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Introduction

These are the proceedings of the 2007 Clay Summer School on Homogeneous
Flows, Moduli Spaces and Arithmetic, which took place at the Centro di Ricerca
Matematica Ennio De Giorgi in Pisa between June 11th and July 6th, 2007. More
than 100 young researchers and graduate students attended this intensive four week
school, as well as 18 lecturers and other established researchers.

As suggested by the name, the topic of this summer school consisted of two
connected but distinct areas of active current research: flows on homogeneous spaces
of algebraic groups (or Lie groups), and dynamics on moduli spaces of abelian or
quadratic differentials on surfaces. These two subjects have common roots and
have several important features in common; most importantly, they give concrete
examples of dynamical systems with highly interesting behavior and a rich and
powerful theory. Moreover, both have applications whose scope lies well outside
that of the theory of dynamical systems.

The first three weeks of the summer school were devoted to the basic theory,
and consisted mostly of three long lecture series. Based on these lecture series, the
following four sets of notes were written:

[1] Interval exchange maps and translation surfaces by J. C. Yoccoz

[2] Unipotent flows and applications by A. Eskin

[3] Quantitative nondivergence and its Diophantine applications by D. Klein-
bock

[4] Diagonal actions on locally homogeneous spaces by M. Einsiedler and E.
Lindenstrauss

Furthermore, there was a shorter lecture series

[5] Fuchsian groups, geodesic flows on surfaces of constant negative curva-
ture and symbolic coding of geodesics by S. Katok.

Extensive notes for all the lecture series given in the first three weeks of the school
are included in this proceedings volume (the content of the course by Eskin and
Kleinbock has been separated into two different sets of notes). These papers were
written to be read independently, and any of the five papers [1]-[5] could serve as
a good starting point for the interested reader. More advanced topics were covered
by several lecture series and individual lectures mostly given in the last week of
the summer school; it was left to the discretion of the lecturers in these shorter
courses whether to provide notes for these proceedings (though they were strongly
encouraged to contribute). A list of these lecture notes with some additional details
is given below.
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The common root of both main topics of the summer school mentioned above
lie (at least in part) in the theory of flows on surfaces of constant negative cur-
vature, particularly the modular surface SL(2,Z)\H, where pioneering work was
done in the early 20th century by mathematicians such as Artin, Hedlund, Morse
and others, and this theory has been developed much further in the times since.
One highlight was the discovery that the geodesic flow on the modular surface is
intimately connected to the continued fraction expansion of real numbers; indeed,
when things are properly set up, one can view the continued fraction expansion
as a symbolic coding of trajectories of the geodesic flow. These flows and their
symbolic codings are carefully explained in Katok’s notes; in later sections of that
work, recent extensions of this classical result are also discussed.

One can view the modular surface SL(2,Z)\H in two ways: firstly, it can be
viewed as the locally homogeneous space SL(2,Z)\ SL(2,R)/SO(2,R), in which case
the geodesic flow as well as another important geometric flow — the horocycle flow
— can be viewed as in the projection of trajectories of the one parameter groups

et/? 0 1 ¢t
(1) gt:( 0 et/2) and “t:(o 1)

on the quotient space SL(2,Z)\ SL(2,R). Another way to view SL(2,Z)\H is as a
moduli space of flat structure (up to rotations) on a two-dimensional torus. These
two different points of view generalize to the two main themes of this Clay Summer
School: flows on homogeneous spaces, and flows on moduli spaces of abelian or
quadratic differentials (which are essentially fancy names for flat structures in two
related but slightly different senses).

Flows on moduli spaces of flat structures. The torus is the only surface
admitting a flat structure with no singularities. When one considers flat structures
for surfaces of higher genus, one is forced to admit singularities: points where the
total angles add up to more than 27. It turns out that interval exchange maps play
an important role in studying the analogue of the geodesic flow (sometimes called
the Teichmiiller geodesic flow) on these moduli spaces of flat structures. We recall
that interval exchange maps are the following simple yet intriguing dynamical sys-
tem: divide the unit interval [0, 1] into finitely many intervals I3, I, ..., I and then
permute these intervals according to a permutation m € Sy. Yoccoz’ contribution
to this proceedings provides an introduction to this theory, and provides full proofs
of the most fundamental theorems (by Keane, Masur, Veech, Zorich) in the first
ten sections and an introduction to some more advanced topics (Kontsevich-Zorich
cocycle, cohomological equation, connected components of the moduli space, expo-
nential mixing of the Teichmiiller flow) in the last four sections. Further advanced
topics are provided by notes based on the shorter lecture series

[6] Chaoticity of the Teichmdiiller flow by A. Avila

given in the last week of school; in these notes the interested reader can find surveys
of the proof of two recent theorems: the simplicity of the Lyapunov spectrum for
the Kontsevich-Zorich cocycle and that a typical interval exchange map with three
or more intervals is weak mixing.

Flows on homogeneous spaces and applications to arithmetic. Flows
on homogeneous spaces concerns the dynamics of group actions on quotient spaces
I'\G, where G is usually taken to be either a (i) Lie group, or (ii) an algebraic
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group over R, or (iii) an algebraic group over the p-adic numbers Q,, or (iv) a
product of algebraic groups as in (ii) and (iii) above, involving several different
fields (sometimes called an S-algebraic group, where S refers to the set of “primes”
p that are used™®).)

A simple case is the case of G = SL(2,R) and I' a lattice in G, for instance
I' = SL(2,Z). In this case we have discussed (e.g. (1)) the action of two one-
parameter subgroups of SL(2,R): the group g¢; corresponding to the geodesic flow
on the unit tangent bundle on I'\H and wu;, which corresponds to the horocycle
flow on the same space. These two flows behave very differently: the u;-flow is
very rigid, and one can algebraically classify orbit closures, invariant measures,
measurable factors, self joinings, and even the asymptotic distribution of individual
orbits. The g¢-flow is very flexible: it is certainly ergodic, but individual orbits can
behave very badly. Moreover, the g;-flow is measure-theoretically equivalent to a
Bernoulli shift which has a wealth of measurable factors and self joinings.

The group u; is an example of a unipotent group. In a fundamental series of
papers published in 1990; 91, M. Ratner proved that the above mentioned rigidity
properties of u;-flow are shared by all unipotent group actions on homogeneous
spaces, in particular establishing in complete generality Raghunathan’s conjecture
about orbit closures for such actions (some cases of which were known previously,
notably in the context of the Oppenheim conjecture discussed below). For the g;-
flow the situation is rather different: while a diagonalizable one-parameter group in
general behaves very much like g;, higher-dimensional diagonalizable groups seem
to behave much more rigidly (though not as rigidly as unipotent group actions).

The notes by Eskin discuss in detail unipotent flows, with an emphasis on ap-
plications, particularly regarding values attained by indefinite quadratic forms and
Oppenheim’s Conjecture. This long-standing conjecture was proved by Margulis
in the mid-80s using homogeneous dynamics, and in particular unipotent dynam-
ics. In dynamical terms, what Margulis has shown is that any bounded orbit of
SO(2,1) on SL(3,Z)\ SL(3,R) is closed. The notes also give a detailed exposition of
a more delicate result giving precise asymptotics to the distribution of these values
by Eskin, Margulis and Mozes (under certain assumptions on the signature of a
quadratic form). Some of the ideas and methods used in the theory of unipotent
flows, and in particular some of the ideas used by Ratner in her proof of the Mea-
sure Classification Theorem are also described in these notes. Eskin’s notes also
contain other interesting applications of unipotent rigidity as well as connections
to dynamics of rational billiards.

Kleinbock’s notes focus on a method originally introduced by Margulis and
developed significantly since, to show that orbits of unipotent group actions do
not diverge to infinity. In particular, a quantitative version of the non-divergence
statement due to S. G. Dani is an important ingredient in the proof of various
versions of orbit closure and equidistribution theorems, including Ratner’s Orbit
Closure Theorem. However these techniques are more widely applicable and, in
particular, were used by Kleinbock and Margulis to prove a conjecture of Sprindzuk
on Diophantine approximations; this connection is also carefully discussed.

The notes by Einsiedler and Lindenstrauss discuss diagonalizable group actions,
based mostly on work by the authors and by A. Katok in various combinations. A
crucial role in current analysis of these actions is played by the concept of entropy.

(DFor this purpose ¢ is a prime and Qoo = R.
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These notes give a detailed and self-contained account of the theory of the entropy
in the locally homogeneous context, the construction of leafwise measures on fo-
liations, and the connection between the two. Subsequently an account is given
of two rather different and complementary methods to study measures invariant
under multidimensional diagonalizability actions under suitable entropy assump-
tions, which go under the names of the high entropy method and the low entropy
method. Two applications of this theory are also discussed: a partial result toward
a conjecture of Littlewood on simultaneous Diophantine approximations, and how
these techniques can be used to establish Arithmetic Quantum Unique Ergodicity
on compact surfaces.

The material given in these three basic papers about homogeneous dynamics
is complemented by the following two more advanced notes:

[7] Counting and equidistribution on homogeneous spaces, via mixing and
unipotent flows by H. Oh

[8] Equidistribution of Heegner points and L-functions by G. Harcos
In Oh’s notes, the use of equidistribution of unipotent flows (and the closely related
but more quantitative mixing properties of diagonalizable flows) to count integer
and rational points on certain varieties, a theme touched upon in Eskin’s note,
is developed further, and several state-of-the-art applications are explained. The
notes by Harcos give some brief background in the theory of L-functions and how
it relates to equidistribution of periodic orbits of the diagonal group in SL(2).

Semiclassical analysis and dynamics. One of the applications of the theory
of diagonalizable actions discussed in the Einsiedler-Lindenstrauss note is establish-
ing Arithmetic Quantum Unique Ergodicity for compact (arithmetic) surfaces. The
Quantum Unique Ergodicity conjecture deals with the asymptotic distribution of
eigenfunctions of the Laplacian; the arithmetic case is a very special case where
the surface is arithmetic and eigenfunctions of the Laplacian are chosen so as to
respect the rich set of symmetries of such surfaces. This question is considered from
a completely different point of view in the notes

[9] Eigenfunctions of the Laplacian on negatively curved manifolds: a semi-
classical approach by N. Anantharaman.

In these notes the basics of semiclassical analysis are reviewed, the connections be-
tween eigenvalues of the Laplacian and the geodesic flow, which have been discussed
to some extent in the Einsiedler-Lindenstrauss notes, are developed in a much more
systematic way, and very recent work relating entropy and limiting distributions
of eigenfunctions of the Laplacian in general compact negatively curved manifolds
(including the variable curvature case) is exposed.

Acknowledgement. This Clay Summer School was hosted by the Centro di
Ricerca Matematica Ennio De Giorgi in Pisa; we are grateful to its director, Mariano
Giaquinta, for accepting to host the school in this inspiring venue. The hospitality of
this institute was outstanding, and the local staff, particularly Antonella Gregorace,
Ilaria Gabbani, and Valentina Giuffra, went out of their way to help this school be
a success. The summer school would not come to being without the vision and
generosity of the Clay Mathematics Institute, and the hard work put into the
school by its president, Jim Carlson, and its program manager, Christa Carter. We
would especially like to thank CMI’s publication manager Vida Salahi for all her
work and dedication in bringing this volume to completion.
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In addition to the authors of the notes listed above, the following mathemati-
cians gave one or more lectures during this school: G. Forni, A. Gamburd, Y. Manin,
G. Margulis, J. Marklof, M. Mirzakhani, S. Mozes, N. Templier, C. Ulcigrai, and
A. Venkatesh. All lecturers and participants contributed to the enthusiastic and
stimulating atmosphere at this school, and we thank them warmly for this.

For a variety of reasons, these lecture notes appear almost 3 years after the
summer school. Quite a bit of work went into them, and indeed this is one of the
reasons for the delay. They contain a substantial amount of material which cannot
be found in any textbook, and we hope you, the reader, would find them useful!

Manfred Einsiedler, David Ellwood, Alex Eskin, Dmitry Kleinbock, Elon Lin-
denstrauss, Gregory Margulis, Stefano Marmi and Jean-Christophe Yoccoz

May 2010
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Interval exchange maps and translation surfaces

Jean-Christophe Yoccoz

Introduction

Let T be a 2-dimensional torus equipped with a flat Riemannian metric and
a vector field which is unitary and parallel for that metric. Then there exists
a unique lattice A C R? such that T is isometric to R?/A and the vector field
on T corresponds to the vertical vector field a% on R?/A. The corresponding
“Teichmiiller space” (classification modulo diﬁeorﬁorphisms isotopic to the identity)
is thus GL(2,R), viewed as the space of lattices equipped with a basis; the “moduli
space” (classification modulo the full diffecomorphism group) is the homogeneous
space GL(2,R)/GL(2,7Z), viewed as the space of lattices in R2.

The dynamics of the vertical vector field on R?/A can be analyzed through the
return map to a non vertical closed oriented geodesic S on R?/A ; in the natural
parameter on S which identifies S with T = R/Z (after scaling time), the return
map is a rotation x — z + « on T for some o € T. When a ¢ Q/Z, all orbits are
dense and equidistributed on R2/A : the rotation and the vectorfield are uniquely
ergodic (which means that they have a unique invariant probability measure, in
this case the respective normalized Lebesgue measures on S and R?/A).

In the irrational case, an efficient way to analyze the recurrence of orbits is to
use the continuous fraction of the angle . It is well-known that the continuous
fraction algorithm is strongly related to the action of the 1-parameter diagonal sub-
group in SL(2,R) on the moduli space SL(2,R)/SL(2,Z) of “normalized” lattices
in R2. It is also important in this context that the discrete subgroup SL(2,Z) of
SL(2,R) is itself a lattice, i.e. has finite covolume, but is not cocompact.

Our aim is to explain how every feature discussed so far can be generalized
to higher genus surfaces. In the first ten sections, we give complete proofs of the
basic facts of the theory, which owes a lot to the pionneering work of W. Veech
[Vell]-[Ve5|, with significant contributions by M. Keane [Keal, Kea2], H. Masur
[Ma], G. Rauzy [Rau], A. Zorich [Zo2]-[Zo4], A. Eskin, G.Forni [Forl]-[For3]
and many others. In the last four sections, we present without proofs some more
advanced results in different directions.

2010 Mathematics Subject Classification. Primary 54C40, 14E20; Secondary 46E25, 20C20.
Key words and phrases. Interval exchange maps, translation surfaces, moduli space, Teichm-
ller flow, Rauzy-Veech algorithm.

© 2010 Jean-Christophe Yoccoz



2 JEAN-CHRISTOPHE YOCCOZ

The reader is advised to consult [Zo1] for an excellent and very complete survey
on translation surfaces. See also [Y1] for a first and shorter version of these notes.

In Section 1 we give the definition of a translation surface, and introduce the
many geometric structures attached to it. Section 2 explains how translation sur-
faces occur naturally in connection with billiards in rational polygonal tables. In
Section 3, we introduce interval exchange maps, which occur as return maps of the
vertical flow of a translation surface. We explain in Section 4 Veech’s fundamental
zippered rectangle construction which allow to obtain a translation surface from
an interval exchange map and appropriate suspension data. The relation between
interval exchange maps and translation surfaces is further investigated in Section
5, which concludes with Keane’s theorem on the minimality of interval exchange
maps with no connection. Section 6 introduces the Teichmiiller spaces and the
moduli spaces; the fundamental theorem of Masur and Veech on the finiteness of
the canonical Lebesgue measure in normalized moduli space is stated. In Section
7, we introduce the Rauzy-Veech algorithm for interval exchange maps with no
connection, which is a substitute for the continuous fraction algorithm. The ba-
sic properties of this algorithm are established. Invariant measures for interval
exchange maps with no connection are considered in Section 8. In Section 9, the
dynamics in parameter space are introduced, whose study lead ultimately to a proof
of the Masur-Veech theorem. Almost sure unique ergodicity of interval exchange
maps, a related fundamental result of Masur and Veech, is proven in Section 10.

In Section 11, we introduce the Kontsevich-Zorich cocycle, and present the
related results of Forni and Avila-Viana. In section 12, we consider the cohomo-
logical equation for an interval exchange map and present the result of Marmi,
Moussa and myself, which extend previous fundamental work of Forni. In Section
13, we present the classification of the connected components of the moduli space
by Kontsevich and Zorich. In the last section, we discuss the exponential mixing
of the Teichmiiller flow proved by Avila, Gouezel and myself.

1. Definition of a translation surface

1.1. We start from the following combinational data :

e a compact orientable topological surface M of genus g > 1 ;

e a non-empty finite subset ¥ = {A;,..., A5} of M ;

e an associated family k = (k1, ..., ks) of positive integers which should be
seen as ramification indices.

Moreover we require (for reasons that will be apparent soon) that x and g are
related through
S
(1.1) 29-2=> (ki—1).
i=1
The classical setting considered in the introduction corresponds to g = 1,5 =
1, K1 = 1.

DEFINITION 1.1. A structure of translation surface on (M, X, K) is a maximal
atlas ¢ for M — ¥ of charts by open sets of C ~ R? which satisfies the two following
properties:

(i) any coordinate change between two charts of the atlas is locally a translation of
R? ;
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(ii) for every 1 < ¢ < s, there exists a neighbourhood V; of A;, a neighbourhood
W; of 0 in R? and a ramified covering 7 : (V;, A;) — (W}, 0) of degree r; such that
every injective restriction of 7 is a chart of (.

1.2. Because many structures on R? are translation-invariant, a translation
surface (M, X, k, ) is canonically equipped with several auxiliary structures:

e a preferred orientation ; actually, one frequently starts with an oriented
(rather than orientable) surface M and only considers those translation
surface structures which are compatible with the preferred orientation ;

e a structure of Riemann surface ; this is only defined initially by the atlas
C on M — ¥, but is easily seen to extend to M in a unique way : if V; is a
small disk around A; € ¥,V; — {4;} is the £;- fold covering of W; — {0},
with W; a small disk around 0 € C, hence is biholomorphic to D* ;

e a flat metric on M — X ; the metric exhibits a true singularity at each A;
such that x; > 1; the total angle around each A; € ¥ is 27k; ;

e an area form on M — X, extending smoothly to M ; in the neighbourhood
of A; € %, it takes the form k?(x? + y?)*~ldx A dy in a natural system
of coordinates ;

e the geodesic flow of the flat metric on M — ¥ gives rise to a 1-parameter
family of constant unitary directional flows on M — X, containing in par-
ticular a vertical flow 9/0y and a horizontal flow 9/0z.

We will be interested in the dynamics of these vector fields. By convention
(and symmetry) we will generally concentrate on the vertical vector field.

1.3. Together with the complex structure on M, a translation surface structure
¢ also provides an holomorphic (w.r.t that complex structure) 1-form w, character-
ized by the property that it is written as dz in the charts of (. In particular, this
holomorphic 1-form does not vanish on M — X. At a point A; € X, it follows from
condition (ii) that w has a zero of order (k; — 1). The relation (1) between g and
K is thus a consequence of the Riemann-Roch formula.

We have just seen that a translation surface structure determine a complex
structure on M and a holomorphic 1-form w with prescribed zeros. Conversely,
such data determine a translation surface structure ¢ : the charts of  are obtained
by local integration of the 1-form w.

The last remark is also a first way to provide explicit examples of translation
surfaces. Another very important way, that will be presented in Section 5, is by sus-
pension of one-dimensional maps called interval exchange maps. A third way, which
however only gives rise to a restricted family of translation surfaces, is presented in
the next section.

2. The translation surface associated to a rational polygonal billiard

2.1. Let U be a bounded connected open subset in R? ~ C whose boundary
is a finite union of line segments ; we say that U is a polygonal billiard table. We
say that U is rational if the angle between any two segments in the boundary is
commensurate with .

The billiard flow associated to the billiard table U is governed by the laws of
optics (or mechanics) : point particles move linearly at unit speed inside U, and
reflect on the smooth parts of the boundary ; the motion is stopped if the boundary



4 JEAN-CHRISTOPHE YOCCOZ

is hit at a non smooth point, but this only concerns a codimension one subset of
initial conditions.

The best way to study the billiard flow on a rational polygonal billiard table is
to view it as the geodesic flow on a translation surface constructed from the table;
this is the construction that we now explain.

2.2. Let U be the prime end compactification of U : a point of U is
determined by a point zg in the closure U of U in C and a component of B(zy,)NU
with € small enough (as U is polygonal, this does not depend on ¢ if ¢ is small
enough).

EXERCISE 2.1. Define the natural topology on U ; prove that U is compact,
and that the natural map from U into U is an homeomorphism onto a dense open
subset of U.

EXERCISE 2.2. Show that the natural map from U onto U is injective (and
then a homeomorphism) iff the boundary of U is the disjoint union of finitely many
polygonal Jordan curves.

A point in U-Uis regular if the corresponding sector in B(zp,e) NU is flat;
the non regular points of U — U are the vertices of U.

EXERCISE 2.3. Show that every component of U-Uis homeomorphic to a
circle and contain at least two vertices. Show that there are only finitely many
vertices.

A connected component of regular points in U—U isaside of U. The closure in
U of a side C of U is the union of C' and two distinct vertices called the endpoints
of C. A vertex is the endpoint of exactly two sides.

2.3. The previous considerations only depend on U being a polygonal billiard
table ; we now assume that U is rational. For each side C' of (7, let oc € O(2,R)
the orthogonal symmetry with respect to the direction of the image of C'in U C R2.
Let G be the subgroup of O(2,R) generated by the o¢.

As U is rational, G is finite. More precisely, if N is the smallest integer such
that the angle between any two sides of U can be written as mm/N for some integer
m, G is a dihedral group of order 2N, generated by the rotations of order N and a
symmetry oc.

For any vertex q € U , we denote by G, the subgroup of G generated by oc¢
and ocr, where C and C’ are the sides of U having ¢ as endpoint ; if the angle of
C and C' is m my /N, with mg A Ny = 1, Gy is dihedral of order 21V,.

We now define a topological space M as the quotient of UxG by the following
equivalence relation : two points (z, g), (2/, ¢') are equivalent iff z = 2’ and moreover

o gl =14if2€U;
e g '¢ €{l1g,0c}if 2z belongs to a side C of U ;
e g lg €G,ifzisavertex of U .
We also define a finite subset ¥ of M as the image in M of the vertices of U.

EXERCISE 2.4. Prove that M is a compact topological orientable surface.

To define a structure of translation surface on (M, ) (with appropriate rami-
fication indices), we consider the following atlas on M — .
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e for each g € G, we have a chart

Ux{g} —R?

(z,9) = g(2);

e for each zy belonging to a side C' of (7, and each g € G, let Zy be the
image of zp in U, & be small enough, V be the component of B(Z,c) N U
corresponding to zo, V be interior of the closure of the image of V' in U ;
we have a map

V x{g,g0.} = R?

sending (z,g9) to g(z) and (z,go.) to g(6.(z)), where 6. is the affine
orthogonal symmetry with respect to the line containing the image of C
in R2. This map is compatible with the identifications defining M and
defines a chart from a neighbourhood of (z,¢g) in M onto an open subset
of R2.

One checks easily that the coordinate changes between the charts considered above

are translations. One then completes this atlas to a maximal one with property (7)
of the definition of translation surfaces.

EXERCISE 2.5. Let ¢ be a vertex of U, and let wmg/Ny be the angle between
the sides at ¢ and G, the subgroup of G as above. Show that property (i) in
the definition of a translation surface is satisfied at any point (¢,9G,) € X, with
ramification index m, (independent of the coset g G, under consideration).

We have therefore defined the ramification indices k; at the points of ¥ and
constructed a translation surface structure on (M, X, k).

2.4. The relation between the trajectories of the billiard flow on U and the
geodesics on M — ¥ is as follows.

Let 2(t),0 < t < T be a billiard trajectory ; let ¢; < --- <ty be the successive
times in (0,7T) where the trajectory bounces on the sides of U (by hypothesis, the
trajectory does not go through a vertex, except perhaps at the endpoints 0 and 7).
Denote by C; the side met at time ¢; and define inductively go,...,gn by

g0 =1¢,

gi+1 = 9i 0C;44 -

For any g € G, the formulas

(Z(t),ggo), for()gtgtl,
24(t) = (2(1), 99:), fort; <t <tip1 (1 <i<N),
(Z(t)7ggN)7 forty <t < T,

define a geodesic path on M. Conversely, every geodesic path on M (contained in
M —¥ except perhaps for its endpoints) defines by projection on the first coordinate
a trajectory of the billiard flow on U.
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2.5. The left action
90(2,9) = (2,909)
of Gon U x G is compatible with the equivalence relation defining M and therefore
defines a left action of G on M. The corresponding transformations of M are
isometries of the flat metric of M but not isomorphisms of the translation surface
structure (except for the identity !). The existence of such a large group of isometries
explain why the translation surfaces constructed from billiard tables are special
amongst general translation surfaces.

2.6. On the other hand, when a billiard table admits non trivial symmetries,
this gives rise to isomorphisms of the translation surface structures. More precisely,
let H be the subgroup of G formed of the h € G such that h(U) is a translate U 41y,
of U. The group H acts on the left on M through the formula

h(z,g) = (h(z) = th, g h ™),
which is compatible with the equivalence relation defining M. Each h € H acts
through an isomorphism of the translation surface structure (permuting the points
of ¥). This allows to consider the quotient under the action of H to get a re-

duced translation surface (M, %’ x/,(’) and a ramified covering from (M, ) onto
(M, 3.

2.7. To illustrate all this, consider the case where U is a regular n-gon, n > 3.

The angle at each vertex is then 77”772 .

EXERCISE 2.6. Show that G = G for every vertex ¢ and that G has order n if
n is even, 2n if n is odd. Show that X has n points, each having ramification index
n — 2 if n is odd, "T_z if n is even. Conclude that the genus of M is %
is odd, (% —1)% if n is even.

ifn

EXERCISE 2.7. Show that the subgroup H of subsection 2.6. is equal to G if
n is even, and is of index 2 if n is odd. Show that the reduced translation surface

satisfies #Y' = 2 if N — 2 is divisible by 4, #Y’ = 1 otherwise. Show that the

corresponding ramification index is n — 2 if n odd, @ if n is divisible by 4, ("4_2)

(n=1)
2

if n — 2 is divisible by 4. Conclude that the genus ¢’ is
divisible by 4 , 2 if n — 2 is divisible by 4.

if nis odd, 7 if n is

3. Interval exchange maps : basic definitions

3.1. Let (M, X, k, () be a translation surface and let X be one of the non zero
constant vector fields on M — ¥ defined by (.

DEFINITION 3.1. An incoming (resp. outgoing) separatrix for X is an
orbit of X ending (resp. starting) at a marked point in 3. A connection is an
orbit of X which is both an incoming and outgoing separatrix.

At a point A; € X, there are k; incoming separatrices and k; outgoing separa-
trices.

Let S be an open bounded geodesic segment in M — 3, parametrized by arc
length, and transverse to X. Consider the first return map Ts to S of the flow
generated by the vectorfield X.

As X is area-preserving, the Poincaré recurrence theorem guarantees that the
map T is defined on a subset D, of S of full 1-dimensional Lebesgue measure.
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The domain Dy is open because .S itself is open and the restriction of Tg to each
component of Dr, is a translation (because the flow of X is isometric). Also, the
return time is constant on each component of Dr,.

We now show that Dr, has only finitely many components. Indeed, let z € S
be an endpoint of some component J of D, and let ¢; the return time to S of
points in J. Either there exists T € (0,¢;) such that the orbit of X starting at x
stops at time T" at a point of X without having crossed S, or the orbit of X starting
at x is defined up to time ¢; and is at this moment at one of the endpoints of .S,
also without having crossed S. This leaves only a finite number of possibilities for
x, which gives the finiteness assertion.

The return map T’ is thus an interval exchange map according to the following
definition.

DEFINITION 3.2. Let I C R be a bounded open interval. An interval exchange
map (i.e.m) T on I is a one-to-one map 7' : Dy — Dp—1 such that Dy C I, Dp—1 C
I,I—Dy and I — Dp-1 are finite sets (with the same cardinality) and the restriction
of T to each component of Dy is a translation onto some component of Dp-1.

3.2. Markings, combinatorial data. Let T': Dy — Dp-1 be an interval ex-
change map. Let d = #mo(Dr) = #mo(Dp-1). Then T realizes a bijection between
mo(Dr) and mo(Dp-1). To keep track of the combinatorial data, in particular when
we will consider below the Rauzy-Veech continuous fraction algorithm for i.e.m, it
is convenient to give names to the components of Dp (and therefore through T also
to those of Dr-1). This is formalized as follow.

A marking for T is given by an alphabet A with #.4 = d and a pair 7 = (7, )
of one-to-one maps

Tt
A—A{1,...,d}
e
such that, for each o € A, the component of Dy in position m(a) (counting from
the left) is sent by T to the component of Dy-1 in position m(a). We summarize

these combinatorial data by writing just

(e

expressing how the intervals which are exchanged appear before and after applying
T.

Two markings (A, m, m), (A’, 1, m,) are equivalent if there exists a bijection
i: A— A with my = 7{ oi,m, = mj 0i. Clearly T determines the marking up to
equivalence.

3.3. Irreducible combinatorial data. We say that combinatorial data
(A, my, mp) are irreducible if for every 1 < k < d = #.A, we have

{1 k) £ {1 k).

The condition is invariant under equivalence of markings. We will always assume
that the i.e.m under consideration satisfy this property. Otherwise, if we have

{1 k) = {1 k).

T is the juxtaposition of an i.e.m with k intervals and another with d — k, and the
dynamics of T" reduce to simpler cases.
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3.4. Terminology and notations. Let T': Dy — Dz -1 be an i.e.m on an
interval T ; let (A, m, mp) a marking for T.

The points u} < ub < --- <u!_; of I — Dr are called the singularities of T ;
the points ub < uf < --- < “371 of I — Dp-1 are called the singularities of 77!,

For each a € A, we denote by I! or just I, the component of D7 in position
7;(a) (counting from the left), and by I? its image by T which is also the component
of Dp-1 in position mp(«).

We denote by A, the common length of I%, and I¢. The vector A = (Ay)aca in
RA is the length vector and will be considered as a row vector.

On the other hand, let &, be the real number such that I = It + 6,. The
vector § = (04 )aea is the translation vector and will be considered as a column
vector.

The length vector and the translation vector are related through the obvious

formulas
Sa= D Ag— > dg=> Qupls
B

Ty (B) <mp () me(B)<me(or)

where the antisymmetric matrix §2 is defined by
+1 if mp(B) < mp(a) and m(B) > (),
Qo =1 —1 iftm(B) > m(a) and m(B) < m(a),

0 otherwise.

4. Suspension of i.e.m : the zippered rectangle construction

4.1. We have seen in subsection 3.1 that we come naturally to the definition
of an interval exchange map by considering return maps for constant vector fields
on translation surfaces.

Conversely, starting from an interval exchange map T, we will construct, fol-
lowing Veech [Ve2] a translation surface for which T appears as a return map of the
vertical vector field. However, as the case of the torus for rotations already demon-
strates, supplementary data such as return times are needed to specify uniquely
the translation surface.

Let T : Dy — Dp-1 be an i.e.m on an interval I, equipped with a marking
(A, m) as above.

A vector 7 € R4 is a suspension vector if it satisfies the following inequalities

(Sx) Y >0, > <o forall1 < k<d.
m (o) <k () <k
Define
TS = mp(a) —m(a) , a€A.

Then the vector 7¢*" satisfies (S;) iff the combinatorial data are irreducible (an
hypothesis that we will assume from now on). When the combinatorial data are
not irreducible, no vector 7 € R4 satisfies (S ).

4.2. A simple version of the construction. Let T as above ; we assume
that the combinatorial data are irreducible and use the notations of subsection 3.4.
Let also 7 € R“ be a suspension vector.
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We will construct from these data a translation surface (M, X, k, (). We first
give a simple version of the construction that unfortunately is not valid for all values
of the data. We identify as usual R? with C and set (o = Ao + 7, for a € A.

Consider the “top” polygonal line connecting the points 0, Cﬂ;l(l), Qﬂ;l(l) +
Cﬂt—l.@), Ces Cﬂt.—l(l) + Crrt2) -+ (1) and the “bottom” polygonal line con-
necting the points 0, Cﬂ_b—l(l), Cﬂ,b—l(l) + Cﬂ_b—l(Q), ce Cﬂgl(l) + Cﬂ{l@) NI Cﬂ';l(d)'
Observe that both lines have the same endpoints and that, from the suspension
condition (S7), all intermediary points in the top (resp. bottom) line lie in the
upper (resp. lower) half-plane.

When the two lines do not intersect except from their endpoints, their union is a
Jordan curve and we can construct a translation surface as follows : denoting by W
the closed polygonal disk bounded by the two lines, we identify for each o € A the
(o side of the top line with the (, side of the bottom line through the appropriate
translation and define M to be the topological space obtained from W with this
identifications. The finite subset X is the image of the vertices of W.

EXERCISE 4.1. Check that M is indeed a compact oriented topological surface.

The atlas defining the translation surface structure is obvious : besides the
identity map on the interior of W, we use charts defined on neighbourhoods of the
interiors of the (, sides which have been identified.

Condition (ii) in the definition of a translation surface and ramification indices
will be discussed below.

This construction is very easy to visualize, and the non intersection condition

is frequently satisfied : for instance when Z To = 0 (in particular for 7 = 7¢47),

«
or when )\ﬂ,;l @ = )\ﬂ,;l( a)° Unfortunately, it is not always satisfied. For instance,

taking for combinatorial data (with A = {A, B, C, D}),

A B D C
m=mm={p 4 ¢ B)

we may have (4 =141, (g =3+ 3¢, (¢ =ec+1, (p =3 —3i with ¢ > 0. Then
the suspension condition (S;) is satisfied but the two lines intersect non trivially
when 0 <e < 1.

4.3. Zippered rectangles. Let T, A\, 7, = A+iT as above. The length vector
and the translation vector § are related through.
§=Q\.
We define
h=-Q'7,
0=0—ih=0QY.

We consider here \, 7 as row vectors in R4, ¢ as a row vector in C4, 8, h as
column vectors in R4 and € as a column vector in CA.

EXERCISE 4.2. Check that in the construction of subsection 4.2, the (, side
of the “top line” was identified to the (, side of the “bottom line” through a
translation by 6.
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We observe that for all & € A we have
ha= > = 3. T
< T T A< T
and therefore, from the suspension condition (Sy) :

hoa >0.

Indeed, the first sum on the right-hand side is > 0 except if m;a = 1 when it is 0
and the second sum is < 0 except if mpa = 1 when it is 0. By irreducibility, we
cannot have both 7o« = 1 and mpa = 1.

Define the rectangles in R? = C :

R =1 x [0, ha] ,
Rl =TIP x [~hq, 0],

Let uf < ub < --- < ul_, be the singularities of T,u} < u} < --- < uf_, those of
T—1. Write also I = (ug,uq). Define, for 1 <i<d—1:

SE=fuly x [0, 3 7).

Tt
SP={uf} x (D 7a:0].
Tl
Define the points
CO = (UOaO), Cd = (Ud,ZTa),
Cl=Cot+ Y. Ca Cl=Cot+ > Ca, for 0 < i <d.
T Tl

Finally, let S* be the closed vertical segment whose endpoints are (uq,0) and
C, (Figure 1). Let M be the union of all the elements just defined : the Rf,, R,
(a€ A), St S (0<i<d),Cy Cq, CF, C?, (0 <i<d)and S*.
We use translations by 6,,a € A to identify some of these elements :
e We identify R, and R’ = R!, + 6, .
e We identify C’frt(a) and Cgb(a) = C’frt(a) + 0., and also Cfrt(a)_l and
Cgb(a)_l = C’Ttrt(a)_l + 04; here, we have by convention C} = C§ =
Co, CL = Ch = Cy.
e finally, if X, 7, > 0, we identify by Gﬂgl(d) the top part of St _,  with
T,

(d)
S* 5 if ¥y 7o < 0, we identify S* with the bottom part of Sfrbﬂ,l by

¢ (d)
6‘W;1( -
We denote by M the topological space deduced from M by these identifications.
We denote by . the part of M which is the image of {Cy, Cy, C¥,C?} .

One easily checks that M is compact and that M — 3 is a topological orientable
surface. Every point in M — 3, except those in the image of S* when X 7, # 0, has
a representative in the interior of M ; for those points, a local continuous section of
the projection from M onto M provides a chart for the atlas defining the translation

surface structure. We leave the reader provide charts around points in the image
of §*.
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In the next section, we complete the construction by investigating the local
structure at points in ¥ : this means checking that M is indeed a topological
surface, that condition (ii) in the definition of translation surfaces is satisfied, and
computing the ramification indices.

Let us however observe right now that we have indeed a suspension for the
iem. T on I. The return map on the horizontal segment I x {0} (or rather its

image in M) of the vertical vector field — is exactly 7. The return time of I, is

dy
equal to h,.

4.4. Ramification indices. Let C the set {C},C? ;0 < i < d} with 2d — 2
elements ; turning around points of ¥ in an anticlockwise manner, we define a
“successor” map o : C — C :

£y — (b
* o(C}) = Cﬂbﬂfl(iJrl)fl
b

7T[,7Tt_1(1)717

e o(Ch) = Cfrt

, except if mym; 1(i + 1) = 1 in which case o(C?) =

. —1/\ _ g . b\ it
) except if mym, () = d in which case 0(C7) = meb_l(d)'

We see that o is a permutation of C, exchanging the C! and the C’;-’. Therefore
every cycle of o has even length.

From the very definition of o, points of ¥ are in one-to-one correspondance with
the cycles of 0. Moreover, one checks that small neighbourhoods of points of ¥ are
homeomorphic to disks, and that condition (ii) in the definition of a translation
index is satisfied, the ramification index being half the length of the corresponding
cycle. Summing up :

e The number s of points in ¥ is the number of cycles of the permutation
.



12 JEAN-CHRISTOPHE YOCCOZ

e The ramification indices x; are the half lengths of the cycles ; in particular,

we have
d —1= Z}ﬁ)j .
j=1

If g is the genus of the compact surface M, we also must have

S

29-2=) (ki—1).

i=1
We therefore can relate d, g, s by
d=2g+s—1.

4.5. Homology and cohomology of M. Consider the homology groups
H(M,Z),H{(M — X,Z),H,(M,X,Z). The first one has rank 2g, the last two
have rank 2g + s — 1 = d. They are related through maps

Hi(M —%,7) = Hi(M,Z) — Hy(M, %, 7),

where the first map is onto and the second is injective. The zippered rectangle
construction provides natural bases for H1(M — X,Z) and H,(M, %, Z).

For a € A, let [0,] be the image in H1(M — X,Z) of a path joining in the
interior of M the center of R!, to the center of R? ; and let [(,] be the image
in Hy(M,3,Z) of a path joining in R!, U {C’Ttrt(a)_l, Cfrt(a)} the point Cfrt(a)_l to
C’frt(a) (if m¢(a) = d and 47, < 0, the path should be allowed to go through S*
also).

The intersection form establishes a duality between H;(M — X,Z) and
Hi(M,%,Z). Now we clearly have, for o, 5 € A :

< [0al, [C8] >= das ,

which shows that ([0a])aca, ([(s])sea are respectively bases of Hy(M — X,7Z),
H1(M,X,Z) dual to each other.
Considering [0,] as classes in Hy(M,Z), the intersection form now reads :

< [aa]v [95} >=Qga ,
Indeed, writing [f,] for the image of [0,] in H;(M,X,Z), we have

Bl =D Qasls]
E

which shows in particular that
tk Q=2g.
Going to cohomology, we have maps
HYM,%,Z) — H (M, Z) - H' (M — %, 7)

(and similar maps with real and complex coefficients) where the first map is onto
and the second is injective.

The holomorphic 1—form w associated to the translation surface structure de-
termines by integration a class [w] € H'(M,¥,C) (this will be studied in more
details and generality in section 6 below). One has

<[] [Ca] >=Cas
< [@], [0a] >= 0.,
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where [w] is the image of [w] in H'(M — %, C).

Therefore the vectors A, 7 can be considered as elements of H*(M,X,R), the
vector ( = A+i7t as an element of H!(M, X, C). The vectors d, h can be considered
as elements of H'(M — 3, R) ; they actually belong to the image of H'(M,R) into
H'(M — %, R) because they vanish on the kernel of the map from Hy(M — X, Z) to
Hy(M,Z). Similarly, # = § — ih belongs to the image of H'(M,C) into H'(M —
¥, C). Finally, the area of the translation surface M is given by

A:Z Ao ho =7 QN

5. Representability, minimality, connections

5.1. We have seen in subsection 3.1 that for any translation surface, the return
map of the vertical vector field on any horizontal segment is an interval exchange
map. In the zippered rectangle construction, the horizontal segment I x {0} is wide
enough to intersect all orbits of the vertical vector field.

Already in the case of the torus, when the vertical vectorfield has rational slope
with respect to the lattice, it is clear that a short enough horizontal segment will not
intersect all orbits. In higher genus, the same can happen even when the vertical
vector field has no periodic orbits, as the following construction shows.

Let A1, Ay be two lattices in R? with no non zero vertical vectors ; let T; =
R2/A; ; choose on each T; two vertical segments [A;, B;] of the same length. Slit
T; along [A;, B;] and glue isometrically the left side of [A1, B1] to the right side of
[As, Bs] and vice-versa. We obtain a compact oriented surface M of genus 2, with
two marked points A (image of A, A3) and B (image of By, Bs) ; the canonical
translation surface structures on 77,75 generate a translation surface structure
on (M,{A, B}) with ramification indices k4 = kg = 2. The vector field has no
periodic orbit in view of the hypothesis on A, A3 but obviously any small horizontal
segment in 77 not intersecting [A;, B1] will only intersect the orbits of the vectorfield
contained in 7.

Even when an horizontal segment intersects all orbits of the vertical vectorfield,
the number of intervals in the i.e.m obtained as return map depends on the segment.

EXERCISE 5.1. For a torus with one marked point and a minimal vertical vec-
torfield, show that the return map on a horizontal segment starting at the marked
point is an i.e.m with 2 or 3 intervals. Find necessary and sufficient conditions for
the return map to have only 2 intervals.

5.2. In order to understand which translation surfaces can be obtained via the
zippered rectangle construction, the following lemma is useful.

Let (M, 3, k, ) be a translation surface. Denote by (®)), resp. (®7), the flow
of the vertical, resp. horizontal, vectorfield. Let zop € M — X a point of period T
for the vertical vectorfield.

LEMMA 5.2. There exists a mazimal open bounded interval J around 0 such
that for s € J, the vertical flow ®) (®H(x)) is defined for all timest € R. One
has

q)XFT((I)f(:EO)) = ‘I’Y(‘I’f(ffo))y
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for s € J;t € R, and the map
JXR/TZ - M
(s,t) = @ (2 (20))
is injective. The compact set

Zt = lim {®Y .(®7(x
S/SUPJ{ 0,77(®5 (z0)) }

s a finite union of points of ¥ and vertical connections between them. The same
holds for

7= lim (@} (@F (@)}
The image <I>E67T](<I>§ (x0)) is called the cylinder around the periodic orbit of
xo. Its boundary in M is Z+ U Z~.

PROOF. Let J be an open bounded interval around 0 such that ®(zg) is
defined for s € J and ®) (®H (x)) is defined for all t € R,s € J. Any J small
enough will have this property. Moreover, we must have

q’%@?(%)) = ‘I’f(ffo)

for all s € J because the set of s with this property contains 0 and is open and
closed in J. The map

J xR/TZ — M
(s,t) = @) (21 (20))

must be injective : if we had

‘b%(‘bg(%)) = <1>X(<I>§{(xo)),
then either so = 51,0 < t; —tg < T would contradict that T is the minimal period
of xg or sy < s1 would imply that

®lo,77(P[7, 4,1 (0))

[s0,51]

is open and closed in M, hence equal to M, contradicting that ¥ is non empty. The
injectivity gives a bound on the length of J, namely

|| < AT

where A is the area of M. This bound means that there exists indeed a maximal
bounded open interval with the required properties. The maximality in turn implies
that the set ZT must meet Y (otherwise @gp ;(xo) is defined and of period T for
the vertical flow), and thus is a finite union of points of ¥ and vertical connections

between them. Similarly for Z . (]

PROPOSITION 5.3. Let (M, X, k,C) be a translation surface, and S be an open
bounded horizontal segment in M. Assume that S meets every vertical connection
(if any). Then, either every infinite half-orbit of the vertical vectorfield meets S,
or there is a cylinder containing every (infinite) orbit of the vertical vectorfield not
meeting S.
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PrOOF. Denote by T the return map of the vertical vectorfield to .S, by &, the
flow of the vertical vectorfield. Let u! be a singularity of T, J the component of the
domain of T to the left of u?, ¢ ; the return time to S'in J. For 0 < t < tE(u?) :=t;,
let

OF(u') = lim @y (x).

x S ut
In the same way we define a right-limit ®(u),0 < t < t#(u?), and, for a singularity
u® of Tg*, we define left and right limits ®F (u?), ®f(u®) (for negative time intervals
0>t >tEub),0 >t > tF(ub) respectively).
CLAM 5.4. The sets Xt = [, <I>[LO¢L(ut)] (W) ] U [ Uy (I)[LtL(ub),o] (u®) ] and
XM=, ¢f(%)7tﬁ’,(ut)] (u") ] U Uy ¢[§R(ub))o] (u’) ] are equal.

