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Introduction

In this book we present a complete and detailed proof of

The Poincaré Conjecture: every closed, smooth, simply connected
3-manifold is diffeomorphic' to S3.

This conjecture was formulated by Henri Poincaré [58] in 1904 and has re-
mained open until the recent work of Perelman. The arguments we give here
are a detailed version of those that appear in Perelman’s three preprints [53,
55, 54]. Perelman’s arguments rest on a foundation built by Richard Hamil-
ton with his study of the Ricci flow equation for Riemannian metrics. Indeed,
Hamilton believed that Ricci flow could be used to establish the Poincaré
Conjecture and more general topological classification results in dimension
3, and laid out a program to accomplish this. The difficulty was to deal with
singularities in the Ricci flow. Perelman’s breakthrough was to understand
the qualitative nature of the singularities sufficiently to allow him to prove
the Poincaré Conjecture (and Theorem 0.1 below which implies the Poincaré
Conjecture). For a detailed history of the Poincaré Conjecture, see Milnor’s
survey article [50].

A class of examples closely related to the 3-sphere are the 3-dimensional
spherical space-forms, i.e., the quotients of S% by free, linear actions of
finite subgroups of the orthogonal group O(4). There is a generalization
of the Poincaré Conjecture, called the 3-dimensional spherical space-
form conjecture, which conjectures that any closed 3-manifold with finite
fundamental group is diffeomorphic to a 3-dimensional spherical space-form.
Clearly, a special case of the 3-dimensional spherical space-form conjecture
is the Poincaré Conjecture.

As indicated in Remark 1.4 of [54], the arguments we present here not
only prove the Poincaré Conjecture, they prove the 3-dimensional space-
form conjecture. In fact, the purpose of this book is to prove the following
more general theorem.

1Every topological 3-manifold admits a differentiable structure and every homeomor-
phism between smooth 3-manifolds can be approximated by a diffeomorphism. Thus, clas-
sification results about topological 3-manifolds up to homeomorphism and about smooth
3-manifolds up to diffeomorphism are equivalent. In this book ‘manifold’ means ‘smooth
manifold.’
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THEOREM 0.1. Let M be a closed, connected 3-manifold and suppose
that the fundamental group of M is a free product of finite groups and infi-
nite cyclic groups. Then M is diffeomorphic to a connected sum of spherical
space-forms, copies of S% x S, and copies of the unique (up to diffeomor-
phism) non-orientable 2-sphere bundle over S*.

This immediately implies an affirmative resolution of the Poincaré Con-
jecture and of the 3-dimensional spherical space-form conjecture.

COROLLARY 0.2. (a) A closed, simply connected 3-manifold is diffeo-
morphic to S3. (b) A closed 3-manifold with finite fundamental group is
diffeomorphic to a 3-dimensional spherical space-form.

Before launching into a more detailed description of the contents of this
book, one remark on the style of the exposition is in order. Because of the
importance and visibility of the results discussed here, and because of the
number of incorrect claims of proofs of these results in the past, we felt that
it behooved us to work out and present the arguments in great detail. Our
goal was to make the arguments clear and convincing and also to make them
more easily accessible to a wider audience. As a result, experts may find
some of the points are overly elaborated.

1. Overview of Perelman’s argument

In dimensions less than or equal to 3, any Riemannian metric of con-
stant Ricci curvature has constant sectional curvature. Classical results in
Riemannian geometry show that the universal cover of a closed manifold of
constant positive curvature is diffeomorphic to the sphere and that the fun-
damental group is identified with a finite subgroup of the orthogonal group
acting linearly and freely on the universal cover. Thus, one can approach the
Poincaré Conjecture and the more general 3-dimensional spherical space-
form problem by asking the following question. Making the appropriate
fundamental group assumptions on 3-manifold M, how does one establish
the existence of a metric of constant Ricci curvature on M? The essential
ingredient in producing such a metric is the Ricci flow equation introduced
by Richard Hamilton in [29]:

9g(t)

ot —2Ric(g(t)),

where Ric(g(t)) is the Ricci curvature of the metric g(¢). The fixed points
(up to rescaling) of this equation are the Riemannian metrics of constant
Ricci curvature. For a general introduction to the subject of the Ricci flow
see Hamilton’s survey paper [34], the book by Chow-Knopf [13], or the
book by Chow, Lu, and Ni [14]. The Ricci flow equation is a (weakly) para-
bolic partial differential flow equation for Riemannian metrics on a smooth
manifold. Following Hamilton, one defines a Ricci flow to be a family of
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Riemannian metrics g(¢) on a fixed smooth manifold, parameterized by t in
some interval, satisfying this equation. One considers ¢ as time and studies
the equation as an initial value problem: Beginning with any Riemann-
ian manifold (M, gg) find a Ricci flow with (M, gg) as initial metric; that
is to say find a one-parameter family (M, g(t)) of Riemannian manifolds
with ¢g(0) = go satisfying the Ricci flow equation. This equation is valid
in all dimensions but we concentrate here on dimension 3. In a sentence,
the method of proof is to begin with any Riemannian metric on the given
smooth 3-manifold and flow it using the Ricci flow equation to obtain the
constant curvature metric for which one is searching. There are two exam-
ples where things work in exactly this way, both due to Hamilton. (i) If
the initial metric has positive Ricci curvature, Hamilton proved over twenty
years ago, [29], that under the Ricci flow the manifold shrinks to a point
in finite time, that is to say, there is a finite-time singularity, and, as we
approach the singular time, the diameter of the manifold tends to zero and
the curvature blows up at every point. Hamilton went on to show that, in
this case, rescaling by a time-dependent function so that the diameter is
constant produces a one-parameter family of metrics converging smoothly
to a metric of constant positive curvature. (ii) At the other extreme, in [36]
Hamilton showed that if the Ricci flow exists for all time and if there is an
appropriate curvature bound together with another geometric bound, then
as t — 00, after rescaling to have a fixed diameter, the metric converges to
a metric of constant negative curvature.

The results in the general case are much more complicated to formulate
and much more difficult to establish. While Hamilton established that the
Ricci flow equation has short-term existence properties, i.e., one can define
g(t) for t in some interval [0,7) where T depends on the initial metric, it
turns out that if the topology of the manifold is sufficiently complicated, say
it is a non-trivial connected sum, then no matter what the initial metric is
one must encounter finite-time singularities, forced by the topology. More
seriously, even if the manifold has simple topology, beginning with an ar-
bitrary metric one expects to (and cannot rule out the possibility that one
will) encounter finite-time singularities in the Ricci flow. These singularities,
unlike in the case of positive Ricci curvature, occur along proper subsets of
the manifold, not the entire manifold. Thus, to derive the topological con-
sequences stated above, it is not sufficient in general to stop the analysis the
first time a singularity arises in the Ricci flow. One is led to study a more
general evolution process called Ricci flow with surgery, first introduced by
Hamilton in the context of four-manifolds, [35]. This evolution process is
still parameterized by an interval in time, so that for each ¢ in the interval
of definition there is a compact Riemannian 3-manifold M;. But there is a
discrete set of times at which the manifolds and metrics undergo topolog-
ical and metric discontinuities (surgeries). In each of the complementary
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intervals to the singular times, the evolution is the usual Ricci flow, though,
because of the surgeries, the topological type of the manifold M; changes
as t moves from one complementary interval to the next. From an analytic
point of view, the surgeries at the discontinuity times are introduced in order
to ‘cut away’ a neighborhood of the singularities as they develop and insert
by hand, in place of the ‘cut away’ regions, geometrically nice regions. This
allows one to continue the Ricci flow (or more precisely, restart the Ricci
flow with the new metric constructed at the discontinuity time). Of course,
the surgery process also changes the topology. To be able to say anything
useful topologically about such a process, one needs results about Ricci flow,
and one also needs to control both the topology and the geometry of the
surgery process at the singular times. For example, it is crucial for the
topological applications that we do surgery along 2-spheres rather than sur-
faces of higher genus. Surgery along 2-spheres produces the connected sum
decomposition, which is well-understood topologically, while, for example,
Dehn surgeries along tori can completely destroy the topology, changing any
3-manifold into any other.

