
Ricci Flow and the   
Poincaré Conjecture





American Mathematical Society

Clay Mathematics Institute

Clay Mathematics Monographs
Volume 3

Ricci Flow and the   
Poincaré Conjecture

John Morgan 
Gang Tian



Clay Mathematics Institute Monograph Series

Editors in chief: S. Donaldson, A. Wiles
Managing editor: J. Carlson

Associate editors:
B. Conrad I. Daubechies C. Fefferman
J. Kollár A. Okounkov D. Morrison
C. Taubes P. Ozsváth K. Smith

2000 Mathematics Subject Classification. Primary 53C44, 57M40.
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Introduction

In this book we present a complete and detailed proof of

The Poincaré Conjecture: every closed, smooth, simply connected
3-manifold is diffeomorphic1 to S3.

This conjecture was formulated by Henri Poincaré [58] in 1904 and has re-
mained open until the recent work of Perelman. The arguments we give here
are a detailed version of those that appear in Perelman’s three preprints [53,
55, 54]. Perelman’s arguments rest on a foundation built by Richard Hamil-
ton with his study of the Ricci flow equation for Riemannian metrics. Indeed,
Hamilton believed that Ricci flow could be used to establish the Poincaré
Conjecture and more general topological classification results in dimension
3, and laid out a program to accomplish this. The difficulty was to deal with
singularities in the Ricci flow. Perelman’s breakthrough was to understand
the qualitative nature of the singularities sufficiently to allow him to prove
the Poincaré Conjecture (and Theorem 0.1 below which implies the Poincaré
Conjecture). For a detailed history of the Poincaré Conjecture, see Milnor’s
survey article [50].

A class of examples closely related to the 3-sphere are the 3-dimensional
spherical space-forms, i.e., the quotients of S3 by free, linear actions of
finite subgroups of the orthogonal group O(4). There is a generalization
of the Poincaré Conjecture, called the 3-dimensional spherical space-
form conjecture, which conjectures that any closed 3-manifold with finite
fundamental group is diffeomorphic to a 3-dimensional spherical space-form.
Clearly, a special case of the 3-dimensional spherical space-form conjecture
is the Poincaré Conjecture.

As indicated in Remark 1.4 of [54], the arguments we present here not
only prove the Poincaré Conjecture, they prove the 3-dimensional space-
form conjecture. In fact, the purpose of this book is to prove the following
more general theorem.

1Every topological 3-manifold admits a differentiable structure and every homeomor-
phism between smooth 3-manifolds can be approximated by a diffeomorphism. Thus, clas-
sification results about topological 3-manifolds up to homeomorphism and about smooth
3-manifolds up to diffeomorphism are equivalent. In this book ‘manifold’ means ‘smooth
manifold.’

ix



x INTRODUCTION

Theorem 0.1. Let M be a closed, connected 3-manifold and suppose
that the fundamental group of M is a free product of finite groups and infi-
nite cyclic groups. Then M is diffeomorphic to a connected sum of spherical
space-forms, copies of S2 × S1, and copies of the unique (up to diffeomor-
phism) non-orientable 2-sphere bundle over S1.

This immediately implies an affirmative resolution of the Poincaré Con-
jecture and of the 3-dimensional spherical space-form conjecture.

Corollary 0.2. (a) A closed, simply connected 3-manifold is diffeo-
morphic to S3. (b) A closed 3-manifold with finite fundamental group is
diffeomorphic to a 3-dimensional spherical space-form.

Before launching into a more detailed description of the contents of this
book, one remark on the style of the exposition is in order. Because of the
importance and visibility of the results discussed here, and because of the
number of incorrect claims of proofs of these results in the past, we felt that
it behooved us to work out and present the arguments in great detail. Our
goal was to make the arguments clear and convincing and also to make them
more easily accessible to a wider audience. As a result, experts may find
some of the points are overly elaborated.

1. Overview of Perelman’s argument

In dimensions less than or equal to 3, any Riemannian metric of con-
stant Ricci curvature has constant sectional curvature. Classical results in
Riemannian geometry show that the universal cover of a closed manifold of
constant positive curvature is diffeomorphic to the sphere and that the fun-
damental group is identified with a finite subgroup of the orthogonal group
acting linearly and freely on the universal cover. Thus, one can approach the
Poincaré Conjecture and the more general 3-dimensional spherical space-
form problem by asking the following question. Making the appropriate
fundamental group assumptions on 3-manifold M , how does one establish
the existence of a metric of constant Ricci curvature on M? The essential
ingredient in producing such a metric is the Ricci flow equation introduced
by Richard Hamilton in [29]:

∂g(t)

∂t
= −2Ric(g(t)),

where Ric(g(t)) is the Ricci curvature of the metric g(t). The fixed points
(up to rescaling) of this equation are the Riemannian metrics of constant
Ricci curvature. For a general introduction to the subject of the Ricci flow
see Hamilton’s survey paper [34], the book by Chow-Knopf [13], or the
book by Chow, Lu, and Ni [14]. The Ricci flow equation is a (weakly) para-
bolic partial differential flow equation for Riemannian metrics on a smooth
manifold. Following Hamilton, one defines a Ricci flow to be a family of
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Riemannian metrics g(t) on a fixed smooth manifold, parameterized by t in
some interval, satisfying this equation. One considers t as time and studies
the equation as an initial value problem: Beginning with any Riemann-
ian manifold (M,g0) find a Ricci flow with (M,g0) as initial metric; that
is to say find a one-parameter family (M,g(t)) of Riemannian manifolds
with g(0) = g0 satisfying the Ricci flow equation. This equation is valid
in all dimensions but we concentrate here on dimension 3. In a sentence,
the method of proof is to begin with any Riemannian metric on the given
smooth 3-manifold and flow it using the Ricci flow equation to obtain the
constant curvature metric for which one is searching. There are two exam-
ples where things work in exactly this way, both due to Hamilton. (i) If
the initial metric has positive Ricci curvature, Hamilton proved over twenty
years ago, [29], that under the Ricci flow the manifold shrinks to a point
in finite time, that is to say, there is a finite-time singularity, and, as we
approach the singular time, the diameter of the manifold tends to zero and
the curvature blows up at every point. Hamilton went on to show that, in
this case, rescaling by a time-dependent function so that the diameter is
constant produces a one-parameter family of metrics converging smoothly
to a metric of constant positive curvature. (ii) At the other extreme, in [36]
Hamilton showed that if the Ricci flow exists for all time and if there is an
appropriate curvature bound together with another geometric bound, then
as t → ∞, after rescaling to have a fixed diameter, the metric converges to
a metric of constant negative curvature.

The results in the general case are much more complicated to formulate
and much more difficult to establish. While Hamilton established that the
Ricci flow equation has short-term existence properties, i.e., one can define
g(t) for t in some interval [0, T ) where T depends on the initial metric, it
turns out that if the topology of the manifold is sufficiently complicated, say
it is a non-trivial connected sum, then no matter what the initial metric is
one must encounter finite-time singularities, forced by the topology. More
seriously, even if the manifold has simple topology, beginning with an ar-
bitrary metric one expects to (and cannot rule out the possibility that one
will) encounter finite-time singularities in the Ricci flow. These singularities,
unlike in the case of positive Ricci curvature, occur along proper subsets of
the manifold, not the entire manifold. Thus, to derive the topological con-
sequences stated above, it is not sufficient in general to stop the analysis the
first time a singularity arises in the Ricci flow. One is led to study a more
general evolution process called Ricci flow with surgery, first introduced by
Hamilton in the context of four-manifolds, [35]. This evolution process is
still parameterized by an interval in time, so that for each t in the interval
of definition there is a compact Riemannian 3-manifold Mt. But there is a
discrete set of times at which the manifolds and metrics undergo topolog-
ical and metric discontinuities (surgeries). In each of the complementary
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intervals to the singular times, the evolution is the usual Ricci flow, though,
because of the surgeries, the topological type of the manifold Mt changes
as t moves from one complementary interval to the next. From an analytic
point of view, the surgeries at the discontinuity times are introduced in order
to ‘cut away’ a neighborhood of the singularities as they develop and insert
by hand, in place of the ‘cut away’ regions, geometrically nice regions. This
allows one to continue the Ricci flow (or more precisely, restart the Ricci
flow with the new metric constructed at the discontinuity time). Of course,
the surgery process also changes the topology. To be able to say anything
useful topologically about such a process, one needs results about Ricci flow,
and one also needs to control both the topology and the geometry of the
surgery process at the singular times. For example, it is crucial for the
topological applications that we do surgery along 2-spheres rather than sur-
faces of higher genus. Surgery along 2-spheres produces the connected sum
decomposition, which is well-understood topologically, while, for example,
Dehn surgeries along tori can completely destroy the topology, changing any
3-manifold into any other.

The change in topology turns out to be completely understandable and
amazingly, the surgery processes produce exactly the topological operations
needed to cut the manifold into pieces on which the Ricci flow can produce
the metrics sufficiently controlled so that the topology can be recognized.

The bulk of this book (Chapters 1-17 and the Appendix) concerns the
establishment of the following long-time existence result for Ricci flow with
surgery.

Theorem 0.3. Let (M,g0) be a closed Riemannian 3-manifold. Suppose
that there is no embedded, locally separating RP 2 contained2 in M . Then
there is a Ricci flow with surgery defined for all t ∈ [0,∞) with initial metric
(M,g0). The set of discontinuity times for this Ricci flow with surgery is
a discrete subset of [0,∞). The topological change in the 3-manifold as
one crosses a surgery time is a connected sum decomposition together with
removal of connected components, each of which is diffeomorphic to one
of S2 × S1, RP 3#RP 3, the non-orientable 2-sphere bundle over S1, or a
manifold admitting a metric of constant positive curvature.

While Theorem 0.3 is central for all applications of Ricci flow to the
topology of three-dimensional manifolds, the argument for the 3-manifolds
described in Theorem 0.1 is simplified, and avoids all references to the na-
ture of the flow as time goes to infinity, because of the following finite-time
extinction result.

2I.e., no embedded RP 2 in M with trivial normal bundle. Clearly, all orientable
manifolds satisfy this condition.
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Theorem 0.4. Let M be a closed 3-manifold whose fundamental group is
a free product of finite groups and infinite cyclic groups3. Let g0 be any Rie-
mannian metric on M . Then M admits no locally separating RP 2, so that
there is a Ricci flow with surgery defined for all positive time with (M,g0)
as initial metric as described in Theorem 0.3. This Ricci flow with surgery
becomes extinct after some time T <∞, in the sense that the manifolds Mt

are empty for all t ≥ T .

This result is established in Chapter 18 following the argument given by
Perelman in [54], see also [15].

We immediately deduce Theorem 0.1 from Theorems 0.3 and 0.4 as
follows: Let M be a 3-manifold satisfying the hypothesis of Theorem 0.1.
Then there is a finite sequence M = M0,M1, . . . ,Mk = ∅ such that for each
i, 1 ≤ i ≤ k, Mi is obtained from Mi−1 by a connected sum decomposition
or Mi is obtained from Mi−1 by removing a component diffeomorphic to
one of S2 × S1, RP 3#RP 3, a non-orientable 2-sphere bundle over S1, or a
3-dimensional spherical space-form. Clearly, it follows by downward induc-
tion on i that each connected component of Mi is diffeomorphic to a con-
nected sum of 3-dimensional spherical space-forms, copies of S2 × S1, and
copies of the non-orientable 2-sphere bundle over S1. In particular, M = M0

has this form. Since M is connected by hypothesis, this proves the theorem.
In fact, this argument proves the following:

Corollary 0.5. Let (M0, g0) be a connected Riemannian manifold with
no locally separating RP 2. Let (M, G) be a Ricci flow with surgery defined
for 0 ≤ t < ∞ with (M0, g0) as initial manifold. Then the following four
conditions are equivalent:

(1) (M, G) becomes extinct after a finite time, i.e., MT = ∅ for all T
sufficiently large,

(2) M0 is diffeomorphic to a connected sum of three-dimensional spher-
ical space-forms and S2-bundles over S1,

(3) the fundamental group of M0 is a free product of finite groups and
infinite cyclic groups,

(4) no prime4 factor of M0 is acyclic, i.e., every prime factor of M0

has either non-trivial π2 or non-trivial π3.

Proof. Repeated application of Theorem 0.3 shows that (1) implies (2).
The implication (2) implies (3) is immediate from van Kampen’s theorem.

3In [54] Perelman states the result for 3-manifolds without prime factors that are
acyclic. It is a standard exercise in 3-manifold topology to show that Perelman’s condition
is equivalent to the group theory hypothesis stated here; see Corollary 0.5.

4A three-manifold P is prime if every separating 2-sphere in P bounds a three-ball
in P . Equivalently, P is prime if it admits no non-trivial connected sum decomposition.
Every closed three-manifold decomposes as a connected sum of prime factors with the
decomposition being unique up to diffeomorphism of the factors and the order of the
factors.
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The fact that (3) implies (1) is Theorem 0.4. This shows that (1), (2) and
(3) are all equivalent. Since three-dimensional spherical space-forms and
S2-bundles over S1 are easily seen to be prime, (2) implies (4). Thus, it
remains only to see that (4) implies (3). We consider a manifold M satisfying

(4), a prime factor P ofM , and universal covering P̃ of P . First suppose that

π2(P ) = π2(P̃ ) is trivial. Then, by hypothesis π3(P ) = π3(P̃ ) is non-trivial.

By the Hurewicz theorem this means that H3(P̃ ) is non-trivial, and hence

that P̃ is a compact, simply connected three-manifold. It follows that π1(P )
is finite. Now suppose that π2(P ) is non-trivial. Then P is not diffeomorphic
to RP 3. Since P is prime and contains no locally separating RP 2, it follows
that P contains no embedded RP 2. Then by the sphere theorem there is
an embedded 2-sphere in P that is homotopically non-trivial. Since P is
prime, this sphere cannot separate, so cutting P open along it produces a
connected manifold P0 with two boundary 2-spheres. Since P0 is prime, it
follows that P0 is diffeomorphic to S2 × I and hence P is diffeomorphic to
a 2-sphere bundle over the circle. �

Remark 0.6. (i) The use of the sphere theorem is unnecessary in the
above argument for what we actually prove is that if every prime factor of
M has non-trivial π2 or non-trivial π3, then the Ricci flow with surgery with
(M,g0) as initial metric becomes extinct after a finite time. In fact, the
sphere theorem for closed 3-manifolds follows from the results here.
(ii) If the initial manifold is simpler then all the time-slices are simpler: If
(M, G) is a Ricci flow with surgery whose initial manifold is prime, then
every time-slice is a disjoint union of connected components, all but at most
one being diffeomorphic to a 3-sphere and if there is one not diffeomorphic
to a 3-sphere, then it is diffeomorphic to the initial manifold. If the initial
manifold is a simply connected manifold M0, then every component of every
time-slice MT must be simply connected, and thus a posteriori every time-
slice is a disjoint union of manifolds diffeomorphic to the 3-sphere. Similarly,
if the initial manifold has finite fundamental group, then every connected
component of every time-slice is either simply connected or has the same
fundamental group as the initial manifold.
(iii) The conclusion of this result is a natural generalization of Hamilton’s
conclusion in analyzing the Ricci flow on manifolds of positive Ricci curva-
ture in [29]. Namely, under appropriate hypotheses, during the evolution
process of Ricci flow with surgery the manifold breaks into components each
of which disappears in finite time. As a component disappears at some finite
time, the metric on that component is well enough controlled to show that
the disappearing component admits a non-flat, homogeneous Riemannian
metric of non-negative sectional curvature, i.e., a metric locally isometric to
either a round S3 or to a product of a round S2 with the usual metric on
R. The existence of such a metric on a component immediately gives the
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topological conclusion of Theorem 0.1 for that component, i.e., that it is
diffeomorphic to a 3-dimensional spherical space-form, to S2 × S1 to a non-
orientable 2-sphere bundle over S1, or to RP 3#RP 3. The biggest difference
between these two results is that Hamilton’s hypothesis is geometric (posi-
tive Ricci curvature) whereas Perelman’s is homotopy theoretic (information
about the fundamental group).
(iv) It is also worth pointing out that it follows from Corollary 0.5 that the
manifolds that satisfy the four equivalent conditions in that corollary are
exactly the closed, connected, 3-manifolds that admit a Riemannian metric
of positive scalar curvature, cf, [62] and [26].

One can use Ricci flow in a more general study of 3-manifolds than the
one we carry out here. There is a conjecture due to Thurston, see [69], known
as Thurston’s Geometrization Conjecture or simply as the Geometrization
Conjecture for 3-manifolds. It conjectures that every 3-manifold without
locally separating RP 2’s (in particular every orientable 3-manifold) is a con-
nected sum of prime 3-manifolds each of which admits a decomposition along
incompressible5 tori into pieces that admit locally homogeneous geometries
of finite volume. Modulo questions about cofinite-volume lattices in SL2(C),
proving this conjecture leads to a complete classification of 3-manifolds with-
out locally separating RP 2’s, and in particular to a complete classification of
all orientable 3-manifolds. (See Peter Scott’s survey article [63].) By pass-
ing to the orientation double cover and working equivariantly, these results
can be extended to all 3-manifolds.

Perelman in [55] has stated results which imply a positive resolution
of Thurston’s Geometrization conjecture. Perelman’s proposed proof of
Thurston’s Geometrization Conjecture relies in an essential way on The-
orem 0.3, namely the existence of Ricci flow with surgery for all positive
time. But it also involves a further analysis of the limits of these Ricci flows
as time goes to infinity. This further analysis involves analytic arguments
which are exposed in Sections 6 and 7 of Perelman’s second paper ([55]),
following earlier work of Hamilton ([36]) in a simpler case of bounded curva-
ture. They also involve a result (Theorem 7.4 from [55]) from the theory of
manifolds with curvature locally bounded below that are collapsed, related
to results of Shioya-Yamaguchi [67]. The Shioya-Yamaguchi results in turn
rely on an earlier, unpublished work of Perelman proving the so-called ‘Sta-
bility Theorem.’ Recently, Kapovich, [43] has put a preprint on the archive
giving a proof of the stability result. We have been examining another ap-
proach, one suggested by Perelman in [55], avoiding the stability theorem,
cf, [44] and [51]. It is our view that the collapsing results needed for the Ge-
ometrization Conjecture are in place, but that before a definitive statement
that the Geometrization Conjecture has been resolved can be made these

5I.e., embedded by a map that is injective on π1.
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arguments must be subjected to the same close scrutiny that the arguments
proving the Poincaré Conjecture have received. This process is underway.

In this book we do not attempt to explicate any of the results beyond
Theorem 0.3 described in the previous paragraph that are needed for the
Geometrization Conjecture. Rather, we content ourselves with presenting
a proof of Theorem 0.1 above which, as we have indicated, concerns initial
Riemannian manifolds for which the Ricci flow with surgery becomes extinct
after finite time. We are currently preparing a detailed proof, along the lines
suggested by Perelman, of the further results that will complete the proof
of the Geometrization Conjecture.

As should be clear from the above overview, Perelman’s argument did
not arise in a vacuum. Firstly, it resides in a context provided by the general
theory of Riemannian manifolds. In particular, various notions of conver-
gence of sequences of manifolds play a crucial role. The most important
is geometric convergence (smooth convergence on compact subsets). Even
more importantly, Perelman’s argument resides in the context of the theory
of the Ricci flow equation, introduced by Richard Hamilton and extensively
studied by him and others. Perelman makes use of almost every previously
established result for 3-dimensional Ricci flows. One exception is Hamil-
ton’s proposed classification results for 3-dimensional singularities. These
are replaced by Perelman’s strong qualitative description of singularity de-
velopment for Ricci flows on compact 3-manifolds.

The first five chapters of the book review the necessary background mate-
rial from these two subjects. Chapters 6 through 11 then explain Perelman’s
advances. In Chapter 12 we introduce the standard solution, which is the
manifold constructed by hand that one ‘glues in’ in doing surgery. Chapters
13 through 17 describe in great detail the surgery process and prove the
main analytic and topological estimates that are needed to show that one
can continue the process for all positive time. At the end of Chapter 17 we
have established Theorem 0.3. Chapter 18 and 19 discuss the finite-time
extinction result. Lastly, there is an appendix on some topological results
that were needed in the surgery analysis in Chapters 13-17.

2. Background material from Riemannian geometry

2.1. Volume and injectivity radius. One important general concept
that is used throughout is the notion of a manifold being non-collapsed at a
point. Suppose that we have a point x in a complete Riemannian n-manifold.
Then we say that the manifold is κ-non-collapsed at x provided that the
following holds: For any r such that the norm of the Riemann curvature
tensor, |Rm|, is ≤ r−2 at all points of the metric ball, B(x, r), of radius r
centered at x, we have VolB(x, r) ≥ κrn. There is a relationship between
this notion and the injectivity radius of M at x. Namely, if |Rm| ≤ r−2

on B(x, r) and if B(x, r) is κ-non-collapsed then the injectivity radius of M
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at x is greater than or equal to a positive constant that depends only on r
and κ. The advantage of working with the volume non-collapsing condition
is that, unlike for the injectivity radius, there is a simple equation for the
evolution of volume under Ricci flow.

Another important general result is the Bishop-Gromov volume compar-
ison result that says that if the Ricci curvature of a complete Riemannian
n-manifold M is bounded below by a constant (n−1)K, then for any x ∈M
the ratio of the volume of B(x, r) to the volume of the ball of radius r in
the space of constant curvature K is a non-increasing function whose limit
as r → 0 is 1.

All of these basic facts from Riemannian geometry are reviewed in the
first chapter.

2.2. Manifolds of non-negative curvature. For reasons that should
be clear from the above description and in any event will become much
clearer shortly, manifolds of non-negative curvature play an extremely im-
portant role in the analysis of Ricci flows with surgery. We need several
general results about them. The first is the soul theorem for manifolds
of non-negative sectional curvature. A soul is a compact, totally geodesic
submanifold. The entire manifold is diffeomorphic to the total space of a
vector bundle over any of its souls. If a non-compact n-manifold has pos-
itive sectional curvature, then any soul for it is a point, and in particular,
the manifold is diffeomorphic to Euclidean space. In addition, the distance
function f from a soul has the property that, for every t > 0, the pre-image
f−1(t) is homeomorphic to an (n − 1)-sphere and the pre-image under this
distance function of any non-degenerate interval I ⊂ R

+ is homeomorphic
to Sn−1 × I.

Another important result is the splitting theorem, which says that, if a
complete manifold of non-negative sectional curvature has a geodesic line
(an isometric copy of R) that is distance minimizing between every pair of
its points, then that manifold is a metric product of a manifold of one lower
dimension and R. In particular, if a complete n-manifold of non-negative
sectional curvature has two ends, then it is a metric productNn−1×R where
Nn−1 is a compact manifold.

Also, we need some of the elementary comparison results from Topono-
gov theory. These compare ordinary triangles in the Euclidean plane with
triangles in a manifold of non-negative sectional curvature whose sides are
minimizing geodesics in that manifold.

2.3. Canonical neighborhoods. Much of the analysis of the geom-
etry of Ricci flows revolves around the notion of canonical neighborhoods.
Fix some ǫ > 0 sufficiently small. There are two types of non-compact
canonical neighborhoods: ǫ-necks and ǫ-caps. An ǫ-neck in a Riemannian
3-manifold (M,g) centered at a point x ∈ M is a submanifold N ⊂ M and
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a diffeomorphism ψ : S2 × (−ǫ−1, ǫ−1) → N such that x ∈ ψ(S2 × {0}) and
such that the pullback of the rescaled metric, ψ∗(R(x)g), is within ǫ in the

C [1/ǫ]-topology of the product of the round metric of scalar curvature 1 on
S2 with the usual metric on the interval (−ǫ−1, ǫ−1). (Throughout, R(x)
denotes the scalar curvature of (M,g) at the point x.) An ǫ-cap is a non-
compact submanifold C ⊂ M with the property that a neighborhood N of
infinity in C is an ǫ-neck, such that every point of N is the center of an ǫ-neck
in M , and such that the core, C \N , of the ǫ-cap is diffeomorphic to either
a 3-ball or a punctured RP 3. It will also be important to consider ǫ-caps
that, after rescaling to make R(x) = 1 for some point x in the cap, have
bounded geometry (bounded diameter, bounded ratio of the curvatures at
any two points, and bounded volume). If C represents the bound for these
quantities, then we call the cap a (C, ǫ)-cap. See Fig. 1. An ǫ-tube in M is
a submanifold of M diffeomorphic to S2 × (0, 1) which is a union of ǫ-necks
and with the property that each point of the ǫ-tube is the center of an ǫ-neck
in M .

Figure 1. Canonical neighborhoods.

There are two other types of canonical neighborhoods in 3-manifolds –
(i) a C-component and (ii) an ǫ-round component. The C-component is
a compact, connected Riemannian manifold of positive sectional curvature
diffeomorphic to either S3 or RP 3 with the property that rescaling the metric
by R(x) for any x in the component produces a Riemannian manifold whose
diameter is at most C, whose sectional curvature at any point and in any
2-plane direction is between C−1 and C, and whose volume is between C−1



3. BACKGROUND MATERIAL FROM RICCI FLOW xix

and C. An ǫ-round component is a component on which the metric rescaled
by R(x) for any x in the component is within ǫ in the C [1/ǫ]-topology of a
round metric of scalar curvature 1.

As we shall see, the singularities at time T of a 3-dimensional Ricci
flow are contained in subsets that are unions of canonical neighborhoods
with respect to the metrics at nearby, earlier times t′ < T . Thus, we need
to understand the topology of manifolds that are unions of ǫ-tubes and
ǫ-caps. The fundamental observation is that, provided that ǫ is sufficiently
small, when two ǫ-necks intersect (in more than a small neighborhood of the
boundaries) their product structures almost line up, so that the two ǫ-necks
can be glued together to form a manifold fibered by S2’s. Using this idea
we show that, for ǫ > 0 sufficiently small, if a connected manifold is a union
of ǫ-tubes and ǫ-caps, then it is diffeomorphic to R

3, S2 × R, S3, S2 × S1,
RP 3#RP 3, the total space of a line bundle over RP 2, or the non-orientable
2-sphere bundle over S1. This topological result is proved in the appendix
at the end of the book. We shall fix ǫ > 0 sufficiently small so that
these results hold.

There is one result relating canonical neighborhoods and manifolds of
positive curvature of which we make repeated use: Any complete 3-manifold
of positive curvature does not admit ǫ-necks of arbitrarily high curvature.
In particular, if M is a complete Riemannian 3-manifold with the property
that every point of scalar curvature greater than r−2

0 has a canonical neigh-
borhood, then M has bounded curvature. This turns out to be of central
importance and is used repeatedly.

All of these basic facts about Riemannian manifolds of non-negative
curvature are recalled in the second chapter.

3. Background material from Ricci flow

Hamilton [29] introduced the Ricci flow equation,

∂g(t)

∂t
= −2Ric(g(t)).

This is an evolution equation for a one-parameter family of Riemannian
metrics g(t) on a smooth manifold M . The Ricci flow equation is weakly
parabolic and is strictly parabolic modulo the ‘gauge group’, which is the
group of diffeomorphisms of the underlying smooth manifold. One should
view this equation as a non-linear, tensor version of the heat equation. From
it, one can derive the evolution equation for the Riemannian metric tensor,
the Ricci tensor, and the scalar curvature function. These are all parabolic
equations. For example, the evolution equation for scalar curvature R(x, t)
is

(0.1)
∂R

∂t
(x, t) = △R(x, t) + 2|Ric(x, t)|2,
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illustrating the similarity with the heat equation. (Here △ is the Laplacian
with non-positive spectrum.)

3.1. First results. Of course, the first results we need are uniqueness
and short-time existence for solutions to the Ricci flow equation for com-
pact manifolds. These results were proved by Hamilton ([29]) using the
Nash-Moser inverse function theorem, ([28]). These results are standard
for strictly parabolic equations. By now there is a fairly standard method
for working ‘modulo’ the gauge group (the group of diffeomorphisms) and
hence arriving at a strictly parabolic situation where the classical existence,
uniqueness and smoothness results apply. The method for the Ricci flow
equation goes under the name of ‘DeTurck’s trick.’

There is also a result that allows us to patch together local solutions
(U, g(t)), a ≤ t ≤ b, and (U, h(t)), b ≤ t ≤ c, to form a smooth solution
defined on the interval a ≤ t ≤ c provided that g(b) = h(b).

Given a Ricci flow (M,g(t)) we can always translate, replacing t by t+t0
for some fixed t0, to produce a new Ricci flow. We can also rescale by any
positive constant Q by setting h(t) = Qg(Q−1t) to produce a new Ricci flow.

3.2. Gradient shrinking solitons. Suppose that (M,g) is a complete
Riemannian manifold, and suppose that there is a constant λ > 0 with the
property that

Ric(g) = λg.

In this case, it is easy to see that there is a Ricci flow given by

g(t) = (1 − 2λt)g.

In particular, all the metrics in this flow differ by a constant factor depending
on time and the metric is a decreasing function of time. These are called
shrinking solitons. Examples are compact manifolds of constant positive
Ricci curvature.

There is a closely related, but more general, class of examples: the
gradient shrinking solitons. Suppose that (M,g) is a complete Riemannian
manifold, and suppose that there is a constant λ > 0 and a function f : M →
R satisfying

Ric(g) = λg − Hessgf.

In this case, there is a Ricci flow which is a shrinking family after we pull
back by the one-parameter family of diffeomorphisms generated by the time-
dependent vector field 1

1−2λt∇gf . An example of a gradient shrinking soliton

is the manifold S2 × R with the family of metrics being the product of the
shrinking family of round metrics on S2 and the constant family of standard
metrics on R. The function f is s2/4 where s is the Euclidean parameter on
R.
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3.3. Controlling higher derivatives of curvature. Now let us dis-
cuss the smoothness results for geometric limits. The general result along
these lines is Shi’s theorem, see [65, 66]. Again, this is a standard type of
result for parabolic equations. Of course, the situation here is complicated
somewhat by the existence of the gauge group. Roughly, Shi’s theorem
says the following. Let us denote by B(x, t0, r) the metric ball in (M,g(t0))
centered at x and of radius r. If we can control the norm of the Riemann
curvature tensor on a backward neighborhood of the form B(x, t0, r)×[0, t0],
then for each k > 0 we can control the kth covariant derivative of the cur-
vature on B(x, t0, r/2

k) × [0, t0] by a constant over tk/2. This result has
many important consequences in our study because it tells us that geomet-
ric limits are smooth limits. Maybe the first result to highlight is the fact
(established earlier by Hamilton) that if (M,g(t)) is a Ricci flow defined on
0 ≤ t < T <∞, and if the Riemann curvature is uniformly bounded for the
entire flow, then the Ricci flow extends past time T .

In the third chapter this material is reviewed and, where necessary, slight
variants of results and arguments in the literature are presented.

3.4. Generalized Ricci flows. Because we cannot restrict our atten-
tion to Ricci flows, but rather must consider more general objects, Ricci
flows with surgery, it is important to establish the basic analytic results and
estimates in a context more general than that of Ricci flow. We choose to
do this in the context of generalized Ricci flows.

A generalized 3-dimensional Ricci flow consists of a smooth manifold M
of dimension 4 (the space-time) together with a time function t : M → R

and a smooth vector field χ. These are required to satisfy:

(1) Each x ∈ M has a neighborhood of the form U × J , where U is
an open subset in R

3 and J ⊂ R is an interval, in which t is the
projection onto J and χ is the unit vector field tangent to the one-
dimensional foliation {u}×J pointing in the direction of increasing
t. We call t−1(t) the t time-slice. It is a smooth 3-manifold.

(2) The image t(M) is a connected interval I in R, possibly infinite.
The boundary of M is the pre-image under t of the boundary of I.

(3) The level sets t−1(t) form a codimension-one foliation of M, called
the horizontal foliation, with the boundary components of M being
leaves.

(4) There is a metric G on the horizontal distribution, i.e., the distri-
bution tangent to the level sets of t. This metric induces a Rie-
mannian metric on each t time-slice, varying smoothly as we vary
the time-slice. We define the curvature of G at a point x ∈ M to
be the curvature of the Riemannian metric induced by G on the
time-slice Mt at x.



xxii INTRODUCTION

(5) Because of the first property the integral curves of χ preserve the
horizontal foliation and hence the horizontal distribution. Thus, we
can take the Lie derivative of G along χ. The Ricci flow equation
is then

Lχ(G) = −2Ric(G).

Locally in space-time the horizontal metric is simply a smoothly varying
family of Riemannian metrics on a fixed smooth manifold and the evolution
equation is the ordinary Ricci flow equation. This means that the usual
formulas for the evolution of the curvatures as well as much of the analytic
analysis of Ricci flows still hold in this generalized context. In the end, a
Ricci flow with surgery is a more singular type of space-time, but it will have
an open dense subset which is a generalized Ricci flow, and all the analytic
estimates take place in this open subset.

The notion of canonical neighborhoods make sense in the context of
generalized Ricci flows. There is also the notion of a strong ǫ-neck. Consider
an embedding ψ :

(
S2 × (−ǫ−1, ǫ−1)

)
× (−1, 0] into space-time such that the

time function pulls back to the projection onto (−1, 0] and the vector field
χ pulls back to ∂/∂t. If there is such an embedding into an appropriately
shifted and rescaled version of the original generalized Ricci flow so that the
pull-back of the rescaled horizontal metric is within ǫ in the C [1/ǫ]-topology of
the product of the shrinking family of round S2’s with the Euclidean metric
on (−ǫ−1, ǫ−1), then we say that ψ is a strong ǫ-neck in the generalized Ricci
flow.

3.5. The maximum principle. The Ricci flow equation satisfies var-
ious forms of the maximum principle. The fourth chapter explains this prin-
ciple, which is due to Hamilton (see Section 4 of [34]), and derives many of
its consequences, which are also due to Hamilton (cf. [36]). This principle
and its consequences are at the core of all the detailed results about the
nature of the flow. We illustrate the idea by considering the case of the
scalar curvature. A standard scalar maximum principle argument applied
to Equation (0.1) proves that the minimum of the scalar curvature is a non-
decreasing function of time. In addition, it shows that if the minimum of
scalar curvature at time 0 is positive then we have

Rmin(t) ≥ Rmin(0)

(
1

1 − 2t
nRmin(0)

)
,

and thus the equation develops a singularity at or before time n/ (2Rmin(0)).
While the above result about the scalar curvature is important and is

used repeatedly, the most significant uses of the maximum principle involve
the tensor version, established by Hamilton, which applies for example to
the Ricci tensor and the full curvature tensor. These have given the most
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significant understanding of the Ricci flows, and they form the core of the ar-
guments that Perelman uses in his application of Ricci flow to 3-dimensional
topology. Here are the main results established by Hamilton:

(1) For 3-dimensional flows, if the Ricci curvature is positive, then the
family of metrics becomes singular at finite time and as the family
becomes singular, the metric becomes closer and closer to round;
see [29].

(2) For 3-dimensional flows, as the scalar curvature goes to +∞ the ra-
tio of the absolute value of any negative eigenvalue of the Riemann
curvature to the largest positive eigenvalue goes to zero; see [36].
This condition is called pinched toward positive curvature.

(3) Motivated by a Harnack inequality for the heat equation estab-
lished by Li-Yau [48], Hamilton established a Harnack inequality
for the curvature tensor under the Ricci flow for complete manifolds
(M,g(t)) with bounded, non-negative curvature operator; see [32].
In the applications to three dimensions, we shall need the follow-
ing consequence for the scalar curvature: Suppose that (M,g(t))
is a Ricci flow defined for all t ∈ [T0, T1] of complete manifolds of
non-negative curvature operator with bounded curvature. Then

∂R

∂t
(x, t) +

R(x, t)

t− T0
≥ 0.

In particular, if (M,g(t)) is an ancient solution (i.e., defined for all
t ≤ 0) of bounded, non-negative curvature, then ∂R(x, t)/∂t ≥ 0.

(4) If a complete 3-dimensional Ricci flow (M,g(t)), 0 ≤ t ≤ T , has
non-negative curvature, if g(0) is not flat, and if there is at least
one point (x, T ) such that the Riemann curvature tensor of g(T )

has a flat direction in ∧2TMx, then M has a cover M̃ so that

for each t > 0 the Riemannian manifold (M̃ , g(t)) splits as a Rie-
mannian product of a surface of positive curvature and a Euclidean

line. Furthermore, the flow on the cover M̃ is the product of a
2-dimensional flow and the trivial one-dimensional Ricci flow on
the line; see Sections 8 and 9 of [30].

(5) In particular, there is no Ricci flow (U, g(t)) with non-negative cur-
vature tensor defined for 0 ≤ t ≤ T with T > 0, such that (U, g(T ))
is isometric to an open subset in a non-flat, 3-dimensional metric
cone.

3.6. Geometric limits. In the fifth chapter we discuss geometric lim-
its of Riemannian manifolds and of Ricci flows. Let us review the history
of these ideas. The first results about geometric limits of Riemannian man-
ifolds go back to Cheeger in his thesis in 1967; see [6]. Here Cheeger ob-
tained topological results. In [25] Gromov proposed that geometric limits
should exist in the Lipschitz topology and suggested a result along these
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lines, which also was known to Cheeger. In [23], Greene-Wu gave a rigorous
proof of the compactness theorem suggested by Gromov and also enhanced
the convergence to be C1,α-convergence by using harmonic coordinates; see
also [56]. Assuming that all the derivatives of curvature are bounded, one
can apply elliptic theory to the expression of curvature in harmonic coor-
dinates and deduce C∞-convergence. These ideas lead to various types of
compactness results that go under the name Cheeger-Gromov compactness
for Riemannian manifolds. Hamilton in [33] extended these results to Ricci
flows. We shall use the compactness results for both Riemannian manifolds
and for Ricci flows. In a different direction, geometric limits were extended
to the non-smooth context by Gromov in [25] where he introduced a weaker
topology, called the Gromov-Hausdorff topology and proved a compactness
theorem.

Recall that a sequence of based Riemannian manifolds (Mn, gn, xn) is
said to converge geometrically to a based, complete Riemannian manifold
(M∞, g∞, x∞) if there is a sequence of open subsets Un ⊂M∞ with compact
closures, with x∞ ∈ U1 ⊂ U1 ⊂ U2 ⊂ U2 ⊂ U3 ⊂ · · · with ∪nUn = M∞, and
embeddings ϕn : Un → Mn sending x∞ to xn so that the pullback metrics,
ϕ∗
ngn, converge uniformly on compact subsets of M∞ in the C∞-topology to
g∞. Notice that the topological type of the limit can be different from the
topological type of the manifolds in the sequence. There is a similar notion
of geometric convergence for a sequence of based Ricci flows.

Certainly, one of the most important consequences of Shi’s results, cited
above, is that, in concert with Cheeger-Gromov compactness, it allows us
to form smooth geometric limits of sequences of based Ricci flows. We have
the following result of Hamilton’s; see [33]:

Theorem 0.7. Let (Mn, gn(t), (xn, 0)) be a sequence of based Ricci flows
defined for t ∈ (−T, 0] with the (Mn, gn(t)) being complete. Suppose that:

(1) There is r > 0 and κ > 0 such that for every n the metric ball
B(xn, 0, r) ⊂ (Mn, gn(0)) is κ-non-collapsed.

(2) For each A < ∞ there is C = C(A) < ∞ such that the Riemann
curvature on B(xn, 0, A) × (−T, 0] is bounded by C.

Then after passing to a subsequence there is a geometric limit which is a
based Ricci flow (M∞, g∞(t), (x∞, 0)) defined for t ∈ (−T, 0].

To emphasize, the two conditions that we must check in order to extract
a geometric limit of a subsequence based at points at time zero are: (i)
uniform non-collapsing at the base point in the time zero metric, and (ii)
for each A <∞ uniformly bounded curvature for the restriction of the flow
to the metric balls of radius A centered at the base points.

Most steps in Perelman’s argument require invoking this result in order
to form limits of appropriate sequences of Ricci flows, often rescaled to make
the scalar curvatures at the base point equal to 1. If, before rescaling, the
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scalar curvature at the base points goes to infinity as we move through the
sequence, then the resulting limit of the rescaled flows has non-negative
sectional curvature. This is a consequence of the fact that the sectional
curvatures of the manifolds in the sequence are uniformly pinched toward
positive. It is for exactly this reason that non-negative curvature plays such
an important role in the study of singularity development in 3-dimensional
Ricci flows.

4. Perelman’s advances

So far we have been discussing the results that were known before Perel-
man’s work. They concern almost exclusively Ricci flow (though Hamilton
in [35] had introduced the notion of surgery and proved that surgery can
be performed preserving the condition that the curvature is pinched to-
ward positive, as in (2) above). Perelman extended in two essential ways
the analysis of Ricci flow – one involves the introduction of a new analytic
functional, the reduced length, which is the tool by which he establishes the
needed non-collapsing results, and the other is a delicate combination of
geometric limit ideas and consequences of the maximum principle together
with the non-collapsing results in order to establish bounded curvature at
bounded distance results. These are used to prove in an inductive way the
existence of canonical neighborhoods, which is a crucial ingredient in prov-
ing that it is possible to do surgery iteratively, creating a flow defined for
all positive time.

While it is easiest to formulate and consider these techniques in the
case of Ricci flow, in the end one needs them in the more general context
of Ricci flow with surgery since we inductively repeat the surgery process,
and in order to know at each step that we can perform surgery we need to
apply these results to the previously constructed Ricci flow with surgery.
We have chosen to present these new ideas only once – in the context of
generalized Ricci flows – so that we can derive the needed consequences in
all the relevant contexts from this one source.

4.1. The reduced length function. In Chapter 6 we come to the first
of Perelman’s major contributions. Let us first describe it in the context
of an ordinary 3-dimensional Ricci flow, but viewing the Ricci flow as a
horizontal metric on a space-time which is the manifold M × I, where I
is the interval of definition of the flow. Suppose that I = [0, T ) and fix
(x, t) ∈ M × (0, T ). We consider paths γ(τ), 0 ≤ τ ≤ τ , in space-time with
the property that for every τ ≤ τ we have γ(τ) ∈M ×{t− τ} and γ(0) = x.
These paths are said to be parameterized by backward time. See Fig. 2. The
L-length of such a path is given by

L(γ) =

∫ τ

0

√
τ
(
R(γ(τ)) + |γ′(τ)|2

)
dτ,
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where the derivative on γ refers to the spatial derivative. There is also the
closely related reduced length

ℓ(γ) =
L(γ)

2
√
τ
.

There is a theory for the functional L analogous to the theory for the usual
energy function6. In particular, there is the notion of an L-geodesic, and
the reduced length as a function on space-time ℓ(x,t) : M × [0, t) → R. One
establishes a crucial monotonicity for this reduced length along L-geodesics.
Then one defines the reduced volume

Ṽ(x,t)(U × {t}) =

∫

U×{t}
τ−3/2e−ℓ(x,t)(q,τ)dvolg(τ (q),

where, as before τ = t − t. Because of the monotonicity of ℓ(x,t) along L-
geodesics, the reduced volume is also non-increasing under the flow (forward
in τ and hence backward in time) of open subsets along L-geodesics. This is
the fundamental tool which is used to establish non-collapsing results which
in turn are essential in proving the existence of geometric limits.

T

increasing
t

γ(0)

γ(τ)X(τ)

space-time

τ = 0

increasing
τ

M

M × {T − τ}

Figure 2. Curves in space-time parameterized by τ .

The definitions and the analysis of the reduced length function and the
reduced volume as well as the monotonicity results are valid in the context
of the generalized Ricci flow. The only twist to be aware of is that in the
more general context one cannot always extend L-geodesics; they may run
‘off the edge’ of space-time. Thus, the reduced length function and reduced
volume cannot be defined globally, but only on appropriate open subsets
of a time-slice (those reachable by minimizing L-geodesics). But as long as

6Even though this functional is called a length, the presence of the |γ′(τ )|2 in the
integrand means that it behaves more like the usual energy functional for paths in a
Riemannian manifold.
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one can flow an open set U of a time-slice along minimizing L-geodesics in
the direction of decreasing τ , the reduced volumes of the resulting family of
open sets form a monotone non-increasing function of τ . This turns out to
be sufficient to extend the non-collapsing results to Ricci flow with surgery,
provided that we are careful in how we choose the parameters that go into
the definition of the surgery process.

4.2. Application to non-collapsing results. As we indicated in the
previous paragraph, one of the main applications of the reduced length func-
tion is to prove non-collapsing results for 3-dimensional Ricci flows with
surgery. In order to make this argument work, one takes a weaker notion
of κ-non-collapsed by making a stronger curvature bound assumption: one
considers points (x, t) and constants r with the property that |Rm| ≤ r−2

on P (x, t, r,−r2) = B(x, t, r) × (t − r2, t]. The κ-non-collapsing condition
applies to these balls and says that Vol(B(x, t, r)) ≥ κr3. The basic idea in
proving non-collapsing is to use the fact that, as we flow forward in time via
minimizing L-geodesics, the reduced volume is a non-decreasing function.
Hence, a lower bound of the reduced volume of an open set at an earlier
time implies the same lower bound for the corresponding open subset at a
later time. This is contrasted with direct computations (related to the heat
kernel in R

3) that say if the manifold is highly collapsed near (x, t) (i.e., sat-
isfies the curvature bound above but is not κ-non-collapsed for some small

κ) then the reduced volume Ṽ(x,t) is small at times close to t. Thus, to show
that the manifold is non-collapsed at (x, t) we need only find an open subset
at an earlier time that is reachable by minimizing L-geodesics and that has
a reduced volume bounded away from zero.

One case where it is easy to do this is when we have a Ricci flow of com-
pact manifolds or of complete manifolds of non-negative curvature. Hence,
these manifolds are non-collapsed at all points with a non-collapsing con-
stant that depends only on the geometry of the initial metric of the Ricci
flow. Non-collapsing results are crucial and are used repeatedly in dealing
with Ricci flows with surgery in Chapters 10 – 17, for these give one of the
two conditions required in order to take geometric limits.

4.3. Application to ancient κ-non-collapsed solutions. There is
another important application of the length function, which is to the study
of non-collapsed, ancient solutions in dimension 3. In the case that the
generalized Ricci flow is an ordinary Ricci flow either on a compact manifold
or on a complete manifold (with bounded curvatures) one can say much more
about the reduced length function and the reduced volume. Fix a point
(x0, t0) in space-time. First of all, one shows that every point (x, t) with
t < t0 is reachable by a minimizing L-geodesic and thus that the reduced
length is defined as a function on all points of space at all times t < t0.
It turns out to be a locally Lipschitz function in both space and time and
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hence its gradient and its time derivative exist as L2-functions and satisfy
important differential inequalities in the weak sense.

These results apply to a class of Ricci flows called κ-solutions, where κ
is a positive constant. By definition a κ-solution is a Ricci flow defined for
all t ∈ (−∞, 0], each time-slice is a non-flat, complete 3-manifold of non-
negative, bounded curvature and each time-slice is κ-non-collapsed. The
differential inequalities for the reduced length from any point (x, 0) imply
that, for any t < 0, the minimum value of ℓ(x,0)(y, t) for all y ∈M is at most
3/2. Furthermore, again using the differential inequalities for the reduced
length function, one shows that for any sequence tn → −∞, and any points
(yn, tn) at which the reduced length function is bounded above by 3/2, there
is a subsequence of based Riemannian manifolds, (M, 1

|tn|g(tn), yn), with a

geometric limit, and this limit is a gradient shrinking soliton. This gradient
shrinking soliton is called an asymptotic soliton for the original κ-solution,
see Fig. 3.

Ricci flow

T = 0

T = −∞

Limit at −∞

Figure 3. The asymptotic soliton.

The point is that there are only two types of 3-dimensional gradient
shrinking solitons – (i) those finitely covered by a family of shrinking round
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3-spheres and (ii) those finitely covered by a family of shrinking round cylin-
ders S2 ×R. If a κ-solution has a gradient shrinking soliton of the first type
then it is in fact isomorphic to its gradient shrinking soliton. More interest-
ing is the case when the κ-solution has a gradient shrinking soliton which
is of the second type. If the κ-solution does not have strictly positive cur-
vature, then it is isomorphic to its gradient shrinking soliton. Furthermore,
there is a constant C1 <∞ depending on ǫ (which remember is taken suffi-
ciently small) such that a κ-solution of strictly positive curvature either is a
C1-component, or is a union of cores of (C1, ǫ)-caps and points that are the
center points of ǫ-necks.

In order to prove the above results (for example the uniformity of C1 as
above over all κ-solutions) one needs the following result:

Theorem 0.8. The space of based κ-solutions, based at points with scalar
curvature zero in the zero time-slice is compact.

This result does not generalize to ancient solutions that are not non-
collapsed because, in order to prove compactness, one has to take limits of
subsequences, and in doing this the non-collapsing hypothesis is essential.
See Hamilton’s work [34] for more on general ancient solutions (i.e., those
that are not necessarily non-collapsed).

Since ǫ > 0 is sufficiently small so that all the results from the appen-
dix about manifolds covered by ǫ-necks and ǫ-caps hold, the above results
about gradient shrinking solitons lead to a rough qualitative description of
all κ-solutions. There are those which do not have strictly positive cur-
vature. These are gradient shrinking solitons, either an evolving family of
round 2-spheres times R or the quotient of this family by an involution.
Non-compact κ-solutions of strictly positive curvature are diffeomorphic to
R

3 and are the union of an ǫ-tube and a core of a (C1, ǫ)-cap. The compact
ones of strictly positive curvature are of two types. The first type are posi-
tive, constant curvature shrinking solitons. Solutions of the second type are
diffeomorphic to either S3 or RP 3. Each time-slice of a κ-solution of the
second type either is of uniformly bounded geometry (curvature, diameter,
and volume) when rescaled so that the scalar curvature at a point is 1, or
admits an ǫ-tube whose complement is either a disjoint union of the cores
of two (C1, ǫ)-caps.

This gives a rough qualitative understanding of κ-solutions. Either they
are round, or they are finitely covered by the product of a round surface
and a line, or they are a union of ǫ-tubes and cores of (C1, ǫ)-caps , or they
are diffeomorphic to S3 or RP 3 and have bounded geometry (again after
rescaling so that there is a point of scalar curvature 1). This is the source
of canonical neighborhoods for Ricci flows: the point is that this qualitative
result remains true for any point x in a Ricci flow that has an appropri-
ate size neighborhood within ǫ in the C [1/ǫ]-topology of a neighborhood
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in a κ-solution. For example, if we have a sequence of based generalized
flows (Mn, Gn, xn) converging to a based κ-solution, then for all n suffi-
ciently large x will have a canonical neighborhood, one that is either an
ǫ-neck centered at that point, a (C1, ǫ)-cap whose core contains the point, a
C1-component, or an ǫ-round component.

4.4. Bounded curvature at bounded distance. Perelman’s other
major breakthrough is his result establishing bounded curvature at bounded
distance for blow-up limits of generalized Ricci flows. As we have alluded to
several times, many steps in the argument require taking (smooth) geometric
limits of a sequence of based generalized flows about points of curvature
tending to infinity. To study such a sequence we rescale each term in the
sequence so that its curvature at the base point becomes 1. Nevertheless, in
taking such limits we face the problem that even though the curvature at the
point we are focusing on (the points we take as base points) was originally
large and has been rescaled to be 1, there may be other points in the same
time-slice of much larger curvature, which, even after the rescalings, can
tend to infinity. If these points are at uniformly bounded (rescaled) distance
from the base points, then they would preclude the existence of a smooth
geometric limit of the based, rescaled flows. In his arguments, Hamilton
avoided this problem by always focusing on points of maximal curvature
(or almost maximal curvature). That method will not work in this case.
The way to deal with this possible problem is to show that a generalized
Ricci flow satisfying appropriate conditions satisfies the following. For each
A <∞ there are constants Q0 = Q0(A) <∞ and Q(A) <∞ such that any
point x in such a generalized flow for which the scalar curvature R(x) ≥ Q0

and for any y in the same time-slice as x with d(x, y) < AR(x)−1/2 satisfies
R(y)/R(x) < Q(A). As we shall see, this and the non-collapsing result are
the fundamental tools that allow Perelman to study neighborhoods of points
of sufficiently large curvature by taking smooth limits of rescaled flows, so
essential in studying the prolongation of Ricci flows with surgery.

The basic idea in proving this result is to assume the contrary and take
an incomplete geometric limit of the rescaled flows based at the counterex-
ample points. The existence of points at bounded distance with unbounded,
rescaled curvature means that there is a point at infinity at finite distance
from the base point where the curvature blows up. A neighborhood of this
point at infinity is cone-like in a manifold of non-negative curvature. This
contradicts Hamilton’s maximum principle result (5) in Section 3.5) that
the result of a Ricci flow of manifolds of non-negative curvature is never
an open subset of a cone. (We know that any ‘blow-up limit’ like this has
non-negative curvature because of the curvature pinching result.) This con-
tradiction establishes the result.
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5. The standard solution and the surgery process

Now we are ready to discuss 3-dimensional Ricci flows with surgery.

5.1. The standard solution. In preparing the way for defining the
surgery process, we must construct a metric on the 3-ball that we shall glue
in when we perform surgery. This we do in Chapter 12. We fix a non-
negatively curved, rotationally symmetric metric on R

3 that is isometric
near infinity to S2 × [0,∞) where the metric on S2 is the round metric of
scalar curvature 1, and outside this region has positive sectional curvature,
see Fig. 4. Any such metric will suffice for the gluing process, and we fix
one and call it the standard metric. It is important to understand Ricci flow
with the standard metric as initial metric. Because of the special nature of
this metric (the rotational symmetry and the asymptotic nature at infinity),
it is fairly elementary to show that there is a unique solution of bounded
curvature on each time-slice to the Ricci flow equation with the standard
metric as the initial metric; this flow is defined for 0 ≤ t < 1; and for any
T < 1 outside of a compact subset X(T ) the restriction of the flow to [0, T ]
is close to the evolving round cylinder. Using the length function, one shows
that the Ricci flow is non-collapsed, and that the bounded curvature and
bounded distance result applies to it. This allows one to prove that every
point (x, t) in this flow has one of the following types of neighborhoods:

(1) (x, t) is contained in the core of a (C2, ǫ)-cap, where C2 < ∞ is a
given universal constant depending only on ǫ.

(2) (x, t) is the center of a strong ǫ-neck.
(3) (x, t) is the center of an evolving ǫ-neck whose initial slice is at time

zero.

These form the second source of models for canonical neighborhoods in
a Ricci flow with surgery. Thus, we shall set C = C(ǫ) = max(C1(ǫ), C2(ǫ))
and we shall find (C, ǫ)-canonical neighborhoods in Ricci flows with surgery.

Figure 4. The standard metric.

5.2. Ricci flows with surgery. Now it is time to introduce the no-
tion of a Ricci flow with surgery. To do this we formulate an appropriate
notion of 4-dimensional space-time that allows for the surgery operations.
We define space-time to be a 4-dimensional Hausdorff singular space with a
time function t with the property that each time-slice is a compact, smooth
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3-manifold, but level sets at different times are not necessarily diffeomorphic.
Generically space-time is a smooth 4-manifold, but there are exposed regions
at a discrete set of times. Near a point in the exposed region space-time
is a 4-manifold with boundary. The singular points of space-time are the
boundaries of the exposed regions. Near these, space-time is modeled on the
product of R

2 with the square (−1, 1)× (−1, 1), the latter having a topology
in which the open sets are, in addition to the usual open sets, open subsets
of (0, 1) × [0, 1), see Fig. 5. There is a natural notion of smooth functions
on space-time. These are smooth in the usual sense on the open subset of
non-singular points. Near the singular points, and in the local coordinates
described above, they are required to be pull-backs from smooth functions
on R

2 × (−1, 1) × (−1, 1) under the natural map. Space-time is equipped
with a smooth vector field χ with χ(t) = 1.

Figure 5. Model for singularities in space-time.

A Ricci flow with surgery is a smooth horizontal metric G on a space-
time with the property that the restriction of G, t and χ to the open subset
of smooth points forms a generalized Ricci flow. We call this the associated
generalized Ricci flow for the Ricci flow with surgery.

5.3. The inductive conditions necessary for doing surgery. With
all this preliminary work out of the way, we are ready to show that one can
construct Ricci flow with surgery which is precisely controlled both topolog-
ically and metrically. This result is proved inductively, one interval of time
after another, and it is important to keep track of various properties as we
go along to ensure that we can continue to do surgery. Here we discuss the
conditions we verify at each step.

Fix ǫ > 0 sufficiently small and let C = max(C1, C2) < ∞, where C1 is
the constant associated to ǫ for κ-solutions and C2 is the constant associated
to ǫ for the standard solution. We say that a point x in a generalized Ricci
flow has a (C, ǫ)-canonical neighborhood if one of the following holds:

(1) x is contained in a C-component of its time-slice.
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(2) x is contained in a connected component of its time-slice that is

within ǫ of round in the C [1/ǫ]-topology.
(3) x is contained in the core of a (C, ǫ)-cap.
(4) x is the center of a strong ǫ-neck.

We shall study Ricci flows with surgery defined for 0 ≤ t < T < ∞
whose associated generalized Ricci flows satisfy the following properties:

(1) The initial metric is normalized, meaning that for the metric at
time zero the norm of the Riemann curvature is bounded above by
1 and the volume of any ball of radius 1 is at least half the volume
of the unit ball in Euclidean space.

(2) The curvature of the flow is pinched toward positive.
(3) There is κ > 0 so that the associated generalized Ricci flow is κ-

non-collapsed on scales at most ǫ, in the sense that we require only
that balls of radius r ≤ ǫ be κ-non-collapsed.

(4) There is r0 > 0 such that any point of space-time at which the
scalar curvature is ≥ r−2

0 has a (C, ǫ)-canonical neighborhood.

The main result is that, having a Ricci flow with surgery defined on
some time interval satisfying these conditions, it is possible to extend it to a
longer time interval in such a way that it still satisfies the same conditions,
possibly allowing the constants κ and r0 defining these conditions to get
closer to zero, but keeping them bounded away from 0 on each compact
time interval. We repeat this construction inductively. It is easy to see that
there is a bound on the number of surgeries in each compact time interval.
Thus, in the end, we create a Ricci flow with surgery defined for all positive
time. As far as we know, it may be the case that in the entire flow, defined
for all positive time, there are infinitely many surgeries.

5.4. Surgery. Let us describe how we extend a Ricci flow with surgery
satisfying all the conditions listed above and becoming singular at time
T < ∞. Fix T− < T so that there are no surgery times in the interval
[T−, T ). Then we can use the Ricci flow to identify all the time-slices Mt

for t ∈ [T−, T ), and hence view this part of the Ricci flow with surgery as
an ordinary Ricci flow. Because of the canonical neighborhood assumption,
there is an open subset Ω ⊂ MT− on which the curvature stays bounded
as t → T . Hence, by Shi’s results, there is a limiting metric at time T on
Ω. Furthermore, the scalar curvature is a proper function, bounded below,
from Ω to R, and each end of Ω is an ǫ-tube where the cross-sectional area
of the 2-spheres goes to zero as we go to the end of the tube. We call such
tubes ǫ-horns. We are interested in ǫ-horns whose boundary is contained in
the part of Ω where the scalar curvature is bounded above by some fixed
finite constant ρ−2. We call this region Ωρ. Using the bounded curvature
at bounded distance result, and using the non-collapsing hypothesis, one
shows that given any δ > 0 there is h = h(δ, ρ, r0) such that for any ǫ-horn
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H whose boundary lies in Ωρ and for any x ∈ H with R(x) ≥ h−2, the point
x is the center of a strong δ-neck.

Now we are ready to describe the surgery procedure. It depends on
our choice of standard solution on R

3 and on a choice of δ > 0 sufficiently
small. For each ǫ-horn in Ω whose boundary is contained in Ωρ, fix a point
of curvature (h(δ, ρ, r0))

−2 and fix a strong δ-neck centered at this point.
Then we cut the ǫ-horn open along the central 2-sphere S of this neck and
remove the end of the ǫ-horn that is cut off by S. Then we glue in a ball of
a fixed radius around the tip from the standard solution, after scaling the
metric on this ball by (h(δ, ρ, r0))

2. To glue these two metrics together we
must use a partition of unity near the 2-spheres that are matched. There is
also a delicate point that we first bend in the metrics slightly so as to achieve
positive curvature near where we are gluing. This is an idea due to Hamilton,
and it is needed in order to show that the condition of curvature pinching
toward positive is preserved. In addition, we remove all components of Ω
that do not contain any points of Ωρ.

This operation produces a new compact 3-manifold. One continues the
Ricci flow with surgery by letting this Riemannian manifold at time T evolve
under the Ricci flow. See Fig. 6.

5.5. Topological effect of surgery. Looking at the situation just be-
fore the surgery time, we see a finite number of disjoint submanifolds, each
diffeomorphic to either S2 × I or the 3-ball, where the curvature is large. In
addition there may be entire components of where the scalar curvature is
large. The effect of 2-sphere surgery is to do a finite number of ordinary topo-
logical surgeries along 2-spheres in the S2 × I. This simply effects a partial
connected-sum decomposition and may introduce new components diffeo-
morphic to S3. We also remove entire components, but these are covered
by ǫ-necks and ǫ-caps so that they have standard topology (each one is dif-
feomorphic to S3, RP 3, RP 3#RP 3, S2 ×S1, or the non-orientable 2-sphere
bundle over S1). Also, we remove C-components and ǫ-round components
(each of these is either diffeomorphic to S3 or RP 3 or admits a metric of
constant positive curvature). Thus, the topological effect of surgery is to do
a finite number of ordinary 2-sphere topological surgeries and to remove a
finite number of topologically standard components.

6. Extending Ricci flows with surgery

We consider Ricci flows with surgery that are defined on the time interval
0 ≤ t < T , with T < ∞, and that satisfy four conditions. These conditions
are: (i) normalized initial metric, (ii) curvature pinched toward positive,
(iii) all points of scalar curvature ≥ r−2 have canonical neighborhoods, and
(iv) the flow is κ-non-collapsed on scales ≤ ǫ. The crux of the argument is
to show that it is possible to extend to such a Ricci flow with surgery to a
Ricci flow with surgery defined for all t ∈ [0, T ′) for some T ′ > T , keeping
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Figure 6. Surgery.

these four conditions satisfied (possibly with different constants r′ < r and
κ′ < κ). In order to do this we need to choose the surgery parameter δ > 0
sufficiently small. There is also the issue of whether the surgery times can
accumulate.

Of course, the initial metric does not change as we extend surgery so that
the condition that the normalized initial metric is clearly preserved as we
extend surgery. As we have already remarked, Hamilton had proved earlier
that one can do surgery in such a way as to preserve the condition that the
curvature is pinched toward positive. The other two conditions require more
work, and, as we indicated above, the constants may decay to zero as we
extend the Ricci flow with surgery.

If we have all the conditions for the Ricci flow with surgery up to time
T , then the analysis of the open subset on which the curvature remains
bounded holds, and given δ > 0 sufficiently small, we do surgery on the
central S2 of a strong δ-neck in each ǫ-horn meeting Ωρ. In addition we
remove entirely all components that do not contain points of Ωρ. We then



xxxvi INTRODUCTION

glue in the cap from the standard solution. This gives us a new compact
3-manifold and we restart the flow from this manifold.

The κ-non-collapsed result is extended to the new part of the Ricci flow
with surgery using the fact that it holds at times previous to T . To establish
this extension one uses L-geodesics in the associated generalized Ricci flow
and reduced volume as indicated before. In order to get this argument to
work, one must require δ > 0 to be sufficiently small; how small is determined
by r0.

The other thing that we must establish is the existence of canonical
neighborhoods for all points of sufficiently large scalar curvature. Here the
argument is by contradiction. We consider all Ricci flows with surgery that
satisfy all four conditions on [0, T ) and we suppose that we can find a
sequence of such containing points (automatically at times T ′ > T ) of
arbitrarily large curvature where there are not canonical neighborhoods.
In fact, we take the points at the first such time violating this condition.
We base our flows at these points. Now we consider rescaled versions of the
generalized flows so that the curvature at these base points is rescaled to 1.
We are in a position to apply the bounded curvature and bounded distance
results to this sequence, and of course the κ-non-collapsing results which
have already been established. There are two possibilities. The first is that
the rescaled sequence converges to an ancient solution. This ancient solu-
tion has non-negative curvature by the pinching hypothesis. General results
about 3-manifolds of non-negative curvature imply that it also has bounded
curvature. It is κ-non-collapsed. Thus, in this case the limit is a κ-solution.
This produces the required canonical neighborhoods for the base points of
the tail of the sequence modeled on the canonical neighborhoods of points
in a κ-solution. This contradicts the assumption that none of these points
has a canonical neighborhood.

The other possibility is that one can take a partial smooth limit but that
this limit does not extend all the way back to −∞. The only way this can
happen is if there are surgery caps that prevent extending the limit back to
−∞. This means that the base points in our sequence are all within a fixed
distance and time (after the rescaling) of a surgery region. But in this case
results from the nature of the standard solution show that if we have taken
δ > 0 sufficiently small, then the base points have canonical neighborhoods
modeled on the canonical neighborhoods in the standard solution, again
contradicting our assumption that none of the base points has a canonical
neighborhood. In order to show that our base points have neighborhoods
near those of the standard solution, one appeals to a geometric limit argu-
ment as δ → 0. This argument uses the uniqueness of the Ricci flow for the
standard solution. (Actually, Bruce Kleiner pointed out to us that one only
needs a compactness result for the space of all Ricci flows with the standard
metric as initial metric, not uniqueness, and the compactness result can be
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proved by the same arguments that prove the compactness of the space of
κ-solutions.)

Interestingly enough, in order to establish the uniqueness of the Ricci
flow for the standard solution, as well as to prove that this flow is defined
for time [0, 1) and to prove that at infinity it is asymptotic to an evolving
cylinder, requires the same results – non-collapsing and the bounded curva-
ture at bounded distance that we invoked above. For this reason, we order
the material described here as follows. First, we introduce generalized Ricci
flows, and then introduce the length function in this context and establish
the basic monotonicity results. Then we have a chapter on stronger results
for the length function in the case of complete manifolds with bounded cur-
vature. At this point we are in a position to prove the needed results about
the Ricci flow from the standard solution. Then we are ready to define
the surgery process and prove the inductive non-collapsing results and the
existence of canonical neighborhoods.

In this way, one establishes the existence of canonical neighborhoods.
Hence, one can continue to do surgery, producing a Ricci flow with surgery
defined for all positive time. Since these arguments are inductive, it turns
out that the constants in the non-collapsing and in the canonical neighbor-
hood statements decay in a predetermined rate as time goes to infinity.

Lastly, there is the issue of ruling out the possibility that the surgery
times accumulate. The idea here is very simple: Under Ricci flow during an
elapsed time T , volume increases at most by a multiplicative factor which
is a fixed exponential of the time T . Under each surgery there is a removal
of at least a fixed positive amount of volume depending on the surgery scale
h, which in turns depends on δ and r0. Since both δ and r0 are bounded
away from zero on each finite interval, there can be at most finitely many
surgeries in each finite interval. This argument allows for the possibility,
noted in Section 5.3, that in the entire flow all the way to infinity there are
infinitely many surgeries. It is still unknown whether that possibility ever
happens.

This completes our outline of the proof of Theorem 0.3.

7. Finite-time extinction

The last topic we discuss is the proof of the finite-time extinction for
Ricci flows with initial metrics satisfying the hypothesis of Theorem 0.4.

As we present it, the finite extinction result has two steps. The first step
is to show that there is T < ∞ (depending on the initial metric) such that
for all t ≥ T , all connected components of the t-time-slice Mt have trivial
π2. First, an easy topological argument shows that only finitely many of the
2-sphere surgeries in a Ricci flow with surgery can be along homotopically
non-trivial 2-spheres. Thus, after some time T0 all 2-sphere surgeries are
along homotopically trivial 2-spheres. Such a surgery does not affect π2.
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Thus, after time T0, the only way that π2 can change is by removal of
components with non-trivial π2. (An examination of the topological types
of components that are removed shows that there are only two types of such
components with non-trivial π2: 2-sphere bundles over S1 and RP 3#RP 3.)
We suppose that at every t ≥ T0 there is a component of Mt with non-trivial
π2. Then we can find a connected open subset X of t−1([T0,∞)) with the
property that for each t ≥ T0 the intersection X (t) = X ∩Mt is a component
of Mt with non-trivial π2. We define a function W2 : [T0,∞) → R associated
with such an X . The value W2(t) is the minimal area of all homotopically
non-trivial 2-spheres mapping into X (t). This minimal area W2(t) is realized
by a harmonic map of S2 into X (t). The function W2 varies continuously
under Ricci flow and at a surgery is lower semi-continuous. Furthermore,
using an idea that goes back to Hamilton (who applied it to minimal disks)
one shows that the forward difference quotient of the minimal area satisfies

dW2(t)

dt
≤ −4π +

3

(4t+ 1)
W2(t).

(Here, the explicit form of the bound for the forward difference quotient
depends on the way we have chosen to normalize initial metric and also on
Hamilton’s curvature pinching result.)

But any function W2(t) with these properties and defined for all t > T0,
becomes negative at some finite T1 (depending on the initial value). This is
absurd since W2(t) is the minimum of positive quantities. This contradiction
shows that such a path of components with non-trivial π2 cannot exist for
all t ≥ T0. In fact, it even gives a computable upper bound on how long
such a component X , with every time-slice having non-trivial π2, can exist in
terms of the minimal area of a homotopically non-trivial 2-sphere mapping
into X (T0). It follows that there is T < ∞ with the property that every
component of MT has trivial π2. This condition then persists for all t ≥ T .

Three remarks are in order. This argument showing that eventually
every component of the time-slice t has trivial π2 is not necessary for the
topological application (Theorem 0.4), or indeed, for any other topological
application. The reason is the sphere theorem (see [39]), which says that if
π2(M) is non-trivial then either M is diffeomorphic to an S2 bundle over S1

orM has a non-trivial connected sum decomposition. Thus, we can establish
results for all 3-manifolds if we can establish them for 3-manifolds with
π2 = 0. Secondly, the reason for giving this argument is that it is pleasing to
see Ricci flow with surgery implementing the connected sum decomposition
required for geometrization of 3-manifolds. Also, this argument is a simpler
version of the one that we use to deal with components with non-trivial
π3. Lastly, these results on Ricci flow do not use the sphere theorem so
that establishing the cutting into pieces with trivial π2 allows us to give
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a different proof of this result (though admittedly one using much deeper
ideas).

Let us now fix T < ∞ such that for all t ≥ T all the time-slices Mt

have trivial π2. There is a simple topological consequence of this and our
assumption on the initial manifold. If M is a compact 3-manifold whose
fundamental group is either a non-trivial free product or an infinite cyclic
group, thenM admits a homotopically non-trivial embedded 2-sphere. Since
we began with a manifold M0 whose fundamental group is a free product
of finite groups and infinite cyclic groups, it follows that for t ≥ T every
component of Mt has finite fundamental group. Fix t ≥ T . Then each
component of Mt has a finite cover that is simply connected, and thus, by
an elementary argument in algebraic topology, each component of Mt has
non-trivial π3. The second step in the finite-time extinction argument is
to use a non-trivial element in this group analogously to the way we used
homotopically non-trivial 2-spheres to show that eventually the manifolds
have trivial π2.

There are two approaches to this second step: the first is due to Perel-
man in [54] and the other due to Colding-Minicozzi in [15]. In their ap-
proach Colding-Minicozzi associate to a non-trivial element in π3(M) a non-
trivial element in π1(Maps(S2,M)). This element is represented by a one-
parameter family of 2-spheres (starting and ending at the constant map)
representing a non-trivial element ξ ∈ π3(M0). They define the width of
this homotopy class by W (ξ, t) by associating to each representative the
maximal energy of the 2-spheres in the family and then minimizing over
all representatives of the homotopy class. Using results of Jost [42], they
show that this function satisfies the same forward difference inequality that
W2 satisfies (and has the same continuity property under Ricci flow and the
same semi-continuity under surgery). Since W (ξ, t) is always ≥ 0 if it is de-
fined, this forward difference quotient inequality implies that the manifolds
Mt must eventually become empty.

While this approach seemed completely natural to us, and while we
believe that it works, we found the technical details daunting7 (because one
is forced to consider critical points of index 1 of the energy functional rather
than minima). For this reason we chose to follow Perelman’s approach.
He represents a non-trivial element in π3(M) as a non-trivial element in
ξ ∈ π2(ΛM, ∗) where ΛM is the free loop space of M . He then associates
to a family Γ: S2 → ΛM of homotopically trivial loops an invariant W (Γ)
which is the maximum of the areas of minimal spanning disks for the loops
Γ(c) as c ranges over S2. The invariant of a non-trivial homotopy class ξ is
then the infimum over all representatives Γ for ξ of W (Γ). As before, this
function is continuous under Ricci flow and is lower semi-continuous under

7Colding and Minicozzi tell us they plan to give an expanded version of their argument
with a more detailed proof.
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surgery (unless the surgery removes the component in question). It also
satisfies a forward difference quotient

dW (ξ)

dt
≤ −2π +

3

4t+ 1
W (ξ).

The reason for the term −2π instead of −4π which occurs in the other cases
is that we are working with minimal 2-disks instead of minimal 2-spheres.
Once this forward difference quotient estimate (and the continuity) have
been established the argument finishes in the same way as the other cases:
a function W with the properties we have just established cannot be non-
negative for all positive time. This means the component in question, and
indeed all components at later time derived from it, must disappear in finite
time. Hence, under the hypothesis on the fundamental group in Theorem 0.4
the entire manifold must disappear at finite time.

Because this approach uses only minima for the energy or area func-
tional, one does not have to deal with higher index critical points. But one
is forced to face other difficulties though – namely boundary issues. Here,
one must prescribe the deformation of the family of boundary curves before
computing the forward difference quotient of the energy. The obvious choice
is the curve-shrinking flow (see [2]). Unfortunately, this flow can only be
defined when the curve in question is immersed and even in this case the
curve-shrinking flow can develop singularities even if the Ricci flow does
not. Following Perelman, or indeed [2], one uses the device of taking the
product with a small circle and using loops, called ramps, that go around
that circle once. In this context the curve-shrinking flow remains regular as
long as the Ricci flow does. One then projects this flow to a flow of families
of 2-spheres in the free loop space of the time-slices of the original Ricci
flow. Taking the length of the circle sufficiently small yields the bound-
ary deformation needed to establish the forward difference quotient result.
This requires a compactness result which holds under local total curvature
bounds. This compactness result holds outside a subset of time-interval of
small total measure, which is sufficient for the argument. At the very end
of the argument we need an elementary but complicated result on annuli,
which we could not find in the literature. For more details on these points
see Chapter 18.
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CHAPTER 1

Preliminaries from Riemannian geometry

In this chapter we will recall some basic facts in Riemannian geometry.
For more details we refer the reader to [18] and [57]. Throughout, we always
adopt Einstein’s summation convention on repeated indices and ‘manifold’
means a paracompact, Hausdorff, smooth manifold.

1. Riemannian metrics and the Levi-Civita connection

Let M be a manifold and let p be a point of M . Then TM denotes the
tangent bundle of M and TpM is the tangent space at p. Similarly, T ∗M
denotes the cotangent bundle of M and T ∗

pM is the cotangent space at p.
For any vector bundle V over M we denote by Γ(V) the vector space of
smooth sections of V.

Definition 1.1. Let M be an n-dimensional manifold. A Riemannian
metric g on M is a smooth section of T ∗M⊗T ∗M defining a positive definite
symmetric bilinear form on TpM for each p ∈ M . In local coordinates
(x1, . . . , xn), one has a natural local basis {∂1, . . . , ∂n} for TM , where ∂i =
∂
∂xi . The metric tensor g = gijdx

i ⊗ dxj is represented by a smooth matrix-
valued function

gij = g(∂i, ∂j).

The pair (M,g) is a Riemannian manifold. We denote by (gij) the inverse
of the matrix (gij).

Using a partition of unity, one can easily see that any manifold admits
a Riemannian metric. A Riemannian metric on M allows us to measure
lengths of smooth paths in M and hence to define a distance function by
setting d(p, q) equal to the infimum of the lengths of smooth paths from p
to q. This makes M a metric space. For a point p in a Riemannian manifold
(M,g) and for r > 0 we denote the metric ball of radius r centered at p in
M by B(p, r) or by Bg(p, r) if the metric needs specifying or emphasizing.
It is defined by

B(p, r) = {q ∈M | d(p, q) < r}.

Theorem 1.2. Given a Riemannian metric g on M , there uniquely ex-
ists a torsion-free connection on TM making g parallel, i.e., there is a unique

3
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R-linear mapping ∇ : Γ(TM) → Γ(T ∗M ⊗ TM) satisfying the Leibnitz for-
mula

∇(fX) = df ⊗X + f∇X,
and the following two additional conditions for all vector fields X and Y :

• (g orthogonal) d(g(X,Y )) = g(∇X,Y ) + g(X,∇Y );
• (Torsion-free) ∇XY −∇YX − [X,Y ] = 0 (where, as is customary,

we denote ∇Y (X) by ∇XY ).

We call the above connection the Levi-Civita connection of the metric
and ∇X the covariant derivative ofX. On a Riemannian manifold we always
use the Levi-Civita connection.

In local coordinates (x1, . . . , xn) the Levi-Civita connection ∇ is given
by the ∇∂i

(∂j) = Γkij∂k, where the Christoffel symbols Γkij are the smooth
functions

(1.1) Γkij =
1

2
gkl(∂iglj + ∂jgil − ∂lgij).

Note that the above two additional conditions for the Levi-Civita connection
∇ correspond respectively to

• Γkij = Γkji,

• ∂kgij = gljΓ
l
ki + gilΓ

l
kj.

The covariant derivative extends to all tensors. In the special case of
a function f we have ∇(f) = df . Note that there is a possible confusion
between this and the notation in the literature, since one often sees ∇f
written for the gradient of f , which is the vector field dual to df . We always
use ∇f to mean df , and we will denote the gradient of f by (∇f)∗,

The covariant derivative allows us to define the Hessian of a smooth
function at any point, not just a critical point. Let f be a smooth real-
valued function on M . We define the Hessian of f , denoted Hess(f), as
follows:

(1.2) Hess(f)(X,Y ) = X(Y (f)) −∇XY (f).

Lemma 1.3. The Hessian is a contravariant, symmetric two-tensor, i.e.,
for vector fields X and Y we have

Hess(f)(X,Y ) = Hess(f)(Y,X)

and

Hess(f)(φX,ψY ) = φψHess(f)(X,Y )

for all smooth functions φ,ψ. Other formulas for the Hessian are

Hess(f)(X,Y ) = 〈∇X(∇f), Y 〉 = ∇X(∇Y (f)) = ∇2f(X,Y ).

Also, in local coordinates we have

Hess(f)ij = ∂i∂jf − (∂kf)Γkij.
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Proof. The proof of symmetry is direct from the torsion-free assump-
tion:

Hess(f)(X,Y ) − Hess(f)(Y,X) = [X,Y ](f) − (∇XY −∇YX)(f) = 0.

The fact that Hess(f) is a tensor is also established by direct computation.
The equivalence of the various formulas is also immediate:

〈∇X(∇f), Y 〉 = X(〈∇f, Y 〉) − 〈∇f,∇XY 〉(1.3)

= X(Y (f)) −∇XY (f) = Hess(f)(X,Y ).

Since df = (∂rf)dxr and ∇(dxk) = −Γkijdx
i ⊗ dxj , it follows that

∇(df) =
(
∂i∂jf − (∂kf)Γkij

)
dxi ⊗ dxj.

It is direct from the definition that

Hess(f)ij = Hess(f)(∂i, ∂j) = ∂i∂jf − (∂kf)Γkij.

�

When the metric that we are using to define the Hessian is not clear
from the context, we introduce it into the notation and write Hessg(f) to
denote the Hessian of f with respect to the metric g.

The Laplacian △f is defined as the trace of the Hessian: That is to say,
in local coordinates near p we have

△f(p) =
∑

ij

gijHess(f)(∂i, ∂j).

Thus, if {Xi} is an orthonormal basis for TpM then

(1.4) △f(p) =
∑

i

Hess(f)(Xi,Xi).

Notice that this is the form of the Laplacian that is non-negative at a local
minimum, and consequently has a non-positive spectrum.

2. Curvature of a Riemannian manifold

For the rest of this chapter (M,g) is a Riemannian manifold.

Definition 1.4. The Riemann curvature tensor ofM is the (1, 3)-tensor
on M ,

R(X,Y )Z = ∇2
X,Y Z −∇2

Y,XZ = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

where ∇2
X,Y Z = ∇X∇Y Z −∇∇XY Z.

In local coordinates the curvature tensor can be represented as

R(∂i, ∂j)∂k = Rij
l
k∂l,

where

Rij
l
k = ∂iΓ

l
jk − ∂jΓ

l
ik + ΓsjkΓ

l
is − ΓsikΓ

l
js.
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Using the metric tensor g, we can change R to a (0, 4)-tensor as follows:

R(X,Y,Z,W ) = g(R(X,Y )W,Z).

(Notice the change of order in the last two variables.) Notice that we use
the same symbol and the same name for both the (1, 3) tensor and the (0, 4)
tensor; which one we are dealing with in a given context is indicated by
the index structure or the variables to which the tensor is applied. In local
coordinates, the Riemann curvature tensor can be represented as

R(∂i, ∂j , ∂k, ∂l) = Rijkl

= gksRij
s
l

= gks(∂iΓ
s
jl − ∂jΓ

s
il + ΓtjlΓ

s
it − ΓtilΓ

s
jt).

One can easily verify the following:

Claim 1.5. The Riemann curvature tensor R satisfies the following
properties:

• (Symmetry) Rijkl = −Rjikl, Rijkl = −Rijlk, Rijkl = Rklij.
• (1st Bianchi identity) The sum of Rijkl over the cyclic permutation of

any three indices vanishes.
• (2nd Bianchi identity) Rijkl,h +Rijlh,k +Rijhk,l = 0, where

Rijkl,h = (∇∂h
R)ijkl.

There are many important related curvatures.

Definition 1.6. The sectional curvature of a 2-plane P ⊂ TpM is
defined as

K(P ) = R(X,Y,X, Y ),

where {X,Y } is an orthonormal basis of P . We say that (M,g) has positive
sectional curvature (resp., negative sectional curvature) if K(P ) > 0 (resp.,
K(P ) < 0) for every 2-plane P . There are analogous notions of non-negative
and non-positive sectional curvature.

In local coordinates, suppose that X = Xi∂i and Y = Y i∂i. Then we
have

K(P ) = RijklX
iY jXkY l.

A Riemannian manifold is said to have constant sectional curvature if K(P )
is the same for all p ∈ M and all 2-planes P ⊂ TpM . One can show that a
manifold (M,g) has constant sectional curvature λ if and only if

Rijkl = λ(gikgjl − gilgjk).

Of course, the sphere of radius r in R
n has constant sectional curvature 1/r2,

R
n with the Euclidean metric has constant sectional curvature 0, and the
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hyperbolic space H
n, which in the Poincaré model is given by the unit disk

with the metric
4(dx2

1 + · · · + dx2
n)

(1 − |x|2)2
,

or in the upper half-space model with coordinates (x1, . . . , xn) is given by

ds2

(xn)2
,

has constant sectional curvature −1. In all three cases we denote the con-
stant curvature metric by gst.

Definition 1.7. Using the metric, one can replace the Riemann curva-
ture tensor R by a symmetric bilinear form Rm on ∧2TM . In local coordi-
nates let ϕ = ϕij∂i ∧ ∂j and ψ = ψkl∂k ∧ ∂l be local sections of ∧2TM . The
formula for Rm is

Rm(ϕ,ψ) = Rijklϕ
ijψkl.

We call Rm the curvature operator . We say (M,g) has positive curvature
operator if Rm(ϕ,ϕ) > 0 for any non-zero 2-form ϕ = ϕij∂i ∧ ∂j and has
non-negative curvature operator if Rm(ϕ,ϕ) ≥ 0 for any ϕ ∈ ∧2TM .

If the curvature operator is a positive (resp., non-negative) operator then
the manifold is positively (resp., non-negatively) curved.

Definition 1.8. The Ricci curvature tensor , denoted Ric or Ricg when
it is necessary to specify the metric, is a symmetric contravariant two-tensor.
In local coordinates it is defined by

Ric(X,Y ) = gklR(X,∂k, Y, ∂l).

The value of this tensor at p ∈ M is given by
∑n

i=1R(X(p), ei, Y (p), ei)
where {e1, . . . , en} is an orthonormal basis of TpM . Clearly Ric is a sym-
metric bilinear form on TM , given in local coordinates by

Ric = Ricijdx
i ⊗ dxj ,

where Ricij = Ric(∂i, ∂j). The scalar curvature is defined by:

R = Rg = trgRic = gijRicij .

We will say that Ric ≥ k (or ≤ k) if all the eigenvalues of Ric are ≥ k (or
≤ k).

Clearly, the curvatures are natural in the sense that if F : N → M is
a diffeomorphism and if g is a Riemannian metric on M , then F ∗g is a
Riemannian metric on N and we have Rm(F ∗g) = F ∗(Rm(g)), Ric(F ∗g) =
F ∗(Ric(g)), and R(F ∗g) = F ∗(R(g)).
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2.1. Consequences of the Bianchi identities. There is one conse-
quence of the second Bianchi identity that will be important later. For any
contravariant two-tensor ω on M (such as Ric or Hess(f)) we define the
contravariant one-tensor div(ω) as follows: For any vector field X we set

div(ω)(X) = ∇∗ω(X) = grs∇r(ω)(X,∂s).

Lemma 1.9.

dR = 2div(Ric) = 2∇∗Ric.

For a proof see Proposition 6 of Chapter 2 on page 40 of [57].
We shall also need a formula relating the connection Laplacian on con-

travariant one-tensors with the Ricci curvature. Recall that for a smooth
function f , we defined the symmetric two-tensor ∇2f by

∇2f(X,Y ) = ∇X∇Y (f) −∇∇X(Y )(f) = Hess(f)(X,Y ),

and then defined the Laplacian

△f = tr∇2f = gij(∇2f)ij.

These operators extend to tensors of any rank. Suppose that ω is a con-
travariant tensor of rank k. Then we define ∇2ω to be a contravariant tensor
of rank k + 2 given by

∇2ω(·,X, Y ) = (∇X∇Y ω)(·) −∇∇X(Y )ω(·).
This expression is not symmetric in the vector fields X,Y but the commuta-
tor is given by evaluating the curvature operator R(X,Y ) on ω. We define
the connection Laplacian on the tensor ω to be

△ω = gij∇2(ω)(∂i, ∂j).

Direct computation gives the standard Bochner formula relating these Lapla-
cians with the Ricci curvature; see for example Proposition 4.36 on page 168
of [22].

Lemma 1.10. Let f be a smooth function on a Riemannian manifold.
Then we have the following formula for contravariant one-tensors:

△df = d△f + Ric((∇f)∗, ·).
2.2. First examples. The most homogeneous Riemannian manifolds

are those of constant sectional curvature. These are easy to classify; see
Corollary 10 of Chapter 5 on page 147 of [57].

Theorem 1.11. (Uniformization Theorem) If (Mn, g) is a complete,
simply-connected Riemannian manifold of constant sectional curvature λ,
then:

(1) If λ = 0, then Mn is isometric to Euclidean n-space.
(2) If λ > 0 there is a diffeomorphism φ : M → Sn such that g =

λ−1φ∗(gst) where gst is the usual metric on the unit sphere in R
n+1.
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(3) If λ < 0 there is a diffeomorphism φ : M → H
n such that g =

|λ|−1 φ∗(gst) where gst is the Poincaré metric of constant curvature
−1 on H

n.

Of course, if (Mn, g) is a complete manifold of constant sectional curva-
ture, then its universal covering satisfies the hypothesis of the theorem and
hence is one of Sn,Rn, or H

n, up to a constant scale factor. This implies
that (M,g) is isometric to a quotient of one of these simply connected spaces
of constant curvature by the free action of a discrete group of isometries.
Such a Riemannian manifold is called a space-form.

Definition 1.12. The Riemannian manifold (M,g) is said to be an
Einstein manifold with Einstein constant λ if Ric(g) = λg.

Example 1.13. Let M be an n-dimensional manifold with n being either
2 or 3. If (M,g) is Einstein with Einstein constant λ, one can easily show
that M has constant sectional curvature λ

n−1 , so that in fact M is a space-
form.

2.3. Cones. Another class of examples that will play an important role
in our study of the Ricci flow is that of cones.

Definition 1.14. Let (N, g) be a Riemannian manifold. We define the
open cone over (N, g) to be the manifold N×(0,∞) with the metric g̃ defined
as follows: For any (x, s) ∈ N × (0,∞) we have

g̃(x, s) = s2g(x) + ds2.

Fix local coordinates (x1, . . . , xn) on N . Let Γkij ; 1 ≤ i, j, k ≤ n, be

the Christoffel symbols for the Levi-Civita connection on N . Set x0 = s.
In the local coordinates (x0, x1, . . . , xn) for the cone we have the Christoffel

symbols Γ̃kij, 0 ≤ i, j, k ≤ n, for g̃. The relation between the metrics gives
the following relations between the two sets of Christoffel symbols:

Γ̃kij = Γkij ; 1 ≤ i, j, k ≤ n,

Γ̃0
ij = −sgij; 1 ≤ i, j ≤ n,

Γ̃ji0 = Γ̃j0i = s−1δji ; 1 ≤ i, j ≤ n,

Γ̃0
i0 = 0; 0 ≤ i ≤ n,

Γ̃i00 = 0; 0 ≤ i ≤ n.

Denote by Rg the curvature tensor for g and by Reg the curvature tensor
for g̃. Then the above formulas lead directly to:

Reg(∂i, ∂j)(∂0) = 0; 0 ≤ i, j ≤ n,

Reg(∂i, ∂j)(∂i) = Rg(∂i, ∂j)(∂i) + gii∂j − gji∂i 1 ≤ i, j ≤ n.
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This allows us to compute the Riemann curvatures of the cone in terms
of those of N .

Proposition 1.15. Let N be a Riemannian manifold of dimension n−1.
Fix (x, s) ∈ c(N) = N × (0,∞). With respect to the coordinates (x0, . . . , xn)
the curvature operator Rmeg(p, s) of the cone decomposes as

(
0 0

s2(Rmg(p) − ∧2g(p)) 0

)
,

where ∧2g(p) is the symmetric form on ∧2TpN induced by g.

Corollary 1.16. For any p ∈ N let λ1, . . . , λ(n−1)(n−2)/2 be the eigen-
values of Rmg(p). Then for any s > 0 there are (n − 1) zero eigenval-
ues of Rmeg(p, s). The other (n − 1)(n − 2)/2 eigenvalues of Rmeg(p, s) are

s−2(λi − 1).

Proof. Clearly from Proposition 1.15, we see that under the orthog-
onal decomposition ∧2T(p,s)c(N) = ∧2TpN ⊕ TpN the second subspace is
contained in the null space of Rmeg(p, s), and hence contributes (n − 1)
zero eigenvalues. Likewise, from this proposition we see that the eigen-
values of the restriction of Rmeg(p, s) to the subspace ∧2TpN are given by

s−4(s2(λi − 1)) = s−2(λi − 1). �

3. Geodesics and the exponential map

Here we review standard material about geodesics, Jacobi fields, and the
exponential map.

3.1. Geodesics and the energy functional.

Definition 1.17. Let I be an open interval. A smooth curve γ : I →M
is called a geodesic if ∇γ̇ γ̇ = 0.

In local coordinates, we write γ(t) = (x1(t), . . . , xn(t)) and this equation
becomes

0 = ∇γ̇ γ̇(t) =

(∑

k

(
ẍk(t) + ẋi(t)ẋj(t)Γkij(γ(t))

)
∂k

)
.

This is a system of 2nd order ODE’s. The local existence, uniqueness and
smoothness of a geodesic through any point p ∈ M with initial velocity
vector v ∈ TpM follow from the classical ODE theory. Given any two points
in a complete manifold, a standard limiting argument shows that there is
a rectifiable curve of minimal length between these points. Any such curve
is a geodesic. We call geodesics that minimize the length between their
endpoints minimizing geodesics.

We have the classical theorem showing that on a complete manifold all
geodesics are defined for all time (see Theorem 16 of Chapter 5 on p. 137
of [57]).
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Theorem 1.18. (Hopf-Rinow) If (M,g) is complete as a metric space,
then every geodesic extends to a geodesic defined for all time.

Geodesics are critical points of the energy functional. Let (M,g) be
a complete Riemannian manifold. Consider the space of C1-paths in M
parameterized by the unit interval. On this space we have the energy func-
tional

E(γ) =
1

2

∫ 1

0
〈γ′(t), γ′(t)〉dt.

Suppose that we have a one-parameter family of paths parameterized by
[0, 1], all having the same initial point p and the same final point q. By
this we mean that we have a surface γ̃(t, u) with the property that for each
u the path γu = γ̃(·, u) is a path from p to q parameterized by [0, 1]. Let

X̃ = ∂γ̃/∂t and Ỹ = ∂γ̃/∂u be the corresponding vector fields along the
surface swept out by γ̃, and denote by X and Y the restriction of these
vector fields along γ0. We compute

dE(γu)

du

∣∣∣
u=0

=

(∫ 1

0
〈∇eY X̃, X̃〉dt

)
|u=0

=

(∫ 1

0
〈∇ eX Ỹ , X̃〉dt

)
|u=0

= −
(∫ 1

0
〈∇ eXX̃, Ỹ 〉dt

)
|u=0 = −

∫ 1

0
〈∇XX,Y 〉,

where the first equality in the last line comes from integration by parts and

the fact that Ỹ vanishes at the endpoints. Given any vector field Y along γ0

there is a one-parameter family γ̃(t, u) of paths from p to q with γ̃(t, 0) = γ0

and with Ỹ (t, 0) = Y . Thus, from the above expression we see that γ0 is
a critical point for the energy functional on the space of paths from p to q
parameterized by the interval [0, 1] if and only if γ0 is a geodesic.

Notice that it follows immediately from the geodesic equation that the
length of a tangent vector along a geodesic is constant. Thus, if a geodesic
is parameterized by [0, 1] we have

E(γ) =
1

2
L(γ)2.

It is immediate from the Cauchy-Schwarz inequality that for any curve µ
parameterized by [0, 1] we have

E(µ) ≥ 1

2
L(µ)2

with equality if and only if |µ′| is constant. In particular, a curve parame-
terized by [0, 1] minimizes distance between its endpoints if it is a minimum
for the energy functional on all paths parameterized by [0, 1] with the given
endpoints.
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3.2. Families of geodesics and Jacobi fields. Consider a family of
geodesics γ̃(u, t) = γu(t) parameterized by the interval [0, 1] with γu(0) = p
for all u. Here, unlike the discussion above, we allow γu(1) to vary with u.

As before define vector fields along the surface swept out by γ̃: X̃ = ∂γ̃/∂t

and let Ỹ = ∂γ̃/∂u. We denote by X and Y the restriction of these vector

fields to the geodesic γ0 = γ. Since each γu is a geodesic, we have ∇ eXX̃ =

0. Differentiating this equation in the Ỹ -direction yields ∇eY∇ eXX̃ = 0.

Interchanging the order of differentiation, using ∇ eX Ỹ = ∇eY X̃ , and then
restricting to γ, we get the Jacobi equation:

∇X∇XY + R(Y,X)X = 0.

Notice that the left-hand side of the equation depends only on the value of
Y along γ, not on the entire family. We denote the left-hand side of this
equation by Jac(Y ), so that the Jacobi equation now reads

Jac(Y ) = 0.

The fact that all the geodesics begin at the same point at time 0 means that
Y (0) = 0. A vector field Y along a geodesic γ is said to be a Jacobi field if
it satisfies this equation and vanishes at the initial point p. A Jacobi field is
determined by its first derivative at p, i.e., by ∇XY (0). We have just seen
that this is the equation describing, to first order, variations of γ by a family
of geodesics with the same starting point.

Jacobi fields are also determined by the energy functional. Consider the
space of paths parameterized by [0, 1] starting at a given point p but free
to end anywhere in the manifold. Let γ be a geodesic (parameterized by
[0, 1]) from p to q. Associated to any one-parameter family γ̃(t, u) of paths
parameterized by [0, 1] starting at p we associate the second derivative of
the energy at u = 0. Straightforward computation gives

d2E(γu)

du2

∣∣∣
u=0

= 〈∇XY (1), Y (1)〉 + 〈X(1),∇Y Ỹ (1, 0)〉 −
∫ 1

0
〈Jac(Y ), Y 〉dt.

Notice that the first term is a boundary term from the integration by

parts, and it depends not just on the value of Y (i.e., on Ỹ restricted to γ)

but also on the first-order variation of Ỹ in the Y direction. There is the
associated bilinear form that comes from two-parameter families γ̃(t, u1, u2)
whose value at u1 = u1 = 0 is γ. It is

d2E

du1du2

∣∣∣
0,0

= 〈∇XY1(1), Y2(1)〉 + 〈X(1),∇Y1 Ỹ2(1, 0)〉 −
∫ 1

0
〈Jac(Y1), Y2〉dt.

Notice that restricting to the space of vector fields that vanish at both
endpoints, the second derivatives depend only on Y1 and Y2 and the formula
is

d2E

du1du2

∣∣∣
0,0

= −
∫ 1

0
〈Jac(Y1), Y2〉dt,
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so that this expression is symmetric in Y1 and Y2. The associated quadratic
form on the space of vector fields along γ vanishing at both endpoints

−
∫ 1

0
〈Jac(Y ), Y 〉dt

is the second derivative of the energy function at γ for any one-parameter
family whose value at 0 is γ and whose first variation is given by Y .

3.3. Minimal geodesics.

Definition 1.19. Let γ be a geodesic beginning at p ∈ M . For any
t > 0 we say that q = γ(t) is a conjugate point along γ if there is a non-zero
Jacobi field along γ vanishing at γ(t).

Proposition 1.20. Suppose that γ : [0, 1] → M is a minimal geodesic.
Then for any t < 1 the restriction of γ to [0, t] is the unique minimal geodesic
between its endpoints and there are no conjugate points on γ([0, 1)), i.e.,
there is no non-zero Jacobi field along γ vanishing at any t ∈ [0, 1).

We shall sketch the proof. For more details see Proposition 19 and
Lemma 14 of Chapter 5 on pp. 139 and 140 of [57].

Proof. (Sketch) Fix 0 < t0 < 1. Suppose that there were a different
geodesic µ : [0, t0] → M from γ(0) to γ(t0), whose length was at most that
of γ|[0,t0]. The fact that µ and γ|[0,t0] are distinct means that µ′(t0) 6= γ′(t0).
Then the curve formed by concatenating µ with γ|[t0,1] is a curve from γ(0)
to γ(1) whose length is at most that of γ. But this concatenated curve is
not smooth at µ(t0), and hence it is not a geodesic, and in particular there
is a curve with shorter length (a minimal geodesic) between these points.
This is contrary to our assumption that γ was minimal.

To establish that there are no conjugate points at γ(t0) for t0 < 1 we
need the following claim.

Claim 1.21. Suppose that γ is a minimal geodesic and Y is a field van-
ishing at both endpoints. Let γ̃(t, u) be any one-parameter family of curves
parameterized by [0, 1], with γ0 = γ and with γu(0) = γ0(0) for all u. Sup-
pose that the first-order variation of γ̃ at u = 0 is given by Y . Then

d2E(γu)

du2

∣∣∣
u=0

= 0

if and only if Y is a Jacobi field.

Proof. Suppose that γ̃(u, t) is a one-parameter family of curves from
γ(0) to γ(1) with γ0 = γ and Y is the first-order variation of this family
along γ. Since γ is a minimal geodesic we have

−
∫ 1

0
〈Jac(Y ), Y 〉dt =

d2E(γu)

du2

∣∣∣
u=0

≥ 0.
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The associated symmetric bilinear form

Bγ(Y1, Y2) = −
∫

γ
〈Jac(Y1), Y2〉dt

is symmetric when Y1 and Y2 are constrained to vanish at both endpoints.
Since the associated quadratic form is non-negative, we see by the usual
argument for symmetric bilinear forms that Bγ(Y, Y ) = 0 if and only if
Bγ(Y, ·) = 0 as a linear functional on the space of vector fields along γ
vanishing at point endpoints. This of course occurs if and only if Jac(Y ) =
0. �

Now let us use this claim to show that there are no conjugate points on
γ|(0,1). If for some t0 < 1, γ(t0) is a conjugate point along γ, then there is
a non-zero Jacobi field Y (t) along γ with Y (t0) = 0. Notice that since Y

is non-trivial, ∇XY (t0) 6= 0. Extend Y (t) to a vector field Ŷ along all of γ
by setting it equal to 0 on γ|[t0,1]. Since the restriction of Y to γ([0, t0]) is a
Jacobi field vanishing at both ends and since γ|[0,t0] is a minimal geodesic,
the second-order variation of length of γ|[0,t0] in the Y -direction is zero. It

follows that the second-order variation of length along Ŷ vanishes. But Ŷ
is not smooth (at γ(t0)) and hence it is not a Jacobi field along γ. This
contradicts the fact discussed in the previous paragraph that for minimal
geodesics the null space of the quadratic form is exactly the space of Jacobi
fields. �

3.4. The exponential mapping.

Definition 1.22. For any p ∈ M , we can define the exponential map
at p, expp. It is defined on an open neighborhood Op of the origin in TpM
and is defined by expp(v) = γv(1), the endpoint of the unique geodesic
γv : [0, 1] → M starting from p with initial velocity vector v. We always
take Op ⊂ TpM to be the maximal domain on which expp is defined, so that
Op is a star-shaped open neighborhood of 0 ∈ TpM . By the Hopf-Rinow
Theorem, if M is complete, then the exponential map is defined on all of
TpM .

By the inverse function theorem there exists r0 = r0(p,M) > 0, such
that the restriction of expp to the ball Bg|TpM (0, r0) in TpM is a diffeo-
morphism onto Bg(p, r0). Fix g-orthonormal linear coordinates on TpM .
Transferring these coordinates via expp to coordinates on B(p, r0) gives us
Gaussian normal coordinates on B(p, r0) ⊂M .

Suppose now that M is complete, and fix a point p ∈ M . For every
q ∈M , there is a length-minimizing path from p to q. When parameterized
at constant speed equal to its length, this path is a geodesic with domain
interval [0, 1]. Consequently, expp : TpM → M is onto. The differential of
the exponential mapping is given by Jacobi fields: Let γ : [0, 1] → M be
a geodesic from p to q, and let X ∈ TpM be γ′(0). Then the exponential
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mapping at p is a smooth map from Tp(M) →M sending X to q. Fix Z ∈
TpM . Then there is a unique Jacobi field YZ along γ with ∇XYZ(0) = Z.
The association Z 7→ YZ(1) ∈ TqM is a linear map from Tp(M) → TqM .
Under the natural identification of TpM with the tangent plane to TpM at
the point Z, this linear mapping is the differential of expp : TpM → M at
the point X ∈ TpM .

Corollary 1.23. Suppose that γ is a minimal geodesic parameterized
by [0, 1] starting at p. Let X(0) = γ′(0) ∈ TpM . Then for each t0 < 1
the restriction γ|[0,t0] is a minimal geodesic and expp : TpM → M is a local
diffeomorphism near t0X(0).

Proof. Of course, expp(t0X(0)) = γ(t0). According to the previous dis-
cussion, the kernel of the differential of the exponential mapping at t0X(0)
is identified with the space of Jacobi fields along γ vanishing at γ(t0). Ac-
cording to Proposition 1.20 the only such Jacobi field is the trivial one.
Hence, the differential of expp at t0X(0) is an isomorphism, completing the
proof. �

Definition 1.24. There is an open neighborhood Up ⊂ TpM of 0 con-
sisting of all v ∈ TpM for which: (i) γv is the unique minimal geodesic from
p to γv(1), and (ii) expp is a local diffeomorphism at v. We set Cp ⊂ M
equal to M \ expp(Up). Then Cp is called the cut locus from p. It is a closed
subset of measure 0.

It follows from Corollary 1.23 that U ⊂ TpM is a star-shaped open
neighborhood of 0 ∈ TpM .

Proposition 1.25. The map

expp : Up →M \ Cp
is a diffeomorphism.

For a proof see p. 139 of [57].

Definition 1.26. The injectivity radius injM (p) of M at p is the supre-
mum of the r > 0 for which the restriction of expp : TpM → M to the ball
B(0, r) of radius r in TpM is a diffeomorphism into M . Clearly, injM (p) is
the distance in TpM from 0 to the frontier of Up. It is also the distance in
M from p to the cut locus Cp.

Suppose that injM (p) = r. There are two possibilities: Either there is a
broken, closed geodesic through p, broken only at p, of length 2r, or there
is a geodesic γ of length r emanating from p whose endpoint is a conjugate
point along γ. The first case happens when the exponential mapping is not
one-to-one of the closed ball of radius r in TpM , and the second happens
when there is a tangent vector in TpM of length r at which expp is not a
local diffeomorphism.
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4. Computations in Gaussian normal coordinates

In this section we compute the metric and the Laplacian (on functions)
in local Gaussian coordinates. A direct computation shows that in Gaussian
normal coordinates on a metric ball about p ∈M the metric takes the form

gij(x) = δij +
1

3
Rikljx

kxl +
1

6
Riklj,sx

kxlxs(1.5)

+ (
1

20
Riklj,st +

2

45

∑

m

RiklmRjstm)xkxlxsxt +O(r5),

where r is the distance from p. (See, for example Proposition 3.1 on page
41 of [60], with the understanding that, with the conventions there, the
quantity Rijkl there differs by sign from ours.)

Let γ be a geodesic in M emanating from p in the direction v. Choose
local coordinates θ1, . . . , θn−1 on the unit sphere in TpM in a neighborhood
of v/|v|. Then (r, θ1, . . . , θn−1) are local coordinates at any point of the ray
emanating from the origin in the v direction (except at p). Transferring
these via expp produces local coordinates (r, θ1, . . . , θn−1) along γ. Using
Gauss’s lemma (Lemma 12 of Chapter 5 on p. 133 of [57]), we can write
the metric locally as

g = dr2 + r2hij(r, θ)dθ
i ⊗ dθj.

Then the volume form

dV =
√

det(gij)dr ∧ dθ1 ∧ · · · ∧ dθn−1

= rn−1
√

det(hij)dr ∧ dθ1 ∧ · · · ∧ dθn−1.

Lemma 1.27. The Laplacian operator acting on scalar functions on M
is given in local coordinates by

△ =
1√

det(g)
∂i

(
gij
√

det(g)∂j

)
.

Proof. Let us compute the derivative at a point p. We have

1√
det(g)

∂i

(
gij
√

det(g)∂j

)
f = gij∂i∂jf + ∂ig

ij∂jf +
1

2
gij∂iTr(g̃)∂jf,

where g̃ = g(p)−1g. On the other hand from the definition of the Laplacian,
Equation (1.4), and Equation (1.3) we have

△f = gijHess(f)(∂i, ∂j) = gij (∂i∂j(f) −∇∂i
∂jf) = gij∂i∂jf − gijΓkij∂kf.

Thus, to prove the claim it suffices to show that

gijΓkij = −(∂ig
ik +

1

2
gikTr(∂ig̃)).
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From the definition of the Christoffel symbols we have

gijΓkij =
1

2
gijgkl(∂igjl + ∂jgil − ∂lgij).

Of course, gij∂igjl = −∂igijgjl, so that gijgkl∂igjl = −∂igik. It follows by

symmetry that gijgjl∂jgil = −∂igik. The last term is clearly −1
2g
ikTr(∂ig̃).

�

Using Gaussian local coordinates near p, we have

△r =
1

rn−1
√

det(h)
∂r

(
rn−1

√
det(h)

)

=
n− 1

r
+ ∂r log

(√
det(h)

)
.

From this one computes directly that

△r =
n− 1

r
− r

3
Ric(v, v) +O(r2),

where v = ṙ(0), cf, p.265-268 of [57]. So

△r ≤ n− 1

r
when r ≪ 1 and Ric > 0.

This local computation has the following global analogue.

Exercise 1.28. (E.Calabi, 1958) Let f(x) = d(p, x) be the distance
function from p. If (M,g) has Ric ≥ 0, then

△f ≤ n− 1

f

in the sense of distributions.

[Compare [57], p. 284 Lemma 42].

Remark 1.29. The statement that △f ≤ n−1
f in the sense of distribu-

tions (or equivalently in the weak sense) means that for any non-negative
test function φ, that is to say for any compactly supported C∞-function φ,
we have ∫

M
f△φdvol ≤

∫

M

(
n− 1

f

)
φdvol.

Since the triangle inequality implies that |f(x) − f(y)| ≤ d(x, y), it follows
that f is Lipschitz, and hence that the restriction of ∇f to any compact
subset of M is an L2 one-form. Integration by parts then shows that

∫

M
f△φdvol = −

∫

M
〈∇f,∇φ〉dvol.
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Since |∇f | = 1 and △f is the mean curvature of the geodesic sphere
∂B(x, r), Ric(v, v) measures the difference of the mean curvature between
the standard Euclidean sphere and the geodesic sphere in the direction v.
Another important geometric object is the shape operator associated to f ,
denoted S. By definition it is the Hessian of f ; i.e., S = ∇2f = Hess(f).