Proor. Let u! be a singularity of T's. We prove that <I>[L0 + (ut)] (u') is contained
in X%, The claim then follows by symmetry. We distinguish two cases.

(a): Assume first that li/(mf Ts(x) is not the right endpoint of S. Then,

it is a singularity u® of Ty !, As S meets every vertical connection, the
set (I)[lé,tL(ut)] (u') contains exactly one point of X, say ®% (u!). Then

Dfy .y (u') is equal to @ . (u’), and <I>[Lt*’tL(u,,)] (u?) is contained in
oF (ub).
[t7(u?),0]

(b): Assume now that li/m Ts(z) = u* is the right endpoint of S. Then
x ut

ub = li/m Ts(z) is a singularity of T'q 1 Again, as S meets every vertical
x S u*

connection, the union (I)[Ié.tL(u‘)] (ut) U(I)[LtL(ub) 0 (u®) contains at most one
point of 3, and it is contained in q)fatR(ut)] (u')U (I)ffR(ub),o} (ub) .
O

End of proof of proposition : Let X be the union, over the components J of the
domain pf T, of the ®jg,1(J) (with t; the return time to S on J) ; let X be the
union of X and XX = XB. As XL = XR X n (M — %) is open in M — 3. There
are now two possibilities.

(a): the return map Ts does not coincide with the identity in the neigh-
bourhood of either endpoint of S. Then, the set X is easily seen to be
also closed in M. Therefore X = M and every infinite half-orbit of the
vertical vectorfield meets S.

(b): The return map Ts coincides with the identity in the neighbourhood of
at least one of the endpoints of S. Let Y be the cylinder containing the
corresponding periodic orbits. As the boundary of Y is made of vertical
connections and points of 3, it is contained in X. Then X UY must be
equal to M and the second possibility in the statement of the proposition
holds.

O

COROLLARY 5.5. If the vertical vectorfield on a translation surface has no con-
nection, it is minimal : every infinite half orbit is dense.

PrOOF. Otherwise there exists an open bounded horizontal segment S which
does not meet every infinite vertical half-orbit. By the proposition, there would
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exist a cylinder containing these orbits ; but this is also not possible, since the
boundary of a cylinder contains a vertical connection. (Il

COROLLARY 5.6. Let (M,X,k,¢) be a translation surface and S be an open
bounded horizontal segment. Assume that

(H1): S meets every vertical connection (if any).

(H2): The left endpoint of S is in .

(H3): The right endpoint of S either belongs to 2, or to a vertical separatriz
segment which does not meet S.

Then the translation surface is isomorphic to the one constructed from the return
map Ts by the zippered rectangle construction with appropriate suspension data.

ProoOF. Applying the Proposition 5.3, we see that the second possibility in the
statement of the proposition is forbidden by the hypothesis (H2) and therefore S
meets every infinite half-orbit of the vertical vectorfield. Therefore, every ingoing
separatrix of the vertical vectorfield meets S ; the intersection point which is closest
(on the separatrix) to the marked point is a singularity of Ts and we obtain in this
way a one-to-one map between ingoing separatrices of the vertical vectorfield and
singularities of Ts ; in the same way, there is a natural one-to-one correspondence
between outgoing separatrices and singularities of T 1. The vertical lengths of
the corresponding separatrices segments determine the suspension data. It is now
a direct verification, which we leave to the reader, to check that our translation
surface is indeed isomorphic to the one obtained from these suspension data by the
zippered rectangle construction. O

PROPOSITION 5.7. Let (M,X, k,() be a translation surface and let So be an
outgoing separatriz of the horizontal vectorfield. If either the horizontal or the
vertical vectorfield has no connection, then some initial segment S of Soo satisfies

the hypotheses (H1), (H2),(H3) of Corollary 5.6

PRrROOF. First assume that there is no vertical connection. Then any initial
segment S of S, satisfies (H1) and (H2).Let S be some initial segment of S, and
S’ be some vertical separatrix ; as there is no vertical connection, S’ is dense, and
therefore intersects S. Let B be the intersection point closest along S’ to the point
of ¥ at the end of S’ ; the initial segment S of S, with right endpoint B satisfies
(H1) , (H2) and (H3).

Assume now that there is no horizontal connection. Then S, is dense. As
there are only finitely many vertical connections, every initial segment S of S
which is long enough satisfies (H1), and also (H2). Let S’ be a short enough
vertical separatrix segment ; if the initial segment S of Su is long enough it will
intersect S’, but only after having met all vertical connections ; again we cut S at
the intersection point with S” which is closest to the marked point at the end of S’.
We get an initial segment S of S., which satisfies (H1), (H2) and (H3). O

5.3. We reformulate Corollary 5.5 in the context of i.e.m.

DEFINITION 5.8. A connection for an i.e.m. 7T on an interval I is a triple
(m,ut,u’) where m is a non negative integer, u' is a singularity of T, u’ is a
singularity of 7!, such that

T™(ub) = ut .
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THEOREM 5.9. (Keane [Keal]) If an i.e.m. has no connection, it is minimal
: every half-orbit is dense.

PRrROOF. Choose suspension data, construct a translation surface by the zip-
pered rectangle construction ; the vertical vectorfield has no connection because
the i.e.m. does not have either ; thus it is minimal and the same holds for the
i.e.m. O

5.4. In this context, the following result of Keane is also relevant.

PROPOSITION 5.10. If the coordinates of the length vector of an i.e.m. are
rationally independent, it has no connection.

PROOF. Choose suspension data, construct a translation surface by the zip-
pered rectangle construction. We use the notations of 4.5. If the i.e.m. had a con-
nection, the vertical vectorfield on the translation surface would have a connection
which we could express as a linear combination ¥ n,[(,] in Hy (M, 3, Z) with inte-
ger coeflicients. Integrating against the holomorphic 1-form, we have ¥ n, A, =0
but ¥ n,7, # 0, a contradiction. O

EXERCISE 5.11. For d =2, T is minimal iff there is no connection, anf iff the
lengths of the intervals are rationally independent. For d > 3, show that there exists
T minimal but having a connection, and also T" with no connection but lengths data
rationally dependent.

6. The Teichmiiller space and the Moduli space

6.1. The Teichmiiller space. Let M be a compact orientable topological
surface, 3 a finite non-empty subset, x a set of ramification indices.

We denote by Diff(M,Y) the group of homeomorphisms of M fixing each
point of ¥, by Difft(M,¥) the subgroup of index 2 formed of orientation pre-
serving homeomorphisms, by Diffy (M, X) the neutral component of Diff(M, ), by
Mod(M, ¥) the modular group (or mapping class group) Diff(M, ) /Diffy (M, X),
and by Mod™ (M, ¥) the subgroup (of index 2) Diff" (M, ¥)/Diffy (M,¥) .

The group Diff(M,X) acts on the set of translation surface structures on
(M, %, k): if ¢ = (¢4) is an atlas defining such a structure, f.( is the atlas (g0 f 1)
(for f € Diff(M, %)).

DEFINITION 6.1. The Teichmiiller space Q(M, X, k) is the set of orbits of the
action of Diffy(M, X) on the set of translation surface structures on (M, X, k).

6.2. Topology on Q(M, X, k). We will fix once and for all a universal cover
p: (Mv*) - (M7A1)

where Aj is the first point of X.

Given a translation surface structure ¢ on (M, 3, k), we define an associated
developing map s

D¢ : (M, *) — (C,0)

by integrating from * the 1-form p*w, where w is the holomorphic 1-form determined
by C.

Conversely, the developing map determines (. The set of translation surface
structures on (M, ¢, k) can therefore be considered as a subset of C (M ,C) ; we equip
this set with the compact-open topology, the set of translation surface structures
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with the induced topology, and the Teichmiiller space Q(M, X, k) with the quotient
topology.

6.3. The period map. Let ¢ be a translation surface structure on (M, %, k), w
be the associated holomorphic 1-form, 7 a relative homology class in Hy (M, %, Z).
As w is closed, the integral f w is well-defined. Moreover, if f is an homeomorphism
in Diffy(M, X), f acts tr1v1ally on Hy(M,3,Z), therefore the map

Cn—>'y—>/

is constant on orbits of Diffy(M,X) and defines a map
0:Q(M,%, k) - Hom(H,(M,%,Z),C)

called the period map. Here, we will generally identify in the right-hand side
Hom(H,(M, ¥, 7Z),C) with the cohomology group H!(M, ¥, C). The importance of
the period map lies in the following property.

PROPOSITION 6.2. The period map is a local homeomorphism.
The proposition will be proved in section 6.5

6.4. Action of GL(2,R) on Teichmiiller space. Let ( = (¢,) be an atlas
defining a translation surface structure on (M, X, k), and let g be an element of
GL(2,R) acting on R? ~ C.

Consider the atlas g.¢ = (goa) ; because the conjugacy of a translation by an
element of GL(2,R) is still a translation, the atlas g.( defines another translation
surface structure on (M,%, k) and we have thus a left action of GL(2,R) on the
space of translation surface structures.

It is clear that this action commutes with the action of the group Diff(M, ¥). In
particular, it defines a left action of GL(2,R) on the Teichmiiller space Q(M, X, k).
One easily checks that this action is continuous.

Regarding the period map ©, the group GL(2,R) acts on the right-hand side
Hom(H,(M,¥,Z),C) by acting on the target C = R2. The period map is then
covariant with respect to the actions of GL(2,R) on the source and the image.

It is to be noted that the subgroup SO(2,R) preserves some of the auxiliary
structures associated to a translation surface structure : the complex structure is
invariant, the holomorphic 1-form is replaced by a multiple of modulus 1, the flat
metric is preserved as is the associated area. The group SO(2,R) acts transitively
on the set of constant unitary vectorfields ; therefore, every result proved for the
vertical vectorfield is valid for a non constant unitary vectorfield. Actually, if we
use the full action of GL(2,R), we see that in section 5 we can replace the vertical
and horizontal vectorfield by any two non-proportional constant vectorfields on the
translation surface.

6.5. Proof of proposition 6.2.

PROOF. We first observe that the period map is continuous : this follows im-
mediately from the definition of the topology on Teichmiiller space. To study the
properties of © in the neighbourhood of a point [(] in Q(M, X, k), we may assume
that the translation structure ¢ has no vertical connection ; otherwise, we could
replace ¢ by R.( for some appropriate R € SO(2,R) and use the covariance of the
period map.
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Then we know that the translation surface structure ¢ can be obtained by the
zippered rectangle construction from some i.e.m. 7" on some interval I.

Because the conditions on the length data A\ and the suspension data 7 in
the zippered rectangle construction are open, the period map, expressed locally by
(X, 7), is locally onto. It remains to be seen that the period map is locally injective,
with continuous inverse.

In the zippered rectangle construction, we will always assume (by choosing the
horizontal separatrix S., appropriately in proposition 5.6) that the first marked
point A; of ¥ is the left endpoint of the interval I. The surface M was obtained
in section 4.3 from some explicitly defined subset M of C, depending only on 7, A
and 7. We can lift M to a (connected) subset M\C of M (with the left endpoint of
I lifted to *) with the property that the developing map D, is an homeomorphism
from ]\/{74 onto M.

If ¢y, (1 are two translation surface structures close to { with the same image
by the period map, the subset M of C Wlll be the same for (y and (;. There Wlll
be a unique homeomorphism A : MCo — M<1 such that D¢y = D¢, o h on MCo
It is easily checked that h extends uniquely as a homeomorphism of (M ) still
satisfying D¢, = D¢, oh, and that extension is the lift of an homeomorphism of M.

This proves that [(o] = [¢1] in Teichmiiller space. This proves local injectivity of
the period map ; the continuity of local inverses is proven along the same lines and
left to the reader. O

6.6. Geometric structures on Teichmiiller space. First, we can use the
locally injective restrictions of the period map as charts defining a structure of
complex manifold of complex dimension d = 2¢g 4+ s — 1.

This complex manifold will also be equipped with a canonical volume form.
Indeed, we can normalize Lebesgue measure on Hom(H;(M,,7Z), R?) by asking
that the lattice Hom(Hy (M, %, Z), Z*) has covolume 1. We then lift by the period
map this canonical volume to Teichmiiller space.

6.7. Examples and remarks. Let us consider the case g = s = 1 of the
torus T' with a single marked point {A4;}. Fix a basis [(1], [(2] for the homology
group H,y (Tv {Al}a Z)

In this case, the period map is injective and allows to identify the Teichmiiller
space with its image. The image of the period map is

Q(T,{A:},1) = {(C1,¢2) € (C*)?,G2/C1 ¢ R} .

The two components of Q(T,{A1},1) correspond to the two possible orienta-
tions. Restricting to Im (2/¢1 > 0, the map ({1, (2) — (2/¢ presents Q(T,{A1},1)
as fibered over the upper half-plane H (representing the classical Teichmiiller space
of T') with fiber C* (representing the choice of a non-zero holomorphic 1-form).

REMARK 6.3. For g > 2, the period map is not injective. Indeed, let v be a
loop on M which is homologous but not homotopic to 0. We assume that yNY = {).
Let then f be a Dehn twist along «y ; this can be constructed fixing each point of
Y and thus defining an element of Diff(M, X).

If ¢ is any translation surface structure on (M, X, k), f«¢ and ¢ will have the
same image by the period map because f induces the identity on Hy(M,X,Z). On
the other hand, ¢ and f,( represent different points in Teichmiiller space : indeed,
we will see that [fI'(] goes to oo in Teichmiiller space as n goes to oo in Z.



20 JEAN-CHRISTOPHE YOCCOZ

REMARK 6.4. Regarding the relation to “classical” Teichmiiller theory classi-
fying the complex structures on compact surfaces, consider the two extremal cases.

Take first s = 2g—2,k1 = Ko = -+ = kg = 2 ; this means that the holomorphic
1-form associated with the translation surface structure has only simple zeros, the
generic situation for an holomorphic 1-form. The Teichmiiller space Q(M, X, k) of
dimension 2g + s — 1 = 4g — 3 is fibered over the “classical” Teichmiiller space
of dimension 3g — 3 ; the fiber of dimension g corresponds to the choice of the
holomorphic 1-form (which form a g-dimensional vector space; however, one has to
exclude the zero form and those having multiple zeros).

Consider now the case s = 1, k1 = 2g — 2 ; this means that the holomorphic 1-
form has a single zero of maximal multiplicity ; when g > 3, not all Riemann surfaces
of genus g admit such an holomorphic 1-form. Indeed the Teichmiiller space has
dimension 2g+s—1 = 2¢g and the scaling of the holomorphic 1-form corresponds to
1 dimension, hence Q(M, X, k) is fibered over a subvariety of “classical” Teichmiiller
space of codimension > g — 2.

6.8. Normalizations.

6.8.1. Normalization of orientation. It is generally convenient to fix an ori-
entation of the orientable topological surface M and then to consider only those
translation surface structures ¢ on (M, X, k) which are compatible with the given
orientation. The groups Diff " (M, Y) and GL*(2,R) act on this subset. We denote
by QT (M, 3, k) the corresponding subset of Teichmiiller space.

6.8.2. Normalization of area. Given a translation surface structure ¢ compati-
ble with a chosen orientation, let A(¢) be the surface of M for the area-form ( on
M —Y) induced by (. It is clear that the function A is invariant under the action of
Difft (M, ¥) and therefore induces a function still denoted by A on the Teichmiiller
space QT (M, X, k).

We will write Q) (M, X, k) for the locus {A = 1} in Qt(M, X, )). As Ais a
smooth submersion, Q(l)(M , 2, k) is a codimension 1 real-analytic submanifold of
QT (M, %, k).

If [(] € QT (M,3, k) and g € GLT(2,R), we have

A(g-[¢]) = detg A([C]) -
In particular, Q) (M, ¥, k) is invariant under the action of Diff" (M, X) and SL(2,R).
Let u be the canonical volume form on Q* (M, X, k). We write
dA
= p1 A -

then y; induces on Q) (M, X, k) a canonical volume form which is invariant under
the action of Diff " (M, ¥) and SL(2,R).

6.9. he moduli space. The discrete group Mod(M, ¥) acts continuously on
the Teichmiiller space Q(M, %, k).

DEFINITION 6.5. The moduli space is the quotient
M(M, %, k) :=Q(M,3,k) / Mod(M, X) .
The normalized moduli space is the quotient

MDD (M, 2, k) = QM (M, %, k) / Mod™ (M, %) .
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The action of the modular group Mod(M,¥) on Q(M, X, k) is proper but not
always free, as we explain below. This means that the moduli space is an orbifold
(locally the quotient of a manifold by a finite group) but not (always) a manifold.

To see that the action is proper, consider as above a universal cover p : (1\7 , %) —
(M, A;). Let & = p~1(X). Given a translation surface structure ¢, we can lift the
flat metric defined by ( to M and consider the distance d¢ on Y induced by this
metric (as length of shortest path). It is clear that this distance only depends on
the class of ¢ in Teichmiiller space. If ,(’ are two translation surface structures,
the distances d¢, d¢ on Zare quasiisometric : there exists C' > 1 such that

C™'d:(B,B') < dy(B,B') < Cd¢(B,B)
for all B, B’ € ¥. We write C(¢,¢’) for the best constant C'.

EXERCISE 6.6. Prove that a subset X C Q(M,X, ) is relatively compact iff
(given any ¢y € Q(M, X, k)) the quantities C(¢, (o), ¢ € X, are bounded.

The distances d¢ have the property that any ball of finite radius only contain
finitely many points. On the other hand, the modular group Mod(M, X) acts on ¥,
and there exists a finite subset io of ¥ such that, for any finite subset il of i, the
set {g € Mod(M, %), g(3o) C X1} is finite. Using the compactness criterion given
by the exercise, it is easy to conclude that the action is proper.

To see that the action is not always free, it is sufficient to construct a translation
surface with a non trivial group of automorphisms. Start with an integer k£ > 2 and
k copies of the same translation torus 7' with two marked points A, B. Denote by
T;, A;, B; the it" copy, 1 <14 < k. Slit T} along a geodesic segment A;B; (the same
for all 7). For each 4, glue isometrically the left side of A;B; in T; to the right side
of Ajy1Bit1 ( with (Tx41, Agt1, Bet+1) = (11, A1, B1)). One obtains a translation
surface of genus k with 2 marked points of ramification index k& and an obvious
automorphism group cyclic of order k.

6.10. Marked translation surfaces and marked moduli space. From
the point of view of the zippered rectangles construction, it is more convenient to
consider translation surfaces with an additional marking.

Indeed, if the construction starts from an i.e.m. T on an interval I, we have
said above that we always take the left endpoint of I as the first marked point Ay
of the set ¥ on the surface M. But the interval I itself appears on the surface as
an outgoing separatrix of the horizontal vector field.

DEFINITION 6.7. A marked translation surface is a translation surface
(M, X, k, () with a marked outgoing horizontal separatrix coming out of A;.

Obviously, we require that an isomorphism between marked translation surfaces
should respect the marked horizontal separatrices. We can then define a Teichmiiller
space @(M7 ¥, k) of marked translation surfaces. It is a x1-fold cover of Q(M, 3, k),
because there are x1 possible choices for an horizontal separatrix out of A;. In
particular, when k; = 1, the marking is automatic and @(M, Y.k)=Q(M, %, k).

On the other hand, it is quite obvious that a marked translation surface cannot
have an automorphism distinct from the identity. Therefore, the modular group
Mod(M, X)) acts freely on @(M,Z,m) and the quotient space, that we denote by

M(M, X, k), is now a complex manifold. This moduli space is a x1-fold ramified
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covering of the moduli space M (M, X, k). Normalizing orientation and area gives
a codimension 1 real-analytic submanifold M) (M, ¥, k).

6.11. In the following sections, we will present the proofs of the following
results, obtained independently by H. Masur [Ma] and W. Veech [Ve2].

THEOREM 6.8. Almost all i.e.m. are uniquely ergodic.

The combinatorial data are here fixed and “almost all” refer to the choice of
length data according to Lebesgue measure.

THEOREM 6.9. The normalized moduli space MVI(M,E,/-@) has finite volume.
The action of the group SL(2,R) on it is ergodic.

We will follow the approach of W. Veech [Ve5]. The Teichmiiller flow on the
moduli space Mv(l)(M,E, k) is the restriction of the action of SL(2,R) to the 1-
et 0
0 et
from the ergodicity of this flow (stronger properties of this flow will be presented
in later sections).

Let us consider what happens in the simple case ¢ = s = 1. Then, the
normalized Teichmiiller space is Q) (M,%, k) = SL(2,R), the modular group
Mod™ (M, ¥) is SL(2,7Z), the normalized moduli space is the space of normalized
lattices SL(2,R)/SL(2,Z) which has unit area and on which SL(2,R) obviously
acts transitively. The Teichmiiller flow is essentially the geodesic flow on the mod-
ular surface. It is well known that this flow is closely related to the classical con-
tinuous fraction algorithm. G. Rauzy and W. Veech, introduced a renormalization
algorithm for i.e.m., later refined by A. Zorich, which plays the role of the classical
continuous fraction algorithm for more than 2 intervals. This will be the subject of
the next sections.

parameter diagonal subgroup ) . The ergodicity of the action will follow

7. The Rauzy-Veech algorithm

7.1. The aim of the Rauzy-Veech algorithm [Rau, Vel, Ve2], to be defined
below, is to understand the dynamics of an i.e.m. by looking at the return map on
shorter and shorter intervals. What makes this general “renormalization” method
available is the fact that the return maps are still i.e.m. with bounded combinatorial
complexity : actually, by choosing the small intervals carefully, they have the same
number of singularities than the i.e.m. we started with.

7.2. Definition of one step of the algorithm. Let 7" be an i.e.m. on
an interval I, with irreducible combinatorial data (A, 7, m). Let d = #A; let
ul < -+ < ul_, be the singularities of T, u? < --- < uY_, be the singularities of
T1.

The step of the algorithm is defined for T if ul, | # ui’l_l. Observe that if
ul,_, =ul_,, then (0,ul,_,,uY_,) is a connection for T' (see Subsection 5.3).

When “2—1 # ug_l, we define I to be the open interval with the same left
endpoint than I and right endpoint equal to max(u}_,,u% ).

Let T be the return map of T to I. To understand i let us introduce the
letters ay, oy satisfying 7 (o) = mp(ap) = d which correspond to the intervals at
the right of I before and after applying 7. The hypothesis ul, ; # u’_, corresponds
to Ao, # Aa,- We distinguish two cases.
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1) uy_, >ul | < Ao, > Ao, We say that oy is the winner and ay, is the
loser of this step of the algorithm, and that the step is of top type. We
have in this case

- T(x) if z¢lIl,
T(x) = , . \
T%(x) if xelf,
We use the same alphabet to label the intervals of T ; we define :
It =T for o+ oy,
Tgt = Igt N f: (uZl—pUZq) ’
Ib =10 for a# ap o,
Tb _ b
Iab - T(Iab) )
n,=1,/1,
The new length data are given by

N Ao if a#a
Ao =
Aoy — gy, if a=oy.
The new combinatorial data are given by
T =Tt ;
() it mp(a) < mp(a),
Tp(a) =<9 mp(ay) +1 if a=ap,

m(a) +1  if mp(oy) < mpla) <d.

2) ug_l > ug_l < Mg, > Aot We now say that ap is the winner, oy the
loser, and the step is of bottom type. We have

~ T-Yz) if z¢lIl,
T (z) =
T-%(z) if zelb,

(we could also write the formulas for T ; we prefer to write them for
T~ in order to keep more obvious the bottom/top time symmetry of the
setting). The new labelling is

Tg:.rg for a# ap,

Igéb = Igb ni= (ug—l’ufi—l) )
It =1t for a#ap,ap,
I, =T7HI,)

I, =1, /I, .
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The new length data are given by

~ Ao if a#aq
Ao =
Aoy, — Ao, If a=ay.

The new combinatorial data are given by
Ty = T ;

() if m(a) < m(ay),

7Tt(O[) = ’ﬂ't(Oéb)—f—l if a = Oy ,
m(a) +1 i m(ap) <m(a) <d.
EXERCISE 7.1. Show that the combinatorial data (7, 7,) for T are irreducible.

EXERCISE 7.2. Show that if 7" has no connection, then T also has no connection.

This means that for i.e.m. with no connections, it is possible to iterate indefi-
nitely the algorithm ; the converse is also true, see below.

EXERCISE 7.3. Check that the return map of T on an interval I’ with the same
left endpoint than I and |I| < |I'] < |I] is an i.e.m with d + 1 intervals.

In the case of 2 intervals, there is only one possible set of irreducible combina-
torial data and the algorithm is given by

()\A—)\B,AB) if >\A>>\B,

(>\A,/\B)'—>{
(/\A,)\B—/\A) if Ap>Aa.

the iteration of which gives the classical continued fraction algorithm.

7.3. Rauzy diagrams. Let A be an alphabet. For irreducible combinatorial
data m = (m,m) , we have defined in the last section new combinatorial data
7 = (7, m) depending only on (7, m) and the type (top or bottom) of the step ;
we write T = Ry(m) or T = Rp(m) accordingly.

A Rauzy class on the alphabet A is a set of irreducible combinatorial data = =
(¢, ms) which is invariant under both R; and Rj and minimal with this property.
The associated Rauzy diagram has the elements of this set as vertices. The
arrows of the diagram join a vertex to its images by R; and R}, and are of top and
bottom type accordingly.

The winner of an arrow of top type (resp. bottom type) starting at (¢, mp) is
the letter oy (resp. ap) such that m (o) = d (resp. m(ap) = d). The loser is the
letter ap (resp. ay) such that m(ap) = d (resp. m(ay) = d).

EXERCISE 7.4. Show that the maps R;, R, are invertible and that each vertex
is therefore the endpoint of exactly one arrow of top type and an arrow of bottom

type.

EXERCISE 7.5. Let 7,7’ be arrows in a Rauzy diagram of the same type such
that the endpoint of v is the starting point of 4" ; show that ~,~" have the same
winner.
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o
BAX_
g=1, 5=1,d=2
ACB ABC ABC
CBA«— CBA ——_CAB
g=1,5=2,d=3

FIGURE 2

For d = 2 or 3, there is, up to equivalence, only one Rauzy diagram pictured

(Figure 2).

For d = 4, there are two non-equivalent Rauzy diagrams pictured (Figure 3).
They correspond respectively (see next section) to the cases ¢ = 2,5 = 1 and
g=1s=3.

7.4. The basic step for suspensions. Recall from section 4.1 that for com-
binatorial data m = (m, 7p,), suspension data (74 )ae4 must satisfy

(Sr) Y 10, Y <o foralll<k<d.
me(a)<k 7y () <k

We denote by ©, the convex open cone in R4 defined by these inequalities.
The main reason to consider O, is the following property. Set ™ = R:(w). Define
also, for 7 € R4

Ta =

N {Ta if a#o

Tay —Tay, I a=o0y.

where (o) = mp(ap) = d .
LEMMA 7.6. The linear map 7 — T sends O onto Oz N{>_ To <0} .
There is a symmetric statement exchanging top and bottom.

PROOF. Let 7 € ©,. As 1 = m, and T, = 7, for m(a) < d, the first half of
the conditions for (S3) are satisfied. Let £ = mp(o) ; for k < ¢, we have

Y a= Y m= Y m<o.
() <k (o) <k () <k

Next we have

Z To = Z Ta + Ta, — Tay, = Z Ta — Z Ta + Z Ta <0,

T ()<L 7 (o) <£ 7 (o) <L () <d 7 () <d

and for / < k <d
S = Y <o
7 (@) <k my(a)<k—1
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ACDB ABCD
DCBA DBAC ..

\ ABCD
O o \
ADBC +— ADBC / ABCD ABDC

DCAB ——.DCBA DACB +—— DACB

g=2,5=1,d=4

CABCD ABCD —ABDC «— ABDC ADCB

DABC DCAB ~——DCAB —DCBA DCBA
ABCD ACBD
DBCA ?’BA
ADBC ACDB —— ACDB+—— ACBD, ACBD
DBCA DBCA ~—— DBAC —DBAC DACB

g=1,5=3,d=4

FIGURE 3

Conversely, let 7 € Oz N {>_ 7o < 0}. Again the first half of (S;) is satisfied.
For the second half, we have

Z To =

() <k 7o (a)<k Ta if ¢<k<d.

dDa(ay<k Ta i 1<k <Y,

Thus, condition (S;) is satisfied. O

Let then T be an i.em. on an interval I, with (irreducible) combinatorial
data m = (m,m) on an alphabet A. Assume that the condition A,, # Ay, (With
me(ar) = mp(ap) = d) for one step of the algorithm is satisfied. Let 7 € O, be
suspension data satisfying the required conditions (S ).

If the step is of top type, we define

Te if a#aoy
To =

Tay — Tay if = oy.

If the step is of bottom type, we define
Te if a#a
Ta =

Tay — Tay i a=oy.
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FIGURE 4. M (m, A, 7) M(7,\,7)

(The formulas are the same than for the length data).

We have explained in Section 4 how to construct a translation surface M (m, A, 7)
from the given data by the zippered rectangle construction. Writing @ = Ry(w) or
Ry(m) according to the type of the step and writing X for the length data of T as
above, we construct another translation surface M (7, X, 7) from these new data.

An easily checked but fundamental observation is that M (m, A, 7) and M (7, X, T)
are canonically isomorphic. This is best seen by contemplating the picture, Fig-
ure 4.

The canonical bases of the homology groups Hy(M,X,Z), Hi(M — X,Z) are
related as follows : If g is the winner and «; is the loser of the step of the
algorithm, one has, with the notations of Section 4.5,

(Col = [al ifa#ap,
[Coo) = ao] = [Geu] »
[504] = [6a] ifa#a,
[5041] = [0ay] + [Ba] -

7.5. Formalism for the iteration of the algorithm. Given an i.e.m. Tj
on an interval 7(°) with no connection and irreducible combinatorial data (A, 7(?),
the iteration of the Rauzy-Veech algorithm will produce a sequence of i.e.m. T,
on shorter and shorter intervals I(™) with combinatorial data 7(™ (on the same
alphabet A ). The sequence (7(™),>0 represents an infinite path in the Rauzy
diagram D containing 7(®) which is determined by its starting vertex 7(%) and the
types of the successive arrows.

To relate the length vectors and the translation vectors, as well as the suspen-
sion data that we could associate to the i.e.m., we introduce the following matrices
in SL(ZA).

Let v be an arrow of D, with winner « and loser 3. We define

B, =1+ Eg,

where I is the identity matrix and Eg, is the elementary matrix with only one
non-zero coefficient, equal to 1, in position S a. We extend the definition to a path
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7= (71, ,7n) defining
By =B, B,,.
The matrices B, belong to SL(Z*) and have nonnegative coefficients. For
n > 0, let \(") be the length vector for T;, (considered as a row vector), let (™)
be the translation vector (considered as a column vector) ; for m < n, let y(m,n)

the finite path in D from 7("™) to 7("™) determined by the algorithm. The following
formulas are trivially checked when n = m + 1 and then extended by functoriality :

Alm) — \() Bmn)

0 = Bsm,m) Som) -

The following interpretation of the coefficients of the matrices B, ) is also
immediately checked by induction on n—m : for a, 8 € A, the coefficient of B, )
in position af is the time spent in I[(;”) by a point in Lg") under iteration by T,
before coming back to I(™. In particular, the sum over § of the row of the matrix
of index « gives the return time under T}, of L(,(") in 1(7),

7.6. Symplecticity of B,. Let 7 be a finite path in a Rauzy diagram D,
starting at a vertex 7 and ending at a vertex w’. Let Q,,Q. be the matrices
associated to 7, 7’ as in subsection 3.4. We have seen in subsection 4.5 that rk Q, =
rk Q. = 2g, where g is the genus of the translation surface obtained by the
zippered rectangle construction from any vertex in D (and any choice of length and
suspension data).

From the relation between length and translation vectors given in subsection
3.4 and in the last section, we obtain

Qo =B, Q:'B, .
From this we see that :

e B 1 acting on row vectors, sends the kernel of ), onto the kernel of Q/;

e B, acting on column vectors, sends the image of {1, onto the image of
Qﬂ'/;

e if we equip the quotients R4/Ker Q, ~ ImQ,, RA/Ker Q. ~ ImQ,
of the symplectic structures determined by {2, Q. respectively, then B,
(acting on column vectors) is symplectic w.r.t these structures. -

PROPOSITION 7.7. One can choose, for each verter m of D, a basis of row
vectors for KerQy such that, for all v : m — 7', the matriz of the restriction of
B;l w.r.t. the selected bases of Ker{,, KerQy is the identity. In particular, if v

is a loop at m, the restriction of B;l to the kernel of Q. is the identity.

ProOF. We construct, for each vertex m of D, an isomorphism i, from Ker
onto the same subspace K of R*, such that i, o th_l = i, for any arrow v : 1 — 7.
Choosing a basis for K and transferring it to each Ker (), via i, then achieves the
required property.

For 0 < k < d, let uf, uz be the linear forms on the space of row vectors defined

by
ub (N = > Aa,

Tralk
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u(N) = > A

mpalk
For each vertex m, define linear maps i’ , i of R“ into itself by

it (\) = (Ul ()1 )aca, in(N) = (Uhs()-1)aca-

Then the map (it ;i) : R4 — RA x R4 is injective and Ker €2, is the inverse image

T T

by this map of the diagonal of R* x RA. Let K, be the image of Ker Q. by it; it
is also the image by i%. Let i, be the common restriction of i, i% to Ker (.
When we perform a single step of the algorithm, corresponding to an arrow
v :7m — 7', of top type for instance, the A, with m(a) < d and m; itself do not
change, hence the u}, for 0 < k < d stay the same. This means that K, = K, and

Igr O tB;l = ir. |
7.7. Complete paths.

DEFINITION 7.8. A (finite) path in a Rauzy diagram is complete if every
letter in A is the winner of at least one arrow in the path. An infinite path in a
Rauzy diagram is co-complete if every letter in A is the winner of infinitely many
arrows in the path. Equivalently, an co-complete path is one can be written as
the concatenation of infinitely many complete paths.

This is a relevant notion because of the following characterization of paths
associated to an i.e.m.

PROPOSITION 7.9. An infinite path in a Rauzy diagram is associated to some
i.e.m. iff it is co-complete.

We prove first that a path associated to an i.e.m. is oo-complete, then an
important auxiliary result, and then that an oo-complete path is associated to
some i.e.m .

PROOF. Let A’ be the set of letters which are the winners of at most finitely
many arrows in the path yp associated to an i.e.m. 7' = Tj.

Let (T,,)n>0 be the sequence of i.e.m. obtained from T by iterating the Rauzy-
Veech algorithm, A(™), 7(®) the length and combinatorial data of T},.

There exists ng such that no letter in A’ is a winner for n > ng. Then the
lengths A for ae A , N = ng, are independent of n.

At each step, the length of the loser is subtracted from the length of the winner.
As lengths are always positive, there must exist n; > ng such that no letter in A’
is a loser for n > my. This means that, for « € A’, both Wt(n)(oz) and ﬂén)(a)
are non-decreasing with n for n > ny, hence there exists no > n; such that these
quantities are independent of n for n > ns.

Let « € A, € A—A". We claim that Wt(m)(a) < ﬁt(m)(ﬁ) and WIE"Q)(a) <
Wé"2)(ﬁ). As A — A’ is not empty and 7("2) is irreducible, this implies that A’ is
empty, and therefore vy is co-complete.

Assume by contradiction, for instance, that Wt(nQ)(ﬂ) < 77,5"2)(04). We have

wﬁ")(a) = 7rt("2)(a) for n > ng, hence also 7rt(")(5) = 7r§"2)(6) for n > ny. Thus g is
not the winner of an arrow of top type for n > ny. As 8 € A— A’, B is the winner
of an arrow of bottom type for some n > no, which gives

" (@) = 7 (@) + 1,
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a contradiction. The claim is proved; this completes the proof of the first part of
the proposition. Before proving the second half of Proposition 7.9, we give some
Corollaries of the first half.

COROLLARY 7.10. The length of the interval I™ on which T,, acts goes to zero
as n goes to +00.

Proor. Each length )\(an) is a non-increasing function of n hence has a limit
A et e > 0, ng such that A < A e forall n > ng, o € A.

Let 8 € A. There exists n; > ng such that § is the winner of the arrow of
index nq — 1 but not of the next arrow of index ni. Then S is the loser of the arrow
of index ni. Let o be the winner of this arrow. We have

)\&nl) — )\anlfl) _ )\(ﬂnl—l) ’

hence )\(BOO) < )\%"171) < e. As ¢ is arbitrary, we have )\g)o) =0 for all 8 € A. O

COROLLARY 7.11. The Rauzy-Veech algorithm stops iff the i.e.m. has a con-
nection.

PrOOF. We already know that the algorithm does not stop if the i.e.m. has no
connection. Assume that T has a connection (m, uf,u’) ; here u' is a singularity of
T, u® a singularity of T~ and m is a nonnegative 1nteger such that T™(u’) = ut.
Assume that one can apply the algorithm once to get an i.e.m. T on an interval I
the intersection {u?, T(ub), ... T™(u?) = u!}NI will produce a connection (7, ', ub)
for T with m < m, and m = m iff {ub,T(u?),...,T™(u?)} C I. When we iterate
the algorithm, the length of the interval goes to zero unless the algorithm stops ;
this must therefore happen at some point. O

PROPOSITION 7.12. [MmMSsY, Y1] Let y be a finite path in a Rauzy diagram
that can be written as the concatenation of 2d — 3 complete paths (where d = #.A).
Then all coefficients of B are positive.

PROOF. Write y = 7y, # -+ x5, , ., with each 7, complete, and let (i) =
7, * - *7,- Recall that the diagonal coefficients of B, (for any path ) are always
positive. It is therefore sufficient to show that, for any distinct letters a1, o in A,
we have (B, (i))aga; > 0 for some i.

As ; is the winner of an arrow in ~y 1 the loser of which we call as, we have

(Bl(l))()@oq > 0.
When d = 2, we must have as = a9 and the result is achieved. Assume d > 2 and
Qg # Q. Because 7, and 7, are complete, there exists in 7, * 7, an arrow with

winner oz # a1, as immediately followed by an arrow with winner o or as. This
leads to

(Bl(3))0¢3a1 >0.

If d = 3, we must have oy = a3 and we are done. If d > 3 and a3 # «ap, we go
on in the same way : there exists in 7, *¥ 75 an arrow with winner ay # aq, ag, ag
immediately followed by an arrow with winner «a;, as or az. This leads to

(31(5))a4a1 > 0.

and we go on ... (Il
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End of proof of Proposition 7.9 : We want to show that if an infinite path ~
can be written as the concatenation Uy K Vg K Vg of complete paths, then = is
associated to some i.e.m. with no connectlon by the Rauzy-Veech algorithm.

Define the convex open cone

C.=(R)"B, B, ...B,

n n 1 —1
This is the set of length data (for i.e.m having the starting point of v as combina-
torial data) which lead to a path starting with Yy K, The set of length data
corresponding to 7 is therefore
= ﬁ C,

n>=0

By Proposition 2, the closure of Cn+2d_3 is contained in C,, U {0}. Therefore

{otucty) =) Cn

n>0

which shows that C(y) is not empty. O

We will describe more precisely C(7) in the next section.

8. Invariant measures

8.1. Invariant measures and topological conjugacy. Let T be an i.e.m
on an interval I, with combinatorial data m = (m;, 7) on an alphabet A. We assume
that T" has no connection and denote by v = ~r the infinite path associated to T’
in the Rauzy diagram D of .

Let C() be the convex cone considered above ; its elements are the length
data of the i.e.m with combinatorial data 7 which have no connection and v as
associated path. Let M(T') be the set of finite measures on [ invariant under T

The sets C(y) and M(T) are in one-to-one correspondence as follows. Let
A € C(7y) and let Ty be an i.e.m with these length data (and combinatorial data )
on an interval I. Let u (vesp. uy) be the largest singularity of -1 (vesp. T)").
The sets (T"(u))n>0 and (T3 (uxr))n>o0 are dense in I and I respectively because
T and T are minimal, having no connection. The bijection

H : TV (uy) — T™(u)

is increasing because T and T have the same path for the Rauzy-Veech algorithm.
Therefore H extends uniquely to an homeomorphism from I onto I, which obvi-
ously satisfies

HoTy=To0oH

Thus, T and T are topologically conjugated. The image under H, of the Lebesgue
measure on Iy is a measure on I (of total mass |I,|) which is invariant under 7.
Conversely, let p be a finite measure invariant under 7. We set, for a € A

Ao = (1) = p(13) -
We also define, for « €
K@) =p{yel;y<a}).

As T is minimal, z has no atom and the support of p is I ; therefore, K is an
homeomorphism from I onto (0, u(1)) =: I,,.
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Define then
T, = KoToK™!'.

Then T}, preserves the Lebesgue measure and it is easy to check that T}, is an i.e.m
on I,, with combinatorial data m and length data A.

It is immediate to check that the two maps C(y) = M(T), M(T) — C(y) just
defined are inverse to each other.

8.2. Number of invariant ergodic probability measures. Let 7" be an
i.e.m on an interval I. Let g be the genus of the translation surfaces that can
be constructed from T by the zippered rectangle construction. Let M(T') be the
cone of finite invariant measures for 7', which can be identified with the cone C(v)
determined by the infinite path v associated to T' by the Rauzy-Veech algorithm.

PROPOSITION 8.1. The cone C(y)U{0} is a closed simplicial cone of dimension
< g. The number of invariant ergodic probability measures is therefore < g.

PROOF. We have seen in the second part of the proof of Proposition 7.9 in
Subsection 7.7 that C() U {0} is a closed cone. That this closed cone is simplicial
follows from the identification of C(y) with M(T) : extremal rays of C(~y) correspond
to ergodic invariant probability measures and invariant probability measures can
be written in a unique way as convex combination of ergodic ones.

It remains to be seen that the subspace E of RA generated by C(y) has di-
mension < g. Let (A, 7) be combinatorial data for T, let Q be the corresponding
antisymmetric matrix.

We first claim that £ N Ker Q = {0}. Indeed, let v,v’ € C(v) such that
v—1v" € Ker Q. Write y(n) for the initial part of 4 of length n. According to the
Proposition in Section 7.6, the vector (v — v’ )B;(ln) depends only on the endpoint
of v(n). On the other hand, from Corollary 7.10 in Subsection 7.7, we have that
v B;&l) and v’ B;(i) go to zero. Hence v = v/, proving the claim.

We now show that the image of E in R4/ Ker € is isotropic for the symplectic
form determined by Q. Otherwise, there would exist v,v" € C(y) with

v QW >0.

Again, v B;(ln), v B;(ln) go to zero. But according to Section 7.6 we have

-1 tp—1 t. .1 _ t
vB,Y(n) Q, By(n) v=vQ %,
where ,, is the matrix associated to the endpoint of v(n). This gives a contradic-
tion; as rk {2 = 2g, we conclude that dim F < g. ]

In the next Section, we see that the bound in the proposition is optimal. How-
ever, as mentioned in Subsection 6.11, a theorem of Masur and Veech guarantees
that C(7) is a ray for almost all i.e.m.

8.3. Examples of non uniquely ergodic i.e.m. [Keal, KeyNew]

We will construct in a Rauzy diagram of genus ¢g an infinite path v which is
an infinite concatenation of complete paths but has the property that the subspace
generated by C(v) has dimension g.

Let d > 2. Define A = {1,...,d} and

D)=k, Bk =d+1-k,
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for 1 < k < d. Let R(d) be the Rauzy class for n(9) = (Wt(d) , Wéd)), D(d)
the associated Rauzy diagram. From Section 4.4, we check that the translation
surfaces constructed from these combinatorial data through the zippered rectangle
construction satisfy :
e ifdiseven,d=2¢g,s=1,k1 =29g—1;
e ifdisodd, d=2g+1,s=2,k =ky=g.
The diagrams D(d) for d = 2, 3,4 have been pictured in Subsection 7.3. Their
structure can be described as follows.
There is a canonical involution ¢ of D(d) defined on vertices by i(r) = 7 with

(k) =m(d+1—-k),
(k) = m(d+1—k) .

