = τ+(λ· ‖ D ‖).

In order to prove the reverse inclusion, let us choose an ample R-divisor B such
that λD + B is a Q-divisor and τ+(‖ λD ‖) = τ (‖ λD + B ‖). Since B is ample,
we can choose an ample R-divisor A′ such that B − λA′ is ample and D + A′ is a
Q-divisor. We can choose now μ > λ such that μ ∈ Q and μ − λ is small enough,
so that

(λD +B)− μ(D +A′) = (λ− μ)D + (B − μA′)

is ample. Furthermore, since μ− λ � 1, we have

τ (λ· ‖ D+A′ ‖)=τ (μ· ‖ D+A′ ‖)=τ (‖ μ(D+A′) ‖) ⊆ τ (‖ λD+B ‖)=τ+(‖ λD ‖),

hence by definition we obtain τ+(λ· ‖ D ‖) ⊆ τ+(‖ λD ‖). This completes the proof
of iv). �

Remark 5.5. In general, even for a bigQ-divisorD, the two ideals τ+(λ· ‖ D ‖)
and τ (λ· ‖ D ‖) might be different. Suppose, for example, that π : X → W is the
blow-up of a smooth projective variety W of dimension ≥ 2 at a point, and E is
the exceptional divisor. Let H be a very ample divisor on W such that π∗(H)−E
is ample. Note that for every non-negative integers r and s, the ideal a|rπ∗(H)+sE|
is equal to OX(−sE). Using this, it is easy to see that if D = π∗(H) +E, then for
every positive integer m we have

τ (m· ‖ D ‖) = OX(−mE) and τ+(m· ‖ D ‖) = OX(−(m− 1)E).

6. The non-nef locus of big divisors

In this section we prove Theorems B and C stated in the Introduction (in a more
general version, in which we sometimes do not need to restrict to closed points).
As in the previous sections, we assume that X is a smooth projective variety over
an algebraically closed field k of characteristic p > 0. Let n = dim(X).
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Theorem 6.1. Let Z be an irreducible proper closed subset of X. For a big
Q-divisor D, the value ordZ(‖ D ‖) only depends on the numerical equivalence
class of D. Furthermore, the function D → ordZ(‖ D ‖) extends as a continuous
function on Big(X)R, also denoted by ordZ(‖ − ‖).

Proof. For the first assertion, by homogeneity we may assume that D has
integer coefficients. If bm = τ (m· ‖ D ‖), then Proposition 3.2 implies

ordZ(‖ D ‖) = sup
m≥1

ordZ(bm)

m
.

Since the ideals bm only depend on the numerical equivalence class of D by Propo-
sition 5.1, we obtain the first assertion in the theorem. The second assertion now
follows as in [ELMNP, §3], where the argument is characteristic-free. �

Theorem 6.2. Let Z be an irreducible proper closed subset of X and assume
that either the ground field k is uncountable, or Z consists of a point. If D is a big
divisor on X, then the following are equivalent:

i) Z is not contained in B−(D).
ii) There is a divisor G on X such that Z is not contained in the base locus

of |mD +G| for every m ≥ 1.
iii) There is a real number M such that ordZ(a|mD|) ≤ M for all m with |mD|

non-empty.
iv) ordZ(‖ D ‖) = 0.
v) For every m ≥ 1, the ideal τ (‖ mD ‖) does not vanish along Z.

Proof. The proof is similar to the one in characteristic zero (see [ELMNP,
§2]). With the notation in the proof of Theorem 6.1, we see that ordZ(‖ D ‖) = 0
if and only if ordZ(bm) = 0 for every m ≥ 1. This proves the equivalence iv)⇔v).

We now prove the implications v)⇒ii)⇒i)⇒iv). Let us show v)⇒ii). Let H be
a very ample divisor on X and let G = KX+(n+1)H. It follows from Theorem 4.1
that the sheaf τ (‖ mD ‖)⊗OX

OX(mD+G) is globally generated. If v) holds, this
implies that for every m ≥ 1 there is a divisor in |mD+G| that does not vanish at
the generic point of Z, hence ii).

For the implication ii)⇒i) we make use of the hypothesis on Z and k. This
implies that if Z is contained in a countable union of closed subsets, then it is
contained in one of these sets. Therefore if Z ⊆ B−(D), then there is an ample
Q-divisor A such that Z ⊆ B(D + A). However, if G is as in ii), then for m � 0
the divisor mA−G is ample, hence Z ⊆ B(D+A) = B(mD+mA) ⊆ B(mD+G),
a contradiction.

We now show i)⇒iv). Let (Ai)i≥1 be a sequence of ample Q-divisors whose

classes in N1(X)R converge to zero. It follows from i) that Z 	⊆ B(D+Ai) for any
i, which in turn implies that ordZ(a|r(D+Ai)|) = 0 for r divisible enough. We thus
deduce that ordZ(‖ D + Ai ‖) = 0 for all i, and by continuity of ordZ(‖ − ‖) we
conclude that ordZ(‖ D ‖) = 0.

In order to complete the proof of the theorem it is enough to also show the
implications ii)⇒iii)⇒iv). Suppose first that ii) holds. Since D is big, there is a
positive integer m0 and an effective divisor T linearly equivalent to m0D − G. In
this case T + mD + G is linearly equivalent to (m + m0)D, and the assumption
in ii) implies ordZ(a|(m+m0)D|) ≤ ordZ OX(−T ). This gives iii), by taking M to
be the maximum of ordZ OX(−T ) and of those ordZ(a|mD|), with m ≤ m0 and
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|mD| non-empty. Since iii) clearly implies iv), this completes the proof of the
theorem. �

Remark 6.3. If in Theorem 6.2 we allow D to have rational coefficients, the
equivalence between i), iv), and v) still holds. Indeed, it is enough to apply the
theorem to rD, where r is a positive integer such that rD has integer coefficients.

Corollary 6.4. If D is a big Q-divisor on X, then D is nef if and only if
τ (‖ mD ‖) = OX for every m ≥ 1.

Proof. Note that D is nef if and only if x 	∈ B−(D) for every x ∈ X. By
Theorem 6.2, this is equivalent with the fact that τ (‖ mD ‖) does not vanish at x,
for every x ∈ X and every m ≥ 1. �

Corollary 6.5. If Z and k satisfy the condition in Theorem 6.2, then for
every big R-divisor D on X, we have Z 	⊆ B−(D) if and only if ordZ(‖ D ‖) = 0.

Proof. If Z is not contained in B−(D), then we obtain ordZ(‖ D ‖) = 0
arguing as in the proof of the implication i)⇒iv) in Theorem 6.2. Conversely,
suppose that we have ordZ(‖ D ‖) = 0. Let us consider a sequence of ample
R-divisors (Am)m≥1 whose classes in N1(X)R converge to zero and such that all
D+Am are Q-divisors. It is easy to see that ordZ(‖ D+Am ‖) ≤ ordZ(‖ D ‖) = 0,
hence applying Theorem 6.2 (see also Remark 6.3) we get Z 	⊆ B−(D + Am) for
every m. Under our assumptions on Z and k this implies that Z is not contained
in B−(D) (see Proposition 2.2 vi)). �

7. The case of pseudo-effective divisors

The picture at the boundary of the pseudo-effective cone is more complicated.
In particular, the function ordZ(‖ − ‖) might not admit a continuous extension to
the pseudo-effective cone, see [Nak, IV.2.8]. In this section we explain, following
the approach in [Nak], how the results in the previous section need to be modified
in this context.

If D is a preudo-effective R-divisor on X, then for every ample R-divisor A,
we know that D + A is big. If Z is an irreducible proper closed subset of X, then
we put

σZ(D) := sup
A

ordZ(‖ D +A ‖) ∈ R≥0 ∪ {∞},

where the supremum is over all ample R-divisors A. Note that if A1 and A2 are
ample and A1 − A2 is ample, then ordZ(‖ D + A1 ‖) ≤ ordZ(‖ D + A2 ‖). It is
then easy to deduce that if (Am)m≥1 is a sequence of ample divisors whose classes

in N1(X)R converge to zero, then σZ(D) = limm→∞ ordZ(‖ D+Am ‖). Using the
continuity of ordZ(‖ − ‖) on the big cone, we see that σZ(D) = ordZ(‖ D ‖) if D
is big.

It is straightforward to see from definition that σZ(D) only depends on the
equivalence class of D. Therefore we may and will consider σZ as a function on the
pseudo-effective cone of X.

Proposition 7.1. The function σZ is lower semi-continuous on the pseudo-
effective cone.

Proof. Note that by Theorem 6.1, each function ϕA given by

ϕA(D) = ordZ(‖ D +A ‖)
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is continuous on the pseudo-effective cone (here A is an arbitrary ample R-divisor).
Since σZ = supA ϕA, it follows that σZ is lower semi-continuous. �

Theorem 7.2. Let Z be an irreducible proper closed subset of X and assume
that either the ground field k is uncountable, or Z consists of a point. If D is a
pseudo-effective divisor on X, then the following are equivalent:

i) Z is not contained in B−(D).
ii) σZ(D) = 0.
iii) The ideal τ+(‖ mD ‖) does not vanish along Z for any m ≥ 1.

Proof. Let us fix a sequence of ample R-divisors (Ai)i≥1 whose classes in

N1(X)R converge to zero, and such that all D + Ai have rational coefficients. By
definition, we have σZ(D) = 0 if and only if ordZ(‖ D + Ai ‖) = 0 for all i. On
the other hand, Proposition 2.2 vi) gives B−(D) =

⋃
i B−(D + Ai), hence our

hypothesis on Z and k implies that Z 	⊆ B−(D) if and only if for every i we
have Z 	⊆ B−(D + Ai). Therefore the equivalence of i) and ii) follows from the
equivalence of i) and iv) in Theorem 6.2 (see Remark 6.3).

Suppose now that ii) holds, hence ord(‖ D+Ai ‖) = 0 for all i. It follows from
Theorem 6.2 (see also Remark 6.3) that for every m ≥ 1, the ideal τ (‖ m(D+Ai) ‖)
does not vanish along Z. Since τ+(‖ mD ‖) = τ (‖ m(D + Ai) ‖) for i � 0, we get
the assertion in iii).

Suppose now that iii) holds. If ii) fails, then there is i with ordZ(‖ D+Ai ‖) > 0,
hence for some m ≥ 1, the ideal τ (‖ m(D+Ai) ‖) vanishes along Z. Since we have
τ+(‖ mD ‖) ⊆ τ (‖ m(D+Ai) ‖), we obtain a contradiction with iii). This completes
the proof of the theorem. �

Remark 7.3. It is shown in [Nak, Proposition II.1.10] that if D is a pseudo-
effective divisor on X and E1, . . . , Er are prime divisors such that σEi

(D) > 0 for
all i, then for every α1, . . . , αr ∈ R≥0 and every i, one has

σEi
(α1E1 + . . .+ αrEr) = αi

(note that the proof therein is characteristic-free). In particular, this implies that
the classes of E1, . . . , Er in N1(X)R are linearly independent, hence r is bounded
above by the Picard number ρ(X) of X. If we assume that the ground field is un-
countable, we deduce using Theorem 7.2 that the number of irreducible codimension
one subsets of B−(D) is bounded above by ρ(X).
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Pairwise incident planes and Hyperkähler four-folds

Kieran G. O’Grady

Abstract. We address the following question: what are the cardinalities of
maximal finite families of pairwise incident planes in a complex projective
space? One proves easily that the span of the planes has dimension 5 or 6. Up
to projectivities there is one such family spanning a 6-dimensional projective
space - this is an elementary result. Maximal finite families of pairwise incident
planes in a 5-dimensional projective space are considerably more mysterious:
they are linked to certain special (EPW) sextic hypersurfaces which have a
non-trivial double cover, generically a hyperkaehler 4-fold. We prove that the
cardinality of such a set cannot exceed 20. We also show that there exist such
families of cardinality 16 - in fact we conjecture that 16 is the maximum.

1. Introduction

A family of pairwise incident lines in a projective space consists of lines through
a point or lines contained in a plane. Is there an analogous characterization of
families of pairwise incident planes in a complex projective space? A beautiful
theorem of Ugo Morin [6] states that an algebraic irreducible family of pairwise
incident planes is contained in one of the following families:

(1) Planes containing a fixed point.
(2) Planes whose intersection with a fixed plane has dimension at least 1.
(3) Planes contained in a fixed 4-dimensional projective space.
(4) One of the two irreducible components of the set of planes contained in a

fixed smooth 4-dimensional quadric.
(5) The planes tangent to a fixed Veronese surface (image of P2 → |IP2(2)|∨).
(6) The planes intersecting a fixed Veronese surface along a conic.

In the present paper we will address the following question: what are the cardi-
nalities of finite families of pairwise incident planes? As stated the question is not
interesting because the families of pairwise incident planes listed above contain sets
of arbitrary finite cardinality. In order to formulate a meaningful question we recall
the following definition of Morin: a family of pairwise incident planes is complete if
there exists no plane outside the family which is incident to all planes in the family
- in other words if the family is maximal. We ask the following question: what
are the cardinalities of finite complete family of pairwise incident planes? Before
stating our main result we will describe a finite complete family of pairwise incident
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2 KIERAN G. O’GRADY

planes in P6. Let {v0, . . . , v6} be a basis of C7. Identify the set {[v0], . . . , [v6]} and
P2
F2

(the projective plane on the field with 2 elements) as follows:

[v0] �→[010], [v1] �→[011], [v2] �→[001], [v3] �→[101], [v4] �→[100], [v5] �→[110], [v6] �→[111].

Given the above identification we let Λ1, . . . ,Λ7 ∈ Gr(2,P6) be the planes spanned
by the points on a line in P2

F2
. Explicitly

(1.1) Λ1=P〈v0,v1,v2〉, Λ2=P〈v2,v3,v4〉, Λ3=P〈v0,v4,v5〉, Λ4=P〈v1,v3,v5,〉,

Λ5=P〈v0,v3,v6〉, Λ6=P〈v1,v4,v6〉, Λ7=P〈v2,v5,v6〉.

As is easily checked the planes Λ1, . . . ,Λ7 are pairwise incident: we will show
(see Claim 2.1) that they form a complete family.

Theorem 1.1. Let T ⊂ Gr(2,PN ) be a finite complete family of pairwise inci-
dent planes. The planes in T span a projective space of dimension 5 or 6. If the
span has dimension 6 then T is projectively equivalent to the family {Λ1, . . . ,Λ7}
described above. If the span has dimension 5 then T has at most 20 elements. For
any 10 ≤ k ≤ 16 there exists a complete family of k pairwise incident planes: in
fact it has at least (20− k) moduli.

In §2 we will study finite complete families of pairwise incident planes which
span a projective space of dimension greater than 5: the proofs are of an elemen-
tary nature. In §3 we will make the connection between our question and the
geometry of certain Hyperkähler 4-folds which are double covers of special sextic
hypersurfaces in P5 named EPW-sextics. Then we will apply results of Ferretti [4]
on degenerations of double EPW-sextics in order to show that there exist finite
complete families of pairwise incident planes in P5 of cardinality between 10 and
16; we will also get the lower bound on the number of moduli given in Theorem
1.1. In §4 we will prove that a finite complete family of pairwise incident planes
has cardinality at most 20.

A few comments. I suspect that 16 is the maximum cardinality of a finite
complete family of pairwise incident planes. Our (we might say Ferretti’s) proof
that there exist complete families of pairwise incident planes of cardinality between
10 and 16 is a purely existential proof: it does not give explicit families. One may
ask for explicit examples. The paper [2] of Dolgachev and Markushevich provides a
general framework for the study of this problem. In particular the authors associate
to a generic Fano model of an Enriques surface (plus a suitable choice of 10 elliptic
curves on the surface) a finite collection of complete families of 10 pairwise incident
planes in P5 - they also study the problem of classifying the irreducible components
(there are several such) of the locus parametrizing ordered 10-tuples of pairwise
incident planes in P5. In the same paper Dolgachev and Markushevich give explicit
constructions of complete families of 13 pairwise incident planes.