The change in topology turns out to be completely understandable and
amazingly, the surgery processes produce exactly the topological operations
needed to cut the manifold into pieces on which the Ricci flow can produce
the metrics sufficiently controlled so that the topology can be recognized.

The bulk of this book (Chapters 1-17 and the Appendix) concerns the
establishment of the following long-time existence result for Ricci flow with
surgery.

THEOREM 0.3. Let (M, go) be a closed Riemannian 3-manifold. Suppose
that there is no embedded, locally separating RP? contained® in M. Then
there is a Ricci flow with surgery defined for allt € [0, 00) with initial metric
(M, go). The set of discontinuity times for this Ricci flow with surgery is
a discrete subset of [0,00). The topological change in the 3-manifold as
one crosses a surgery time is a connected sum decomposition together with
removal of connected components, each of which is diffeomorphic to one
of S? x S, RP3#RP3, the non-orientable 2-sphere bundle over S, or a
manifold admitting a metric of constant positive curvature.

While Theorem 0.3 is central for all applications of Ricci flow to the
topology of three-dimensional manifolds, the argument for the 3-manifolds
described in Theorem 0.1 is simplified, and avoids all references to the na-
ture of the flow as time goes to infinity, because of the following finite-time
extinction result.

2I.e., no embedded RP? in M with trivial normal bundle. Clearly, all orientable
manifolds satisfy this condition.
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THEOREM 0.4. Let M be a closed 3-manifold whose fundamental group is
a free product of finite groups and infinite cyclic groups®. Let gy be any Rie-
mannian metric on M. Then M admits no locally separating RP?, so that
there is a Ricci flow with surgery defined for all positive time with (M, go)
as tnitial metric as described in Theorem 0.3. This Ricci flow with surgery
becomes extinct after some time T < 0o, in the sense that the manifolds M,
are empty for all t > T.

This result is established in Chapter 18 following the argument given by
Perelman in [54], see also [15].

We immediately deduce Theorem 0.1 from Theorems 0.3 and 0.4 as
follows: Let M be a 3-manifold satisfying the hypothesis of Theorem 0.1.
Then there is a finite sequence M = My, My, ..., M; = () such that for each
i, 1 <i <k, M; is obtained from M;_1 by a connected sum decomposition
or M; is obtained from M;_1 by removing a component diffeomorphic to
one of S? x S, RP3#RP3, a non-orientable 2-sphere bundle over S!, or a
3-dimensional spherical space-form. Clearly, it follows by downward induc-
tion on ¢ that each connected component of M; is diffeomorphic to a con-
nected sum of 3-dimensional spherical space-forms, copies of S2 x S!, and
copies of the non-orientable 2-sphere bundle over S'. In particular, M = M
has this form. Since M is connected by hypothesis, this proves the theorem.
In fact, this argument proves the following:

COROLLARY 0.5. Let (Mg, go) be a connected Riemannian manifold with
no locally separating RP?. Let (M,G) be a Ricci flow with surgery defined
for 0 < t < oo with (Mo, go) as initial manifold. Then the following four
conditions are equivalent:

(1) (M, G) becomes extinct after a finite time, i.e., Mp =0 for all T
sufficiently large,

(2) My is diffeomorphic to a connected sum of three-dimensional spher-
ical space-forms and S%-bundles over S!,

(3) the fundamental group of My is a free product of finite groups and
infinite cyclic groups,

(4) no prime* factor of My is acyclic, i.e., every prime factor of My
has either non-trivial wo or non-trivial ms.

PRrROOF. Repeated application of Theorem 0.3 shows that (1) implies (2).
The implication (2) implies (3) is immediate from van Kampen’s theorem.

3In [54] Perelman states the result for 3-manifolds without prime factors that are
acyclic. It is a standard exercise in 3-manifold topology to show that Perelman’s condition
is equivalent to the group theory hypothesis stated here; see Corollary 0.5.

4A three-manifold P is prime if every separating 2-sphere in P bounds a three-ball
in P. Equivalently, P is prime if it admits no non-trivial connected sum decomposition.
Every closed three-manifold decomposes as a connected sum of prime factors with the
decomposition being unique up to diffeomorphism of the factors and the order of the
factors.
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The fact that (3) implies (1) is Theorem 0.4. This shows that (1), (2) and
(3) are all equivalent. Since three-dimensional spherical space-forms and
S2-bundles over S! are easily seen to be prime, (2) implies (4). Thus, it
remains only to see that (4) implies (3). We consider a manifold M satisfying
(4), a prime factor P of M, and universal covering P of P. First suppose that

T9(P) = my(P) is trivial. Then, by hypothesis m3(P) = m3(P) is non-trivial.
By the Hurewicz theorem this means that H3(13) is non-trivial, and hence
that P is a compact, simply connected three-manifold. It follows that m (P)
is finite. Now suppose that 7o(P) is non-trivial. Then P is not diffeomorphic
to RP3. Since P is prime and contains no locally separating RP?, it follows
that P contains no embedded RP2. Then by the sphere theorem there is
an embedded 2-sphere in P that is homotopically non-trivial. Since P is
prime, this sphere cannot separate, so cutting P open along it produces a
connected manifold Py with two boundary 2-spheres. Since Py is prime, it
follows that Py is diffeomorphic to S? x I and hence P is diffeomorphic to
a 2-sphere bundle over the circle. O

REMARK 0.6. (i) The use of the sphere theorem is unnecessary in the
above argument for what we actually prove is that if every prime factor of
M has non-trivial my or non-trivial 73, then the Ricci flow with surgery with
(M, go) as initial metric becomes extinct after a finite time. In fact, the
sphere theorem for closed 3-manifolds follows from the results here.

(ii) If the initial manifold is simpler then all the time-slices are simpler: If
(M, Q) is a Ricci flow with surgery whose initial manifold is prime, then
every time-slice is a disjoint union of connected components, all but at most
one being diffeomorphic to a 3-sphere and if there is one not diffeomorphic
to a 3-sphere, then it is diffeomorphic to the initial manifold. If the initial
manifold is a simply connected manifold My, then every component of every
time-slice Mp must be simply connected, and thus a posteriori every time-
slice is a disjoint union of manifolds diffeomorphic to the 3-sphere. Similarly,
if the initial manifold has finite fundamental group, then every connected
component of every time-slice is either simply connected or has the same
fundamental group as the initial manifold.