5. Basic curvature comparison results

In this section we will recall some of the basic curvature comparison
results in Riemannian geometry. The reader can refer to [57], Section 1 of
Chapter 9 for details.

We fix a point p ∈ M . For any real number k ≥ 0 let Hn
k denote the

simply connected, complete Riemannian n-manifold of constant sectional
curvature −k. Fix a point qk ∈ Hn

k , and consider the exponential map
expqk : Tqk(Hn

k ) → Hn
k . This map is a global diffeomorphism. Let us consider

the pullback, h̃k, of the Riemannian metric on Hn
k to TqkH

n
k . A formula for

this tensor is easily given in polar coordinates on Tqk(H
n
k ) in terms of the

following function.

Definition 1.30. We define a function snk as follows:

snk(r) =

{
r if k = 0,
1√
k
sinh(

√
kr) if k > 0.

The function snk(r) is the solution to the equation

ϕ′′ − kϕ = 0,

ϕ(0) = 0,

ϕ′(0) = 1.

We define ctk(r) = sn′
k(r)/

√
ksnk(r).

Now we can compare manifolds of varying sectional curvature with those
of constant curvature.

Theorem 1.31. (Sectional Curvature Comparison) Fix k ≥ 0. Let
(M,g) be a Riemannian manifold with the property that −k ≤ K(P ) for
every 2-plane P in TM . Fix a minimizing geodesic γ : [0, r0) → M param-
eterized at unit speed with γ(0) = p. Impose Gaussian polar coordinates
(r, θ1, . . . , θn−1) on a neighborhood of γ so that g = dr2 + gijθ

i ⊗ θj. Then
for all 0 < r < r0 we have

(gij(r, θ))1≤i,j≤n−1 ≤ sn2
k(r),

and the shape operator associated to the distance function from p, f , satisfies

(Sij(r, θ))1≤i,j≤n−1 ≤
√
kctk(r).
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There is also an analogous result for a positive upper bound to the
sectional curvature, but in fact all we shall need is the local diffeomorphism
property of the exponential mapping.

Lemma 1.32. Fix K ≥ 0. If |Rm(x)| ≤ K for all x ∈ B(p, π/
√
K), then

expp is a local diffeomorphism from the ball B(0, π/
√
K) in TpM to the ball

B(p, π/
√
K) in M .

There is a crucial comparison result for volume which involves the Ricci
curvature.

Theorem 1.33. (Ricci curvature comparison) Fix k ≥ 0. Assume
that (M,g) satisfies Ric ≥ −(n − 1)k. Let γ : [0, r0) → M be a minimal
geodesic of unit speed. Then for any r < r0 at γ(r) we have

√
det g(r, θ) ≤ snn−1

k (r)

and

Tr(S)(r, θ) ≤ (n− 1)
sn′
k(r)

snk(r)
.

Note that the inequality in Remark 1.29 follows from this theorem.
The comparison result in Theorem 1.33 holds out to every radius, a fact

that will be used repeatedly in our arguments. This result evolved over the
period 1964-1980 and now is referred to as the Bishop-Gromov inequality;
see Proposition 4.1 of [11]

Theorem 1.34. (Relative Volume Comparison, Bishop-Gromov 1964-
1980) Suppose (M,g) is a Riemannian manifold. Fix a point p ∈ M , and
suppose that B(p,R) has compact closure in M . Suppose that for some k ≥ 0
we have Ric ≥ −(n−1)k on B(p,R). Recall that Hn

k is the simply connected,
complete manifold of constant curvature −k and qk ∈ Hn

k is a point. Then

VolB(p, r)

VolBHn
k
B(qk, r)

is a non-increasing function of r for r < R, whose limit as r → 0 is 1.
In particular, if the Ricci curvature of (M,g) is ≥ 0 on B(p,R), then
VolB(p, r)/rn is a non-increasing function of r for r < R.

6. Local volume and the injectivity radius

As the following results show, in the presence of bounded curvature the
volume of a ball B(p, r) in M is bounded away from zero if and only if the
injectivity radius of M at p is bounded away from zero.

Proposition 1.35. Fix an integer n > 0. For every ǫ > 0 there is δ > 0
depending on n and ǫ such that the following holds. Suppose that (Mn, g) is
a complete Riemannian manifold of dimension n and that p ∈ M . Suppose
that |Rm(x)| ≤ r−2 for all x ∈ B(p, r). If the injectivity radius of M at p is
at least ǫr, then Vol(B(p, r)) ≥ δrn.
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Proof. Suppose that |Rm(x)| ≤ r−2 for all x ∈ B(p, r). Replacing g
by r2g allows us to assume that r = 1. Without loss of generality we can
assume that ǫ ≤ 1. The map expp is a diffeomorphism on the ball B(0, ǫ)
in the tangent space, and by Theorem 1.31 the volume of B(p, ǫ) is at least
that of the ball of radius ǫ in the n-sphere of radius 1. This gives a lower
bound to the volume of B(p, ǫ), and a fortiori to B(p, 1), in terms of n and
ǫ. �

We shall normally work with volume, which behaves nicely under Ricci
flow, but in order to take limits we need to bound the injectivity radius
away from zero. Thus, the more important, indeed crucial, result for our
purposes is the converse to the previous proposition; see Theorem 4.3, espe-
cially Inequality (4.22), on page 46 of [11], or see Theorem 5.8 on page 96
of [7].

Theorem 1.36. Fix an integer n > 0. For every ǫ > 0 there is δ > 0
depending on n and ǫ such that the following holds. Suppose that (Mn, g)
is a complete Riemannian manifold of dimension n and that p ∈ M . Sup-
pose that |Rm(x)| ≤ r−2 for all x ∈ B(p, r). If VolB(p, r) ≥ ǫrn then the
injectivity radius of M at p is at least δr.



CHAPTER 2

Manifolds of non-negative curvature

In studying singularity development in 3-dimensional Ricci flows one
forms blow-up limits. By this we mean the following. One considers a
sequence of points xk in the flow converging to the singularity. It will be the
case that R(xk) tends to ∞ as k tends to ∞. We form a sequence of based
Riemannian manifolds labeled by k, where the kth Riemannian manifold is
obtained by taking the time-slice of xk, rescaling its metric by R(xk), and
then taking xk as the base point. This creates a sequence with the property
that for each member of the sequence the scalar curvature at the base point
is 1. Because of a pinching result of Hamilton’s (see Chapter 4), if there is a
geometric limit of this sequence, or of any subsequence of it, then that limit
is non-negatively curved. Hence, it is important to understand the basic
properties of Riemannian manifolds of non-negative curvature in order to
study singularity development. In this chapter we review the properties that
we shall need. We suppose that M is non-compact and of positive (resp.,
non-negative) curvature. The key to understanding these manifolds is the
Busemann function associated to a minimizing geodesic ray.

1. Busemann functions

A geodesic ray λ : [0,∞) →M is said to be minimizing if the restriction
of λ to every compact subinterval of [0,∞) is a length-minimizing geodesic
arc, i.e., a geodesic arc whose length is equal to the distance between its end-
points. Likewise, a geodesic line λ : (−∞,∞) →M is said to be minimizing
if its restriction to every compact sub-interval of R is a length minimizing
geodesic arc.

Clearly, if a sequence of minimizing geodesic arcs λk converges to a geo-
desic arc, then the limiting geodesic arc is also minimizing. More generally,
if λk is a sequence of length minimizing geodesic arcs whose initial points
converge and whose lengths go to infinity, then, after passing to a subse-
quence, there is a limit which is a minimizing geodesic ray. (The existence
of a limit of a subsequence is a consequence of the fact that a geodesic ray is
determined by its initial point and its initial tangent direction.) Similarly, if
Ik is an sequence of compact intervals with the property that every compact
subset of R is contained in Ik for all sufficiently large k, if for each k the map
λk : Ik → M is a minimizing geodesic arc, and if limk→∞λk(0) exists, then,

21
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after passing to a subsequence there is a limit which is a minimizing geodesic
line. Using these facts one establishes the following elementary lemma.

Lemma 2.1. Suppose that M is a complete, connected, non-compact Rie-
mannian manifold and let p be a point of M . Then M has a minimizing
geodesic ray emanating from p. If M has more than one end, then it has a
minimizing line.

Definition 2.2. Suppose that λ : [0,∞) →M is a minimizing geodesic
ray with initial point p. For each t ≥ 0 we consider Bλ,t(x) = d(λ(t), x) − t.
This is a family of functions satisfying |Bλ,t(x) − Bλ,t(y)| ≤ d(x, y). Since
λ is a minimizing geodesic, Bλ,t(p) = 0 for all t. It follows that Bλ,t(x) ≥
−d(x, p) for all x ∈ M . Thus, the family of functions Bλ,t is pointwise
bounded below. The triangle inequality shows that for each x ∈ M the
function Bλ,t(x) is a non-increasing function of t. It follows that, for each
x ∈ M , limt→∞Bλ,t(x) exists. We denote this limit by Bλ(x). This is the
Busemann function for λ.

Clearly, Bλ(x) ≥ −d(x, λ(0)). By equicontinuity Bλ(x) is a continuous
function of x and in fact a Lipschitz function satisfying |Bλ(x) − Bλ(y)| ≤
d(x, y) for all x, y ∈ X. Clearly Bλ(λ(s)) = −s for all s ≥ 0. Since Bλ is
Lipschitz, ∇Bλ is well-defined as an L2-vector field.

Proposition 2.3. Suppose that M is complete and of non-negative Ricci
curvature. Then, for any minimizing geodesic ray λ, the Busemann function
Bλ satisfies ∆Bλ ≤ 0 in the weak sense.

Proof. First notice that since Bλ is Lipschitz, ∇Bλ is an L2-vector
field on M . That is to say, Bλ ∈ W 1,2

loc , i.e., Bλ locally has one derivative
in L2. Hence, there is a sequence of C∞-functions fn converging to Bλ in
W 1,2
loc . Let ϕ be a test function (i.e., a compactly supported C∞-function).

Integrating by parts yields

−
∫

M
〈∇fn,∇ϕ〉dvol =

∫

M
fn△ϕdvol.

Using the fact that fn converges to Bλ in W 1,2
loc and taking limits yields

−
∫

M
〈∇Bλ,∇ϕ〉dvol =

∫

M
Bλ△ϕdvol.

Thus, to prove the proposition we need only show that if ϕ is a non-
negative test function, then

−
∫

M
〈∇Bλ,∇ϕ〉dvol ≤ 0.

For a proof of this see Proposition 1.1 and its proof on pp. 7 and 8 in
[61]. �
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2. Comparison results in non-negative curvature

Let us review some elementary comparison results for manifolds of non-
negative curvature. These form the basis for Toponogov theory, [70]. For
any pair of points x, y in a complete Riemannian manifold, sxy denotes a
minimizing geodesic from x to y. We set |sxy| = d(x, y) and call it the length
of the side. A triangle in a Riemannian manifold consists of three vertices
a, b, c and three sides sab,sac,sbc. We denote by ∠a the angle of the triangle
at a, i.e., the angle at a between the geodesic rays sab and sac.

Theorem 2.4. (Length comparison) Let (M,g) be a manifold of non-
negative curvature. Suppose that △ = △(a, b, c) is a triangle in M and let
△′ = △(a′, b′, c′) be a Euclidean triangle.

(1) Suppose that the corresponding sides of △ and △′ have the same
lengths. Then the angle at each vertex of △′ is no larger than the
corresponding angle of △. Furthermore, for any α and β less than
|sab| and |sac| respectively, let x, resp. x′, be the point on sab, resp.
sa′b′, at distance α from a, resp. a′, and let y, resp. y′, be the
point on sac, resp. sa′c′, at distance β from a, resp. a′. Then
d(x, y) ≥ d(x′, y′).

(2) Suppose that |sab| = |sa′b′ |, that |sac| = |sa′c′ | and that ∠a = ∠a′ .
Then |sb′c′ | ≥ |sbc|.

See Fig. 1. For a proof of this result see Theorem 4.2 on page 161 of
[60], or Theorem 2.2 on page 42 of [7].

One corollary is a monotonicity result. Suppose that △(a, b, c) is a tri-
angle in a complete manifold of non-negative curvature. Define a function
EA(u, v) defined for 0 ≤ u ≤ |sab| and 0 ≤ v ≤ |sac| as follows. For u and
v in the indicated ranges, let x(u) be the point on sab at distance u from a
and let y(v) be the point of sac at distance v from a. Let EA(u, v) be the
angle at a′ of the Euclidean triangle with side lengths |sa′b′ | = u, |sa′c′ | = v
and |sb′c′ | = d(x(u), y(v)).

Corollary 2.5. Under the assumptions of the previous theorem, the
function EA(u, v) is a monotone non-increasing function of each variable u
and v when the other variable is held fixed.

Suppose that α, β, γ are three geodesics emanating from a point p in a
Riemannian manifold. Let ∠p(α, β), ∠p(β, γ) and ∠p(α, γ) be the angles of
these geodesics at p as measured by the Riemannian metric. Then of course

∠p(α, β) + ∠p(β, γ) + ∠p(α, γ) ≤ 2π

since this inequality holds for the angles between straight lines in Euclidean
n-space. There is a second corollary of Theorem 2.4 which gives an analogous
result for the associated Euclidean angles.
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d(x, y) ≥ d(x′, y′) and ∠bac ≥ ∠b′a′c′

x

y

Figure 1. Toponogov comparison.

Corollary 2.6. Let (M,g) be a complete Riemannian manifold of non-
negative curvature. Let p, a, b, c be four points in M and let α, β, γ be min-
imizing geodesic arcs from the point p to a, b, c respectively. Let T (apb),
T (bpc) and T (cpa) be the triangles in M made out of these minimizing
geodesics and minimizing geodesics between a, b, c. Let T (a′p′b′), T (b′p′c′)
and T (c′p′a′) be planar triangles with the same side lengths. Then

∠p′T (a′p′b′) + ∠p′T (b′p′c′) + ∠p′T (c′p′a′) ≤ 2π.

Proof. Consider the sum of these angles as the geodesic arcs in M
are shortened without changing their direction. By the first property of
Theorem 2.4 the sum of the angles of these triangles is a monotone decreasing
function of the lengths. Of course, the limit as the lengths all go to zero is
the corresponding Euclidean angle. The result is now clear. �

3. The soul theorem

A subset X of a Riemannian manifold (M,g) is said to be totally convex
if every geodesic segment with endpoints in X is contained in X. Thus, a
point p in M is totally convex if and only if there is no broken geodesic arc
in M broken exactly at x.
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Theorem 2.7. (Cheeger-Gromoll, see [8] and [10]) Suppose that (M,g)
is a connected, complete, non-compact Riemannian manifold of non-negative
sectional curvature. Then M contains a soul S ⊂ M . By definition a soul
is a compact, totally geodesic, totally convex submanifold (automatically of
positive codimension). Furthermore, M is diffeomorphic to the total space
of the normal bundle of the S in M . If (M,g) has positive curvature, then
any soul for it is a point, and consequently M is diffeomorphic to R

n.

Remark 2.8. We only use the soul theorem for manifolds with positive
curvature and the fact that any soul of such a manifold is a point. A proof
of this result first appears in [24].

The rest of this section is devoted to a sketch of the proof of this result.
Our discussion follows closely that in [57] starting on p. 349. We shall need
more information about complete, non-compact manifolds of non-negative
curvature, so we review a little of their theory as we sketch the proof of the
soul theorem.

Lemma 2.9. Let (M,g) be a complete, non-compact Riemannian man-
ifold of non-negative sectional curvature and let p ∈ M . For every ǫ > 0
there is a compact subset K = K(p, ǫ) ⊂ M such that for all points q /∈ K,
if γ and µ are minimizing geodesics from p to q, then the angle that γ and
µ make at q is less than ǫ.

See Fig. 2.

Proof. The proof is by contradiction. Fix 0 < ǫ < 1 sufficiently small
so that cos(ǫ/2) < 1 − ǫ2/12. Suppose that there is a sequence of points
qn tending to infinity such that for each n there are minimizing geodesics
γn and µn from p to qn making angle at least ǫ at qn. For each n let
dn = d(p, qn). By passing to a subsequence we can suppose that for all n
and m the cosine of the angle at p between γn and γm at least 1 − ǫ2/24,
and the cosine of the angle at p between µn and µm is at least 1 − ǫ2/24.
We can also assume that for all n ≥ 1 we have dn+1 ≥ (100/ǫ2)dn. Let
δn = d(qn, qn+1). Applying the first Toponogov property at p, we see that
δ2n ≤ d2

n + d2
n+1 − 2dndn+1(1− ǫ2/24). Applying the same property at qn we

have
d2
n+1 ≤ d2

n + δ2n − 2dnδncos(θ),

where θ ≤ π is the angle at qn between γn and a minimal geodesic joining
qn to qn+1. Thus,

cos(θ) ≤ dn − dn+1(1 − ǫ2/24)

δn
.

By the triangle inequality (and the fact that ǫ < 1) we have δn ≥ (99/ǫ)dn
and δn ≥ dn+1(1 − (ǫ2/100)). Thus,

cos(θ) ≤ ǫ2/99 − (1 − ǫ2/24)/(1 − (ǫ2/100)) < −(1 − ǫ2/12).
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This implies that cos(π − θ) > (1 − ǫ2/12), which implies that π − θ < ǫ/2.
That is to say, the angle at qn between γn and a shortest geodesic from qn to
qn+1 is between π− ǫ/2 and π. By symmetry, the same is true for the angle
between µn and the same shortest geodesic from qn to qn+1. Thus, the angle
between γn and µn at qn is less than ǫ, contradicting our assumption. �

γ, γ′ minimal geodesics

γ

p

γ′

K(p, ǫ)

q

angle < ǫ

Figure 2. Shallow angles of minimal geodesics.

Corollary 2.10. Fix (M,g) a complete, non-compact manifold of non-
negative sectional curvature. Let p ∈ M and define a function f : M → R

by f(q) = d(p, q). Then there is R <∞ such that for R ≤ s < s′ we have:

(1) f−1([s, s′]) is homeomorphic to f−1(s)× [s, s′] and in particular the
level sets f−1(s) and f−1(s′) are homeomorphic;

(2) f−1([s,∞) is homeomorphic to f−1(s) × [s,∞).

Proof. Given (M,g) and p ∈ M as in the statement of the corollary,
choose a constant R < ∞ such that any two minimal geodesics from p
to a point q with d(p, q) ≥ R/2 make an angle at most π/6 at q. Now
following [57] p. 335, it is possible to find a smooth unit vector field X on

U = M −B(p,R/2) with the property that f(·) = d(p, ·) is increasing along
any integral curve for X at a rate bounded below by cos(π/3). In particular,
for any s ≥ R each integral curve of X crosses the level set f−1(s) in a single
point. Using this vector field we see that for any s, s′ > R, the pre-image
f−1([s, s′]) is homeomorphic to f−1(s)× [s, s′] and that the end f−1 ([s,∞))
is homeomorphic to f−1(s) × [s,∞). �

In a complete, non-compact n-manifold of positive curvature any soul
is a point. While the proof of this result uses the same ideas as discussed



4. ENDS OF A MANIFOLD 27

above, we shall not give a proof. Rather we refer the reader to Theorem 84
of [57] on p. 349. A soul has the property that if two minimal geodesics
emanate from p and end at the same point q 6= p, then the angle that they
make at q is less than π/2. Also, of course, the exponential mapping is a
diffeomorphism sufficiently close to the soul. Applying the above lemma and
a standard compactness argument, we see that in fact there is ǫ > 0 such
that all such pairs of minimal geodesics from p ending at the same point
make an angle less than π/2− ǫ at that point. Hence, in this case there is a
vector field X on all of M vanishing only at the soul, and agreeing with the
gradient of the distance function near the soul, so that the distance function
from p is strictly increasing to infinity along each flow line of X (except the
fixed point). Using X one establishes that M is diffeomorphic to R

n. It
also follows that all the level surfaces f−1(s) for s > 0 are homeomorphic
to Sn−1 and for 0 < s < s′ the preimage f−1([s, s′]) is homeomorphic to
Sn−1 × [s, s′].

There is an analogue of this result for the distance function from any
point, not just a soul.

Corollary 2.11. Let (M,g) be a complete, non-compact Riemannian
n-manifold of positive curvature. Then for any point p ∈ M there is a
constant R = R(p) such that for any s < s′ with R ≤ s both f−1(s, s′) and
f−1(s,∞) are homotopy equivalent to Sn−1.

Proof. Given (M,g) and p, fix R <∞ sufficiently large so that Corol-
lary 2.10 holds. SinceM is diffeomorphic to R

n it has only one end and hence
the level sets f−1(s) for s ≥ R are connected. Given any compact subset
K ⊂M there is a larger compact set B (a ball) such that M \B has trivial
fundamental group and trivial homology groups Hi for i < n− 1. Hence for
any subset Z ⊂M \B, the inclusion of Z →M \K induces the trivial map
on π1 and on Hi for i < n − 1. Clearly, for any R ≤ s < b the inclusion
f−1(b,∞) → f−1(s,∞) is a homotopy equivalence. Thus, it must be the case
that f−1(b,∞) has trivial fundamental group and Hi for i < n − 1. Hence,
the same is true for f−1(s,∞) for any s ≥ R. Lastly, since f−1(s,∞) is con-
nected and simply connected ( hence orientable) and has two ends, it follows
by the non-compact form of Poincaré duality that Hn−1(f

−1(s,∞)) ∼= Z.
Hence, by the Hurewicz theorem f−1(s,∞) is homotopy equivalent to Sn−1

for any s ≥ R. Of course, it is also true for R ≤ s ≤ s′ that f−1(s, s′) is
homotopy equivalent to Sn−1. �

4. Ends of a manifold

Let us review the basic notions about ends of a manifold.

Definition 2.12. Let M be a connected manifold. Consider the in-
verse system of spaces indexed by the compact, codimension-0 submanifolds
K ⊂ M , where the space associated to K is the finite set π0(M \K) with
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the discrete topology. The inverse limit of this inverse system is the space
of ends of M . It is a compact space. An end of M is a point of the space
of ends. An end E determines a complementary component of each com-
pact, codimension-0 submanifold K ⊂M , called a neighborhood of the end.
Conversely, by definition these neighborhoods are cofinal in the set of all
neighborhoods of the end. A sequence {xn} in M converges to the end E if
it is eventually in every neighborhood of the end. In fact, what we are doing
is defining a topology on the union of M and its space of ends that makes
this union a compact, connected Hausdorff space which is a compactification
of M .

A proper map between topological manifolds induces a map on the space
of ends, and in fact induces a map on the compactifications sending the
subspace of ends of the compactification of the domain to the subspace of
ends of the compactification of the range.

We say that a path γ : [a, b) → M is a path to the end E if it is a
proper map and it sends the end {b} of [a, b) to the end E of M . This
condition is equivalent to saying that given a neighborhood U of E there is
a neighborhood of the end {b} of [a, b) that maps to U .

Now suppose that M has a Riemannian metric g. Then we can dis-
tinguish between ends at finite and infinite distance. An end is at finite
distance if there is a rectifiable path of finite length to the end. Otherwise,
the end is at infinite distance. If an end is at finite distance we have the
notion of the distance from a point x ∈ M to the end. It is the infimum of
the lengths of rectifiable paths from x to the end. This distance is always
positive. Also, notice that the Riemannian manifold is complete if and only
if has no end at finite distance.

5. The splitting theorem

In this section we give a proof of the following theorem which is originally
due to Cheeger-Gromoll [9]. The weaker version giving the same conclusion
under the stronger hypothesis of non-negative sectional curvature (which is
in fact all we need in this work) was proved earlier by Toponogov, see [70].

Theorem 2.13. Suppose that M is complete, of non-negative Ricci cur-
vature and suppose that M has at least two ends. Then M is isometric to a
product N × R where N is a compact manifold.

Proof. We begin the proof by establishing a result of independent in-
terest, which was formulated as the main theorem in [9].

Lemma 2.14. Any complete Riemannian manifold X of non-negative
Ricci curvature containing a minimizing line is isometric to a product N×R

for some Riemannian manifold N .
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Proof. Given a minimizing line λ : R → X, define λ± : [0,∞) → X by
λ+(t) = λ(t) and λ−(t) = λ(−t). Then we have the Busemann functions
B+ = Bλ+ and B− = Bλ− . Proposition 2.3 applies to both B+ and B−
and shows that ∆(B+ + B−) ≤ 0. On the other hand, using the fact that
λ is distance minimizing, we see that for any s, t > 0 and for any x ∈ M
we have d(x, λ(t)) + d(x, λ(−s)) ≥ s + t, and hence B+(x) + B−(x) ≥ 0.
Clearly, B+(x) +B−(x) = 0 for any x in the image of λ. Thus, the function
B+ + B− is everywhere ≥ 0, vanishes at least at one point and satisfies
∆(B+ + B−) ≤ 0 in the weak sense. This is exactly the set-up for the
maximum principle, cf. [57], p. 279.

Theorem 2.15. (The Maximum Principle) Let f be a real-valued
continuous function on a connected Riemannian manifold with ∆f ≥ 0 in
the weak sense. Then f is locally constant near any local maximum. In
particular, if f achieves its maximum then it is a constant.

Applying this result to −(B+ +B−), we see that B+ +B− = 0, so that
B− = −B+. It now follows that ∆B+ = 0 in the weak sense. By standard
elliptic regularity results this implies that B+ is a smooth harmonic function.

Next, we show that for all x ∈ M we have |∇B+(x)| = 1. Fix x ∈ M .
Take a sequence tn tending to infinity and consider minimizing geodesics
µ+,n from x to λ+(tn). By passing to a subsequence we can assume that
there is a limit as n→ ∞. This limit is a minimizing geodesic ray µ+ from
x, which we think of as being ‘asymptotic at infinity’ to λ+. Similarly, we
construct a minimizing geodesic ray µ− from x asymptotic at infinity to λ+.
Since µ+ is a minimal geodesic ray, it follows that for any t the restriction
µ+|[0,t] is the unique length minimizing geodesic from x to µ+(t) and that
µ+(t) is not a conjugate point along µ+. It follows by symmetry that x is
not a conjugate point along the reversed geodesic −µ+|[0,t] and hence that
x ∈ Uµ+(t). This means that the function d(µ+(t), ·) is smooth at x with
gradient equal to the unit tangent vector in the negative direction at x to
µ+, and consequently that Bµ+,t is smooth at x. Symmetrically, for any
t > 0 the function Bµ−,t is smooth at x with the opposite gradient. Notice
that these gradients have norm 1. We have

Bµ+,t +B+(x) ≥ B+ = −B− ≥ −(Bµ−,t +B−(x)).

Of course, Bµ+,t(x) = 0 and Bµ−,t(x) = 0, so that

Bµ+,t(x) +B+(x) = −(Bµ−,t(x) +B−(x)).

This squeezes B+ between two smooth functions with the same value and
same gradient at x and hence shows that B+ is C1 at x and |∇B+(x)| is of
norm 1.

Thus, B defines a smooth Riemannian submersion from M → R which
implies that M is isometric to a product of the fiber over the origin with
R. �
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This result together with Lemma 2.1 shows that if M satisfies the hy-
pothesis of the theorem, then it can be written as a Riemannian product
M = N × R. Since M has at least two ends, it follows immediately that N
is compact. This completes the proof of the theorem. �

6. ǫ-necks

Certain types of (incomplete) Riemannian manifolds play an especially
important role in our analysis. The purpose of this section is to introduce
these manifolds and use them to prove one essential result in Riemannian
geometry.

For all of the following definitions we fix 0 < ǫ < 1/2. Set k equal to the
greatest integer less than or equal to ǫ−1. In particular, k ≥ 2.

Definition 2.16. Suppose that we have a fixed metric g0 on a manifold
M and an open submanifold X ⊂ M . We say that another metric g on X
is within ǫ of g0|X in the C [1/ǫ]-topology if, setting k = [1/ǫ] we have

(2.1) supx∈X

(
|g(x) − g0(x)|2g0 +

k∑

ℓ=1

|∇ℓ
g0g(x)|2g0

)
< ǫ2,

where the covariant derivative ∇ℓ
g0 is the Levi-Civita connection of g0 and

norms are the pointwise g0-norms on

Sym2T ∗M ⊗ T ∗M ⊗ · · · ⊗ T ∗M︸ ︷︷ ︸
ℓ−times

.

More generally, given two smooth families of metrics g(t) and g0(t) on
M defined for t in some interval I we say that the family g(t)|X is within ǫ

of the family g0(t)|X in the C [1/ǫ]-topology if we have

sup(x,t)∈X×I

(
|g(x, t) − g0(x, t)|2g0(t) +

k∑

ℓ=1

∣∣∣∇ℓ
g0g(x, t)

∣∣∣
2

g0

)
< ǫ2.

Remark 2.17. Notice that if we view a one-parameter family of metrics
g(t) as a curve in the space of metrics on X with the C [1/ǫ]-topology then
this is the statement that the two paths are pointwise within ǫ of each
other. It says nothing about the derivatives of the paths, or equivalently
about the time derivatives of the metrics and of their covariant derivatives.
We will always be considering paths of metrics satisfying the Ricci flow
equation. In this context two one-parameter families of metrics that are
close in the C2k-topology exactly when the rth time derivatives of the sth-
covariant derivatives are close for all r, s with s+ 2r ≤ 2k.

The first object of interest is one that, up to scale, is close to a long,
round cylinder.
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Definition 2.18. Let (N, g) be a Riemannian manifold and x ∈ N
a point. Then an ǫ-neck structure on (N, g) centered at x consists of a
diffeomorphism

ϕ : S2 × (−ǫ−1, ǫ−1) → N,

with x ∈ ϕ(S2 × {0}), such that the metric R(x)ϕ∗g is within ǫ in the

C [1/ǫ]-topology of the product of the usual Euclidean metric on the open
interval with the metric of constant Gaussian curvature 1/2 on S2. We
also use the terminology N is an ǫ-neck centered at x. The image under ϕ
of the family of submanifolds S2 × {t} is called the family of 2-spheres of
the ǫ-neck. The submanifold ϕ(S2 × {0}) is called the central 2-sphere of
the ǫ-neck structure. We denote by sN : N → R the composition p2 ◦ ϕ−1,
where p2 is the projection of S2 × (−ǫ−1, ǫ−1) to the second factor. There
is also the vector field ∂/∂sN on N which is ϕ∗ of the standard vector field
in the interval-direction of the product. We also use the terminology of the
plus and minus end of the ǫ-neck in the obvious sense. The opposite (or
reversed) ǫ-neck structure is the one obtained by composing the structure
map with IdS2 ×−1. We define the positive half of the neck to be the region
s−1
N (0, ǫ−1) and the negative half to be the region s−1

N (−ǫ−1, 0). For any other
fraction, e.g., the left-hand three-quarters, the right-hand one-quarter, there
are analogous notions, all measured with respect to sN : N → (−ǫ−1, ǫ−1).
We also use the terminology the middle one-half, or middle one-third of the
ǫ-neck; again these regions have their obvious meaning when measured via
sN .

An ǫ-neck in a Riemannian manifold X is a codimension-zero submani-
fold N and an ǫ-structure on N centered at some point x ∈ N .

The scale of an ǫ-neck N centered at x is R(x)−1/2. The scale of N is
denoted rN . Intuitively, this is a measure of the radius of the cross-sectional
S2 in the neck. In fact, the extrinsic diameter of any S2 factor in the neck
is close to

√
2πrN . See Fig. 1 in the introduction.

Here is the result that will be so important in our later arguments.

Proposition 2.19. The following holds for any ǫ > 0 sufficiently small.
Let (M,g) be a complete, positively curved Riemannian 3-manifold. Then
(M,g) does not contain ǫ-necks of arbitrarily small scale.

Proof. The result is obvious if M is compact, so we assume that M is
non-compact. Let p ∈ M be a soul for M (Theorem 2.7), and let f be the
distance function from p. Then f−1(s) is connected for all s > 0.

Lemma 2.20. Suppose that ǫ > 0 is sufficiently small that Lemma A.10
from the appendix holds. Let (M,g) be a non-compact 3-manifold of positive
curvature and let p ∈ M be a soul for it. Then for any ǫ-neck N disjoint
from p the central 2-sphere of N separates the soul from the end of the
manifold. In particular, if two ǫ-necks N1 and N2 in M are disjoint from
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each other and from p, then the central 2-spheres of N1 and N2 are the
boundary components of a region in M diffeomorphic to S2 × I.

Proof. Let N be an ǫ-neck disjoint from p. By Lemma A.10 for any
point z in the middle third ofN , the boundary of the metric ball B(p, d(z, p))
is a topological 2-sphere in N isotopic in N to the central 2-sphere of N .
Hence, the central 2-sphere separates the soul from the end of M . The
second statement follows immediately by applying this to N1 and N2. �

Let N1 and N2 be disjoint ǫ-necks, each disjoint from the soul. By the
previous lemma, the central 2-spheres S1 and S2 of these necks are smoothly
isotopic to each other and they are the boundary components of a region
diffeomorphic to S2 × I. Reversing the indices if necessary we can assume
that N2 is closer to ∞ than N1, i.e., further from the soul. Reversing
the directions of the necks if necessary, we can arrange that for i = 1, 2
the function sNi is increasing as we go away from the soul. We define C∞-
functions ψi onNi, functions depending only on sNi , as follows. The function
ψ1 is 0 on the negative side of the middle third of N1 and increases to be
identically 1 on the positive side of the middle third. The function ψ2 is
1 on the negative side of the middle third of N2 and decreases to be 0 on
the positive side. We extend ψ1, ψ2 to a function ψ defined on all of M by
requiring that it be identically 1 on the region X between N1 and N2 and
to be identically 0 on M \ (N1 ∪X ∪N2).

Let λ be a geodesic ray from the soul of M to infinity, and Bλ its
Busemann function. Let N be any ǫ-neck disjoint from the soul, with sN
direction chosen so that it points away from the soul. At any point of the
middle third of N where Bλ is smooth, ∇Bλ is a unit vector in the direction
of the unique minimal geodesic ray from the end of λ to this point. Invoking
Lemma A.4 from the appendix we see that at such points ∇Bλ is close to
−R(x)1/2∂/∂sN , where x ∈ N is the center of the ǫ-neck. Since ∇Bλ is L2

its non-smooth points have measure zero and hence, the restriction of ∇Bλ
to the middle third of N is close in the L2-sense to −R(x)1/2∂/∂sN .

Applying this to N1 and N2 we see that

(2.2)

∫

M
〈∇Bλ,∇ψ〉dvol =

(
α2R(x2)

−1 − α1R(x1)
−1
)
Volh0(S

2)),

where h(0) is the round metric of scalar curvature 1 and where each of α1

and α2 limits to 1 as ǫ goes to 0. Since ψ ≥ 0, Proposition 2.3 tells us
that the left-hand side of Equation (2.2) must be ≥ 0. This shows that,
provided that ǫ is sufficiently small, R(x2) is bounded above by 2R(x1).
This completes the proof of the proposition. �

Corollary 2.21. Fix ǫ > 0 sufficiently small so that Lemma A.10 holds.
Then there is a constant C <∞ depending on ǫ such that the following holds.
Suppose that M is a non-compact 3-manifold of positive sectional curvature.
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Suppose that N is an ǫ-neck in M centered at a point x and disjoint from
a soul p of M . Then for any ǫ-neck N ′ that is separated from p by N with
center x′ we have R(x′) ≤ CR(x).

7. Forward difference quotients

Let us review quickly some standard material on forward difference quo-
tients.

Let f : [a, b] → R be a continuous function on an interval. We say that

the forward difference quotient of f at a point t ∈ [a, b), denoted df
dt (t), is

less than c provided that

lim△t→0+
f(t+ △t) − f(t)

△t ≤ c.

We say that it is greater than or equal to c′ if

c′ ≤ lim△t→0+

f(t+ △t) − f(t)

△t .

Standard comparison arguments show:

Lemma 2.22. Suppose that f : [a, b] → R is a continuous function. Sup-

pose that ψ is a C1-function on [a, b]×R and suppose that df
dt (t) ≤ ψ(t, f(t))

for every t ∈ [a, b) in the sense of forward difference quotients. Suppose also
that there is a function G(t) defined on [a, b] that satisfies the differential
equation G′(t) = ψ(t,G(t)) and has f(a) ≤ G(a). Then f(t) ≤ G(t) for all
t ∈ [a, b].

The application we shall make of these results is the following.

Proposition 2.23. Let M be a smooth manifold with a smooth vector
field χ and a smooth function t : M → [a, b] with χ(t) = 1. Suppose also
that F : M → R is a smooth function with the properties:

(1) for each t0 ∈ [a, b] the restriction of F to the level set t−1(t0)
achieves its maximum, and

(2) the subset Z of M consisting of all x for which F (x) ≥ F (y) for
all y ∈ t−1(t(x)) is a compact set.

Suppose also that at each x ∈ Z we have χ(F (x)) ≤ ψ(t(x), F (x)). Set
Fmax(t) = maxx∈t−1(t)F (x). Then Fmax(t) is a continuous function and

dFmax

dt
(t) ≤ ψ(t, Fmax(t))

in the sense of forward difference quotients. Suppose that G(t) satisfies the
differential equation

G′(t) = ψ(t,G(t))

and has initial condition Fmax(a) ≤ G(a). Then for all t ∈ [a, b] we have

Fmax(t) ≤ G(t).
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Proof. Under the given hypothesis it is a standard and easy exercise to
establish the statement about the forward difference quotient of Fmax. The
second statement then is an immediate corollary of the previous result. �



CHAPTER 3

Basics of Ricci flow

In this chapter we introduce the Ricci flow equation due to R. Hamilton
[29]. For the basic material on the Ricci flow equation see [13].

1. The definition of Ricci flow

Definition 3.1. The Ricci flow equation is the following evolution equa-
tion for a Riemannian metric:

(3.1)
∂g

∂t
= −2Ric(g).

A solution to this equation (or a Ricci flow) is a one-parameter family of
metrics g(t), parameterized by t in a non-degenerate interval I, on a smooth
manifold M satisfying Equation (3.1). If I has an initial point t0, then
(M,g(t0)) is called the initial condition of or the initial metric for the Ricci
flow (or of the solution).

Let us give a quick indication of what the Ricci flow equation means. In
harmonic coordinates (x1, . . . , xn) about p, that is to say coordinates where
△xi = 0 for all i, we have

Ricij = Ric(
∂

∂xi
,
∂

∂xj
) = −1

2
△gij +Qij(g

−1, ∂g)

where Q is a quadratic form in g−1 and ∂g, and so in particular is a lower
order term in the derivatives of g. See Lemma 3.32 on page 92 of [13]. So,
in these coordinates, the Ricci flow equation is actually a heat equation for
the Riemannian metric

∂

∂t
g = △g + 2Q(g−1, ∂g).

Definition 3.2. We introduce some notation that will be used through-
out. Given a Ricci flow (Mn, g(t)) defined for t contained in an interval I,
then the space-time for this flow is M × I. The t time-slice of space-time
is the Riemannian manifold M × {t} with the Riemannian metric g(t). Let
HT (M × I) be the horizontal tangent bundle of space-time, i.e., the bundle
of tangent vectors to the time-slices. It is a smooth, rank-n subbundle of
the tangent bundle of space-time. The evolving metric g(t) is then a smooth
section of Sym2HT ∗(M × I). We denote points of space-time as pairs (p, t).

35
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Given (p, t) and any r > 0 we denote by B(p, t, r) the metric ball of radius r
centered at (p, t) in the t time-slice. For any ∆t > 0 for which [t−∆t, t] ⊂ I,
we define the backwards parabolic neighborhood P (x, t, r,−∆t) to be the
product B(x, t, r)× [t−∆t, t] in space-time. Notice that the intersection of
P (x, t, r,−∆t) with a time-slice other than the t time-slice need not be a
metric ball in that time-slice. There is the corresponding notion of a forward
parabolic neighborhood P (x, t, r,∆t) provided that [t, t+ ∆t] ⊂ I.

2. Some exact solutions to the Ricci flow

2.1. Einstein manifolds. Let g0 be an Einstein metric: Ric(g0) = λg0,
where λ is a constant. Then for any positive constant c, setting g = cg0 we
have Ric(g) = Ric(g0) = λg0 = λ

c g. Using this we can construct solutions
to the Ricci flow equation as follows. Consider g(t) = u(t)g0. If this one-
parameter family of metrics is a solution of the Ricci flow, then

∂g

∂t
= u′(t)g0

= −2Ric(u(t)g0)

= −2Ric(g0)

= −2λg0.

So u′(t) = −2λ, and hence u(t) = 1 − 2λt. Thus g(t) = (1 − 2λt)g0 is a
solution of the Ricci flow. The cases λ > 0, λ = 0, and λ < 0 correspond
to shrinking, steady and expanding solutions. Notice that in the shrinking
case the solution exists for t ∈ [0, 1

2λ) and goes singular at t = 1
2λ .

Example 3.3. The standard metric on each of Sn,Rn, and H
n is Ein-

stein. Ricci flow is contracting on Sn, constant on R
n, and expanding on H

n.
The Ricci flow on Sn has a finite-time singularity where the diameter of the
manifold goes to zero and the curvature goes uniformly to +∞. The Ricci
flow on H

n exists for all t ≥ 0 and as t goes to infinity the distance between
any pair of points grows without bound and the curvature goes uniformly
to zero.

Example 3.4. CPn equipped with the Fubini-Study metric, which is
induced from the standard metric of S2n+1 under the Hopf fibration with
the fibers of great circles, is Einstein.

Example 3.5. Let h0 be the round metric on S2 with constant Gaussian
curvature 1/2. Set h(t) = (1 − t)h0. Then the flow

(S2, h(t)), −∞ < t < 1,

is a Ricci flow. We also have the product of this flow with the trivial flow
on the line: (S2 × R, h(t) × ds2), −∞ < t < 1. This is called the standard
shrinking round cylinder.
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The standard shrinking round cylinder is a model for evolving ǫ-necks.
In Chapter 1 we introduced the notion of an ǫ-neck. In the case of flows,
in order to take smooth geometric limits, it is important to have a stronger
version of this notion. In this stronger notion, the neck not only exists in
one time-slice but it exists backwards in the flow for an appropriate amount
of time and is close to the standard shrinking round cylinder on the entire
time interval. The existence of evolving necks is exploited when we study
limits of Ricci flows.

Definition 3.6. Let (M,g(t)) be a Ricci flow. An evolving ǫ-neck cen-
tered at (x, t0) and defined for rescaled time t1 is an ǫ-neck

ϕ : S2 × (−ǫ−1, ǫ−1)
∼=−→ N ⊂ (M,g(t))

centered at (x, t0) with the property that pull-back via ϕ of the family of
metrics R(x, t0)g(t

′)|N , −t1 < t′ ≤ 0, where t1 = R(x, t0)
−1(t−t0), is within

ǫ in the C [1/ǫ]-topology of the product of the standard metric on the interval
with evolving round metric on S2 with scalar curvature 1/(1 − t′) at time
t′. A strong ǫ-neck centered at (x, t0) in a Ricci flow is an evolving ǫ-neck
centered at (x, t0) and defined for rescaled time 1, see Fig. 1.

−ǫ−1 S2 × {0} ǫ−1

−ǫ−1 ǫ−1

t = 0
R ∼ 1

t = −1

R ∼ 1
2

x

x

Ricci flow

Figure 1. Strong ǫ-neck of scale 1.

2.2. Solitons. A Ricci soliton is a Ricci flow (M,g(t)), 0 ≤ t < T ≤
∞, with the property that for each t ∈ [0, T ) there is a diffeomorphism
ϕt : M → M and a constant σ(t) such that σ(t)ϕ∗

t g(0) = g(t). That is to
say, in a Ricci soliton all the Riemannian manifolds (M,g(t)) are isometric
up to a scale factor that is allowed to vary with t. The soliton is said to
be shrinking if σ′(t) < 0 for all t. One way to generate Ricci solitons is the
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following: Suppose that we have a vector field X on M and a constant λ
and a metric g(0) such that

(3.2) −Ric(g(0)) =
1

2
LXg(0) − λg(0).

We set T = ∞ if λ ≤ 0 and equal to (2λ)−1 if λ > 0. Then, for all t ∈ [0, T )
we define a function

σ(t) = 1 − 2λt,

and a vector field

Yt(x) =
X(x)

σ(t)
.

Then we define ϕt as the one-parameter family of diffeomorphisms generated
by the time-dependent vector fields Yt.

Claim 3.7. The flow (M,g(t)), 0 ≤ t < T , where g(t) = σ(t)ϕ∗
t g(0), is

a soliton. It is a shrinking soliton if λ > 0.

Proof. We check that this flow satisfies the Ricci flow equation; from
that, the result follows immediately. We have

∂g(t)

∂t
= σ′(t)ϕ∗

t g(0) + σ(t)ϕ∗
tLY (t)g(0)

= ϕ∗
t (−2λ+ LX)g(0)

= ϕ∗
t (−2Ric(g(0))) = −2Ric(ϕ∗

t (g(0))).

Since Ric(αg) = Ric(g) for any α > 0, it follows that

∂g(t)

∂t
= −2Ric(g(t)).

�

There is one class of shrinking solitons which are of special importance
to us. These are the gradient shrinking solitons.

Definition 3.8. A shrinking soliton (M,g(t)), 0 ≤ t < T , is said to
be a gradient shrinking soliton if the vector field X in Equation (3.2) is the
gradient of a smooth function f on M .

Proposition 3.9. Suppose we have a complete Riemannian manifold
(M,g(0)), a smooth function f : M → R, and a constant λ > 0 such that

(3.3) −Ric(g(0)) = Hess(f) − λg(0).

Then there is T > 0 and a gradient shrinking soliton (M,g(t)) defined for
0 ≤ t < T.

Proof. Since
L∇fg(0) = 2Hess(f),

Equation (3.3) is the soliton equation, Equation (3.2), with the vector field
X being the gradient vector field ∇f . It is a shrinking soliton by assumption
since λ > 0. �
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Definition 3.10. In this case we say that (M,g(0)) and f : M → R

generate a gradient shrinking soliton.

3. Local existence and uniqueness

The following is the first basic result in the theory – local existence and
uniqueness for Ricci flow in the case of compact manifolds.

Theorem 3.11. (Hamilton, cf. [29].) Let (M,g0) be a compact Rie-
mannian manifold of dimension n. Then there is a T > 0 depending on
(M,g0) and a Ricci flow (M,g(t)), 0 ≤ t < T , with g(0) = g0. Further-
more, if we have Ricci flows with initial conditions (M,g0) at time 0 defined
respectively on time intervals I and I ′, then these flows agree on I ∩ I ′.

We remark that the Ricci flow is a weakly parabolic system where de-
generacy comes from the gauge invariance of the equation under diffeomor-
phisms. Therefore the short-time existence does not come from general
theory. R. Hamilton’s original proof of the short-time existence was in-
volved and used the Nash-Moser inverse function theorem, [28]. Soon af-
ter, DeTurck [16] substantially simplified the short-time existence proof by
breaking the diffeomorphism invariance of the equation. For the reader’s
convenience, and also because in establishing the uniqueness for Ricci flows
from the standard solution in Section 6 of Chapter 12 we use a version of
this idea in the non-compact case, we sketch DeTurck’s argument.

Proof. Let’s sketch the proof due to DeTurck [16], cf, Section 3 of
Chapter 3 starting on page 78 of [13] for more details. First, we compute the
first variation at a Riemannian metric g of minus twice the Ricci curvature
tensor in the direction h:

δg(−2Ric)(h) = △h− Sym(∇V ) + S

where:

(1) V is the one-form given by

Vk =
1

2
gpq(∇phqk + ∇qhpk −∇khpq),

(2) Sym(∇V ) is the symmetric two-tensor obtained by symmetrizing
the covariant derivative of V , and

(3) S is a symmetric two-tensor constructed from the inverse of the
metric, the Riemann curvature tensor and h, but involves no deriva-
tives of h.

Now let g0 be the initial metric. For any metric g we define a one-form
Ŵ by taking the trace, with respect to g, of the matrix-valued one-form that
is the difference of the connections of g and g0. Now we form a second-order
operator of g by setting

P (g) = LW g,
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the Lie derivative of g with respect to the vector field W dual to Ŵ . Thus,
in local coordinates we have P (g)ij = ∇iŴj +∇jŴi. The linearization at g
of the second-order operator P in the direction h is symmetric and is given
by

δgP (h) = Sym(∇V ) + T

where T is a first-order operator in h. Thus, defining Q = −2Ric + P we
have

δg(Q)(h) = △h+ U

where U is a first-order operator in h. Now we introduce the Ricci-DeTurck
flow

∂g

∂t
= −2Ric(g) + P.(3.4)

The computations above show that the Ricci-DeTurck flow is strictly para-
bolic. Thus, Equation (3.4) has a short-time solution g(t) with g(0) = g0 by
the standard PDE theory. Given this solution g(t) we define the time-
dependent vector field W (t) = W (g(t), g0) as above. Let φt be a one-
parameter family of diffeomorphisms, with φ0 = Id, generated by this time-
dependent vector field, i.e.,

∂φt
∂t

= W (t).

Then, direct computation shows that g(t) = φ∗t g(t) solves the Ricci flow
equation. �

In performing surgery at time T , we will have an open submanifold Ω
of the compact manifold with the following property. As t approaches T
from below, the metrics g(t)|Ω converge smoothly to a limiting metric g(T )
on Ω. We will ‘cut away’ the rest of the manifold M \ Ω where the metrics
are not converging and glue in a piece E coming from the standard solution
to form a new compact manifold M ′. Then we extend the Riemannian
metric g(T ) on Ω to one defined on M ′ = Ω∪E. The resulting Riemannian
manifold forms the initial manifold at time T for continuing the Ricci flow
g̃(t) on an interval T ≤ t < T ′. It is important to know that the two Ricci
flows (Ω, g(t)), t ≤ T and (Ω, g̃(t)), T ≤ t < T ′ glue together to make a
smooth solution spanning across the surgery time T . That this is true is a
consequence of the following elementary result.

Proposition 3.12. Suppose that (U, g(t)), a ≤ t < b, is a Ricci flow
and suppose that there is a Riemannian metric g(b) on U such that as t→ b
the metrics g(t) converge in the C∞-topology, uniformly on compact subsets,
to g(b). Suppose also that (U, g(t)), b ≤ t < c, is a Ricci flow. Then the
one-parameter family of metrics g(t), a ≤ t < c, is a C∞-family and is a
solution to the Ricci flow equation on the entire interval [a, c).
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4. Evolution of curvatures

Let us fix a set (x1, . . . , xn) of local coordinates. The Ricci flow equation,
written in local coordinates as

∂gij
∂t

= −2Ricij,

implies a heat equation for the Riemann curvature tensor Rijkl which we
now derive. Various second-order derivatives of the curvature tensor are
likely to differ by terms quadratic in the curvature tensors. To this end we
introduce the tensor

Bijkl = gprgqsRipjqRkrls.

Note that we have the obvious symmetries

Bijkl = Bjilk = Bklij,

but the other symmetries of the curvature tensor Rijkl may fail to hold for
Bijkl.

Theorem 3.13. The curvature tensor Rijkl, the Ricci curvature Ricij ,
the scalar curvature R, and the volume form dvol(x, t) satisfy the following
evolution equations under Ricci flow:

∂Rijkl
∂t

= △Rijkl + 2(Bijkl −Bijlk −Biljk +Bikjl)

− gpq(RpjklRicqi +RipklRicqj +RijplRicqk +RijkpRicql),(3.5)

∂

∂t
Ricjk = △Ricjk + 2gpqgrsRpjkrRicqs − 2gpqRicjpRicqk,(3.6)

∂

∂t
R = ∆R+ 2|Ric|2,(3.7)

∂

∂t
dvol(x, t) = −R(x, t)dvol(x, t).

(3.8)

These equations are contained in Lemma 6.15 on page 179, Lemma 6.9
on page 176, Lemma 6.7 on page 176, and Equation (6.5) on page 175 of
[13], respectively.

Let us derive some consequences of these evolution equations. The first
result is obvious from the Ricci flow equation and will be used implicitly
throughout the paper.

Lemma 3.14. Suppose that (M,g(t)), a < t < b is a Ricci flow of non-
negative Ricci curvature with M a connected manifold. Then for any points
x, y ∈M the function dg(t)(x, y) is a non-increasing function of t.

Proof. The Ricci flow equation tells us that non-negative Ricci curva-
ture implies that ∂g/∂t ≤ 0. Hence, the length of any tangent vector in M ,
and consequently the length of any path in M , is a non-increasing function of
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t. Since the distance between points is the infimum over all rectifiable paths
from x to y of the length of the path, this function is also a non-increasing
function of t. �

Lemma 3.15. Suppose that (M,g(t)), 0 ≤ t ≤ T , is a Ricci flow and
|Rm(x, t)| ≤ K for all x ∈ M and all t ∈ [0, T ]. Then there are constants
A,A′ depending on K,T and the dimension such that:

(1) For any non-zero tangent vector v ∈ TxM and any t ≤ T we have

A−1〈v, v〉g(0) ≤ 〈v, v〉g(t) ≤ A〈v, v〉g(0).
(2) For any open subset U ⊂M and any t ≤ T we have

(A′)−1Vol0(U) ≤ Volt(U) ≤ A′Vol0(U).

Proof. The Ricci flow equation yields

d

dt

(
〈v, v〉g(t)

)
= −2Ric(v, v).

The bound on the Riemann curvature gives a bound on Ric. Integrating
yields the result. The second statement is proved analogously using Equa-
tion (3.8). �

5. Curvature evolution in an evolving orthonormal frame

It is often best to study the evolution of the representative of the tensor
in an orthonormal frame F . Let (M,g(t)), 0 ≤ t < T , be a Ricci flow, and
suppose that F is a frame on an open subset U ⊂ M consisting of vector
fields {F1, F2, . . . , Fn} on U that are g(0)-orthonormal at every point. Since
the metric evolves by the Ricci flow, to keep the frame orthonormal we
must evolve it by an equation involving Ricci curvature. We evolve this
local frame according to the formula

(3.9)
∂Fa
∂t

= Ric(Fa, ·)∗,

i.e., assuming that in local coordinates (x1, . . . , xn), we have

Fa = F ia
∂

∂xi
,

then the evolution equation is

∂F ia
∂t

= gijRicjkF
k
a .

Since this is a linear ODE, there are unique solutions for all times t ∈ [0, T ).
The next remark to make is that this frame remains orthonormal:

Claim 3.16. Suppose that F(0) = {Fa}a is a local g(0)-orthonormal
frame, and suppose that F(t) evolves according to Equation (3.9). Then for
all t ∈ [0, T ) the frame F(t) is a local g(t)-orthonormal frame.
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Proof.

∂

∂t
〈Fa(t), Fb(t)〉g(t) = 〈∂Fa

∂t
, Fb〉 + 〈Fb,

∂Fb
∂t

〉 +
∂g

∂t
(Fa, Fb)

= Ric(Fa, Fb) + Ric(Fb, Fa) − 2Ric(Fa, Fb) = 0.

�

Notice that if F ′(0) = {F ′
a}a is another frame related to F(0) by, say,

F ′
a = AbaFb,

then

Fa(t) = AbaFb(t).

This means that the evolution of frames actually defines a bundle automor-
phism

Φ: TM |U × [0, T ) → TM |U × [0, T )

covering the identity map of U × [0, T ) which is independent of the choice of
initial frame and is the identity at time t = 0. Of course, since the resulting
bundle automorphism is independent of the initial frame, it globalizes to
produce a bundle isomorphism

Φ: TM × [0, T ) → TM × [0, T )

covering the identity on M×[0, T ). We view this as an evolving identification
Φt of TM with itself. This identification is the identity at t = 0. The content
of Claim 3.16 is:

Corollary 3.17.

Φ∗
t (g(t)) = g(0).

Returning to the local situation of the orthonormal frame F , we set
F∗ = {F 1, . . . , Fn} equal to the dual coframe to {F1, . . . , Fn}. In this
coframe the Riemann curvature tensor is given by RabcdF

aF bF cF d where

(3.10) Rabcd = RijklF
i
aF

j
b F

k
c F

l
d.

One advantage of working in the evolving frame is that the evolution equa-
tion for the Riemann curvature tensor simplifies:

Lemma 3.18. Suppose that the orthonormal frame F(t) evolves by For-
mula (3.9). Then we have the evolution equation

∂Rabcd
∂t

= △Rabcd + 2(Babcd +Bacbd −Babdc −Badbc),

where Babcd =
∑

e,f RaebfRcedf .

Proof. For a proof see Theorem 2.1 in [32]. �
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Of course, the other way to describe all of this is to consider the four-
tensor Φ∗

t (Rg(t)) = RabcdF
aF bF cF d on M . Since Φt is a bundle map but not

a bundle map induced by a diffeomorphism, even though the pullback of the
metric Φ∗

t g(t) is constant, it is not the case that the pullback of the curvature
Φ∗
tRg(t) is constant. The next proposition gives the evolution equation for

the pullback of the Riemann curvature tensor.
It simplifies the notation somewhat to work directly with a basis of

∧2TM . We chose an orthonormal basis

{ϕ1, . . . , ϕ
n(n−1)

2 },
of ∧2T ∗

pM where we have

ϕα(Fa, Fb) = ϕαab

and write the curvature tensor in this basis as T = (Tαβ) so that

(3.11) Rabcd = Tαβϕαabϕβcd.
Proposition 3.19. The evolution of the curvature operator T (t) =

Φ∗
tRm(g(t)) is given by

∂Tαβ
∂t

= △Tαβ + T 2
αβ + T ♯

αβ,

where T 2
αβ = TαγTγβ is the operator square; T ♯

αβ = cαγζcβδηTγδTζη is the Lie

algebra square; and cαβγ = 〈[ϕα, ϕβ ], ϕγ〉 are the structure constants of the
Lie algebra so(n) relative to the basis {ϕα}. The structure constants cαβγ
are fully antisymmetric in the three indices.

Proof. We work in local coordinates that are orthonormal at the point.
By the first Bianchi identity

Rabcd +Racdb +Radbc = 0,

we get
∑

e,f

RabefRcdef =
∑

e,f

(−Raefb −Rafbe)(−Rcefd −Rcfde)

=
∑

e,f

2RaebfRcedf − 2RaebfRcfde

= 2(Babcd −Badbc).

Note that
∑

e,f

RabefRcdef =
∑

e,f

TαβϕαabϕβefTγλϕ
γ
cdϕ

λ
ef

= TαβϕαabTγλϕγcdδβλ

= T 2
αβϕ

α
abϕ

β
cd.
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Also,

2(Bacbd −Badbc) = 2
∑

e,f

(RaecfRbedf −RaedfRbecf )

= 2
∑

e,f

(TαβϕαaeϕβcfTγλϕ
γ
beϕ

λ
df − TαβϕαaeϕβdfTγλϕ

γ
beϕ

λ
cf )

= 2
∑

e,f

TαβTγλϕαaeϕγbe(ϕ
β
cfϕ

λ
df − ϕβdfϕ

λ
cf )

= 2
∑

e

TαβTγλϕαaeϕγbe[ϕβ , ϕλ]cd

=
∑

e

TαβTγλ[ϕβ , ϕλ]cd(ϕαaeϕγbe − ϕαbeϕ
γ
ae)

= TαβTγδ[ϕβ , ϕλ]cd[ϕα, ϕγ ]ab
= T ♯

αβϕ
α
abϕ

β
cd.

So we can rewrite the equation for the evolution of the curvature tensor
given in Lemma 3.18 as

∂Rabcd
∂t

= △Rabcd + T 2
αβϕ

α
abϕ

β
cd + T ♯

αβϕ
α
abϕ

β
cd,

or equivalently as
∂Tαβ
∂t

= △Tαβ + T 2
αβ + T ♯

αβ.

We abbreviate the last equation as

∂T
∂t

= △T + T 2 + T ♯.

�

Remark 3.20. Notice that neither T 2 nor T ♯ satisfies the Bianchi iden-
tity, but their sum does.

6. Variation of distance under Ricci flow

There is one result that we will use several times in the arguments to
follow. Since it is an elementary result (though the proof is somewhat in-
volved), we have chosen to include it here.

Proposition 3.21. Let t0 ∈ R and let (M,g(t)) be a Ricci flow defined
for t in an interval containing t0 with (M,g(t)) complete for every t in this
interval. Fix a constant K < ∞. Let x0, x1 be two points of M and let
r0 > 0 such that dt0(x0, x1) ≥ 2r0. Suppose that Ric(x, t0) ≤ (n − 1)K for
all x ∈ B(x0, r0, t0) ∪B(x1, r0, t0). Then

d(dt(x0, x1))

dt

∣∣∣
t=t0

≥ −2(n − 1)

(
2

3
Kr0 + r−1

0

)
.
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If the distance function dt(x0, x1) is not a differentiable function of t at
t = t0, then this inequality is understood as an inequality for the forward
difference quotient.

Remark 3.22. Of course, if the distance function is differentiable at
t = t0, then the derivative statement is equivalent to the forward difference
quotient statement. Thus, in the proof of this result we shall always work
with the forward difference quotients.

Proof. The first step in the proof is to replace the distance function
by the length of minimal geodesics. The following is standard.

Claim 3.23. Suppose that for every minimal g(t0)-geodesic γ from x0 to
x1 the function ℓt(γ) which is the g(t)-length of γ satisfies

d(ℓt(γ))

dt

∣∣∣
t=t0

≥ C.

Then
d(dt(x0, x1))

dt

∣∣∣
t=t0

≥ C,

where, as in the statement of the proposition, if the distance function is not
differentiable at t0, then the inequality in the conclusion is interpreted by
replacing the derivative on the left-hand side with the liminf of the forward
difference quotients of dt(x0, x1) at t0.

The second step in the proof is to estimate the time derivative of a
minimal geodesic under the hypothesis of the proposition.

Claim 3.24. Assuming the hypothesis of the proposition, for any mini-
mal g(t0)-geodesic γ from x0 to x1, we have

d(ℓt(γ))

dt

∣∣∣
t=t0

≥ −2(n − 1)

(
2

3
Kr0 + r−1

0

)
.

Proof. Fix a minimal g(t0)-geodesic γ(u) from x0 to x1, parameterized
by arc length. We set d = dt0(x0, x1), we set X(u) = γ′(u), and we take
tangent vectors Y1, . . . , Yn−1 in Tx0M which together with X(0) = γ′(0)
form an orthonormal basis. We let Yi(u) be the parallel translation of Yi
along γ. Define f : [0, d] → [0, 1] by:

f(u) =





u/r0, 0 ≤ u ≤ r0,

1, r0 ≤ u ≤ d− r0,

(d− u)/r0, d− u ≤ r0 ≤ d,

and define

Ỹi(u) = f(u)Yi(u).
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See Fig. 2. For 1 ≤ i ≤ n − 1, let s′′eYi
(γ) be the second variation of the

g(t0)-length of γ along Ỹi. Since γ is a minimal g(t0)-geodesic, for all i we
have

(3.12) s′′eYi
(γ) ≥ 0.

Ỹi

γ

x0
r0

x1
r0

Figure 2. Ỹi along γ.

Let us now compute s′′eYi
(γ) by taking a two-parameter family γ(u, s) such

that the curve γ(u, 0) is the original minimal geodesic and ∂
∂s(γ(u, s))|s=0 =

Ỹi(u). We denote by X(u, s) the image Dγ(u,s)(∂/∂u) and by Ỹi(u, s) the
image Dγ(u,s)(∂/∂s). We wish to compute

s′′eYi
(γ) =

d2

ds2

(∫ d

0

√
X(u, s),X(u, s)du

) ∣∣∣
s=0

(3.13)

=
d

ds

(∫ d

0
〈X(u, s),X(u, s)〉−1/2〈X(u, s),∇eYi

X(u, s)〉du
) ∣∣∣

s=0

=

∫ d

0
−〈X(u, 0),X(u, 0)〉−3/2〈X(u, 0),∇eYi

X(u, 0)〉2du

+

∫ d

0

〈∇eYi
X(u, 0),∇eYi

X(u, 0)〉 + 〈X(u, 0),∇eYi
∇eYi

X(u, 0)〉
〈X(u, 0),X(u, 0)〉1/2 du.

Using the fact that X and Ỹi commute (since they are the coordinate partial
derivatives of a map of a surface into M) and using the fact that Yi(u) is
parallel along γ, meaning that ∇X(Yi)(u) = 0, we see that ∇eYi

X(u, 0) =

∇X Ỹi(u, 0) = f ′(u)Yi(u). By construction 〈Yi(u),X(u, 0)〉 = 0. It follows
that

〈∇eYi
X(u, 0),X(u, 0)〉 = 〈∇X(Ỹi)(u, 0),X(u, 0)〉 = 〈f ′(u)Yi(u),X(u, 0)〉 = 0.

Also, 〈X(u, 0),X(u, 0)〉 = 1, and by construction 〈Yi(u, 0), Yi(u, 0)〉 = 1.
Thus, restricting to s = 0 and, for simplicity of notation, leaving the variable
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u implicit, Equation (3.13) simplifies to

(3.14) s′′eYi
(γ) =

∫ d

0

(
(f ′)2〈Yi, Yi〉 + 〈∇eYi

∇X Ỹi,X〉
)
du

=

∫ d

0

(
〈R(Ỹi,X)Ỹi,X〉 − 〈∇X∇eYi

Ỹi,X〉 + (f ′)2
)
du.

We have

〈∇X∇eYi
Ỹi,X〉 =

d

du
〈∇eYi

Ỹi,X〉 − 〈∇eYi
Ỹi,∇XX〉 =

d

du
〈∇eYi

Ỹi,X〉,

where the last equality is a consequence of the geodesic equation, ∇XX = 0.
It follows that

∫ d

0
〈∇X∇eYi

Ỹi,X〉du =

∫ d

0

d

du
〈∇eYi

Ỹi,X〉 = 0,

where the last equality is a consequence of the fact that Ỹi vanishes at the
end points.

Consequently, plugging these into Equation (3.14) we have

(3.15) s′′eYi
(γ) =

∫ d

0

(
〈R(Ỹi,X)Ỹi(u, 0),X(u, 0)〉 + (f ′(u))2

)
du.

Of course, it is immediate from the definition that f ′(u)2 = 1/r20 for u ∈
[0, r0] and for u ∈ [d− r0, d] and is zero otherwise. Also, from the definition
of the vector fields Yi we have

n−1∑

i=1

〈R(Yi,X)Yi(u),X(u)〉 = −Ricg(t0)(X(u),X(u)),

so that

n−1∑

i=1

〈R(Ỹi,X)Ỹi(u),X(u)〉 = −f2(u)Ricg(t0)(X(u),X(u)).

Hence, summing Equalities (3.15) for i = 1, . . . , n − 1 and using Equa-
tion (3.12) gives

0 ≤
n−1∑

i=1

s′′eYi
(γ) =

∫ r0

0

[
u2

r20

(
−Ricg(t0) (X(u),X(u))

)
+
n− 1

r20

]
du

+

∫ d−r0

r0

−Ricg(t0)(X(u),X(u))du

+

∫ d

d−r0

[
(d− u)2

r20

(
−Ricg(t0)(X(u),X(u))

)
+
n− 1

r20

]
du.
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Rearranging the terms yields

0 ≤ −
∫ d

0
Ricg(t0)(X(u),X(u))du

+

∫ r0

0

[(
1 − u2

r20

)(
Ricg(t0)(X(u),X(u))

)
+
n− 1

r20

]
du

+

∫ d

d−r0

[(
1 − (d− u)2

r20

)(
Ricg(t0)(X(u),X(u))

)
+
n− 1

r20

]
du.

Since

d(ℓt(γ))

dt

∣∣∣
t=t0

=
d

dt

[(∫ d

0

√
〈X(u),X(u)〉dt

)1/2
]
|t=t0

= −
∫ d

0
Ricg(t0)(X(u),X(u))du,

we have

d(ℓt(γ))

dt

∣∣∣
t=t0

≥ −
{∫ r0

0

[(
1 − u2

r20

)(
Ricg(t0)(X(u),X(u))

)
+
n− 1

r20

]
du

+

∫ d

d−r0

[(
1 − (d− u)2

r20

)(
Ricg(t0)(X(u),X(u))

)
+
n− 1

r20

]
du

}
.

Now, since |X(u)| = 1, by the hypothesis of the proposition we have the
estimate Ricg(t0)(X(u),X(u)) ≤ (n − 1)K on the regions of integration on
the right-hand side of the above inequality. Thus,

d(ℓt(γ))

dt

∣∣∣
t=t0

≥ −2(n − 1)

(
2

3
r0K + r−1

0

)
.

This completes the proof of Claim 3.24. �

Claims 3.23 and 3.24 together prove the proposition. �

Corollary 3.25. Let t0 ∈ R and let (M,g(t)) be a Ricci flow defined
for t in an interval containing t0 and with (M,g(t)) complete for every t in
this interval. Fix a constant K < ∞. Suppose that Ric(x, t0) ≤ (n − 1)K
for all x ∈M . Then for any points x0, x1 ∈M we have

d(dt(x0, x1))

dt

∣∣∣
t=t0

≥ −4(n − 1)

√
2K

3

in the sense of forward difference quotients.

Proof. There are two cases to consider: (i): dt0(x0, x1) ≥
√

6
K and (ii):

dt0(x0, x1) <
√

6
K . In Case (i) we take r0 =

√
3/2K in Proposition 3.21, and

we conclude that the liminf at t0 of the difference quotients for dt(x0, x1) is
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at most −4(n−1)
√

2K
3 . In Case (ii) w let γ(u) be any minimal g(t0)-geodesic

from x0 to x1 parameterized by arc length. Since

d

dt
(ℓt(γ))|t=t0 = −

∫

γ
Ricg(t0)(γ

′(u), γ′(u))du,

we see that
d

dt
(ℓt(γ))|t=t0 ≥ −(n− 1)K

√
6/K = −(n− 1)

√
6K.

By Claim 3.23, this implies that the liminf of the forward difference quotient
of dt(x0, x1) at t = t0 is at least −(n− 1)

√
6K ≥ −4(n− 1)

√
2K/3. �

Corollary 3.26. Let (M,g(t)), a ≤ t ≤ b, be a Ricci flow with (M,g(t))
complete for every t ∈ [0, T ). Fix a positive function K(t), and suppose that
Ricg(t)(x, t) ≤ (n− 1)K(t) for all x ∈M and all t ∈ [a, b]. Let x0, x1 be two
points of M . Then

da(x0, x1) ≤ db(x0, x1) + 4(n − 1)

∫ b

a

√
2K(t)

3
dt.

Proof. By Corollary 3.25 we have

(3.16)
d

dt
dt(x0, x1)|t=t′ ≥ −4(n − 1)

√
2K(t′)

3

in the sense of forward difference quotients. Thus, this result is an immediate
consequence of Lemma 2.22. �

7. Shi’s derivative estimates

The last ‘elementary’ result we discuss is Shi’s result controlling all
derivatives in terms of a bound on curvature. This is a consequence of
the parabolic nature of the Ricci flow equation. More precisely, we can con-
trol all derivatives of the curvature tensor at a point p ∈M and at a time t
provided that we have an upper bound for the curvature on an entire back-
ward parabolic neighborhood of (p, t) in space-time. The estimates become
weaker as the parabolic neighborhood shrinks, either in the space direction
or the time direction.

Recall that for any K < ∞ if (M,g) is a Riemannian manifold with

|Rm| ≤ K and if for some r ≤ π/
√
K the metric ball B(p, r) has compact

closure in M , then the exponential mapping expp is defined on the ball
B(0, r) of radius r centered at the origin of TpM and expp : B(0, r) →M is
a local diffeomorphism onto B(p, r).

The first of Shi’s derivative estimates controls the first derivative of Rm.

Theorem 3.27. There is a constant C = C(n), depending only on the
dimension n, such that the following holds for every K < ∞, for every
T > 0, and for every r > 0. Suppose that (U, g(t)), 0 ≤ t ≤ T , is an
n-dimensional Ricci flow with |Rm(x, t)| ≤ K for all x ∈ U and t ∈ [0, T ].
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Suppose that p ∈ U has the property that B(p, 0, r) has compact closure in
U . Then

|∇Rm(p, t)| ≤ CK

(
1

r2
+

1

t
+K

)1/2

.

For a proof of this result see Chapter 6.2, starting on page 212, of [14].
We also need higher derivative estimates. These are also due to Shi, but

they take a slightly different form. (See Theorem 6.9 on page 210 of [14].)

Theorem 3.28. (Shi’s Derivative Estimates) Fix the dimension n
of the Ricci flows under consideration. Let K < ∞ and α > 0 be positive
constants. Then for each non-negative integer k and each r > 0 there is a
constant Ck = Ck(K,α, r, n) such that the following holds. Let (U, g(t)), 0 ≤
t ≤ T , be a Ricci flow with T ≤ α/K. Fix p ∈ U and suppose that the metric
ball B(p, 0, r) has compact closure in U . If

|Rm(x, t)| ≤ K for all (x, t) ∈ P (x, 0, r, T ),

then

|∇k(Rm(y, t))| ≤ Ck
tk/2

for all y ∈ B(p, 0, r/2) and all t ∈ (0, T ].

For a proof of this result see Chapter 6.2 of [14] where these estimates
are proved for the first and second derivatives of Rm. The proofs of the
higher derivatives follow similarly. Below, we shall prove a stronger form of
this result including the proof for all derivatives.

We shall need a stronger version of this result, a version which is well-
known but for which there seems to be no good reference. The stronger
version takes as hypothesis Ck-bounds on the initial conditions and produces
a better bound on the derivatives of the curvature at later times. The
argument is basically the same as that of the result cited above, but since
there is no good reference for it we include the proof, which was shown to
us by Peng Lu.

Theorem 3.29. Fix the dimension n of the Ricci flows under consider-
ation. Let K < ∞ and α > 0 be given positive constants. Fix an integer
l ≥ 0. Then for each integer k ≥ 0 and for each r > 0 there is a constant
C ′
k,l = C ′

k,l(K,α, r, n) such that the following holds. Let (U, g(t)), 0 ≤ t ≤ T ,

be a Ricci flow with T ≤ α/K. Fix p ∈ U and suppose that the metric ball
B(p, 0, r) has compact closure in U . Suppose that

|Rm (x, t)| ≤ K for all x ∈ U and all t ∈ [0, T ],
∣∣∣∇β Rm (x, 0)

∣∣∣ ≤ K for all x ∈ U and all β ≤ l.

Then ∣∣∣∇k Rm(y, t)
∣∣∣ ≤

C ′
k,l

tmax{k−l,0}/2
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for all y ∈ B(p, 0, r/2) and all t ∈ (0, T ]. In particular if k ≤ l, then for
y ∈ B(p, 0, r/2) and t ∈ (0, T ] we have

∣∣∣∇k Rm (y, t)
∣∣∣ ≤ C ′

k,l.

Remark 3.30. Clearly, the case l = 0 of Theorem 3.29 is Shi’s theorem
(Theorem 3.27).

Theorem 3.29 leads immediately to the following:

Corollary 3.31. Suppose that (M,g(t)), 0 ≤ t ≤ T , is a Ricci flow
with (M,g(t)) being complete and with T < ∞. Suppose that Rm(x, 0)
is bounded in the C∞-topology independent of x ∈ M and suppose that
|Rm(x, t)| is bounded independent of x ∈M and t ∈ [0, T ]. Then the opera-
tor Rm(x, t) is bounded in the C∞-topology independent of (x, t) ∈M×[0, T ].

For a proof of Theorem 3.28 see [65, 66]. We give the proof of a stronger
result, Theorem 3.29.

Proof. The first remark is that establishing Theorem 3.29 for one value
of r immediately gives it for all r′ ≥ 2r. The reason is that for such r′ any
point y ∈ B(p, 0, r′/2) has the property that B(y, 0, r) ⊂ B(p, 0, r′) so that
a curvature bound on B(p, 0, r′) will imply one on B(y, 0, r) and hence by
the result for r will imply the higher derivative bounds at y.

Thus, without loss of generality we can suppose that r ≤ π/2
√
K. We

shall assume this from now on in the proof. Since B(p, 0, r) has compact

closure in M , for some r < r′ < π/
√
K the ball B(p, 0, r′) also has compact

closure in M . This means that the exponential mapping from the ball of
radius r′ in TpM is a local diffeomorphism onto B(p, 0, r′).

The proof is by induction: We assume that we have established the result
for k = 0, . . . ,m, and then we shall establish it for k = m+1. The inductive
hypothesis tells us that there are constants Aj , 0 ≤ j ≤ m, depending on
(l,K, α, r, n) such that for all (x, t) ∈ B(p, 0, r/2) × (0, T ] we have

(3.17)
∣∣∇j Rm (x, t)

∣∣ ≤ Ajt
−max{j−l,0}/2.

Applying the inductive result to B(y, 0, r/2) with y ∈ B(p, 0, r/2) we see
that, replacing the Aj by the constants associated with (l,K, α, r/2, n), we
have the same inequality for all y ∈ B(x, 0, 3r/4).

We fix a constant C ≥ max(4A2
m, 1) and consider

Fm(x, t) =
(
C+ tmax{m−l,0} |∇m Rm(x, t)|2

)
tmax{m+1−l,0} ∣∣∇m+1 Rm(x, t)

∣∣2 .
Notice that bounding Fm above by a constant (C ′

m+1,l)
2 will yield

|∇m+1Rm(x, t)|2 ≤
(C ′

m+1,l)
2

tmax{m+1−l,0} ,

and hence will complete the proof of the result.
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Bounding Fm above (assuming the inductive hypothesis) is what is ac-
complished in the rest of this proof. The main calculation is the proof of
the following claim under the inductive hypothesis.

Claim 3.32. With Fm as defined above and with C ≥ max(4A2
m, 1), there

are constants c1 and C0, C1 depending on C as well as K,α,A1, . . . , Am for
which the following holds on B(p, 0, 3r/4) × (0, T ]:

(
∂

∂t
− ∆

)
Fm(x, t) ≤ −c1 (Fm(x, t) − C0)

2

ts{max{m−l+1,0}} +
C1

ts{max{m−l+1,0}} ,

where

s{n} =





+1, if n > 0,

0, if n = 0,

−1, if n < 0.

Let us assume this claim and use it to prove Theorem 3.29. We fix
C = max{4A2

m, 1}, and consider the resulting function Fm. The constants
c1, C0, C1 from Claim 3.32 depend only on K,α, and A1, . . . , Am. Since
r ≤ π/2

√
K, and B(p, 0, r) has compact closure in U , there is some r′ > r

so that the exponential mapping expp : B(0, r′) → U is a local diffeomor-
phism onto B(p, 0, r′). Pulling back by the exponential map, we replace the
Ricci flow on U by a Ricci flow on B(0, r′) in TpM . Clearly, it suffices to
establish the estimates in the statement of the proposition for B(0, r/2).
This remark allows us to assume that the exponential mapping is a diffeo-
morphism onto B(p, 0, r). Bounded curvature then comes into play in the
following crucial proposition, which goes back to Shi. The function given
in the next proposition allows us to localize the computation in the ball
B(p, 0, r).

Proposition 3.33. Fix constants 0 < α and the dimension n. Then
there is a constant C ′

2 = C ′
2(α, n) and for each r > 0 and K < ∞ there

is a constant C2 = C2(K,α, r, n) such that the following holds. Suppose
that (U, g(t)), 0 ≤ t ≤ T , is an n-dimensional Ricci flow with T ≤ α/K.
Suppose that p ∈ U and that B(p, 0, r) has compact closure in U and that
the exponential mapping from the ball of radius r in TpU to B(p, 0, r) is a
diffeomorphism. Suppose that |Rm(x, 0)| ≤ K for all x ∈ B(p, 0, r). There
is a smooth function η : B(p, 0, r) → [0, 1] satisfying the following for all
t ∈ [0, T ]:

(1) η has compact support in B(p, 0, r/2).
(2) The restriction of η to B(p, 0, r/4) is identically 1.
(3) |∆g(t)η| ≤ C2(K,α, r, n).

(4)
|∇η|2

g(t)

η ≤ C′
2(α,n)
r2

.

For a proof of this result see Lemma 6.62 on page 225 of [14].
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We can apply this proposition to our situation, because we are assuming
that r ≤ π/2

√
K so that the exponential mapping is a local diffeomorphism

onto B(p, 0, r) and we have pulled the Ricci flow back to the ball in the
tangent space.

Fix any y ∈ B(p, 0, r/2) and choose η as in the previous proposition
for the constants C2(α, n) and C ′

2(K,α, r/4, n). Notice that B(y, 0, r/4) ⊂
B(p, 0, 3r/4) so that the conclusion of Claim 3.32 holds for every (z, t)
with z ∈ B(y, 0, r/4) and t ∈ [0, T ]. We shall show that the restriction
of ηFm to P (y, 0, r/4, T ) is bounded by a constant that depends only on
K,α, r, n,A1, . . . , Am. It will then follow immediately that the restriction of
Fm to P (y, 0, r/8, T ) is bounded by the same constant. In particular, the
values of Fm(y, t) are bounded by the same constant for all y ∈ B(p, 0, r/2)
and t ∈ [0, T ].

Consider a point (x, t) ∈ B(y, 0, r/2) × [0, T ] where ηFm achieves its
maximum; such a point exists since the ball B(y, 0, r/2) ⊂ B(p, 0, r), and
hence B(y, 0, r/2) has compact closure in U . If t = 0, then ηFm is bounded
by (C + K2)K2 which is a constant depending only on K and Am. This,
of course, immediately implies the result. Thus we can assume that the
maximum is achieved at some t > 0. When s {max {m+ 1 − l, 0}} = 0,
according to Claim 3.32, we have

(
∂

∂t
− ∆

)
Fm ≤ −c1 (Fm − C0)

2 +C1.

We compute
(
∂

∂t
− ∆

)
(ηFm) ≤ η

(
−c1 (Fm−C0)

2 + C1

)
− ∆η · Fm − 2∇η · ∇Fm.

Since (x, t) is a maximum point for ηFm and since t > 0, a simple
maximum principle argument shows that

(
∂

∂t
− ∆

)
ηFm(x, t) ≥ 0.

Hence, in this case we conclude that

0 ≤
(
∂

∂t
− ∆

)
(η(x)Fm(x, t)) ≤ η(x)

(
−c1 (Fm(x, t) − C0)

2 + C1

)

− ∆η(x) · Fm(x, t) − 2∇η(x) · ∇Fm(x, t).

Hence,

c1η(Fm(x, t) − C0)
2 ≤ η(x)C1 − ∆η(x) · Fm(x, t) − 2∇η(x) · ∇Fm(x, t).

Since we are proving that Fm is bounded, we are free to argue by contra-
diction and assume that Fm(x, t) ≥ 2C0, implying that Fm(x, t) − C0 ≥
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Fm(x, t)/2. Using this inequality yields

η(x)(Fm(x, t) − C0) ≤
2ηC1

c1Fm(x, t)
− 2∆η(x)

c1
− 4

c1Fm(x, t)
∇η(x) · ∇Fm(x, t)

≤ ηC1

c1C0
− 2∆η(x)

c1
− 4

c1Fm(x, t)
∇η(x) · ∇Fm(x, t).

Since (x, t) is a maximum for ηFm we have

0 = ∇(η(x)Fm(x, t)) = ∇η(x)Fm(x, t) + η(x)∇Fm(x, t),

so that
∇η(x)
η(x)

= −∇Fm(x, t)

Fm(x, t)
.

Plugging this in gives

η(x)Fm(x, t) ≤ C1

c1C0
− 2∆η(x)

c1
+ 4

|∇η(x)|2
c1η(x)

+ ηC0.

Of course, the gradient and Laplacian of η are taken at the point (x, t).
Thus, because of the properties of η given in Proposition 3.33, it immedi-
ately follows that ηFm(x, t) is bounded by a constant depending only on
K,n, α, r, c1, C0, C1, and as we have already seen, c1, C0, C1 depend only on
K,α,A1, . . . , Am.

Now suppose that s {max {m− l + 1, 0}} = 1. Again we compute the
evolution inequality for ηFm. The result is
(
∂

∂t
− ∆

)
(ηFm) ≤ η

(
−c1
t

(Fm − C0)
2 +

C1

t

)
− ∆η · Fm − 2∇η · ∇Fm.

Thus, using the maximum principle as before, we have
(
∂

∂t
− ∆

)
ηFm(x, t) ≥ 0.

Hence,

η(x)c1(Fm(x, t) − C0)
2

t
≤ η(x)C1

t
− ∆η(x)Fm(x, t) − 2∇η(x) · ∇Fm(x, t).

Using the assumption that Fm(x, t) ≥ 2C0 as before, and rewriting the last
term as before, we have

ηFm(x, t) ≤ η(x)C1

c1C0
− 2t∆η(x)

c1
+

4t|∇η(x)|2
c1η(x)

+ ηC0.

The right-hand side is bounded by a constant depending only on K, n, α, r,
c1, C0, and C1. We conclude that in all cases ηFm is bounded by a constant
depending only on K,n, α, r, c1 , C0, C1, and hence on K,n, α, r,A1, . . . , Am.

This proves that for any y ∈ B(p, 0, r/2), the value ηFm(x, t) is bounded
by a constant Am+1 depending only on (m + 1, l,K, n, α, r) for all (x, t) ∈
B(y, 0, r/2) × [0, T ]. Since η(y) = 1, for all 0 ≤ t ≤ T we have

tmax{m+1−l,0}|∇m+1Rm(y, t)|2 ≤ Fm(y, t) = η(y)Fm(y, t) ≤ Am+1.
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This completes the inductive proof that the result holds for k = m + 1
and hence establishes Theorem 3.29, modulo the proof of Claim 3.32. �

Now we turn to the proof of Claim 3.32.

Proof. In this argument we fix (x, t) ∈ B(p, 0, 3r/4) × (0, T ] and we
drop (x, t) from the notation. Recall that by Equations (7.4a) and (7.4b)
on p. 229 of [13] we have

∂

∂t

∣∣∣∇ℓRm
∣∣∣
2
≤ ∆

∣∣∣∇ℓ Rm
∣∣∣
2
− 2

∣∣∣∇ℓ+1 Rm
∣∣∣
2

(3.18)

+
ℓ∑

i=0

cℓ,j
∣∣∇iRm

∣∣
∣∣∣∇ℓ−iRm

∣∣∣
∣∣∣∇ℓ Rm

∣∣∣ ,

where the constants cℓ,j depend only on ℓ and j.
Hence, setting ml = max {m+ 1 − l, 0} and denoting cm+1,i by c̃i, we

have

(3.19)
∂

∂t

(
tml
∣∣∇m+1 Rm

∣∣2
)

≤ ∆
(
tml
∣∣∇m+1 Rm

∣∣2
)
− 2tml

∣∣∇m+2 Rm
∣∣2

+ tml

m+1∑

i=0

c̃i
∣∣∇iRm

∣∣ ∣∣∇m+1−i Rm
∣∣ ∣∣∇m+1 Rm

∣∣+mlt
ml−1

∣∣∇m+1 Rm
∣∣2

≤ ∆
(
tml
∣∣∇m+1 Rm

∣∣2
)
− 2tml

∣∣∇m+2 Rm
∣∣2

+ (c̃0 + c̃m+1)t
ml |Rm|

∣∣∇m+1 Rm
∣∣2

+ tml

m∑

i=1

c̃i
∣∣∇iRm

∣∣ ∣∣∇m+1−i Rm
∣∣ ∣∣∇m+1 Rm

∣∣+mlt
ml−1

∣∣∇m+1 Rm
∣∣2 .

Using the inductive hypothesis, Inequality (3.17), there is a constant
A <∞ depending only on K,α,A1, . . . , Am such that

m∑

i=1

c̃i
∣∣∇iRm

∣∣ ∣∣∇m+1−iRm
∣∣ ≤ At−ml/2.

Also, let c = c̃0 + c̃m+1 and define a new constant B by

B = c(α+K) +ml.

Then, since t ≤ T ≤ α/K and ml ≥ 0, we have

((c̃0 + c̃m+1)t |Rm| +ml)t
ml−1 ≤ Btml

ts(ml)
.
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Putting this together allows us to rewrite Inequality (3.19) as

∂

∂t

(
tml
∣∣∇m+1 Rm

∣∣2
)
≤ ∆

(
tml
∣∣∇m+1 Rm

∣∣2
)
− 2tml

∣∣∇m+2 Rm
∣∣2

+Atml/2
∣∣∇m+1 Rm

∣∣

+ (ct |Rm| +ml) t
ml−1

∣∣∇m+1 Rm
∣∣2

≤ ∆
(
tml
∣∣∇m+1 Rm

∣∣2
)
− 2tml

∣∣∇m+2 Rm
∣∣2

+
B

ts(ml)
tml
∣∣∇m+1 Rm

∣∣2 +Atml/2
∣∣∇m+1 Rm

∣∣ .

Completing the square gives

∂

∂t

(
tml
∣∣∇m+1 Rm

∣∣2
)
≤ ∆

(
tml
∣∣∇m+1 Rm

∣∣2
)
− 2tml

∣∣∇m+2 Rm
∣∣2

+ (B + 1)tml−s(ml)
∣∣∇m+1 Rm

∣∣2 +
A2

4
ts(ml).

Let m̂l = max {m− l, 0}. From (3.18) and the induction hypothesis,
there is a constant D, depending on K,α,A1, . . . , Am such that

∂

∂t

(
tm̂l |∇mRm|2

)
≤ ∆

(
tm̂l |∇m Rm|2

)
− 2tm̂l

∣∣∇m+1 Rm
∣∣2

+ m̂lt
m̂l−1 |∇mRm|2 +D.

Now, defining new constants B̃ = B + 1 and Ã = A2/4 we have

(
∂

∂t
− ∆

)
Fm =

(
∂

∂t
− ∆

)[(
C + tm̂l |∇mRm|2

)
tml
∣∣∇m+1 Rm

∣∣2
]
≤

(
C + tm̂l |∇mRm|2

)(
Ãts(ml) − 2tml

∣∣∇m+2 Rm
∣∣2 +

B̃tml
∣∣∇m+1 Rm

∣∣2

ts{ml}

)

+
(
−2tm̂l

∣∣∇m+1 Rm
∣∣2 + m̂lt

m̂l−1 |∇m Rm|2 +D
)
tml
∣∣∇m+1 Rm

∣∣2

− 2tm̂l+ml∇
(
|∇mRm|2

)
· ∇
(∣∣∇m+1 Rm

∣∣2
)
.

Since C ≥ 4tm̂l |∇mRm|2, this implies

(3.20)

(
∂

∂t
− ∆

)
Fm ≤ −10tm̂l+ml |∇m Rm|2

∣∣∇m+2 Rm
∣∣2

− 8tm̂l+ml |∇m Rm|
∣∣∇m+1 Rm

∣∣2 ∣∣∇m+2 Rm
∣∣− 2tm̂l+ml

∣∣∇m+1 Rm
∣∣4

+
(
C + tm̂l |∇m Rm|2

)(
B̃tml−s(ml)

∣∣∇m+1 Rm
∣∣2 + Ãts(ml)

)

+
(
m̂lt

m̂l−1 |∇mRm|2 +D
)
tml
∣∣∇m+1 Rm

∣∣2 .
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Now we can write the first three terms on the right-hand side of Inequal-
ity (3.20) as −tm̂l+ml times

(3.21)

(√
10
∣∣∇m+2 Rm

∣∣ |∇m Rm| + 4√
10

∣∣∇m+1 Rm
∣∣2
)2

+
2

5

∣∣∇m+1 Rm
∣∣4 .

In addition we have

(3.22) C + tm̂l |∇mRm|2 ≤ C +A2
m.

Let us set D̃ = max(α/K, 1)D. If m̂l = 0, then

(3.23) m̂lt
m̂l−1 |∇m Rm|2 +D = D ≤ D̃

ts(ml)
= m̂lA

2
m +D ≤ m̂lA

2
m + D̃

ts(ml)
.

On the other hand, if m̂l > 0, then s(m̂l) = s(ml) = 1 and hence

m̂lt
m̂l−1 |∇m Rm|2 +D ≤ 1

ts(ml)
m̂lA

2
m +D ≤ m̂lA

2
m + D̃

ts(ml)
.

Since m̂l = ml − s(ml), Inequalities (3.21), (3.22), and (3.23) allow us
to rewrite Inequality (3.20) as

(
∂

∂t
− ∆

)
Fm ≤ − 2

5ts(ml)
t2ml

∣∣∇m+1 Rm
∣∣4

+(C+A2
m)

(
B̃tml

ts(ml)

∣∣∇m+1 Rm
∣∣2 + Ãts(ml)

)
+
m̂lA

2
m + D̃

ts(ml)
tml
∣∣∇m+1 Rm

∣∣2 .

Setting

B′ = (C +A2
m)B̃ + (m̂lA

2
m + D̃),

and A′ = Ã(C +A2
m) we have

(
∂

∂t
− ∆

)
Fm ≤ − 2

5ts(ml)

(
tml
∣∣∇m+1 Rm

∣∣2
)2

+
B′

ts(ml)
tml
∣∣∇m+1 Rm

∣∣2 +A′ts(ml).

We rewrite this as
(
∂

∂t
− ∆

)
Fm ≤ − 2

5ts(ml)

(
tml
∣∣∇m+1 Rm

∣∣2 − 5B′

4

)2

+
5(B′)2

8ts(ml)
+A′ts(ml),

and hence(
∂

∂t
− ∆

)
Fm ≤ − 2

5ts(ml)

(
tml
∣∣∇m+1 Rm

∣∣2 −B′′
)2

+
A′′

ts(ml)

where the constants B′′ and A′′ are defined by B′′ = 5B′/4 and

A′′ = (max{α/K, 1})2 + 5(B′)2/8.
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(Recall that t ≤ T ≤ α/K.) Let

Y = (C + tm̂l |∇m Rm|2).
(Notice that Y is not a constant.) Of course, by definition

Fm = Y tml |∇m+1Rm|2.
Then the previous inequality becomes

(
∂

∂t
− ∆

)
Fm ≤ − 2

5ts(ml)Y 2

(
Y tml

∣∣∇m+1 Rm
∣∣2 −B′′Y

)2
+

A′′

ts(ml)
.

Since C ≤ Y ≤ 5C/4 we have
(
∂

∂t
− ∆

)
Fm ≤ − 32

125ts(ml)C2

(
Fm −B′′Y

)2
+

A′′

ts(ml)
.

At any point where Fm ≥ 5CB′′/4, the last inequality gives
(
∂

∂t
− ∆

)
Fm ≤ − 32

125ts(ml)C2

(
Fm − 5CB′′/4

)2
+

A′′

ts(ml)
.

At any point where Fm ≤ 5CB′′/4, since Fm ≥ 0 and 0 ≤ B′′Y ≤ 5CB′′/4,
we have (Fm −B′′Y )2 ≤ 25C2(B′′)2/16, so that

− 32

125ts(ml)C2

(
Fm − 5CB′′/4

)2 ≥ −2(B′′)2/5ts(ml).

Thus, in this case we have
(
∂

∂t
− ∆

)
Fm ≤ A′′

ts(ml)
≤ − 32

125ts(ml)C2

(
Fm − 5CB′′/4

)2
+
A′′ + 2(B′′)2/5

ts(ml)
.

These two cases together prove Claim 3.32. �

8. Generalized Ricci flows

In this section we introduce a generalization of the Ricci flow equation.
The generalization does not involve changing the PDE that gives the flow.
Rather it allows for the global topology of space-time to be different from a
product.

8.1. Space-time. There are two basic ways to view an n-dimensional
Ricci flow: (i) as a one-parameter family of metrics g(t) on a fixed smooth
n-dimensional manifold M , and (ii) as a partial metric (in the horizontal
directions) on the (n + 1)-dimensional manifold M × I. We call the latter
(n + 1)-dimensional manifold space-time and the horizontal slices are the
time-slices. In defining the generalized Ricci flow, it is the second approach
that we generalize.

Definition 3.34. By space-time we mean a smooth (n+1)-dimensional
manifold M (possibly with boundary), equipped with a smooth function
t : M → R, called time and a smooth vector field χ subject to the following
axioms:
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(1) The image of t is an interval I (possibly infinite) and the boundary
of M is the preimage under t of ∂I.

(2) For each x ∈ M there is an open neighborhood U ⊂ M of x and
a diffeomorphism f : V × J → U , where V is an open subset in R

n

and J is an interval with the property that (i) t is the composition
of f−1 followed by the projection onto the interval J and (ii) χ is
the image under f of the unit vector field in the positive direction
tangent to the foliation by the lines {v} × J of V × J .

Notice that it follows that χ(t) = 1.

Definition 3.35. The time-slices of space-time are the level sets t.
These form a foliation of M of codimension 1. For each t ∈ I we de-
note by Mt ⊂ M the t time-slice, that is to say t−1(t). Notice that each
boundary component of M is contained in a single time-slice. The horizontal
distribution HTM is the distribution tangent to this foliation. A horizontal
metric on space-time is a smoothly varying positive definite inner product
on HTM.

Notice that a horizontal metric on space-time induces an ordinary Rie-
mannian metric on each time-slice. Conversely, given a Riemannian metric
on each time-slice Mt, the condition that they fit together to form a hori-
zontal metric on space-time is that they vary smoothly on space-time. We
define the curvature of a horizontal metric G to be the section of the dual of
the symmetric square of ∧2HTM whose value at each point x with t(x) = t
is the usual Riemann curvature tensor of the induced metric on Mt at the
point x. This is a smooth section of Sym2(∧2HT ∗M). The Ricci curvature
and the scalar curvature of a horizontal metric are given in the usual way
from its Riemann curvature. The Ricci curvature is a smooth section of
Sym2(HT ∗M) while the scalar curvature is a smooth function on M.

8.2. The generalized Ricci flow equation. Because of the second
condition in the definition of space-time, the vector field χ preserves the
horizontal foliation and hence the horizontal distribution. Thus, we can
form the Lie derivative of a horizontal metric with respect to χ.

Definition 3.36. An n-dimensional generalized Ricci flow consists of a
space-time M that is (n+1)-dimensional and a horizontal metricG satisfying
the generalized Ricci flow equation:

Lχ(G) = −2Ric(G).

Remark 3.37. Let (M, G) be a generalized Ricci flow and let x ∈ M.
Pulling G back to the local coordinates V × J defined near any point gives
a one-parameter family of metrics (V, g(t)), t ∈ J , satisfying the usual Ricci
flow equation. It follows that all the usual evolution formulas for Riemann
curvature, Ricci curvature, and scalar curvature hold in this more general
context.
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Of course, any ordinary Ricci flow is a generalized Ricci flow where
space-time is a product M × I with time being the projection to I and χ
being the unit vector field in the positive I-direction.

8.3. More definitions for generalized Ricci flows.

Definition 3.38. Let M be a space-time. Given a space C and an
interval I ⊂ R we say that an embedding C × I → M is compatible with
the time and the vector field if: (i) the restriction of t to the image agrees
with the projection onto the second factor and (ii) for each c ∈ C the image
of {c} × I is the integral curve for the vector field χ. If in addition C is
a subset of Mt we require that t ∈ I and that the map C × {t} → Mt be
the identity. Clearly, by the uniqueness of integral curves for vector fields,
two such embeddings agree on their common interval of definition, so that,
given C ⊂Mt there is a maximal interval IC containing t such that such an
embedding, compatible with time and the vector field, is defined on C × I.
In the special case when C = {x} for a point x ∈ Mt we say that such
an embedding is the flow line through x. The embedding of the maximal
interval through x compatible with time and the vector field χ is called
the domain of definition of the flow line through x. For a more general
subset C ⊂ Mt there is an embedding C × I compatible with time and the
vector field χ if and only if for every x ∈ C, I is contained in the domain of
definition of the flow line through x.

Definition 3.39. We say that t is a regular time if there is ǫ > 0 and
a diffeomorphism Mt × (t − ǫ, t + ǫ) → t−1((t − ǫ, t + ǫ)) compatible with
time and the vector field. A time is singular if it is not regular. Notice that
if all times are regular, then space-time is a product Mt × I with t and χ
coming from the second factor. If the image t(M) is an interval I bounded
below, then the initial time for the flow is the greatest lower bound for I.
If I includes (−∞, A] for some A, then the initial time for the generalized
Ricci flow is −∞.

Definition 3.40. Suppose that (M, G) is a generalized Ricci flow and
that Q > 0 is a positive constant. Then we can define a new generalized
Ricci flow by setting G′ = QG, t′ = Qt and χ′ = Q−1χ. It is easy to see
that the result still satisfies the generalized Ricci flow equation. We denote
this new generalized Ricci flow by (QM, QG) where the changes in t and χ
are denoted by the factor of Q in front of M.

It is also possible to translate a generalized solution (M, G) by replacing
the time function t by t′ = t + a for any constant a, leaving G and χ
unchanged.

Definition 3.41. Let (M, G) be a generalized Ricci flow and let x be
a point of space-time. Set t = t(x). For any r > 0 we define B(x, t, r) ⊂Mt
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to be the metric ball of radius r centered at x in the Riemannian man-
ifold (Mt, g(t)). For any ∆t > 0 we say that P (x, t, r,∆t), respectively,
P (x, r, t,−∆t), exists in M if there is an embedding B(x, t, r) × [t, t+ ∆t],
respectively, B(x, t, r) × [t − ∆t, t], into M compatible with time and the
vector field. When this embedding exists, its image is defined to be the
forward parabolic neighborhood P (x, t, r,∆t), respectively the backward par-
abolic neighborhood P (x, t, r,−∆t). See Fig. 3.

t+ ∆t

t

t− ∆t

B(x, t, r)

x

P (x, t, r,∆t)

P (x, t, r,−∆t)

Figure 3. Parabolic neighborhoods.



CHAPTER 4

The maximum principle

Recall that the maximum principle for the heat equation says that if h
is a solution to the heat equation

∂h

∂t
= ∆h

on a compact manifold and if h(x, 0) ≥ 0 for all x ∈M , then h(x, t) ≥ 0 for
all (x, t). In this chapter we discuss analogues of this result for the scalar
curvature, the Ricci curvature, and the sectional curvature under Ricci flow.
Of course, in all three cases we are working with quasi-linear versions of the
heat equation so it is important to control the lower order (non-linear) terms
and in particular show that at zero curvature they have the appropriate sign.
Also, in the latter two cases we are working with tensors rather than with
scalars and hence we require a tensor version of the maximum principle,
which was established by Hamilton in [35].

As further applications of these results beyond just establishing non-
negativity, we indicate Hamilton’s result that if the initial conditions have
positive Ricci curvature, then the solution becomes singular at finite time
and as it does it becomes round (pinching to round). We also give Hamilton’s
result showing that at points where the scalar curvature is sufficiently large
the curvature is pinched toward positive. This result is crucial for under-
standing singularity development. As a last application, we give Hamilton’s
Harnack inequality for Ricci flows of non-negative curvature.

The maximum principle is used here in two different ways. The first
assumes non-negativity of something (e.g., a curvature) at time zero and
uses the maximum principle to establish non-negativity of this quantity at
all future times. The second assumes non-negativity of something at all
times and positivity at one point, and then uses the maximum principle to
establish positivity at all points and all later times. In the latter application
one compares the solution with a solution to the linear heat equation where
such a property is known classically to hold.

1. Maximum principle for scalar curvature

Let us begin with the easiest evolution equation, that for the scalar
curvature, where the argument uses only the (non-linear) version of the
maximum principle. This result is valid in all dimensions:
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Proposition 4.1. Let (M,g(t)), 0 ≤ t < T , be a Ricci flow with M a
compact n-dimensional manifold. Denote by Rmin(t) the minimum value of
the scalar curvature of (M,g(t)). Then:

• Rmin(t) is a non-decreasing function of t.
• If Rmin(0) ≥ 0, then

Rmin(t) ≥ Rmin(0)

(
1

1 − 2t
nRmin(0)

)
,

in particular,

T ≤ n

2Rmin(0)
.

• If Rmin(0) < 0, then

Rmin(t) ≥ − n
∣∣Rmin(0)

∣∣
2t
∣∣Rmin(0)

∣∣ + n
.

Proof. According to Equation (3.7), the evolution equation for R is

∂

∂t
R(x, t) = ∆R(x, t) + 2|Ric(x, t)|2.

Since M is compact, the function Rmin(t) is continuous but may not be C1

at points where the minimum of the scalar curvature is achieved at more
than one point.

The first thing to notice is the following:

Claim 4.2. If R(x, t) = Rmin(t), then (∂R/∂t)(x, t) ≥ 2
nR

2(x, t).

Proof. This is immediate from the evolution equation for R, the fact
that if R(x, t) = Rmin(t), then ∆R(x, t) ≥ 0, and the fact that R is the
trace of Ric which implies by the Cauchy-Schwarz inequality that |R|2 ≤
n|Ric|2. �

Now it follows that:

Claim 4.3.
d

dt
(Rmin(t)) ≥

2

n
R2

min(t),

where, at times t where Rmin(t) is not smooth, this inequality is interpreted
as an inequality for the forward difference quotients.

Proof. This is immediate from the first statement in Proposition 2.23.
�

It follows immediately from Claim 4.3 and Lemma 2.22 that Rmin(t) is
a non-decreasing function of t. This establishes the first item and also the
second item in the case when Rmin(0) = 0.

Suppose that Rmin(0) 6= 0. Consider the function

S(t) =
−1

Rmin(t)
− 2t

n
+

1

Rmin(0)
.
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Clearly, S(0) = 0 and S′(t) ≥ 0 (in the sense of forward difference quotients),
so that by Lemma 2.22 we have S(t) ≥ 0 for all t. This means that

(4.1)
1

Rmin(t)
≤ 1

Rmin(0)
− 2t

n

provided that Rmin is not ever zero on the interval [0, t]. If Rmin(0) > 0,
then by the first item, Rmin(t) > 0 for all t for which the flow is defined,
and the inequality in the second item of the proposition is immediate from
Equation (4.1). The third inequality in the proposition also follows easily
from Equation (4.1) when Rmin(t) < 0. But if Rmin(t) ≥ 0, then the third
item is obvious. �

2. The maximum principle for tensors

For the applications to the Ricci curvature and the curvature tensor we
need a version of the maximum principle for tensors that is due to Hamilton;
see [30].

Suppose that V is a finite-dimensional real vector space and Z ⊂ V is a
closed convex set. For each z in the frontier of Z we define the tangent cone
to Z at z, denoted TzZ, to be the intersection of all closed half-spaces H of
V such that z ∈ ∂H and Z ⊂ H. For z ∈ intZ we define TzZ = V . Notice
that v /∈ TzZ if and only if there is an affine linear function ℓ vanishing at z
non-positive on Z and positive on v.

Definition 4.4. Let Z be a closed convex subset of a finite-dimensional
real vector space V . We say that a smooth vector field ψ defined on an
open neighborhood U of Z in V preserves Z if for every z ∈ Z we have
ψ(z) ∈ TzZ.

It is an easy exercise to show the following; see Lemma 4.1 on page 183
of [30]:

Lemma 4.5. Let Z be a closed convex subset in a finite-dimensional
real vector space V . Let ψ be a smooth vector field defined on an open
neighborhood of Z in V . Then ψ preserves Z if and only if every integral
curve γ : [0, a) → V for ψ with γ(0) ∈ Z has γ(t) ∈ Z for all t ∈ [0, a). Said
more informally, ψ preserves Z if and only if every integral curve for ψ that
starts in Z remains in Z.

2.1. The global version. The maximum principle for tensors general-
izes this to tensor flows evolving by parabolic equations. First we introduce
a generalization of the notion of a vector field preserving a closed convex set
to the context of vector bundles.

Definition 4.6. Let π : V → M be a vector bundle and let Z ⊂ V be
a closed subset. We say that Z is convex if for every x ∈M the fiber Zx of
Z over x is a convex subset of the vector space fiber Vx of V over x. Let ψ
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be a fiberwise vector field on an open neighborhood U of Z in V. We say
that ψ preserves Z if for each x ∈M the restriction of ψ to the fiber Ux of
U over x preserves Zx.

The following global version of the maximum principle for tensors is
Theorem 4.2 of [30].

Theorem 4.7. (The maximum principle for tensors) Let (M,g)
be a compact Riemannian manifold. Let V → M be a tensor bundle and
let Z ⊂ V be a closed, convex subset invariant under the parallel translation
induced by the Levi-Civita connection. Suppose that ψ is a fiberwise vector
field defined on an open neighborhood of Z in V that preserves Z. Suppose
that T (x, t), 0 ≤ t ≤ T , is a one-parameter family of sections of V that
evolves according to the parabolic equation

∂T
∂t

= ∆T + ψ(T ).

If T (x, 0) is contained in Z for all x ∈ M , then T (x, t) is contained in Z
for all x ∈M and for all 0 ≤ t ≤ T .

For a proof we refer the reader to Theorem 4.3 and its proof (and the
related Theorem 4.2 and its proof) in [30].

There is a slight improvement of this result where the convex set Z is
allowed to vary with t. It is proved by the same argument; see Theorem 4.8
on page 101 of [13].

Theorem 4.8. Let (M,g) be a compact Riemannian manifold. Let V →
M be a tensor bundle and let Z ⊂ V × [0, T ] be a closed subset with the
property that for each t ∈ [0, T ] the time-slice Z(t) is a convex subset of
V × {t} invariant under the parallel translation induced by the Levi-Civita
connection. Suppose that ψ is a fiberwise vector field defined on an open
neighborhood of Z in V × [0, T ] that preserves the family Z(t), in the sense
that any integral curve γ(t), t0 ≤ t ≤ t1, for ψ with the property that γ(t0) ∈
Z(t0) has γ(t) ∈ Z(t) for every t ∈ [t0, t1]. Suppose that T (x, t), 0 ≤ t ≤ T ,
is a one-parameter family of sections of V that evolves according to the
parabolic equation

∂T
∂t

= ∆T + ψ(T ).