Notation and conventions. We work throughout over C. Let T ⊂ Gr(2,PN ) be
a family of planes: the span of T is the span of the union of the planes parametrized
by T .

2. Families of pairwise incident planes in PN for N > 5

Let T ⊂ Gr(2,PN ) be a finite complete family of pairwise incident planes. If
the span of T is contained in a projective space M of dimension at most 4 then T
is contained in the infinite family of pairwise incident planes Gr(2,M), that is a
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PAIRWISE INCIDENT PLANES AND HYPERKÄHLER FOUR-FOLDS 3

contradiction. Hence the span of T has dimension at least 5. In the present section
we will classify finite complete family of pairwise incident planes whose span has
dimension greater than 5. We will start by showing that the planes Λ1, . . . ,Λ7 ⊂ P7

defined by (1.1) form a complete family of pairwise incident planes. Let v0, . . . , v6
be as in §1; we let

(2.1) P5 := P〈v0, . . . , v5〉.

The set of lines in P5 meeting Λ1,Λ2,Λ3 has 4 irreducible components, each iso-
morphic to P2; more precisely

(2.2) {L∈Gr(1,P5)|L∩Λi 	=∅, i=1,2,3}=Gr(1,P〈v0,v2,v4〉)∪

∪{P〈v0,u〉|0	=u∈〈v2,v3,v4〉}∪{P〈v2,u〉|0	=u∈〈v0,v4,v5〉}∪{P〈v4,u〉|0	=u∈〈v0,v1,v2〉}.

In fact suppose that a line L intersects Λ1,Λ2,Λ3 and does not belong to Λ0 :=
P〈v0, v2, v4〉. It suffices to show that one of [v0], [v2], [v4] belongs to L. Suppose the
contrary and let L∩P〈v0, v2, v4〉 = {p}. Then there exist at least two planes among
Λ1,Λ2,Λ3 which do not contain p, call them Λi,Λj . It follows that L belongs to the
intersection P〈Λ0,Λi〉∩P〈Λ0,Λj〉. The latter is equal to Λ0, that is a contradiction.
Equation (2.2) gives that there are exactly 3 lines in P5 meeting Λ1, . . . ,Λ4. More
precisely let

(2.3) L5:=P〈v0,v3〉=Λ5∩P
5, L6:=P〈v1,v4〉=Λ6∩P

5, L7:=P〈v2,v5〉=Λ7∩P
5.

Then

(2.4) {L ∈ Gr(1,P5) | L ∩ Λi 	= ∅, i = 1, 2, 3, 4} = {L5, L6, L7}.

Claim 2.1. The collection of planes Λ1, . . . ,Λ7 ⊂ P6 defined by (1.1) is a
complete family of pairwise incident planes.

Proof. We need to show that the family is complete. First we notice that
the span of Λ1, . . . ,Λ4 is equal to P5, notation as in (2.1). Now let Λ ⊂ P6 be a
plane intersecting Λ1, . . . ,Λ7. Since the intersection of Λ1, . . . ,Λ4 is empty one of
the following holds:

(1) Λ ⊂ P5,
(2) dim(Λ ∩ P5) = 1.

Suppose that (1) holds. Then Λ meets each of the lines L5, L6, L7 given by (2.3).
Since L5, L6, L7 generate P5 it follows that Λ intersects Li in a single point pi
and that Λ is spanned by p5, p6, p7. Imposing the condition that 〈p5, p6, p7〉 (for
pi ∈ Li) meet each of Λ1, . . . ,Λ4 we get that 〈p5, p6, p7〉 is one of Λ1, . . . ,Λ4. This
proves that if (1) holds then Λ ∈ {Λ1, . . . ,Λ4}. Next suppose that (2) holds and let
L = Λ∩P5. Then L meets each of Λ1, . . . ,Λ4. By (2.4) it follows that L equals one
of L5, L6, L7. Suppose that L = L5. Then Λ meets Λ6 and Λ7 in points outside P5.
Now notice that the span of Λ,Λ6,Λ7 is all of P6: it follows that Λ,Λ6,Λ7 meet in
a single point, which is necessarily [v6]. Thus Λ = Λ5. If L equals one of L6 or L7

a similar argument shows that Λ = Λ6 or Λ = Λ7 respectively. �

Our next goal is to prove that if T is a finite complete family of pairwise
incident planes spanning a projective space of dimension greater than 5 then T
is projectively equivalent to {Λ1, . . . ,Λ7} where the planes Λ1, . . . ,Λ7 are defined
by (1.1). First we make the following observation.

555



4 KIERAN G. O’GRADY

Proposition 2.2. Let T ⊂ Gr(2,PN ) be a family of pairwise incident planes.
Suppose that there exist Λ,Λ′ ∈ T such that their intersection is a line. Then T is
contained in an infinite family of pairwise incident planes.

Proof. Let L := Λ ∩ Λ′ and M := 〈Λ,Λ′〉. Thus L is a line and M is a
3-dimensional projective space. Let Λ′′ ∈ T : since Λ′′ intersects both Λ and Λ′ one
of the following holds:

(1) dim(Λ′′ ∩M) ≥ 1,
(2) Λ′′ ∩ L 	= ∅.

Now let Λ0 ⊂ M be a plane containing L. If (1) holds then Λ0 intersects (Λ′′ ∩M),
if (2) holds then Λ0 contains the non-empty intersection (Λ′′ ∩ L): in both cases
we get that Λ0 intersects Λ′′. Hence the union of T and the set of planes in M
containing L is an infinite family of pairwise incident planes containing T . �

The result below follows immediately from Proposition 2.2.

Corollary 2.3. Let T ⊂ Gr(2,PN ) be a finite complete family of pairwise
incident planes. If Λ,Λ′ ∈ T are distinct their intersection is a single point.

Proposition 2.4. Let T ⊂ Gr(2,PN ) be a finite complete family of pairwise
incident planes. Suppose that the span of T has dimension greater than 5. Then T
is projectively equivalent to {Λ1, . . . ,Λ7} where Λ1, . . . ,Λ7 are as in (1.1).

Proof. Let Λ1,Λ2 ∈ T be distinct: by Corollary 2.3 they intersect in a single
point p and hence they span a 4-dimensional projective space M . We claim that
there does exist Λ3 ∈ T which is not contained in M and which intersects Λ1,Λ2

in distinct points. In fact suppose the contrary. Then we get an infinite family
of pairwise incident planes by adding to T the planes Λ ∈ Gr(2,M) containing
p: that contradicts the hypothesis that T is a finite complete family of pairwise
incident planes. Since the planes Λ1,Λ2,Λ3 have distinct pairwise intersections
and they span a 5-dimensional projective space there exists linearly independent
v0, . . . , v5 ∈ C6 such that Λ1,Λ2,Λ3 are as in (1.1). We claim that there exists
Λ4 ∈ T which is contained in P5 (notation as in (2.1)) and does not intersect
P〈v0, v2, v4〉. In fact if no such Λ4 exists then the plane P〈v0, v2, v4〉 is incident to
all planes in T and intersects each of Λ1,Λ2,Λ3 along a line: that is a contradiction
because of Proposition 2.2. We may rename v1, v3, v5 so that Λ4 is as in (1.1). Now
let Λ ∈ T : since Λ intersects Λ1,Λ2,Λ3,Λ4 one of the following holds:

(1) Λ ⊂ P5.
(2) dim(Λ ∩ P5) = 1 and the line Λ ∩ P5 is one of L5, L6, L7, see (2.3).

Since the span of T has dimension greater than 5 there does exist Λ ∈ T such that
Item (2) holds. By Corollary 2.3 we have an injection

(2.5)
T \Gr(2,P5) ↪→ {L5, L6, L7}

Λ �→ Λ ∩ P5

We claim that Map (2.5) is surjective. In fact suppose that the image consists of a
single line Li: then every plane containing Li is incident to every plane in T , that
contradicts the hypothesis that T is a finite complete family of pairwise incident
planes. Now suppose that the image consists of 2 lines: without loss of generality
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we may assume that they are L5, L6. A straightforward computation gives that

(2.6)
{Λ∈Gr(2,P5)|Λ is incident to L5, L6, Λ1, Λ2, Λ3 and Λ4}=P〈v0,v1,v3,v4〉∪{P〈v0,v1,av2+bv3+cv4〉}∪

∪{P〈v1,v3,av0+bv4+cv5〉}∪{P〈v3,v4,av0+bv1+cv2〉}∪{P〈v0,v4,av1+bv3+cv5〉}.

Now notice that the right-hand side of (2.6) is an infinite family of pairwise incident
planes: that contradicts the hypothesis that T is a finite complete family of pairwise
incident planes. We have proved that Map (2.5) is surjective. Now let Λ ∈ T be
such that Item (1) holds: then Λ is incident to Λ1, . . . ,Λ4 and to L1, L2, L3: it
follows that Λ ∈ {Λ1, . . . ,Λ4} - see the proof of Claim 2.1. The set of Λ ∈ T such
that Item (2) holds consists of 3 elements, say {Λ5,Λ6,Λ7} where Λi ∩ P5 = Li.
Since L5, L6, L7 span P5 the planes Λ5,Λ6,Λ7 intersect in a single point which lies
outside P5: thus we may complete v0, . . . , v5 to a basis of C7 by adding a vector v6
such that Λ5 ∩ Λ6 ∩ Λ7 = {[v6]}. Then it is clear that T is projectively equivalent
to {Λ1, . . . ,Λ7}. �

3. Complete finite families of pairwise incident planes in P5

In the present section we will associate to a finite complete family of pairwise
incident planes in P5 an EPW-sextic - a special sextic hypersurface in P5 which
comes equipped with a double cover. The double cover of a generic EPW-sextic is
a Hyperkähler 4-fold deformation equivalent to the Hilbert square of a K3. There is
a divisor Σ in the space of EPW-sextics whose generic point corresponds to a double
cover X whose singular locus is a K3-surface of degree 2: it is obtained from a HK

4-fold X̃ by contracting a divisor E which is a conic bundle over the K3, see [12].
Let Y be the EPW-sextic corresponding to X: the covering map X → Y takes the
singular locus of X to a plane. There are more special EPW-sextics parametrized

by points of Σ which correspond to a HK 4-fold X̃ containing more than one of

the divisors E: the images of these divisors under the composition X̃ → X →
Y are pairwise incident planes. We will show that certain of these EPW-sextics
(introduced by Ferretti [4]) provide examples of complete families of k pairwise

incident planes in P5 for 10 ≤ k ≤ 16. Choose a volume-form vol :
∧6

C6 ∼−→ C

and equip
∧3

C6 with the symplectic form

(3.1) (α, β) := vol(α ∧ β).

Let A ⊂
∧3

C6 be a subspace: we let

ΘA := {W ∈ Gr(3,C6) |
3∧
W ⊂ A},(3.2)

ΘA := {Λ ∈ Gr(2,P5) | Λ = P(W ) where W ∈ ΘA}.(3.3)

The following simple observation will be our starting point.

Remark 3.1. Let A ⊂
∧3

C6 be isotropic for the symplectic form (, ). Then
ΘA is a family of pairwise incident planes. Conversely let T ⊂ Gr(2,P5) be a family

of pairwise incident planes and B ⊂
∧3

C6 be the subspace spanned by the vectors∧3 W for W ∈ Gr(3,C6) such that P(W ) ∈ T : then B is isotropic for (, ).
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Let LG(
∧3

C6) be the symplectic Grassmannian parametrizing Lagrangian sub-

spaces of
∧3

C6 - of course LG(
∧3

C6) does not depend on the choice of volume-

form. Notice that dim
∧3

C6 = 20 and hence elements of LG(
∧3

C6) have dimension
10.

Claim 3.2. Let T ⊂ Gr(2,P5) be a complete family of pairwise incident

planes. Then there exists A ∈ LG(
∧3

C6) such that

(3.4) ΘA = T.

Conversely suppose that A ∈ LG(
∧3

C6) is spanned by ΘA (embedded in
∧3

C6

by Plücker). Then ΘA is a complete family of pairwise incident planes.

Proof. Let B ⊂
∧3

C6 be the subspace spanned by the vectors
∧3

W for
W ∈ Gr(3,C6) such that P(W ) ∈ T : then B is (, )-isotropic, see Remark 3.1. Thus

there exists A ∈ LG(
∧3

C6) containing B. Then ΘA is a family of pairwise incident
planes, see Remark 3.1, and it contains T . Since T is complete we get that (3.4)

holds. Now suppose that A ∈ LG(
∧3

C6) is spanned by
∧3 W1, . . . ,

∧3 W10 where
W1, . . . ,W10 ∈ ΘA. Suppose that P(W∗) ∈ Gr(2,P5) is incident to all Λ ∈ ΘA.

Then
∧3 W∗ is orthogonal to

∧3 W1, . . . ,
∧3 W10 and hence to all of A. Since A is

lagrangian we get that P(W∗) ∈ ΘA. This proves that ΘA is a complete family of
pairwise incident planes. �

Let A ∈ LG(
∧3

C6): according to Eisenbud-Popescu-Walter (see the appendix
of [3] or [8]) one associates to A a subset of P5 as follows. Given a non-zero v ∈ C6

we let

(3.5) Fv := {α ∈
3∧
C6 | v ∧ α = 0}.

Notice that Fv ∈ LG(
∧3

C6). We let

(3.6) YA = {[v] ∈ P5 | Fv ∩A 	= {0}}.
The lagrangians Fv are the fibers of a vector-bundle F on P5 with detF ∼= OP5(−6):
it follows that YA is the zero-locus of a section of OP5(6). Thus either YA = P5

(this happens for “degenerate” choices of A, for example A = Fw) or else YA is
a sextic hypersurface - an EPW-sextic. We emphasize that EPW-sextics are very
special hypersurfaces, in particular their singular locus has dimension at least 2.
An EPW-sextic YA comes equipped with a finite map [10]

(3.7) fA : XA → YA.

XA is the double EPW-sextic associated to A. The following result [8] motivates
the adjective “double”. Suppose that

(3.8) ΘA = ∅ and dim(Fv ∩A) ≤ 2 for all [v] ∈ P5.

(A dimension count shows that (3.8) holds for generic A ∈ LG(
∧3

C6).) Then
YA 	= P5 and XA is a Hyperkähler variety deformation equivalent to the Hilbert
square of a K3 surface1, moreover (3.7) is identified with the quotient map of
an anti-symplectic involution on XA. What if one of the conditions of (3.8) are
violated? If ΘA is empty but there do exist [v] ∈ P5 such that dim(Fv∩A) > 2 then

1Notice that if A is general then XA is not isomorphic nor birational to the Hilbert square
of a K3.
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necessarily dim(Fv ∩ A) = 3 and XA is obtained from a holomorphic symplectic
4-fold by contracting certain copies of P2 (one for each point violating the second
condition of (3.8)): thus XA is almost as good as a HK variety. On the other hand
suppose that Λ ∈ ΘA: then Λ ∈ YA and YA and XA (assuming that YA 	= P5) may
be quite singular along Λ. The following result will be handy.

Proposition 3.3 (Cor. 2.5 of [9] and Prop. 1.11, Claim 1.12 of [10]). Let

A ∈ LG(
∧3

C6) and [v] ∈ P5. Then the following hold:

(1) If no Λ ∈ ΘA contains [v] then YA 	= P5, mult[v0] YA = dim(A ∩ Fv0) and

(1a) if dim(Fv ∩A) ≤ 2 then XA is smooth at f−1
A ([v]),

(1b) if dim(Fv∩A) > 2 then the analytic germ of XA at f−1
A ([v]) (a single

point) is isomorphic to the cone over P(Ω1
P2).

(2) If there exists Λ ∈ ΘA containing [v] then either YA = P5 or else XA is
singular at f−1

A ([v]).

Next we will define an A ∈ LG(
∧3

C6) such that YA is a triple quadric: the
example will be a key element in the construction of complete families of pairwise
incident planes of cardinality between 10 and 16. Choose an isomorphism C6 =∧2

U where U is a complex vector-space of dimension 4. Thus Gr(2, U) ⊂ P(C6) is
a smooth quadric hypersurface: we let

(3.9) Q(U) := Gr(2, U).