(iii) The conclusion of this result is a natural generalization of Hamilton’s
conclusion in analyzing the Ricci flow on manifolds of positive Ricci curva-
ture in [29]. Namely, under appropriate hypotheses, during the evolution
process of Ricci flow with surgery the manifold breaks into components each
of which disappears in finite time. As a component disappears at some finite
time, the metric on that component is well enough controlled to show that
the disappearing component admits a non-flat, homogeneous Riemannian
metric of non-negative sectional curvature, i.e., a metric locally isometric to
either a round S or to a product of a round S? with the usual metric on
R. The existence of such a metric on a component immediately gives the
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topological conclusion of Theorem 0.1 for that component, i.e., that it is
diffeomorphic to a 3-dimensional spherical space-form, to S? x S! to a non-
orientable 2-sphere bundle over S, or to RP3#RP3. The biggest difference
between these two results is that Hamilton’s hypothesis is geometric (posi-
tive Ricci curvature) whereas Perelman’s is homotopy theoretic (information
about the fundamental group).

(iv) It is also worth pointing out that it follows from Corollary 0.5 that the
manifolds that satisfy the four equivalent conditions in that corollary are
exactly the closed, connected, 3-manifolds that admit a Riemannian metric
of positive scalar curvature, cf, [62] and [26].

One can use Ricci flow in a more general study of 3-manifolds than the
one we carry out here. There is a conjecture due to Thurston, see [69], known
as Thurston’s Geometrization Conjecture or simply as the Geometrization
Conjecture for 3-manifolds. It conjectures that every 3-manifold without
locally separating RP?’s (in particular every orientable 3-manifold) is a con-
nected sum of prime 3-manifolds each of which admits a decomposition along
incompressible® tori into pieces that admit locally homogeneous geometries
of finite volume. Modulo questions about cofinite-volume lattices in SLs(C),
proving this conjecture leads to a complete classification of 3-manifolds with-
out locally separating RP?’s, and in particular to a complete classification of
all orientable 3-manifolds. (See Peter Scott’s survey article [63].) By pass-
ing to the orientation double cover and working equivariantly, these results
can be extended to all 3-manifolds.

Perelman in [55] has stated results which imply a positive resolution
of Thurston’s Geometrization conjecture. Perelman’s proposed proof of
Thurston’s Geometrization Conjecture relies in an essential way on The-
orem 0.3, namely the existence of Ricci flow with surgery for all positive
time. But it also involves a further analysis of the limits of these Ricci flows
as time goes to infinity. This further analysis involves analytic arguments
which are exposed in Sections 6 and 7 of Perelman’s second paper ([55]),
following earlier work of Hamilton ([36]) in a simpler case of bounded curva-
ture. They also involve a result (Theorem 7.4 from [55]) from the theory of
manifolds with curvature locally bounded below that are collapsed, related
to results of Shioya-Yamaguchi [67]. The Shioya-Yamaguchi results in turn
rely on an earlier, unpublished work of Perelman proving the so-called ‘Sta-
bility Theorem.” Recently, Kapovich, [43] has put a preprint on the archive
giving a proof of the stability result. We have been examining another ap-
proach, one suggested by Perelman in [55], avoiding the stability theorem,
cf, [44] and [51]. It is our view that the collapsing results needed for the Ge-
ometrization Conjecture are in place, but that before a definitive statement
that the Geometrization Conjecture has been resolved can be made these

5I.e., embedded by a map that is injective on ;.
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arguments must be subjected to the same close scrutiny that the arguments
proving the Poincaré Conjecture have received. This process is underway.

In this book we do not attempt to explicate any of the results beyond
Theorem 0.3 described in the previous paragraph that are needed for the
Geometrization Conjecture. Rather, we content ourselves with presenting
a proof of Theorem 0.1 above which, as we have indicated, concerns initial
Riemannian manifolds for which the Ricci flow with surgery becomes extinct
after finite time. We are currently preparing a detailed proof, along the lines
suggested by Perelman, of the further results that will complete the proof
of the Geometrization Conjecture.

As should be clear from the above overview, Perelman’s argument did
not arise in a vacuum. Firstly, it resides in a context provided by the general
theory of Riemannian manifolds. In particular, various notions of conver-
gence of sequences of manifolds play a crucial role. The most important
is geometric convergence (smooth convergence on compact subsets). Even
more importantly, Perelman’s argument resides in the context of the theory
of the Ricci flow equation, introduced by Richard Hamilton and extensively
studied by him and others. Perelman makes use of almost every previously
established result for 3-dimensional Ricci flows. One exception is Hamil-
ton’s proposed classification results for 3-dimensional singularities. These
are replaced by Perelman’s strong qualitative description of singularity de-
velopment for Ricci flows on compact 3-manifolds.

The first five chapters of the book review the necessary background mate-
rial from these two subjects. Chapters 6 through 11 then explain Perelman’s
advances. In Chapter 12 we introduce the standard solution, which is the
manifold constructed by hand that one ‘glues in’ in doing surgery. Chapters
13 through 17 describe in great detail the surgery process and prove the
main analytic and topological estimates that are needed to show that one
can continue the process for all positive time. At the end of Chapter 17 we
have established Theorem 0.3. Chapter 18 and 19 discuss the finite-time
extinction result. Lastly, there is an appendix on some topological results
that were needed in the surgery analysis in Chapters 13-17.

2. Background material from Riemannian geometry

2.1. Volume and injectivity radius. One important general concept
that is used throughout is the notion of a manifold being non-collapsed at a
point. Suppose that we have a point x in a complete Riemannian n-manifold.
Then we say that the manifold is k-non-collapsed at x provided that the
following holds: For any r such that the norm of the Riemann curvature
tensor, |[Rm|, is < =2 at all points of the metric ball, B(z,r), of radius r
centered at x, we have Vol B(z,r) > kr™. There is a relationship between
this notion and the injectivity radius of M at x. Namely, if |[Rm| < r—2
on B(z,r) and if B(x,r) is k-non-collapsed then the injectivity radius of M
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at x is greater than or equal to a positive constant that depends only on r
and k. The advantage of working with the volume non-collapsing condition
is that, unlike for the injectivity radius, there is a simple equation for the
evolution of volume under Ricci flow.

Another important general result is the Bishop-Gromov volume compar-
ison result that says that if the Ricci curvature of a complete Riemannian
n-manifold M is bounded below by a constant (n— 1)K, then for any x € M
the ratio of the volume of B(z,r) to the volume of the ball of radius r in
the space of constant curvature K is a non-increasing function whose limit
asr — 01is 1.

All of these basic facts from Riemannian geometry are reviewed in the
first chapter.

2.2. Manifolds of non-negative curvature. For reasons that should
be clear from the above description and in any event will become much
clearer shortly, manifolds of non-negative curvature play an extremely im-
portant role in the analysis of Ricci flows with surgery. We need several
general results about them. The first is the soul theorem for manifolds
of non-negative sectional curvature. A soul is a compact, totally geodesic
submanifold. The entire manifold is diffeomorphic to the total space of a
vector bundle over any of its souls. If a non-compact n-manifold has pos-
itive sectional curvature, then any soul for it is a point, and in particular,
the manifold is diffeomorphic to Euclidean space. In addition, the distance
function f from a soul has the property that, for every ¢ > 0, the pre-image
f~1(t) is homeomorphic to an (n — 1)-sphere and the pre-image under this
distance function of any non-degenerate interval I C R is homeomorphic
to S x I.