If T (x, 0) is contained in Z(0) for all x ∈ M , then T (x, t) is contained in
Z(t) for all x ∈M and for all 0 ≤ t ≤ T .

2.2. The local version. Here is the local result. It is proved by the
same argument as given in the proof of Theorem 4.3 in [30].

Theorem 4.9. Let (M,g) be a Riemannian manifold. Let U ⊂ M be a
compact, smooth, connected, codimension-0 submanifold. Let V → M be a
tensor bundle and let Z ⊂ V be a closed, convex subset. Suppose that ψ is a
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fiberwise vector field defined on an open neighborhood of Z in V preserving
Z. Suppose that Z is invariant under the parallel translation induced by the
Levi-Civita connection. Suppose that T (x, t), 0 ≤ t ≤ T , is a one-parameter
family of sections of V that evolves according to the parabolic equation

∂T
∂t

= ∆T + ψ(T ).

If T (x, 0) is contained in Z for all x ∈ U and if T (x, t) ∈ Z for all x ∈ ∂U
and all 0 ≤ t ≤ T , then T (x, t) is contained in Z for all x ∈ U and all
0 ≤ t ≤ T .

3. Applications of the maximum principle

Now let us give some applications of these results to Riemann and Ricci
curvature. In order to do this we first need to specialize the above general
maximum principles for tensors to the situation of the curvature.

3.1. Ricci flows with normalized initial conditions. As we have
already seen, the Ricci flow equation is invariant under multiplying space and
time by the same scale. This means that there can be no absolute constants
in the results about Ricci surgery. To break this gauge symmetry and make
the constants absolute, we impose scale fixing (or rather scale bounding)
conditions on the initial metrics of the flows that we shall consider. The
following definition makes precise the exact conditions that we shall use.

Definition 4.10. We say that a Ricci flow (M,g(t)) has normalized
initial conditions if 0 is the initial time for the flow and if the compact
Riemannian manifold (Mn, g(0)) satisfies:

(1) |Rm(x, 0)| ≤ 1 for all x ∈M .
(2) Let ωn be the volume of the ball of radius 1 in n-dimensional

Euclidean space. Then Vol(B(x, 0, r)) ≥ (ωn/2)r
n for any p ∈ M

and any r ≤ 1.

We also use the terminology (M,g(0)) is normalized to indicate that it sat-
isfies these two conditions.

The evolution equation for the Riemann curvature and a standard max-
imum principle argument show that if (M,g(0)) has an upper bound on the
Riemann curvature and a lower bound on the volume of balls of a fixed
radius, then the flow has Riemann curvature bounded above and volumes
of balls bounded below on a fixed time interval. Here is the result in the
context of normalized initial condition.

Proposition 4.11. There is κ0 > 0 depending only on the dimension
n such that the following holds. Let (Mn, g(t)), 0 ≤ t ≤ T , be a Ricci
flow with bounded curvature, with each (M,g(t)) being complete, and with
normalized initial conditions. Then |Rm(x, t)| ≤ 2 for all x ∈ M and all
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t ∈ [0,min(T, 2−4)]. Furthermore, for any t ∈ [0,min(T, 2−4)] and any
x ∈M and any r ≤ 1 we have VolB(x, t, r) ≥ κ0r

n.

Proof. The bound on the Riemann curvature follows directly from
Lemma 6.1 on page 207 of [14] and the definition of normalized initial con-
ditions. Once we know that the Riemann curvature is bounded by 2 on
[0, 2−4], there is an 0 < r0 depending on n such that for every x ∈ M
and every r ≤ r0 we have B(x, 0, r0r) ⊂ B(x, t, r) ⊂ B(x, 0, 1). Also,
from the bound on the Riemann curvature and the evolution equation for
volume given in Equation (3.7), we see that there is A < ∞ such that
Volt (B(x, 0, s)) ≥ A−1Vol0 (B(x, 0, s)). Putting this together we see that

Volt (B(x, t, r) ≥ A−1(ωn/2)r
n
0 r

n.

This proves the result. �

3.2. Extending flows. There is one other consequence that will be
important for us. For a reference see [14] Theorem 6.3 on page 208.

Proposition 4.12. Let (M,g(t)), 0 ≤ t < T <∞, be a Ricci flow with
M a compact manifold. Then either the flow extends to an interval [0, T ′)
for some T ′ > T or |Rm| is unbounded on M × [0, T ).

3.3. Non-negative curvature is preserved. We need to consider the
tensor versions of the maximum principle when the tensor in question is the
Riemann or Ricci curvature and the evolution equation is that induced by
the Ricci flow. This part of the discussion is valid in dimension 3 only. We
begin by evaluating the expressions in Equation (3.19) in the 3-dimensional
case. Fix a symmetric bilinear form S on a 3-dimensional real vector space
V with a positive definite inner product. The inner product determines an
identification of ∧2V with V ∗. Hence, ∧2S∗ is identified with a symmetric
automorphism of V , denoted by S♯.

Lemma 4.13. Let (M,g) be a Riemannian 3-manifold. Let T be the
curvature operator written with respect to the evolving frame as in Proposi-
tion 3.19. Then the evolution equation given in Proposition 3.19 is:

∂T
∂t

= △T + ψ(T )

where

ψ(T ) = T 2 + T ♯.

In particular, in an orthonormal basis in which

T =



λ 0 0
0 µ 0
0 0 ν



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with λ ≥ µ ≥ ν, the vector field is given by

ψ(T ) = T 2 + T ♯ =



λ2 + µν 0 0

0 µ2 + λν 0
0 0 ν2 + λµ


 .

Corollary 4.14. Let (M,g(t)), 0 ≤ t ≤ T , be a Ricci flow with M a
compact, connected 3-manifold. Suppose that Rm(x, 0) ≥ 0 for all x ∈ M .
Then Rm(x, t) ≥ 0 for all x ∈M and all t ∈ [0, T ].

Proof. Let νx : Sym2(∧2T ∗
xM) → R associate to each endomorphism

its smallest eigenvalue. Then νx(T ) is the minimum over all lines in ∧2TxM
of the trace of the restriction of T to that line. As a minimum of linear
functions, νx is a convex function. In particular, Zx = ν−1

x ([0,∞)) is a
convex subset. We let Z be the union over all x of Zx. Clearly, Z is
a closed convex subset of the tensor bundle. Since parallel translation is
orthogonal, Z is invariant under parallel translation. The expressions in
Lemma 4.13 show that if T is an endomorphism of ∧2T ∗

xM with ν(T ) ≥ 0,
then the symmetric matrix ψ(T ) is non-negative. This implies that νx is
non-decreasing in the direction ψ(T ) at the point T . That is to say, for each
x ∈ M , the vector field ψ(T ) preserves the set {ν−1

x ([c,∞))} for any c ≥ 0.
The hypothesis that Rm(x, 0) ≥ 0 means that Rm(x, 0) ∈ Z for all x ∈ M .
Applying Theorem 4.7 proves the result. �

Corollary 4.15. Suppose that (M,g(t)), 0 ≤ t ≤ T , is a Ricci flow
with M a compact, connected 3-manifold with Ric(x, 0) ≥ 0 for all x ∈ M .
Then Ric(x, t) ≥ 0 for all t > 0.

Proof. The statement that Ric(x, t) ≥ 0 is equivalent to the statement
that for every two-plane in ∧2TxM the trace of the Riemann curvature
operator on this plane is ≥ 0. For T ∈ Sym2(∧2T ∗

xM), we define s(T ) as
the minimum over all two-planes P in ∧2TM of the trace of T on P . The
restriction sx of s to the fiber over x is the minimum of a collection of linear
functions and hence is convex. Thus, the subset S = s−1([0,∞)) is convex.
Clearly, s is preserved by orthogonal isomorphisms, so S is invariant under
parallel translation. Let λ ≥ µ ≥ ν be the eigenvalues of T . According to
Lemma 4.13 the derivative of sx at T in the ψ(T )-direction is (µ2 + λν) +
(ν2 + λµ) = (µ2 + ν2) + λ(µ + ν). The condition that s(T ) ≥ 0 is the
condition that ν + µ ≥ 0, and hence µ ≥ 0, implying that λ ≥ 0. Thus, if
s(T ) ≥ 0, it is also the case that the derivative of sx in the ψ(T )-direction is
non-negative. This implies that ψ preserves S. Applying Theorem 4.7 gives
the result. �

4. The strong maximum principle for curvature

First let us state the strong maximum principle for the heat equation.
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Theorem 4.16. Let U be a compact, connected manifold, possibly with
boundary. Let h(x, t), 0 ≤ t ≤ T , be a solution to the heat equation

∂h(x, t)

∂t
= ∆h(x, t).

Suppose that h has Dirichlet boundary conditions in the sense that h(x, t) = 0
for all (x, t) ∈ ∂U × [0, T ]. If h(x, 0) ≥ 0 for all x ∈ U , then h(x, t) ≥ 0 for
all (x, t) ∈ U × [0, T ]. If, in addition, there is y ∈ U with h(y, 0) > 0, then
h(x, t) > 0 for all (x, t) ∈ int(U) × (0, T ].

We shall use this strong maximum principle to establish an analogous
result for the curvature tensors. The hypotheses are in some ways more
restrictive – they are set up to apply to the Riemann and Ricci curvature.

Proposition 4.17. Let (M,g) be a Riemannian manifold and let V be a
tensor bundle. Suppose that U is a compact, connected, smooth submanifold
of M of codimension 0. Consider a one-parameter family of sections T (x, t)
defined for 0 ≤ t ≤ T , of V. Suppose that T evolves according to the
equation

∂T
∂t

= ∆T + ψ(T )

for some smooth, fiberwise vector field ψ(T ) defined on V. Suppose that
s : V → R is a function satisfying the following properties:

(1) For each x ∈ M the restriction sx to the fiber Vx of V over x is a
convex function.

(2) For any A satisfying sx(A) ≥ 0 the vector ψ(A) is contained in the
tangent cone of the convex set {y|sx(y) ≥ sx(A) at the point A.

(3) s is invariant under parallel translation.

Suppose that s(T (x, 0)) ≥ 0 for all x ∈ U and that s(T (x, t)) ≥ 0 for all
x ∈ ∂U and all t ∈ [0, T ]. Suppose also that there is x0 ∈ int(U ) with
s(T (x0, 0)) > 0. Then s(T (x, t)) > 0 for all (x, t) ∈ int(U) × (0, T ].

Proof. Let h : U × {0} → R be a smooth function with h(x, 0) = 0 for
all x ∈ ∂U and with s(T (x, 0)) ≥ h(x, 0) ≥ 0 for all x ∈ U . We choose h
so that h(x0, 0) > 0. Let h(x, t), 0 ≤ t < ∞, be the solution to the heat
equation on U ,

∂h

∂t
= ∆h,

with Dirichlet boundary conditions h(x, t) = 0 for all x ∈ ∂U and all t ≥ 0
and with the given initial conditions.

Consider the tensor bundle V ⊕ R over M . We define

Zx =
{
(T , h) ∈ Vx ⊕ R

∣∣sx(T ) ≥ h ≥ 0
}
.

The union over all x ∈M of the Zx defines a closed convex subset Z ⊂ V⊕R

which is invariant under parallel translation since s is. We consider the
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family of sections (T (x, t), h(x, t)), 0 ≤ t ≤ T , of V ⊕ R. These evolve by

d (T (x, t), h(x, t))

dt
= (∆T (x, t),∆h(x, t)) + ψ̃ (T (x, t), h(x, t))

where ψ̃(T , h) = (ψ(T ), 0). Clearly, by our hypotheses, the vector field ψ̃
preserves the convex set Z. Applying the local version of the maximum
principle (Theorem 4.9), we conclude that T (x, t) ≥ h(x, t) for all (x, t) ∈
U × [0, T ].

The result then follows immediately from Theorem 4.16. �

4.1. Applications of the strong maximum principle. We have the
following applications of the strong maximum principle.

Theorem 4.18. Let (U, g(t)), 0 ≤ t ≤ T , be a 3-dimensional Ricci flow
with non-negative sectional curvature with U connected but not necessarily
complete and with T > 0. If R(p, T ) = 0 for some p ∈ U , then (U, g(t)) is
flat for every t ∈ [0, T ].

Proof. We suppose that there is p ∈ U with R(p, T ) = 0. Since all the
metrics in the flow are of non-negative sectional curvature, if the flow does
not consist entirely of flat manifolds, then there is (q, t) ∈ U × [0, T ] with
R(q, t) > 0. Clearly, by continuity, we can assume t < T . By restricting
to the time interval [t, T ] and shifting by −t we can arrange that t = 0.
Let V be a compact, connected smooth submanifold with boundary whose
interior contains q and p. Let h(y, 0) be a smooth non-negative function
with support in V , positive at q, such that R(y, 0) ≥ h(y, 0) for all y ∈ V .
Let h(y, t) be the solution to the heat equation on V × [0, T ] that vanishes
on ∂V . Of course, h(y, T ) > 0 for all y ∈ int(V ). Also, from Equation (3.7)
we have

∂

∂t
(R− h) = △(R− h) + 2|Ric|2,

so that (R − h)(y, 0) ≥ 0 on (V × {0}) ∪ (∂V × [0, T ]). It follows from
the maximum principle that (R − h) ≥ 0 on all of V × [0, T ]. In particular,
R(p, T ) ≥ h(p, T ) > 0. This is a contradiction, establishing the theorem. �

Corollary 4.19. Fix T > 0. Suppose that (U, g(t)), 0 ≤ t ≤ T , is
a Ricci flow such that for each t, the Riemannian manifold (U, g(t)) is a
(not necessarily complete) connected, 3-manifold of non-negative sectional
curvature. Suppose that (U, g(0)) is not flat and that for some p ∈ M the
Ricci curvature at (p, T ) has a zero eigenvalue. Then for each t ∈ (0, T ]
the Riemannian manifold (U, g(t)) splits locally as a product of a surface of
positive curvature and a line, and under this local splitting the flow is locally
the product of a Ricci flow on the surface and the trivial flow on the line.

Proof. First notice that it follows from Theorem 4.18 that because
(U, g(0)) is not flat, we have R(y, t) > 0 for every (y, t) ∈ U × (0, T ].
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We consider the function s on Sym2(∧2T ∗
yU) that associates to each

endomorphism the sum of the smallest two eigenvalues. Then sy is the
minimum of the traces on 2-dimensional subsets in ∧2TyU . Thus, s is a
convex function, and the subset S = s−1([0,∞)) is a convex subset. Clearly,
this subset is invariant under parallel translation. By the computations in
the proof of Corollary 4.15 it is invariant under the vector field ψ(T ). The
hypothesis of the corollary tells us that s(p, T ) = 0. Suppose that s(q, t) > 0
for some (q, t) ∈ U×[0, T ]. Of course, by continuity we can take t < T . Shift
the time parameter so that t = 0, and fix a compact connected, codimension-
0 submanifold V containing p, q in its interior. Then by Theorem 4.17
s(y, T ) > 0 for all y ∈ int(V ) and in particular s(p, T ) > 0. This is a
contradiction, and we conclude that s(q, t) = 0 for all (q, t) ∈ U × [0, T ].

Since we have already established that each R(y, t) > 0 for all (y, t) ∈
U × (0, T ], so that Rm(y, t) is not identically zero, this means that for
all y ∈ U and all t ∈ (0, T ], the null space of the operator Rm(y, t) is a
2-dimensional subspace of ∧2TyU . This 2-dimensional subspace is dual to a
line in TxM . Thus, we have a one-dimensional distribution (a line bundle
in the tangent bundle) D in U × (0, T ] with the property that the sectional
curvature Rm(y, t) vanishes on any 2-plane containing the line D(y, t). The
fact that the sectional curvature of g(t) vanishes on all two-planes in TyM
containing D(y, t) means that its eigenvalues are {λ, 0, 0} where λ > 0 is
the sectional curvature of the g(t)-orthogonal 2-plane to D(y, t). Hence
R(V (y, t), ·, ·, ·) = 0.

Locally in space and time, there is a unique (up to sign) vector field
V (y, t) that generates D and satisfies |V (y, t)|2g(t) = 1. We wish to show

that this local vector field is invariant under parallel translation and time
translation; cf. Lemma 8.2 in [30]. Fix a point x ∈ M , a direction X at

x, and a time t. Let Ṽ (y, t) be a parallel extension of V (x, t) along a curve

C passing through x in the X-direction, and let W̃ (y, t) be an arbitrary
parallel vector field along C. Since the sectional curvature is non-negative,

we have R(Ṽ , W̃ , Ṽ , W̃ )(y) ≥ 0 for all y ∈ C; furthermore, this expression
vanishes at x. Hence, its first variation vanishes at x. That is to say

∇
(
R(Ṽ , W̃ , Ṽ , W̃ )

)
(x, t) = (∇R)(Ṽ , W̃ , Ṽ , W̃ )

vanishes at (x, t). Since this is true for all W̃ , it follows that the null space
of the quadratic form ∇R(x, t) contains the null space of R(x, t), and thus

(∇R)(V (x, t), ·, ·, ·) = 0.

Now let us consider three parallel vector fields W̃1, W̃2, and W̃3 along C.

We compute 0 = ∇X

(
R(V (y, t), W̃1(y, t), W̃2(y, t), W̃3(y, t))

)
. (Notice that

while the W̃i are parallel along C, V (y, t) is defined to be the vector field
spanning D(y, t) rather than a parallel extension of V (x, t).) Given the
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above result we find that

0 = 2R(∇XV (x, t), W̃1(x, t), W̃2(x, t), W̃3(x, t)).

Since this is true for all triples of vector fields W̃i(x, t), it follows that
∇XV (x, t) is a real multiple of V (x, t). But since |V (y, t)|2g(t) = 1, we see

that ∇XV (x, t) is orthogonal to V (x, t). We conclude that ∇XV (x, t) = 0.
Since x and X are general, this shows that the local vector field V (x, t) is
invariant under the parallel translation associated to the metric g(t).

It follows that locally (M,g(t)) is a Riemannian product of a surface
of positive curvature with a line. Under this product decomposition, the
curvature is the pullback of the curvature of the surface. Hence, by Equa-
tion (3.5), under Ricci flow on the 3-manifold, the time derivative of the
curvature at time t also decomposes as the pullback of the time derivative of
the curvature of the surface under Ricci flow on the surface. In particular,
(∂R/∂t)(V, ·, ·, ·) = 0. It now follows easily that ∂V (x, t)/∂t = 0.

This completes the proof that the unit vector field in the direction D(x, t)
is invariant under parallel translation and under time translation. Thus,
there is a local Riemannian splitting of the 3-manifold into a surface and a
line, and this splitting is invariant under the Ricci flow. This completes the
proof of the corollary. �

In the complete case, this local product decomposition globalizes in some
cover; see Lemma 9.1 in [30].

Corollary 4.20. Suppose that (M,g(t)), 0 ≤ t ≤ T , is a Ricci flow of
complete, connected Riemannian 3-manifolds with Rm(x, t) ≥ 0 for all (x, t)
and with T > 0. Suppose that (M,g(0)) is not flat and that for some x ∈M

the endomorphism Rm(x, T ) has a zero eigenvalue. Then M has a cover M̃
such that, denoting the induced family of metrics on this cover by g̃(t), we

have that (M̃, g̃(t)) splits as a product

(N,h(t)) × (R, ds2)

where (N,h(t)) is a surface of positive curvature for all 0 < t ≤ T . The
Ricci flow is a product of the Ricci flow (N,h(t)), 0 ≤ t ≤ T , with the
trivial flow on R.

Remark 4.21. Notice that there are only four possibilities for the cover
required by the corollary. It can be trivial, or a normal Z-cover, or it can
be a two-sheeted cover or a normal infinite dihedral group cover. In the
first two cases, there is a unit vector field on M parallel under g(t) for all
t spanning the null direction of Ric. In the last two cases, there is no such
vector field, only a non-orientable line field.

Let (N, g) be a Riemannian manifold. Recall from Definition 1.14 that
the open cone on (N, g) is the space N× (0,∞) with the Riemannian metric
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g̃(x, s) = s2g(x) + ds2. An extremely important result for us is that open
pieces in non-flat cones cannot arise as the result of Ricci flow with non-
negative curvature.

Proposition 4.22. Suppose that (U, g(t)), 0 ≤ t ≤ T , is a 3-dimensional
Ricci flow with non-negative sectional curvature, with U being connected but
not necessarily complete and T > 0. Suppose that (U, g(T )) is isometric
to a non-empty open subset of a cone over a Riemannian manifold. Then
(U, g(t)) is flat for every t ∈ [0, T ].

Proof. If (U, g(T )) is flat, then by Theorem 4.18 for every t ∈ [0, T ]
the Riemannian manifold (U, g(t)) is flat.

We must rule out the possibility that (U, g(T )) is non-flat. Suppose
that (U, g(T )) is an open subset in a non-flat cone. According to Proposi-
tion 1.15, for each x ∈ U the Riemann curvature tensor of (U, g(T )) at x has a
2-dimensional null space in ∧2TxU . Since we are assuming that (U, g(T )) is
not flat, the third eigenvalue of the Riemann curvature tensor is not identi-
cally zero. Restricting to a smaller open subset if necessary, we can assume
that the third eigenvalue is never zero. By the computations in Proposi-
tion 1.15, the non-zero eigenvalue is not constant, and in fact it scales by
s−2 in the terminology of that proposition, as we move along the cone lines.
Of course, the 2-dimensional null-space for the Riemann curvature tensor at
each point is equivalent to a line field in the tangent bundle of the manifold.
Clearly, that line field is the line field along the cone lines. Corollary 4.19
says that since the Riemann curvature of (U, g(T )) has a 2-dimensional null-
space in ∧2TxU at every point x ∈ U , the Riemannian manifold (U, g(T ))
locally splits as a Riemannian product of a line with a surface of positive
curvature, and the 2-dimensional null-space for the Riemann curvature ten-
sor is equivalent to the line field in the direction of the second factor. Along
these lines the non-zero eigenvalue of the curvature is constant. This is a
contradiction and establishes the result. �

We also have Hamilton’s result (Theorem 15.1 in [29]) that compact
3-manifolds of non-negative Ricci curvature become round under Ricci flow:

Theorem 4.23. Suppose that (M,g(t)), 0 ≤ t < T , is a Ricci flow with
M being a compact 3-dimensional manifold. If Ric(x, 0) ≥ 0 for all x ∈M ,
then either Ric(x, t) > 0 for all (x, t) ∈ M × (0, T ) or Ric(x, t) = 0 for
all (x, t) ∈ M × [0, T ). Suppose that Ric(x, t) > 0 for some (x, t) and that
the flow is maximal in the sense that there is no T ′ > T and an extension
of the given flow to a flow defined on the time interval [0, T ′). For each
(x, t), let λ(x, t), resp. ν(x, t), denote the largest, resp. smallest, eigenvalue
of Rm(x, t) on ∧2TxM . Then as t tends to T the Riemannian manifolds
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(M,g(t)) are becoming round in the sense that

limt→T
maxx∈Mλ(x, t)

minx∈Mν(x, t)
= 1.

Furthermore, for any x ∈ M the largest eigenvalue λ(x, t) tends to ∞ as t
tends to T , and rescaling (M,g(t)) by λ(x, t) produces a family of Riemann-
ian manifolds converging smoothly as t goes to T to a compact round mani-
fold. In particular, the underlying smooth manifold supports a Riemannian
metric of constant positive curvature so that the manifold is diffeomorphic
to a 3-dimensional spherical space-form.

Hamilton’s proof in [29] uses the maximum principle and Shi’s derivative
estimates.

4.2. Solitons of positive curvature. One nice application of this
pinching result is the following theorem.

Theorem 4.24. Let (M,g) be a compact 3-dimensional soliton of pos-
itive Ricci curvature. Then (M,g) is round. In particular, (M,g) is the
quotient of S3 with a round metric by a finite subgroup of O(4) acting freely;
that is to say, M is a 3-dimensional spherical space-form.

Proof. Let (M,g(t)), 0 ≤ t < T , be the maximal Ricci flow with
initial manifold (M,g). Since Ric(x, 0) > 0 for all x ∈ M , it follows from
Theorem 4.23 that T <∞ and that as t tends to T the metrics g(t) converge
smoothly to a round metric. Since all the manifolds (M,g(t)) are isometric
up to diffeomorphism and a constant conformal factor, this implies that all
the g(t) are of constant positive curvature.

The last statement is a standard consequence of the fact that the man-
ifold has constant positive curvature. �

Remark 4.25. After we give a stronger pinching result in the next sec-
tion, we shall improve this result, replacing the positive Ricci curvature as-
sumption by the a priori weaker assumption that the soliton is a shrinking
soliton.

5. Pinching toward positive curvature

As the last application of the maximum principle for tensors we give a
theorem due to R. Hamilton (Theorem 4.1 in [36]) and T. Ivey [41] which
shows that, in dimension 3, as the scalar curvature gets large, the sectional
curvatures pinch toward positive. Of course, if the sectional curvatures
are non-negative, then the results in the previous section apply. Here, we
are considering the case when the sectional curvature is not everywhere
positive. The pinching result says roughly the following: At points where
the Riemann curvature tensor has a negative eigenvalue, the smallest (thus
negative) eigenvalue of the Riemann curvature tensor divided by the largest
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eigenvalue limits to zero as the scalar curvature grows. This result is central
in the analysis of singularity development in finite time for a 3-dimensional
Ricci flow.

Theorem 4.26. Let (M,g(t)), 0 ≤ t < T , be a Ricci flow with M a
compact 3-manifold. Assume that for every x ∈ M the smallest eigenvalue
of Rm(x, 0), denoted ν(x, 0), is at least −1. Set X(x, t) = max(−ν(x, t), 0).
Then we have:

(1) R(x, t) ≥ −6
4t+1 , and

(2) for all (x, t) for which 0 < X(x, t),

R(x, t) ≥ 2X(x, t) (logX(x, t) + log(1 + t) − 3) .

For any fixed t, the limit as X goes to 0 from above of

X(log(X) + log(1 + t) − 3)

is zero, so that it is natural to interpret this expression to be zero when
X = 0. Of course, when X(x, t) = 0 all the eigenvalues of Rm(x, t) are non-
negative so that R(x, t) ≥ 0 as well. Thus, with this interpretation of the
expression in part 2 of the theorem, it remains valid even when X(x, t) = 0.

Remark 4.27. This theorem tells us, among other things, that as the
scalar curvature goes to infinity, the absolute values of all the negative eigen-
values (if any) of Rm are arbitrarily small with respect to the scalar curva-
ture.

The proof we give below follows Hamilton’s original proof in [36] very
closely.

Proof. First note that by Proposition 4.1, if Rmin(0) ≥ 0, then the
same is true for Rmin(t) for every t > 0 and thus the first inequality stated
in the theorem is clearly true. If Rmin(0) < 0, the first inequality stated in
the theorem follows easily from the last inequality in Proposition 4.1.

We turn now to the second inequality in the statement of the theo-
rem. Consider the tensor bundle V = Sym2(∧2T ∗M). Then the curvature
operator, written in the evolving frame T (x, t), is a one-parameter family of
smooth sections of this bundle, evolving by

∂T
∂t

= ∆T + ψ(T ).

We consider two subsets of V. There are two solutions to

x(log(x) + (log(1 + t) − 3) = −3/(1 + t).
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One is x = 1/(1+ t); let ξ(t) > 1/(1+ t) be the other. We set S(T ) = tr(T ),
so that R = 2S, and we set X(T ) = max(−ν(T ), 0). Define

Z1(t) = {T ∈ V
∣∣S(T ) ≥ − 3

(1 + t)
},

Z2(t) = {T ∈ V
∣∣S(T ) ≥ ft(X(T )), if X(T ) ≥ ξ(t)},

where ft(x) = x(logx+ log(1 + t) − 3). Then we define

Z(t) = Z1(t) ∩ Z2(t).

Claim 4.28. For each x ∈ M and each t ≥ 0, the fiber Z(x, t) of Z(t)
over x is a convex subset of Sym2(∧2T ∗M).

Proof. First consider the function ft(x) = x(log(x)+ log(1+ t)− 3) on
the interval [ξ(t),∞). Direct computation shows that f ′(x) > 0 and f ′′(x) >
0 on this interval. Hence, for every t ≥ 0 the region C(t) in the S-X plane,
defined by S ≥ −3/(1 + t) and in addition by S ≥ ft(X) when X ≥ ξ(t),
is convex and has the property that if (S,X) ∈ C(t) then so is (S,X ′) for
all X ′ ≤ X. (See Fig. 1). By definition an element T ∈ V is contained
in Z(t) if and only if (S(T ),X(T ) ∈ C(t). Now fix t ≥ 0 and suppose
that T1 and T2 are elements of Sym2(∧2T ∗Mx) such that setting Si = tr(Ti)
and Xi = X(Ti) we have (Si,Xi) ∈ C(t) for i = 1, 2. Then we consider
T = sT1 + (1 − s)T2 for some s ∈ [0, 1]. Let S = tr(T ) and X = X(T ).
Since C(t) is convex, we know that (sS1 +(1−s)S2, sX1 +(1−s)X2) ∈ C(t),
so that T ∈ Z(t). Clearly, S = sS1 + (1 − s)S2, so that we conclude that
(S, (sX1 + (1 − s)X2)) ∈ C(t). But since ν is a convex function, X is a
concave function, i.e., X ≤ sX1 + (1 − s)X2. Hence (S,X) ∈ C(t). �

Figure 1. Curvature convex set.

Claim 4.29. T (x, 0) ∈ Z(x, 0) for all x ∈M .
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Proof. Note that by the hypothesis of the theorem the trace of Rm(x, 0)
is at least −3 so (S(x, 0),X(x, 0)) ∈ C(0) for all x ∈ M . On the other
hand, if 0 < X(x, 0), then since X(x, 0) ≤ 1 we have S(x, 0) ≥ −3X(x, 0) ≥
X(logX−3). This completes the proof that T (x, 0) ∈ C(0) for all x ∈M . �

Claim 4.30. The vector field ψ(T ) = T 2 + T ♯ preserves the family Z(t)
of convex sets.

Proof. We denote the eigenvalues of Rm(x, t) by λ(x, t) ≥ µ(x, t) ≥
ν(x, t). Fix x ∈M and let γ(t), t0 ≤ t ≤ T , be an integral curve for ψ with
γ(t0) ∈ Z(x, t0). We wish to show that γ(t) ∈ Z(x, t) for all t ∈ [t0, T ]. The
function S(t) = S(γ(t)) satisfies

dS

dt
= λ2 + µ2 + ν2 + λµ+ λν + µν =

1

2

(
(λ+ µ)2 + (λ+ ν)2 + (µ+ ν)2

)
.

By Cauchy-Schwarz we have

(λ+ µ)2 + (λ+ ν)2 + (µ+ ν)2) ≥ 4S2

3
≥ 2S2

3
.

Since γ(t0) ∈ Z(x, t0) we have S(t0) ≥ −3/(1 + t0). It then follows that

(4.2) S(t) ≥ −3/(1 + t) for all t ≥ t0.

Now let us consider the evolution of X(t) = X(γ(t)). Assume that we
are at a point t for which X(t) > 0. For this computation we set Y = −µ.

dX

dt
= −dν

dt
= −ν2 − µλ = −X2 + Y λ,

dS

dt
=
d(ν + µ+ λ)

dt
= ν2 + µ2 + λ2 + µλ+ νλ+ νµ

= X2 + Y 2 + λ2 +XY − λ(X + Y ).

Putting this together yields

(4.3) X
dS

dt
− (S +X)

dX

dt
= X3 + I,

where I = XY 2 + λY (Y −X) + λ2(X − Y ).

Claim 4.31. I ≥ 0.

Proof. First we consider the case when Y ≤ 0. This means that µ ≥ 0
and hence that λ ≥ 0. Since by definition X ≥ 0, we have X ≥ Y . This
immediately gives I ≥ 0. Now let us consider the case when Y > 0 which
means that ν ≤ µ < 0. In this case, we have

I = Y 3 + (X − Y )(λ2 − λY + Y 2) > 0

since X ≥ Y and λ2 − λY + Y 2 = (λ− Y
2 )2 + 3Y 2

4 > 0. �
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The above claim and Equation (4.3) immediately imply that

(4.4) X
dS

dt
− (S +X)

dX

dt
≥ X3.

Set W = S
X − logX, then rewriting Equation (4.4) in terms of W gives

(4.5)
dW

dt
≥ X.

Now suppose that γ(t) 6∈ Z(x, t) for some t ∈ [t0, T ]. Let t1 < T be
maximal subject to the condition that γ(t) ∈ Z(x, t) for all t0 ≤ t ≤ t1.
Of course, γ(t1) ∈ ∂Z(x, t1) which implies that (S(t1),X(t1)) ∈ ∂C(t1).
There are two possibilities: either S(t1) = −3/(1 + t1) and X(t1) < ξ(t1)
or X(t1) ≥ ξ(t1) > 1/(1 + t1) and S(t1) = ft1(X(t1)). But Equation (4.2)
implies that S(t) ≥ −3/(1 + t) for all t. Hence, if the first case holds then
γ(t) ∈ Z(x, t) for t in some interval [t0, t

′
1] with t′1 > t1. This contradicts

the maximality of t1. Thus, it must be the case that X(t1) ≥ ξ(t1). But
then X(t) > 1

1+t for all t sufficiently close to t1. Hence, by Equation (4.5)
we have

dW

dt
(t) ≥ X(t) >

1

1 + t
,

for all t sufficiently close to t1. Also, since S(t1) = ft1(X(t1)), we have
W (t1) = log(1 + t1) − 3. It follows immediately that W (t) ≥ log(1 + t) − 3
for all t > t1 sufficiently close to t1. This proves that S(t) ≥ ft(X(t)) for all
t ≥ t1 sufficiently close to t1, again contradicting the maximality of t1.

This contradiction proves that ψ preserves the family Z(t). �

By Theorem 4.8, the previous three claims imply that T (x, t) ∈ Z(t)
for all x ∈ M and all t ∈ [0, T ). That is to say, S(x, t) ≥ −3/(1 + t) and
S(x, t) ≥ ft(X(x, t)) whenever X(x, t) ≥ ξ(t). For X ∈ [1/(1 + t), ξ(t)] we
have ft(X) ≤ −3/(1 + t), and thus in fact S(x, t) ≥ ft(X(x, t)) as long as
X(x, t) ≥ 1/(1 + t). On the other hand, if 0 < X(x, t) ≤ 1/(1 + t) then
ft(X(x, t)) < −3X(x, t) ≤ S(x, t). On the other hand, since X(x, t) is the
negative of the smallest eigenvalue of T (x, t) and S(x, t) is the trace of this
matrix, we have S(x, t) ≥ −3X(x, t). Thus, S(x, t) ≥ ft(X(x, t)) in this
case as well. This completes the proof of Theorem 4.26. �

Actually, the proof establishes a stronger result which we shall need.

Theorem 4.32. Fix a ≥ 0. Let (M,g(t)), a ≤ t < T , be a Ricci
flow with M a compact 3-manifold. Suppose the eigenvalues of Rm(x, t) are
λ(x, t) ≥ µ(x, t) ≥ ν(x, t) and set X(x, t) = max(−ν(x, t), 0). Assume that
for every x ∈M we have

R(x, a) ≥ −6

4a+ 1

and

R(x, a) ≥ 2X(x, a) (logX(x, a) + log(1 + a) − 3) ,
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where the second inequality holds whenever X(x, a) > 0. Then for all a ≤
t < T and all x ∈M we have:

R(x, t) ≥ −6

4t+ 1
.(4.6)

R(x, t) ≥ 2X(x, t) (logX(x, t) + log(1 + t) − 3) if X(x, t) > 0.(4.7)

Once again it is natural to interpret the right-hand side of the second
inequality to be zero when X(x, t) = 0. With this convention, the second
inequality remains true even when X(x, t) = 0.

Corollary 4.33. Fix a ≥ 0. Suppose that (M,g(t)), a ≤ t < T , is a
Ricci flow with M a compact 3-manifold, and suppose that the two hypotheses
of the previous theorem hold. Then there is a continuous function φ such
that for all R0 <∞, if R(x, t) ≤ R0 then |Rm(x, t)| ≤ φ(R0).

Proof. Fix R0 ≥ e4 sufficiently large, and suppose that R(x, t) ≤ R0.
If X(x, t) = 0, then |Rm(x, t)| ≤ R(x, t)/2. If X(x, t) > 0, then by Theo-
rem 4.32 it is bounded by R0. Thus, λ(x, t) ≤ 3R0. Thus, we have an upper
bound on λ(x, t) and a lower bound on ν(x, t) in terms of R0. �

This theorem leads to a definition.

Definition 4.34. Let (M, G) be a generalized Ricci flow whose domain
of definition is contained in [0,∞). Then we say that (M, G) has curvature
pinched toward positive if for every x ∈ M the following two conditions hold:

R(x) ≥ −6

4t(x) + 1
,

R(x) ≥ 2X(x) (logX(x) + log(1 + t(x)) − 3) if X(x) > 0,

where, as in the statement of Theorem 4.26, X(x) is the maximum of zero
and the negative of the smallest eigenvalue of Rm(x).

The content of Theorem 4.32 is that if (M,g(t)), 0 ≤ a ≤ t < T , is a
Ricci flow with M a compact 3-manifold and if the curvature of (M,g(a))
is pinched toward positive, then the same is true for the entire flow.

5.1. Application of the pinching result. As an application of this
pinching toward positive curvature result we establish a strengthening of
Theorem 4.24.

Theorem 4.35. Let (M,g) be a compact 3-dimensional shrinking soli-
ton, i.e., there is a Ricci flow (M,g(t)), 0 ≤ t < T , so that for each t ∈ [0, T )
there is a constant c(t) with limt→T c(t) = 0 and with the property that there
is an isometry from (M,g(t)) to (M, c(t)g). Then (M,g) is round.

Proof. By rescaling we can assume that for all x ∈ M all the eigen-
values of Rm(x, 0) have absolute value ≤ 1. This implies that (M,g(0))
satisfies the hypothesis of Theorem 4.26. Our first goal is to show that
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Rm(x, 0) ≥ 0 for all x ∈ M . Suppose that this is not true; then there
is a point x with X(x, 0) > 0. Consider A = X(x, 0)/R(x, 0). For each
t < T let xt ∈ M be the image of x under the isometry from (M,g(0))
to (M, c(t)g(t)). Then X(xt, t) = c−1(t)X(x, 0) and X(xt, t)/R(xt, t) = A.
Since c(t) tends to 0 as t approaches T , this contradicts Theorem 4.26. Now,
according to Theorem 4.18 either all (M,g(t)) are flat or Rm(x, t) > 0 for all
(x, t) ∈ M × (0, T ). But if the (M,g(t)) are all flat, then the flow is trivial
and hence the diameters of the (M,g(t)) do not go to zero as t approaches T ,
contradicting the hypothesis. Hence, Rm(x, t) > 0 for all (x, t) ∈M×(0, T ).
According to Theorem 4.23 this means that as the singularity develops the
metrics are converging to round. By the shrinking soliton hypothesis, this
implies that all the metrics (M,g(t)), 0 < t < T , are in fact round. Of
course, it then follows that (M,g) is round. �

The following more general result was first given by T. Ivey [41].

Theorem 4.36. Any 3-dimensional compact Ricci soliton g0 is Einstein.

Since we do not need this result, we do not include a proof.

5.2. The Harnack inequality. The last consequence of the maximum
principle that we need is Hamilton’s version of the Harnack inequality for
Ricci flows, see Theorem 1.1 and Corollary 1.2 of [32].

Theorem 4.37. Suppose that (M,g(t)) is a Ricci flow defined for (T0, T1)
with (M,g(t)) a complete manifold of non-negative curvature operator with
bounded curvature for each t ∈ (T0, T1). Then for any time-dependent vector
field χ(x, t) on M we have:

∂R(x, t)

∂t
+
R(x, t)

t− T0
+ 2〈χ(x, t),∇R(x, t)〉 + 2Ric(x, t)(χ(x, t), χ(x, t)) ≥ 0.

In particular, we have

∂R(x, t)

∂t
+
R(x, t)

t− T0
≥ 0.

Remark 4.38. Notice that the second result follows from the first by
taking χ = 0.

Corollary 4.39. If (M,g(t)) is a Ricci flow defined for −∞ < t ≤
0 with (M,g(t)) a complete manifold of bounded, non-negative curvature
operator for each t, then

∂R(x, t)

∂t
≥ 0.

Proof. Apply the above theorem with χ(x, t) = 0 for all (x, t) and for
a sequence of T0 → −∞. �
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The above is the differential form of Hamilton’s Harnack inequality.
There is also the integrated version, also due to Hamilton; see Corollary
1.3 of [32].

Theorem 4.40. Suppose that (M,g(t)) is a Ricci flow defined for t1 ≤
t ≤ t2 with (M,g(t)) a complete manifold of non-negative, bounded curvature
operator for all t ∈ [t1, t2]. Let x1 and x2 be two points of M . Then

log

(
R(x2, t2)

R(x1, t1)

)
≥ −d

2
t1(x2, x1)

2(t2 − t1)
.

Proof. Apply the differential form of the Harnack inequality to

χ = −∇(logR)/2 = −∇R/2R,
and divide by R. The result is

R−1(∂R/∂t) − |∇(logR)|2 +
Ric(∇(logR),∇(logR))

2R
≥ 0.

Since Ric(A,A)/R ≤ |A|2, it follows that

∂

∂t
(logR) − |∇(logR)|2

2
≥ 0.

Let d be the g(t1)-distance from x1 to x2 and let γ : [t1, t2] → M be a
g(t1)-geodesic from x1 to x2, parameterized at speed d/(t2 − t1). Then let
µ(t) = (γ(t), t) be a path in space-time. We compute

log

(
R(x2, t2)

R(x1, t1)

)
=

∫ t2

t1

d

dt
log(R(µ(t))dt

=

∫ t2

t1

∂R
∂t (µ(t))

R(µ(t))
+ 〈∇(logR)(µ(t)),

dµ

dt
(µ(t))dt

≥
∫ t2

t1

1

2
|∇(logR)(µ(t))|2 − |∇(logR)(µ(t))| ·

∣∣∣∣
dγ

dt

∣∣∣∣ dt

≥ −1

2

∫ t2

t1

∣∣∣∣
dγ

dt

∣∣∣∣
2

dt,

where the last inequality comes by completing the square. Since Ric(x, t) ≥
0, we have |dγ/dt|g(t) ≤ |dγ/dt|g(t1), and thus

log

(
R(x2, t2)

R(x1, t1)

)
≥ −1

2

∫ t2

t1

∣∣∣∣
dγ

dt

∣∣∣∣
2

g(t1)

dt.

Since γ is a g(t1)-geodesic, this latter expression is

−
d2
g(t1)(x1, x2)

2(t2 − t1)
.

�



CHAPTER 5

Convergence results for Ricci flow

The most obvious notion of smooth convergence of Riemannian man-
ifolds is the C∞-version of Cheeger-Gromov compactness: We have a se-
quence of Riemannian metrics gn on a fixed smooth manifold M converging
uniformly on compact subsets of M in the C∞-topology to a limit metric
g∞. There is also a version of this compactness for based, complete Rie-
mannian manifolds. The most common starts with a sequence of based,
complete Riemannian manifolds (Mn, gn, xn), typically of unbounded diam-
eter. Then a geometric limit is a based, complete (M∞, g∞, x∞) so that for
every R < ∞ the metric balls B(xn, R) ⊂ Mn converge uniformly in the
C∞-topology to the metric ball B(x∞, R) ⊂M∞. This allows the topology
to change – even if all the Mn are diffeomorphic, M∞ can have a different
topological type; for example the Mn could all be compact and M∞ could
be non-compact.

But we also need to be able to deal with incomplete limits. In the case
of incomplete limits, the basic idea remains the same, but it requires some
care to give a definition of a geometric limit that makes it unique up to
canonical isometry. One must somehow impose conditions that imply that
the limit eventually fills up most of each of the manifolds in the sequence.

1. Geometric convergence of Riemannian manifolds

Above we referred to filling up ‘most’ of the manifold. The measure of
most of the manifold is in terms of the δ-regular points as defined below.

Definition 5.1. Let (U, g) be a Riemannian manifold. Let δ > 0 be
given. We say that p ∈ U is a δ-regular point if for every r′ < δ the metric
ball B(p, r′) has compact closure in U . Equivalently, p is δ-regular if the
exponential mapping at p is defined on the open ball of radius δ centered at
the origin in TpU , i.e., if each geodesic ray emanating from p extends to a
geodesic defined on [0, δ). We denote by Regδ(U, g) the subset of δ-regular
points in (U, g). For any x ∈ Regδ(U, g) we denote by Regδ(U, g, x) the
connected component of Regδ(U, g) containing x.

Intuitively, the δ-regular points of (U, g) are at distance at least δ from
the boundary on U .

Lemma 5.2. Regδ(U, g) is a closed subset of U .

83
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Proof. Suppose that pn converges to p as n tends to ∞ and suppose
that pn ∈ Regδ(U, g) for all n. Fix r′ < δ and consider the ball B(p, r′). For
all n sufficiently large, this ball is contained in B(pn, (δ + r′)/2), and hence
has compact closure. �

Now we are ready for the basic definition of geometric convergence of
Riemannian manifolds.

Definition 5.3. For each k let (Uk, gk, xk) be a based, connected Rie-
mannian manifold. A geometric limit of the sequence {Uk, gk, xk}∞k=0 is a
based, connected Riemannian manifold (U∞, g∞, x∞) with the extra data:

(1) An increasing sequence Vk ⊂ U∞ of connected open subsets of U∞
whose union is U∞ and which satisfy the following for all k:
(a) the closure V k is compact,
(b) V k ⊂ Vk+1,
(c) Vk contains x∞.

(2) For each k ≥ 0 a smooth embedding ϕk : (Vk, x∞) → (Uk, xk) with
the properties that:
(a) limk→∞ϕ∗

kgk = g∞, where the limit is in the uniform C∞-
topology on compact subsets of U∞.

(b) For any δ > 0 and any R < ∞ for all k sufficiently large,
xk ∈ Regδ(Uk, gk) and for any ℓ ≥ k the image ϕℓ(Vk) contains
B(xℓ, R) ∩ Regδ(Uℓ, gℓ, xℓ).

We also say that the sequence converges geometrically to (U∞, g∞, x∞)
if there exist (Vk, ϕk) as required in the above definition. We also say that
(U∞, g∞, x∞) is the geometric limit of the sequence.

More generally, given (U∞, g∞, x∞), a sequence of open subsets and
{Vk}∞k=1 satisfying (1) above, and smooth maps ϕk : Vk → Uk satisfying (2a)
above, we say that (U∞, g∞, x∞) is a partial geometric limit of the sequence.

Remark 5.4. Conditions (1) and (2a) in the definition above also appear
in the definition in the case of complete limits. It is Condition (2b) that is
extra in this incomplete case. It says that once k is sufficiently large then
the image ϕℓ(Vk) contains all points satisfying two conditions: they are at
most a given bounded distance from xℓ, and also they are at least a fixed
distance from the boundary of Uℓ.

Notice that if the (Uk, gk) have uniformly bounded volume by, say, V ,
then any geometric limit has volume ≤ V .

Lemma 5.5. The geometric limit of a sequence (Uk, gk, xk) is unique up
to based isometry.

Proof. Suppose that (U∞, g∞, x∞) and (U ′
∞, g

′
∞, x

′
∞) are geometric

limits. Let {Vk, ϕk} and {V ′
k, ϕ

′
k} be the sequences of open subsets and

maps as required by the definition of the limit.
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Fix k. Since Vk is connected and has compact closure, there are R <∞
and δ > 0 such that Vk ⊂ B(x∞, R)∩Regδ(U∞, g∞, x∞). Let x be contained

in the closure of Vk. Then by the triangle inequality the closed ball B(x, δ/3)
is contained in B(x∞, R+δ)∩Regδ/2(U∞, g∞, x∞). Since the union of these

closed balls as x ranges over V k is a compact set, for all ℓ sufficiently large,
the restriction of ϕ∗

ℓgℓ to the union of these balls is close to the restriction
of g∞ to the same subset. In particular, for all ℓ sufficiently large and any
x ∈ Vk we see that ϕℓ (B(x, δ/3)) contains B(ϕℓ(x), δ/4). Thus, for all ℓ
sufficiently large ϕℓ(Vk) ⊂ B(xℓ, R + 2δ) ∩ Regδ/4(Uℓ, gℓ, xℓ). This implies

that, for given k, for all ℓ sufficiently large ϕℓ(Vk) ⊂ ϕ′
ℓ(V

′
ℓ ). Of course,

(ϕ′
ℓ)

−1 ◦ ϕℓ(x∞) = x′∞. Fix k and pass to a subsequence of ℓ, such that as
ℓ → ∞, the compositions (ϕ′

ℓ)
−1 ◦ (ϕℓ|Vk

) : Vk → U ′
∞ converge to a base-

point preserving isometric embedding of Vk into U ′
∞. Clearly, as we pass

from k to k′ > k and take a further subsequence of ℓ these limiting isometric
embeddings are compatible. Their union is then a base-point preserving
isometric embedding of U∞ into U ′

∞.
The last thing we need to see is that the embedding of U∞ into U ′

∞
constructed in the previous paragraph is onto. For each n we have V

′
n ⊂

V ′
n+1. Since V

′
n is compact and connected, it follows that there are R < ∞

and δ > 0 (depending on n) such that V
′
n ⊂ B(x′∞, R)∩Regδ(Vn+1, g

′
∞, x

′
∞).

Since V ′
n+1 has compact closure in U ′

∞, as ℓ tends to ∞ the metrics (ϕ′
ℓ)

∗gℓ
converge uniformly on Vn+1 to g′∞|Vn+1 . This means that there are R′ <∞
and δ′ > 0 (depending on n) such that for all ℓ sufficiently large, ϕ′

ℓ(Vn) ⊂
B(xk, R

′)∩Regδ′(Uℓ, gℓ, xℓ). This implies that for all k sufficiently large and
any ℓ ≥ k the image ϕ′

ℓ(V
′
n) is contained in the image of ϕℓ(Vk). Hence, for

all k sufficiently large and any ℓ ≥ k we have V ′
n ⊂ (ϕ′

ℓ)
−1(ϕℓ(Vk)). Hence,

the isometric embedding U∞ → U ′
∞ constructed above contains V ′

n. Since
this is true for every n, it follows that this isometric embedding is in fact an
isometry U∞ → U ′

∞. �

Here is the basic existence result.

Theorem 5.6. Suppose that {(Uk, gk, xk)}∞k=1 is a sequence of based,
connected, n-dimensional Riemannian manifolds. In addition, suppose the
following:

(1) There is δ > 0 such that xk ∈ Regδ(Uk, gk) for all k.
(2) For each R < ∞ and δ > 0 there is a constant V (R, δ) < ∞ such

that Vol(B(xk, R) ∩ Regδ(Uk, xk)) ≤ V (R, δ) for all k sufficiently
large.

(3) For each non-negative integer ℓ, each δ > 0, and each R <∞, there
is a constant C(ℓ, δ,R) such that for every k sufficiently large we
have

|∇ℓRm(gk)| ≤ C(ℓ, δ,R)
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on all of B(xk, R) ∩ Regδ(Uk, gk).
(4) For every R < ∞ there are r0 > 0 and κ > 0 such that for every

k sufficiently large, for every δ ≤ r0 and every x ∈ B(xk, R) ∩
Regδ(Uk, gk, xk) the volume of the metric ball B(x, δ) ⊂ Uk is at
least κδn.

Then, after passing to a subsequence, there exists a based Riemannian mani-
fold (U∞, g∞, x∞) that is a geometric limit of the sequence {(Uk, gk, xk)}∞k=1.

Before giving the proof of this result, we begin with a standard lemma.

Lemma 5.7. Suppose that we have a sequence of n-dimensional balls
(Bk, hk) of radius r in Riemannian n-manifolds. Suppose that for each ℓ
there is a constant C(ℓ) such that for every k, we have |∇ℓRm(hk)| ≤ C(ℓ)
throughout Bk. Suppose also that for each n the exponential mapping from
the tangent space at the center of Bk induces a diffeomorphism from a ball
in the tangent space onto Bk. Then choosing an isometric identification of
the tangent spaces at the central points of the Bk with R

n and pulling back

the metrics hk via the exponential mapping to metrics h̃k on the ball B of
radius r in R

n gives us a family of metrics on B that, after passing to a
subsequence, converge in the C∞-topology, uniformly on compact subsets of
B, to a limit.

The basic point in proving this lemma is to ‘find the right gauge,’ which
in this case means find local coordinates so that the metric tensor is con-
trolled by the curvature. The correct local coordinates are the Gaussian
coordinates centered at the center of the ball.

Proof. (of the theorem). Fix R <∞ and δ > 0. Let

X(δ,R) = B(xk, R) ∩ Reg2δ(Uk, gk, xk).

From the non-collapsing assumption and the curvature bound assumption
if follows from Theorem 1.36 that there is a uniform positive lower bound
(independent of k) to the injectivity radius of every point in X(δ,R). Fix
0 < δ′ ≤ min(r0, δ/2) much less than this injectivity radius. We also choose
δ′ > 0 sufficiently small so that any ball of radius 2δ′ in B(xk, R + δ) ∩
Regδ(Uk, gk, xk) is geodesically convex. (This is possible because of the cur-
vature bound.) We cover X(δ,R) by balls B′

1, . . . , B
′
N of radii δ′/2 centered

at points of X(δ,R) with the property that the sub-balls of radius δ′/4 are

disjoint. We denote by B′
i ⊂ Bi ⊂ B̃i the metric balls with the same center

and radii δ′/2, δ′, and 2δ′ respectively. Notice that each of the balls B̃i
is contained in B(xk, R + δ) ∩ Regδ(Uk, gk, xk). Because δ′ ≤ r0, because
VolB(xk, R + δ) is bounded independent of k, and because the concentric
balls of radius δ′/4 are disjoint, there is a uniform bound (independent of
k) to the number of such balls. Passing to a subsequence we can assume
that the number of balls in these coverings is the same for all k. We number
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them B̃1, . . . , B̃N . Next, using the exponential mapping at the central point,
identify each of these balls with the ball of radius 2δ′ in R

n. By passing to

a further subsequence we can arrange that the metrics on each B̃i converge
uniformly. (This uses the fact that the concentric balls of radius 2δ ≥ 4δ′ are
embedded in the Uk by the exponential mapping.) Now we pass to a further
subsequence so that the distance between the centers of the balls converges,

and so that for any pair B̃i and B̃j for which the limiting distance between
their centers is less than 4δ′, the overlap functions in the Uk also converge.
The limits of the overlap functions defines a limiting equivalence relation on∐
i B̃i.

This allows us to form a limit manifold Û∞. It is the quotient of the

disjoint union of the B̃i with the limit metrics under the limit equivalence
relation. We set (U∞(δ,R), g∞(δ,R), x∞(δ,R)) equal to the submanifold

of Û∞ that is the union of the sub-balls Bi ⊂ B̃i of radii δ′. A standard
argument using partitions of unity and the geodesic convexity of the balls

B̃i shows that, for all k sufficiently large, there are smooth embeddings
ϕk(δ,R) : U∞(δ,R) → B(xk, R + δ) ∩ Regδ(Uk, gk, xk) sending x∞(δ,R) to
xk and converging as k → ∞, uniformly in the C∞-topology on each Bi,
to the identity. Furthermore, the images of each of these maps contains
B(xk, R) ∩ Reg2δ(Uk, gk, xk); compare [6]. Also, the pull-backs under these
embeddings of the metrics gk converge uniformly to g∞(δ,R).

Repeat the process with R replaced by 2R and δ = δ1 replaced by
δ2 ≤ δ1/2. This produces

(U∞(δ2, 2R), g∞(δ2, 2R), x∞(δ2, 2R))

and, for all k sufficiently large, embeddings ϕk(δ2, 2R) of this manifold into

B(xk, 2R + δ2) ∩ Regδ2(Uk, gk, xk).

Hence, the image of these embeddings contains the images of the original
embeddings. The compositions (ϕk(δ2, 2R))−1 ◦ ϕk(δ,R) converge to an
isometric embedding

(U∞(δ,R), g∞(δ,R), x∞(δ,R)) → (U∞(δ2, 2R), g∞(δ2, 2R), x∞(δ2, 2R)) .

Repeating this construction infinitely often produces a based Riemannian
manifold (U∞, g∞, x∞) which is written as an increasing union of open sub-
sets Vk = U∞(δk, 2

kR), where the δk tend to zero as k tends to ∞. For each
k the open subset Vk has compact closure contained in Vk+1. By taking a
subsequence of the original sequence we have maps ϕk : Vk → Uk so that
(2a) in the definition of geometric limits holds. Condition (2b) clearly holds
by construction. �

Now let us turn to complete Riemannian manifolds, where the result is
the C∞-version of the classical Cheeger-Gromov compactness.
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Lemma 5.8. Suppose that (Uk, gk, xk) is a sequence of based Riemannian
manifolds and that there is a partial geometric limit (U∞, g∞, x∞) that is
a complete Riemannian manifold. Then this partial geometric limit is a
geometric limit.

Proof. Since the balls B(x∞, R) have compact closure in U∞ and since

Regδ(U∞, g∞, x∞) = U∞

for every δ > 0, it is easy to see that the extra condition, (2b), in Defini-
tion 5.3 is automatic in this case. �

Now as an immediate corollary of Theorem 5.6 we have the following.

Theorem 5.9. Let {(Mk, gk, xk)}∞k=1 be a sequence of connected, based
Riemannian manifolds. Suppose that:

(1) For every A < ∞ the ball B(xk, A) has compact closure in Mk for
all k sufficiently large.

(2) For each integer ℓ ≥ 0 and each A < ∞ there is a constant C =
C(ℓ,A) such that for each yk ∈ B(xk, A) we have

∣∣∣∇ℓRm(gk)(yk)
∣∣∣ ≤ C

for all k sufficiently large.
(3) Suppose also that there is a constant δ > 0 with inj(Mk,gk)(xk) ≥ δ

for all k sufficiently large.

Then after passing to a subsequence there is a geometric limit which is a
complete Riemannian manifold.

Proof. By the curvature bounds, it follows from the Bishop-Gromov
theorem (Theorem 1.34) that for each A <∞ there is a uniform bound to the
volumes of the balls B(xk, A) for all k sufficiently large. It also follows from
the same result that the uniform lower bound on the injectivity radius at the
central point implies that for each A < ∞ there is a uniform lower bound
for the injectivity radius on the entire ball B(xk, A), again for k sufficiently
large. Given these two facts, it follows immediately from Theorem 5.6 that
there is a geometric limit.

Since, for every A < ∞, the B(xk, A) have compact closure in Mk for
all k sufficiently large, it follows that for every A < ∞ the ball B(x∞, A)
has compact closure in M∞. This means that (M∞, g∞) is complete. �

Corollary 5.10. Suppose that {(Mk, gk, xk)}∞k=1 is a sequence of based,
connected Riemannian manifolds. Suppose that the first two conditions in
Theorem 5.9 hold and that there are constants κ > 0 and δ > 0 such that
Volgk

B(xk, δ) ≥ κδn for all k. Then after passing to a subsequence there is
a geometric limit which is a complete Riemannian manifold.
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Proof. Let A = max(δ−2, C(0, δ)), where C(0, δ) is the constant given
in the second condition in Theorem 5.9. Rescale, replacing the Riemannian
metric gk by Agk. Of course, the first condition of Theorem 5.9 still holds as
does the second with different constants, and we have |RmAgk

(yk)| ≤ 1 for

all yk ∈ BAgk
(xk,

√
Aδ). Also, VolBAgk

(xk,
√
Aδ) ≥ κ(

√
Aδ)n. Thus, by the

Bishop-Gromov inequality (Theorem 1.34), we have VolAgk
B(xk, 1) ≥ κ/Ω

where

Ω =
V (

√
Aδ)

(
√
Aδ)nV (1)

,

and V (a) is the volume of the ball of radius a in hyperbolic n-space (the

simply connected n-manifold of constant curvature −1). Since
√
Aδ ≥ 1, this

proves that, for all k sufficiently large, the absolute values of the sectional
curvatures of Agk on BAgk

(xk, 1) are bounded by 1 and that VolAgk
B(xk, 1)

is bounded below by a positive constant independent of k. According to
Theorem 1.36 these conditions imply that there is r > 0, such that for all
k sufficiently large, the injectivity radius of (Mk, Agk) at xk is at least r.
Hence, for all k sufficiently large, the injectivity radius at xk of (Mk, gk) is

bounded below by r/
√
A. This means that the original sequence of manifolds

satisfies the third condition in Theorem 5.9. Invoking this theorem gives the
result. �

1.1. Geometric convergence of manifolds in the case of Ricci
flow. As the next theorem shows, because of Shi’s theorem, it is much easier
to establish the geometric convergence manifolds in the context of Ricci flows
than in general.

Theorem 5.11. Suppose that (Mk, Gk, xk) is a sequence of based, gen-
eralized n-dimensional Ricci flows with t(xk) = 0. Let (Mk, gk) be the 0
time-slice of (Mk, Gk). Suppose that for each A < ∞ there are constants
C(A) < ∞ and δ(A) > 0 such that for all k sufficiently large the following
hold:

(1) the ball B(xk, 0, A) has compact closure in Mk,
(2) there is an embedding B(xk, 0, A) × (−δ(A), 0] → Mk compatible

with the time function and with the vector field,
(3) |Rm| ≤ C(A) on the image of the embedding in the item (2), and
(4) there is r0 > 0 and κ > 0 such that VolB(xk, 0, r0) ≥ κrn0 for all k

sufficiently large.

Then after passing to a subsequence there is a geometric limit (M∞, g∞, x∞)
of the 0 time-slices (Mk, gk, xk). This limit is a complete Riemannian man-
ifold.

Proof. The first condition in Theorem 5.9 holds by our first assump-
tion. It is immediate from Shi’s theorem (Theorem 3.28) that the second
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condition of Theorem 5.9 holds. The result is then immediate from Corol-
lary 5.10. �

2. Geometric convergence of Ricci flows

In this section we extend this notion of geometric convergence for based
Riemannian manifolds in the obvious way to geometric convergence of based
Ricci flows. Then we give Hamilton’s theorem about the existence of such
geometric limits.

Definition 5.12. Let {(Mk, Gk, xk)}∞k=1 be a sequence of based, gen-
eralized Ricci flows. We suppose that t(xk) = 0 for all k and we denote
by (Mk, gk) the time-slice of (Mk, Gk). For some 0 < T ≤ ∞, we say that
a based Ricci flow (M∞, g∞(t), (x∞, 0)) defined for t ∈ (−T, 0] is a partial
geometric limit Ricci flow if:

(1) There are open subsets x∞ ∈ V1 ⊂ V2 ⊂ · · · ⊂ M∞ satisfying (1)
of Definition 5.3 with M∞ in place of U∞,

(2) there is a sequence 0 < t1 < t2 < · · · with limk→∞tk = T ,
(3) and maps

ϕ̃k : Vk × [−tk, 0] → Mk

compatible with time and the vector field

such that the sequence of horizontal families of metrics ϕ̃∗
kGk converges

uniformly on compact subsets of M∞ × (−T, 0] in the C∞-topology to the
horizontal family of metrics g∞(t) on M∞ × (−T, 0].

Notice that the restriction to the 0 time-slices of a partial geometric limit
of generalized Ricci flows is a partial geometric limit of the 0 time-slices.

Definition 5.13. For 0 < T ≤ ∞, if (M∞, g∞(t), x∞), −T < t ≤ 0,
is a partial geometric limit Ricci flow of the based, generalized Ricci flows
(Mk, Gk, xk) and if (M∞, g∞(0), x∞) is a geometric limit of the 0 time-slices,
then we say that the partial geometric limit is a geometric limit Ricci flow
defined on the time interval (−T, 0].

Again Shi’s theorem, together with a computation of Hamilton, allows
us to form geometric limits of generalized Ricci flows. We have the following
result due originally to Hamilton [33].

Proposition 5.14. Fix constants −∞ ≤ T ′ ≤ 0 ≤ T ≤ ∞ and suppose
that T ′ < T . Let {(Mk, Gk, xk)}∞k=1 be a sequence of based, generalized
Ricci flows. Suppose that t(xk) = 0 for all k, and denote by (Mk, gk) the
0 time-slice of (Mk, Gk). Suppose that there is a partial geometric limit
(M∞, g∞, x∞) for the (Mk, gk, xk) with open subsets {Vk ⊂M∞} and maps
ϕk : Vk → Mk as in Definition 5.3. Suppose that for every compact subset
K ⊂ M∞ and every compact interval I ⊂ (T ′, T ) containing 0, for all k
sufficiently large, there is an embedding ϕ̃k(K, I) : K × I → Mk compatible
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with time and the vector field and extending the map ϕk on the 0 time-slice.
Suppose in addition that for every k sufficiently large there is a uniform
bound (independent of k) to the norm of Riemann curvature on the image
of ϕ̃k(K, I). Then after passing to a subsequence the flows ϕ̃∗

kGk converge
to a partial geometric limit Ricci flow g∞(t) defined for t ∈ (T ′, T ).

Proof. Suppose that we have a partial geometric limit of the time-zero
slices as stated in the proposition. Fix a compact subset K ⊂ M∞ and a
compact sub-interval I ⊂ (T ′, T ). For all k sufficiently large we have embed-
dings ϕ̃k(K, I) as stated. We consider the flows gk(K, I)(t) on K×I defined
by pulling back the horizontal metrics Gk under the maps ϕ̃k(K, I). These
of course satisfy the Ricci flow equation on K× I. Furthermore, by assump-
tion the flows gk(K, I)(t) have uniformly bounded curvature. Then under
these hypothesis, Shi’s theorem can be used to show that the curvatures of
the gk(K, I) are uniformly bounded C∞-topology. The basic computation
done by Hamilton in [33] shows that after passing to a further subsequence,
the Ricci flows gk(K, I) converge uniformly in the C∞-topology to a limit
flow on K × I. A standard diagonalization argument allows us to pass to a
further subsequence so that the pullbacks ϕ̃∗

kGk converge uniformly in the
C∞-topology on every compact subset of M∞× (T ′, T ). Of course, the limit
satisfies the Ricci flow equation. �

This ‘local’ result leads immediately to the following result for complete
limits.

Theorem 5.15. Fix −∞ ≤ T ′ ≤ 0 ≤ T ≤ ∞ with T ′ < T . Let
{(Mk, Gk, xk)}∞k=1 be a sequence of based, generalized Ricci flows. Suppose
that t(xk) = 0 for all k, and denote by (Mk, gk) the 0 time-slice of (Mk, Gk).
Suppose that for each A < ∞ and each compact interval I ⊂ (T ′, T ) con-
taining 0 there is a constant C(A, I) such that the following hold for all k
sufficiently large:

(1) the ball Bgk
(xk, 0, A) has compact closure in Mk,

(2) there is an embedding Bgk
(xk, 0, A)×I → Mk compatible with time

and with the vector field,
(3) the norms of the Riemann curvature of Gk on the image of the

embedding in the previous item are bounded by C(A, I), and
(4) there is r0 > 0 and κ > 0 with VolB(xk, 0, r0) ≥ κrn0 for all k

sufficiently large.

Then after passing to a subsequence there is a flow (M∞, g∞(t), (x∞, 0))
which is the geometric limit. It is a solution to the Ricci flow equation
defined for t ∈ (T ′, T ). For every t ∈ (T ′, T ) the Riemannian manifold
(M∞, g∞(t)) is complete.

Proof. By Theorem 5.11 there is a geometric limit (M∞, g∞(0)) of the
0 time-slices, and the limit is a complete Riemannian manifold. Then by
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Proposition 5.14 there is a geometric limit flow defined on the time interval
(T ′, T ). Since for every t ∈ (T ′, T ) there is a compact interval I containing
0 and t, it follows that the Riemann curvature of the limit is bounded on
M∞ × I. This means that the metrics g∞(0) and g∞(t) are commensurable
with each other. Since g∞(0) is complete so is g∞(t). �

Corollary 5.16. Suppose that (U, g(t)), 0 ≤ t < T < ∞, is a Ricci
flow. Suppose that |Rm(x, t)| is bounded independent of (x, t) ∈ U × [0, T ).
Then for any open subset V ⊂ U with compact closure in U , there is an
extension of the Ricci flow (V, g(t)|V ) past time T .

Proof. Take a sequence tn → T and consider the sequence of Rie-
mannian manifolds (V, g(tn)). By Shi’s theorem and the fact that V has
compact closure in U , the restriction of this sequence of metrics to V has
uniformly bounded curvature derivatives. Hence, this sequence has a con-
vergent subsequence with limit (V, g∞), where the convergence is uniform
in the C∞-topology. Now by Hamilton’s result [33] it follows that, pass-
ing to a further subsequence, the flows (V, g(T + t− tn), (p, 0)) converge to
a flow (V, g∞(t), (p, 0)) defined on (0, T ]. Clearly, for any 0 < t < T we
have g∞(t) = g(t). That is to say, we have extended the original Ricci flow
smoothly to time T . Once we have done this, we extend it to a Ricci flow on
[T, T1) for some T1 > T using the local existence results. The extension to
[T, T1) fits together smoothly with the flow on [0, T ] by Proposition 3.12. �

3. Gromov-Hausdorff convergence

Let us begin with the notion of the Gromov-Hausdorff distance between
based metric spaces of finite diameter. Let Z be a metric space. We define
the Hausdorff distance between subsets of Z as follows: dZH(X,Y ) is the
infimum of all δ ≥ 0 such thatX is contained in the δ-neighborhood of Y and
Y is contained in the δ-neighborhood of X. For metric spaces X and Y we
define the Gromov-Hausdorff distance between them, denoted DGH(X,Y ),
to be the infimum over all metric spaces Z and isometric embeddings f : X →
Z and g : Y → Z of the Hausdorff distance between f(X) and g(Y ). For
pointed metric spaces (X,x) and (Y, y) of finite diameter, we define the
Gromov-Hausdorff distance between them, denoted DGH((X,x), (Y, y)), to
be the infimum of DZ

H(f(X), g(Y )) over all triples ((Z, z), f, g) where (Z, z)
is a pointed metric space and f : (X,x) → (Z, z) and g : (Y, y) → (Z, z) are
base-point preserving isometries.

To see that DGH is a distance function we must establish the triangle
inequality. For this it is convenient to introduce δ-nets in metric spaces.

Definition 5.17. A δ-net in (X,x) is a subset L of X containing x
whose δ-neighborhood covers X and for which there is some δ′ > 0 with
d(ℓ1, ℓ2) ≥ δ′ for all ℓ1 6= ℓ2 in L.
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Clearly, the Gromov-Hausdorff distance from a based metric space (X,x)
to a δ-net (L, x) contained in it is at most δ. Furthermore, for every δ > 0
the based space (X,x) has a δ-net: Consider subsets L ⊂ X containing x
with the property that the δ/2-balls centered at the points of L are disjoint.
Any maximal such subset (with respect to the inclusion relation) is a δ-net
in X.

Lemma 5.18. The Gromov-Hausdorff distance satisfies the triangle in-
equality.

Proof. Suppose DGH((X,x), (Y, y)) = a and DGH((Y, y), (Z, z)) = b.
Fix any δ > 0. Then there is a metric d1 on X ∨Y such that d1 extends the
metrics on X,Y and the (a+ δ)-neighborhood of X is all of X ∨ Y as is the
(a+ δ)-neighborhood of Y . Similarly, there is a metric d2 on Y ∨Z with the
analogous properties (with b replacing a). Take a δ-net (L, y) ⊂ (Y, y), and
define

d(x′, z′) = infℓ∈Ld(x
′, ℓ) + d(ℓ, z′).

We claim that d(x′, z′) > 0 unless x′ = z′ is the common base point. The
reason is that if infℓ∈Ld(x′, ℓ) = 0, then by the triangle inequality, any
sequence of ℓn ∈ L with d(x′, ℓn) converging to zero is a Cauchy sequence,
and hence is eventually constant. This means that for all n sufficiently large,
x′ = ℓn ∈ L ∩X and hence x′ is the common base point. Similarly for z′.

A straightforward computation shows that the function d above, to-
gether with the given metrics on X and Z, define a metric on X ∨ Z with
the property that the (a + b + 3δ)-neighborhood of X is all of X ∨ Z and
likewise for Z. Since we can do this for any δ > 0, we conclude that
DGH((X,x), (Z, z)) ≤ a+ b. �

Thus, the Gromov-Hausdorff distance is a pseudo-metric. In fact, the
restriction of the Gromov-Hausdorff distance to complete metric spaces of
bounded diameter is a metric. We shall not establish this result, though
we prove below closely related results about the uniqueness of Gromov-
Hausdorff limits.

Definition 5.19. We say that a sequence of based metric spaces (Xk, xk)
of uniformly bounded diameter converges in the Gromov-Hausdorff sense to
a based metric space (Y, y) of finite diameter if

limk→∞DGH((Xk, xk), (Y, y)) = 0.

Thus, a based metric space (X,x) of bounded diameter is the limit of a
sequence of δn-nets Ln ⊂ X provided that δn → 0 as n→ ∞.

Example 5.20. A sequence of compact n-manifolds of diameter tending
to zero has a point as Gromov-Hausdorff limit.
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Definition 5.21. Suppose that {(Xk, xk)}k converges in the Gromov-
Hausdorff sense to (Y, y). Then a realization sequence for this convergence
is a sequence of triples ((Zk, zk), fk, gk) where, for each k, the pair (Zk, zk)
is a based metric space,

fk : (Xk, xk) → (Zk, zk) and gk : (Y, y) → (Zk, zk)

are isometric embeddings and DGH(fk(Xk), gk(Y )) → 0 as k → ∞. Given a
realization sequence for the convergence, we say that a sequence ℓk ∈ Xk con-
verges to ℓ ∈ Y (relative to the given realization sequence) if d(fk(ℓk), gk(ℓ))
tends to 0 as i→ ∞.

Notice that, with a different realization sequence for the convergence, a
sequence ℓk ∈ Xk can converge to a different point of Y . Also notice that,
given a realization sequence for the convergence, every y ∈ Y is the limit of
some sequence xk ∈ Xk, a sequence xk ∈ Xk has at most one limit in Y , and
if Y is compact then every sequence xk ∈ Xk has a subsequence converging
to a point of Y . Lastly, notice that under any realization sequence for the
convergence, the base points xk converge to the base point y.

Lemma 5.22. Let (Xk, xk) be a sequence of metric spaces whose diam-
eters are uniformly bounded. Then the (Xk, xk) converge in the Gromov-
Hausdorff sense to (X,x) if and only if the following holds for every δ > 0.
For every δ-net L ⊂ X, for every η > 0, and for every k sufficiently large,
there is a (δ + η)-net Lk ⊂ Xk and a bijection Lk → L sending xk to x
so that the push forward of the metric on Lk induced from that of Xk is
(1 + η)-bi-Lipschitz equivalent to the metric on L induced from X.

For a proof see Proposition 3.5 on page 36 of [25].

Lemma 5.23. Let (Xk, xk) be a sequence of based metric spaces whose
diameters are uniformly bounded. Suppose that (Y, y) and (Y ′, y′) are limits
in the Gromov-Hausdorff sense of this sequence and each of Y and Y ′ are
compact. Then (Y, y) is isometric to (Y ′, y′).

Proof. By the triangle inequality for Gromov-Hausdorff distance, it
follows from the hypothesis of the lemma that DGH((Y, y), (Y ′, y′)) = 0.
Fix δ > 0. Since DGH((Y, y), (Y ′, y′)) = 0, for any n > 0 and finite
(1/n)-net Ln ⊂ Y containing y there is an embedding ϕn : Ln → Y ′ sending
y to y′ such that the image is a 2/n-net in Y ′ and such that the map from Ln
to its image is a (1 + δ)-bi-Lipschitz homeomorphism. Clearly, we can sup-
pose that in addition the Ln are nested: Ln ⊂ Ln+1 ⊂ · · · . Since Y ′ is com-
pact and Ln is finite, and we can pass to a subsequence so that limk→∞ϕk|Ln

converges to a map ψn : Ln → Y ′ which is a (1+δ)-bi-Lipschitz map onto its
image which is a 2/n net in Y ′. By a standard diagonalization argument, we
can arrange that ψn+1|Ln = ψn for all n. The {ψn} then define an embed-
ding ∪nLn → Y ′ that is a (1+ δ)-bi-Lipschitz map onto its image which is a
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dense subset of Y ′. Clearly, using the compactness of Y ′ this map extends
to a (1+δ)-bi-Lipschitz embedding ψδ : (Y, y) → (Y ′, y′) onto a dense subset
of Y ′. Since Y is also compact, this image is in fact all of Y ′. That is to say,
ψδ is a (1 + δ)-bi-Lipschitz homeomorphism (Y, y) → (Y ′, y′). Now perform
this construction for a sequence of δn → 0 and (1 + δn)-bi-Lipschitz home-
omorphisms ψδn : (Y, y) → (Y ′, y′). These form an equicontinuous family so
that by passing to a subsequence we can extract a limit ψ : (Y, y) → (Y ′, y′).
Clearly, this limit is an isometry. �

Now let us consider the more general case of spaces of not necessarily
bounded diameter. It turns out that the above definition is too restrictive
when applied to such spaces. Rather one takes:

Definition 5.24. For based metric spaces (Xk, xk) (not necessarily of
finite diameter) to converge in the Gromov-Hausdorff sense to a based metric
space (Y, y) means that for each r > 0 there is a sequence δk → 0 such that
the sequence of balls B(xk, r + δk) in (Xk, xk) converges in the Gromov-
Hausdorff sense to the ball B(y, r) in Y .

Thus, a sequence of cylinders Sn−1 × R with any base points and with
the radii of the cylinders going to zero has the real line as Gromov-Hausdorff
limit.

Lemma 5.25. Let (Xk, xk) be a sequence of locally compact metric spaces.
Suppose that (Y, y) and (Y ′, y′) are complete, locally compact, based metric
spaces that are limits of the sequence in the Gromov-Hausdorff sense. Then
there is an isometry (Y, y) → (Y ′, y′).

Proof. We show that for each r < ∞ there is an isometry between
the closed balls B(y, r) and B(y′, r). By the local compactness and com-
pleteness, these closed balls are compact. Each is the limit in the Gromov-
Hausdorff sense of a sequence B(xk, r+δk) for some δk → 0 as k → ∞. Thus,
invoking the previous lemma we see that these closed balls are isometric. We
take a sequence rn → ∞ and isometries ϕn : (B(y, rn), y) → (B(y′, rn), y′).
By a standard diagonalization argument, we pass to a subsequence such that
for each r <∞ the sequence ϕn|B(y,r) of isometries converges to an isometry
ϕr : B(y, r) → B(y′, r). These then fit together to define a global isometry
ϕ : (Y, y) → (Y ′, y′). �

If follows from this that if a sequence of points ℓk ∈ Xk converges to
ℓ ∈ Y under one realization sequence for the convergence and to ℓ′ ∈ Y
under another, then there is an isometry of (Y, y) to itself carrying ℓ to ℓ′.

Example 5.26. Let (Mn, gn, xn) be a sequence of based Riemannian
manifolds converging geometrically to (M∞, g∞, x∞). Then the sequence
also converges in the Gromov-Hausdorff sense to the same limit.
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3.1. Pre-compactnes. There is a fundamental compactness result due
to Gromov. We begin with a definition.

Definition 5.27. A length space is a connected metric space (X, d) such
that for any two points x, y there is a rectifiable arc γ with endpoints x and
y and with the length of γ equal to d(x, y).

For any based metric space (X,x) and constants δ > 0 and R < ∞,
let N(δ,R,X) be the maximal number of disjoint δ-balls in X that can be
contained in B(x,R).

Theorem 5.28. Suppose that (Xk, xk) is a sequence of based length
spaces. Then there is a based length space (X,x) that is the limit in the
Gromov-Hausdorff sense of a subsequence of the (Xk, xk) if for every δ > 0
and R < ∞ there is an N < ∞ such that N(δ,R,Xk) ≤ N for all k. On
the other hand, if the sequence (Xk, xk) has a Gromov-Hausdorff limit, then
for every δ > 0 and R <∞ the N(δ,R,Xk) are bounded independent of k.

For a proof of this result see Proposition 5.2 on page 63 of [25].

3.2. The Tits cone. Let (M,g) be a complete, non-compact Riemann-
ian manifold of non-negative sectional curvature. Fix a point p ∈ M , and
let γ and µ be minimal geodesic rays emanating from p. For each r > 0 let
γ(r) and µ(r) be the points along these geodesic rays at distance r from p.
Then by part 1 of Theorem 2.4 we see that

ℓ(γ, µ, r) =
d(γ(r), µ(r))

r

is a non-increasing function of r. Hence, there is a limit ℓ(γ, µ) ≥ 0 of
ℓ(γ, µ, r) as r → ∞. We define the angle at infinity between γ and µ,
0 ≤ θ∞(γ, µ) ≤ π, to be the angle at b of the Euclidean triangle a, b, c with
side lengths |ab| = |bc| = 1 and |bc| = ℓ(γ, µ), see Fig. 1. If ν is a third
geodesic ray emanating from p, then clearly, θ∞(γ, µ)+θ∞(µ, ν) ≥ θ∞(γ, ν).

Definition 5.29. Now we define a metric space whose underlying space
is the quotient space of the equivalence classes of minimal geodesic rays
emanating from p, with two rays equivalent if and only if the angle at infinity
between them is zero. The pseudo-distance function θ∞ descends to a metric
on this space. This space is a length space [4]. Notice that the distance
between any two points in this metric space is at most π. We denote this
space by S∞(M,p).

Claim 5.30. S∞(M,p) is a compact space.

Proof. Let {[γn]}n be a sequence of points in S∞(M,p). We show that
there is a subsequence with a limit point. By passing to a subsequence we
can arrange that the unit tangent vectors to the γn at p converge to a unit
tangent vector τ , say. Fix d <∞, and let xn be the point of γn at distance
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Figure 1. Angles at infinity.

d from p. Then by passing to a subsequence we can arrange that the xn
converge to a point x. The minimizing geodesic segments [p, xn] on γn then
converge to a minimizing geodesic segment connecting p to x. Performing
this construction for a sequence of d tending to infinity, and then taking a
diagonal subsequence, produces a minimizing geodesic ray γ from p whose
class is the limit of a subsequence of the {[γn]}. �

We define the Tits cone of M at p, denoted T (M,p), to be the cone over
S∞(M,p), i.e., the quotient of the space S∞(M,p)× [0,∞) where all points
(x, 0) are identified (becoming the cone point). The cone metric on this space
is given as follows: Let (x1, a1) and (x2, a2) be points of S∞(M,p)× [0,∞).
Then the distance between their images in the cone is determined by

d2([x1, a1], [x2, a2]) = a2
1 + a2

2 − 2a1a2cos(θ∞(x1, x2)).

It is an easy exercise to show that the Tits cone of M at p is in fact inde-
pendent of the choice of p. From the previous claim, it follows that the Tits
cone of M is locally compact and complete.
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Proposition 5.31. Let (M,g) be a non-negatively curved, complete,
non-compact Riemannian manifold of dimension k. Fix a point p ∈M and
let {xn}∞n=1 be a sequence tending to infinity in M . Let λn = d2(p, xn)
and consider the sequence of based Riemannian manifolds (M,gn, p), where
gn = λ−1

n g. Then there is a subsequence converging in the Gromov-Hausdorff
sense. Any Gromov-Hausdorff limit (X, g∞, x∞) of a subsequence (X, g∞)
is isometric to the Tits cone T (M,p) with base point the cone point.

Proof. Let c be the cone point of T (M,p), and denote by d the distance
function on T (M,p). Consider the ball B(c,R) ⊂ T (M,p). Since S∞(M,p)
is the metric completion of the quotient space of minimal geodesic rays
emanating from p, for any δ > 0 there is a δ-net L ⊂ B(c,R) consisting
of the cone point together with points of the form ([γ], t) where γ is a
minimal geodesic ray emanating from p and t > 0. We define a map from
ψn : L → (M,gn) by sending the cone point to p and sending ([γ], t) to
the point at gn-distance t from p along γ. Clearly, ψn(L) is contained in
Bgn(p,R). From the second item of Theorem 2.4 and the monotonicity of
angles it follows that the map ψn : L→ (M,gn) is a distance non-decreasing
map; i.e., ψ∗

n(gn|ψn(L)) ≥ d|L. On the other hand, by the monotonicity,
ψ∗
n+1(gn+1|ψn+1(L)) ≤ ψ∗

n(gn|ψn(L)) and this non-increasing sequence of
metrics converges to d|L. This proves that for any δ > 0 for all n sufficiently
large, the embedding ψn is a (1 + δ)-bi-Lipschitz homeomorphism.

It remains to show that for any η > 0 the images ψn(L) are eventually
(δ+η)-nets in Bgn(p,R). Suppose not. Then after passing to a subsequence,
for each n we have a point xn ∈ Bgn(p,R) whose distance from ψn(L) is at
least δ + η. In particular, dgn(xn, p) ≥ δ. Consider a sequence of minimal
geodesic rays µn connecting p to the xn. Since the g-length of µn is at
least nδ, by passing to a further subsequence, we can arrange that the µn
converge to a minimal geodesic ray γ emanating from p. By passing to a
further subsequence if necessary, we arrange that dgn(xn, p) converges to
r > 0. Now consider the points x̃n on γ at g-distance

√
λnr from p. Clearly,

from the second item of Theorem 2.4 and the fact that the angle at p between
the µn and µ tends to zero as n → ∞ we have dgn(xn, x̃n) → 0 as n → ∞.
Hence, it suffices to show that for all n sufficiently large, x̃n is within δ of
ψn(L) to obtain a contradiction. Consider the point z = ([µ], r) ∈ T (M,p).
There is a point ℓ = ([γ], t′) ∈ L within distance δ of z in the metric d.
Let ỹn ∈ M be the point in M at g-distance

√
λnt

′ along γ. Of course,
ỹn = ψn(ℓ). Then dgn(x̃n, ỹn) → d(ℓ, z) < δ. Hence, for all n sufficiently
large, dgn(x̃n, ỹn) < δ. This proves that for all n sufficiently large x̃n is
within δ of ψn(L) and hence for all n sufficiently large xn is within δ + η of
ψn(L).

We have established that for every positive δ, η and every R < ∞
there is a finite δ-net L in (T (M,p), c) and, for all n sufficiently large, an
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(1 + δ)-bi-Lipschitz embedding ψn of L into (M,gn, p) with image a δ + η-
net for (M,gn, p). This proves that the sequence (M,gn, p) converges in the
Gromov-Hausdorff sense to T (M,p), c)). �

4. Blow-up limits

Here we introduce a type of geometric limit. These were originally in-
troduced and studied by Hamilton in [34], where, among other things, he
showed that 3-dimensional blow-up limits have non-negative sectional cur-
vature. We shall use repeatedly blow-up limits and the positive curvature
result in the arguments in the later sections.

Definition 5.32. Let (Mk, Gk, xk) be a sequence of based, generalized
Ricci flows. We suppose that t(xk) = 0 for all n. We set Qk equal to R(xk).
We denote by (QkMk, QkGk, xk) the family of generalized flows that have
been rescaled so that RQkGk

(xk) = 1. Suppose that limk→∞Qk = ∞ and
that after passing to a subsequence there is a geometric limit of the sequence
(QkMk, QkGk, xk) which is a Ricci flow defined for −T < t ≤ 0. Then we
call this limit a blow-up limit of the original based sequence. In the same
fashion, if there is a geometric limit for a subsequence of the zero time-slices
of the (QkMk, QkGk, xk), then we call this limit the blow-up limit of the 0
time-slices.

The significance of the condition that the generalized Ricci flows have
curvature pinched toward positive is that, as Hamilton originally established
in [34], the latter condition implies that any blow-up limit has non-negative
curvature.

Theorem 5.33. Let (Mk, Gk, xk) be a sequence of generalized Ricci
flows of dimension 3, each of which has time interval of definition contained
in [0,∞) and each of which has curvature pinched toward positive. Suppose
that Qk = R(xk) tends to infinity as k tends to infinity. Let tk = t(xk)
and let (M′

k, G
′
k, xk) be the result of shifting time by −tk so that t′(xk) = 0.

Then any blow-up limit of the sequence (Mk, G
′
k, xk) has non-negative Rie-

mann curvature. Similarly, any blow-up limit of the zero time-slices of this
sequence has non-negative curvature.

Proof. Let us consider the case of the geometric limit of the zero time-
slice first. Let (M∞, g∞(0), x∞) be a blow-up limit of the zero time-slices in
the sequence. Let Vk ⊂ M∞ and ϕk : Vk → (Mk)0 be as in the definition of
the geometric limit. Let y ∈ M∞ be a point and let λ(y) ≥ µ(y) ≥ ν(y) be
the eigenvalues of the Riemann curvature operator for g∞ at y. Let {yk} be
a sequence in QkM′

k converging to y, in the sense that yk = ϕk(y) for all k
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sufficiently large. Then

λ(y) = limn→∞Q
−1
k λ(yk),

µ(y) = limn→∞Q
−1
k µ(yk),

ν(y) = limn→∞Q
−1
k ν(yk).

Since by Equation (4.6) we have R(yk) ≥ −6 for all k and since by hypothesis
Qk tends to infinity as n does, it follows that R(y) ≥ 0. Thus if λ(y) = 0,
then Rm(y) = 0 and the result is established at y. Hence, we may assume
that λ(y) > 0, which means that λ(yk) tends to infinity as k does. If ν(yk)
remains bounded below as k tends to infinity, then Q−1

k ν(yk) converges to

a limit which is ≥ 0, and consequently Q−1
k µ(yk) ≥ Q−1

k ν(yk) has a non-
negative limit. Thus, in this case the Riemann curvature of g∞ at y is non-
negative. On the other hand, if ν(yk) goes to −∞ as k does, then according
to Equation (4.7) the ratio of X(yk)/R(yk) goes to zero. Since Q−1

k R(yk)

converges to the finite limit R(y), the product Q−1
k X(yk) converges to zero

as k goes to infinity. This means that ν(y) = 0 and consequently that
µ(y) ≥ 0. Thus, once again we have non-negative curvature for g∞ at y.

The argument in the case of a geometric limit flow is identical. �

Corollary 5.34. Suppose that (Mk, gk(t)) is a sequence of Ricci flows
each of which has time interval of definition contained in [0,∞) with each
Mk being a compact 3-manifold. Suppose further that, for each k, we have
|Rm(pk, 0)| ≤ 1 for all pk ∈Mk. Then any blow-up limit of this sequence of
Ricci flows has non-negative curvature.

Proof. According to Theorem 4.26 the hypotheses imply that for every
k the Ricci flow (Mk, gk(t)) has curvature pinched toward positive. From
this, the corollary follows immediately from the previous theorem. �

5. Splitting limits at infinity

In our later arguments we shall need a splitting result at infinity in
the non-negative curvature case. Assuming that a geometric limit exists,
the splitting result is quite elementary. For this reason we present it here,
though it will not be used until Chapter 9.

The main result of this section gives a condition under which a geometric
limit automatically splits off a line; see Fig. 2.

Theorem 5.35. Let (M,g) be a complete, connected manifold of non-
negative sectional curvature. Let {xn} be a sequence of points going off to in-
finity, and suppose that we can find scaling factors λn > 0 such that the based
Riemannian manifolds (M,λng, xn) have a geometric limit (M∞, g∞, x∞).
Suppose that there is a point p ∈M such that λnd

2(p, xn) → ∞ as n→ ∞.
Then, after passing to a subsequence, minimizing geodesic arcs γn from xn
to p converge to a minimizing geodesic ray in M∞. This minimizing geodesic
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ray is part of a minimizing geodesic line ℓ in M∞. In particular, there is a
Riemannian product decomposition M∞ = N ×R with the property that ℓ is
{x} × R for some x ∈ N .

p xn xn+1

x∞

limit as n tends to infinity

Figure2. Splitting at infinity.

Proof. Let dn be the distance from p to xn. Consider minimizing
geodesic arcs γn from p to xn. By passing to a subsequence we can assume
that tangent directions at p of these arcs converge. Hence, for every 0 <
δ < 1 there is N such that for all n,m ≥ N the angle between γn and
γm at p is less than δ. For any n we can choose m(n) such that dm(n)) ≥
dn(1+1/δ). Let µn be a minimizing geodesic from xn to xm(n). Now applying
the Toponogov comparison (first part of Theorem 2.4) and the usual law of
cosines in Euclidean space, we see that the distance d from xn to xm(n)

satisfies

dm(n) − dn ≤ d ≤
√
d2
n + d2

m(n) − 2dndm(n)cos(δ).

Let θn = ∠x′n of the Euclidean triangle △(x′n, p
′, x′m(n)) with |sx′np′ | =

dn, |sx′nx′m(n)
| = d and |sp′x′

m(n)
| = dm(n). Then for any α < dn and β < d

let x and y be the points on sxnp and on sxnxm(n)
at distances α and β

respectively from xn. Given this, according to the Toponogov comparison
result (first part of Theorem 2.4), we have

d(x, y) ≥
√
α2 + β2 − 2αβcos(θn).

The angle θn satisfies:

d2
n + d2 − 2dndcos(θn) = d2

m(n).
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Thus,

cos(θn) =
d2
n + d2 − d2

m(n)

2dnd

≤ 2d2
n − 2dndm(n)cos(δ)

2dnd

=
dn
d

− dm(n)

d
cos(δ)

≤ δ − (1 − δ)cos(δ).

Since δ → 0 as n→ ∞, it follows that given any δ > 0, for all n sufficiently
large, 1 + cos(θn) < δ.

We are assuming the based Riemannian manifolds {(M,λng, xn)}∞n=1

converge to a geometric limit (M∞, g∞, x∞), and that dλngn(p, xn) → ∞ as
n → ∞, so that the lengths of the γn tend to infinity in the metrics λngn.
This also means that the lengths of µn, measured in the metrics λngn, tend
to infinity. Thus, by passing to a subsequence we can assume that each
of these families, {γn} and {µn}, of minimizing geodesic arcs converges to
a minimizing geodesic arc, which we denote γ̃ and µ̃, respectively, in M∞
emanating from x∞. The above computation shows that the angle between
these arcs is π and hence that their union is a geodesic, say ℓ. The same
computation shows that ℓ is minimizing.

The existence of the minimizing geodesic line ℓ together with the fact
that the sectional curvatures of the limit are ≥ 0 implies by Lemma 2.14
that the limit manifold is a Riemannian product N × R in such a way that
ℓ is of the form {x} × R for some x ∈ N . �
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CHAPTER 6

A comparison geometry approach to the Ricci flow

In this section we discuss Perelman’s notions, introduced in [53], of
the L-length in the context of generalized Ricci flows. This is a functional
defined on paths in space-time parameterized by backward time, denoted
τ . The L-length is the analogue in this context of the energy for paths in
a Riemannian manifold. We derive the associated Euler-Lagrange equation
for the L-length; the critical paths are then L-geodesics. Using L-geodesics
we define the L-exponential mapping. We derive the L-Jacobi equation
and relate L-Jacobi fields to the differential of the L-exponential mapping.
There exists an analogue of the interior of the cut locus. It is the open
subset, depending on the parameter τ , of the tangent space of initial vectors
for L-geodesics which are minimizing out to time τ and at which the L-
geodesic map is a local diffeomorphism at time τ . The difference between
this situation and that of geodesics in a Riemannian manifold is that there is
such an open set in the tangent space for each positive τ . The analogue of the
fact that, for ordinary geodesics, the interior of the cut locus in the tangent
space is star-shaped from the origin is that the open set of ‘good’ initial
conditions at τ is contained in the open subset of ‘good’ initial conditions
at time τ ′ for any τ ′ < τ . All of these results are local and are established
in the context of generalized Ricci flows. In the next section we consider the
case of ordinary Ricci flows, where we are able to extend our results over
the entire manifold.

There are two applications of this theory in our study. In Chapter 8 we
use the theory of L-geodesics and the associated notion of reduced volume
to establish non-collapsing results. These are crucial when we wish to take
blow-up limits in studying singularities in Ricci flows and Ricci flows with
surgery. The second application will be in Chapter 9 to κ-solutions (ancient,
κ-non-collapsed solutions of bounded non-negative curvature). Here the
second-order inequalities on the length function that we establish in this
section are used to prove the existence of an asymptotic soliton for any κ-
solution. This asymptotic soliton is important for giving qualitative results
on κ-solutions.

1. L-length and L-geodesics

The running assumption throughout this section is that we have an
n-dimensional generalized Ricci flow (M, G). In particular, the space-time

105
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M is a smooth manifold of dimension n + 1 whose boundary lies at the
initial and final times (if they exist). Recall that its tangent bundle naturally
decomposes as the direct sum of the sub-line bundle spanned by the vector
field χ and the horizontal tangent bundle, denoted HTM. We also fix a
time T in the time interval of definition of the flow distinct from the initial
time.

Definition 6.1. Let 0 ≤ τ1 < τ2 be given and let γ : [τ1, τ2] → M be a
continuous map. We say that γ is parameterized by backward time provided
that γ(τ) ∈MT−τ for all τ ∈ [τ1, τ2].

Throughout this section the paths γ that we consider shall be parame-
terized by backward time. We begin with the definition of L-length of such
a path.

Definition 6.2. Let γ : [τ1, τ2] → M, 0 ≤ τ1 < τ2, be a C1-path pa-
rameterized by backward time. We define Xγ(τ) to be the horizontal pro-
jection of the tangent vector dγ(τ)/dτ , so that dγ/dτ = −χ +Xγ(τ) with
Xγ(τ) ∈ HTM. We define the L-length of γ to be

L(γ) =

∫ τ2

τ1

√
τ
(
R(γ(τ)) + |Xγ(τ)|2

)
dτ,

where the norm of Xγ(τ) is measured using the metric GT−τ on HTM.
When γ is clear from the context, we write X for Xγ ; see Fig. 2 from the
Introduction.

With a view toward better understanding the properties of the paths
that are critical points of this functional, the so-called L-geodesics, especially
near τ = 0, it is helpful to introduce a convenient reparameterization. We
set s =

√
τ . We use the notation A(s) to denote the horizontal component

of the derivative of γ with respect to the variable s. One sees immediately
by the chain rule that

(6.1) A(s2) = 2sX(s2) or A(τ) = 2
√
τX(τ).

With respect to the variable s, the L-functional is

(6.2) L(γ) =

∫ √
τ2

√
τ1

(
1

2
|A(s)|2 + 2R(γ(s))s2

)
ds.

Let’s consider the simplest example.

Example 6.3. Suppose that our generalized Ricci flow is a constant
family of Euclidean metrics on R

n × [0, T ]. That is to say, g(t) = g0 is the
usual Euclidean metric. Then we have R(γ(τ)) ≡ 0. Using the change of
variables s =

√
τ , we have

L(γ) =
1

2

∫ √
τ2

√
τ1

|A(s)|2 ds,
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which is the standard energy functional in Riemannian geometry for the path
γ(s). The minimizers for this functional are the maps s 7→ (α(s), T − s2)
where α(s) is a straight line in R

n parameterized at constant speed. Written
in the τ variables the minimizers are

γ(τ) = (x+
√
τv, T − τ),

straight lines parameterized at speed varying linearly with
√
τ .

1.1. L-geodesics.

Lemma 6.4. The Euler-Lagrange equation for critical paths for the
L-length is

(6.3) ∇XX − 1

2
∇R+

1

2τ
X + 2Ric(X, ·)∗ = 0.

Remark 6.5. Ric(X, ·) is a horizontal one-form along γ and its dual
Ric(X, ·)∗ is a horizontal tangent vector field along γ.

Proof. First, let us suppose that the generalized Ricci flow is an ordi-
nary Ricci flow (M,g(t)). Let γu(τ) = γ(τ, u) be a family of curves param-
eterized by backward time. Let

Ỹ (τ, u) =
∂γ

∂u
.

Then X̃(τ, u) = Xγu(τ, u) and Ỹ (τ, u) are the coordinate vector fields along
the surface obtained by taking the projection of γ(τ, u) into M . Thus,

[X̃, Ỹ ] = 0. We denote by X and Y the restrictions of X̃ and Ỹ , respectively
to γ0. We have

d

du
L(γu)

∣∣
u=0

=
d

du

(∫ τ2

τ1

√
τ(R(γu(τ)) +

∣∣∣X̃(τ, u)
∣∣∣
2
)dτ

) ∣∣∣
u=0

=

∫ τ2

τ1

√
τ(〈∇R,Y 〉 + 2〈(∇Y X̃)|u=0,X〉)dτ.

On the other hand, since ∂g/∂τ = 2Ric and since [X̃, Ỹ ] = 0, we have

2
d

dτ
(
√
τ〈Y,X〉g(T−τ)) =

1√
τ
〈Y,X〉 + 2

√
τ〈∇XY,X〉 + 2

√
τ〈Y,∇XX〉

+ 4
√
τRic(Y,X)

=
1√
τ
〈Y,X〉 + 2

√
τ〈(∇Y X̃)|u=0,X〉 + 2

√
τ〈Y,∇XX〉

+ 4
√
τRic(Y,X).
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Using this we obtain

d

du
L(γu)

∣∣
u=0

=

∫ τ2

τ1

(
2
d

dτ

[
(
√
τ)〈Y,X〉

]
− 1√

τ
〈Y,X〉

(6.4)

+
√
τ
(
〈∇R,Y 〉 − 2〈Y,∇XX〉 − 4Ric(X,Y )

))
dτ

= 2
√
τ〈Y,X〉|τ2τ1

+

∫ τ2

τ1

√
τ〈Y,

(
∇R− 1

τ
X − 2∇XX − 4Ric(X, ·)∗

)
〉dτ.

Now we drop the assumption that the generalized Ricci flow is an or-
dinary Ricci flow. Still we can partition the interval [τ1, τ2] into finitely
many sub-intervals with the property that the restriction of γ0 to each of
the sub-intervals is contained in a patch of space-time on which the general-
ized Ricci flow is isomorphic to an ordinary Ricci flow. The above argument
then applies to each of the sub-intervals. Adding up Equation (6.4) over
these sub-intervals shows that the same equation for the first variation of
length for the entire family γu holds.

We consider a variation γ(τ, u) with fixed endpoints, so that Y (τ1) =
Y (τ2) = 0. Thus, the condition that γ be a critical path for the L-length is
that the integral expression vanish for all variations Y satisfying Y (τ1) =
Y (τ2) = 0. Equation (6.4) holds for all such Y if and only if γ satisfies
Equation (6.3). �

Remark 6.6. In the Euler-Lagrange equation, ∇R is the horizontal
gradient, and the equation is an equation of horizontal vector fields along γ.

Definition 6.7. Let γ be a curve parameterized by backward time.
Then γ is an L-geodesic if it is a critical point of the L-length. Equation (6.3)
is the L-geodesic equation.

Written with respect to the variable s =
√
τ the L-geodesic equation

becomes

(6.5) ∇A(s)A(s) − 2s2∇R+ 4sRic(A(s), ·)∗ = 0.

Notice that in this form the ODE is regular even at s = 0.

Lemma 6.8. Let γ : [0, τ2] → M be an L-geodesic. Then limτ→0
√
τXγ(τ)

exists. The L-geodesic γ is completely determined by this limit (and by τ2).

Proof. Since the ODE in Equation (6.5) is non-singular even at zero,
it follows that A(s) is a smooth function of s in a neighborhood of s =
0. The lemma follows easily by the change of variables formula, A(τ) =
2
√
τXγ(τ). �
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Definition 6.9. An L-geodesic is said to be minimizing if there is no
curve parameterized by backward time with the same endpoints and with
smaller L-length.

1.2. The L-Jacobi equation. Consider a family γ(τ, u) of L-geodesics
parameterized by u and defined on [τ1, τ2] with 0 ≤ τ1 < τ2. Let Y (τ) be
the horizontal vector field along γ defined by

Y (τ) =
∂

∂u
γ(τ, u)|u=0.

Lemma 6.10. Y (τ) satisfies the L-Jacobi equation:

(6.6) ∇X∇XY + R(Y,X)X − 1

2
∇Y (∇R)

+
1

2τ
∇XY + 2(∇Y Ric)(X, ·)∗ + 2Ric(∇XY, ·)∗ = 0.

This is a second-order linear equation for Y . Supposing that τ1 > 0, there
is a unique horizontal vector field Y along γ solving this equation, vanishing
at τ1 with a given first-order derivative along γ at τ1. Similarly, there is a
unique solution Y to this equation, vanishing at τ2 and with a given first-
order derivative at τ2.

Proof. Given a family γ(τ, u) of L-geodesics, then from Lemma 6.4 we
have

∇ eXX̃ =
1

2
∇R(γ) − 1

2τ
X̃ − 2Ric(X̃, ·)∗.

Differentiating this equation in the u-direction along the curve u = 0 yields

∇Y∇ eXX̃ |u=0 =
1

2
∇Y (∇R) − 1

2τ
∇Y (X̃)|u=0 − 2∇Y (Ric(X̃, ·))∗|u=0.

Of course, we have

∇Y (Ric(X̃, ·)∗)|u=0 = (∇Y Ric)(X, ·)∗ + Ric(∇Y X̃|u=0, ·)∗.
Plugging this in, interchanging the orders of differentiation on the left-hand

side, using ∇eY X̃ = ∇ eX Ỹ , and restricting to u = 0, yields the equation
given in the statement of the lemma. This equation is a regular, second-
order linear equation for all τ > 0, and hence is determined by specifying
the value and first derivative at any τ > 0. �

Equation (6.6) is obtained by applying ∇Y to Equation (6.3) and ex-
changing orders of differentiation. The result, Equation (6.6), is a second-
order differential equation for Y that makes no reference to an extension of
γ(τ) to an entire family of curves.

Definition 6.11. A field Y (τ) along an L-geodesic is called an L-Jacobi
field if it satisfies the L-Jacobi equation, Equation (6.6), and if it vanishes
at τ1. For any horizontal vector field Y along γ we denote by Jac(Y ) the
expression on the left-hand side of Equation (6.6).
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In fact, there is a similar result even for τ1 = 0.

Lemma 6.12. Let γ be an L-geodesic defined on [0, τ2] and let Y (τ) be
an L-Jacobi field along γ. Then

limτ→0

√
τ∇XY

exists. Furthermore, Y (τ) is completely determined by this limit.

Proof. We use the variable s =
√
τ , and let A(s) be the horizontal

component of dγ/ds. Then differentiating the L-geodesic equation written
with respect to this variable we see

∇A∇AY = −R(Y,A)A+ 2s2∇Y (∇R) − 4s(∇Y Ric)(A, ·) − 4sRic(∇AY, ·).
Hence, for each tangent vector Z, there is a unique solution to this equation
with the two initial conditions Y (0) = 0 and ∇AY (0) = Z.

On the other hand, from Equation (6.1) we have ∇X(Y ) = 1
2
√
τ
∇A(Y ),

so that √
τ∇X(Y ) =

1

2
∇A(Y ).

�

1.3. Second order variation of L. We shall need the relationship of
the L-Jacobi equation to the second-order variation of L. This is given in
the next proposition.

Proposition 6.13. Suppose that γ is a minimizing L-geodesic. Then,
for any vector field Y along γ, vanishing at both endpoints, and any family
γu of curves parameterized by backward time with γ0 = γ and with the u-
derivative of the family at u = 0 being the vector field Y along γ, we have

d2

du2
L(γu)|u=0 = −

∫ τ2

τ1

2
√
τ〈Jac(Y ), Y 〉dτ.

This quantity vanishes if and only if Y is an L-Jacobi field.

Let us begin the proof of this proposition with the essential computation.

Lemma 6.14. Let γ be an L-geodesic defined on [τ1, τ2], and let Y1 and
Y2 be horizontal vector fields along γ vanishing at τ1. Suppose that γu1,u2 is
any family of curves parameterized by backward time with the property that
γ0,0 = γ and the derivative of the family in the ui-direction at u1 = u2 = 0 is

Yi. Let Ỹi be the image of ∂/∂ui under γu1,u2 and let X̃ be the image of the
horizontal projection of ∂/∂τ under this same map, so that the restrictions
of these three vector fields to the curve γ0,0 = γ are Y1, Y2 and X respectively.
Then we have

∂

∂u1

∂

∂u2
L(γu1,u2)|u1=u2=0 = 2

√
τ2Y1(τ2)〈Ỹ2(τ2, u1, 0), X̃(τ2, u1, 0)〉|u1=0

−
∫ τ2

τ1

2
√
τ〈Jac(Y1), Y2〉dτ.
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Proof. According to Equation (6.4) we have

∂

∂u2
L(γ)(u1, u2) = 2

√
τ2〈Ỹ2(τ2, u1, u2), X̃(τ2, u1, u2)〉

−
∫ τ2

τ1

2
√
τ〈EL(X̃(τ, u1, u2), Ỹ2(τ, u1, u2)〉dτ,

where EL(X̃(τ, u1, u2)) is the Euler-Lagrange expression for geodesics, i.e.,
the left-hand side of Equation (6.3). Differentiating again yields:

(6.7)
∂

∂u1

∂

∂u2
L(γu1,u2

)
|0,0 = 2

√
τ2Y1(τ2)〈Ỹ2(τ2, u1, 0), X̃(τ2, u1, 0)〉

∣∣
u1=0

−
∫ τ2

τ1

2
√
τ
(
〈∇Y1EL(X̃), Y2〉 + 〈EL(X),∇Y1 Ỹ2〉

)
(τ, 0, 0)dτ.