We have an embedding

(3.10) P(U)
i+
↪→ Gr(2,P5)

[u0] �→ P{u0 ∧ u | u ∈ U}

Definition 3.4. Let A+(U) ⊂
∧3

(C6) be the subspace spanned by the cone
over Im(i+) - here we view Gr(2,P5) as embedded in P(∧3C6) by the Plücker map.

Let L be Plücker line-bundle on Gr(2,P5). Then i∗+L ∼= OP(U)(2) and the
induced map on global sections is surjective: thus dimA+(U) = 10. On the other

hand any two planes in the image of i+ are incident: thus A+(U) ∈ LG(
∧3

C6),
see Remark 3.1. One has (see Claim 2.14 of [9])

(3.11) YA+(U) = 3Q(U).

Let K ⊂ P(U) be a Kummer quartic surface and let p1, . . . ,p16 be its nodes.
Choose k nodes pi1 , . . . ,pik . There exist arbitrarily small deformations of K which
contain exactly k nodes which are small deformations of pi1 , . . . ,pik and are smooth
elsewhere (it suffices to deform the minimal desingularization of K keeping the
rational curves lying over pi1 , . . . ,pik of type (1, 1) and not keeping of type (1, 1) the
rational curves lying over the remaining nodes). Let S0 be such a small deformation

of K and p1, . . . , pk be its nodes. Let S̃0 → S0 be the minimal desingularization:

thus S̃0 is a K3 surface containing k smooth rational curves R1, . . . , Rk mapping to

p1, . . . , pk respectively. The HK 4-fold S̃
[2]
0 contains k disjoint copies of P2 namely

R
(2)
1 , . . . , R

(2)
k . We have a regular map

(3.12)
S̃
[2]
0 \

⋃k
i=1 R

(2)
i −→ Q(U)

Z �→ 〈Z〉
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where 〈Z〉 is the unique line containing the scheme Z. One cannot extend the

above map to a regular map over R
(2)
i . Let S̃

[2]
0 ��� X be the flop of R

(2)
1 , . . . , R

(2)
k

i.e. the blow-up of each R
(2)
i

∼= P2 followed by contraction of the exceptional fiber
Ei (which is isomorphic to the incidence variety in P2× (P2)∨) along the projection
Ei → (P2)∨. Map (3.12) extends [4] to a regular degree-6 map

(3.13) X −→ Q(U).

The following result is due to Ferretti:

Proposition 3.5 (Ferretti, Prop. 4.3 of [4]). Keep notation as above. There
exist a commutative diagram

(3.14) X

π
��
��

��
��

��
G �� U × P5

����
��
��
��
�

U
and maps

U A−→ LG(
3∧
C6), U Λi−→ Gr(2,P5), i = 1, . . . , k

such that the following hold:

(1) U is a connected contractible manifold of dimension (20− k).
(2) π is a proper map and a submersion of complex manifolds: for t ∈ U we

let Xt := π−1(t) and gt : Xt → P5 be the regular map induced by G.
(3) There exists 0 ∈ U and an isomorphism X0

∼= X such that g0 gets identi-
fied with Map (3.13). Moreover A(0) = A+(U) and Λi(0) = i+(pi).

(4) There exist a regular map ct : Xt → XA(t) and prime divisors Ei(t) on Xt

for i = 1, . . . , k such that the following hold for all t belonging to an open
dense U0 ⊂ U :
(4a) gt = fA(t) ◦ ct.
(4b) gt(Ei(t)) = Λi(t) for i = 1, . . . , k.
(4c) ct contracts each Ei(t) to a K3 surface Si(t) ⊂ XA(t) and is an

isomorphism of the complement of ∪k
i=1Ei(t) onto its image.

(5) The period map U → P(H2(X0;C)) is an immersion i.e. the family of
deformations of X0 parametrized by U has (20− k) moduli.

Given Proposition 3.5 it is easy to show that there exist complete families of
pairwise incident planes of cardinality k for 10 ≤ k ≤ 16. Before stating the relevant

result we recall that the K3 surface S̃0 depends on the choice of nodes pi1 , . . . ,pik

and hence so does the variety X.

Proposition 3.6. Keep notation as in Proposition 3.5 and let 10 ≤ k ≤ 16.
Let t ∈ U0 be close to 0. One can choose the nodes pi1 , . . . ,pik of K so that ΘA(t)

is a complete family of pairwise incident planes of cardinality k.

Proof. The map i+ is identified with the map associated to the complete linear
system |OP(U)(2)|. It is well-know that no quadric in P(U) contains p1, . . . ,p16

2.

2Suppose that the quadric Q0 contains p1, . . . , p16. There exist 16 planes L1, . . . , L16 ⊂ P(U)
such that each Lj contains 6 of the nodes of K and moreover Lj ·K = 2Cj where Cj is a smooth
conic - see for example Exercise VIII.5 of [1]. It follows that Q0 contains C1, . . . , C16 and hence
Q0 ∩K has degree at least 32: that contradicts Bézout.
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Thus i+(p1), . . . , i+(p16) span a 10-dimensional subspace of P(
∧3

C6). Since 10 ≤
k ≤ 16 we may choose pi1 , . . . ,pik such that no quadric in P(U) contains them.
It follows that for small enough t ∈ U0 the planes Λ1(t), . . . ,Λk(y) span P(A(t)).
By Claim 3.2 it remains to prove that no other plane is contained in ΘA(t). Suppose
that Λ ∈ ΘA(t) and that Λ /∈ {Λ1(t), . . . ,Λk(t)}. By Item (2) of Proposition 3.3

we get that XA(t) is singular along f−1
A(t)(Λ): since Λ /∈ {Λ1(t), . . . ,Λk(t)} that

contradicts Item (4c) of Proposition 3.5. �

4. Upper bound

We will prove that a finite complete family of pairwise incident planes in P5

has at most 20 elements. The key element in the proof is the following construction
from [11]: given A ∈ LG(

∧3
C6) and W ∈ ΘA we consider the locus

(4.1) CW,A := {[v] ∈ P(W ) | dim(Fv ∩A) ≥ 2}.

(Notice that dim(Fv ∩ A) ≥ 1 for [v] ∈ P(W ) because
∧3

W ⊂ (Fv ∩ A).) One
describes CW,A as the degeneracy locus of a map between vector-bundles of rank 9:

the fiber over [v] of the domain is equal to Fv/
∧3

W , the codomain is the trivial

vector-bundle with fiber
∧3 W⊥/

∧3 W - see [11] for details. It follows that either
CW,A = P(W ) or else CW,A is a sextic curve. The link with our problem is the
following. Suppose that CW,A 	= P(W ) and that W ′ ∈ ΘA is distinct from W : then
P(W ∩W ′) is contained in the singular locus of CW,A. In order to state the relevant
results from [11] we give a couple of definitions. Let W ⊂ V be a subspace: we let

(4.2) SW := (

2∧
W ) ∧ C6.

Definition 4.1. Let A ∈ LG(
∧3

C6) and suppose that W ∈ ΘA. We let
B(W,A) ⊂ P(W ) be the set of [v] such that one of the following holds:

(1) There exists W ′ ∈ (ΘA \ {W}) such that [v] ∈ P(W ′).
(2) dim(A ∩ Fv ∩ SW ) ≥ 2.

One checks easily that B(W,A) is closed subset of P(W ).

Proposition 4.2. Let A ∈ LG(
∧3

C6) and suppose that W ∈ ΘA. Then
CW,A = P(W ) if and only if B(W,A) = P(W ). Suppose that CW,A 	= P(W ): then
every non-reduced component of CW,A is contained in B(W,A).

Proof. The first statement follows from Corollary 3.2.7 of [11]. The second
statement follows from Proposition 3.2.6 of [11]. �

Lemma 4.3. Let A ∈ LG(
∧3

C6). Suppose that ΘA is finite of cardinality at
least 15. Then there exists W ∈ ΘA such that CW,A is a reduced curve.

Proof. By contradiction. Assume that for every W ∈ ΘA one of the following
holds:

(1) CW,A = P(W ).
(2) CW,A is a non-reduced curve.

By Proposition 4.2 we get that dimB(W,A) ≥ 1. Let W ′ ∈ (ΘA \ {W}): since ΘA

is finite the planes P(W ) and P(W ′) intersect in a single point, see Corollary 2.3.
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It follows that for generic [v] ∈ B(W,A) there exists

(4.3) α ∈
(
(A ∩ Fv ∩ SW ) \

3∧
W

)
.

Given such α there is a unique [v] ∈ P(W ) such that (4.3) holds. In fact suppose the
contrary: then α is a decomposable element whose support is a W ′ ∈ (ΘA \ {W})
intersecting W in a 2-dimensional subspace, that contradicts the hypothesis that
ΘA is finite (see above). Since dimB(W,A) ≥ 1 it follows that

(4.4) dim(A ∩ SW ) ≥ 3.

Thus P(A) intersects the projective tangent space to Gr(2,P5) (embedded by Plücker)

at P(W ) in a linear space of dimension at least 2. Now let Ω ⊂ P(
∧3

C6) be a generic
10-dimensional projective space containing P(A). Notice that

dimΩ + dimGr(2,P5) = 19 = dimP(

3∧
C6).

The intersection Ω∩Gr(2,P5) is finite because by hypothesis ΘA = P(A)∩Gr(2,P5)
is finite. By (4.4) we get that Ω intersects the projective tangent space to Gr(2,P5)
at P(W ) in a linear space of dimension at least 2: thus

(4.5) multP(W )Ω ·Gr(2,P5) ≥ 3.

Since the cardinality of ΘA is at least 15 we get that Ω · Gr(2,P5) ≥ 45, that is a
contradiction because degGr(2,P5) = 42, see p. 247 of [5]. �

Now let T be a finite complete family of pairwise incident planes in P5. By Claim
3.2 there exists A ∈ LG(

∧3
C6) such that ΘA = T . Suppose that T has cardinality

at least 15: by Lemma 4.3 there exists W ∈ ΘA such that CW,A is a reduced sextic
curves. Let W ′ ∈ (ΘA \ {W}): by Corollary 2.3 the intersection P(W ) ∩ P(W ′) is
a point. By Proposition 4.2 the curve CW,A is singular at P(W ) ∩ P(W ′). Thus we
have a map

(4.6)
ΘA \ {W} ϕ−→ singCW,A

W ′ �→ P(W ′) ∩ P(W )

There are at most 15 singular points of CW,A (the maximum 15 is achieved by
sextics which are the union of 6 generic lines): it follows that if ϕ is injective then
ΘA = T has at most 16 elements. Since ϕ is not necessarily injective we will need
to answer the following question: what is the relation between the cardinality of
ϕ−1(p) and the singularity of CW,A at p? First we will recall how to compute the
initial terms in the Taylor expansion of a local equation of CW,A at a given point

[v0] ∈ P(W ) - here A ∈ LG(
∧3

C6) and W ∈ ΘA are arbitrary. Let [w] ∈ P(W ); we
let

(4.7) Gw := Fw/

3∧
W.

Let W0 ⊂ W be a subspace complementary to [v0]. We have an isomorphism

(4.8)
W0

∼−→ P(W ) \ P(W0)
w �→ [v0 + w]

onto a neighborhood of [v0]; thus 0 ∈ W0 is identified with [v0]. We have

(4.9) CW,A ∩W0 = V (g0 + g1 + · · ·+ g6), gi ∈ Si W∨
0 .
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Given w ∈ W we define the Plücker quadratic form ψv0
w on Gv0 as follows. Let

α ∈ Gv0 be the equivalence class of α ∈ Fv0 . Thus α = v0 ∧ β where β ∈
∧2

V is

defined modulo (
∧2 W + [v0] ∧ V ): we let

(4.10) ψv0
w (α) := vol(v0 ∧ w ∧ β ∧ β).

Proposition 4.4 (Prop. 3.1.2 of [11]). Keep notation and hypotheses as above.

Let K := A∩Fv0/
∧3 W (notice that K ⊂ Gv0) and k := dimK = dim(A∩Fv0)−1.

Then the following hold:

(1) gi = 0 for i < k.
(2) There exists μ ∈ C∗ such that

(4.11) gk(w) = μ det(ψv0
w |K), w ∈ W0.

Next we will give a geometric interpretation of the right-hand side of (4.11).
Choose a subspace V0 ⊂ C6 complementary to [v0] and such that V0 ∩ W = W0.
Thus have isomorphisms

(4.12)

∧2 V0
∼−→ Fv0

β �→ v0 ∧ β

and

(4.13)

∧2 V0/
∧2 W0

∼−→ Gv0

β �→ v0 ∧ β.

Let ψv0
w be as in (4.10): we will view it as a quadratic form on

∧2 V0/
∧2 W0

via (4.13). Let V (ψv0
w ) ⊂ P(

∧2
V0/

∧2
W0) be the zero-locus of ψv0

w . Let

(4.14) ρ̃ : P(

2∧
V0) ��� P(

2∧
V0/

2∧
W0)

be projection with center
∧2

W0. Let

(4.15) Gr(2, V0)W0
:= ρ̃(Gr(2, V0)).

(The right-hand side is to be interpreted as the closure of ρ̃(Gr(2, V0) \ {
∧2 W0}).)

Let ρ be the restriction of ρ̃ to Gr(2, V0). The rational map

(4.16) ρ : Gr(2, V0) ��� Gr(2, V0)W0

is birational because Gr(2, V0) is cut out by quadrics. The following is an easy
exercise, see Claim 3.5 of [11].

Claim 4.5. Keep notation as above. Then

(4.17)
⋂

w∈W0

V (ψv0
w ) = Gr(2, V0)W0

and the scheme-theoretic intersection on the left is reduced.

Let A ∈ LG(
∧3

C6) and suppose that W ∈ ΘA. Let p ∈ P(W ). We let

(4.18) np := #{W ′ ∈ (ΘA \ {W}) | p ∈ P(W ′)}.
Notice that if np > 0 then p ∈ CW,A.

Proposition 4.6. Let A ∈ LG(
∧3

C6) and suppose that ΘA is finite. Assume
that W ∈ ΘA. Let p ∈ P(W ).

(1) np ≤ 4.
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12 KIERAN G. O’GRADY

(2) Assume in addition that CW,A is a curve. Then the following hold:
(2a) If np = 2 then either CW,A has a cusp3 at p or else multp CW,A ≥ 3.
(2b) If np = 3 or np = 4 then multp CW,A ≥ 3

Proof. Throughout the proof we will let p = [v0]. Let K := A ∩ Fv0 : we will

view K as a subspace of
∧2 V0 via Isomorphism (4.12).

(1): Suppose that np > 4. We claim that dimK ≥ 4. In fact suppose that dimK ≤
3 i.e. dimP(K) ≤ 2. Since np ≥ 5 the intersection P(K)∩Gr(2, V0) contains at least
6 points: that is absurd because Gr(2, V0) is cut out by quadrics and the intersection
P(K) ∩Gr(2, V0) is finite (recall that ΘA is finite by hypothesis). This proves that
dimK ≥ 4. Since P(K) ∩ Gr(2, V0) is finite we get that dimP(K) ≤ 3 and hence
dimP(K) = 3. Since the degree of Gr(2, V0) is 5 and P(K) ∩Gr(2, V0) contains at
least 6 points we get that P(K) ∩Gr(2, V0) is infinite: that is a contradiction.

(2a): If dimK ≥ 4 then multp CW,A ≥ 3 by Item (1) of Proposition 4.4. Suppose
that dimK < 4 i.e. dimP(K) ≤ 2. By hypothesis P(K) ∩ Gr(2, V0) is finite and
contains 3 points. Since Gr(2, V0) is cut out by quadrics it follows that dimP(K) =
2. Let g0, . . . , g6 be as in (4.9). Then 0 = g0 = g1 because dimK = 3 (see
Item (1) of Proposition 4.4) and g2 is given by (4.11). Let ρ̃ be the projection

of (4.14). The closure of ρ̃(P(K) \
∧2 W0) is a line intersecting Gr(2, V0)W0

in two
distinct points, namely the images under projection of the two points belonging to

(P(K) \
∧2

W0) ∩ Gr(2, V0). By (4.9) and Claim 4.5 we get that g2 = l2 where
0 	= l ∈ W∨

0 : thus CW,A has a cusp at p.