Another important result is the splitting theorem, which says that, if a
complete manifold of non-negative sectional curvature has a geodesic line
(an isometric copy of R) that is distance minimizing between every pair of
its points, then that manifold is a metric product of a manifold of one lower
dimension and R. In particular, if a complete n-manifold of non-negative
sectional curvature has two ends, then it is a metric product N"~! x R where
N™~1is a compact manifold.

Also, we need some of the elementary comparison results from Topono-
gov theory. These compare ordinary triangles in the Euclidean plane with
triangles in a manifold of non-negative sectional curvature whose sides are
minimizing geodesics in that manifold.

2.3. Canonical neighborhoods. Much of the analysis of the geom-
etry of Ricci flows revolves around the notion of canonical neighborhoods.
Fix some e > 0 sufficiently small. There are two types of non-compact
canonical neighborhoods: e-necks and e-caps. An e-neck in a Riemannian
3-manifold (M, g) centered at a point x € M is a submanifold N C M and



xviii INTRODUCTION

a diffeomorphism v: S? x (—e~!,e7!) — N such that = € (S? x {0}) and
such that the pullback of the rescaled metric, ¥*(R(z)g), is within € in the
Cll/d _topology of the product of the round metric of scalar curvature 1 on
S? with the usual metric on the interval (—e~!, e~!). (Throughout, R(x)
denotes the scalar curvature of (M, g) at the point z.) An e-cap is a non-
compact submanifold C C M with the property that a neighborhood N of
infinity in C is an e-neck, such that every point of IV is the center of an e-neck
in M, and such that the core, C\ N, of the e-cap is diffeomorphic to either
a 3-ball or a punctured RP3. It will also be important to consider e-caps
that, after rescaling to make R(z) = 1 for some point x in the cap, have
bounded geometry (bounded diameter, bounded ratio of the curvatures at
any two points, and bounded volume). If C' represents the bound for these
quantities, then we call the cap a (C,€)-cap. See F1G. 1. An e-tube in M is
a submanifold of M diffeomorphic to S? x (0,1) which is a union of e-necks
and with the property that each point of the e-tube is the center of an e-neck
in M.

R(z)=1

R ¥
cross section 2-sphere with

1
scalar curvature close to 1.

e-neck of scale 1

L )

— ~— — N ~
e-neck core diff b
: iffeomorphic
c-cap to B3 or to
RP? — {pt}

FicUre 1. Canonical neighborhoods.

There are two other types of canonical neighborhoods in 3-manifolds —
(i) a C-component and (ii) an e-round component. The C-component is
a compact, connected Riemannian manifold of positive sectional curvature
diffeomorphic to either S3 or RP? with the property that rescaling the metric
by R(x) for any x in the component produces a Riemannian manifold whose
diameter is at most C, whose sectional curvature at any point and in any
2-plane direction is between C~! and C, and whose volume is between C~!



3. BACKGROUND MATERIAL FROM RICCI FLOW xix

and C. An e-round component is a component on which the metric rescaled
by R(z) for any x in the component is within € in the C' [1/e_topology of a
round metric of scalar curvature 1.

As we shall see, the singularities at time T of a 3-dimensional Ricci
flow are contained in subsets that are unions of canonical neighborhoods
with respect to the metrics at nearby, earlier times ¢ < T. Thus, we need
to understand the topology of manifolds that are unions of e-tubes and
e-caps. The fundamental observation is that, provided that e is sufficiently
small, when two e-necks intersect (in more than a small neighborhood of the
boundaries) their product structures almost line up, so that the two e-necks
can be glued together to form a manifold fibered by $?’s. Using this idea
we show that, for € > 0 sufficiently small, if a connected manifold is a union
of e-tubes and e-caps, then it is diffeomorphic to R3?, §% x R, 83, 82 x S,
RP3#RP3, the total space of a line bundle over RP?, or the non-orientable
2-sphere bundle over S!. This topological result is proved in the appendix
at the end of the book. We shall fix ¢ > 0 sufficiently small so that
these results hold.

There is one result relating canonical neighborhoods and manifolds of
positive curvature of which we make repeated use: Any complete 3-manifold
of positive curvature does not admit e-necks of arbitrarily high curvature.
In particular, if M is a complete Riemannian 3-manifold with the property
that every point of scalar curvature greater than ry 2 has a canonical neigh-
borhood, then M has bounded curvature. This turns out to be of central
importance and is used repeatedly.

All of these basic facts about Riemannian manifolds of non-negative
curvature are recalled in the second chapter.

3. Background material from Ricci flow

Hamilton [29] introduced the Ricci flow equation,

a%_(tlt) — “2Ric(g(t)).

This is an evolution equation for a one-parameter family of Riemannian
metrics ¢g(¢) on a smooth manifold M. The Ricci flow equation is weakly
parabolic and is strictly parabolic modulo the ‘gauge group’, which is the
group of diffeomorphisms of the underlying smooth manifold. One should
view this equation as a non-linear, tensor version of the heat equation. From
it, one can derive the evolution equation for the Riemannian metric tensor,
the Ricci tensor, and the scalar curvature function. These are all parabolic
equations. For example, the evolution equation for scalar curvature R(zx,t)
is

OR

E(gj7t> = AR(QZ‘,t) + 2|Ric(3:,t)|2,

(0.1)
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illustrating the similarity with the heat equation. (Here A is the Laplacian
with non-positive spectrum.)

3.1. First results. Of course, the first results we need are uniqueness
and short-time existence for solutions to the Ricci flow equation for com-
pact manifolds. These results were proved by Hamilton ([29]) using the
Nash-Moser inverse function theorem, ([28]). These results are standard
for strictly parabolic equations. By now there is a fairly standard method
for working ‘modulo’ the gauge group (the group of diffeomorphisms) and
hence arriving at a strictly parabolic situation where the classical existence,
uniqueness and smoothness results apply. The method for the Ricci flow
equation goes under the name of ‘DeTurck’s trick.’

There is also a result that allows us to patch together local solutions
(U,9(t)), a <t <b,and (U,h(t)), b <t < ¢ to form a smooth solution
defined on the interval a <t < ¢ provided that g(b) = h(b).

Given a Ricci flow (M, g(t)) we can always translate, replacing ¢ by t+t
for some fixed tgy, to produce a new Ricci flow. We can also rescale by any
positive constant @ by setting h(t) = Qg(Q~'t) to produce a new Ricci flow.

3.2. Gradient shrinking solitons. Suppose that (M, g) is a complete
Riemannian manifold, and suppose that there is a constant A > 0 with the
property that

Ric(g) = Ag.

In this case, it is easy to see that there is a Ricci flow given by

g(t) = (1 - 2xt)g.

In particular, all the metrics in this flow differ by a constant factor depending
on time and the metric is a decreasing function of time. These are called
shrinking solitons. Examples are compact manifolds of constant positive
Ricci curvature.