Since γ0,0 = γ is a geodesic, the second term in the integrand vanishes, and

since [X̃, Ỹ1] = 0, we have ∇Y1EL(X̃(τ, 0, 0)) = Jac(Y1)(τ). This proves the
lemma. �

Remark 6.15. Let γ(τ, u) be a family of curves as above with γ(τ, 0)
being an L-geodesic. It follows from Lemma 6.14 and the remark after
the introduction of the L-Jacobi equation that the second-order variation of
length at u = 0 of this family is determined by the vector field Y (τ) = ∂γ/∂u
along γ(·, 0) and by the second-order information about the curve γ(τ , u) at
u = 0.

Corollary 6.16. Let γ be an L-geodesic and let Y1, Y2 be vector fields
along γ vanishing at τ1. Suppose Y1(τ2) = Y2(τ2) = 0. Then the bilinear
pairing

−
∫ τ2

τ1

2
√
τ 〈Jac(Y1), Y2〉dτ

is a symmetric function of Y1 and Y2.

Proof. Given Y1 and Y2 along γ we construct a two-parameter family
of curves parameterized by backward time as follows. Let γ(τ, u1) be the
value at u1 of the geodesic through γ(τ) with tangent vector Y1(τ). This
defines a family of curves parameterized by backward time, the family being
parameterized by u1 sufficiently close to 0. We extend Y1 and X to vector
fields on this entire family by defining them to be ∂/∂u1 and the horizontal
projection of ∂/∂τ , respectively. Now we extend the vector field Y2 along γ
to a vector field on this entire one-parameter family of curves. We do this so
that Y2(τ2, u1) = Y1(τ2, u1). Now given this extension Y2(τ, u1) we define a
two-parameter family of curves parameterized by backward time by setting
γ(τ, u1, u2) equal to the value at u2 of the geodesic through γ(τ, u1) in the
direction Y2(τ, u1). We then extend Y1, Y2, and X over this entire family
by letting them be ∂/∂u1, ∂/∂u2, and the horizontal projection of ∂/∂τ ,
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respectively. Applying Lemma 6.14 and using the fact that Yi(τ ) = 0 we
conclude that

∂

∂u1

∂

∂u2
L(γ)|u1=u2=0 = −

∫ τ2

τ1

2
√
τ〈Jac(Y1), Y2〉dτ

and symmetrically that

∂

∂u2

∂

∂u1
L(γ)|u1=u2=0 = −

∫ τ2

τ1

2
√
τ〈Jac(Y2), Y1〉dτ.

Since the second cross-partials are equal, the corollary follows. �

Now we are in a position to establish Proposition 6.13.

Proof. (Of Proposition 6.13) From the equation in Lemma 6.14, the
equality of the second variation of L-length at u = 0 and the integral is
immediate from the fact that Y (τ2) = 0. It follows immediately that, if Y
is an L-Jacobi field vanishing at τ2, then the second variation of the length
vanishes at u = 0. Conversely, suppose given a family γu with γ0 = γ with
the property that the second variation of length vanishes at u = 0, and that
the vector field Y = (∂γ/∂u)|u=0 along γ vanishes at the end points. It
follows that the integral also vanishes. Since γ is a minimizing L-geodesic,
for any variation W , vanishing at the endpoints, the first variation of the
length vanishes and the second variation of length is non-negative. That is
to say,

−
∫ τ2

τ1

2
√
τ〈Jac(W ),W 〉dτ ≥ 0

for all vector fields W along γ vanishing at the endpoints. Hence, the re-
striction to the space of vector fields along γ vanishing at the endpoints of
the symmetric bilinear form

B(Y1, Y2) = −
∫ τ2

τ1

2
√
τ〈Jac(Y1), (Y2)dτ,

is positive semi-definite. Since B(Y, Y ) = 0, it follows that B(Y, ·) = 0; that
is to say, Jac(Y ) = 0. �

2. The L-exponential map and its first-order properties

We use L-geodesics in order to define the L-exponential map.
For this section we fix τ1 ≥ 0 and a point x ∈ M with t(x) = T − τ1.

We suppose that T − τ1 is greater than the initial time of the generalized
Ricci flow. Then, for every Z ∈ TxMT−τ1 , there is a maximal L-geodesic,
denoted γZ , defined on some positive τ -interval, with γZ(τ1) = x and with√
τ1X(τ1) = Z. (In the case τ1 = 0, this equation is interpreted to mean

limτ→0
√
τX(τ) = Z.)
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Definition 6.17. We define the domain of definition of Lexpx, denoted
Dx, to be the subset of TxMT−τ1 × (τ1,∞) consisting of all pairs (Z, τ) for
which τ > τ1 is in the maximal domain of definition of γZ . Then we define
Lexpx : Dx → M by setting Lexpx(Z, τ) = γZ(τ) for all (Z, τ) ∈ Dx. (See

Fig. 1.) We define the map L̃ : Dx → R by L̃(Z, τ) = L
(
γZ |[τ1,τ ]

)
. Lastly,

for any τ > τ1 we denote by Lexpτx the restriction of Lexpx to the slice

Dτ
x = Dx ∩ (TxMT−τ1 × {τ}) ,

which is the domain of definition of Lexpτx. We also denote by L̃τ the

restriction of L̃ to this slice. We will implicitly identify Dτ
x with a subset of

TxMT−τ1 .

0

τ

(Z, τ)

0 HTxM × [0,∞)

Lexpx

lim
τ→0

√
τXτ = Z

γZ(τ) = Lexpx(Z, τ)

Space-time

x

Figure 1. The map Lexpx.

Lemma 6.18. Dx is an open subset of TxMT−τ1×(τ1,∞); its intersection
with each line {Z}× (τ1,∞) is a non-empty interval whose closure contains

τ1. Furthermore, Lexpx : Dx → M is a smooth map, and L̃ is a smooth
function.
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Proof. The tangent vector in space-time of the L-geodesic γ is the
vector field −χ+Xγ(τ) along γ, where Xγ(τ) satisfies Equation (6.3). As
above, in the case τ1 = 0, it is convenient to replace the independent variable
τ by s =

√
τ , so that the ODE becomes Equation (6.5) which is regular at 0.

With this change, the lemma then follows immediately by the usual results
on existence, uniqueness and C∞-variation with parameters of ODE’s. �

2.1. The differential of Lexp. Now we compute the differential of
Lexp.

Lemma 6.19. Let Z ∈ Dτ
x ⊂ TxMT−τ1 . The differential of Lexpτx at

the point Z is given as follows: For each W ∈ Tx(MT−τ1) there is a unique
L-Jacobi field YW (τ) along γZ with the property that

√
τ1YW (τ1) = 0 and√

τ1∇X(YW )(τ1) = W . We have

dZLexpτx(W ) = YW (τ).

Again, in case τ1 = 0, both of the conditions on YW are interpreted as the
limits as τ → 0.

Proof. Let Z(u) be a curve in Dτ
x with Z(0) = Z. Let γu be the

L-geodesic starting at x with
√
τ1Xγu(τ1) = Z(u). Then, clearly,

dZLexpτx

(
dZ

du
(0)

)
=

∂

∂u
(γu(τ)) |u=0.

On the other hand, the vector field Y (τ) = (∂γu(τ)/∂u) |u=0 is an L-Jacobi
field along γZ . Thus, to complete the proof in the case when τ1 > 0 we need

only see that ∇X Ỹ (τ1) = ∇Y X̃(τ1). This is clear since, as we have already

seen, [X̃, Ỹ ] = 0.
When τ1 = 0, we complete the argument using the following claim.

Claim 6.20. If τ1 = 0, then

∂

∂u

(
limτ→0

√
τX(τ, u)

)
|u=0 = limτ→0

√
τ
d

dτ
Y (τ).

Proof. This follows immediately by changing variables, replacing τ by
s =

√
τ . �

This completes the proof of Lemma 6.19. �

2.2. Positivity of the second variation. Suppose that γ is a min-
imizing L-geodesic. Then variations of γ fixing the endpoints give curves
whose L-length is no less than that of γ. In fact, there is a second-order
version of this inequality which we shall need later.

Corollary 6.21. Let Z ∈ TxMT−τ1 . Suppose that the associated
L-geodesic γZ minimizes L-length between its endpoints, x and γZ(τ), and
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that dZLexpτx is an isomorphism. Then for any family γu of curves parame-
terized by backward time with Y = (∂γ/∂u)|u=0 vanishing at both endpoints,
we have

d2

du2
L(γu)|u=0 ≥ 0,

with equality if and only if Y = 0.

Proof. According to Proposition 6.13 the second variation in the
Y -direction is non-negative and vanishes if and only if Y is an L-Jacobi
field. But since dZLexpτx is a diffeomorphism, by Lemma 6.19 there are no
non-zero L-Jacobi fields vanishing at both endpoints of γZ . �

2.3. The gradient of L̃τ . Recall that L̃τ is the map from Dτ
x to R

that assigns to each Z the L-length of γZ |[τ1,τ ]. We compute its gradient.

Lemma 6.22. Suppose that Z ∈ Dτ
x. Then for any Ỹ ∈ TxMT−τ1 =

TZ(Dτ
x) we have

〈∇L̃τ , Ỹ 〉 = 2
√
τ〈X(τ), dZ (Lexpτx) (Ỹ )〉.

Proof. Since Dτ
x is an open subset of Tx(MT−τ1), it follows that for

any Ỹ ∈ Tx(MT−τ1) there is a one-parameter family γu(τ
′) = γ(τ ′, u) of

L-geodesics, defined for τ1 ≤ τ ′ ≤ τ , starting at x with γ(·, 0) = γZ and

with ∂
∂u

(√
τ1X(τ1)

)
= Ỹ . (Again, when τ1 = 0, this equation is interpreted

to mean ∂
∂u limτ ′→0(

√
τ ′X(τ ′, u)) = Ỹ .) Let Y (τ ′) = ∂

∂u(γ(τ ′, u))|u=0 be
the corresponding L-Jacobi field along γZ . Since γ(τ1, u) = x for all u, we
have Y (τ1) = 0. Since γ(·, u) is an L-geodesic for all u, according to Equa-
tion (6.4), and in the case τ1 = 0, using the fact that

√
τX(τ ′) approaches

a finite limit as τ → 0, we have

d

du
L(γu)|u=0 = 2

√
τ〈X(τ), Y (τ)〉.

By Lemma 6.19 we have Y (τ) = dZLexpτx(Ỹ ). Thus,

〈∇L̃τ , Ỹ 〉 =
d

du
L(γu)|u=0 = 2

√
τ〈X(τ), Y (τ)〉 = 2

√
τ〈X(τ), dZ (Lexpτx)(Ỹ )〉.

�

2.4. Local diffeomorphism near the initial τ . Now let us use the
nature of the L-Jacobi equation to study Lexpx for τ > τ1 but τ sufficiently
close to τ1.

Lemma 6.23. For any x in M with t(x) = T −τ1 and any Z ∈ TxMt−τ1 ,
there is δ > 0 such that for any τ with τ1 < τ < τ1 + δ the map Lexpτx is a
local diffeomorphism from a neighborhood of Z in TxMT−τ1 to MT−τ .
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Proof. Fix x and Z as in the statement of the lemma. To establish
the result it suffices to prove that there is δ > 0 such that dZLexpτx is an
isomorphism for all τ1 < τ < τ1 + δ. By Lemma 6.19 it is enough to find a
δ > 0 such that any L-Jacobi field Y along γZ with

√
τ1∇XY (τ1) 6= 0 does

not vanish on the interval (τ1, τ1 + δ). Because the L-Jacobi equation is
linear, it suffices to consider the case of L-Jacobi fields with |∇XY (τ1)| = 1.
The space of such fields is identified with the unit sphere in TxMT−τ1 . Let
us consider first the case when τ1 6= 0. Then for any such tangent vector
∇XY (τ1) 6= 0. Since Y (τ1) = 0, it follows that Y (τ) 6= 0 in some interval
(τ1, τ1 + δ), where δ can depend on Y . Using compactness of the unit sphere
in the tangent space, we see that there is δ > 0 independent of Y so that
the above holds.

In case when τ1 = 0, it is convenient to shift to the s =
√
τ parameteriza-

tion. Then the geodesic equation and the L-Jacobi equation are non-singular
at the origin. Also, letting A = dγZ/ds we have ∇AY = 2limτ→0

√
τ∇XY .

In these variables, the argument for τ1 = 0 is the same as the one above for
τ1 > 0. �

Remark 6.24. When τ1 > 0 it is possible to consider the Lexpτx defined
for 0 < τ < τ1. In this case, the curves are moving backward in τ and hence
are moving forward with respect to the time parameter t. Two comments

are in order. First of all, for τ < τ1, the gradient of L̃τx is −2
√
τX(τ).

The reason for the sign reversal is that the length is given by the integral
from τ to τ1 and hence its derivative with respect to τ is the negative of
the integrand. The second thing to remark is that Lemma 6.23 is true for
τ < τ1 with τ sufficiently close to τ1.

3. Minimizing L-geodesics and the injectivity domain

Now we discuss the analogue of the interior of the cut locus for the
usual exponential map of a Riemannian manifold. In this section we keep
the assumption that x ∈ M with t(x) = T − τ1 for some τ1 ≥ 0.

Definition 6.25. The injectivity set Ũx ⊂ Dx ⊂ (TxMT−τ1 × (τ1,∞))
is the subset of all (Z, τ) ∈ Dx with the following properties:

(1) The map Lexpτx is a local diffeomorphism near Z from Tx(MT−τ1)
to MT−τ .

(2) There is a neighborhood Z of Z in Dτ
x such that for every Z ′ ∈ Z the

L-geodesic γZ′ |[τ1,τ ] is the unique minimizing path parameterized
by backward time for the L-length. That is to say, the L-length of
γZ′ |[τ1,τ ] is less than the L-length of any other path parameterized
by backward time between the same endpoints.
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For any τ > τ1, we set Ũx(τ) ⊂ TxMT−τ1 equal to the slice of Ũx at τ , i.e.,

Ũx(τ) is determined by the equation

Ũx(τ) × {τ} = Ũx ∩ (TxMT−τ1 × {τ}) .

It is clear from the definition that Ũx ⊂ Dx is an open subset and hence

Ũx is an open subset of TxMT−τ1 × (τ1,∞). Of course, this implies that

Ũx(τ) is an open subset of Dτ
x for every τ > τ1.

Definition 6.26. We set Ux ⊂ M equal to Lexpx(Ũx). We call this
subset of M the injectivity domain (of x). For any τ > τ1 we set Ux(τ) =
Ux ∩MT−τ .

By definition, for any (Z, τ) ∈ Ũx with Lexpx(Z, τ) = q, the L-geodesic
γZ |[τ1,τ ] is a minimizing L-geodesic to q. In particular, for every q ∈ Ux there
is a minimizing L-geodesic from x to q.

Definition 6.27. The function Lx : Ux → R assigns to each q in Ux the
length of any minimizing L-geodesic from x to q. For any τ > τ1, we denote
by Lτx the restriction of Lx to the T − τ time-slice of Ux, i.e., the restriction
of Lx to Ux(τ).

This brings us to the analogue of the fact that in Riemannian geometry
the restriction to the interior of the cut locus of the exponential mapping is
a diffeomorphism onto an open subset of the manifold.

Proposition 6.28. The map

Lexpx : Ũx → M
is a diffeomorphism onto the open subset Ux of M. The function L : Ux → R

that associates to each q ∈ Ux the length of the unique minimizing L-geodesic
from x to q is a smooth function and

Lx ◦ Lexpx|eUx
= L̃|eUx

.

Proof. We consider the differential of Lexpx at any (Z, τ) ∈ Ũx. By
construction the restriction of this differential to TxMT−τ1 is a local isomor-
phism onto HTM at the image point. On the other hand, the differential of
Lexpx in the τ direction is γ′Z(τ), whose ‘vertical’ component is −χ. By the
inverse function theorem this shows that Lexpx is a local diffeomorphism at
(Z, τ), and its image is an open subset of M. The uniqueness in Condition

2 of Definition 6.25 immediately implies that the restriction of Lexpx to Ũx
is one-to-one, and hence that it is a global diffeomorphism onto its image
Ux.

Since for every (Z, τ) ∈ Ũx the L-geodesic γZ |[τ1,τ ] is L-minimizing, we

see that Lx◦Lexpx|eUx
= L̃|eUx

and that Lx : Ux → R is a smooth function. �

According to Lemma 6.22 we have:
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Corollary 6.29. At any q ∈ Ux(τ) we have

∇Lτx(q) = 2
√
τX(τ)

where X(τ) is the horizontal component of γ′(τ), and where γ is the unique
minimizing L-geodesic connecting x to q. (See Fig. 2 in the Introduction.)

At the level of generality that we are working (arbitrary generalized
Ricci flows) there is no result analogous to the fact in Riemannian geometry
that the image under the exponential mapping of the interior of the cut
locus is an open dense subset of the manifold. There is an analogue in the
special case of Ricci flows on compact manifolds or on complete manifolds
of bounded curvature. These will be discussed in Chapter 7.

3.1. Monotonicity of the Ũx(τ) with respect to τ . Next, we have
the analogue of the fact in Riemannian geometry that the cut locus is star-
shaped.

Proposition 6.30. Let τ ′ > τ . Then Ũx(τ ′) ⊂ Ũx(τ) ⊂ TxMT−τ1 .

Proof. For Z ∈ Ũx(τ ′), we shall show that: (i) the L-geodesic γZ′ |[τ1,τ ]
is the unique minimizing L-geodesic from x to γZ(τ), and (ii) the differential
dZLexpτx is an isomorphism. Given these two conditions, it follows from the

definition that Ũx(τ ′) is contained in Ũx(τ).
We will show that the L-geodesic γZ |[τ1,τ ] is the unique minimizing

L- geodesic to its endpoint. If there is an L-geodesic γ1, distinct from
γZ |[τ1,τ ], from x to γZ(τ) whose L-length is at most that of γZ |[τ1,τ ], then
there is a broken path γ1 ∗ γZ |[τ ,τ ′] parameterized by backward time whose
L-length is at most that of γZ . Since this latter path is not smooth, its
L-length cannot be the minimum, which is a contradiction.

Now suppose that dZLexpτx is not an isomorphism. The argument is
similar to the one above, using a non-zero L-Jacobi field vanishing at both
endpoints rather than another geodesic. Let τ ′2 be the first τ for which
dZLexpτx is not an isomorphism. According to Lemma 6.23, τ1 < τ ′2 ≤ τ .

Since Lexp
τ ′2
x is not a local diffeomorphism at (Z, τ ′2), by Lemma 6.19 there

is a non-zero L-Jacobi field Y along γZ |[τ1,τ ′2] vanishing at both ends. Since

γZ |[τ1,τ ′2] is L-minimizing, according to Proposition 6.13, the second variation

of the length of γZ |τ1,τ ′2] in the Y -direction vanishes, in the sense that if

γ(u, τ) is any one-parameter family of paths parameterized by backward
time from x to γZ(τ ′2) with (∂γ/∂u)|u=0 = Y , then

∂2L(γu)

∂u2

∣∣
u=0

= 0.

Extend Y to a horizontal vector field Ŷ along γZ by setting Ŷ (τ) = 0 for

all τ ∈ [τ ′2, τ ]. Of course, the extended horizontal vector field Ŷ is not C2 at
τ ′2 since Y , being a non-zero L-Jacobi field, does not vanish to second order
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there. This is the first-order variation of the family γ̂(u, τ) that agrees with
γ(u, τ) for all τ ≤ τ ′2 and has γ̂(u, τ) = γZ(τ) for all τ ∈ [τ ′2, τ ]. Of course,
the second-order variation of this extended family at u = 0 agrees with the
second-order variation of the original family at u = 0, and hence vanishes.

But according to Proposition 6.13 this means that Ŷ is an L-Jacobi field,
which is absurd since it is not a C2-vector field. �

We shall also need a closely related result.

Proposition 6.31. Let γ be a minimizing L-geodesic defined for [τ1, τ ].
Fix 0 ≤ τ1 < τ2 < τ , and set q2 = γ(τ2), and Z2 =

√
τ2Xγ(τ2). Then, the

map Lexpq2 is a diffeomorphism from a neighborhood of {Z2} × (τ2, τ ] in
TqMT−τ2 × (τ2,∞) onto a neighborhood of the image of γ|(τ2,τ ].

Proof. It suffices to show that the differential of Lexpτq2 is an isomor-
phism for all τ ∈ (τ2, τ ]. If this is not the case, then there is a τ ′ ∈ (τ2, τ ] and
a non-zero L-Jacobi field Y along γZ |[τ2,τ ′] vanishing at both ends. We ex-

tend Y to a horizontal vector field Ŷ along all of γZ |[τ1,τ ′] by setting it equal
to zero on [τ1, τ2]. Since Y is an L-Jacobi field, the second-order variation
of L-length in the direction of Y is zero, and consequently the second-order
variation of the length of γZ |[τ1,τ ′] vanishes. Hence by Proposition 6.13 it

must be the case that Ŷ is an L-Jacobi field. This is impossible since Ŷ is
not smooth at τ ′. �

We finish this section with a computation of the τ -derivative of Lx.

Lemma 6.32. Suppose that q ∈ Ux with t(q) = T − τ for some τ > τ1.
Let γ : [τ1, τ ] → M be the unique minimizing L-geodesic from x to q. Then
we have

(6.8)
∂Lx
∂τ

(q) = 2
√
τR(q) −

√
τ
(
R(q) + |X(τ )|2

)
.

Proof. By definition and the Fundamental Theorem of Calculus, we
have

d

dτ
Lx(γ(τ)) =

√
τ
(
R(γ(τ)) + |X(τ)|2

)
.

On the other hand since γ′(τ) = −∂/∂t+X(τ) the chain rule implies

d

dτ
Lx(γ(τ)) = 〈∇Lx,X(τ)〉 +

∂Lx
∂τ

(γ(τ)),

so that

∂Lx
∂τ

(γ(τ)) =
√
τ
(
R(γ(τ)) + |X(τ)|2

)
− 〈∇Lx,X(τ)〉.

Now using Corollary 6.29, and rearranging the terms gives the result. �

4. Second-order differential inequalities for L̃τ and Lτx

Throughout this section we fix x ∈ M with x ∈MT−τ1 .
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4.1. The second variation formula for L̃τ . Our goal here is to com-

pute the second variation of L̃τ in the direction of a horizontal vector field
Y (τ) along an L-geodesic γ. Here is the main result of this subsection.

Proposition 6.33. Fix 0 ≤ τ1 < τ . Let γ be an L-geodesic defined on
[τ1, τ ] and let γu = γ̃(τ, u) be a smooth family of curves parameterized by

backward time with γ0 = γ. Let Ỹ (τ, u) be ∂γ̃/∂u and let X̃ be the horizontal
component of ∂γ̃/∂τ . These are horizontal vector fields along the image of

γ̃. We set Y and X equal to the restrictions of Ỹ and X̃, respectively, to γ.
We assume that Y (τ1) = 0. Then

d2

du2
(L(γu)) |u=0 = 2

√
τ〈∇Y (τ)Ỹ (τ , u)|u=0,X(τ )〉 +

∫ τ

τ1

√
τ
[
Hess(R)(Y, Y )

+ 2〈R(Y,X)Y,X〉 − 4(∇Y Ric)(X,Y )

+ 2(∇XRic)(Y, Y ) + 2 |∇XY |2
]
dτ.

As we shall see, this is simply a rewriting of the equation in Lemma 6.14
in the special case when u1 = u2.

We begin the proof of this result with the following computation.

Claim 6.34. Let γ(τ) be a curve parameterized by backward time. Let
Y be a horizontal vector field along γ and let X be the horizontal component
of ∂γ̃/∂τ . Then

∂

∂τ
〈∇XY, Y 〉 = 〈∇XY,∇XY 〉 + 〈∇X∇XY, Y 〉

+ 2Ric(∇XY, Y )) + (∇XRic)(Y, Y )).

Proof. We can break ∂
∂τ 〈∇XY, Y 〉 into two parts: the first assumes

that the metric is constant and the second deals with the variation with τ
of the metric. The first contribution is the usual formula

∂

∂τ
〈∇XY, Y 〉G(T−τ0) = 〈∇XY,∇XY 〉G(T−τ0) + 〈∇X∇XY, Y 〉G(T−τ0).

This gives us the first two terms of the right-hand side of the equation in
the claim.

We show that the last two terms in that equation come from differentiat-
ing the metric with respect to τ . To do this recall that in local coordinates,
writing the metric G(T − τ) as gij , we have

〈∇XY, Y 〉 = gij
(
Xk∂kY

i + ΓiklX
kY l
)
Y j .

There are two contributions coming from differentiating the metric with
respect to τ . The first is when we differentiate gij . This leads to

2Ricij
(
Xk∂kY

i + ΓiklX
kY l
)
Y j = 2Ric(∇XY, Y 〉.
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The other contribution is from differentiating the Christoffel symbols. This
yields

gij
∂Γikl
∂τ

XkY lY j.

Differentiating the formula Γikl = 1
2g
si(∂kgsl + ∂lgsk − ∂sgkl) leads to

gij
∂Γikl
∂τ

= −2RicijΓ
i
kl + gijg

si(∂kRicsl + ∂lRicsk − ∂sRickl)

= −2RicijΓ
i
kl + ∂kRicjl + ∂lRicjk − ∂jRickl.

Thus, we have

gij
∂Γikl
∂τ

XkY lY j =
(
−2RicijΓ

i
kl + ∂kRicjl)

)
XkY lY j

= (∇XRic)(Y, Y ).

This completes the proof of the claim. �

Now we return to the proof of the second variational formula in Propo-
sition 6.33.

Proof. According to Lemma 6.14 we have

d2

du2
L|0 = 2

√
τY (τ)(〈Ỹ (τ , u), X̃(τ , u)〉)|0 −

∫ τ2

τ1

2
√
τ〈Jac(Y ), Y 〉dτ.

We plug in Equation 6.6 for Jac(Y ) and this makes the integrand

√
τ〈∇Y (∇R), Y 〉 + 2

√
τ〈R(Y,X)Y,X〉 − 2

√
τ〈∇X∇XY, Y 〉

− 1√
τ
〈∇XY, Y 〉 − 4

√
τ(∇Y Ric)(X,Y ) − 4

√
τRic(∇XY, Y ).

The first term is
√
τHess(R)(Y, Y ). Let us deal with the third and fourth

terms. According to the previous claim, we have

∂

∂τ

(
2
√
τ〈∇XY, Y 〉

)
=

1√
τ
〈∇XY, Y 〉 + 2

√
τ〈∇X∇XY, Y 〉

+ 2
√
τ〈∇XY,∇XY 〉 + 4

√
τRic(∇XY, Y ) + 2

√
τ(∇XRic)(Y, Y ).

This allows us to replace the two terms under consideration by

− ∂

∂t

(
2
√
τ〈∇XY, Y 〉

)
+ 2

√
τ〈∇XY,∇XY 〉
+ 4

√
τRic(∇XY, Y ) + 2

√
τ(∇XRic)(Y, Y ).

Integrating the total derivative out of the integrand and canceling terms
leaves the integrand as

√
τHess(R)(Y, Y ) + 2

√
τ〈R(Y,X)Y,X〉

+ 2
√
τ |∇XY |2 − 4

√
τ(∇Y Ric)(X,Y ) + 2

√
τ(∇XRic)(Y, Y ),



122 6. A COMPARISON GEOMETRY APPROACH TO THE RICCI FLOW

and makes the boundary term (the one in front of the integral) equal to

2
√
τ
(
Y (τ)〈Ỹ (τ , u), X̃(τ , u)〉|0 − 〈∇XY (τ ), Y (τ)〉

)

= 2
√
τ〈X(τ ),∇Y Ỹ (τ , u)|0〉.

This completes the proof of the proposition. �

4.2. Inequalities for the Hessian of Lτx. Now we shall specialize the
type of vector fields along γ. This will allow us to give an inequality for
the Hessian of L involving the integral of the vector field along γ. These
lead to inequalities for the Hessian of Lτx. The main result of this section is
Proposition 6.37 below. In the end we are interested in the case when the
τ1 = 0. In this case the formulas simplify. The reason for working here in
the full generality of all τ1 is in order to establish differential inequalities
at points not in the injectivity domain. As in the case of the theory of
geodesics, the method is to establish weak inequalities at these points by
working with smooth barrier functions. In the geodesic case the barriers are
constructed by moving the initial point out the geodesic a small amount.
Here the analogue is to move the initial point of an L-geodesic from τ1 = 0
to a small positive τ1. Thus, the case of general τ1 is needed so that we can
establish the differential inequalities for the barrier functions that yield the
weak inequalities at non-smooth points.

Definition 6.35. Let q ∈ Ux(τ) and let γ : [τ1, τ ] → M be the unique
minimizing L-geodesic from x to q. We say that a horizontal vector field
Y (τ) along γ is adapted if it solves the following ODE on [τ1, τ ]:

(6.9) ∇XY (τ) = −Ric(Y (τ), ·)∗ +
1

2
√
τ(
√
τ −√

τ1)
Y (τ).

Direct computation shows the following:

Lemma 6.36. Suppose that Y (τ) is an adapted vector field along γ. Then

d

dτ
〈Y (τ), Y (τ)〉 = 2Ric(Y (τ), Y (τ)) + 2〈∇XY (τ), Y (τ)〉(6.10)

=
1√

τ(
√
τ −√

τ1)
〈Y (τ), Y (τ)〉.

It follows that

|Y (τ)|2 = C
(
√
τ −√

τ1)
2

(
√
τ −√

τ1)2
,

where C = |Y (τ )|2.

Now we come to the main result of this subsection, which is an extremely
important inequality for the Hessian of Lτx.
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Proposition 6.37. Suppose that q ∈ Ux(τ), that Z ∈ Ũx(τ ) is the pre-
image of q, and that γZ is the L-geodesic to q determined by Z. Suppose
that Y (τ) is an adapted vector field along γZ. Then

Hess(Lτx)(Y (τ ), Y (τ)) ≤
(

|Y (τ)|2√
τ −√

τ1

)
− 2

√
τRic(Y (τ), Y (τ))(6.11)

−
∫ τ

τ1

√
τH(X,Y )dτ,

where

H(X,Y ) = −Hess(R)(Y, Y ) − 2〈R(Y,X)Y,X〉
− 4(∇XRic)(Y, Y ) + 4(∇Y Ric)(Y,X)(6.12)

− 2
∂Ric

∂τ
(Y, Y ) + 2 |Ric(Y, ·)|2 − 1

τ
Ric(Y, Y ).

We have equality in Equation (6.11) if and only if the adapted vector field
Y is also an L-Jacobi field.

Remark 6.38. In spite of the notation, H(X,Y ) is a purely quadratic
function of the vector field Y along γZ .

We begin the proof of this proposition with three elementary lemmas.

The first is an immediate consequence of the definition of Ũx(τ).

Lemma 6.39. Suppose that q ∈ Ux(τ ) and that γ : [τ1, τ ] → M is the
minimizing L-geodesic from x to q. Then for every tangent vector Y (τ ) ∈
TqMT−τ there is a one-parameter family of L-geodesics γ̃(τ, u) defined on
[τ1, τ ] with γ̃(0, u) = x for all u, with γ̃(τ, 0) = γ(τ) and ∂γ̃(τ , 0)/∂u = Y (τ).
Also, for every Z ∈ TxMT−τ1 there is a family of L-geodesics γ̃(τ, u) such
that γ(0, u) = x for all u, γ̃(τ, 0) = γ(τ) and such that, setting Y (τ) =
∂
∂u γ̃u(τ)|0, we have

∇√
τ1X(τ1)Y (τ1) = Z.

Lemma 6.40. Let γ be a minimizing L-geodesic from x, and let Y (τ) be
an L-Jacobi field along γ. Then

2
√
τ〈∇XY (τ ), Y (τ )〉 = Hess(Lτx)(Y (τ), Y (τ)).

Proof. Let γ(τ, u) be a one-parameter family of L-geodesics emanating
from x with γ(u, 0) being the L-geodesic in the statement of the lemma and
with ∂

∂uγ(τ, 0) = Y (τ). We have the extensions of X(τ) and Y (τ) to vector

fields X̃(τ, u) and Ỹ (τ, u) defined at γ(τ, u) for all τ and u. Of course,

2
√
τ〈∇Y X̃(τ , u)|0, Y (τ )〉

= Y (〈2
√
τX̃(τ , u), Ỹ (τ , u)〉)|0 − 〈2

√
τX(τ ),∇Y Ỹ (τ , u)|0〉.
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Then by Corollary 6.29 we have

2
√
τ〈∇Y X̃(τ , u)|0, Y (τ )〉 = Y (τ)(〈∇Lτx, Ỹ (τ , u)〉)|0 − 〈∇Lτx,∇Y (τ )Ỹ (τ , u)|0〉

= Y (τ)(Ỹ (τ , u)Lτx)|0 −∇Y (τ )(Ỹ (τ , u)|0)(Lτx)
= Hess(Lτx)(Y (τ), Y (τ)).

�

Now suppose that we have a horizontal vector field that is both adapted
and L-Jacobi. We get:

Lemma 6.41. Suppose that q ∈ Ux(τ), that Z ∈ Ũx(τ ) is the pre-image
of q, and that γZ is the L-geodesic to q determined by Z. Suppose further
that Y (τ) is a horizontal vector field along γ that is both adapted and an
L-Jacobi field. Then, we have

1

2
√
τ(
√
τ −√

τ1)
|Y (τ)|2 =

1

2
√
τ
Hess(Lτx)(Y (τ), Y (τ)) + Ric(Y (τ), Y (τ)).

Proof. From the definition of an adapted vector field Y (τ) we have

Ric(Y (τ), Y (τ)) + 〈∇XY (τ), Y (τ)〉 =
1

2
√
τ(
√
τ −√

τ1)
〈Y (τ), Y (τ)〉.

Since Y (τ) is an L-Jacobi field, according to Lemma 6.40 we have

〈∇XY (τ ), Y (τ )〉 =
1

2
√
τ
Hess(Lτx)(Y (τ), Y (τ)).

Putting these together gives the result. �

Now we are ready to begin the proof of Proposition 6.37.

Proof. Let γ̃(τ, u) be a family of curves with γ(τ, 0) = γZ and with
∂
∂uγ(τ, u) = Ỹ (τ, u). We denote by Y the horizontal vector field which is the

restriction of Ỹ to γ0 = γZ . We set q(u) = γ̃(τ , u). By restricting to a smaller
neighborhood of 0 in the u-direction, we can assume that q(u) ∈ Ux(τ) for
all u. Then L(γ̃u) ≥ Lτx(q(u)). Of course, Lτx(q(0)) = L(γZ). This implies
that

d

du
Lτx(q(u))

∣∣
0

=
d

du
L(γu)

∣∣
0
,

and

Y (τ)(Ỹ (τ , u)(Lτx))|0 =
d2

du2
Lτx(q(u))

∣∣
0
≤ d2

du2
L(γu)

∣∣
0
.

Recall that ∇Lτx(q) = 2
√
τX(τ ), so that

∇Y (τ)Ỹ (τ , u)|0(Lτx) = 〈∇Y (τ)Ỹ (τ , u)|0,∇Lτ 〉 = 2
√
τ〈∇Y (τ)Ỹ (τ , u)|0,X(τ )〉.
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Thus, by Proposition 6.33, and using the fact that Y (τ1) = 0, we have

Hess(Lτ )(Y (τ ), Y (τ )) = Y (τ)
(
Ỹ (τ , u)(Lτx)

)
|0 −∇Y (τ)Ỹ (τ , u)|0(Lτx)

≤ d2

du2
L(γu) − 2

√
τ〈∇Y (τ)Ỹ (τ , u)|0,X(τ )〉

=

∫ τ

τ1

√
τ
[
Hess(R)(Y, Y ) + 2〈R(Y,X)Y,X〉

− 4(∇Y Ric)(X,Y ) + 2(∇XRic)(Y, Y )

+ 2 |∇XY |2
]
dτ.

Equation (6.9) and the fact that |Y (τ)|2 = |Y (τ )|2 (
√
τ−√

τ1)2

(
√
τ−√

τ1)2
, give

Hess(Lτ )(Y (τ), Y (τ))

≤
∫ τ

τ1

√
τ
[
Hess(R)(Y, Y ) + 2〈R(Y,X)Y,X〉 − 4(∇Y Ric)(X,Y )

+2(∇XRic)(Y, Y ) + 2 |Ric(Y, ·)|2
]
dτ

+

∫ τ

τ1

[
|Y (τ)|2

2
√
τ(
√
τ −√

τ1)2
− 2

(
√
τ −√

τ1)
Ric(Y, Y )

]
dτ.

Using the definition of H(X,Y ) given in Equation (6.12), allows us to write

Hess(Lτ )(Y (τ), Y (τ))

≤ −
∫ τ

τ1

√
τH(X,Y )dτ

+

∫ τ

τ1

[√
τ
(
−2(∇XRic)(Y, Y ) − 2

∂Ric

∂τ
(Y, Y ) + 4|Ric(Y, ·)|2

)

+
|Y (τ)|2

2
√
τ(
√
τ −√

τ1)2
−
(

2

(
√
τ −√

τ1)
+

1√
τ

)
Ric(Y, Y )

]
dτ.

To simplify further, we compute, using Equation (6.9),

d

dτ

(
Ric(Y (τ), Y (τ))

)
=
∂Ric

∂τ
(Y, Y ) + 2Ric(∇XY, Y ) + (∇XRic)(Y, Y )

=
∂Ric

∂τ
(Y, Y ) + (∇XRic)(Y, Y )

+
1√

τ(
√
τ −√

τ1)
Ric(Y, Y ) − 2|Ric(Y, ·)|2.

Consequently, we have



126 6. A COMPARISON GEOMETRY APPROACH TO THE RICCI FLOW

d (2
√
τRic(Y (τ), Y (τ)))

dτ

= 2
√
τ

(
∂Ric

∂τ
(Y, Y ) + (∇XRic)(Y, Y ) − 2|Ric(Y, ·)|2

)

+

(
2

(
√
τ −√

τ1)
+

1√
τ

)
Ric(Y, Y ).

Using this, and the fact that Y (τ1) = 0, gives

(6.13) Hess(Lτx)(Y (τ), Y (τ ))

≤ −
∫ τ

τ1

(
√
τH(X,Y ) − d

dτ

(
2
√
τRic(Y, Y )

)
− |Y (τ)|2

2
√
τ(
√
τ −√

τ1)2

)
dτ

=
|Y (τ)|2√
τ −√

τ1
− 2

√
τRic(Y (τ), Y (τ)) −

∫ τ

τ1

√
τH(X,Y )dτ.

This proves Inequality (6.11). Now we examine when equality holds in
this expression. Given an adapted vector field Y (τ) along γ, let µ(v) be
a geodesic through γ(τ , 0) with tangent vector Y (τ ). Then there is a one-
parameter family µ(τ, v) of minimizing L-geodesics with the property that

µ(τ , v) = µ(v). Let Ỹ ′(τ, v) be ∂µ(τ, v)/∂v. It is an L-Jacobi field with

Ỹ ′(τ , 0) = Y (τ). Since Lx ◦ Lexpx = L̃, we see that

d2

dv2
L(µv)|v=0 =

d2

du2
Lτx(µ(u))|0.

Hence, the assumption that we have equality in (6.11) implies that

d2

dv2
L(µv)|v=0 =

d2

du2
L(γ̃u)|0.

Now we extend this one-parameter family to a two-parameter family

µ(τ, u, v) so that ∂µ(τ, 0, 0)/∂v = Ỹ ′ and ∂µ(τ, 0, 0)/∂u = Y (τ). Let w

be the variable u − v, and let W̃ be the tangent vector in this coordinate

direction, so that W̃ = Ỹ − Ỹ ′. We denote by W the restriction of W̃ to
γ0,0 = γZ . By Remark 6.15 the second partial derivative of the length of
this family in the u-direction at u = v = 0 agrees with the second derivative
of the length of the original family γ̃ in the u-direction.

Claim 6.42.
∂

∂v

∂

∂w
L(µ)|u=v=0 =

∂

∂w

∂

∂v
L(µ)|v=w=0 = 0.

Proof. Of course, the second cross-partials are equal. By Lemma 6.14
we have

∂

∂v

∂

∂w
L(µ)|v=w=0 = 2

√
τ Ỹ ′(τ)〈W̃ (τ ),X(τ )〉 −

∫ τ

τ1

2
√
τ〈Jac(Ỹ ′),W 〉dτ.
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Since W (τ) = 0 and since ∇eY ′(W̃ ) = ∇W (Ỹ ′), we see that the boundary

term in the above expression vanishes. The integral vanishes since Ỹ ′ is an
L-Jacobi field. �

If Inequality (6.11) is an equality, then

∂2

∂v2
L(µ)|u=v=0 =

∂2

∂u2
L(µ)|u=v=0.

We write ∂/∂u = ∂/∂v+∂/∂w. Expanding the right-hand side and canceling
the common terms gives

0 =

(
∂

∂v

∂

∂w
+

∂

∂w

∂

∂v
+

∂2

∂w2

)
L(µ)|u=v=0.

The previous claim tells us that the first two terms on the right-hand side
of this equation vanish, and hence we conclude

∂2

∂w2
L(µ)|u=v=0 = 0.

Since W vanishes at both endpoints this implies, according to Proposi-

tion 6.13, that W̃ (τ, 0, 0) = 0 for all τ , or in other words Y (τ) = Ỹ ′(τ, 0, 0)
for all τ . Of course by construction Ỹ ′(τ, 0, 0) is an L-Jacobi field. This
shows that equality holds only if the adapted vector field Y (τ) is also an
L-Jacobi field.

Conversely, if the adapted vector field Y (τ) is also an L-Jacobi field,
then inequality between the second variations at the beginning of the proof
is an equality. In the rest of the argument we dealt only with equalities.
Hence, in this case Inequality (6.11) is an equality.

This shows that we have equality in (6.11) if and only if the adapted
vector field Y (τ) is also an L-Jacobi field. �

4.3. Inequalities for △Lτx. The inequalities for the Hessian of Lτx lead
to inequalities for △Lτx which we establish in this section. Here is the main
result.

Proposition 6.43. Suppose that q ∈ Ux(τ), that Z ∈ Ũx(τ ) is the pre-
image of q and that γZ is the L-geodesic determined by Z. Then

(6.14) △Lτx(q) ≤
n√

τ −√
τ1

− 2
√
τR(q) − 1

(
√
τ −√

τ1)2
Kτ
τ1(γZ),

where, for any path γ parameterized by backward time on the interval [τ1, τ ]
taking value x at τ = τ1 we define

Kτ
τ1(γ) =

∫ τ

τ1

√
τ(
√
τ −√

τ1)
2H(X)dτ,

with

(6.15) H(X) = −∂R
∂τ

− 1

τ
R− 2〈∇R,X〉 + 2Ric(X,X),
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where X is the horizontal projection of γ′(τ). Furthermore, Inequality (6.14)
is an equality if and only if for every Y ∈ Tq(MT−τ ) the unique adapted
vector field Y (τ) along γ satisfying Y (τ) = Y is an L-Jacobi field. In this
case

Ric +
1

2
√
τ
Hess(Lτx) =

1

2
√
τ(
√
τ −√

τ1)
G(T − τ).

Proof. Choose an orthonormal basis {Yα} for Tq(MT−τ ). For each α,
extend {Yα} to an adapted vector field along the L-geodesic γZ by solving

∇XYα =
1

2
√
τ(
√
τ −√

τ1)
Yα − Ric(Yα, ·)∗.

As in Equation (6.10), we have

d

dτ
〈Yα, Yβ〉 = 〈∇XYα, Yβ〉 + 〈∇XYβ, Yα〉 + 2Ric(Yα, Yβ)

=
1√

τ(
√
τ −√

τ1)
〈Yα, Yβ〉.

By integrating we get

〈Yα, Yβ〉(τ) =
(
√
τ −√

τ1)
2

(
√
τ −√

τ1)2
δαβ.

To simplify the notation we set

I(τ) =

√
τ −√

τ1√
τ −√

τ1

and Wα(τ) = I(τ)Yα(τ). Then {Wα(τ)}α form an orthonormal basis at τ .
Consequently, summing Inequality (6.13) over α gives

(6.16) △Lτx(q) ≤
n√

τ −√
τ1

− 2
√
τR(q) −

∑

α

∫ τ

τ1

√
τH(X,Yα)dτ.

To establish Inequality (6.14) it remains to prove the following claim.

Claim 6.44.
∑

α

H(X,Yα) =
(
√
τ −√

τ1)
2

(
√
τ −√

τ1)2
H(X).

Proof. To prove the claim we sum Equation (6.12) giving

I2(τ)
∑

α

H(X,Yα) =
∑

α

H(X,Wα)

= −△R+ 2Ric(X,X) + 4
∑

α

(∇WαRic)(Wα,X)

− 2
∑

α

Ricτ (Wα,Wα) + 2|Ric|2 − 1

τ
R− 4〈∇R,X〉.
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Taking the trace of the second Bianchi identity, we get

∑

α

(∇WαRic)(Wα,X) =
1

2
〈∇R,X〉.

In addition by Equation (3.7), recalling that ∂R/∂τ = −∂R/∂t, we have

∂R

∂τ
= −△R− 2|Ric|2.

On the other hand,

∂R

∂τ
= ∂(gijRij)/∂τ = −2|Ric|2 +

∑

α

∂Ric

∂τ
(Wα,Wα),

and so
∑

α
∂Ric
∂τ (Wα,Wα) = −△R. Putting all this together gives

I2(τ)
∑

α

H(X,Yα) = H(X).

�

Clearly, Inequality (6.14) follows immediately from Inequality (6.16) and
the claim. The last statement of Proposition 6.43 follows directly from the
last statement of Proposition 6.37 and Lemma 6.41. This completes the
proof of Proposition 6.43. �

5. Reduced length

We introduce the reduced length function both on the tangent space and
on space-time. The reason that the reduced length lx is easier to work with
is that it is scale invariant when τ1 = 0. Throughout this section we fix
x ∈ M with t(x) = T − τ1. We shall always suppose that T − τ1 is greater
than the initial time of the generalized Ricci flow.

5.1. The reduced length function lx on space-time.

Definition 6.45. We define the L-reduced length (from x)

lx : Ux → R

by setting

lx(q) =
Lx(q)

2
√
τ
,

where τ = T − t(q). We denote by lτx the restriction of lx to the slice Ux(τ).

In order to understand the differential inequalities that lx satisfies, we
first need to introduce a quantity closely related to the function Kτ

τ1 defined
in Proposition 6.43.
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Definition 6.46. For any L-geodesic γ parameterized by [τ1, τ ] we de-
fine

Kτ
τ1(γ) =

∫ τ

τ1

τ3/2H(X)dτ.

In the special case when τ1 = 0 we denote this integral by Kτ (γ).

The following is immediate from the definitions.

Lemma 6.47. For any L-geodesic γ defined on [0, τ ] both Kτ
τ1(γ) and

Kτ
τ1(γ) are continuous in τ1 and at τ1 = 0 they take the same value. Also,

(τ1
τ

)3/2 (
R(γ(τ1)) + |X(τ1)|2

)

is continuous for all τ1 > 0 and has limit 0 as τ1 → 0. Here, as always,
X(τ1) is the horizontal component of γ′ at τ = τ1.

Lemma 6.48. Let q ∈ Ux(τ ), let Z ∈ Ũx be the pre-image of q and let γZ
be the L-geodesic determined by Z. Then we have

(6.17) τ−
3
2Kτ

τ1(γZ) =
lx(q)

τ
−(R(q)+|X(τ)|2)+

(τ1
τ

)3/2 (
R(x) + |X(τ1)|2

)
.

In the case when τ1 = 0, the last term on the right-hand side of Equa-
tion (6.17) vanishes.

Proof. Using the L-geodesic equation and the definition of H we have

d

dτ
(R(γZ(τ)) + |X(τ)|2) =

∂R

∂τ
(γZ(τ)) + 〈∇R(γZ(τ)),X(τ)〉

+ 2〈∇XX(τ),X(τ)〉 + 2Ric(X(τ),X(τ))

=
∂R

∂τ
(γZ(τ)) + 2X(τ)(R) − 1

τ
|X(τ)|2

− 2Ric(X(τ),X(τ))

= −H(X(τ)) − 1

τ
(R(γZ(τ) + |X(τ)|2).

Thus

d

dτ
(τ

3
2 (R(γZ(τ) + |X(τ)|2)) =

1

2

√
τ(R(γZ(τ) + |X(τ)|2) − τ

3
2H(X(τ)).

Integration from τ1 to τ gives

τ3/2
(
R(q)) + |X(τ )|2

)
− τ

3/2
1 (R(x) + |X(τ1)|2) =

Lτx(q)

2
−Kτ

τ1(γZ),

which is equivalent to Equation (6.17). In the case when τ1 = 0, the last
term on the right-hand side vanishes since

limτ→0τ
3/2|X(τ)|2 = 0.

�
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Now we come to the most general of the differential inequalities for
lx that will be so important in what follows. Whenever the expression(
τ1
τ

)3/2 (
R(x) + |X(τ1)|2

)
appears in a formula, it is interpreted to be zero

in the case when τ1 = 0.

Lemma 6.49. For any q ∈ Ux(τ ), let Z ∈ Ũx(τ) be the pre-image of q
and let γZ be the L-geodesic determined by Z. Then we have

∂lx
∂τ

(q) = R(q) − lx(q)

τ
+
Kτ
τ1(γZ)

2τ3/2
− 1

2

(τ1
τ

)3/2 (
R(x) + |X(τ1)|2

)
,

|∇lτx(q)|2 = |X(τ )|2

=
lτx(q)

τ
− Kτ

τ1(γZ)

τ3/2
−R(q) +

(τ1
τ

)3/2 (
R(x) + |X(τ1)|2

)
,

△lτx(q) =
1

2
√
τ
△Lτx(q) ≤

n

2
√
τ(
√
τ −√

τ1)
−R(q) − Kτ

τ1(γZ)

2
√
τ(
√
τ −√

τ1)2
.

Proof. It follows immediately from Equation (6.8) that

∂lx
∂τ

= R− 1

2
(R+ |X|2) − lx

2τ
.

Using Equation (6.17) this gives the first equality stated in the lemma.
It follows immediately from Corollary 6.29 that ∇lτx = X(τ) and hence
|∇lτx|2 = |X(τ)|2. From this and Equation (6.17) the second equation fol-
lows. The last inequality is immediate from Proposition 6.43.

When τ1 = 0, the last terms on the right-hand sides of the first two equa-
tions vanish, since the last term on the right-hand side of Equation (6.17)
vanishes in this case. �

When τ1 = 0, which is the case of main interest, all these formulas
simplify and we get:

Theorem 6.50. Suppose that x ∈MT so that τ1 = 0. For any q ∈ Ux(τ),
let Z ∈ Ũx(τ ) be the pre-image of q and let γZ be the L-geodesic determined
by Z. As usual, let X(τ) be the horizontal projection of γ′Z(τ). Then we
have

∂lx
∂τ

(q) = R(q) − lx(q)

τ
+
Kτ (γZ)

2τ3/2
,

|∇lτx(q)|2 = |X(τ )|2 =
lτx(q)

τ
− Kτ (γZ)

τ3/2
−R(q),

△lτx(q) =
1

2
√
τ
△Lτx(q) ≤

n

2τ
−R(q) − Kτ (γZ)

2τ 3/2
.

Proof. This is immediate from the formulas in the previous lemma. �

Now let us reformulate the differential inequalities in Theorem 6.50 in a
way that will be useful later.
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Corollary 6.51. Suppose that x ∈MT so that τ1 = 0. Then for q ∈ Uτx
we have

∂lx
∂τ

(q) + △lτx(q) −
(n/2) − lτx(q)

τ
≤ 0,

∂lx
∂τ

(q) −△lτx(q) + |∇lτx(q)|2 −R(q) +
n

2τ
≥ 0,

2△lτx(q) − |∇lτx(q)|2 +R(q) +
lτx(q) − n

τ
≤ 0.

In fact, setting

δ =
n

2τ
−R(q) − Kτ (γZ)

2τ3/2
−△lτx(q),

then δ ≥ 0 and

∂lx
∂τ

(q) −△lτx(q) + |∇lτx(q)|2 −R(q) +
n

2τ
= δ,

2△lτx(q) − |∇lτx(q)|2 +R(q) +
lτx(q) − n

τ
= −2δ.

5.2. The tangential version l̃ of the reduced length function.
For any path γ : [τ1, τ ] → (M, G) parameterized by backward time we define

l(γ) =
1

2
√
τ
L(γ).

This leads immediately to a reduced length on Ũx.

Definition 6.52. We define l̃ : Ũx → R by

l̃(Z, τ) =
L̃(Z, τ)

2
√
τ

= l(γZ |[τ1,τ ]).

At first glance it may appear that the computations of the gradient

and τ -derivatives for lx pass immediately to those for l̃. For the spatial
derivative this is correct, but for the τ -derivative it is not true. As the

computation below shows, the τ -derivatives of l̃ and lx do not agree under
the identification Lexpx. The reason is that this identification does not line
up the τ -vector field in the domain with −∂/∂t in the range. So it is an
entirely different computation with a different answer.

Lemma 6.53.

∂l̃(Z, τ)

∂τ
=

1

2

(
R(γZ(τ)) +X(τ)|2

)
− l̃(Z, τ)

2τ
.

Proof. By the Fundamental Theorem of Calculus

∂

∂τ
L̃(Z, τ) =

√
τ
(
R(γz(τ)) + |X(τ)|2

)
.
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Thus,

∂

∂τ
l̃(Z, τ) =

1

2

(
R(γz(τ)) + |X(τ)|2

)
− l̃(Z, τ)

2τ
.

�

Corollary 6.54. Suppose that x ∈MT so that τ1 = 0. Then

∂

∂τ
l̃(Z, τ) = −K

τ (γZ)

2τ
3
2

.

Proof. This is immediate from Lemma 6.53 and Lemma 6.48 (after the

latter is rewritten using L̃ instead of Lx). �

6. Local Lipschitz estimates for lx

It is important for the applications to have results on the Lipschitz prop-
erties of lx, or equivalently Lx. Of course, these are the analogues of the fact
that in Riemannian geometry the distance function from a point is Lipschitz.
The proof of the Lipschitz property given here is based on the exposition in
[72]. In this section, we fix x ∈MT−τ1 ⊂ M.

6.1. Statement and corollaries.

Definition 6.55. Let (M, G) be a generalized Ricci flow and let x ∈
MT−τ1 ⊂ M. The reduced length function lx is defined on the subset
of M consisting of all points y ∈ M for which there is a minimizing
L-geodesic from x to y. The value lx(y) is the quotient of L-length of any
such minimizing L-geodesic divided by 2

√
τ .

Here is the main result of this subsection.

Proposition 6.56. Let (M, G) be a generalized Ricci flow and let x ∈
MT−τ1 ⊂ M. Let ǫ > 0 be given and let A ⊂ M ∩ t−1(−∞, T − τ1 + ǫ).
Suppose that there is a subset F ⊂ M on which |Ric| and |∇R| are bounded
and a neighborhood ν(A) of A contained in F with the property that for
every point z ∈ ν(A) there is a minimizing L-geodesic from x to z contained
in F . Then lx is defined on all of ν(A). Furthermore, there is a smaller
neighborhood ν0(A) ⊂ ν(A) of A on which lx is a locally Lipschitz function

with respect to the Riemannian metric, denoted Ĝ, on M which is defined
as the orthogonal sum of the Riemannian metric G on HTM and the metric
dt2 on the tangent line spanned by χ.

Corollary 6.57. With A and ν0(A) as in Proposition 6.56, the restric-
tion of lx to ν0(A)∩MT−τ is a locally Lipschitz function with respect to the
metric GT−τ .
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6.2. The proof of Proposition 6.56. Proposition 6.56 follows from
a much more precise, though more complicated to state, result. In order to
state this more technical result we introduce the following definition.

Definition 6.58. Let y ∈ M with t(y) = t and suppose that for some
ǫ > 0 there is an embedding ι : B(y, t, r)×(t−ǫ, t+ǫ) → M that is compatible

with time and the vector field. Then we denote by P̃ (y, r, ǫ) ⊂ M the image

of ι. Whenever we introduce P̃ (y, r, ǫ) ⊂ M implicitly we are asserting that
such an embedding exists.

For A ⊂ M, if P̃ (a, ǫ, ǫ) ⊂ M exists for every a ∈ A, then we denote by

νǫ(A) the union over all a ∈ A of P̃ (a, ǫ, ǫ).

Now we are ready for the more precise, technical result.

Proposition 6.59. Given constants ǫ > 0, τ0 < ∞, l0 < ∞, and
C0 < ∞, there are constants C < ∞ and 0 < δ < ǫ depending only on the
given constants such that the following holds. Let (M, G) be a generalized
Ricci flow and let x ∈ M be a point with t(x) = T − τ1. Let y ∈ M be
a point with t(y) = t = T − τ where τ1 + ǫ ≤ τ ≤ τ0. Suppose that there
is a minimizing L-geodesic γ from x to y with l(γ) ≤ l0. Suppose that the

ball B(y, t, ǫ) has compact closure in Mt and that P̃ (y, ǫ, ǫ) ⊂ M exists and
that the sectional curvatures of the restriction of G to this submanifold are

bounded by C0. Lastly, suppose that for every point of the form z ∈ P̃ (y, δ, δ)
there is a minimizing L-geodesic from x to z with |Ric| and |∇R| bounded
by C0 along this geodesic. Then for all (b, t′) ∈ B(y, t, δ) × (t− δ, t + δ) we
have

|lx(y) − lx(ι(b, t
′))| ≤ C

√
dt(y, b)2 + |t− t′|2.

Before proving Proposition 6.59, let us show how it implies Proposi-
tion 6.56.

Proof. (that Proposition 6.59 implies Proposition 6.56) Suppose given
ǫ > 0, A, ν(A) and F as in the statement of Proposition 6.56. For each
y ∈ A there is 0 < ǫ′ < ǫ and a neighborhood ν ′(y) with (i) the closure
ν′(y) of ν ′(y) being a compact subset of ν(A) and (ii) for each z ∈ ν ′(y)
the parabolic neighborhood P̃ (z, ǫ′, ǫ′) exists and has compact closure in

ν(A). It follows that for every z ∈ ν ′(A), RmG is bounded on P̃ (z, ǫ′, ǫ′) and

every point of P̃ (z, ǫ′, ǫ′) is connected to x by a minimizing L-geodesic in F .
Thus, Proposition 6.59, with ǫ replaced by ǫ′, applies to z. In particular, lx is
continuous at z, and hence is continuous on all of ν ′(y). Thus, lx is bounded

on ν ′(y). Since we have uniform bounds for the curvature on P̃ (z, ǫ′, ǫ′)
according to Proposition 6.59 there are constants C < ∞ and 0 < δ < ǫ′

such that for any z ∈ ν ′(y) and any z′ ∈ P̃ (z, δ, δ), we have

|lx(z) − lx(z
′)| ≤ C|z − z′|G(t(z)+dt2 .



6. LOCAL LIPSCHITZ ESTIMATES FOR lx 135

Since we have a uniform bound for the curvature on P̃ (z, ǫ′, ǫ′) independent

of z ∈ ν ′(y), the metrics Ĝ = G + dt2 and G(t(z)) + dt2 are uniformly

comparable on all of P̃ (z, δ, δ). It follows that there is a constant C ′ < ∞
such that for all z ∈ ν ′(y) and all z′ ∈ P̃ (z, δ, δ) we have

|lx(z) − lx(z
′)| ≤ C ′|Z − z′| bG.

We set ν0(A) = ∪y∈Aν ′(y). This is an open neighborhood of A contained

in ν(A) on which lx is locally Lipschitz with respect to the metric Ĝ. �

Now we turn to the proof of Proposition 6.59. We begin with several
preliminary results.

Lemma 6.60. Suppose that γ is an L-geodesic defined on [τ1, τ ], and
suppose that for all τ ∈ [τ1, τ ] we have |∇R(γ(τ))| ≤ C0 and |Ric(γ(τ))| ≤
C0. Then

maxτ
(√
τ |Xγ(τ)|

)
≤ C1minτ

(√
τ |Xγ(τ)|

)
+

(C1 − 1)

2

√
τ ,

where C1 = e2C0τ .

Proof. The geodesic equation in terms of the variable s, Equation (6.5),
gives

d|γ′(s)|2
ds

= 2〈∇γ′(s)γ
′(s), γ′(s)〉 + 4sRic(γ′(s), γ′(s))

= 4s2〈∇R, γ′(s)〉 − 4sRic(γ′(s), γ′(s)).(6.18)

Thus, by our assumption on |∇R| and |Ric| along γ, we have
∣∣∣∣
d|γ′(s)|2
ds

∣∣∣∣ ≤ 4C0s
2|γ′(s)| + 4C0s|γ′(s)|2.

It follows that∣∣∣∣
d|γ′(s)|
ds

∣∣∣∣ ≤ 2C0s
2 + 2C0s|γ′(s)| ≤ 2C0τ + 2C0

√
τ |γ′(s)|,

and hence that

−2C0

√
τds ≤ d|γ′(s)|√

τ + |γ′(s)|
≤ 2C0

√
τds.

Suppose that s0 < s1. Integrating from s0 to s1 gives

|γ′(s1)| ≤ C|γ′(s0)| + (C − 1)
√
τ ,

|γ′(s0)| ≤ C|γ′(s1)| + (C − 1)
√
τ .

where

C = e2C0

√
τ(s1−s0).

Since
√
τXγ(τ) = 1

2γ
′(s), this completes the proof of the lemma. �
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Corollary 6.61. Given τ0 < ∞, C0 < ∞, ǫ > 0, and l0 < ∞, there
is a constant C2 depending only on C0, l0, ǫ and τ0 such that the following
holds. Let γ be an L-geodesic defined on [τ1, τ ] with τ1 + ǫ ≤ τ ≤ τ0 and
with |∇R(γ(τ))| ≤ C0 and |Ric(γ(τ))| ≤ C0 for all τ ∈ [τ1, τ ]. Suppose also
that l(γ) ≤ l0. Then, we have

maxτ
(√
τ |Xγ(τ)|

)
≤ C2.

Proof. From the definition L(γ) =
∫ √

τ√
τ1

(2s2R + 1
2 |γ′(s)|2)ds. Because

of the bound on |Ric| (which implies that |R| ≤ 3C0) we have

1

2

∫ √
τ

√
τ1

|γ′(s)|2ds ≤ L(γ) + 2C0τ
3/2.

Thus,
(
√
τ −√

τ1)min(|γ′(s)|2) ≤ 2L(γ) + 4C0τ
3/2.

The bounds τ1 + ǫ ≤ τ ≤ τ0, then imply that min|γ′(s)|2 ≤ C ′′ for some C ′′

depending on C0, l0, ǫ, and τ0. Since
√
τXγ(τ) = 1

2γ
′(s), we have

minτ
(√
τ |Xγ(τ)|

)
≤ C ′

for some constant C ′ depending only on C0, l0, ǫ and τ0. The result is now
immediate from Lemma 6.60. �

Now we are ready to show that, for z sufficiently close to y, the reduced
length lx(z) is bounded above by a constant depending on the curvature
bounds, on lx(y), and on the distance in space-time from z to y.

Lemma 6.62. Given constants ǫ > 0, τ0 < ∞, C0 < ∞, and l0 < ∞,
there are C3 < ∞ and 0 < δ2 ≤ ǫ/4 depending only on the given constants
such that the following holds. Let y ∈ M be a point with t(y) = t0 = T − τ
where τ1 +ǫ ≤ τ ≤ τ0. Suppose that there is a minimizing L-geodesic γ from
x to y with lx(γ) ≤ l0. Suppose that |∇R| and |Ric| are bounded by C0 along
γ. Suppose also that the ball B(y, t0, ǫ) has compact closure in Mt0 and that
there is an embedding

ι : B(y, t0, ǫ) × (t0 − ǫ, t0 + ǫ)
∼=−→ P̃ (y, ǫ, ǫ) ⊂ M

compatible with time and the vector field so that the sectional curvatures of
the restriction of G to the image of this embedding are bounded by C0. Then
for any point b ∈ B(y, t0, δ2) and for any t′ ∈ (t0 − δ2, t0 + δ2) there is a
curve γ1 from x to the point z = ι(b, t′), parameterized by backward time,
such that

l(γ1) ≤ l(γ) + C3

√
dt0(y, b)

2 + |t0 − t′|2.
Proof. Let C2 be the constant depending on C0, l0, ǫ, and τ0 from

Corollary 6.61, and set

C ′ =

√
2√
ǫ
C2.
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Since τ ≥ ǫ, it follows that τ − ǫ/2 ≥ ǫ/2, so that by Corollary 6.61 we have
|Xγ(τ)| ≤ C ′ for all τ ∈ [τ − ǫ/2, τ ]. Set 0 < δ0 sufficiently small (how small

depends only on C0) such that for all (z, t) ∈ P̃ (y, ǫ, δ0) we have

1

2
g(z, t) ≤ g(z, t0) ≤ 2g(z, t),

and define

δ2 = min

(
ǫ

8
,
ǫ

8C ′ ,
δ0
4

)
.

Let b ∈ B(y, t0, δ2) and t′ ∈ (t0 − δ2, t0 + δ2) be given. Set

α =
√
dt0(y, b)

2 + |t0 − t′|2,

set t1 = t0−2α, and let τ1 = T−t1. Notice that α <
√

2δ2 < ǫ/4, so that the
norm of the Ricci curvature is bounded by C ′ on ι(B(y, t0, ǫ)× (t1, t0 +2α)).

Claim 6.63. γ(τ1) ∈ P̃ (y, ǫ, ǫ) and writing γ(τ1) = ι(c, t1) we have
dt0(c, b) ≤ (4C ′ + 1)α.

Proof. Since |Xγ(τ)| ≤ C ′ for all τ ∈ [τ − 2α, τ ], and δ2 ≤ δ0/4, it
follows that 2α ≤ δ0 and hence that |Xγ(τ)|g(t0) ≤ 2C ′ for all τ ∈ [τ−2α, τ ].
Since γ(τ) = y, this implies that

dt0(y, c) ≤ 4C ′α.

The claim then follows from the triangle inequality. �

Now let µ : [τ − 2α, T − t′] → B(y, t0, ǫ) be a shortest g(t0)-geodesic
from c to b, parameterized at constant g(t0)-speed, and let µ be the path
parameterized by backward time defined by

µ(τ) = ι(µ(τ), T − τ)

for all τ ∈ [τ − 2α, T − t′]. Then the concatenation γ1 = γ|[τ1,τ−2α] ∗ µ is a
path parameterized by backward time from x to ι(b, t′).

Claim 6.64. There is a constant C ′
1 depending only on C0, C

′, and τ0

such that

l(γ1) ≤ l(γ|[τ1,τ−2α]) + C ′
1α

Proof. First notice that since τ = T − t0 and |t′ − t0| ≤ α we have
(T − t′)− (τ −2α) = 2α+(t′− t0) ≥ α. According to Claim 6.63 this implies
that the g(t0)-speed of µ is at most (4C ′+1), and hence that |Xµ(τ)|g(T−τ) ≤
8C ′+2 for all τ ∈ [τ−2α, T − t′]. Consequently, R+ |Xµ|2 is bounded above

along µ by a constant C̃ depending only on C ′ and C0. This implies that

L(µ) ≤ C̃α
√
T − t′. Of course, T − t′ ≤ τ + ǫ < 2τ ≤ 2τ 0. This completes

the proof of the claim. �
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On the other hand, since R ≥ −3C0 in P (y, ǫ, ǫ) and |X|2 ≥ 0, we see
that

L(γ|[τ1,τ−2α]) ≤ L(γ) + 6C0α
√
τ0.

Together with the previous claim this establishes Lemma 6.62. �

This is a one-sided inequality which says that the nearby values of lx are
bounded above in terms of lx(y), the curvature bounds, and the distance in
space-time from y. In order to complete the proof of Proposition 6.59 we
must establish inequalities in the opposite direction. This requires reversing
the roles of the points.

Proof. (of Proposition 6.59) Let δ2 and C3 be the constants as in
Lemma 6.62 associated to ǫ/2, τ0, C0, and l0. We shall choose C ≥ C3

and δ ≤ δ2 so that by Lemma 6.62 we will automatically have

lx(ι(b, t
′)) ≤ lx(y) + C3

√
dt0(y, b)

2 + |t0 − t′|2

≤ lx(y) + C
√
dt0(y, b)

2 + |t0 − t′|2

for all ι(b, t′) ∈ P (y, δ, δ). It remains to choose C and δ so that

lx(y) ≤ lx(ι(b, t
′)) +C

√
dt0(y, b)

2 + |t0 − t′|2.
Let δ′2 and C ′

3 be the constants given by Lemma 6.62 for the following set of
input constants: C ′

0 = C0, τ0 replaced by τ ′0 = τ0 + ǫ/2, and l0 replaced by

l′0 = l0 +
√

2C3δ2, and ǫ replaced by ǫ′ = ǫ/4. Then set C = max(2C ′
3, C3).

Let z = ι(b, t′) ∈ P̃ (y, δ, δ).

Claim 6.65. For δ sufficiently small (how small depends on δ2 and δ′2)
we have B(z, t′, ǫ/4) ⊂ B(y, t0, ǫ).

Proof. Since |t0 − t′| < δ ≤ δ2, and by construction δ2 < δ0, it follows
that for any c ∈ B(y, t0, ǫ) we have dt′(b, c) ≤ 2dt0(b, c). Since dt0(y, b) <
δ ≤ ǫ/4, the result is immediate from the triangle inequality. �

By the above and the fact that δ ≤ ǫ/4, the sectional curvatures on

P̃ (z, ǫ/4, ǫ/4) are bounded by C0. By Lemma 6.62 there is a curve param-
eterized by backward time from x to z whose l-length is at most l′0. Thus
the l-length of any minimizing L-geodesic from x to z is at most l′0. By
assumption we have a minimizing L-geodesic with the property that |Ric|
and|∇R| are bounded by C0 along the L-geodesic.

Of course, t0 − δ < t′ < t0 + δ, so that τ1 + ǫ/2 < T − t′ ≤ τ0 + ǫ/4.
This means that Lemma 6.62 applies to show that for very w = ι(c, t) ∈
P̃ (z, δ′2, δ

′
2), we have

lx(w) ≤ lx(z) + C ′
3

√
dt′(b, c)2 + |t− t′|2.

The proof is then completed by showing the following:

Claim 6.66. y ∈ P̃ (z, δ′2, δ
′
2).
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Proof. By construction |t′ − t0| < δ ≤ δ′2. Also, dt0(y, b) < δ ≤ δ′2/2.
Since dt0 ≤ 2dt′ , we have dt′(y, b) < δ′2 the claim is then immediate. �

It follows immediately that

lx(y) ≤ lx(z) + C ′
3

√
dt′(b, y)2 + |t0 − t′|2

≤ lx(z) + 2C ′
3

√
dt0(b, y)

2 + |t0 − t′|2

≤ lx(z) + C
√
dt0(b, y)

2 + |t0 − t′|2.
This completes the proof of Proposition 6.59. �

Corollary 6.67. Let (M, G) be a generalized Ricci flow and let x ∈ M
with t(x) = T − τ1. Let A ⊂ M ∩ t−1(−∞, T − τ1) be a subset whose
intersection with each time-slice Mt is measurable. Suppose that there is a
subset F ⊂ M such that |∇R| and |Ric| are bounded on F and such that
every minimizing L geodesic from x to any point in a neighborhood, ν(A),
of A is contained in F . Then for each τ ∈ (τ1, τ ] the intersection of A with
Ux(τ) is an open subset of full measure in A ∩MT−τ .

Proof. Since Ux(τ) is an open subset of MT−τ , the complement of
ν(A)∩Ux(τ) in ν(A)∩MT−τ is a closed subset of ν(A)∩MT−τ . Since there
is a minimizing L-geodesic to every point of ν(A)∩MT−τ , the L-exponential
map Lexpτx is onto ν(A) ∩MT−τ .

Claim 6.68. The complement of ν(A) ∩ Ux(τ) in ν(A) is contained in
the union of two sets: The first is the set of points z where there is more
than one minimizing L-geodesic from x ending at z and, if Z is the initial
condition for any minimizing L-geodesic to z, then the differential of Lexpτx
at any Z is an isomorphism. The second is the intersection of the set of
critical values of Lexpτ with ν(A) ∩MT−τ .

Proof. Suppose that q ∈ ν(A) ∩MT−τ is not contained in Ux. Let γZ
be a minimal L-geodesic from x to q. If the differential of Lexpx is not an
isomorphism at Z, then q is contained in the second set given in the claim.
Thus, we can assume that the differential of Lexpx at Z, and hence Lexpx
identifies a neighborhood Ṽ of Z in HTzM with a neighborhood V ⊂ ν(A) of

q in MT−τ . Suppose that there is no neighborhood Ṽ ′ ⊂ Ṽ of Z so that the
L-geodesics are unique minimal L-geodesics to their endpoints in MTτ . Then
there is a sequence of minimizing L-geodesics γn whose endpoints converge to

q, but so that no γn has initial condition contained in Ṽ ′. By hypothesis all
of these geodesics are contained in F and hence |Ric| and |∇R| are uniformly
bounded on these geodesics. Also, by the continuity of L, the L-lengths of
γn are uniformly bounded as n tends to infinity. By Corollary 6.61 we see
that the initial conditions Zn =

√
τ1Xγn(τ1) (meaning the limit as τ → 0 of

these quantities in the case when τ1 = 0) are of uniformly bounded norm.
Hence, passing to a subsequence we can arrange that the Zn converge to
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some Z∞. The tangent vector Z∞ is the initial condition of an L-geodesic
γ∞. Since the γn are minimizing L-geodesics to a sequence of points qn
converging to q, by continuity it follows that γ∞ is a minimizing L-geodesic

to q. Since none of the Zn is contained in Ṽ ′, it follows that Z∞ 6= Z. This

is a contradiction, showing that throughout some neighborhood Ṽ ′ of Z the
L-geodesics are unique minimizing L-geodesics and completing the proof of
the claim. �

According to the next claim, the first subset given in Claim 6.68 is
contained in the set of points of ν(A)∩MT−τ where Lτx is non-differentiable.
Since Lτx is a locally Lipschitz function on ν(A), this subset is of measure
zero in ν(A); see Rademacher’s Theorem on p. 81 of [20]. The second set
is of measure zero by Sard’s theorem. This proves, modulo the next claim,
that Ux(τ) ∩A is full measure in A ∩MT−τ .

Claim 6.69. Let z ∈MT−τ . Suppose that there is a neighborhood of z in
MT−τ with the property that every point of the neighborhood is the endpoint
of a minimizing L-geodesic from x, so that Lτx is defined on this neighborhood
of z. Suppose that there are two distinct, minimizing L-geodesics γZ1 and
γZ2 from x ending at z with the property that the differential of Lexpτ is an
isomorphism at both Z1 and Z2. Then the function Lτx is non-differentiable
at z.

Proof. Suppose that γZ0 |[0,τ ] is an L-minimal L-geodesic and that
dZ0Lexpτx is an isomorphism. Then use Lexpτx to identify a neighborhood

of Z0 ∈ TxM with a neighborhood of z in MT−τ , and push the function L̃τx
on this neighborhood of Z0 down to a function LZ0 on a neighborhood
in MT−τ of z. According to Lemma 6.22 the resulting function LZ0 is
smooth and its gradient at z is 2

√
τX(τ). Now suppose that there is a

second L-minimizing L-geodesic to z with initial condition Z1 6= Z0 and
with dZ1Lexpτx being an isomorphism. Then near z the function Lτx is less
than or equal to the minimum of two smooth functions LZ0 and LZ1. We
have LZ0(z) = LZ1(z) = Lτx(z), and furthermore, LZ0 and LZ1 have distinct
gradients at z. It follows that Lτx is not smooth at z. �

This completes the proof of Corollary 6.67. �

7. Reduced volume

Here, we assume that x ∈MT ⊂ M, so that τ1 = 0 in this subsection.

Definition 6.70. Let A ⊂ Ux(τ) be a measurable subset of MT−τ . The
L-reduced volume of A from x (or the reduced volume for short) is defined
to be

Ṽx(A) =

∫

A
τ−

n
2 exp(−lx(q))dq

where dq is the volume element of the metric G(T − τ).
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Lemma 6.71. Let A ⊂ Ux(τ) be a measurable subset. Define Ã ⊂ Ũx(τ)
to be the pre-image under Lexpτx of A. Then

Ṽx(A) =

∫

eA
τ−

n
2 exp(−l̃(Z, τ))J (Z, τ)dZ,

where dZ is the usual Euclidean volume element and J (Z, τ) is the Jacobian
determinant of Lexpτx at Z ∈ TxMT .

Proof. This is simply the change of variables formula for integration.
�

Before we can study the reduced volume we must study the function
that appears as the integrand in its definition. To understand the limit as
τ → 0 requires a rescaling argument.

7.1. Rescaling. Fix Q > 0. We rescale to form (QM, QG) and then
we shift the time by T −QT so that the time-slice MT in the original flow
is the T time-slice of the new flow. We call the result (M′, G′). Recall that
τ = T − t is the parameter for L-geodesics in (M, G) The corresponding
parameter in the rescaled flow (M′, G′) is τ ′ = T − t′ = Qτ . We denote by
L′expx the L-exponential map from x in (M′, G′), and by l′x the reduced
length function for this Ricci flow. The associated function on the tangent

space is denoted l̃′.

Lemma 6.72. Let (M, G) be a generalized Ricci flow and let x ∈ MT ⊂
M. Fix Q > 0 and let (M′, G′) be the Q scaling and shifting of (M, G) as
described in the previous paragraph. Let ι : M → M′ be the identity map.
Suppose that γ : [0, τ ] → M is a path parameterized by backward time with
γ(0) = x. Let β : [0, Qτ ] → QM be defined by

β(τ ′) = ι(γ(τ ′/Q)).

Then β(0) = x and β is parameterized by backward time in (M′, G′), and
L(β) =

√
QL(γ). Furthermore, β is an L-geodesic if and only if γ is. In

this case, if Z = limτ→0
√
τXγ(τ) then

√
Q−1Z = limτ ′→0

√
τ ′Xβ(τ

′)

Remark 6.73. Notice that |Z|2G = |
√
Q−1Z|2G′ .

Proof. It is clear that β(0) = x and that β is parameterized by back-
ward time in (M′, G′). Because of the scaling of space and time by Q, we
have RG′ = RG/Q and Xβ(τ

′) = dι(Xγ(τ))/Q, and hence |Xβ(τ
′)|2G′ =

1
Q |Xγ(τ)|2G. A direct change of variables in the integral then shows that

L(β) =
√
QL(γ).

It follows that β is an L-geodesic if and only if γ is. The last statement
follows directly. �

Immediately from the definitions we see the following:
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Corollary 6.74. With notation as above, and with the substitution
τ ′ = Qτ , for any Z ∈ HTxM and any τ > 0 we have

L′expx(
√
Q−1Z, τ ′) = ι(Lexpx(Z, τ))

and

l̃′(
√
Q−1Z, τ ′) = l̃(Z, τ),

whenever these are defined.

7.2. The integrand in the reduced volume integral. Now we turn

our attention to the integrand (over Ũx(τ)) in the reduced volume integral.
Namely, set

f(τ) = τ−n/2e−
el(Z,τ)J (Z, τ),

where J (Z, τ) is the Jacobian determinant of Lexpτx at the point Z ∈
Ũx(τ) ⊂ TxMT . We wish to see that this quantity is invariant under the
rescaling.

Lemma 6.75. With the notation as above let J ′(Z, τ ′) denote the Ja-
cobian determinant of L′expx. Then, with the substitution τ ′ = Qτ , we
have

(τ ′)−n/2e−
el′(
√
Q−1Z,τ ′)J ′(

√
Q−1Z, τ ′) = τ−n/2e−

el(Z,τ)J (Z, τ).

Proof. It follows from the first equation in Corollary 6.74 that

J(ι)J (Z, τ) = J(
√
Q−1)J ′(

√
Q−1Z, τ ′),

where J(ι) is the Jacobian determinant of ι at Lexpx(Z, τ) and J(
√
Q−1) is

the Jacobian determinant of multiplication by
√
Q−1 as a map from TxMT to

itself, where the domain has the metric G and the range has metric G′ = QG.

Clearly, with these conventions, we have J(ι) = Qn/2 and J(
√
Q−1) = 1.

Hence, we conclude

Qn/2J (Z, τ) = J ′(
√
Q−1Z, τ ′).

Letting γ be the L-geodesic in (M, G) with initial condition Z and β

the L-geodesic in (M′, G′) with initial condition
√
Q−1Z, by Lemma 6.72

we have γ(τ) = β(τ ′). From Corollary 6.74 and the definition of the reduced
length, we get

l̃′(
√
Q−1Z, τ ′) = l̃(γ, τ).

Plugging these in gives the result. �

Let us evaluate f(τ) in the case of R
n with the Ricci flow being the

constant family of Euclidean metrics.

Example 6.76. Let the Ricci flow be the constant family of standard
metrics on R

n. Fix x = (p, T ) ∈ R
n × (−∞,∞). Then

Lexpx(Z, τ) = (p + 2
√
τZ, T − τ).
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In particular, the Jacobian determinant of Lexpτ(x,T ) is constant and equal to

2nτn/2. The l̃-length of the L-geodesic γZ(τ) = (p+2
√
τZ, T−τ), 0 ≤ τ ≤ τ ,

is |Z|2.
Putting these computations together gives the following.

Claim 6.77. In the case of the constant flow on Euclidean space we have

f(τ) = τ−n/2e−
el(Z,τ)J (Z, τ) = 2ne−|Z|2.

This computation has consequences for all Ricci flows.

Proposition 6.78. Let (M, G) be a generalized Ricci flow and let x ∈
MT ⊂ M. Then, for any A <∞, there is δ > 0 such that the map Lexpx is
defined on B(0, A)× (0, δ), where B(0, A) is the ball of radius A centered at
the origin in TxMT . Moreover, the map Lexpx defines a diffeomorphism of
B(0, A) × (0, δ) onto an open subset of M. Furthermore,

limτ→0τ
−n/2e−

el(Z,τ)J (Z, τ) = 2ne−|Z|2,

where the convergence is uniform on each compact subset of TxMT .

Proof. First notice that since T is greater than the initial time of M,
there is ǫ > 0, and an embedding ρ : B(x, T, ǫ)× [T − ǫ, T ] → M compatible
with time and the vector field. By taking ǫ > 0 smaller if necessary, we can
assume that the image of ρ has compact closure in M. By compactness
every higher partial derivative (both spatial and temporal) of the metric is
bounded on the image of ρ.

Now take a sequence of positive constants τk tending to 0 as k → ∞,
and set Qk = τ−1

k . We let (Mk, Gk) be the Qk-rescaling and shifting of
(M, G) as described at the beginning of this section. The rescaled version
of ρ is an embedding

ρk : BGk
(x, T,

√
Qkǫ) × [T −Qkǫ, T ] → Mk

compatible with the time function tk and the vector field. Furthermore,
uniformly on the image of ρk, every higher partial derivative of the metric is
bounded by a constant that goes to zero with k. Thus, the generalized Ricci
flows (Mk, Gk) based at x converge geometrically to the constant family of
Euclidean metrics on R

n. Since the ODE given in Equation (6.5) is regular
even at 0, this implies that the L-exponential maps for these flows converge
uniformly on the balls of finite radius centered at the origin of the tangent
spaces at x to the L-exponential map of R

n at the origin. Of course, if

Z ∈ TxMT is an initial condition for an L-geodesic in (M, G), then
√
Q−1
k Z

is the initial condition for the corresponding L-geodesic in (Mk, Gk). But

|Z|G = |
√
Q−1
k Z|Gk

, so that if Z ∈ BG(0, A) then
√
Q−1
k Z ∈ BGk

(0, A). In

particular, we see that, for any A < ∞ and for all k sufficiently large, the
L-geodesics are defined on BGk

(0, A) × (0, 1] and the image is contained in
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the image of ρk. Rescaling shows that for any A <∞ there is k for which the
L-exponential map is defined on BG(0, A)× (0, τk] and has image contained
in ρ.

Let Z ∈ BG(0, A), and let γ be the L-geodesic with limτ→0
√
τXγ(τ) =

Z. Let γk be the corresponding L-geodesic in (Mk, Gk). Then

limτ→0
√
τXγk

(τ) =
√
τkZ = Zk.

Of course, |Zk|2Gk
= |Z|2G, meaning that, for every k, Zk is contained in the

ball BGk
(0, A) ⊂ TxMT . Hence, by passing to a subsequence we can assume

that, in the geometric limit, the
√
τkZ converge to a tangent vector Z ′ in

the ball of radius A centered at the origin in the tangent space to Euclidean
space. Of course |Z ′|2 = |Z|2G. By Claim 6.77, this means that we have

limk→∞1−n/2e−
elk(

q
Q−1

k Z,1)Jk(
√
Q−1
k Z, 1) = 2ne−|Z|2,

with Jk the Jacobian determinant of the L-exponential map for (Mk, Gk).
Of course, since τk = Q−1

k , by Lemma 6.75 we have

1−n/2e−
elk(

q
Q−1

k Z,1)Jk(
√
Q−1
k Z, 1) = τ

−n/2
k e−

el(Z,τk)J (Z, τk).

This establishes the limiting result.
Since the geometric limits are uniform on balls of finite radius centered

at the origin in the tangent space, the above limit also is uniform over each
of these balls. �

Corollary 6.79. Let (M, G) be a generalized Ricci flow whose sectional
curvatures are bounded. For any x ∈ MT and any R < ∞ for all τ > 0
sufficiently small, the ball of radius R centered at the origin in TxMT is

contained in Ũx(τ).
Proof. According to the last result, given R < ∞, for all δ > 0 suffi-

ciently small the ball of radius R centered at the origin in TxMT is contained
in Dδ

x, in the domain of definition of Lexpδx as given in Definition 6.17, and
Lexpx is a diffeomorphism on this subset. We shall show that if δ > 0 is
sufficiently small, then the resulting L-geodesic γ is the unique minimizing
L-geodesic. If not then there must be another, distinct L-geodesic to this
point whose L-length is no greater than that of γ. According to Lemma 6.60
there is a constant C1 depending on the curvature bound and on δ such that
if Z is an initial condition for an L-geodesic, then for all τ ∈ (0, δ) we have

C−1
1

(
|Z| − (C1 − 1)

2

√
δ

)
≤ √

τ |X(τ)| ≤ C1|Z| +
(C1 − 1)

2

√
δ.

From the formula given in Lemma 6.60 for C1, it follows that, fixing the
bound of the curvature and its derivatives, C1 → 1 as δ → 0. Thus, with
a given curvature bound, for δ sufficiently small,

√
τ |X(τ)| is almost a con-

stant along L-geodesics. Hence, the integral of
√
τ |X(τ)|2 is approximately
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2
√
δ|Z|2. On the other hand, the absolute value of the integral of

√
τR(γ(τ))

is at most 2C0δ
3/2/3 where C0 is an upper bound for the absolute value of

the scalar curvature.
Given R < ∞, choose δ > 0 sufficiently small such that Lexpx is a

diffeomorphism on the ball of radius 9R centered at the origin and such
that the following estimate holds: The L-length of an L-geodesic defined on
[0, δ] with initial condition Z is between

√
δ|Z|2 and 3

√
δ|Z|2. To ensure the

latter estimate we need only take δ sufficiently small, given the curvature
bounds and the dimension. Hence, for these δ no L-geodesic with initial
condition outside the ball of radius 9R centered at the origin in TxMT can
be as short as any L-geodesic with initial condition in the ball of radius
R centered at the same point. This means that the L-geodesics defined
on [0, δ] with initial condition |Z| with |Z| < R are unique minimizing L-
geodesics. �

7.3. Monotonicity of reduced volume. Now we are ready to state
and prove our main result concerning the reduced volume.

Theorem 6.80. Fix x ∈MT ⊂ M. Let A ⊂ Ux ⊂ M be an open subset.
We suppose that for any 0 < τ ≤ τ and any y ∈ Aτ = A ∩ MT−τ the

minimizing L-geodesic from x to y is contained in A∪ {x}. Then Ṽx(Aτ ) is
a non-increasing function of τ for all 0 < τ ≤ τ .

Proof. Fix τ0 ∈ (0, τ ]. To prove the theorem we shall show that for any

0 < τ < τ0 we have Ṽx(Aτ ) ≥ Ṽx(Aτ0). Let Ãτ0 ⊂ Ũx(τ0) be the pre-image
under Lexpτ0x of Aτ0 . For each 0 < τ ≤ τ0 we set

Aτ,τ0 = Lexpτx(Ãτ0) ⊂MT−τ .

It follows from the assumption on A that Aτ,τ0 ⊂ Aτ , so that Ṽx(Aτ,τ0) ≤
Ṽx(Aτ ). Thus, it suffices to show that for all 0 < τ ≤ τ0 we have

Ṽx(Aτ,τ0) ≥ Ṽx(τ0).

Since

Ṽx(Aτ,τ0) =

∫

eAτ0

τ−
n
2 exp(−l̃(Z, τ))J (Z, τ)dZ,

the theorem follows from:

Proposition 6.81. For each Z ∈ Ũx(τ ) ⊂ TxMT the function

f(Z, τ) = τ−
n
2 e−

el(Z,τ)J (Z, τ)

is a non-increasing function of τ on the interval (0, τ ] with limτ→0f(Z, τ) =

2ne−|Z|2, the limit being uniform on any compact subset of TxMT .

Proof. First, we analyze the Jacobian J (Z, τ). We know that Lexpτx
is smooth in a neighborhood of Z. Choose a basis {∂α} for TxMT such that
∂α pushes forward under the differential at Z of Lexpτx to an orthonormal
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basis {Yα} for MT−τ at γZ(τ). Notice that, letting τ ′ range from 0 to τ

and taking the push-forward of the ∂α under the differential at Z of Lexpτ
′

x

produces a basis of L-Jacobi fields {Yα(τ ′)} along γZ . With this understood,
we have:

∂

∂τ
lnJ |τ =

d

dτ
ln(
√

det(〈Yα, Yβ〉))

=
1

2

( d
dτ

∑

α

|Yα|2
)∣∣∣
τ
.

By Lemma 6.40 and by Proposition 6.37 (recall that τ1 = 0) we have

1

2

d

dτ
|Yα(τ)|2 =

1

2
√
τ
Hess(L)(Yα, Yα) + Ric(Yα, Yα)

≤ 1

2τ
− 1

2
√
τ

∫ τ

0

√
τ ′H(X, Ỹα(τ ′))dτ ′,(6.19)

where Ỹα(τ
′) is the adapted vector field along γ with Ỹ (τ) = Yα(τ). Sum-

ming over α as in the proof of Proposition 6.43 and Claim 6.44 yields

∂

∂τ
lnJ (Z, τ)|τ ≤ n

2τ
− 1

2
√
τ

∑

α

∫ τ

0

√
τ ′H(X, Ỹα(τ ′))dτ

′

=
n

2τ
− 1

2
τ−

3
2Kτ (γZ).(6.20)

On Ũx(τ) the expression τ−
n
2 e−

el(Z,τ)J (Z, τ) is positive, and so we have

∂

∂τ
ln
(
τ−

n
2 e−

el(Z,τ)J (Z, τ)
)
≤
(
− n

2τ
− dl̃

dτ
+

n

2τ
− 1

2
τ−

3
2Kτ (γZ)

)
.

Corollary 6.54 says that the right-hand side of the previous inequality is
zero. Hence, we conclude

(6.21)
d

dτ

(
τ−

n
2 e−

el(X,τ)J (X, τ)
)
≤ 0.

This proves the inequality given in the statement of the proposition. The
limit statement as τ → 0 is contained in Proposition 6.78. �

As we have already seen, this proposition implies Theorem 6.80, and
hence the proof of this theorem is complete. �

Notice that we have established the following:

Corollary 6.82. For any measurable subset A ⊂ Ux(τ) the reduced

volume Ṽx(A) is at most (4π)n/2.

Proof. Let Ã ⊂ Ũx(τ) be the pre-image of A. We have seen that

Ṽx(A) =

∫

A
τ−n/2e−l(q,τ)dq =

∫

eA
τ−n/2e−

el(Z,τ)J (Z, τ)dz.
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By Theorem 6.80 we see that τ−n/2e−
el(Z,τ)J (Z, τ) is a non-increasing func-

tion of τ whose limit as τ → 0 is the restriction of 2ne−|Z|2 to Ã. The result
is immediate from Lebesgue dominated convergence. �





CHAPTER 7

Complete Ricci flows of bounded curvature

In this chapter we establish strong results for Lexpx in the case of ordi-
nary Ricci flow on complete n-manifolds with appropriate curvature bounds.
In particular, for these flows we show that there is a minimizing L-geodesic
to every point. This means that lx is everywhere defined. We extend the
differential inequalities for lx established in Section 4 of Chapter 6 at the
‘smooth points’ to weak inequalities (i.e., inequalities in the distributional
sense) valid on the whole manifold. Using this we prove an upper bound for
the minimum of lτx.

Let us begin with a definition that captures the necessary curvature
bound for these results.

Definition 7.1. Let (M,g(t)), a ≤ t ≤ b, be a Ricci flow. We say
that the flow is complete of bounded curvature if for each t ∈ [a, b] the
Riemannian manifold (M,g(t)) is complete and if there is C <∞ such that
|Rm|(p, t) ≤ C for all p ∈ M and all t ∈ [a, b]. Let I be an interval and let
(M,g(t)), t ∈ I, be a Ricci flow. Then we say that the flow is complete with
curvature locally bounded in time if for each compact subinterval J ⊂ I the
restriction of the flow to (M,g(t)), t ∈ J , is complete of bounded curvature.

1. The functions Lx and lx

Throughout Chapter 7 we have a Ricci flow (M,g(t)), 0 ≤ t ≤ T < ∞,
and we set τ = T−t. All the results of the last chapter apply in this context,
but in fact in this context there are much stronger results, which we develop
here.

1.1. Existence of L-geodesics. We assume here that (M,g(t)), 0 ≤
t ≤ T < ∞, is a Ricci flow which is complete of bounded curvature. In
Shi’s Theorem (Theorem 3.28) we take K equal to the bound of the norm
of the Riemannian curvature on M × [0, T ], we take α = 1, and we take
t0 = T . It follows from Theorem 3.28 that there is a constant C(K,T ) such

that |∇R(x, t)| ≤ C/t1/2. Thus, for any ǫ > 0 we have a uniform bound for
|∇R| on M × [ǫ, T ]. Also, because of the uniform bound for the Riemann
curvature and the fact that T <∞, there is a constant C, depending on the
curvature bound and T such that

(7.1) C−1g(x, t) ≤ g(x, 0) ≤ Cg(x, t)

149
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for all (x, t) ∈M × [0, T ].

Lemma 7.2. Assume that M is connected. Given p1, p2 ∈ M and 0 ≤
τ1 < τ2 ≤ T , there is a minimizing L-geodesic: γ : [τ1, τ2] → M × [0, T ]
connecting (p1, τ1) to (p2, τ2).

Proof. For any curve γ parameterized by backward time, we set γ
equal to the path in M that is the image under projection of γ. We set
A(s) = γ′(s). Define

c((p1, τ1), (p2, τ2)) = inf{L(γ)|γ : [τ1, τ2] →M,γ(τ1) = p1, γ(τ2) = p2}.
From Equation (6.2) we see that the infimum exists since, by assumption,
the curvature is uniformly bounded (below). Furthermore, for a minimizing

sequence γi, we have
∫ s2
s1

|Ai(s)|2 ds ≤ C0, for some constant C0, where

si =
√
τi for i = 1, 2. It follows from this and the inequality in Equation (7.1)

that there is a constant C1 <∞ such that for all i we have
∫ s2

s1

|Ai|2g(0) dτ ≤ C1.

Therefore the sequence {γi} is uniformly continuous with respect to the
metric g(0); by Cauchy-Schwarz we have

∣∣γi(s) − γi(s
′)
∣∣
g(0)

≤
∫ s

s′
|Ai|g(0) ds ≤

√
C1

√
s− s′.

By the uniform continuity, we see that a subsequence of the γi converges
uniformly pointwise to a continuous curve γ parameterized by s, the square
root backward time. By passing to a subsequence we can arrange that the
γi converge weakly in H2,1. Of course, the limit in H2,1 is represented by
the continuous limit γ. That is to say, after passing to a subsequence, the
γi converge uniformly and weakly in H2,1 to a continuous curve γ. Let
A(s) be the L2-derivative of γ. Weak convergence in H2,1 implies that∫ s
s′ |A(s)|2ds ≤ limi→∞

∫ s
s′ |Ai(s)|2ds, so that L(γ) ≤ limi→∞L(γi). This

means that γ minimizes the L-length. Being a minimizer of L-length, γ sat-
isfies the Euler-Lagrange equation and is smooth by the regularity theorem
of differential equations. This then is the required minimizing L-geodesic
from (p1, τ1) to (p2, τ2). �

Let us now show that it is always possible to uniquely extend L-geodesics
up to time T .

Lemma 7.3. Fix 0 ≤ τ1 < τ2 < T and let γ : [τ1, τ2] →M × [0, T ] be an
L-geodesic. Then γ extends uniquely to an L-geodesic γ : [0, T ) →M×(0, T ].

Proof. We work with the parameter s =
√
τ . According to Equa-

tion (6.5), we have

∇γ′(s)γ
′(s) = 2s2∇R− 4sRic(γ′(s), ·).
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This is an everywhere non-singular ODE. Since the manifolds (M,g(t)) are
complete and their metrics are uniformly related as in Inequality (7.1), to

show that the solution is defined on the entire interval s ∈ [0,
√
T ) we need

only show that there is a uniform bound to the length, or equivalently the
energy of γ of any compact subinterval of [0, T ) on which it is defined. Fix
ǫ > 0. It follows immediately from Lemma 6.60, and the fact that the
quantities R, |∇R| and |Rm| are bounded on M × [ǫ, T ], that there is a
bound on max|γ′(s)| in terms of |γ′(τ1)|, for all s ∈ [0,

√
T − ǫ] for which

γ is defined. Since (M,g(0)) is complete, this, together with a standard
extension result for second-order ODEs, implies that γ extends uniquely to
the entire interval [0,

√
T − ǫ]. Changing the variable from s to τ = s2 shows

that the L-geodesic extends uniquely to the entire interval [0, T − ǫ]. Since
this is true for every ǫ > 0, this completes the proof. �

Let p ∈ M and set x = (p, T ) ∈ M × [0, T ]. Recall that from Def-

inition 6.25 for every τ > 0, the injectivity set Ũx(τ) ⊂ TpM consists of
all Z ∈ TpM for which (i) the L-geodesic γZ |[0,τ ] is the unique minimizing
L-geodesic from x to its endpoint, (ii) the differential of Lexpτx is an isomor-
phism at Z, and (iii) for all Z ′ sufficiently close to Z the L-geodesic γZ′ |[0,τ ]
is the unique minimizing L-geodesic to its endpoint. The image of Ũx(τ) is
denoted Ux(τ) ⊂M .

The existence of minimizing L-geodesics from x to every point of
M×(0, T ) means that the functions Lx and lx are defined on all ofM×(0, T ).
This leads to:

Definition 7.4. Suppose that (M,g(t)), 0 ≤ t ≤ T <∞, is a Ricci flow,
complete of bounded curvature. We define the function Lx : M × [0, T ) → R

by assigning to each (q, t) the length of any L-minimizing L-geodesic from
x to y = (q, t) ∈ M × [0, T ). Clearly, the restriction of this function to
Ux agrees with the smooth function Lx given in Definition 6.26. We define
Lτx : M → R to be the restriction of Lx to M × {T − τ}. Of course, the
restriction of Lτx to Ux(τ) agrees with the smooth function Lτx defined in the
last chapter. We define lx : M × [0, T ) → R by lx(y) = Lx(y)/2

√
τ , where,

as always τ = T − t, and we define lτx(q) = lx(q, T − τ).

1.2. Results about lx and Ux(τ). Now we come to our main result
about the nature of Ux(τ) and the function lx in the context of Ricci flows
which are complete and of bounded curvature.

Proposition 7.5. Let (M,g(t)), 0 ≤ t ≤ T <∞, be a Ricci flow that is
complete and of bounded curvature. Let p ∈M , let x = (p, T ) ∈M × [0, T ],
and let τ ∈ (0, T ).

(1) Lx and lx are locally Lipschitz functions on M × (0, T ).

(2) Lexpτx is a diffeomorphism from Ũx(τ) onto an open subset Ux(τ)
of M .
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(3) The complement of Ux(τ) in M is a closed subset of M of zero
Lebesgue measure.

(4) For every τ < τ ′ < T we have

Ux(τ ′) ⊂ Ux(τ).
Proof. By Shi’s Theorem (Theorem 3.28) the curvature bound on

M×[0, T ] implies that for each ǫ > 0 there is a bound for |∇R| on M×(ǫ, T ].
Thus, Proposition 6.59 shows that Lx is a locally Lipschitz function on
M × (ǫ, T ). Since this is true for every ǫ > 0, Lx is a locally Lipschitz
function on M × (0, T ). Of course, the same is true for lx. The second
statement is contained in Proposition 6.28, and the last one is contained in
Proposition 6.30. It remains to prove the third statement, namely that the
complement of Ux(τ) is closed nowhere dense. This follows immediately from
Corollary 6.67 since |Ric| and |∇R| are bounded on F = M × [T − τ, T ]. �

Corollary 7.6. The function lx is a continuous function on M×(0, T )
and is smooth on the complement of a closed subset C that has the property
that its intersection with each M×{t} is of zero Lebesgue measure in M×{t}.
For each τ ∈ (0, T ) the gradient ∇lτx is then a smooth vector field on the
complement of C ∩MTτ , and it is a locally essentially bounded vector field
in the following sense. For each q ∈ M there is a neighborhood V ⊂ M
of q such that the restriction of |∇lτx| to V \ (V ∩ C) is a bounded smooth
function. Similarly, ∂lx/∂t is an essentially bounded smooth vector field on
M × (0, T ).

2. A bound for min lτx

We continue to assume that we have a Ricci flow (M,g(t)), 0 ≤ t ≤
T < ∞, complete and of bounded curvature and a point x = (p, T ) ∈
M×[0, T ]. Our purpose here is to extend the first differential inequality given
in Corollary 6.51 to a differential inequality in the weak or distributional
sense for lx valid on all of M × (0, T ). We then use this to establish that
minq∈M lτx(q) ≤ n/2 for all 0 < τ < T .

In establishing inequalities in the non-smooth case the notion of a sup-
port function or a barrier function is often convenient.

Definition 7.7. Let P be a smooth manifold and let f : P → R be a
continuous function. An upper barrier for f at p ∈ P is a smooth function
ϕ defined on a neighborhood of p in P , say U , satisfying ϕ(p) = f(p) and
ϕ(u) ≥ f(u) for all u ∈ U , see Fig. 1.

Proposition 7.8. Let (M,g(t)), 0 ≤ t ≤ T < ∞, be an n-dimensional
Ricci flow, complete of bounded curvature. Let x = (p, T ) ∈M × [0, T ], and
for any (q, t) ∈M×[0, T ], set τ = T−t. Then for any (q, t), with 0 < t < T ,
we have

∂lx
∂τ

(q, τ) + △lx(q, τ) ≤
(n/2) − lx(q, τ)

τ
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Figure 1. Upper barrier.

in the barrier sense. This means that for each ǫ > 0 there is a neighborhood
U of (q, t) in M × [0, T ] and an upper barrier ϕ for lx at this point defined
on U satisfying

∂ϕ

∂τ
(q, τ) + △ϕ(q, τ) ≤ (n/2) − lx(q, τ)

τ
+ ǫ.

Remark 7.9. The operator △ in the above statement is the horizontal
Laplacian, i.e., the Laplacian of the restriction of the indicated function to
the slice M ×{t = T − τ} as defined using the metric g(T − τ) on this slice.

Proof. If (q, T − τ) ∈ Ux, then lx is smooth near (q, T − τ), and the
result is immediate from the first inequality in Corollary 6.51.

Now consider a general point (q, t = T − τ) with 0 < t < T . Accord-
ing to Lemma 7.2 there is a minimizing L-geodesic γ from x = (p, T ) to
(q, t = T − τ). Let γ be any minimizing L-geodesic between these points.
Fix 0 < τ1 < τ let q1 = γ(τ1) and set t1 = T − τ1. Even though q1 is
contained in the t1 time-slice, we keep τ = T − t so that paths beginning at
q1 are parameterized by intervals in the τ -line of the form [τ1, τ

′] for some
τ ′ < T . Consider Lexp(q1,t1) : Tq1M × (τ1, T ) → M × (0, t1). According to

Proposition 6.31 there is a neighborhood Ṽ of {√τ1Xγ(τ1)} × (τ1, τ ] which
is mapped diffeomorphically by Lexp(q1,t1) : Tq1M × (τ1, τ) → M × (0, t1)

onto a neighborhood V of γ((τ1, τ)). (Of course, the neighborhood V
depends on τ1.) Let L(q1,t1) be the length function on V obtained by taking

the L-lengths of geodesics parameterized by points of Ṽ . Let ϕτ1 : V → R

be defined by

ϕτ1(q
′, τ ′) =

1

2
√
τ ′
(
L(γ|[0,τ1]) + L(q1,t1)(q

′, T − τ ′)
)
.
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Clearly, ϕτ1 is an upper barrier for lx at (q, τ). According to Lemma 6.49
we have

∂ϕτ1
dτ

(q, τ) + △ϕτ1(q, τ) ≤
n

2
√
τ(
√
τ −√

τ1)
− ϕτ1(q, τ)

τ
+

1

2τ3/2
L(γ|[0,τ1])

+
Kτ
τ1(γ)

2τ3/2
− Kτ

τ1(γ)

2
√
τ(
√
τ −√

τ1)2

− 1

2

(τ1
τ

)3/2 (
R(q1, t1) + |X(τ1)|2

)
.

By Lemma 6.47, it follows easily that

limτ1→0+
∂ϕτ1
∂τ

(q, t) + △ϕτ1(q, t) ≤
(n/2) − lx(q, t)

τ
.

This establishes the result. �

Theorem 7.10. Suppose that (M,g(t)), 0 ≤ t ≤ T < ∞, is an
n-dimensional Ricci flow, complete of bounded curvature. Then for any
x = (p, T ) ∈ M × [0, T ] and for every 0 < τ < T there is a point qτ ∈ M
such that lx(qτ , τ) ≤ n

2 .

Proof. We set lmin(τ) = infq∈M lx(q, τ). (We are not excluding the
possibility that this infimum is −∞.) To prove this corollary we first need
to establish the following claim.

Claim 7.11. For every τ ∈ (0, T ) the function lx(·, τ) achieves its min-
imum. Furthermore, for every compact interval I ⊂ (0, T ) the subset of
(q, τ) ∈M × I for which lx(q, τ) = lmin(τ) is a compact set.

First, let us assume this claim and use it to prove the theorem. We set
lmin(τ) = minq∈M lx(q, τ). (This minimum exists by the first statement in
the claim.) From the compactness result in the claim, it follows (see for
example Proposition 2.23) that lmin(τ) is a continuous function of τ .

Suppose that lx(·, τ) achieves its minimum at q. Then by the previous
result, for any ǫ > 0 there is an upper barrier ϕ for lx at (q, τ) defined on
an open subset U of (q, τ) ∈M × (0, T ) and satisfying

dϕ

dτ
(q, τ) + △ϕ(q, τ) ≤ (n/2) − lx(q, t)

τ
+ ǫ.

Since lx(q, τ) = lmin(τ), it follows that ϕ(q′, τ) ≥ ϕ(q, τ) for all (q′, τ) ∈
U ∩MT−τ . This means that △ϕ(q, τ) ≥ 0, and we conclude that

dϕ

dτ
(q, τ) ≤ (n/2) − lmin(τ)

τ
+ ǫ.

Since ϕ is an upper barrier for lx at (q, τ) it follows immediately that

limsupτ ′→τ+

lx(q, τ
′) − lx(q, τ)

τ ′ − τ
≤ (n/2) − lx(q, τ)

τ
+ ǫ.
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Since this is true for every ǫ > 0, we see that

limsupτ ′→τ+

lx(q, τ
′) − lx(q, τ)

τ ′ − τ
≤ (n/2) − lx(q, τ)

τ
.

Since lmin(τ) = lx(q, τ), the same inequality holds for the forward difference
quotient of lmin at τ . That is to say, we have

limsupτ ′→τ+

lmin(τ
′) − lmin(τ)

τ ′ − τ
≤ (n/2) − lmin(τ)

τ
.

The preceding equation implies that if lmin(τ) ≤ n/2 then lmin(τ
′) ≤ n/2 for

every τ ′ ≥ τ . On the other hand limτ→0lmin(τ) = 0. Then reason for this is
that the path τ ′ 7→ (P, T − τ ′) for τ ′ ∈ [0, τ ] has L-length O(τ3/2) as τ → 0.
It follows that lmin(τ) < n/2 when τ is small.