(2b): We will prove that dimK ≥ 4 - then multp CW,A ≥ 3 will follow from Item (1)
of Proposition 4.4. Assume that dimK < 4. Suppose that np = 3. Then P(K) ∩
Gr(2, V0) has cardinality 4. Since Gr(2, V0) is cut out by quadrics we get that
dimP(K) = 2 and no three among the points of P(K) ∩ Gr(2, V0) are collinear.

Now project P(K) from
∧2 W0 - see (4.14): we get that ρ̃(P(K) \

∧2 W0) is a line
intersecting Gr(2, V0)W0

in three distinct points, that contradicts Claim 4.5. We
have proved that if np = 3 then multp CW,A ≥ 3. Lastly suppose that np = 4.
Then P(K)∩Gr(2, V0) has cardinality 5 and dimP(K) ≤ 2: that is absurd because
Gr(2, V0) is cut out by quadrics. �

Now let A ∈ LG(
∧3

C6) and assume that ΘA is finite of cardinality at least 15.
By Lemma 4.3 there exists W ∈ ΘA such that CW,A is a reduced curve. We let

(4.19) Lj := {p ∈ P(W ) | np = j}, 	j := #Lj .

By Proposition 4.6 we have that 	j = 0 for j > 4 and hence

(4.20) #ΘA = 1 + 	1 + 2	2 + 3	3 + 4	4.

Lemma 4.7. Let A ∈ LG(
∧3

C6) and assume that ΘA is finite of cardinality at
least 15. Let W ∈ ΘA be such that CW,A is a reduced curve and keep notation as
above. Let s be the number of irreducible components of CW,A. Then

(4.21) 	1 + 	2 + 3	3 + 3	4 ≤ 9 + s.

Proof. Let C := CW,A and μ : Z → P2 be a series of blow-ups that desingu-

larize C i.e. such that the strict transform C̃ ⊂ Z is smooth. Then

(4.22) −2s ≤ 2(h0(K
˜C)− h1(K

˜C)) = 2χ(K
˜C) = C̃ · C̃ + C̃ ·KZ .

3By cusp we mean a plane curve singularity with tangent cone which is quadratic of rank 1.
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PAIRWISE INCIDENT PLANES AND HYPERKÄHLER FOUR-FOLDS 13

On the other hand let p ∈ P(W ): if np ≥ 1 then C is singular at p and if np ≥ 3
then the multiplicity of C at p is at least 3, see Proposition 4.6. It follows that
(4.23)

C̃ ·C̃+C̃ ·KZ ≤ (C ·C+C ·KP2)−2(	1+	2)−6(	3+	4) = 18−2(	1+	2)−6(	3+	4).

The proposition follows from (4.22) and (4.23). �
The result below completes the proof of Theorem 1.1.

Proposition 4.8. Let A ∈ LG(
∧3

C6) and assume that ΘA is finite. Then

(4.24) #ΘA ≤ 20

Proof. We may assume that #ΘA > 16. By Lemma 4.3 there exists W ∈ ΘA

such that CW,A is a reduced curve. Let Lj and 	j be as in (4.19) and s be the
number of irreducible components of CW,A. We recall that CW,A is singular at each
point of L1, it has either a cusp or a point of multiplicity at least 3 at each point of
L2 and it has multiplicity at least 3 at each point of L3 ∪ L4, see Proposition 4.6.
By (4.20) we have that

(4.25) 16 ≤ 	1 + 2	2 + 3	3 + 4	4

The proof consists of a case-by-case analysis. Suppose first that s = 1. Assume
that (	3+	4) = 0. Applying Plücker’s formulae to CW,A (notice that degC∨

W,A ≥ 3)

we get that (2	1+3	2) ≤ 27. It follows that #ΘA ≤ 19 (recall (4.20)) - the “worst”
case being CW,A the dual of a smooth cubic i.e. a sextic with 9 cusps. Assume that
(	3 + 	4) = 1. Then (	1 + 	2) ≤ 7 by Lemma 4.7: it follows that #ΘA ≤ 19. If
(	3 + 	4) = 2 then (	1 + 	2) ≤ 4 by Lemma 4.7: it follows that #ΘA = 17. Next
suppose that s = 2. A similar analysis shows that necessarily4 CW,A = D+L where
D is an irreducible quintic with 4 cusps (the points of L2) and 2 nodes (the points
of L4), L is the line through the nodes of D: thus #ΘA = 17. Lastly suppose that
s ≥ 3. Then CW,A = D1 + D2 + D3 where D1, D2 and D3 are reduced conics
(eventually reducible) belonging to the same pencil with reduced base locus (which
is equal to L3 ∪ L4). We have #ΘA ≤ (17 + δ) where δ is the number of singular
conics among {D1, D2, D3}. �
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Derived equivalence and non-vanishing loci
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1. The conjecture and its variants

The purpose of this note is to propose and motivate a conjecture on the behavior
of cohomological support loci for topologically trivial line bundles under derived
equivalence, to verify it in the case of surfaces, and to explain further developments.
The reason for such a conjecture is the desire to understand the relationship between
the cohomology groups of (twists of) the canonical line bundles of derived equivalent
varieties. This in turn is motivated by the following well-known problem, stemming
from a prediction of Kontsevich in the case of Calabi-Yau manifolds (and which
would also follow from the main conjecture in Orlov [Or2]).

Problem 1.1. Let X and Y be smooth projective complex varieties with D(X) �
D(Y ). Is it true that hp,q(X) = hp,q(Y ) for all p and q?

Here, given a smooth projective complex variety X, we denote by D(X) the
bounded derived category of coherent sheavesDb(Coh(X)). For surfaces the answer
is yes, for instance because of the derived invariance of Hochschild homology [Or1],
[Ca]. This is also true for threefolds, again using the invariance of Hochschild ho-
mology, together with the behavior of the Picard variety under derived equivalence
[PS]. In general, even the invariance of h0,q with 1 < q < dimX is not known at
the moment, and this leads to the search for possible methods for circumventing
the difficult direct study of the cohomology groups Hi(X,ωX).

More precisely, in [PS] it is shown that if D(X) � D(Y ), then Pic0(X) and
Pic0(Y ) are isogenous. This opens the door towards studying the behavior or more
refined objects associated to irregular varieties (i.e. those with q(X) = h0(X,Ω1

X) >
0) under derived equivalence. Among the most important such objects are the
cohomological support loci of the canonical bundle: given a smooth projective X,
for i = 0, . . . , dimX one defines

V i(ωX) := {α | Hi(X,ωX ⊗ α) �= 0} ⊆ Pic0(X).

By semicontinuity, these are closed algebraic subsets of Pic0(X). It has become
clear in recent years that these loci are the foremost tool in studying the special
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2 MIHNEA POPA

birational geometry of irregular varieties, with applications ranging from results
about singularities of theta divisors [EL] to the proof of Ueno’s conjecture [ChH].
They are governed by the following fundamental results of generic vanishing theory
([GL1], [GL2], [Ar], [Si]):
• If a : X → Alb(X) is the Albanese map of X, then

(1.1) codim V i(ωX) ≥ i− dimX + dim a(X) for all i,

and there exists an i for which this is an equality.
• The irreducible components of each V i(ωX) are torsion translates of abelian
subvarieties of Pic0(X).
• Each positive dimensional component of some V i(ωX) corresponds to a fibration
f : X → Y onto a normal variety with 0 < dimY ≤ dimX − i and with generically
finite Albanese map.

The main point of this note is the following conjecture, saying that cohomolog-
ical support loci should be preserved by derived equivalence. In the next sections
I will explain that the conjecture holds for surfaces, and that is almost known to
hold for threefolds.

Conjecture 1.2. Let X and Y be smooth projective varieties with D(X) �
D(Y ). Then

V i(ωX) � V i(ωY ) for all i ≥ 0.

Note that I am proposing isomorphism, even though the ambient spaces Pic0(X)
and Pic0(Y ) may only be isogenous. There are roughly speaking three main reasons
for this: (1) the conjecture is known to hold for surfaces and for most threefolds,
as explained in §2 and §3; (2) it holds for V 0 in arbitrary dimension, as explained
at the beginning of §3; (3) more heuristically, according to [PS] the failure of iso-
morphism at the level of Pic0 is induced by the presence of abelian varieties in the
picture, and for these all cohomological support loci consist only of the origin.

Furthermore, denote by V i(ωX)0 the union of the irreducible components of
V i(ωX) passing through the origin. Generic vanishing theory tells us that in many
applications one only needs to control well V i(ωX)0. In fact, for all applications I
currently have in mind, the following variant of Conjecture 1.2 suffices.

Variant 1.3. Under the same hypothesis,

V i(ωX)0 � V i(ωY )0 for all i ≥ 0.

The key fact implied by this variant is that, excepting perhaps surjective maps
to abelian varieties, roughly speaking two derived equivalent varieties must have the
same types of fibrations onto lower dimensional irregular varieties (see Corollary
3.4). This would hopefully allow for further geometric tools in the classification of
irregular derived partners. Even weaker versions of Conjecture 1.2 and Variant 1.3
are of interest, as they are all that is needed in other applications.

Variant 1.4. Under the same hypothesis,

dimV i(ωX) = dimV i(ωY ) for all i ≥ 0.

Variant 1.5. Under the same hypothesis,

dimV i(ωX)0 = dimV i(ωY )0 for all i ≥ 0.
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DERIVED EQUIVALENCE AND NON-VANISHING LOCI 3

For instance, Variant 1.5 implies the derived invariance of the Albanese di-
mension (see Corollary 3.2). Other numerical applications, and progress due to
Lombardi [Lo] in the case of V 0 and V 1, and on the full conjecture for threefolds,
are described in §3. In §2 I present a proof of Conjecture 1.2 in the case of surfaces.

2. A proof of Conjecture 1.2 for surfaces

Due to the classification of Fourier-Mukai equivalences between surfaces, in this
case the conjecture reduces to a calculation of all possible cohomological support
loci via a case by case analysis, combined with some elliptic surface theory, generic
vanishing theory, well-known results of Kollár on higher direct images of dualizing
sheaves, and of Beauville on the positive dimensional components of V 1(ωX). This
of course does not have much chance to generalize to higher dimensions. In the
next section I will point to more refined techniques developed by Lombardi [Lo],
which recover the case of surfaces, but do address higher dimensions as well.

Theorem 2.1. Conjecture 1.2 holds when X and Y are smooth projective sur-
faces.

Proof. The first thing to note is that, due to the work of Bridgeland-Maciocia
[BM] and Kawamata [Ka], Fourier-Mukai equivalences of surfaces are completely
classified. According to [Ka] Theorem 1.6, the only non-minimal surfaces that
can have derived partners are rational elliptic, and therefore regular. Hence we
can restrict to minimal surfaces. Among these on the other hand, according to
[BM] Theorem 1.1, only abelian, K3 and elliptic surfaces can have distinct derived
partners.

Now K3 surfaces are again regular, hence for these the problem is trivial. On
the other hand, on any abelian variety A (of arbitrary dimension) one has

V i(ωA) = {0} for all i,

and since the only derived partners of abelian varieties are again abelian varieties
(see [HN] Proposition 3.1; cf. also [PS], end of §3), the problem is again trivial.
Therefore our question is truly a question about elliptic surfaces which are not
rational. Moreover, according to [BM], bielliptic surfaces do not have non-trivial
derived partners. We are left with certain elliptic fibrations over P1, and with
elliptic fibrations over smooth projective curves of genus at least 2. I will try in
each case to present the most elementary proof I am aware of.

Let first f : X → P1 be an elliptic surface over P1. Since our problem is
non-trivial only for irregular surfaces, requiring q(X) �= 0 we must then have that
q(X) = 1, which implies that f is isotrivial, and in fact that X is a P1-bundle

π : X −→ E

over an elliptic curve E. We can now compute the cohomological support loci
V i(ωX) explicitly. Note first that V 2(ωX) = {0} for any smooth projective surface,
by Serre duality. In the case at hand, note also that π is the Albanese map of X.
Therefore, identifying line bundles in Pic0(X) and Pic0(E), for every α ∈ Pic0(X)
we have

H0(X,ωX ⊗ α) � H0(E, π∗ωX ⊗ α),
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which implies that V 0(ωX) = V 0(E, π∗ωX).1 But given that π∗ωX must be torsion-
free, and the fibers of π are rational curves, we have π∗ωX = 0, and so V 0(ωX) = ∅.
We are left with computing V 1(ωX). For this, recall that by [Ko2] Theorem 3.1,
in D(E) we have the decomposition

Rπ∗ωX � π∗ωX ⊕R1π∗ωX [−1] � R1π∗ωX [−1],

where the second isomorphism follows from what we said above. Therefore, for any
α ∈ Pic0(X), we have

H1(X,ωX ⊗ α) � H0(E,R1π∗ωX ⊗ α).

Finally, [Ko1] Proposition 7.6 implies that, as the top non-vanishing higher direct
image,

R1π∗ωX � ωE � OE ,

which immediately gives that V 1(ωX) = {0}. In conclusion, we have obtained that
for the type of surface under discussion we have

V 0(ωX) = ∅, V 1(ωX) = {0}, V 2(ωX) = {0}.
Finally, if Y is another smooth projective surface such that D(X) � D(Y ), then
due to [BM] Proposition 4.4 we have that Y is another elliptic surface over P1 with
the same properties as X, which leads therefore to the same cohomological support
loci.

Assume now that f : X → C is an elliptic surface over a smooth projective
curve C of genus g ≥ 2 (so that κ(X) = 1). By the same [BM] Proposition 4.4,
if Y is another smooth projective surface such that D(Y ) � D(X), then Y has an
elliptic fibration structure h : Y → C over the same curve (and with isomorphic
fibers over a Zariski open set in C; in fact it is a relative Picard scheme associated
to f). There are two cases, namely when f is isotrivial, and when it is not. It is
well known (see e.g. [Be1] Exercise IX.1 and [Fr] Ch.7) that f is isotrivial if and
only if q(X) = g+1 (in which case the only singular fibers are multiple fibers with
smooth reduction), and it is not isotrivial if and only if q(X) = g. Since we know
that q(X) = q(Y ), we conclude that h must be of the same type as f . We will
again compute all V i(ωX) in the two cases.

Let’s assume first that f is not isotrivial. As mentioned above, in this case
q(X) = g, and in fact f∗ : Pic0(C) → Pic0(X) is an isomorphism. To compute
V 1(ωX), we use again [Ko2] Theorem 3.1, saying that in D(C) there is a direct
sum decomposition

Rf∗ωX � f∗ωX ⊕R1f∗ωX [−1],

and therefore for each α ∈ Pic0(X) one has

H1(X,ωX ⊗ α) � H1(C, f∗ωX ⊗ α)⊕H0(C,R1f∗ωX ⊗ α).

Once again using [Ko1] Proposition 7.6, we also have R1f∗ωX � ωC . This, com-
bined with the decomposition above, gives the inclusion

f∗ : Pic0(C) = V 0(C, ωC) ↪→ V 1(ωX),

finally implying V 1(ωX) = Pic0(X). Finally, note that by the Castelnuovo inequal-
ity [Be1] Theorem X.4, we have χ(ωX) ≥ 0. Now the Euler characteristic is a

1In general, for any coherent sheaf F on a smooth projective variety Z, and any integer i,
we denote V i(Z,F) := {α ∈ Pic0(Z) | hi(Z,F ⊗ α) �= 0}.
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deformation invariant, hence χ(ωX ⊗α) ≥ 0 for all α ∈ Pic0(X). For α �= OX , this
gives

h0(X,ωX ⊗ α) ≥ h1(X,ωX ⊗ α),

so that V 1(ωX) ⊂ V 0(ωX). By the above, we obtain V 0(ωX) = Pic0(X) as well.
We rephrase the final result as saying that

V 0(ωX) = V 1(ωX) � Pic0(C), V 2(ωX) = {0}.