There is a closely related, but more general, class of examples: the
gradient shrinking solitons. Suppose that (M, g) is a complete Riemannian
manifold, and suppose that there is a constant A > 0 and a function f: M —
R satisfying

Ric(g) = A\g — Hess? f.

In this case, there is a Ricci flow which is a shrinking family after we pull
back by the one-parameter family of diffeomorphisms generated by the time-
dependent vector field ﬁvg f- An example of a gradient shrinking soliton
is the manifold S? x R with the family of metrics being the product of the
shrinking family of round metrics on S? and the constant family of standard
metrics on R. The function f is s?/4 where s is the Euclidean parameter on
R.
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3.3. Controlling higher derivatives of curvature. Now let us dis-
cuss the smoothness results for geometric limits. The general result along
these lines is Shi’s theorem, see [65, 66]. Again, this is a standard type of
result for parabolic equations. Of course, the situation here is complicated
somewhat by the existence of the gauge group. Roughly, Shi’s theorem
says the following. Let us denote by B(z,tg, ) the metric ball in (M, g(ty))
centered at z and of radius r. If we can control the norm of the Riemann
curvature tensor on a backward neighborhood of the form B(x,ty, ) x [0, to],
then for each k > 0 we can control the k* covariant derivative of the cur-
vature on B(z,tg,r/2F) x [0,t0] by a constant over t*/2. This result has
many important consequences in our study because it tells us that geomet-
ric limits are smooth limits. Maybe the first result to highlight is the fact
(established earlier by Hamilton) that if (M, g(t)) is a Ricci flow defined on
0 <t<T < oo,and if the Riemann curvature is uniformly bounded for the
entire flow, then the Ricci flow extends past time 7.

In the third chapter this material is reviewed and, where necessary, slight
variants of results and arguments in the literature are presented.

3.4. Generalized Ricci flows. Because we cannot restrict our atten-
tion to Ricci flows, but rather must consider more general objects, Ricci
flows with surgery, it is important to establish the basic analytic results and
estimates in a context more general than that of Ricci flow. We choose to
do this in the context of generalized Ricci flows.

A generalized 3-dimensional Ricci flow consists of a smooth manifold M
of dimension 4 (the space-time) together with a time function t: M — R
and a smooth vector field y. These are required to satisfy:

(1) Each z € M has a neighborhood of the form U x J, where U is
an open subset in R and J C R is an interval, in which t is the
projection onto J and y is the unit vector field tangent to the one-
dimensional foliation {u} x J pointing in the direction of increasing
t. We call t~1(¢) the t time-slice. It is a smooth 3-manifold.

(2) The image t(M) is a connected interval I in R, possibly infinite.
The boundary of M is the pre-image under t of the boundary of I.

(3) The level sets t~!(¢) form a codimension-one foliation of M, called
the horizontal foliation, with the boundary components of M being
leaves.

(4) There is a metric G on the horizontal distribution, i.e., the distri-
bution tangent to the level sets of t. This metric induces a Rie-
mannian metric on each t time-slice, varying smoothly as we vary
the time-slice. We define the curvature of G at a point x € M to
be the curvature of the Riemannian metric induced by G on the
time-slice M; at x.
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(5) Because of the first property the integral curves of x preserve the
horizontal foliation and hence the horizontal distribution. Thus, we
can take the Lie derivative of GG along y. The Ricci flow equation
is then

L, (G) = —2Ric(G).

Locally in space-time the horizontal metric is simply a smoothly varying
family of Riemannian metrics on a fixed smooth manifold and the evolution
equation is the ordinary Ricci flow equation. This means that the usual
formulas for the evolution of the curvatures as well as much of the analytic
analysis of Ricci flows still hold in this generalized context. In the end, a
Ricci flow with surgery is a more singular type of space-time, but it will have
an open dense subset which is a generalized Ricci flow, and all the analytic
estimates take place in this open subset.

The notion of canonical neighborhoods make sense in the context of
generalized Ricci flows. There is also the notion of a strong e-neck. Consider
an embedding 1: (S? x (—e~*, e 1)) x (-1, 0] into space-time such that the
time function pulls back to the projection onto (—1,0] and the vector field
x pulls back to 9/0t. If there is such an embedding into an appropriately
shifted and rescaled version of the original generalized Ricci flow so that the
pull-back of the rescaled horizontal metric is within e in the C'!'/€l-topology of
the product of the shrinking family of round S?’s with the Euclidean metric
on (—e ! e71), then we say that 1 is a strong e-neck in the generalized Ricci
flow.

3.5. The maximum principle. The Ricci flow equation satisfies var-
ious forms of the maximum principle. The fourth chapter explains this prin-
ciple, which is due to Hamilton (see Section 4 of [34]), and derives many of
its consequences, which are also due to Hamilton (cf. [36]). This principle
and its consequences are at the core of all the detailed results about the
nature of the flow. We illustrate the idea by considering the case of the
scalar curvature. A standard scalar maximum principle argument applied
to Equation (0.1) proves that the minimum of the scalar curvature is a non-
decreasing function of time. In addition, it shows that if the minimum of
scalar curvature at time 0 is positive then we have

Rmin(t) > Rmin(o) <m) )

and thus the equation develops a singularity at or before time n/ (2Rpin(0)).

While the above result about the scalar curvature is important and is
used repeatedly, the most significant uses of the maximum principle involve
the tensor version, established by Hamilton, which applies for example to
the Ricci tensor and the full curvature tensor. These have given the most
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significant understanding of the Ricci flows, and they form the core of the ar-
guments that Perelman uses in his application of Ricci flow to 3-dimensional
topology. Here are the main results established by Hamilton:

(1)

(2)

3.6.

For 3-dimensional flows, if the Ricci curvature is positive, then the
family of metrics becomes singular at finite time and as the family
becomes singular, the metric becomes closer and closer to round;
see [29].
For 3-dimensional flows, as the scalar curvature goes to +oo the ra-
tio of the absolute value of any negative eigenvalue of the Riemann
curvature to the largest positive eigenvalue goes to zero; see [36].
This condition is called pinched toward positive curvature.
Motivated by a Harnack inequality for the heat equation estab-
lished by Li-Yau [48], Hamilton established a Harnack inequality
for the curvature tensor under the Ricci flow for complete manifolds
(M, g(t)) with bounded, non-negative curvature operator; see [32].
In the applications to three dimensions, we shall need the follow-
ing consequence for the scalar curvature: Suppose that (M, g(t))
is a Ricci flow defined for all ¢t € [Ty, T1] of complete manifolds of
non-negative curvature operator with bounded curvature. Then
%—Jf(az,t) + ]:(_%jfo) > 0.
In particular, if (M, ¢g(t)) is an ancient solution (i.e., defined for all
t < 0) of bounded, non-negative curvature, then dR(z,t)/dt > 0.
If a complete 3-dimensional Ricci flow (M, g(t)), 0 < t < T, has
non-negative curvature, if g(0) is not flat, and if there is at least
one point (x,7") such that the Riemann curvature tensor of g(7')
has a flat direction in A?TM,, then M has a cover M so that
for each ¢t > 0 the Riemannian manifold (M, g(t)) splits as a Rie-
mannian product of a surface of positive curvature and a Euclidean
line. Furthermore, the flow on the cover M is the product of a
2-dimensional flow and the trivial one-dimensional Ricci flow on
the line; see Sections 8 and 9 of [30].
In particular, there is no Ricci flow (U, ¢g(¢)) with non-negative cur-
vature tensor defined for 0 <t < T with 7" > 0, such that (U, g(T"))
is isometric to an open subset in a non-flat, 3-dimensional metric
cone.