The unique fixed point of i is 7(%), and i changes the type of arrows from top
to bottom and back. If one defines

Di(d) = {m € R(d), m(2) = 2}
Dy(d) = {m € R(d) , m(d—1) =2}
then i(Dy(d)) = Dp(d) , ZEDb( )) = Dy(d) , Di(d) N Dy(d) = {r(D} and any arrow

has both endpoints in D;(d) or both endpoints in Dy(d). Moreover, if one defines,
for3<k <d

Dyi(d) ={m e R(d); m(d—1) =2 ,m(k) =2},

then Dy i (d) is isomorphic to Di(k — 1) through an isomorphism which respects
type, winner and loser.

A cycle of length d — 1 of arrows of bottom type starting at (%) connects
together the vertex in Dy (d) corresponding to 7(F=1) in Dy (k — 1).

Let us now assume that d = 2g is even. Consider, for positive integers my,...,m

)

the loop y(my, ..., m,) at (¥ in D(d) whose successful winners are (in exponential
notation for repetition)

(19722m11)d?1(d%*4™23)d> . .. ((d — 3)*(d — 2)™s=(d — 3))d*(d — 1)™

This is a complete loop in D(d).
Assume that 0 < m; < my--- K my and let ey, ..., eq be the canonical basis
of R%. One checks that
e ¢, B, and ey B, have size ~ m; in the approximate direction of f; := es;
e e3B, and eyB, have size ~ my in the approximate direction of fo :=
e4 +e1;
e ¢5B, and esB, have size ~ mgs in the approximate direction of f3 :=
ee + e3 + 2eq;

e ¢q_3B, and eq_2B, have size ~ my_; in the approximate direction of
fo-1:=eaa+eqis+ - +2973
e ¢4_1B, and e4B, have size ~ mg, in the approximate direction of f, :=
ei-1+eq3+--+29 %
Observe that fi,..., f, are linearly independent.
Now take a sequence (my)e~o increasing very fast, define

Yi = 7(mig+17 Mig4+2,--- 7mig+gfl)7

g»
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(@) = yo *x Y1 * Y1,

’Y = ")/0 * "Yl * ...
One checks that for all i > 0 and 1 < k < g, the vectors egr—1 By(;) and ez By
have approximate directions f ; more precisely, as ¢ — oo, their directions converge
to the same limit fy(co0) which can be chosen arbitrarily close to fi. In particular, if
the sequence (my)e~o increases fast enough, the limit directions fx(00),1 < k < g,
are linearly independent, which implies that the vector space spanned by C(v) has
dimension g.

9. Rauzy-Veech dynamics and Teichmiiller flow

We establish in this section a relation between the Rauzy-Veech continued
fraction algorithm and the Teichmiiller flow on the moduli space M(M, X, k) that
generalizes the classical case of the usual continued fraction and the geodesic flow
on the modular surface.

This will also exhibit the moduli space in a form which allows to check that its
volume is finite. Throughout this section, we fix an alphabet A, a Rauzy class R
and denote by D the associated Rauzy diagram.

9.1. Rauzy-Veech dynamics. With
A={AeRY N\, >0, Va € A},

we set

A(D) =R x P(A).
We denote by V. : A(D) — A(D) the map induced by one step of the Rauzy-Veech
algorithm. More precisely, let v : @ — 7’ be an arrow of D. Let ag be the winner
of v and let a; be the loser of v. Define

Ay ={XA€EA; Aoy > Aoy -

Then the domain of V, is the union, over all arrows ~, of the {w} x P(A,) and the
restriction of V. to this set is induced by

(m,A) = (7', AB; ).

Each simplex in A(D) (identified by a vertex 7 of D) contains two components
of the domain of V, (associated to the two arrows starting at ), each being sent
to a full simplex of A(D) (corresponding to the endpoint of the arrow). The map
V4 is therefore essentially 2-to-1.

Introducing the suspension variables 7 leads to a map V which is essentially
the natural extension of V. Let

S(D) = | | ({r} x B(A) x B(©,)),

R
where we recall from Subsection 7.4 that

Or={reRY > 7.>0, > 7.<0,VI<k<d}.
i (a)<k mp () <k

For an arrow v : m — 7' of D, we set

O, ={7 €0, GZTa > 0},
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where e = —1 (resp.e = +1) if 7y is of top type (resp. bottom type). Define then
Sy(D) = {r} x P(Ay) x P(Ox),

SY(D) = {r'} x P(A) x P(©,).
The domain of V : S(D) — S(D) is the (disjoint) union, over all arrows of D, of
the S, (D); the image of V is the (disjoint) union of the S7(D), the restriction of V'
to Sy(D) sends this set in a one-to-one way onto S7(D) through the map induced
by
(m, A\, 1) = (7, )\Bv_l, TBW_l).

The map V is therefore, up to codimension one sets, invertible.

9.2. Rauzy diagrams and Teichmiiller spaces. Let 7 be an element of R.
Recall that the canonical length and suspension data are given by

A =1, 7o = my(a) = m(a), VaeA

With these data, we construct (using the zippered rectangle construction of Subsec-
tion 4.3, or the simplified version of Subsection 4.2) a translation surface
(M, Y, Ky G )

On the other hand, starting from data (A, 7) € A x ©, the zippered rectangle
construction produces a translation surface which is a deformation of (M, X1, kx, Cr),
i.e homeomorphic to (M, Xy, k) through an homeomorphism whose isotopy class
is canonically defined. We therefore obtain a canonical embedding

it A X Or — Q(My, Sr, ki)

in the marked Teichmiiller space. This is an embedding because it is a local section
of the period map.

Let now v : m — ©’ be an arrow of D. The data A\ = A" B,, 7 = 7" pro-
duce a translation surface (M, r, kr, (2); the data A = A% 7 = TCG"B;1 with
the combinatorial data " produce a translation surface (M, Xr/, finr,CL). As ob-
served in Subsection 7.4, these two translation surfaces are canonically isomorphic.
This means that there exists an homeomorphism between the topological surfaces
(M, X0, kr) and (Mg, 30, ke ) whose isotopy class is canonically defined by .
This leads to a canonical homeomorphism

j’y : QV(MF7 271'7 Hﬂ') — @(Mﬂ’7 271'/7 K:TK'/)

between marked Teichmiiller spaces.
Let us observe that the isomorphic translation surfaces (My,Y ,fx,(2),
(M, Y0, s, CL)) above define a point in

in(Ar X O7) N (in (Arr X Opr)).
As a consequence the union
in(Ar X O7) U j (i (Ap X Orr))

is a connected subset of CNQ(MT,, Y, Kr)-

We introduce the groupoid I'(D) of paths in the non-oriented Rauzy diagram
D: the vertices of D are those of D (i.e the elements of the Rauzy class R) but for
each arrow v : 7 — 7/ in D we have two arrows v+ : 7 — 7/ and 4~ : 7/ — 7 in D.
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The groupoid I'(D) is the groupoid of oriented paths in 5, quotiented out by
the cancellation rules y* x4y~ = 4~ x4+t = 1. We denote by I'x(D) the subset of
reduced paths starting at 7 and by 1 (D, ) the group of reduced loops at .

For each arrow v of D, we have defined above an isomorphism j, between
marked Teichmiiller spaces. There is a unique way to extend functorially this
definition to I'(D): for each v € I'(D) starting at = and ending at 7/, we have an
isomorphism

j’y : Q(MTH Eﬂ'? K:TF) — Q(Mﬂ"a ETr’a HTK")?
and jo, sy, = Jrs ©Jv, Whenever «y; 72 is defined. In particular, when v € 7'('1(5, ),
J~ is an automorphism of Q(M;, ¥, k). We obtain in this way a group homomor-
phism
Y j’y )
Wl(ﬁ,ﬂ) — Mod™t (M, %,) .
We now define
Ur = U j—?l(iW’(Aﬂ/ X @ﬂ’)) ’
I'x(D)

where 7’ is the endpoint of v € T'(D). It follows immediately from the observation
at the end of subsection 9.1 that U, is an open connected subset of Q(M, X, k).
We will denote by C, the component of Q(M,, ¥, k) which contains U,.

9.3. The following result shows that, when considering some component C of a
(marked) Teichmiiller space Q(M, X, k), there is no loss of generality if we assume
that (M,X,k) = (Mg, X, kr) (for some appropriate combinatorial data (A,))
and C = C,.

PROPOSITION 9.1. Let (M, X, k) be combinatorial data for a translation surface,
let C be a connected component of the marked Teichmiiller space @(M,Z, k), and
let U be the open subset of C formed by the translation surface structures in C that
can be obtained through the zippered rectangle construction.

(1) The set C —U has real codimension > 2 in C.
(2) There exist combinatorial data (A,m) and a homeomorphism
g (Mp, X kr) = (M,X,K) such that the corresponding isomorphism
g« of marked Teichmailler spaces satisfy
9«(Ux) =U.
(3) Assume that (A',7') are combinatorial data and g' : (Mu/, X0, k) —
(M, X, k) is an homeomorphism such that
g; (uﬂ") cC.

Then, the Rauzy diagrams D, D’ spanned by 7, ©’ are isomorphic. More-
over, assuming that D = D', = = 7', the element of Modt (M, %)
determined by g~' o g’ belongs to the image of the group homomorphism

(D, 7) — Mod™ (M, %)
defined in the last subsection.

REMARK 9.2. Tt is quite possible that this homomorphism is always onto. This
has been checked for g = 1, with any number of marked points, by Wang Zhiren.
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PrOOF. Part 1. of the proposition is a consequence of the Proposition 5.7 and
the Corollary 5.6: if a translation surface structure on (M, X, ) has no vertical
connection or no horizontal connection, it can be represented with the appropriate
marking as a suspension through the zippered rectangle construction. Having both
horizontal and vertical connections is indeed a codimension 2 property: this can
already be seen on each orbit of the SL(2,R) action (for instance).

By definition of ¢, this open set is the union, over all combinatorial data (A, 7),
and all homeomorphisms ¢ : (M, 3, £x) = (M, 3, k) such that g, (i, (Arx0;)) C
C, of the sets g.(ir(Ax x O)). As its complement in C has codimension > 2, the
open set I/ is connected.

Cram 9.3. If (A, m,g), (A", 7', ¢") satisfy

G+ lin(Dr X O7)) ()9l lin (A X O71)) # 0,

then the Rauzy diagrams D, D' spanned by w, © are isomorphic and (assuming
A=A, D="D) either g. "L o g’ or g ' og, is equal to J for a finite oriented
path v in D.

PrROOF. By hypothesis, there are two isomorphic translation surface structures
¢, ¢’ on (M,X, k) such that:

e ( is obtained by the zippered rectangle construction from an i.e.m T acting
on an interval I with combinatorial data (A, 7), length data A, suspension
data T;

e (' is obtained by the zippered rectangle construction from an i.e.m T’
acting on an interval I’ with combinatorial data (A’, 7’), length data \',
suspension data 7’.

Let G : (M,%,k,¢) — (M, %, k,¢’") be an isomorphism. It sends the marked
outgoing horizontal separatrix for ¢ isometrically onto the marked outgoing sepa-
ratrix for (’.

If |I| = |I'|, we can already conclude that T'= T’ and 7 = 7/. Assume for
instance that |[I| > |I’|. Then 7" must be the first return map of T on the interval
of length |I’| with the same left endpoint than I. That T” is obtained from T by
a finite number of steps of the Rauzy-Veech algorithm now follows from Corollary
7.10 in Subsection 7.7 (applying if necessary the same small rotation to both ¢
and ¢/, we may assume that ¢ has no vertical connection) and the last exercise in
Subsection 7.2 O

End of proof of proposition: A first consequence of the claim is that the combi-
natorial data (A, 7) such that g.(ir(Ar x ©,)) C C all belong to the same Rauzy
class (up to isomorphism): otherwise, the set & would not be connected. Once we
know that, both the second and the third part of the proposition are immediate
consequences of the claim. O

9.4. Rauzy diagrams and moduli spaces. Let A, R, D as above. We fix
a vertex 7* of D and denote simply (M +, Xpx, Kypx ), Uns, Coe by (M, X, k), U, C.

It follows from the third part of the proposition that the stabilizer of C (for the
action of Mod™ (M, ¥) on @(M, ¥, k)) is the subgroup image of m1 (D, n*), which
will be denoted by Mody (M, X).
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We now define what amounts to a fundamental domain for the action of
Mody(M, %) on C. For each vertex 7 of D, define

A ={AeA; 1<) A <1+min(Aa,, Ag,) }

where ¢ (ay) = mp(ap) = d.

Consider then the disjoint union, over elements of R, of the A2 x ©, and
perform the following identifications on the boundaries of these sets.

The part of the boundary of AY x ©, where . A, = 1 is called the lower
boundary of A% X O; it is divided into a top half where Y _ 7, < 0 and a bottom
half where ) _ 7o > 0.

The part of the boundary of A% x ©, where > Ao = 1 4+ min(Aq,, Aa,) is
called the upper boundary of AY x ©; it is divided into a top half where Ao, > A,
and a bottom half where Ao, < Ag, .

For each arrow v : @ — 7’ in D, of top type, we identify the top half of the
upper boundary of AY x ©, with the top half of the lower boundary of A2, x O,/
through (A7) — ()\B,f, TB,?I); when ~ is of bottom type, we identify similarly
bottom halves.

We denote by M(D) the space obtained from | | AY x ©, by these identifica-
tions. From its definition in Subsection 9.2, it is clear that the set U is invariant
under Modg (M, 3). The same is true for the smaller set

V= U j;l(iﬂ(Ag X 977)) )

Y€l (D)
where 7 is the endpoint of a path v € I'z« (D).

PROPOSITION 9.4. There exists a unique continuous map
p:V— M(D)

such that for every v € T« (D) (with endpoint ), the composition p o jw_l 0y 1§
the canonical map from A% x ©, to M(D). Moreover, p is a covering map which
identifies M(D) with the quotient of V by the action of Modg(M,X). The setU —V

has codimension 1.

PROOF. Let v be a path in I';« (D) with endpoint 7, and let 79 be an arrow
from 7 to some vertex 7’. The intersection

(zﬁ (AY x ©,) mjw% i (A2, x ©,))

is non empty; if 7 is for instance of top type, it is equal to the image j;l o, of
the top half of the upper boundary of A2 x ©, and also to the image by jv_*lvo 0 Gy
of the top half of the lower boundary of AY, x ©./, the identification between these
halves being exactly as in M(D). Moreover, it follows from the claim in the proof
of Proposition 9.1 that this is the only case where a non empty intersection occurs.
As a consequence, a map p with the property required in the statement of the
proposition exists, is continuous, and is uniquely defined by this property.

From the property defining p, two points in V have the same image under p iff
they belong to the same Modg (M, X) orbit. This implies that p is a covering map.
Finally, let [¢] = j;l 0ix(A,7) be a point of U (with v € I's+ (D), 7 the endpoint of
Y, A€ Ar, 7€ 0O,). If A € A, then [(] belongs to V. Otherwise, Y. A, is either
too large or too small. If it is too large, we apply one step of the Rauzy-Veech
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algorithm unless Ao, = Ay,. If it is too small, we apply one step backwards unless
Yo Ta = 0. ITterating this process, we will end up in V unless we run into one of
the codimension one conditions that stops the algorithm (forwards or backwards).
This proves that ¢/ — V has codimension 1. O

9.5. Canonical volumes. Zorich acceleration. The last proposition allows
us to identify M(D) with a subset of the marked moduli space .//\/lv(M , 2, k) whose
complement has codimension 1. In particular this subset has full measure for the
canonical volume of the moduli space. Observe that, in view of its relation with
the period map, the canonical volume in M(D) is nothing else than the standard
Lebesgue measure d\ dr restricted to each A2 x ©.

The model M (D) for (part of) the moduli space provides us also with a natural
transversal section for the Teichmiiller flow, namely the union over the vertices 7 of
D of the lower boundaries of the AY x ©. Indeed, in each A% x O, the Teichmiiller
flow reads as

A7) (€' Ne Tt T)

and flows from the lower boundary of A x ©, to its upper boundary, being then
glued as prescribed by the Rauzy-Veech algorithm to the lower boundary of some
A?r’ X @ﬂ-/.

When computing volumes, we have to normalize the area A = 7 Q; ‘A. Let
M) (D) be the subset of M(D) defined by {A = 1}. We can identify the set S(D)
of Subsection 9.1 with the transverse section to the Teichmiiller flow in M) (D)

{(F,)\,T)EI—I{TF}XAX@W; Z)\a =1, 7Q, '\ = 1}

With this identification, the return map of the Teichmiiller flow on S(D) is
precisely given by the Rauzy-Veech dynamics V' defined in Subsection 9.1. The
return time is equal to

Al

log -——=7—»
IAB5

where || . ||; is the £*-norm.

Observe that the return time is bounded from above, but not bounded away
from 0. The unfortunate consequence, as we see below, is that the measure of S(D)
is infinite; this already happens in the elementary case d = 2.

In order to get nicer dynamical properties, Zorich [Zo2] considered instead a
smaller transversal section S*(D) C S(D) which still gives an easily understood
return map but has finite measure. For an arrow v : @ — 7’ of top type (resp. of
bottom type), let S(D) be the set of (7, A, 7) € S, (D) such that ) 7, > 0 (resp.
> Ta < 0). Let S*(D) be the union of the S3(D) over all arrows of D.

The return map of the Teichmiiller flow to S*(D), which is also the return map
of V to S*(D), will be denoted by V*. It is obtained as follows: one iterates V as
long as the type of the corresponding arrow does not change. It is easy to check
that it is the same than to ask that the winner does not change.

This property of V* shows the return time for V' to S*(D) does not depends
on the 7-coordinate. One can therefore define a map V;* : A(D) — A(D) such that
V* is fibered over V7.
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ExaAMPLE 9.5. For d = 2, we have
S(D) = {(Aa;AB,7T4,7TB); Aa >0, Ap >0, 74 > 0,75 <0,
A+ A =1, a7 — ApTa = 1},

S{(D) = {(Aa,Ap,7a,78) € S(D); Aa > Ag},
Sy(D) = {(Aa,AB,7a,7B) € S(D); Aa < Ap},

SYD) = {(Aa,AB,7a,7B) € S(D); T4+ 7B < 0},

S*(D) = {(Aa,AB,Ta,TB) € S(D); Ta + 75 > 0},

S:(D) = {()\ )\B,TA, B)GS(D), /\A>)\B; TA+TB>O},
Sy(D) = {(Aa,AB,7a,7B) € S(D); Aa < Ap, Ta+ 75 >0} .

For (Aa, A\p,7a,78) € S¢(D), we have

V(A4 A8, 74, 78) = (Aad5' 1 = Aadg!, ApTa, Ap (7B — Ta)).
For (Aa,AB,7a,7B) € S/ (D), we have

V*Aa, A3, 74, 78) = AaA™H 1 = AAA™ Y ATa, A(T — n74)),

where A = Ap—(n—1)A4, nda<Ap < (n+1DA4q, n =21
On the A-coordinate, V7 is essentially given by the Gauss map.

9.6. Volume estimates: the key combinatorial lemmas. We will present
three volume estimates: two for the measures of S(D) and S*(D) and one for the
measure of M) (D), i.e the integral over S(D) of the return time for the Teichmiiller
flow.

Before doing that, we consider the case d = 2 as an example of what happens
in general. We first integrate over the 7 variables. For a point (Aa, Ap) with
AB > A >0, Ag+Ag =1,

e the integral over {74 > 0,75 < 0, ApT4 — Aa7p = 1} gives )\;11)\;1;
e the integral over {74 + 75 > 0,75 < 0,ApTa — AaTp = 1} gives (A4 +
Ap)"IAG = A5
Formulas for A4 > A >0, A4 + A = 1 are symmetric.
For the measure of S(D), we have therefore to integrate

[

with the pole at 0 making the integral divergent.
For the measure of S*(D), we have to integrate

/% dA
o 1=\
on a domain away from the pole; the integral is equal to log 2.

For the measure of M) (D), the return time is —log(1 — \); the zero at 0
cancels the pole and we obtain

T dA ™
S L S D R
/0 i el =N = 35

The measure of M) (D) is twice this.
We come back to the general case. Again, we want first to perform the inte-
gration over the 7 variables. These variables run over the convex cone ©, but are
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restricted by the area condition. Define as usual «y, ap by m (o) = mp(ap) = d.

Set

hg = Z 73

m(B)<me(a)

hz = — Z Tg,

7 (B) <y (@)
ilfx = Z T8 »
mi(B)<me(a)
o Y

mp(B)<mp(x)

With h = —Q 7 as in Subsection 4.3, we have

ho = hf, + RS, = A + Rl

for all o« € A and hl, + h’, = 0. The suspension conditions are

ht >0

for a # oy, hl <0

for a # ay.

Consider for instance the top half of A = A, where A\,, > A,, (the other case
is symmetric); we write

Na =

hawy =

The area is given by

Aa
Aoy — Aay
ha
hay + ha,-

A=Y Noha = Aaha.

for a # ay,

for a # ay,

We decompose O, into a finite family G(m) of simplicial disjoint cones. Let T’
be a cone in this family, and let 7(1), ...  7(4) be a base of R4 of volume 1 such

that

d
I' = {ZtiTi;ti>0 }
1

Writing M) = —Q 7@ for 1 <i < d, the area condition becomes

d
Zti(z}:aﬁg)) =1,
1 «

and therefore the integral over I' gives

d
ﬁ [H(Zxaﬁfj))]‘l

To get the measure of S(D), we should then integrate this quantity over the
top half of A (normalized by > Ao = 1), sum over I' € G(m), sum over m and
finally add the symmetric contribution of the bottom halves.
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Only the first step presents a finiteness problem. To deal with it, given a proper
subset B of A, we introduce the subspace Ej of R* generated by the 7 in the closure
of ©, such that h, =0 for all « € B ( with again h = —Q 7).

LEMMA 9.6. We have codimEg > #B, and even codimEg > #B when oy € B.

Proor. We will find sufficiently many independent linear forms vanishing on
Ep. Assume first that oy ¢ B. Let 7 be a vector in the closure of ©,, such that

o~

ho =0 for all @ € B. For a € B, we have
ho = ho = h, + hY = b, + R,
with h% >0, h%, > 0 (if a # ), ht, >0, h? > 0.

We have therefore hl, = 0 for a € B, o # a4, and also hl, = 0 for a € B,
m(a) > 1. This gives at least #B independent linear forms vanishing on such
vectors 7, and thus also on Ep (the independence of the forms come from the
triangular form of the R, h!).

Assume now that «p € B. Let 7 be a vector in the closure of ©,, such that
ho = 0 for all @ € B. The relation h,, = 0 implies hy, = hqo, = 0, hence

t b _ b t _
he, +he, = he, +he, = 0.
As we have h, >0, hl, >0, hl, + hl, =0, we conclude that
t b _ b _ gt _
he, = g, = ho, = hg, = 0.
We have therefore
e hb =ht =0forall a € B;
e hl, =hl =0forall a € B.
The first set of relations gives at least #5 + 1 independent linear forms vanishing

on Ep unless m(B) = {1, -+ ,#B}. The same is true for the second set of rela-
tions unless m(B) = {1,--- ,#B}. By irreducibility, the two exceptional cases are
mutually exclusive and the proof of the lemma is complete. O

When we deal with S*(D), we should replace O, by
OL = {1 € O,; ZTO‘ > 0}

when we deal with the top half of A,. We proceed in the same way, decomposing
O, into a finite family of simplicial cones I'*. We now define Ej; as the subspace of

RA generated by the vectors 7 in the closure of ©, such that ﬁa =0 for all « € B.
LEMMA 9.7. We have codimE} > #B for all proper subsets B of A.

Proor. Obviously we have E}; C Ej, therefore the case where oy, € B is given
by Lemma 9.6. We therefore assume that oy, ¢ 5.
Let 7 be a vector in the closure of ©%, such that he = 0 for all a € B. For
«a € B, we have
0=heo = ha = ht, + B = bt + A2,
with hf, > 0, A2 > 0, h% > 0 (because a # ), ht

£ >0 (even for a = ay). We
therefore have

. hf’lzl}bg:OforallaeB,
e hl, =hl =0forall a € B,
and conclude as in Lemma 9.6. O
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9.7. Finiteness of volume for M) (D) and S*(D). The combinatorial
facts proven in the last subsection will be combined with the following simple ana-
lytic lemma. Let

A ={XeRY A0 >0, > Aa=1}
For B C A, define also
AP ={xeA®; A, =0 fora ¢ B}

Consider linear forms Ly, -+, Ly, My,---, My on RA which are positive on A,
and the rational map

Ly L
R: My M,
For B C A, let
my(B) = #{i; Li(\) =0forall A € Ag) I3
m_(B) = #{j; M;(\) =0forall A A},

m(B) = my(B)—m_(B).
LEMMA 9.8. Assume that d + m(B) > #B holds for all proper subsets of A.
Then R is integrable on AM).

REMARK 9.9. The converse is also true but will not be used.

PRrROOF. We decompose A1) as follows: let
N = {n € N4 minn, = 0}.

For n € N, let A (n) be the set of A € AW such that Ay > & if nq =0 and

1 1

—217 e >\, > 27"

¥
if no > 0. We have indeed

AL — |_| AW ()
N
and also
C7tomXne < vol AW (n) < C 27 2na,
Fix n € N. Let 0 = n® < n' < --. be the distinct values, in increasing order,

taken by the n,, and let

Bi={a€A n, = n'}
Let L be a linear form on R4, positive on A(Y). There is a maximal subset B(L) C A

such that L(\) =0 for all A € Ag()L). We have then, for n € N, A € AD(n)

0512_7" <L\ <Cp27™™, with m = min n,.
A—B(L)

The definition of m shows that m > n® iff A—B(L) C B; and m = n® iff Bf C B(L)

but Bf,; ¢ B(L). From this, we see that for n € N, A € AWM (n), we have
Cp'27N < R(\) < Cr27Y,

with

N =3 0t (m(B)) —m(Byy) = Y (n' —n'~") m(B).

i>0 i>0
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Using the hypothesis of the lemma, we have, for ¢ > 0
m(BS) = #Bf —d+1=1—#B,;,
and therefore

N > z:(nZ —nih) — Zni(#gi — #Bit1) = maxng — Zﬂa :
i>0 >0 «
We conclude that the integral of R on A(Y)(n) is at most of the order of 2~ M« Ma,
Summing over A gives the required result. O

We can now prove the finiteness of the measures of M) (D) and S*(D). As
explained in Subsection 9.6, the total masses of these measures are expressed as
finite sums of certain integrals over top or bottom halves of the Agrl). We will
consider the case of top halves, the other case being symmetric. Observe that
the top half of AS) is characterized by the inequalities Xa > 0,Va € A. We will
therefore in both cases apply the lemma above in the \ variables. We don’t
have ZXQ = 1, but observe that > Ao = 1 implies 1 < ZXQ < 1, which is good
enough.

e We start with M) (D). The return time of the Teichmiiller flow to S(D)
is equal to — 1og§an = —log(1 — Ay, ) on the top half of AL,
According to Subsection 9.6, we have to integrate

o lii(l__lf%) TT (=3 R

over the top half of AW The vectors h() = —Q, "7 are obtained here
from vectors 7(Y) generating a simplicial cone I' C .

We apply the lemma above with p = 1, ¢ = d. We take L(\) = Ay, =
Ay, & linear form of the same order than the return time —log(1 — Ay, )-
The linear forms M; are the X, Xa ﬁﬁf)

We check the hypothesis of the lemma. Let B C A be a proper subset.
First, we have m(B) =0 if ap, € B, my(B) =1 if ap ¢ B. Next we have

Ya XQ ng) =0, forall e Ag)

iff ﬁﬁf) = 0 for all & € B. By definition of Ejz, this happens iff 7() ¢
Ei. As the 7 are independent, Lemma 1 in the last subsection gives
m_(B) <d—#Bifa, ¢ B, m_(B) < d—#B if ap, € B. The hypothesis of
the lemma above is thus satisfied, and its conclusion gives the finiteness
of the measure of M) (D).

e We now deal with S*(D). According to subsection 9.6, we have to inte-

grate
d

1 o
- (4 y1-1
s [H(Eaxaha )]
over the top half of ASE). The vectors h(D) = —Q,. t7() are obtained here
from vectors 7(9) generating a simplicial cone I'* C L.

We will apply the lemma above with p = 0, ¢ = d. The linear forms
M; are the $o Ag hY.
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We check the hypothesis of the lemma . For a proper subset B C A,
we have

Ya XQ ng) =0, forall e Ag)

iff ?L((;) = 0 for all o € B. By definition of E}, this happens iff () ¢ Ex.
As the 7 are independent, Lemma 2 in the last subsection guarantees
that there are less than d — #B such indices i. The hypothesis of the
lemma above is thus satisfied, and its conclusion gives the finiteness of
the measure of S*(D).

We have thus proved a first statement in the theorems of Masur and Veech
presented in Subsection 6.11, the finiteness of the volume of the moduli space of
translation surfaces. Except in the simplest cases, it seems difficult to get the exact
value of this volume through this method. Exact formulas for the volumes of the
moduli spaces have been obtained by Eskin and Okounkov [EOK] using a different
approach.

We end this section with the following statement, which is an easy consequence
of the lemma above.

PROPOSITION 9.10. The canonical measure on S*(D) satisfies, for all € > 0
m({(m,\,7) € §*(D); minara < €} < Ce(loge)?=2,
where the constant C' depends only on d.

PROOF. In the context of the proof of the lemma, it is sufficient to observe
that the number of n € N such that max, ne = N is of the order of N%2, O

10. Ergodicity and unique ergodicity

In this section, we complete the proofs of the theorems of Masur and Veech
presented in Subsection 6.11.

10.1. Hilbert metric. Let C be an open set in the projective space PV which
is the image of an open convex cone in RN¥*! whose closure intersects some hyper-
plane only at the origin.

Given two distinct points z,y € C, the intersection of the line through z, y with
C is a segment (a,b). The crossratio of the points a, b, z,y gives rise to a distance
on C called the Hilbert metric on C:

r—a x—0b

do(z,y) = [log B

y—a y—>o
EXERCISE 10.1. Check the triangle inequality.

The following properties are easily verified.

e Let X be a subset of C; then the closure X of X in P¥ is contained in C
iff X has finite diameter for dc.
o If o : PV — P¥ is a projective isomorphism, then, for all z,y € C

dap(C) (@('T)? @(y)) = dc(l’, y)

e If C' C C is a smaller set satisfying the same hypothesis than C, then,
for all z,y € C’

de(z,y) < dco(x,y).
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e If C’ is a set satisfying the same hypothesis than C' and c cc , there
exists k € (0,1) such that, for all z,y € C’

dC(x,y) <k dc/(.’ﬂ,y).

Thus, if ¢ : PY — PV is a projective isomorphism satisfying ¢(C) C C, there
exists k € (0,1) such that, for all z,y € C’ we have

do(e(x), @(y)) < kde(z,y).

10.2. Almost sure unique ergodicity. We prove that, for every combina-
torial data (A, ), and almost every length vector \ € R4, the corresponding i.e.m
is uniquely ergodic.

The set of i.e.m having a connection has codimension 1. Therefore, almost
surely the Rauzy-Veech algorithm does not stop and associates to the i.e.em 7" an
infinite path v starting at 7 in the Rauzy diagram D constructed from (A, ).
According to Subsection 8.1, we have to prove that the closed convex cone C(vyr)
determined by 7 is almost surely a ray.

By Poincaré recurrence of the Teichmiiller flow and Subsection 7.7, for almost
every length vector A, there exists an initial segment v, of v which occurs infinitely
many times in v and such that all coefficients of the matrix B,  are positive. We
write yr as a concatenation

VYT = Vs kY1 X Ys kY2 k0

Let C be the open set in P(R“) image of the positive cone in RA. From the last
property in the last subsection, there exists k € (0,1) such that B, decreases the
Hilbert metric dc at least by a factor k, while the B,,, i =1,2,--- do not increase
dc. The first image C'B,, has closure contained in C hence has finite diameter K
for de. We then have

diam(CB,,4...r,) < Kk'™ 1.
It follows that the image in P(R*) of C(y7) is a point. The result is proved.

10.3. Ergodicity of the Teichmiiller flow. We will prove in this subsection
that the Teichmiiller flow on M) (D) and its return maps V on S(D) and V* on
S*(D) are ergodic. In view of the relation between these three dynamical systems,
the three statements are equivalent. We will prove that V* is ergodic.

From the ergodicity of V and V*, it follows that the maps V. and V} on A(D)
are also ergodic.

By Birkhoff’s ergodic theorem, for every continuous function ¢ on S*(D), there
exists an almost everywhere defined fuction @ such that, for almost every (7, A\, 7) €
S*(D), one has

n—1
1
n_l)rfoo n zo: 90(( ) (71—7 77—)) SD(W7 aT)7
and also
n—1
3 1 *\—m [
nll)rfoo - ; (VY™™ (mw, A\, 1)) =3(m, A\, 7).

To prove ergodicity, it is sufficient to show that % is almost everywhere constant,
for any continuous function .
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Starting from almost every (m, A, 7), one can iterate the Rauzy-Veech algorithm
both forward and backward. This leads to a biinfinite path v = 4™ % 4~ in the
Rauzy diagram D, where v depends only on (7, A) and v~ depends only on (7, 7).

By Poincaré recurrence, for almost every (m, 7), there is a finite path ~, at the
end of v~ such that all coefficients of B,_ are positive and which appears infinitely
many times in 7. Let again C be the open set in P(R“) image of the positive cone
in R4, d¢ the associated Hilbert metric. Let A, \' € Ay; for m >0, let A_,,, \_,
be the respective A-components of (V*)~™(mw, A\, 7), (V*)~™(mw, N, 7). By the same
argument that in the last subsection, we have

lim de(A_m,\_,,) =0.

m——+o00

This implies that, for almost every (w,7), (m, A, 7) does not depend on .

We claim that the same argument works exchanging A and 7, future and past.
For almost every (, \), we want to find a finite path ~, at the beginning of y* which
appears infinitely many times in 4+ (this is guaranteed by Poincaré recurrence) and
satisfies

@WB;: Cc O, U {0}

where 7’ is the endpoint of vs. Then, using the Hilbert metrics relative to the
open sets images in P(RA) of the ©,, we conclude in the same way as above that,
for almost every (m, A\, 7), @(m, A, 7) does not depend on 7. Thus, almost surely,
@(m, A\, 7) does not depend on A and 7. But @(m, A, 7) is also V*-invariant, therefore
it must be almost everywhere constant.

It remains to prove that, almost surely, some initial path v, of 4+ satisfies
©:B;!' C O, U{0}. This is a consequence of the following result.

LEMMA 10.2. If a finite path v in D, from a vertex 7 to a vertex n', is the
concatenation of 3d — 4 complete paths, then we have

ray —1
@”Bl C O, U{0}.

PROOF. For combinatorial data 7 and 7 € R4, we write as before

W= Y 1 Who=- > 7 ho = ht, + hE.
m(B)<me(a) Ty (B)<mp ()
We write 71,72, -+ ,¥m for the successive arrows of 7.
Starting from 7 =: 7° with a nonzero vector 70 € R4 satisfying
(10.1) &t >0 for 7l(a) < d, %Y >0 for md(a) < d,
we have to show that
(10.2) R™t >0  for 7" (a) < d, R >0 for m(a) < d,

where 7; is the endpoint of v; and k%!, h7? are calculated from 77 := Tj’lB;jl.
The heigth vectors h? are column vectors related by
- -
b’ = B, b
and their entries are nonnegative. Let m’ < m is the smallest integer such that the

initial part 1 * - * v,/ of 7 is the concatenation of 2d — 3 complete paths. By
Proposition 7.12 in Subsection 7.7, we have

(10.3) hi, >0, Vae AVj=m.
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If ~; is of top type, one has 7rg = 7r§‘71 and
(10.4) ALt =hpi"bt if 7 (a) < d,
(10.5)  hLb =hi~bb, if 777" (@) < d, and 7}~ (a) < d,
(10.6) Y with @} () = 7 Hw) = d,
(10.7)  hLP=hITVP 4RI with ) ' (a.) =d — 1.

Let '(5) (resp. €°(j)) be the largest integer ¢ such that kit > 0 for @l (a) < ¢
(resp. h%® > 0 for ’R’g () < £). We want to show that ¢!(m) = ¢*(m) = d. This
implies the required conclusion.

We always have (trivially) £¢(j) > 1, £°(j) > 1. Assume for instance that ~;
is of top type as above. Then relation (10.4) and 77 = 77~ imply that ¢f(j) >
G —1). T (oy) = Wg__l(at) > (5 — 1), we have £°(j) > ¢°(j — 1) from (10.5).
On the other hand, if 7} (o) < €°(j — 1) and j > m/, it follows from relations
(10.3),(10.5),(10.6),(10.7) that £°(j) > ¢°(j — 1). We first conclude that ¢, ¢* are
non-decreasing functions of 7 > m/.

Let m’ < mg < my < m be such that v, * - * ym,—1 is complete. Observe
that there is a letter ya such that 7(,a) = 1 for all vertices w of D. Let mg < j < mq
such that pa is the winner of ;. Then ; is of top type so, in the notations above,
we have yoo = az, 1 = 7] (a;) < £°(j — 1) and £°(j) > £°(j —1). As we can find d — 1
disjoint such complete subpaths between m’ and m, this shows that £*(m) = d.
The proof that ¢!(m) = d is symmetric. O

The proof of ergodicity is now complete. We recall the full statement.

THEOREM 10.3. The maps V' (on S(D)), V* (on S*(D)),Vy and Vi (on A(D))
are ergodic. The restriction of the Teichmiiller flow to any component of the marked
moduli space M) (M, %, k) is ergodic. The action of SL(2,R) on any such com-
ponent is therefore also ergodic.

11. Lyapunov exponents

The remaining sections are planned as introductions to further reading. The
results are presented mostly without proofs. In this section, we introduce the
Kontsevich-Zorich cocycle [Kon] and present the results of Forni [For2] and Avila-
Viana [AvVil].

11.1. Oseledets multiplicative ergodic theorem. Let (X, B, 1) be a prob-
ability space, and let T : X — X be a measure-preserving ergodic transformation.
Let also

A: X — GL(d,R)

be a measurable function. We assume that both log ||A|| and log ||A~}|| are inte-
grable. These data allow to define a linear cocycle

X xRY— X xR?
(z,v) — (Tx, A(x)v).
Iterating this map leads to consider, for n > 0, the matrices

AW (z) = AT 'z) - A(z).
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When T is invertible, one can also consider, for n < 0
A () = (AT(Ta) ™ = (A(T") - (AT )

To state Oseledets multiplicative theorem, we distinguish the case where T is
invertible, which allows a stronger conclusion, from the general case.

THEOREM 11.1. (Oseledets [Os])

1. The invertible case: There exist numbers Ay > --- > A, (the Lya-
punov exponents) and, at almost every point x € X, a decomposition

RY=Fi(z)®--- @ F(z)
depending measurably on x, which is invariant under the action of the
cocycle
A(z)Fi(x) = F;(Tx)
and such that, for 1 <i<r, v e Fy(z), v#0, one has
1
lim —log|[A™ (z)v|| = A

n—too n

2. The general case: There exist numbers A\ > --- > A\, and, at almost
every point x € X, a filtration

RY = Ey(z) D Ey(z) D -+ D E.(x) = {0}

depending measurably on x, which is invariant under the action of the
cocycle

A(x)E;(z) = E;(Tx)
and such that, for v € E;_1(xz) — E;(x), one has

1
lim ﬁlogHA(")(x)vH =\

n—-+o0o
Remarks

(1) In the invertible case, one obtains the second statement from the first by

setting
Ei(z) = ©i11 F(2).

(2) When A is independent of x, the Lyapunov exponents are the logarithms
of the moduli of the eigenvalues of A and the F; are the sums of the
corresponding generalized eigenspaces.

(3) The statements above require obvious modifications for continuous time,
i.e for flows and semiflows.

11.2. The Kontsevich-Zorich cocycle (discrete version). Let R be a
Rauzy class, D the associated Rauzy diagram.

We have defined in subsection 9.1 the map V. on the space A(D) which is the
dynamics in parameter space defined by the Rauzy-Veech algorithm. There is a
partition mod.0

AD) = J{r) x B(A,)

over arrows 7y : ™ — © of D, such that on {7} x P(A,), Vy is given by
VJr(ﬂ—a)‘) = (le)‘B;l) .
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The (extended) Kontsevich-Zorich cocycle is the linear cocycle Vi gz :
A(D) x R* — A(D) x R4 over V. defined on {r} x P(A,) x R4 by

Vi kz(m A w) = (Vi(m,\), Byw).
Over the accelerated Zorich dynamics VS on A(D), we similarly define
Vi kz(m A w) = (VE(m, A), By w),

where v is the path in D (formed of arrows of the same type, having the same
winner) associated to a single iteration of V* at the point (7, \) under consideration.

The extended Kontsevich-Zorich cocycle has a natural interpretation in terms
of Birkhoff sums. Let T be an i.e.m with combinatorial data 7, length data A, acting
on an interval I. Assume that T has no connection. Let T,, (with combinatorial
data 7(™, length data A\("), acting on an interval 1" C I) be the i.e.m obtained
from T after n steps of the Rauzy-Veech algorithm.

For any function ¢ on I, one can associate a new function Sy on I™ by

SWe@) = > (T (x)),

0<i<r(x)

where 7(z) is the return time in I of x € 1™,

Let w € R4, Consider w as the function on I which takes on I’ the constant
value wo. Then it is easy to see that the function S w is constant on each interval
L&n)’t C I™ and thus can also be considered as a vector in RA. Tt follows from the
properties of the matrices B, ) mentioned at the end of section 7.5 that one has

T gz (m A w) = (™A §Ma).

As was mentioned in subsection 7.6, for any arrow v : m — 7, the image of
Im Q, under B, is equal to Im €,/. One obtains the restricted Kontsevich-Zorich
cocycle by allowing only, in the definition of V4 k7 or VI x ,, the vector w to vary
in Im Q.

When necessary, the Kontsevich-Zorich cocycle (in its extended or restricted
version) can also be viewed as a linear cocycle over V or V*. This is important
when one wants to use the Oseledets theorem for invertible maps.

11.3. The Kontsevich-Zorich cocycle (continuous version). The con-
tinuous version of the Kontsevich-Zorich cocycle is defined over the Teichmiiller flow
(Tt)ter (on the moduli space M(M, X, k), or the marked moduli space .//\/lv(M, ¥, R))
in the following way.

Consider for instance the case of the marked moduli space. Recall that we
denote by Q(M , 2, k) the associated marked Teichmiiller space. On the product
Q(M,%, k) x HY(M — ,R), we define a linear cocycle over the Teichmiiller flow
on Q(M, 3, k) by

T2(¢,0) = (Ti(€), 6).
The modular group Mod(M, X) acts in a non trivial canonical way on both factors
of the product @(M, ¥, k) x HY(M —X,R). The quotient is a vector bundle over the
marked moduli space M (M, %, k), equipped with a flow fibered over the Teichmiiller
flow: this flow is the continuous version of the extended Kontsevich-Zorich cocycle.
One gets the restricted version by restricting the fiber to the subspace H'(M,R) C
HY(M — %, R).



INTERVAL EXCHANGE MAPS AND TRANSLATION SURFACES 51

Let us explicit the relation between the discrete and continuous version of the
KZ-cocycle.

Let (m, A, 7) be an element of S(D), viewed both as (cf. Subsection 9.1) the
domain of the natural extension of the Rauzy-Veech dynamics and as (cf. Subsec-
tion 9.5) a transverse section to the Teichmiiller flow in M) (D). Let w € RA. Let
(M, %, k,¢) be the translation surface obtained from (m, A, 7) by the zippered rec-
tangle construction. As seen in Subsection 4.5, this construction provides us with
a canonical basis ((4)aca of the homology group Hy(M,X,Z). We associate to w
the homology class (. = Y, wala € Hi(M,X,R), which can also be viewed as a
cohomology class in H'(M — X, R) from the duality provided by the intersection
form.

We assume that (M, X, k, () has no vertical connection. From (7, A\, 7) viewed
as a point in MM (D) € M(M,X, ), we flow with the Teichmiiller flow during
a time ¢ to a point (7', N, 7") € M) (D). The continuous Teichmiiller trajectory
corresponds to a path 7y from 7 to 7’ in D. As seen in Subsection 7.4, the translation
surface (M, X, k, ¢) is canonically isomorphic to the translation surface constructed
from the data (7/,e” '\, et7’). This isomorphism and the combinatorial data 7’
provides another basis ((,)aea for Hy (M, X, Z) (or HY(M —X,7)). We express (y,
as Cuw =y, wh(,. Then, we have

I
w' = Byw.