The preceding paragraph says that the exact same calculation must hold for a
Fourier-Mukai partner Y .

Let’s now assume that f is isotrivial. First note that for such an X we have
q(X) = g + 1, and in fact the Albanese variety of X is an extension of abelian
varieties

1 → F → Alb(X) → J(C) → 1

with F an elliptic curve isogenous to the general fiber of f , though this will not
play an explicit role in the calculation. Moreover, we have χ(ωX) = 0 (see [Fr]
Ch.7, Lemma 14 and Corollary 17).

We now use a result of Beauville [Be2] [Be3], characterizing the positive di-
mensional irreducible components of V 1(ωX). Concretely, by [Be3] Corollaire 2.3,
any such positive dimensional component would have to come either from a fiber
space h : X → B over a curve of genus at least 2, or from a fiber space p : X → F
over an elliptic curve, with at least one multiple fiber. Regarding the first type, the
union of all such components is shown in loc. cit. to be equal to

Pic0(X,h) := Ker
(
Pic0(X)

i∗−→ Pic0(F )
)
,

where i∗ is the restriction map to any smooth fiber F of h. But since f is an
elliptic fibration, it is clear that there is exactly one such fiber space, namely f
itself (otherwise the elliptic fibers of any other fibration would have to dominate C,
which is impossible). Therefore the union of the components coming from fibrations
over curves of genus at least 2 is Pic0(X, f). On the other hand, for elliptic surfaces
of the type we are currently considering, fibrations p : X → F over elliptic curves as
described above do not exist. (Any such would have to come from a group action
on a product between an elliptic curve F ′ and another of genus at least 2, with
the action on the elliptic component having no fixed points, therefore leading to an
étale cover F ′ → F ; in the language of [Be3], we are saying that Γ0(p) = {0}.)

Using once more the deformation invariance of the Euler characteristic, we have
χ(ωX ⊗ α) = 0 for all α ∈ Pic0(X), which gives

(2.1) h1(X,ωX ⊗ α) = h0(X,ωX ⊗ α), for all α �= OX .

This implies that Pic0(X, f) is also the union of all positive dimensional components
of V 0(ωX).

We are left with considering nontrivial isolated points in V 1(ωX) (or equiva-
lently in V 0(ωX) by (2.1)). These can be shown not to exist by means of a different
argument: by a variant of the higher dimensional Castelnuovo-de Franchis inequal-
ity, see [LP] Remark 4.13, an isolated point α �= 0 in V 1(ωX) forces the inequality

χ(ωX) ≥ q(X)− 1 = g ≥ 2,
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which contradicts the fact that χ(ωX) = 0.2

Putting everything together, we obtain

V 0(ωX) = V 1(ωX) = Pic0(X, f), V 2(ωX) = {0}.
Recall that a Fourier-Mukai partner of X must be an elliptic fibration of the same
type over C. Now one of the main results of [Ph], Theorem 5.2.7, says that for
derived equivalent elliptic fibrations f : X → C and h : Y → C which are isotrivial
with only multiple fibers, one has

Pic0(X, f) � Pic0(Y, h), 3

which allows us to conclude that V i(ωX) and V i(ωY ) are isomorphic. �

3. Further evidence and applications

Progress. Progress towards the conjectures in §1 has been made by Lombardi
[Lo]. The crucial point is to come up with an explicit mapping realizing the po-
tential isomorphisms in Conjecture 1.2. This is done by means of the Rouquier
isomorphism; namely, given a Fourier-Mukai equivalence RΦE : D(X) → D(Y )
induced by an object E ∈ D(X × Y ), Rouquier [Ro] Théorème 4.18 shows that
there is an induced isomorphism of algebraic groups

F : Aut0(X)× Pic0(X) −→ Aut0(Y )× Pic0(Y )

given by a concrete formula involving E (usually mixing the two factors), [PS]
Lemma 3.1. A key result in [Lo] is that if α ∈ V 0(ωX) and

F (idX , α) = (ϕ, β),

then in fact ϕ = idY , β ∈ V 0(ωY ), and moreover

(3.1) H0(X,ωX ⊗ α) � H0(Y, ωY ⊗ β).

One of the main tools used there is the derived invariance of a generalization of
Hochschild homology taking into account the Rouquier isomorphism. This implies
the invariance of V 0, while further work using a variant of the Hochschild-Kostant-
Rosenberg isomorphism gives the following, again the isomorphisms being induced
by the Rouquier mapping.

Theorem 3.1 (Lombardi [Lo]). Let X and Y be smooth projective varieties
with D(X) � D(Y ). Then:
(i) V 0(ωX) � V 0(ωY ).
(ii) V 1(ωX) ∩ V 0(ωX) � V 1(ωY ) ∩ V 0(ωY ).
(iii) V 1(ωX)0 � V 1(ωY )0.

This result recovers Theorem 2.1 in a more formal way. In the case when
dimX = dimY = 3, with extra work one shows that this has the following conse-
quences, verifying or getting close to verifying the various conjectures:
• Variant 1.3 holds.
• For any i, V i(ωX) is positive dimensional if and only if V i(ωY ) is positive
dimensional, and of the same dimension. Therefore Variant 1.4 holds, except for

2As L. Lombardi points out, a variant of the derivative complex argument in [LP] leading
to this inequality can also be used, as an alternative to Beauville’s argument, in order to show
that positive dimensional components not passing through the origin do not exist in the case of
surfaces of maximal Albanese dimension with χ(ωX) = 0.

3This also follows from [Lo], via Theorem 3.1 below.
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DERIVED EQUIVALENCE AND NON-VANISHING LOCI 7

the possible case where for some i > 0, V i(ωX) is finite, while V i(ωY ) = ∅. This
last case can possibly happen only when q(X) = 1.
• Conjecture 1.2 is true when:

(1) X is of maximal Albanese dimension (i.e. the Albanese map of X is
generically finite onto its image).

(2) V 0(ωX) = Pic0(X) – for instance, by [PP] Theorem E, this condition
holds whenever the Albanese image a(X) is not fibered in subtori of
Alb(X), and V 0(ωX) �= ∅.

(3) Aut0(X) is affine – this holds for varieties which are not isotrivially fibered
over a positive dimensional abelian variety (see [Br] p.2 and §3), for in-
stance again when the Albanese image is not fibered in subtori of Alb(X)
according to a theorem of Nishi (cf. [Ma] Theorem 2).

These conditions together impose very strong restrictions on the threefolds for
which the conjecture is not yet known. Note finally that in [Lo] there are further
extensions involving cohomological support loci for ω⊗m

X with m ≥ 2, and for Ωp
X

with p < dimX.
Some first applications. Let X be a smooth projective complex variety of di-
mension d, and let a : X → A = Alb(X) be the Albanese map of X. A first
consequence of the weakest version of the conjectures would be the derived invari-
ance of the Albanese dimension dim a(X).

Corollary 3.2 (assuming Variant 1.5). If X and Y are smooth projective
complex varieties with D(X) � D(Y ), then

dim a(X) = dim a(Y ).

This follows from the fact that, according to [LP] Remark 2.4, the Albanese
dimension can be computed from the dimension of the cohomological support loci
around the origin, according to the formula

dim a(X) = min
i=0,...,d

{d− i+ codim V i(ωX)0}.

Note that Lombardi [Lo] is in fact able to prove Corollary 3.2 when κ(X) ≥ 0
by relying on different tools from birational geometry. The only progress when
κ(X) = −∞, namely a solution for surfaces and threefolds that can also be found
in loc. cit., involves the approach described here.

Another numerical application involves the holomorphic Euler characteristic.
While the individual Hodge numbers are not yet known to be preserved by derived
equivalence, the Euler characteristic can be attacked in some cases by using generic
vanishing theory and the derived invariance of V 0(ωX) established in Theorem 3.1.

Corollary 3.3 (of Theorem 3.1, [Lo]). If X and Y are smooth projective
complex varieties with D(X) � D(Y ), and X is of maximal Albanese dimension,
then χ(ωX) = χ(ωY ).

This follows from the fact that, according to (1.1), for generic α ∈ Pic0(X) one
has

χ(ωX) = χ(ωX ⊗ α) = h0(X,ωX ⊗ α),

combined with (3.1). The argument is extended in [Lo] to other cases as well.
Going back to Hodge numbers, this implies for instance that if X and Y are derived
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equivalent 4-folds of maximal Albanese dimension, then

h0,2(X) = h0,2(Y ), 4

since in the case of 4-folds all the other h0,q Hodge numbers are known to be
preserved.

Perhaps the main point in this picture is the fact that the positive dimensional
components of the cohomological support loci V i(ωX) reflect the nontrivial fibra-
tions of X over irregular varieties. Therefore, roughly speaking, the key geometric
significance of Conjecture 1.2 is that derived equivalent varieties should have the
same type of fibrations over lower dimensional irregular varieties, thus allowing for
more geometric tools in the study of Fourier-Mukai partners. One version of this
principle can be stated as follows:

Corollary 3.4 (assuming Variant 1.3). Let X and Y be smooth projective
varieties such that D(X) � D(Y ). Fix an integer m > 0, and assume that X admits
a morphism f : X → Z with connected fibers, onto a normal irregular variety of
dimension m whose Albanese map is not surjective. Then Y admits a morphism
h : Y → W with connected fibers, onto a positive dimensional normal irregular
variety of dimension ≤ m. Moreover, if m = 1, then W can also be taken to be a
curve of genus at least 2.

This is due to the fact that, by the degeneration of the Leray spectral sequence
for Rf∗ωX due to Kollár [Ko1], one has

f∗V 0(ωZ) ⊂ V n−m(ωX),

where n = dimX = dimY . Now in [EL] Proposition 2.2 it is shown that if 0 is an
isolated point in V 0(ωZ), then the Albanese map of Z must be surjective. Thus the
hypothesis implies that we obtain a positive dimensional component in V n−m(ωX)0,
hence by Variant 1.3 also in V n−m(ωY )0. Going in reverse, recall now from §1 that,
according to one of the main results of [GL2], a positive dimensional component
of V n−m(ωY ) produces a fiber space h : Y → W , with W a positive dimensional
normal irregular variety (with generically finite Albanese map) and dimW ≤ m.
The slightly stronger statement in the case of fibrations over curves follows from
the precise description of the positive dimensional components of V n−1(ωX) given
in [Be3].

I suspect that one should be able to remove the non-surjective Albanese map
hypothesis (in other words allow maps onto abelian varieties), but this must go
beyond the methods described here.
Acknowledgements. I thank L. Lombardi and C. Schnell for numerous useful
conversations on the topic presented here.
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Clay Mathematics Proceedings

Degenerations of rationally connected varieties and PAC
fields

Jason Starr

This paper is dedicated to Joe Harris, with congratulations on his 60th birthday, for too many

kindnesses to list.

Abstract. A degeneration of a separably rationally connected variety over a
field k contains a geometrically irreducible subscheme if k contains the alge-
braic closure of its prime subfield. If k is a perfect PAC field, the degeneration
has a k-point. This generalizes (and gives a purely algebraic proof of) a known
result of field arithmetic, [4, Theorem 21.3.6(a)]: a degeneration of a Fano com-
plete intersection over k has a k-point if k is a perfect PAC field containing
the algebraic closure of its prime subfield.

1. Statement of results

Recently, a number of fields long known to be C1 were proved to satisfy an a
priori stronger property related to rationally connected varieties.

(i) Every rationally connected variety defined over the function field of a curve
over a characteristic 0 algebraically closed field has a rational point, [6].

(ii) Every separably rationally connected variety defined over the function
field of a curve over an algebraically closed field of arbitrary characteristic
has a closed point, [2].

(iii) Every smooth, rationally chain connected variety over a finite field has a
rational point, [3].

Moreover, in each of these cases degenerations of these varieties also have rational
points, at least under some mild hypotheses on the degeneration.

This article considers the same problem for perfect PAC fields containing an
algebraically closed field. A field K is pseudo-algebraically closed, or PAC, if every
integral, finite type K-scheme has a K-rational point. Such fields are known to be
C1, [4, Theorem 21.3.6(a)]. The main theorem is the following.

Theorem 1.1. Let k be a perfect PAC field containing the algebraic closure of
its prime subfield. Let Xk be the closed fiber of a proper, flat algebraic space over
a DVR with residue field k. If the geometric generic fiber is separably rationally
connected (in the sense of [2]), then Xk has a k-point.
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2 JASON STARR

In particular, this gives a new proof of a theorem of Fried-Jarden. [4, Theorem
21.3.6(a)], i.e., every perfect PAC field containing an algebraically closed field is
C1.

Corollary 1.2. [4, Theorem 21.3.6(a)] Every perfect PAC field containing
an algebraically closed field is C1.

The original proof uses the Chebotarev density theorem and the Riemann hy-
pothesis for curves. Our proof uses only results of algebraic geometry, particularly
the results (i) and (ii) above. Apart from (i) and (ii), we use only foundational
results of algebraic geometry, e.g., results from EGA and Bertini theorems.

Theorem 1.1 should be compared to the following theorems of Kollár and de
Jong respectively.

Theorem 1.3. [10] Let k be a characteristic 0 PAC field. Let Xk be the closed
fiber of a projective, flat scheme over a DVR with residue field k. If the geometric
generic fiber is a Fano manifold, then Xk has a k-point. In particular, k is C1.

Theorem 1.4 (de Jong). Let k be a characteristic 0 field containing Q and
having a point in every rationally connected k-scheme. Let Xk be the closed fiber
of a proper, flat algebraic space over a DVR with residue field k. If the geometric
generic fiber is rationally connected, then Xk has a k-point. In particular, k is C1.

1.1. The basic argument. As mentioned above, the proof uses very little
besides (i) and (ii) above. Here we give the basic argument, postponing some
technical lemmas to a later section. First of all, Theorem 1.1, which applies only
to perfect, PAC fields, follows from a result that applies to all fields.

Theorem 1.5. Let R be a DVR with residue field kR, and let XR be a proper,
flat R-algebraic space. whose geometric generic fiber is separably rationally con-
nected (in the sense of [2]). Denote by LR the compositum of kR with the algebraic
closure of the prime subfield. If the geometric generic fiber of XR over R is sepa-
rably rationally connected (in the sense of [2]), then there exists a closed subspace
YLR

of XR ⊗R LR which is geometrically irreducible over LR, i.e., YLR
⊗LR

kR is
irreducible.

Proof of Theorem 1.1 assuming Theorem 1.5. Because k = kR contains
the algebraic closure of its prime subfield, kR equals LR. By Theorem 1.5, Xk

contains a closed subspace Yk which is geometrically irreducible over k. Because k
is a perfect PAC field, every geometrically irreducible k-scheme has a k-point. In
particular, Y has a k-point. Therefore Xk has a k-point. �

While we are at it, here is the proof of Corollary 1.2.

Proof of Corollary 1.2 assuming Theorem 1.1. Every field k is the re-
sidue field (i.e., closed point) of a DVR R whose fraction field (i.e., generic point)
has characteristic 0. Every complete intersection in Pn

k is the closed fiber of a com-
plete intersection in Pn

R whose generic fiber is smooth. If the complete intersection
satisfies the C1 inequality, the generic fiber is a Fano manifold. By [11] and [1], a
Fano manifold in characteristic 0 is rationally connected. Since rationally connected
varieties in characteristic 0 are separably rationally connected, it is even separably
rationally connected. Therefore Theorem 1.1 implies the complete intersection in
Pn
k has a k-point if k is a perfect PAC field containing the algebraic closure of its

prime subfield. In other words, every perfect PAC field containing an algebraically
closed field is C1, cf. [4, Theorem 21.3.6(a)]. �
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The main step in the proof of Theorem 1.5 is the rationally connected fibration
theorem of [6] and [2].

Theorem 1.6. [6],[2] Let κ be an algebraically closed field, let Cκ be a smooth,
connected curve over κ, and let

π : XC → Cκ

be a proper algebraic space over Cκ whose geometric generic fiber is separably ra-
tionally connected (in the sense of [2]). Then there exists a section of π.