Geometric limits. In the fifth chapter we discuss geometric lim-

its of Riemannian manifolds and of Ricci flows. Let us review the history
of these ideas. The first results about geometric limits of Riemannian man-
ifolds go back to Cheeger in his thesis in 1967; see [6]. Here Cheeger ob-
tained topological results. In [25] Gromov proposed that geometric limits
should exist in the Lipschitz topology and suggested a result along these
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lines, which also was known to Cheeger. In [23], Greene-Wu gave a rigorous
proof of the compactness theorem suggested by Gromov and also enhanced
the convergence to be C1:®-convergence by using harmonic coordinates; see
also [56]. Assuming that all the derivatives of curvature are bounded, one
can apply elliptic theory to the expression of curvature in harmonic coor-
dinates and deduce C°°-convergence. These ideas lead to various types of
compactness results that go under the name Cheeger-Gromov compactness
for Riemannian manifolds. Hamilton in [33] extended these results to Ricci
flows. We shall use the compactness results for both Riemannian manifolds
and for Ricci flows. In a different direction, geometric limits were extended
to the non-smooth context by Gromov in [25] where he introduced a weaker
topology, called the Gromov-Hausdorff topology and proved a compactness
theorem.

Recall that a sequence of based Riemannian manifolds (M, g,,zy) is
said to converge geometrically to a based, complete Riemannian manifold
(Moo, oo, Too) if there is a sequence of open subsets U,, C My, with compact
closures, with oo € Uy C Uy C Uy C Uy C U C -+ with U,U,, = M, and
embeddings ¢, : U, — M, sending z, to x, so that the pullback metrics,
©r gn, converge uniformly on compact subsets of My, in the C*°-topology to
Jso- Notice that the topological type of the limit can be different from the
topological type of the manifolds in the sequence. There is a similar notion
of geometric convergence for a sequence of based Ricci flows.

Certainly, one of the most important consequences of Shi’s results, cited
above, is that, in concert with Cheeger-Gromov compactness, it allows us
to form smooth geometric limits of sequences of based Ricci flows. We have
the following result of Hamilton’s; see [33]:

THEOREM 0.7. Let (My,, gn(t), (x5,0)) be a sequence of based Ricci flows
defined for t € (=T,0] with the (My, gn(t)) being complete. Suppose that:

(1) There is v > 0 and k > 0 such that for every n the metric ball
B(xp,0,7) C (M, g,(0)) is k-non-collapsed.

(2) For each A < oo there is C = C(A) < oo such that the Riemann
curvature on B(x,,0,A) x (=T,0] is bounded by C.

Then after passing to a subsequence there is a geometric limit which is a
based Ricci flow (Moo, goo(t), (0, 0)) defined for t € (=T,0].

To emphasize, the two conditions that we must check in order to extract
a geometric limit of a subsequence based at points at time zero are: (i)
uniform non-collapsing at the base point in the time zero metric, and (ii)
for each A < oo uniformly bounded curvature for the restriction of the flow
to the metric balls of radius A centered at the base points.

Most steps in Perelman’s argument require invoking this result in order
to form limits of appropriate sequences of Ricci flows, often rescaled to make
the scalar curvatures at the base point equal to 1. If, before rescaling, the
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scalar curvature at the base points goes to infinity as we move through the
sequence, then the resulting limit of the rescaled flows has non-negative
sectional curvature. This is a consequence of the fact that the sectional
curvatures of the manifolds in the sequence are uniformly pinched toward
positive. It is for exactly this reason that non-negative curvature plays such
an important role in the study of singularity development in 3-dimensional
Ricci flows.

4. Perelman’s advances

So far we have been discussing the results that were known before Perel-
man’s work. They concern almost exclusively Ricci flow (though Hamilton
in [35] had introduced the notion of surgery and proved that surgery can
be performed preserving the condition that the curvature is pinched to-
ward positive, as in (2) above). Perelman extended in two essential ways
the analysis of Ricci flow — one involves the introduction of a new analytic
functional, the reduced length, which is the tool by which he establishes the
needed non-collapsing results, and the other is a delicate combination of
geometric limit ideas and consequences of the maximum principle together
with the non-collapsing results in order to establish bounded curvature at
bounded distance results. These are used to prove in an inductive way the
existence of canonical neighborhoods, which is a crucial ingredient in prov-
ing that it is possible to do surgery iteratively, creating a flow defined for
all positive time.

While it is easiest to formulate and consider these techniques in the
case of Ricci flow, in the end one needs them in the more general context
of Ricci flow with surgery since we inductively repeat the surgery process,
and in order to know at each step that we can perform surgery we need to
apply these results to the previously constructed Ricci flow with surgery.
We have chosen to present these new ideas only once — in the context of
generalized Ricci flows — so that we can derive the needed consequences in
all the relevant contexts from this one source.

4.1. The reduced length function. In Chapter 6 we come to the first
of Perelman’s major contributions. Let us first describe it in the context
of an ordinary 3-dimensional Ricci flow, but viewing the Ricci flow as a
horizontal metric on a space-time which is the manifold M x I, where I
is the interval of definition of the flow. Suppose that I = [0,7") and fix
(x,t) € M x (0,T). We consider paths (), 0 < 7 <7, in space-time with
the property that for every 7 <7 we have v(7) € M x {t—7} and v(0) = =.
These paths are said to be parameterized by backward time. See F1G. 2. The
L-length of such a path is given by

() = /O V(RO + W ()P dr,
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where the derivative on 7 refers to the spatial derivative. There is also the
closely related reduced length

l(y) = @
2V7
There is a theory for the functional £ analogous to the theory for the usual
energy function®. In particular, there is the notion of an £-geodesic, and
the reduced length as a function on space-time £, ;): M x [0,t) — R. One
establishes a crucial monotonicity for this reduced length along £-geodesics.
Then one defines the reduced volume

View (U x {T}) = / 782600 dvol 2 (),
Ux{t}

where, as before 7 = t — t. Because of the monotonicity of (54 along L-
geodesics, the reduced volume is also non-increasing under the flow (forward
in 7 and hence backward in time) of open subsets along £-geodesics. This is
the fundamental tool which is used to establish non-collapsing results which
in turn are essential in proving the existence of geometric limits.

M x{T -1}

increasing
T

increasing
t

FIGURE 2. Curves in space-time parameterized by 7.

The definitions and the analysis of the reduced length function and the
reduced volume as well as the monotonicity results are valid in the context
of the generalized Ricci flow. The only twist to be aware of is that in the
more general context one cannot always extend L-geodesics; they may run
‘off the edge’ of space-time. Thus, the reduced length function and reduced
volume cannot be defined globally, but only on appropriate open subsets
of a time-slice (those reachable by minimizing £-geodesics). But as long as

6Even though this functional is called a length, the presence of the |/ ()| in the
integrand means that it behaves more like the usual energy functional for paths in a
Riemannian manifold.
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one can flow an open set U of a time-slice along minimizing £-geodesics in
the direction of decreasing 7, the reduced volumes of the resulting family of
open sets form a monotone non-increasing function of 7. This turns out to
be sufficient to extend the non-collapsing results to Ricci flow with surgery,
provided that we are careful in how we choose the parameters that go into
the definition of the surgery process.