The two versions of the KZ-cocycle are thus seen to be equivalent.

11.4. Lyapunov spectrum of the Kontsevich-Zorich cocycle. We start
with some simple observations which follow from Subsections 7.6, 9.7 and 10.3.

It follows from the proposition in Subsection 7.6 that one can choose, for each
vertex m of D, a basis for the quotient space R*/Im Q,, in such a way that, for
every arrow y : ™ — 7/, the homomorphism from R4 /Im ,; to R*/ITm Q. induced
by B, corresponds to the identity matrix in the selected bases.

As a consequence, vectors in these quotient spaces stay bounded under the ac-
tion of the KZ-cocycle. It follows that 0 is the unique Lyapunov exponent associated
with this part of the KZ-cocycle. The multiplicity of this exponent is s—1 = d—2g.

By the Masur-Veech theorem stated in Subsection 6.11 and proved in Subsec-
tions 9.7 10.3, the canonical measures on M(M, X, k) and M(M, %, k) have finite
total masses, and the Teichmiiller flow is ergodic with respect to these invariant
measures. As seen in Subsection 9.7 and first proved by Zorich, the canonical invari-
ant measure on M (M, %, k) induces on S*(D) a finite measure which is equivalent
to Lebesgue measure and invariant under V*. This measure can be projected to
A(D) to obtain a finite measure, equivalent to Lebesgue measure, which is invariant
under V.

We can thus apply the Oseledets theorem to the restricted KZ-cocycle, either
in the continuous version over the Teichmiiller flow or in the discrete version over
V*or V.

However, one has first to check the integrability condition of Subsection 10.1
We do that for the discrete version of the cocycle. From the definition of the Zorich
acceleration V7 of the Rauzy-Veech dynamics, the norm of the matrix B, defining
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the KZ-cocycle at a point (m, A) is bounded by

>0 Ao
1B,)| < C Zam

The same estimate holds for the inverse of this matrix. But the proposition
at the end of Subsection 9.7 states that the majorant in the inequality above is
larger than A on a set of measure at most A~1(log A)?~2, which easily implies the
required integrability.

Observe that the same computation shows that the return time for the Te-
ichmiiller flow on S*(D) is integrable. By Birkhoff’s ergodic theorem, the mean
value 0} over S*(D) of this return time has the following property: for almost any
point in ¢ € MV(M, 3, k), we have
1 1
Jlim 5 #{1 € 0.T] TiO € 5 (D) = 5

As a consequence, the Lyapunov exponents for the discrete KZ-cocycle over V*
or Vi are proportional by a factor 07 to those of the continuous KZ-cocycle over

T.

EXERCISE 11.2. Show that the largest Lyapunov exponent of the continuous
KZ-cocycle over T is equal to 1, and that the largest Lyapunov exponent of the
discrete KZ-cocycle over V* or V is equal to 67.

EXERCISE 11.3. Use the ergodicity of V} to show that the largest Lyapunov
exponent of the KZ-cocycle is simple.

Let v : # — 7’ be an arrow of D. We have also seen in Subsection 7.6 that,
when we equip Im Q, and Im 2, with the symplectic structures defined by €,
2 respectively, the restriction of B, to Im {2, is symplectic. This implies that the
Lyapunov spectrum (i.e the Lyapunov exponents, counted with multiplicities) of the
restricted KZ-cocycle is symmetric with respect to 0: counted with multiplicities
the Lyapunov exponents of the continuous restricted KZ-cocycle have the form

1:01>922...99299+1:—992...2929_1:—92>9292—1,

the Lyapunov exponents for the discrete restricted KZ-cocycle over V* or V being
the 7 := 67 6;.

Kontsevich and Zorich conjectured that all Lyapunov exponents of the re-
stricted KZ-cocycle are simple. In particular, this stipulates that 0, > 0,41 = —0,,
hence that the restricted KZ-cocycle is hyperbolic in the sense that it does not have
0 as Lyapunov exponent. Forni then proved the hyperbolicity of the restricted
KZ-cocycle before Avila and Viana proved the full conjecture of Kontsevich and
Zorich.

THEOREM 11.4. (Forni [For2, Kri]) The restricted Kontsevich-Zorich cocycle
is hyperbolic.

The (Lyapunov) hyperbolicity of the KZ-cocycle holds w.r.t the invariant mea-
sure equivalent to Lebesgue measure, but not to any invariant measure.

EXERCISE 11.5. In the Rauzy diagram with ¢ = 2,d = 4, find a complete
loop 7 such that B, has two eigenvalues of modulus 1.

Observe that when g = 2, Forni’s theorem already implies that the Lyapunov
spectrum of the KZ-cocycle is simple. For higher genus, we have
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THEOREM 11.6. (Awila-Viana [AvVil, AvVi2]) The Lyapunov spectrum of
the restricted Kontsevich-Zorich cocycle is simple.

The proofs of both theorems (Avila-Viana’s approach is quite different from
Forni’s) are beyond the scope of these notes.

The Lyapunov exponents of the restricted discrete KZ-cocycle over V* and
Vi are the same. The conclusions of the Oseledets theorem are however slightly
different.

e For almost every (m, A\, 7) € S*(D), there exists a direct sum decomposi-
tion into 1-dimensional subspaces

ImQ, = @9F;(m,\,7),
such that, for w € F;(m, A, 7), w # 0, we have, writing (V5 ,)" (7, A\, T, w) =
(V)" (m, A7), wy)

lim —l [wn] =0;.
n—too n || H

e For almost every (m, A\) € A(D), there exists a filtration
ImQ, = Eo(m,A) D Eq(m,A) D ... D Egy(m, \) = {0},
with codim F;(w, A) = 4, such that, for w € E;_1(mw, \) — E;(m, A), writing
(Vj’KZ)"(W,/\,w) = ((Vi)™(m, A),wy), we have

lim  Llog 1l _ ge
w oo %8 ]

For almost every (m,A\,7) € S*(D), and every 0 < i < 2g, the direct sum

; ﬂlF (m, A, 7) is independent of 7 and equal to E;(7, A). Symmetrically, for almost

every (m,A\,7) € S*(D), and every 0 < ¢ < 2g, the direct sum @} F;(m, A\, 7) is
independent of \.

When one considers (assuming s > 1) the extended KZ-cocycle over V* or

V', one obtains moreover
e In the invertible case, a subspace Fi(m, A, 7), which complements Im Q.
and has dimension s — 1, associated to the exponent 0;
e In the non invertible case, the subspaces associated to the positive expo-
nents are the

Ef(m,A\) == Ej(m,\) @ Fu(m, A\, T), vo<i<yg,

which satisfy codim E}(m, A) = i. The subspace associated to the expo-
nent 0 is

E*(m,A) = Fy(m, A\, 7) ® Eg1(m, N),
and those associated with the negative exponents 0}, g < ¢ < 2g are the

Ei(ﬂ', A)

11.5. Lyapunov exponents of the Teichmiiller flow. Recall that S(D)
was identified in Subsection 9.5 with the transverse section to the Teichmiiller flow

in MM(D)
{(m, A\, 1) |_|{7T}><A><@,r, Z/\ L, 7Q: '\ = 1},
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the return map being given by the Rauzy-Veech invertible dynamics V. Thus,
a number of iterations of V', associated to a path v : 7 — 7’ in D, correspond to
the Teichmiiller time

Al 1
log————— = —log|| A B, |1
||)‘Bll||1 ‘ ol ||
and to the return map
—1
(m, A7) (', ——=— || A B, 7 B7Y).
1A By s * *

From Subsection 7.6, we know that the action of B} I on row vectors in Ker €2,

is neutral and the action on the quotient RA/Ker Qr ~ ImQ, is given by B,.

From this we deduce immediately the Lyapunov exponents of the Teichmiiller flow
on M (D) (with respect to the canonical invariant measure)

e There are, counted with multiplicities, d — 1 = (29 — 1) + (s — 1) positive
Lyapunov exponents which are the simple exponents

2:1+91>1+92>...>1+92971

and, when s > 1, the exponent 1 (between 1+ 6, and 1 + 6,,) with
multiplicity s — 1.

e There are symmetrically d — 1 = (29 — 1) + (s — 1) negative Lyapunov
exponents which are the simple exponents

140> ...> 140351 > 140, =-2

and, when s > 1, the exponent —1 with multiplicity s — 1.

e Finally, the exponent 0 = 1 + 0y, = —1 4 61 was killed by the normaliza-
tion conditions on A and 7, but is still present with multiplicity 1 in the
direction of the flow.

e When considering the flow in M (D), the exponent 0 has multiplicity 2
because the foliation by the levels of the area map A is invariant.

e The strong local stable manifold of a point (7, A9, 79) € M(D) has equa-
tion {\ = Ao, (T —70) Qr ‘Ao = 0}. Similarly, the strong local unstable
manifold has equation {7 = 79, 79 Qr ‘(A — o) = 0}.

11.6. Deviation of ergodic averages. Let T be an i.e.m with combinatorial
data (A, 7) and domain UI’. Given a point g, a letter @ € A and an integer k,
denote the number of visits to I, of the orbit of zo up to time k by

Xa(k) = #{i€[0,k); T"(x0) € I} -

How do these numbers behave as k goes to +00? This was one of the questions
that led Kontsevich and Zorich to introduce their cocycle.

A first answer is provided by Birkhoff’s theorem: by the theorem of Masur and
Veech, for almost all length data A, T is ergodic w.r.t Lebesgue measure. Therefore,
for such a T', one has , for all & € A and almost all x

. 1
Jim Xk = 74 = e

A slightly better answer is obtained by using that, by the same theorem of
Masur and Veech, almost all T' are actually uniquely ergodic. Indeed, if f is a
uniquely ergodic minimal homeomorphism of a compact metric space X and ¢ is
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a continuous function on X, the convergence of the Birkhoff sums of ¢ holds for
any initial value xg and is uniform in xy. Here, T is not a homeomorphism and the
characteristic function of I, is not continuous but this is not a problem in reason
of the following trick.

Split any point in the forward orbit of the singularities of 7~! and the backward
orbit of the singularities of T into its left and rlght limit. One obtains, equipped
with the order topology, a compact metric space I. The i.em T induces on I a
homeomorphism T which is easily seen to be uniquely ergodic when T is. Also,
the interval I, corresponds to a clopen set in T so its characteristic function is
continuous.

A much more precise answer on the speed of convergence of the %xa(k:) is
obtained using the KZ-cocycle.

Assume that T' has no connection. Let (1), be the intervals of induction
for the Rauzy-Veech algorithm, (7,),,>0 the corresponding i.e.m, w € R4, Viewing
w as the function on LI}, with constant value w, on I’ the Birkhoff sums of w are
given by

Skw(zo) Z WaXa(k

On the other hand, we have seen in Subsectlon 11.2 that the KZ-cocycle is directly
related to the Birkhoff sums S(™w of w corresponding to the return to I(™).

In order to relate Syw(wg) to the S(™w, we introduce the point z* of the
orbit {T7(z0); 0 < j < k} which is closest to the left endpomt of I. We consider
separately in Spw(zg) the part of the sum which is before z* and the part which is
after x*. Thus, we have just to consider Birkhoff sums S;w(z*) (with j € Z).

Consider such a sum S;w(z*), with for instance j > 0 (the case j < 0 is similar).
In the orbit {T%(z*); 0 < £ < j}, there exists a unique subsequence (%)o<s<r =
(T7:(x*))ogs<rs and a sequence (ns)ocs<r With the following properties:
O=jo<n<...<jr=7;
0<n.<...<ng;
the point x% belongs to I for 0 < s < 7
the point 2% does not belong to I™s*1) for 1 < s < r;
the point T*(z*) does not belong to I(™) for 1 < s <7, js_1 < £ < js;
This means that the sum Z;:ll w(T*(z*)) corresponds to a first return in I(™),

Writing ., for the letter such that z*_, € 15

, we have
Sjw(a®) =3 (ST w)a,
1
As the return time of T}, in I(»*1) is 1 or 2, we have actually ng > ny > ... > n,.
On the other hand, assume that the data (m,\) of T are typical for Oseledets
theorem applied to the KZ-cocycle; when w € Ef(w, \) for some 0 < i < g (resp.
w € E;(m,A)), one has

lim su 4log|\5(”)w|| =6,
P log S]]
. log [|S™w||
(resp. lim sup W =0.)

From this, one obtains the following result
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THEOREM 11.7. [Z03] For almost every i.e.m. T = Ty 5, and all x € I, one

has
log [y (z)| _

lim sup W X 67;_;,_1
if we Ef(m,\) for some 0<i<g and
1
Jim sup 8IS _
log k

if w e B (m, ).

There is a similar interpretation of the KZ-cocycle in terms of the way that the
orbits of the vertical flow of a typical translation surface wind around the surface:
see [Zol, ZoA4].

12. The cohomological equation

We present in this section the main result of [MmMSsY]. Let f : X — X be a
map. The cohomological equation associated to this dynamical system is
¢ © f - w =¥,
where @ is a given function on X (usually assumed to have some degree of smooth-

ness), and ¢ is an unknown function on X (generally required to have another
degree of smoothness).

12.1. Irrational numbers of Roth type.

DEFINITION 12.1. An irrational number « is of Roth type if, for every € > 0,
there exists C' = C. > 0 such that, for every rational %, one has

C
q2+a '

\a—§\>

The reason for the terminology is the celebrated result
THEOREM 12.2. (Roth) Every irrational algebraic number is of Roth type.

Let a = [ap; a1, . ..] be the continuous fraction decomposition of the irrational
number «, and let (f;—:) be the associated convergents of a. Then « is of Roth type
iff gop1 = O(gLTe) for all € > 0; this can be reformulated as a, 11 = O(g:) for all
e>0.

The set of irrational numbers of Roth type has full Lebesgue measure: indeed,
for every ¢ > 1, C > 0, the set of a € (0, 1) such that

C
q2+s

|a—1—)|<
q

for some p € Z has measure < 2C¢~'~¢ and the series Zq>1 q~'7¢ is convergent.
Standard methods of harmonic analysis allow to prove the following fundamen-
tal result, where R, denotes the rotation z — =+« on T.

THEOREM 12.3. Let o be an irrational number of Roth type and let r, s be
nonnegative real numbers with r — s > 1. For every function ¢ € C"(T) of mean
value 0, there exists a unique function » € C*(T) of mean value 0 such that

poRy — =0
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12.2. Interval exchange maps of Roth type. Let T be an interval ex-
change map, (A, ) its combinatorial data; denote by R the Rauzy class of 7 and
by D the associated Rauzy diagram.

We assume that T" has no connection. The Rauzy-Veech algorithm applied to T’
produces an infinite path v in D starting from 7. From Proposition 1 in Subsection
7.7, the path v is co-complete. We can therefore write in a unique way v as a
concatenation

’y:’}/l*’}/Q**’yn*
where each ~; is complete but no strict initial subpath of v; is complete. We write
~v(n) for the initial part

F(n) =1 kYo k.. kY,
of ~.

We say that T is an i.e.m of Roth type if it satisfies the three conditions (a),
(b), (c) below.

(a): For every € > 0, there exists C = C. such that, for all n > 0, one
has
1By, [l < ClIByn-pll*

EXERCISE 12.4. Let  — x + a be an irrational rotation on T and let
T be the associated i.e.m with two intervals. Show that « is of Roth type
iff T satisfies condition (a).

Let A € R* be the length data of T and let By = {}__ A\awa = 0}; this
hyperplane of R“ should be viewed as the space of functions w, constant
on each I!, of mean value 0.

(b): There exists > 0, C > 0, such that, for all n > 0, one has
1Byl < OByl

EXERCISE 12.5. Show that condition (b) is always satisfied when d =

EXERCISE 12.6. Show that condition (b) implies that 7' is uniquely
ergodic.

EXERCISE 12.7. Assume that T satisfies the following reinforcement
of condition (a): there exists C' > 0 such that ||B,, || < C for all n > 0.
Show that this imply that T satisfies condition (b).

EXERCISE 12.8. Show that the condition of the last exercise is satisfied
iff the orbit of (7, A) under V is relatively compact in A(D).

In order to state part (c) of the definition of Roth type i.e.m, we
define, for £ > k
’7(]{7,€> = Vk4+1*... %Y
and introduce, for k > 0

log || B w
E*(k) := {w € RA; limsup M < 0}.
(100 10g|| Byl
Observe that E*(k) is a vector subspace of R which is sent by By k.0
onto E*(¢). Denote by B,Zl the restriction of B, ) to E*(k) and by B,z’@

the map from R4/E*(k) to RA/E*(¢) induced by B p).-
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(c): For every e > 0, there exists C = C. such that, for oll £ > k, we
have

IBLl < ClByyll,
IBE)TYU < ClByll

Assume that p is a probability measure which is invariant under the dynamics V/
generated by the Rauzy-Veech algorithm or the accelerated version V*. Assume also
that the integrability condition of Oseledets’s theorem is satisfied by the Kontsevich-
Zorich cocycle w.r.t . For instance, i could be the canonical V*-invariant measure
absolutely continuous w.r.t Lebesgue, or could be supported by a periodic orbit of
V' (or more generally a compact V-invariant subset of A(D)).

Then, property (c) is satisfied by p-almost all T. The spaces E*(k) are the
stable subspaces associated to the negative Lyapunov exponents (relative to u) and
the estimates in (c) follow from the conclusions of Oseledets’s theorem.

Property (b) is also satisfied by p-almost all T. Indeed, the largest Lyapunov
exponent for p is simple, with associated hyperplane equal to F; (the simplicity
of the largest exponent for p is proven from the positivity of the matrices B as in
Subsection 10.2).

Regarding property (a), no general statement w.r.t any invariant probability
as above is known. On the other hand, with respect to the canonical V*-invariant
measure absolutely continuous w.r.t Lebesgue, (or equivalently w.r.t Lebesgue mea-
sure), almost all T satisfy property (a): this follows from a stronger statement that
will be presented in Section 14 We thus obtain

PROPOSITION 12.9. For any combinatorial data (A,7), and Lebesque almost
any length vector A, the i.e.m T constructed from these data is of Roth type.

12.3. The cohomological equation for interval exchange maps. The
first and decisive breakthrough concerning the cohomological equation for i.e.m of
higher genus was obtained by Forni [Forl]. He actually works with the (nonzero)
constant vectorfields X on a translation surface (M, X, k, {) for which the cohomo-
logical equation takes the form

XU =09.

He defines from the flat metrics associated to the structure of translation surface a
family H*(M) of Sobolev spaces and obtains the following result

THEOREM 12.10. (Forni [Forl, For3]) Let k > 0 be an integer and r, s be real
numbers satisfying s —3 > k > r. For almost all constant unit vectorfields X on
(M, %, k,C), and all functions ® € H*(M) satisfying D.® =0 for all D € T%, there
exists ¥ € H"(M) such that X.U = ®. Here, T% is the finite-dimensional space of
X -invariant distributions in H—*(M).

A slight drawback of Forni’s theorem is that no explicit description of the set
of ”good” directions for which it is possible to solve the cohomological equation is
given. This is addressed by the next result.

Let T be an interval exchange map, (A,7) its combinatorial data, LI, the
domain of T. We denote by BV(UI) the Banach space of functions ¢ on LI,
with the following properties

e the restriction of ¢ to each I! is absolutely continuous and its derivative
is a function of bounded variation;
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e the mean value of the derivative Dy over UI is 0.

REMARK 12.11. The first property implies that the limits ¢((uf)™) (for 0 <
i <d)and ¢((u})”) (for 0 < i < d) exist, where ug = ufj, ug = ulj are the endpoints
of the domain of ¢ and v} < ... < ug_l are the singularities of T'. Then the second

condition is
d—1

i(w((lﬁ)*) — () 7)) +¢(ug) — plug) =0.
1

THEOREM 12.12. [MmMSY]| Assume that T has no connection and is of Roth
type. Then, for every function ¢ € BVL(UIL), there exists a bounded function 1
on UIL and a function x which is constant on each It such that

Yol —h=¢p—x

REMARK 12.13. The solution (¢, x) of the equation is unique if one restricts
1, x to smaller subspaces. More precisely, let Er be the subspace of R4 formed of
the functions ¥, constant on each IY, which can be written as 1) o T' — v for some
bounded function t; let E}. be a complementary subspace of Er in RA. Then,
under the hypotheses of the theorem, one can find a unique pair (¢, x) satisfying
moreover that i) has mean value 0 and that x € £7. The quotient space RA/Er
can thus be seen as the obstruction to solve the cohomological equation for the

smoothness data under consideration.

As the derivative of T'is 1 on each I’ , differentiating the cohomological equation
leads to the same equation for derivatives of ¢, 1, with only constants of integration
to keep under control. A result on the cohomological equation in higher smoothness
is therefore easily deduced from the basic result above.

For r > 1, let BV} (UI!) be the space of functions ¢ on UI{, such that

e the restriction of ¢ to each I! is of class C"~1, D" "1y is absolutely con-
tinuous on I, and D" is a function of bounded variation;

e the mean value of the derivative D7 over UIY is 0 for every integer
0<jg<r.

On the other hand, let I be the interval supporting the action of T". Denote for
r > 2 by C"~2+LP(T) the space of functions v on I which are of class C"~2 on all
of I and such that D"~2¢ is Lipschitz on I.

Finally, for » > 1, let E(r) be the space of functions x on UI!, such that

e the restriction of y to each I’ is a polynomial of degree < 7;
e the mean value of the derivative D7x over LI is 0 for every integer
0<y<r.

One has then

THEOREM 12.14. Assume that T has no connection and is of Roth type. Let r

be an integer > 2. Then, for every function ¢ € BV (UIL), there exists a function
Y € CT=2HUP (1) and a function x € E(r) such that

Yol —p=p—x
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12.4. Sketch of the proof. We give some indications about the steps of the
proof of the theorem.
We want to use the following classical result.

THEOREM 12.15. (Gottschak-Hedlund) Let f be a minimal homeomorphism of
a compact metric space X, let xg be a point of X, and let ¢ be a continuous function
on X. The following are equivalent:
(1) The Birkhoff sums 2371 o fi(xg) are bounded.
(2) There exists a continuous function ¥ on X such that
Yof—v=e.
By splitting each point in the orbits of the singularities of 7" and T~ into its
left and right limit, one obtain a compact metric space I on which T induces a
minimal homeomorphism. Moreover, every continuous function v on I induces a
bounded function on I. Therefore, in view of the theorem of Gottschalk-Hedlund,
it is sufficient to find, for every ¢ € BVi(uI};), a function y, constant on each I’,
such that the Birkhoff sums of ¢ — x are bounded.

Let BV(UI!) be the Banach space of functions ¢; of bounded variation on LT,
equipped with the norm

lle1llpy = sup|pi(x)] + |e1lBY,
urt

E Var]& @1 -
(63

Let 1" = UI% (") = I be the interval of induction for the step of the Rauzy-
Veech algorithm associated to the initial path v(n) of v (notations of Subsection
12.2). A simple but crucial observation, in the spirit of the Denjoy estimates for
circle diffeomorphisms, is that, for p; € BV(UIY), the Birkhoff sum S ¢; cor-
responding to returns in (™ (see Subsection 11.2) satisfy Sy, € BV(UIY (n))
with

l1lBv

1S™o1 By < |e1lBy -
This estimate is the basic ingredient in the proof of the

PROPOSITION 12.16. Assume that T has no connection and satisfy conditions
(a) and (b) of Subsection 12.2. For every function o1 € BV(UIL) of mean value 0,
and every n = 0, we have

N
sup |S™p1(2)] < C[[Byw)ll* 2 llenllpv,

ury

where C' depends only on the constants in condition (a) and (b).

From condition (a), the lengths |15 (n)| satisfy

log |L§Z (”)|
im ———— =—1.
n—+oo log HB'y(n)H
Therefore, for every o1 € BV(UIL) of mean value 0, and every n > 0, there exists a
primitive g € BVL(UIL) of ¢ (one constant of integration being chosen for each
It) such that

n — 9

sup. 5™ po()] < C 1Byl 5 |lenllpv-
urg "
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Using condition (c) of Subsection 12.2, one can change the order of the quan-
tifiers to make the primitive g independent of n and still satisfy

Sug)IS(")wo(w)I < ClIBymll™llerllsy,
LIt

for some w > 0. But the last estimate, together with condition (a) of 12.2,
easily imply that the Birkhoff sums of ¢y are bounded. This proves the required
result: starting from any ¢ € BVL(UIY), we take ¢ := Dy € BV(UIY); it has
mean value 0 and therefore has a primitive ¢ such that the Birkhoff sums of ¢
are bounded. The difference ¢ — g is constant on every I,.

13. Connected components of the moduli spaces

We present in this section the classification of the connected components of the
moduli space M(M, X, k) by Kontsevich and Zorich [KonZo|. The classification
of the connected components of the marked moduli space is the same: it is easy
to see that the canonical covering map from M (M, %, k) to M(M, X, k) induces a
bijection at the 7 level. Observe also that for classification purposes, we can and
will assume that all ramification indices x; are > 1.

13.1. Hyperelliptic components. Let d > 4 be an integer, and let P € C|z]
be a polynomial of degree d 4+ 1 with simple roots. Adding 1 or 2 points at infinity
(depending on whether d is even or odd) to the complex curve {w? = P(z)},
one obtains an hyperelliptic compact Riemann surface M of genus g = [%] The
holomorphic 1-form w := i—z has no zero at finite distance. When d is even, it has a
zero of order d —2 = 2g — 2 at the single point A; at infinity. When d is odd, it has
a zero of the same order g — 1 = % at each of the two points Ay, Ay at infinity.

The translation surface defined by (M,w) has therefore the following data:

e s=1 k1 =2g—1if dis even;
e s=2 K| =Ko =gif disodd.

Moreover we have d = 2g + s — 1 in all cases so d is the complex dimension of
the corresponding moduli space.

Observe that, for a € C*,b € C, the polynomials P and a=2P(az + b) produce
isomorphic translation surfaces. One has therefore exactly d independent complex
parameters to deform the translation surface through a change of polynomial P. It
is not difficult to see that one gets in this way, for each integer d > 4, a whole con-
nected component of the corresponding moduli space. Such connected components
are called hyperelliptic.

Hyperelliptic components correspond to the simplest Rauzy classes. Let #.A4 =
d. A Rauzy class containing some combinatorial data 7 = (7, 7,) such that 7 (o) +
mp(a) = d+1 for all @ € A is associated to the hyperelliptic component of dimension
d.

When g = 2, the values d = 4 and d = 5 correspond to a double zero or two
simple zeros for w respectively. It is immediate to check that the hyperelliptic Rauzy
classes described above are the only ones giving these values of (g, s, k). Therefore,
the two strata of the moduli space in genus 2 are connected and hyperelliptic.

Kontsevich and Zorich discovered that the situation is quite different in genus
> 3.
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13.2. Parity of spin structure. Let (M,X, k,({) be a translation surface
such that all x; are odd. We denote as usual ¥ = (4y,...,4;). The divisor
D=3 (142_*1)141 defines a spin structure on the Riemann surface M (equipped with
the complex structure defined by the structure of translation surface). The parity
of this spin structure is the parity of the dimension of the space of meromorphic
functions f on M such that (f) + D < 0.

The reader should consult [At], [Mil] for some fundamental facts and results
about spin structures and their parity. A fundamental result is that the parity of
the spin structure is invariant under deformation, and is therefore the same for all
translation surfaces in a same connected component of the moduli space.

The parity of the spin structure can be computed in the following way. For a
smooth loop ¢ : St — M — ¥, define the index ind(c) to be the degree mod 2 of
the map which associates to t € S! the angle between the tangent vector ¢(t) and
the horizontal direction at ¢(t). As all ramification indices k; are odd, the index
depends only on the class of ¢ in Hy(M,Z). Now let a;,b;, 1 < i < g be smooth
loops in M — ¥ such that their homology classes form a standard symplectic basis of
H,(M,Z). The parity of the spin structure for the translation surface (M,X, &, ()
is then given by

g

> (ind(a;) + 1)(ind(b;) + 1) mod. 2.
1

13.3. Classification. Kontsevich and Zorich have shown that hyperellipticity
and parity of spin structure are sufficient to classify components. More precisely

THEOREM 13.1. [KonZo| Let (g, s, k) be combinatorial data (with all k; > 1)
determining a moduli space for translation surfaces.

(1) If at least one of the k; is even, the moduli space is connected, except
when s = 2, k1 = ko = g = 4. In this case, the moduli space has two
components, one hyperelliptic and the other not hyperelliptic.

(2) If all k; are odd and either s > 3 or s = 2 and k1 # ko, then the moduli
space has two connected components, one with even spin structure and the
other with odd spin structure.

(3) If either s=1,9 >4 or s =2,k1 = kg = g odd > 5, the moduli space has
three connected components: one hyperelliptic and two non hyperelliptic
distinguished by the parity of the spin structure.

4) Ifg =3, s=1o0rs =2 Kk = kg = 3, the moduli space has two
components, one hyperelliptic and the other not hyperelliptic. If g = 2,s =
1, the moduli space is connected.

We just say a few words of the scheme of the proof. The confluence of the
zeros of the 1-form associated to the structure of translation surface organizes the
various moduli spaces as the strata of a stratification. The minimal stratum S,
corresponds to a single zero of maximal multiplicity 2g — 2.

Kontsevich and Zorich establish the following fact, which allows to rely any
stratum to Sy, for any stratum S, and any connected component C of Sy,in,
there exists exactly one component of S which contains C' in its closure.

The determination of the connected components of the minimal stratum S,,;,
is by induction on the genus g. First, using a local construction first described in
[EMaZol, they show that there are at least as many components as stated in the
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theorem: given a translation surface with a single zero A; of multiplicity 2g — 2,
they split A; into two zeros AY, A] of respective multiplicities k1, k7, slit the surface
along a segment joining A] and A, and glue the two sides to the two boundary
components of a cylinder. The resulting translation surface has genus g+1, a single
zero of maximal multiplicity 2¢g and the parity of its spin structure changes when
the parity of &} change.

That there are no more components of S,,;, that as stated in the theorem is
also proved by induction. The idea is to present any generic translation surface in
Smin as the suspension, via the zippered rectangle construction, of an i.e.m and
then take off a handle by an appropriate reduction operation.

14. Exponential mixing of the Teichmiiller flow

We present in this section the main results from [AvGoYo|.

14.1. Exponential mixing. Let (X,B,m) be a probability space, and let
(T*) be a measure-preserving dynamical system. We allow here for discrete time
(t € Z) as well as continuous time (t € R). We denote by L2(X) the Hilbert space of
square-integrable functions of mean value 0, by U? the unitary operator ¢ + o T"?
of L3(X). For ¢, ¢ € L3(X), we define the correlation coefficient of ¢, 1) by

Co,p(t) =<, U > .
We recall that

e T is ergodic iff, for all ¢, ¥ € LE(X), ¢y, 4 (t) converges to 0 in the sense
of Cesaro as t — +00 ;
e T is mixing iff, for all ¢, 1 € L3(X), cy, 4 (t) converges to 0 as t — +00 .

Exponential mixing requires that this convergence is exponentially fast. However,
simple examples (for instance, the shift map) show that this cannot happen, even
in the most chaotic dynamical systems, for all functions ¢, ¢ € LZ(X). One
generally requires that ¢, ¥ belong to some Banach space E of "regular” functions
on X, dense in L3(X). Then the correlation coefficients should satisfy

co, v (t) < Cllglle |[¢l|l e exp(=01),

where 6 > 0 is independent of ¢, 1y € E. Observe that this indeed imply mixing.
Exponential mixing, unlike ergodicity or mixing, is not a spectral notion (one
which depends only on the properties of the unitary operators U?).

THEOREM 14.1. [AvGoYo| The Teichmuller flow is exponentially mizing on
any connected component of any marked moduli space M(l)(M, ¥, R).

The subspace E of "regular” functions will be explicited below; for any 1 >
B > 0, it can be chosen to contain all S-Holder functions with compact support.

14.2. Exponential mixing and irreducible unitary representations of
SL(2,R). The theorem has an interesting consequence with respect to the repre-
sentation of SL(2,R) determined by the action of this group on the marked moduli
spaces. -

Ler C be a connected component of some marked moduli space MM (M, 2, k).
Denote by H the Hilbert space of zero mean L? functions on C. The action of
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SL(2,R) induces an unitary representation of SL(2,R) in H. As any unitary rep-
resentation of SL(2,R), it decomposes as an hilbertian sum

1 = | Heduc),

where, for each &, the representation of SL(2,R) in He is irreducible.

According to Bargmann, the nontrivial irreducible unitary representations of
SL(2,R) are divided into three families, the discrete, principal and complementary
series. This corresponds to an orthogonal decomposition into invariant subspaces

H=H, ®H;® H,, & H, .

The ergodicity of the action of SL(2,R) (Masur-Veech) means that Hy,. = {0}.

Write g; for the diagonal element diag(e’,e") of SL(2,R) corresponding to
the Teichmiiller flow. In general, for vectors v, v’ belonging both to the discrete
component Hy or the principal component Hp, of the representation, one has, for
t<1

<gi(v), v > < Cte ol [IV]].

On the other hand, the complementary series is parametrized by a parameter

s €(0,1), with

o= 1128 = [ [ TOTED s < ooy

Z/ll—s

the representation of SL(2,R) in #H, being given by

(&%) s =Fra s (5]

() () -(50)

We observe that the norm in H; is equivalent to the norm

171 = (3o + =1 fm)P) "

with

The integral powers e, (z) := 2™, n € Z, are eigenfunctions for the action of
SO(2,R):
cosf  sinf .
( _sind  cosf ) e, = exp(2imnh) e, .

An easy calculation show that, for m,ne Z,t > 1
|<gt€m,6n>‘ < < gt€o, €o >,

Cs_l Gt(s_l) < < gi€p, €g > < CS et(s_l),
with Cs > 0 depending on s but not on t.

DEFINITION 14.2. A unitary representation H of SL(2,R) has an almost in-
variant vector if, given any compact subset K of SL(2,R) and € > 0, there exists a
unit vector v € H such that

[lgv—2]| <e
for all g € K.

A unitary representation H of SL(2,R) with no almost invariant vector is said

to have a spectral gap.
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Let H = [ Hedp(€) be the decomposition of a unitary representation H of
SL(2,R) into irreducible representations. Then H has a spectral gap iff there exists
so € (0,1) such that, for almost every &, H¢ is neither the trivial representation
nor isomorphic to a representation in the complementary series with parameter
s € (sp,1).

DEFINITION 14.3. Let H be a unitary representation of SL(2,R). A vector
v € H is C"-SO(2,R)-smooth if the function

0 cosf sinf
—sinf cosf )

PROPOSITION 14.4. (Ratner [Rat]) If the unitary representation H has a spec-
tral gap, then it is exponential mizing for C?-SO(2,R)-smooth vectors: there exists
d >0 and C > 0 such that, for any C*-SO(2,R)-smooth v,v' € H, t > 1

| <gev,v" > 1 < C exp(=dt) [[o]l2 [[v']|2,

is of class C".

where ||v||2 is the sum of the norm of v and the norm of the second derivative at 0

cosf)  sinf
of 0 — —sinf cos6 )

SKETCH OF PROOF. It is sufficient to consider unit vectors v,v’ in the com-
plementary component of the representation. There exists so € (0,1) such that
s(€) € [so, 1) for almost every &, hence we have

| < gt-€m,en >¢ | < Cexp(t(sg—1))

for allt > 1, m,n € Z, and almost every &. Let v, v’ be C2-SO(2, R)-smooth vectors
in the complementary component of H. Write

v= [0 = [ 3 on@enduts)

and similarly for v/. Then v(¢) is C?-SO(2,R)-smooth for almost all £&. From the
remark on the norm in H, above, this gives, for all m € Z

[om ()] < Cllo(€)]]2(1 + [m[) 2

2(6) —2
We conclude that

| <o >| < / | < grv(E), o' (€) > |du(e)
/|szm ) < iemsn e ldu(€)

C exp(t(so — 1)) /||v(€)|\2\|v/(€)||2dﬂ(§)
< Cexp(t(so — 1)) [Jv]2|[v/]]2-

N

N

O

REMARK 14.5. The absence of a trivial component, i.e the ergodicity of the
action of SL(2,R), already imply that the action of the diagonal subgroup is mixing:
for vectors of the form

<50 |m|<M

/ U (€)emdp(€)
0<s(€)<so Im|<M
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, for some M > 0, sg € (0,1), we have that | < g;.v,v" > | converges to 0 by the
calculation above. These vectors are dense in the complementary component of H,
and the mixing property follows.

Conversely

PROPOSITION 14.6. Assume that there exists § > 0 and a dense subset E of
vectors v in the space of SO(2,R)-invariant vectors in H for which the correlation
coefficients < gy.v,v > are O(exp(—dt)). Then H has a spectral gap.

PrOOF. We may assume that 0 < § < 1. Assume by contradiction that H
has no spectral gap. The complementary component v. of any SO(2, R)-invariant
vector takes the form v, = [vo(€)egdu(€), with vy € L?(n). As E is dense in the
space of SO(2,R)-invariant vectors in H, we can find v € F such that

plé, s(€)>1—dand vo(&) #0} > 0.

Then we have

< Grveve> = / SO < gueoseo > du(é)

> [ 1€ P explt(s(€) - D)dn(©):

here s(§) is the parameter in the complementary series associated to Hg. Thus
< gt.Ve, v > is not O(exp(—dt)). But v does not have a discrete component, and
the principal component v, satisfies < ¢;.v,, v, >= O(texp(—t)). This contradicts
the property of F. O

Coming back to the setting of the theorem in Subsection 14.1, let C be a
component of some marked moduli space M(l)(M , 2, k). The space of compactly
supported mean zero smooth SO(2,R)-invariant functions on C is dense in the
subspace of SO(2,R)-invariant functions in L2(C). Therefore the representation of
SL(2,R) in L3(C) has a spectral gap.

14.3. Diophantine estimates. Exponential mixing is a classical property of
uniformly hyperbolic transformations preserving a smooth volume form.

EXERCISE 14.7. Let A € SL(d,R) be a hyperbolic matrix. The induced diffeo-
morphism of T? preserves Lebesgue measure. Prove that , if ¢, are Hélder func-
tions on T¢ with zero mean-value, the correlation coefficient c,, (n) := Jpa @ o A™
satisfy

e, (n)] < Cllel| [[4]] exp(=dn),
where d depends only on A and the Holder exponent of , ).

With respect to this very basic case, the Teichmiiller flow presents three diffi-
culties:

e the time is continuous rather than discrete;

e hyperbolicity is non uniform;

e distortion for large time is not controlled as simply than in the uniformly
hyperbolic setting on a compact manifold.

As the constant time suspension of an Anosov diffeomorphism is obviously not
mixing, the first difficulty is quite serious. The ideas which allow to deal with
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it were first introduced by Dolgopyat [Do] and later developped by Baladi-Vallée
[BaVa).

The other two difficulties are related to a lack of compactness of the moduli
spaces of translation surfaces. To get uniform hyperbolicity and bounded distortion,
one is led to introduce the return map of the Teichmiiller flow to a suitably small
transversal section (smaller than the ones considered in Section 9). The problem
is then to control the return time to this transversal section. This is done through
diophantine estimates which we will now present.

Let R be a Rauzy class on an alphabet A, let D be the associated Rauzy
diagram. The estimates depend on a parameter ¢ € Rﬁ. For such ¢, we define a
probability measure P, on P(R%!) by
_ Leb(RyAMNA,)

N Leb(A,) 7

where A, = {\ € Rq‘_‘; < A g > <1} Define also, for ¢ € Rﬁ, M(q) =
maXge A §o, M(q) := minge 4 ¢o- For a finite path v in D, starting from a vertex m,
we denote by A, the set of A € A, whose Rauzy-Veech path starts with ~.

Let now 0 < m < M be integers, ¢ € R{, 7 € R. Define 'y = T'o(m, M, q, )
to be the set of finite paths v € D starting from 7 such that

M(B,q) > 2" M(q), m(B,q) < 27" M(q).

Py(A) :

THEOREM 14.8. [AvGoYo| There exist constants 0, C depending only on #A
such that
P PA,) <Clm+1)27m,
Y€l

A closely connected estimate is the following. Let M be an integer and ¢q € Rﬁ,
m € R. Define I'y =T'1(M, g, ) to be the set of finite paths v € D starting from 7
such that 7 is not complete and M (B.q) > 2M M(q).

THEOREM 14.9. [AvGoYo| There ezist constants 8,C depending only on #A
such that

P PAy) <CM +1)%27 M,
Y€

EXERCISE 14.10. Use these estimates to show that almost all i.e.m are of Roth
type.
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Unipotent Flows and Applications

Alex Eskin

1. General introduction

1.1. Values of indefinite quadratic forms at integral points. The Op-
penheim Conjecture. Let

Q(l’l,...,.’bn) = Z al-jwl-xj
1<i<j<n
be a quadratic form in n variables. We always assume that @ is indefinite so that
(so that there exists p with 1 < p < n so that after a linear change of variables, @
can be expresses as:

P n
Qpyr, - yn) = > v — Y v}

i=1 i=p+1

We should think of the coefficients a;; of @ as real numbers (not necessarily
rational or integer). One can still ask what will happen if one substitutes integers
for the x;. It is easy to see that if @ is a multiple of a form with rational coefficients,
then the set of values Q(Z") is a discrete subset of R. Much deeper is the following
conjecture:

CONJECTURE 1.1 (Oppenheim, 1929). Suppose @ is not proportional to a ra-
tional form and n > 5. Then Q(Z™) is dense in the real line.

This conjecture was extended by Davenport to n > 3.

THEOREM 1.2 (Margulis, 1986). The Oppenheim Conjecture is true as long as
n > 3. Thus, if n > 3 and Q is not proportional to a rational form, then Q(Z") is
dense in R.

This theorem is a triumph of ergodic theory. Before Margulis, the Oppenheim
Conjecture was attacked by analytic number theory methods. (In particular it was
known for n > 21, and for diagonal forms with n > 5).

Failure of the Oppenheim Conjecture in dimension 2. Let o > 0 be a
quadratic irrational such that o € Q (e.g. o = (14 +/5)/2), and let

Q(x1,x0) = x% - 0423:%.

© 2010 Alex Eskin
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PROPOSITION 1.3. There exists € > 0 such that for all x1,x9 € Z, |Q(x1, x2)| >

Proof. Suppose not. Then for any 1 > ¢ > 0 there exist x1, 29 € Z such that
(1) |Q(x1,x2)| = |21 — axs||z1 + @xs] < e

We may assume x5 # 0. If € < o2, one of the factors must be smaller then .
Without loss of generality, we may assume |r1 — azs| < @, so |x1 — axs| < o|za.
Then,

|z1 4+ azs| = 20xs + (21 — axs)| > 2alxs| — |21 — axe| > alxs].
Substituting into (1) we get
(2)

But since « is a quadratic irrational, there exists ¢g > 0 such that for all p,q € Z,
|2 —a| > 2. This is a contradiction to (2) if € < coo. O

1 ’ € e 1

Zo = aal|zr + ame| = |z

A relation to flows on homogeneous spaces. This was noticed by Raghu-
nathan, and previously in implicit form by Cassels and Swinnerton-Dyer. However
the Cassels-Swinnerton-Dyer paper was mostly forgotten. Raghunathan made clear
the connection to unipotent flows, and explained from the point of view of dynamics
what is different in dimension 2. See §5.1.

1.2. Some basic Ergodic Theory. Transformations, flows and Ergodic
Measures. Let X be a locally compact separable topological space, and T : X —
X amap. We assume that there is a finite measure p on X which is preserved by T
One usually normalizes u so that u(X) =1, in which case p is called a probability
measure.

Sometimes, instead of a transformation 1" one considers a flow ¢;, t € R. For a
fixed ¢, ¢ is a map from X to X. In this section we state definitions and theorems
for transformations only, even though we will use them for flows later.

DEFINITION 1.4 (Ergodic Measure). An T-invariant probability measure p is
called ergodic for T if for every measurable T-invariant subset E of X one has
w(E)=0or u(E)=1.

Every measure can be written as a linear combination (possibly uncountable,
dealt with via integration) of ergodic measures. This is called the “ergodic decom-
position”.

Ergodic measures always exist. In fact the probability measures form a convex
set, and the ergodic probability measures are the extreme points of this set (cf. the
Krein-Milman theorem).

Birkhoff’s Ergodic Theorem.