Because every finite type algebraic space over a ring R is the base change of a
finite type algebraic space defined over a finitely generated ring, the general case of
Theorem 1.5 reduces to the case where R is “essentially of finite type”. The next
definition makes this precise.

Definition 1.7. A finite type datum is a datum

((P,Q) → (S, s), XP )

of

(i) a Dedekind domain S of finite type over Z or over Q and a maximal ideal
s of S,

(ii) a flat, quasi-projective S-scheme P whose geometric generic fiber is inte-
gral and normal,

(iii) an integral, normal Weil divisor Q of P contained in Ps,
(iv) and a P -algebraic space XP .

The datum is proper if XP is proper over P and it is strict if Q is geometrically
irreducible over κ(s), i.e., if Q⊗κ(s) κ(s) is irreducible.

Lemma 1.8. Theorem 1.5 for arbitrary pairs (R,XR) follows from Theorem 1.5
for those pairs (O, XO) arising from strict, proper, finite type data by setting O to
be the stalk of P at the generic point of Q.

If Q is finite over S, then the residue field kO of O is a finite extension of the
prime subfield, i.e., LO = kO. In this case Theorem 1.5 is trivial. Therefore assume
that Q has positive dimension d+ 1.

The proper morphism of S-spaces

XP → P

gives rise to two proper morphisms of algebraic spaces over algebraically closed
fields by forming the geometric generic fiber and the geometric closed fiber over
(S, s).

(i) First, let PηS
be the base change of P to K(S), i.e., PηS

:= P ⊗S K(S).
By hypothesis this is integral and normal. Form the corresponding base
change of XP , i.e.,

XP,ηS
= XP ×P PηS

prPηS−−−−→ PηS
.

(ii) Second, let Qs be the base change of Q to κ(s), i.e., Qs = Q ⊗κ(s) κ(s).
Because κ(s) is perfect, Qs is still normal. Form the corresponding base
change of XP , i.e.,

XQ,s = XP ×P Qs

prQs−−−→ Qs.
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4 JASON STARR

Each of these is an example of a proper morphism of algebraic spaces over an
algebraically closed field κ,

XD → D,

where

(i) XD is an algebraic space, XD = XP,ηS , resp. XD = XQ,s,
(ii) D, embedded in some projective space PN

κ , is an integral, normal, quasi-
projective variety over κ, D = PηS

, resp. D = Qs, and

(iii) κ is an algebraically closed field, κ = K(S), resp. κ = κ(s).

For each triple (XD/D/κ), we associate a family of curves in D and then give
a criterion for the existence of a proper subspace Y of XD as in Theorem 1.5. De-
note by Grass(d,N) the Grassmannian scheme parametrizing codimension-d linear
subspaces of PN

κ , and denote by Λd the universal codimension-d linear subspace of
PN
k ×k Grass(d,N).

Definition 1.9. The base of the universal family, VD, is the maximal open
subscheme of Grass(d,N) over which the following projection morphism is flat,

prGrass(d,N) ◦ prΛd
: D ×P

N
k
Λd → Λd → Grass(d,N).

The universal family of codimension-d linear sections of D, CD, is the fiber product

CD := D ×
P
N
k
Λd ×Grass(d,N) VD.

Denote the two projection morphisms by

prD : CD → D, prVD
: CD → VD.

The generic codimension-d linear section Cη is the geometric generic fiber of the
projection morphism prVD

.

Proposition 1.10. Let κ be an algebraically closed field. Let D ⊂ PN
κ be a

normal, irreducible, quasi-projective κ-scheme of positive dimension d+1. Let XD

be a proper algebraic space over D.
If there exists a section of the base change

XD ×D Cη → Cη,

then there exists an irreducible, closed subspace Y of XD such that Y ×D Spec κ(D)
is irreducible.

The proof uses a lemma which is an immediate consequence of the limit theo-
rems of [8, §8].

Lemma 1.11. If there exists a section of the base change

XD ×D Cη → Cη,

then there exists an integral scheme E, a finite type, dominant, affine morphism

g : E → VD

and a section of the base change

XD ×D CD ×VD
E → CD ×VD

E.
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Taking κ = κ(s), D = Qs and XD = XQ,s, the conclusion of Proposition 1.10
is the existence of a subspace Y of XD whose base change

YLO := Y ×D Spec κ(D)

inside XD ×D Spec κ(D) = XO ⊗O LO is a subspace as in Theorem 1.5. There-
fore, to complete the proof of Theorem 1.5 it suffices to verify the hypothesis of
Proposition 1.10.

On the other hand, for κ = K(S), D = PηS and XD = XP,ηS , the geomet-
ric generic fiber of XD over D is separably rationally connected by hypothesis.
Therefore Theorem 1.6 implies the restriction of XD over Cη has a section, i.e.,
the hypothesis of Proposition 1.10 are satisfied. Thus Theorem 1.5 finally follows
from a specialization lemma showing the hypothesis for (XP,ηS

/PηS
/K(S)) implies

the hypothesis for (XQ,s/Qs/κ(s)). The lemma is well-known: one version is [5,
Lemma 2.5].

Lemma 1.12. For a proper, strict, finite type datum such that P/S has rel-
ative dimension d + 1, if the restriction of XP,ηS

over the generic codimension-d
linear section of PηS

has a section, then the restriction of XQ,s over the generic
codimension-d linear section of Qs also has a section.

Mostly Proposition 1.10 is a consequence of the limit theorems in [8, §8]. How-
ever, we need to use one irreducibility result about linear sections of varieties which
is somewhat more precise than the usual Bertini theorem. Since we could find
no reference, we include a proof. This result might be of independent interests
to those who study Bertini theorems. We end the article with a question as to
generalizations of this proposition.

Proposition 1.13. Let κ be an algebraically closed field. Denote by Λd ⊂
PN
κ ×κ Grass(d,N) the universal codimension-d linear subspace. Let E be an irre-

ducible, finite type κ-scheme and let g : E → Grass(d,N) be a dominant morphism.
After replacing E by a dense open subset, for every irreducible closed subset D of
PN
κ of dimension ≥ d+ 1 the geometric generic fiber of

prD : D ×PN
κ
Λd ×Grass(d,N) E → D

is irreducible.

Acknowledgments. I thank A. J. de Jong for explaining his proof of Theo-
rem 1.4 some years ago. I thank János Kollár for encouraging me to write-up this
article and pointing out [4, Theorem 21.3.6(a)]. I thank the referees, of this version
and an earlier version, for their helpful comments.

2. Proof of Lemma 1.8

Step 1. Reduction of XR to a finite type subring A. Because XR is a
finite type algebraic space, there exists a finitely generated subring A of R and a
proper algebraic space XA over A such that XA ⊗A R ∼= XR. If kR contains Q,
replace A by A ⊗ Q. Also increase A if necessary so that mR ∩ A is principally
generated by an element π which is a uniformizer of mR. Finally, by the Noether
normalization theorem, the integral closure of A in its fraction field is still finitely
generated. Increase A if necessary so that A is normal.

Step 2. Compatibility with base change. Denote by m the prime ideal
mR∩A of A. By construction m is principal and A is normal. Thus the local ring Am
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6 JASON STARR

is a DVR. By construction Am is contained in R and the inclusion homomorphism
is a local homomorphism. Denote by XAm

the base change XA ⊗A Am. Associated
to every closed subspace YAm

of XAm
⊗Am

LAm
, the image of

YAm
⊗LAm

LR ⊂ XAm
⊗Am

LR

∼=−→ XR ⊗R LR

is a closed subspace YR of XR ⊗R LR. Moreover,

YR ⊗LR
kR ∼= (YAm

⊗LAm
kAm

)⊗kAm

kR.

By [8, Théorème 4.4.4], if YAm
⊗LAm

kAm
is irreducible, so is YR ⊗LR

kR. Thus,
to prove Theorem 1.5 for R and XR, it suffices to prove Theorem 1.5 for Am and
XAm

.
Step 3. Reduction to the strict case. There is a slight bifurcation at

this point. If A contains Q, respectively a finite field Fp, then denote by Spre the
integral closure in A of Q[π], resp. Fp[π]. If A contains Z and pA ⊂ m, denote
by Spre the integral closure of Z in A. In each case, by the Noether normalization
theorem, Spre is a finitely generated Z-algebra. And, of course, m∩Spre contains a
primary element, i.e., an element ρ such that ρA is an m-primary ideal. (In the first
two cases Spre even contains π, and in the third case ρ = p is a primary element.)

Because Spre is a Dedekind domain and m∩Spre is a nonzero prime ideal, it is
a maximal ideal. Denote the residue field by

kSpre := Spre/m ∩ Spre.

It may happen that A/m is not geometrically irreducible over kSpre , i.e., kSpre is not
algebraically closed in the fraction field of A/m. Denote by kS the algebraic closure
of kSpre in the fraction field of A/m. Because kSpre is either a number field or a finite
field, the field extension kS/kSpre is finite and separable. By the primitive element
theorem, there exists f ∈ kSpre [T ] such that kS ∼= kSpre [T ]/〈f〉. Let f ∈ Spre[T ] be
an element mapping to f . After inverting the discriminant of f in Spre, the ring

S := Spre[T ]/〈f〉
is finite and étale over Spre. Denote by mS the maximal ideal in S generated
by m ∩ Spre. Denote by AS the normalization of S ⊗Spre A. Then AS/mSAS is
isomorphic to A/m.

Denote by XAS
the base change of XA to AS . The geometric generic fiber

of XAS
over AS equals the geometric generic fiber of XA over A. And the closed

fiber of XAS
over AS equals the closed fiber of XA over A. Therefore, to prove

the theorem for A, it suffices to prove the theorem for AS . And kS is algebraically
closed in the fraction field of AS/mSAS, i.e., AS/mSAS is geometrically irreducible
over kS .

Step 4. Existence of a finite type datum. It is a straightforward con-
sequence of Nagata compactification, [12], etc., that there exists a strict, proper,
finite type datum over S such that O equals the localization of AS at mSAS and
XO equals the base change of XAS

over the localization.

3. A symmetry for Bertini theorems. Proof of Proposition 1.13

At the end of this section we prove Proposition 1.13. In this section, κ denotes
an algebraically closed field. The classical Bertini theorem concerns the general hy-
perplane section of a quasi-projective κ-variety. More generally, one could consider
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a family of cycles C in an ambient variety A parametrized by a base B, i.e., a finite
type morphism

ι = (ιA, ιB) : C → A×k B.

The classical case is A = PN
κ , B = (PN

κ )∨, the dual projective space, and C is the
universal hyperplane in A×κ B.

In this setting, a Bertini theorem asserts that some property of a morphism
f : D → A implies a similar property for the geometric generic fiber of the associated
morphism

ιB ◦ prC : D ×A C → C → B.

The proposition below proves that when (A,B,C) satisfies a Bertini theorem, the
“opposite triple” (B,A,Copp) satisfies a similar Bertini theorem.

Proposition 3.1. Assume that for every pair D, E of irreducible, finite type
κ-schemes and for every pair

f : D → A, g : E → B

of morphisms of κ-schemes with

dim(f(D)) ≥ d, dim(g(E)) ≥ e,

after replacing D by a dense open subset, the geometric generic fiber of

prE : D ×A C ×B E → E

is irreducible. Then after replacing E by a dense open subset also the geometric
generic fiber of

prD : D ×A C ×B E → D

is irreducible.

The proof uses a criterion from [8, §4] for irreducibility of the geometric generic
fiber of a morphism.

Lemma 3.2. (i) The geometric generic fiber of a dominant morphism of
irreducible schemes

t : W → Z

is integral if there exists a rational section s of t mapping the generic point
of Z to a normal point of W .

(ii) The geometric generic fiber of a dominant morphism of irreducible schemes

u : Z → X

is irreducible if and only if Z ×X Z has a unique irreducible component
W dominating Z.

Proof. (i). Denote by ηZ the generic point of Z and denote by ηs the image
s(ηZ) in W . Then OW,ηs

is a normal local domain containing its residue field κ(ηZ).
In particular, κ(ηZ) is separably algebraic closed (even algebraically closed) in the
fraction field K(OW,ηs

) = K(W ). Therefore, by [8, Corollaire 4.5.10], K(W ) is
geometrically irreducible over κ.

(ii). It suffices to prove this after replacing Z and X by their generic points.
Moreover, because purely inseparable field extensions are universal homeomor-
phisms, [8, Proposition 4.5.21], it suffices to consider the case when Z → X is
the morphism of schemes associated to a separable field extension.
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8 JASON STARR

If the geometric generic fiber of Z over X is irreducible, then by [8, Théorème
4.4.4], the geometric generic fiber of Z×X Z over Z is irreducible. Hence Z×X Z is
irreducible, being the image of the geometric generic fiber. Conversely, assume Z×X

Z is irreducible. By [8, Proposition 6.14.1], Z ×X Z is also normal. The diagonal
morphism ΔZ/X gives a Z-point of Z×XZ. Therefore, by (i), the geometric generic
fiber of Z ×X Z over Z is irreducible. By [8, Théorème 4.4.4] again, the geometric
generic fiber of Z over X is irreducible. �

Proof of Proposition 3.1. Denote the fiber product

E ×A C ×B D

by CE,D and denote the projections onto E and D by

p(D,E);D : CD,E = D ×A C ×B E → D,

and

p(D,E);D : CD,E = D ×A C ×B E → E.

The goal is to prove the geometric generic fiber of p(D,E);E is irreducible after
replacing D by a suitable open, dense subset. In fact, it suffices to replace D,
respectively E, by the maximal open subsets over which p(D,E);D is flat, resp.
p(D,E);E is flat. This is dense by [8, Théorème 6.9.1]. Thus assume p(D,E);D and
p(D,E);E are flat. There is one observation: because flatness is preserved by base
change and because compositions of flat morphisms are flat, the following two
associated morphisms are also flat:

pr1 : CD,E ×D CD,E → CD,E , and

p(D,E);E ◦ pr2 : CD,E ×D CD,E → CD,E → E.

By Lemma 3.2(ii), to prove the geometric generic fiber of p(D,E);D is irreducible,
it suffices to prove that CD,E and CD,E ×D CD,E are irreducible. Because E is
irreducible and p(D,E);E is flat, every component of CD,E intersects the generic
fiber of p(D,E);E. Because the geometric generic fiber is irreducible, also the generic
fiber is irreducible. Therefore CD,E is irreducible.

But then, denoting CD,E by D′ and denoting by f ′ the composition,

f ′ = f ◦ p(D,E);D : CD,E → D → A,

the pairs (D′, E) and (f ′, g) satisfy the same conditions as (D,E) and (f, g). Indeed,
D′ is irreducible by the last paragraph. Because p(D,E);D is flat f ′(D′) is dense
in f(D), thus has dimension ≥ d. As observed above, flatness of p(D,E);D and
p(D,E);E implies flatness of the associated morphisms pr1 and p(D,E);E ◦ pr2. By a
straightforward diagram chase,

CD′,E = CD,E ×D CD,E , p(D′,E);D′ = pr1, and p(D′,E);E = p(D,E);E ◦ pr2.

Thus the argument above proves CD,E ×D CD,E is irreducible. Therefore Lem-
mma 3.2(ii) implies irreducibility of the geometric generic fiber of p(D,E);D. �

Proof of Proposition 1.13. The classical Bertini theorem implies the triple
(PN

κ ,Grass(d,N),Λd) satisfies the conditions of Proposition 3.1 with

dim(f(D)) ≥ d+ 1, dim(g(E)) = dim(Grass(d,N)), i.e., g is dominant,
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cf. [9, Théorème I.6.10]. Thus, for every irreducible closed subset D of PN
κ of

dimension ≥ d + 1, there exists an open subset V of E such that the geometric
generic fiber of

prD : D ×PN
κ
Λd ×Grass(d,N) V → D

is irreducible.
For every open subset V of E, the subset

RV = {x ∈ PN
κ |Spec κ(x)×PN

κ
Λd ×Grass(d,N) V reducible }

is constructible by [9, Théorème I.4.10]. Because PN
κ is Noetherian, the collection

of closed subsets
{RV |V dense, open in E}

has a minimal element RV . This V works for all D simultaneously. �
Remark 3.3. (i) One example of a morphism g : E → Grass(d,N) where the

conclusion holds only after replacing E by an open dense subset is the blowing up
of Grass(d,N) at the ideal sheaf of a closed point (assuming d > 1 and N > 2d).