To complete the proof of Theorem 7.10, it remains to prove Claim 7.11.

Proof. In the case when M is compact, the claim is obvious. We
consider the case when M is complete and the flow has bounded curvature.
Since the curvature on M × [0, T ] is bounded, according to Inequality (7.1)
there is a constant C such that for all t, t′ ∈ [0, T ] we have

C−1g(t′) ≤ g(t) ≤ Cg(t′).

For any compact interval I ⊂ (0, T ), there is l0 < ∞ such that lmin(τ) ≤ l0
for all τ ∈ I. According to Corollary 6.61, for every τ ∈ I and all L-geodesics
from x to points (q, T − τ) of lengths at most 2|l0| there is an upper bound,

say C2, to |√τXγ(τ)|. Thus, |Xγ(τ | ≤ C2√
τ
, and hence

|Xγ(τ)|g(T ) ≤ C2

√
C/

√
τ

for these geodesics. Thus,
∫ τ

0
|Xγ(τ)|g(T )dτ ≤ 2

√
τC2

√
C.

This shows that there is A < ∞ such that for each τ ∈ I and for any
L-geodesic γ defined on [0, τ ] of length at most 2|l0| the following holds.
Letting q ∈ M be such that γ(τ ) = (q, T − τ), the point q lies in BT (p,A).
This implies that the endpoints of all such L-geodesics lie in a fixed compact
subset of M independent of τ ∈ I and the geodesic. Since the set of (q, τ)
where lx(q, τ) = lmin(τ) is clearly a closed set, it follows that the subset of
M × I of all (q, τ) ∈ M × I for which lx(q, τ) = lmin(τ) is compact. The
last thing to show is that for every τ ∈ I the function lx(·, τ) achieves its
minimum. Fix τ ∈ I and let qn be a minimizing sequence for lx(·, τ). We
have already established that the qn are contained in a compact subset of
M , and hence we can assume that they converge to a limit q ∈M . Clearly,
by the continuity of lx we have lx(q, τ) = limn→∞lx(qn, τ) = infq′∈M lx(q′, τ),
so that lx(·, τ) achieves its minimum at q. �
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Having established the claim, we have now completed the proof of The-
orem 7.10. �

Actually, the proof given here also shows the following, which will be
useful later.

Corollary 7.12. Suppose that (M, G) is a generalized n-dimensional
Ricci flow and that x ∈ M is given and set t0 = t(x). We suppose that there
is an open subset U ⊂ t−1(−∞, t0) with the following properties:

(1) For every y ∈ U there is a minimizing L-geodesic from x to y.
(2) There are r > 0 and ∆t > 0 such that the backward parabolic

neighborhood P (x, t0, r,−∆t) of x exists in M and has the property
that P ∩ t−1(−∞, t0) is contained in U .

(3) For each compact interval (including the case of degenerate inter-
vals consisting of a single point) I ⊂ (−∞, t0) the subset of points
y ∈ t−1(I) ∩ U for which L(y) = infz∈t−1(t(y))∩UL(z) is compact
and non-empty.

Then for every t < t0 the minimum of the restriction of lx to the time-slice
t−1(t) ∩ U is at most n/2.

2.1. Extension of the other inequalities in Corollary 6.51. The
material in this subsection is adapted from [72]. It captures (in a weaker
way) the fact that, in the case of geodesics on a Riemannian manifold, the
interior of the cut locus in TxM is star-shaped from the origin.

Theorem 7.13. Let (M,g(t)), 0 ≤ t ≤ T <∞, be a Ricci flow, complete
and of bounded curvature, and let x = (p, T ) ∈ M × [0, T ]. The last two
inequalities in Corollary 6.51, namely

∂lx
∂τ

+ |∇lτx|2 −R+
n

2τ
−△lτx ≥ 0,

−|∇lτx|2 +R+
lτx − n

τ
+ 2△lτx ≤ 0

hold in the weak or distributional sense on all of M×{τ} for all τ > 0. This
means that for any τ > 0 and for any non-negative, compactly supported,
smooth function φ(q) on M we have the following two inequalities:

∫

M×{τ}

[
φ ·
(
∂lx
∂τ

+ |∇lτx|2 −R+
n

2τ

)
− lτx△φ

]
dvol(g(t)) ≥ 0,

∫

M×{τ}

[
φ ·
(
−|∇lτx|2 +R+

lτx − n

τ

)
+ 2lτx△φ

]
dvol(g(t)) ≤ 0.

Furthermore, equality holds in either of these weak inequalities for all func-
tions φ as above and all τ if and only if it holds in both. In that case lx is
a smooth function on space-time and the equalities hold in the usual smooth
sense.



2. A BOUND FOR min lτx 157

Remark 7.14. The terms in these inequalities are interpreted in the
following way: First of all, ∇lτx and △lτx are computed using only the spatial
derivatives (i.e., they are horizontal differential operators). Secondly, since
lx is a locally Lipschitz function defined on all of M × (0, T ), we have seen
that ∂lx/∂t and |∇lτx|2 are continuous functions on the open subset Ux(τ) of
full measure in M ×{τ} and furthermore, that they are locally bounded on
all of M × {τ} in the sense that for any q ∈ M there is a neighborhood V
of q such that the restriction of |∇lτx|2 to V ∩Ux(τ) is bounded. This means
that ∂lx/∂t and |∇lτx|2 are elements of L∞

loc(M) and hence can be integrated
against any smooth function with compact support. In particular, they are
distributions.

Since ∇lτx is a smooth, locally bounded vector field on an open subset
of full measure, for any compactly supported test function φ, integration by
parts yields

∫
△φ · lτx dvol(g(t)) = −

∫
〈∇φ,∇lτx〉 dvol(g(t)).

Thus, formulas in Theorem 7.13 can also be taken to mean:
∫

M×{τ}

[
φ · (∂lx

∂τ
+ |∇lτx|2 −R+

n

2τ
) + 〈∇lτx,∇φ〉

]
dvol(g(t)) ≥ 0,

∫

M×{τ}

[
φ · (−|∇lτx|2 +R+

lτx − n

τ
) − 2〈∇lτx,∇φ〉

]
dvol(g(t)) ≤ 0.

The rest of this subsection is devoted to the proof of these inequalities.
We fix (M,g(t)), 0 ≤ t ≤ T < ∞, as in the statement of the theorem. We
fix x and denote by L and l the functions Lx and lx. We also fix τ , and we
denote by Lτ and lτ the restrictions of L and l to the slice M × {T − τ}.
We begin with a lemma.

Lemma 7.15. There is a continuous function C : M × (0, T ) → R such
that for each point (q, t) ∈ M × (0, T ), setting τ = T − t, the following
holds. There is an upper barrier ϕ(q,t) for Lτx at the point q defined on a
neighborhood U(q,t) of q in M satisfying |∇ϕ(q,t)(q)| ≤ C(q, t) and

Hess(ϕ)(v, v) ≤ C(q, t)|v|2

for all tangent vectors v ∈ TqM .

Proof. By Proposition 7.5, L is a locally Lipschitz function on
M × (0, T ), and in particular is continuous. The bound C(q, t) will depend
only on the bounds on curvature and its first two derivatives and on the func-
tion L(q, t). Fix (q, t) and let γ be a minimizing L-geodesic from x to (q, t).
(The existence of such a minimizing geodesic is established in Lemma 7.2.)
Fix τ1 > 0, with τ1 < (T − t)/2, let t1 = T − τ1, and let q1 = γ(τ1).
Consider ϕ(q,t) = L(γ[0,τ1]) + Lτ(q1,t1). This is an upper barrier for Lτx at q
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defined in some neighborhood V ⊂M of q. Clearly, ∇ϕ(q,t) = ∇Lτ(q1,t1) and

Hess(ϕ(q,t) = Hess(Lτ(q1,t1)).

According to Corollary 6.29 we have ∇Lτ(q1,t1)(q) = 2
√
τXγ(τ). On the

other hand, by Corollary 6.61 there is a bound on
√
τ |Xγ(τ)| depending

only on the bounds on curvature and its first derivatives, on τ and τ1 and
on lx(q, τ). Of course, by Shi’s theorem (Theorem 3.27) for every ǫ > 0 the
norms of the first derivatives of curvature on M×[ǫ, T ] are bounded in terms
of ǫ and the bounds on curvature. This proves that |∇ϕ(q,t)(q)| is bounded
by a continuous function C(q, t) defined on all of M × (0, T ).

Now consider Inequality (6.11) for γ at τ = τ . It is clear that the
first two terms on the right-hand side are bounded by C|Y (τ)|2, where C
depends on the curvature bound and on T − t. We consider the last term,∫ τ
τ1

√
τ ′H(X,Y )dτ ′. We claim that this integral is also bounded by C ′|Y (τ)|2

where C ′ depends on the bounds on curvature and its first and second deriva-
tives along γ1 and on T − t. We consider τ ′ ∈ [τ1, τ ]. Of course,

√
τ ′|X(τ ′)|

is bounded on this interval. Also,

|Y (τ ′)| =

(√
τ ′ −√

τ1√
τ −√

τ1

)
|Y (τ)| ≤

√
τ ′√
τ
|Y (τ)|.

Hence |Y (τ ′)|/
√
τ ′ and |Y (τ ′)||X(τ ′)| are bounded in terms of T − t, |Y (τ)|,

and the bound on
√
τ ′|X(τ ′)| along the L-geodesic. It then follows from

Equation (6.12) that H(X,Y ) is bounded along the L-geodesic by C|Y (τ)|2
where the constant C depends on T − t and the bounds on curvature and
its first two derivatives. �

Of course, if (q, t) ∈ Ux(τ), then this argument shows that the Hessian
of Lτx is bounded near (q, t).

At this point in the proof of Theorem 7.13 we wish to employ arguments
using convexity. To carry these out we find it convenient to work with a
Euclidean metric and usual convexity rather than the given metric g(t) and
convexity measured using g(t)-geodesics. In order to switch to a Euclid-
ean metric we must find one that well approximates g(t). The following is
straightforward to prove.

Claim 7.16. For each point (q, t) ∈ M × (0, T ) there is an open metric
ball B(q,t) centered at q in (M,g(t)) which is the diffeomorphic image of a

ball B̃ ⊂ TqM under the exponential map for g(t) centered at q such that
the following hold:

(1) B(q,t) ⊂ U(q,t) so that the upper barrier ϕ(q,t) from Lemma 7.15 is
defined on all of B(q,t).

(2) The constants C(z, t) of Lemma 7.15 satisfy C(z, t) ≤ 2C(q, t) for
all z ∈ B(q,t).
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(3) The push-forward, h, under the exponential mapping of the Euclid-
ean metric on TqM satisfies

h/2 ≤ g ≤ 2h.

(4) The Christoffel symbols Γkij for the metric g(t) written using normal

coordinates are bounded in absolute value by 1/(8n3C(q, t)) where
n is the dimension of M .

Instead of working in the given metric g(t) on B(q,t) we shall use the
Euclidean metric h as in the above claim. For any function f on B(q,t) we
denote by Hess(f) the Hessian of f with respect to the metric g(t) and by
Hessh(f) the Hessian of f with respect to the metric h. By Formula (1.2),
for any z ∈ B(q,t) and any v ∈ TzM , we have

Hess(ϕ(z,t))(v, v) = Hessh(ϕ(z,t))(v, v) −
∑

i,j,k

vivjΓkij
∂ϕ(z,t)

∂xk
.

Thus, it follows from the above assumptions on the Γkij and the bound on

|∇ϕ(z,t)| that for all z ∈ B(q,t) we have

(7.2)
∣∣∣Hess(ϕ(z,t))(v, v) − Hessh(ϕ(z,t))(v, v)

∣∣∣ ≤ 1

4
|v|2h,

and hence for every z ∈ B(q,t) we have

Hessh(ϕ(z,t))(v, v) ≤ 2C(q, t)|v|2g +
|v|2h
4

≤
(

4C(q, t) +
1

4

)
|v|2h.

This means:

Claim 7.17. For each (q, t) ∈M × (0, T ) there is a smooth function

ψ(q,t) : B(q,t) → R

with the property that at each z ∈ B(q,t) there is an upper barrier b(z,t) for
Lτ + ψ(q,t) at z with

Hessh(b(z,t))(v, v) ≤ −3|v|2h/2
for all v ∈ TzM .

Proof. Set

ψ(q,t) = −(2C(q, t) + 1)d2
h(q, ·).

Then for any z ∈ B(q,t) the function b(z,t) = ϕ(z,t) +ψ(q,t) is an upper barrier
for Lτ + ψ(q,t) at z. Clearly, for all v ∈ TzM we have

Hessh(b(z,t))(v, v) = Hessh(ϕ(z,t))(v, v) + Hessh(ψ(q,t))(v, v) ≤ −3|v|2h/2.
�
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This implies that if α : [a, b] → B(q,t) is any Euclidean straight-line seg-
ment in B(q,t) parameterized by Euclidean arc length and if z = α(s) for
some s ∈ (a, b), then

(b(z,t) ◦ α)′′(s) ≤ −3/2.

Claim 7.18. Suppose that β : [−a, a] → R is a continuous function and

that at each s ∈ (−a, a) there is an upper barrier b̂s for β at s with b̂′′s ≤
−3/2. Then

β(a) + β(−a)
2

≤ β(0) − 3

4
a2.

Proof. Fix c < 3/4 and define a continuous function

A(s) =
(β(−s) + β(s))

2
+ cs2 − β(0)

for s ∈ [0, a]. Clearly, A(0) = 0. Using the upper barrier at 0 we see that
for s > 0 sufficiently small, A(s) < 0. For any s ∈ (0, a) there is an upper

barrier cs = (b̂s+ b̂−s)/2+cs2−β(0) for A(s) at s, and c′′s(t) ≤ 2c−3/2 < 0.
By the maximum principle this implies that A has no local minimum in
(0, a), and consequently that it is a non-increasing function of s on this
interval. That is to say, A(s) < 0 for all s ∈ (0, a) and hence A(a) ≤ 0, i.e.,
(β(a) + β(−a))/2 + ca2 ≤ β(0). Since this is true for every c < 3/4, the
result follows. �

Now applying this to Euclidean intervals in B(q,t) we conclude:

Corollary 7.19. For any (q, t) ∈M × (0, T ), the function

β(q,t) = Lτ + ψ(q,t) : B(q,t) → R

is uniformly strictly convex with respect to h. In fact, let α : [a, b] → B(q,t)

be a Euclidean geodesic arc. Let y, z be the endpoints of α, let w be its
midpoint, and let |α| denote the length of this arc (all defined using the
Euclidean metric). We have

β(q,t)(w) ≥
(
β(q,t)(y) + β(q,t)(z)

)

2
+

3

16
|α|2.

What follows is a simple interpolation result (see [23]). For each q ∈M
we let B′

(q,t) ⊂ B(q,t) be a smaller ball centered at q, so that B′
(q,t) has

compact closure in B(q,t).

Claim 7.20. Fix (q, t) ∈ M × (0, T ), and let β(q,t) : B(q,t) → R be as
above. Let S ⊂ M be the singular locus of Lτ , i.e., S = M \ Ux(τ). Set
S(q,t) = B(q,t) ∩ S. Of course, β(q,t) is smooth on B(q,t) \ S(q,t). Then there

is a sequence of smooth functions {fk : B′
(q,t) → R}∞k=1 with the following

properties:

(1) As k → ∞ the functions fk converge uniformly to β(q,t) on B′
(q,t).
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(2) For any ǫ > 0 sufficiently small, let νǫ(S(q,t)) be the ǫ-neighborhood
(with respect to the Euclidean metric) in B(q,t) of S(q,t) ∩ B(q,t).

Then, as k → ∞ the restrictions of fk to B′
(q,t)\

(
B′

(q,t) ∩ νǫ(S(q,t))
)

converge uniformly in the C∞-topology to the restriction of β(q,t) to
this subset.

(3) For each k, and for any z ∈ B′
(q,t) and any v ∈ TzM we have

Hess(fk)(v, v) ≤ −|v|2g(t)/2.
That is to say, fk is strictly convex with respect to the metric g(t).

Proof. Fix ǫ > 0 sufficiently small so that for any z ∈ B′
(q,t) the Euclid-

ean ǫ-ball centered at z is contained in B(q,t). Let B0 be the ball of radius
ǫ centered at the origin in R

n and let ξ : B0 → R be a non-negative C∞-
function with compact support and with

∫
B0
ξdvolh = 1. We define

βǫ(q,t)(z) =

∫

B0

ξ(y)β(q,t)(z + y)dy,

for all z ∈ B′
(q,t). It is clear that for each ǫ > 0 sufficiently small, the function

βǫ(q,t) : B
′
(q,t) → R is C∞ and that as ǫ → 0 the βǫ(q,t) converge uniformly on

B′
(q,t) to β(q,t). It is also clear that for every ǫ > 0 sufficiently small, the

conclusion of Corollary 7.19 holds for βǫ(q,t) and for each Euclidean straight-

line segment α in B′
(q,t). This implies that Hessh(βǫ(q,t))(v, v) ≤ −3|v|2h/2,

and hence that by Inequality (7.2) that

Hess(βǫ(q,t))(v, v) ≤ −|v|2h = −|v|2g(t)/2.
This means that βǫ(q,t) is convex with respect to g(t). Now take a sequence

ǫk → 0 and let fk = βǫk(q,t). Lastly, it is a standard fact that fk converge

uniformly in the C∞-topology to β(q,t) on any subset of B′
(q,t) whose closure

is disjoint from S(q,t). �

Definition 7.21. For any continuous function ψ that is defined on
B′

(q,t) \
(
S(q,t) ∩B′

(q,t)

)
we define

∫

(B′
(q,t)

)∗
ψdvol(g(t)) = limǫ→0

∫

B′
(q,t)

\νǫ(S(q,t))∩B′
(q,t)

ψdvol(g(t)).

We now have:

Claim 7.22. Let φ : B′
(q,t) → R be a non-negative, smooth function with

compact support. Then∫

B′
(q,t)

β(q,t)△φdvol(g(t)) ≤
∫

(B′
(q,t)

)∗
φ△β(q,t)dvol(g(t)).

Remark 7.23. Here △ denotes the Laplacian with respect to the metric
g(t).
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Proof. Since fk → β(q,t) uniformly on B′
(q,t) we have

∫

B′
(q,t)

β(q,t)△φdvol(g(t)) = limk→∞

∫

B′
(q,t)

fk△φdvol(g(t)).

Since fk is strictly convex with respect to the metric g(t), △fk ≤ 0 on all of
B′

(q,t). Since φ ≥ 0, for every ǫ and k we have
∫

νǫ(S(q,t))∩B′
(q,t)

φ△fkdvol(g(t)) ≤ 0.

Hence, for every k and for every ǫ we have
∫

B′
(q,t)

fk△φdvol(g(t)) =

∫

B′
(q,t)

φ△fkdvol(g(t))

≤
∫

B′
(q,t)

\
“
B′

(q,t)
∩νǫ(S(q,t))

” φ△fkdvol(g(t)).

Taking the limit as k → ∞, using the fact that fk → β(q,t) uniformly on B′
(q,t)

and that restricted to B′
(q,t) \ (B′

(q,t) ∩ νǫ(S(q,t))) the fk converge uniformly

in the C∞-topology to β(q,t), yields
∫

B′
(q,t)

β(q,t)△φdvol(g(t)) ≤
∫

B′
(q,t)

\
“
B′

(q,t)
∩νǫ(S(q,t))

” φ△βqdvol(g(t)).

Now taking the limit as ǫ→ 0 establishes the claim. �

Corollary 7.24. Let φ : B′
(q,t) → R be a non-negative, smooth function

with compact support. Then
∫

B′
(q,t)

lτ△φdvol(g(t)) ≤
∫

(B′
(q,t)

)∗
φ△lτdvol(g(t)).

Proof. Recall that β(q,t) = Lτ +ψ(q,t) and that ψ(q,t) is a C∞-function.
Hence,

∫

B′
(q,t)

ψ(q,t)△φdvol(g(t)) =

∫

(B′
(q,t)

)∗
φ△ψ(q,t)dvol(g(t)).

Subtracting this equality from the inequality in the previous claim and di-
viding by 2

√
τ gives the result. �

Now we turn to the proof proper of Theorem 7.13.

Proof. Let φ : M → R be a non-negative, smooth function of compact
support. Cover M by open subsets of the form B′

(q,t) as above. Using a

partition of unity we can write φ =
∑

i φi where each φi is a non-negative
smooth function supported in some B′

(qi,t)
. Since the inequalities we are

trying to establish are linear in φ, it suffices to prove the result for each φi.



2. A BOUND FOR min lτx 163

This allows us to assume (and we shall assume) that φ is supported in B′
(q,t)

for some q ∈M .
Since lτx is a locally Lipschitz function, the restriction of |∇lτx|2 to B′

(q,t)

is an L∞
loc-function. Similarly, ∂lx/∂τ is an L∞

loc-function. Hence

∫

B′
(q,t)

φ ·
(
∂lx
∂τ

+ |∇lτx|2 −R+
n

2τ

)
dvol(g(t))

=

∫

(B′
(q,t)

)∗
φ

(
∂lx
∂τ

+ |∇lτx|2 −R+
n

2τ

)
dvol(g(t)).

On the other hand, by Corollary 7.24 we have
∫

B′
(q,t)

lτx△φdvol(g(t)) ≤
∫

(B′
(q,t)

)∗
φ△lτxdvol(g(t)).

Putting these together we see

∫

B′
(q,t)

φ

(
∂lx
∂τ

+ |∇lτx|2 −R+
n

2τ

)
− lτx△φdvol(g(t))

≥
∫

(B′
(q,t)

)∗
φ

(
∂lx
∂τ

+ |∇lτx|2 −R+
n

2τ
−△lτx

)
dvol(g(t)).

It follows immediately from the second inequality in Corollary 6.51 that,

since φ ≥ 0 and
(
B′

(q,t)

)∗
⊂ Ux(τ), we have

∫

(B′
(q,t)

)∗
φ

(
∂lx
∂τ

+ |∇lτx|2 −R+
n

2τ
−△lτx

)
dvol(g(t)) ≥ 0.

This proves the first inequality in the statement of the theorem.
The second inequality in the statement of the theorem is proved in the

same way using the third inequality in Corollary 6.51.
Now let us consider the distributions

D1 =
∂lx
∂τ

+ |∇lτx|2 −R+
n

2τ
−△lτx

and

D2 = −|∇lτx|2 +R+
lτx − n

τ
+ 2△lτx

on M × {τ}. According to Corollary 6.51 the following equality holds on
Ux(τ):

2
∂lx
∂τ

+ |∇lτx|2 −R+
lτx
τ

= 0.

By Proposition 7.5 the open set Ux(τ) has full measure in M and |∇lτx|2 and
∂lx/∂τ are locally essentially bounded. Thus, this equality is an equality of
locally essentially bounded, measurable functions, i.e., elements of L∞

loc(M),
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and hence is an equality of distributions on M . Subtracting 2D1 from this
equality yields D2. Thus,

D2 = −2D1,

as distributions on M . This shows that D2 vanishes as a distribution if and
only if D1 does. But if D2 = 0 as a distribution for some τ , then by elliptic
regularity lτx is smooth on M × {τ} and the equality is the näıve one for
smooth functions. Thus, if D2 = 0 for all τ , then lτx and ∂l/∂τ are C∞

functions on each slice M ×{τ} and both D1 and D2 hold in the näıve sense
on each slice M × {τ}. It follows from a standard bootstrap argument that
in this case lτx is smooth on all of space-time. �

3. Reduced volume

We have established that for a Ricci flow (M,g(t)), 0 ≤ t ≤ T , and a
point x = (p, T ) ∈ M × [0, T ] the reduced length function lx is defined on
all of M × (0, T ). This allows us to defined the reduced volume of M ×{τ}
for any τ ∈ (0, T ) Recall that the reduced volume of M is defined to be

Ṽx(M, τ) =

∫

M
τ−

n
2 exp(−lx(q, τ))dq.

This function is defined for 0 < τ < T .
There is one simple case where we can make an explicit computation.

Lemma 7.25. If (M,g(t)) is flat Euclidean n-space (independent of t),
then for any x ∈ R

n × (−∞,∞) we have

Ṽx(M, τ) = (4π)n/2

for all τ > 0.

Proof. By symmetry we can assume that x = (0, T ) ∈ R
n × [0, T ],

where 0 ∈ R
n is the origin. We have already seen that the L-geodesics in

flat space are the usual geodesics when parameterized by s =
√
τ . Thus,

identifying R
n with T0R

n, for any X ∈ R
n we have γX(τ) = 2

√
τX, and

hence Lexp(X, τ ) = 2
√
τX. Thus, for any τ > 0 we have U(τ) = TpM , and

for any X ∈ T0R
n we have J (X, τ) = 2nτn/2. Also, Lx(X, τ) = 2

√
τ |X|2,

so that lx(X, τ) = |X|2. Thus, for any τ > 0

Ṽx(R
n, τ) =

∫

Rn

τ−n/2e−|X|22nτn/2dX = (4π)n/2.

�

In the case when M is non-compact, it is not clear a priori that the
integral defining the reduced volume is finite in general. In fact, as the next
proposition shows, it is always finite and indeed, it is bounded above by the
integral for R

n.
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Theorem 7.26. Let (M,g(t)), 0 ≤ t ≤ T , be a Ricci flow of bounded
curvature with the property that for each t ∈ [0, T ] the Riemannian manifold
(M,g(t)) is complete. Fix a point x = (p, T ) ∈ M × [0, T ]. For every
0 < τ < T the reduced volume

Ṽx(M, τ) =

∫

M
τ−

n
2 exp(−lx(q, τ))dq

is absolutely convergent and Ṽx(M, τ) ≤ (4π)
n
2 . The function Ṽx(M, τ) is a

non-increasing function of τ with

limτ→0Ṽx(M, τ) = (4π)
n
2 .

Proof. By Proposition 7.5, Ux(τ) is an open subset of full measure in
M . Hence,

Ṽx(M, τ) =

∫

Ux(τ)
τ−

n
2 exp(−lx(q, τ))dq.

Take linear orthonormal coordinates (z1, . . . , zn) on TpM . It follows from
the previous equality and Lemma 6.71 that

Ṽx(M, τ) =

∫

eUx(τ)
f(Z, τ)dz1 · · · dzn,

where f(Z, τ) = τ−
n
2 e−

el(Z,τ)J (Z, τ). By Proposition 6.81 for each Z the
integrand, f(Z, τ), is a non-increasing function of τ and the function con-

verges uniformly on compact sets as τ → 0 to 2ne−|Z|2. This implies that

f(Z, τ) ≤ 2ne−|Z|2 for all τ > 0, and hence that
∫

eUx(τ)
f(Z, τ)dz1 · · · dzn

converges absolutely for each τ > 0, and the integral has value at most
(4π)n/2.

Fix 0 < τ0 < T . According to Theorem 6.80 (with A = M×(T −τ0, T )),

the reduced volume Ṽx(M, τ) is a non-increasing function of τ on (0, τ0].

Since this is true for any 0 < τ0 < T , it follows that Ṽx(M, τ) is a non-
increasing function of τ for all τ ∈ (0, T ). (This of course is a consequence

of the monotonicity of f(Z, τ) in τ and the fact that Ũx(τ) ⊂ Ũx(τ ′) for
τ ′ < τ .)

To show that limτ→0Ṽx(M, τ) = (4π)n/2 we need only see that for each

A < ∞ for all τ > 0 sufficiently small, Ũx(τ) contains the ball of radius
A centered at the origin in TpM . Since the curvature is bounded, this is
exactly the content of Corollary 6.79. �

3.1. Converse to Lemma 7.25. In Lemma 7.25 we showed that for
the trivial flow on flat Euclidean n-space and for any point x ∈ R

n×{T} the

reduced volume Ṽx(R
n, τ) is independent of τ > 0 and is equal to (4π)n/2.

In this subsection we use the monotonicity results of the last subsection to
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establish the converse to Lemma 7.25, namely to show that if (M,g(t)), 0 ≤
t ≤ T , is a Ricci flow complete with bounded curvature and if Ṽx(M, τ ) =

(4π)n/2 for some τ > 0 and some x ∈M×{T}, then the flow on the interval
[T − τ , T ] is the trivial flow on flat Euclidean n-space.

Proposition 7.27. Suppose that (M,g(τ)), 0 ≤ τ ≤ T , is a solution to
the backward Ricci flow equation, complete and of bounded curvature. Let

x = (p, T ) ∈M × {T}, and suppose that 0 < τ < T . If Ṽx(M, τ ) = (4π)n/2,
then the backward Ricci flow on the interval [0, τ ] is the trivial flow on flat
Euclidean space.

Proof. If Ṽx(M, τ ) = (4π)n/2, then by Lemma 7.25, Ṽx(M, τ) is con-
stant on the interval (0, τ ]. Hence, it follows from the proof of Theo-

rem 7.26 that the closure of Ũ(τ) is all of TpM for all τ ∈ (0, τ ] and that

f(Z, τ) = e−|Z|22n for all Z ∈ TpM and all τ ≤ τ . In particular,

∂ln(f(Z, τ))

∂τ
= 0.

From the proof of Proposition 6.81 this means that Inequality (6.20) is an
equality and consequently, so is Inequality (6.19). Thus, by Proposition 6.37

(with τ1 = 0) each of the vector fields Yα(τ) = Ỹα(τ) is both a Jacobi field
and adapted. By Proposition 6.43 we then have

Ric + Hess(lτx) =
g

2τ
.

In particular, lx is smooth. Let ϕτ : M → M, 0 < τ ≤ τ , be the one-
parameter family of diffeomorphisms obtained by solving

dϕτ
dτ

= ∇lx(·, τ) and ϕτ = Id.

We now consider

h(τ) =
τ

τ
ϕ∗
τg(τ).

We compute

∂h

∂τ
= − τ

τ2
ϕ∗
τg(τ) +

τ

τ
ϕ∗
τL dϕτ

dτ
(g(τ)) +

τ

τ
ϕ∗
t 2Ric(g(τ))

= − τ

τ2
ϕ∗
τg(τ) +

τ

τ
ϕ∗
τ2Hess(lτx) +

τ

τ
ϕ∗
τ

(
1

τ
g(τ) − 2Hess(lτx)

)

= 0.

That is to say the family of metrics h(τ) is constant in τ : for all τ ∈ (0, τ ]
we have h(τ) = h(τ ) = g(τ ). It then follows that

g(τ) =
τ

τ
(ϕ−1

τ )∗g(τ ),

which means that the entire flow in the interval (0, τ ] differs by diffeomor-
phism and scaling from g(τ ). Suppose that g(τ ) is not flat, i.e., suppose that
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there is some (x, τ ) with |Rm(x, τ)| = K > 0. Then from the flow equa-
tion we see that |Rm(ϕ−1

τ (x), τ)| = Kτ2/τ2, and these curvatures are not
bounded as τ → 0. This is a contradiction. We conclude that g(τ ) is flat,
and hence, again by the flow equation so are all the g(τ) for 0 < τ ≤ τ , and
by continuity, so is g(0). Thus, (M,g(τ)) is isometric to a quotient of R

n by a

free, properly discontinuous group action. Lastly, since Ṽx(M, τ) = (4π)n/2,
it follows that (M,g(τ)) is isometric to R

n for every τ ∈ [0, τ ]. Of course, it
then follows that the flow is the constant flow. �





CHAPTER 8

Non-collapsed results

In this chapter we apply the results for the reduced length function and
reduced volume established in the last two sections to prove non-collapsing
results. In the first section we give a general result that applies to generalized
Ricci flows and will eventually be applied to Ricci flows with surgery to prove
the requisite non-collapsing. In the second section we give a non-collapsing
result for Ricci flows on compact 3-manifolds with normalized initial metrics.

1. A non-collapsing result for generalized Ricci flows

The main result of this chapter is a κ-non-collapsed result.

Theorem 8.1. Fix positive constants τ0 < ∞, l0 < ∞, and V > 0.
Then there is κ > 0 depending on τ0, V , and l0 and the dimension n such
that the following holds. Let (M, G) be a generalized n-dimensional Ricci
flow, and let 0 < τ0 ≤ τ0. Let x ∈ M be fixed. Set T = t(x). Suppose that
0 < r ≤ √

τ0 is given. These data are required to satisfy:

(1) The ball B(x, T, r) ⊂MT has compact closure.
(2) There is an embedding B(x, T, r)× [T −r2, T ] ⊂ M compatible with

t and with the vector field.
(3) |Rm| ≤ r−2 on the image of the embedding in (2).

(4) There is an open subset W̃ ⊂ Ũx(τ0) ⊂ TxMT with the property that
for every L-geodesic γ : [0, τ0] → M with initial condition contained

in W̃ , the l-length of γ is at most l0.

(5) For each τ ∈ [0, τ0], let W (τ) = Lexpτx(W̃ ). The volume of the
image W (τ0) ⊂MT−τ0 is at least V .

Then

Vol(B(x, T, r)) ≥ κrn.

See Fig. 1.
In this section we denote by g(τ), 0 ≤ τ ≤ r2, the family of metrics on

B(x, T, r) induced from pulling back G under the embedding B(x, T, r) ×
[T − r2, T ] → M. Of course, this family of metrics satisfies the backward
Ricci flow equation.

Proof. Clearly from the definition of the reduced volume, we have

Ṽx(W (τ0)) ≥ τ
−n/2
0 V e−l0 ≥ τ

−n/2
0 V e−l0 .

169
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Figure 1. Non-collapsing.

By the monotonicity result (Theorem 6.80) it follows that for any τ ≤ τ0,
and in particular for any τ ≤ r2, we have

(8.1) Ṽx(W (τ)) ≥ τ
−n/2
0 V e−l0 .

Let ε = n
√

Vol(B(x, T, r))/r, so that VolB(x, T, r) = εnrn. The basic
result we need to establish in order to prove this theorem is the following:

Proposition 8.2. There is a positive constant ε0 ≤ 1/4n(n − 1) de-
pending on τ0 and l0 such that if ε ≤ ε0 then, setting τ1 = εr2, we have

Ṽx(W (τ1)) < 3ε
n
2 .

Given this proposition, it follows immediately that either ε > ε0 or

ε ≥
(
Ṽx(W (τ1))

3

)2/n

≥ 1

32/nτ0
V 2/ne−2l0/n.

Since κ = εn, this proves the theorem.

Proof. We divide W̃ into

W̃sm = W̃ ∩
{
Z ∈ TxMT

∣∣|Z| ≤ 1

8
ε−1/2

}
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and

W̃lg = W̃ \ W̃sm,

(see Fig. 2).

Figure 2. W̃lg and W̃sm.

We set Wsm(τ1) = Lexpτ1x (W̃sm) and Wlg(τ1) = Lexpτ1x (W̃lg). Clearly,
since W (τ1) is the union of Wsm(τ1) and Wlg(τ1) and since these subsets are
disjoint measurable subsets, we have

Ṽx(W (τ1)) = Ṽx(Wsm(τ1)) + Ṽx(Wlg(τ1)).

We shall show that there is ε0 such that either ε > ε0 or Ṽx(Wsm(τ1)) ≤
2εn/2 and Ṽx(Wlg(τ1)) ≤ εn/2. This will establish Proposition 8.2 and hence
Theorem 8.1.

1.1. Upper bound for Ṽx(Wsm(τ1)). The idea here is that L-geodesics

with initial vector in W̃sm remain in the parabolic neighborhood

P = B(x, T, r) × [T − r2, T ]

for all parameter values τ ∈ [0, r2]. Once we know this it is easy to see that
their L-lengths are bounded from below. Then if the volume of B(x, T, r)
was arbitrarily small, the reduced volume of Wsm(τ1) would be arbitrarily
small.

Lemma 8.3. Setting τ1 = εr2, there is a constant ε0 > 0 depending on
τ0 such that, if ε ≤ ε0, we have

∫

fWsm

τ
−n/2
1 e−

el(Z,τ1)J (Z, τ1)dZ ≤ 2ε
n
2 .
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Of course, we have

Ṽx(Wsm(τ1)) =

∫

Wsm(τ1)
τ
−n/2
1 e−l(q,τ1)dvolg(τ1)

=

∫

fWsm

τ
−n/2
1 e−

el(Z,τ1)J (Z, τ1)dZ,

so that it will follow immediately from the lemma that:

Corollary 8.4. There is a constant ε0 > 0 depending on τ0 such that,
if ε ≤ ε0, we have

Ṽx(Wsm(τ1)) ≤ 2ε
n
2 .

Proof. (Of Lemma 8.3) In order to establish Lemma 8.3 we need two
preliminary estimates:

Claim 8.5. There is a universal positive constant ε′0 such that, if ε ≤ ε′0,
then there is a constant C1 < ∞ depending only on the dimension n such
that the following hold for all y ∈ B(x, T, r/2), and for all t ∈ [T − τ1, T ]:

(1)

|∇R(y, t)| ≤ C1

r3
,

(2)

(1 − C1ε) ≤
g(y, t)

g(y, T )
≤ (1 + C1ε).

Proof. Recall that by hypothesis |Rm(y, t)| ≤ 1/r2 on the parabolic
neighborhood B(x, T, r) × [T − r2, T ]. Rescale the flow by multiplying the

metric and time by r−2 resulting in a ball B̃ of radius 1 and a flow defined for
a time interval of length 1 with |Rm| ≤ 1 on the entire parabolic neighbor-
hood B(x, T, 1)× [T −1, T ]. Then by Theorem 3.28 there is a universal con-
stant C1 such that |∇R(y, t)| ≤ C1 for all (y, t) ∈ B(x, T, 1/2)× [T −1/2, T ].
Rescaling back by r2, we see that on the original flow |∇R(y, t)| ≤ C1/r

3

for all (y, t) ∈ B(x, T, r/2) × [T − r2/2, T ]. Taking ε′0 ≤ 1/2 gives the first
item in the claim.

Since |Ric| ≤ (n − 1)/r2 for all (y, t) ∈ B × [T − r2, T ] it follows by
integrating that

e−2(n−1)(T−t)/r2 ≤ g(x, t)

g(x, T )
≤ e2(n−1)(T−t)/r2 .

Thus, for t ∈ [T − τ1, T ] we have

e−2(n−1)ε ≤ g(x, t)

g(x, T )
≤ e2(n−1)ε.

From this the second item in the claim is immediate. �
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At this point we view the L-geodesics as paths γ : [0, τ1] → B(x, T, r)
(with the understanding that the path in space-time is given by the com-
position of the path (γ(τ), T − τ) in B(x, T, r)× [T − r2, T ] followed by the
given inclusion of this product into M.

The next step in the proof is to show that for any Z ∈ W̃sm the L-
geodesic γZ (the one having limτ→0

√
τXγZ

(τ) = Z) remains in B(x, T, r/2)
up to time τ1. Because of this, as we shall see, these paths contribute a
small amount to the reduced volume since B(x, T, r/2) has small volume.
We set X(τ) = XγZ

(τ).

Claim 8.6. There is a positive constant ε0 ≤ 1/4n(n− 1) depending on
τ0, such that the following holds. Suppose that ε ≤ ε0 and τ ′1 ≤ τ1 = εr2.
Let Z ∈ TxMT and let γZ be the associated L-geodesic from x. Suppose that
γZ(τ) ∈ B(x, T, r/2) for all τ < τ ′1. Then for all τ < τ ′1 we have

∣∣|√τX(τ)|g(T ) − |Z|
∣∣ ≤ 2ε(1 + |Z|).

Proof. First we make sure that ε0 is less than or equal to the universal
constant ε′0 of the last claim. For all (y, t) ∈ B(x, T, r) × [T − r2, T ] we
have |Rm(y, t)| ≤ r−2 and |∇R(y, t)| ≤ C1/r

3 for some universal constant
C1. Of course, r2 ≤ τ . Thus, at the expense of replacing C1 by a larger
constant, we can (and shall) assume that C1/r

3 > (n − 1)r−2 ≥ |Ric(y, t)|
for all (y, t) ∈ B(x, T, r)× [T − r2, T ]. Thus, we can take the constant C0 in
the hypothesis of Lemma 6.60 to be C1/r

3. We take the constant τ in the
hypothesis of that lemma to be εr2. Then, we have that

max0≤τ≤τ ′1
√
τ |X(τ)| ≤ e2C1ε2 |Z| + e2C1ε2 − 1

2

√
εr,

and

|Z| ≤ e2C1ε2min0≤τ≤τ ′1
√
τ |X(τ)| + e2C1ε2 − 1

2

√
εr.

By choosing ε0 > 0 sufficiently small (as determined by the universal con-
stant C1 and by τ0), we have

max0≤τ≤τ ′1
√
τ |X(τ)|g(T−τ) ≤ (1 +

ε

2
)|Z| + ε

2
,

and

|Z| ≤ (1 +
ε

2
)min0≤τ≤τ ′1

√
τ |X(τ)|g(T−τ) +

ε

2
.

It is now immediate that
∣∣|√τX(τ)|g(T−τ) − |Z|

∣∣ ≤ ε(1 + |Z|).
Again choosing ε0 sufficiently small the result now follows from the sec-

ond inequality in Claim 8.5 �

Now we are ready to establish that the L-geodesics whose initial con-

ditions are elements of W̃sm do not leave B(x, T, r/2) × [T − r2, T ] for any
τ ≤ τ1.
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Claim 8.7. Suppose ε0 ≤ 1/4n(n−1) is the constant from the last claim.
Set τ1 = εr2, and suppose that ε ≤ ε0. Lastly, assume that |Z| ≤ 1

8
√
ε
. Then

γZ(τ) ∈ B(x, T, r/2) for all τ ≤ τ1.

Proof. Since ε ≤ ε0 ≤ 1/4n(n − 1) ≤ 1/8, by the last claim we have

|√τX(τ)|g(T ) ≤ (1 + 2ε)|Z| + 2ε ≤ 5

4
|Z| + 3

32
√
ε
,

provided that γ|[0,τ) is contained in B(x, T, r/2) × [T − τ, T ]. Since |Z| ≤
(8
√
ε)−1 we conclude that

|√τX(τ)|g(T ) ≤
1

4
√
ε
,

as long as γ([0, τ)) is contained in B(x, T, r/2) × [T − τ, T ].
Suppose that there is τ ′ < τ1 = εr2 for which γZ exits B(x, T, r/2) ×

[T − r2, T ]. We take τ ′ to be the first such time. Then we have

|γZ(τ ′) − x|g(T ) ≤
∫ τ ′

0
|X(τ)|g(T )dτ ≤ 1

4ε
1
2

∫ τ ′

0

dτ√
τ

=
1

2ε
1
2

√
τ ′ < r/2.

This contradiction implies that γZ(τ) ∈ B(x, T, r/2) for all τ < τ1 = εr2. �

Now we assume that ε0 > 0 depending on τ0 is as above and that ε ≤ ε0,
and we shall estimate

Ṽx(Wsm(τ1)) =

∫

Wsm(τ1)
(τ1)

−n
2 e−l(q,τ1)dvolg(τ1).

In order to do this we estimate lx(q, τ1) on Wsm(τ1). By hypothesis |Rm| ≤
1/r2 on B(x, T, r/2) × [0, τ1] and by Lemma 8.7 every L-geodesic γZ , de-

fined on [0, τ1], with initial conditions Z satisfying |Z| ≤ 1
8ε

− 1
2 remains in

B(x, T, r/2). Thus, for such γZ we have R(γZ(τ)) ≥ −n(n − 1)/r2. Thus,
for any q ∈Wsm(τ1) we have

Lx(q, τ1) =

∫ τ1

0

√
τ(R + |X(τ)|2)dτ ≥ −2n(n− 1)

3r2
(τ1)

3
2 = −2n(n− 1)

3
ε

3
2 r,

and hence

l + x(q, τ1) =
Lx(q, τ1)

2
√
τ1

≥ −n(n− 1)

3
ε.

Since Wsm(τ) ⊂ B(x, T, r/2) ⊂ B(x, T, r), we have:

Ṽx(Wsm(τ1)) ≤ ε−
n
2 r−nen(n−1)ε/3Volg(T−τ1)Wsm(τ)(8.2)

≤ ε−
n
2 r−nen(n−1)ε/3Volg(T−τ1)B(x, T, r).

Claim 8.8. There is a universal constant ε0 > 0 such that if ε ≤ ε0, for
any open subset U of B(x, T, r), and for any 0 ≤ τ1 ≤ τ0, we have

0.9 ≤ Volg(T )U/Volg(T−τ1)U ≤ 1.1.

Proof. This is immediate from the second item in Claim 8.5. �
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Now assume that ε0 also satisfies this claim. Plugging this into Equa-
tion (8.2), and using the fact that ε ≤ ε0 ≤ 1/4n(n − 1), which implies
n(n− 1)ε/3 ≤ 1/12, and the fact that from the definition we have

Volg(T )B(x, T, r) = εnrn,

gives

Ṽx(Wsm(τ1)) ≤ ε−
n
2 r−nen(n−1)ε/3(1.1)Volg(T )B(x, T, r) ≤ (1.1)ε

n
2 e

1
12 .

Thus,

Ṽx(Wsm(τ1)) ≤ 2ε
n
2 .

This completes the proof of Lemma 8.3. �

1.2. Upper bound for Ṽx(Wlg(τ1)). Here the basic point is to ap-
proximate the reduced volume integrand by the heat kernel, which drops off
exponentially fast as we go away from the origin.

Recall that VolB(x, T, r) = εnrn and τ1 = εr2.

Lemma 8.9. There is a universal positive constant ε0 > 0 such that if
ε ≤ ε0, we have

Ṽx(Wlg(τ1)) ≤
∫

eU(τ1)∩{Z
∣∣|Z|≥ 1

8
ε−

1
2 }

(τ1)
−n

2 e−
el(q,τ1)J (Z, τ1)dZ ≤ ε

n
2 .

Proof. By the monotonicity result (Proposition 6.81), we see that the

restriction of the function τ
−n

2
1 e−

el(Z,τ1)J (Z, τ1) to Ũ(τ1) is less than or equal

to the restriction of the function 2ne−|Z|2 to the same subset. This means
that

Ṽx(Wlg(τ1)) ≤
∫

eU(τ1)\eU(τ1)∩B(0, 1
8
ε−1/2)

2ne−|Z|2dZ

≤
∫

TpMT \B(0, 1
8
ε−1/2)

2ne−|Z|2dZ.

So it suffices to estimate this latter integral.

Fix some a > 0 and let I(a) =
∫
B(0,a) 2ne−|Z|2dZ. Let R(a/

√
n) be the

n-cube centered at the origin with side lengths 2a/
√
n. Then R(a/

√
n) ⊂

B(0, a), so that

I(a) ≥
∫

R(a/
√
n)

2ne−|Z|2dZ

=

n∏

i=1

(∫ a/
√
n

−a/√n
2e−z

2
i dzi

)

=

(∫ 2π

0

∫ a/
√
n

0
4e−r

2
rdrdθ

)n/2
.
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Now ∫ 2π

0

∫ a/
√
n

0
4e−r

2
rdrdθ = 4π(1 − e−

a2

n ).

Applying this with a = (8
√
ε)−1 we have

Ṽx(Wlg(τ1)) ≤
∫

Rn

2ne−|Z|2dZ − I(1/8
√
ε)

≤ (4π)n/2
(

1 −
(
1 − e−1/(64nε)

)n/2)
.

Thus,

Ṽx(Wlg(τ1)) ≤ (4π)n/2
n

2
e−1/(64nε).

There is ε0 > 0 such that the expression on the right-hand side is less than
εn/2 if ε ≤ ε0. This completes the proof of Lemma 8.9. �

Putting Lemmas 8.3 and 8.9 together establishes Proposition 8.2. �

As we have already remarked, Proposition 8.2 immediately implies The-
orem 8.1. This completes the proof of Theorem 8.1. �

2. Application to compact Ricci flows

Now let us apply this result to Ricci flows with normalized initial metrics
to show that they are universally κ-non-collapsed on any fixed, finite time
interval. In this section we specialize to 3-dimensional Ricci flows. We do
not need this result in what follows for we shall prove a more delicate result
in the context of Ricci flows with surgery. Still, this result is much simpler
and serves as a paradigm of what will come.

Theorem 8.10. Fix positive constants ω > 0 and T0 < ∞. Then there
is κ > 0 depending only on these constants such that the following holds. Let
(M,g(t)), 0 ≤ t < T ≤ T0, be a 3-dimensional Ricci flow with M compact
and with |Rm(p, 0)| ≤ 1 and VolB(p, 0, 1) ≥ ω for all p ∈M . Then for any
t0 ≤ T , any r > 0 with r2 ≤ t0 and any (p, t0) ∈M×{t0}, if |Rm(q, t)| ≤ r−2

on B(p, t0, r) × [t0 − r2, t0] then VolB(p, t0, r) ≥ κr3.

Proof. Fix any x = (p, t0) ∈ M × [0, T ]. First, we claim that we can
suppose that t0 ≥ 1. For if not, then rescale the flow by Q = 1/t0. This
does not affect the curvature inequality at time 0. Furthermore, there is
ω′ > 0 depending only on ω such that for any ball B at time 0 and of radius
1 in the rescaled flow we have VolB ≥ ω′. The reason for the latter fact
is the following: By the Bishop-Gromov inequality (Theorem 1.34) there is
ω′ > 0 depending only on ω such that for any q ∈ M and any r ≤ 1 we
have VolB(q, 0, r) ≥ ω′r3. Of course, the rescaling increases T , but simply
restrict to the rescaled flow on [0, 1].

Next, we claim that we can assume that r ≤ √
t0/2. If r does not satisfy

this inequality, then we replace r with r′ =
√
t0/2. Of course, the curvature
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inequalities hold for r′ if they hold for r. Suppose that we have established
the result for r′. Then

VolB(p, T, r) ≥ VolB(p, T, r′) ≥ κ(r′)3 ≥ κ
(r

2

)3
=
κ

8
r3.

From now on we assume that t0 ≥ 1 and r ≤ √
t0/2. According to

Proposition 4.11, for any (p, t) ∈ M × [0, 2−4] we have |Rm(p, t)| ≤ 2 and
VolB(p, t, r) ≥ κ0r

3 for all r ≤ 1.
Once we know that |Rm| is universally bounded on M × [0, 2−4] it fol-

lows that there is a universal constant C1 such that C−1
1 g(q, 0) ≤ g(q, t) ≤

C1g(q, 0) for all q ∈ M and all t ∈ [0, 2−4]. This means that there is a
universal constant C < ∞ such that the following holds. For any points
q0, q ∈M with d0(q0, q) ≤ 1 let γq0,q be the path in M × [2−5, 2−4] given by

γq0,q(τ) = (Aq0,q(τ), 2
−4 − τ), 0 ≤ τ ≤ 2−5,

where Aq0,q is a shortest g(0)-geodesic from q0 to q. Then L(γq0,q) ≤ C.
By Theorem 7.10 there is a point q0 ∈M and an L-geodesic γ0 from x =

(p, t0) to (q0, 2
−4) with l(γ0) ≤ 3/2. Since t0 ≥ 1, this means that there is a

universal constant C ′ <∞ such that for each point q ∈ B(q0, 0, 1) the path

which is the composite of γ0 followed by γq0,q has l̃-length at most C ′. Setting
τ0 = t0 − 2−5, this implies that lx(q, τ0) ≤ C ′ for every q ∈ B(q0, 0, 1). This
ball has volume at least κ0. By Proposition 7.5, the open subset Ux(τ0) is of
full measure in M × {2−5}. Hence, W (τ0) =

(
B(q0, 0, 1) × {2−5}

)
∩ Ux(τ0)

also has volume at least κ0. Since r2 ≤ t0/4 < τ0, Theorem 8.1 now gives
the result. (See Fig. 3.) �

M × {t0}

M × {2−4}

M × {2−5}

M × {0}

(q, t0)

γ l(γ) ≤ 3
2

(q, 2−4)

B(q, 0, 1) × {2−5}

B(q, 0, 1)

g(0)-geodesics

Figure 3. Non-collapsing of Ricci flows.





CHAPTER 9

κ-non-collapsed ancient solutions

In this chapter we discuss the qualitative properties of κ-non-collapsed,
ancient solutions. One of the most important is the existence of a gradient
shrinking soliton that is asymptotic at −∞ to the solution. The other main
qualitative result is the compactness result (up to scaling) for these solutions.
Also extremely important for us is classification of 3-dimensional gradient
shrinking solitons – up to finite covers there are only two: a shrinking family
of round S3’s and a shrinking family of products of round S2’s with R. This
leads to a rough classification of all 3-dimensional κ-non-collapsed, ancient
solutions. The κ-solutions are in turn the models for singularity develop-
ment in 3-dimensional Ricci flows on compact manifolds, and eventually for
singularity development in 3-dimensional Ricci flows with surgery.

1. Preliminaries

Our objects of study are Ricci flows (M,g(t)), −∞ < t ≤ 0, with each
(M,g(t)) being a complete manifold of bounded non-negative curvature.
The first remark to make is that the appropriate notion of non-negative
curvature is that the Riemann curvature operator

Rm: ∧2 TM → ∧2TM,

which is a symmetric operator, is non-negative. In general, this implies,
but is stronger than, the condition that the sectional curvatures are all non-
negative. In case the dimension of M is at most 3, every element of ∧2TM is
represented by a 2-plane (with area form) and hence the Riemann curvature
operator is non-negative if and only if all the sectional curvatures are non-
negative. When the curvature operator is non-negative, it is if and only if
scalar curvature is bounded.

Since the (M,g(t)) have non-negative Ricci curvature, it follows immedi-
ately from the Ricci flow equation that the metric is non-increasing in time
in the sense that for any point p ∈M and any v ∈ TpM the function |v|2g(t)
is a non-increasing function of t.

There are stronger results assuming the curvature operator is bounded
and non-negative. These are consequences of the Harnack inequality (see
[32]). As was established in Corollary 4.39, since the flow exists for t ∈
(−∞, 0] and since the curvature operator is non-negative and bounded for
each (q, t) ∈ M × (−∞, 0], it follows that ∂R(q, t)/∂t ≥ 0 for all q and t.

179
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That is to say, for each q ∈M the scalar curvature R(q, t) is a non-decreasing
function of t.

1.1. Definition. Now we turn to the definition of what it means for a
Ricci flow to be κ-non-collapsed.

Definition 9.1. Fix κ > 0. Let (M,g(t)), a < t ≤ b, be a Ricci flow of
complete n-manifolds. Fix r0 > 0. We say that (M,g(t)) is κ-non-collapsed
on scales at most r0 if the following holds for any (p, t) ∈M × (a, b] and any
0 < r ≤ r0 with the property that a ≤ t − r2. Whenever |Rm(q, t′)| ≤ r−2

for all q ∈ B(p, t, r) and all t′ ∈ (t − r2, t], then VolB(p, t, r) ≥ κrn. We
say that (M,g(t)) is κ-non-collapsed, or equivalently κ-non-collapsed on all
scales if it is κ-non-collapsed on scales at most r0 for every r0 <∞.

Definition 9.2. An ancient solution is a Ricci flow (M,g(t)) defined
for −∞ < t ≤ 0 such that for each t, (M,g(t)) is a connected, complete,
non-flat Riemannian manifold whose curvature operator is bounded and
non-negative. For any κ > 0, an ancient solution is κ-non-collapsed if it is
κ-non-collapsed on all scales. We also use the terminology κ-solution for a
κ-non-collapsed, ancient solution.

Notice that a κ-solution is a κ′-solution for any 0 < κ′ ≤ κ.

1.2. Examples. Here are some examples of κ-solutions:

Example 9.3. Let (S2, g0) be the standard round 2-sphere of scalar
curvature 1 (and hence Ricci tensor g0/2). Set g(t) = (1 − t)g0. Then
∂g(t)/∂t = −2Ric(g(t)), −∞ < t ≤ 0. This Ricci flow is an ancient solution
which is κ-non-collapsed on all scales for any κ at most the volume of the
ball of radius 1 in the unit 2-sphere.

According to a result of Hamilton which we shall prove below (Corol-
lary 9.50):

Theorem 9.4. Every orientable, 2-dimensional κ-solution is a rescaling
of the previous example, i.e., is a family of shrinking round 2-spheres.

Example 9.5. Let (Sn, g0) be the standard round n-sphere of scalar
curvature n/2. Set g(t) = (1 − t)g0. This is a κ-solution for any κ which is
at most the volume of the ball of radius 1 in the unit n-sphere. If Γ is a finite
subgroup of the isometries of Sn acting freely on Sn, then the quotient Sn/Γ
inherits an induced family of metrics g(t) satisfying the Ricci flow equation.
The result is a κ-solution for any κ at most 1/|Γ| times the volume of the
ball of radius 1 in the unit sphere.

Example 9.6. Consider the product S2 × R, with the metric g(t) =
(1 − t)g0 + ds2. This is a κ-solution for any κ at most the volume of a ball
of radius 1 in the product of the unit 2-sphere with R.
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Example 9.7. The quotient S2 × R/〈ι〉, where the involution ι is the
product of the antipodal map on S2 with s 7→ −s on the R factor, is an
orientable κ-solution for some κ > 0.

Example 9.8. Consider the metric product (S2, g0) × (S1
R, ds

2) where
(S1
R, ds

2) is the circle of radius R. We define g(t) = (1 − t)g0 + ds2. This is
an ancient solution to the Ricci flow. But it is not κ-non-collapsed for any
κ > 0. The reason is that

|Rm(p, t)| =
1

1 − t
,

and

Volg(t)B(p,
√

1 − t)

(1 − t)3/2
≤ Volg(t)(S

2 × S1
R)

(1 − t)3/2
=

2πR(1 − t)4π

(1 − t)3/2
=

8π2R√
1 − t

.

Thus, as t→ −∞ this ratio goes to zero.

1.3. A consequence of Hamilton’s Harnack inequality. In order
to prove the existence of an asymptotic gradient shrinking soliton associated
to every κ-solution, we need the following inequality which is a consequence
of Hamilton’s Harnack inequality for Ricci flows with non-negative curvature
operator.

Proposition 9.9. Let (M,g(t)), −τ0 ≤ t ≤ 0, be an n-dimensional
Ricci flow such that for each t ∈ [−τ0, 0] the Riemannian manifold (M,g(t))
is complete with non-negative, bounded curvature operator. Let τ = −t. Fix
a point p ∈ M and let x = (p, 0) ∈ M × [−τ0, 0]. Then for any 0 < c < 1
and any τ ≤ (1 − c)τ0 we have

| ▽ lx(q, τ))|2 +R(q, τ) ≤ (1 + 2c−1)lx(q, τ)

τ
, and

R(q, τ) − (1 + c−1)lx(q, τ)

τ
≤ ∂lx
∂τ

where these inequalities hold on the open subset of full measure of M ×
[−(1 − c)τ0, 0) on which lx is a smooth function.

Proof. Recall that from Equation 6.15 we have

H(X) = −∂R
∂τ

− R

τ
− 2〈∇R,X〉 + 2Ric(X,X).

Using Hamilton’s Harnack’s inequality (Theorem 4.37) with χ = −X, we
have

−∂R
∂τ

− R

τ0 − τ
− 2〈∇R,X〉 + 2Ric(X,X) ≥ 0.

Together these imply

H(X) ≥
(

1

τ − τ0
− 1

τ

)
R =

τ0
τ(τ − τ0)

R.
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Restricting to τ ≤ (1 − c)τ0 gives

H(X) ≥ −c
−1

τ
R.

Take a minimal L-geodesic from x to (q, τ); we have

(9.1) Kτ (γ) =

∫ τ

0
τ3/2H(X)dτ ≥ −c−1

∫ τ

0

√
τRdτ ≥ −2c−1

√
τ lx(q, τ ).

Together with the second equality in Theorem 6.50, this gives

4τ | ▽ lx(q, τ)|2 = −4τR(q, τ) + 4lx(q, τ ) −
4√
τ
Kτ (γ)

≤ −4τR(q, τ) + 4lx(q, τ ) + 8c−1lx(q, τ ).

Dividing through by 4τ , and replacing τ with τ yields the first inequality
in the statement of the proposition:

|∇lx(q, τ)|2 +R(q, τ) ≤ (1 + 2c−1)lx(q, τ)

τ

for all 0 < τ ≤ (1 − c)τ0. This is an equation of smooth functions on the
open dense subset U(τ) but it extends as an equation of L∞

loc-functions on
all of M .

As to the second inequality in the statement, by the first equation in
Theorem 6.50 we have

∂lx(q, τ)

∂τ
= R(q, τ) − lx(q, τ)

τ
+

1

2τ3/2
Kτ (γ).

The estimate on Kτ in Equation (9.1) then gives

R(q, τ) − (1 + c−1)lx(q, τ)

τ
≤ ∂lx(q, τ)

∂τ
.

This establishes the second inequality. �

Corollary 9.10. Let (M,g(t)), −∞ < t ≤ 0, be a Ricci flow on a
complete, n-dimensional manifold with bounded, non-negative curvature op-
erator. Fix a point p ∈ M and let x = (p, 0) ∈ M × (−∞, 0]. Then for any
τ > 0 we have

| ▽ lx(q, τ))|2 +R(q, τ) ≤ 3lx(q, τ)

τ
,

−2lx(q, τ)

τ
≤ ∂lx(q, τ)

∂τ
≤ lx(q, τ)

τ
,

where these inequalities are valid in the sense of smooth functions on the
open subset of full measure of M × {τ} on which lx is a smooth function,
and are valid as inequalities of L∞

loc-functions on all of M × {τ}.
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Proof. Fix τ and take a sequence of τ0 → ∞, allowing us to take c→ 1,
and apply the previous proposition. This gives the first inequality and gives
the lower bound for ∂lx/∂τ in the second inequality.

To establish the upper bound in the second inequality we consider the
path that is the concatenation of a minimal L-geodesic γ from x to (q, τ)
followed by the path µ(τ ′) = (q, τ ′) for τ ′ ≥ τ . Then

lx(γ ∗ µ|[τ,τ1]) =
1

2
√
τ1

(
L(γ) +

∫ τ1

τ

√
τ ′R(q, τ ′)dτ ′

)
.

Differentiating at τ1 = τ gives

∂lx(γ ∗ µ)

∂τ

∣∣∣
τ1=τ

= − 1

4τ3/2
L(γ) +

1

2
√
τ

√
τR(q, τ)

= − lx(q, τ)
2τ

+
R(q, τ)

2
.

By the first inequality in this statement, we have

− lx(q, τ)
2τ

+
R(q, τ)

2
≤ lx(q, τ)

τ
.

Since lx(q, τ
′) ≤ l̃(γ ∗ µ|[τ,τ ′]) for all τ ′ ≥ τ , this establishes the claimed

upper bound for ∂lx/∂τ . �

2. The asymptotic gradient shrinking soliton for κ-solutions

Fix κ > 0 and consider an n-dimensional κ-solution (M,g(t)), −∞ <
t ≤ 0. Our goal in this section is to establish the existence of an asymptotic
gradient shrinking soliton associated to this κ-solution. Fix a reference point
p ∈M and set x = (p, 0) ∈M × (−∞, 0]. By Theorem 7.10 for every τ > 0
there is a point q(τ) ∈M at which the function lx(·, τ) achieves its minimum,
and furthermore, we have

lx(q(τ), τ) ≤
n

2
.

For τ > 0, define

gτ (t) =
1

τ
g(τ t), −∞ < t ≤ 0.

Now we come to one of the main theorems about κ-solutions, a result
that will eventually provide a qualitative description of all κ-solutions.

Theorem 9.11. Let (M,g(t)), −∞ < t ≤ 0, be a κ-solution of dimen-
sion n. Fix x = (p, 0) ∈ M × (−∞, 0]. Suppose that {τk}∞k=1 is a sequence
tending to ∞ as k → ∞. Then, after replacing {τk} by a subsequence,
the following holds. For each k denote by Mk the manifold M , by gk(t)
the family of metrics gτk

(t) on Mk, and by qk ∈ Mk the point q(τk). The
sequence of pointed flows (Mk, gk(t), (qk,−1)) defined for t ∈ (−∞, 0) con-
verges smoothly to a non-flat based Ricci flow (M∞, g∞(t), (q∞,−1)) defined
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for t ∈ (−∞, 0). This limiting Ricci flow satisfies the gradient shrinking soli-
ton equation in the sense that there is a smooth function f : M∞×(−∞, 0) →
R such that for every t ∈ (−∞, 0) we have

(9.2) Ricg∞(t) + Hessg∞(t)(f(t)) +
1

2t
g∞(t) = 0.

Furthermore, (M∞, g∞(t)) has non-negative curvature operator, is κ-non-
collapsed, and satisfies ∂Rg∞(x, t)/∂t ≥ 0 for all x ∈M∞ and all t < 0.

See Fig. 1.

Figure 1. Gradient shrinking soliton.

Remark 9.12. We are not claiming that the gradient shrinking soliton is
a κ-solution (or more precisely an extension forward in time of a time-shifted
version of a κ-solution) because we are not claiming that the time-slices have
bounded curvature operator. Indeed, we do not know if this is true in gen-
eral. We shall establish below (see Corollary 9.50 and Corollary 9.53) that in
the case n = 2, 3, the gradient shrinking soliton does indeed have time-slices
of bounded curvature, and hence is an extension of a κ-solution. We are
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also not claiming at this point that the limiting flow is a gradient shrinking
soliton in the sense that there is a one-parameter family of diffeomorphisms
ϕt : M∞ → M∞, t < 0, with the property that |t|ϕ∗

t g∞(−1) = g∞(t) and
with the property that the ϕt are generated by the gradient vector field of
a function. We shall also establish this result in dimensions 2 and 3 later in
this chapter.

We will divide the proof of Theorem 9.11 into steps. First, we will
show that the reduced length and norm of the curvature |Rm| are bounded
throughout the sequence in some way. Then using the κ-non-collapsed as-
sumption, by the compactness theorem (Theorem 5.15), we conclude that a
subsequence of the sequence of flows converges geometrically to a limiting
flow. Then, using the fact that the limit of the reduced volumes, denoted

Ṽ∞(M∞×{t}), is constant, we show that the limit flow is a gradient shrink-
ing soliton. Finally we argue that the limit is non-flat. The proof occupies
the rest of this section.

2.1. Bounding the reduced length and the curvature. Now let’s
carry this procedure out in detail. The first remark is that since rescaling
does not affect the κ-non-collapsed hypothesis, all the Ricci flows (Mk, gk(t))
are κ-non-collapsed on all scales. Next, we have the effect on reduced vol-
ume.

Claim 9.13. For each k ≥ 1 denote by xk ∈ Mk the point (p, 0) ∈ Mk.

Let Ṽxk
(τ) = Ṽxk

(Mk×{τ}) denote the reduced volume function for the Ricci

flow (Mk, gk(t)) from the point xk, and let Ṽx(τ) denote the reduced volume
of M × {τ} for the Ricci flow (M,g(t)) from the point x. Then

Ṽxk
(τ) = Ṽx(τkτ).

Proof. This is a special case of the reparameterization equation for
reduced volume (Lemma 6.75). �

By Theorem 7.26 the reduced volume function Ṽx(τ) is a non-increasing

function of τ with limτ→0Ṽx(τ) = (4π)
n
2 . Since the integrand for Ṽx(τ) is

everywhere positive, it is clear that Ṽx(τ) > 0 for all τ . Hence, limτ→∞Ṽx(τ)
exists. By Proposition 7.27 either this limit as τ goes to infinity is less than
(4π)n/2 or the flow is the constant flow on flat Euclidean space. The latter
is ruled out by our assumption that the manifolds are non-flat. It follows
immediately from this and Claim 9.13 that:

Corollary 9.14. There is a non-negative constant V∞ < (4π)n/2 such
that for all τ ∈ (0,∞), we have

(9.3) limk→∞Ṽxk
(τ) = V∞.

Now let us turn to the length functions lxk
.
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Claim 9.15. For any τ > 0 we have

lxk
(qk, τ) ≤

n

2τ2
+
nτ

2
.

Proof. By the choice of qk we have lxk
(qk, τk) ≤ n

2 . By the scale
invariance of l (Corollary 6.74) we have lxk

(qk,−1) ≤ n/2 for all k. Fix
0 < τ < 1. Integrating the inequality

−2lx(qk, τ)

τ
≤ ∂lxk

(qk, τ)

∂τ

from τ to 1 yields

lxk
(qk, τ) ≤

n

2τ2
.

If τ > 1, then integrating the second inequality in the second displayed line
of Corollary 9.10 gives lxk

(qk, τ) ≤ nτ
2 . �

Corollary 9.16. There is a positive continuous function C1(τ) defined
for τ > 0 such that for any q ∈Mk we have:

lxk
(q, τ) ≤

(√
3

τ
dgk(−τ)(qk, q) + C1(τ)

)2

,

|∇lxk
(q, τ)| ≤ 3

τ
dgk(−τ)(qk, q) +

√
3

τ
C1(τ).

Proof. By Corollary 9.10, for any q ∈ Mk we have |∇lxk
(q, τ)|2 ≤

3lxk
(q, τ)/τ . Since lxk

(qk, τ) ≤ n
2τ2

0
+ nτ

2 , integrating yields

lxk
(q, τ) ≤

(√
3

τ
dgk(−τ)(qk, q) + C1(τ)

)2

,

with C1(τ) being
√

(n/2τ2) + (nτ/2). The second statement follows from
this and Proposition 9.9. �

It follows immediately from Corollary 9.16 that for each A < ∞ and
τ0 > 0, the functions lxk

are uniformly bounded (by a bound that is inde-
pendent of k but depends on τ0 and A) on the balls B(qk,−τ0, A). Once we
know that the lxk

are uniformly bounded on B(qk,−τ0, A), it follows from
Corollary 9.10 that Rgk

are also uniformly bounded on the B(qk,−τ0, A).
Invoking Corollary 4.39, we see that for any A < ∞ the scalar curvatures
of the metrics gk are uniformly bounded on Bgk

(qk,−τ0, A) × (−∞,−τ0].
Since the metrics have non-negative curvature operator, this implies that
the eigenvalues of this operator are uniformly bounded on these regions.
Since we are assuming that the original Ricci flows are κ-non-collapsed on
all scales, it follows from Theorem 5.15 that after passing to a subsequence
there is a geometric limit (M∞, g∞(t), (q∞,−1)), −∞ < t ≤ −τ0, which is
a Ricci flow that is κ-non-collapsed on all scales.
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Since this is true for every τ0 > 0, by a standard diagonalization ar-
gument passing to a further subsequence we get a geometric limit flow
(M∞, g∞(t), (q∞,−1)), −∞ < t < 0.

Let us summarize our progress to this point.

Corollary 9.17. After passing to a subsequence of the τk there is a
smooth limiting flow of the (Mk, gk(t), (qk,−1)),−∞ < t ≤ 0,

(M∞, g∞(t), (q∞,−1)),

defined for −∞ < t < 0. For every t < 0 the Riemannian manifold
(M∞, g∞(t)) is complete of non-negative curvature. The flow is κ-non-
collapsed on all scales and satisfies ∂R/∂t ≥ 0.

Proof. Since the flows in the sequence are all κ-non-collapsed on all
scales and have non-negative curvature operator, the limiting flow is κ-non-
collapsed on all scales and has non-negative curvature operator. By the
consequence of Hamilton’s Harnack inequality (Corollary 4.39), we have
∂R/∂t ≥ 0 for the original κ-solution. This condition also passes to the
limit. �

2.2. The limit function. The next step in the proof is to construct
the limiting function l∞ of the lxk

and show that it satisfies the gradient
shrinking soliton equation.

By definition of the geometric limit, for any compact connected set K ⊂
M∞ containing q∞ and any compact subinterval J of (−∞, 0) containing
−1, for all k sufficiently large we have smooth embeddings ψk : K → Mk

sending q∞ to qk so that the pullbacks of the restrictions of the family of
metrics gk(t) for t ∈ J to K converge uniformly in the C∞-topology to the
restriction of g∞(t) on K×J . Take an exhausting sequence Kk×Jk of such
products of compact sets with closed intervals, and pass to a subsequence
so that for all k the diffeomorphism ψk is defined on Kk × Jk. We denote
by lk the pullback of lxk

under these embeddings and by hk(t) the pullback
of the family of metrics gk(t). We denote by ∇hk the gradient with respect
to hk(t), and similarly △hk denotes the Laplacian for the metric hk(t). By
construction, for any compact subset of M∞ × (−∞, 0) for all k sufficiently
large the function lk is defined on the compact set. We use ∇ and △ to refer
to the covariant derivative and the Laplacian in the limiting metric g∞.

Now let us consider the functions lxk
. According to Corollary 9.16, for

any A <∞ and any 0 < τ0 < T , both lxk
and |∇lxk

| are uniformly bounded
on B(qk,−1, A) × [−T,−τ0] independent of k. Hence, the lxk

are uniformly
Lipschitz on these subspaces. Doing this for each A, τ0, and T and using a
standard diagonalization argument then shows that, after transferring to the
limit, the functions lk are uniformly locally bounded and uniformly locally
Lipschitz on M∞ × (−∞, 0) with respect to the limiting metric g∞.
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Fix 0 < α < 1. Passing to a further subsequence if necessary, we can
arrange that the lk converge strongly in C0,α

loc to a function l∞ defined on
M∞ × (−∞, 0). Furthermore, it follows that the restriction of l∞ is locally

Lipschitz, and hence the function l∞ is an element of W 1,2
loc (M∞ × (−∞, 0)).

Also, by passing to a further subsequence if necessary, we can assume that
the lk converge weakly in W 1,2

loc to l∞.

Corollary 9.18. For any τ > 0 and any q we have

|∇l∞(q, τ)| ≤ 3

τ
dg∞(−τ)(q∞, q) +

√
3

τ
C1(τ),

where C1(τ) is the continuous function from Corollary 9.16.

Proof. This is immediate from Corollary 9.16 and Fatou’s lemma. �

Remark 9.19. N.B. We are not claiming that l∞ is the reduced length
function from a point of M∞ × (−∞, 0).

2.3. Differential inequalities for l∞. The next step is to establish
differential equalities for l∞ related to, but stronger than, those that we
established in Chapter 7 for lx. Here is a crucial result.

Proposition 9.20. The function l∞ is a smooth function on M ×
(−∞, 0) and satisfies the following two differential equalities:

∂l∞
∂τ

+ |∇l∞|2 −R+
n

2τ
−△l∞ = 0,(9.4)

2△l∞ − |∇l∞|2 +R+
l∞ − n

τ
= 0.(9.5)

The proof of this result is contained in Sections 2.4 through 2.6

2.4. Preliminary results toward the proof of Proposition 9.20.
In this subsection we shall prove that the left-hand side of Equation (9.4)
is a distribution and is ≥ 0 in the distributional sense. We shall also show
that this distribution extends to a continuous linear functional on compactly
supported functions in W 1,2.

The first step in the proof of this result is the following, somewhat deli-
cate lemma.

Lemma 9.21. For any t ∈ (−∞, 0) we have

limk→∞|∇hk lk|2hk
dvol(hk) = |∇l∞|2g∞dvol(g∞)

in the sense of distributions on M∞ × {t}.
Proof. It suffices to fix 0 < τ0 < |t|. The inequality in one direction (≥)

is a general result. Here is the argument. Since the |∇gk lxk
|gk

are uniformly
essentially bounded on every B(xk,−τ0, A) × [−T,−τ0], the |∇hk lk|hk

are
uniformly essentially bounded on B(x∞,−τ0, A) × [−T,−τ0]. (Of course,
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∇hklk = dlk = ∇lk.) Since the hk converge uniformly on compact sets to
g∞, it is clear that

(9.6) limk→∞
(
|∇hk lk|2hk

dvol(hk) − |∇lk|2g∞dvol(g∞)
)

= 0

in the sense of distributions on M ×{t}. Since the lk converge uniformly on
compact subsets to l∞, it follows immediately from Fatou’s lemma that

limk→∞|∇lk|2g∞dvol(g∞) ≥ |∇l∞|2g∞dvol(g∞)

in the sense of distributions on M∞ × {t}. Thus, we have the following
inequality of distributions:

limk→∞|∇hk lk|2hk
dvol(hk) ≥ |∇l∞|2g∞dvol(g∞).

We need to establish the opposite inequality which is not a general result,
but rather relies on the bounds on △gk lxk

(or equivalently on △hk lk) given in
the second inequality in Theorem 7.13. We must show that for each t ≤ −τ0
and for any ϕ, a non-negative, smooth function with compact support in
M∞ × {t}, we have

limk→∞

∫

M×{t}
ϕ
(
|∇hk lk|2hk

dvol(hk) − |∇l∞|2g∞dvol(g∞)
)
≤ 0.

First, notice that since, on the support of ϕ, the metrics hk converge uni-
formly in the C∞-topology to g∞ and since |∇hk lk|2hk

and |∇l∞|2g∞ are es-
sentially bounded on the support of ϕ, we have

(9.7) limk→∞

∫

M×{t}
ϕ
(
|∇hk lk|2hk

dvol(hk) − |∇l∞|2g∞dvol(g∞)
)

= limk→∞

∫

M×{t}
ϕ(|∇hk lk|2hk

− |∇l∞|2hk
)dvol(hk)

= limk→∞

∫

M×{t}
〈∇hk lk −∇l∞), ϕ∇hk lk〉hk

dvol(hk)

+

∫

M×{t}
〈∇hk lk −∇l∞), ϕ∇l∞〉hk

dvol(hk).

We claim that, in the limit, the last term in this expression vanishes. Using
the fact that the hk converge uniformly in the C∞-topology to g∞ on the
support of ϕ, and |∇l∞| is bounded on this support we can rewrite the last
term as

(9.8) limk→∞

∫

M×{t}
〈∇(lk − l∞), ϕ∇l∞〉g∞dvol(g∞).

Since lk − l∞ goes to zero weakly in W 1,2 on the support of ϕ whereas l∞
is an element of W 1,2 of this compact set, we see that the expression given



190 9. κ-NON-COLLAPSED ANCIENT SOLUTIONS

in (9.8) vanishes and hence that

limk→∞

∫

M×{t}
〈∇hk(lk − l∞), ϕ∇l∞〉hk

dvol(hk) = 0.

It remains to consider the first term in the last expression in Equa-
tion (9.7). (This is where we shall need the differential inequality for the
△gklxk

.) Since the lk converge uniformly to l∞ on the support of ϕ, we
can choose positive constants ǫk tending to 0 as k tends to ∞ so that
l∞ − lk + ǫk > 0 on the support of ϕ. We can rewrite

limk→∞

∫

M×{t}
〈
(
∇hk lk −∇l∞

)
, ϕ∇hk lk〉hk

dvol(hk)

= limk→∞

∫

M×{t}
〈∇hk(lk − l∞ − ǫk), ϕ∇hk lk〉hk

dvol(hk).

Claim 9.22.

limk→∞

∫

M×{t}
〈∇hk(lk − l∞ − ǫk), ϕ∇hk lk〉hk

dvol(hk) ≤ 0.

Proof. Since ϕ is a compactly supported, non-negative smooth func-
tion, it follows from Theorem 7.13 that we have the following inequality of
distributions:

ϕ△hk lk ≤
ϕ

2

(
|∇hk lk|2hk

−Rhk
− lk − n

τ

)
.

(Here Rhk
is the scalar curvature of hk.) That is to say, for any non-negative

C∞-function f we have

∫

M×{t}
−〈∇hk lk,∇hk(ϕ · f)〉hk

dvol(hk)

≤
∫

M×{t}

ϕf

2

(
|∇hk lk|2hk

−Rhk
− lk − n

τ

)
dvol(hk).

We claim that the same inequality holds as long as f is a non-negative,
locally Lipschitz function. The point is that given such a function f , we can
find a sequence of non-negative C∞-functions fk on the support of ϕ (by say
mollifying f) that converge to f strongly in the W 1,2-norm on the support
of ϕ. The sought-after inequality holds for every fk. Since both sides of the
inequality are continuous in the W 1,2-norm of the function, the result holds
for the limit function f as well.
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Now we apply this with f being the non-negative locally Lipschitz func-
tion l∞ − lk + ǫk. We conclude that
∫

M×{t}
〈∇hk(ϕ(lk − l∞ − ǫk)),∇hk lk〉hk

dvol(hk)

≤
∫

M×{t}

ϕ(l∞ − lk + ǫk)

2

(
|∇hk lk|2hk

−Rhk
− lk − n

τ

)
dvol(hk).

Now taking the limit as k → ∞, we see that the right-hand side of this
inequality tends to zero since (l∞ − lk + ǫk) tends uniformly to zero on the
support of ϕ and |∇hklk|2hk

, Rk and lk are all uniformly essentially bounded
on the support of ϕ. Thus, the term∫

M×{t}
〈∇hk(ϕ(lk − l∞ − ǫk)),∇hk lk〉hk

dvol(hk)

has a limsup ≤ 0 as k tends to ∞. Now we expand

∇hk(ϕ(lk − l∞ − ǫk)) = ∇hk(ϕ)(lk − l∞ − ǫk) + ϕ∇hk(lk − l∞ − ǫk).

The first term on the right-hand side converges to zero as k → ∞ since
lk − l∞ − ǫk tends uniformly to zero on the support of ϕ. This completes
the proof of the claim. �

We have now established the inequalities in both directions and hence
completed the proof of Lemma 9.21. �

Lemma 9.23. Consider the distribution

D =
∂l∞
∂τ

+ |∇l∞|2 −R+
n

2τ
−△l∞

on M∞ × (−∞, 0). Then D extends to a continuous linear functional on
the space of compactly supported W 1,2-functions on M∞ × (−∞, 0). Fur-
thermore, if ψ is a non-negative Lipschitz function on M∞ × (−∞, 0) with
compact support, then D(ψ) ≤ 0.

Proof. Clearly, since the lk converge uniformly on compact subsets of
M∞×(−∞, 0) to l∞ and the metrics hk converge smoothly to g∞, uniformly
on compact sets, it follows that the △hklk converge in the weak sense to △l∞
and similarly, the ∂lk/∂τ converge in the weak sense to ∂l∞/∂τ . Hence, by
taking limits from Theorem 7.13, using Lemma 9.21, we see that

(9.9) D =
∂l∞
∂τ

+ |∇l∞|2 −R+
n

2τ
−△l∞ ≥ 0

in the weak sense on M × (−∞, 0).
Since R and n

2τ are C∞-functions, it is clear that the distributions given
by these terms extend to continuous linear functionals on the space of com-
pactly supported W 1,2-functions. Similarly, since |∇l∞|2 is an element of
L∞

loc, it also extends to a continuous linear functional on compactly supported
W 1,2-functions. Since |∂l∞/∂τ | is an locally essentially bounded function,
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∂l∞/∂τ extends to a continuous functional on the space of compactly sup-
ported W 1,2 functions. Lastly, we consider △l∞. As we have seen, the value
of the associated distribution on ϕ is given by

∫

M×(−∞,,0)
−〈∇ϕ,∇l∞〉g∞dvol(g∞)dτ.

Since |∇l∞| is a locally essentially bounded function, this expression also
extends to a continuous linear functional on compactly supported W 1,2-
functions.

Lastly, if ψ is an element of W 1,2 with compact support and hence can
be approximated in the W 1,2-norm by non-negative smooth functions. The
last statement is now immediate from Equation (9.9). �

This leads immediately to:

Corollary 9.24. The functional

ϕ 7→ D(e−l∞ϕ)

is a distribution and its value on any non-negative, compactly supported
C∞-function ϕ is ≥ 0.

Proof. If ϕ is a compactly supported non-negative C∞-function, then
e−l∞ϕ is a compactly supported non-negative Lipschitz function. Hence,
this result is an immediate consequence of the previous corollary. �

2.5. Extension to non-compactly supported functions. The next
step in this proof is to estimate the lxk

uniformly from below in order to
show that the integrals involved in the distributions in Proposition 9.20 are
absolutely convergent so that they extend to continuous functionals on a
certain space of functions that includes non-compactly supported functions.

Lemma 9.25. There is a constant c1 > 0 depending only on the dimen-
sion n such that for any p, q ∈Mk we have

lxk
(p, τ) ≥ −lxk

(q, τ) − 1 + c1
d2
g(−τ)(p, q)

τ
.

Proof. Since both sides of this inequality and also Ricci flow are in-
variant if the metric and time are simultaneously rescaled, it suffices to
consider the case when τ = 1. Also, since Ux(1) is a dense subset, it suf-
fices to assume that p, q ∈ Ux(1). Also, by symmetry, we can suppose that
lxk

(q, 1) ≤ lxk
(p, 1).

Let γ1 and γ2 be the minimizing L-geodesics from x to (p, 1) and (q, 1)
respectively. We define a function f : Mk ×Mk × [0,∞) → R by

f(a, b, τ) = dgk(−τ)(a, b).
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Since γ1(0) = γ2(0) we have

dgk(−1)(p, q) = f(p, q, 1)(9.10)

=

∫ 1

0

d

dτ
f(γ1(τ), γ2(τ), τ)dτ

=

∫ 1

0

(∂f
∂τ

(γ1(τ), γ2(τ), τ) + 〈∇fa, γ′1(τ)〉

+ 〈∇fb, γ′2(τ)〉
)
dτ,

where ∇af and ∇bf refer respectively to the gradient of f with respect to
the first copy of Mk in the domain and the second copy of Mk in the domain.
Of course, |∇fa| = 1 and |∇fb| = 1.

By Corollary 6.29, γ′1(τ) = ∇lxk
(γ1(τ), τ) and γ′2(τ) = ∇lxk

(γ2(τ), τ).
Since R ≥ 0 we have

lxk
(γ1(τ), τ) =

1

2
√
τ
Lxk

(γ1|[0,τ ]) ≤
1

2
√
τ
Lxk

(γ1) =
1√
τ
lxk

(p, 1).

Symmetrically, we have

lxk
(γ2(τ), τ) ≤

1√
τ
lxk

(q, 1).

From this inequality, Corollary 9.10, and the fact that R ≥ 0, we have

∣∣〈∇fa(γ1(τ), γ2(τ), τ), γ
′
1(τ)〉

∣∣ ≤ |γ′1(τ)| = |∇lxk
(γ1(τ), τ)|(9.11)

≤
√

3

τ3/4

√
lxk

(p, 1)

≤
√

3

τ3/4

√
lxk

(p, 1) + 1.

Symmetrically, we have
(9.12)
∣∣〈∇fb(γ1(τ), γ2(τ), τ), γ

′
2(τ)〉

∣∣ ≤
√

3

τ3/4

√
lxk

(q, 1) ≤
√

3

τ3/4

√
lxk

(q, 1) + 1.

It follows from Corollary 9.10 that for any p, we have

|∇(
√
lxk

(p, τ))| ≤
√

3

2
√
τ
.

Set r0(τ) = τ3/4(lxk
(q, 1) + 1)−1/2. For any p′ ∈ Bgk

(γ1(τ), τ, r0(τ)) inte-
grating gives

l1/2xk
(p′, τ) ≤ l1/2xk

(γ1(τ), τ) +

√
3

2
√
τ
r0(τ) ≤

(
τ−1/4 +

√
3

2
τ1/4

)√
lxk

(p, 1) + 1,
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where in the last inequality we have used the fact that 1 ≤ lxk
(q, 1) + 1 ≤

lxk
(p, 1) + 1. Again using Corollary 9.10 we have

R(p′, τ) ≤ 3

τ

(
τ−1/4 +

√
3

2
τ1/4

)2

(lxk
(p, 1) + 1).

Now consider q′ ∈ Bgk(τ)(γ2(τ), τ, r0(τ)). Similarly to the above computa-
tions, we have

l1/2xk
(q′, τ) ≤ l1/2xk

(q, 1) +

√
3

2
√
τ
r0(τ),

so that

l1/2xk
(q′, τ) ≤

(
τ−1/4 +

√
3

2
τ1/4

)√
lxk

(q, 1) + 1,

and

|Ric(q′, τ) ≤ R(q′, τ) ≤ 3

τ

(
τ−1/4 +

√
3

2
τ1/4

)2

(lxk
(q, 1) + 1).

We set

K =
3

τ

(
τ−1/4 +

√
3

2
τ1/4

)2

(lxk
(q, 1) + 1).

Now, noting that ∂/∂τ here is −∂/∂t of Proposition 3.21, we apply
Proposition 3.21 to see that∣∣∣∣

∂

∂τ
f(γ1(τ), γ2(τ), τ)

∣∣∣∣ ≤ 2(n − 1)

(
2

3(n − 1)
Kr0(τ) + r0(τ)

−1

)

≤
(
C1τ

−3/4 + C2τ
−1/4 + C3τ

1/4
)√

lxk
(q, 1) + 1,

where C1, C2, C3 are constants depending only on the dimension n.
Now plugging Equation (9.11) and (9.12) and the above inequality into

Equation (9.10) we see that

dg(−1)(p, q) ≤
∫ 1

0

((
C1τ

−3/4 + C2τ
−1/4 + C3τ

1/4
)√

lxk
(q, 1) + 1

+
√

3τ−3/4
√
lxk

(q, 1) + 1 +
√

3τ−3/4
√
lxk

(p, 1) + 1

)
dτ.

This implies that

dg(−1)(p, q) ≤ C

(√
lxk

(q, 1) + 1 +
√
lxk

(p, 1) + 1

)
,

for some constant depending only on the dimension. Thus, since we are
assuming that lxk

(p, 1) ≥ lxk
(q, 1) we have

d2
g(−1)(p, q) ≤ C2 (3(lxk

(p, 1) + 1) + (lxk
(q, 1) + 1))

≤ 4C2(lxk
(p, 1) + 1 + lxk

(q, 1)),
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for some constant C <∞ depending only on the dimension. The result now
follows immediately. �

Corollary 9.26. For any q′ ∈M and any 0 < τ0 ≤ τ ′ we have

lxk
(q′, τ ′) ≥ − n

2(τ ′)2
− τ ′

2
− 1 + c1

dg2k(−τ0)(qk, q
′)

τ ′
,

where c1 is the constant from Lemma 9.25.

Proof. By Claim 9.15

lxk
(qk, τ

′) ≤ n

2(τ ′)2
+
nτ ′

2
.

Now applying Lemma 9.25 we see that for any 0 < τ ′ and any q′ ∈ Mk we
have

lxk
(q′, τ ′) ≥ − n

2(τ ′)2
− nτ ′

2
− 1 + c1

d2
gk(−τ ′)(qk, q

′)

τ ′

≥ − n

2(τ ′)2
− nτ ′

2
− 1 + c1

d2
gk(−τ0)(qk, q

′)

τ ′
.

In the last inequality, we use the fact that the Ricci curvature is positive so
that the metric is decreasing under the Ricci flow. �

Since the time-slices of all the flows in question have non-negative cur-
vature, by Theorem 1.34 the volume of the ball of radius s is at most ωsn

where ω is the volume of the ball of radius 1 in R
n. Since the lk converge

uniformly to l∞ on compact sets and since the metrics hk converge uniformly
in the C∞-topology on compact sets to g∞, it follows that for any ǫ > 0,
for any 0 < τ0 ≤ τ ′ < ∞ there is a radius r such that for every k and any
τ ∈ [τ0, τ

′] the integral∫

M∞\Bhk(−τ0)(qk,r)
e−lk(q,τ)dq < ǫ.

It follows by Lebesgue dominated convergence that∫

M∞\Bg∞(−τ0)(q∞,r)
e−l∞(q,τ)dq ≤ ǫ.

Claim 9.27. Fix a compact interval [−τ,−τ0] ⊂ (−∞, 0). Let f be a lo-
cally Lipschitz function that is defined on M∞×[−τ,−τ0] and such that there
is a constant C with the property that f(q, τ ′) by C times max(l∞(q, τ ′), 1) .
Then the distribution D1 = fe−l∞ is absolutely convergent in the following
sense. For any bounded smooth function ϕ defined on all of M∞× [−τ,−τ0]
and any sequence of compactly supported, non-negative smooth functions ψk,
bounded above by 1 everywhere that are eventually 1 on every compact subset,
the following limit exists and is finite:

limk→∞D1(ϕψk).
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Furthermore, the limit is independent of the choice of the ψk with the given
properties.

Proof. It follows from the above discussion that there are constants
c > 0 and a ball B ⊂ M∞ centered at q∞ such that on M∞ × [−τ,−τ0] \
B × [τ,−τ0] the function l∞ is greater than cd2

g∞(−τ0)(q∞, ·) − C ′. Thus,

fe−l∞ has fixed exponential decay at infinity. Since the Riemann curvature
of M∞ × {τ ′} is non-negative for every τ ′, the flow is distance decreasing,
and there is a fixed polynomial upper bound to the growth rate of volume
at infinity. This leads to the claimed convergence property. �

Corollary 9.28. Each of the distributions |∇l∞|2e−l∞, Re−l∞, and
|(∂l∞/∂τ)|e−l∞ is absolutely convergent in the sense of the above claim.

Proof. By Corollary 9.10, the Lipschitz functions |∇l∞|2, |∂l∞/∂τ | and
R are at most a constant multiple of l∞. Hence, the corollary follows from
the previous claim. �

There is a slightly weaker statement that is true for △e−l∞ .

Claim 9.29. Suppose that ϕ and ψk are as in Claim 9.27, but in addition
ϕ and all the ψk are uniformly Lipschitz. Then

limk→∞

∫

M∞

ϕψk△e−l∞dvolg∞

converges absolutely.

Proof. This time the value of the distribution on a compactly sup-
ported smooth function ρ is given by the integral of

−〈∇ρ,∇e−l∞〉 = 〈∇ρ,∇l∞〉e−l∞ .
Since |∇l∞| is less than or equal to the maximum of 1 and |∇l∞|2, it fol-
lows immediately, that if |∇ρ| is bounded, then the integral is absolutely
convergent. From this the claim follows easily. �

Corollary 9.30. Fix 0 < τ0 < τ1 < ∞. Let f be a non-negative,
smooth bounded function on M∞× [τ0, τ1] with (spatial) gradient of bounded
norm. Then∫

M∞×[τ0,τ1]

(
∂l∞
∂τ

+ |∇l∞|2 −R+
n

2τ
−△l∞

)
fτ−n/2e−l∞dvolg∞dτ ≥ 0.

Proof. For the interval [τ0, τ
′] we construct a sequence of uniformly

Lipschitz functions ψk on M∞×[τ0, τ
′] that are non-negative, bounded above

by 1 and eventually 1 on every compact set. Let ρ(x) be a smooth bump
function which is 1 for x less than 1/4 and is 0 from x ≥ 3/4 and is every-
where between 0 and 1. For any k sufficiently large let ψk be the composition
of ρ(dg∞(−τ0)(q∞, ·) − k). Being compositions of ρ with Lipschitz functions
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with Lipschitz constant 1, the ψk are a uniformly Lipschitz family of func-
tions on M∞ × {−τ}. Clearly then they form a uniformly Lipschitz family
on M∞ × [τ0, τ

′] as required. This allows us to define any of the above
distributions on Lipschitz functions on M∞ × [τ0, τ

′].
Take a family ψk of uniformly Lipschitz functions, each bounded between

0 and 1 and eventually 1 on every compact subset of M∞× [τ0, τ1]. Then the
family fψk is a uniformly Lipschitz family of compactly supported functions.
Hence, we can apply Claims 9.27 and 9.29 to establish that the integral in
question is the limit of an absolutely convergent sequence. By Corollary 9.24
each term in the sequence is non-positive. �

2.6. Completion of the proof of Proposition 9.20. Lebesgue dom-
inated convergence implies that the following limit exists:

limk→∞Ṽk(τ) ≡ Ṽ∞(τ) =

∫

M∞×{−τ}
τ−n/2e−l∞(q,τ)dvolg∞(τ).

By Corollary 9.14, the function τ → Ṽ∞(τ) is constant. On the other hand,
note that for any 0 < τ0 < τ1 <∞, we have

Ṽ∞(τ1) − Ṽ∞(τ0) =

∫ τ1

τ0

dṼ∞
dτ

dτ

=

∫ τ1

τ0

∫

M∞

(
∂l∞
∂τ

−R+
n

2τ

)(
τ−n/2e−l∞(q,τ)dvolg∞(τ)

)
.

According to Corollary 9.28 this is an absolutely convergent integral, and so
this integral is zero.

Claim 9.31.
∫

M∞×[τ0,τ1]
△e−l∞dvolg∞dτ =

∫

M∞×[τ0,τ1]

(
|∇l∞|2 −△l∞

)
e−l∞dvolg∞dτ

= 0.

Proof. Since we are integrating against the constant function 1, this
result is clear, given the convergence result, Corollary 9.28, necessary to
show that this integral is well defined. �

Adding these two results together gives us
(9.13)∫ τ1

τ0

∫

M∞×{−τ}

(
∂l∞
∂τ

+ |∇l∞|2 −R+
n

2τ
−△l∞

)
τ−n/2e−l∞dvolg∞ = 0.

Now let ϕ be any compactly supported, non-negative smooth function.
By scaling by a positive constant, we can assume that ϕ ≤ 1 everywhere.
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Let D̃ denote the distribution given by

D̃(ϕ)

=

∫

M∞×[τ0,τ1]
ϕ

(
∂l∞
∂τ

+ |∇l∞|2 −R+
n

2τ
−△l∞

)
τ−n/2e−l∞dvolg∞dτ.

Then we have seen that D̃ extends to a functional on bounded smooth
functions of bounded gradient. Furthermore, according to Equation (9.13),

we have D̃(1) = 0. Thus,

0 = D(1) = D(ϕ) + D(1 − ϕ).

Since both ϕ and 1−ϕ are non-negative, it follows from Corollary 9.30, that
D(ϕ) and D(1 − ϕ) are each ≥ 0. Since their sum is zero, it must be the
case that each is individually zero.

This proves that the Inequality (9.9) is actually an equality in the weak
sense, i.e., an equality of distributions on M∞ × [τ0, τ

′). Taking limits we
see:

(9.14) D̃ =

(
∂l∞
∂τ

+ |∇l∞|2 −R+
n

2τ
−△l∞

)
τ−n/2e−l∞ = 0,

in the weak sense on all of M × (−∞, 0). Of course, this implies that

∂l∞
∂τ

+ |∇l∞|2 −R+
n

2τ
−△l∞ = 0

in the weak sense.
It now follows by parabolic regularity that l∞ is a smooth function on

M∞ × (−∞, 0) and that Equation (9.14) holds in the usual sense.
Now from the last two equations in Corollary 6.51 and the convergence

of the lxk
to l∞, we conclude that the following equation also holds:

(9.15) 2△l∞ − |∇l∞|2 +R+
l∞ − n

τ
= 0.

This completes the proof of Proposition 9.20.

2.7. The gradient shrinking soliton equation. Now we return to
the proof of Theorem 9.11. We have shown that the limiting Ricci flow
referred to in that result exists, and we have established that the limit l∞
of the length functions lxk

is a smooth function and satisfies the differential
equalities given in Proposition 9.20. We shall use these to establish the
gradient shrinking soliton equation, Equation (9.2), for the limit for f = l∞.

Proposition 9.32. The following equation holds on M∞ × (−∞, 0):

Ricg∞(t) + Hessg∞(t)(l∞(·, τ)) − 1

2τ
g∞(t) = 0,

where τ = −t,
Proof. This result will follow immediately from:
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Lemma 9.33. Let (M,g(t)), 0 ≤ t ≤ T , be an n-dimensional Ricci flow,
and let f : M × [0, T ] → R be a smooth function. As usual set τ = T − t.
Then the function

u = (4πτ)−
n
2 e−f

satisfies the conjugate heat equation

−∂u
∂t

−△u+Ru = 0,

if and only if we have

∂f

∂t
+ △f − |∇f |2 +R− n

2τ
= 0.

Assuming that u satisfies the conjugate heat equation, then setting

v =
[
τ
(
2△f − |∇f |2 +R

)
+ f − n

]
u,

we have

−∂v
∂t

−△v +Rv = −2τ
∣∣Ricg + Hessg(f) − 1

2τ
g
∣∣2u.

Let us assume the lemma for a moment and use it to complete the proof
of the proposition.

We apply the lemma to the limiting Ricci flow (M∞, g∞(t)) with the
function f = l∞. According to Proposition 9.20 and the first statement in
Lemma 9.33, the function u satisfies the conjugate heat equation. Thus,
according to the second statement in Lemma 9.33, setting

v =
[
τ
(
2△f − |∇f |2 +R

)
+ f − n

]
u,

we have
∂v

∂τ
−△v +Rv = −2τ

∣∣Ricg + Hess(f) − 1

2τ
g
∣∣2u.

On the other hand, the second equality in Proposition 9.20 shows that v = 0.
Since u is nowhere zero, this implies that

Ricg∞ + Hessg∞(f) − 1

2τ
g∞ = 0.

This completes the proof of the proposition assuming the lemma. �

Now we turn to the proof of the lemma.

Proof. (of Lemma 9.33) Direct computation shows that

−∂u
∂t

−△u+Ru =

(
− n

2τ
+
∂f

∂t
+ △f − |∇f |2 +R

)
u.

From this, the first statement of the lemma is clear. Let

H =
[
τ(2△f − |∇f |2 +R) + f − n

]

so that v = Hu. Then, of course,

∂v

∂t
=
∂H

∂t
u+H

∂u

∂t
and
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△v = △H · u+ 2〈∇H,∇u〉 +H△u.
Since u satisfies the conjugate heat equation, we have

−∂v
∂t

−△v +Rv =

(
−∂H
∂t

−△H
)
u− 2〈∇H,∇u〉.

Differentiating the definition of H yields

(9.16)
∂H

∂t
= −(2△f−|∇f |2+R)+

∂f

∂t
+τ

(
2
∂

∂t
△f − ∂

∂t
(|∇f |2) +

∂R

∂t

)
.

Claim 9.34.

∂

∂t
△f = △(

∂f

∂t
) + 2〈Ric,Hess(f)〉.

Proof. We work in local coordinates. We have

△f = gij∇i∇jf = gij(∂i∂jf − Γkij∂kf),

so that from the Ricci flow equation we have

∂

∂t
△f = 2RicijHess(f)ij + gij

∂

∂t
(Hess(f)ij)

= 2RicijHess(f)ij + gijHess

(
∂f

∂t

)

ij

− gij
∂Γkij
∂t

∂kf.

Since the first term is 2〈Ric,Hess(f)〉 and the second is △(∂f∂t ), to complete
the proof of the claim, we must show that the last term of this equation
vanishes. In order to simplify the computations, we assume that the metric
is standard to second order at the point and time under consideration. Then,
using the Ricci flow equation, the definition of the Christoffel symbols in
terms of the metric, and the fact that gij is the identity matrix at the given
point and time and that its covariant derivatives in all spatial directions
vanish at this point and time, we get

gij
∂Γkij
∂t

= gklgij (−(∇jRic)li − (∇iRic)lj + (∇lRic)ij) .

This expression vanishes by the second Bianchi identity (Claim 1.5). This
completes the proof of the claim. �

We also have

∂

∂t
(|∇f |2) = 2Ric(∇f,∇f) + 2〈∇∂f

∂t
,∇f〉.

(Here ∇f is a one-form, which explains the positive sign in the Ricci term.)
Plugging this and Claim 9.34 into Equation (9.16) yields

∂H

∂t
= −2△f + |∇f |2 −R+

∂f

∂t

+ τ

(
4〈Ric,Hess(f)〉 + 2△∂f

∂t
− 2Ric(∇f,∇f)− 2〈∇∂f

∂t
,∇f〉 +

∂R

∂t

)
.
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Also,

△H = △f + τ
(
2△2f −△(|∇f |2) + △R

)
.

Since u satisfies the conjugate heat equation, from the first part of the
lemma we have

(9.17)
∂f

∂t
= −△f + |∇f |2 −R+

n

2τ
.

Putting all this together and using the Equation (3.7) for ∂R/∂t yields

∂H

∂t
+ △H = −△f + |∇f |2 +

∂f

∂t
−R

+ τ
(
4〈Ric,Hess(f)〉 + 2△∂f

∂t
+ 2△2f − 2Ric(∇f,∇f)

−△(|∇f |2) − 2〈∇∂f

∂t
,∇f〉 + 2△R+ 2|Ric|2

)

= −△f + |∇f |2 +
∂f

∂t
−R

+ τ
(
4〈Ric,Hess(f)〉 + 2△(|∇f |2 −R− 2Ric(∇f,∇f)

−△(|∇f |2) − 2〈∇∂f

∂t
,∇f〉 + 2△R+ 2|Ric|2

)

= −△f + |∇f |2 +
∂f

∂t
−R+ τ

[
4〈Ric,Hess(f)〉 + △(|∇f |2)

− 2Ric(∇f,∇f) + 2〈∇(△f),∇f〉 − 2〈∇(|∇f |2),∇f〉

+ 2〈∇R,∇f〉 + 2|Ric|2
]
.

Similarly, we have

2〈∇u,∇H〉
u

= −2〈∇f,∇H〉

= −2|∇f |2 − 2τ〈∇f,
(
∇(2△f) − |∇f |2 +R

)
〉

= −2|∇f |2 − τ
(
4〈∇f,∇(△f)〉 − 2〈∇f,∇(|∇f |2)〉

+ 2〈∇f,∇R〉 ) .

Thus,

∂H

∂t
+ △H +

2〈∇u,∇H〉
u

= −△f − |∇f |2 +
∂f

∂t
−R+ τ

[
4〈Ric,Hess(f)〉

+ △(|∇f |2) − 2Ric(∇f,∇f) + 2|Ric|2

− 2〈∇f,∇(△f)〉
]
.

Claim 9.35. The following equality holds:

△(|∇f |2) = 2〈∇(△f),∇f〉 + 2Ric(∇f,∇f) + 2|Hess(f)|2.
Proof. We have

△(|∇f |2) = △〈∇f,∇f〉 = △〈df, df〉 = 2〈△df, df〉 + 2〈∇df,∇df〉.
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The last term is |Hess(f)|2. According to Lemma 1.10 we have △df =
d(△f) + Ric(∇f, ·). Plugging this in gives

△(|∇f |2) = 2〈d(△f), df〉 + 2〈Ric(∇f, ·), df〉 + 2|Hess(f)|2,
which is clearly another way of writing the claimed result. �

Using this we can simplify the above to

∂H

∂t
+ △H +

2〈∇u,∇H〉
u

= −△f − |∇f |2 +
∂f

∂t
−R

+ τ
(
4〈Ric,Hess(f)〉 + 2|Hess(f)|2 + 2|Ric|2

)
.

Now using Equation (9.17) we have

∂H

∂t
+ △H +

2〈∇u,∇H〉
u

= −2△f − 2R +
n

2τ

+ τ
(
4〈Ric,Hess(f)〉 + 2|Ric|2 + 2|Hess(f)|2

)

= 2τ
(
2〈Ric,Hess(f)〉 + |Ric|2 + |Hess(f)|2

− △f
τ

− R

τ
+

n

4τ2

)

= 2τ
∣∣Ric + Hess(f) − 1

2τ
g∞
∣∣2.

Since

−∂v
∂t

−△v +Rv = −u
(
∂H

∂t
+ △H +

2〈∇u,∇H〉
u

)
,

this proves the lemma. �

At this point, setting f = l∞, we have established all the results claimed
in Theorem 9.11 except for the fact that the limit is not flat. This we
establish in the next section.

2.8. Completion of the proof of Theorem 9.11. To complete the
proof of Theorem 9.11 we need only show that for every t ∈ (−∞, 0) the
manifold (M∞, g∞(t)) is non-flat.

Claim 9.36. If, for some t < 0, the Riemannian manifold (M∞, g∞(t))
is flat, then there is an isometry from R

n to (M∞, g∞(t)) and the pullback
under this isometry of the function l∞(x, τ) is the function |x|2/4τ+〈x, a〉+
b · τ for some a ∈ R

n and b ∈ R.

Proof. We know f = l∞(·, τ) solves the equation given in Lemma 9.33
and hence by the above argument, f also satisfies the equation given in
Proposition 9.32. If the limit is flat, then the equation becomes

Hess(f) =
1

2τ
g.

The universal covering of (M∞, g∞(t)) is isometric to R
n. Choose an identi-

fication with R
n, and lift f to the universal cover. Call the result f̃ . Then f̃
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satisfies Hess(f̃) = 1
2τ g̃, where g̃ is the usual Euclidean metric on R

n. This

means that f̃ − |x|2/4τ is an affine linear function. Clearly, then f̃ is not
invariant under any free action of a non-trivial group, so that the universal
covering in question is the trivial cover. This completes the proof of the
claim. �

If (M∞, g∞(t)) is flat for some t < 0, then by the above (M∞, g∞(t)) is

isometric to R
n. According to Proposition 7.27 this implies that Ṽ∞(τ) =

(4π)n/2. This contradicts Corollary 9.14, and the contradiction establishes
that (M∞, g∞(t)) is not flat for any t < 0. Together with Proposition 9.32,
this completes the proof of Theorem 9.11. The flow (M∞, g∞(t)), −∞ < t <
0, is a non-flat, κ-non-collapsed Ricci flow with non-negative curvature op-
erator that satisfies the gradient shrinking soliton equation, Equation (9.2).

To emphasize once again, we do not claim that (M∞, g∞(t)) is a κ-
solution, since we do not claim that each time-slice has bounded curvature
operator.

3. Splitting results at infinity

3.1. Point-picking. There is a very simple, general result about Rie-
mannian manifolds that we shall use in various contexts to prove that certain
types of Ricci flows split at infinity as a product with R.