4.2. Application to non-collapsing results. As we indicated in the
previous paragraph, one of the main applications of the reduced length func-
tion is to prove non-collapsing results for 3-dimensional Ricci flows with
surgery. In order to make this argument work, one takes a weaker notion
of k-non-collapsed by making a stronger curvature bound assumption: one
considers points (z,t) and constants r with the property that |Rm| < r—2
on P(z,t,r,—r?) = B(z,t,r) x (t —r? t]. The s-non-collapsing condition
applies to these balls and says that Vol(B(z,t,r)) > sr3. The basic idea in
proving non-collapsing is to use the fact that, as we flow forward in time via
minimizing L£-geodesics, the reduced volume is a non-decreasing function.
Hence, a lower bound of the reduced volume of an open set at an earlier
time implies the same lower bound for the corresponding open subset at a
later time. This is contrasted with direct computations (related to the heat
kernel in R?) that say if the manifold is highly collapsed near (z,t) (i.e., sat-
isfies the curvature bound above but is not x-non-collapsed for some small
k) then the reduced volume V(, ;) is small at times close to ¢. Thus, to show
that the manifold is non-collapsed at (z,t) we need only find an open subset
at an earlier time that is reachable by minimizing £-geodesics and that has
a reduced volume bounded away from zero.

One case where it is easy to do this is when we have a Ricci flow of com-
pact manifolds or of complete manifolds of non-negative curvature. Hence,
these manifolds are non-collapsed at all points with a non-collapsing con-
stant that depends only on the geometry of the initial metric of the Ricci
flow. Non-collapsing results are crucial and are used repeatedly in dealing
with Ricci flows with surgery in Chapters 10 — 17, for these give one of the
two conditions required in order to take geometric limits.

4.3. Application to ancient x-non-collapsed solutions. There is
another important application of the length function, which is to the study
of non-collapsed, ancient solutions in dimension 3. In the case that the
generalized Ricci flow is an ordinary Ricci flow either on a compact manifold
or on a complete manifold (with bounded curvatures) one can say much more
about the reduced length function and the reduced volume. Fix a point
(xo,t0) in space-time. First of all, one shows that every point (z,t) with
t < tp is reachable by a minimizing L£-geodesic and thus that the reduced
length is defined as a function on all points of space at all times ¢t < tg.
It turns out to be a locally Lipschitz function in both space and time and
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hence its gradient and its time derivative exist as L?-functions and satisfy
important differential inequalities in the weak sense.

These results apply to a class of Ricci flows called k-solutions, where x
is a positive constant. By definition a x-solution is a Ricci flow defined for
all t € (—o0,0], each time-slice is a non-flat, complete 3-manifold of non-
negative, bounded curvature and each time-slice is x-non-collapsed. The
differential inequalities for the reduced length from any point (z,0) imply
that, for any ¢ < 0, the minimum value of £(, o) (y,t) for all y € M is at most
3/2. Furthermore, again using the differential inequalities for the reduced
length function, one shows that for any sequence t,, — —o0, and any points
(Yn, tn) at which the reduced length function is bounded above by 3/2, there
is a subsequence of based Riemannian manifolds, (M, \t_t\ 9(tn),Yn), with a
geometric limit, and this limit is a gradient shrinking soliton. This gradient
shrinking soliton is called an asymptotic soliton for the original k-solution,
see F1a. 3.

-
b=~ T~y
N
a N

Limit at — oo
F1GURE 3. The asymptotic soliton.

The point is that there are only two types of 3-dimensional gradient
shrinking solitons — (i) those finitely covered by a family of shrinking round
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3-spheres and (ii) those finitely covered by a family of shrinking round cylin-
ders S2 x R. If a k-solution has a gradient shrinking soliton of the first type
then it is in fact isomorphic to its gradient shrinking soliton. More interest-
ing is the case when the k-solution has a gradient shrinking soliton which
is of the second type. If the x-solution does not have strictly positive cur-
vature, then it is isomorphic to its gradient shrinking soliton. Furthermore,
there is a constant C; < co depending on e (which remember is taken suffi-
ciently small) such that a x-solution of strictly positive curvature either is a
C1-component, or is a union of cores of (C1, €)-caps and points that are the
center points of e-necks.

In order to prove the above results (for example the uniformity of C; as
above over all k-solutions) one needs the following result:

THEOREM 0.8. The space of based k-solutions, based at points with scalar
curvature zero in the zero time-slice is compact.

This result does not generalize to ancient solutions that are not non-
collapsed because, in order to prove compactness, one has to take limits of
subsequences, and in doing this the non-collapsing hypothesis is essential.
See Hamilton’s work [34] for more on general ancient solutions (i.e., those
that are not necessarily non-collapsed).

Since € > 0 is sufficiently small so that all the results from the appen-
dix about manifolds covered by e-necks and e-caps hold, the above results
about gradient shrinking solitons lead to a rough qualitative description of
all k-solutions. There are those which do not have strictly positive cur-
vature. These are gradient shrinking solitons, either an evolving family of
round 2-spheres times R or the quotient of this family by an involution.
Non-compact k-solutions of strictly positive curvature are diffeomorphic to
R? and are the union of an e-tube and a core of a (Cy, €)-cap. The compact
ones of strictly positive curvature are of two types. The first type are posi-
tive, constant curvature shrinking solitons. Solutions of the second type are
diffeomorphic to either S or RP3. Each time-slice of a k-solution of the
second type either is of uniformly bounded geometry (curvature, diameter,
and volume) when rescaled so that the scalar curvature at a point is 1, or
admits an e-tube whose complement is either a disjoint union of the cores
of two (C1, €)-caps.

This gives a rough qualitative understanding of x-solutions. Either they
are round, or they are finitely covered by the product of a round surface
and a line, or they are a union of e-tubes and cores of (C1,€)-caps , or they
are diffeomorphic to S® or RP? and have bounded geometry (again after
rescaling so that there is a point of scalar curvature 1). This is the source
of canonical neighborhoods for Ricci flows: the point is that this qualitative
result remains true for any point x in a Ricci flow that has an appropri-
ate size neighborhood within € in the C[/€-topology of a neighborhood
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in a k-solution. For example, if we have a sequence of based generalized
flows (M, G, x,) converging to a based k-solution, then for all n suffi-
ciently large = will have a canonical neighborhood, one that is either an
e-neck centered at that point, a (Cy, €)-cap whose core contains the point, a
C{-component, or an e-round component.