(ii) There are also examples where the conclusion fails if one allows morphisms
f with dim(f(D)) = d.

4. Limit theorems. Proof of Propositon 1.10

Proof of Lemma 1.11. Denote by XCD
the base change XD ×D CD. This is

a finite type algebraic space over VD. Denote by XCη
the base change XD ×D Cη,

which also equals XCD
×VD

Spec K(VD). Associate to each section

σ : Cη → XCη

the image Γσ of σ,
Γσ := σ(Cη) ⊂ XCη

.

This is a closed subspace.
Denote by S0 the algebraic space XCD

. Denote the coherent OVD
-subalgebras

of the constant OVD
-algebra K(VD) by Rλ. For every λ, denote by Aλ the pullback

of Rλ to CD. And denote
Sλ = Spec Aλ.

Because K(VD) is the filtering direct limit of the algebras Rλ, the inverse limit of
the schemes Sλ is

lim←−Sλ
∼= XCD

×VD
Spec K(VD) = Xη.

By the limit theorems of EGA IV, particularly [8, Proposition 8.6.3], there
exists λ and a closed subspace Γλ of Sλ such that

Γσ = Γλ ×Sλ
Xη.

To be precise, EGA IV deals only with schemes, not algebraic spaces. However it
is straightforward to generalize the proposition to algebraic spaces.

Denote by
g : E → VD ⊂ Grass(d,N)

the relative spectrum of Rλ. Then Γλ is equivalent to a closed subspace

ΓE ⊂ XCD
×VD

E.

Consider the projection
πE : ΓE → CD ×VD

E.
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10 JASON STARR

After further base change from E to Spec K(VD), this morphism becomes an iso-
morphism. Therefore, by [8, Théorème 8.8.2(i)], after replacing Rλ by a larger
OVD

-algebra, we may assume that the projection is an isomorphism. Denote by

σE : CD ×VD
E → XCD

×VD
E

the unique morphism such that

σE ◦ πE : ΓE → XCD
×VD

E

is the inclusion morphism. Then σE is a section of the projection

XCD
×VD

E → CD ×VD
E.

Because Rλ is an OVD
-subalgebra of K(VD), in particular it is integral and

contains OVD
. Thus E is integral and g is a finite type, affine, dominant morphism.

�

Proof of Proposition 1.10. Let E, g and σE be as in Lemma 1.11. Observe
that E and g satisfy all the hypotheses of Proposition 1.13. Therefore, possibly after
replacing E by a dense open subset, the geometric generic fiber of

prD : CD ×VD
E = D ×PN

κ
Λd ×Grass(d,N) E → D

is irreducible. In other words, denoting by Z the unique irreducible component of
D ×PN

κ
Λd ×Grass(d,N) E dominating D, the geometric generic fiber of

prD|Z : Z → D

is irreducible.
The restriction of σE to Z is an E-morphism

σZ : Z ⊂ CD ×VD
E → XCD

×VD
E

which is a section of prCE
|Z . Denote by sZ the composition

sZ : Z
σZ−−→ XCD

×VD
E

prXCD−−−−→ XCD

prXD−−−→ XD.

By a straightforward diagram chase, this is a morphism of D-schemes. Denote by
Y the closure of the image of sZ ,

Y := sZ(Z).

The geometric generic fiber of Z over D dominates the geometric generic fiber of
Y over D. Therefore, since the geometric generic fiber of Z over D is irreducible,
also the geometric generic fiber of Y over D is irreducible. �

5. Proof of Lemma 1.12

As mentioned, this is essentially the same argument as in [5, Lemma 2.5]. Em-
bed P in PN

S . Denote by Grass(d,N) the Grassmannian scheme over S parametriz-
ing codimension-d linear subspaces of fibers of PN

S over S. Denote by Λd the uni-
versal codimension-d linear subspace of PN

S ×S Grass(d,N). Just as above, denote
by VP the maximal open subscheme of Grass(d,N) over which

P ×
P
N
S
Λd → Λd → Grass(d,N)

is flat. Because Grass(d,N) is regular, and because P×P
N
S
Λd is integral, VP contains

all the codimension one points of Grass(d,N), cf. [7, p. 57, §6.3]. In particular,
VP is dense in the closed fiber of Grass(d,N) over S.
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By hypothesis there exists a section of the restriction of XP to the generic
codimension-d linear section of PηS

. By an argument almost identical to the proof
of Lemma 1.11, there exists an integral scheme E, a finite type, dominant, affine
morphism

g : E → VP ,

and a section

σE : CP ×VP
E → XP ×P CP ×VP

E

of the projection morphism

πE : XP ×P CP ×VP
E → CP ×VP

E.

Because g is affine and finite type, there exists an integral, normal scheme E,
a proper, surjective morphism

g : E → VP

and an open immersion ι : E ↪→ E such that g = g ◦ ι. Denote by W the maximal
open subscheme

W ⊂ CP ×VP
E

over which σE extends to a morphism

σW : W → XP ×P CP ×VP
E.

Because XP ×P CP ×VP
E is proper, the valuative criterion of propeness implies

that W contains every normal, codimension 1 point of CP ×VP
E.

There exists a normal, codimension 1 point ζ of E mapping to the generic point
of the closed fiber of Grass(d,N) over S. Denote by CQ,η the generic codimension-
d linear section of Q. There is a generic point ζ ′ of CP ×VP

ζ whose image in

CP equals the generic point of CQ,η. Because CQ,η is smooth over K(VQ), ζ
′ is

a normal, codimension 1 point of CP ×VP
E. Therefore the image of W in CP

contains the image of the generic point of the generic codimension-d linear section
CQ,η of Q.

By the last paragraph, the image of

W ×VP
Spec K(VQ) → CP ×VP

Spec K(VQ)

contains the generic point of CQ,η. Therefore there exists a K(VQ)-point of E ×VP

Spec K(VQ),

e : Spec K(VQ) → E ×VP
Spec K(VQ)

whose associated morphism

ẽ : CP ×VP
Spec K(VQ) → CP ×VP

E ×VP
Spec K(VQ)

pulls back W to an open subset ẽ−1(W ) of CP ×VP
Spec K(VQ) containing the

generic point of CQ,η.
Denote by W ′ the open subset

W ′ := ẽ−1(W ) ∩ CQ,s.

This is a dense open subset of CQ,s. The composition,

prXP
◦ σW ◦ ẽ : W ′ → W → XP ×P CP ×VP

E → XP

is a P -morphism giving a section of

XQ ×Q CQ,η → CQ,η
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12 JASON STARR

over W ′. But CQ,η is a normal curve, and XQ ×Q CQ,η is proper over CQ,η.
Therefore, by the valuative criterion of properness, this extends to a section of the
restriction of XQ,s over the generic codimension-d linear section CQ,η of Qs.

6. Final question

Question 6.1. Let f : D → PN
κ and g : E → Grass(d,N) be morphisms from

irreducible, finite type κ-schemes as in Proposition 3.1. Assume that

dim(f(D)) ≥ d+ a, dim(g(E)) ≥ dim(Grass(d,N))− b.

Also assume (shrinking D and E if necessary) that the projections

prD : D ×PN Λd ×Grass(d,N) E → D,

prE : D ×PN Λd ×Grass(d,N) E → E,

are both flat. Assuming a > b, does it follow that the geometric generic fibers of
both prD and prE are irreducible?

By Proposition 3.1, if for one of prD or prE the geometric generic fiber is
always irreducible, then the same holds for the other morphism as well. Moreover,
Proposition 1.13 is precisely the case when a = 1 and b = 0. However, as far as we
know, the question is open except in this case.
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Remarks on curve classes on rationally connected varieties

Claire Voisin

This note is dedicated to Joe Harris, whose influence on the subject of curves on rationally
connected algebraic varieties (among other topics!) is invaluable.

Abstract. We study for rationally connected varieties X the group of degree
2 integral homology classes on X modulo those which are algebraic. We show
that the Tate conjecture for divisor classes on surfaces defined over finite fields
implies that this group is trivial for any rationally connected variety.

1. Introduction

Let X be a smooth complex projective variety. Define

Z2i(X) =
Hdg2i(X,Z)

H2i(X,Z)alg
,(1.1)

where Hdg2i(X,Z) is the space of integral Hodge classes on X and H2i(X,Z)alg is
the subgroup of H2i(X,Z) generated by classes of codimension i closed algebraic
subsets of X.

These groups measure the defect of the Hodge conjecture for integral Hodge
classes, hence they are trivial for i = 0, 1 and n = dimX, but in general they can
be nonzero by [1]. Furthermore they are torsion if the Hodge conjecture for rational
Hodge classes on X of degree 2i holds. In addition to the previously mentioned
case, this happens when i = n − 1, n = dimX, due to the Lefschetz theorem on
(1, 1)-classes and the hard Lefschetz isomorphism (cf. [23]). We will call classes in

Hdg2n−2(X,Z) “curve classes”, as they are also degree 2 homology classes.
Note that the Kollár counterexamples (cf. [14]) to the integral Hodge con-

jecture already exist for curve classes (that is degree 4 cohomology classes in this
case) on projective threefolds, unlike the Atiyah-Hirzebruch examples which work
for degree 4 integral Hodge classes in higher dimension.

It is remarked in [21], [23] that the two groups

Z4(X), Z2n−2(X), n := dimX
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2 CLAIRE VOISIN

are birational invariants. (For threefolds, this is the same group, but not in higher
dimension.) The nontriviality of these birational invariants for rationally connected
varieties is asked in [23]. Still more interesting is the nontriviality of these invariants
for unirational varieties, having in mind the Lüroth problem (cf. [3], [2], [4]).

Concerning the group Z4(X), Colliot-Thélène and the author proved in [8],
building on the work of Colliot-Thélène and Ojanguren [5], that it can be nonzero
for unirational varieties starting from dimension 6. What happens in dimensions 5
and 4 is unknown (the four dimensional case being particularly challenging in our
mind), but in dimension 3, there is the following result proved in [22]:

Theorem 1.1. (Voisin 2006) Let X be a smooth projective threefold which is
either uniruled or Calabi-Yau (meaning that KX is trivial and H1(X,OX) = 0).
Then the group Z4(X) is equal to 0.

This result, and in particular the Calabi-Yau case, implies that the group Z6(X)
is also 0 for a Fano fourfold X which admits a smooth anticanonical divisor. Indeed,
a smooth anticanonical divisor j : Y ↪→ X is a Calabi-Yau threefold, so that we
have Z4(Y ) = 0 by Theorem 1.1 above. As H2(Y,OY ) = 0, every class in H4(Y,Z)
is a Hodge class, and it follows that H4(Y,Z) = H4(Y,Z)alg. As the Gysin map
j∗ : H4(Y,Z) → H6(X,Z) is surjective by the Lefschetz theorem on hyperplane
sections, it follows that H6(X,Z) = H6(X,Z)alg, and thus Z6(X) = 0.

In the paper [11], it was proved more generally that if X is any Fano fourfold,
the group Z6(X) is trivial. Similarly, if X is a Fano fivefold of index 2, the group
Z8(X) is trivial.

These results have been generalized to higher dimensional Fano manifolds of
index n−3 and dimension ≥ 8 by Enrica Floris [9] who proves the following result:

Theorem 1.2. Let X be a Fano manifold over C of dimension n ≥ 8 and
index n − 3. Then the group Z2n−2(X) is equal to 0: Equivalently, any integral
cohomology class of degree 2n− 2 on X is algebraic.

The purpose of this note is to provide evidence for the vanishing of the group
Z2n−2(X), for any rationally connected variety over C. Note that in this case, since
H2(X,OX) = 0, the Hodge structure on H2(X,Q) is trivial, and so is the Hodge
structure on H2n−2(X,Q), so that Z2n−2(X) = H2n−2(X,Z)/H2n−2(X,Z)alg. We
will first prove the following two results.

Proposition 1.3. The group Z2n−2(X) is locally a deformation invariant for
rationally connected manifolds X.

Let us explain the meaning of the statement. Consider a smooth projective
morphism π : X → B between connected quasi-projective complex varieties, with
n dimensional fibers. Recall from [15] that if one fiber Xb := π−1(b) is rationally
connected, so is every fiber. Let us endow everything with the usual topology. Then
the sheaf R2n−2π∗Z is locally constant on B. On any Euclidean open set U ⊂ B
where this local system is trivial, the group Z2n−2(Xb), b ∈ U , is the finite quotient
of the constant group H2n−2(Xb,Z) by its subgroup H2n−2(Xb,Z)alg. To say that
Z2n−2(Xb) is locally constant means that on open sets U as above, the subgroup
H2n−2(Xb,Z)alg of the constant group H2n−2(Xb,Z) does not depend on b.

It follows from the above result that the vanishing of the group Z2n−2(X) for
X a rationally connected manifold reduces to the similar statement for X defined
over a number field.
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REMARKS ON CURVE CLASSES ON RATIONALLY CONNECTED VARIETIES 3

Let us now define an l-adic analogue Z2n−2(X)l of the group Z2n−2(X) (cf.
[6], [7]). Let X be a smooth projective variety defined over a field K which in the
sequel will be either a finite field or a number field. Let K be an algebraic closure
of K. Any cycle Z ∈ CHs(XK) is defined over a finite extension of K. Let l be a
prime integer different from p = charK if K is finite. It follows that the cycle class

cl(Z) ∈ H2s
et (XK ,Ql(s))

is invariant under an open subgroup of Gal(K/K).
Classes satisfying this property are called Tate classes. The Tate conjecture for

finite fields asserts the following:

Conjecture 1.4. (cf. [18] for a recent account) Let X be smooth and projec-
tive over a finite field K. The cycle class map gives for any s a surjection

cl : CHs(XK)⊗Ql → H2s(XK ,Ql(s))Tate.

Note that the cycle class map defined on CHs(XK) in fact takes values in
H2s(XK ,Zl(s)), and more precisely in the subgroup H2s(XK ,Zl(s))Tate of classes

invariant under an open subgroup of Gal(K/K). We thus get for each i a morphism

cli : CHi(XK)⊗ Zl → H2i(XK ,Zl(i))Tate.

We can thus introduce the following variant of the groups Z2i(X):

Z2i
et (X)l := H2i

et (XK ,Zl(i))Tate/Im cli.

An argument similar to the one used for the proof of Proposition 1.3 will lead
to the following result:

Proposition 1.5. Let X be a smooth rationally connected variety defined over
a number field K, with ring of integers OK . Assume given a projective model X of
X over SpecOK . Fix a prime integer l. Then except for finitely many p ∈ SpecOK ,
the group Z2n−2

et (X)l is isomorphic to the group Z2n−2
et (Xp)l.

In the course of the paper, we will also consider variants Z2n−2
rat (X), resp.

Z2n−2
et,rat(X)l of the groups Z2n−2(X), resp. Z2n−2

et (X)l, obtained by taking the
quotient of the group of integral Hodge classes (resp. integral l-adic Tate classes)
by the subgroup generated by classes of rational curves. This variant is suggested
by Kollár’s paper (cf. [16, Question 3, (1)]). By the same arguments, these groups
are also deformation and specialization invariants for rationally connected varieties.

Our last result is conditional but it strongly suggests the vanishing of the group
Z2n−2(X) for X a smooth rationally connected variety over C. Indeed, we will
prove using the main result of [19] and the two propositions above the following
consequence of Theorem 1.5:

Theorem 1.6. Assume Tate’s conjecture 1.4 holds for degree 2 Tate classes on
smooth projective surfaces defined over a finite field. Then the group Z2n−2(X) is
trivial for any smooth rationally connected variety X over C.