Lemma 9.37. Let (M,g) be a Riemannian manifold and let p ∈ M and
r > 0 be given. Suppose that B(p, 2r) has compact closure in M and sup-
pose that f : B(p, 2r)× (−2r, 0] → R is a continuous, bounded function with
f(p, 0) > 0. Then there is a point (q, t) ∈ B(p, 2r) × (−2r, 0] with the fol-
lowing properties:

(1) f(q, t) ≥ f(p, 0).
(2) Setting α = f(p, 0)/f(q, t) we have d(p, q) ≤ 2r(1 − α) and t ≥

−2r(1 − α).
(3) f(q′, t′) < 2f(q, t) for all (q′, t′) ∈ B(q, αr) × (t− αr, t].

Proof. Consider sequences of points x0 = (p, 0), x1 = (p1, t1), . . . , xj =
(pj, tj) in B(p, 2r) × (−2r, 0] with the following properties:

(1) f(xi) ≥ 2f(xi−1).
(2) Setting ri = rf(x0)/f(xi−1), then ri ≤ 2i−1r, and we have that

xi ∈ B(pi−1, ri) × (ti−1 − ri, ti−1].

Of course, there is exactly one such sequence with j = 0: it has x0 =
(p, 0). Suppose we have such a sequence defined for some j ≥ 0. If follows
immediately from the properties of the sequence that f(pj, tj) ≥ 2jf(p, 0),
that

tj ≥ −r(1 + 2−1 + · · · + 21−j),
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and that rj+1 ≤ 2−jr. It also follows immediately from the triangle inequal-
ity that d(p, pj) ≤ r(1 + 2−1 + · · · + 21−j). This means that

B(pj, rj+1) × (tj − rj+1, tj ] ⊂ B(p, 2r) × (−2r, 0].

Either the point xj satisfies the conclusion of the lemma, or we can find
xj+1 ∈ B(pj, rj+1)× (tj − rj+1, tj ] with f(xj+1) ≥ 2f(xj). In the latter case
we extend our sequence by one term. This shows that either the process
terminates at some j, in which case xj satisfies the conclusion of the lemma,
or it continues indefinitely. But it cannot continue indefinitely since f is
bounded on B(p, 2r) × (−2r, 0]. �

One special case worth stating separately is when f is independent of t.

Corollary 9.38. Let (M,g) be a Riemannian manifold and let p ∈M
and r > 0 be given. Suppose that B(p, 2r) has compact closure in M and
suppose that f : B(p, 2r) → R is a continuous, bounded function with f(p) >
0. Then there is a point q ∈ B(x, 2r) with the following properties:

(1) f(q) ≥ f(p).
(2) Setting α = f(p)/f(q) we have d(p, q) ≤ 2r(1−α) and f(q′) < 2f(q)

for all q′ ∈ B(q, αr).

Proof. Apply the previous lemma to f̂ : B(p, 2r)×(−2r, 0] → R defined

by f̂(p, t) = f(p). �

3.2. Splitting results. Here we prove a splitting result for ancient
solutions of non-negative curvature. They are both based on Theorem 5.35.

Proposition 9.39. Suppose that (M,g(t)), −∞ < t < 0, is a κ-non-
collapsed Ricci flow of dimension1 n ≤ 3. Suppose that (M,g(t)) is a com-
plete, non-compact, non-flat Riemannian manifold with non-negative curva-
ture operator for each t. Suppose that ∂R(q, t)/∂t ≥ 0 for all q ∈M and all
t < 0. Fix p ∈ M . Suppose that there is a sequence of points pi ∈ M going
to infinity with the property that

limi→∞R(pi,−1)d2
g(−1)(p, pi) = ∞.

Then there is a sequence of points qi ∈ M tending to infinity such that,
setting Qi = R(qi,−1), we have limi→∞d2(p, qi)Qi = ∞. Furthermore,
setting gi(t) = Qig(Q

−1
i (t+ 1) − 1), the sequence of based flows

(M,gi(t), (qi,−1)), −∞ < t ≤ −1,

converges smoothly to (Nn−1, h(t)) × (R, ds2), a product Ricci flow defined
for −∞ < t ≤ −1 with (Nn−1, h(−1)) being non-flat and of bounded, non-
negative curvature.

Corollary 9.40. There is no 2-dimensional flow satisfying the hypothe-
ses of Proposition 9.39.

1This result in fact holds in all dimensions.
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Proof. (of Proposition 9.39) Take a sequence pi ∈M such that

d2
g(−1)(p, pi)R(pi,−1) → ∞

as i→ ∞. We set di = dg(−1)(p, pi) and we set Bi = B(pi,−1, di/2), and we
let f : Bi → R be the square root of the scalar curvature. Since (M,g(−1))
is complete, Bi has compact closure in M , and consequently f is a bounded
continuous function on Bi. Applying Corollary 9.38 to (Bi, g(−1)) and f ,
we conclude that there is a point qi ∈ Bi with the following properties:

(1) R(qi,−1) ≥ R(pi,−1).

(2) B′
i = B(qi,−1, (diR(pi,−1)1/2)/(4R(qi, ti)

1/2) ⊂ B(pi,−1, di/2).
(3) R(q′,−1) ≤ 4R(qi,−1) for all (q′,−1) ∈ B′

i.

Since dg(−1)(p, qi) ≥ di/2, it is also the case that d2
g(−1)(p, qi)R(qi,−1) tends

to infinity as i tends to infinity. Because of our assumption on the time
derivative of R, it follows that R(q′, t) ≤ 4R(qi,−1) for all q′ ∈ B′

i and for
all t ≤ −1.

Set Qi = R(qi,−1). Let Mi = M , and set xi = (qi,−1). Lastly, set
gi(t) = Qig(Q

−1
i (t+ 1) − 1). We consider the based Ricci flows

(Mi, gi(t), xi), −∞ < t ≤ −1.

We see that Rgi(q
′, t) ≤ 4 for all

(q′, t) ∈ Bgi(qi,−1, diR(pi,−1)1/2/4) × (−∞,−1].

Since the original Ricci flows are κ-non-collapsed, the same is true for the
rescaled flows. Since diR(pi,−1)1/2/4 → ∞, by Theorem 5.15 there is a
geometric limit flow (M∞, g∞(t), (q∞,−1)) defined for t ∈ (−∞,−1]. Of
course, by taking limits we see that (M∞, g∞(t)) is κ-non-collapsed, its scalar
curvature is bounded above by 4, and its curvature operator is non-negative.
It follows that (M∞, g∞(t)) has bounded curvature.

To complete the proof we show that the Ricci flow (M∞, g∞(t)) splits as
a product of a line with a Ricci flow of one lower dimension. By construction
(M∞, g∞(−1)) is the geometric limit constructed from (M,g(−1)) in the fol-
lowing manner. We have a sequence of points qi tending to infinity in M and
constants λi = R(qi,−1) with the property that λid

2
g(−1)(p, qi) tending to

infinity such that (M∞, g∞(−1)) is the geometric limit of (M,λig(−1), qi).
Thus, according to Theorem 5.35, the limit (M∞, g∞(−1)) splits as a Rie-
mannian product with a line. If the dimension of M∞ is 2, then this is a
contradiction: We have that (M∞, g∞(−1)) splits as the Riemannian prod-
uct of a line and a one-manifold and hence is flat, but R(q∞,−1) = 1.
Suppose that the dimension of M∞ is 3. Since (M∞, g∞(−1)) splits as a
product with a line, it follows from the maximum principle (Corollary 4.19)
that the entire flow splits as a product with a line, and the Ricci flow on the
surface has strictly positive curvature. �
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4. Classification of gradient shrinking solitons

In this section we fix κ > 0 and classify κ-solutions (M,g∞(t)), −∞ <
t < 0, that satisfy the gradient shrinking soliton equation at the time-slice
t = −1 in the sense that there is a function f : M → R such that

Ricg∞(−1) + Hessg∞(−1)(f) − 1

2
g∞(−1) = 0.(9.18)

This will give a classification of the 2- and 3-dimensional asymptotic gradient
shrinking solitons constructed in Theorem 9.11.

Let us give some examples in dimensions 2 and 3 of ancient solutions that
have such functions. It turns out, as we shall see below, that in dimensions
2 and 3 the only such are compact manifolds of constant positive curvature
– i.e., Riemannian manifolds finitely covered by the round sphere. We can
create another, non-flat gradient shrinking soliton in dimension 3 by taking
(M,g−1) equal to the product of (S2, h−1), the round sphere of Gaussian
curvature 1/2, with the real line (with the metric on the real line denoted
ds2) and setting g(t) = |t|h−1 + ds2 for all t < 0. We define f : M ×
(−∞, 0) → R by f(p, t) = s2/4|t| where s : M → R is the projection onto
the second factor. Then it is easy to see that

Ricg(t) + Hessg(t)(f) − 1

2|t|g(t) = 0,

so that this is a gradient shrinking soliton. There is a free, orientation-
preserving involution on this Ricci flow: the product of the sign change on
R with the antipodal map on S2. This preserves the family of metrics and
hence there is an induced Ricci flow on the quotient. Since this involu-
tion also preserves the function f , the quotient is also a gradient shrinking
soliton. These are the basic 3-dimensional examples. As the following the-
orem shows, they are all the κ-non-collapsed gradient shrinking solitons in
dimension 3.

First we need a definition for a single Riemannian manifold analogous
to a definition we have already made for Ricci flows.

Definition 9.41. Let (M,g) be an n-dimensional complete Riemannian
manifold and fix κ > 0. We say that (M,g) is κ-non-collapsed if for every
p ∈M and any r > 0, if |Rmg| ≤ r−2 on B(p, r) then VolB(p, r) ≥ κrn.

Here is the theorem that we shall prove:

Theorem 9.42. Let (M,g) be a complete, non-flat Riemannian manifold
of bounded non-negative curvature of dimension 2 or 3. Suppose that the
Riemannian manifold (M,g) is κ-non-collapsed. Lastly, suppose that there
is a C2-function f : M → R such that

Ricg + Hessg(f) =
1

2
g.
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Then there is a Ricci flow (M,G(t)), −∞ < t < 0, with G(−1) = g and
with (M,G(t)) isometric to (M, |t|g) for every t < 0. In addition, (M,G(t))
is of one of the following three types:

(1) The flow (M,G(t)), −∞ < t < 0, is a shrinking family of compact,
round (constant positive curvature) manifolds.

(2) The flow (M,G(t)), −∞ < t < 0, is a product of a shrinking family
of round 2-spheres with the real line.

(3) (M,G(t)) is isomorphic to the quotient family of metrics of the
product of a shrinking family of round 2-spheres and the real line
under the action of an isometric involution.

Now let us begin the proof of Theorem 9.42

4.1. Integrating ∇f . Since the curvature of (M,g) is bounded, it fol-
lows immediately from the gradient shrinking soliton equation that Hessg(f)
is bounded. Fix a point p ∈ M . For any q ∈ M let γ(s) be a minimal geo-
desic from p to q parameterized at unit length. Since

d

ds
(|∇f(γ(s))|)2 = 2〈Hess(f)(γ′(s),∇f(γ(s))〉,

it follows that
d

ds
(|∇f(γ(s))|) ≤ C,

where C is an upper bound for |Hess(f)|. By integrating, it follows that

|∇f(q)| ≤ Cdg(p, q) + |∇f(p)|.
This means that any flow line λ(t) for ∇f satisfies

d

dt
dg(p, λ(t)) ≤ Cdg(p, λ(t)) + |∇f(p)|,

and hence these flow lines do not escape to infinity in finite time. It follows
that there is a flow Φt : M → M defined for all time with Φ0 = Id and
∂Φt/∂t = ∇f . We consider the one-parameter family of diffeomorphisms
Φ−log(|t|) : M →M and define

(9.19) G(t) = |t|Φ∗
−log(|t|)g. −∞ < t < 0.

We compute

∂G

∂t
= −Φ∗

h(t)g + 2Φ∗
h(t)Hessg(f) = −2Φ∗

h(t)Ric(g) = −2Ric(G(t)),

so that G(t) is a Ricci flow. Clearly, every time-slice is a complete, non-flat
manifold of non-negative bounded curvature. It is clear from the construc-
tion that G(−1) = g and that (M,G(t)) is isometric to (M, |t|g). This
shows that (M,g) is the −1 time-slice of a Ricci flow (M,G(t)) defined for
all t < 0, and that, furthermore, all the manifolds (M,G(t)) are equivalent
up to diffeomorphism and scaling by |t|.
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4.2. Case 1: M is compact and the curvature is strictly posi-
tive.

Claim 9.43. Suppose that (M,g) and f : M → R satisfies the hypotheses
of Theorem 9.42 and that M is compact and of positive curvature. Then the
Ricci flow (M,G(t)) with G(−1) = g given in Equation (9.19) is a shrinking
family of compact round manifolds.

Proof. The manifold (M,G(t)) given in Equation (9.19) is equivalent
up to diffeomorphism and scaling by |t| to (M,g). If the dimension of M
is 3, then according to Hamilton’s pinching toward positive curvature result
(Theorem 4.23), the Ricci flow becomes singular in finite time and as it
becomes singular the metric approaches constant curvature in the sense that
the ratio of the largest sectional curvature to the smallest goes to 1. But
this ratio is invariant under scaling and diffeomorphism, so that it must be
the case that for each t, all the sectional curvatures of the metric G(t) are
equal; i.e., for each t the metric G(t) is round. If the dimension of M is 2,
then the results go back to Hamilton in [31]. According to Proposition 5.21
on p. 118 of [13], M is a shrinking family of constant positive curvature
surfaces, which must be either S2 or RP 2. This completes the analysis in
the compact case. �

From this result, we can easily deduce a complete classification of κ-
solutions with compact asymptotic gradient shrinking soliton.

Corollary 9.44. Suppose that (M,g(t)) is a κ-solution of dimension
3 with a compact asymptotic gradient shrinking soliton. Then the Ricci flow
(M,g(t)) is isomorphic to a time-shifted version of its asymptotic gradient
shrinking soliton.

Proof. We suppose that the compact asymptotic gradient shrinking
soliton is the limit of the (M,gτn(t), (qn,−1)) for some sequence of τn → ∞.
Since by the discussion in the compact case, this limit is of constant positive
curvature, it follows that for all n sufficiently large, M is diffeomorphic to
the limit manifold and the metric gτn(−1) is close to a metric of constant
positive curvature. In particular, for all n sufficiently large, (M,gτn(−1)) is
compact and of strictly positive curvature. Furthermore, as n→ ∞, τn → ∞
and Riemannian manifolds (M,gτn(−1)) become closer and closer to round
in the sense that the ratio of its largest sectional curvature to its smallest
sectional curvature goes to 1. Since this is a scale invariant ratio, the same
is true for the sequence of Riemannian manifolds (M,g(−τn)). In the case
when the dimension of M is 3, by Hamilton’s pinching toward round result
or Ivey’s theorem (see Theorem 4.23), this implies that the (M,g(t)) are all
exactly round.

This proves that (M,g(t)) is a shrinking family of round metrics. The
only invariants of such a family are the diffeomorphism type of M and the
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time Ω at which the flow becomes singular. Of course, M is diffeomorphic
to its asymptotic soliton. Hence, the only remaining invariant is the singu-
lar time, and hence (M,g(t)) is equivalent to a time-shifted version of its
asymptotic soliton. �

4.3. Case 2: Non-strictly positively curved.

Claim 9.45. Suppose that (M,g) and f : M → R are as in the state-
ment of Theorem 9.42 and that (M,g) does not have strictly positive cur-
vature. Then n = 3 and the Ricci flow (M,G(t)) with G(−1) = g given in
Equation (9.19) has a one- or two-sheeted covering that is a product of a 2-
dimensional κ-non-collapsed Ricci flow of positive curvature and a constant
flat copy of R. The curvature is bounded on each time-slice.

Proof. According to Corollary 4.20, Hamilton’s strong maximum prin-
ciple, the Ricci flow (M,G(t)) has a one- or two-sheeted covering that splits
as a product of an evolving family of manifolds of one dimension less of
positive curvature and a constant one-manifold. It follows immediately that

n = 3. Let f̃ be the lifting of f to this one- or two-sheeted covering. Let
Y be a unit tangent vector in the direction of the one-manifold. Then it

follows from Equation (9.18) that the value of the Hessian of f̃ of (Y, Y ) is 1.
If the flat one-manifold factor is a circle then there can be no such function
f̃ . Hence, it follows that the one- or two-sheeted covering is a product of an
evolving surface with a constant copy of R. Since (M,g) is κ-non-collapsed
and of bounded curvature, (M,G(t)) is κ-non-collapsed and each time-slice
has positive bounded curvature. These statements are also true for the flow
of surfaces. �

4.4. Case 3: M is non-compact and strictly positively curved.
Here the main result is that this case does not occur.

Proposition 9.46. There is no 2- or 3-dimensional Ricci flow satisfying
the hypotheses of Theorem 9.42 with (M,g) non-compact and of positive
curvature.

We suppose that we have (M,g) as in Theorem 9.42 with (M,g) being
non-compact and of positive curvature. Let n be the dimension of M , so
that n is either 2 or 3. Taking the trace of the gradient shrinking soliton
equation yields

R+ △f − n

2
= 0,

and consequently that

dR + d(△f) = 0.

Using Lemma 1.10 we rewrite this equation as

(9.20) dR + △(df) − Ric(∇f, ·) = 0.
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On the other hand, taking the divergence of the gradient shrinking soliton
equation and using the fact that ∇∗g = 0 gives

∇∗Ric + ∇∗Hess(f) = 0.

Of course,

∇∗Hess(f) = ∇∗(∇∇f) = (∇∗∇)∇f = △(df),

so that

△(df) = −∇∗Ric.

Plugging this into Equation 9.20 gives

dR−∇∗Ric − Ric(∇f, ·) = 0.

Now invoking Lemma 1.9 we have

(9.21) dR = 2Ric(∇f, ·).
Fix a point p ∈ M . Let γ(s); 0 ≤ s ≤ s, be a shortest geodesic (with

respect to the metric g), parameterized at unit speed, emanating from p,
and set X(s) = γ′(s).

Claim 9.47. There is a constant C independent of the choice of γ and
of s such that ∫ s

0
Ric(X,X)ds ≤ C.

Proof. Since the curvature is bounded, clearly it suffices to assume
that s >> 1. Since γ is length-minimizing and parameterized at unit speed,
it follows that it is a local minimum for the energy functional E(γ) =
1
2

∫ s
0 |γ′(s)|2ds among all paths with the same end points. Thus, letting

γu(s) = γ(s, u) be a one-parameter family of variations (fixed at the end-
points) with γ0 = γ and with dγ/du|u=0 = Y , we see

0 ≤ δ2YE(γu) =

∫ s

0
|∇XY |2 + 〈R(Y,X)Y,X〉ds.

We conclude that

(9.22)

∫ s

0
〈−R(Y,X)Y,X〉ds ≤

∫ s

0
|∇XY |2ds.

Fix an orthonormal basis {Ei}ni=1 at p with En = X, and let Ẽi denote the

parallel translation of Ei along γ. (Of course, Ẽn = X.) Then, for i ≤ n−1,
we define

Yi =





sẼi if 0 ≤ s ≤ 1,

Ẽi if 1 ≤ s ≤ s− 1,
(s− s)Ei if s− 1 ≤ s ≤ s.
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Adding up Equation (9.22) for each i gives

−
n−1∑

i=1

∫ s

0
〈R(Yi,X)Yi,X〉ds ≤

n−1∑

i=1

∫ s

0
|∇XYi|2ds.

Of course, since the Ẽi are parallel along γ, we have

|∇XYi|2 =





1 if 0 ≤ s ≤ 1,
0 if 1 ≤ s ≤ s− 1,
1 if s− 1 ≤ s ≤ s,

so that
n−1∑

i=1

∫ s

0
|∇XYi|2 = 2(n− 1).

On the other hand,

−
n−1∑

i=1

〈R(Yi,X)(Yi),X〉 =





s2Ric(X,X) if 0 ≤ s ≤ 1,
Ric(X,X) if 1 ≤ s ≤ s− 1,
(s− s)2Ric(X,X) if s− 1 ≤ s ≤ s.

Since the curvature is bounded and |X| = 1, we see that
∫ s

0
(1 − s2)Ric(X,X)ds +

∫ s

s−1
(s− s)2Ric(X,X)

is bounded independent of γ and of s. This concludes the proof of the
claim. �

Claim 9.48. |Ric(X, ·)|2 ≤ R · Ric(X,X).

Proof. This is obvious if n = 2, so we may as well assume that n =
3. We diagonalize Ric in an orthonormal basis {ei}. Let λi ≥ 0 be the
eigenvalues. Write X = Xiei with

∑
i(X

i)2 = 1. Then

Ric(X, ·) = Xiλi(ei)
∗,

so that |Ric(X, ·)|2 =
∑

i(X
i)2λ2

i . Of course, since the λi ≥ 0, this gives

R · Ric(X,X) = (
∑

i

λi)
∑

i

λi(X
i)2 ≥

∑

i

λ2
i (X

i)2,

establishing the claim. �

Now we compute, using Cauchy-Schwarz,

(∫ s

0
|Ric(X, Ẽi)|ds

)2

≤ s

∫ s

0
|Ric(X, Ẽi)|2ds ≤ s

∫ s

0
|Ric(x, ·)|2ds

≤ s

∫ s

0
R · Ric(X,X)ds.
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Since R is bounded, it follows from the first claim that there is a constant
C ′ independent of γ and s with

(9.23)

∫ s

0
|Ric(X, Ẽi)|ds ≤ C ′√s.

Since γ is a geodesic in the metric g, we have ∇XX = 0. Hence,

d2f(γ(s))

ds2
= X(X(f)) = Hess(f)(X,X).

Applying the gradient shrinking soliton equation to the pair (X,X) gives

d2f(γ(s))

ds2
=

1

2
− Ricg(X,X).

Integrating we see

df(γ(s))

ds
|s=s =

df(γ(s))

ds
|s=0 +

s

2
−
∫ s

0
Ric(X,X)ds.

It follows that

(9.24) X(f)(γ(s)) ≥ s

2
− C ′′,

for some constant C ′′ depending only on (M,g) and f . Similarly, applying

the gradient shrinking soliton equation to the pair (X, Ẽi), using Equa-

tion (9.23) and the fact that ∇XẼi = 0 gives

(9.25) |Ẽi(f)(γ(s))| ≤ C ′′(
√
s+ 1).

These two inequalities imply that for s sufficiently large, f has no critical
points and that ∇f makes a small angle with the gradient of the distance
function from p, and |∇f | goes to infinity as the distance from p increases.
In particular, f is a proper function going off to +∞ as we approach infinity
in M .

Now apply Equation (9.21) to see that R is increasing along the gradient
curves of f . Hence, there is a sequence pk tending to infinity in M with
limkR(pk) = limsupq∈MRg(q) > 0.

The Ricci flow (M,G(t)), −∞ < t < 0, given in Equation (9.19) has
the property that G(−1) = g and that (M,G(t)) is isometric to (M, |t|g).
Since the original Riemannian manifold (M,g) given in the statement of
Theorem 9.42 is κ-non-collapsed, it follows that, for every t < 0, the Rie-
mannian manifold (M,G(t)) is κ-non-collapsed. Consequently, the Ricci
flow (M,G(t)) is κ-non-collapsed. It clearly has bounded non-negative cur-
vature on each time-slice and is non-flat. Fix a point p ∈ M . There is a
sequence of points pi tending to infinity with R(pi,−1) bounded away from
zero. It follows that limi→∞R(pi,−1)d2

g(−1)(p, pi) = ∞. Thus, this flow

satisfies all the hypotheses of Proposition 9.39. Hence, by Corollary 9.40
we see that n cannot be equal to 2. Furthermore, by Proposition 9.39,
when n = 3 there is another subsequence qi tending to infinity in M such
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that there is a geometric limit (M∞, g∞(t), (q∞,−1)), −∞ < t ≤ −1, of
the flows (M,G(t), (qi,−1)) defined for all t < 0 and this limit splits as a
product of a surface flow (Σ2, h(t)) times the real line where the surfaces
(Σ2, h(t)) are all of positive, bounded curvature and the surface flow is κ-
non-collapsed. Since there is a constant C < ∞ such that the curvature of
(M,G(t)),−∞ < t ≤ t0 < 0, is bounded by C/|t0|, this limit actually exists
for −∞ < t < 0 with the same properties.

Let us summarize our progress to date.

Corollary 9.49. There is no non-compact, 2-dimensional Riemann-
ian manifold (M,g) satisfying the hypotheses of Theorem 9.42. For any
non-compact 3-manifold (M,g) of positive curvature satisfying the hypothe-
ses of Theorem 9.42, there is a sequence of points qi ∈ M tending to in-
finity such that limi→∞Rg(qi) = supp∈M such that the based Ricci flows
(M,G(t), (qi,−1)) converge to a Ricci flow (M∞, G∞(t), (q∞,−1)) defined
for −∞ < t < 0 that splits as a product of a line and a family of sur-
faces, each of positive, bounded curvature (Σ2, h(t)). Furthermore, the flow
of surfaces is κ-non-collapsed.

Proof. In Claim 9.45 we saw that every 2-dimensional (M,g) satisfy-
ing the hypotheses of Theorem 9.42 has strictly positive curvature. The
argument that we just completed shows that there is no non-compact 2-
dimensional example of strictly positive curvature.

The final statement is exactly what we just established. �

Corollary 9.50. (1) Let (M,g(t)) be a 2-dimensional Ricci flow
satisfying all the hypotheses of Proposition 9.50 except possibly the
non-compactness hypothesis. Then M is compact and for any a > 0
the restriction of the flow to any interval of the form (−∞,−a]
followed by a shift of time by +a is a κ-solution.

(2) Any asymptotic gradient shrinking soliton for a 2-dimensional κ-
solution is a shrinking family of round surfaces.

(3) Let (M,g(t)),−∞ < t ≤ 0, be a 2-dimensional κ-solution. Then
(M,g(t)) is a shrinking family of compact, round surfaces.

Proof. Let (M,g(t)) be a 2-dimensional Ricci flow satisfying all the
hypotheses of Proposition 9.39 except possibly non-compactness. It then
follows from Corollary 9.40 that M is compact. This proves the first item.

Now suppose that (M,g(t)) is an asymptotic soliton for a κ-solution of
dimension 2. If (M,g(−1)) does not have bounded curvature, then there is a
sequence pi → ∞ so that limi→∞R(pi,−1) = ∞. By this and Theorem 9.11
the Ricci flow (M,g(t)) satisfies all the hypotheses of Proposition 9.39. But
this contradicts Corollary 9.40. We conclude that (M,g(−1)) has bounded
curvature. According to Corollary 9.49 this means that (M,g(t)) is compact.
Results going back to Hamilton in [31] imply that this compact asymptotic
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shrinking soliton is a shrinking family of compact, round surfaces. For ex-
ample, this result is contained in Proposition 5.21 on p. 118 of [13]. This
proves the second item.

Now suppose that (M,g(t)) is a 2-dimensional κ-solution. By the second
item any asymptotic gradient shrinking soliton for this κ-solution is compact.
It follows thatM is compact. We know that as t goes to −∞ the Riemannian
surfaces (M,g(t)) are converging to compact, round surfaces. Extend the
flow forward from 0 to a maximal time Ω <∞. By Theorem 5.64 on p. 149
of [13] the surfaces (M,g(t)) are also becoming round as t approaches Ω from
below. Also, according to Proposition 5.39 on p. 134 of [13] the entropy of
the flow is weakly monotone decreasing and is strictly decreasing unless the
flow is a gradient shrinking soliton. But we have seen that the limits at both
−∞ and Ω are round manifolds, and hence of the same entropy. It follows
that the κ-solution is a shrinking family of compact, round surfaces. �

Now that we have shown that every 2-dimensional κ-solution is a shrink-
ing family of round surfaces, we can complete the proof of Proposition 9.46.
Let (M,g) be a non-compact manifold of positive curvature satisfying the
hypotheses of Theorem 9.42. According to Corollary 9.50 the limiting Ricci
flow (M∞, G∞(t)) referred to in Corollary 9.49 is the product of a line and
a shrinking family of round surfaces. Since (M,g) is non-compact and has
positive curvature, it is diffeomorphic to R

3 and hence does not contain an
embedded copy of a projective plane. It follows that the round surfaces are
in fact round 2-spheres. Thus, (M∞, G∞(t)), −∞ < t < 0, splits as the
product of a shrinking family (S2, h(t)), −∞ < t < 0, of round 2-spheres
and the real line.

Claim 9.51. The scalar curvature of (S2, h(−1)) is equal to 1.

Proof. Since the shrinking family of round 2-spheres (S2, h(t)) exists
for all −∞ < t < 0, it follows that the scalar curvature of (S2, h(−1)) is at
most 1. On the other hand, since the scalar curvature is increasing along the
gradient flow lines of f , the infimum of the scalar curvature of (M,g), Rinf , is
positive. Thus, the infimum of the scalar curvature of (M,G(t)) is Rinf/|t|
and goes to infinity as |t| approaches 0. Thus, the infimum of the scalar
curvature of (S2, h(t)) goes to infinity as t approaches zero. This means
that the shrinking family of 2-spheres becomes singular as t approaches
zero, and consequently the scalar curvature of (S2, h(−1)) is equal to 1. �

It follows that for any p in a neighborhood of infinity of (M,g), we have

Rg(p) < 1.

For any unit vector Y at any point of M \K we have

Hess(f)(Y, Y ) =
1

2
− Ric(Y, Y ) ≥ 1

2
− R

2
> 0.
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(On a manifold with non-negative curvature Ric(Y, Y ) ≤ R/2 for any unit
tangent vector Y .) This means that for u sufficiently large the level surfaces
of Nu = f−1(u) are convex and hence have increasing area as u increases.

According to Equations (9.24) and (9.25) the angle between ∇f and the
gradient of the distance function from p goes to zero as we go to infinity.
According to Theorem 5.35 the gradient of the distance function from p
converges to the unit vector field in the R-direction of the product structure.
It follows that the unit vector in the ∇f -direction converges to the unit
vector in the R-direction. Hence, as u tends to ∞ the level surfaces f−1(u)
converge in the C1-sense to Σ× {0}. Thus, the areas of these level surfaces
converge to the area of (Σ, h(−1)) which is 8π since the scalar curvature of
this limiting surface is limsupp∈MR(p,−1) = 1. It follows that the area of

f−1(u) is less than 8π for all u sufficiently large.
Now let us estimate the intrinsic curvature of N = Nu = f−1(u). Let

KN denote the sectional curvature of the induced metric on N , whereas KM

is the sectional curvature of M . We also denote by RN the scalar curvature
of the induced metric on N . Fix an orthonormal basis {e1, e2, e3} at a point
of N , where e3 = ∇f/|∇f |. Then by the Gauss-Codazzi formula we have

RN = 2KN (e1, e2) = 2(KM (e1, e2) + detS)

where S is the shape operator

S =
Hess(f |TN)

|∇f | .

Clearly, we have R− 2Ric(e3, e3) = 2KM (e1, e2), so that

RN = R− 2Ric(e3, e3) + 2detS.

We can assume that the basis is chosen so that Ric|TN is diagonal; i.e., in
the given basis we have

Ric =



r1 0 c1
0 r2 c2
c1 c2 r3


 .

From the gradient shrinking soliton equation we have Hess(f) = (1/2)g−Ric
so that

det(Hess(f |TN)) =

(
1

2
− r1

)(
1

2
− r2

)

≤ 1

4
(1 − r1 − r2)

2

=
1

4
(1 −R+ Ric(e3, e3))

2.

Thus, it follows that

(9.26) RN ≤ R− 2Ric(e3, e3) +
(1 −R+ Ric(e3, e3))

2

2|∇f |2 .



216 9. κ-NON-COLLAPSED ANCIENT SOLUTIONS

It follows from Equation (9.24) that |∇f(x)| → ∞ as x goes to infinity in
M . Thus, since the curvature of (M,g(−1)) is bounded, provided that u is
sufficiently large, we have 1 −R+ Ric(e3, e3) < 2|∇f |2. Since the left-hand
side of this inequality is positive (since R < 1), it follows that

(1 −R+ Ric(e3, e3))
2 < 2(1 −R+ Ric(e3, e3))|∇f |2.

Plugging this into Equation (9.26) gives that

RN < 1 − Ric(e3, e3) ≤ 1,

assuming that u is sufficiently large.
This contradicts the Gauss-Bonnet theorem for the surface N : Its area

is less than 8π, and the scalar curvature of the induced metric is less than 1,
meaning that its Gaussian curvature is less than 1/2; yet N is diffeomorphic
to a 2-sphere. This completes the proof of Proposition 9.46, that is to say
this shows that there are no non-compact positive curved examples satisfying
the hypotheses of Theorem 9.42.

4.5. Case of non-positive curvature revisited. We return now to
the second case of Theorem 9.42. We extend (M,g) to a Ricci flow (M,G(t))
defined for −∞ < t < 0 as given in Equation (9.19). By Claim 9.45, M has

either a one- or 2-sheeted covering M̃ such that (M̃ , G̃(t)) is a metric product
of a surface and a one-manifold for all t < 0. The evolving metric on the
surface is itself a κ-solution and hence by Corollary 9.50 the surfaces are
compact and the metrics are all round. Thus, in this case, for any t < 0, the

manifold (M̃, G̃(t)) is a metric product of a round S2 or RP 2 and a flat copy
of R. The conclusion in this case is that the one- or two-sheeted covering

(M̃, G̃(t)) is a product of a round S2 or RP 2 and the line for all t < 0.

4.6. Completion of the proof of Theorem 9.42.

Corollary 9.52. Let (M,g(t)) be a 3-dimensional Ricci flow satisfying
the hypotheses of Proposition 9.39. Then the limit constructed in that propo-
sition splits as a product of a shrinking family of compact round surfaces
with a line. In particular, for any non-compact gradient shrinking soliton of
a 3-dimensional κ-solution the limit constructed in Proposition 9.39 is the
product of a shrinking family of round surfaces and the real line.

Proof. Let (M,g(t)) be a 3-dimensional Ricci flow satisfying the hy-
potheses of Proposition 9.39 and let (N2, h(t)) × (R, ds2) be the limit con-
structed in that proposition. Since this limit is κ-non-collapsed, (N,h(t))
is κ′-non-collapsed for some κ′ > 0 depending only on κ. Since the limit
is not flat and has non-negative curvature, the same is true for (N,h(t)).
Since ∂R/∂t ≥ 0 for the limit, the same is true for (N,h(t)). That is to
say (N,h(t)) satisfies all the hypotheses of Proposition 9.39 except possi-
bly non-compactness. It now follows from Corollary 9.50 that (N,h(t)) is a
shrinking family of compact, round surfaces. �
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Corollary 9.53. Let (M,g(t)), −∞ < t < 0, be an asymptotic gradient
shrinking soliton for a 3-dimensional κ-solution. Then for each t < 0, the
Riemannian manifold (M,g(t)) has bounded curvature. In particular, for
any a > 0 the flow (M,g(t)), −∞ < t ≤ −a, followed by a shift of time by
+a is a κ-solution.

Proof. If an asymptotic gradient shrinking soliton (M,g(t)) of a 3-
dimensional κ-solution does not have strictly positive curvature, then ac-
cording to Corollary 4.20, (M,g(t)) has a covering that splits as a product
of a 2-dimensional Ricci flow and a line. The 2-dimensional Ricci flow satis-
fies all the hypotheses of Proposition 9.39 except possibly compactness, and
hence by Corollary 9.50 it is a shrinking family of round surfaces. In this
case, it is clear that each time-slice of (M,g(t)) has bounded curvature.

Now we consider the remaining case when (M,g(t)) has strictly positive
curvature. Assume that (M,g(t)) has unbounded curvature. Then there is
a sequence of points pi tending to infinity in M such that R(pi, t) tends to
infinity. By Corollary 9.52 we can replace the points pi by points qi withQi =
R(qi, t) ≥ R(pi, t) so that the based Riemannian manifolds (M,Qig(t), qi)
converge to a product of a round surface (N,h(t)) with R. The surface N is
either diffeomorphic to S2 or RP 2. Since (M,g(t)) has positive curvature, by
Theorem 2.7, it is diffeomorphic to R

3, and hence it contains no embedded
RP 2. It follows that (N,h(t)) is a round 2-sphere.

Fix ǫ > 0 sufficiently small as in Proposition 2.19. Then the limiting
statement means that, for every i sufficiently large, there is an ǫ-neck in

(M,g(t)) centered at qi with scale Q
−1/2
i . This contradicts Proposition 2.19,

establishing that for each t < 0 the curvature of (M,g(t)) is bounded. �

Corollary 9.54. Let (M,g(t)), −∞ < t ≤ 0, be a κ-solution of dimen-
sion 3. Then any asymptotic gradient shrinking soliton (M∞, g∞(t)) for this
κ-solution, as constructed in Theorem 9.11, is of one of the three types listed
in Theorem 9.42.

Proof. Let (M∞, g∞(t)), −∞ < t < 0, be an asymptotic gradient
shrinking soliton for (M,g(t)). According to Corollary 9.53, this soliton is
a κ-solution, implying that (M∞, g∞(−1)) is a complete Riemannian man-
ifold of bounded, non-negative curvature. Suppose that B(p,−1, r) ⊂ M∞
is a metric ball and |Rmg∞ |(x,−1) ≤ r−2 for all x ∈ B(p,−1, r). Since
∂Rg∞(x, t)/∂t ≥ 0, it follows that R(x, t) ≤ 3r−2 on B(p,−1, r) × (−1 −
r2,−1], and hence that |Rmg∞ | ≤ 3r−2 on this same region. Since the Ricci

flow (M∞, g∞(t)) is κ-non-collapsed, it follows that VolB(p,−1, r/
√

3) ≥
κ(r/

√
3)3. Hence, Vol, B(p,−1, r) ≥ (κ/3

√
3)r3. This proves that the mani-

fold (M∞, g∞(−1)) is κ′-non-collapsed for some κ′ > 0 depending only on κ.
On the other hand, according to Theorem 9.11 there is a function f(·,−1)
from M∞ to R satisfying the gradient shrinking soliton equation at the time-
slice −1. Thus, Theorem 9.42 applies to (M∞, g∞(−1)) to produce a Ricci
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flow G(t), −∞ < t < 0, of one of the three types listed in that theorem and
with G(−1) = g∞(−1).

Now we must show that G(t) = g∞(t) for all t < 0. In the first case when
M∞ is compact, this is clear by uniqueness of the Ricci flow in the compact
case. Suppose that (M∞, G(t)) is of the second type listed in Theorem 9.42.
Then (M∞, g∞(−1)) is a product of a round 2-sphere and the real line.
By Corollary 4.20 this implies that the entire flow (M∞, g∞(t)) splits as
the product of a flow of compact 2-spheres and the real line. Again by
uniqueness in the compact case, this family of 2-spheres must be a shrinking
family of round 2-spheres. In the third case, one passes to a finite sheeted
covering of the second type, and applies the second case. �

4.7. Asymptotic curvature. There is an elementary result that will
be needed in what follows.

Definition 9.55. Let (M,g) be a complete, connected, non-compact
Riemannian manifold of non-negative curvature. Fix a point p ∈ M . We
define the asymptotic scalar curvature

R(M,g) = limsupx→∞R(x)d2(x, p).

Clearly, this limit is independent of p.

Proposition 9.56. Suppose that (M,g(t)), −∞ < t < 0, is a connected,
non-compact κ-solution of dimension2 at most 3. Then R(M,g(t)) = +∞
for every t < 0.

Proof. By Corollary 9.50 the only 2-dimensional κ-solutions are com-
pact, so that the result is vacuously true in this case. Suppose that (M,g(t))
is 3-dimensional. If (M,g(t)) does not have strictly positive curvature, then,
since it is not flat, by Corollary 4.20 it must be 3-dimensional and it has
a finite-sheeted covering space that splits as a product (Q,h(0)) × (R, ds2)
with (Q,h(0)) being a surface of strictly positive curvature and T being a
flat one-manifold. Clearly, in this case the asymptotic curvature is infinite.

Thus, without loss of generality we can assume that (M,g(t)) has strictly
positive curvature. Let us first consider the case when R(M,g(t)) has a
finite, non-zero value. Fix a point p ∈ M . Take a sequence of points xn
tending to infinity and set λn = d2

0(xn, p) and Qn = R(xn, t). We choose
this sequence such that

limn→∞Qnλn = R(M,g(t)).

We consider the sequence of Ricci flows (M,hn(t), (xn, 0)), where

hn(t) = Qng(Q
−1
n t).

Fix 0 < a <
√

R(M,g(t)) < b <∞. Consider the annuli

An = {y ∈M | a < dhn(0)(y, p) < b}.
2This result, in fact, holds in all dimensions.
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Because of the choice of sequence, for all n sufficiently large, the scalar curva-
ture of the restriction of hn(0) to An is bounded independent of n. Further-

more, since dhn(p, xn) converges to
√

R(M,g(t)), there is α > 0 such that for
all n sufficiently large, the annulus An contains Bhn(xn, 0, α). Consequently,
we have a bound, independent of n, for the scalar curvature of hn(0) on these
balls. By the hypothesis that ∂R/∂t ≥ 0, there is a bound, independent of
n, for the scalar curvature of hn on Bhn(xn, 0, α) × (−∞, 0]. Using the fact
that the flows have non-negative curvature, this means that there is a bound,
independent of n, for |Rmhn(y, 0)| on Bhn(xn, 0, α) × (−∞, 0]. This means
that by Shi’s theorem (Theorem 3.28), there are bounds, independent of n,
for every covariant derivative of the curvature on Bhn(xn, 0, α/2)× (−∞, 0].

Since the original flow is κ-non-collapsed on all scales, it follows that the
rescaled flows are also κ non-collapsed on all scales. Since the curvature is
bounded, independent of n, on Bhn(xn, 0, α), this implies that there is δ > 0,
independent of n, such that for all n sufficiently large, every ball of radius
δ centered at any point of Bhn(xn, 0, α/2) has volume at least κδ3, Now
applying Theorem 5.6 we see that a subsequence converges geometrically
to a limit which will automatically be a metric ball Bg∞(x∞, 0, α/2). In
fact, by Hamilton’s result (Proposition 5.14) there is a limiting flow on
Bg∞(x∞, 0, α/4) × (−∞, 0]. Notice that the limiting flow is not flat since
R(x∞, 0) = 1.

On the other hand, according to Lemma 5.31 the Gromov-Hausdorff
limit of a subsequence (M,λ−1

n gn(0), xn) is the Tits cone, i.e., the cone over
S∞(M,p). Since Qn = R(M,g(t))λ−1

n , the rescalings (M,Qngn(0), xn) also
converge to a cone, say (C, h, y∞), which is in fact simply a rescaling of the
Tits cone by a factor R(M,g(t)). Pass to a subsequence so that both the
geometric limit on the ball of radius α/2 and the Gromov-Hausdorff limit
exist. Then the geometric limit Bg∞(x∞, 0, α/2) is isometric to an open ball
in the cone. Since we have a limiting Ricci flow

(Bg∞(x∞, 0, α/2), g∞(t)), −∞ < t ≤ 0,

this contradicts Proposition 4.22. This completes the proof that it is not
possible for the asymptotic curvature to be finite and non-zero.

Lastly, we consider the possibility that the asymptotic curvature is zero.
Again we fix p ∈M . Take any sequence of points xn tending to infinity and
let λn = d2

0(p, xn). Form the sequence of based Ricci flows (M,hn(t), (xn, 0))
where hn(t) = λ−1

n g(λnt). On the one hand, the Gromov-Hausdorff limit (of
a subsequence) is the Tits cone. On the other hand, the curvature condition
tells us the following: For any 0 < a < 1 < b on the regions

{y ∈M | a < dhn(0)(y, p) < b},
the curvature tends uniformly to zero as n tends to infinity. Arguing as
in the previous case, Shi’s theorem, Hamilton’s result, Theorem 5.14, and
the fact that the original flow is κ non-collapsed on all scales tells us that
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we can pass to a subsequence so that these annuli centered at xn converge
geometrically to a limit. Of course, the limit is flat. Since this holds for all
0 < a < 1 < b, this implies that the Tits cone is smooth and flat except
possibly at its cone point. In particular, the sphere at infinity, S∞(M,p), is
a smooth surface of constant curvature +1.

Claim 9.57. S∞(M,p) is isometric to a round 2-sphere.

Proof. Since M is orientable the complement of the cone point in the
Tits cone is an orientable manifold and hence S∞(M,p) is an orientable
surface. Since we have already established that it has a metric of constant
positive curvature, it must be diffeomorphic to S2, and hence isometric to a
round sphere. (In higher dimensions one can prove that S∞(M,p) is simply
connected, and hence isometric to a round sphere.) �

It follows that the Tits cone is a smooth flat manifold even at the origin,
and hence is isometric to Euclidean 3-space. This means that in the limit,
for any r > 0 the volume of the ball of radius r centered at the cone point is
exactly ω3r

3, where ω3 is the volume of the unit ball in R
3. Consequently,

limn→∞Vol
(
Bg(p, 0,

√
λnr) \Bg(p, 0, 1)

)
→ ω3λ

3/2
n r3.

By Theorem 1.34 and the fact that the Ricci curvature is non-negative, this
implies that

VolBg(p, 0, R) = ω3R
3

for all R < ∞. Since the Ricci curvature is non-negative, this means that
(M,g(t)) is Ricci-flat, and hence flat. But this contradicts the fact that
(M,g(t)) is a κ-solution and hence is not flat.

Having ruled out the other two cases, we are left with only one possibil-
ity: R(M,g(t)) = ∞. �

5. Universal κ

The first consequence of the existence of an asymptotic gradient shrink-
ing soliton is that there is a universal κ for all 3-dimensional κ-solutions,
except those of constant positive curvature.

Proposition 9.58. There is a κ0 > 0 such that any non-round 3-
dimensional κ-solution is a κ0-solution.

Proof. Let (M,g(t)) be a non-round 3-dimensional κ-solution. By
Corollary 9.44 since (M,g(t)) is not a family of round manifolds, the as-
ymptotic soliton for the κ-solution cannot be compact. Thus, according
to Corollary 9.42 there are only two possibilities for the asymptotic soli-
ton (M∞, g∞(t)) – either (M∞, g∞(t)) is the product of a round 2-sphere
of Gaussian curvature 1/2|t| with a line or has a two-sheeted covering by
such a product. In fact, there are three possibilities: S2 × R, RP 2 × R or
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the twisted R-bundle over RP 2 whose total space is diffeomorphic to the
complement of a point in RP 3.

Fix a point x = (p, 0) ∈ M × {0}. Let τk be a sequence converging
to ∞, and qk ∈ M a point with lx(qk, τk) ≤ 3/2. The existence of an
asymptotic soliton means that, possibly after passing to a subsequence, there
is a gradient shrinking soliton (M∞, g∞(t)) and a ball B of radius 1 in
(M∞, g∞(−1)) centered at a point q∞ ∈M∞ and a sequence of embeddings
ψk : B →M such that ψk(q∞) = qk and such that the map

B × [−2,−1] →M × [−2τk,−τk]

given by (b, t) 7→ (ψk(b), τ kt) has the property that the pullback of τ−1
k g(τ kt)

converges smoothly and uniformly as k → ∞ to the restriction of g∞(t) to
B × [−2,−1]. Let (Mk, gk(t)) be this rescaling of the κ-solution by τk.
Then the embeddings ψk × id : B × (−2,−1] → (Mk × [−2,−1] converge as
k → ∞ to a one-parameter family of isometries. That is to say, the image
ψk(B × [−2,−1]) ⊂Mk × [−2,−1] is an almost isometric embedding. Since
the reduced length from x to (ψk(a),−1) is at most 3/2, from the invari-
ance of reduced length under rescalings (see Corollary 6.74) it follows that
the reduced length function on ψk(B ×{−2}) is bounded independent of k.
Similarly, the volume of ψk(B × {−2}) is bounded independent of k. This
means the reduced volume of ψk(B ×{−2}) in (Mk, gk(t)) is bounded inde-
pendent of k. Now according to Theorem 8.1 this implies that (Mk, gk(t)) is

κ0-non-collapsed at (p, 0) on scales ≤
√

2 for some κ0 depending only on the
geometry of the three possibilities for (M∞, g∞(t)), −2 ≤ t ≤ −1. Being
κ0-non-collapsed is invariant under rescalings, so that it follows immediately
that (M,g(t)) is κ0-non-collapsed on scales ≤ √

2τ k. Since this is true for
all k, it follows that (M,g(t)) is κ0-non-collapsed on all scales at (p, 0).

This result holds of course for every p ∈ M , showing that at t = 0
the flow is κ0-non-collapsed. To prove this result at points of the form
(p, t) ∈ M × (−∞, 0] we simply shift the original κ-solution upward by |t|
and remove the part of the flow at positive time. This produces a new κ-
solution and the point in question has been shifted to the time-zero slice, so
that we can apply the previous results. �

6. Asymptotic volume

Let (M,g(t)) be an n-dimensional κ-solution. For any t ≤ 0 and any
point p ∈ M we consider (VolBg(t)(p, r))/r

n. According to the Bishop-
Gromov Theorem (Theorem 1.34), this is a non-increasing function of r.
We define the asymptotic volume V∞(M,g(t)), or V∞(t) if the flow is clear
from the context, to be the limit as r → ∞ of this function. Clearly, this
limit is independent of p ∈M .
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Theorem 9.59. For3 any κ > 0 and any κ-solution (M,g(t)) the as-
ymptotic volume V∞(M,g(t)) is identically zero.

Proof. The proof is by induction on the dimension n of the solution.
For n = 2 by Corollary 9.50 there are only compact κ-solutions, which
clearly have zero asymptotic volume. Suppose that we have established the
result for n− 1 ≥ 2 and let us prove it for n.

According to Proposition 9.39 there is a sequence of points pn ∈ M
tending to infinity such that setting Qn = R(pn, 0) the sequence of Ricci
flows

(M,Qng(Q
−1
n t), (qn, 0))

converges geometrically to a limit (M∞, g∞(t), (q∞, 0)), and this limit splits
off a line: (M∞, g∞(t)) = (N,h(t)) × R. Since the ball of radius R about a
point (x, t) ∈ N × R is contained in the product of the ball of radius R in
N centered at x and an interval of length 2R, it follows that (N,h(t)) is a
κ/2-ancient solution. Hence, by induction, for every t, the asymptotic vol-
ume of (N,h(t)) is zero, and hence so is that of (M,g(t)). �

6.1. Volume comparison. One important consequence of the asymp-
totic volume result is a volume comparison result.

Proposition 9.60. Fix the dimension n. For every ν > 0 there is
A <∞ such that the following holds. Suppose that (Mk, gk(t)), −tk ≤ t ≤ 0,
is a sequence of (not necessarily complete) n-dimensional Ricci flows of non-
negative curvature operator. Suppose in addition we have points pk ∈ Mk

and radii rk > 0 with the property that for each k the ball B(pk, 0, rk) has
compact closure in Mk. Let Qk = R(pk, 0) and suppose that R(q, t) ≤ 4Qk
for all q ∈ B(pk, 0, rk) and for all t ∈ [−tk, 0], and suppose that tkQk → ∞
and r2kQk → ∞ as k → ∞. Then VolB(pk, 0, A/

√
Qk) < ν(A/

√
Qk)

n for
all k sufficiently large.

Proof. Suppose that the result fails for some ν > 0. Then there is a
sequence (Mk, gk(t)), −tk ≤ t ≤ 0, of n-dimensional Ricci flows, points pk ∈
Mk, and radii rk as in the statement of the lemma such that for every A <∞
there is an arbitrarily large k with VolB(pk, 0, A/

√
Qk) ≥ ν(A/

√
Qk)

n. Pass
to a subsequence so that for each A <∞ we have

VolB(pk, 0, A/
√
Qk) ≥ ν(A/

√
Qk)

n

for all k sufficiently large. Consider now the flows hk(t) = Qkgk(Q
−1
k t),

defined for −Qktk ≤ t ≤ 0. Then for every A <∞ for all k sufficiently large
we have Rhk

(q, t) ≤ 4 for all q ∈ Bhk
(pk, 0, A) and all t ∈ (−tkQk, 0]. Also,

3This theorem and all the other results of this section are valid in all dimensions.
Our proofs use Theorem 9.56 and Proposition 9.39 which are also valid in all dimensions
but which we proved only in dimensions 2 and 3. Thus, while we state the results of this
section for all dimensions, strictly speaking we give proofs only for dimensions 2 and 3.
These are the only cases we need in what follows.
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for every A < ∞ for all k sufficiently large we have VolB(pk, 0, A) ≥ νAn.
According to Theorem 5.15 we can then pass to a subsequence that has a
geometric limit which is an ancient flow of complete Riemannian manifolds.
Clearly, the time-slices of the limit have non-negative curvature operator,
and the scalar curvature is bounded (by 4) and is equal to 1 at the base
point of the limit. Also, the asymptotic volume V(0) ≥ ν.

Claim 9.61. Suppose that (M,g(t)) is an ancient Ricci flow such that for
each t ≤ 0 the Riemannian manifold (M,g(t)) is complete and has bounded,
non-negative curvature operator. Let V(t) be the asymptotic volume of the
manifold (M,g(t)).

(1) The asymptotic volume V(t) is a non-increasing function of t.
(2) If V(t) = V > 0 then every metric ball B(x, t, r) has volume at least

V rn.

Proof. We begin with the proof of the first item. Fix a < b ≤ 0.
By hypothesis there is a constant K < ∞ such that the scalar curvature
of (M,g(0)) is bounded by (n − 1)K. By the Harnack inequality (Corol-
lary 4.39) the scalar curvature of (M,g(t)) is bounded by (n − 1)K for all
t ≤ 0. Hence, since the (M,g(t)) have non-negative curvature, we have

Ric(p, t) ≤ (n − 1)K for all p and t. Set A = 4(n − 1)
√

2K
3 . Then by

Corollary 3.26 we have

da(p0, p1) ≤ db(p0, p1) +A(b− a).

This means that for any r > 0 we have

B(p0, b, r) ⊂ B(p0, a, r +A(b− a)).

On the other hand, since dVol/dt = −RdVol, it follows that, in the case
of non-negative curvature, the volume of any open set is non-increasing in
time. Consequently,

Volg(b)B(p0, b, r) ≤ Volg(a)B(p0, a, r +A(b− a)),

and hence

Volg(b)B(p0, b, r)

rn
≤

Volg(a)B(p0, a, r +A(b− a))

(r +A(b− a))n
(r +A(b− a))n

rn
.

Taking the limit as r → ∞ gives

V(b) ≤ V(a).

The second item of the claim is immediate from the Bishop-Gromov
inequality (Theorem 1.34). �

Now we return to the proof of the proposition. Under the assumption
that there is a counterexample to the proposition for some ν > 0, we have
constructed a limit that is an ancient Ricci flow with bounded, non-negative
curvature with V(0) ≥ ν. Since V(0) ≥ ν, it follows from the claim that
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V(t) ≥ ν for all t ≤ 0 and hence, also by the claim, we see that (M,g(t))
is ν-non-collapsed for all t. This completes the proof that the limit is a
ν-solution. This contradicts Theorem 9.59 applied with κ = ν, and proves
the proposition. �

This proposition has two useful corollaries about balls in κ-solutions
with volumes bounded away from zero. The first says that the normalized
curvature is bounded on such balls.

Corollary 9.62. For any ν > 0 there is a C = C(ν) < ∞ depend-
ing only on the dimension n such that the following holds. Suppose that
(M,g(t)), −∞ < t ≤ 0, is an n-dimensional Ricci flow with each (M,g(t))
being complete and with bounded, non-negative curvature operator. Suppose
p ∈ M , and r > 0 are such that VolB(p, 0, r) ≥ νrn. Then r2R(q, 0) ≤ C
for all q ∈ B(p, 0, r).

Proof. Suppose that the result fails for some ν > 0. Then there is a
sequence (Mk, gk(t)) of n-dimensional Ricci flows, complete, with bounded
non-negative curvature operator and points pk ∈Mk, constants rk > 0, and
points qk ∈ B(pk, 0, rk) such that:

(1) VolB(pk, 0, rk) ≥ νrnk , and
(2) setting Qk = R(qk, 0) we have r2kQk → ∞ as k → ∞.

Using Lemma 9.37 we can find points q′k ∈ B(pk, 0, 2rk) and constants sk ≤
rk, such that setting Q′

k = R(q′k, 0) we have Q′
ks

2
k = Qkr

2
k and R(q, 0) < 4Q′

k

for all q ∈ B(q′k, 0, sk). Of course, Q′
ks

2
k → ∞ as k → ∞. Since d0(pk, q

′
k) <

2rk, we have B(pk, 0, rk) ⊂ B(q′k, 0, 3rk) so that

VolB(q′k, 0, 3rk) ≥ VolB(pk, 0, rk) ≥ νrnk = (ν/3n)(3rk)
n.

Since the sectional curvatures of (M,gk(0)) are non-negative, it follows
from the Bishop-Gromov inequality (Theorem 1.34) that VolB(q′k, 0, s) ≥
(ν/3n)sn for any s ≤ sk.

Of course, by Corollary 4.39, we have R(q, t) < 4Q′
k for all t ≤ 0 and all

q ∈ B(q′k, 0, sk). Now consider the sequence of based, rescaled flows

(Mk, Q
′
kg(Q

′−1
k t), (q′k, 0)).

In these manifolds all balls centered at (q′k, 0) of radii at most
√
Qksk are

(ν/3n) non-collapsed. Also, the curvatures of these manifolds are non-
negative and the scalar curvature is bounded by 4. It follows that by pass-
ing to a subsequence we can extract a geometric limit. Since Q′

ks
2
k → ∞

as k → ∞ the asymptotic volume of this limit is at least ν/3n. But this
geometric limit is a ν/3n-non-collapsed ancient solution with non-negative
curvature operator with scalar curvature bounded by 4. This contradicts
Theorem 9.59. �

The second corollary gives curvature bounds at all points in terms of the
distance to the center of the ball.
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Corollary 9.63. Fix the dimension n. Given ν > 0, there is a function
K(A) < ∞, defined for A ∈ (0,∞), such that if (M,g(t)), −∞ < t ≤ 0, is
an n-dimensional Ricci flow, complete of bounded, non-negative curvature
operator, p ∈M is a point and 0 < r <∞ is such that VolB(p, 0, r) ≥ νrn,
then for all q ∈M we have

(r + d0(p, q))
2R(q, 0) ≤ K(d0(p, q)/r).

Proof. Fix q ∈M and let d = d0(p, q). We have

VolB(q, 0, r + d) ≥ VolB(p, 0, r) ≥ νrn =
ν

(1 + (d/r))n
(r + d)n.

Let K(A) = C(ν/n), where C is the constant provided by the previous
corollary. The result is immediate from the previous corollary. �

7. Compactness of the space of 3-dimensional κ-solutions

This section is devoted to proving the following result.

Theorem 9.64. Let (Mk, gk(t), (pk, 0)) be a sequence of 3-dimensional
based κ-solutions satisfying R(pk, 0) = 1. Then there is a subsequence con-
verging smoothly to a based κ-solution.

The main point in proving this theorem is to establish the uniform cur-
vature bounds given in the next lemma.

Lemma 9.65. For each r < ∞ there is a constant C(r) < ∞, such that
the following holds. Let (M,g(t), (p, 0)) be a based 3-dimensional κ-solution
satisfying R(p, 0) = 1. Then R(q, 0) ≤ C(r) for all q ∈ B(p, 0, r).

Proof. Fix a based 3-dimensional κ-solution (M,g(t), (p, 0)). By The-
orem 9.56 we have

supq∈Md0(p, q)
2R(q, 0) = ∞.

Let q be a closest point to p satisfying

d0(p, q)
2R(q, 0) = 1.

We set d = d0(p, q), and we set Q = R(q, 0). Of course, d2Q = 1.
We carry this notation and these assumptions through the next five claims.
The goal of these claims is to show that R(q′, 0) is uniformly bounded for q′

near (p, 0) so that in fact the distance d from the point q to p is uniformly
bounded from below by a positive constant (see Claim 9.69 for a more precise
statement). Once we have this the lemma will follow easily. To establish
this uniform bound requires a sequence of claims.

Claim 9.66. There is a universal (i.e., independent of the 3-dimensional
κ-solution) upper bound C for R(q′, 0)/R(q, 0) for all q′ ∈ B(q, 0, 2d).
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Proof. Suppose not. Then there is a sequence (Mk, gk(t), (pk, 0)) of
based 3-dimensional κ-solutions with R(pk, 0) = 1, points qk in (Mk, gk(0))
closest to pk satisfying d2

kR(qk, 0) = 1, where dk = d0(pk, qk), and points
q′k ∈ B(qk, 0, 2dk) with

limk→∞(2dk)
2R(q′k, 0) = ∞.

Then according to Corollary 9.62 for every ν > 0 for all k sufficiently large,
we have

(9.27) VolB(qk, 0, 2dk) < ν(2dk)
3.

Therefore, by passing to a subsequence, we can assume that for each ν > 0

(9.28) VolB(qk, 0, 2dk) < ν(2dk)
3

for all k sufficiently large. Let ω3 be the volume of the unit ball in R
3.

Then for all k sufficiently large, VolB(qk, 0, 2dk) < [ω3/2](2dk)
3. Since the

sectional curvatures of (Mk, gk(0)) are non-negative, by the Bishop-Gromov
inequality (Theorem 1.34), it follows that for every k sufficiently large there
is rk < 2dk such that

(9.29) VolB(qk, 0, rk) = [ω3/2]r
3
k.

Of course, because of Equation (9.28) we see that limk→∞rk/dk = 0. Then,
according to Corollary 9.63, for all q ∈Mk, we have

(rk + dgk(0)(qk, q))
2R(q, 0) ≤ K(dgk(0)(qk, q)/rk),

whereK is as given in Corollary 9.63. Form the sequence (Mk, g
′
k(t), (qk, 0)),

where g′k(t) = r−2
k gk(r

2
kt). This is a sequence of based Ricci flows. For each

A <∞ we have
(1 +A)2Rg′k(q, 0) ≤ K(A)

for all q ∈ Bg′k(0)(qk, 0, A). Hence, by the consequence of Hamilton’s Harnack

inequality (Corollary 4.39)

Rg′k(q, t) ≤ K(A),

for all (q, t) ∈ Bg′k(0)(qk, 0, A) × (−∞, 0]. Using this and the fact that all

the flows are κ-non-collapsed, Theorem 5.15 implies that, after passing to
a subsequence, the sequence (Mk, g

′
k(t), (qk, 0)) converges geometrically to a

limiting Ricci flow (M∞, g∞(t), (q∞, 0)) consisting of non-negatively curved,
complete manifolds κ-non-collapsed on all scales (though possibly with un-
bounded curvature).

Furthermore, Equation (9.29) passes to the limit to give

(9.30) VolBg∞(q∞, 0, 1) = ω3/2.

Since rk/dk → 0 as k → ∞ and since Rgk
(qk, 0) = d−2

k , we see that
Rg∞(q∞, 0) = 0. By the strong maximum principle for scalar curvature
(Theorem 4.18), this implies that the limit (M∞, g∞(0)) is flat. But Equa-
tion (9.30) tells us that this limit is not R

3. Since it is complete and flat, it
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must be a quotient of R
3 by an action of a non-trivial group of isometries

acting freely and properly discontinuously. But the quotient of R
3 by any

non-trivial group of isometries acting freely and properly discontinuously
has zero asymptotic volume. [Proof: It suffices to prove the claim in the
special case when the group is infinite cyclic. The generator of this group
has an axis α on which it acts by translation and on the orthogonal subspace
its acts by an isometry. Consider the circle in the quotient that is the image
of α, and let Lα be its length. The volume of the ball of radius r about Lα
is πr2Lα. Clearly then, for any p ∈ α, the volume of the ball of radius r
about p is at most πLαr

2. This proves that the asymptotic volume of the
quotient is zero.]

We have now shown that (M∞, g∞(0)) has zero curvature and zero as-
ymptotic volume. But this implies that it is not κ-non-collapsed on all
scales, which is a contradiction. This contradiction completes the proof of
Claim 9.66. �

This claim establishes the existence of a universal constant C < ∞
(universal in the sense that it is independent of the 3-dimensional κ-solution)
such that R(q′, 0) ≤ CQ for all q′ ∈ B(q, 0, 2d). Since the curvature of
(M,g(t)) is non-negative and bounded, we know from the Harnack inequality
(Corollary 4.39) that R(q′, t) ≤ CQ for all q′ ∈ B(q, 0, 2d) and all t ≤ 0.
Hence, the Ricci curvature Ric(q′, t) ≤ CQ for all q′ ∈ B(q, 0, 2d) and all
t ≤ 0.

Claim 9.67. Given any constant c > 0 there is a constant C̃ = C̃(c),
depending only on c and not on the 3-dimensional κ-solution, so that

dg(−cQ−1)(p, q) ≤ C̃Q−1/2.

Proof. Let γ : [0, d] →M be a g(0)-geodesic from p to q, parameterized
at unit speed. Denote by ℓt(γ) the length of γ under the metric g(t). We
have dt(p, q) ≤ ℓt(γ). We estimate ℓt(γ) using the fact that |Ric| ≤ CQ on
the image of γ at all times.

d

dt
ℓt0(γ) =

d

dt

(∫ d

0

√
〈γ′(s), γ′(s)〉g(t)ds

) ∣∣∣
t=t0

=

∫ d

0

−Ricg(t0)(γ
′(s), γ′(s))√

〈γ′(s), γ′(s)〉g(t0)

ds

≥ −CQ
∫ d

0
|γ′(s)|g(t0)ds = −CQℓt0(γ).

Integrating yields

ℓ−t(γ) ≤ eCQtℓ0(γ) = eCQtQ−1/2.

(Recall d2Q = 1.) Plugging in t = cQ−1 gives us

d−cQ−1(p, q) ≤ ℓ−cQ−1(γ) ≤ ecCQ−1/2.
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Setting C̃ = ecC completes the proof of the claim. �

The integrated form of Hamilton’s Harnack inequality, Theorem 4.40,
tells us that

log

(
R(p, 0)

R(q,−cQ−1)

)
≥ −

d2
−cQ−1(p, q)

2cQ−1
.

According to the above claim, this in turn tells us

log

(
R(p, 0)

R(q,−cQ−1)

)
≥ −C̃2/2c.

Since R(p, 0) = 1, it immediately follows that R(q,−cQ−1) ≤ exp(C̃2/(2c)).

Claim 9.68. There is a universal (i.e., independent of the 3-dimensional
κ-solution) upper bound for Q = R(q, 0).

Proof. Let G′ = QG and t′ = Qt. Then RG′(q′, 0) ≤ C for all q′ ∈
BG′(q, 0, 2). Consequently, RG′(q′, t′) ≤ C for all q′ ∈ BG′(q, 0, 2) and all
t′ ≤ 0. Thus, by Shi’s derivative estimates (Theorem 3.28)applied with T =
2 and r = 2, there is a universal constant C1 such that for all −1 ≤ t′ ≤ 0,

|△RmG′(q, t′)|G′ ≤ C1,

where the Laplacian is taken with respect to the metric G′. Rescaling by
Q−1 we see that for all −Q−1 ≤ t ≤ 0 we have

|△RmG(q, t)| ≤ C1Q
2,

where the Laplacian is taken with respect to the metric G. Since the metric
is non-negatively curved, by Corollary 4.39 we have 2|Ric(q, t)|2 ≤ 2Q2 for
all t ≤ 0. From these two facts we conclude from the flow equation (3.7) that
there is a constant 1 < C ′′ <∞ with the property that ∂R/∂t(q, t) ≤ C ′′Q2

for all −Q−1 < t ≤ 0. Thus for any 0 < c < 1, we have Q = R(q, 0) ≤
cC ′′Q + R(q,−cQ−1) ≤ cC ′′Q + e(

eC2(c)/2c). Now we take c = (2C ′′)−1 and

C̃ = C̃(c). Plugging these values into the previous inequality yields

Q ≤ 2e(
eC2C′′).

�

This leads immediately to:

Claim 9.69. There are universal constants δ > 0 and C1 <∞ (indepen-
dent of the based 3-dimensional κ-solution (M,g(t), (p, 0)) with R(p, 0) = 1)
such that d(p, q) ≥ δ. In addition, R(q′, t) ≤ C1 for all q′ ∈ B(p, 0, d) and
all t ≤ 0.

Proof. Since, according to the previous claim, Q is universally bounded
above and d2Q = 1, the existence of δ > 0 as required is clear. Since
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B(p, 0, d) ⊂ B(q, 0, 2d), since, by Claim 9.66, R(q′, 0)/R(q, 0) is univer-
sally bounded on B(q, 0, 2d), and since R(q, 0) is universally bounded by
Lemma 9.68, the second statement is clear for all

(q′, 0) ∈ B(p, 0, d) ⊂ B(q, 0, 2d).

Given this, the fact that the second statement holds for all

(q′, t) ∈ B(p, 0, d) × (−∞, 0]

then follows immediately from Corollary 4.39, the derivative inequality for
∂R(q, t)/∂t. �

This, in turn, leads immediately to:

Corollary 9.70. Fix δ > 0 the universal constant of the last claim.
Then R(q′, t) ≤ δ−2 for all q′ ∈ B(p, 0, δ) and all t ≤ 0.

Now we return to the proof of Lemma 9.65. Since (M,g(t)) is κ-non-
collapsed, it follows from the previous corollary that VolB(p, 0, δ) ≥ κδ3.
Hence, according to Corollary 9.63 for each A < ∞ there is a constant
K(A) such that R(q′, 0) ≤ K(A/δ)/(δ + A)2 for all q′ ∈ B(p, 0, A). Since δ
is a universal positive constant, this completes the proof of Lemma 9.65. �

Now let us turn to the proof of Theorem 9.64, the compactness result
for κ-solutions.

Proof. Let (Mk, gk(t), (pk, 0)) be a sequence of based 3-dimensional
κ-solutions with R(pk, 0) = 1 for all k. The immediate consequence of
Lemma 9.65 and Corollary 4.39 is the following. For every r < ∞ there
is a constant C(r) < ∞ such that R(q, t) ≤ C(r) for all q ∈ B(pk, 0, r)
and for all t ≤ 0. Of course, since, in addition, the elements in the se-
quence are κ-non-collapsed, by Theorem 5.15 this implies that there is a
subsequence of the (Mk, gk(t), (pk, 0)) that converges geometrically to an
ancient flow (M∞, g∞(t), (p∞, 0)). Being a geometric limit of κ-solutions,
this limit is complete and κ-non-collapsed, and each time-slice is of non-
negative curvature. Also, it is not flat since, by construction, R(p∞, 0) = 1.
Of course, it also follows from the limiting procedure that ∂R(q, t)/∂t ≥ 0
for every (q, t) ∈M∞× (−∞, 0]. Thus, according to Corollary 9.53 the limit
(M∞, g∞(t)) has bounded curvature for each t ≤ 0. Hence, the limit is a
κ-solution. This completes the proof of Theorem 9.64. �

Corollary 9.71. Given κ > 0, there is C < ∞ such that for any
3-dimensional κ-solution (M,g(t)), −∞ < t ≤ 0, we have

sup(x,t)
|∇R(x, t)|
R(x, t)3/2

< C,(9.31)

sup(x,t)

∣∣ d
dtR(x, t)

∣∣
R(x, t)2

< C.(9.32)
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Proof. Notice that the two inequalities are scale invariant. Thus, this
result is immediate from the compactness theorem, Theorem 9.64. �

Because of Proposition 9.58, and the fact that the previous corollary
obviously holds for any shrinking family of round metrics, we can take the
constant C in the above corollary to be independent of κ > 0.

Notice that, using Equation (3.7), we can rewrite the second inequality
in the above corollary as

sup(x,t)

|△R+ 2|Ric|2|
R(x, t)2

< C.

8. Qualitative description of κ-solutions

In Chapter 2 we defined the notion of an ǫ-neck. In this section we
define a stronger version of these, called strong ǫ-necks. We also introduce
other types of canonical neighborhoods – ǫ-caps, ǫ-round components and
C-components. These definitions pave the way for a qualitative description
of κ-solutions.

8.1. Strong canonical neighborhoods. The next manifold we intro-
duce is one with controlled topology (diffeomorphic either to the 3-disk or
a punctured RP 3) with the property that the complement of a compact
submanifold is an ǫ-neck.

Definition 9.72. Fix constants 0 < ǫ < 1/2 and C < ∞. Let (M,g)
be a Riemannian 3-manifold. A (C, ǫ)-cap in (M,g) is an open submani-
fold (C, g|C) together with an open submanifold N ⊂ C with the following
properties:

(1) C is diffeomorphic either to an open 3-ball or to a punctured RP 3.
(2) N is an ǫ-neck with compact complement in C.
(3) Y = C\N is a compact submanifold with boundary. Its interior, Y ,

is called the core of C. The frontier of Y , which is ∂Y , is a central
2-sphere of an ǫ-neck contained in C.

(4) The scalar curvature R(y) > 0 for every y ∈ C and

diam(C, g|C) < C
(
supy∈CR(y)

)−1/2
.

(5) supx,y∈C [R(y)/R(x)] < C.

(6) Vol C < C(supy∈CR(y))−3/2.

(7) For any y ∈ Y let ry be defined so that supy′∈B(y,ry)R(y′) = r−2
y .

Then for each y ∈ Y , the ball B(y, ry) lies in C and indeed has
compact closure in C. Furthermore,

C−1 < infy∈Y
VolB(y, ry)

r3y
.
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(8) Lastly,

supy∈C
|∇R(y)|
R(y)3/2

< C

and

supy∈C

∣∣△R(y) + 2|Ric|2
∣∣

R(y)2
< C.

Remark 9.73. If the ball B(y, ry) meets the complement of the core
of C, then it contains a point whose scalar curvature is close to R(x), and
hence ry is bounded above by, say 2R(x)−1. Since ǫ < 1/2, using the fact
that y is contained in the core of C it follows that B(y, ry) is contained in C
and has compact closure in C.

Implicitly, we always orient the ǫ-neck structure on N so that the closure
of its negative end meets the core of C. See Fig. 1 in the Introduction.

Condition (8) in the above definition may seem unnatural, but here is
the reason for it.

Claim 9.74. Suppose that (M,g(t)) is a Ricci flow and that (C, g(t)|C)
is a subset of a t time-slice. Then Condition (8) above is equivalent to

sup(x,t)∈C

∣∣∣∂R(x,t)
∂t

∣∣∣
R2(x, t)

< C.

Proof. This is immediate from Equation (3.7). �

Notice that the definition of a (C, ǫ)-cap is a scale invariant notion.

Definition 9.75. Fix a positive constant C. A compact connected
Riemannian manifold (M,g) is called a C-component if:

(1) M is diffeomorphic to either S3 or RP 3.
(2) (M,g) has positive sectional curvature.
(3)

C−1 <
infPK(P )

supy∈MR(y)

where P varies over all 2-planes in TX (and K(P ) denotes the
sectional curvature in the P -direction).

(4)

C−1supy∈M
(
R(y)−1/2

)
< diam(M) < Cinfy∈M

(
R(y)−1/2

)
.

Definition 9.76. Fix ǫ > 0. Let (M,g) be a compact, connected 3-

manifold. Then (M,g) is within ǫ of round in the C [1/ǫ]-topology if there
exist a constant R > 0, a compact manifold (Z, g0) of constant curvature
+1, and a diffeomorphism ϕ : Z → M with the property that the pull-back
under ϕ of Rg is within ǫ in the C [1/ǫ]-topology of g0.

Notice that both of these notions are scale invariant notions.
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Definition 9.77. Fix C <∞ and ǫ > 0. For any Riemannian manifold
(M,g), an open neighborhood U of a point x ∈ M is a (C, ǫ)-canonical
neighborhood if one of the following holds:

(1) U is an ǫ-neck in (M,g) centered at x.
(2) U is a (C, ǫ)-cap in (M,g) whose core contains x.
(3) U is a C-component of (M,g).
(4) U is an ǫ-round component of (M,g).

Whether or not a point x ∈ M has a (C, ǫ)-canonical neighborhood in
M is a scale invariant notion.

The notion of (C, ǫ)-canonical neighborhoods is sufficient for some pur-
poses, but often we need a stronger notion.

Definition 9.78. Fix constants C < ∞ and ǫ > 0. Let (M, G) be a
generalized Ricci flow. An evolving ǫ-neck defined for an interval of normal-
ized time of length t′ > 0 centered at a point x ∈ M with t(x) = t is an

embedding ψ : S2 × (−ǫ−1, ǫ−1)
∼=→ N ⊂Mt with x ∈ ψ(S2 × {0}) satisfying

the following properties:

(1) There is an embedding N × (t−R(x)−1t′, t] → M compatible with
time and the vector field.

(2) The pullback under ψ of the one-parameter family of metrics on N
determined by restricting R(x)G to the image of this embedding is
within ǫ in the C [1/ǫ]-topology of the standard family (h(t), ds2) on
the interval −t′ < t ≤ 0, where h(t) is the round metric of scalar
curvature 1/(1 − t) on S2 and ds2 is the usual Euclidean metric
on the interval (see Definition 2.16 for the notion of two families of
metrics being close).

A strong ǫ-neck is the image of an evolving ǫ-neck which is defined for an
interval of normalized time of length 1.

Both of these notions are scale invariant notions.
Let (M, G) be a generalized Ricci flow. Let x ∈ M be a point with

t(x) = t. We say that an open neighborhood U of x in Mt is a strong
(C, ǫ)-canonical neighborhood of x if one of the following holds:

(1) U is a strong ǫ-neck in (M, G) centered at x.
(2) U is a (C, ǫ)-cap in Mt whose core contains x.
(3) U is a C-component of Mt.
(4) U is an ǫ-round component of Mt.

Whether or not a point x in a generalized Ricci flow has a strong
(C, ǫ)-canonical neighborhood is a scale invariant notion.

Proposition 9.79. The following holds for any ǫ < 1/4 and any C <
∞. Let (M, G) be a generalized Ricci flow and let x ∈ M be a point with
t(x) = t.
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(1) Suppose that U ⊂Mt is a (C, ǫ)-canonical neighborhood for x. Then

for any horizontal metric G′ sufficiently close to G|U in the C [1/ǫ]-topology,
(U,G′|U ) is a (C, ǫ)-canonical neighborhood for any x′ ∈ U sufficiently close
to x.

(2) Suppose that in (M, G) there is an evolving ǫ-neck U centered at
(x, t) defined for an interval of normalized time of length a > 1. Then any
Ricci flow on

U × (t− aR(x, t)−1, t]

sufficiently close in the C [1/ǫ]-topology to the pullback of G contains a strong
ǫ-neck centered at (x, t).

(3) Given (C, ǫ) and (C ′, ǫ′) with C ′ > C and ǫ′ > ǫ there is δ > 0
such that the following holds. Suppose that R(x) ≤ 2. Let (U, g) be a
(C, ǫ)-canonical neighborhood of x then for any metric g′ within δ of g in

the C [1/ǫ]-topology (U, g′) contains a (C ′, ǫ′)-neighborhood of x.
(4) Suppose that g(t), −1 < t ≤ 0, is a one-parameter family of met-

rics on (U, g) that is a strong ǫ-neck centered at (x, 0) and Rg(x, 0) = 1.

Then any one-parameter family g′(t) within δ in the C [1/ǫ]-topology of g
with Rg′(x, 0) = 1 is a strong ǫ′-neck.

Proof. Since ǫ < 1/4, the diameter of (U, g), the volume of (U, g),
the supremum over x ∈ U of R(x), the supremum over x and y in U of
R(y)/R(x), and the infimum over all 2-planes P in HTU of K(P ) are all

continuous functions of the horizontal metric G in the C [1/ǫ]-topology.
Let us consider the first statement. Suppose (U,G|U ) is a C-component

or an ǫ-round component. Since the defining inequalities are strict, and, as
we just remarked, the quantities in these inequalities vary continuously with
the metric in the C [1/ǫ]-topology, the result is clear in this case.

Let us consider the case when U ⊂ Mt is an ǫ-neck centered at x. Let
ψ : S2 × (−ǫ−1, ǫ−1) → U be the map giving the ǫ-neck structure. Then for

all horizontal metrics G′ sufficiently close to G in the C [1/ǫ]-topology, the
same map ψ determines an ǫ-neck centered at x for the structure (U,G′|U ).
Now let us consider moving x to a nearby point x′, say x′ is the image of
(a, s) ∈ S2 × (−ǫ−1, ǫ−1). We pre-compose ψ by a map which is the product
of the identity in the S2-factor with a diffeomorphism α on (−ǫ−1, ǫ−1) that
is the identity near the ends and moves 0 to s. As x′ approaches x, s
tends to zero, and hence we can choose α so that it tends to the identity
in the C∞-topology. Thus, for x′ sufficiently close to x, this composition
will determine an ǫ-neck structure centered at x′. Lastly, let us consider
the case when (U,G|U ) is a (C, ǫ)-cap whose core Y contains x. Let G′

be a horizontal metric sufficiently close to G|U in the C [1/ǫ]-topology. Let
N ⊂ U be the ǫ-neck U \ Y . We have just seen that (N,G′|N ) is an ǫ-neck.
Similarly, if N ′ ⊂ U is an ǫ-neck with central 2-sphere ∂Y , then (N ′, G′|N ′)

is an ǫ-neck if G′ is sufficiently close to G in the C [1/ǫ]-topology.
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Thus, Conditions (1), (2), and (3) in the definition of a (C, ǫ)-cap hold
for (U,G′

U ). Since the curvature, volume and diameter inequalities in Con-
ditions (4), (5), and (6) are strict, they also hold for g′. To verify that Con-
dition (7) holds for G′, we need only remark that ry is a continuous function
of the metric. Lastly, since the derivative inequalities for the curvature in
Condition (8) are strict inequalities and ǫ−1 > 4, if these inequalities hold
for all horizontal metrics G′ sufficiently close to G in the C [1/ǫ]-topology.
This completes the examination of all cases and proves the first statement.

The second statement is proved in the same way using the fact that if
g′(t) is sufficiently close to g in the C [1/ǫ]-topology and if x′ is sufficiently
close to x, then Rg′(x

′)−1 < aRg(x)
−1.

Now let us turn to the third statement. The result is clear for ǫ-necks.
Also, since R(x) ≤ 2 the result is clear for ǫ-round components and C-
components as well. Lastly, we consider a (C, ǫ)-cap U whose core Y contains
x. Clearly, since R(x) is bounded above by 2, for δ > 0 sufficiently small,
any metric g′ within δ of g will satisfy the diameter, volume and curvature
and the derivative of the curvature inequalities with C ′ replacing C. Let
N be the ǫ-neck in (U, g) containing the end of U . Assuming that δ is
sufficiently small, let N ′ be the image of S2 ×

(
−ǫ−1, 2(ǫ′)−1 − ǫ−1

)
. Then

(N ′, g′) becomes an ǫ′-neck structure once we shift the parameter in the
s-direction by ǫ−1 − (ǫ′)−1. We let U ′ = Y ∪ N ′. Clearly, the ǫ-neck with
central 2-sphere ∂Y will also determine an ǫ′-neck with the same central 2-
sphere provided that δ > 0 is sufficiently small. Thus, for δ > 0 sufficiently
small, for any (C, ǫ) the result of this operation is a (C ′, ǫ′)-cap with the
same core.

The fourth statement is immediate. �

Corollary 9.80. In an ancient solution (M,g(t)) the set of points that
are centers of strong ǫ-necks is an open subset.

Proof. Let T be the final time of the flow. Suppose that (x, t) is the
center of a strong ǫ-neck U × (t − R(x, t)−1, t] ⊂ M × (−∞, 0]. This neck
extends backwards for all time and forwards until the final time T giving
an embedding U × (−∞, T ] → M × (−∞, T ]. There is a > 1 such that for
all t′ sufficiently close to t the restriction of this embedding determines an
evolving ǫ-neck centered at (x, t′) defined for an interval of normalized time
of length a. Composing this neck structure with a self-diffeomorphism of U
moving x′ to x, as described above, shows that all (x′, t′) sufficiently close
to (x, t) are centers of strong ǫ-necks. �

Definition 9.81. An ǫ-tube T in a Riemannian 3-manifold M is a sub-
manifold diffeomorphic to the product of S2 with a non-degenerate interval
with the following properties:

(1) Each boundary component S of T is the central 2-sphere of an
ǫ-neck N(S) in M .
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(2) T is a union of ǫ-necks and the closed half ǫ-necks whose boundary
sphere is a component of ∂T . Furthermore, the central 2-sphere of
each of the ǫ-necks is isotopic in T to the S2-factors of the product
structure.

An open ǫ-tube is one without boundary. It is a union of ǫ-necks with the
central spheres that are isotopic to the 2-spheres of the product structure.

A C-capped ǫ-tube in M is a connected submanifold that is the union
of a (C, ǫ)-cap C and an open ǫ-tube where the intersection of C with the
ǫ-tube is diffeomorphic to S2 × (0, 1) and contains an end of the ǫ-tube and
an end of the cap. A doubly C-capped ǫ-tube in M is a closed, connected
submanifold of M that is the union of two (C, ǫ)-caps C1 and C2 and an open
ǫ-tube. Furthermore, we require (i) that the cores Y1 and Y2 of C1 and C2

have disjoint closures, (ii) that the union of either Ci with the ǫ-tube is a
capped ǫ-tube and C1 and C2 contain the opposite ends of the ǫ-tube. There
is one further closely related notion, that of an ǫ-fibration. By definition an
ǫ-fibration is a closed, connected manifold that fibers over the circle with
fibers S2 that is also a union of ǫ-necks with the property that the central
2-sphere of each neck is isotopic to a fiber of the fibration structure. We
shall not see this notion again until the appendix, but because it is clearly
closely related to the notion of an ǫ-tube, we introduce it here.

See Fig. 2.

Figure 2. ǫ-canonical neighborhoods.
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Definition 9.82. A strong ǫ-tube in a generalized Ricci flow is an ǫ-tube
with the property that each point of the tube is the center of a strong ǫ-neck
in the generalized flow.

8.2. Canonical neighborhoods for κ-solutions.

Proposition 9.83. Let (M,g(t)) be a 3-dimensional κ-solution. Then
one of the following holds:

(1) For every t ≤ 0 the manifold (M,g(t)) has positive curvature.
(2) (M,g(t)) is the product of an evolving family of round S2’s with a

line.
(3) M is diffeomorphic to a line bundle over RP 2, and there is a finite

covering of (M,g(t)) that is a flow as in (2).

Proof. Suppose that (M,g(t)) does not have positive curvature for
some t. Then, by the application of the strong maximum principle given in

Corollary 4.20, there is a covering M̃ of M , with either one or two sheets,

such that (M̃, g̃(t)) is the product of an evolving family of round surfaces
with a flat 1-manifold (either a circle or the real line). Of course, the covering

must be a κ-solution. In the case in which (M̃ , g̃(t)) is isometric to the
product of an evolving family of round surfaces and a circle, that circle has
a fixed length, say L <∞. Since the curvature of the surface in the t time-
slice goes to zero as t → −∞, we see that the flow is not κ-non-collapsed
on all scales for any κ > 0. Thus, (M,g(t)) has either a trivial cover or a
double cover isometric to the product of a shrinking family of round surfaces
with R. If the round surface is S2, then we have established the result. If
the round surface is RP 2 a further double covering is a product of round
2-spheres with R. This proves the proposition. �

Lemma 9.84. Let (M,g(t)) be a non-compact 3-dimensional κ-solution
of positive curvature and let p ∈ M . Then there is D′ < ∞, possibly de-
pending on (M,g(0)) and p, such that every point of

M × {0} \B(p, 0,D′R(p, 0)−1/2)

is the center of an evolving ǫ-neck in (M,g(t)) defined for an interval of
normalized time of length 2. Furthermore, there is D′

1 < ∞ such that for

any point x ∈ B(p, 0,D′R(p, 0)−1/2) and any 2-plane Px in TxM we have
(D′

1)
−1 < K(Px)/R(p, 0) < D′

1 where K(Px) denotes the sectional curvature
in the direction of the 2-plane Px.

Proof. Given (M,g(t)) and p, suppose that no such D′ < ∞ exists.
Because the statement is scale invariant, we can arrange that R(p, 0) = 1.
Then we can find a sequence of points pk ∈M with d0(p, pk) → ∞ as k → ∞
such that no pk is the center of an evolving ǫ-neck in (M,g(0)) defined for
an interval of normalized time of length 2. By passing to a subsequence we
can assume that one of two possibilities holds: either d2

0(p, pk)R(pk, 0) → ∞
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as k → ∞ or limk→∞d2
0(p, pk)R(pk, 0) = ℓ < ∞. In the first case, set λk =

R(pk, 0) and consider the based flows (M,λkg(λ
−1
k t), (pk, 0)). According to

Theorem 9.64, after passing to a subsequence there is a geometric limit.
Thus, by Theorem 5.35 and Corollary 4.19 the limit splits as a product of a
2-dimensional κ-solution and R. By Corollary 9.50 it follows that the limit is
the standard round evolving cylinder. This implies that for all k sufficiently
large (pk, 0) is the center of an evolving ǫ-neck in (M,g(t)) defined for an
interval of normalized time of length 2. This contradiction establishes the
existence of D′ as required in this case.

Now suppose that limk→∞d2
0(p, pk)R(pk, 0) = ℓ < ∞. Of course, since

d0(p, pk) → ∞, it must be the case that R(pk, 0) → 0 as k → ∞. Set Qk =
R(pk, 0). By passing to a subsequence we can arrange that d2

0(p, pk)Qk <
ℓ+ 1 for all k. Consider the κ-solutions (Mk, gk(t)) = (M,Qkg(Q

−1
k t)). For

each k we have p ∈ Bgk
(pk, 0, ℓ + 1), and Rgk

(p, 0) = Q−1
k → ∞ as k → ∞.

This contradicts Lemma 9.65, and completes the proof of the existence of
D as required in this case as well.

The existence of D′
1 is immediate since the closure of the ball is compact

and the manifold has positive curvature. �

In fact a much stronger result is true. The constants D′ and D′
1 in the

above lemma can be chosen independent of the non-compact κ-solutions.

Proposition 9.85. For any 0 < ǫ sufficiently small there are constants
D = D(ǫ) < ∞ and D1 = D1(ǫ) < ∞ such that the following holds for any
non-compact 3-dimensional κ-solution (M,g(t)) of positive curvature. Let
p ∈M be a soul of (M,g(0)). Then:

(1) Every point in M \ B(p, 0,DR(p, 0)−1/2) is the center of a strong

ǫ-neck in (M,g(t)). Furthermore, for any x ∈ B(p, 0,DR(p, 0)−1/2)
and any 2-plane Px in TxM we have

D−1
1 < K(Px)/R(p, 0) < D1.

Also,

D
−3/2
1 R(p, 0)−3/2 < Vol(B(p, 0,DR(p, 0)−1/2) < D

3/2
1 R(p, 0)−3/2.

(2) Let f denote the distance function from p. For any ǫ-neck N ⊂
(M,g(0)), the middle two-thirds of N is disjoint from p, and the
central 2-sphere SN of N is (topologically) isotopic in M \ {p} to
f−1(a) for any a > 0. In particular, given two disjoint central 2-
spheres of ǫ-necks in (M,g(0)) the region of M bounded by these
2-spheres is diffeomorphic to S2 × [0, 1].

Remark 9.86. In part 1 of this theorem one can replace p by any point
p′ ∈M that is not the center of a strong ǫ-neck.

Proof. First suppose that no D exists so that the first statement holds.
Then there is a sequence of such solutions (Mk, gk(t)), with pk ∈ Mk being
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a soul of (Mk, gk(0)) and points qk ∈ Mk with d2
0(pk, qk)R(pk, 0) → ∞ as

k → ∞ such that qk is not the center of a strong ǫ-neck in (Mk, gk(0)).
By rescaling we can assume that R(pk, 0) = 1 for all k, and hence that
d0(pk, qk) → ∞. Then, according to Theorem 9.64, by passing to a subse-
quence we can assume that there is a geometric limit (M∞, g∞(t), (p∞, 0))
with R(p∞, 0) = 1. By Lemma A.10, provided that ǫ is sufficiently small
for all k the soul (pk, 0) is not the center of a strong 2ǫ-neck in (Mk, gk(t)).
Hence, invoking part 4 of Proposition 9.79 and using the fact that R(pk, 0) =
1 for all k and hence R(p∞, 0) = 1, we see that (p∞, 0) is not the center of
a strong ǫ-neck in (M∞, g∞(t)). Since the manifolds Mk are non-compact
and have metrics of positive curvature, they are diffeomorphic to R

3 and
in particular, do not contain embedded copies of RP 2. Thus, the limit
(M∞, g∞(t)) is a non-compact κ-solution containing no embedded copy of
RP 2. Thus, by Proposition 9.83 either it is positively curved or it is a Rie-
mannian product S2 times R. In the second case every point is the center of
a strong ǫ-neck. Since we have seen that the point (p∞, 0) is not the center
of a strong ǫ-neck, it follows that the limit is a positively curved κ-solution.

Then according to the previous lemma there is D′, which depends only
on (M∞, g∞(0)) and p∞, such that every point outside B(p∞, 0,D′) is the
center of an evolving ǫ/2-neck defined for an interval of normalized time of
length 2.

Since (Mk, gk(t), (pk, 0)) converge geometrically to (M∞, g∞(t), (p∞, 0)),
by part 2 of Proposition 9.79 for any L < ∞, for all k sufficiently large, all
points of

B(pk, 0, L) \B(pk, 0, 2D
′)

are centers of strong ǫ-necks in (Mk, gk(t)). In particular, for all k suf-
ficiently large, d0(pk, qk) > L. Let Lk be a sequence tending to infinity
as k → ∞. Passing to a subsequence, we can suppose that every point
of (B(pk, 0, Lk) \B(pk, 0, 2D

′)) ⊂ Mk is the center of a strong ǫ-neck in
(Mk, gk(0)). Of course, for all k sufficiently large, qk ∈ Mk \B(pk, 0, 2D

′)).
By Corollary 9.80 the subset of points in Mk × {0} that are centers of
strong ǫ-necks is an open set. Thus, replacing qk with another point if
necessary, we can suppose that qk is a closest point to pk contained in
Mk \ B(pk, 0, 2D

′) with the property that qk is not the center of a strong
ǫ-neck. Then qk ∈ Mk \ B(pk, 0, Lk) and (qk, 0) is in the closure of the
set of points in Mk that are centers of strong ǫ-necks in (Mk, gk(t)), and
hence by part 3 of Proposition 9.79 each (qk, 0) is the center of a 2ǫ-neck in
(Mk, gk(t)).

Let γk be a minimizing geodesic connecting (pk, 0) to (qk, 0), and let µk
be a minimizing geodesic ray from (qk, 0) to infinity. Set Qk = R(qk, 0).
Since (qk, 0) is the center of a 2ǫ-neck, from Lemma 2.20 we see that, pro-
vided that ǫ is sufficiently small, the 2ǫ-neck centered at qk separates p from
∞, so that γk and µk exit this 2ǫ-neck at opposite ends. According to
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Theorem 9.64, after passing to a subsequence, the based, rescaled flows

(Mk, Qkg(Q
−1
k t), (qk, 0))

converge geometrically to a limit. Let (q∞, 0) be the base point of the
resulting limit. By part 3 of Proposition 9.79, it is the center of a 4ǫ-neck
in the limit.

Claim 9.87. d2
0(pk, qk)Qk → ∞ as k → ∞.

Proof. Suppose not. Then by passing to a subsequence we can suppose
that these products are bounded independent of k. Then since d0(pk, qk) →
∞, we see that Qk → 0. Thus, in the rescaled flows (Mk, Qkgk(Q

−1
k t))

the curvature at (pk, 0) goes to infinity. But this is impossible since the
Qkgk-distance from (pk, 0) to (qk, 0) is

√
Qkd0(pk, qk), which is bounded

independent of k, and the scalar curvature of (p, 0) in the metric Qkgk(0) is
R(pk, 0)Q

−1
k = Q−1

k , which tends to ∞. Unbounded curvature at bounded
distance contradicts Lemma 9.65, and this establishes the claim. �

A subsequence of the based flows (Mk, Qkgk(Q
−1
k t), (qk, 0)) converges ge-

ometrically to a κ-solution. According to Theorem 5.35 and Corollary 4.19,
this limiting flow is the product of a 2-dimensional κ-solution with a line.
Since M is orientable, this 2-dimensional κ-solution is an evolving family of
round 2-spheres. This implies that for all k sufficiently large, (qk, 0) is the
center of a strong ǫ-neck in (Mk, gk(t)). This is a contradiction and proves
the existence of D <∞ as stated in the proposition.

Let (Mk, gk(t), (pk, 0)) be a sequence of non-compact Ricci flows based at
a soul pk of (Mk, gk(0)). We rescale so that R(pk, 0) = 1. By Lemma A.10,
if ǫ is sufficiently small, then pk cannot be the center of an ǫ-neck. It follows
from Proposition 9.79 that for any limit of a subsequence the point p∞,
which is the limit of the pk, is not the center of an 2ǫ-neck in the limit.
Since the limit manifold is orientable, it is either contractible with strictly
positive curvature or is a metric product of a round 2-sphere and the line. It
follows that the limit manifold has strictly positive curvature at (p∞, 0), and
hence positive curvature everywhere. The existence of D1 < ∞ as required
is now immediate from Theorem 9.64.

The fact that any soul is disjoint from the middle two-thirds of any
ǫ-neck and the fact that the central 2-spheres of all ǫ-necks are isotopic in
M \ {p} are contained in Lemma A.10 and Corollary 2.20. �

Corollary 9.88. There is ǫ2 > 0 such that for any 0 < ǫ ≤ ǫ2 the
following holds. There is C0 = C0(ǫ) such that for any κ > 0 and any
non-compact 3-dimensional κ-solution not containing an embedded RP 2 with
trivial normal bundle, the zero time-slice is either a strong ǫ-tube or a C0-
capped strong ǫ-tube.
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Proof. For ǫ > 0 sufficiently small let D(ǫ) and D1(ǫ) be as in the
previous corollary. At the expense of increasing these, we can assume that
they are at least the constant C in Corollary 9.71. We set

C0(ǫ) = max(D(ǫ),D1(ǫ)).

If the non-compact κ-solution has positive curvature, then the corollary
follows immediately from Proposition 9.85 and Corollary 9.71. If the κ-
solution is the product of an evolving round S2 with the line, then every
point of the zero time-slice is the center of a strong ǫ-neck for every ǫ > 0
so that the zero time-slice of the solution is a strong ǫ-tube. Suppose the
solution is double covered by the product of an evolving round 2-sphere and
the line. Let ι be the involution and take the product coordinates so that
S2×{0} is the invariant 2-sphere of ι in the zero time-slice. Then any point
in the zero time-slice at distance at least 3ǫ−1 from P = (S2 ×{0})/ι is the
center of a strong ǫ-neck. Furthermore, an appropriate neighborhood of P in
the time zero slice is a (C, ǫ)-cap whose core contains the 3ǫ−1 neighborhood
of P . The derivative bounds in this case come from the fact that the metric
is close in the C [1/ǫ]-topology to the standard evolving flow. This proves the
corollary in this case and hence completes the proof. �

Now let us consider compact κ-solutions.

Theorem 9.89. There is ǫ3 > 0 such that for every 0 < ǫ ≤ ǫ3 there is
C1 = C1(ǫ) <∞ such that one of the following holds for any κ > 0 and any
compact 3-dimensional κ-solution (M,g(t)).

(1) The manifold M is compact and of constant positive sectional cur-
vature.

(2) The diameter of (M,g(0)) is less than C1 · (maxx∈MR(x, 0))−1/2,
and M is diffeomorphic to either S3 or RP 3.

(3) (M,g(0)) is a double C1-capped strong ǫ-tube.

Proof. First notice that if (M,g(t)) is not of strictly positive curvature,
then the universal covering of (M,g(0)) is a Riemannian product S2 × R,
and hence (M,g(0)) is either non-compact or finitely covered by the product
flow on S2 × S1. The former case is ruled out since we are assuming that
M is compact and the latter case is ruled out because such flows are not
κ-non-collapsed for any κ > 0. We conclude that (M,g(t)) is of positive
curvature. This implies that the fundamental group of M is finite. If there
were an embedded RP 2 in M with trivial normal bundle, that RP 2 could not
separate (since the Euler characteristic of RP 2 is 1, it is not the boundary
of a compact 3-manifold). But a non-separating surface in M induces a
surjective homomorphism of H1(M) onto Z. We conclude from this that M
does not contain an embedded RP 2 with trivial normal bundle.
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We assume that (M,g(0)) is not round so that by Proposition 9.58 there
is a universal κ0 > 0 such that (M,g(0)) is a κ0-solution. Let C0(ǫ) be the
constant from Corollary 9.88.

Claim 9.90. Assuming that (M,g(0)) is compact but not of constant
positive sectional curvature, for each ǫ > 0 there is C1 such that if the
diameter of (M,g(0)) is greater than C1(maxx∈MR(x, 0))−1/2, then every
point of (M,g(0)) is either contained in the core of (C0(ǫ), ǫ)-cap or is the
center of a strong ǫ-neck in (M,g(t)).

Proof. Suppose that for some ǫ > 0 there is no such C1. We take a
sequence of constants C ′

k that diverges to +∞ as k → ∞ and a sequence
(Mk, gk(t), (pk, 0)) of based κ0-solutions such that the diameter of (Mk, 0) is

greater than C ′
kR

−1/2(pk, 0) and yet (pk, 0) is not contained in the core of a
(C0(ǫ), ǫ)-cap nor is the center of a strong ǫ-neck. We scale (Mk, gk(t)) by
R(pk, 0). This allows us to assume that R(pk, 0) = 1 for all k. According
to Theorem 9.64, after passing to a subsequence we can assume these based
κ-solutions converge to a based κ-solution (M∞, g∞(t), (p∞, 0)). Since the
diameters of the (Mk, gk(0)) go to infinity, M∞ is non-compact. According
to Corollary 9.88 the point p∞ is either the center of a strong ǫ-neck, or
is contained in the core of a (C0(ǫ), ǫ)-cap. Since R(pk, 0) = 1 for all k, it
follows from parts 1 and 4 of Proposition 9.79 that for all k sufficiently large,
(pk, 0) is either the center of a strong ǫ-neck in (Mk, gk(t)) or is contained in
the core of a (C0(ǫ), ǫ)-cap. This is a contradiction, proving the claim. �

Now it follows from Proposition A.25 that if the diameter of (M,g(0))

is greater than C1(maxx∈MR(x, 0))−1/2 and if it is not of constant positive
curvature, then M is diffeomorphic to either S3, RP 3, RP 3#RP 3 or is an
S2-fibration over S1. On the other hand, since M is compact of positive
curvature its fundamental group is finite, see Theorem 4.1 on p. 154 of
[57]. This rules out the last two cases. This implies that when (M,g(0))

has diameter greater than C1(maxx∈MR(x, 0))−1/2 and is not of constant
positive curvature, it is a double C0-capped ǫ-tube.

We must consider the case when (M,g(0)) is not of constant positive

curvature and its diameter is less than or equal to C1(maxx∈MR(x, 0))−1/2.
Since (M,g(0)) is not round, by Corollary 9.44 its asymptotic soliton is not
compact. Thus, by Theorem 9.42 its asymptotic soliton is either S2×R or is
double covered by this product. This means that for t sufficiently negative
the diameter of (M,g(t)) is greater than C1(maxx∈MR(x, 0))−1/2. Invoking
the previous result for this negative time tells us that M is diffeomorphic to
S3 or RP 3. �

Proposition 9.91. Let ǫ2 and ǫ3 be as in Corollary 9.88 and Theo-
rem 9.89, respectively. For each 0 < ǫ ≤ min(ǫ2, ǫ3) let C1 = C1(ǫ) be
as in Theorem 9.89. There is C2 = C2(ǫ) < ∞ such that for any κ > 0
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and any compact κ-solution (M,g(t)) the following holds. If (M,g(0)) is
not of constant positive curvature and if (M,g(0)) is of diameter less than

C1(maxx∈MR(x, 0))−1/2, then for any x ∈M we have

C−1
2 R(x, 0)−3/2 < Vol(M,g(0)) < C2R(x, 0)−3/2.

In addition, for any y ∈M and any 2-plane Py in TyM we have

C−1
2 <

K(Py)

R(x, 0)
< C2,

where K(Py) is the sectional curvature in the Py-direction.

Proof. The result is immediate from Corollary 9.58 and Theorem 9.64.
�

Remark 9.92. For a round κ-solution (M,g(t)) we have R(x, 0) =
R(y, 0) for all x, y ∈ M , and the volume of (M,g(0)) is bounded above

by a constant times R(x, 0)−3/2. There is no universal lower bound to
the volume in terms of the curvature. The lower bound takes the form
C2|π1(M)|−1R(x, 0)−3/2, where |π1(M)| is the order of the fundamental
group π1(M).

Let us summarize our results.

Theorem 9.93. There is ǫ > 0 such that the following is true for any
0 < ǫ < ǫ. There is C = C(ǫ) such that for any κ > 0 and any κ-solution
(M,g(t)) one of the following holds.

(1) (M,g(t)) is round for all t ≤ 0. In this case M is diffeomorphic to
the quotient of S3 by a finite subgroup of SO(4) acting freely.

(2) (M,g(0)) is compact and of positive curvature. For any x, y ∈ M
and any 2-plane Py in TyM we have

C−1/2R(x, 0)−1 < diam(M,g(0)) < CR(x, 0)−1/2,

C−1R(x, 0)−3/2 < Vol(M,g(0)) < CR(x, 0)−3/2,

C−1R(x, 0) < K(Py) < CR(x, 0).

In this case M is diffeomorphic either to S3 or to RP 3.
(3) (M,g(0)) is of positive curvature and is a double C-capped strong

ǫ-tube, and in particular M is diffeomorphic to S3 or to RP 3.
(4) (M,g(0)) is of positive curvature and is a C-capped strong ǫ-tube

and M is diffeomorphic to R
3.

(5) (M,g(0)) is isometric to the quotient of the product of a round S2

and R by a free, orientation-preserving involution. It is a C-capped
strong ǫ-tube and is diffeomorphic to a punctured RP 3.

(6) (M,g(0)) is isometric to the product of a round S2 and R and is a
strong ǫ-tube.

(7) (M,g(0)) is isometric to a product RP 2 × R, where the metric on
RP 2 is of constant Gaussian curvature.
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In particular, in all cases except the first two and the last one, all points
of (M,g(0)) are either contained in the core of a (C, ǫ)-cap or are the centers
of a strong ǫ-neck in (M,g(0)).

Lastly, in all cases we have

supp∈M,t≤0
|∇R(p, t)|
R(p, t)3/2

< C,(9.33)

supp∈M,t≤0
|∂R(p, t)/∂t|
R(p, t)2

< C.(9.34)

An immediate consequence of this result is:

Corollary 9.94. For every 0 < ǫ ≤ ǫ′ there is C = C(ǫ) < ∞ such
that every point in a κ-solution has a strong (C, ǫ)-canonical neighborhood
unless the κ-solution is a product RP 2 × R.

Corollary 9.95. Fix 0 < ǫ ≤ ǫ′, and let C(ǫ) be as in the last corollary.
Suppose that (Mn, Gn, xn) is a sequence of based, generalized Ricci flows
with t(xn) = 0 for all n. Suppose that none of the time-slices of the Mn

contain embedded RP 2’s with trivial normal bundle. Suppose also that there
is a smooth limiting flow (M∞, g∞(t), (x∞, 0)) defined for −∞ < t ≤ 0 that
is a κ-solution. Then for all n sufficiently large, the point xn has a strong
(C, ǫ)-canonical neighborhood in (Mn, Gn, xn).

Proof. The limiting manifold M∞ cannot contain an embedded RP 2

with trivial normal bundle. Hence, by the previous corollary, the point
(x∞, 0) has a strong (C, ǫ)-canonical neighborhood in the limiting flow. If the
limiting κ-solution is round, then for all n sufficiently large, xn is contained
in a component of the zero time-slice that is ǫ-round. If (x∞, 0) is contained
in a C-component of the zero time-slice of the limiting κ-solution, then for
all n sufficiently large xn is contained in a C-component of the zero time-
slice of Mn. Suppose that (x∞, 0) is the center of a strong ǫ-neck in the
limiting flow. This neck extends backwards in the limiting solution some
amount past an interval of normalized time of length 1, where by continuity
it is an evolving ǫ-neck defined backwards for an interval of normalized time
of length greater than 1. Then by part 2 of Proposition 9.79, any family of
metrics on this neck sufficiently close to the limiting metric will determine a
strong ǫ-neck. This implies that for all n sufficiently large, xn is the center
of a strong ǫ-neck in (Mn, Gn). Lastly, if (x∞, 0) is contained in the core of
a (C, ǫ)-cap in the limiting flow, then by part 1 of Proposition 9.79 for all n
sufficiently large, xn is contained in the core of a (C, ǫ)-cap in (Mn, Gn). �





CHAPTER 10

Bounded curvature at bounded distance

This chapter is devoted to Perelman’s result about bounded curvature at
bounded distance for blow-up limits. Crucial to the argument is that each
member of the sequence of generalized Ricci flows has curvature pinched
toward positive and also has strong canonical neighborhoods.

1. Pinching toward positive: the definitions

In this section we give the definition of what it means for a generalized
Ricci flow to have curvature pinched toward positive. This is the obvious
generalization of the corresponding notion for Ricci flows.