4.4. Bounded curvature at bounded distance. Perelman’s other
major breakthrough is his result establishing bounded curvature at bounded
distance for blow-up limits of generalized Ricci flows. As we have alluded to
several times, many steps in the argument require taking (smooth) geometric
limits of a sequence of based generalized flows about points of curvature
tending to infinity. To study such a sequence we rescale each term in the
sequence so that its curvature at the base point becomes 1. Nevertheless, in
taking such limits we face the problem that even though the curvature at the
point we are focusing on (the points we take as base points) was originally
large and has been rescaled to be 1, there may be other points in the same
time-slice of much larger curvature, which, even after the rescalings, can
tend to infinity. If these points are at uniformly bounded (rescaled) distance
from the base points, then they would preclude the existence of a smooth
geometric limit of the based, rescaled flows. In his arguments, Hamilton
avoided this problem by always focusing on points of maximal curvature
(or almost maximal curvature). That method will not work in this case.
The way to deal with this possible problem is to show that a generalized
Ricci flow satisfying appropriate conditions satisfies the following. For each
A < oo there are constants Qo = Qo(A) < oo and Q(A) < oo such that any
point x in such a generalized flow for which the scalar curvature R(z) > Qo
and for any y in the same time-slice as = with d(x,y) < AR(x)~/? satisfies
R(y)/R(x) < Q(A). As we shall see, this and the non-collapsing result are
the fundamental tools that allow Perelman to study neighborhoods of points
of sufficiently large curvature by taking smooth limits of rescaled flows, so
essential in studying the prolongation of Ricci flows with surgery.

The basic idea in proving this result is to assume the contrary and take
an incomplete geometric limit of the rescaled flows based at the counterex-
ample points. The existence of points at bounded distance with unbounded,
rescaled curvature means that there is a point at infinity at finite distance
from the base point where the curvature blows up. A neighborhood of this
point at infinity is cone-like in a manifold of non-negative curvature. This
contradicts Hamilton’s maximum principle result (5) in Section 3.5) that
the result of a Ricci flow of manifolds of non-negative curvature is never
an open subset of a cone. (We know that any ‘blow-up limit’ like this has
non-negative curvature because of the curvature pinching result.) This con-
tradiction establishes the result.
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5. The standard solution and the surgery process
Now we are ready to discuss 3-dimensional Ricci flows with surgery.

5.1. The standard solution. In preparing the way for defining the
surgery process, we must construct a metric on the 3-ball that we shall glue
in when we perform surgery. This we do in Chapter 12. We fix a non-
negatively curved, rotationally symmetric metric on R? that is isometric
near infinity to S? x [0,00) where the metric on S? is the round metric of
scalar curvature 1, and outside this region has positive sectional curvature,
see FIG. 4. Any such metric will suffice for the gluing process, and we fix
one and call it the standard metric. It is important to understand Ricci flow
with the standard metric as initial metric. Because of the special nature of
this metric (the rotational symmetry and the asymptotic nature at infinity),
it is fairly elementary to show that there is a unique solution of bounded
curvature on each time-slice to the Ricci flow equation with the standard
metric as the initial metric; this flow is defined for 0 < t < 1; and for any
T < 1 outside of a compact subset X (T') the restriction of the flow to [0, T
is close to the evolving round cylinder. Using the length function, one shows
that the Ricci flow is non-collapsed, and that the bounded curvature and
bounded distance result applies to it. This allows one to prove that every
point (x,t) in this flow has one of the following types of neighborhoods:

(1) (z,t) is contained in the core of a (Cy,€)-cap, where Co < oo is a
given universal constant depending only on €.

(2) (x,t) is the center of a strong e-neck.

(3) (x,t) is the center of an evolving e-neck whose initial slice is at time
Zero.

These form the second source of models for canonical neighborhoods in
a Ricci flow with surgery. Thus, we shall set C' = C(e) = max(C(e), Ca(€))
and we shall find (C, €)-canonical neighborhoods in Ricci flows with surgery.

surgery cap N— -
52 % [0,00)

FIGURE 4. The standard metric.

5.2. Ricci flows with surgery. Now it is time to introduce the no-
tion of a Ricci flow with surgery. To do this we formulate an appropriate
notion of 4-dimensional space-time that allows for the surgery operations.
We define space-time to be a 4-dimensional Hausdorff singular space with a
time function t with the property that each time-slice is a compact, smooth
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3-manifold, but level sets at different times are not necessarily diffeomorphic.
Generically space-time is a smooth 4-manifold, but there are exposed regions
at a discrete set of times. Near a point in the exposed region space-time
is a 4-manifold with boundary. The singular points of space-time are the
boundaries of the exposed regions. Near these, space-time is modeled on the
product of R? with the square (—1,1) x (—1, 1), the latter having a topology
in which the open sets are, in addition to the usual open sets, open subsets
of (0,1) x [0,1), see F1G. 5. There is a natural notion of smooth functions
on space-time. These are smooth in the usual sense on the open subset of
non-singular points. Near the singular points, and in the local coordinates
described above, they are required to be pull-backs from smooth functions
on R? x (—1,1) x (=1,1) under the natural map. Space-time is equipped
with a smooth vector field x with x(t) = 1.

horizontal slices | -

\R\

FIGURE 5. Model for singularities in space-time.

A Ricci flow with surgery is a smooth horizontal metric G on a space-
time with the property that the restriction of G, t and x to the open subset
of smooth points forms a generalized Ricci flow. We call this the associated
generalized Ricci flow for the Ricci flow with surgery.

5.3. The inductive conditions necessary for doing surgery. With
all this preliminary work out of the way, we are ready to show that one can
construct Ricci flow with surgery which is precisely controlled both topolog-
ically and metrically. This result is proved inductively, one interval of time
after another, and it is important to keep track of various properties as we
go along to ensure that we can continue to do surgery. Here we discuss the
conditions we verify at each step.

Fix € > 0 sufficiently small and let C' = max(C1,C3) < oo, where C is
the constant associated to e for k-solutions and C5 is the constant associated
to € for the standard solution. We say that a point x in a generalized Ricci
flow has a (C, €)-canonical neighborhood if one of the following holds:

(1) x is contained in a C-component of its time-slice.
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(2) x is contained in a connected component of its time-slice that is
within € of round in the CV/€l-topology.

(3) = is contained in the core of a (C, €)-cap.

(4) = is the center of a strong e-neck.

We shall study Ricci flows with surgery defined for 0 < ¢t < T < o0
whose associated generalized Ricci flows satisfy the following properties:

(1) The initial metric is normalized, meaning that for the metric at
time zero the norm of the Riemann curvature is bounded above by
1 and the volume of any ball of radius 1 is at least half the volume
of the unit ball in Euclidean space.

(2) The curvature of the flow is pinched toward positive.

(3) There is k > 0 so that the associated generalized Ricci flow is k-
non-collapsed on scales at most ¢, in the sense that we require only
that balls of radius r < € be x-non-collapsed.

(4) There is ro > 0 such that any point of space-time at which the
scalar curvature is > 7y ? has a (C, €)-canonical neighborhood.

The main result is that, having a Ricci flow with surgery defined on
some time interval satisfying these conditions, it is possible to extend it to a
longer time interval in such a way that it still satisfies the same conditions,
possibly allowing the constants x and ry defining these conditions to get
closer to zero, but keeping them bounded away from 0 on each compact
time interval. We repeat this construction inductively. It is easy to see that
there is a bound on the number of surgeries in each compact time interval.
Thus, in the end, we create a Ricci flow with surgery defined for all positive