2. Deformation and specialization invariance

Proof of Proposition 1.3. We first observe that, due to the fact that relative
Hilbert schemes parameterizing curves in the fibers of B are a countable union of
varieties which are projective over B, given a simply connected open set U ⊂ B
(in the classical topology of B), and a class α ∈ Γ(U,R2n−2π∗Z) such that αt is
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algebraic for t ∈ V , where V is a smaller nonempty open set V ⊂ U , then αt is
algebraic for any t ∈ U .

To prove the deformation invariance, we just need using the above observation
to prove the following:

Lemma 2.1. Let t ∈ U ⊂ B, and let C ⊂ Xt be a curve and let [C] ∈
H2n−2(Xt,Z) ∼= Γ(U,R2n−2π∗Z) be its cohomology class. Then the class [C]s is
algebraic for s in a neighborhood of t in U .

Proof. By results of [15], there are rational curves Ri ⊂ Xt with ample
normal bundle which meet C transversally at distinct points, and with arbitrary
tangent directions at these points. We can choose an arbitrarily large number D
of such curves with generically chosen tangent directions at the attachment points.
We then know by [10, §2.1] that the curve C ′ = C∪i≤DRi is smoothable in Xt to a
smooth unobstructed curve C ′′ ⊂ Xt, that is H

1(C ′′, NC′′/Xt
) = 0. This curve C ′′

then deforms with Xt (cf. [12], [13, II.1]) in the sense that the morphism from the
deformation of the pair (C ′′, Xt) to B is smooth, and in particular open. So there
is a neighborhood of V of t in U such that for s ∈ V , there is a curve C ′′

s ⊂ Xs

which is a deformation of C ′′ ⊂ Xt. The class [C
′′
s ] = [C ′′]s is thus algebraic on Xs.

On the other hand, we have

[C ′′] = [C ′] = [C] +
∑
i

[Ri].

As the Ri’s are rational curves with positive normal bundle, they are also unob-
structed, so that the classes [Ri]s also are algebraic on Xs for s in a neighborhood
of t in U . Thus [C]s = [C ′′]s −

∑
i[Ri]s is algebraic on Xs for s in a neighborhood

of t in U . The lemma, hence also the proposition, is proved.
�

Remark 2.2. There is an interesting variant of the group Z2n−2(X), which is
suggested by Kollár (cf. [16]) given by the following groups:

Z2n−2
rat (X) := H2n−2(X,Z)/〈[C], C rational curve in X〉.

Here, by a rational curve, we mean an irreducible curve whose normalization is
rational. These groups are torsion for X rationally connected, as proved by Kollár
([13, Theorem 3.13 p 206]). It is quite easy to prove that they are birationally
invariant.

The proof of Proposition 1.3 gives as well the following result (already noticed
by Kollár [16]) :

Variant 2.3. If X → B is a smooth projective morphism with rationally con-
nected fibers, the groups Z2n−2

rat (Xt) are local deformation invariants.

Let us give one application of Proposition 1.3 (or rather its proof) and/or its
variant 2.3. Let X be a smooth projective variety of dimension n + r, with n ≥ 3
and let E be an ample vector bundle of rank r on X. Let C1, . . . , Ck be smooth
curves in X whose cohomology classes generate the group H2n+2r−2(X,Z). For
σ ∈ H0(X, E), we denote by Xσ the zero locus of σ. When E is generated by
sections, Xσ is smooth of dimension n for general σ.

Theorem 2.4. 1) Assume that the sheaves E ⊗ ICi
are generated by global

sections for i = 1, . . . , k. Then if Xσ is smooth rationally connected for general σ,
the group Z2n−2(Xσ) vanishes for any σ such that Xσ is smooth of dimension n.
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2) Under the same assumptions as in 1), assume the curves Ci ⊂ X are ratio-
nal. Then if Xσ is smooth rationally connected for general σ, the group Z2n−2

rat (Xσ)
vanishes for any σ such that Xσ is smooth of dimension n.

Proof. 1) Let jσ : Xσ → X be the inclusion map. Since n ≥ 3 and E is ample,
by Sommese’s theorem [20], the Gysin map jσ∗ : H2n−2(Xσ,Z) → H2n+2r−2(X,Z)
is an isomorphism. It follows that the group H2n−2(Xσ,Z) is a constant group.
In order to show that Z2n−2(Xσ) is trivial, it suffices to show that the classes
(jσ∗)

−1([Ci]) are algebraic on Xσ since they generate H2n−2(Xσ,Z). Since the
Xσ’s are rationally connected, Theorem 1.3 tells us that it suffices to show that for
each i, there exists a σ(i) such that Xσ(i) is smooth n-dimensional and that the

class (jσ(i)∗)
−1([Ci]) is algebraic on Xσ(i).

It clearly suffices to exhibit one smooth Xσ(i) containing Ci, which follows from
the following lemma:

Lemma 2.5. Let X be a variety of dimension n + r with n ≥ 2, C ⊂ X be a
smooth curve, E be a rank r vector bundle on X such that E ⊗ IC is generated by
global section. Then for a generic σ ∈ H0(X, E ⊗IC), the zero set Xσ is smooth of
dimension n.

Proof. The fact that Xσ is smooth of dimension n away from C is standard
and follows from the fact that the incidence set (σ, x) ∈ P(H0(X, E ⊗ IC))× (X \
C), σ(x) = 0} is smooth of dimension n + N , where N := dimP(H0(X, E ⊗ IC)).
It thus suffices to check the smoothness along C for generic σ.

This is checked by observing that since E ⊗ IC is generated by global sections,
its restriction E ⊗N∗

C/X is also generated by global sections. This implies that for

each point c ∈ C, the condition that Xσ is singular at c defines a codimension n
closed algebraic subset Pc of P := P(H0(X, E ⊗ IC)), determined by the condition
that dσc : NC/X,c → Ec is not surjective. Since dimC = 1, the union of the Pc’s
cannot be equal to P if n ≥ 2. �

This concludes the proof of 1) and the proof of 2) works exactly in the same
way. �

Remark 2.6. (Added in proof.) After this paper was accepted, it has been
proved by Runpu Zong [24] that every curve on a rationally connected variety
over C is algebraically equivalent, hence in particular cohomologous, to a (non-
effective) integral sum of rational curves. This shows that the groups Z2n−2(X)
and Z2n−2(X)rat are in fact isomorphic for rationally connected n-folds X over C.

Let us finish this section with the proof of Proposition 1.5.

Proof of Proposition 1.5. Let p ∈ SpecOK , with residue field k(p). As-
sume Xp is smooth. For l prime to char k(p), the (adequately constructed) special-
ization map

H2n−2
et (XK ,Zl(n− 1)) → H2n−2

et (Xp,Zl(n− 1))(2.1)

is then an isomorphism (cf. [17, Chapter VI, §4]).
Observe also that since XK is rationally connected, the rational étale cohomol-

ogy group H2n−2
et (XK ,Ql(n− 1)) is generated over Ql by curve classes. Hence the

same is true for H2n−2
et (Xp,Ql(n− 1)). Thus the whole cohomology groups

H2n−2
et (XK ,Zl(n− 1)), H2n−2

et (Xp,Zl(n− 1))
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consist of Tate classes, and (2.1) gives an isomorphism

H2n−2
et (XK ,Zl(n− 1))Tate → H2n−2

et (Xp,Zl(n− 1))Tate.(2.2)

In order to prove Proposition 1.5, it thus suffices to prove the following:

Lemma 2.7. 1) For almost every p ∈ SpecOK , the fiber Xp is smooth and
separably rationally connected.

2) If Xp is smooth and separably rationally connected, for any curve Cp ⊂ Xp,

the inverse image [Cp]K ∈ H2n−2
et (XK ,Zl(n−1)) of the class [Cp] ∈ H2n−2

et (Xp,Zl(n−
1)) via the isomorphism ( 2.2) is the class of a 1-cycle on XK .

Proof. 1) When the fiber Xp is smooth, the separable rational connectedness
of Xp is equivalent to the existence of a smooth rational curve Cp

∼= P1
k(p)

together

with a morphism φ : Cp → Xp such that the vector bundle φ∗TXp on P1
k(p)

is a

direct sum ⊕iOP
1

k(p)
(ai) where all ai are positive. Equivalently

H1(P1
k(p)

, φ∗TXp
(−2)) = 0.(2.3)

The smooth projective variety XK being rationally connected in characteristic 0,
it is separably rationally connected, hence there exist a finite extension K ′ of K,
a curve C and a morphism φ : C → X defined over K ′, such that C ∼= P1

K′ and
H1(P1

K′ , φ∗TXK′ (−2)) = 0.
We choose a model

Φ : C ∼= P1
OK′ → X ′

of C and φ defined over a Zariski open set of SpecOK′ . By upper-semi-continuity
of cohomology, the vanishing (2.3) remains true after restriction to almost every
closed point p ∈ SpecOK′ , which proves 1).

2) The proof is identical to the proof of Proposition 1.3: we just have to show
that the curve Cp ⊂ Xp is algebraically equivalent in Xp to a difference C

′′
p−

∑
i Ri,p,

where each curve C ′′
p , resp. Ri,p (they are in fact defined over a finite extension

k(p)′ of k(p)), lifts to a curve C ′′, resp. Ri in XK′ for some finite extension K ′ of
K.

Assuming the curves C ′′
p , Ri,p are smooth, the existence of such a lifting is

granted by the condition H1(C ′′
p , NC′′

p /Xp
) = 0, resp. H1(Ri,p, NRi,p/Xp

) = 0.

Starting from C ⊂ Xp where Xp is separably rationally connected over p, we
obtain such curves C ′′

p , Ri,p as in the previous proof, applying [10, §2.1]. �

The proof of Proposition 1.5 is finished. �

Again, this proof leads as well to the proof of the specialization invariance of
the l-adic analogues Z2n−2

et,rat(X)l of the groups Z
2n−2
rat (X) introduced in Remark 2.2.

Variant 2.8. Let X be a smooth rationally connected variety defined over a
number field K, with ring of integers OK . Assume given a projective model X of
X over SpecOK . Fix a prime integer l. Then for any p ∈ SpecOK such that
Xp is smooth separably connected, the group Z2n−2

et,rat(X)l is isomorphic to the group

Z2n−2
et,rat(Xp)l.
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3. Consequence of a result of Chad Schoen

In [19], Chad Schoen proves the following theorem:

Theorem 3.1. Let X be a smooth projective variety of dimension n defined
over a finite field k of characteristic p. Assume that the Tate conjecture holds for
degree 2 Tate classes on smooth projective surfaces defined over a finite extension
of k. Then the étale cycle class map:

cl : CHn−1(Xk)⊗ Zl → H2n−2(Xk,Zl(n− 1))Tate

is surjective, that is Z2n−2
et (X)l = 0.

In other words, the Tate conjecture 1.4 for degree 2 rational Tate classes implies
that the groups Z2n−2

et (X)l should be trivial for all smooth projective varieties
defined over finite fields. This is of course very different from the situation over C
where the groups Z2n−2(X) are known to be possibly nonzero.

Remark 3.2. There is a similarity between the proof of Theorem 3.1 and
the proof of Theorem 1.1. Schoen proves that given an integral Tate class α on
X (defined over a finite field), there exist a smooth complete intersection surface
S ⊂ X and an integral Tate class β on S such that jS∗β = α, where jS is the
inclusion of S in X. The result then follows from the fact that if the Tate conjecture
holds for degree 2 rational Tate classes on S, it holds for degree 2 integral Tate
classes on S.

I prove that for X a uniruled or Calabi-Yau, and for β ∈ Hdg4(X,Z) there

exist surfaces Si

jSi
↪→ X (in an adequately chosen linear system on X) and integral

Hodge classes βi ∈ Hdg2(Si,Z) such that α =
∑

i jSi∗β. The result then follows
from the Lefschetz theorem on (1, 1)-classes applied to the βi.

We refer to [7] for some comments on and other applications of Schoen’s theo-
rem, and conclude this note with the proof of the following theorem (cf. Theorem
1.6 of the introduction).

Theorem 3.3. Assume Tate’s conjecture 1.4 holds for degree 2 Tate classes on
smooth projective surfaces defined over a finite field. Then the group Z2n−2(X) is
trivial for any smooth rationally connected variety X over C.

Proof. We first recall that for a smooth rationally connected variety X, the
group Z2n−2(X) is equal to the quotient H2n−2(X,Z)/H2n−2(X,Z)alg, due to the
fact that the Hodge structure on H2n−2(X,Q) is trivial. In fact, we have more
precisely

H2n−2(X,Q) = H2n−2(X,Q)alg

by hard Lefschetz theorem and the fact that

H2(X,Z) = H2(X,Z)alg

by the Lefschetz theorem on (1, 1)-classes.
Next, in order to prove that Z2n−2(X) is trivial, it suffices to prove that for

each l, the group Z2n−2(X)⊗ Zl = H2n−2(X,Zl)/(Im cl)⊗ Zl is trivial.
We apply Proposition 1.3 which tells as well that over C, the group Z2n−2(X)⊗

Zl is locally deformation invariant for families of smooth rationally connected vari-
eties. Note that our smooth projective rationally connected variety X is the fiber
Xt of a smooth projective morphism φ : X → B defined over a number field, where
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X and B are quasiprojective, geometrically connected and defined over a number
field. By local deformation invariance, the vanishing of Z2n−2(X)⊗Zl is equivalent
to the vanishing of Z2n−2(Xt′)⊗Zl for any point t′ ∈ B(C). Taking for t′ a point of
B defined over a number field, Xt′ is defined over a number field. Hence it suffices
to prove the vanishing of Z2n−2(X)⊗Zl for X rationally connected defined over a
number field L.

We have

Z2n−2(X)⊗ Zl = H2n−2(X,Zl)/(Im cl)⊗ Zl,

and by the Artin comparison theorem (cf. [17, Chapter III,§3]), this is equal to
H2n−2

et (X,Zl(n− 1))

(Im cl)⊗ Zl
= Z2n−2

et (X)l

since H2n−2
et (X,Zl(n − 1)) consists of Tate classes. Hence it suffices to prove that

for X rationally connected defined over a number field and for any l, the group
Z2n−2
et (X)l is trivial.

We now apply Proposition 1.5 to X and its reduction Xp for almost every

closed point p ∈ SpecOL. It follows that the vanishing of Z2n−2
et (X)l is implied by

the vanishing of Z2n−2
et (Xp)l. According to Schoen’s theorem 3.1, the last vanishing

is implied by the Tate conjecture for degree 2 Tate classes on smooth projective
surfaces. �
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[21] C. Soulé, C. Voisin. Torsion cohomology classes and algebraic cycles on complex projective

manifolds, Adv. Math. 198 (2005), no. 1, 107–127. MR2183252 (2006i:14006)
[22] C. Voisin. On integral Hodge classes on uniruled and Calabi-Yau threefolds, in Moduli Spaces

and Arithmetic Geometry, Advanced Studies in Pure Mathematics 45, 2006, pp. 43-73.
MR2306166 (2008f:14057)

[23] C. Voisin, Some aspects of the Hodge conjecture, Japan. J. Math. 2, 261-296 (2007).
MR2342587 (2008g:14012)

[24] R. Zong. Curve Classes on Rationally Connected Varieties, Arxiv:12070575.
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This volume resulted from the conference A Celebration of  Algebraic Geometry, 
which was held at Harvard University from August 25–28, 2011, in honor of  Joe 
Harris’ 60th birthday. Harris is famous around the world for his lively textbooks 
and enthusiastic teaching, as well as for his seminal research contributions. The 
articles are written in this spirit: clear, original, engaging, enlivened by examples, 
and accessible to young mathematicians.
The articles in this volume focus on the moduli space of  curves and more gen-
eral varieties, commutative algebra, invariant theory, enumerative geometry both 
classical and modern, rationally connected and Fano varieties, Hodge theory and 
abelian varieties, and Calabi-Yau and hyperkähler manifolds. Taken together, 
they present a comprehensive view of  the long frontier of  current knowledge in 
algebraic geometry.