Definition 10.1. Let (M, G) be a generalized 3-dimensional Ricci flow
whose domain of definition is contained in [0,∞). For each x ∈ M, let
ν(x) be the smallest eigenvalue of Rm(x) on ∧2TxMt(x), as measured with
respect to a G(x)-orthonormal basis for the horizontal space at x, and set
X(x) = max(0,−ν(x)). We say that (M, G) has curvature pinched toward
positive if, for all x ∈ M, if the following two inequalities hold:

R(x) ≥ −6

1 + 4t(x)
,

R(x) ≥ 2X(x) (logX(x) + log(1 + t(x)) − 3) , if 0 < X(x).

According to Theorem 4.32, if (M,g(t)), 0 ≤ a ≤ t < T , is Ricci flow
with M a compact 3-manifold, and if the two conditions given in the defini-
tion hold at the initial time a, then they hold for all t ∈ [a, T ). In particular,
if a = 0 and if |Rm(p, 0)| ≤ 1 for all p ∈ M , then the curvature of the flow
is pinched toward positive.

Next we fix ǫ0 > 0 sufficiently small such that for any 0 < ǫ ≤ ǫ0 all
the results of the Appendix hold for 2ǫ and α = 10−2, and Proposition 2.19
holds for 2ǫ.

2. The statement of the theorem

Here is the statement of the main theorem of this chapter, the theorem
that establishes bounded curvature at bounded distance for blow-up limits.

Theorem 10.2. Fix 0 < ǫ ≤ ǫ0 and C <∞. Then for each A <∞ there
are D0 < ∞ and D < ∞ depending on A, ǫ and C such that the following
holds. Suppose that (M, G) is a generalized 3-dimensional Ricci flow whose
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interval of definition is contained in [0,∞), and suppose that x ∈ M. Set
t = t(x). We suppose that these data satisfy the following:

(1) (M, G) has curvature pinched toward positive.
(2) Every point y ∈ M with R(y) ≥ 4R(x) and t(y) ≤ t has a strong

(C, ǫ)-canonical neighborhood.

If R(x) ≥ D0, then R(y) ≤ DR(x) for all y ∈ B(x, t,AR(x)−1/2).

This chapter is devoted to the proof of this theorem. The proof is by
contradiction. Suppose that there is some A0 <∞ for which the result fails.
Then there are a sequence of generalized 3-dimensional Ricci flows (Mn, Gn)
whose intervals of definition are contained in [0,∞) and whose curvatures
are pinched toward positive. Also, there are points xn ∈ Mn satisfying the
second condition given in the theorem and points yn ∈ Mn such that for all
n we have:

(1) limn→∞R(xn) = ∞.
(2) t(yn) = t(xn).

(3) d(xn, yn) < A0R(xn)
−1/2.

(4)

limn→∞
R(yn)

R(xn)
= ∞.

For the rest of this chapter we assume that such a sequence of generalized
Ricci flows exists. We shall eventually derive a contradiction.

Let us sketch how the argument goes. We show that there is a (partial)
geometric blow-up limit of the sequence (Mn, Gn) based at the xn. We shall
see that the following hold for this limit. It is an incomplete manifold U∞
diffeomorphic to S2 × (0, 1) with the property that the diameter of U∞ is
finite and the curvature goes to infinity at one end of U∞, an end denoted E ,
while remaining bounded at the other end. (The non-compact manifold in
question is diffeomorphic to S2 × (0, 1) and, consequently, it has two ends.)
Every point of U∞ sufficiently close to E is the center of a 2ǫ-neck in U∞.
In fact, there is a partial geometric limiting flow on U∞ so that these points
are centers of evolving 2ǫ-necks. Having constructed this incomplete blow-
up limit of the original sequence we then consider further blow-up limits
about the end E , the end where the scalar curvature goes to infinity. On
the one hand, a direct argument shows that a sequence of rescalings of U∞
around points converging to the end E converge in the Gromov-Hausdorff
sense to a cone. On the other hand, a slightly different sequence of rescalings
at the same points converges geometrically to a limiting non-flat Ricci flow.
Since both limits are non-degenerate 3-dimensional spaces, we show that the
ratio of the rescaling factors used to construct them converges to a finite,
non-zero limit. This means that the two limits differ only by an overall
constant factor. That is to say the geometric blow-up limit is isometric
to an open subset of a non-flat cone. This contradicts Hamilton’s result
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(Proposition 4.22) which says that it is not possible to flow under the Ricci
flow to an open subset of a non-flat cone. Now we carry out all the steps in
this argument.

3. The incomplete geometric limit

We fix a sequence (Mn, Gn, xn) of generalized Ricci flows as above. The
first step is to shift and rescale this sequence of generalized Ricci flows so
that we can form an (incomplete) geometric limit which will be a tube of
finite length with scalar curvature going to infinity at one end.

We shift the time parameter of (Mn, Gn) by −t(xn). We change notation
and denote these shifted flows by (Mn, Gn). This allows us to arrange that
t(xn) = 0 for all n. Since shifting leaves the curvature unchanged, the
shifted flows satisfy a weaker version of curvature pinched toward positive.
Namely, for the shifted flows we have

R(x) ≥ −6,

R(x) ≥ 2X(x) (log(X(x)) − 3) .(10.1)

We set Qn = R(xn), and we denote by Mn the 0-time-slice of Mn. We
rescale (Mn, Gn) by Qn. Denote by (M′

n, G
′
n) the rescaled (and shifted)

generalized flows. For the rest of this argument we implicity use the metrics
G′
n. If we are referring to Gn we mention it explicitly.

3.1. The sequence of tubes. Let γn be a smooth path from xn to yn
in BGn(xn, 0, A0Q

−1/2
n ). For all n sufficiently large we have RG′

n
(yn) ≫ 1.

Thus, there is a point zn ∈ γn such that RG′
n
(zn) = 4 and such that on the

sub-path γn|[zn,yn] we have RG′
n
≥ 4. We replace γn by this sub-path. Now,

with this replacement, according to the second condition in the statement of
the theorem, every point of γn has a strong (C, ǫ) canonical neighborhood.
As n tends to infinity the ratio of R(yn)/R(zn) tends to infinity. This means
that for all n sufficiently large, no point of γn can be contained in an ǫ-
round component or a C-component, because if it were then all of γn would
be contained in that component, contradicting the fact that the curvature
ratio is arbitrarily large for large n. Hence, for n sufficiently large, every
point of γn is either contained in the core of a (C, ǫ)-cap or is the center of a
strong ǫ-neck. According to Proposition A.21, for all n sufficiently large γn
is contained in an open submanifold Xn of the zero time-slice of M′

n that is
one of the following:

(1) an ǫ-tube and both endpoints of γn are centers of ǫ-necks contained
in Xn,

(2) a C-capped ǫ-tube with cap C, and each endpoint of γn either is
contained in the core Y of C or is the center of an ǫ-neck contained
in Xn,

(3) a double C-capped ǫ-tube, or finally
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(4) the union of two (C, ǫ)-caps.

The fourth possibility is incompatible with the fact that the ratio of
the curvatures at the endpoints of γn grows arbitrarily large as n tends to
infinity. Hence, this fourth possibility cannot occur for n sufficiently large.
Thus, for all n sufficiently large, Xn is one of the first three types listed
above.

Claim 10.3. There is a geodesic γ̂n in Xn with endpoints zn and yn.
This geodesic is minimizing among all paths in Xn from zn to yn.

Proof. This is clear in the third case since Xn is a closed manifold.
Let us consider the first case. There are ǫ-necks N(zn) and N(yn)

centered at zn and yn and contained in Xn. Suppose first that the cen-
tral 2-spheres S(zn) and S(yn) of these necks are disjoint. Then they are
the boundary of a compact submanifold X ′

n of Xn. It follows easily from
Lemma A.1 that any sequence of minimizing paths from zn to yn is con-
tained in the union of X ′

n with the middle halves of N(zn) and N(yn). Since
this manifold has compact closure in Xn, the usual arguments show that
one can extract a limit of a subsequence which is a minimizing geodesic in
Xn from zn to yn. If S(zn) ∩ S(yn) 6= ∅, then yn is contained in the middle
half of N(zn), and again it follows immediately from Lemma A.1 that there
is a minimizing geodesic in N(zn) between these points.

Now let us consider the second case. If each of zn and yn is the center
of an ǫ-neck in Xn, the argument as in the first case applies. If both points
are contained in the core of C then, since that core has compact closure in
Xn, the result is again immediate. Lastly, suppose that one of the points,
we can assume by the symmetry of the roles of the points that it is zn,
is the center of an ǫ-neck N(zn) in Xn and the other is contained in the
core of C. Suppose that the central 2-sphere S(zn) of N(zn) meets the core
Y of C. Then zn lies in the half of the neck N = C \ Y whose closure
contains the frontier of Y . Orient sN so that this half is the positive half.
Thus, by Lemma A.1 any minimizing sequence of paths from zn to yn is
eventually contained in the union of the core of C and the positive three-
quarters of this neck. Hence, as before we can pass to a limit and construct a
minimizing geodesic in Xn connecting zn to yn. On the other hand, if S(zn)
is disjoint from Y , then S(zn) separates Xn into a compact complementary
component and a non-compact complementary component and the compact
complementary component contains Y . Orient the sN -direction so that the
compact complementary component lies on the positive side of S(zn). Then
any minimizing sequence of paths in Xn from zn to yn is eventually contained
in the union of the compact complementary component of N(zn) and the
positive 3/4’s of N(zn). As before, this allows us to pass to a limit to obtain
a minimizing geodesic in Xn. �
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This claim allows us to assume (as we now shall) that γn is a minimizing
geodesic in Xn from zn to yn.

Claim 10.4. For every n sufficiently large, there is a sub-geodesic γ′n of
γn with end points z′n and y′n such that the following hold:

(1) The length of γ′n is bounded independent of n.
(2) R(z′n) is bounded independent of n.
(3) R(y′n) tends to infinity as n tends to infinity.
(4) γ′n is contained in a strong ǫ-tube Tn that is the union of a balanced

chain of strong ǫ-necks centered at points of γ′n. The first element
in this chain is a strong ǫ-neck N(z′n) centered at z′n. The last
element is a strong ǫ-neck containing y′n.

(5) For every x ∈ Tn, we have R(x) > 3 and x is the center of a strong
ǫ-neck in the flow (M′

n, G
′
n).

Proof. The first item is immediate since, for all n, the geodesic γn has

Gn-length at most A0Q
−1/2
n and hence G′

n-length at most A0. Suppose that
we have a (C, ǫ)-cap C whose core Y contains a point of γn. Let N be the

ǫ-neck that is the complement of the closure of Y in C, and let Ŷ be the union

of Y and the closed negative half of N . We claim that Ŷ contains either zn
or yn. By Corollary A.8, since Y contains a point of γn, the intersection of

Ŷ with γn is a subinterval containing one of the end points of γn, i.e., either
zn or yn. This means that any point w which is contained in a (C, ǫ)-cap
whose core contains a point of γn must satisfy one of the following:

R(w) < CR(z′n) or R(w) > C−1R(y′n).

We pass to a subsequence so that R(yn)/R(zn) > 4C2 for all n, and we
pass to a subinterval γ′n of γn with endpoints z′n and y′n such that:

(1) R(z′n) = 2CR(zn).
(2) R(y′n) = (2C)−1R(yn).
(3) R(z′n) ≤ R(w) ≤ R(y′n) for all w ∈ γ′n.

Clearly, with these choices R(z′n) is bounded independent of n and R(y′n)
tends to infinity as n tends to infinity. Also, no point of γ′n is contained in
the core of a (C, ǫ)-cap. Since every point of γ′n has a strong (C, ǫ)-canonical
neighborhood, it follows that every point of γ′n is the center of a strong ǫ-
neck. It now follows from Proposition A.19 that there is a balanced ǫ-chain
consisting of strong ǫ-necks centered at points of γ′n whose union contains
γ′n. (Even if the 2-spheres of these necks do not separate the zero time-slice
of M′

n, as we build the balanced ǫ-chain as described in Proposition A.19
the new necks we add can not meet the negative end of N(z′n) since the
geodesic γ′n is minimal.) We can take the first element in the balanced chain
to be a strong ǫ-neck N(z′n) centered at z′n, and the last element to be a
strong ǫ-neck N+

n containing y′n. The union of this chain is Tn. (See Fig. 1.)
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Tn

z′n γ′n y′n

N(z′n) N(y′n)

converge to

z′∞

(U∞, g∞, z∞)

Figure 1. Limiting tube.

Next, we show that every point of Tn is the center of a strong ǫ-neck
in (Mn, Gn). We must rule out the possibility that there is a point of Tn
that is contained in the core of a (C, ǫ)-cap. Since Tn is a union of ǫ-necks
centered at points of γ′n we see that every point w ∈ Tn has

(3C/2)R(zn) < R(w) < (2/3C)R(yn).

This tells us that no point of Tn is contained in a (C, ǫ)-cap whose core
contains a point of γn. Thus, to complete the argument we need only see
that if there is a point of Tn contained in the core of a (C, ǫ)-cap, then the
core of that (C, ǫ)-cap also contains a point of γn. The scalar curvature
inequality implies that both zn and yn are outside Tn. This means that γn
traverses Tn from one end to the other. Let w−, resp. w+, be the point
of γn that lies in the frontier of Tn contained in the closure of the N(z′n),
resp. N+

n . Since the scalar curvatures at these two points of γ satisfy the
weak version of the above inequalities, we see that there are strong ǫ-necks

N(w−) and N(w+) centered at them. Let T̂n be the union of Tn, N(w−)

and N(w+). It is also a strong ǫ-tube, and every point ŵ of T̂n satisfies

(1.1)CR(zn) < R(ŵ) < (0.9)C−1R(yn).

Thus, zn and yn are disjoint from T̂n and hence γ crosses T̂n from one end
to the other.

Now suppose that Tn meets the core Y of a (C, ǫ)-cap C. Consider the
boundary S of the closure of Y . If it is disjoint from Tn then Tn is contained
in the core Y . For large n this is inconsistent with the fact that the ratio
of the scalar curvature at the endpoints of γ′n goes to infinity. Thus, we are
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left to consider the case when S contains a point of the tube Tn. In this case

S is completely contained in T̂n and by Corollary A.3, S is isotopic to the

2-spheres of the product decomposition of T̂n. Hence, S meets a point of γn
and consequently the core Y contains a point of γn. But we have already
seen that this is not possible.

Lastly, we must show that R(x) > 3 for every x ∈ Tn. We have just
seen that every x ∈ Tn is the center of an ǫ-neck. If x is contained in the
ǫ-neck centered at z′n or y′n, then since R(z′n) ≥ 4 and R(y′n) ≥ 4, clearly
R(x) > 3. We must consider the case when x is not contained in either of
these ǫ-necks. In this case the central 2-sphere Sx of the ǫ-neck centered
at x is contained in the compact submanifold of T ′

n bounded by the central
2-spheres of the necks centered at z′n and y′n. These 2-spheres are disjoint
and by Condition 4 in Proposition A.11 each is a homotopically non-trivial
2-sphere in T ′

n. Hence, the compact manifold with their disjoint union as
boundary is diffeomorphic to S2 × [0, 1] and, again according to Condition
4 of Proposition A.11, Sx is isotopic to the 2-sphere factor in this product
decomposition. Since the intersection of γ′n with this submanifold is an arc
spanning from one boundary component to the other, Sx must meet γ′n, in
say w. By construction, since w ∈ γ′n we have R(w) ≥ 4. This implies that
R(x) > 3. This completes the proof of the claim. �

3.2. Extracting a limit of a subsequence of the tubes. Passing
to a subsequence we arrange that the R(z′n) converge. Now consider the
subset A ⊂ R consisting of all A > 0 such that there is a uniform bound,
independent of n, for the curvature on B(z′n, A) ∩ Tn. The set A is non-
empty since R(z′n) is bounded independent of n and for every n there is a
strong ǫ-neck N(z′n) centered at z′n contained in Tn. On the other hand, since
dG′

n
(z′n, y

′
n) is uniformly bounded and R(y′n) → ∞, there is a finite upper

bound for A. Let A1 be the least upper bound of A. We set Un = Tn ∩
B(z′n, A1). This is an open subset of Tn containing z′n. We let g′n = G′

n|Un.
Claim 10.5. For all n sufficiently large, 3R(z′n)

−1/2ǫ−1/2 is less than
A1, and hence Un contains the strong ǫ-neck N(z′n) centered at z′n.

Proof. The curvature on N(z′n) is bounded independent of n. Consider
a point w near the end of N(z′n) that separates y′n from z′n. It is also the
center of a strong ǫ-neck N(w). By Proposition A.11 and our assumption
that ǫ ≤ ǫ(10−2), the scalar curvature onN(z′n)∪N(w) is between (0.9)R(z′n)
and (1.1)R(z′n). Since, by construction, the negative end of N(z′n) contains
an end of Tn, this implies that

N(z′n) ∪N(w) ⊃ B(z′n, 7R(z′n)
−1/2ǫ−1/4) ∩ Tn,

so that we see that A1 ≥ 7ǫ−1limn→∞R(z′n)
−1/2/4 > 3R(z′n)

−1ǫ−1/2 for all
n sufficiently large. Obviously then Un contains N(z′n). �

The next claim uses terminology from Definition 5.1.
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Claim 10.6. For any δ > 0 there is a uniform bound, independent of n,
for the curvature on Regδ(Un, g

′
n).

Proof. To prove this it suffices to show that given δ > 0 there is A < A1

such that Regδ(Un, g
′
n) ⊂ B(z′n, A) for all n sufficiently large. Of course,

if we establish this for every δ > 0 sufficiently small, then it follows for
all δ > 0. First of all, by Corollary A.5 and Lemma A.2, the fact that
ǫ ≤ ǫ(10−2) implies that any point w with the property that the strong
ǫ-neighborhood centered at w contains z′n is contained in the ball of radius

(1.1)R(z′n)
−1/2ǫ−1 < A1 centered at z′n. Thus, it suffices to consider points

wn in Regδ(Un, g
′
n) with the property that the strong ǫ-neck centered at

wn does not contain z′n. Fix such a wn. Take a path µn(s) starting at wn
moving in the s-direction at unit speed measured in the s-coordinate of the
ǫ-neck centered at wn away from z′n and ending at the frontier of this neck.
Let u1 be the final point of this path. The rescaled version of Lemma A.9
implies that the forward difference quotient for the distance from z′n satisfies

(0.99)R(wn)−1/2 ≤ d

ds
d(z′n, µn(s)) ≤ (1.01)R(wn)

−1/2.

Of course, since we are working in an ǫ-neck we also have

(1 − ǫ)R(wn)
−1/2 ≤ d(d(wn, µn(s)))

ds
≤ (1 + ǫ)R(wn)

−1/2.

We continue the path µn moving in the s-direction of a neck centered at u1.
Applying Lemma A.9 again both to the distance from wn and the distance
from z′n yields:

(0.99)R(u1)
−1/2 ≤ d(d(z′n, µn(s)))

ds
≤ (1.01)R(u1)

−1/2,

(0.99)R(u1)
−1/2 ≤ d(d(wn, µn(s)))

ds
≤ (1.01)R(u1)

−1/2

on this part of the path µn. We repeat this process as many times as
necessary until we reach a point w′

n ∈ Un at distance δ/2 from wn. This
is possible since the ball of radius δ centered at wn is contained in Un. By
the difference quotient inequalities, it follows that d(z′n, w

′
n) − d(z′n, wn) >

δ/4. Since w′
n ∈ Un and consequently that d(z′n, w

′
n) < A1. It follows

that d(z′n, wn) ≤ A1 − δ/4. This proves that, for all n sufficiently large,
Regδ(Un, g

′
n) ⊂ B(z′n, A1 − δ/4), and consequently that the curvature on

Regδ(Un, g
′
n) is bounded independent of n. �

By Shi’s theorem (Theorem 3.28), the fact that each point of Un is the
center of a strong ǫ-neck means that there is a bound, independent of n, on
all covariant derivatives of the curvature at any point of Un in terms of the
bound on the curvature at the center point. In particular, because of the
previous result, we see that for any ǫ > 0 and any ℓ ≥ 0 there is a uniform
bound for |∇ℓRm| on Regδ(Un, g

′
n). Clearly, since the base point z′n has
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bounded curvature it lies in Regδ(Un, g
′
n) for sufficiently small δ (how small

being independent of n). Lastly, the fact that every point in Un is the center
of an ǫ-neighborhood implies that (Un, g

′
n) is κ-non-collapsed on scales ≤ r0

where both κ and r0 are universal. Since the γ′n have uniformly bounded
lengths, the ǫ-tubes T ′

n have uniformly bounded diameter. Also, we have
seen that their curvatures are bounded from below by 3. It follows that
their volumes are uniformly bounded. Now invoking Theorem 5.6 we see
that after passing to a subsequence we have a geometric limit (U∞, g∞, z∞)
of a subsequence of (Un, g

′
n, z

′
n).

3.3. Properties of the limiting tube. Now we come to a result es-
tablishing all the properties we need for the limiting manifold.

Proposition 10.7. The geometric limit (U∞, g∞, z∞) is an incomplete
Riemannian 3-manifold of finite diameter. There is a diffeomorphism ψ
from U∞ to S2 × (0, 1). There is a 2ǫ-neck centered at z∞ whose central
2-sphere S2(z∞) maps under ψ to a 2-sphere isotopic to a 2-sphere factor
in the product decomposition. The scalar curvature is bounded at one end of
U∞ but tends to infinity at the other end, the latter end which is denoted E.
Let U∞ ⊂ U∞ × (−∞, 0] be the open subset consisting of all (x, t) for which
−R(x)−1 < t ≤ 0. We have a generalized Ricci flow on U∞ which is a partial
geometric limit of a subsequence of the generalized Ricci flows (M′

n, G
′
n, z

′
n).

In particular, the zero time-slice of the limit flow is (U∞, g∞). The Rie-
mannian curvature is non-negative at all points of the limiting smooth flow
on U∞. Every point x ∈ U∞×{0} which is not separated from E by S2(z∞) is
the center of an evolving 2ǫ-neck N(x) defined for an interval of normalized
time of length 1/2. Furthermore, the central 2-sphere of N(x) is isotopic to
the 2-sphere factor of U∞ under the diffeomorphism ψ (see Fig. 1).

The proof of this proposition occupies the rest of Section 3.

Proof. Let V1 ⊂ V2 ⊂ · · · ⊂ U∞ be the open subsets and ϕn : Vn → Un
be the maps having all the properties stated in Definition 5.3 so as to exhibit
(U∞, g∞, z∞) as the geometric limit of the (Un, g

′
n, z

′
n).

Since the Un are all contained in B(z′n, A1), it follows that any point of
U∞ is within A1 of the limiting base point z∞. This proves that the diameter
of U∞ is bounded.

For each n there is the ǫ-neck N(z′n) centered at z′n contained in Un. The
middle two-thirds, N ′

n, of this neck has closure contained in Regδ(Un, gn) for
some δ > 0 independent of n (in fact, restricting to n sufficiently large, δ

can be taken to be approximately equal to R(z∞)−1/2ǫ−1/3). This means
that for some n sufficiently large and for all m ≥ n, the image ϕm(Vn) ⊂ Um
contains N ′

m. For any fixed n as m tends to infinity the metrics ϕ∗
mgm|Vn

converge uniformly in the C∞-topology to g∞|Vn . Thus, it follows from
Proposition 9.79 that for all m sufficiently large, ϕ−1

m (N ′
m) is a 3ǫ/2-neck
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centered at z∞. We fix such a neck N ′(z∞) ⊂ U∞. Let S(z∞) be the central
2-sphere of N ′(z∞). For each n sufficiently large, ϕn(S(z∞)) separates Un
into two components, one, say W−

n contained in N(z′n) and the other, W+
n

containing all of Un \ N(z′n). It follows that S(z∞) separates U∞ into two
components, one, denoted W−

∞, where the curvature is bounded (and where,
in fact, the curvature is close to R(z∞)) and the other, denoted W+

∞, where
it is unbounded.

Claim 10.8. Any point q ∈W+
∞ is the center of a 2ǫ-neck in U∞.

Proof. Fix a point q ∈W+
∞. For all n sufficiently large let qn = ϕn(q).

Then for all n sufficiently large, qn ∈ W+
n and limn→∞R(qn) = R(q). This

means that for all n sufficiently large R(y′n) >> R(qn)), and hence the 3ǫ/2-
neck centered at qn ∈ Un is disjoint from N(y′n). Thus, by the rescaled
version of Corollary A.5, the distance from the 3ǫ/2-neck centered at qn
to N(y′n) is bounded below by (0.99)ǫ−1R(qn)

−1/2/4 ≥ ǫ−1R(q∞)−1/2/12.
Also, since qn ∈ Wn, this 3ǫ/2-neck N ′(qn) centered at qn does not extend
past the 2-sphere at s−1(−3ǫ−1/4) in the ǫ-neck N(z′n). It follows that
for all n sufficiently large, this 3ǫ/2-neck has compact closure contained in
Regδ(Un, gn) for some δ independent of n, and hence there is m such that
for all n sufficiently large N ′(qn) is contained in the image ϕn(Vm). Again
using the fact that ϕ∗

n(gn|Vm) converges in the C∞-topology to g∞|Vm as n
tends to infinity, we see, by Proposition 9.79 that for all n sufficiently large
ϕ−1
n (Nm) contains a 2ǫ-neck in U∞ centered at q. �

It now follows from Proposition A.21 that W+
∞ is contained in a

2ǫ-tube T∞ that is contained in U∞. Furthermore, the frontier of W+
∞ in

T∞ is the 2-sphere S(z∞) which is isotopic to the central 2-spheres of the

2ǫ-necks making up T∞. Hence, the closure W
+
∞ of W+

∞ is a 2ǫ-tube with

boundary S(z∞). In particular, W
+
∞ is diffeomorphic to S2 × [0, 1).

Now we consider the closure W
−
∞ of W−

∞. Since the closure of each W−
n

is the closed negative half of the ǫ-neck N(z′n) and the curvatures of the

z′n have a finite, positive limit, the limit W
−
∞ is diffeomorphic to a product

S2 × (−1, 0]. Hence, U∞ is the union of W
+
∞ and W

−
∞ along their common

boundary. It follows immediately that U∞ is diffeomorphic to S2 × (0, 1).

Claim 10.9. The curvature is bounded in a neighborhood of one end of
U∞ and goes to infinity at the other end.

Proof. A neighborhood of one end of U∞, the end W
−
∞, is the limit of

the negative halves of ǫ-necks centered at z′n. Thus, the curvature is bounded
on this neighborhood, and in fact is approximately equal to R(z∞). Let xk
be any sequence of points in U∞ tending to the other end. We show that
R(xk) tends to ∞ as k does. The point is that since the sequence is tending
to the end, the distance from xk to the end of U∞ is going to zero. Yet, each
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xk is the center of an ǫ-neck in U∞. The only way this is possible is if the
scales of these ǫ-necks are converging to zero as k goes to infinity. This is
equivalent to the statement that R(xk) tends to ∞ as k goes to infinity. �

The next step in the proof of Proposition 10.7 is to extend the flow
backwards a certain amount. As stated in the proposition, the amount of
backward time that we can extend the flow is not uniform over all of U∞,
but rather depends on the curvature of the point at time zero.

Claim 10.10. For each x ∈ Un ⊂Mn there is a flow line in Mn through
x defined on the time-interval (−R(x)−1, 0]. Furthermore, the scalar curva-
ture at any point of this flow line is less than or equal to the scalar curvature
at x.

Proof. Since x ∈ Un ⊂ Tn, there is a strong ǫ-neck in Mn centered at
x. Both statements follow immediately from that. �

Let X ⊂ U∞ be an open submanifold with compact closure and set

t0(X) = supx∈X(−Rg∞(x)−1).

Then for all n sufficiently large ϕn is defined on X and the scalar curvature
of the flow gn(t) on ϕn(X) × (t0, 0] is uniformly bounded independent of n.
Thus, according to Proposition 5.14, by passing to a subsequence we can
arrange that there is a limiting flow defined on X × (t0, 0]. Let U∞ ⊂ U∞ ×
(−∞, 0] consist of all pairs (x, t) with the property that −Rg∞(x, 0)−1 < t ≤
0. Cover U∞ by countably many such boxes of the type X × (−t0(X), 0] as
described above, and take a diagonal subsequence. This allows us to pass to
a subsequence so that the limiting flow exists (as a generalized Ricci flow)
on U∞.

Claim 10.11. The curvature of the generalized Ricci flow on U∞ is non-
negative.

Proof. This claim follows from the fact that the original sequence
(Mn, Gn) consists of generalized flows whose curvatures are pinched to-
ward positive in the weak sense given in Equation (10.1) and the fact that
Qn → ∞ as n→ ∞. (See Theorem 5.33.) �

This completes the proof that all the properties claimed in Proposi-
tion 10.7 hold for the geometric limit (U∞, g∞, z∞). This completes the
proof of that proposition. �

4. Cone limits near the end E for rescalings of U∞

The next step is to study the nature of the limit U∞ given in Propo-
sition 10.7. We shall show that an appropriate blow-up limit (limit in the
Gromov-Hausdorff sense) around the end is a cone.
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Let (X, dX ) be a metric space. Recall that the cone onX, denoted C(X),
is the quotient space X × [0,∞) under the identification (x, 0) ∼= (y, 0) for
all x, y ∈ X. The image of X×{0} is the cone point of the cone. The metric
on C(X) is given by

(10.2) d((x, s1), (y, s2)) = s21 + s22 − 2s1s2cos(min(dX(x, y), π)).

The open cone C ′(X) is the complement of the cone point in C(X) with the
induced metric.

The purpose of this section is to prove the following result.

Proposition 10.12. Let (U∞, g∞, z∞) be as in the conclusion of Propo-
sition 10.7. Let Q∞ = Rg∞(z∞) and let E be the end of U∞ where the scalar
curvature is unbounded. Let λn be any sequence of positive numbers with
limn→∞λn = +∞. Then there is a sequence xn in U∞ such that for each

n the distance from xn to E is λ
−1/2
n , and such that the pointed Riemann-

ian manifolds (U∞, λng∞, xn) converge in the Gromov-Hausdorff sense to
an open cone, an open cone not homeomorphic to an open ray (i.e., not
homeomorphic to the open cone on a point). (see Fig. 2).

Ez∞

(CE , gE )(U∞, g∞, z∞)

Figure 2. Limiting cone.

The rest of this section is devoted to the proof of this result.

4.1. Directions at E. We orient the direction down the tube U∞ so
that E is at the positive end. This gives an sN -direction for each 2ǫ-neck N
contained in U∞.

Fix a point x ∈ U∞. We say a ray γ with endpoint x limiting to E is a
minimizing geodesic ray if for every y ∈ γ the segment on γ from x to y is
a minimizing geodesic segment; i.e., the length of this geodesic segment is
equal to d(x, y).

Claim 10.13. There is a minimizing geodesic ray to E from each x ∈ U∞
with R(x) ≥ 2Q∞.
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Proof. Fix x with R(x) ≥ 2Q∞ and fix a 2ǫ-neck Nx centered at x.
Let S2

x be the central 2-sphere of this neck. Take a sequence of points qn
tending to the end E , each being closer to the end than x in the sense that
S2
x does not separate any qn from the end E . We claim that there is a

minimizing geodesic from x to each qn. The reason is that by Lemma A.7
any minimizing sequence of arcs from x to qn cannot exit from the minus
end of Nx nor the plus end of a 2ǫ-neck centered at qn. Consider a sequence
of paths from x to qn minimizing the distance. Hence these paths all lie in a
fixed compact subset of Un. After replacing the sequence by a subsequence,
we can pass to a limit, which is clearly a minimizing geodesic from x to
qn. Consider minimizing geodesics µn from x to qn. The same argument
shows that, after passing to a subsequence, the µn converge to a minimizing
geodesic ray from x to E . �

Claim 10.14. (1) Any minimizing geodesic ray from x to the end E is a
shortest ray from x to the end E, and conversely any shortest ray from x to
the end E is a minimizing geodesic ray.

(2) The length of a shortest ray from x to E is the distance (see Section 4
of Chapter 2) from x to E.

Proof. The implication in (1) in one direction is clear: If γ is a ray
from x to the end E , and for some y ∈ γ the segment on γ from x to y is
not minimizing, then there is a shorter geodesic segment µ from x to y. The
union of this together with the ray on γ from y to the end is a shorter ray
from x to the end.

Let us establish the opposite implication. Suppose that γ is a minimizing
geodesic ray from x to the end E and that there is a δ > 0 and a shortest
geodesic ray γ′ from x to the end E with |γ′| = |γ|−δ. As we have just seen,
γ′ is a minimizing geodesic ray. Take a sequence of points qi tending to the
end E and let S2

i be the central 2-sphere in the 2ǫ-neck centered at qi. Of
course, for all i sufficiently large, both γ′ and γ must cross S2

i . Since the
scalar curvature tends to infinity at the end E , it follows from Lemma A.4
that for all i sufficiently large, the extrinsic diameter of S2

i is less than δ/3.
Let pi be a point of intersection of γ with S2

i . For all i sufficiently large the
length di of the sub-ray in γ from pi to the end E is at most δ/3. Let p′i be
a point of intersection of γ′ with S2

i and let d′i be the length of the ray in
γ′ from p′i to the end E . Let λ be the sub-geodesic of γ from x to pi and λ′

the sub-geodesic of γ′ from x to p′i. Let β be a minimizing geodesic from p′i
to pi. Of course, |β| < δ/3 so that by the minimality of λ and λ′ we have

−δ/3 < |λ| − |λ′| < δ/3.

Since |λ′| + d′i = |λ| + di − δ, we have

2δ/3 ≤ di − d′i.

This is absurd since d′i > 0 and di < δ/3.
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(2) follows immediately from (1) and the definition. �

Given this result, the usual arguments show:

Corollary 10.15. If γ is a minimizing geodesic ray from x to the end
E, then for any y ∈ γ \ {x} the sub-ray of γ from y to the end, is the unique
shortest geodesic from y to the end.

Also, we have a version of the triangle inequality for distances to E .

Lemma 10.16. Let x and y be points of M . Then the three distances
d(x, y), d(x, E) and d(y, E) satisfy the triangle inequality.

Proof. From the definitions it is clear that d(x, y) + d(y, E) ≥ d(x, E),
and symmetrically, reversing the roles of x and y. The remaining inequality
that we must establish is the following: d(x, E)+d(y, E) ≥ d(x, y). Let qn be
any sequence of points converging to E . Since the end is at finite distance,
it is clear that d(x, E) = limn→∞d(x, qn). The remaining inequality follows
from this and the usual triangle inequality applied to d(x, qn), d(y, qn) and
d(x, y). �

Definition 10.17. We say that two minimizing geodesic rays limiting
to E are equivalent if one is contained in the other. From the unique con-
tinuation of geodesics it is easy to see that this generates an equivalence
relation. An equivalence class is a direction at E , and the set of equivalence
classes is the set of directions at E .

Lemma 10.18. There is more than one direction at E.

Proof. Take a minimal geodesic ray γ from a point x limiting to the
end and let y be a point closer to E than x and not lying on γ. Then a
minimal geodesic ray from y to E gives a direction at E distinct from the
direction determined by γ. �

Remark 10.19. In fact, the general theory of positively curved spaces
implies that the space of directions is homeomorphic to S2. Since we do not
need this stronger result we do not prove it.

4.2. The metric on the space of directions at E.

Definition 10.20. Let γ and µ be minimizing geodesic rays limiting
to E , of lengths a and b, parameterized by the distance from the end. For
0 < s ≤ a and 0 < s′ ≤ b construct a triangle αseβs′ in the Euclidean plane
with |αse| = s, |eβs′ | = s′ and |αsβs′ | = d(γ(s), µ(s′)). We define θ(γ, s, µ, s′)
to be the angle at e of the triangle αseβs′ .

Lemma 10.21. For all γ, s, µ, s′ as in the previous definition we have

0 ≤ θ(γ, s, µ, s′) ≤ π.



4. CONE LIMITS NEAR THE END E FOR RESCALINGS OF U∞ 259

Furthermore, θ(γ, s, µ, s′) is a non-increasing function of s when γ, µ, s′ are
held fixed, and symmetrically it is a non-increasing function of s′ when γ, s, µ
are held fixed. In particular, fixing γ and µ, the function θ(γ, s, µ, s′) is non-
decreasing as s and s′ tend to zero. Thus, there is a well-defined limit as
s and s′ go to zero, denoted θ(γ, µ). This limit is greater than or equal
to θ(γ, s, µ, s′) for all s and s′ for which the latter is defined. We have
0 ≤ θ(γ, µ) ≤ π. The angle θ(γ, µ) = 0 if and only if γ and µ are equivalent.
Furthermore, if γ is equivalent to γ′ and µ is equivalent to µ′, then θ(γ, µ) =
θ(γ′, µ′).

Proof. By restricting γ and µ to slightly smaller rays, we can assume
that each is the unique shortest ray from its endpoint to the end E . Let x,
resp., y be the endpoint of γ, resp., µ. Now let qn be any sequence of points
in U∞ limiting to the end E , and consider minimizing geodesic rays γn from
qn to x and µn from qn to y, each parameterized by the distance from qn. By
passing to a subsequence we can assume that each of the sequences {γn} and
{µn} converge to a minimizing geodesic ray, which by uniqueness, implies
that the first sequence limits to γ and the second to µ. For s, s′ sufficiently
small, let θn(s, s

′) be the angle at q̃n of the Euclidean triangle αnq̃nβn, where
|αnq̃n| = d(γn(s), qn), |βnq̃n| = d(µn(s

′), qn) and |αnβn| = d(γn(s), µn(s
′)).

Clearly, for fixed s and s′ sufficiently small, θn(s, s
′) converges as n→ ∞ to

θ(γ, s, µ, s′). By the Toponogov property (Theorem 2.4) for manifolds with
non-negative curvature, for each n the function θn(s, s

′) is a non-increasing
function of each variable, when the other is held fixed. This property then
passes to the limit, giving the first statement in the lemma.

By the monotonicity, θ(γ, µ) = 0 if and only if for all s, s′ sufficiently
small we have θ(γ, s, µ, s′) = 0, which means one of γ and µ is contained in
the other.

It is obvious that the last statement holds. �

It follows that θ(γ, µ) yields a well-defined function on the set of pairs
of directions at E . It is clearly a symmetric, non-negative function which is
positive off of the diagonal. The next lemma shows that it is a metric by
establishing the triangle inequality for θ.

Lemma 10.22. If γ, µ, ν are minimizing geodesic rays limiting to E, then

θ(γ, µ) + θ(µ, ν) ≥ θ(γ, ν).

Proof. By Corollary 10.15, after replacing γ, µ, ν by equivalent, shorter
geodesic arcs, we can assume that they are the unique minimizing geodesics
from their end points, say x, y, z respectively, to E . Let qn be a sequence of
points limiting to E , and let γn, µn, νn be minimizing geodesics from x, y, z
to qn. Denote by θn(x, y), θn(y, z), and θn(x, z), respectively, the angles at
q̃n of the triangles in R

2 with the edge lengths: {d(x, y), d(x, qn), d(y, qn)},
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{d(y, z), d(y, qn), d(z, qn)}, and {d(z, x), d(z, qn), d(x, qn)}. Then by Corol-
lary 2.6 we have θn(x, y)+θn(y, z) ≥ θn(x, z). Passing to the limit as n goes
to ∞ and then the limit as x, y and z tend to E , gives the result. �

Definition 10.23. Let X(E) denote the set of directions at E . We define
the metric on X(E) by setting d([γ], [µ]) = θ(γ, µ). We call this the (metric)
space of realized directions at E . The metric space of directions at E is the
completion X(E) of X(E) with respect to the given metric. We denote by
(CE , gE ) the cone on X(E) with the cone metric as given in Equation (10.2).
(See Fig. 2.)

Proposition 10.24. (CE , gE ) is a metric cone that is not homeomorphic
to a ray.

Proof. By construction (CE , gE ) is a metric cone. That it is not home-
omorphic to a ray follows immediately from Lemma 10.18. �

4.3. Comparison results for distances.

Lemma 10.25. Suppose that γ and µ are unique shortest geodesic rays
from points x and y to the end E. Let [γ] and [µ] be the points of X(E)
represented by these two geodesics rays. Let a, resp. b, be the distance from
x, resp. y, to E. Denote by x′, resp. y′, the image in CE of the point ([γ], a),
resp. ([µ], b), of X(E) × [0,∞). Then

dg∞(x, y) ≤ dgE (x′, y′).

Proof. By the definition of the cone metric we have

dgE (x′, y′) = a2 + b2 − 2ab cos(θ(γ, µ)).

On the other hand by Definition 10.20 and the law of cosines for Euclidean
triangles, we have

dg∞(x, y) = a2 + b2 − 2ab cos(θ(γ, a, µ, b)).

The result is now immediate from the fact, proved in Lemma 10.20 that

0 ≤ θ(γ, a, µ, b) ≤ θ(γ, µ) ≤ π,

and the fact that the cosine is a monotone decreasing function on the interval
[0, π]. �

Corollary 10.26. Let γ, µ, x, y be as in the previous lemma. Fix λ > 0.
Let a = dλg∞(x, E) and b = dλg∞(y, E). Set x′λ and y′λ equal to the points in
the cone ([γ], a) and ([µ], b). Then we have

dλg∞(x, y) ≤ dgE (x′λ, y
′
λ).

Proof. This follows by applying the previous lemma to the rescaled
manifold (U∞, λg∞), and noticing that rescaling does not affect the cone CE
nor its metric. �
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Lemma 10.27. For any δ > 0 there is K = K(δ) < ∞ so that for any
set of realized directions at E of cardinality K, ℓ1, . . . , ℓK , it must be the case
that there are j and j′ with j 6= j′ such that θ(ℓj, ℓj′) < δ.

Proof. Let K be such that, given K points in the central 2-sphere of
any 2ǫ-tube of scale 1, at least two are within distance δ/2 of each other.
Now suppose that we have K directions ℓ1, . . . , ℓK at E . Let γ1, . . . , γK
be minimizing geodesic rays limiting to E that represent these directions.
Choose a point x sufficiently close to the end E so that all the γj cross the
central 2-sphere S2 of the 2ǫ-neck centered at x. By replacing the γj with
sub-rays we can assume that for each j the endpoint xj of γj lies in S2. Let
dj be the length of γj. By taking x sufficiently close to E we can also assume
the following. For each j and j′, the angle at e of the Euclidean triangle
αjeαj′ , where |αje| = dj ; |αj′e| = dj′ and |αjαj′ | = d(xj , xj′) is within δ/2
of θ(ℓj, ℓj′). Now there must be j 6= j′ with d(xi, xj) < (δ/2)ri where ri
is the scale of Ni. Since dj, dj′ > ǫ−1ri/2, it follows that the angle at e of
αjeαj′ is less than δ/2. Consequently, θ(ℓj, ℓj′) < δ. �

Recall that a δ-net in a metric space X is a finite set of points such that
X is contained in the union of the δ-neighborhoods of these points. The
above lemma immediately yields:

Corollary 10.28. The metric completion X(E) of the space of direc-
tions at E is a compact space. For every δ > 0 this space has a δ-net
consisting of realized directions. For every 0 < r < R < ∞ the annular
region AE(r,R) = X(E)× [r,R] in CE has a δ-net consisting of points (ℓi, si)
where for each i we have ℓi is a realizable direction and r < si < R.

4.4. Completion of the proof of a cone limit at E. Now we are
ready to prove Proposition 10.12. In fact, we prove a version of the propo-
sition that identifies the sequence of points xn and also identifies the cone
to which the rescaled manifolds converge.

Proposition 10.29. Let (U∞, g∞) be an incomplete Riemannian 3-
manifold of non-negative curvature with an end E as in the hypothesis of
Proposition 10.12. Fix a minimizing geodesic ray γ limiting to E. Let λn be
any sequence of positive numbers tending to infinity. For each n sufficiently

large let xn ∈ γ be the point at distance λ
−1/2
n from the end E. Then the

based metric spaces (U∞, λng∞, xn) converge in the Gromov-Hausdorff sense
to (C ′

E , gE , ([γ], 1)). Under this convergence the distance function from the
end E in (U∞, λng∞) converges to the distance function from the cone point
in the open cone.

Proof. It suffices to prove that given any subsequence of the original se-
quence, the result holds for a further subsequence. So let us replace the given
sequence by a subsequence. Recall that for each 0 < r < R < ∞ we have
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AE(r,R) ⊂ C ′
E , the compact annulus which is the image of X(E) × [r,R].

The statement about the non-compact spaces converging in the Gromov-
Hausdorff topology, means that for each compact subspace K of C ′

E contain-
ing the base point, for all n sufficiently large, there are compact subspaces
Kn ⊂ (U∞, λng∞) containing xn with the property that the (Kn, xn) con-
verge in the Gromov-Hausdorff topology to (K,x) (see Section D of Chapter
3, p. 39, of [25]).

Because of this, it suffices to fix 0 < r < 1 < R <∞ arbitrarily and prove
the convergence result for AE (r,R). Since the Gromov-Hausdorff distance
from a compact pointed metric space to a δ-net in it containing the base
point is at most δ, it suffices to prove that for δ > 0 there is a δ-net (N , h)
in AE (r,R), with ([γ], 1) ∈ N such that for all n sufficiently large there are
embeddings ϕn of N into An(r,R) = Bλng∞(E , R) \ Bλng∞(E , r) with the
following four properties:

(1) ϕ∗
n(λng∞) converge to h as n→ ∞,

(2) ϕn([γ], 1) = xn,
(3) ϕn(N ) is a δ-net in An(r,R), and
(4) denoting the cone point by c ∈ CE , if d(p, c) = r then d(ϕn(p), E) =

r.

According to Corollary 10.28 there is a δ-net N ⊂ AE (r,R) consisting
of points (ℓi, si) where the ℓi are realizable directions and r < si < R. Add
([γ], 1) to N if necessary so that we can assume that ([γ], 1) ∈ N . Let γi be
a minimizing geodesic realizing ℓi and let di be its length.

Fix n sufficiently large so that λ
−1/2
n R ≤ di for all i. We define ϕn : N →

An(r,R) as follows. For any ai = ([γi], si) ∈ N we let ϕn(ai) = γi(λ
−1/2
n si).

(Since λ
−1/2
n s ≤ λ

−1/2
n R ≤ di, the geodesic γi is defined at λ

−1/2
n si.) This

defines the embeddings ϕn for all n sufficiently large. Notice that

dg∞ (ϕn(ℓi, si), ϕn(ℓj , sj)) = λ−1
n s2i + λ−1

n s2j − 2λ−1
n sisjθij(λ

−1/2
n si, λ

−1/2
n sj),

or equivalently

dλng∞ (ϕn(ℓi, si), ϕn(ℓj, sj)) = s2i + s2j − 2sisjθij(λ
−1/2
n si, λ

−1/2
n sj).

Here, θij(λ
−1/2
n si, λ

−1/2
n sj) is the comparison angle between the point at

distance λ
−1/2
n si along γi, the point p, and the point at distance λ

−1/2
n sj

along γj . ( Because of the convergence result on angles (Lemma 10.21), for
all i and j we have

limn→∞dλng∞ (ϕn(ℓi, si), ϕn(ℓj, sj)) = s2i + s2j − 2sisjcos(θ(γi, γj))

= dgE ((ℓi, si), (ℓj , sj)) .

This establishes the existence of the ϕn for all n sufficiently large satisfying
the first condition. Clearly, from the definition ϕn([γ], 1) = xn, and for all
p ∈ N we have d(ϕn(p), E) = d(p, c).
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It remains to check that for all n sufficiently large ϕn(N ) is a δ-net in
An(r,R). For n sufficiently large let z ∈ An(r,R) and let γz be a minimizing
geodesic ray from z to E parameterized by the distance from the end. Set
dn = dλng∞(z, E), so that r ≤ dn ≤ R. Fix n sufficiently large so that

λ
−1/2
n R < di for all i. The point ([γz], dn) ∈ CE is contained in AE(r,R) and

hence there is an element a = ([γi], si) ∈ N within distance δ of ([γz], dn)

in CE . Since si ≤ R, λ
−1/2
n si ≤ di and hence x = γi(λ

−1/2
n si) is defined. By

Corollary 10.26 we have

dλng∞(x, z) ≤ dgE (([γ], dn), ([γi], si)) ≤ δ.

This completes the proof that for n sufficiently large the image ϕn(N ) is a
δ-net in An(r,R).

This shows that the (U∞, λng∞, xn) converge in the Gromov-Hausdorff
topology to (C ′

E , gE , ([γ], 1)). �

Remark 10.30. Notice that since the manifolds (U∞, λng∞, xn) are not
complete, there can be more than one Gromov-Hausdorff limit. For example
we could take the full cone as a limit. Indeed, the cone is the only Gromov-
Hausdorff limit that is complete as a metric space.

5. Comparison of the two types of limits

Let us recap the progress to date. We constructed an incomplete geo-
metric blow-up limit (U∞, G∞, z∞) for our original sequence. It has non-
negative Riemann curvature. We showed that the zero time-slice U∞ of the
limit is diffeomorphic to a tube S2 × (0, 1) and that at one end of the tube
the scalar curvature goes to infinity. Also, any point sufficiently near this
end is the center of an evolving 2ǫ-neck defined for an interval of normalized
time of length 1/2 in the limiting flow. Then we took a further blow-up
limit. We chose a sequence of points xn ∈ U∞ tending to the end E where
the scalar curvature goes to infinity. Then we formed (U∞, λng∞, xn) where

the distance from xn to the end E is λ
−1/2
n . By fairly general principles (in

fact it is a general theorem about manifolds of non-negative curvature) we
showed that this sequence converges in the Gromov-Hausdorff sense to a
cone.

The next step is to show that this second blow-up limit also exists as
a geometric limit away from the cone point. Take a sequence of points
xn ∈ U∞ tending to E . We let λ′n = R(xn), and we consider the based
Riemannian manifolds (U∞, λ′ng∞(0), xn). Let Bn ⊂ Un be the metric ball
of radius ǫ−1/3 centered at xn in (U∞, λ′ng∞(0)). Since this ball is contained
in a 2ǫ-neck centered at xn, the curvature on this ball is bounded, and this
ball has compact closure in U∞. Also, for each y ∈ Bn, there is a rescaled
flow λ′g(t) defined on {y} × (−1/2, 0] whose curvature on Bn × (−1/2, 0] is
bounded. Hence, by Theorem 5.11 we can pass to a subsequence and extract
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a geometric limit. In fact, by Proposition 5.14 there is even a geometric
limiting flow defined on the time interval (−1/2, 0].

We must compare the zero time-slice of this geometric limiting flow with
the corresponding open subset of the Gromov-Hausdorff limit constructed
in the previous section. Of course, one obvious difference is that we have
used different blow-up factors: d(xn, E)−2 in the first case and R(xn) in the
second case. So one important ingredient in comparing the limits will be to
compare these factors, at least in the limit.

5.1. Comparison of the blow-up factors. Now let us compare the
two limits: (i) the Gromov-Hausdorff limit of the sequence (U∞, λng∞, xn)
and (ii) the geometric limit of the sequence (U∞, λ′ng∞, xn) constructed
above.

Claim 10.31. The ratio ρn = λ′n/λn is bounded above and below by
positive constants.

Proof. Since there is a 2ǫ-neck centered at xn, according to Propo-

sition A.11 the distance λ
−1/2
n from xn to E is at least R(xn)

−1/2ǫ−1/2 =

(λ′n)
−1/2ǫ−1/2. Thus,

ρ−1
n = λn/λ

′
n ≤ 4ǫ2.

On the other hand, suppose that ρn = λ′n/λn → ∞ as n → ∞. Rescale
by λ′n so that R(xn) = 1. The distance from xn to E is

√
ρn. Then by

Lemma A.4 with respect to this metric there is a sphere of diameter at most
2π through xn that separates all points at distance at most

√
ρn−ǫ−1 from E

from all points at distance at least
√
ρn+ǫ−1 from E . Now rescale the metric

by ρn. In the rescaled metric there is a 2-sphere of diameter at most 2π/
√
ρn

through xn that separates all points at distance at most 1−ǫ−1/
√
ρn from E

from all points at distance at least 1+ǫ−1/
√
ρn from E . Taking the Gromov-

Hausdorff limit of these spaces, we see that the base point x∞ separates all
points of distance less than 1 from E from all points of distance greater than
1 from E . This is impossible since the Gromov-Hausdorff limit is a cone that
is not the cone on a single point. �

5.2. Completion of the comparison of the blow-up limits. Once
we know that the λn/λ

′
n are bounded above and below by positive constants,

we can pass to a subsequence so that these ratios converge to a finite positive
limit. This means that the Gromov-Hausdorff limit of the sequence of based
metric spaces (U∞, λ′ng∞, xn) is a cone, namely the Gromov-Hausdorff lim-
iting cone constructed in Section 4, rescaled by limn→∞ρn. In particular,
the balls of radius ǫ−1/2 around the base points in this sequence converge
in the Gromov-Hausdorff sense to the ball of radius ǫ−1/2 about the base
point of a cone.

But we have already seen that the balls of radius ǫ−1/2 centered at
the base points converge geometrically to a limiting manifold. That is to
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say, on every ball of radius less than ǫ−1/2 centered at the base point the
metrics converge uniformly in the C∞-topology to a limiting smooth metric.
Thus, on every ball of radius less than ǫ−1/2 centered at the base point the
limiting smooth metric is isometric to the metric of the Gromov-Hausdorff
limit. This means that the limiting smooth metric on the ball B∞ of radius
ǫ−1/2 centered at the base point is isometric to an open subset of a cone.
Notice that the scalar curvature of the limiting smooth metric at the base
point is 1, so that this cone is a non-flat cone.

6. The final contradiction

We have now shown that the smooth limit of the balls of radius ǫ−1/2
centered at the base points of (U∞, λ′ng∞, xn) is isometric to an open subset
of a non-flat cone, and is also the zero time-slice of a Ricci flow defined for the
time interval (−1/2, 0]. This contradicts Proposition 4.22, one of the conse-
quences of the maximum principle established by Hamilton. The contradic-
tion shows that the limit (U∞, g∞, x∞) cannot exist. The only assumption
that we made in order to construct this limit was that Theorem 10.2 did
not hold for some A0 < ∞. Thus, we have established Theorem 10.2 by
contradiction.





CHAPTER 11

Geometric limits of generalized Ricci flows

In this chapter we apply the main result of the last section, bounded
curvature at bounded distance, to blow-up limits in order to establish the
existence of a smooth limit for sequences of generalized Ricci flows. In the
first section we establish a blow-up limit that is defined for some interval of
time of positive length, where the length of the interval of time is allowed to
depend on the limit. In the second section we give conditions under which
this blow-up limit can be extended backwards to make an ancient Ricci flow.
In the third section we construct limits at the singular time of a generalized
Ricci flow satisfying appropriate conditions. We characterize the ends of the
components of these limits. We show that they are ǫ-horns – the ends are
diffeomorphic to S2 × [0, 1) and the scalar curvature goes to infinity at the
end. In the fourth section we prove for any δ > 0 that there are δ-necks
sufficiently deep in any ǫ-horn, provided that the curvature at the other end
of the horn is not too large. Throughout this chapter we fix ǫ > 0 sufficiently
small such that all the results of the Appendix hold for 2ǫ and α = 10−2,
and Proposition 2.19 holds for 2ǫ.

1. A smooth blow-up limit defined for a small time

We begin with a theorem that produces a blow-up limit flow defined on
some small time interval.

Theorem 11.1. Fix canonical neighborhood constants (C, ǫ), and non-
collapsing constants r > 0, κ > 0. Let (Mn, Gn, xn) be a sequence of based
generalized 3-dimensional Ricci flows. We set tn = t(xn) and Qn = R(xn).
We denote by Mn the tn time-slice of Mn. We suppose that:

(1) Each (Mn, Gn) either has a time interval of definition contained
in [0,∞) and has curvature pinched toward positive, or has non-
negative curvature.

(2) Every point yn ∈ (Mn, Gn) with t(yn) ≤ tn and with R(yn) ≥
4R(xn) has a strong (C, ǫ)-canonical neighborhood.

(3) limn→∞Qn = ∞.
(4) For each A <∞ the following holds for all n sufficiently large. The

ball B(xn, tn, AQ
−1/2
n ) has compact closure in Mn and the flow is

κ-non-collapsed on scales ≤ r at each point of B(xn, tn, AQ
−1/2
n ).

267
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(5) There is µ > 0 such that for every A < ∞ the following holds

for all n sufficiently large. For every yn ∈ B(xn, tn, AQ
−1/2
n ) the

maximal flow line through yn extends backwards for a time at least
µ (max(Qn, R(yn)))

−1.

Then, after passing to a subsequence and shifting the times of each
of the generalized flows so that tn = 0 for every n, there is a geometric
limit (M∞, g∞, x∞) of the sequence (Mn, QnGn(0), xn) of based Riemann-
ian manifolds. This limit is a complete 3-dimensional Riemannian manifold
of bounded, non-negative curvature. Furthermore, for some t0 > 0 which de-
pends on the curvature bound for (M∞, g∞) and on µ, there is a geometric
limit Ricci flow defined on (M∞, g∞(t)),−t0 ≤ t ≤ 0, with g∞(0) = g∞.

Before beginning the proof of this theorem we establish a lemma that
we shall need both in its proof and also for later applications.

Lemma 11.2. Let (M, G) be a generalized 3-dimensional Ricci flow.
Suppose that r0 > 0 and that any z ∈ M with R(z) ≥ r−2

0 has a strong
(C, ǫ)-canonical neighborhood. Suppose z ∈ M and t(z) = t0. Set

r =
1

2C
√

max(R(z), r−2
0 )

and

∆t =
1

16C
(
R(z) + r−2

0

) .

Suppose that r′ ≤ r and that |t′ − t0| ≤ ∆t and let I be the interval with
endpoints t0 and t′. Suppose that there is an embedding of j : B(z, t0, r

′) ×
I into M compatible with time and with the vector field. Then R(y) ≤
2
(
R(z) + r−2

0

)
for all y in the image of j.

Proof. We first prove that for any y ∈ B(z, t0, r) we have

(11.1) R(y) ≤ 16

9
(R(z) + r−2

0 ).

Let γ : [0, s0] → B(z, t0, r) be a path of length s0 < r connecting z = γ(0)
to y = γ(s0). We take γ parameterized by arc length. For any s ∈ [0, s0]
let R(s) = R(γ(s)). According to the strong (C, ǫ)-canonical neighborhood

assumption at any point where R(s) ≥ r−2
0 we have |R′(s)| ≤ CR3/2(s). Let

J ⊂ [0, s0] be the closed subset consisting of s ∈ [0, s0] for which R(s) ≥ r−2
0 .

There are three possibilities. If s0 6∈ J then R(y) ≤ r−2
0 and we have

established Inequality (11.1). If J = [0, s0], then we have |R′(s)| ≤ CR3/2(s)
for all s in J . Using this differential inequality and the fact that the interval
has length at most 1

2C
√
R(z)

, we see that R(y) ≤ 16R(z)/9, again establishing

Inequality (11.1). The last possibility is that J 6= [0, s0] but s0 ∈ J . We
restrict attention to the maximal interval of J containing s0. This interval
has length at most r0

2C and at its initial point R takes the value r−2
0 . For
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every s in this interval by our assumptions we again have the inequality
|R′(s)| ≤ CR3/2(s); it follows immediately that R(y) ≤ 16r−2

0 /9. This
establishes Inequality (11.1) in all cases.

Now consider the vertical path j({y} × I). Let R(t) = R(j(y, t)). Again
by the strong canonical neighborhood assumption |R′(t)| ≤ CR2(t) at all
points where R(t) ≥ r−2

0 . Consider the closed subset K of I where R(t) ≥
r−2
0 . There are three cases to consider: t′ 6∈ K, t′ ∈ K 6= I, or K = I. In the

first case, R(y, t′) ≤ r−2
0 and we have established the result. In the second

case, let K ′ be the maximal subinterval of K containing t′. On the interval
K ′ we have |R′(t)| ≤ CR2(t) and at one endpoint R(t) = r−2

0 . Since this

interval has length at most r20/16C, it follows easily that R(t′) ≤ 16r−2
0 /15,

establishing the result. In the last case where K = I, then, by what we
established above, the initial condition is R(t0) = R(y) ≤ 16(R(z)+ r−2

0 )/9,
and the differential inequality |R′(t)| ≤ CR2(t) holds for all t ∈ I. Since the
length of I is at most 1

16C(R(y)+r−2
0 )

we see directly that R(t′) ≤ 2(R(z)+r−2
0 ),

completing the proof in this case as well. �

Now we begin the proof of Theorem 11.1.

Proof. (of Theorem 11.1) We shift the times for the flows so that tn = 0
for all n. Since Qn tends to ∞ as n tends to ∞, according to Theorem 10.2
for any A < ∞, there is a bound Q(A) < ∞ on the scalar curvature of
QnGn(0) on BQnGn(xn, 0, A) for all n sufficiently large. According to the
hypothesis of Theorem 11.1, this means that there is t0(A) > 0 and, for each
n sufficiently large, an embedding of BQnGn(xn, 0, A)× [−t0(A), 0] into Mn

compatible with time and with the vector field. In fact, we can choose t0(A)
so that more is true.

Corollary 11.3. For each A < ∞, let Q(A) be a bound on the scalar
curvature of the restriction of QnGn to BQnGn(xn, 0, A) for all n sufficiently
large. Then there exist a constant t′0(A) > 0 depending on t0(A) and Q(A),
and a constant Q′(A) < ∞ depending only on Q(A), and, for all n suffi-
ciently large, an embedding

BQnGn(xn, 0, A) × (−t′0(A), 0] → Mn

compatible with time and with the vector field with the property that the
scalar curvature of the restriction of QnGn to the image of this subset is
bounded by Q′(A).

Proof. This is immediate from Lemma 11.2 and Assumption (5) in the
hypothesis of the theorem. �

Now since the curvatures of the QnGn are pinched toward positive or
are non-negative, bounding the scalar curvature above gives a bound on
|RmQnGn | on the product BQnGn(xn, 0, A) × (−t′0(A), 0]. Now we invoke
Shi’s theorem (Theorem 3.28):
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Corollary 11.4. For each A < ∞ and for each integer ℓ ≥ 0, there is
a constant C2 such that for all n sufficiently large we have

|∇ℓRmQnGn(x)| ≤ C2

for all x ∈ BQnGn(xn, 0, A).

Also, by the curvature bound and the κ-non-collapsed hypothesis we
have the following:

Claim 11.5. There is η > 0 such that for all n sufficiently large

Vol(BQnGn(xn, 0, η)) ≥ κη3.

Now we are in a position to apply Corollary 5.10. This implies that,
after passing to a subsequence, there is a geometric limit (M∞, g∞, x∞)
of the sequence of based Riemannian manifolds (Mn, QnGn(0), xn). The
geometric limit is a complete Riemannian manifold. If the (Mn, Gn) satisfy
the curvature pinched toward positive hypothesis, by Theorem 5.33, the
limit Riemannian manifold (M∞, g∞) has non-negative curvature. If the
(Mn, Gn) have non-negative curvature, then it is obvious that the limit has
non-negative curvature. By construction R(x∞) = 1.

In fact, by Proposition 5.14 for each A <∞, there is t(A) > 0 and, after
passing to a subsequence, geometrically limit flow defined on B(x∞, 0, A)×
(−t(A), 0].

Claim 11.6. Any point in (M∞, g∞) of curvature greater than 4 has a
(2C, 2ǫ)-canonical neighborhood.

Proof. Since the sequence (Mn, QnGn(0), xn) converges geometrically
to (M∞, g∞, x∞), there is an exhaustive sequence V1 ⊂ V2 ⊂ · · · ⊂ M∞
of open subsets of M∞, with compact closure, each containing x∞, and
for each n an embedding ϕn of Vn into the zero time-slice of Mn such
that ϕn(x∞) = xn and such that the Riemannian metrics ϕ∗

nGn converge
uniformly on compact sets to g∞. Let q ∈M∞ be a point with Rg∞(q) > 4.
Then for all n sufficiently large, q ∈ Vn, so that qn = ϕn(q) is defined,
and RQnGn(qn) > 4. Thus, qn has an (C, ǫ)-canonical neighborhood, Un,
in Mn; and, since R(qn) > 4 for all n, there is a uniform bound to the
distance from any point of Un to qn. Thus, there exists m such that for
all n sufficiently large ϕn(Vm) contains Un. Clearly as n goes to infinity
the Riemannian metrics ϕ∗

n(Gn)|ϕ−1
n (Um) converge smoothly to g∞|ϕ−1

n (Un).

Thus, by Proposition 9.79 for all n sufficiently large the restriction of g∞ to
ϕ−1
n (Un) contains a (2C, 2ǫ)-canonical neighborhood of q. �

Claim 11.7. The limit Riemannian manifold (M∞, g∞) has bounded
curvature.

Proof. First, suppose that (M∞, g∞) does not have strictly positive
curvature. Suppose that y ∈ M∞ has the property that Rm(y) has a zero
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eigenvalue. Fix A < ∞ greater than dg∞(x∞, y). Then applying Corol-
lary 4.19 to the limit flow on B(x∞, 0, A) × (−t(A), 0], we see that the Rie-
mannian manifold (B(x∞, 0, A), g∞) is locally a Riemannian product of a
compact surface of positive curvature with a one-manifold. Since this is true
for every A < ∞ sufficiently large, the same is true for (M∞, g∞). Hence
(M∞, g∞) has a one- or two-sheeted covering that is a global Riemannian
product of a compact surface and one-manifold. Clearly, in this case the
curvature of (M∞, g∞) is bounded.

If M∞ is compact, then it is clear that the curvature is bounded.
It remains to consider the case where (M∞, g∞) is non-compact and of

strictly positive curvature. Since any point of curvature greater than 4 has
a (2C, 2ǫ)-canonical neighborhood, and since M∞ is non-compact, it follows
that the only possible canonical neighborhoods for x ∈ M∞ are a 2ǫ-neck
centered at x or (2C, 2ǫ)-cap whose core contains x. Each of these canonical
neighborhoods contains a 2ǫ-neck. Thus, if (M∞, g∞) has unbounded and
positive Riemann curvature or equivalently, it has unbounded scalar curva-
ture, then it has (2C, 2ǫ)-canonical neighborhoods of arbitrarily small scale,
and hence 2ǫ-necks of arbitrarily small scale. But this contradicts Proposi-
tion 2.19. It follows from this contradiction that the curvature of (M∞, g∞)
is bounded. �

To complete the proof of Theorem 11.1 it remains to extend the limit for
the 0 time-slices of the (Mn, Gn) that we have just constructed to a limit
flow defined for some positive amount of time backward. Since the curvature
of (M∞, g∞) is bounded, this implies that there is a bound, Q, such that
for any A <∞ the curvature of the restriction of QnGn to BQnGn(xn, 0, A)
is bounded by Q for all n sufficiently large. Thus, we can take the constant
Q(A) in Corollary 11.3 to be independent of A. According to that corollary
this implies that there is a t′0 > 0 and Q′ <∞ such that for every A there is
an embedding BQnGn(xN , 0, A) × (−t′0, 0] → Mn compatible with time and
with the vector field so that the scalar curvature of the restriction of QnGn
to the image is bounded by Q′ for all n sufficiently large. This uniform
bound on the scalar curvature yields a uniform bound, uniform in the sense
of being independent of n, on |RmQnGn | on the image of the embedding
BQnGn(xN , 0, A) × (−t′0, 0].

Then by Hamilton’s result, Proposition 5.14, we see that, after passing
to a further subsequence, there is a limit flow defined on (−t′0, 0]. Of course,
the zero time-slice of this limit flow is the limit (M∞, g∞). This completes
the proof of Theorem 11.1. �

2. Long-time blow-up limits

Now we wish to establish conditions under which we can, after passing
to a further subsequence, establish the existence of a geometric limit flow
defined on −∞ < t ≤ 0. Here is the main result.
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Theorem 11.8. Suppose that {(Mn, Gn, xn)}∞n=1 is a sequence of gener-
alized 3-dimensional Ricci flows satisfying the hypotheses of Theorem 11.1.
Suppose in addition that there is T0 with 0 < T0 ≤ ∞ such that the following
holds. For any T < T0, for each A <∞, and all n sufficiently large, there is

an embedding B(xn, tn, AQ
−1/2
n )× (tn− TQ−1

n , tn] into Mn compatible with
time and with the vector field and at every point of the image the generalized
flow is κ-non-collapsed on scales ≤ r. Then, after shifting the times of the
generalized flows so that tn = 0 for all n and passing to a subsequence there
is a geometric limit Ricci flow

(M∞, g∞(t), x∞), −T0 < t ≤ 0,

for the rescaled generalized flows (QnMn, QnGn, xn). This limit flow is com-
plete and of non-negative curvature. Furthermore, the curvature is locally
bounded in time. If in addition T0 = ∞, then it is a κ-solution.

Remark 11.9. Let us point out the differences between this result and
Theorem 11.1. The hypotheses of this theorem include all the hypotheses
of Theorem 11.1. The main difference between the conclusions is that in
Theorem 11.1 the amount of backward time for which the limit flow is defined
depends on the curvature bound for the final time-slice of the limit (as well
as how far back the flows in the sequence are defined). This amount of
backward time tends to zero as the curvature of the final time-slice limit
tends to infinity. Here, the amount of backward time for which the limit
flow is defined depends only on how far backwards the flows in the sequence
are defined.

Proof. In Theorem 11.1 we proved that, after passing to a subsequence,
there is a geometric limit Ricci flow, complete of bounded non-negative
curvature,

(M∞, g∞(t), x∞), −t0 ≤ t ≤ 0,

defined for some t0 > 0. Our next step is to extend the limit flow all the
way back to time −T0.

Proposition 11.10. With the notation of, and under the hypotheses
of Theorem 11.8, suppose that there is a geometric limit flow (M∞, g∞(t))
defined for −T < t ≤ 0 which has non-negative curvature locally bounded
in time. Suppose that T < T0. Then the curvature of the limit flow is
bounded and the geometric limit flow can be extended to a flow with bounded
curvature defined on (−(T + δ), 0] for some δ > 0.

Proof. The argument is by contradiction, so we suppose that there is
a T < T0 as in the statement of the proposition. Then the geometric limit
flow on (−T, 0] is complete of non-negative curvature and with the curvature
locally bounded in time. First suppose that the scalar curvature is bounded
by, say Q < ∞. Fix T ′ < T . The Riemannian manifold (M∞, g∞(T ′)) is
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complete of non-negative curvature with the scalar curvature, and hence the
norm of the Riemann curvature, bounded by Q. Thus, for any A < ∞ for
all n sufficiently large, the norm of the Riemann curvature of QnGn(−T ′)
on BQnGn(xn,−T,A) is bounded above by 2Q. Also, arguing as in the proof
of Theorem 11.1 we see that any point y ∈ M∞ with R(y,−T ′) > 4 has
a (2C, 2ǫ)-canonical neighborhood. Hence, applying Lemma 11.2 as in the
argument in the proof of Corollary 11.3 shows that for all n sufficiently large,
every point in BQnGn(xn,−T ′, A) has a uniform size parabolic neighborhood
on which the Riemann curvature is uniformly bounded, where both the time
interval in the parabolic neighborhood and the curvature bound on this
neighborhood depend only on C and the curvature bound on Q for the limit
flow. According to Hamilton’s result (Proposition 5.14) this implies that,
by passing to a further subsequence, we can extend the limit flow backward
beyond −T ′ a uniform amount of time, say 2δ. Taking T ′ > T − δ then
gives the desired extension under the condition that the scalar curvature is
bounded on (−T, 0].

It remains to show that, provided that T < T0, the scalar curvature of
the limit flow (M∞, g∞(t)), −T < t ≤ 0, is bounded. To establish this we
need a couple of preliminary results.

Lemma 11.11. Suppose that there is a geometric limit flow defined on
(−T, 0] for some 0 < T ≤ T0 with T < ∞. We suppose that this limit is
complete with non-negative curvature, and with curvature locally bounded in
time. Let X ⊂ M∞ be a compact, connected subset. If minx∈X(Rg∞(x, t))
is bounded, independent of t, for all t ∈ (−T, 0], then there is a finite upper
bound on Rg∞(x, t) for all x ∈ X and all t ∈ (−T, 0].

Proof. Let us begin with:

Claim 11.12. Let Q be an upper bound on R(x, 0) for all x ∈M∞. Then
for any points x, y ∈M∞ and any t ∈ (−T, 0] we have

dt(x, y) ≤ d0(x, y) + 16

√
Q

3
T.

Proof. Fix −t0 ∈ (−T, 0]. Then for any ǫ > 0 sufficiently small, by the
Harnack inequality (the second result in Theorem 4.37) we have

∂R

∂t
(x, t) ≥ − R(x, t)

t+ T − ǫ
.

Taking the limit as ǫ→ 0 gives

∂R

∂t
(x, t) ≥ −R(x, t)

t+ T
,

and hence, fixing x,
dR(x, t)

R(x, t)
≥ −dt

(t+ T )
.
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Integrating from −t0 to 0 shows that

log(R(x, 0)) − log(R(x,−t0)) ≥ log(T − t0) − log(T ),

and since R(x, 0) ≤ Q, this implies

R(x,−t0) ≤ Q
T

T − t0
.

Recalling that n = 3 and that the curvature is non-negative we see that

Ric(x,−t0) ≤ (n− 1)
QT

2

1

T − t0
.

Hence by Corollary 3.26, for all −t0 ∈ (−T, 0] we have that

dist−t0(x, y) ≤ dist0(x, y) + 8

∫ 0

−t0

√
QT

3(T + t)
≤ dist0(x, y) + 16

√
Q

3
T.

�

It follows immediately from this claim that any compact subsetX ⊂M∞
has uniformly bounded diameter under all the metrics g∞(t), −T < t ≤ 0.

By the hypothesis of the lemma there is a constant C ′ < ∞ such that
for each t ∈ (−T, 0] there is yt ∈ X with Rg∞(yt, t) ≤ C ′. Suppose that the
conclusion of the lemma does not hold. Then there is a sequence tm → −T
as m → ∞ and points zm ∈ X such that Rg∞(zm, tm) → ∞ as m → ∞.
In this case, possibly after redefining the constant C ′, we can also assume
that there is a point ym such that 2 ≤ R(ym, tm) ≤ C ′. Since the sequence
(Mn, QnGn, xn) converges smoothly to (M∞, g∞(t), x∞) for t ∈ (−T, 0], it
follows that for each m there are sequences {ym,n ∈ Mn}∞n=1 and {zm,n ∈
Mn}∞n=1 with t(ym,n) = t(zm,n) = tm converging to (ym, tm) and (zm, tm)
respectively. Thus, for all m there is n0 = n0(m) such that for all n ≥ n0

we have:

(1) 1 ≤ RQnGn(ym,n) ≤ 2C ′,
(2) RQnGn(zm,n) ≥ Rg∞(zm, tm)/2,
(3) dQnGn((ym,n), (zm,n)) ≤ 2 diamg∞(tm)(X).

It follows from the third condition and the fact that X has uniformly
bounded diameter under all the metrics g∞(t) for t ∈ (−T, 0], that the
distance dQm,nGm,n(zm,n, ym,n) is bounded independent of m and n as long
as n ≥ n0. Because of the fact that RQnGn(ym,n) ≥ 1 = R(xn), it follows
that any point z ∈ Mn with t(zm) ≤ tm and with R(z) ≥ 4R(ym,n) has a
strong (C, ǫ)-canonical neighborhood. This then contradicts Theorem 10.2
and completes the proof of the lemma. �

Clearly, this argument will be enough to handle the case when M∞ is
compact. The case when M∞ is non-compact uses additional results.
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Lemma 11.13. Let (M,g) be a complete, connected, non-compact man-
ifold of non-negative sectional curvature and let x0 ∈ M be a point. Then
there is D > 0, such that for any y ∈ M with d(x0, y) = d ≥ D, there is
x ∈M with d(y, x) = d and with d(x0, x) > 3d/2.

Proof. Suppose that the result is false for (M,g) and x ∈ M . Then
there is a sequence yn ∈ M with the following property. Let dn = d(x, yn).
Then limn→∞dn = ∞ and yet B(yn, dn) ⊂ B(x, 3dn/2) for every n. Let γn
be a minimal geodesic from x to yn. By passing to a subsequence we arrange
that the γn converge to a minimal geodesic ray γ from x to infinity in M . In
particular, the angle at x between γn and γ tends to zero as n→ ∞. Let wn
be the point on γ at distance dn from x, and let αn = d(yn, wn). Because
(M,g) has non-negative curvature, by Corollary 2.5, limn→∞αn/dn = 0. In
particular, for all n sufficiently large, αn < dn. This implies that there is a
point zn on the sub-ray of γ with endpoint wn at distance dn from yn. By
the triangle inequality, d(wn, zn) ≥ dn − αn. Since γ is a minimal geodesic
ray, d(z, zn) = d(z,wn)+d(wn, zn) ≥ 2dn−αn. Since αn/dn → 0 as n→ ∞,
it follows that for all n sufficiently large d(z, zn) > 3dn/2. This contradiction
proves the lemma. �

Claim 11.14. Fix D <∞ greater than or equal to the constant given in
the previous lemma for the Riemannian manifold (M∞, g∞(0)) and the point

x∞. We also choose D ≥ 32
√

Q
3 T . Then for any y ∈M∞ \B(x∞, 0,D) the

scalar curvature Rg∞(y, t) is uniformly bounded for all t ∈ (−T, 0].
Proof. Suppose this does not hold for some y ∈ M∞ \ B(x∞, 0,D).

Let d = d0(x∞, y). Of course, d ≥ D. Thus, by the lemma there is z ∈M∞
with d0(y, z) = d and d0(x∞, z) > 3d/2. Since the scalar curvature R(y, t)
is not uniformly bounded for all t ∈ (−T, 0], there is t for which R(y, t) is
arbitrarily large and hence (y, t) has an (2C, 2ǫ)-canonical neighborhood of

arbitrarily small scale. By Claim 11.12 we have dt(x∞, y) ≤ d+ 8
√

Q
3 T and

dt(y, z) ≤ d+ 8
√

Q
3 T . Of course, since Ric ≥ 0 the metric is non-increasing

in time and hence d ≤ min(dt(y, z), dt(x∞, y)) and 3d/2 ≤ dt(x0, z). Since y
has a (2C, 2ǫ)-canonical neighborhood in (M∞, g∞(t)), either y is the center
of a 2ǫ-neck in (M∞, g∞(t)) or y is contained in the core of a (2C, 2ǫ)-cap
in (M∞, g∞(t)). (The other two possibilities for canonical neighborhoods
require that M∞ be compact.)

Claim 11.15. y cannot lie in the core of a (2C, 2ǫ)-cap in (M∞, g∞(t)),
and hence it is the center of a 2ǫ-neck N in (M∞, g∞(t)). Furthermore,
minimal g(t)-geodesics from y to x∞ and z exit out of opposite ends of N
(see Fig. 1).

Proof. Let C be a (2C, 2ǫ)-canonical neighborhood of y in (M∞, g∞(t)).

Since R(y, t) can be arbitrarily large, we can assume that d≫ 2CR(y)−1/2,
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Figure 1. Minimal geodesics in necks and caps.

which is a bound on the diameter of C. This implies that minimal
g(t)-geodesics γx∞ and γz connecting y to x∞ and to z, respectively, must
exit from C. Let a be a point on γx∞ ∩ C close to the complement of C.
Let b be a point at the same g(t)-distance from y on γz. In the case that
C is a cap or that it is a 2ǫ-neck and γx∞ and γz exit from the same end,
then dt(b, y)/dt(a, y) < 4πǫ. This means that the angle θ of the Euclidean
triangle with these side lengths at the point corresponding to y satisfies

cos(θ) ≥ 1 − (4πǫ)2

2
.

Recall that Q is the maximum value of R(x, 0), and that by Claim 11.12
we have

d ≤ dt(x∞, y) ≤ d+ 16

√
Q

3
T,

with the same inequalities holding with dt(z, y) replacing dt(x∞, y). Also,

by construction d ≥ 32
√

Q
3 T . We set a0 = dt(x∞, y) and a1 = dt(z, y).

Then by the Toponogov property we have

dt(x, z)
2 ≤ a2

0 + a2
1 − 2a0a1

(
1 − (4πǫ)2

2

)
= (a0 − a1)

2 + (4πǫ)2a0a1.

Since |a0 − a1| ≤ d/2 and a0, a1 ≤ 3d/2 and ǫ < 1/8π, it follows that
dt(x, z) < d. Since distances do not increase under the flow, it follows that
d0(x, z) < d. This contradicts the fact that d0(x, z) = d. �

Since y is the center of a (2C, 2ǫ)-neck N in (M∞, g∞(t)) and mini-
mal g(t)-geodesics from y to z and to x∞ exit out of opposite ends of N ,
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it follows that B(y, t, 4πR(y, t)−1/2) separates x∞ and z. Since the cur-
vature of the time-slices is non-negative, the Ricci flow does not increase
distances. Hence, B(y, 0, 4πR(y, t)−1/2) separates z from x∞. (Notice that

since d > 4πR(y, t)−1/2, neither z nor x∞ lies in this ball.) Thus, if R(y, t)
is unbounded as t → −T then arbitrarily small g(0)-balls centered at y
separate z and x∞. Since y is distinct from x∞ and z, this is clearly impos-
sible. �

Next we establish that the curvature near the base point x∞ is bounded
for all t ∈ (−T, 0].

Corollary 11.16. Suppose there is a geometric limit flow (M∞, g∞(t))
of a subsequence defined on (−T, 0] for some T <∞. Suppose that the limit
flow is complete of non-negative curvature with the curvature locally bounded
in time. Then for every A < ∞ the scalar curvature Rg∞(y, t) is uniformly
bounded for all (y, t) ∈ B(x∞, 0, A) × (−T, 0].

Proof. First we pass to a subsequence so that a geometric limit flow

(M∞, g∞(t), (x∞, 0))

exists on (−T, 0]. We let Q be the upper bound for R(x, 0) for all x ∈M∞.
We now divide the argument into two cases: (i) M∞ is compact, and (ii)
M∞ is non-compact.

Suppose that M∞ is compact. By Proposition 4.1 we know that

minx∈M∞(Rg∞(x, t))

is a non-decreasing function of t. Since Rg∞(x∞, 0) = 1, it follows that for
each t ∈ (−T, 0], we have minx∈M∞R(x, t) ≤ 1, and hence there is a point
xt ∈M∞ with R(xt, t) ≤ 1. Now we can apply Lemma 11.11 to see that the
scalar curvature of g∞ is bounded on all of M∞ × (−T, 0].

If M∞ is non-compact, choose D as in Claim 11.14. According to that
claim every point in the boundary of B(x∞, 0,D) has bounded curvature
under g∞(t) for all t ∈ (−T, 0]. In particular, for each t ∈ (−T, 0] the min-
imum of R(x, t) over B(x∞, 0,D) is bounded independent of t. Now apply
Lemma 11.11 to the closure of B(x∞, 0,D). We conclude that the curvature
of B(x∞, 0,D) is uniformly bounded for all g∞(t) for all t ∈ (−T, 0]. In
particular, R(x∞, t) is uniformly bounded for all t ∈ (−T, 0].

Now for any A < ∞ we apply Lemma 11.11 to the compact sub-
set B(x∞, 0, A) to conclude that the curvature is uniformly bounded on
B(x∞, 0, A) × (−T, 0]. This completes the proof of the corollary. �

Now let us return to the proof of Proposition 11.10.

Claim 11.17. For each A < ∞ and for all n sufficiently large, there
are δ > 0 with δ ≤ T0 − T and a bound, independent of n, on the scalar
curvature of the restriction of QnGn to BQnGn(xn, 0, A) × [−(T + δ), 0].
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Proof. Fix A <∞ and let K be the bound for the scalar curvature of
g∞ on B(x∞, 0, 2A)× (−T, 0] from Corollary 11.16. Lemma 11.2 shows that
there are δ > 0 and a bound in terms of K and C on the scalar curvature
of the restriction of QnGn to BQnGn(xn, 0, A) × [−(T + δ), 0]. �

Since the scalar curvature is bounded, by the assumption that either
the curvature is pinched toward positive or the Riemann curvature is non-
negative, this implies that the sectional curvatures of QnGn are also uni-
formly bounded on the products BQnGn(xn, 0, A) × [−(T + δ), 0] for all n
sufficiently large. Consequently, it follows that by passing to a further sub-
sequence we can arrange that the −T time-slices of the (Mn, Gn, xn) con-
verge to a limit (M∞, g∞(−T )). This limit manifold satisfies the hypothesis
of Proposition 2.19 and hence, by that proposition, it has bounded sectional
curvature. This means that there is a δ > 0 such that for all n sufficiently
large and for any A < ∞ the scalar curvatures (and hence the Riemann
curvatures) of the restriction of QnGn to BQnGn(xn, 0, A)× [−(T + δ), 0] are
bounded independent of n. This allows us to pass to a further subsequence
for which there is a geometric limit defined on (−(T + δ/2),−T ]. This geo-
metric limit is complete of bounded, non-negative curvature. Hence, we
have now constructed a limit flow on (−(T + δ/2), 0] with the property that
for each t ∈ (−(T + δ/2), 0] the Riemannian manifold (M,g(t)) is complete
and of bounded non-negative curvature. (We still don’t know whether the
entire flow is of bounded curvature.) But now invoking Hamilton’s Harnack
inequality (Theorem 4.37), we see that the curvature is bounded on [−T, 0].
Since we already know it is bounded in (−T + δ/2,−T ], this completes the
proof of the proposition. �

It follows immediately from Proposition 11.10 that there is a geomet-
ric limit flow defined on (−T0, 0]. The geometric limit flow on (−T0, 0] is
complete of non-negative curvature, locally bounded in time.

It remains to prove the last statement in the theorem. So let us sup-
pose that T0 = ∞. We have just established the existence of a geometric
limit flow defined for t ∈ (−∞, 0]. Since the (Mn, Gn) either have curvature
pinched toward positive or are of non-negative curvature, it follows from
Theorem 5.33 that all time-slices of the limit flow are complete manifolds
of non-negative curvature. Since points of scalar curvature greater than
4 have (2C, 2ǫ)-canonical neighborhoods, it follows from Proposition 2.19
that the curvature is bounded on each time-slice, and hence universally
bounded by the Harnack inequality (Theorem 4.37). Since for any A < ∞
and every T < ∞ the parabolic neighborhoods BQnGn(xn, 0, A) × [−T, 0]
are κ-non-collapsed on scales Qnr for every n sufficiently large, the limit is
κ-non-collapsed on scales ≤ limn→∞Qnr. Since r > 0 and limn→∞Qn =
∞, it follows that the limit flow is κ-non-collapsed on all scales. Since
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RQnGn(xn) = 1, Rg∞(x∞, 0) = 1 and the limit flow is non-flat. This estab-
lishes all the properties needed to show that the limit is a κ-solution. This
completes the proof of Theorem 11.8. �

3. Incomplete smooth limits at singular times

Now we wish to consider smooth limits where we do not blow up, i.e., do
not rescale the metric. In this case the limits that occur can be incomplete,
but we have strong control over their ends.

3.1. Assumptions. We shall assume the following about the general-
ized Ricci flow (M, G):

Assumptions 11.18. (a) The singular times form a discrete subset
of R, and each time slice of the flow at a non-singular time is a
compact 3-manifold.

(b) The time interval of definition of the generalized Ricci flow (M, G)
is contained in [0,∞) and its curvature is pinched toward positive.

(c) There are r0 > 0 and C < ∞, such that any point x ∈ M with
R(x) ≥ r−2

0 has a strong (C, ǫ)-canonical neighborhood. In particu-

lar, for every x ∈ M with R(x) ≥ r−2
0 the following two inequalities

hold: ∣∣∣∣
∂R(x)

∂t

∣∣∣∣ < CR2(x),

|∇R(x)| < CR3/2(x).

With these assumptions we can say quite a bit about the limit metric
at time T .

Theorem 11.19. Suppose that (M, G) is a generalized Ricci flow defined
for 0 ≤ t < T < ∞ satisfying Assumptions 11.18. Let T− < T be such that
there is a diffeomorphism ρ : MT− × [T−, T ) → t−1([T−, T )) compatible with
time and with the vector field. Set M = MT− and let g(t), T− ≤ t < T , be
the family of metrics ρ∗G(t) on M . Let Ω ⊂M be the subset defined by

Ω =
{
x ∈M

∣∣liminft→TRg(x, t) <∞
}
.

Then Ω ⊂M is an open subset and there is a Riemannian metric g(T ) with
the following properties:

(1) As t → T the metrics g(t)|Ω limit to g(T ) uniformly in the
C∞-topology on every compact subset of Ω.

(2) The scalar curvature R(g(T )) is a proper function from Ω → R and
is bounded below.

(3) Let

M̂ = M∪Ω×[T−,T )

(
Ω × [T−, T ]

)
.

Then the generalized Ricci flow (M, G) extends to a generalized

Ricci flow (M̂, Ĝ).
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(4) Every end of a connected component of Ω is contained in a strong
2ǫ-tube.

(5) Any x ∈ Ω × {T} with R(x) > r−2
0 has a strong (2C, 2ǫ)-canonical

neighborhood in M̂.

Remark 11.20. Recall that by definition a function f is proper if the
pre-image under f of every compact set is compact.

In order to prove this result we establish a sequence of lemmas. The
first in the series establishes that Ω is an open subset and also establishes
the first two of the above five conclusions.

Lemma 11.21. Suppose that (M, G) is a generalized Ricci flow defined
for 0 ≤ t < T <∞ satisfying the three assumptions given in 11.18. Let T ′ <
T be as in the previous theorem, set M = MT−, and let g(t) be the family of
metrics on M and let Ω ⊂M , each being as defined in the previous theorem.
Then Ω ⊂ M is an open subset of M . Furthermore, the restriction of the
family g(t) to Ω converges in the C∞-topology, uniformly on compact sets
of Ω, to a Riemannian metric g(T ). Lastly, R(g(T )) is a proper function,
bounded below, from Ω to R.

Proof. We pull back G to M × [T−, T ) in order to define a Ricci flow
(M,g(t)), T− ≤ t < T . Suppose that x ∈ Ω. Then there is a sequence
tn → T as n → ∞ such that R(x, tn) is bounded above, independent of
n, by say Q. For all n sufficiently large we have T − tn ≤ 1

16C(Q2+r−2
0 )

.

Fix such an n. Then, according to Lemma 11.2, there is r > 0 such that
R(y, t) is uniformly bounded for y ∈ B(x, tn, r) × [tn, T ). This means that
B(x, tn, r) ⊂ Ω, proving that Ω is open in M .

Furthermore, since R(y, t) is bounded on B(x, tn, r) × [tn, T ), it follows
from the curvature pinching toward positive hypothesis that |Rm(y, t)| is
bounded on B(x, tn, r) × [tn, T ). Now applying Theorem 3.28 we see that
in fact Rm is bounded in the C∞-topology on B(x, tn, r) × [(tn + T )/2, T ).

The same is of course also true for Ric and hence for ∂g
∂t in the C∞-topology.

It then follows that there is a continuous extension of g to B(x, tn, r) ×
[tn, T ]. Since this is true for every x ∈ Ω we see that g(t) converges in the
C∞-topology, uniformly on compact subsets of Ω, to g(T ).

Lastly, let us consider the function R(g(T )) on Ω. Since the metric
g(T ) is a smooth metric on Ω(T ), this is a smooth function. Clearly, by
the curvature pinching toward positive hypothesis, this function is bounded
below. We must show that it is proper. Since M is compact, it suffices to
show that if xn is a sequence in Ω ⊂M converging to a point x ∈M \Ω then
R(xn, T ) is unbounded. Suppose that R(xn, T ) is bounded independent of
n. It follows from Lemma 11.2 that there is a positive constant ∆t such that
R(xn, t) is uniformly bounded for all n and all t ∈ [T − ∆t, T ), and hence,
by the same result, there is r > 0 such that R(yn, t) is bounded for all n,
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all yn ∈ B(xn, T − ∆t, r), and all t ∈ [T − ∆t, T ). Since the xn → x ∈ M ,
it follows that, for all n sufficiently large, x ∈ B(xn, T − ∆t, r), and hence
R(x, t) is uniformly bounded as t → T . This contradicts the fact that
x 6∈ Ω. �

Definition 11.22. Let

M̂ = M∪Ω×[T−,T )

(
Ω × [T−, T ]

)
.

Since both M and Ω×[T−, T ] have the structure of space-times and the time

functions and vector fields agree on the overlap, M̂ inherits the structure of
a space-time. Let G′(t), T− ≤ t ≤ T , be the smooth family of metrics on
Ω. The horizontal metrics, G, on M and this family of metrics on Ω agree

on the overlap and hence define a horizontal metric Ĝ on M̂. Clearly, this

metric satisfies the Ricci flow equation, so that (M̂, Ĝ) is a generalized Ricci
flow extending (M, G). We call this the maximal extension of (M, G) to
time T . Notice that even though the time-slices Mt of M are compact, it
will not necessarily be the case that the time-slice Ω is complete.

At this point we have established the first three of the five conclusions
stated in Theorem 11.19. Let us turn to the last two.

3.2. Canonical neighborhoods for (M̂, Ĝ). We continue with the
notation and assumptions of the previous subsection. Here we establish the
fifth conclusion in Theorem 11.19, namely the existence of strong canonical

neighborhoods for (M̂, Ĝ)

Lemma 11.23. For any x ∈ Ω × {T} with R(x, T ) > r−2
0 one of the

following holds:

(1) (x, T ) is the center of a strong 2ǫ-neck in (M̂, Ĝ).

(2) There is a (2C, 2ǫ)-cap in (Ω(T ), Ĝ(T )) whose core contains (x, T ).
(3) There is a 2C-component of Ω(T ) that contains (x, T ).
(4) There is a 2ǫ-round component of Ω(T ) that contains (x, T ).

Proof. We fix x ∈ Ω(T ) with R(x, T ) > r−2
0 . First notice that for

all t < T sufficiently close to T we have R(x, t) > r−2
0 . Thus, for all such

t the point (x, t) has a strong (C, ǫ)-canonical neighborhood in (M, G) ⊂
(M̂, Ĝ). Furthermore, since limt→TR(x, t) = R(x, T ) < ∞, for all t < T
sufficiently close to T , there is a constant D < ∞ such that for any point
y contained in a strong (C, ǫ)-canonical neighborhood containing (x, t), we
have D−1R(x, T ) ≤ R(y, t) ≤ DR(x, T ). Again assuming that t < T is
sufficiently close to T , by Lemma 11.2 there is D′ < ∞ depending only
on D, t, and r0 such that the curvature R(y, T ) satisfies (D′)−1R(x, T ) ≤
R(y, T ) ≤ D′R(x, T ). By Lemma 11.21 this implies that there is a compact
subsetK ⊂ Ω(T ) containing all the (C, ǫ)-canonical neighborhoods for (x, t).
The same lemma implies that the metrics G(t)|K converge uniformly in
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the C∞-topology to G(T )|K . If there is a sequence of t converging to T
for which the canonical neighborhood of (y, t) is an ǫ-round component,
resp. a C-component, then (y, T ) is contained in a 2ǫ-round, resp. a 2C-

component of Ω̂. If there is a sequence of tn converging to T so that each
(y, tn) has a canonical neighborhood Cn which is a (C, ǫ)-cap whose core
contains (y, tn), then by Proposition 9.79, since these caps are all contained
in a fixed compact subset K and since the G(tn)|K converge uniformly in
the C∞-topology to G(T )|K , it follows that for any n sufficiently large, the
metric G(T ) restricted to Cn contains a (2C, 2ǫ)-cap C whose core contains
(y, T ).

Now we examine the case of strong ǫ-necks.

Claim 11.24. Fix a point x ∈ Ω. Suppose that there is a sequence tn → T

such that for every n, the point (x, tn) is the center of a strong ǫ-neck in M̂.

Then (x, T ) is the center of a strong 2ǫ-neck in M̂.

Proof. By an overall rescaling we can assume that R(x, T ) = 1. For
each n let Nn ⊂ Ω and let ψn : S2×(−ǫ−1, ǫ−1) → Nn×{t} be a strong ǫ-neck
centered at (x, tn). Let B = B(x, T, 2ǫ−1/3). Clearly, for all n sufficiently
large B ⊂ Nn. Thus, for each point y ∈ B and each n there is a flow line
through y defined on the interval (tn−R(x, tn)

−1, tn]. Since the tn → T and
since R(x, tn) → R(x, T ) = 1 as n → ∞, it follows that there is a flow line
through y defined on (T − 1, T ].

Consider the maps

αn : B × (−1, 0] → M̂
that send (y, t) to the value at time tn− tR(x, tn)

−1 of the flow line through

y. Pulling back the metric R(x, tn)Ĝ by αn produces the restriction of
a strong ǫ-neck structure to B. The maps αn converge uniformly in the

C∞-topology to the map α : B × (−1, 0] → M̂ defined by sending (y, t)
to the value of the flowline through (y, T ) at the time T − t. Hence, the

sequence of metrics α∗
n(R(x, tn))Ĝ on B × (−1, 0] converges uniformly on

compact subsets of B × (−1, 0] in the C∞-topology to the family α∗(Ĝ).
Then, for all n sufficiently large, the image ψn(S

2 × (−ǫ−1/2, ǫ−1/2)) is
contained in B and has compact closure in B. Since the family of metrics

ψ∗
nĜ on B converge smoothly to ψ∗Ĝ, it follows that for every n sufficiently

large, the restriction of ψn to S2 × (−ǫ−1/2, ǫ−1/2) gives the coordinates

showing that the restriction of the family of metrics ψ∗(Ĝ) to the image
ψn(S

2 × (−ǫ−1/2, ǫ−1/2)) is a strong 2ǫ-neck at time T . �

This completes the proof of the lemma. �

The lemma tells us that every point x ∈ Ω × {T} with R(x) > r−2
0 has

a strong (2C, 2ǫ)-canonical neighborhood. Since, by assumption, points at
time before T with scalar curvature at least r−2

0 have strong (C, ǫ)-canonical
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neighborhoods, this completes the proof of the fifth conclusion of Theo-
rem 11.19. It remains to establish the fourth conclusion of that theorem.

3.3. The ends of (Ω, g(T )).

Definition 11.25. A strong 2ǫ-horn in (Ω, g(T )) is a submanifold of Ω
diffeomorphic to S2 × [0, 1) with the following properties:

(1) The embedding ψ of S2 × [0, 1) into Ω is a proper map.
(2) Every point of the image of this map is the center of a strong 2ǫ-

neck in (M̂, Ĝ).
(3) The image of the boundary S2×{0} is the central sphere of a strong

2ǫ-neck.

Definition 11.26. A strong double 2ǫ-horn in (Ω, g(T )) is a component
of Ω diffeomorphic to S2 × (0, 1) with the property that every point of this

component is the center of a strong 2ǫ-neck in M̂. This means that a strong
double 2ǫ-horn is a 2ǫ-tube and hence is a component of Ω diffeomorphic
to S2 × (−1, 1). Notice that each end of a strong double 2ǫ-horn contains a
strong 2ǫ-horn.

For any C ′ < ∞, a C ′-capped 2ǫ-horn in (Ω, g(T )) is a component of Ω
that is a the union of a the core of a (C ′, 2ǫ)-cap and a strong 2ǫ-horn. Such
a component is diffeomorphic to an open 3-ball or to a punctured RP 3.

See Fig. 2.

Definition 11.27. Fix any ρ, 0 < ρ < r0. We define Ωρ ⊂ Ω to be the
closed subset of all x ∈ Ω for which R(x, T ) ≤ ρ−2. We say that a strong
2ǫ-horn ψ : S2 × [0, 1) → Ω has boundary contained in Ωρ if its boundary,
ψ(S2 × {0}), is contained in Ωρ.

Lemma 11.28. Suppose that 0 < ρ < r0 and that Ω0 is a component of
Ω which contains no point of Ωρ. Then one of the following holds:

(1) Ω0 is a strong double 2ǫ-horn and is diffeomorphic to S2 × R.
(2) Ω0 is a 2C-capped 2ǫ-horn and is diffeomorphic to R

3 or to a punc-
tured RP 3.

(3) Ω0 is a compact component and is the union of the cores of two
(2C, 2ǫ)-caps and a strong 2ǫ-tube. It is diffeomorphic to S3, RP 3

or RP 3#RP 3.
(4) Ω0 is a compact 2ǫ-round component and is diffeomorphic to a com-

pact manifold of constant positive curvature.
(5) Ω0 is a compact component that fibers over S1 with fibers S2.
(6) Ω0 is a compact 2C-component and is diffeomorphic to S3 or to

RP 3.

See Fig.3.

Proof. Let Ω0 be a component of Ω containing no point of Ωρ. Then

for every x ∈ Ω0, we have R(x, T ) > r−2
0 . Therefore, by Lemma 11.23 (x, T )
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Figure 2. Horns.

has a (2C, 2ǫ)-canonical neighborhood. Of course, this entire neighborhood

is contained in M̂ and hence is contained in Ω0 (or, more precisely, in
the case of strong 2ǫ-necks in the union of maximum backward flow lines
ending at points of Ω0). If the canonical neighborhood of (x, T ) ∈ Ω0 is a
2C-component or is a 2ǫ-round component, then of course Ω0 is that 2C-
component or 2ǫ-round component. Otherwise, each point of Ω0 is either the
center of a strong 2ǫ-neck or contained in the core of a (2C, 2ǫ)-cap. We have
chosen 2ǫ sufficiently small so that the result follows from Proposition A.25.

�

Remark 11.29. We do not claim that there are only finitely many such
components; in particular, as far as we know there may be infinitely double
2ǫ-horns.

It follows immediately from this lemma that if X is a component of
Ω not containing any point of Ωρ, then every end of X is contained in a
strong 2ǫ-tube. To complete the proof of Theorem 11.19, it remains only
to establish the same result for the components of Ω that meet Ωρ. That is
part of the content of the next lemma.

Lemma 11.30. Let (M, G) be a generalized 3-dimensional Ricci flow
defined for 0 ≤ t < T < ∞ satisfying Assumptions 11.18. Fix 0 < ρ < r0.
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Figure 3. Components of Ω disjoint from Ωρ.

Let Ω0(ρ) be the union of all components of Ω containing points of Ωρ.
Then Ω0(ρ) has finitely many components and is a union of a compact set
and finitely many strong 2ǫ-horns each of which is disjoint from Ωρ and has
its boundary contained in Ωρ/2C .

Proof. Since R : Ω×{T} → R is a proper function bounded below, Ωρ

is compact. Hence, there are only finitely many components of Ω containing
points of Ωρ. Let Ω0 be a non-compact component of Ω containing a point
of Ωρ, and let E be an end of Ω0. Let

X = {x ∈ Ω0
∣∣R(x) ≥ 2C2ρ−2}.

Then X is a closed set and contains a neighborhood of the end E . Since Ω0

contains a point of Ωρ, Ω0 \X is non-empty. Let X0 be the connected com-
ponent of X that contains a neighborhood of E . This is a closed, connected
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set every point of which has a (2C, 2ǫ)-canonical neighborhood. Since X0

includes an end of Ω0, no point of X0 can be contained in an ǫ-round com-
ponent nor in a C-component. Hence, every point of X0 is either the center
of a strong 2ǫ-neck or is contained in the core of a (2C, 2ǫ)-cap. Since 2ǫ is
sufficiently small to invoke Proposition A.21, the latter implies that X0 is
contained either in a 2ǫ-tube which is a union of strong 2ǫ-necks centered at
points of X0 or X0 is contained in a 2C-capped 2ǫ-tube where the core of
the cap contains a point of X0. (X0 cannot be contained in a double capped
2ǫ-tube since the latter is compact.) In the second case, since this capped
tube contains an end of Ω0, it is in fact equal to Ω0. Since a point of X0

is contained in the core of the (2C, 2ǫ)-cap, the curvature of this point is
at most 2C2ρ−2 and hence the curvature at any point of the cap is at least
2Cρ−2 > ρ−2. This implies that the cap is disjoint from Ωρ. Of course, any
2ǫ-neck centered at a point of X0 has curvature at least C2ρ−2 and hence
is also disjoint from Ωρ. Hence, if Ω0 is a 2C-capped 2ǫ-tube and there is
a point of X0 in the core of the cap, then this component is disjoint from
Ωρ, which is a contradiction. Thus, X0 is contained in a 2ǫ-tube made up
of strong 2ǫ-necks centered at points of X0.

This proves that X0 is contained in a strong 2ǫ-tube, Y , every point
of which has curvature ≥ C2ρ−2. Since X0 is closed but not the entire
component Ω0, it follows that X0 has a frontier point y. Of course, R(y) =
2C2ρ−2. Let N be the strong 2ǫ-neck centered at y and let S2

N be its central
2-sphere. Clearly, every y′ ∈ S2

N satisfies R(y′) ≤ 4C2ρ−2, so that S2
N is

contained in Ωρ/2C . Let Y ′ ⊂ Y be the complementary component of S2
N

in Y that contains a neighborhood of the end E . Then the closure of Y ′ is
the required strong 2ǫ-horn containing a neighborhood of E , disjoint from
Ωρ and with boundary contained in Ωρ/2C .

The last thing to see is that there are only finitely many such ends in
a given component Ω0. First suppose that the boundary 2-sphere of one
of the 2ǫ-horns is homotopically trivial in Ω0. Then this 2-sphere separates
Ω0 into two components, one of which is compact, and hence Ω0 has only
one boundary component. Thus, we can assume that all the boundary
2-spheres of the 2ǫ-horns are homotopically non-trivial. Suppose that two of
these 2ǫ-horns containing different ends of Ω0 have non-empty intersection.
Let N be the 2ǫ-neck whose central 2-sphere is the boundary of one of the
2ǫ-horns. Then the boundary of the other 2ǫ-horn is also contained in N .
This means that the union of the two 2ǫ-horns and N is a component of Ω.
Clearly, this component has exactly two ends. Thus, we can assume that
all the 2ǫ-horns with boundary in Ωρ/2C are disjoint. If two of the 2ǫ-horns

have boundary components that are topologically parallel in Ω0 ∩ Ωρ/2C

(meaning that they are the boundary components of a compact submanifold
diffeomorphic to S2 × I), then Ω0 is diffeomorphic to S2 × (0, 1) and has
only two ends. By compactness of Ωρ/2C , there can only be finitely many
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disjoint 2ǫ-horns with non-parallel, homotopically non-trivial boundaries in
Ω0 ∩ Ωρ/2C . This completes the proof of the fact that each component of
Ωρ/2C has only finitely many ends. �

This completes the proof of Theorem 11.19.

4. Existence of strong δ-necks sufficiently deep in a 2ǫ-horn

We keep the notation and assumptions of the previous section.

Theorem 11.31. Fix ρ > 0. Then for any δ > 0 there is an 0 < h =
h(δ, ρ) ≤ min(ρ · δ, ρ/2C), implicitly depending on r and (C, ǫ) which are
fixed, such that for any generalized Ricci flow (M, G) defined for 0 ≤ t <
T < ∞ satisfying Assumptions 11.18 and for any 2ǫ-horn H of (Ω, g(T ))
with boundary contained in Ωρ/2C , every point x ∈ H with R(x, T ) ≥ h−2 is

the center of a strong δ-neck in (M̂, Ĝ) contained in H. Furthermore, there
is a point y ∈ H with R(y) = h−2 with the property that the central 2-sphere
of the δ-neck centered at y cuts off an end of the H disjoint from Ωρ. See
Fig. 4.

Figure 4. δ-necks deep in a 2ǫ-horn.

Proof. The proof of the first statement is by contradiction. Fix ρ > 0
and δ > 0 and suppose that there is no 0 < h ≤ min(ρ · δ, ρ/2C) as required.
Then there is a sequence of generalized Ricci flows (Mn, Gn) defined for
0 ≤ t < Tn < ∞ satisfying Assumptions 11.18 and points xn ∈ Mn with
t(xn) = Tn contained in 2ǫ-horns Hn in Ωn with boundary contained in
(Ωn)ρ/2C with Qn = R(xn) → ∞ as n→ ∞ but such that no xn is the center

of a strong δ-neck in (Mn, Gn). Form the maximal extensions, (M̂n, Ĝn),
to time T of the (Mn, Gn).

Claim 11.32. The sequence (M̂n, Ĝn, xn) satisfies the five hypotheses of
Theorem 11.1.

Proof. By our assumptions, hypotheses (1) and (3) of Theorem 11.1
hold for this sequence. Also, we are assuming that any point y ∈ Mn with



288 11. GEOMETRIC LIMITS OF GENERALIZED RICCI FLOWS

R(y) ≥ r−2
0 has a strong (C, ǫ)-canonical neighborhood. Since R(xn) =

Qn → ∞ as n → ∞ this means that for all n sufficiently large, any point

y ∈ M̂n with R(y) ≥ R(xn) has a strong (C, ǫ)-canonical neighborhood.
This establishes hypothesis (2) in the statement of Theorem 11.1.

Next, we have:

Claim 11.33. For any A < ∞ for all n sufficiently large, the ball

B(xn, 0, AQ
−1/2
n ) is contained in the 2ǫ-horn Hn and has compact closure in

Mn.