THEOREM 1.5 (Birkhoff Ergodic Theorem). Suppose u is ergodic for T, and
suppose f € LY(X, ). Then for u-almost all x € X, we have

(3) lim 1 Z f(T"x) = /X fdp.
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The sum on the left-hand side is called the “time average”, and the integral on
the right is the “space average”. Thus the theorem says that for almost all base
points x, the time average along the orbit of x converges to the space average.

This theorem is amazing in its generality: the only assumption is ergodicity of
the measure p. (This is a some sort of irreducibility assumption).

The set of © € X for which (3) holds is called the generic set for p.

Mutually singular measures. Recall that two probability measures p; and o
are called mutually singular (written as py L po if there exists a set E such that
i1(B) = 1, ua(E) = 0 (0 pa(E°) = 1).

In our proofs we will use repeatedly the following:

LEMMA 1.6. Suppose puy and ps are distinct ergodic measures for the map
T:X — X. Then pu1 L po.

Proof. This is an immediate consequence of the Birkhoff ergodic theorem. Since
1 # po we can find an f such that fX fdu # fX fdus. Now let E denote the set
where (3) holds with g = ;. O

Remark. It is not difficult to give another proof of Lemma 1.6 using the Radon-
Nikodym theorem.

Given an invariant measure p for 7', we want to find conditions under which
it is ivariant under the action of a larger group. Now if H commutes with 7', then
for each hg € H the measure hop is T-invariant. So if p is ergodic, so is hop, and
Lemma 1.6 applies. More can be said, ([cf. [Ra4, Thm. 2.2], [Mor, Lem. 5.8.6]]):

LEMMA 1.7. Suppose T : X — X is preserving an ergodic measure . Suppose
H is a group with acts continuously on X and commutes with T'. Also suppose that
there exists ho € H such that hop # p. Then there exists a neighborhood B of
ho € H and a conull T-invariant subset © of X such that

MINQ=0 forallheB.

Proof. Since hg commutes with T, the measure hou is T-invariant and ergodic.
Thus by Lemma 1.6, hou L p. This implies there is a compact subset Kj of X,
such that p(Ky) > 0.99 and KgNhoKy = (. By continuity and compactness, there
are open neighborhoods U and U™ of Ky, and a symmetric neighborhood B, of e
in H, such that Ut N hod™ = 0 and B.U C UT. From applying (3) with f the
characteristic function of U, we know there is a conull T-invariant subset €, of X,
such that the T-orbit of every point in Qp,, spends 99% of its life in &{. Now suppose
there exists h € B.hg, such that Q,, NhQp, # 0. Then there exists x € Qp,,, n € N,
and ¢ € B,, such that T"z and choT"z both belong to U. This implies that T"x
and hoT™x both belong to UT. This contradicts the fact that UT Nhod ™ = 0. O

Uniquely ergodic systems. In some applications (in particular to number the-
ory) we need some analogue of (3) for all points 2 (and not almost all). For example,
we want to know if Q(Z") is dense for a specific quadratic form @ (and not for al-
most all forms). Then the Birkhoff ergodic theorem is not helpful. However, there
is one situation where we can show that (3) holds for all x.

DEFINITION 1.8. A map T : X — X is called uniquely ergodic if there exists a
unique invariant probability measure pu.
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PRrROPOSITION 1.9. Suppose X is compact, T : X — X is uniquely ergodic, and
let i be the invariant probability measure. Suppose f: X — R is continuous. Then
for all x € X, (8) holds.

Proof. This is quite easy (as opposed to the Birkhoff ergodic theorem which is
hard). Let d,, be the probability measure on X defined by

5u(f) = 23 p(rnay
k=0

(we are now thinking of measures as elements of the dual space to the space C(X)
of continuous functions on X). Note that

n—1 n
ulf o T) =+ 3 (foT)(T"e) = = 3 f(T"),
k=0 k=1
(@) Sulf 0T) = alf) = — (&) ~ S(T")),

(since the sum telescopes). Suppose some subsequence §,,; converges to some limit
0o (in the weak-* topology). Then, by (4), doo(f 0 T) = doo(f), ie. oo is T-
invariant.

Since X is compact, do, is a probability measure, and thus by the assumption
of unique ergodicity, we have do, = p. Thus all possible limit points of the sequence
0, are p. Also the space of probability measures on X is compact (in the weak-*
topology), so there exists a convergent subsequence. Hence 8, — p, which is the
same as (3). O

Remarks.

e The main point of the above proof is the construction of an invariant
measure (namely d.,) supported on the closure of the orbit of . The
same construction works with flows, or more generally with actions of
amenable groups.

e We have used the compactness of X to argue that 0., is a probability
measure: this might fail if X is not compact. This phenomenon is called
“loss of mass”.

e Of course the problem with Proposition 1.9 is that most of the dynam-
ical systems we are interested in are not uniquely ergodic. For example
any system which has a closed orbit which is not the entire space is not
uniquely ergodic.

e However, the proof of Proposition 1.9 suggests that (at least in the amenable
case) the classification of the invariant measures is one of the most power-
ful statements one can make about a dynamical system, in the sense that
it allows one to try to understand every orbit (and not just almost every
orbit).

Exercise 1. (To be used in §3.)
(a) Show that if « is irrational then the map T, : [0,1] — [0,1] given by
T.(z) =x+«a (modl) is uniquely ergodic. Hint: Use Fourier analysis.

(b) Use part (a) to show that the flow on R2/Z? given by ¢;(x,y) = (v +
ta,y + t) is uniquely ergodic.
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1.3. Unipotent Flows. Let G be a semisimple Lie group (I will usually as-
sume the center of G is finite), and let I be a lattice in G (this means that I' C G
is a discrete subgroup, and the quotient G//T has finite Haar measure). A lattice T’
is uniform if G/T is compact.

Let U = {u;}1er be a unipotent one-parameter subgroup of G. Then U acts
on G/T by left multiplication. (Recall that in SL(n,R) a matrix is unipotent if all
its eigenvalues are 1. In a general Lie group an element is unipotent if its Adjoint
(acting on the Lie algebra) is a unipotent matrix. ) Examples of unipotent one

parameter subgroups:
1t
1) ven)

1t t2)2
0 1 t , teR},
00 1

and

Ratner’s measure classification theorem.

DEFINITION 1.10. A probability measure p on G/I is called algebraic if there
exists £ € G/I' and a subgroup F' of G such that FZz is closed, and p is the F-
invariant probability measure supported on F'z.

THEOREM 1.11 (Ratner’s measure classification theorem). Let G be a Lie group,
I' C G a lattice. Let U be a one-parameter unipotent subgroup of G. Then, any
ergodic U-invariant measure is algebraic. (Also the group F in the definition of
algebraic is generated by unipotent elements, and contains U ).

Loosely speaking, this theorem says that all U-invariant ergodic measures are
very nice. The assumption that U is unipotent is crucial: if we consider instead
arbitrary one-parameter subgroups, then there are ergodic invariant measures sup-
ported on Cantor sets (and worse). This phenomenon is responsible in particular
for the failure of the Oppenheim conjecture in dimension 2.

Theorem 1.11 has many applications, some of which we will explore in this
course. I will give some indication of the ideas which go into the proof of this
theorem in the next two lectures.

Remark on algebraic measures. Let 7 : G — G/T" be the projection map.
Suppose z € G/I', and F' C G is a subgroup. Let Stabg (%) denote the stabilizer in
Fofz,i.e. theset of elements g € F such that g7 = z. Then Stabp(z) = Fnazl'z~!,
where z € G is any element such that 7n(z) = Z. Thus there is a continuous
map from FZ to F/(F N aTx~!), which is a bijection, but is in general not a
homeomorphism.

However, in the case of algebraic measures, we are making the additional as-
sumption that F'Z is closed. In this case, the above map is a homeomorphism, and
thus p is the image under this map of the Haar measure on F/(F Nazlz~1). The
assumption that p is a probability measure thus implies that F NzTz~" is a lattice
in . (The last condition is usually taken to be part of the definition of an algebraic
measure).

Uniform Distribution and the classification of orbit closures.
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THEOREM 1.12 (Ratner’s uniform distribution theorem). Let G be a Lie group,
T a lattice in G, and U = {us}1er a one-parameter unipotent subgroup. Then for
any T € G/T there exists a subgroup F D U (generated by unipotents) with FZT
closed, and an F-invariant algebraic measure u supported on FZ, such that for any

fec(a/n),
T
(5) lim % /O flwz)dt= [ fdu

Remarks.

e It follows from (5) that the closure of the orbit Uz is Fz. Thus Theo-
rem 1.12 can be rephrased as “any orbit is uniformly distributed in its
closure”.

e Theorem 1.12 is derived from Theorem 1.11 by an argument morally sim-
ilar to the proof of Proposition 1.9. There is one more ingredient: one
has to show that the set of subgroups F which appear in Theorem 1.11
is countable up to conjugation (Proposition 4.1 below). For proofs of
this fact see [Ra6, Theorem 1.1] and [Ra7, Cor. A(2)]), or alternatively
[DM4, Proposition 2.1].

An immediate consequence of Theorem 1.12 is the following:

THEOREM 1.13 (Raghunathan’s topological conjecture). Let G be a Lie group,
I' C G alattice, and U C G a one-parameter unipotent subgroup. Suppose & € G/T.
Then there exists a subgroup F of G (generated by unipotents) such that the closure
Uz of the orbit Uz is Fz.

This theorem is due to Ratner in the general case, but several cases were known

previously. See §5.1 for a discussion and the relation to the Oppenheim Conjecture.

Uniformity of convergence. In many applications it is important to somehow
ensure that the time averages converge to the space average uniformly in the base
point Z (for example we may have an additional integral over Z). In the context of
Birkhoff’s ergodic theorem, we have the following:

LEMMA 1.14. Suppose ¢y : X — X is a flow preserving an ergodic probability
measure p. Suppose f € LY(X,u). Then for any € > 0 and § > 0, there exists
To > 0 and a set E C X with p(E) < €, such that for any x € E€ and any T > Ty

we have .
1
— ¢ dt — d
7 | sedonar= [ rau

(In other words, one has uniform convergence outside of a set of small measure.)

<6

Proof. Let E,, denote the set of x € X such that for some T > n,

e

Then by the Birkhoff ergodic theorem, pu((,—, E,) = 0. Hence there exists n € N
such that u(E,) < e. Now let Tp =n, and E = E,,. O

> 9.

The uniform distribution theorem of Dani-Margulis. One problem with
Lemma 1.14 is that it does not provide us with any information about the ex-
ceptional set E (other then the fact that it has small measure). In the setting
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of unipotent flows, Dani and Margulis proved a theorem (see §4.2 below for the
precise statement) which is the analogue of Lemma 1.14, but with an explicit geo-
metric description of the set E. This theorem is crucial for many applications. Its
proof is based on the Ratner measure classification theorem (Theorem 1.11) and
the “linearization” technique of Dani and Margulis (see §4).

2. The case of SL(2,R)/SL(2,7Z)
In this lecture I will be loosely following Ratner’s paper [Ra8].

2.1. Basic Preliminaries. The space of lattices. Let G = SL(n,R), and
let £,, denote the space of unimodular lattices in R™. (By definition, a lattice A is
unimodular if an only if the volume of R”/A = 1. ) G acts on £,, as follows: if
g € G and A € L,, is the Z-span of the vectors vy, ...v,, then gv is the Z-span of
gui, ..., gu,. This action is clearly transitive. The stabilizer of the standard lattice
Z" is T' = SL(n,Z). This gives an identification of £, with G/T'. We choose a
right-invariant metric d(-,-) on Gj; then this metric descends to G/T.

The set £,,(¢). For ¢ > 0let L, (¢) C £,, denote the set of lattices whose shortest
non-zero vector has length at least e.

THEOREM 2.1 (Mahler Compactness). For any € > 0 the set L,,(€) is compact.

The upper half plane. In the rest of this section, we set n = 2. Let K =
SO(2) C G. Given a pair of vectors vy, v2 we can find a unique rotation matrix
k € K so that kv; is pointing along the positive z-axis and kv is in the upper
half plane. The map g = (v1 112) — kvy gives an identification of K\G with the
hyperbolic upper half plane H2. Now G (and in particular I' C G) acts on K\G by
multiplication on the right. Using the identification of K'\G with H? this becomes
(a variant of) the usual action by fractional linear transformations.

The horocycle and geodesic flows. We use the following notation:

(1t (et 0 (10
=10 1 =10 et ve=Ar 1)

Let U={u : teR} A={a; : te€R}, V={v, : te&R}. The action of
U is called the horocycle flow and the action of A is called the geodesic flow. Some
basic commutation relations are the following:

(6) arusa; b = g syt = Vo2
Thus conjugation by a; for ¢ > 0 contracts V' and expands U.

Orbits of the geodesic and horocycle flow in the upper half plane. Let
p: G — K\G denote the natural projection. Then for z € G, p(Ux) is either a
horizontal line or a circle tangent to the z-axis. Also p(Ax) is either a vertical line
or a semicircular arc orthogonal to the z-axis.

Flowboxes. Let W, C U, W_ C V, Wy C A be intervals containing the identity
(we have identified all three subgroups with R). By a flowbox we mean a subset of G
of the form W_WyW ., or one of its right translates by g € G. Clearly, W_W W, g
is an open set containing g. (Recall that in our conventions, right multiplication
by ¢ is an isometry).
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2.2. An elementary non-divergence result. Much more is proved in [K11].

LEMMA 2.2. There exists an absolute constant eg > 0 such that the following
holds: Suppose A € Lo is a unimodular lattice. Then A cannot contain two linearly
independent vectors each of length less than €.

Proof. Let v; be the shortest vector in A, and let vo be the shortest vector in
A linearly independent from v;. Then v; and ve span a sublattice A’ of A. (In
fact A’ = A but this is not important for us right now). Since A is unimodular,
this implies that Vol(R?/A’) > 1. But Vol(R?/A’) = |jvy x va|| < ||v1]|||v2]|. Hence
[lv1]l]Jv2]] > 1, so the lemma holds with ¢y = 1. O

Remark. In general ey depends on the choice of norm on R2.

The following lemma is a simple “nondivergence” result for unipotent orbits:

LEMMA 2.3. Suppose A € Lo is a unimodular lattice. Then at least one of the
following holds:

(a) A contains a horizontal vector.
(b) There exists t > 0 such that a; *A € La(ep).

Proof. Suppose A does not contain a horizontal vector, and A & La(€p). Then A
contains a vector v with ||v|| < €. Since v is not horizontal, there exists a smallest
to > 0 such that [ja; 'v|| = €o. Then by Lemma 2.2 for ¢ € [0, 0], a; *A contains no
vectors shorter then €y (other then a, L and possibly its multiples). In particular
a;,' A, contains no vectors shorter then ey. This means a;,' A € La(eo). O

Remark. We note that Lemma 2.2 and thus Lemma 2.3 are specific to dimension
2.

2.3. The classification of U-invariant measures. Note that for A € Lo,
the U-orbit of A is closed if and only if A contains a horizontal vector. (The
horizontal vector is fixed by the action of U). Any closed U-orbit supports a U-
invariant probability measure. All such measures are ergodic.

Let v denote the Haar measure on Lo = G/T'. The measure v is normalized so
that (L) = 1. Recall that v is ergodic for both the horocycle and the geodesic
flows (this follows from the Moore ergodicity theorem, see e.g. [BM]).

Our main goal in this lecture is the following:

THEOREM 2.4. Suppose i is an ergodic U-invariant probability measure on Lo.
Then either p is supported on a closed orbit, or p is the Haar measure v.

Proof. Let £}, C L2 denote the set of lattices which contain a horizontal vector.
Note that the set £} is U-invariant.

Suppose p is an ergodic U-invariant probability measure on L£5. By ergodicity
of p, p(Ly) = 0 or u(Ly) = 1. If the latter holds, it is easy to show that p is
supported on a closed orbit. Thus we assume p(L£5) = 0 and we must show that
w=r.

Suppose not. Then there exists a compactly supported continuous function
f L2 — Rand e > 0 such that
™) fan- [ fa

Lo Lo

> €.
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Since f is uniformly continuous, there exists a neighborhoods of the identity W} c A
and W’ C V such that for a € W, v € W_ and A” € Lo,

(8) |[f(vaA") = fF(A")] < /3.

Recall that 7 : G — G/T" = L, denotes the natural projection. Since La(eg) is
compact the injectivity radius on L5(ep) is bounded from below, hence there exist
Wy CcU, Wy C A, W_ CV so that for any g € G with 7(g) € Lo, the restriction
of 7 to the flowbox W_W,W_ g is injective. We may also assume that W_ C W~
and Wy € W{. Let § = v(W_W,W,) denote the Lebesque measure of the flowbox.

By Lemma 1.14 applied to the Lebesque measure v, there exists a set £ C Lo
with v¥(E) < § and 77 > 0 such that for any interval I with |I| > 77 and any
A" ¢ E,

€

() ‘fﬂ/lf(utw)dt—/ﬁzfdu :

Now let A be a generic point for U (in the sense of the Birkhoff ergodic theo-
rem). This implies that there exists To > 0 such that for any interval I containing
the origin of length greater then 75,

<

1
(10) ‘—/f(utA) dt—/ fdu‘ <<
1] Jr Lo 3
Since u(Ly) = 0, we may assume that A does not contain any horizontal vectors.

Then by repeatedly applying Lemma 2.3 we can construct arbitrarily large ¢ > 0
such that

(11) a; TA € Lofe).

Now suppose t is such that (11) holds, and consider the set Q = a;W_ WOW+at_1A.
Then @ can be rewritten as

Q = (a;W_a; YWo(a;Wya; M)A

(so when t is large, @ is long in the U direction and short in A and V' directions.)
The set @ is an embedded copy of a flowbox in £, and v(Q) = .

If ¢ is sufficiently large and W_, W, and W are sufficiently small, it is possible
to find for each A’ € @ intervals I(A’) C R and I(A) C R with the following
properties: |I(A”)] > max(Ty,Ty), |[I(A)| > max(Ty,T>) and

1 1
I AN I/ A— tA)d
|I(A’)|/I(A/) flunl) de [1(A)] I(A)f(u Ja

(this says that the integral of f over a suitably chosen interval of each U-orbit is
nearly the same).

Since v(F) < § and v(Q) = J, there exists A’ € @ N E°. Now (9) holds with
I = I(A'), and (10) holds with I = I(A). These estimates together with (12)
contradict (7). O

(12)

<<
3

Remarks.
e The above proof works with minor modifications if I' is an arbitrary lattice
in SL(2,R) (not just SL(2,Z)).
o If " is a uniform lattice in SL(2,R) then the horocycle flow on G/T is
uniquely ergodic. This is a theorem of Furstenberg [F].
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e The proof of Theorem 2.4 does not generalize to classification of measures
invariant under a one-parameter unipotent subgroup on e.g. L,, n > 3.
Completely different ideas are needed. (I will introduce some of them in
the next lecture).

Horospherical subgroups and a theorem of Dani. The key property of U
in dimension 2 which is used in the proof is that U is horospherical, i.e. that it is
equal to the set contracted by a one-parameter diagonal subgroup. (One-parameter
unipotent subgroups are horospherical only in SL(2,R)). An argument similar in
spirit to the proof of Theorem 2.4 can be used to classify the measures invariant
under the action of a horospherical subgroup. This is a theorem of Dani [Dan2]
(which was proved before Ratner’s measure classification theorem). However, the
details, and in particular the non-divergence results needed are much more compli-
cated.
The horospherical case also allows for an analytic approach, see e.g. [Bu].

3. The case of SL(2,R) x R2.

In this section we will outline a proof of Ratner’s measure classification theorem
Theorem 1.11 in the special case G = SL(2,R) x R?, T' = SL(2,7Z) x Z*. We will be
following the argument of Ratner [Ral, Ra2, Ra3, Ra4, Ra5, Ra6] and Margulis-
Tomanov [MT]. An introduction to these ideas can be found in the books [Mor],
and also [BM]. Another exposition of a closely related case is in [EMaMo].

Let X = G/T. Then X can be viewed as a space of pairs (A,v), where A
is a unimodular lattice in R? and v is a marked point on the torus R?/A. (We
remove the translation invariance on the torus R?/A since we consider the origin
as a special point. Alternatively we consider a pair of marked points, and use the
translation invariance of the torus to place one of the points at the origin). X is
thus naturally a fiber bundle where the base is Lo and the fiber above the point
A € L5 is the torus R?/A. (X is also sometimes called the universal elliptic curve).

The action of SL(2,R) C G on X is by left multiplication. It amounts to

g (A,v) = (gA, gv).

The action of the R? part of G on X is by translating the marked point, i.e for
we R w-(A,v) = (A,w+v). Let U be the subgroup of SL(2,R) defined in §2.1.
In this lecture our goal is the following special case of Theorem 1.11:

THEOREM 3.1. Let p be an ergodic U-invariant measure on X. Then p is
algebraic.

Let 1 be an ergodic U-invariant measure on X. Let m : X — Ly denote
the natural projection (i.e. m(A,v) = A). Then 7} (p) is an ergodic U-invariant
measure on Lo. Thus by Theorem 2.4, either 77 (1) is supported on a closed orbit
of U, or mi(u) is the Haar measure v on Lo. The first case is easy to handle, so in
the rest of this section we assume that 77(u) = v. Then we can disintegrate

du(A,v) = dv(A)dia(v)

where A\ (v) is some probability measure on the torus R?/A.
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3.1. Finiteness of the fiber measures. Many of the ideas behind the proof
of Ratner’s measure classification theorem Theorem 1.11 can be illustrated in the
proof of the following:

PROPOSITION 3.2. Fither u is Haar measure on X, or for almost all A € Lo,
the measure \a is supported on a finite set of points.

We will give an almost complete proof of Proposition 3.2 in this subsection,
and then indicate how to complete the proof of Theorem 3.1 in the next subsection.

The subgroups U,V,A,H, and W. Let U, V, A be the subgroups of SL(2,R)
defined in §2.1. We also give names to certain subgroups of the R? part of G. In
particular, let H = {hs, s € R} be the subgroup of G whose action on X is given

by hs(A,v) = (A,v + s (1

O))’ and W = {w,,r € R} be the subgroup of G whose

action on X is given by w,(A,v) = (A,v +7r (?)) The action of H is called the
horizontal flow and the action of W the vertical flow.

Action of the centralizer. A key observation is that H commutes with U (and
so the action of H commutes with the action of U). This implies that if p is
an ergodic U-invariant measure, so is hsp for any hy € H. (See the discussion
preceeding Lemma 1.7).

Thus, either g is invariant under H or there exists s € R such that hsu is
distinct from p. Suppose p is invariant under H. Then so are the fiber measures
Aa for all A € £;5. Then by Exercise 1 (b), for v-almost all A € La, Aa is the
Lebesque measure on R?/A. Thus p coincides with Haar measure on X for almost
all fibers. Then by the ergodicity of y we can conclude that p is the Haar measure
on X.

Thus, Proposition 3.2 follows from the following:

PROPOSITION 3.3. Suppose p is not H-invariant. Then for almost all A € Lo,
the measure \a is supported on a finite set of points.

The element h and the compact set K. From now on, we assume that p is not
H-invariant. Then there exists hy, € H such that hs,p # . (We may assume that
hs, is fairly close to the identity). Since hg,p and p are both ergodic U-invariant
measures, by Lemma 1.6 we have hg,p L 1. Thus the sets of generic points of p and
hso v are disjoint. It follows from Lemma 1.7 that there exists 6 > 0 and a subset
Q C X with () = 1 such that h,QNQ = 0 for all s € (s9— s, So]. It follows that
there exists a compact set K with p(K) > 0.999 such that for all s € [(1—do)s0, So],
hs K N K = (. Since K is compact and the action of H is continuous, there exist
€ >0 and § > 0 such that

(13) d(hsK,K) > ¢ for all s € [(1— d)so, 0]

The set ,. In view of Lemma 1.14 (with f the characteristic function of K), for
any p > 0 we can find a set Q, with p(Q,) > 1 — p and Ty > 0 such that for all
T > 1Ty and all p € €, we have

(14) %Ht €[0,7) : wae K} >1-(0.01)5
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Shearing. Suppose p = (A, v) and p’ = (A,v’) are two nearby points in the same
fiber. We want to study how they diverge under the action of U. Note that wu:p
and u;p’ are always in the same fiber (i.e. mi(up) = m (up’) = urA), but within
the fiber 7 1(utA) they will slowly diverge. More precisely, if we let v = (x,y) and
v = (2',y") we have

wv' —uw = (2" —z+t(y —y),y —y).

Note that if y = ¢ (i.e. p and p’ are in the same orbit of H) then up and w:p’ will
not diverge at all.

Now suppose y # y'. We are considering the regime where |2’ — z|, |y — y|
are very small, but ¢ is so large that d(p,p’) is comparable to 1 (this amounts to
|t(y' — y)| comparable to 1). Under these assumptions, the leading divergence is
along H, i.e.

(15) ugp’ = hyugp + small error
where s = t(y' — ).

LEMMA 3.4. Suppose that for some positive measure set of A € Lo, the support
of Aa is infinite. Then for any p > 0 we can find A € Lo and a sequence of points
Pn = (A, (2n,yn)) € Q, which converge to p = (A, (z,y)) € Q, so that y, # y for
all n.

We postpone the proof of this lemma (which is intuitively reasonable anyway).

Proof of Proposition 3.3. Suppose the conclusion of Proposition 3.3 is false, so
that for some positive measure set of A € Lo, the support of Aa is infinite. Then
Lemma 3.4 applies.

Let T), = so/(yn — y). Then by (15) we have for ¢ € [(1 — )T, T,],

(16) d(uipn, hsuip) < €,, where s =t/(y' —y).

and ¢, — 0 as n — oo. If n is sufficiently large, then T;, > Ty where Tj is as in
the definition of Q,. Then (14) applies to both p and p,, and we can thus find
t € [(1—=9)T,,T,] such that u;p, € K and also w;p € K. Then s = t/(y' —y) €
[(1 = dp)s0, s0], and so (16) contradicts (13). O

Proof of Lemma 3.4. Suppose that for some positive measure set of A € Lo, the
support of A\a is infinite. Then (by the ergodicity of the action of U on Ls), the
support of Aa is infinite for almost all fibers A.

Suppose for the moment that the support of Aa is countable for almost all
A, so Aa is supported on a sequence of points p,, with weights \,,. But then the
collection of points with the same weight is a U-invariant set, so by ergodicity of
all the points must have the same weight. Thus, since Aa is a probability measure
if the support of Aa is countable it must be finite.

Hence we may assume that the support of Aa is uncountable. Then so is 2,NAa
for almost all A. Since any uncountable set contains one of its accumulation points,
we may construct a sequence p,, € €2, with p, — p, where p € Q,. It only remains
to verify that if we write p, = (A, (zn,yn)) and p = (A, (z,y)) then we can ensure
Yn # Y-

If it is not possible to do so, then it is easy to see that the support of A\a is
contained in a finite union of H-orbits. Thus given a < b we can define a function
u((A,v)) = Aa({hsv s € [a,b]}). This function is U-invariant hence constant
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for each choice of [a,b]. It is easy to conclude from this that the support of Aa
must be finite. |

3.2. Outline of the Proof of Theorem 3.1. The following general lemma
is a stronger version of Lemma 1.14:

LEMMA 3.5 (cf. [MT, Lem. 7.3]). Suppose ¢y : X — X is a flow preserving an
ergodic probability measure (1. For any p > 0, there is a “uniformly generic set” Q,
in X, such that

(1) 1w(@,) >1-p,
(2) for every e > 0 and every compact subset K of X, with u(K) > 1 — ¢,
there exists Lo € RT, such that, for all x € Q, and all L > Ly, we have

{tel-L L] [ d(¢i(z), K) < e} > (1 - €)(2L).

Outline of proof. This is similar to that of Lemma 1.14, except that one also
chooses a countable basis of functions and approximates K by elements of the
basis. (]

We now return to the setting of §3. Let u be an ergodic invariant measure for
the action of U on X = G/T' = (SL(2, R) x R?)/(SL(2,Z) x Z?). For any p > 0 we
chose a “uniformly generic” set €2, for u as in Lemma 3.5.

The argument of §3.1 is the basis of the following more general proposition
(which we state somewhat imprecisely):

PROPOSITION 3.6. Suppose Q is a subgroup of G normalizing U, and suppose
that for any p > 0 we can find sequences p, and p), in Q, such that d(py,p),) — 0,
and under the action of U the leading transverse divergence of the trajectories uipy,
and wpl, is in the direction of @ (i.e the analogue of (15) holds with q € Q) instead
ofhe H).

Then the measure p is Q-invariant.

Remark. The analogous statement for unipotent flows is a cornerstone of the
proof of Ratner’s Measure Classification Theorem [Ra5, Lem. 3.3], [MT, Lem. 7.5],
[Mor, Prop. 5.2.4].

Remark. For two points in the same fiber, the leading divergence is always along
H (if the points diverge at all). For an arbitrary pair of nearby points in X this is
not the case.

Remark. It is possible that the leading direction of divergence is along U. In that
case we want to consider the leading “transverse” divergence. In other words we
compare u;p, and upp), where t’ is chosen to cancel the divergence along U (i.e.
one trajectory waits for the other). In that case we say that the leading transverse
divergence is along @ if for some g € @,

wpn = qupp,, + small error
Remark. To prove Proposition 3.6 we must use Lemma 3.5 instead of Lemma 1.14

as in §3.1 because we must choose €2, before we know what subgroup @ (and thus
what compact set K) we will be dealing with.

We now continue the proof of Theorem 3.1. We assume that p projects to Haar
measure on Lo, but that p is not Haar measure.
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PROPOSITION 3.7. The measure p is invariant under some subgroup of AH
other then H.

Proof. Choose €2, as in Lemma 3.5, with p = 0.01. By Proposition 3.2, the
measure on each fiber is supported on a finite set. Also we are assuming that u
projects to Haar measure on Lo. Then it is easy to see that there exist p € Q,,
{vn} € V ~{e}, and {w,} C HW, such that p, = vyw,p € Q,, v, — €, and
Wy — €.

It is not difficult to compute that (after passing to a subsequence), the leading
direction of divergence of u;p, and u;p is a one-parameter subgroup ) which is
contained in AH. Then by Proposition 3.6, u is invariant under Q). By §3.1, we
have Q # H. |

Invariance under A. Any one-parameter subgroup @ of AH other then H is
conjugate to A (via an element of H). Thus, by replacing p with a translate
under H, we may (and will) assume g is A-invariant.

Note. At this point we do not know that p is A-ergodic.

PROPOSITION 3.8 (cf. [MT, Cor. 8.4], [Mor, Cor. 5.5.2]). There is a conull
subset Q of X, such that
QNVWp=QnVp,

for all p € Q.

Proof. Let Q be a generic set for for the action of A on X; thus, €2 is conull and,
for each p € Q,
ap € Q, for most t € R.

(The existence of such a set follows e.g. from the full version of the Birkhoff
ergodic theorem, in which one does not assume ergodicity). Given p,p’ € Q, such
that p’ = vwp with v € V and w € W, we wish to show w = e.

Choose a sequence t,, — oo, such that a;,p and a;,p’ each belong to Q,.
Because t,, — oo and VW is the foliation that is contracted by ag+, we know that
a_q, (vw)ay, — e. Furthermore, because A acts on the Lie algebra of V' with twice
the weight that it acts on the Lie algebra of W, we see that

la—t,var,||/|a—t,wa, || — 0.

Thus p), = a_,p'as, approaches p, = a_¢, pas, from the direction of W.

If two points p), and p, approach each other along W, then an easy compu-
tation shows that wp, and wp), diverge along H. (This observation motivates
Proposition 3.8). Thus by Proposition 3.6 1 must be invariant under H. But this
impossible by §3.1 (since we are assuming that p is not Haar measure). (I

We require the following entropy estimate, (see [EL] for a proof).

LEMMA 3.9 (cf. [MT, Thm. 9.7], [Mor, Prop. 2.5.11]). Suppose W is a closed
connected subgroup of VW that is normalized by a € AT, and let
J(@ ' W) =det((Ada™")|Liew)
be the Jacobian of a=' on W.
(1) If p is W-invariant, then h,(a) > log J(a=',W).
(2) If there is a conull, Borel subset Q of X, such that QN VWp C Wp, for
every p € Q, then h,(a) <logJ(a™',W).
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(3) If the hypotheses of 2 are satisfied, and equality holds in its conclusion,
then p is W-invariant.

PropoOSITION 3.10 (cf. [MT, Step 1 of 10.5], [Mor, Prop. 5.6.1]). u is V-
movariant.

Proof. From Lemma 3.9(1), with a~! in the role of a, we have
log J(a,UX) < hy(a™").

From Proposition 3.8 and Lemma 3.9(2), we have
h,(a) <logJ(a ', VY).

Combining these two inequalities with the facts that

e h,(a) =h,(a"') and
e J(a,UX)=J(a VYY),

we have
log J(a,UX) < hy(a™") = hy(a) <log J(a™,VY) = log J(a, UX).

Thus, we must have equality throughout, so the desired conclusion follows from
Lemma 3.9(3). O

PROPOSITION 3.11. p is the Lebesgue measure on a single orbit of SL(2,R) on
X.

Proof We know:

e U preserves u (by assumption),
e A preserves u (by Proposition 3.7) and
e V preserves u (by Proposition 3.10).

Since SL(2,R) is generated by U, A and V, p is SL(2,R) invariant. Because
SL(2,R) is transitive on the quotient Lo and the support of u on each fiber is finite
(see Proposition 3.2), this implies that some orbit of SL(2,R) has positive measure.
By ergodicity of U, then this orbit is conull. O

This completes the proof of Theorem 3.1.

4. Linearization and ergodicity

4.1. Non-ergodic measures invariant under a unipotent. The collec-
tion H. (Up to conjugation, this should be the collection of groups which appear
in the definition of algebraic measure).

Let G be a Lie group, I' a discrete subgroup of G, and 7 : G — G/T" the natural
quotient map. Let H be the collection of all closed subgroups F' of G such that
FNT is a lattice in F and the subgroup generated by unipotent one-parameter
subgroups of G contained in F' acts ergodically on n(F') = F/(F NT') with respect
to the F-invariant probability measure.

PROPOSITION 4.1. The collection H is countable.
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Proof. See [Ra6, Theorem 1.1] or [DM4, Proposition 2.1] for different proofs of
this result. O

Let U be a unipotent one-parameter subgroup of G and F' € H. Define
NFU) = {geG:UcCgFg '}
S(FU) = | J{N(F,U): F eH, F'CF,dimF’ <dimF}.

LEMMA 4.2. ([MS, Lemma 2.4]) Let g € G and F € H. Then g € N(F,U) \
S(F,U) if and only if the group gFg~" is the smallest closed subgroup of G which
contains U and whose orbit through 7(g) is closed in G/T'. Moreover in this case the
action of U on gm(F) is ergodic with respect to a finite gF g~ -invariant measure.

As a consequence of this lemma,
(17) 7m(N(F,U)\ S(F,U)) =n(N(F,U))\ n(S(F,U)), VF € H.

Ratner’s theorem [Ra6] states that given any U-ergodic invariant probability
measure on G/T, there exists F' € H and g € G such that p is g~ Fg-invariant
and p(w(F)g) = 1. Now decomposing any finite invariant measure into its ergodic
component, and using Lemma 4.2, we obtain the following description for any U-
invariant probability measure on G/T" (see [MS, Theorem 2.2]).

THEOREM 4.3 (Ratner). Let U be a unipotent one-parameter subgroup of G
and p be a finite U-invariant measure on G/T. For every F € H, let up denote
the restriction of p on w(N(F,U)\ S(F,U)). Then up is U-invariant and any U -
ergodic component of ur is a gFg~ -invariant measure on the closed orbit gmw(F)
for some g € N(F,U)\ S(F,U).

In particular, for all Borel measurable subsets A of G/T,

wA) = Y pr(A),
FEH*
where H* C H is a countable set consisting of one representative from each T'-
conjugacy class of elements in H.

Remark. We will often use Theorem 4.3 in the following form: suppose pu is any U-
invariant measure on G/T" which is not Lebesque measure. Then there exists F' € H
such that u gives positive measure to some compact subset of N(F,U) \ S(F,U).

4.2. The theorem of Dani-Margulis on uniform convergence. The “lin-
earization” technique of Dani and Margulis was devised to understand which mea-
sures give positive weight to compact subsets subsets of N(F,U) \ S(F,U). Using
this technique Dani and Margulis proved the following theorem (which is important
for many applications, in particular §5):

THEOREM 4.4 ([DM4], Theorem 3). Let G be a connected Lie group and let T’
be a lattice in G. Let jn be the G-invariant probability measure on G/T. Let U =
{us} be an Ad-unipotent one-parameter subgroup of G and let f be a bounded con-
tinuous function on G/T. Let D be a compact subset of G/T" and let € > 0 be given.
Then there exist finitely many proper closed subgroups Fy = Fy(f,D,¢€),--+ , Fy =
Fy.(f,D,e) such that F; NI is a lattice in F; for all i, and compact subsets C; =
Ci(f,D,e), - ,Cr = Cr(f,D,e) of N(F1,U),- -, N(Fy,U) respectively, for which
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the following holds: For any compact subset K of D —|J,<;<, m(C;) there exists a
To > 0 such that for all x € K and T > Ty o

(18) ’%/OTf(utx)dt—/G/Ffd,u‘ <e.

Remarks.

e This theorem can be informally stated as follows: Fix f and € > 0. Then
(18) holds (i.e. the space average of f is within e of the time average of f)
uniformly in the base point z, as long as x is restricted to compact sets
away from a finite union of “tubes” N(F,U). (The N(F,U) are associated
with orbits which do not become equidistributed in G/I", because their
closure is strictly smaller.)

e It is a key point that only finitely many F} are needed in Theorem 4.4.
This has the remarkable implication that if ' € H but not one of the Fj,
then (18) holds for € N(F,U) even though Uz is not dense in G/T" (the
closure of Ux is Fz). Informally, this means the non-dense orbits of U
are themselves becoming equidistributed as they get longer.

A full proof of Theorem 4.4 is beyond the scope of this course. However, we
will describe the “linearization” technique used in its proof in §4.3.

4.3. Ergodicity of limits of ergodic measures. In this subsection we are
following [MS], which refers many times to [DM4].
Let P(G/T) be the space of all probability measures on G/T.

THEOREM 4.5 (Mozes-Shah). Let U; be a sequence of unipotent one-parameter
subgroups of G, and for each i, let pu; be an ergodic U;-invariant probability measure
on GJT. Suppose pu; — p in P(G/T). Then there exists a unipotent one-parameter
subgroup U such that p is an ergodic U-invariant measure on G/T". In particular,
1 1s algebraic.

Remarks.

e Let Q(G/T) C P(G/T) denote the set of measures ergodic for the action
of a unipotent one-parameter subgroup of G, and let Qy(G/T') denote
Q(G/T') union the zero measure. If combined with the results of [KI11,
§3], Theorem 4.5 shows that Qy(G/T") is compact.

e The theorem actually proved by Mozes and Shah in [MS] gives more
information about what kind of limits of ergodic U-invariant measures
are possible. Here is an easily stated consequence:

Suppose x; € G/T converge to zo, € G/I', and also x; € Uz,. For
i € NU {oo} let p; be the algebraic measures supported on Uz;, so that
the trajectories Ux; are equidistributed with respect to the measures ;.
Then p; = proo-
We now give some indication of the proof of Theorem 4.5. Let U;, u;, p be as
in Theorem 4.5. Write U; = {u;() }ier.

Invariance of ¢ under a unipotent.

LEMMA 4.6. Suppose U; # {e} for all large i € N. Then p is invariant under
a one-parameter unipotent subgroup of G.
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Proof. For each i € N there exists w; in the Lie algebra g of G, such that
lw;|| = 1 and U; = {exp(tw;),t € R}. (Here | - || is some Euclidean norm on
g). By passing to a subsequence we may assume that w; — w for some w € g,
|lw] = 1. For any ¢t € R we have Ad(exp(tw;)) — Ad(exp(tw)) as i — occ. Note that
Ad(exp(tw)) is unipotent, since the set of unipotent matrices is closed (consider e.g.
the characteristic polynomial). Therefore U = {exp(tw) : t € R} is a nontrivial
unipotent subgroup of G. Since exptw; — exptw for all ¢t and p; — p, it follows
that u is invariant under the action of U on G/T". O

Application of Ratner’s measure classification theorem. We want to ana-
lyze the case when the limit measure y is not the G-invariant measure. By Ratner’s
description of p as in Theorem 4.3, there exists a proper subgroup F € H, ¢y > 0,
and a compact set Cy C N(F,U)\ S(F,U) such that u(n(Cy)) > eo. Thus for
any neighborhood ® of w(Cy), we have u;(®) > €o for all large i € N. Thus the
unipotent trajectories which are equidistributed with respect to the measures u;
spend a fixed proportion of time in .

Linearization of neighborhoods of singular subsets. Let F € H. Let g
denote the Lie algebra of G and let | denote its Lie subalgebra associated to F'.
For d = dimf, put Vz = A%, the d-th exterior power, and consider the linear G-
action on Vg via the representation A% Ad, the d-th exterior power of the Adjoint
representation of G on g. Fix pr € A%\ {0}, and let nr : G — Vi be the map
defined by nr(g) = g-pr = (A Adg) - pr for all g € G. Note that

nr ' (pr) = {g € Na(F) : det(Ad gy) = 1}.

Remark. The idea of Dani and Margulis is to work in the representation space
Vr (or more precisely Vi, which is the quotient of Vp by the involution v — —v)
instead of G/T. In fact, for most of the argument one works only with the oribit
G -pr C Vp. The advantage is that F is collapsed to a point (since it stabilizes pg).
The difficulty is that the map nr : G — Vg is not I'-equivariant, and so becomes
multivalued if considered as a map from G/T" to Vp.

PROPOSITION 4.7 ([DM4, Theorem 3.4]). The orbit T - pp is discrete in V.
Remark. In the arithmetic case the above proposition is immediate.

PROPOSITION 4.8. ([DMA4, Prop. 3.2]) Let Ap be the linear span of np (N (F,U))
in Vip. Then
nr~ ' (Ap) = N(F,U).

Let Ng(F) denote the normalizer in G of F. Put I'r = Ng(F)NT. Then for
any v € I'r, we have yr(F) = m(F), and hence 7 preserves the volume of 7(F).
Therefore |det(Ad~v|s)| = 1. Hence v - pp = £pp. Now define

Vo — Ve/{ld,-1d} it Tp-pp ={pr,—pr}
F Ve if'p-pr=pr

The action of G factors through the quotient map of Vp onto Vi. Let pr denote
the image of pr in Vg, and define r : G — VF as fr(g) = g - pr for all g € G.
Then I'r = 7z~ (pr) NT. Let Ar denote the image of Ar in Vp. Note that the

inverse image of Ar in Vp is Ap.



UNIPOTENT FLOWS AND APPLICATIONS 89

For every z € G/T, define the set of representatives of x in V¢ to be
Rep(z) = p(n 1 (2)) = 7p(2T) C Vp.

Remark. If one attempts to consider the map 7 : G — Vi as a map from G/Fﬁto
VF, one obtains the multivalued map which takes z € G/T to the set Rep(z) C Vp.
The following lemma allows us to understand the map Rep in a special case:

LEMMA 4.9. Ifz =7(g) and g € N(F,U)\ S(F,U)
Rep(z) N Ar = {g-pr}.

Thus = has a single representative in Ap C V.

Proof. Indeed, using Proposition 4.8,
Rep(m(9)) N Ar = (g0 N N(F,U)) - pr

Now suppose 7 € I is such that gy € N(F,U). Then g belongs to N(yFy~!,U) as

well as N(F,U). Since g ¢ S(F,U), we must have yFy~! = F, s0 v € I'r. Then

vpr = pr, so (gL NN(F,U))-pr ={g-pr} as required. O
We extend this observation in the following result (cf. [Shal, Prop. 6.5]).

PROPOSITION 4.10 ([DM4, Corollary 3.5]). Let D be a compact subset of Ap.
Then for any compact set K C G/T'\ w(S(F,U)), there exists a neighborhood ® of
D in Vi such that any x € K has at most one representative in ®.

Remark. This proposition constructs a “fundamental domain” & around any
compact subset D of Ar, so that for any z in a compact subset of G/T" away from
w(S(F,U)), Rep(z) has at most one element in ®. Using this proposition, one can
uniquely represent in ® the parts of the unipotent trajectories in G/I" lying in K.

PROPOSITION 4.11 ([DM4, Proposition 4.2]). Let a compact set C C Ap and
an € > 0 be given. Then there exists a (larger) compact set D C Ap with the
following property: For any neighborhood ® of D in Vi there exists a neighborhood
U of C in Vg with ¥ C ® such that the following holds: For any unipotent one
parameter subgroup {u(t)} of G, an element w € Vi and and interval I C R, if
u(to)w & ® for some ty € I then,

(19) Htel : ut)weP} <e-|{tel : ult)we d}|.

Proof. This is a “polynomial divergence” estimate similar to these in [KI11, §2]
and [KI1, §3] O

PROPOSITION 4.12. Let € > 0, a compact set K C G/T' \ n(S(F,U)), and a
compact set C C Ap be given. Then there exists a neighborhood ¥ of C' in Vi such
that for any unipotent one-parameter subgroup {u(t)} of G and any v € G/T, at

least one of the following conditions is satisfied:

(1) There exists w € Rep(z) NV such that {u(t)} C G, where G, = {g €
G : gw=w}.
(2) For all large T > 0,

[{t €[0,T] : u(t)r € K Nr(fp'(¥)}] < €T.
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Figure 1. Proposition 4.11.

Proof. Let a compact set D C Ap be as in Proposition 4.11. Let ® be a given
neighborhood of D in Vx. Replacing ® by a smaller neighborhood of D, by Propo-
sition 4.10 the set Rep(z) N ® contains at most one element for all © € K. By the
choice of D there exists a neighborhood ¥ of C' contained in ® such that equa-
tion (19) holds.

Now put Q = (7, (¥)) N K, and define
(20) E={t>0 : u(t)z € Q}.
Let t € E. By the choice of ®, there exists a unique w € Vp such that Rep(u(t)z) N
O = {u(t)w}.

Since s — wu(s)w is a polynomial function, either it is constant or it is un-
bounded as s — +oo. In the first case condition 1) is satisfied and we are done.

Now suppose that condition 1 does not hold. Then for every t € F, there exists a
largest open interval I(t) C (0,T) containing ¢ such that

(21) u(s)w € @ for all s € I(t).
Put Z = {I(t) : t € E}, Then for any I; € 7 and s € I; N E, we have I(s) = I.
Therefore for any t1,ty € E, if t1 < to then either I(t1) = I(t2) or I(t1) NI(t2) C

(t1,t2). Hence any t € [0,7] is contained in at most two distinct elements of Z.
Thus

(22) > <ot

IeT
Now by equations (19) and (21), for any ¢ € E,
(23) H{seI(t):u(s)we U} <e-|I(t).

Therefore by equations (22) and (23), we get
[E| < ey || < (20T,
IeT
which is condition 2 for 2¢ in place of e. O
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Outline of Proof of Theorem 4.5. Suppose p is not Haar measure on G/T". By
Lemma 4.6 p is invariant under some one-parameter unipotent subgroup p. Then
by Theorem 4.3 there exists F' € H such that u(N(F,U)) > 0 and p(S(F,U)) = 0.
Thus there exists a compact subset Cy of N(F,U)\ S(F,U) and « > 0 such that

(24) w(m(Cy)) > o

Take any y € w(C1). It is easy to see that for each ¢ € N there exists y; €
supp(u;) such that {u;(t)y;} is uniformly distributed with respect to p;, and also
y; — y as i — co. Let h; — e be a sequence in G such that h;y; =y for all 7 € N.

We now replace p; by p) = hip;. We still have u; — p, but now we also have
y € supp(u}) for all i. Let w/(t) = hsu;(t)h;'. Then the trajectory {ul(t)y} is
uniformly distributed with respect to pl.

We now apply Proposition 4.12 for C' = 7jp(Cy) and € = a/2. We can choose a
compact neighborhood K of w(C4) such that KNS(F,U) = 0. Put Q = 7(7," (¥))N
K. Since p; — p, due to (24) there exists ko € N such that p}(Q) > € for all i > k.
This means that Condition 2) of Proposition 4.12 is violated for all i > k. Therefore
according to condition 1) of Proposition 4.12, for each ¢ > ko,

{ui(t)y}ter C Guy,

where G, is as in Proposition 4.12. By Proposition 4.7, G,y is closed in G/T.
The rest of the proof is by induction on dimG. If dimG, < dimG then
everything is taking place in the homogeneous space G,,y, and therefore p is ergodic
by the induction hypothesis. If dimG,, = dimG then G,, = G and hence F
is a normal subgroup of G. In this case one can project the measures to the
homogeneous space G/(FT') and apply induction. O

5. Oppenheim and Quantitative Oppenheim

5.1. The Oppenheim Conjecture. Let () be an indefinite nondegenerate
quadratic form in n variables. Let Q(Z™) denote the set of values of @ at integral
points. The Oppenheim conjecture, proved by Margulis (cf. [Mar3]) states that if
n > 3, and @ is not proportional to a form with rational coefficients, then Q(Z")
is dense. The Oppenheim conjecture enjoyed attention and many studies since it
was conjectured in 1929 mostly using analytic number theory methods.

In the mid seventies Raghunathan observed a remarkable connection between
the Oppenheim Conjecture and unipotent flows on the space of lattices L, =
SL(n,R)/SL(n,Z). Tt can be summarized as the following:

OBSERVATION 5.1 (Raghunathan). Let @ be an indefinite quadratic form Q
and let H = SO(Q) denote its orthogonal group. Consider the orbit of the standard
lattice Z™ € L,, under H. Then the following are equivalent:

(a) The orbit HZ™ is not relatively compact in L,,.
(b) For all € > 0 there exists u € Z™ such that 0 < |Q(u)| < e.
(¢) The set Q(Z™) is dense in R.

Proof. Suppose (a) holds, so some sequence hiZ™ leaves all compact sets. Then in
view of the Mahler compactness criterion there exist v, € hiZ" such that ||vg|| — O.
Then also by continuity, Q(vg) — 0. But then h;lvk € Z"™, and Q(hglvk) =
Q(v) — 0. Thus (b) holds.
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It is easy to see that (b) implies (a). It is also possible to show that (b) implies
(c). O

The Oppenheim Conjecture, the Raghunathan Conjecture and Unipo-
tent Flows. Raghunathan also explained why the case n = 2 is different: in
that case H = SO(Q) is not generated by unipotent elements. Margulis’s proof of
the Oppenheim conjecture, given in [Mar 2-4] uses Raghunathan’s observation.
In fact Margulis showed that that any relatively compact orbit of SO(2,1) in
SL(3,R)/SL(3,Z) is compact; this implies the Oppenheim Conjecture.

Raghunathan also conjectured Theorem 1.13. In the literature it was first stated
in the paper [Dan2| and in a more general form in [Mar3] (when the subgroup U
is not necessarily unipotent but generated by unipotent elements). Raghunathan’s
conjecture was eventually proved in full generality by M. Ratner (see [Ra7]). Earlier
it was known in the following cases: (a) G is reductive and U is horospherical (see
[Dan2]); (b) G = SL(3,R) and U = {u(t)} is a one-parameter unipotent subgroup
of G such that u(t) — I has rank 2 for all ¢ # 0, where I is the identity matrix (see
[DM2]); (c) G is solvable (see [Stal] and [Sta2]). We remark that the proof given
in [Dan2] is restricted to horospherical U and the proof given in [Stal] and [Sta2]
cannot be applied for nonsolvable G.

However the proof in [DM2] together with the methods developed in [Mar 2-4]
and [DM1] suggest an approach for proving the Raghunathan conjecture in general
by studying the minimal invariant sets, and the limits of orbits of sequences of points
tending to a minimal invariant set. This strategy can be outlined as follows: Let
2 be a point in G/T', and U a connected unipotent subgroup of G. Denote by
X the closure of Uz and consider a minimal closed U-invariant subset Y of X.
Suppose that Uz is not closed (equivalently X is not equal to Uz). Then X should
contain "many” translations of Y by elements from the normalizer N(U) of U not
belonging to U. After that one can try to prove that X contains orbits of bigger
and bigger unipotent subgroups until one reaches horospherical subgroups. The
basic tool in this strategy is the following fact. Let y be a point in X, and let g,
be a sequence of elements in G such that g, converges to 1, g,, does not belong to
N(U), and y,, = g,y belongs to X. Then X contains AY where A is a nontrivial
connected subset in N(U) containing 1 and ”transversal” to U. To prove this one
has to observe that the orbits Uy, and Uy are ”almost parallel” in the direction of
N(U) most of the time in ”the intermediate range”. (cf. Proposition 3.6).

In fact the set AU as a subset of N(U)/U is the image of a nontrivial rational
map from U into N(U)/U. Moreover this rational map sends 1 to 1 and also
comes from a polynomial map from U into the closure of G/U in the affine space V
containing G/U. This affine space V is the space of the rational representation of
G such that V contains a vector the stabilizer of which is U (Chevalley theorem).

This program was being actively pursued at the time Ratner’s results were
announced (cf. [Sha3]).

5.2. A quantitative version of the Oppenheim Conjecture. References
for this subsection are [EMM1] and [EMM2].

In this section we study some finer questions related to the distribution of the
values of (Q at integral points.

Let v be a continuous positive function on the sphere {v € R™ | ||v| = 1}, and
let @ ={veR"||v| <v(/||v|)}. We denote by T2 the dilate of Q by T". Define
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the following set:

Vg,b)(R) ={zeR"|a<Q(z)<b}
We shall use Vg3 = V(fib) when there is no confusion about the form Q. Also
let Vigp)(Z) = ‘/(f’b)(Z) ={zr €Z" | a < Q(x) <b}. The set TQNZ" consists
of O(T™) points, Q(T N Z™) is contained in an interval of the form [—uT?, uT?],

where 1 > 0 is a constant depending on ) and 2. Thus one might expect that for
any interval [a,b], as T — oo,

(25) Vi (Z) NTQ| ~ cqalb—a)T"?

where cg o is a constant depending on @ and Q. This may be interpreted as
“uniform distribution” of the sets Q(Z™ NTK) in the real line. The main result of
this section is that (25) holds if @ is not proportional to a rational form, and has
signature (p, ¢) with p > 3, ¢ > 1. We also determine the constant cg q.

If @ is an indefinite quadratic form in n variables, Q is as above and (a,b) is
an interval, we show that there exists a constant A = A\g o so that as T — oo,

(26) Vol(Vian) (R) NTQ) ~ Ag.a(b—a)T"
The main result is the following:

THEOREM 5.2. Let QQ be an indefinite quadratic form of signature (p,q), with
p >3 and q > 1. Suppose Q is not proportional to a rational form. Then for any
interval (a,b), as T — oo,

(27) Via) (Z) NTQ| ~ Aga(b—a)T"?
where n.=p+ q, and Ag.q is as in (26).

The asymptotically exact lower bound was proved in [DM4]. Also a lower
bound with a smaller constant was obtained independently by M. Ratner, and by
S. G. Dani jointly with S. Mozes (both unpublished). The upper bound was proved
in [EMM1].

If the signature of @ is (2,1) or (2,2) then no universal formula like (25) holds.
In fact, we have the following theorem:

THEOREM 5.3. Let Qg be the unit ball, and let ¢ = 1 or 2. Then for every
e > 0 and every interval (a,b) there exists a quadratic form Q of signature (2,q)
not proportional to a rational form, and a constant ¢ > 0 such that for an infinite
sequence T — oo,
[Viap)(Z) N TQo| > ¢TI (log T) "

The case ¢ = 1, b < 0 of Theorem 5.3 was noticed by P. Sarnak and worked out
in detail in [Bre]. The quadratic forms constructed are of the form z? + 23 — ax?,
or 27 + 23 — a(z? + 22), where « is extremely well approximated by squares of
rational numbers.

However in the (2,1) and (2,2) cases, one can still establish an upper bound
of the form ¢T'?logT. This upper bound is effective, and is uniform over compact
sets in the set of quadratic forms. We also give an effective uniform upper bound
for the case p > 3.

THEOREM 5.4 ([EMM1]). Let O(p,q) denote the space of quadratic forms of
signature (p,q) and discriminant £1, let n = p + ¢, (a,b) be an interval, and let
D be a compact subset of O(p,q). Let v be a continuous positive function on the
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unit sphere and let Q@ = {v € R™ | ||[v| < v(v/||v|)}. Then, if p > 3 there ewists
a constant ¢ depending only on D, (a,b) and Q such that for any Q € D and all
T>1,

Vi (Z)NTQ| < T

If p=2and q=1 or q =2, then there exists a constant ¢ > 0 depending only on
D, (a,b) and Q such that for any Q € D and oll T > 2,

Viapy NTQNZ < T *log T

Also, for the (2,1) and (2,2) cases, we have the following “almost everywhere”
result:

THEOREM 5.5. For almost all quadratic forms Q of signature (p,q) = (2,1) or
(2,2)
Viaw) (Z) N TQ| ~ Aga(b—a)T"?
where n =p+q, and Ag.q is as in (26).

Theorem 5.5 may be proved using a recent general result of Nevo and Stein
[NS]; see also [EMM1].
It is also possible to give a “uniform” version of Theorem 5.2, following [DMA4]:

THEOREM 5.6. Let D be a compact subset of O(p, q), withp > 3. Let n = p+q,
and let Q be as in Theorem 5.4. Then for every interval [a,b] and every 6 > 0,
there exists a finite subset P of D such that each Q € P is a scalar multiple of a
rational form and for any compact subset F of D — P there exists Ty such that for
all Q in F and T > Ty,

(1= 0)Ag,0b—a)T"? < [V (Z)NTQ < (1+0)Aga(b—a)Tm >
where A\g.q is as in (26).

As in Theorem 5.2 the upper bound is from [EMM1]; the asymptotically exact
lower bound, which holds even for SO(2,1) and SO(2,2), was proved in [DM4].

REMARK 5.7. If we consider V{4 ) (R)NTQNP(Z"™)| instead of |V(qp)(Z) T
(where P(Z™) denotes the set of primitive lattice points, then Theorem 5.2 and
Theorem 5.6 hold provided one replaces Ao by A o = Ag.a/C(n), where ( is the
Riemann zeta function.

More on signature (2,2). Recall that a subspace is called isotropic if the re-
striction of the quadratic form to the subspace is identically zero. Observe also
that whenever a form of signature (2,2) has a rational isotropic subspace L then
L NTQ contains on the order of T? integral points x for which Q(z) = 0, hence
Nga(—€eT) > ¢I'?, independently of the choice of e. Thus to obtain an as-
ymptotic formula similar to (27) in the signature (2,2) case, we must exclude the
contribution of the rational isotropic subspaces. We remark that an irrational qua-
dratic form of signature (2,2) may have at most 4 rational isotropic subspaces (see
[EMMZ2, Lemma 10.3]).

The space of quadratic forms in 4 variables is a linear space of dimension 10.
Fix a norm || - || on this space.
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DEFINITION 5.8. (EWAS) A quadratic form @ is called extremely well approz-
imable by split forms (EWAS) if for any N > 0 there exists a split integral form @’
and 2 < k € R such that

1
< N

Loy
lo- e

The main result of [EMMZ2] is:

THEOREM 5.9. Suppose ) is as above. Let QQ be an indefinite quadratic form
of signature (2,2) which is not EWAS. Then for any interval (a,b), as T — oo,

(28) No.ala,b,T) ~ Ag.alb—a)T?,

where the constant Aq.q is as in (26), and Ng.o counts the points not contained in
isotropic subspaces.

Open Problem. State and prove a result similar to Theorem 5.9 for the signature
(2,1) case.

Eigenvalue spacings on flat 2-tori. It has been suggested by Berry and Tabor
that the eigenvalues of the quantization of a completely integrable Hamiltonian
follow the statistics of a Poisson point-process, which means their consecutive spac-
ings should be i.i.d. exponentially distributed. For the Hamiltonian which is the
geodesic flow on the flat 2-torus, it was noted by P. Sarnak [Sar] that this problem
translates to one of the spacing between the values at integers of a binary quadratic
form, and is related to the quantitative Oppenheim problem in the signature (2, 2)
case. We briefly recall the connection following [Sar].

Let A C R? be a lattice and let M = R?/A denote the associated flat torus.
The eigenfunctions of the Laplacian on M are of the form f,(-) = ¢*™("") where v
belongs to the dual lattice A*. The corresponding eigenvalues are 472||v||?, v € A*.
These are the values at integral points of the binary quadratic B(m,n) = 47%|muv,+
nvy||?, where {v1,v2} is a Z-basis for A*. We will identify A* with Z? using this
basis.

We label the eigenvalues (with multiplicity) by

0= )\o(M) < )\1(M) < /\Q(M) e
It is easy to see that Weyl’s law holds, i.e.
G AL <TY ~ enT,

where ¢py = (areaM)/(4mw). We are interested in the distribution of the local
spacings \; (M) — A\, (M). In particular, for 0 & (a,b), set

The statistic Ry is called the pair correlation. The Poisson-random model predicts,
in particular, that

(29) lim Ry (a,b,T) = ci;(b— a).
T— 00

Note that the differences \;(M) — A\, (M) are precisely the integral values of the
quadratic form Qs (z1, 22, x3,24) = B(x1,22) — B(x3,24).

P. Sarnak showed in [Sar] that (29) holds on a set of full measure in the space
of tori. Some remarkable related results for forms of higher degree and higher
dimensional tori were proved in [V1], [V2] and [V3]. These methods, however,
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cannot be used to explicitly construct a specific torus for which (29) holds. A
corollary of Theorem 5.9 is the following:

THEOREM 5.10. Let M be a 2 dimensional flat torus rescaled so that one of
the coefficients in the associated binary quadratic form B is 1. Let Ay, Ay denote
the two other coefficients of B. Suppose that there exists N > 0 such that for all
triples of integers (p1, pa2,q) with q¢ > 2,

max
i=1,2

A, -0
q

Then, for any interval (a,b) not containing 0, (29) holds, i.e.
lim Ry(a,b,T) = c3,(b— a).
T—o0

In particular, the set of (A1, As) C R? for which (29) does not hold has zero Haus-
dorff dimension.

Thus, if one of the A; is Diophantine’s (e.g. algebraic), then M has a spectrum
whose pair correlation satisfies the Berry-Tabor conjecture.

This establishes the pair correlation for the flat torus or “boxed oscillator” con-
sidered numerically by Berry and Tabor. We note that without some diophantine
condition, (29) may fail.

5.3. Passage to the space of lattices. We now relate the counting problem
of Theorem 5.2 to a certain integral expression involving the orthogonal group of
the quadratic form and the space of lattices SL(n,R)/SL(n,Z). Roughly this is
done as follows. Let f be a bounded function on R™ — {0} vanishing outside a
compact subset. For a lattice A € £, let

(30) fay="> fa

veA\{0}

(the function f is called the “Siegel Transform” of f). The proof is based on the
identity of the form

(31) /fatkA > /fatk:v

veA\{0}

obtained by integrating (30). In (31) {a:} is a certain diagonal subgroup of the
orthogonal group of @, and K is a maximal compact subgroup of the orthogonal
group of ). Then for an appropriate function f, the right hand side is then related
to the number of lattice points v € [e!/2, €!]0Q with a < Q(v) < b. The asymptotics
of the left-hand side is then established using the ergodic theory of unipotent flows
and some other techniques.

Quadratic Forms, and the lattice Ag. Let n > 3, and let p > 2. We denote
n — p by ¢, and assume g > 0. Let {eq,ea,...e,} be the standard basis of R™. Let
Qo be the quadratic form defined by

(32) (szez> —2v1vn+2v — Z v} forallwy,...,v, €R.

i=p+1

It is straightforward to verify that @y has signature (p,q). Let G = SL(n,R), the
group of n X n matrices of determinant 1. For each quadratic form @ and g € G,
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let Q9 denote the quadratic form defined by Q?9(v) = Q(gv) for all v € R™. By
the well known classification of quadratic forms over R, for each @ € O(p, q) there
exists ¢ € G such that @ = QF. Then let Ay denote the lattice gZ", so that
QolAg) = Q™).

For any quadratic form @ let SO(Q) denote the special orthogonal group cor-
responding to @; namely {g € G | Q9 = Q}. Let H = SO(Qp). Then the map
H\G — O(p, q) given by Hg — Q} is a homeomorphism.

The map a; and the group K. For t € R, let a; be the linear map so that
aer = e tey, aze, = eley,, and ae; = e;, 2 < i < n — 1. Then the one-parameter
group {a;} is contained in H. Let K be the subgroup of G consisting of orthogonal
matrices, and let K = HN K. It is easy to check that K is a maximal compact
subgroup of H, and consists of all h € H leaving invariant the subspace spanned
by {e1 + en,ea,...,e,}. We denote by m the normalized Haar measure on K.

A Lemma about vectors in R™. In this section we will be somewhat informal.
For a completely rigorous argument see [EMM1, §§3.4-3.5]. Also for simplicity we
let v =1 in this section.

Let W C R™ be the characteristic function of the region defined by the inequal-
ities on © = (x1,...,x,):

a<Qo(z) <b, (1/2) < |zf| <2,
x1 >0, (1/2)zy <|zi| < (1/2)zq for 2<i<n-—1.
Let f be the characteristic function of W.

LEMMA 5.11. There exists Ty > 0 such that for every t with et > Ty, and every
v € R™ with ||v]| > Ty,

1ifa<Qo(x) <band % <||v| < e,

0 otherwise

(33) cp7qe(”_2)t/ flatkv) dm(k) ~ {
K

where ¢y 4 s a constant depending only on p and q.

Proof. This is a direct calculation. |

Remark. The & in (33) is essentially equality up to “edge effects”. These edge
effects can be overcome if one approximated f from above and below by continuous
functions f, and f_ in such a way that the L' norm of f, — f_ is small. We choose
not to do this here in order to not clutter the notation.

In (33), we let T' = €' and sum over v € Ag. We obtain:

PROPOSITION 5.12. As T — o0,
cp,an-2/ FlakAg) ~ [{v € Ag : a < Qo(v) <b and AT < ||v] < T},
K

wheret =logT. Note that the right-hand side is by definition \V(g b) (Z)N[T/2,T10],
where Qg is the unit ball.

We also note without proof the following lemma:
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LEMMA 5.13. Let p be a continuous positive function on the sphere, and let
Q= {veR"|||v| <p/|v])}. Then there exists a constant A = A\g.q so that as
T — o,

Vol(ViS, (R) NTQ) ~ Aga(b—a)T" >,

Also (using Siegel’s formula), ¢y q [, f=cpgfon F=(1—-22") g 0.

Remark. One can verify that:
dA
AQ. = oA
¢ Nl
LN

where L is the lightcone Q = 0 and dA is the area element on L.

The main theorems. In view of Proposition 5.12 and Lemma 5.13, to prove
Theorem 5.2 one may use the following theorem:

THEOREM 5.14. Suppose p > 3, ¢ > 1. Let A € L,, be a unimodular lattice
such that HA is not closed. Let v be any continuous function on K. Then

(34) lim /K FlaskA)w (k) dm (k) = /K vdm /K F(A) du(A),

t——+o0
To prove Theorem 5.6 we use the following generalization:

THEOREM 5.15. Suppose p > 3, ¢ > 1. Let v be as in Theorem 5.14, and let
C be any compact set in L,,. Then for any € > 0 there exist finitely many points
Ai,..., Ay € L, such that

(i) The orbits HAq1, ..., HAy are closed and have finite H-invariant measure.
(ii) For any compact subset F' of C\ U, <,<, HA;, there exists to > 0, so that
forall A € F and t > tg,

(35) ‘/K f(ackA)v(k) dm(k) —/Enfd,u/Kz/dm‘ <e

Theorem 5.14 and Theorem 5.15 if f is replaced by a bounded function ¢.
If we replace f by a bounded continuous function ¢ then (34) and (35) follow easily
from Theorem 4.4. (This was the original motivation for Theorem 4.4). The fact
that Theorem 4.4 deals with unipotents and Theorem 5.15 deals with large spheres
is not a serious obstacle, since large spheres can be approximated by unipotents.
In fact, the integral in (34) can be rewritten as

where B is a suitable subset of G and U is a suitable unipotent. Now by Theo-
rem 4.4, the inner integral tends to |, G/T ¢ uniformly as long as z is in a compact set
away from an explicitly described set E, where F is a finite union of neighborhoods
of sets of the form 7(C) where C' is a compact subset of some N(F,U). By direct
calculation one can show that only a small part of B is near E, hence Theorem 5.14
and Theorem 5.15 both hold.

Remark. Both Theorem 4.4 and Ratner’s uniform distribution theorem Theo-
rem 1.12 hold for bounded continuous functions, but not for arbitrary continuous
functions from L'(G/T"). However, for a non-negative bounded continuous function
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f on R™, the function f defined in (30) is non-negative, continuous, and L but un-
bounded (it is in L*(G/T) for 1 < s < n, where G = SL(n,R), and I = SL(n,Z)).
The lower bounds. As it was done in [DM4] it is possible to obtain asymp-
totically exact lower bounds by considering bounded continuous functions ¢ < f.
However, to prove the upper bounds in the theorems stated above we need to exam-

ine carefully the situation at the “cusp” of G/T', i.e outside of compact sets. This
will be done in §6.

6. Quantitative Oppenheim (upper bounds)
The references for this section are [EMM1] and [EMMZ2].

Lattices. Let A be a lattice in R". We say that a subspace L of R™ is A-rational if
LNA is alattice in L. For any A-rational subspace L, we denote by da (L) or simply
by d(L) the volume of L/(L N A). In the notation of [KI1, §3], da(L) = [L N A]||.
Let us note that d(L) is equal to the norm of ey A -+ A ey in the exterior power
A“(R") where ¢ = dim L and (e, - -- , e/) is a basis over Z of LN A. If L = {0} we
write d(L) = 1.
Let us introduce the following notation:

1
a;(A) = sup {m’ L is a A-rational subspace of dimension i }, 0<1i<n,

a(A) = max a;(A).

0<i<n

The following lemma is known as the “Lipshitz Principle”:

LEMMA 6.1 ([Sch, Lemma 2]). Let f be a bounded function on R™ vanishing
outside a compact subset. Then there exists a positive constant ¢ = ¢(f) such that

f(A) < ca(d)
for any lattice A in R™. Here f is the function on the space of lattices defined in

(30).

Replacing f by a. By Lemma 6.1, the function f(g) on the space of unimodular
lattices £,, is majorized by the function a(g). The function « is more convenient
since it is invariant under the left action of the maximal compact subgroup K of
G, and its growth rate at infinity is known explicitly. Theorems 5.2 and 5.6 are
proved by combining Theorem 4.4 with the following integrability estimate:

THEOREM 6.2 ((EMML1]). Ifp>3,g>1and0<s<2,orifp=2,q>1
and 0 < s < 1, then for any lattice A in R"

sup/ a(athA) dm(k) < oc.
>0 J K

The upper bound is uniform as A varies over compact sets in the space of lattices.

This result can be interpreted as follows. For a lattice A in £,, and for h € H,
let f(h) = a(hA). Since « is left-K invariant, f is a function on the symmetric
space X = K\H. Theorem 6.2 is the statement that if if p > 3, then the averages
of f%, 0 < s < 2 over the sets Ka;K in X remain bounded as t — oo, and the
bound is uniform as one varies the base point A over compact sets. We remark
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that in the case ¢ = 1, the rank of X is 1, and the sets Ka;K are metric spheres of
radius t, centered at the origin.

If (p,q) = (2,1) or (2,2), Theorem 6.2 does not hold even for s = 1. The
following result is, in general, best possible:

THEOREM 6.3 ([EMML1]). If p=2 and ¢ =2, or if p=2 and q = 1, then for
any lattice A in R™,

1
(37) sup — / alatkA) dm(k) < oo,
t>1 K

The upper bound is uniform as A wvaries over compact sets in the space of lattices.

Proof of Theorem 5.15 assuming Theorem 6.2. We can assume that f is
nonnegative. Let A(r) = {x € G/T : «a(z) > r}. Choose a continuous nonnegative
function g, on G/T such that g.(x) =1if v € A(r +1), g-(x) =0if x ¢ A(r) and
0<gr(r)<lifze A(r)— A(r+1). Then

/ flackz)v(k) dm(k) =
K

(38) ) ) )
- / (Fgo)(arkayw (k) dmi(k) + / (F - Far)(ackz)v(k) dm(k).
K

K

But (letting 8 = 2 — s), (f9,)(y) < Bia(y)* 7 g.(y) = Bia(y)* g, (y)aly) "> <
B17‘_§a(y)2_§ (the last inequality is true because g, (y) = 0 if a(y) < r). Therefore

@) [ Goake()dn(h) < B [ atada) o) dmh).
According t[(() Theorem 6.2 there exists B such glat

/Ka(atkm)%g dm(k) < B
for any ¢ > 0 and uniformly over « € C. Then (39) implies that

(40) /K (fgr)(askz)v(k) dm(k) < BBy (supv)r==.

[Nl]e)

Since the function f — f g, is continuous and has a compact support, the “bounded
function” case of Theorem 5.15 implies that for every € > 0 there exists a finite set
of points x1,...,x, with Hx; closed for each i so that for every compact subset F'
of C\ Ule Hz; there exists g > 0 such that for every ¢ >ty and every x € F,
(41)

|/K(];—Jggr)(ath),,(k) dm(k) _/

< €
G/T 2

(F — For)(y) du(y) / (k) dm(k)

K

It is easy to see that (38), (40) and (41) imply (35) if r is sufficiently large. This
implies Theorem 5.15. O

In the rest of this section, we prove Theorem 6.2 and Theorem 6.3. We recall
the notation from §5: G is SL(n,R), T = SL(n,Z), K = SO(n) is a maximal
compact subgroup of G, H = SO(p,q) C G, K = HN K is a maximal compact
subgroup of H, and X is the symmetric space K\ H. From its definition (36), the
function «(A) is the maximum over 1 < i < n of K invariant functions a;(A). The
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main idea of the proof is to show that the «f satisfy a certain system of integral
inequalities which imply the desired bounds.

Ifp>3and 0 < s <2 orif (p,g) = (2,1) or (2,2) and 0 < s < 1, we show
that for any ¢ > 0 there exist ¢ > 0, and w > 1 so that the the functions o} satisfy
the following system of integral inequalities in the space of lattices:

42 Ared < ol + w? max JJai ol
(42) Lo 0<j<min(n—izg) V I

where Ay is the averaging operator (4, f)(A) = [} f(a;kA), and ¢; < ¢ (Lemma 6.7).
If (p,q) = (2,1) or (2,2) and s = 1, then (42) also holds (for suitably modified func-
tions «;), but some of the constants ¢; cannot be made smaller than 1.

Let f;(h) = a;(hA), so that each f; is a function on the symmetric space X.
When one restricts to an orbit of H, (42) becomes:

S

(43) Auf? <cef + w? max Sl

0<j<min(n—i,i)
If rank X = 1, then (A, f)(h) can be interpreted as the average of f over the sphere
of radius 2¢ in X, centered at h. In §6.4 we show that if the f; satisfy (43) then for
any € > 0, the function f = f. s = Zogign ei(”_i)fis satisfies the scalar inequality:

(44) Af <cf+b,

where ¢, ¢ and b are constants. This inequality is studied in §6.3. We show that if
¢ is sufficiently small, then (44) for a fixed ¢ together with the uniform continuity
of log f imply that (A4, f)(1) is bounded as a function of r, which is the conclusion
of Theorem 6.2. If ¢ = 1, which will occur in the SO(2,1) and SO(2,2) cases, then
(44) implies that (A, f)(1) is growing at most linearly with the radius. In §6.4, we
complete the proof of Theorem 6.2, and also prove Theorems 6.3 and 5.15.

Throughout the proof we consider the functions «(g)® for 0 < s < 2 even
though for the application to quadratic forms we only need s = 1+ §. This yields a
better integrability result, and is also necessary for the proof of Theorem 5.14 and
Theorem 5.15.

6.1. Averages of the functions 1/d; over spheres. Recall that the func-
tion d; is the norm of a certain vector in the exterior power A"(R™). We have the
following:

PROPOSITION 6.4. Let {a; | t € R} be a self-adjoint one-parameter subgroup of
SO(2,1). Let p and q be positive integers and let 0 < i < p+q. Let

Fi)={zi AxaA--- Az | 21,29, ,2; € RPTI} C /\i(Rp+q),
Then, if p> 3, orifp=2, ¢ =2 and i # 2, then for any s, 0 < s < 2,
dm/(k
(45) lim sup m(k) =0

=% ep(), Jol=1J K llatkoll®
where K = SO(p) x SO(q) and SO(2,1) is embedded into SO(p,q). If p = 2 and
qg=1,0rifp=2,qg=2 and i =2, then (45) holds for any s, 0 < s < 1.
Proof. This is a direct calculation. O

The next lemma we obtain an analogous result for the case (p,q) = (2,1), s = 1.
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LEMMA 6.5. Let H = SO(2,1) be the orthogonal group of the quadratic form
22 +y? — 2% Let {a; | t € R} be a self-adjoint one-parameter subgroup of H, and
let K = HNO(3) denote the mazimal compact of H. We define another norm || - ||*
on R? by

(46) (@, y, 2)[|" = max(v/z? + ¢, |z]).
Then, for any v € R®, v # 0, and any t > 0,
dm/(k 1
(47) mk) 1
K llackol|* = [lv]

6.2. A system of inequalities.
LEMMA 6.6. For any two A-rational subspaces L and M
(48) d(L)d(M) > d(LNM)d(L+ M).

Proof. Let m : R — R"/(L N M) denote the natural projection. Then d(L) =
d(w(L))d(LNM), d(M) = d(x(M))d(LNM) and d(L+M) = d(w(L+M))d(LNM).
On the other hand the inequality (48) is equivalent to the inequality
d(L) d(M) - d(L+ M)

d(ILNM)d(LNM) — d(LNM)"
Therefore replacing L, M and L+ M by w(L), 7(M) and «(L + M) we can assume
that LN M = {0}. Let (ey, -+ ,ep), £ =dim L, and (ep41,- -+, €p4m), m = dim M,
be bases in L and M respectively. Then

(49) d(L)d(M) = [lex A+ Aeell [leer1 A= Aeerml|
>ller A AegAeprr A+ Aepym| > d(L + M)

that proves (48) (the second inequality in (49) is true because (LNA)+ (M NA) C
(L+M)NA. O

LEMMA 6.7. Let {a; | t € R} be a self-adjoint one-parameter subgroup of
SO(2,1). Let p and q be positive integers, and denote p+ q by n. Denote SO(p) x
SO(q) by K. Supposep>3,q>1and0<i<n,orp=2,¢q=2andi=1 or3.
Then for any s, 0 < s < 2, and any ¢ > 0 there exist t > 0 and w > 1 such that for
any lattice A in R™

S C S s
(50) /Kai(atkl\) dm(k) < Eai(A) + w? O<j§rrr{:ilr??nfi,i}( aiH(A)ai_j(A)) .

Ifp=2,g=1andi=1,2, orifp=2,q=2 and i = 2, then for any s, 0 < s < 1,
and any ¢ > 0 there exist t > 0 and w > 1 such that (50) holds.

Proof. Fix ¢ > 0. In view of Proposition 6.4 one can find ¢ > 0 such that
d
m(k) - 27
x lakol® 2
whenever v € F(i),||v| = 1. Tt follows that

dm(k) c 1
(51 / < == )
) « Tackol* <2 TolF
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for any v € F'(i),v # 0. Let A be a lattice in R”. There exists a A-rational subspace
L; of dimension 7 such that

(52) < = a;(A).
The inequality (51) implies

dm(k) c 1
(53) /K da,kn(arkL;)® = 2dx(Ly)*

Let w = maxo<<n || N (as)|l. (In fact w = e'). We have that

(54) wl< <w, 0<j<n,veF().

Let us denote the set of A-rational subspaces L of dimension ¢ with da(L) <
w?dp(L;) by ¥;. We get from (54) that for a A-rational i-dimensional subspace
L¢,

(55) do,kn(aik L) > dg,ga(arkL;), ke K.
It follows from (53), (55) and the definition of a; that

(56) /K ai(ackA)® dm(k) < gai(A)S if U, = {L;}.

Assume now that U; # {L;}. Let M € ¥;, M # L;. Then dim(M+L;) =i+j, j >
0. Now using (52), (54) and Lemma 6.6 we get that for any k € K

w w2

(L) = Jar)da (M)

(57) W

= \/dA(Li n M)dA(Li + M)

a;(atkA) < way(A) =

< wy o (Mai—i(A).

Hence if ¥; # {L;}

(58) /K culakA) dm(k) <w?  max (yfar (e, ()

0<j<min{n—i,i}
Combining (56) and (58) we get that for any lattice A C R™, (50) holds. O

In the rest of this subsection we obtain similar systems of inequalities for the
SO(2,1) and SO(2,2) cases, with s = 1. For H = SO(2,1), A a lattice in R3, and
L a A-rational subspace of R?, let di (L) = [le1 A...ep||* where (e1,...¢e;) is a basis
for AN L. (The norm || - ||* defined in (46) on R? = A'(R?) can be extended to
A’ (R?) by duality.) For 1 <i < 2, let

1

(59) af (A) = sup {d*—(L) ‘L is a A-rational subspace of dimension i }
A

Clearly for any A,
(60) (1/2)ai(A) < af (A) < 20, (A).
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LEMMA 6.8. Let {a; | t € R} be a self-adjoint one-parameter subgroup of H =
S0O(2,1), and denote SO(2) by K. Then there exist to > 0 and w > 1, such that
for any t < to, for any unimodular lattice A in R3, and 1 <i <2,

(61) /K a2 (ackA) dm(k) < ol (A) + /a1 (A).

Proof. The argument is identical to the proof of Lemma 6.7 except that one uses
Lemma 6.5 instead of Proposition 6.4. (I

Now let H = SO(2,2). The space V = A*(R*) splits as a direct sum V; & V,
of two invariant subspaces, where on each V;, H preserves a quadratic form Q; of
signature (2,1). We define on each V; a Euclidean norm || - ||¥ by (46) (adapted to
Q;). Let m; denote the orthogonal projections from V to V;. Now let A be a lattice
in R*, and let L be a two-dimensional A-rational subspace of R*. For 1 < i < 2,
let

(62) i (L) = ||mi(er Aea)|},

where {e1, ea} is a basis over Z for A N L. Then let

o = sup < min : :

The supremum is taken over A-rational two dimensional subspaces L. By construc-
tion, for any A,

(64) Claf (A) < ay(A) < CaZ (D),
where C' is an absolute constant.

LEMMA 6.9. Let {a; | t € R} be a self-adjoint one-parameter subgroup of
SO(2,1), where SO(2,1) is diagonally embedded in H = SO(2,2), under its lo-
cal identification with SL(2,R) x SL(2,R). Denote SO(2) x SO(2) by K, and the
mazimal compact of SO(2,1) by K. Then there exist to > 0 and w > 1, such that
for any t <ty and for any unimodular lattice A in R*,

(65) /f( off (ackA) dm(k) < o (A) + w?ar (M)as(A).

Proof. The group K is diagonally embedded in K. Recall that each S0(2,2)
invariant subspace V; of A%(R*) is fixed pointwise by one of the SL(2,R) factors,
while the other fixes a quadratic form of signature (2,1). Thus, for 1 <14 < 2, the
inequalities:

dm(k) - 1

(66) & ||mi(acko)|[; ~ Imi()ll}
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follow immediately from Lemma 6.5. Hence,

/~ min ( 1~ , 1~ ) dm(k)
K Imi(acko)l[} [lwe(arkv)ll

. dm(Fk) dm(k)
< min - , -
i [|mi(ackv)l[i /& |2 (akv)|3
1 1

(67) < min ( -, *) .

[ ()7 2 (v) 13
The rest of the proof is identical to that of Lemma 6.7 except that (67) is used in
place of Proposition 6.4. (]

6.3. Coarsely Superharmonic Functions. Let n € Nt and let D, de-
note the set of diagonal matrices d(\,- - ,\,) € GL(n,R) with A\ > Ay >
- > A, > 0. For any g € GL(n,R), consider the Cartan decomposition g =
ki(g9)d(9)k2(9), k1(9), k2(9) € K = O(n,R), d(g) € D} and denote by Ai(g) >
A2(g) > -+ > A\u(g) the eigenvalues of d(g).

LEMMA 6.10. For every e > 0 there exists a neighborhood U of e in O(n,R
such that

~—

i (d1 kdg)
Ai(d1)Ai(da)

for any dy,ds € DY, k€U and 1 <i <mn.

(68) -1l <e

Proof. Let (e1,---,e,) be the standard orthonormal basis in R™. If k € O(n,R)
and (kep,e;) > 1 — e then

(69) HdlkdgelH > (]. — 6))\1(d1)>\1(d2).

On the other hand, for any ¢ € GL(n,R).

(70) Ai(g) = llgll = llgeal-

Since ||dikds|| < ||d1]] ||d2] it follows from (69) and (70) that
A1 (dykds)

71 1> —————F—>1—¢

(71) T A(di)Ai(d2)

if (ke1,e1) > 1 —e. Analogously considering the representation of GL(n,R) in the
i-th exterior product A'(R") of R™ we get that

(At Xa - Ao (dikeds)
>1—ck¢,
Oidz i) (drda) ‘

(72) 1>

if k € O(n,R) and (A" (k)(e1A- - -Ae;), e1 A+ - -Aeg) > L—e. It is clear that there exists
a neighborhood U of identity in O(n, R) such that (\'(k)(e1A---Ae;), e1A---Ae;) >
V1 —c¢€forevery ke U and 1 <i <n. But
Ao Ay
Mlg) = (A1 A2 )Ng)
(AA2 -+ Aic1)(9)
Therefore (68) follows from (72). O
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LEMMA 6.11. (c¢f. the “wavefront lemma” [EMc, Theorem 3.1]) Let H be a
self-adjoint connected reductive subgroup of GL(n,R), let K = O(n,R)N H be a
mazximal compact subgroup of H and let {a; | t € R} be a self-adjoint one-parameter
subgroup of H. Then for every neighborhood V' of e in H there exists a neighborhood
U of e in K such that

(73) aUas C KVaja, K
foranyt >0 and s > 0.

Proof. Conjugating a; by an element of K we can assume that {a; | t > 0} C D;!.
It is easy to see that there exists € > 0 such that hy € Vhy whenever hy, hy € D;F

and ’:\\LEZS - 1’ < € for every 1 < i < n. Take a neighborhood U such that (68) is
satisfied. Then (73) is true for this U. O

PROPOSITION 6.12. Let H be a self-adjoint reductive subgroup of GL(n,R), let
K =0O(n,R)NH, let m denote the normalized measure on K, and let A = {a; | t €
R} be a self-adjoint one-parameter subgroup of H. Let F be a family of strictly
positive functions on H having the following properties:

(a) The logarithms log f for f € F are equicontinuous with respect to a left-
imvariant uniform structure on H or, equivalently, for any ¢ > 0 there
exists a neighborhood V (€) of 1 in H such that for any f € F,

(1—e)f(h) < fluh) < (1+€)f(h)
for any h € H and u € V (e);
(b) The functions f € F are left K-invariant, that is f(Kh) = f(h), h € H,
() supjer f(1) < .
Then there exists 0 < ¢ = ¢(F) < 1 such that for any t > 0 and b > 0 there exists
B = B(t,b) < co with the following property: If f € F and

(74) / Flackh) dm(k) < cf(h) +b
K
for any h € KAK C H, then
/ flark)dm(k) < B
K

for any T > 0.
Proof. Fix f € F, and let
Fiy = [ o) o).
K

Properties (a), (b), (c) of the function f imply that f has the same properties.
Hence it suffices to show that the conclusion of the proposition holds for f. There-
fore we can assume that

(75) JUKRE) = f(h), h e H,
and we have to prove that

(76) sup f(a;) < B < oo.
>0
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It follows from property (a) that
1 1
(77) 5f(h)<f(uh)<2f(h), heH, ueV:V(E).

According to Lemma 6.11 there exists a neighborhood U of 1 in H such that
aUa, € KVaia, K for any t > 0 and 7 > 0. Then we get from (75) and (77) that

(78) /K flaikar) dm(k) > /UmK f(aikar) dm(k) > %m(U NK)f(aar).

Suppose for some ¢t > 0 and b > 0

1
(79) / Fladkh) dm(k) < {m(U 0 K) () + b, h € H
K
It follows from (78) and (79) that for some o' > 0,
1
(80) flawar) < 5f(a7.) + b, for all 7 > 0.
Using induction on ¢ we get from (80) that
(81) flag) < 2max{f(1),b'}, ;¢ € N".
Since {a, | 0 < r < t} belongs to V? for some i where V1 =V, Vi =V Vil it
follows that suppecp o<r<t fj(c'z;};) < 00. Therefore (81) and property (c) imply
(76). O

6.4. Averages over large spheres. In this subsection we complete the proofs
of Theorem 6.2, Theorem 6.3 and Theorem 5.15.

Proof of Theorem 6.2. Define functions fo, f1, -+, fn on H = SO(p, q) by the
following equalities

fl(h) = Oéi(hA), heH, 0<i<n.
Since a(a;kA)® = maxo<i<n fi(aih)® < 3 o<i<, fi(aik)® it is enough to show that
(82) sup / fi(ak) dm(k) < 0.

>0, 0<i<n JK

Let A; denote the averaging operator defined by

A0 = [ SakhydmiE),  he
K
As in Proposition 6.4, let
F(l) = {Il ANxo N Nx; | XT1,T2, - ,T; € Rn} C /\Z(Rn)

Since [|[Kv]| = [[v]| and It < || A"(R)], for any v € F(i) and h € H, each f; has

properties (a) and (b) of Proposition 6.12. Applying Lemma 6.7 to A = hA we see
that for any 9,0 < i <n,and h € H

S C S s s
(83) AfP < ifi + w? max sl

0<j<min{n—i,i}
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Let us denote ¢(z) = i(n—1). Then by direct computations 2¢(i)—q(i+j)—q(i—j) =
2j2. Therefore we get from (83) that for any 7,0 < i < n, and any positive € < 1

(84)

) c .. N aliti)+ati—g) - .y
Ay(e1D f) < aeq(’)ff + w? O<j<rInr%r??nfi 4 O \/eq(i"r])fiijeq(i—ﬂfiij
c i) £S 2 i+7) £S i—j) fs
= §€q( e 0<j<iinn—ii} \/GQ( R ARl [

Consider the linear combination

fom 3 a0
0<i<n
The function f. s then also has properties (a) and (b) of Proposition 6.12. Since
e fs < f. o fo=1and f, = 1/d(A), the inequalities (84) imply the following
inequality:

(85) Atfe’s <1 =+ d(A)_g + gfe,s + nGWQfE’S.

Taking € = 5.5 we see that (74) from Proposition 6.12 also holds. Furthermore

property (a) and (74) of Proposition 6.12 hold with the same constants for any
unimodular lattice A € R". Since fe (1) < na(A)®, fes(1) is uniformly bounded
as A varies over a compact set C of unimodular lattices. Hence the family F of
functions f. s obtained as A varies over C satisfies all the conditions of Proposi-
tion 6.12. Since a;(hA)* = fi(h)* < ¢~ 9 f, (h), Proposition 6.12 implies that
there exists a constant B > 0 so that for each 4, all £ > 0, and all A € C,

/ ai(aikA)® dm(k) < B.
K

From this the theorem follows. O

7. Connections to dynamics of rational billiards

For references to this section see [E2].

In this lecture, we describe some counting problems on translation surfaces and
outline their connection to the dynamics of the SL(2,R) action on the moduli space
of translation surfaces. Much of this is presented in analogy with the quantitative
Oppenheim conjecture (see §5 and §6).

Recall that £,, = SL(n,R)/SL(n,Z) is the space of covolume 1 lattices in R™.
This space is non-compact, since we can have arbitrarily short vectors in a lattice.

The strata and the measure . Let 8 = [(1,..., 8, be a partition of 2¢g — 2.
Let H(B) denote the moduli space of translation surfaces with conical singularities
of total angles 27 (8 + 1),...,27(B, + 1). (I am using the notation from [Zor]:
Jean-Christophe is using M(-).) We will sometimes call H(5) a stratum. Let
H1(B) C H(B) denote the subset consisting of surfaces of area 1. Let p be the
normalized Lebesque measure on H1(8) (as defined by Jean-Christophe via the
period map). We will use the same letter to denote the restriction of u to Hi ().
A theorem of Masur and Veech (proved in Jean-Christophe’s lectures) states that
w(H1(B)) < oo. In §7.5 we will describe how to evaluate the numbers u(H1(5)).
Note that the case of n = 2 in the space of lattices Lo and the case of stratum
H1(0) boil down to the same thing, since we are considering the space of unit
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volume tori (or more precisely, the space of 1-forms on unit volume tori), which is
given by SL(2,R)/SL(2,7).

Note. I will use the term saddle connection to denote what Jean-Christophe is
calling a connection.

Holonomy and the sets V.(S) and V(S). Recall that a point S € H(3) can
be viewed as a pair (M,w) where M is a Riemann surface and w is a holomorphic
1-form on M. Recall that the holonomy of a curve v on S is given by

hol(7) :Aw.

Vie(S) = {hol(v) : = is asaddle connection on S},

so that Vi.(S) € C ~ R2. Note that Vi.(S) is a discrete subset of R2, but it is not,
in general, a subgroup. We also define the analogous set:

Let

V(S) = {hol() : v is a closed geodesic on S not passing through singularities}.

Note that any such closed geodesic is part of a cylinder and all the closed geodesics
in the cylinder have the same holonomy. (If S = R?/Z? is the standard torus with
the standard flat structure, then V(S) = Z?).

7.1. Counting cylinders and saddle connections. Let B(R) denote a ball
of radius R. Then, |V (S)N B(R)| is the number of cylinders on S of length at most
R, and |V,.(S)NB(R)] is the number of saddle connections (not necessarily vertical)
of length at most R. Masur proved the following:

THEOREM 7.1. For all flat surfaces S in a compact set, there are constants cq
and co so that for R > 1

c1R? < |V(S)N B(R)| < |Vse(S) N B(R)| < coR?.

The upper bound is proved in [Mas2] and the lower bound is proved in [Mas3].
The proof of the lower bound depends on the proof of the upper bound. Another
proof of both the upper and lower bounds with explicit constants was given by
Vorobets in [Vol] and [Vo2]. We will sketch below yet another proof of the upper
bound, using the ideas of §6. (See [EM] for the details).

We also note that there is a dense set of directions with a closed trajectory and
thus a cylinder.

The following theorem, gives asymptotic formulas for the number of saddle
connections and cylinders of closed geodesics on a generic surface. It was first
proved in this form in [EM], but many of the ideas came from [Ve], where a
slightly weaker version was proved.

THEOREM 7.2. For a.e. S € Hi(B), we have
Vae(S) N B(R)| ~ 7b(B) R,

where Vy.(S) is the collection of vectors in R? given by holonomy of saddle connec-
tions on S, and b(B) is the Siegel-Veech constant defined in §7.2 (see also (89)).
Similarly, for closed geodesics, we have that there is a constant bi(8) so that

V(S) N B(R)| ~ b1 (8) R?
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where V(S) is the collection of vectors given by holonomy along (imprimitive) closed
geodesics not passing through singularities, and by () is the associated Siegel-Veech
constant.

It will turn out that the problem of counting saddle connections or cylinders
closed geodesics on a flat surface is analogous to the quantitative Oppenheim prob-
lem (§5 and §6).

7.2. The Siegel-Veech formula. The following construction and its ana-
logues play a key role. For any function of compact support f € C.(R™), let
f(A) = > veavo f(v). Note that if f = xp(), we get f(A) = |ANB(1)]. We have
the Siegel formula: For any f € C.(R™),

1 ~
(36) =/ F@yaa) = [ i

where p is Haar measure on £,, = SL(n,R)/SL(n,Z), and A is Lebesgue measure
on R™.

The generalization of this formula to moduli space was developed, so the legend
goes, by Veech while he listened to Margulis lecture onAthe Oppenheim conjecture.
For f € C.(R?) we define the Siegel-Veech transform f(S) = 2 vevi.(s) f(v). Just

as above, if f = xp(1), f counts the number of saddle connections of length < 1.

Just as we had the Siegel formula for lattices, here we have the Siegel-Veech
formula: There is a constant b(3), called the Siegel-Veech constant, such that for
any f € C.(R?), we have

1 ~
(s7) TCRED /H @ =06 [ 1
where g is the natural SL(2,R) invariant measue on H;(f3).

Let us sketch the proof of this result (essentially from [Ve], also reproduced
in [EM]). The first step (which is by far the most technical) is to show that
f € L' (H1(B)), so that the left hand side is finite. This can be deduced e.g. from
(94) below. Having done this, we denote the quantity on the left hand side of (87)
by ¢(f).

Thus we have a linear functional ¢ : C.(R?) — R, i.e. a measure. But it also
has to be SL(2,R) invariant. Only Lebesgue measue and dp, the delta measure at
0 are SL(2,R) invariant. Thus we have ¢(f) = af(0) +b [z. f. It remains to show
a = 0. Consider the limit of indicator functions f = xp(r) as R — 0. Both sides
of the equation tend to 0, so we have that a = 0, and thus our result.

Returning to lattices, we can apply literally the same arguments to prove the
Siegel formula (86). Note that nothing was special about dimension 2 in the above
proof sketch. Thus, we have almost proved (86) as well. To be precise, we currently

have: .
e /E fyn@) = [ g

for some constant b. We need to show b = 1. Here, we once again use f = xp(r),
but this time consider R — co. Recall that f(A) = |A N B(R)| ~ Vol(B(R)), for
R — oo and A fixed. Thus, we get b = 1, and the Siegel formula.

We should remark that for the space of lattices the proof of the Siegel formula
indicated above is not the easiest available. In fact, it is possible to avoid proving
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apriori that f € L*(L,). See [Sie] or [Cas] or [Ter] for the details. A well known
consequence of the Siegel formula is the following:

(58) HEw) = C(2)CE) ¢

For the stata #(/3), this method of evaluating b(3) (i.e. considering f = xp(r)
and taking R — o0) is not avaliable. Essentially the problem is that we do not
have an alternative expression for the constant in Theorem 5.5.

Another approach is to let f = xp(), send € — 0 and keep track of the leading
term in the asymptotics of both sides. This was done in [EMZ] where we obtained
the following result: For any stratum H;(8) in the moduli space of translation
surfaces the coefficient b(8) involved in (87) can be expressed in the following form:

LN o, gy (@)
(89) b(ﬂ)—agﬁ (@B LB

where the sum is over lower dimensional strata « (which lie at the “boundary” of
H(B)), and c(a, B) are explicitly known rational numbers.

We note that (89) fails as a method for calculating the volumes, since (unlike
the lattice case) we do not have an independent formula for b(3). In §7.5 we will
show that the volumes can be computed in a different way; then (89) can be used
to evaluate the Siegel-Veech constants b(/3). These numbers appear in some other
contexts as well, in particular in connection with the Lyapunov exponents of the
geodesic flow.

7.3. Counting using the SL(2,R) action. This subsection is closely parallel
to §5.3. The following exposition will be along the lines of [EM], which was heavily
influenced by [Ve]. To simplify the notation, we only deal with the case of saddle

¢ .
connections. Define gy = c 0 cosf  sinf ) Let f be the

0 et andrg = _ sinf cosf
indicator function of the trapezoid defined by the points

(1,1),(=1,1),(-1/2,1/2),(1/2,1/2).

2e 72 ifelt/2 < ||| <€,

LEMMA 7.3. We have fozﬂ f(girev) df =~ .
0 otherwise.

Proof. Let U denote the trapezoid. Note that
(90) f(girgv) # 0 & girov € U < rgv € g; 'U.

The set g; 'U is the shaded region in Figure 2. From (90) it is clear that the
integral in Lemma 7.3 is equal to (27 times) the fraction of the circle which lies
inside the shaded region g;lU. If v is too long or too short (not drawn), then the
circle would completely miss the shaded region, and the integral would be zero. If
it does not miss, then (27 times) the fraction of the circle in the shaded region is
approximately 2e 2!, independent of ||v]|. O

We now prove Theorem 7.2. Summing our formula from Lemma 7.3 over
all v € Vi.(S) and recalling the definition of the Siegel-Veech transform f(S) =

2vevi.(s) f(v), we get
27

z¢” ; Fge195) db = |Vie(S) N B(e")| = |Vie(S) N B(e'/2)].
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e U
Figure 2. Lemma 7.3.
Writing R = ¢!, we can rewrite this as
2m
(91) 3B [ flgreS)dd = |Vie(S) N B(R)| — |Vie(S) N B(R/2)|.
0

This equation is key to the counting problem, since the right hand side counts
saddle connections in an annulus, and the left hand side is an integral over (part
of) an SL(2,R) orbit. (The fact that we only have approximate equality does not
affect the leading order asymptotics.) Now we are supposed to use some sort of
ergodic theory to analyze the behavoir of integral on the left-hand-side of (91) as
t — oo (or equivalently as R — 00).

There is an ergodic theorem of Nevo [Ne] which implies that! for almost
all S € H,(B), and provided that f € L't¢(#,(3)), the integral converges to
27 le(ﬁ) f(S)dS = 2rb(B) [r, f. The assertion that f € L'*¢ can be verified

using (94). This immediately implies Theorem 7.2. O

However, this approach is a failure if one wants to prove things about billiards:
our theorems hold for almost every point S, and the set of translation surfaces
arising from rational billiards has measure zero.

One eventual goal is to prove analogues of Ratner’s theorems on unipotent
flows for the SL(2,R) action on H1 (). That is, we would like to classify invariant
measures, orbit closures, and prove uniform distribution, for both the full SL(2,R)
action, and for the horocycle flow. One partial result in this direction is due to

IThe theorem of Nevo used here is about a general SL(2,R) action, and uses nothing about
the geometry of the moduli space.
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McMullen [Mc]: he has classified the SL(2,R) orbit closures and invariant measures
for the moduli space of genus 2 surfaces (i.e., the strata H(1,1) and #H(2)). Note
that the integral in (91) is over large circles in SL(2,R), which can be approximated

0 1
is directly relevant. For other very partial results in this direction see [EMaMo],
[EMS] and [CW].

well by horocycles. Thus the action of the horocycle flow (i.e. the action of (1 t> )

7.4. The upper bounds. In this subsection, we will outline a proof of the
upper bound in Theorem 7.1, following the scheme of §6.

Let B(R) be the ball of radius R centered at 0 in R™. For a given lattice
A € L,. we would like to find out how many lattice points, that is, how many
points of A are contained in B(R).

It is immediately clear that for a fixed lattice A, as R — oo,

(92) |A N B(R)| ~ Vol(B(R)) = Vol(B(1))R".

(i.e. the number of lattice points is asymptotic to the volume). However, this is not
uniform in A. A uniform upper bound has been given in Lemma 6.1, in particular:

(93) IANB(1)| < Ca(A).

The analagous problem in moduli space is as follows: We are interested in
|Vse(S) N B(1)], i.e. the number of saddle connections of length at most 1 on S.

The result is as follows: Fix e > 0. Then there is a constant ¢ = ¢(3, €) such
that for all S € H(B) of area 1,
(94) Vee(S) N B(1)] < W
where £(5) is the length of the shortest saddle connection on S.

Assuming (94), the proof of the upper bound in Theorem 7.1 can be following
the scheme of §6 (with a suitable definition for the functions «;).

However, it turns out that the proof of (94) is more difficult that that of (93);
it itself uses the system of inequalities along the line of §6, as well as induction on
the genus.

7.5. Evaluation of the volumes. In this lecture we describe briefly another
strategy for calculating volumes of strata, which also has a parallel for the space
of lattices. Recall that we are considering the spaces H () of flat structures with
singularity structure 8 = (1, 82, ...0s), where 8; € N, 3" 3, = 2g — 2. Let the set
of singularities be denoted by ¥. We have |3| = n, and we have

Hy(S,%;,2) =729t 1,

We can pick a basis by selecting g a-cycles, g b-cycles (from absolute homology),
and n — 1 relative cycles.

Fix a Z-basis v1,72, ...y of H1(S,%;Z), where k = 2g + n — 1. We recall the
following fact (see [Ko]):

THEOREM 7.4. The map (X,w) — (hol(y1), ..., hol(vx)) from H(B) — (R?)*
s a local coordinate system.

By pulling back Lebesgue measure on (R?)*, we obtain a normalized measure
v on H(B). (For more details on the above constuction, see [Masl, §3].) Now, we
would like to define a measure on the hypersurface H;(3).
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This is similar to the lattice setting, where if we pick a basis vy, vs,...v, for
our lattice A C R™, we get a matrix in M, (R) by letting v; be the ith column.
Note that since our lattice is unit volume, our matrix has determinant 1. We have
a natural (Lebesque) measure v on M, (R). Consider the det = 1 hypersurface
(i.e.,, SL(n,R)). We define a measure p on this space as follows: let E C €y, and
let C1(E) be the cone over E (i.e. the union of all line segments which start at the
origin and end at a point of E). We define p(E) = v(C1(E)). This yields a finite
measure since we are considering a fundamental domain under the SL(n,Z)-action.
This is in fact the measure used in the previous section.

Returning to the setting of surfaces, recall that the area of our surface S =
(X, w) is given by

1 1<
ATea(S):Z_i/XW/\{DZQ_iZ/ w/bw—/bw/w
i=1"Y Qi i i (7

where a; and b; are the a- and b-cycles on X respectively.
This gives that the area is a quadratic form in the coordinate sytem, i.e.,

Area(X,w) = Q(hol(v1), ..., hol(vg)).

However, it is a degenerate form, since it only depends on the absolute cycles a;
and b;. We can mimic the lattice picture now: we define u(E) = v(C1(E)) for any
subset £ C H1(8). Thus,

pM1(B)) = m(F) = v(Ci(F)),
where F is a fundamental domain.
We now make a cosmetic step. Let Cr(F) denote the cone of F extended to
the hypersurface of area R-surfaces. Clearly

(M1 (8)) = v(Cy(F)) = w];;ff”

We have the following fact:
|Cr(F) N (Z)*] ~ v(Cr(F))

as R — oo, i.e. the number of lattice points in a cone is asymptotic to the volume.
Ususally this is used to estimate the number of lattice points, but here we use this
in reverse and estimate the volume by the number of lattice points. Thus, we get
that

_ v(Cr(F) _ |Cr(F) N (23

:U/(Hl(ﬂ)) - Rk RF )

or, equivalently,
(95) [Cr(F) N (Z*)*] ~ u(H1(B)) R

The equation (95) is not useful unless we can find an interpretation of the points
of Cr(F) N (Z*)*. This is given by the following:

LEMMA 7.5. S = (X,w) € Cr(F) N (Z*)* if and only if X is a holomorphic

branched cover of the standard torus of degree < R, w is the pullback of dz under
the covering map, and all singularities branch over the same point.

Proof: Since S € Cr(F), area(S) < R. By definition, S € (Z?)* is equivalent to
hol(y1), ..., hol(vyk) € Z2. Fix a non-singular point zo on S, and define 7: S — T,
where T' is the standard torus, by 7w(z) = fzzo w. Since fvw € Z + iZ for any
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closed curve or saddle connection +y, this is a well defined covering map with all
singularities branching over the same point. Since the torus is unit volume, the
area of S is equal to the degree of the covering. O

Let Ng(d) denote the number? of branched covers of T' of degree d with branch-
ing type 8. (Note that Ng(d) is defined in purely combinatorial terms).
Combining Lemma 7.5 with (95), we obtain the following: as R — oo,

R
(96) > Ns(d) ~ u(Hi(B)R"
d=1

(This relation was discovered by Kontsevich and Zorich, and independently by
Masur and the author.) Thus, we can compute pu(Hi(8)) if we can compute the
asymptotics of the left-hand-side of (96). This is a purely combinatorial problem.

Suppose we are considering a degree d cover of the torus. Consider the standard
basis a and b of curves on the torus (when the torus is viewed as the unit square,
the curves correspond to the sides of the square). They give rise to permutations of
the sheets, that is, elements of the symmetric group S;. We will abuse notation by
denoting these permutations also by a and b. Singularity types of covers correspond
to different conjugacy classes of the commutator aba='b=t. A simple zero is a
transposition, a double zero a three cycle, a two simple zeroes is a product of two
transpositions, etc. (So for example, if we are considering the stratum #(1, 1), the
commutator will be in the same conjugacy class as a product of two transpositions.)
The number of pairs (a,b) € Sy x Sy satisfying such a commutation relation can
be expressed as a sum over the characters of the symmetric group Sy.

However, simply looking at the conjugacy class of the commutator permutation
does not guarantee that the resulting surface is connected. We wish to count only
the connected covers. However, the disconnected ones dominate the count. If one
knows the number of disconnected covers exactly, one can compute the number
of connected covers (by using inclusion/exclusion to subtract off all the possible
ways a cover can disconnect). Unfortunately, as one does that, the first n terms in
the asymptotic formula cancel. Still, it is possible, using the exact formula for the
number of disconnected covers in [BOJ, to carry out the computation (see [EO]).
The result, is a fairly messy but computable formula for p(Hi(8)).

There are two consequences of the above computations worth mentioning;:

THEOREM 7.6. The generating function Fg(q) = > 0oy Ng(d)g® is a quasi-
modular form, that is, it is a polynomial in the Eisenstein series G(q), k = 2,4,6.

THEOREM 7.7. 7 29u(H1(B)) € Q, where g is the genus of any surface in
H(B).

Both of the above theorems were conjectured by Kontsevich. Further work
showed that they hold also for the connected components of strata, and that similar
results hold for spaces of quadratic differentials. We remark that Theorem 7.7
implies that the Siegel-Veech constants are rational.

For the space of lattices, one can carry out the same construction. The main
difference is that one ends up counting unbranched covers of the standard torus

2In order for Theorem 7.6 below to hold, we should, when defining Ng(d), weigh each cover
by the inverse of its automorphism group. However this does not affect the asymptotics and can
be ignored for most purposes.



116 ALEX ESKIN

T™, or what is equivalent, sublattices of the standard lattice Z™. By computing
the number of sublattices of Z™ of index at most R, and sending R — oo, it is not
difficult to reproduce (88).

8. Equidistribution of translates and applications to Diophantine
equations

We will follow parts of [EMc] and [EMS1].

In this section, using ergodic properties of subgroup actions on homogeneous
spaces of Lie groups, we study asymptotic behavior of number of lattice points on
certain affine varieties. Consider for instance the following.

Example 1 Let p(\) be a monic polynomial of degree n > 2 with integer coefficients
and irreducible over Q. Let M, (Z) denote the set of n x n integer matrices, and
put

Vp(Z) ={A e M,(Z) : det(A]—A)=pN)}.
Hence V,(Z) is the set of integral matrices with characteristic polynomial p(\).

Consider the norm on n x n real matrices given by ||(zi;)|| = />,; =, and let

N(T,V,) denote the number of elements of V,(Z) with norm less than T
THEOREM 8.1. Suppose further that p(\) splits over R, and for a root o of p(\)
the ring of algebraic integers in Q(«) is Z[a]. Then, asymptotically as T — oo,
n—1
2 hR(JJn Tn(nfl)/Z
VD - TTizp A(k/2)
where h is the class number of Z[a], R is the regulator of Q(a), D is the discriminant
of p(\), wy, is the volume of the unit ball in R™™~D/2 and A(s) = n~°T'(s)¢(2s).

N(T,V},) ~

Example 1 is a special case of the following counting problem which was first
studied in [DRS] and [EMc].
The counting problem: Let W be a real finite dimensional vector space with
a Q structure and V a Zariski closed real subvariety of W defined over Q. Let
G be a reductive real algebraic group defined over QQ, which acts on W via a Q-
representation p : G — GL(W). Suppose that G acts transitively on V. Let || - ||
denote a Euclidean norm on W. Let Bt denote the ball of radius T > 0 in W
around the origin, and define

N(T,V)=|VNnBrnzZ"|,
the number of integral points on V' with norm less than 7. We are interested in
the asymptotics of N(T,V) as T — oo.

Let T' be a subgroup of finite index in G(Z) such that W(Z)I' C W(Z). By a
theorem of Borel and Harish-Chandra [BH-C], V(Z) is a union of finitely many
I-orbits. Therefore to compute the asymptotics of N(T, V) it is enough to consider
each T'-orbit, say O, separately and compute the asymptotics of

N(T,V,0) =|0nN Br|.

Suppose that O =T - vy for some vy € V(Z). Then the stabilizer H = {g €

G : gvo =} is a reductive real algebraic Q-subgroup, and V' = G/H. Define
Ry ={gH € G/H : gvy € Br},
the pullback of the ball By to G/H.
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Assume that G and H° do not admit nontrivial Q-characters. Then by the
theorem of Borel and Harish-Chandra, G/T" admits a G-invariant (Borel) probabil-
ity measure, say pug, and H/(I' N H) admits an H-invariant probability measure,
say pp. Now the natural inclusion H/(I'N H) — G/T is an H-equivariant proper
map. Let m : G — G/T be the natural quotient map. Then the orbit 7(H) is
closed, H/(I'NH) = 7(H), and ppg can be treated as a measure on G/I' supported
on 7(H). Such finite invariant measures supported on closed orbits of subgroups
are called algebraic measures. Let Ag/p denote the (unique) G-invariant measure
on G/H induced by the normalization of the Haar measures on G and H.

The following result was proved in [DRS]; subsequently a simpler proof ap-
peared in [EMc].

THEOREM 8.2. Suppose that V is affine symmetric and T is irreducible (equiv-
alently, H is the set of fixed points of an involution of G, and G is Q-simple). Then
asymptotically as T — oo,

N(T,V,0) ~ Ag/u(Rr).

Translates of algebraic measures. For any g € G, let gy denote the translated
measure defined as

gpu(E) = pg (g E), V Borel sets E C G/T.

Note that gp g is supported on g (H). A key ingredient in the proofs of Theorem 8.2
in [DRS] and [EMc] is showing that if H is the set of fixed points of an involution of
G then for any sequence {g;} C G, such that {g; H} has no convergent subsequence
in G/H, the translated measures g;ug get ‘equidistributed’ on G/T" as i — oc;
that is, the sequence {g;up} weakly converges to ug. The method of [DRS] uses
spectral analysis on G/T", while the argument of [EMc] uses the mixing property
of the geodesic flow. However, both methods seem limited essentially to the affine
symmetric case. It should be remarked that for the proof of Theorem 8.2 one needs
only certain averages of translates of the form guy to become equidistributed.

One can show that under certain conditions if for some sequence {g;} we have
limg;uy = v then the measure v is again algebraic. We give exact algebraic
conditions on the sequence {g;} relating it to the limit measure v. Using this
analysis, we show that the counting estimates as in Theorem 8.2 hold for a large
class of homogeneous varieties. The following particular cases of homogeneous
varieties, which are not affine symmetric, are of interest. We first place Example 1
in this context.

Example 1 continued. Note that V,(Z) is the set of integral points on the
real subvariety V, = {A € M,,(R) : det(A\] — A) = p(\)} contained in the vector
space W = M, (R). Let G = {g € GL,(R) : detg = £1}. Then G acts on W
via conjugations, and V), is a closed orbit of G (see [New, Theorem III.7]). Put
I' = G(Z) = GL,,(Z). The companion matrix of p(\) is

0 0 —a,
1 0 —Qp—1

(97) vo=0 - : € V,(Z2).
: 0
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The centralizer H of vy is a maximal Q-torus and HY has no nontrivial Q-characters.
Note that H is not the set of fixed points of an involution, and the variety V,, = H\G
is not affine symmetric. Nevertheless, we show that N(T,V,,I'vg) ~ A u(Rr). By
computing the volumes, we obtain the following estimate.

THEOREM 8.3. Let N(T,V),) be the number of points on V,(Z) of norm less
than T'. Then asymptotically as T — oo,

N(T, V) ~ ¢, T =1/2]
where ¢, > 0 is an explicitly computable constant.

We obtain a ‘formula’ for calculating c,; for the sake of simplicity we calculate
it explicitly only under the additional assumptions on p(A) of Theorem 8.1.
See [BRY] for some deeper consequences of the above result.

Example 2. Let A be a nondegenerate indefinite integral quadratic form in n > 3
variables and of signature (p,q), where p > ¢, and B a definite integral quadratic
form in m < p variables. Let W = M,,«,(R) be the space of m X n matrices.

Consider the norm on W given by [|(z;)| = /2, ; #7;. Define

Vap ={X € Mxn(R) : XA'X = B}.

Thus a point on V4 p(Z) corresponds to a way of representing B by A over Z. We
assume that V4 p(Z) is not empty.

The group G = SO(A) acts on W via right multiplication, and the action is
transitive on V4 p. The stabilizer of a point £ € V4 p is an orthogonal group H¢ in
n — m variables. Let I' = G(Z). Then the number of I'-orbits on V4 5(Z) is finite.
Let &1,...,&, be the representatives for the orbits.

THEOREM 8.4. Let N(T,Va g) denote the number of points on Va g(Z) with
norm less than T'. Then asymptotically as T — oo,

h
VOlFﬁH& \Hg) 1
T -~ i i T'r(n r—1)
Va.p) ; vol(T\G) €4.B

where r = min(m, q), and ca,p > 0 is an explicitly computable constant.

REMARK 8.5. In some ranges of p, g, m,n this formula may be proved by the
Hardy-Littlewood circle method, or by ©-function techniques. Using our method
one also obtains asymptotic formulas for the number of points in the individual
orbits T'¢;.

REMARK 8.6. In the case m > ¢, the asymptotics of the number of integer
points does not agree with the heuristic of the Hardy-Littlewood circle method, even
if the number of variables mn is very large compared to the number of quadratic
equations m(m-+1)/2. The discrepancy occurs because the null locus {X : X A'X =
0} does not contain a non-singular real point (cf. [Bir, Theorem 1]) and so the
‘singular integral’ vanishes.
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8.1. Connection between counting and translates of measures. We
recall some observations from [DRS, Sect. 2|; see also [EMc]|. Let the notation be
as in the counting problem stated in the introduction. For T" > 0, define a function
Fr on G by

Frig)= Y.  xrlgy-o),

~€ET/(HNT)

where x 7 is the characteristic function of Bp. By construction Fr is left ['-invariant,
and hence it will be treated as a function on G/I'. Note that

Fr(e) = Z xr(v-vo) = N(T,V,0).
~yel'/(HNT)
Since we expect, as in Theorem 8.2, that
N(T,V,0) ~ Ag\a(Rr),

we define
. 1
F =
A vy

Thus the asymptotics in Theorem 8.2 is the assertion

Fr(g).

(98) Fr(e) =1 as T — oo.

ProrosITION 8.7 ([DRS, Sect. 2]). For any compactly supported function 1
on G/T,
1

(Fr,¢) = m

VA d\gm,
T
where

W (gH) = Y d(gpm)
a/T

is a function on G/H.

Proof. Let F be a fundamental domain for G/T'. By definition,

(Frog)y= > /XT 91)¥(9) dpc(9)
~€D/(HAT)
/ x7(9)¢(g9) duc(g)
’yGF/ (HND) 7T
= / xr(9)¥(9) duc(g)
G/(HNT)

/ / Y(gh) dyusr (h) dAg (3)
G/H JH/( Hmr)

/ ( ¢d9uH> )‘G’/H(g)
Ry \Ja/T
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8.2. Limiting distributions of translates of algebraic measures. The
following is the main result of this section which allows us to investigate the counting
problems.

THEOREM 8.8. Let G be a connected real algebraic group defined over Q, I' C
G(Q) an arithmetic lattice in G with respect to the Q-structure on G, and 7w : G —
G/T' the natural quotient map. Let H C G be a connected real algebraic Q-subgroup
admitting no nontrivial Q-characters. Let py denote the H-invariant probability
measure on the closed orbit w(H). For a sequence {g;} C G, suppose that the
translated measures g;pg converge to a probability measure p on G/T'. Then there
exists a connected real algebraic Q-subgroup L of G containing H such that the

following holds:

(i) There exists ¢y € G such that p is a coLco™?!

on com(L).
In particular, p is a algebraic measure.
(i) There exist sequences {v;} C T and ¢; — co in G such that v;H~v;~' C L
and g;H = ¢;v; H for all but finitely many i € N.

-tnvariant measure supported

The proof of this theorem is based on the following observation.

PROPOSITION 8.9. Let the notation be as in Theorem 8.8. Then either there
exists a sequence ¢; — ¢ in G such that c¢;p; = pg for all i € N (in which case p =
cpp ), or o is invariant under the action of a nontrivial unipotent one-parameter
subgroup of G.

In order to be able to apply Theorem 8.8 to the problem of counting, we need
to know some conditions under which the sequence {g;uug} of probability measures
does not escape to infinity. Suppose further that G and H are reductive. Let Z(H)
be the centralizer of H in G. By rationality m(Z(H)) is closed in G/I". Now if
m(Z(H)) is noncompact, there exits a sequence {z;} C Z(H) such that {7(z;)} is
divergent; that is, it has no convergent subsequence. Then z;upy escapes to the
infinity; that is (z;um)(K) — 0 for any compact set K C G/T'. The condition
that m(Z(H)) is noncompact is equivalent to the condition that H is contained in a
proper parabolic Q-subgroup of G. In the converse direction we have the following
(see [EMS2]).

THEOREM 8.10. Let G be a connected real reductive algebraic group defined over
Q, and H a connected real reductive Q-subgroup of G, both admitting no nontrivial
Q-characters. Suppose that H is not contained in any proper parabolic Q-subgroup
of G defined over Q. Let I' C G(Q) be an arithmetic lattice in G and 7 : G —
G/T the natural quotient map. Let g denote the H-invariant probability measure
on w(H). Then given an € > 0 there exists a compact set K C G/I' such that
(guu)(K) >1—¢€, Vg € G.

The proof of this result uses generalizations of some results of Dani and Mar-
gulis [DM3]. Combining this theorem with Theorem 8.8, we deduce the following
consequence.

COROLLARY 8.11. Suppose that H is reductive and a proper mazimal connected
real algebraic Q-subgroup of G. Then for any sequence {g;} C G, if the sequence
{g:H} is divergent (that is, it has no convergent subsequence) in G/H, then the
sequence {gipm} gets equidistributed with respect to pug as i — oo (that is, gipg —
pe weakly).
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In the general case, one obtains the following analogue of Corollary 8.11. We
note that the condition that H is not contained in any proper Q-parabolic sub-
group of G, is also equivalent to saying that any real algebraic Q-subgroup L of G
containing H is reductive.

COROLLARY 8.12. Let G be a connected real reductive algebraic group defined
over Q, and H a connected real reductive Q-subgroup of G not contained in any
proper parabolic Q-subgroup of G. Let I' C G(Q) be an arithmetic lattice in G.
Suppose that a sequence {g;} C G is such that the sequence {g;um} does not con-
verge to the G-invariant probability measure. Then after passing to a subsequence,
there exist a proper connected real reductive Q-subgroup L of G containing H and
a compact set C C G such that

{9} C CL(Z(H)NT)

8.3. Applications to the counting problem. The case where H is max-
imal. The following is a consequence of Corollary 8.11:

THEOREM 8.13. Let G and H be as in the counting problem. Suppose that
H is reductive and a proper mazximal connected real algebraic Q-subgroup of G,
where H° denotes the connected component of identity in H. Then asymptotically
as T — o0

N(T,V,0) ~ Mg u(Rr).

REMARK 8.14. Suppose that H is the set of fixed point of an involution of G.
Let L be a connected real reductive Q-subgroup of G containing H°. Then there
exists a normal Q-subgroup N of G such that L = H'N. Now if G is Q-simple,
then HY is a maximal proper connected Q-subgroup of G' (see [Bor, Lemma 8.0]).
Hence Theorem 8.2 follows from Theorem 8.13.

The general case. We now use Corollary 8.12. For applying this result to the
counting problem, we need to know that averages of translates of the measure pp
along the sets Ry become equidistributed as 7' tends to infinity. I.e., we want the
set of ‘singular sequences’, for which the limit measure is not G-invariant, to have
negligible ‘measure’ in the sets Ry as T — oco. This does not hold when the sets
Ry are ‘focused’ along L/H(C G/H):

DEFINITION 8.15. Let G and H be as in the counting problem. For a sequence
T,, — o0, the sequence {Rp,} of open sets in G/H is said to be focused, if there
exist a proper connected reductive real algebraic Q-subgroup L of G containing H°
and a compact set C' C G such that

L Aqyulan(CL(Z(H’) () 0 Rr,)
111 Sup
n—oo AG/H(RT,,)

>0,

where ¢ : G — G/H is the natural quotient map.

Note that since L is reductive and defined over Q, we have that 7(L) is closed
in G/T. In particular, L(Z(H®) NT) is closed in G. Also LzH® = Lz for any
z € Z(H®). Now since C is compact, the set ¢ (CL(Z(H°)NT)) is closed in G/H.

Now if the focusing of { Ry, } does not occur, then using Corollary 8.12 we can
obtain the following analogue of Corollary 8.11.
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COROLLARY 8.16. Let G and H be as in the counting problem. Suppose that H°
is not contained in any proper Q-parabolic subgroup of G°, and for some sequence
T,, — o0, the sequence {Rr,} is not focused. Then given e > 0 there exists an open
set A C G/H with the following properties:

(99) liming 2 HANRL)
n—o0 /\G/H(RT,L)

and given any sequence {g;} C qu~'(A), if the sequence {qu(g;)} is divergent in
G/H then the sequence {g;piir} converges to ug.

This corollary allows us to obtain the counting estimates like in Theorem 8.2
and Theorem 8.13 for a large class of homogeneous varieties.

THEOREM 8.17. Let G and H be as in the counting problem. Suppose that H is
not contained in any proper Q-parabolic subgroup of GO (equivalently, Z(H)/(Z(H)N
T') is compact), and for some sequence T,, — oo with bounded gaps, the sequence
{Rr,} is not focused. Then asymptotically

N(T,V,0) ~ Ag/u(Rr).
Remark. The non-focusing assumption in Theorem 8.17 is not vacuous. In the

above setup one is required to verify the condition of nonfocusing in Theorem 8.17
separately for each application of the result.

Outline of the proof of Theorem 8.17, assuming Corollary 8.16.

PROPOSITION 8.18. Let the notation and conditions be as in Theorem 8.17.
Then Fr, — 1 in the weak-star topology on L (G/T', ua); that is, (Fr,, ) — (1,4)
for any compactly supported continuous function v on G/I.

Proof. As in Proposition 8.7,

R - 1 7
<FT51/}> - )\G/H(RT) RTw dAG/Ha
where
WgH) = [ wghT) dun (D) = [ d(gun)
HT/T G/T

is a function on G/H.

Let € > 0 be given. Since the sequence {Rr, } is not focused, we obtain a set
A C G/H as in Corollary 8.16. Break up the integral over Ry into the integrals
over Ry, N A and Ry, \ A. By equation (99) and the boundedness of 1, the second
integral is O(e). By Corollary 8.16, for any sequence {g;} C qu~*(A), if {qu(g:)}
has no convergent subsequence in G/H, then g; - pg — pe. Hence

W@m%/ bduc = (,1).
G/r
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We use dominated convergence theorem to justify the interchange of limits. Now

~ 1 —

lim (Fr , = limi/ H g + O(e
n—>oo< T, ) n—00 Ag/H(RTn) RTnmA¢ G/H ()
1

= lim
(

/ (¥, 1) dAg/m + O(e)
Re, NA

. Ag/a(Rr, NA)
= hm —_—
n—oo  Ag (R, )

= (L) +0(e)

n—oo )‘G/H RTn)

(1,4) +0(e)

Since € is arbitrary, the proof is complete. O

PRrROPOSITION 8.19 ([EMS1]). There are constants a(0) and b(d) tending to 1
as 6 — 0 such that

A R A R
b(6) < timint 29/ Eaor) o Aan(Raror)

T—00 AG/H(RT) T—00 )\G/H(RT)

< a(d).

Proof of Theorem 8.17. Let v in Proposition 8.18 tend to a d-function at the
origin. Then, combining Proposition 8.18 and Proposition 8.19, we obtain that
Fr, — 1 pointwise on G/I" as i — co. (See [DRS, Lemma 2.3] for the details).
Thus (98) holds. This completes the proof. ]

8.4. Invariance under unipotents.

PROPOSITION 8.20. Let G be a semisimple Lie group, I' be a discrete subgroup
of G, and 7 : G — G/T be the natural quotient map. Let H be a montrivial
reductive subgroup of G and ) be a relatively compact neighborhood of identity in
H. Let ug be the probability measure on w(§) which is the pushforward under 7 of
the restriction to Q of a Haar measure on H.

Suppose that for a sequence {g;}ien C G, the sequence {g; - 1atien C P(G/T)
converges weakly to a nonzero measure i on G/T'. Then one of the following holds:

(1) There exists a compact set C C G such that {g;}ien C CZg(H).
(2) p is invariant under a nontrivial unipotent one-parameter subgroup of G.

ProoF. (Cf. [Moz, Lemma ?7]) Let g be the Lie algebra of G and h C g be
the Lie subalgebra corresponding to H. Equip g with a Euclidean norm, say || - ||.

Claim 1. If the Condition 1 above does not hold then there exists a sequence X; — 0
in b as i — oo, such that a subsequence of {Adg; - X;}ien converges to a nonzero
element Y € g.

To prove the claim there is no loss of generality if we pass to a subsequence of
{gi}ien, or replace {g;}ien by {gici}ien, where {c¢;};en is contained in a compact
subset of G.

Since H is reductive, there is a Cartan involution € of G such that 6(H) = H.
Let K be the set of fixed points of . Then K is a maximal compact subset of G.
There exists a maximal R-split torus A in G such that

(100) 0(a) =a™ ', Ya € A.
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Choose an order on the system of R-roots of A for G and let A be the set of simple
roots. Let A be the exponential of the closure of the positive Weyl chamber. Then
by Cartan decomposition we have

Hence without loss of generality we can assume that g; = a;k; for all i € N, where
ki — kin K as i — oo and {a;},eny C A4.
Let
¢ ={a € A:supala;) < co}.
ieN
Then by modifying the sequence {a; };en from the left by multiplications by elements
from a compact set in A N (Ngea\a ker §), we may assume that

(101) ala;) =1, Ya € .

By passing to a subsequence, we may also assume that

(102) lim a(a;) =00, Va € A\ .
1— 00

Let P be the standard parabolic subgroup of G associated to ®. Let p be the
Lie algebra of P, and n be the Lie algebra of the unipotent radical N of P. Due to
(100), we have

g=10(p)en
Let m, denote the projection onto n with ker(m,) = o(p).
Suppose that the claim fails to hold. Then
(103) sup |[Adg; - X|| < o0, VX € b.
ieN
Hence by (102),
lim 7, (Adk; - X) =0, VX € b.
71— 00
Therefore kHk™! C §(P). Since §(H) = H and 0(k) = k, we have that kHk~! C
PNé(P). Hence due to (101),

{ai}ien C Za(PNO(P)) C kZc(H)k™".

Since g = 0(p) +n and k;k~* — e as i — oo, by passing to subsequences, there

exist sequences b; — e in (P) and n; — e in N such that
kﬂ(ﬁil =b;n;, Vi € N.

Let {X1,..., X} beabasisof h and put q = (X1,..., X,,) € &7, g. Consider

the action of G on @}, g via the Adjoint action on each of the summands. Then
gi-a= (k") (k- a) = (aikik ™) (k- q) = (asbia; ) (amia; ) (k- q)

By (103), {g: - q}ien is a bounded sequence. By (100) and (102), a;b;a;~* — e
as i — oo. Therefore (a;n;a;~1)(k-q) : i € N} is a bounded sequence. Since N is a
unipotent group, the orbit N(k - q) is closed. Therefore there exists a compact set
C1 C N such that

a;i " *nia; € Cy(kZa(H)E™' N N).

Therefore, since {a;} C kZg(H)k™! and a;b;a;~" — e as i — oo, there exists a
compact set C' C G, such that

gik™! = aikik™' = (aibja; ) (amia; ) € CZg(H)E™, Vi e N.
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This contradicts the hypothesis of the claim, and hence the proof of Claim 1 is
complete.

Now we can assume that there exists a sequence X; — 0 in h and a nonzero
elements Y € g such that

1— 00
Consider the one-parameter subgroup u : R — G defined as u(t) = exp(tY) for all
t € R. Since X; — 0, all the eigenvalues of AdtX; converge to 1 as i — oco. Since
u(t) = lim; o0 g;~*(exptX;)g; and the eigenvalues are invariant under conjugation,
we have that 1 is the only eigenvalue of Adwu(t) for all ¢ € R. Therefore u is a
unipotent one-parameter subgroup of G.

Claim 2. The measure p is invariant under the action of {u(t) : t € R}.

To prove the claim let ¢ € R and put § = exp(tX;) for all i € N. Then by the
definition of pg, for any ¢ € C.(G/T),

(104) () dpa(r) — Y(bix) dpa(w)

G/r G/r

< € -sup [yl

where ¢; depends only on §;, and ¢; — 0 as §; — 0. Let ¢ € N. Applying Eq. 104
for ¢;(x) :=1(g;x) for all x € X, we get

< ¢ -sup [¢].

b(gir) dpg(x) /G 000 gw) dpot)

G/T

We have g; - o — p weakly as i — oo, ¢; *9;9; — u(t) as i — oo, and 1 is
uniformly continuous. Therefore

() dp(x) = (zu(g)) dp(z).
G/r G/r
This shows that p is invariant under {u(t) : ¢ € R}. This completes the proof of
the theorem. g

8.5. Proving Ergodicity. In view of Proposition 8.20 and the measure clas-
sification theorem, Theorem 8.8 would follow immediately if we knew that pu was
ergodic. In general the ergodicity of p does not follow from Theorem 4.5 since we
are not assuming that H contains unipotents.

The next part of the proof of Theorem 8.8 parallels §4.3. One applies the
measure classification theorem followed by linearization. The analysis is somewhat
more complicated then that of §4.3 because of the multi-dimensional situation, and
the fact that we have a map only from a compact subset of H. The end result is:

PROPOSITION 8.21. Let B C H be a ball of diameter at most §g in H around
e. Let g; be a sequence of elements in G, and let \; be the probability measure on
w(g:(B)) which is the pushforward under g; of the normalized Lebesgue measure
on B. Suppose that \; — \ weakly in the space of probability measures on G/T'.
Suppose there exist a unipotent one-parameter subgroup U of G and F € H such
that \(m(N(F,U))) > 0 and \(w(S(F,U))) = 0. Then there exists a compact set
D C Ap such that the following holds: For any sequence of neighborhoods {®;} of
D in Vi, there exists a sequence {~;} C T' such that for all large i € N,

(105) 9i(B)vi - pr C ;.
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In general the condition (105) is difficult to analyze using linear algebra meth-
ods. The idea of the proof of Theorem 8.8 is the following: Since we are assuming
that ¢; B return to a compact set in G/T', we may write g; = ¢;7yjh;, where ¢; is in
a compact set, v/ € I' and h; € B C H. Without loss of generality, we may then
replace g; by v;h;. Consider rational points h; in BB. The orbit of each rational
point under I is discrete, so there are only finitely many possibilities for v/h;v; - pp.
By passing to a subsequence one can assume that ~/h;v; - pr is constant, which
eventually yields the proof of Theorem 8.8.
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Quantitative nondivergence
and its Diophantine applications

Dmitry Kleinbock

ABSTRACT. The main goal of these notes is to describe a proof of quantita-
tive nondivergence estimates for quasi-polynomial trajectories on the space of
lattices, and show how estimates of this kind are applied to some problems in
metric Diophantine approximation.

1. Introduction

These lecture notes constitute part of a course taught together with Alex Eskin
at the Clay Mathematics Institute Summer School at Centro de Giorgi, Pisa, in June
2007. The exposition below is a continuation of [E]; the reader is referred there,
as well as to books [BM, Mor, St] and the article [KSS] from the Handbook
of Dynamical Systems, for background information on homogeneous spaces and
unipotent flows.

In what follows, most of the work will be done on the space £,, of unimodular
lattices in R™. We recall that G = SL(n,R) acts transitively on £, (if g € G
and A € L, is the Z-span of the vectors vi,...v,, then gA is the Z-span of
{gVv1,...,9Vn}), and the stabilizer of the standard lattice Z" is I' = SL(n, Z). This
gives an identification of £,, with G/T". We choose a right-invariant metric on Gj
then this metric descends to G/T". Equivalently, one can define topology on L,, by
saying that two lattices are close to each other if so are their generating sets.

For ¢ > 0 we will denote by L,,(¢) C L, the set of lattices whose shortest
non-zero vector has norm at least . It is clear from the above description of the
topology on L, that any compact subset of L, is contained in £, (g) for some
positive €. Conversely, one has

THEOREM 1.1 (Mahler Compactness Criterion). For any € > 0 the set L,(¢)
is compact.

See [Cas] or [BM] for a proof. We note that the set £,,(g) depends on the choice
of the norm on R™, but in a rather mild way: change of one norm for another would
result in multiplication/division of € by at most a fixed positive constant.

© 2010 Dmitry Kleinbock
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Recall that an element g of G is unipotent if all its eigenvalues are equal to 1.
If n = 2, every one-parameter unipotent subgroup of G = SL(2,R) is conjugate to

0 1

In general, a crucial property of an arbitrary unipotent subgroup {u,} of SL(n,R)
is that the map x — u, is polynomial of degree depending only on n. This observa-
tion was instrumental in the proof due to Margulis that one-parameter unipotent
trajectories on L,, are never divergent. Namely the following theorem was conjec-
tured by Piatetski-Shapiro in the late 1960s and showed in 1971 by Margulis [Mar|
as part of the program aimed at proving arithmeticity of lattices in higher rank
algebraic groups:

(1.1) U = {u, : € R} where u, = (1 x) .

THEOREM 1.2. Let {u,} be a one-parameter unipotent subgroup of SL(n,R).
Then for any A € L, u,A does not tend to co as x — oo. FEquivalently, there
exists € > 0 such that the set {x € Ry : u,A € L,()} is unbounded.

In fact, € in the above theorem can be chosen independent on the choice of {u, },
although it does depend on A, see §3 for more detail. The above statement is very
easy to prove when n = 2, but much more difficult for bigger n. In this exposition we
first discuss the easy special case, then the general strategy of Margulis in various
modifications, and then some applications and further extensions of the general
result.

Acknowledgements: The author is grateful to the Clay Mathematics Insti-
tute for a wonderful opportunity to participate in the 2007 Summer School, to the
co-organizers of the event for their help and encouragement, and to the staff at
Centro di Georgi for being so very helpful and attentive. Special thanks are due to
Alex Eskin, the co-lecturer of this course, to Elon Lindenstrauss for careful reading
of a preliminary version of these notes, and to many participants of the summer
school for their patience and valuable comments during and after the lectures. The
work on the manuscript was partially supported by NSF grants DMS-0239463 and
DMS-0801064.

2. Non-divergence of unipotent flows: the case of SL(2,R).
2.1. Geometry of lattices in R2. Recall the following lemma from [E]:

LEMMA 2.1. There exists g > 0 (depending on the choice of the norm on R?)
such that no A € Lo contains two linearly independent vectors each of norm less
than eq.

Let us now use this lemma to prove a nondivergence result for the U-action on
Lo, where U is as in (1.1):

PROPOSITION 2.2. For any A € Lo, u, A does not tend to co as x — oo.

In other words, for any A € Lo there exists a compact subset K of Lo such
that the set {x > 0: u,A € K} is unbounded.

PRrROOF. Assume the contrary; in view of Theorem 1.1, this would amount to
assuming that the norm of the shortest nonzero vector of u,A tends to zero as
x — oo. Note that an obvious example of a divergent orbit would be constructed
if one could find a vector v € A \ {0} such that u,v — 0. But this is impossible:
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either v is horizontal and thus fixed by U, or its y-component is nonzero and does
not change under the action. Thus the only allowed scenario for a divergent U-
trajectory would be the following: for some v € A \ {0}, u,v gets very small, say
shorter than e, then starts growing but before it grows too big (longer than &),
another vector in A \ {0} not proportional to v gets shrunk by w, to the length
less than €. This however is prohibited by Lemma 2.1. (I

REMARK 2.3. Note that the analogue of this proposition is false if U is replaced

by
et 0

(2.1) A ={a; : t € R} where a; = <O et> ,
since a; can contract nonzero vectors. However the same argument as above shows
that for any continuous function h : Ry — SL(2,R) and any A € L5 such that
h(z)A diverges, it must do so in a degenerate way (a terminology suggested by
Dani, see [D3]), that is, shrinking some nonzero vector v € A. This phenomenon
is specific to dimension 2: if n > 2, as shown in [D3], one can construct divergent
trajectories {a;A} C L,, of diagonal one-parameter semigroups {a;} C SL(n,R) in
L,, which diverge in a non-degenerate way (without shrinking any subpace of R™).

Despite the above remark, Theorem 1.2, which is an analogue of Proposition
2.2, holds for n > 2 as well. An attempt to replicate the proof of Proposition 2.2
verbatim fails miserably: there are no obstructions to having many short linear
independent vectors. We will prove Theorem 1.2 in the next section in a much
stronger (quantitative) form, which also happens to have important applications
to problems arising in Diophantine approximation theory. But first, following the
methodology of [E] where the exposition of Ratner’s theorem begins with an ex-
tensive discussion of the U-action on Ly, we explain how one can easily establish a
stronger form of Proposition 2.2, just for n = 2.

2.2. Quantitative nondivergence in L£5. We are going to fix an interval
B C R and A € Lo, and will look at the piece of trajectory {u,A : = € B}.
Applying the philosophy of the proof of Proposition 2.2, one can see that one of
the following two alternatives can take place:

Case 1. There exists a vector v € A\ {0} such that ||u,v|| is small, say less than
go, for all x € B. (For example this v may be fixed by U.) This case is not so
interesting: again by Lemma 2.1, we know that this vector v is “the only source of
trouble”, namely no other vector can get small at the same time.

Case 2. The contrary, i.e.
(2.2) VveAN{0} supluyv]>p.
zEB
In other words, every nonzero vector grows big enough at least at some point x € B.
This assumption turns out to be enough to conclude that for small € the trajectory

{uzA : © € B} spends relatively small proportion of time, in terms of Lebesgue
measure A on R, outside of Ly(e).

THEOREM 2.4. Suppose an interval B C R, A € Lo and 0 < p < g9 are such
that (2.2) holds. Then for any e > 0,

A{z € B:ugA ¢ La(e)}) < 2%)\(B) .
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Thus, if one studies the curve {u,A} where x ranges from 0 to T, it suffices
to look at the starting point A of the trajectory, find its shortest vector v, choose
p < min(g, | v]|), and apply the theorem to get a quantitative statement concerning
the behavior of {u,A : 0 < 2 < T} for any T. Note that it is meaningful, and
requires proof, only when ¢ is small enough (not greater than p/2).

Proof. Denote by P(A) the set of primitive vectors in A (v is said to be primitive
in A if RvN A is generated by v as a Z-module). Clearly in all the argument it will
suffice to work with primitive vectors.

Now for each v € P(A) consider

By(e) 2 {2z €B: |uxvl| <c} and Bylp) L {z € B: |uv| < p},

where || - || is the supremum norm. Let v = (Z) € P(A) be such that By(g) # .
. a+bx\ . L .
Then, since u,v = b , it follows that |b| < €, and (2.2) implies that b is

nonzero. Therefore, if we denote f(z) = a + bz, we have
By(e) = {r € B:|f(@) <e} and Bu(p)={z € B:|f(x)| <p}.

Clearly the ratio of lengths of intervals By (¢) and By (p) is bounded from above by
2e/p (by looking at the worst case when By () is close to one of the endpoints of
B). Lemma 2.1 guarantees that the sets By (p) are disjoint for different v € P(A),
and also that u,A ¢ Lo(e) whenever x € By (p) \ By(¢) for some v € P(A). Thus
we conclude that

Mz € Biugh ¢ L2(2))) < S A(By(9)) < 2% S A(Bu(p) < 2%)\(3). O

REMARK 2.5. Before proceeding to the more general case, let us summarize
the main features of the argument. Each primitive vector v came with a function,
x > ||Jugpv||, which

[2.5-1] allowed to compare measure of the subsets of B where this function is less
than € and p respectively, and
[2.5-1i] attained value at least p on B.

Let us say that a point « € B is (g/p)-protected if x € By (p) \ By(e) for
some v € P(A). [2.5-i] and [2.5-ii] imply that for each v, the relative measure of
protected points inside B, (p) is big. Then Lemma 2.1 shows that protected points
are safe (no other vector can cause trouble), i.e. brings us to the realm of Case 1
when restricted to By (p).

In the analog of the argument for n > 2, properties [2.5-i] and [2.5-ii] of certain
functions will play an important role. However it will be more difficult to protect
points from small vectors, and the final step, that is, an application of Lemma 2.1,
will be replaced by an inductive procedure, described in the next section.

3. Quantitative non-divergence in £,,.

3.1. The main concepts needed for the proof. The crucial idea that
serves as a substitute for the absence of Lemma 2.1 in dimensions 3 and up is
an observation that whenever a lattice A in R™ contains two linearly independent
short vectors, one can consider a subgroup of rank two generated by them, and
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this subgroup will be “small”, which should eventually contribute to preventing
other small vectors from showing up. (Here and hereafter by the rank rk(A) of a
discrete subgroup A of R™ we mean its rank as a free Z-module, or, equivalently,
the dimension of the real vector space spanned by its elements.) Thus we are led
to consider all subgroups of A, not just of rank one. In fact, similarly to the n = 2
case, it suffices to work with primitive subgroups. Namely, a subgroup A of A is
called primitive in A if A = RA N A; equivalently, if A admits a generating set
which can be completed to a generating set of A. The inclusion relation makes the
set P(A) of all nonzero primitive subgroups of A a partially ordered set of length
equal to rk(A) (any two primitive subgroups properly included in one another must
have different ranks). This partial order turns out to be instrumental in creating a
substitute for Lemma 2.1.

We also need a way to measure the size of a discrete subgroup A of R™. The
best solution seems to be to use Euclidean norm || - || and extend it by letting ||A||
to be the volume of the quotient space RA/A. This is clearly consistent with the
one-dimensional picture, since || Zv|| = ||v||. This is also consistent with the induced
Euclidean structure on the exterior algebra of R™: if A is generated by vq,..., vy,
then [|A]l = [[vi A Avg.

Our goal is to understand the trajectories u,A as in Theorem 1.2. However,
observe that the group structure of U was not used at all in the proof in the
previous section. Thus we are going to consider “trajectories” of a more general
type. Namely, we will work with continuous functions A from an interval B C R
into SL(n,R), and replace the map x — uyA with « — h(x)Z™ (then in the case of
Theorem 1.2 we are going to have h(x) = u,g where A = gZ").

Among the assumptions to be imposed on h, the central role is played by an
analogue of [2.5-i]. This is taken care of by introducing a certain class of functions
and then demanding that all functions of the form x +— ||h(z)Al| where A € P(Z"),
belong to this class.

If C' and « are positive numbers and B a subset of R, let us say that a function
f: B~ Ris (C,a)-good on B if for any open interval J C B and any € > 0 one
has

3

Informally speaking, graphs of good functions are not allowed to spend a big pro-
portion of “time” near the z-axis and then suddenly jump up. Several elementary
facts about (C, a)-good functions are listed below:

LEMMA 3.1 (a) f is (C,a)-good on B < sois |f| = soiscf Ve eR;
(b) fi,i=1,...,k, are (C,a)-good on B = so is sup, |fi|;
(¢) If f is (C,a)-good on B and ¢; < |%| < ¢y for all x € B, then g is
(C(ca/c1)™, a)-good on B;

The proofs are left as exercises. Another exercise is to construct a C*° function
which is not good on (a) some interval (b) any interval.

The notion of (C, a)-good functions was introduced in [KM1] in 1998, but the
importance of (3.1) for measure estimates on the space of lattices was observed
earlier. For instance, the next proposition, which describes what can be called a
model example of good functions, can be traced to [DM2, Lemma 4.1]. We will
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prove a slightly stronger version paying more atention to the constant C' (which
will not really matter for the main results).

PROPOSITION 3.2. For any k € N, any polynomial of degree not greater than k
is (k(k + 1)Y/*,1/k)-good on R.

PrOOF. Fix an open interval J C R, a polynomial f of degree not exceeding
k, and a positive e. We need to show that

- 1/k
(3.2) A{z e J:|f(x)| <e}) < k(k+1)YF (m) AJ).

Suppose that the left hand side of (3.2) is strictly bigger than some number m.
Then it is possible to choose z1,...,z5+1 € {z € J : |f(z)| < e} with |z; — z;| >
m/k for each 1 <14 # j < k+1. (Exercise.) Using Lagrange’s interpolation formula
one can write down the exact expression for f:

k+1 Hk—i—l

(3-3) Fl@) =" f(z) j=1.j#i(% — %))
i=1

: .
Hjill,j;éi(xi - )

Note that |f(z;)| < € for each i, |z — z;| < A(J) for each j and z € J, and also
|z; — ;| > m/k. Therefore

A
ilég|f(x)\ < (k+ UE(m/k)k )

which can be rewritten as

1/k
1/k €
m < klk+1) <supmeJ If(x)|> M),

proving (3.2). O

Observe that in the course of the proof of Theorem 2.4 it was basically shown
that linear functions are (2,1)-good on R. The relevance of the above proposition
for the nondivergence of unipotent flows on £,, is highlighted by

COROLLARY 3.3. For any n € N there exist (explicitly computable) C' = C(n),
a = a(n) such that for any one-parameter unipotent subgroup {us} of SL(n,R),
any A € L, and any subgroup A of A, the function x — |luzAll is (C, a)-good.

PROOF. Represent A by a vector w € A\"(R™) where k is the rank of A; the
action of u, on /\k(R") is also unipotent, therefore every component of uzw (with
respect to some basis) is a polynomial in x of degree uniformly bounded in terms of
n. Thus the claim follows from Proposition 3.2, Lemma 3.1(b) for the supremum
norm, and then Lemma 3.1(c) for the Euclidean norm. O

3.2. The main nondivergence result and its history. Let us now state
a generalization of Theorem 2.4 to the case of arbitrary n.

THEOREM 3.4. Suppose an interval B C R, C,a > 0, 0 < p < 1 and a
continuous map h : B — SL(n,R) are given. Assume that for any A € P(Z"),
[3.4-1] the function x — ||h(x)A|| is (C,a)-good on B, and
Bii] sup, ey [h(z)A] > 3.
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Then for any € < p,
(3.4) M{z € B:h(x)Z" ¢ L,(e)}) <n2"C (%) A(B).

This is a simplified version of a theorem from [K15], which sharpens the one
proved in [KM1]. The latter had a slightly stronger assumptions, with p in place of
p'X(A) in [3.4-ii]. In most of the applications this improvement is not needed — but
there are some situations in metric Diophantine approximation, described later in
the notes, where it becomes important. Anyway, the scheme of the proof, see §3.3,
is the same for both original and new versions, and also there are some reasons why
the sharpening appears to be more natural, as will be seen below. See [KLW] for
another exposition of the proof.

It is straightforward to verify that Theorem 1.2 follows from Theorem 3.4:
take B = [0,T] and h(x) = u,g where A = gZ™. Condition [3.4-i] has already been
established in Corollary 3.3, and [3.4-ii] clearly holds with some p dependent of A:
just put x = 0 and

3.5 — o(A) = inf ALY/ Tk(A)
(3.5) p=p(A) AGHI;(A)H | ,

positive since A is discrete. Furthermore, Theorem 3.4 implies the following

COROLLARY 3.5. For any A € L, and any positive § there exists a compact
subset K of L, such that for any unipotent one-parameter {u,} C SL(n,R) and
any positive T one has

(3.6) %/\({O <a<T:uA¢K})<s.

This was proved by Dani in 1979 [D1]. For the proof using Theorem 3.4, just
take K = L,,(¢) where ¢ is such that

(3.7) n2"C(n) (¢/p)*™ <4,

C(n),a(n) are as in Corollary 3.3 and p(A) as defined in (3.5). Thus, on top of
Dani’s result, one can recover an expression for the “size” of K in terms of §.

But this is not the end of the story — one can conclude much more. It immedi-
ately follows from Minkowski’s Lemma that if tk(A) is, say, k, then the intersection
of A with any compact convex subset of RA of volume 2¥||A|| contains a nonzero

vector. Thus such a A must contain a nonzero vector of length < 2||Al/ V;/ ¥ where
v, is the volume of the unit ball in R*. Consequently, if we know that A € £,,(p’)
for some positive p, then p(A) as defined in (3.5) is at least ¢’p’ where ¢ = ¢/(n)
depends only on n. Thus we have derived (modulo elementary computations left
as an exercise) the following statement:

COROLLARY 3.6. For any § > 0 there exists (explicitly computable) ¢ = c(n, )
such that whenever {u,A : 0 < x <T} C L, is a unipotent trajectory nontrivially
intersecting Ly (p) for some p > 0, (3.6) holds with K = L, (cp).

In order to appreciate a geometric meaning of the above corollary and other
related results, it will be convenient to choose a right-invariant Riemannian metric
on SL,(R) and use it to induce a Riemannian metric on £,. Then it is not hard
to see that the distance between £,,(p) and the complement of £,,(cp) is uniformly
bounded from above by a constant depending only on ¢, not on p. Thus Corollary
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3.6 guarantees that, regardless of the size of the compact set where a unipotent
trajectory begins, one only needs to increase the set by a bounded distance to
make sure that the trajectory spends, say, at least half the time in the bigger set.
Note that for the last conclusion it is important to have p™(®) and not p in the
right hand side of [3.4-ii]; previously available non-divergence estimates forced a
much more significant expansion of £, (p).

Let us now turn our attention to another non-divergence theorem, proved by
Dani in 1986 [D4], and later generalized by Eskin, Mozes and Shah [EMS]:

COROLLARY 3.7. For any § > 0 there exists a compact subset K C L, such
that for any unipotent one-parameter subgroup {u,} C SL(n,R) and any A = gZ™ €
L., either (3.6) holds for all large T, or there exists a (g~ 'u,g)-invariant proper
subspace of R™ defined over Q.

PROOF. Apply Theorem 3.4 with an arbitrary p < 1 and € as in (3.7), as before
choosing K to be equal to £,,(¢). Assume that the first alternative in the statement
of the corollary is not satisfied for some {u;}, A and this K. This means that there
exists an unbounded sequence T} such that for each k, the conclusion of Theorem
3.4 with p = 1, € chosen as above and h(x) = uzg, does not hold for B = [0, T}].
Since assumption [3.4-i] is always true, [3.4-ii] must go wrong, i.e. for each k there
must exist A, € P(Z™) such that ||u,gAk| < 1 for all 0 < z < T}. However, by
the discreteness of A(¢gZ™) in A(R™), there are only finitely many choices for such
subgroups; hence one of them, A, works for infinitely many k. But |ju,gAl? is a
polynomial, therefore it must be constant, which implies that wu, fixes g(RA) <
¢ 'ugg fixes the proper rational subspace RA. O

3.3. The proof. In order to prove Theorem 3.4, we are going to create a
substitute for the procedure of marking points by vectors (and thereby declaring
them safe from any other small vectors) used in the proof of Theorem 2.4. However
now vectors will not be sufficient for our purposes, we will need to replace it with
flags, that is, linearly ordered subsets of the partially ordered set (poset) P(A),
A € L,,. Furthermore, to set up the induction we will need to prove a version of the
theorem with P(Z™) repalced by its subsets (more precisely, sub-posets) P. The
induction will be on the length of P, i.e. the number of elements in its maximal
flag. In this more general theorem we will also get rid of the expressions p™(4) in
the right hand side of [3.4-ii], replacing them with n(A), where 7 is an arbitrary
function P — (0, 1] (to be called the weight function).

Now let us fix an interval B C R, a sub-poset P C P(Z"), a weight function
7 and a map h : B — SL(n,R). Then say that, given ¢ > 0, a point € B is
e-protected relative to P if there exists a flag F' C P with the following properties:

(M1) eg(A) < [h(2)A] < 7(A) YA € F;

(M2) ||h(z)A]l =2 n(A) VA € P~ F comparable with every element of F.

We are going to show that with the choice n(A) = p™*(») and P = P(Z"), any
(e/p)-protected point « € B is indeed protected from vectors in h(z)Z" of length less
than €. But first let us check that the above definition reduces to the one used for
the proof of Theorem 2.4 when P = P(Z?). Indeed, for h(z) = u,g, A = Zv of rank
1, n(A) = p and ¢ substituted with £/p, (M1) reduces to € < ||uzgv]| < p, which
was exactly the condition satisfied by some vector v € Z? for & € Byy(p) \ Byy(€).
Further, (M2) in that case holds trivially, since the only element of P(Z?) \ {A}
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comparable with A is Z? itself, and ||gZ?|| = 1 > p?. And the conclusion was that
the existence of such v forces u,9Z? to belong to La(e).

Here is a generalization:

PROPOSITION 3.8. Let 11 be given by n(A) = p™®) for some 0 < p < 1. Then

for any € < p and any x € B which is (e/p)-protected relative to P(Z™), one has
h(z)Z™ € L, (¢).

PRrROOF. For x as above, let {0} = Ay C Ay C -+ C Ay = Z" be all the
elements of F'U {{0},Z"}. Properties (M1) and (M2) translate into:

(M1) £ p™B0 <a(2)Aq]| < prB) Vi=0,...,0-1;

(M2) ||h(z)Al| > p™A) VA € P(Z") \ F comparable with every A,.
(Even though Ay = {0} is not in P(Z"), it would also satisfy (M1) with the
convention [[{0}|| =1.)

Take any v € Z"~{0}. Then there exists j, 1 < j < ¢, suchthat v e A;NA;_;.
Denote R(Aj_1 +Zv) N A by A. Clearly it is a primitive subgroup of A satisfying
Aj_1 C A C Aj, therefore A is comparable with A; for every i (and may or may

not coincide with one of the A;s). Now one can use properties (M1) and (M2) to
deduce that

: € T T T — T i1
(3.5) ||h<x>A|me(;-pm%pk@))—spkw Lo o)

On the other hand, from the submultiplicativity of the covolume it follows that
[Ih(z)Al is not greater than ||A(x)A;_1] - ||v|| (recall a similar step in the proof of
Lemma 2.1). Thus

h A I‘k(Aifl)
|h(z)v] > _h@)All > EPT —c.
h(2)Ai—1]| by (M1) and (3.8) prEAi-1)
Hence A € £, (¢) and the proof is finished. O

This is perhaps the crucial point in the proof: we showed that a flag with certain
properties does exactly what a single vector was doing in the case of SL(2,R);
namely, it guarantees that in the lattices corresponding to protected points, no
vector can be shorter than e.

Now that the above proposition is established, we will forget about the specific
form of the weight function and work with an arbitrary 7. Here is a more general
theorem:

THEOREM 3.9. Fiz 0 < k < n, and suppose an interval B C R, C,a > 0, a
continuous map h : B — SL(n,R), a poset P C P(Z"™) of length k and a weight
function n: P — (0,1] are given. Assume that for any A € P

[3.9-i] the function x — ||h(x)A|| is (C,a)-good on B, and
[3.9-1i] sup,cp[|h(z)Al = n(A).
Then for any 0 < e <1,

M{z € B : x is not e-protected relative to P}) < k2"Ce®\(B).

We remark that the use of an arbitrary P in place of P(Z") is justified not only
by a possibility to prove the theorem by induction, but also by some applications
to Diophantine approximation, see e.g. [ BKM, K13, G1], where proper sub-posets
of P(Z") arise naturally.



140 DMITRY KLEINBOCK

ProOOF. We will break the argument into several steps.

Step 0. First let us see what happens when k = 0, the base case of the induction.
In this case P is empty, and the flag F' = & will satisfy both (M1) and (M2). Thus
all points of B are e-protected relative to P for any e, which means that in the case
k = 0 the claim is trivial. So we can take k > 1 and suppose that the theorem is
proved for all the smaller lengths of P.

Step 1. For any y € B let us define

def
Sy) ={A e P:[hy)All <n(A)}.
Roughly speaking, S(y) is the set of As which gets small enough at y, i.e. potentially
could bring trouble. By the discreteness of h(y)Z™ in R™, this is a finite subset of
P. Note that if this set happens to be empty, then |h(y)A] > n(A) for all A € P,
which means that F' = @ can be used to e-protect y for any . So let us define

EZ {yeB:S(y)# o} ={ycB:3A e P with |hy)A] < n(A)};
then to prove the theorem it suffices to estimate the measure of the set of points
x € E which are not e-protected relative to P. A flashback to the proof for n = 2:
there S(y) consisted of primitive vectors v for which ||u, v|| was less than p, not more
than one such vector was allowed, and nonexistence of such vectors automatically
placed the lattice in £, (¢).

Step 2. Take y € E and A € S(y), and define Ba , to be the maximal interval of
the form BN (y—r,y+r) on which the absolute value of ||h(-)All is not greater than
n(A). From the definition of S(y) and the continuity of functions ||A(-)A|| it follows
that Ba,, contains some neighborhood of y. Further, the maximality property of
B, implies that
(3.9) sup [|h(z)All = n(A).

TEDBA y
Indeed, either B, = B, in which case the claim follows from [3.9-ii], or at one of
the endpoints of Ba ,, the function ||h(-)Al| must attain the value n(A) — otherwise
one can enlarge the interval and still have ||h(-)A|| not greater than n(A) for all its
points. (Another flashback: intervals Ba , are analogues of By (p) from the proof
of Theorem 2.4 — but this time there is no disjointness, since many As can get small
simultaneously.)

Step 3. For any y € E let us choose an element A, of S(y) such that Ba,, =
Uaes(y) Ba,y (this can be done since S(y) is finite). In other words, Ba,,, is
maximal among all Bp ,. For brevity we will denote Ba, , by B,. We now claim
that

(3.10) sup [[h(x)A|| > n(A) for any y € E and A € P.
r€EB,y

Indeed, if not, then ||h(z)A| < n(A) for all z € By, in particular one necessarily
has ||h(y)A|l < n(A), hence A € S(y) and Ba , is defined. But Ba , is contained
in By, so (3.10) follows from (3.9). This step allows one to replace the covering
{Bay : A € S(y), y € E} of E by a more efficient covering {B, : y € E};
informally speaking, this is achieved by selecting A = A, which works best for
every given y.
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Step 4. Now we are ready to perform the induction step. For any y € E define

P, o {A e P~ {A,}: A is comparable with A,}.
We claim that P, (a poset of length k£ —1) in place of P and B, in place of B satisfy
all the conditions of the theorem. Indeed, [3.9-i] is clear since B, is a subset of B,
and [3.9-ii] follows from (3.10). Therefore, by induction,

(3.11) A({z € B, : = is not e-protected relative to P,}) < (k — 1)2*"1Ce*\(B,) .

Step 5. Does the previous step help us, and how? let us take x outside of this set
of relatively small measure, that is, assume that x is e-protected relative to P,, and
try to use this protection. By definition, there exists a flag F’ inside P, such that

(3.12) en(8) < [h@)A| <n(A) VAE F
and
(3.13)  ||h(z)Al > n(A) VA € Py~ F' comparable with every element of F”.

However this F’ will NOT protect x relative to the bigger poset P, because A,
comparable with every element of F’, would not satisfy (M2) — on the contrary,
recall that it was chosen so that the reverse inequality, ||h(z)A,| < n(A,), holds

for all z € By, see (3.10)! Thus our only choice seems to be to add A, to F’, for

extra protection, and put r¥ry {A,}. Then A € P\ F is comparable with

every element of F' if and only if A is in Py, \ F’, and is comparable with every
element of F’. Because of that, (M2) immediately follows from (3.13). As for (M1),
we already know it for for A # A, by (3.12), so it remains to put A = A,. The
upper estimate in (M1) is immediate from (3.10). The lower estimate, on the other
hand, can fail — but only on a set of relatively small measure, because of assumption
[3.9-i] which, by the way, has not been used so far at all:

, en(A,) ’
M@e&pmumu<mmwn<c@wM&M@mﬂ>Aww

< C(e)"A(By)-
3.9)

(3.14)

(

The union of the two sets above, in the left hand sides of (3.11) and (3.3), has
measure at most k28~ 1Ce*\(B,). We have just shown that this union exhausts all
the unprotected points as long as we are restricted to B,. Thus we have achieved
an analogue of what was extremely easy for n = 2: bounded the measure of the set
of points where things can go wrong on each of the intervals By (p).

Step 6. It remains to produce a substitute for the disjointness of the intervals,
that is, put together all the Bys. For that, consider the covering {B, : y € E} of E
and choose a subcovering {B;} of multiplicity at most 2. (Exercise: this is always
possible.) Then the measure of {x € E : x is not e-protected relative to P} is not
greater than

Z M{z € B; : = is not e-protected relative to P}) < k2F~1Ce® Z)‘(Bi)

< k2kCe*\(B),

and the theorem is proven. ([l
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4. Applications of non-divergence to metric Diophantine approximation

Here we present applications of Theorem 3.4 to number theory which reach
beyond the unipotent, or even polynomial, case.

4.1. Inheritance of sublinear growth. Our main object of studying will
be a fixed parametrized curve B — L,,, where B C R is an interval. Given such a
curve, we will consider a family of curves which are translations of the initial one
by some group elements a;. That is, put

(4.1) h(z) = hi(z) = atho(x)

in Theorem 3.4, where hg is a fixed map from B to SL(n,R). We would like to
investigate the following two questions:

(1) What are interesting examples of hy and a; for which one can establish
conditions [3.4-1] and [3.4-ii] uniformly for all ¢ > 07
(2) What would be consequences of that for the initial curve ho(z)Z"?

Let us start with the second question, since it is easier. That is, suppose we are
given an interval B C R, C,a >0, 0 < p < 1, a continuous map hg : B — SL(n,R)
and h = hy as in (4.1). Also let us assume that for any A € P(Z") and any t > 0,
conditions [3.4-i] and [3.4-ii] are satisfied. The trick is now to choose ¢ = e~ 7"
for some positive . From Theorem 3.4 it follows that there exists a constant C
(depending on n, C, p, B) such that for any ¢,

M{z € B :atho(x)Z" ¢ L,(e77")}) < Ce™t,

The sum of the right hand sides of the above equation will converge if added up
say for ¢t € N. This immediately calls for an application of the following standard
principle from elementary probability theory (the proof is left as an exercise):

LEMMA 4.1 (Borel-Cantelli Lemma). If u is a measure on a space X and {A;}
is a countable collection of measurable subsets of X with ), n(A;) < oo, then pu-
almost every x € X is contained in at most finitely many sets A;.

The conclusion from this is: given an arbitrary v > 0, for A-almost every x € B
we have a;ho(z)Z" € L,(e™ ) if t € N is sufficiently large. In fact, by changing
just a little bit it is easily seen that ¢ € N in the last statement can be replaced by
t > 0. (Exercise.) That is, for all ¥ > 0 we have

(4.2) {a;A : t >0} eventually grows slower than the family £, (e™"")
for (Lebesgue) almost every A of the form hq(x)Z™.

To put this conclusion in an appropriate context, we need to describe the family
of sets £,,(¢) in a more detailed way. It is not hard to see, using reduction theory
for SL(n,R)/SL(n,Z), that minus logarithm of the biggest e such that A € £, (¢)
is (asymptotically for far away A) roughly the same as the distance! from A to Z"
or some other base point. Thus the validity of (4.2) for any v > 0 can, and will, be
referred to as the sublinear growth of {a;A}. More generally, we will say, for fixed
vo > 0, that {a;A} has growth rate < g if (4.2) holds for any v > .

Now denote by v the Haar probablilty measure on £,,. One can show using
Siegel’s Formula (see [E] for more detail) that v(£,~L,(g)) < const, e". (Exercise:

1See a remark after Corollary 3.6 for a description of a metric on £y; note also that dist(A, Z™)
is also roughly the same as minus logarithm of p(A) defined in (3.5)
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compute this constant; a more difficult exercise: prove that the right hand side
captures the asymptotics of v(L,, \ L, (€)) as € — 0; this is done in [KM2].) Since
ag preserves v, for any v > 0 and any ¢t we have

v({A € Lyt aiA ¢ Lo(e77")}) < const, e ™

therefore for the same (Borel-Cantelli) reason as above, for any positive v (4.2) is
satisfied by v-a.e. A € L£,,. Thus we have proved that, assuming all the functions
of the form (4.1) satisfy [3.4-i] and [3.4-ii], certain dynamical behavior (sublinear
growth of trajectories) of generic points of the phase space is inherited by generic
points on the curve {ho(x)Z"}.

We note that problems of this type, i.e. studying rates of growth of trajectories,
or rates with which dense trajectories approximate points, are sometimes referred
to as shrinking target problems. Indeed, the family of complements of the sets
L, (e77%) can be thought of as a shrinking target zooming at the cusp of £, and to
hit this target means to get into those “neighborhoods of infinity” infinitely many
times. See [KM2] for a detailed discussion.

Also, observe that we haven’t really used the full strength of Theorem 3.4, with
p™(2) in place of p, and it was promised that it is supposed to be important for
applications. The next theorem summarizes the above discussion and strengthens
its conclusions:

THEOREM 4.2 ([K15]). Suppose an interval B C R, C,«, v > 0, a continuous
map ho : B — SL(n,R) and a subgroup {a;} C SL(n,R) are given.
(a) Assume that:
[4.2-1] for all A € P(Z") and t > 0, functions x — |lagho(z)A| are (C, a)-good
on B, and
[4.2-ii] for any B > o there exists T such that sup,¢p |lasho(z)All > (e7Pt)k(A)
for all A € P(Z™) and t > T.

Then for A-a.e. x € B, {atho(z)Z"} has growth rate < .

(b) Suppose that [4.2-1i] does not hold; then {atho(x)Z"} has growth rate > ~qy for
all x € B.

PRrROOF. Part (a) follows from a minor modification of the argument preceding
the theorem: for any v > 7 choose 8 between v and =y, and apply Theorem 3.4
with p = e=#*, and then the Borel-Cantelli Lemma. For part (b), if for some 8 > 7o
there exist t;, — oo and Ay, € P(Z"™) such that |as, ho(z)Ak| < (e~ )k(A%) for
all x € B, then for each x, using Minkowski Lemma, one can choose a nonzero
vector vy € Ay such that [lag, ho(z)vy| < e P, which implies that a;, ho(z)Z" ¢
L, (e Pte). O

We have therefore established a remarkable dichotomy: for curves satisfying
[4.2-], either almost all trajectories grow slowly, or all trajectories grow fast. See
[K16] for a further exploration of this theme.

4.2. Checking [3.4-i] and [3.4-ii]. Of course there would be no point in
the argument of the previous section if we didn’t know that there exist examples,
and moreover very naturally arising in number theory, of functions h; as in (4.1)
satisfying the assumptions of Theorem 3.4 uniformly in ¢t. We are going to describe
a special case which is very useful for applications.



144 DMITRY KLEINBOCK

For this, it will be convenient to upgrade the dimension of the space where all
the lattices live from n to n 4+ 1. Then choose

a; = diag(e™, e !, ... e "),

that is, consider a generalization of {a;} C SL(2,R) as in (2.1). One can easily see
that the unstable leaves of the action of a;, t > 0, on L,,11 are given by the orbits

of the group
daef (1 y"\ n
{uy—<0 I,L> : yER},

a higher-dimensional analogue of U C SL(2,R) (This group is denoted by sz_l in
the notation of [EL] and is also known as the expanding horospherical subgroup
corresponding to a;). We are going to put our initial curve {ho(x)} inside this

group; that is, consider
(1 f@)T
ho() = (0 I, )’

where f is a map B — R™. The question now becomes: under what conditions on
f can we verify the assumptions of Theorem 3.4 with hi(z) = asug(,) uniformly in
t.

In order to do that, we need to understand the action of the elements uy, on
the exterior powers of R"*!. Choose the standard basis eg, e, ..., e, of R*T!, and
denote by V the space spanned by eq,...,e,. It will be convenient to identify
y € R™ with y1e; + -+ - + yne,. Note that ey is expanded by a; (eigenvalue ")
and V is the contracting subspace (eigenvalue e~%). Similarly for any k < n, the
k-th exterior power of R™™! splits into the expanding (subspaces containing eg)
and contracting (contained in V') parts.

Observe that uy leaves e fixed and sends vectors v € V to v+ (y - v)eg. From
this is is easy to conclude how u, acts on /\k(R"H): elements of the form ey A w
are fixed, and

Vl/\.../\vkg(v1+(y-vl)e0)/\---/\(Vk+(y'Vk)eo)

(4.3) k
=Vi A AV +eA Zj:(y~vi)/\vj
i=1 j#i

Now let us see what conditions on f are sufficient to establish [3.4-i] and [3.4-ii].
Take A € P(Z"*!) and represent it (up to &) by the exterior product of generators
of A, let us call it w. First of all it follows from the above formula that for any
w € A(R"*1), all the coordinates of uyw, and hence of a;uyw for any ¢, are linear
combinations of 1,y1,...,y, (coefficients in these linear combinations depend on
t). Thus property [3.4-i] uniformly over all ¢ would follow if we could find C, « such
that all the linear combinations of 1, f1,..., f, are (C, a)-good on B.

It turns out that condition [3.4-ii], that is, sup,¢p [lacho(z)A| > p™(A) for all
A and all (large enough) ¢ is also easy to check:

LEMMA 4.3. Suppose that £(B) is not contained in any affine hyperplane (equiv-

alently, the restrictions of 1, f1, ..., fn to B are linearly independent over R). Then:

(a) there exists p > 0 such that [3.4-ii] holds for any A € P(Z"*1) and any
t>0;

(b) Jto > 0 such that [3.4-ii] holds with p =1 for all A € P(Z"*1) and t > t,.
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PROOF. Both claims are trivial if RA contains eg: indeed, from the previous
discussion it follows that w representing A is then fixed by ug(,) and expanded by
a;. If not, suppose that rk(A) = k; then dim(RA @ Reg) = k + 1. One can choose
an orthonormal set {vy,...,vg_1} C RA N V and complete it to an orthonormal
basis {v1,..., vk, ey} of RA @ Rey. Then

wW=aegAVi - AVp_1+bvi A+ AVg,

where a? + b* > 1. (Note: a,b do not have to be integers, and vectors v; are not
necessarily with integer coordinates; however orthonormality is important.) Now
we can, using (4.3), simply look at the projection of Us(z)W ONto €g A vy - - A vy _q:

ug(yw = (a4 b(f(z) - vi))eo Avi-- - AvVi_1+....

Regardless of the choice of a, b, the coefficient in front of eg A vy -+ Avg_1 is of the
form co + c1f1 + -+ + cnfn with 3 |c;|? > 1. In view of the linear independence
assumption and the compactness of the unit sphere in R™*!, there exists p = p(B) >
0 such that the supremum of the absolute value of every such function, and hence
SUpP,ep [|uge)All is at least p. But eg Avy--- Avyg_1 is expanded by a; with a rate
at least e’, and both conclusions follow. O

Now, abusing terminology for some more, let us introduce the following defini-
tions. Say that a map f from a subset U of R to R" is good if for A-a.e. x € U there
exists a neighborhood B C U of z and C,a > 0 such that any linear combination
of 1, f1,..., fn is (C,a)-good on B. We will also say that f is (C,«)-good if C
and « can be chosen uniformly for all x as above. Polynomial maps form a basic
example. Later we will explain how one can prove that real analytic maps also have
this property.

Also, say that f is nonplanar if for any nonempty interval B C U, the re-
strictions of 1, f1,..., f, to B are linearly independent over R; in other words, no
nonempty relatively open piece of f(U) is contained in a proper affine subspace of
R™. The above discussion can be thus summarized in the following way:

THEOREM 4.4. Let U be a subset of R and let £ : U — R™ be a continuous good
nonplanar map. Then for A-a.e. x € U, the a;-trajectory ofuf(g,:)Z”‘Irl has sublinear
growth.

Note: it follows from remarks made at the end of the previous section and a
“flowbox” argument (see [E]) that the a;-trajectory of uyZ" has sublinear growth
for A-a.e. y € R™. Thus the above theorem describes examples of curves in R™
whose generic points inherit certain property of generic points of R™.

4.3. Inheritance of Diophantine properties. Of course a reasonable ques-
tion concerning all the argument above would be — why would anybody at all care
about orbit growth properties of typical poitns on some curves. The answer is —
that all along, like monsieur Jourdain speaking in prose, we were actively involved
in proving theorems in Diophantine approximation without knowing it.

Indeed, let us see how y € R™ is characterized by the fact that {a;uyZ" "'} has
growth < 7. Suppose that for any v > g there exists T' > 0 such that for any
t > T and any nonzero (p,q) € Z x Z™ one has

(4.4)

cay ()| = mox e+ v -aleal) = e
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For such v, given q € Z", choose ¢ such that e~t||q|| = e~7* < et = |q|| 7. For
large enough ||q|| this ¢ will be greater than 7. In view of (4.4), e"|p +y - q| must
be at least e, which translates into

(e =

Ip+y-qf>e = |lqf|” =

We proved that {atuyZ""’l} having growth rate < 7 implies that y is Diophantine?
of order v for any v > 711'_"38 In fact, converse implication is also true, and is left
as an exercise; see [KM2, K12]. Consequently, sublinear growth of {a;uyZ" '} is
equivalent to y being Diophantine of all orders > n; those y are called not very well
approximable, to be abbreviated as not VWA. It is an elementary fact, immediately
implied by the Borel-Cantelli Lemma, that A-a.e. y € R" is not VWA. Thus we can

reformulate the theorem proved in the previous section as follows:

THEOREM 4.5