Proof. Any point z ∈ ∂Hn has scalar curvature at most 16C2ρ−2

and there is a 2ǫ-neck centered at z. This means that for all y with
dGn(z, y) < ǫ−1ρ/2C we have R(y) ≤ 32C2ρ−2. Hence, for all n sufficiently

large, dGn(xn, z) > ǫ−1ρ/2C, and thus dQnGn(xn, z) > Q
1/2
n ǫ−1ρ/2C. This

implies that, given A < ∞, for all n sufficiently large, z 6∈ BQnGn(xn, 0, A).
Since this is true for all z ∈ ∂Hn, it follows that for all n sufficiently large
BQn,Gn(xn, 0, A) ⊂ Hn. Next, we must show that, for all n sufficiently large,
this ball has compact closure. That is to say, we must show that for every
A for all n sufficiently large the distance from xn to the end of the horn Hn

is greater than AQ
−1/2
n . If not, then since the curvature at the end of Hn

goes to infinity for each n, this sequence would violate Theorem 10.2. �

Because B(xn, 0, AQ
−1/2
n ) is contained in a 2ǫ-horn, it is κ-non-collapsed

on scales ≤ r for a universal κ > 0 and r > 0. Also, because every point
in the horn is the center of a strong 2ǫ-neck, for every n sufficiently large

and every y ∈ B(xn, 0, AQ
−1/2
n ) the flow is defined on an interval through y

defined for backward time R(y)−1.
This completes the proof that all the hypotheses of Theorem 11.1 hold

and establishes Claim 11.32. �

We form a new sequence of generalized Ricci flows from the (Mn, Gn)
by translating by −Tn, so that the final time-slice is at tn = 0, where tn is
the time function for Mn.

Theorem 11.1 implies that, after passing to a subsequence, there is a
limit flow (M∞, g∞(t), (x∞, 0)), t ∈ [−t0, 0]) defined for some t0 > 0 for

the sequence (QnM̂n, QnĜn, xn). Because of the curvature pinching toward
positive assumption, by Theorem 5.33, the limit Ricci flow has non-negative
sectional curvature. Of course, R(x∞) = 1 so that the limit (M∞, g∞(0)) is
non-flat.

Claim 11.34. (M∞, g∞(0)) is isometric to the product (S2, h)×(R, ds2),
where h is a metric of non-negative curvature on S2 and ds2 is the usual
Euclidean metric on the real line.

Proof. Because of the fact that the (Mn, Gn) have curvature pinched
toward positive, and since Qn tend to ∞ as n tends to infinity, it follows
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that the geometric limit (M∞, g∞) has non-negative curvature. In Hn take
a minimizing geodesic ray αn from xn to the end of Hn and a minimizing
geodesic βn from xn to ∂Hn. As we have seen, the lengths of both αn and
βn tend to ∞ as n → ∞. By passing to a subsequence, we can assume
that the αn converge to a minimizing geodesic ray α in (M∞, g∞) and that
the βn converge to a minimizing geodesic ray β in (M∞, g∞). Since, for
all n, the union of αn and βn forms a piecewise smooth ray in Hn meeting
the central 2-sphere of a 2ǫ-neck centered at xn in a single point and at this
point crossing from one side of this 2-sphere to the other, the union of α and
β forms a proper, piecewise smooth map of R to M∞ that meets the central
2-sphere of a 2ǫ-neck centered at x∞ in a single point and crosses from one
side to the other at the point. This means that M∞ has at least two ends.
Since (M∞, g∞) has non-negative curvature, according to Theorem 2.13,
this implies that M∞ is a product of a surface with R. Since M has non-
negative curvature, the surface has non-negative curvature. Since M has
positive curvature at least at one point, the surface is diffeomorphic to the
2-sphere. �

According to Theorem 11.1, after passing to a subsequence there is a
limit flow defined on some interval of the form [−t0, 0] for t0 > 0. Suppose
that, after passing to a subsequence there is a limit flow defined on [−T, 0]
for some 0 < T < ∞. It follows that for any t ∈ [−T, 0], the Riemannian
manifold (M∞, g∞(t)) is of non-negative curvature and has two ends. Again
by Theorem 2.13, this implies that for every t ∈ [−T, 0] the Riemannian
manifold (M∞, g∞(t)) is a Riemannian product of a metric of non-negative
curvature on S2 with R. Thus, by Corollary 4.19 the Ricci flow is a product
of a Ricci flow (S2, h(t)) with the trivial flow on (R, ds2). It now follows
from Corollary 4.14 that for every t ∈ (−T, 0] the curvature of g∞(t) on S2

is positive.
Let Mn be the zero time-slice of Mn. Since (M∞, g∞, x∞) is the geo-

metric limit of the (Mn, QnGn(0), xn), there is an exhaustive sequence x∞ ∈
V1 ⊂ V2 ⊂ · · · of open subsets of M∞ with compact closure and embeddings
ϕn : Vn → Mn sending x∞ to xn such that ϕ∗

n(QnGn(0)) converges in the
C∞-topology, uniformly on compact sets, to g∞.

Claim 11.35. For any z ∈M∞ for all n sufficiently large, z ∈ Vn, so that
ϕn(z) is defined. Furthermore, for all n sufficiently large, there is a back-
ward flow line through ϕn(z) in the generalized Ricci flow (QnMn, QnGn)
defined on the interval (−T − (R−1

QnGn
(ϕn(z), 0)/2), 0]. The scalar curvature

is bounded above on this entire flow line by R(ϕn(z), 0).

Proof. Of course, for any compact subset K ⊂M∞ and any t′ < T for
all n sufficiently large, K ⊂ Vn, and there is an embedding ϕn(K)×[−t′, 0] ⊂
QnMn compatible with time and the vector field. The map ϕn defines a
map Q−1

n ϕn : K × [−Q−1
n t′, 0] → Mn. Since the scalar curvature of the
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limit is positive, and hence bounded away from zero on the compact set
K × [−t′, 0] and since Qn → ∞ as n tends to infinity, the following is true:
For any compact subset K ⊂ M and any t′ < T , for all n sufficiently large,
the scalar curvature of Gn on the image Q−1

n ϕn(K) × [−Q−1
n t′, 0] is greater

than r−2
0 , and hence for all n sufficiently large, every point in Q−1

n ϕn(K) ×
[−Q−1

n t′, 0] has a strong (C, ǫ)-canonical neighborhood in Mn. Since having
a strong (C, ǫ)-canonical neighborhood is invariant under rescaling, it follows
that for all n sufficiently large, every point of ϕn(K) × [−t′, 0] has a strong
(C, ǫ)-canonical neighborhood.

Next we claim that, for all n sufficiently large and for any t ∈ [−t′, 0], the
point (ϕn(z), t) is the center of a strong ǫ-neck. We have already seen that for
all n sufficiently large (ϕn(z), t) has a strong (C, ǫ)-canonical neighborhood.
Of course, since M∞ is non-compact, for n sufficiently large, the canonical
neighborhood of (ϕn(z), t) must either be a (C, ǫ)-cap or a strong ǫ-neck.
We shall rule out the possibility of a (C, ǫ)-cap, at least for all n sufficiently
large.

To do this, takeK to be a neighborhood of (z, 0) in the limit (M∞, g∞(0))
with the topology of S2× I and with the metric being the product of a posi-
tively curved metric on S2 with the Euclidean metric on I. We take K to be
sufficiently large to contain the 2C-ball centered at (z, 0). Because the limit
flow is the product of a positively curved flow on S2 with the trivial flow on
R, the flow is distance decreasing. Thus, for every t ∈ [−t′, 0] the subman-
ifold K × {t} contains the ball in (M∞, g∞(t)) centered at (z, t) of radius
2C. For every n sufficiently large, consider the submanifolds ϕn(K) × {t}
of (Mn, QnGn(t)). Since the metrics ϕ∗

nQnGn(t) are converging uniformly
for all t ∈ [−t′, 0] to the product flow on K, for all n sufficiently large and
any t ∈ [−t′, 0], this submanifold contains the C-ball centered at (ϕn(z), t)
in (Mn, QnGn(t)). Furthermore, the maximal curvature two-plane at any
point of ϕn(K) × {t} is almost tangent to the S2-direction of K. Hence,
by Lemma A.2 the central 2-sphere of any ǫ-neck contained ϕn(K) × {t}
is almost parallel to the S2-factors in the product structure on K at every
point. This implies that the central 2-sphere of any such ǫ-neck is isotopic
to the S2-factor of ϕn(K)×{t}. Suppose that (ϕn(z), t) is contained in the
core of a (C, ǫ)-cap C. Then C is contained in ϕn(K) × {t}. Consider the
ǫ-neck N ⊂ C that is the complement of the core of C. Its central 2-sphere,
Σ, is isotopic in K to the 2-sphere factor of K, but this is absurd since Σ
bounds a 3-ball in the C. This contradiction shows that for all n sufficiently
large and all t ∈ [−t′, 0], it is not possible for (ϕn(z), t) to be contained in the
core of a (C, ǫ)-cap. The only other possibility is that for all n sufficiently
large and all t ∈ [−t′, 0] the point (ϕn(z), t) is the center of a strong ǫ-neck
in (Mn, QnGn(t)).

Fix n sufficiently large. Since, for all t ∈ [−t′, 0], the point (ϕn(z), t)
is the center of a strong ǫ-neck, it follows from Definition 9.78 that for all
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t ∈ [−t′, 0] we have R(ϕn(z), t) ≤ R(ϕn(z), 0) (this follows from the fact that
the partial derivative in the time-direction of the scalar curvature of a strong
ǫ-neck of scale one is positive and bounded away from 0). It also follows
from Definition 9.78 that the flow near (ϕn(z),−t′) extends backwards to
time

−t′ −R−1
QnGn

(ϕn(z, t
′)) < −t′ −R−1

QnGn
(ϕn(z, 0)),

with the same inequality for scalar curvature holding for all t in this extended
interval. Applying this for t′ < T but sufficiently close to T establishes the
last statement in the claim, and completes the proof of the claim. �

Let Q0 be the upper bound of the scalar curvature of (M∞, g∞(0)).
By the previous claim, Q0 is also an upper bound for the curvature of
(M∞, g∞(−t′)) for any t′ < T . Applying Theorem 11.1 to the flows

(Mn, QnGn(t)), −t′ −Q−1
0 /2 < t ≤ −t′,

we conclude that there is t0 depending only on the bound of the scalar
curvature of (M∞, g∞(−t′)), and hence depending only on Q0, such that,
after passing to a subsequence the limit flow exists for t ∈ [−t′ − t0,−t′].
Since the limit flow already exists on [−t′, 0], we conclude that, for this
further subsequence, the limit flow exists on [−t′ − t0, 0]. Now apply this
with t′ = T − t0/2. This proves that if, after passing to a subsequence,
there is a limit flow defined on [−T, 0], then, after passing to a further
subsequence there is a limit flow defined on [−T − t0/2, 0] where t0 depends
only on Q0, and in particular, is independent of T . Repeating this argument
with T + (t0/2) replacing T , we pass to a further subsequence so that the
limit flow is defined on [−T − t0, 0]. Repeating this inductively, we can
find a sequence of subsequences so that for the n subsequence the limit
flow is defined on [−T − nt0, 0]. Taking a diagonal subsequence produces a
subsequence for which the limit is defined on (−∞, 0].

The limit flow is the product of a flow on S2 of positive curvature defined
for t ∈ (−∞, 0] and the trivial flow on R. Now, invoking Hamilton’s result
(Corollary 9.50), we see that the ancient solution of positive curvature on S2

must be a shrinking round S2. This means that the limit flow is the product
of the shrinking round S2 with R, and implies that for all n sufficiently
large there is a strong δ-neck centered at xn. This contradiction proves the
existence of h as required.

Now let us establish the last statement in Theorem 11.31. The subset of
H consisting of all z ∈ H with R(z) ≤ ρ−2 is compact (since R is a proper
function), and disjoint from any δ-neck of scale h since h < ρ/2C. On the
other hand, for any point z ∈ H with R(z) ≤ ρ−2 take a minimal geodesic
from z to the end of H. There must be a point y on this geodesic with
R(y) = h−2. The δ-neck centered at y is disjoint from z (since h < ρ/2C)
and hence this neck separates z from the end of H. It now follows easily that
there is a point y ∈ H with R(y) = h−2 and such that the central 2-sphere
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of the δ-neck centered at y divides H into two pieces with the non-compact
piece disjoint from Ωρ. �

Corollary 11.36. We can take the function h(ρ, δ) in the last lemma
to be ≤ δρ, to be a weakly monotone non-decreasing function of δ when ρ is
fixed, and to be a weakly monotone non-decreasing function of ρ when δ is
held fixed.

Proof. If h satisfies the conclusion of Theorem 11.31 for ρ and δ and if
ρ′ ≥ ρ and δ′ ≥ δ then h also satisfies the conclusion of Theorem 11.31 for
ρ′ and δ′. Also, any h′ ≤ h also satisfies the conclusion of Theorem 11.31
for δ and ρ. Take a sequence (δn, ρn) where each of the sequences {δn}
and {ρn} is a monotone decreasing sequence with limit 0. Then we choose
hn = h(ρn, δn) ≤ ρnδn as in the statement of Theorem 11.31. We of course
can assume that {hn}n is a non-increasing sequence of positive numbers
with limit 0. Then for any (ρ, δ) we take the largest n such that ρ ≥ ρn and
δ ≥ δn, and we define h(ρ, δ) to be hn for this value of n. This constructs
the function h(δ, ρ) as claimed in the corollary. �



CHAPTER 12

The standard solution

The process of surgery involves making a choice of the metric on a 3-ball
to ‘glue in’. In order to match approximatively with the metric coming from
the flow, the metric we glue in must be asymptotic to the product of a round
2-sphere and an interval near the boundary. There is no natural choice for
this metric; yet it is crucial to the argument that we choose an initial metric
so that the Ricci flow with these initial conditions has several properties.
In this chapter we shall develop the needed conditions on the initial metric
and the Ricci flow.

1. The initial metric

Conditions on the initial metric that ensure the required properties for
the subsequence flow are contained in the following definition.

Definition 12.1. A standard initial metric is a metric g0 on R
3 with

the following properties:

(i) g0 is a complete metric.
(ii) g0 has non-negative sectional curvature at every point.
(iii) g0 is invariant under the usual SO(3)-action on R

3.
(iv) there is a compact ball B ⊂ R

3 so that the restriction of the met-
ric g0 to the complement of this ball is isometric to the product
(S2, h)× (R+, ds2) where h is the round metric of scalar curvature
1 on S2.

(v) g0 has constant sectional curvature 1/4 near the origin. (This point
will be denoted p and is called the tip of the initial metric.)

See Fig. 1.

Actually, one can work with an alternative weaker version of the fourth
condition, namely:
(iv ′) g0 is asymptotic at infinity in the C∞-topology to the product of the
round metric h0 on S2 of scalar curvature 1 with the usual metric ds2 on the
real line. By this we mean that if xn ∈ R

3 is any sequence converging to in-
finity, then the based Riemannian manifolds (R3, g0, xn) converge smoothly
to (S2, h0)×(R, ds2). But we shall only use standard initial metrics as given
in Definition 12.1.

Lemma 12.2. There is a standard initial metric.

293
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S2 × [0,∞)positive curvature

Figure 1. A standard initial metric.

Proof. We construct our Riemannian manifold as follows. Fix Eu-
clidean coordinates (x0, x1, x2, x3) on R

4. Let y = f(s) be a function defined
for s ≥ 0 and satisfying:

(1) f is C∞ on (0,∞).
(2) f(s) > 0 for all s > 0.
(3) f ′′(s) ≤ 0 for all s > 0.

(4) There is s1 > 0 such that f(s) =
√

2 for all s ≥ s1.

(5) There is s0 > 0 such that f(s) =
√

4s− s2 for all s ∈ [0, s0].

Given such a function f , consider the graph

Γ = {(x0, x1)
∣∣x0 ≥ 0 and x1 = f(x0)}

in the (x0, x1)-plane. We define Σ(f) by rotating Γ about the x0-axis in
four-space:

Σ(f) = {(x0, x1, x2, x3)
∣∣x0 ≥ 0 and x2

1 + x2
2 + x2

3 = f(x0)
2}.

Because of the last condition on f , there is a neighborhood of 0 ∈ Σ(f) that
is isometric to a neighborhood of the north pole in the 3-sphere of radius 2.
Because of this and the first item, we see that Σ(f) is a smooth submanifold
of R

4. Hence, it inherits a Riemannian metric g0. Because of the fourth item,
a neighborhood of infinity of (Σ(f), g0) is isometric to (S2, h) × (0,∞), and
in particular, (Σ(f), g0) is complete. Clearly, the rotation action of S0(3)
on Σ(f), induced by the orthogonal action on the last three coordinates in
R

4, is an isometric action with the origin as the only fixed point. It is also
clear that Σ(f) is diffeomorphic to R

3 by a diffeomorphism that send the
SO(3) action to the standard one on R

3.
It remains to compute the sectional curvatures of g0. Let q ∈ Σ(f) be a

point distinct from the fixed point of the SO(3)-action. Direct computation
shows that the tangent plane to the 2-dimensional SO(3)-orbit through q is
a principal direction for the curvature, and the sectional curvature on this
tangent two-plane is given by

1

f(q)2(1 + f ′(q)2)
.
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On the subspace in ∧2TqΣ(f) perpendicular to the line given by this two-
plane, the curvature is constant with eigenvalue

−f ′′(q)
f(q)(1 + f ′(q)2)2

.

Under our assumptions about f , it is clear that Σ(f) has non-negative cur-
vature and has constant sectional curvature 1/4 near the origin. It remains
to choose the function f satisfying items (1) – (5) above.

Consider the function h(s) = (2 − s)/
√

4s− s2. This function is inte-

grable from 0 and the definite integral from zero to s is equal to
√

4s− s2.
Let λ(s) be a non-increasing C∞-function defined on [0, 1/2], with λ iden-
tically one near 0 and identically equal to 0 near 1/2. We extend λ to be
identically 1 for s < 0 and identically 0 for s > 1/2. Clearly,

∫ 2

0
h(s)λ(s − 3/2)ds >

∫ 3/2

0
h(s)ds >

√
2

and ∫ 2

0
h(s)λ(s)ds <

∫ 1/2

0
h(s) <

√
2.

Hence, for some s0 ∈ (1/2, 3/2) we have
∫ 2

0
h(s)λ(s − s0)ds =

√
2.

We define

f(s) =

∫ s

0
h(σ)λ(σ − s0)dσ.

It is easy to see that f satisfies all the above conditions. �

The following lemma is clear from the construction.

Lemma 12.3. There is A0 <∞ such that

(R3 \B(0, A0), g(0))

is isometric to the product of a round metric on S2 of scalar curvature 1
with the Euclidean metric on [0,∞). There is a constant K < ∞ such that
the volume of Bg(0)(0, A0) is at most K. Furthermore, there is a constant

D < ∞ so that the scalar curvature of standard initial metric (R3, g(0)) is
bounded above by D and below by D−1.

2. Standard Ricci flows: The statement

Fix once and for all a standard initial metric g0 on R
3.

Definition 12.4. A partial standard Ricci flow is a Ricci flow (R3, g(t))
defined for 0 ≤ t < T , such that g(0) = g0 and such that the curvature
is locally bounded in time. We say that a partial standard Ricci flow is a
standard Ricci flow if it has the property that T is maximal in the sense that
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there is no extension of the flow to a flow with curvature locally bounded in
time defined on an time interval [0, T ′) with T ′ > T .

Here is the main result of this chapter.

Theorem 12.5. There is a standard Ricci flow defined for some positive
amount of time. Let (R3, g(t)), 0 ≤ t < T , be a standard Ricci flow. Then
the following hold.

(1) (Uniqueness): If (R3, g′(t)), 0 ≤ t < T ′, is a standard Ricci flow,
then T ′ = T and g′(t) = g(t).

(2) (Time Interval): T = 1.
(3) (Positive curvature): For each t ∈ (0, 1) the metric g(t) on R

3

is complete of strictly positive curvature.
(4) (SO(3)-invariance): For each t ∈ [0, 1) the metric g(t) is invari-

ant under the SO(3)-action on R
3.

(5) (Asymptotics at ∞): For any t0 < 1 and any ǫ > 0 there is a
compact subset X of R

3 such that for any x ∈ R
3\X the restriction

of the standard flow to an appropriate neighborhood of x for time
t ∈ [0, t0] is within ǫ in the C [1/ǫ]-topology of the product Ricci flow
(S2 × (−ǫ−1, ǫ−1)), h(t) × ds2, 0 ≤ t ≤ t0, where h(t) is the round
metric with scalar curvature 1/(1 − t) on S2.

(6) (Non-collapsing): There are r > 0 and κ > 0 such that (R3, g(t))
is κ-non-collapsed on scales less than r for all 0 ≤ t < 1.

The proof of this result occupies the next few subsections. All the prop-
erties except the uniqueness are fairly straightforward to prove. We establish
uniqueness by reducing the Ricci flow to the Ricci-DeTurck by establishing
the existence of a solution to the harmonic map flow in this case. This
technique can be made to work more generally in the case of complete man-
ifolds of bounded curvature, see [12], but we preferred to give the more
elementary argument that covers this case, where the symmetries allow us
to reduce the existence problem for the harmonic map flow to a problem
that is the essentially one-dimensional. Also, in the rest of the argument
one does not need uniqueness, only a compactness result for the space of all
Ricci flows of bounded curvature on each time-slice with the given initial
conditions. Kleiner and Lott pointed out to us that this uniqueness can be
easily derived from the other properties by arguments similar to those used
to establish the compactness of the space of κ-solutions.

3. Existence of a standard flow

For any R <∞, denote by BR ⊂ R
3, the ball of radius R about the origin

in the metric g0. For R ≥ A0 + 1, a neighborhood of the boundary of this
ball is isometric to (S2, h) × ([0, 1], ds2). Thus, in this case, we can double
the ball, gluing the boundary to itself by the identity, forming a manifold
we denote by S3

R. The doubled metric will be a smooth Riemannian metric
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gR on S3
R. Let p ∈ S3

R be the image of the origin in the first copy of BR.
Now take a sequence, Rn, tending to infinity to construct based Riemannian
manifolds (S3

Rn
, gRn , p) that converge geometrically to (R3, g0, p). For each

n, let (S3
Rn
, gRn(t)), 0 ≤ t < Tn be maximal Ricci flow with (S3

Rn
, gRn) as

initial metric. The maximum principle applied to Equation (3.7), ∂R/∂t =
△R + |Ric|2, then implies by Proposition 2.23 that the maximum of R at
time t, Rmax(t) obeys the inequality ∂Rmax/∂t ≤ Rmax(t)

2, and integrating
this inequality (i.e., invoking Lemma 2.22) one finds positive constants t0
and Q0 such that for each n, the norm of the scalar curvature of gRn(t)
are bounded by Q0 on the interval [0,max(t0, Tn)). By Corollary 4.14, for
each n the sectional curvature of the flow (S3

Rn
, gRn(t)), 0 ≤ t < Tn is

non-negative, and hence the sectional curvature of this flow is also bounded
by Q0 on [0,max(t0, Tn)). It now follows from Proposition 4.12 and the
fact that the Tn are maximal that Tn > t0 for all n. Since the Riemann
curvatures of the (S3

Rn
, gRn(t)), 0 ≤ t < t0, are bounded independent of n,

and since the (S3
Rn
, gRn , p) converge geometrically to (R3, g0, p), it follows

from Theorem 5.15 that there is a geometric limiting flow defined on [0, t0).
Since this flow is the geometric limit of flows of uniformly bounded curvature,
it has uniformly bounded curvature. Taking a maximal extension of this flow
to one of locally bounded curvature gives a standard flow.

4. Completeness, positive curvature, and asymptotic behavior

Let
(
R

3, g(t)
)
, t ∈ [0, T ), be a partial standard solution. Let yi → ∞ be

the sequence of points in R
3 converging to infinity. From the definition we

see that the based Riemannian manifolds
(
R

3, g0, yi
)

converge smoothly to

(S2 ×R, h(0)× ds2) where h(0) is the round metric of scalar curvature 1 on
S2.

Let us begin by proving the third item in the statement of Theorem 12.5:

Lemma 12.6. For each t0 ∈ [0, T ) the Riemannian manifold (R3, g(t0))
is complete and of positive curvature.

Proof. Fix t0 ∈ [0, T ). By hypothesis (R3, g(t)), 0 ≤ t ≤ t0 has
bounded curvature. Hence, there is a constant C < ∞ such that g(0) ≤
Cg(t0), so that for any points x, y ∈ R

3, we have d0(x, y) ≤
√
Cdt0(x, y).

Since g(0) is complete, this implies that g(t0) is also complete.
Now let us show that (M,g(t0)) has non-negative curvature. Here, the

argument is the analogue of the proof of Corollary 4.14 with one additional
step, the use of a function ϕ to localize the argument. Suppose this is false,
i.e., suppose that there is x ∈ M with Rm(x, t0) having an eigenvalue less
than zero. Since the restriction of the flow to [0, t0] is complete and of
bounded curvature, according to [33] for any constants C < ∞ and η > 0
and any compact subset K ⊂ M × [0, t0] there is ǫ > 0 and a function
ϕ : M × [0, t0] → R with the following properties:
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(1) ϕ|K ≤ η.
(2) ϕ ≥ ǫ everywhere.
(3) For each t ∈ [0, t0] the restriction of ϕ to M×{t} goes to infinity at

infinity in the sense that for any A <∞ the pre-image ϕ−1([0, A]∩
(M × {t}) is compact.

(4) On all of M × [0, t0] we have
(
∂
∂t −△

)
ϕ ≥ Cϕ.

Recall from Section 5 of Chapter 3 is the curvature tensor written with re-
spect to an evolving orthonormal frame {Fα} for the tangent bundle. Con-

sider the symmetric, horizontal two-tensor T̂ = T + ϕg. Let µ̂(x, t) denote
the smallest eigenvalue of this symmetric two-tensor at (x, t). Clearly, since
the curvature is bounded, it follows from the third property of ϕ that for
each t ∈ [0, t0] the restriction of µ̂ to M × {t} goes to infinity at infinity in
M . In particular, the subset of (x, t) ∈ M × [0, t0] with the property that
µ̂(x, t) ≤ µ̂(y, t) for all y ∈ M is a compact subset of M × [0, t0]. It follows
from Proposition 2.23 that f(t) = minx∈M µ̂(x, t) is a continuous function

of t. Choosing η > 0 sufficiently small and K to include (x, t0), then T̂ will
have a negative eigenvalue at (x, t0). Clearly, it has only positive eigenvalues

on M × {0}. Thus, there is 0 < t1 < t0 so that T̂ has only positive eigen-
values on M × [0, t1) but has a zero eigenvalue at (y, t1) for some y ∈ M .
That is to say, T ≥ −ϕg on M × [0, t1]. Diagonalizing T at any point (x, t)
with t ≤ t1, all its eigenvalues are at least −ϕ(x, t1). It follows immediately
that on M × [0, t1] the smallest eigenvalue of the symmetric form T 2 + T #

is bounded below by 2ϕ. Thus, choosing C ≥ 4 we see that for t ≤ t1 every
eigenvalue of T 2 + T # is at least −Cϕ/2.

We compute the evolution equation using the formula in Lemma 4.13
for the evolution of T in an evolving orthonormal frame:

∂T̂
∂t

=
∂T
∂t

+
∂ϕ

∂t
g − 2ϕRic(g)

= △T + T 2 + T # +
∂ϕ

∂t
g − 2ϕRic(g)

= △T̂ + T 2 + T # +

(
∂ϕ

∂t
−△ϕ

)
g − 2ϕRic(g)

≥ △T̂ + T 2 + T # + ϕ (Cg − 2Ric(g)) .

Since every eigenvalue of T 2+T # on M× [0, t1] is at least −Cϕ/2, it follows
that on M × [0, t1],

∂T̂
∂t

≥ △T̂ + ϕ(Cg/2 − 2Ric(g)).

Once again assuming that C is sufficiently large, we see that for any t ≤ t1,

∂T̂
∂t

≥ △T̂ .
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Thus, at any local minimum x ∈M for µ̂(·, t), we have

∂µ̂

∂t
≥ 0.

This immediately implies by Proposition 2.23 that ψ(t) = minx∈M µ̂(x, t) is
a non-decreasing function of t. Since its value at t = 0 is at least ǫ > 0
and its value at t1 is zero, this is a contradiction. This establishes that the
solution has non-negative curvature everywhere. Indeed, by Corollary 4.20
it has strictly positive curvature for every t > 0. �

Now let us turn to the asymptotic behavior of the flow.
Fix T ′ < T . Let yk be a sequence tending to infinity in (R3, g0). Fix

R < ∞. Then there is k0(R) such that for all k ≥ k0(R) there is an
isometric embedding ψk : (S2, h) × (−R,R) → (R3, g0) sending (x, 0) to yk.
These maps realize the product (S2, h) × (R, ds2) as the geometric limit of
the (R3, g0, yi). Furthermore, for each R <∞ there is a uniform C∞ point-
wise bound to the curvatures of g0 restricted to the images of the ψk for k ≥
k0(R). Since the flow g(t) has bounded curvature on R

3 × [0, T ′], it follows
from Theorem 3.29 that there are uniform C∞ point-wise bounds for the
curvatures of g(t) restricted to ψk(S

2 × (−R,R)). Thus, by Theorem 5.15,
after passing to a subsequence, the flows ψ∗

kg(t) converge to a limiting flow
on S2×R. Of course, since the curvature of g(t) is everywhere ≥ 0, the same
is true of this limiting flow. Since the time-slices of this flow have two ends,
it follows from Theorem 2.13 that every manifold in the flow is a product of
a compact surface with R. According to Corollary 4.20 this implies that the
flow is the product (S2, h(t))× (R, ds2). This means that given ǫ > 0, for all
k sufficiently large, the restriction of the flow to the cylinder of length 2R
centered at yk is within ǫ in the C [1/ǫ]-topology of the shrinking cylindrical
flow on time [0, T ′]. Given ǫ > 0 and R <∞ this statement is true for all y
outside a compact ball B centered at the origin.

We have now established the following:

Proposition 12.7. Given T ′ < T and ǫ > 0 there is a compact ball B
centered at the origin of R

3 with the property that the restriction of the flow
(R3 \ B, g(t)), 0 ≤ t ≤ T ′, is within ǫ in the C [1/ǫ]-topology of the standard
evolving cylinder (S2, h(t)) × (R+, ds2).

Corollary 12.8. The maximal time T is ≤ 1.

Proof. If T > 1, then we can apply the above result to T ′ with 1 < T ′ <
T ,and see that the solution at infinity is asymptotic to the evolving cylinder
(S2, h(t))× (R, ds2) on the time interval [0, T ′]. But this is absurd since this
evolving cylindrical flow becomes completely singular at time T = 1. �



300 12. THE STANDARD SOLUTION

5. Standard solutions are rotationally symmetric

Next, we consider the fourth item in the statement of the theorem. Of
course, rotational symmetry would follow immediately from uniqueness. But
here we shall use the rotational symmetry to reduce the uniqueness problem
to a one-dimensional problem which we then solve. One can also use the
general uniqueness theorem for complete, non-compact manifolds due to
Chen and Zhu ([12]), but we have chosen to present a more elementary,
self-contained argument in this special case which we hope will be more
accessible.

Let Ricij be the Ricci tensor and Ricik = gijRicjk be the dual tensor.
Let X be a vector field evolving by

(12.1)
∂

∂t
X = △X + Ric(X, ·)∗.

In local coordinates (x1, . . . , xn), if X = Xi∂i, then the equation becomes

(12.2)
∂

∂t
Xi = (△X)i + RicikX

k.

Let X∗ denote the dual one-form to X. In local coordinates we have X∗ =
X∗
i dx

i with X∗
i = gijX

j . Since the evolution equation for the metric is the
Ricci flow, the evolution equation for X∗ is

∂X∗

∂t
= △X∗ − Ric(X, ·),

or in local coordinates

∂X∗
i

∂t
= (△X∗)i − RicijX

j .

Lemma 12.9. With X and its dual X∗ evolving by the above equations,
set V = ∇X∗, so that V is a contravariant two-tensor. In local coordinates
we have V = Vijdx

i ⊗ dxj with

Vij = (∇iX)j = gjk(∇iX)k.

This symmetric two-tensor satisfies

(12.3)
∂

∂t
V = △V −

(
2Rk

rl
jVrl + RiclkVlj + RicljVkl

)
dxk ⊗ dxj .

Remark 12.10. The covariant derivative acts on one-forms ω in such a
way that the following equation holds:

〈∇(ω), ξ〉 = 〈ω,∇(ξ)〉
for every vector field ξ. This means that in local coordinates we have

∇∂r(dx
k) = −Γkrldx

l.

Similarly, the Riemann curvature acts on one-forms ω satisfying

Rm(ξ1, ξ2)(ω)(ξ) = −ω (Rm(ξ1, ξ2)(ξ)) .
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Recall that in local coordinates

Rijkl = 〈Rm(∂i, ∂j)(∂l), ∂k〉.

Thus, we have

Rm(∂i, ∂j)(dx
k) = −gkaRijaldxl = −Rijkldxl,

where as usual we use the inverse metric tensor to raise the index.
Also, notice that △Xi −RicikX

k = −△dXi , where by △d we mean the
Laplacian associated to the operator d from vector fields to one-forms with
values in the vector field. Since

− (dδ + δd)Xi = −∇i

(
−∇kXk

)
−
(
−∇k

)
(∇kXi −∇iXk)

= ∇i∇kXk + ∇k∇kXi −∇k∇iXk

= Ri
k
k
j
Xj + ∇k∇kXi = △Xi − RicjiXj .

Proof. (of Lemma 12.9) The computation is routine, if complicated.
We make the computation at a point (p, t) of space-time. We fix local
g(t)-Gaussian coordinates (x1, . . . , xn) centered at p for space, so that the
Christoffel symbols vanish at (p, t).

We compute

∂

∂t
V =

∂

∂t
(∇X∗) = −

(
∂

∂t
Γlkj

)
X∗
l dx

k ⊗ dxj + ∇
(
∂

∂t
X∗
)

(12.4)

=
(
−∇lRickj + ∇kRiclj + ∇jRiclk

)
X∗
l dx

k ⊗ dxj

+ ∇ (△X∗ − Ric(X, ·)) .

We have

∇(△X∗) = ∇
(
(grs

(
∇r∇s(X

∗) − Γlrs∇lX
∗
))

= grs
(
∇
(
∇r∇s(X

∗) − Γlrs∇lX
∗
))

.

Let us recall the formula for commuting ∇ and ∇r. The following is
immediate from the definitions.

Claim 12.11. For any tensor φ we have

∇(∇rφ) = ∇r(∇φ) + dxk ⊗ Rm(∂k, ∂r)(φ) −∇r(dx
l) ⊗∇l(φ).

Applying this to our formula gives

∇(△X∗) = grs
(
∇r∇∇sX

∗ + dxk ⊗ Rm(∂k, ∂r)(∇sX
∗)

−∇r(dx
l) ⊗∇l∇sX

∗ −∇(Γlrs∇lX
∗)
)
.
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Now we apply the same formula to commute ∇ and ∇s. The result is

∇(△X∗) = grs
(
∇r∇s∇X∗ + ∇r

(
dxk ⊗ Rm(∂k, ∂s)X

∗ −∇sdx
l ⊗∇lX

∗)

+ dxk ⊗ Rm(∂k, ∂r)(∇sX
∗)

−∇r(dx
l) ⊗∇l∇sX

∗ −∇(Γlrs∇lX
∗)
)
.

Now we expand

∇r

(
dxk ⊗ Rm(∂k, ∂s)X

∗ −∇sdx
l ⊗∇lX

∗
)

= ∇r(dx
k) ⊗ Rm(∂k, ∂s)X

∗ + dxk ⊗∇r(Rm(∂k, ∂s))X
∗

+ dxk ⊗ Rm(∂k, ∂s)∇rX
∗ −∇r∇sdx

l ⊗∇lX
∗ −∇sdx

l ⊗∇r∇lX
∗.

Invoking the fact that the Christoffel symbols vanish at the point of space-
time where we are making the computation, this above expression simplifies
to

∇r

(
dxk ⊗ Rm(∂k, ∂s)X

∗ −∇sdx
l ⊗∇lX

∗
)

= dxk⊗∇r(Rm(∂k, ∂s))X
∗ + dxk⊗Rm(∂k, ∂s)∇rX

∗−∇r∇sdx
l⊗∇lX

∗.

Also, expanding and using the vanishing of the Christoffel symbols we
have

−∇(Γlrs∇lX
∗) = −dΓlrs ⊗∇lX

∗ − Γlrs∇∇lX
∗

= −dΓlrs ⊗∇lX
∗.

Plugging these computations into the equation above and using once
more the vanishing of the Christoffel symbols gives

∇(△X∗)

= △(∇X∗) + grs
(
dxk ⊗∇r(Rm(∂k, ∂s))X

∗ + dxk ⊗ Rm(∂k, ∂s)∇rX
∗

−∇r∇sdx
l ⊗∇lX

∗ + dxk ⊗ Rm(∂k, ∂r)(∇sX
∗) − dΓlrs ⊗∇lX

∗
)
.

Now by the symmetry of grs we can amalgamate the second and fourth
terms on the right-hand side to give

∇(△X∗) = △(∇X∗) + grs
(
dxk ⊗∇r(Rm(∂k, ∂s))X

∗

+ 2dxk ⊗ Rm(∂k, ∂s)∇rX
∗ −∇r∇sdx

l ⊗∇lX
∗

− dΓlrs ⊗∇lX
∗).

We expand

Rm(∂k, ∂s)∇rX
∗ = −RksljVrldxj .
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Also we have (again using the vanishing of the Christoffel symbols)

−∇r∇sdx
l − dΓlrs = ∇rΓ

l
ksdx

k − ∂kΓ
l
rsdx

k

= Rrk
l
sdx

k.

Lastly,

∇r(Rm(∂k, ∂s))X
∗ = −(∇rR)ks

l
jX

∗
l dx

j .

Plugging all this in and raising indices yields

∇(△X∗) = △(∇X∗) − grs(∇rR)ks
l
jX

∗
l dx

k ⊗ dxj − 2Rk
rl
jVrldx

k ⊗ dxj

+ grsRrk
l
sVljdx

k ⊗ dxj

= △(∇X∗) − grs(∇rR)ks
j
lX

∗
j dx

k ⊗ dxl − 2Rk
rl
jVrldx

k ⊗ dxj

− RiclkVljdx
k ⊗ dxj.

Thus, we have

∇(△X∗) −∇(Ric(X, ·)∗)
= △(∇X∗) − grs(∇rR)ks

l
jX

∗
l dx

k ⊗ dxj − 2Rk
rl
jVrldx

k ⊗ dxj

−
(
RiclkVlj + ∇k(Ric)ljX

∗
l + RicljVkl

)
dxk ⊗ dxj ,

and consequently, plugging back into Equation (12.4), and canceling the two
like terms appearing with opposite sign, we have

∂

∂t
V =

(
−∇lRickj + ∇jRiclk

)
X∗
l dx

k ⊗ dxj + △(∇X∗)

− grs(∇rR)ks
l
jX

∗
l dx

k ⊗ dxj − 2Rk
rl
jVrldx

k ⊗ dxj

−
(
RiclkVlj + RicljVkl

)
dxk ⊗ dxj .

The last thing we need to see in order to complete the proof is that

−grs(∇rR)ks
l
j −∇lRickj + ∇jRiclk = 0.

This is obtained by contracting grs against the Bianchi identity

∇rRks
l
j + ∇lRksjr + ∇jRksr

l = 0.

�

Let hij be defined by hij = Vij + Vji. It follows from (12.3) that

(12.5)
∂

∂t
hij = △Lhij ,
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where by definition △Lhij = △hij + 2Ri
kljhkl − Ricki hkj − Rickjhki is the

Lichnerowicz Laplacian. A simple calculation shows that there is a con-
stant C > 0 such that

(
∂

∂t
−△

)
|hij |2 = −2 |∇khij |2 + 4Rijklhjkhil,(12.6)

∂

∂t
|hij |2 ≤ △ |hij |2 − 2 |∇khij |2 + C |hij |2 .(12.7)

Note that X(t) is a Killing vector field for g(t) if and only if hij(t) = 0. Since
Equation (12.1) is linear and since the curvature is bounded on each time-
slice, for any given bounded Killing vector field X(0) for metric g(0), there

is a bounded solution Xi (t) of Equation (12.1) for t ∈ [0, T ]. Then |hij (t)|2
is a bounded function satisfying (12.7) and |hij |2 (0) = 0. One can apply
the maximum principle to (12.7) to conclude that hij(t) = 0 for all t ≥ 0.
This is done as follows: Let h(t) denote the maximum of |hij(x, t)|2 on the t
time-slice. Note that, for any fixed t the function |hij(x, t)|2 approaches 0 as
x tends to infinity since the metric is asymptotic at infinity to the product
of a round metric on S2 and the standard metric on the line. By virtue of
(12.7) and Proposition 2.23, the function h(t) satisfies dh/dt ≤ Ch in the
sense of forward difference quotients, so that d(e−Cth)/dt ≤ 0, also in the
sense of forward difference quotients. Thus, by Lemma 2.22, since h(0) = 0
and h ≥ 0, it follows that e−Cth(t) = 0 for all t ≥ 0, and consequently,
h(t) = 0 for all t ≥ 0.

Thus, the evolving vector field X(t) is a Killing vector field for g(t) for
all t ∈ [0, T ). The following is a very nice observation of Bennett Chow; we
thank him for allowing us to use it. From hij = 0 we have ∇jX

i+∇iX
j = 0.

Taking the ∇j derivative and summing over j we get

△Xi +RikX
k = 0

for all t. Hence (12.2) gives ∂
∂tX

i = 0 and X(t) = X(0), i.e., the Killing
vector fields are stationary and remain Killing vector fields for the entire flow
g(t). Since at t = 0 the Lie algebra so(3) of the standard rotation action
consists of Killing vector fields, the same is true for all the metrics g(t) in
the standard solution. Thus, the rotation group SO(3) of R

3 is contained
in the isometry group of g(t) for every t ∈ [0, T ). We have shown:

Corollary 12.12. The standard solution g(t), t ∈ [0, T ), consists of
a family of metrics all of which are rotationally symmetric by the standard
action of SO(3) on R

3.

5.1. Non-collapsing.

Proposition 12.13. For any r > 0 sufficiently small, there is a κ > 0
such that the standard flow is κ-non-collapsed on all scales ≤ r.
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Proof. Since the curvature of the standard solution is non-negative, it
follows directly that 2|Ric|2 ≤ R2. By Equation (3.7) this gives

∂R

∂t
= △R+ 2|Ric|2 ≤ △R+R2.

Let C = max(2,maxx∈R3R(x, 0)). Suppose that t0 < T and t0 < 1/C.

Claim 12.14. For all x ∈ R
3 and t ∈ [0, t0] we have

R(x, t) ≤ C

1 − Ct
.

Proof. By the asymptotic condition, there is a compact subset X ⊂ R
3

such that for any point p ∈ R
3 \ X and for any t ≤ t0 we have R(p, t) <

2/(1 − t). Since C ≥ 2, for all t for which supx∈R3R(x, t) ≤ 2/(1 − t), we
also have

R(x, t) ≤ C

1 − Ct
.

Consider the complementary subset of t, that is to say the subset of
[0, t0] for which there is x ∈ R

3 with R(x, t) > C/(1 − Ct). This is an open
subset of [0, t0], and hence is a disjoint union of relatively open intervals.
Let {t1 < t2} be the endpoints of one such interval. If t1 6= 0, then clearly
Rmax(t1) = C/(1−Ct1). Since C ≥ supx∈R3R(x, 0), this is also true if t1 = 0.
For every t ∈ [t1, t2] the maximum of R on the t time-slice is achieved, and
the subset of R

3×[t1, t2] of all points where maxima are achieved is compact.
Furthermore, at any maximum point we have ∂R/∂t ≤ R2. Hence, according
to Proposition 2.23 for all t ∈ [t1, t2] we have

Rmax(t) ≤ G(t)

where G′(t) = G2(t) and G(t1) = C/(1 − Ct1). It is easy to see that

G(t) =
C

1 − Ct
.

This shows that for all t ∈ [t1, t2] we have R(x, t) ≤ C
1−Ct , completing the

proof of the claim. �

This shows that for t0 < T and t0 < 1/C the scalar curvature is bounded
on M × [0, t0] by a constant depending only on C and t0. Since we are
assuming that our flow is maximal, it follows that T ≥ 1/C.

Since (R3, g0) is asymptotic to (S2×R, h(0)×ds2), by compactness there
is V > 0 such that for any metric ball B(x, 0, r) on which |Rm| ≤ r−2 we
have VolB(x, r) ≥ V r3. Since there is a uniform bound on the curvature
on [0, 1/2C], it follows that there is V ′ > 0 so that any ball B(q, t, r) with
t ≤ 1/2C on which |Rm| ≤ r−2 satisfies VolB(q, t, r) ≥ V ′r3. Set t0 =
1/4C. For any point x = (p, t) with t ≥ 1/2C there is a point (q, t0) such

that lx(q, t0) ≤ 3/2; this by Theorem 7.10. Since B(q, 0, 1/
√
Rmax(0)) ⊂

R
3 has volume at least V/Rmax(0)

3/2, and clearly lx is bounded above on
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B(q, 0, 1/
√
Rmax(0)) by a uniform constant, we see that the reduced volume

of B(q, 0, 1/
√
Rmax(0)) is uniformly bounded from below. It now follows

from Theorem 8.1 that there is κ0 > 0 such that if |Rm| is bounded by

r−2 on the parabolic neighborhood P (p, t, r,−r2) and r ≤
√

1/4C , then
the volume of this neighborhood is at least κ0r

3. Putting all this together
we see that there is a universal κ > 0 such that the standard solution is
κ-non-collapsed on all scales at most

√
1/4C . �

6. Uniqueness

Now we turn to the proof of uniqueness. The idea is to mimic the proof
of uniqueness in the compact case, by replacing the Ricci flow by a strictly
parabolic flow. The material we present here is closely related to and derived
from the presentation given in [49]. The presentation here is the analogy
in the context of the standard solution of DeTurck’s argument presented in
Section 3 of Chapter 3.

6.1. From Ricci flow to Ricci-DeTurck flow. Let (Mn, g(t)), t ∈
[t0, T ], be a solution of the Ricci flow and let ψt : M → M, t ∈ [t0, T1] be a
solution of the harmonic map flow

∂ψt
∂t

= △g(t),g(t0)ψt, ψt0 = Id.(12.8)

Here, △g(t),g(t0) is the Laplacian for maps from the Riemannian manifold

(M,g(t)) to the Riemannian manifold (M,g(t0)). In local coordinates (xi)
on the domain M and (yα) on the target M , the harmonic map flow (12.8)
can be written as

(12.9)

(
∂

∂t
−△g(t)

)
ψα (x, t) = gij (x, t) Γαβγ (ψ (x, t))

∂ψβ (x, t)

∂xi
∂ψγ (x, t)

∂xj

where Γαβγ are the Christoffel symbols of g(t0). Suppose ψ (x, t) is a bounded

smooth solution of (12.9) with ψt0 = Id. Then ψ (t) , t ∈ [t0, T1] are dif-
feomorphisms when T1 > t0 is sufficiently close to t0. For any such T1 and
for t0 ≤ t ≤ T1, define ĝ (t) =

(
ψ−1
t

)∗
g (t). Then ĝ(t) satisfies the following

equation:

(12.10)
∂

∂t
ĝij = −2R̂icij + ∇̂iWj(t) + ∇̂jWi(t) ĥ (0) = h(0),

where R̂icij and ∇̂i are the Ricci curvature and Levi-Civita connection of
ĝ(t) respectively and W (t) is the time-dependent 1-form defined by

W (t)j = ĝjk(t)ĝ
pq(t)

(
Γ̂kpq(t) − Γkpq(t0)

)
.

Here, Γ̂kpq(t) denotes the Christoffel symbols of the metric ĝ(t) and Γkpq(t0)
denotes the Christoffel symbols of the metric g(t0). (See, for example, ([65]
Lemma 2.1).) We call a solution to this flow equation a Ricci-DeTurck
flow (see [16], or [13] Chapter 3 for details). In local coordinates we have
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∂ĝij
∂t

= ĝkl∇k∇lĝij − ĝklg(t0)ipĝ
pqRjkql (g(t0)) − ĝklg(t0)jpĝ

pqRikql (g(t0))

(12.11)

+
1

2
ĝklĝpq

[
∇iĝpk∇j ĝql + 2∇kĝjp∇q ĝil

−2∇kĝjp∇lĝiq − 2∇j ĝpk∇lĝiq − 2∇iĝpk∇lĝjq

]
,

where ∇ is the Levi-Civita connection of g(t0). This is a strictly parabolic
equation.

Lemma 12.15. Suppose that g(t) solves the Ricci flow equation and sup-
pose that ψt solves the harmonic map flow equation, Equation (12.8); then
ĝ(t) = (ψ−1

t )∗g(t) solves the Ricci-DeTurck flow, Equation (12.10) and ψt
satisfies the following ODE:

∂ψt
∂t

= −ĝij(t)W (t).

Proof. The first statement follows from the second statement and a
standard Lie derivative computation. For the second statement, we need to
show

△g(t),g(0)ψ
α = −ĝpq

(
Γ̂αpq(t) − Γαpq(t0)

)
.

Notice that this equation is a tensor equation, so that we can choose co-
ordinates in the domain and range so that Γ(t) vanishes at the point p in
question and Γ(t0) vanishes at ψt(p). With these assumptions we need to
show

gpq(t)
∂2ψα

∂xp∂xq
= −ĝpq(t)Γ̂αpq(t).

This is a direct computation using the change of variables formula relating
Γ̂ and Γ. �

Corollary 12.16. Suppose that (M,gi(t)), t0 ≤ t ≤ T , are solutions
to the Ricci flow equation for i = 1, 2. Suppose also that there are solutions

ψ1,t : (M,g1(t)) → (M,g1(0))

and

ψ2,t : (M,g2(t)) → (M,g2(0))

to the harmonic map equation with ψ1,t0 = ψ2,t0 = Id. Let

ĝ1(t) = (ψ−1
1,t )

∗g1(t) and ĝ2(t) = (ψ−1
2,t )

∗g2(t)

be the corresponding solutions to the Ricci-DeTurck flow. Suppose that
ĝ1(t) = ĝ2(t) for all t ∈ [t0, T ]. Then g1(t) = g2(t) for all t ∈ [t0, T ].

Proof. Since ψa,t satisfies the equation

∂ψa,t
∂t

= −ĝija W (t)j
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where the time-dependent vector field W (t) depends only on ĝa, we see that
ψ1,t and ψ2,t both solve the same time-dependent ODE and since ψ1,t0 =
ψ2,t0 = Id, it follows that ψ1,t = ψ2,t for all t ∈ [t0, T ]. On the other hand,
ga(t) = ψ∗

a,tĝa(t), so that it follows that g1(t) = g2(t) for t ∈ [t0, T ]. �

Our strategy of proof is to begin with a standard solution g(t) and show
that there is a solution to the harmonic map equation for this Ricci flow
with appropriate decay conditions at infinity. It follows that the solution to
the Ricci-DeTurck flow constructed is well-controlled at infinity. Suppose
that we have two standard solutions g1(t) and g2(t) (with the same initial
conditions g0) that agree on the interval [0, t0] which is a proper subinter-
val of the intersection of the intervals of definition of g1(t) and g2(t). We
construct solutions to the harmonic map flow equation from ga(t) to ga(t0)
for a = 1, 2. We show that solutions always exist for some amount of time
past t0. The corresponding Ricci-DeTurck flows ĝa(t) starting at gt0 are
well-controlled at infinity. Since the Ricci-DeTurck flow equation is a purely
parabolic equation, it has a unique solution with appropriate control at in-
finity and given initial condition g1(t0) = g2(t0). This implies that the two
Ricci-DeTurck flows we have constructed are in fact equal. Invoking the
above corollary, we conclude that g1(t) and g2(t) agree on a longer interval
extending past t0. From this it follows easily that g1(t) and g2(t) agree on
their common domain of definition. Hence, if they are both maximal flows,
they must be equal.

7. Solution of the harmonic map flow

In order to pass from a solution to the Ricci flow equation to a solution
of the Ricci-DeTurck flow we must prove the existence of a solution of the
harmonic map flow associated with the Ricci flow. In this section we study
the existence of the harmonic flow (12.8) and its asymptotic behavior at the
space infinity when h(t) = g(t) is a standard solution. Here we use in an
essential way the rotationally symmetric property and asymptotic property
at infinity of g(t). In this argument there is no reason, and no advantage,
to restricting to dimension 3, so we shall consider rotationally symmetric
complete metrics on R

n, i.e., complete metrics on R
n invariant under the

standard action of SO(n). Let θ = (θ1, . . . , θn−1) be local coordinates on the
round (n−1)-sphere of radius 1, and let dσ be the metric on the sphere. We
denote by r̂ the standard radial coordinate in R

n. Since g(t) is rotationally
symmetric and n ≥ 3, we can write

g(t) = dr2 + f(r, t)2dσ.(12.12)

Here r = r(r̂, t) is the (time-dependent) radial coordinate on R
n for the

metric g(t).
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Claim 12.17. For any fixed t the function r : R
n → [0,∞) is a function

only of r̂. Considered as a function of two variables, r(r̂, t) is a smooth
function defined for r̂ ≥ 0. It is an odd function of r̂. For fixed t it is an
increasing function of r̂.

Proof. Write the metric g(t) = gijdx
idxj and let

(12.13) x1 = r̂ cos θ1, x2 = r̂ sin θ1 cos θ2, . . . , xn = sin θ1 · · · sin θn−1.

We compute f(r, t) by restricting attention to the ray r̂ = x1 and θ1 = · · · =
θn−1 = 0, i.e., x2 = · · · = xn = 0. Then

g(t) = g11(r̂, 0, . . . , 0, t)dr̂
2 + g22(r̂, 0, . . . , 0, t)r̂

2dσ.

Both g11 and g22 are positive smooth and even in r̂. Thus
√
g11(r̂, 0, . . . , 0, t)

is a positive smooth function defined for all (r̂, t) and is invariant under the
involution r̂ 7→ −r̂. Hence its restriction to r̂ ≥ 0 is an even function. Since

r =

∫ r̂

0

√
g11(ŝ, 0, . . . , 0, t)dŝ = r̂

∫ 1

0

√
g11(r̂s, 0, . . . , 0, t)ds,

we see that r(r̂, t) is of the form r̂ · φ(r̂, t) where φ(r̂, t) is an even smooth
function. This shows that r(r̂, t) is an odd function. It is also clear from
this formula that ∂r/∂r̂ > 0. �

Since, for each t0, the function r(r̂, t0) is an increasing function of r̂, it
can be inverted to give a function r̂(r, t0). In Equation (12.12), we have
chosen to write f as a function of r and t, rather than a function of r̂ and
t. We look for rotationally symmetric solutions to Equation (12.8), i.e.,
solutions of the form:

ψ(t) : R
n → R

n ψ(t)(r, θ) = (ρ(r, t), θ) for t ≥ t0(12.14)

ψ(r, t0) = Id

We shall adopt the following conventions: we shall consider functions
f(w, t) defined in the closed half-plane w ≥ 0. When we say that such a
function is smooth we mean that for each n,m ≥ 0 we have a continuous
function fnm(w, t) defined for all w ≥ 0 satisfying:

(1)

f00 = f,

(2)
∂fnm
∂t

= fn(m+1), and

(3)
∂fnm
∂w

= f(n+1)m.
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In item (3) the partial derivative along the boundary w = 0 is a right-handed
derivative only. We say such a function is even if f(2k+1)m(0, t) = 0 for all
k ≥ 0.

We have the following elementary lemma:

Lemma 12.18. (a) Suppose that f(w, t) is a smooth function defined for
w ≥ 0. Define φ(r, t) = f(r2, t). Then φ(r, t) is a smooth function defined
for all r ∈ R. Now fix k and let r̂ : R

k → [0,∞) be the usual radial coordinate.
Then we have a smooth family of smooth functions on R

k defined by

φ̂(x1, . . . , xk, t) = φ(r̂(x1, . . . , xk), t) = f(

k∑

i=1

(xi)2, t).

(b) If ψ(r, t) is a smooth function defined for r ≥ 0 and if it is even in the
sense that its Taylor expansion to all orders along the line r = 0 involves
only even powers of r, then there is a smooth function f(w, t) defined for
w ≥ 0 such that ψ(r, t) = f(r2, t). In particular, for any k ≥ 2 the func-

tion ψ̂((x1, . . . , xk), t) = ψ(r(x1, . . . , xk), t) is a smooth family of smooth
functions on R

k.

Proof. Item (a) is obvious, and item (b) is obvious away from r = 0.
We establish item (b) along the line r = 0. Consider the Taylor theorem
with remainder of order 2N in the r-direction for ψ(r, t) at a point (0, t).
By hypothesis it takes the form

∑

i=0

ci(t)w
2i +w2N+1R(w, t).

Now we replace w by
√
r to obtain

f(r, t) =
∑

i=0

cir
i +

√
r
2N+1

R(
√
r, t).

Applying the usual chain rule and taking limits as r → 0+ we see that f(r, t)
is N times differentiable along the line r = 0. Since this is true for every
N <∞, the result follows. �

Notice that an even function f(r, t) defined for r ≥ 0 extends to a smooth
function on the entire plane invariant under r 7→ −r. When we say a function
f(r, t) defines a smooth family of smooth functions on R

n we mean that,

under the substitution f̂((x1, . . . , xn), t) = f(r(x1, . . . , xn), t), the function

f̂ is a smooth function on R
n for each t.

We shall also consider odd functions f(r, t), i.e., smooth functions de-
fined for r ≥ 0 whose Taylor expansion in the r-direction along the line
r = 0 involves only odd powers of r. These do not define smooth functions
on R

n. On the other hand, by the same argument as above with the Taylor
expansion one sees that they can be written as rg(r, t) where g is even, and
hence define smoothly varying families of smooth functions on R

n. Notice
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also that the product of two odd functions f1(r, t)f2(r, t) is an even function
and hence this product defines a smoothly varying family of smooth function
on R

n.

7.1. The properties of r as a function of r̂ and t. We shall make
a change of variables and write the harmonic map flow equation in terms of
r and θ. For this we need some basic properties of r as a function of r̂ and
t. Recall that we are working on R

n with its usual Euclidean coordinates
(x1, . . . , xn). We shall also employ spherical coordinates r̂, θ1, . . . , θn−1. (We
denote the fixed radial coordinate on R

n by r̂ to distinguish it from the
varying radial function r = r(t) that measures the distance from the tip in
the metric g(t).)

As a corollary of Claim 12.17 we have:

Corollary 12.19. r2(r̂, t) is a smoothly varying family of smooth func-
tions on R

n. Also, r̂ is a smooth function of (r, t) defined for r ≥ 0 and odd
in r. In particular, any smooth even function of r is a smooth even function
of r̂ and thus defines a smooth function on R

n. Moreover, there is a smooth
function ξ(w, t) such that d(log r)/dt = r−1(dr/dt) = ξ(r2, t).

For future reference we define

(12.15) B(w, t) =
1

2

∫ w

0
ξ(u, t)du.

Then B(r2, t) is a smooth function even in r and hence, as t varies, defines
a smoothly varying family of smooth functions on R

n. Notice that

∂B(r2, t)

∂r
= 2r

∂B

∂w
(w, t) |w=r2 = 2r

(
1

2
ξ(r2, t)

)
=
dr

dt
.

Now let us consider f(r, t).

Claim 12.20. f(r, t) is a smooth function defined for r ≥ 0. It is an odd
function of r.

Proof. We have

f(r, t) = r̂(r, t)
√
g22(r̂(r, t), 0, . . . , 0, t).

Since
√
g22(r̂, 0, . . . , 0, t) is a smooth function of (r̂, t) defined for r̂ ≥ 0 and

since it is an even function of r̂, it follows immediately from the fact that r̂
is a smooth odd function of r, that f(r, t) is a smooth odd function of r. �

Corollary 12.21. There is a smooth function h(w, t) defined for w ≥ 0
so that f(r, t) = rh(r2, t). In particular, h(r2, t) defines a smooth function
on all of R

n. Clearly, h(w, t) > 0 for all w ≥ 0 and all t.

We set h̃(w, t) = log(h(w, t)), so that f(r, t) = re
eh(r2,t). Notice that

h̃(r2, t) defines a smooth function of r̂2 and t and hence is a smoothly varying
family of smooth functions on R

n.
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7.2. The harmonic map flow equation. Let ψ(t) : R
n → R

n be a
smoothly varying family of smooth functions as given in Equation (12.14).
Using (12.12) and (12.14) it is easy to calculate the energy functional using
spherical coordinates with r as the radial coordinate.

E(ψ(t)) =
1

2

∫

Rn

|∇ψ(t)|2g(t),gt0
dVg(t)

=
1

2

∫

Rn

[(
∂ρ

∂r

)2

+ (n− 1)f2(ρ, t0)f
−2(r, t)

]
dVg(t).

We set

Ξ = (n− 1)f(ρ, t0)
∂f(ρ, t0)

∂ρ
f−2(r, t).

If we have a compactly supported variation δρ = w, then letting dvolσ denote
the standard volume element on Sn−1, we have

δE(ψ(t))(w) =
1

2

∫

Rn

[
2
∂ρ

∂r

∂w

∂r
+ 2Ξw

]
dVg(t).

Then we can rewrite

δE(ψ(t))(w) =

∫ +∞

0

[
fn−1(r, t)

∂ρ

∂r

∂w

∂r
+ Ξwfn−1

]
dr ·

∫

Sn−1

dvolσ

=

∫ +∞

0

[
− ∂

∂r

(
fn−1∂ρ

∂r

)
w + Ξwfn−1

]
dr ·

∫

Sn−1

dvolσ

=

∫

Rn

[
−f1−n ∂

∂r

(
∂ρ

∂r
fn−1

)
+ Ξ

]
wdVg(t).

The usual argument shows that for a compactly supported variation w
we have

δw

(
1

2

∫

Rn

|∇g(t),g(t0)ψ|2dvol
)

=

∫

Rn

〈w,−△g(t),g(t0)ψ〉dvol.

Thus,

△g(t),g(t0)ψ =

[
f1−n ∂

∂r

(
∂ρ

∂r
fn−1

)
− (n− 1)f(ρ, t0)

∂f(ρ, t0)

∂ρ
f−2(r, t)

]
∂

∂r

where we have written this expression using the coordinates (r, θ) on the
range R

n (rather than the fixed coordinates (r̂, θ)).
Now let us compute ∂ψ/∂t(r̂, t) in these same coordinates. (We use r̂

for the coordinates for ψ in the domain to emphasize that this must be the
time derivative at a fixed point in the underlying space.) Of course, by the
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chain rule,

∂ψ(r̂, t)

∂t
=
∂ψ(r, t)

∂r

∂r

∂t
+
∂ψ(r, t)

∂t

=
∂ρ(r, t)

∂r

∂r(r̂, t)

∂t
+
∂ρ(r, t)

∂t
.

Consequently, for rotationally symmetric maps as in Equation (12.14)
the harmonic map flow equation (12.8) has the following form:

∂ρ

∂t
+
∂ρ

∂r

∂r

∂t
=

1

fn−1(r, t)

∂

∂r

(
fn−1(r, t)

∂ρ

∂r

)
−(n−1)f−2(r, t)f(ρ, t0)

∂f(ρ, t0)

∂ρ

or equivalently

∂ρ

∂t
=

1

fn−1(r, t)

∂

∂r

(
fn−1(r, t)

∂ρ

∂r

)
(12.16)

− (n− 1)f−2(r, t)f(ρ, t0)
∂f(ρ, t0)

∂ρ
− ∂ρ

∂r

∂r

∂t
.

The point of rewriting the harmonic map equation in this way is to find
an equation for the functions ρ(r, t), f(r, t) defined on r ≥ 0. Even though
the terms in this rewritten equation involve odd functions of r, as we shall
see, solutions to these equations will be even in r and hence will produce a
smooth solution to the harmonic map flow equation on R

n.

7.3. An equation equivalent to the harmonic map flow equa-
tion. We will solve (12.16) for solutions of the form

ρ(r, t) = reeρ(r,t), t ≥ t0; ρ̃(r, t0) = 0.

For ψ as in Equation (12.14) to define a diffeomorphism, it must be
the case that ρ(r, t) is a smooth function for r ≥ 0 which is odd in r. It
follows from the above expression that ρ̃(r, t) is a smooth function of r and t
defined for r ≥ 0 and even in r, so that it defines a smoothly varying family
of smooth functions on R

n. Then some straightforward calculation shows
that (12.16) becomes

∂ρ̃

∂t
=
∂2ρ̃

∂r2
+
n+ 1

r

∂ρ̃

∂r
+ (n− 1)

∂h̃(r2, t)

∂r

∂ρ̃

∂r
+

(
∂ρ̃

∂r

)2

(12.17)

+
n− 1

r2

[
1 − e2

eh(ρ2,t0)−2eh(r2,t)
]

+ 2 (n− 1)
∂h̃

∂w

(
r2, t

)

− 2 (n− 1) e2
eh(ρ2,t0)+2eρ−2eh(r2,t) ∂h̃

∂w
(ρ2, t0) −

2

r

∂r

∂t
− ∂r

∂t

∂ρ̃

∂r
.
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Note that from the definition, h̃ (0, t) = 0, we can write h̃ (w, t) =

wh̃∗(w, t) where h̃∗(w, t) is a smooth function of w ≥ 0 and t. So

n− 1

r2

[
1 − e2

eh(ρ2,t0)−2eh(r2,t)
]

=
n− 1

r2

[
1 − e2r

2[e2eρeh∗(ρ2,t0)−eh∗(r2,t)]
]

which is a smooth function of ρ̃, r2, t.
Let

G(ρ̃, w, t) =
n− 1

w

[
1 − e2

eh(ρ2,t0)−2eh(w,t)
]

+ 2 (n− 1)
∂h̃

∂w
(w, t)(12.18)

− 2 (n− 1) e2
eh(ρ2,t0)+2eρ−2eh(w,t) ∂h̃

∂w
(ρ2, t0) − 2ξ(w, t),

where ξ is the function from Corollary 12.19. Then G(ρ̃, w, t) is a smooth
function defined for w ≥ 0. Notice that when r and ρ̃ are the functions
associated with the varying family of metrics g(t) and the solutions to the
harmonic map flow, then G(ρ̃, r2, t) defines a smoothly varying family of
smooth functions on R

n.
We have the following form of Equation (12.17):

∂ρ̃

∂t
=
∂2ρ̃

∂r2
+
n+ 1

r

∂ρ̃

∂r

+

[
(n− 1)

∂h̃

∂r
− ∂B

∂r

]
(
r2, t

) ∂ρ̃
∂r

+

(
∂ρ̃

∂r

)2

+G(ρ̃, r2, t).

Now we think of ρ̃ as a rotationally symmetric function defined on R
n+2

and let Ĝ(ρ̃, (x1, . . . , xn+2), t) = G(ρ̃,
∑n+2

i=1 (xi)2, t) and then the above equa-
tion can be written as

(12.19)
∂ρ̃

∂t
= △ρ̃+ ∇[(n − 1)h̃−B] · ∇ρ̃+ |∇ρ̃|2 +G(ρ̃, x, t)

where ∇ and △ are the Levi-Civita connection and Laplacian defined by the
Euclidean metric on R

n+2 respectively and where B is the function defined
in Equation (12.15).

Remark 12.22. The whole purpose of this rewriting of the PDE for ρ̃
is to present this equation in such a form that all its coefficients represent
smooth functions of r̂ and t that are even in r̂ and hence define smooth
functions on Euclidean space of any dimension. We have chosen to work
on R

n+2 because the expression for the Laplacian in this dimension has the
term ((n + 1)/r)∂ρ̃/∂r.

It is important to understand the asymptotic behavior of our functions
at spatial infinity.

Claim 12.23. For any fixed t we have the following asymptotic expan-
sions at spatial infinity.
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(1) e
eh(r2,t) is asymptotic to 1

(1−t)r .

(2) h̃(r2, t) is asymptotic to − log r.

(3) ∂eh
∂w (r2, t) is asymptotic to − 1

2r2
.

(4) r−1 ∂r
∂t is asymptotic to C

r .

(5) ∂B(r2,t)
∂r is asymptotic to C.

(6) |G(ρ̃, r2, t)| ≤ C∗ < ∞ where C∗ = C∗
(
sup{|ρ̃|, h̃}

)
is a constant

depending only on sup{|ρ̃|, h̃}.

Proof. The first item is immediate from Proposition 12.7. The second
and third follow immediately from the first. The fourth is a consequence
of the fact that by Proposition 12.7, dr/dt is asymptotic to a constant at
infinity on each time-slice. The fifth follows immediately from the fourth
and the definition of B(r2, t). Given all these asymptotic expressions, the
last is clear from the expression for G in terms of ρ̃, r2, and t. �

7.4. The short time existence. The purpose of this subsection is to
prove the following short-time existence theorem for the harmonic map flow
equation.

Proposition 12.24. For any t0 ≥ 0 for which there is a standard so-
lution g(t) defined on [0, T1] with t0 < T1, there is T > t0 and a solution
to Equation (12.19) with initial condition ρ̃(r, t0) = 0 defined on the time-
interval [t0, T ].

At this point to simplify the notation we shift time by −t0 so that our
initial time is 0, though our initial metric is not g0 but rather is the t0
time-slice of the standard solution we are considering, so that now t0 = 0
and our initial condition is ρ̃(r, 0) = 0.

Let x = (x1, . . . , xn+2) and y = (y1, . . . , yn+2) be two points in R
n+1

and

H(x, y, t) =
1

(4πt)(n+2)/2
e−

|x−y|2

4t

be the heat kernel. We solve (12.19) by successive approximation [47].
Define

F (x, ρ̃,∇ρ̃, t) = ∇
[
(n− 1)h̃−B

]
· ∇ρ̃+ |∇ρ̃|2 +G(ρ̃, x, t).

Let ρ̃0(x, t) = 0 and for i ≥ 1 we define ρ̃i by

ρ̃i =

∫ t

0

∫

Rn+2

H(x, y, t− s)F (y, ρ̃i−1,∇ρ̃i−1, t)dyds(12.20)

which solves
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∂ρ̃i
∂t

= △ρ̃i + F (x, ρ̃i−1,∇ρ̃i−1, t) ρ̃i(x, 0) = 0.(12.21)

To show the existence of ρ̃i by induction, it suffices to prove the following
statement: For any i ≥ 1, if |ρ̃i−1|, |∇ρ̃i−1| are bounded, then ρ̃i exists and
|ρ̃i|, |∇ρ̃i| are bounded. Assume |ρ̃i−1| ≤ C1, |∇ρ̃i−1| ≤ C2 are bounded on
R
n+2 × [0, T ]; then it follows from Claim 12.23 that G(ρ̃i−1,x, t) is bounded

on R
n+2 × [0, T ],

|G(ρ̃i−1, x, t)| ≤ C∗(C1, h̃),

and also because of Claim 12.23 both |∇B| and |∇h̃| are bounded on all of
R
n+2 × [0, T ], it follows that F (x, ρ̃i−1,∇ρ̃i−1, t) is bounded:

|F (x, ρ̃i−1,∇ρ̃i−1, t)| ≤
[
(n− 1) sup |∇h̃| + sup |∇B|

]
C2 + C2

2 + C∗(C1, h̃).

Clearly, the last expression is bounded by a constant C3 depending only on
the previous bounds. Hence ρ̃i exists.

The bounds on |ρ̃i| and |∇ρ̃i| follow from the estimates

|ρ̃i| ≤
∫ t

0

∫

Rn+2

H(x, y, t− s)C3dyds ≤ C3t,

and

|∇ρ̃i| =
∣∣∣
∫ t

0

∫

Rn+2

[∇xH(x, y, t− s)]F (y, ρ̃i−1,∇ρ̃i−1, t)dyds
∣∣∣

≤
∫ t

0

∫

Rn+2

|∇xH(x, y, t− s)|C3dyds

=

∫ t

0

∫

Rn+2

1

(4π(t− s))(n+2)/2
e
− |x−y|2

4(t−s)
|x− y|
2(t− s)

C3dyds

≤ (n+ 2)C3√
π

∫ t

0

1√
t− s

ds =
2(n + 2)C3√

π

√
t.

Assuming, as we shall, that T ≤ min{C3
C1
,

πC2
2

4(n+2)2C2
3
}, then for 0 ≤ t ≤ T

we have for all i,

|ρ̃i| ≤ C1 and |∇ρ̃i| ≤ C2.(12.22)

We prove the convergence of ρ̃i to a solution of (12.19) via proving that
it is a Cauchy sequence in C1-norm. Note that ρ̃i − ρ̃i−1 satisfies

∂(ρ̃i − ρ̃i−1)

∂t
= △(ρ̃i − ρ̃i−1)(12.23)

+ F (x, ρ̃i−1,∇ρ̃i−1, t) − F (x, ρ̃i−2,∇ρ̃i−2, t)

with

(ρ̃i − ρ̃i−1)(x, 0) = 0,
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where

F (x, ρ̃i−1,∇ρ̃i−1, t) − F (x, ρ̃i−2,∇ρ̃i−2, t)

= [(n− 1)∇h̃−∇B + ∇(ρ̃i−1 + ρ̃i−2)] · ∇(ρ̃i−1 − ρ̃i−2)

+G(ρ̃i−1,x, t) −G(ρ̃i−2,x, t).

By lengthy but straightforward calculations one can verify the Lipschitz
property of G(ρ̃,x, t),

|G(ρ̃i−1,x, t) −G(ρ̃i−2,x, t)| ≤ C&(C1, C2, f̃ , f̃0) · |ρ̃i−1 − ρ̃i−2|.
This and (12.22) implies

|F (x, ρ̃i−1,∇ρ̃i−1, t) − F (x, ρ̃i−2,∇ρ̃i−2, t)|(12.24)

≤ C4 · |ρ̃i−1 − ρ̃i−2| + C5 · |∇ρ̃i−1 −∇ρ̃i−2|

where C4 = C&(C1, C2, f̃ , f̃0) and C5 = [(n− 1) sup |∇f̃ |+ sup |∇B|+ 2C2].
Let

Ai(t) = sup
0≤s≤t,x∈Rn+2

|ρ̃i − ρ̃i−1|(x, s),

Bi(t) = sup
0≤s≤t,x∈Rn+2

|∇(ρ̃i − ρ̃i−1)|(x, s).

From Equations (12.23) and (12.24) we can estimate |ρ̃i − ρ̃i−1| and
|∇(ρ̃i − ρ̃i−1)| in the same way as we estimate |ρ̃i| and |∇ρ̃i| above; we
conclude

Ai(t) ≤ [C4Ai−1(t) + C5Bi−1(t)] · t,

Bi(t) ≤
2(n+ 2)[C4Ai−1(t) + C5Bi−1(t)]√

π
·
√
t.

Let C6 = max{C4, C5}; then we get

Ai(t) +Bi(t) ≤
(
C6t+

2(n + 2)C6

√
t√

π

)
· (Ai−1(t) +Bi−1(t)) .

Now suppose that T ≤ T2 where T2 satisfies C6T2 + 2(n+2)C6
√
T2√

π
= 1

2 ;

then for all t ≤ T we have

Ai(t) +Bi(t) ≤
1

2
(Ai−1(t) +Bi−1(t)) .

This proves that ρ̃i is a Cauchy sequence in C1(Rn+2). Let limi→+∞ ρ̃i = ρ̃∞.
Then ∇ρ̃i → ∇ρ̃∞ and F (x, ρ̃i−1,∇ρ̃i−1, t) → F (x, ρ̃∞,∇ρ̃∞, t) uniformly.
Hence we get from (12.20),

ρ̃∞ =

∫ t

0

∫

Rn+2

H(x, y, t− s)F (y, ρ̃∞,∇ρ̃∞, t)dyds.(12.25)



318 12. THE STANDARD SOLUTION

The next argument is similar to the argument in [47], p.21. The func-
tion ρ̃i is a smooth solution of (12.21) with ρ̃i(x, 0) = 0. Also, both ρ̃i and
F (x, ρ̃i1 ,∇ρ̃i−1, t) are uniformly bounded on R

n+2 × [0, T ]. Thus, by Theo-
rems 1.11 on p. 211 and 12.1 on p. 223 of [46], for any compact K ⊂ R

n+2

and any 0 < t∗ < T , there is C7 and α ∈ (0, 1) independent of i such that

|∇ρ̃i(x, t) −∇ρ̃i(y, s)| ≤ C7 ·
(
|x− y|α + |t− s|α/2

)

where x, y ∈ K and 0 ≤ t < s ≤ t∗.
Letting i→ ∞ we get

|∇ρ̃∞(x, t) −∇ρ̃∞(y, s)| ≤ C7 ·
(
|x− y|α + |t− s|α/2

)
.(12.26)

Hence ∇ρ̃∞ ∈ Cα,α/2. That is to say ∇ρ̃∞ is α-Hölder continuous in
space and α/2-Hölder continuous in time. From (12.25) we conclude that
ρ̃∞ is a solution of (12.19) on R

n+2 × [0, T ] with ρ̃∞(x, 0) = 0.

7.5. The asymptotic behavior of the solutions. In the rest of this
subsection we study the asymptotic behavior of solution ρ̃(x, t) as x → ∞.
First we prove inductively that there is a constant λ and T3 such that,
provided that T ≤ T3, for x ∈ R

n+2, t ∈ [0, T ], we have

|ρ̃i(x, t)| ≤
λ

(1 + |x|)2 and |∇ρ̃i(x, t)| ≤
λ

(1 + |x|)2 .(12.27)

Clearly, since ρ̃0 = 0, these estimates hold for i = 0. It follows from
(12.22) and Claim 12.23 that there is a constant C8 independent of i such
that

|G(ρ̃i,x, t)| ≤
C8

(1 + |x|)2 ,[
(n− 1)|∇h̃| + |∇B|

]
(x, t) ≤ C8.

Now we assume these estimates hold for i. Then for 0 ≤ t ≤ T we have

|ρ̃i(x, t)|

≤
∫ t

0

∫

Rn+2

H(x, y, t− s)

[
C8λ

(1 + |y|)2 +
λ2

(1 + |y|)2 +
C8

(1 + |y|)2
]
dyds

=

∫ t

0

∫

Rn+2

1

(4π(t− s))(n+2)/2
e
− |x−y|2

4(t−s)

[
C8λ+ λ2 + C8

(1 + |y|)2
]
dyds

≤ (C8λ+ λ2 + C8) ·
C(n)t

(1 + |x|)2 .

Also, we have
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|∇ρ̃i(x, t)| ≤
∫ t

0

∫

Rn+2

|∇xH(x, y, t− s)|
[
C8λ+ λ2 + C8

(1 + |y|)2
]
dyds

=

∫ t

0

∫

Rn+2

|x− y|
2(t− s)

1

(4π(t− s))(n+2)/2
e
− |x−y|2

4(t−s)

[
C8λ+ λ2 + C8

(1 + |y|)2
]
dyds

≤ (C8λ+ λ2 + C8) ·
C(n)

√
t

(1 + |x|)2 .

If we choose T3 such that

(C8λ+ λ2 + C8) · C(n)T3 ≤ λ and (C8λ+ λ2 + C8) · C(n)
√
T3 ≤ λ,

then (12.27) hold for all i. From the definition of ρ̃∞ we conclude that

|ρ̃∞(x, t)| ≤ λ

(1 + |x|)2 and |∇ρ̃∞(x, t)| ≤ λ

(1 + |x|)2 .(12.28)

Recall that ρ̃∞ is a solution of the following linear equation (in υ):

∂υ

∂t
= △υ + ∇[(n− 1)h̃−B] · ∇υ +G(ρ̃∞,x, t),

υ(x, 0) = 0.

From (12.26) and Claim 12.23 we know that ∇[(n − 1)h̃−B + ρ̃∞] has

Cα,α/2-Hölder-norm bounded (this means α-Hölder norm in space and the
α/2-Hölder norm in time). By some lengthy calculations we get

|G(ρ̃∞,x, t)|Cα,α/2 ≤ C9

(1 + |x|)2 .

By local Schauder estimates for parabolic equations we conclude

|ρ̃∞|C2+α,1+α/2 ≤ C10

(1 + |x|)2 .

Using this estimate one can further show by calculation that

|∇∇[(n− 1)f̃ −B + ρ̃∞]|Cα,α/2 ≤ C11,

|∇G(ρ̃∞,x, t)|Cα,α/2 ≤ C12

(1 + |x|)2 .

By local high order Schauder estimates for parabolic equations we con-
clude

|∇ρ̃∞|C2+α,1+α/2 ≤ C13

(1 + |x|)2 .

We have proved the following:
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Proposition 12.25. For a standard solution (Rn, g(t)), 0 ≤ t < T , and

for any t0 ∈ [0, T ) there is a rotationally symmetric solution ψt(x) = xeeρ(x,t)

to the harmonic map flow

∂ψt
∂t

= △g(t),g(t0)ψ(t) ψ(t0)(x) = x,

and |∇iρ̃|(x, t) ≤ C14
(1+|x|)2 for 0 ≤ i ≤ 3 defined on some non-degenerate

interval [t0, T
′].

7.6. The uniqueness for the solutions of Ricci-DeTurck flow.
We prove the following general uniqueness result for Ricci-DeTurck flow on
open manifolds.

Proposition 12.26. Let ĝ1(t) and ĝ2(t), 0 ≤ t ≤ T , be two bounded
solutions of the Ricci-DeTurck flow on complete and non-compact manifold
Mn with initial metric g1(t0) = g2(t0) = g. Suppose that for some 1 < C <
∞ we have

C−1g ≤ ĝ1(t) ≤ Cg,

C−1g ≤ ĝ2(t) ≤ Cg.

Suppose that in addition we have

‖ĝ1(t)‖C2(M),g ≤ C,

‖ĝ2(t)‖C2(M),g ≤ C.

Lastly, suppose there is an exhaustive sequence of compact, smooth sub-
manifolds of Ωk ⊂M , i.e., Ωk ⊂ intΩk+1 and ∪Ωk = M such that ĝ1 (t) and
ĝ2(t) have the same sequential asymptotic behavior at ∞ in the sense that
for any ǫ > 0, there is a k0 arbitrarily large with

|ĝ1(t) − ĝ2(t)|C1(∂Ωk0),g
≤ ǫ.

Then ĝ1(t) = ĝ2(t).

Proof. Letting ∇̃ be the covariant derivative determined by g, then,
using the Ricci-DeTurck flow (12.11) for ĝ1 and ĝ2, we can make the following
estimate for an appropriate constant D depending on g. (In these formulas
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all norms and inner products are with respect to the background metric g.)

∂

∂t
|ĝ1(t) − ĝ2(t)|2

= 2

〈
∂

∂t
(ĝ1(t) − ĝ2(t)) , ĝ1(t) − ĝ2(t)

〉

≤ 2
〈
ĝαβ1 ∇̃α∇̃β (ĝ1(t) − ĝ2(t)) , (ĝ1(t) − ĝ2(t))

〉

+D |ĝ1(t) − ĝ2(t)|2g +D
∣∣∣∇̃ (ĝ1(t) − ĝ2(t))

∣∣∣ |ĝ1(t) − ĝ2(t)|

≤ ĝαβ1 ∇̃α∇̃β

(
|ĝ1(t) − ĝ2(t)|2

)

− 2ĝαβ1

〈
∇̃β (ĝ1(t) − ĝ2(t)) , ∇̃α (ĝ1(t) − ĝ2(t))

〉

+D |ĝ1(t) − ĝ2(t)|2 +D
∣∣∣∇̃ (ĝ1(t) − ĝ2(t))

∣∣∣ |ĝ1(t) − ĝ2(t)|

≤ ĝαβ1 ∇̃α∇̃β

(
|ĝ1 (t) − ĝ2 (t)|2

)
− 2C−1

∣∣∣∇̃ (ĝ1(t) − ĝ2(t))
∣∣∣
2

+D |ĝ1(t) − ĝ2(t)|2 + C−1
∣∣∣∇̃ (ĝ1(t) − ĝ2(t))

∣∣∣
2
+

D2

4C−1
|ĝ1(t) − ĝ2(t)|2 ,

where the last inequality comes from completing the square to replace the
last term in the previous expression. Thus, we have proved

∂

∂t
|ĝ1 (t) − ĝ2 (t)|2g ≤ 2ĝαβ1 ∇̃α∇̃β |ĝ1 (t) − ĝ2 (t)|2g(12.29)

+ C15 |ĝ1 (t) − ĝ2 (t)|2g
pointwise on Ωk with C15 a constant that depends only on n, C and g.

Suppose that ĝ1 (t) 6= ĝ2 (t) for some t. Then there is a point x0 such

that |ĝ1(x0, t) − ĝ2(x0, t)|2g > ǫ0 for some ǫ0 > 0.

We choose a k0 sufficiently large that x0 ∈ Ωk0 and for all t′ ∈ [t0, T ] we
have

(12.30) sup
x∈∂Ωb

∣∣ĝ1(x, t′) − ĝ2(x, t
′)
∣∣2
g
≤ ǫ

where ǫ > 0 is a constant to be chosen later.
Recall we have the initial condition |ĝ1(0) − ĝ2(0)|2g = 0. Using Equa-

tion (12.29) and applying the maximum principle to |ĝ1(t) − ĝ2(t)|2g ) on the
domain Ωk0, we get

e−C15t |ĝ1(t) − ĝ2(t)|2g (x) ≤ ǫ for all x ∈ Ωk0 .

This is a contradiction if we choose ǫ ≤ ǫ0e
−C15T . This contradiction

establishes the proposition. �
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Let g1(t), 0 ≤ t < T1, and g2(t), 0 ≤ t < T2, be standard solutions
that agree on the interval [0, t0] for some t0 ≥ 0. By Proposition 12.25 there
are ψ1(t) and ψ2(t) which are solutions of the harmonic map flow defined
for t0 ≤ t ≤ T for some T > t0 for the Ricci flows g1(t) and g2(t). Let
ĝ1(t) = (ψ−1(t))∗g1(t) and ĝ2(t) = (ψ−1(t))∗g2(t). Then ĝ1(t) and ĝ2(t)
are two solutions of the Ricci-DeTurck flow with ĝ1(t0) = ĝ2(t0). Choose
T ′ ∈ (t0, T ] such that ĝ1(t) and ĝ2(t) are δ-close to ĝ1(t0) as required in
Proposition 12.26. It follows from Proposition 12.7 and the decay estimate
in Proposition 12.25 that ĝ1(t) and ĝ2(t) are bounded solutions and that
they have the same sequential asymptotic behavior at infinity. We can apply
Proposition 12.26 to conclude ĝ1(t) = ĝ2(t) on t0 ≤ t ≤ T ′. We have proved:

Corollary 12.27. Let g1(t) and g2(t) be standard solutions. Suppose
that g1(t) = g2(t) for all t ∈ [0, t0] for some t0 ≥ 0. The Ricci-DeTurck
solutions ĝ1(t) and ĝ2(t) constructed from standard solutions g1(t) and g2(t)
with g1(t0) = g2(t0) exist and satisfy ĝ1(t) = ĝ1(t) for t ∈ [t0, T

′] for some
T ′ > t0.

8. Completion of the proof of uniqueness

Now we are ready to prove the uniqueness of the standard solution. Let
g1(t), 0 ≤ t < T1, and g2(t), 0 ≤ t < T2, be standard solutions. Consider
the maximal interval I (closed or half-open) containing 0 on which g1 and
g2 agree.

Case 1: T1 < T2 and I = [0, T1).
In this case since g1(t) = g2(t) for all t < T1 and g2(t) extends smoothly

past time T1, we see that the curvature of g1(t) is bounded as t tends to
T1. Hence, g1(t) extends past time T1, contradicting the fact that it is a
maximal flow.

Case 2: T2 < T1 and I = [0, T2).
The argument in this case is the same as the previous one with the roles

of g1(t) and g2(t) reversed.
There is one more case to rule out.
Case 3: I is a closed interval I = [0, t0].
In this case, of course, t0 < min(T1, T2). Hence we apply Proposi-

tion 12.25 to construct solutions ψ1 and ψ2 to the harmonic map flow for
g1(t) and g2(t) with ψ1 and ψ2 being the identity at time t0. These solu-
tions will be defined on an interval of the form [t0, T ] for some T > t0. Using
these harmonic map flows we construct solutions ĝ1(t) and ĝ2(t) to the Ricci-
DeTurck flow defined on the interval [t0, T ]. According to Corollary 12.27,
there is a uniqueness theorem for these Ricci-DeTurck flows, which implies
that ĝ1(t) = ĝ2(t) for all t ∈ [t0, T

′] for some T ′ > t0. Invoking Corol-
lary 12.16 we conclude that g1(t) = g2(t) for all t ∈ [0, T ′], contradicting the
maximality of the interval I.



8. COMPLETION OF THE PROOF OF UNIQUENESS 323

If none of these three cases can occur, then the only remaining possibility
is that T1 = T2 and I = [0, T1), i.e., the flows are the same. This then
completes the proof of the uniqueness of the standard flow.

8.1. T = 1 and existence of canonical neighborhoods. At this
point we have established all the properties claimed in Theorem 12.5 for the
standard flow except for the fact that T , the endpoint of the time-interval of
definition, is equal to 1. We have shown that T ≤ 1. In order to establish the
opposite inequality, we must show the existence of canonical neighborhoods
for the standard solution.

Here is the result about the existence of canonical neighborhoods for the
standard solution.

Theorem 12.28. Fix 0 < ǫ < 1. Then there is r > 0 such that for any
point (x0, t0) in the standard flow with R(x0, t0) ≥ r−2 the following hold.

(1) t0 > r2.
(2) (x0, t0) has a strong canonical (C(ǫ), ǫ)-neighborhood. If this canon-

ical neighborhood is a strong ǫ-neck centered at (x0, t0), then the
strong neck extends to an evolving neck defined for backward rescaled
time (1 + ǫ).

Proof. Take an increasing sequence of times t′n converging to T . Since
the curvature of (R3, g(t)) is locally bounded in time, for each n, there is a
bound on the scalar curvature on R

3 × [0, t′n]. Hence, there is a finite upper
bound Rn on R(x, t) for all points (x, t) with t ≤ t′n for which the conclusion
of the theorem does not hold. (There clearly are such points since the
conclusion of the theorem fails for all (x, 0).) Pick (xn, tn) with tn ≤ t′n, with
R(xn, tn) ≥ Rn/2 and such that the conclusion of the theorem does not hold
for (xn, tn). To prove the theorem we must show that limn→∞R(xn, tn) <∞.
Suppose the contrary. By passing to a subsequence we can suppose that
limn→∞R(xn, tn) = ∞. We set Qn = R(xn, tn). We claim that all the
hypotheses of Theorem 11.8 apply to the sequence (R3, g(t), (xn, tn)). First,
we show that all the hypotheses of Theorem 11.1 (except the last) hold.
Since (R3, g(t)) has non-negative curvature all these flows have curvature
pinched toward positive. By Proposition 12.13 there are r > 0 and κ > 0
so that all these flows are κ-non-collapsed on scales ≤ r. By construction if
t ≤ tn and R(y, t) > 2Qn ≥ Rn then the point (y, t) has a strong canonical
(C(ǫ), ǫ)-neighborhood. We are assuming that Qn → ∞ as n→ ∞ in order
to achieve the contradiction. Since all time-slices are complete, all balls of
finite radius have compact closure.

Lastly, we need to show that the extra hypothesis of Theorem 11.8 (which
includes the last hypothesis of Theorem 11.1) is satisfied. This is clear since
tn → T as n → ∞ and Qn → ∞ as n → ∞. Applying Theorem 11.8 we
conclude that after passing to a subsequence there is a limiting flow which is
a κ-solution. Clearly, this and Corollary 9.95 imply that for all sufficiently
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large n (in the subsequence) the neighborhood as required by the theorem
exists. This contradicts our assumption that none of the points (xn, tn) have
these neighborhoods. This contradiction proves the result. �

8.2. Completion of the proof of Theorem 12.5. The next propo-
sition establishes the last of the conditions claimed in Theorem 12.5.

Theorem 12.29. For the standard flow, T = 1.

Proof. We have already seen in Corollary 12.8 that T ≤ 1. Suppose
now that T < 1. Take T0 < T sufficiently close to T . Then according to
Proposition 12.7 there is a compact subset X ⊂ R

3 such that restriction
of the flow to (R3 \X) × [0, T0] is ǫ-close to the standard evolving flow on
S2×(0,∞), (1−t)h0×ds2, where h0 is the round metric of scalar curvature 1
on S2. In particular, R(x, T0) ≤ (1+ǫ)(1−T0)

−1 for all x ∈ R
3\X. Because

of Theorem 12.28 and the definition of (C(ǫ), ǫ)-canonical neighborhoods, it
follows that at any point (x, t) with R(x, t) ≥ r−2, where r > 0 is the
constant given in Theorem 12.28, we have ∂R/∂t(x, t) ≤ C(ǫ)R2(x, t). Thus,
provided that T −T0 is sufficiently small, there is a uniform bound to R(x, t)
for all x ∈ R

3 \ X and all t ∈ [T0, T ). Using Theorem 3.29 and the fact
that the standard flow is κ-non-collapsed implies that the restrictions of the
metrics g(t) to R

3 \X converge smoothly to a limiting Riemannian metric
g(T ) on R

3 \ X. Fix a non-empty open subset Ω ⊂ R
3 \ X with compact

closure. For each t ∈ [0, T ) let V (t) be the volume of (Ω, g(t)|Ω). Of course,
limt→TV (t) = Volg(T )Ω > 0.

Since the limiting metric g(T ) exists in a neighborhood of infinity and
has bounded curvature there, if the limit metric g(T ) exists on all of R

3, then
we can extend the flow keeping the curvature bounded. This contradicts the
maximality of our flow subject to the condition that the curvature be locally
bounded in time. Consequently, there is a point x ∈ R

3 for which the limit
metric g(T ) does not exist. This means that limt→TR(x, t) = ∞. That is to
say, there is a sequence of tn → T such that setting Qn = R(x, tn), we have
Qn → ∞ as n tends to infinity. By Theorem 12.28 the second hypothesis
in the statement of Theorem 11.1 holds for the sequence (R3, g(t), (x, tn)).
All the other hypotheses of this theorem as well as the extra hypothesis in
Theorem 11.8 obviously hold for this sequence. Thus, according to The-
orem 11.8 the based flows (R3, Qng(Q

−1
n t′ + tn), (x, 0)) converge smoothly

to a κ-solution. Since the asymptotic volume of any κ-solution is zero (see
Theorem 9.59), we see that for all n sufficiently large, the following holds:

Claim 12.30. For any ǫ > 0, there is A < ∞ such that for all n suffi-
ciently large we have

VolBQng(x, tn, A) < ǫA3.

Rescaling, we see that for all n sufficiently large we have

VolBg(x, tn, A/
√
Qn) < ǫ(A/

√
Qn)

3.
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Since the curvature of g(tn) is non-negative and since the Qn tend to ∞,
it follows from the Bishop-Gromov Inequality (Theorem 1.34) that for any
0 < A <∞ and any ǫ > 0, for all n sufficiently large we have

VolBg(x, tn, A) < ǫA3.

On the other hand, since Ω has compact closure, there is an A1 < ∞
with Ω ⊂ B(x, 0, A1). Since the curvature of g(t) is non-negative for all
t ∈ [0, T ), it follows from Lemma 3.14 that the distance is a non-increasing
function of t, so that for all t ∈ [0, T ) we have Ω ⊂ B(x, t,A1). Applying
the above, for any ǫ > 0 for all n sufficiently large we have

Vol (Ω, g(tn)) ≤ Volg B(x, tn, A1) < ǫ(A1)
3.

But this contradicts the fact that

limn→∞Vol (Ω, g(tn)) = Vol (Ω, g(T )) > 0.

This contradiction proves that T = 1. �

This completes the proof of Theorem 12.5.

9. Some corollaries

Now let us derive extra properties of the standard solution that will be
important in our applications.

Proposition 12.31. There is a constant c > 0 such that for all (p, t) in
the standard solution we have

R(p, t) ≥ c

1 − t
.

Proof. First, let us show that there is not a limiting metric g(1) defined
on all of R

3. This does not immediately contradict the maximality of the
flow because we are assuming only that the flow is maximal subject to having
curvature locally bounded in time. Assume that a limiting metric (R3, g(1))
exists. First, notice that from the canonical neighborhood assumption and
Lemma 11.2 we see that the curvature of g(T ) must be unbounded at spatial
infinity. On the other hand, by Proposition 9.79 every point of (R3, g(1))
of curvature greater than R0 has a (2C, 2ǫ)-canonical neighborhood. Hence,
since (R3, g(1)) has unbounded curvature, it then has 2ǫ-necks of arbitrarily
small scale. This contradicts Proposition 2.19. (One can also rule this
possibility out by direct computation using the spherical symmetry of the
metric.) This means that there is no limiting metric g(1).

The next step is to see that for any p ∈ R
3 we have limt→1R(p, t) = ∞.

Let Ω ⊂ R
3 be the subset of x ∈ R

3 for which liminft→1R(x, t) < ∞. We
suppose that Ω 6= ∅. According to Theorem 11.19 the subset Ω is open and
the metrics g(t)|Ω converge smoothly to a limiting metric g(1)|Ω. On the
other hand, we have just seen that there is not a limit metric g(1) defined
everywhere. This means that there is p ∈ R

3 with limt→1R(p, t) = ∞.
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Take a sequence tn converging to 1 and set Qn = R(p, tn). By Theo-
rem 11.8 we see that, possibly after passing to a subsequence, the based flows
(R3, Qng(t

′− tn), (p, 0)) converge to a κ-solution. Then by Theorem 9.59 for
any ǫ > 0 there is A < ∞ such that VolBQng(p, tn, A) < ǫA3, and hence
after rescaling we have VolBg(p, tn, A/

√
Qn) < ǫ(A/

√
Qn)

3. By the Bishop-
Gromov inequality (Theorem 1.34) it follows that for any 0 < A < ∞, any
ǫ > 0 and for all n sufficiently large, we have VolBg(p, tn, A) < ǫA3. Take
a non-empty subset Ω′ ⊂ Ω with compact closure. Of course, Vol (Ω′, g(t))
converges to Vol (Ω′, g(T )) > 0 as t → T . Then there is A < ∞ such that
for each n, the subset Ω′ is contained in the ball B(p0, tn, A). This is a
contradiction since it implies that for any ǫ > 0 for all n sufficiently large
we have Vol (Ω′, g(t)) < ǫA3. This completes the proof that for every p ∈ R

3

we have limt→1R(p, t) = ∞.
Fix ǫ > 0 sufficiently small and set C = C(ǫ). Then for every (p, t) with

R(p, t) ≥ r−2 we have
∣∣∣∣
dR

dt
(p, t)

∣∣∣∣ ≤ CR2(p, t).

Fix t0 = 1 − 1/2r2C. Since the flow has curvature locally bounded in time,
there is 2C ≤ C ′ < ∞ such that R(p, t0) ≤ 1/(C ′(1 − t0) for all p ∈ R

3.
Since R(p, t0) = 1/C ′(1 − t0), for all t ∈ [t0, 1) we have

R(p, t) < max
([

(C ′ − C)(1 − t0)
]−1

,
[
r−2 − C(1 − t0)

]−1
)
.

This means that R(p, t) is uniformly bounded as t → 1, contradicting
what we just established. This shows that for t ≥ 1 − 1/2r2C the result
holds. For t ≤ 1 − 1/2r2C there is a positive lower bound on the scalar
curvature, and hence the result is immediate for these t as well. �

Theorem 12.32. For any ǫ > 0 there is C ′(ǫ) < ∞ such that for any
point x in the standard solution one of the following holds (see Fig. 2).

(1) (x, t) is contained in the core of a (C ′(ǫ), ǫ)-cap.
(2) (x, t) is the center of an evolving ǫ-neck N whose initial time-slice

is t = 0, and this time-slice is disjoint from the surgery cap.
(3) (x, t) is the center of an evolving ǫ-neck defined for rescaled time

1 + ǫ.

Remark 12.33. At first glance it may seem impossible for a point (x, t)
in the standard solution to be the center of an evolving ǫ-neck defined for
rescaled time 1 + ǫ since the standard solution itself is only defined for time
1. But this is indeed possible. The reason is because the scale referred to for
an evolving neck centered at (x, t) is R(x, t)−1/2. As t approaches 1, R(x, t)
goes to infinity, so that rescaled time 1 at (x, t) is an arbitrarily small time
interval measured in the scale of the standard solution.
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Figure 2. Canonical neighborhoods in the standard solution.

Proof. By Theorem 12.28, there is r0 such that if R(x, t) ≥ r−2
0 , then

(x, t) has a (C, ǫ)-canonical neighborhood and if this canonical neighborhood
is a strong ǫ-neck centered at x, then that neck extends to an evolving neck
defined for rescaled time (1 + ǫ). By Proposition 12.31, there is θ < 1 such
that if R(x, t) ≤ r−2

0 then t ≤ θ. By Proposition 12.7, there is a compact
subset X ⊂ R

3 such that if t ≤ θ and x /∈ X, then there is an evolving
ǫ-neck centered at x whose initial time is zero and whose initial time-slice is
at distance at least 1 from the surgery cap. Lastly, by compactness there is
C ′ <∞ such that every (x, t) for x ∈ X and every t ≤ θ is contained in the
core of a (C ′, ǫ)-cap. �

Corollary 12.34. Fix ǫ > 0. Suppose that (q, t) is a point in the
standard solution with t ≤ R(q, t)−1(1 + ǫ)) and with

(q, 0) ∈ B(p0, 0, (ǫ
−1/2) +A0 + 5).

Then (q, t) is contained in an (C ′(ǫ), ǫ)-cap.

Remark 12.35. Recall that p0 is the origin in R
3 and hence is the tip

of the surgery cap. Also, A0 is defined in Lemma 12.3.

Corollary 12.36. For any ǫ > 0 let C ′ = C ′(ǫ) be as in Theorem 12.32.
Suppose that we have a sequence of generalized Ricci flows (Mn, Gn), points
xn ∈ Mn with t(xn) = 0, neighborhoods Un of xn in the zero time-slice
of Mn, and a constant 0 < θ < 1. Suppose that there are embeddings
ρn : Un × [0, θ) → Mn compatible with time and the vector field so that the
Ricci flows ρ∗nGn on Un based at xn converge geometrically to the restriction
of the standard solution to [0, θ). Then for all n sufficiently large, and any
point yn in the image of ρn, one of the following holds:

(1) yn is contained in the core of a (C ′(ǫ), ǫ)-cap.
(2) yn is the center of a strong ǫ-neck.
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(3) yn is the center of an evolving ǫ-neck whose initial time-slice is at
time 0.

Proof. This follows immediately from Theorem 12.32 and Proposi-
tion 9.79. �

There is one property that we shall use later in proving the finite-time
extinction of Ricci flows with surgery for manifolds with finite fundamental
group (among others). This is a distance decreasing property which we
record here.

Notice that for the standard initial metric constructed in Lemma 12.2
we have the following:

Lemma 12.37. Let S2 be the unit sphere in T0R
3. Equip it with the

metric h0 that is twice the usual metric (so that the scalar curvature of h0

is 1). We define a map ρ : S2 × [0,∞) → R
3 by sending the point (x, s) to

the point at distance s from the origin in the radial direction from 0 given
by x (all this measured in the metric g0). Then ρ∗g0 ≤ h0 × ds2.

Proof. Clearly, the metric ρ∗g0 is rotationally symmetric and its com-
ponent in the s-direction is ds2. On the other hand, since each cross section
{s} × S2 maps conformally onto a sphere of radius ≤

√
2 the result fol-

lows. �



Part 3

Ricci flow with surgery





CHAPTER 13

Surgery on a δ-neck

1. Notation and the statement of the result

In this chapter we describe the surgery process. For this chapter we fix:

(1) A δ-neck (N, g) centered at a point x0. We denote by ρ : S2 ×
(−δ−1, δ−1) → N the diffeomorphism that gives the δ-neck struc-
ture.

(2) Standard initial conditions (R3, g0).

We denote by h0 × ds2 the metric on S2 × R which is the product of the
round metric h0 on S2 of scalar curvature 1 and the Euclidean metric ds2

on R. We denote by N− ⊂ N the image ρ((−δ−1, 0]×S2) and we denote by
s : N− → (−δ−1, 0] the composition ρ−1 followed by the projection to the
second factor.

Recall that the standard initial metric (R3, g0) is invariant under the
standard SO(3)-action on R

3. We let p0 denote the origin in R
3. It is the

fixed point of this action and is called the tip of the standard initial metric.
Recall from Lemma 12.3 that there are A0 > 0 and an isometry

ψ : (S2 × (−∞, 4], h0 × ds2) → (R3 \B(p0, A0), g0).

The composition of ψ−1 followed by projection onto the second factor defines
a map s1 : R

3 \ B(p0, A0) → (−∞, 4]. Lastly, there is 0 < r0 < A0 such
that on B(p0, r0) the metric g0 is of constant sectional curvature 1/4. We
extend the map s1 to a continuous map s1 : R

3 → (−∞, 4 + A0] defined
by s1(x) = A0 + 4 − dg0(p, x). This map is an isometry along each radial
geodesic ray emanating from p0. It is smooth except at p0 and sends p0 to
4 + A0. The pre-images of s1 on (−∞, 4 + A0) are 2-spheres with round
metrics of scalar curvature at least 1.

The surgery process is a local one defined on the δ-neck (N, g). The
surgery process replaces (N, g) by a smooth Riemannian manifold (S, g̃).
The underlying smooth manifold S is obtained by gluing together ρ(S2 ×
(−δ−1, 4)) and B(p0, A0 +4) by identifying ρ(x, s) with ψ(x, s) for all x ∈ S2

and all s ∈ (0, 4). The functions s on N− and s1 agree on their overlap and
hence together define a function s : S → (−δ−1, 4 + A0], a function smooth
except at p0. In order to define the metric g̃ we must make some universal
choices. We fix once and for all two bump functions α : [1, 2] → [0, 1],
which is required to be identically 1 near 1 and identically 0 near 2, and

331
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β : [4 + A0 − r0, 4 + A0] → [0, 1], which is required to be identically 1 near
4 + A0 − r0 and identically 0 on [4 + A0 − r0/2, A0]. These functions are
chosen once and for all and are independent of δ and (N, g). Next we set
η =

√
1 − δ. The purpose of this choice is the following:

Claim 13.1. Let ξ : N → R
3 be the map that sends ρ(S2 × [A0 +4, δ−1))

to the origin 0 ∈ R
3 (i.e., to the tip of the surgery cap) and for every

s < A0 + 4 sends (x, s) to the point in R
3 in the radial direction x from the

origin at g0-distance A0 + 4 − s. Then ξ is a distance decreasing map from
(N,R(x0)g) to (R3, ηg0).

Proof. Since R(x0)g is within δ of h0 × ds2, it follows that R(x0)g ≥
η(h0×ds2). But according to Lemma 12.37 the map ξ given in the statement
of the claim is a distance non-increasing map from h0×ds2 to g0. The claim
follows immediately. �

The last choices we need to make are of constants C0 < ∞ and q < ∞,
with C0 ≫ q, but both of these are independent of δ. These choices will be
made later. Given all these choices, we define a function

f(s) =

{
0 s ≤ 0,

C0δe
−q/s s > 0,

and then we define the metric g̃ on S by first defining a metric:

ĝ =





exp(−2f(s))R(x0)ρ
∗g, −∞ < s ≤ 1,

exp(−2f(s)) (α(s)R(x0)ρ
∗g + (1 − α(s))ηg0) , 1 ≤ s ≤ 2,

exp(−2f(s))ηg0, 2 ≤ s ≤ A′,

[β(s)exp(−2f(s)) + (1 − β(s))exp(−2f(4 +A0))] ηg0, A′ ≤ s ≤ A′′,

where A′ = 4 +A0 − r0 and A′′ = A0 + 4. Then we define

g̃ = R(x0)
−1ĝ.

See Fig. 1.

Theorem 13.2. There are constants C0, q, R0 < ∞ and δ′0 > 0 such
that the following hold for the result (S, g̃) of surgery on (N, g) provided that
R(x0) ≥ R0, 0 < δ ≤ δ′0. Define f(s) as above with the constants C0, δ
and then use f to define surgery on a δ-neck N to produce (S, g̃). Then the
following hold.

• Fix t ≥ 0. For any p ∈ N , let X(p) = max(0,−ν(p)), where ν(p)
is the smallest eigenvalue of Rm(p). Suppose that for all p ∈ N we
have:
(1) R(p) ≥ −6

1+4t , and

(2) R(p) ≥ 2X(p) (logX(p) + log(1 + t) − 3), whenever 0 < X(p).
Then the curvature of (S, g̃) satisfies the same equations at every
point of S with the same value of t.
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Figure 1. Local Surgery

• The restriction of the metric g̃ to s−1([1, 4 +A0]) has positive sec-
tional curvature.

• Let ξ : N → S be the map given in Claim 13.1. Then it is a distance
decreasing map from g to g̃.

• For any δ′′ > 0 there is δ′1 = δ′1(δ
′′) > 0 such that if δ ≤ min(δ′1, δ

′
0),

then the restriction of ĝ to Bĝ(p0, (δ
′′)−1) in (S, ĝ) is δ′′-close in the

C [1/δ′′]-topology to the restriction of the standard initial metric g0
to Bg0(p0, (δ

′′)−1).

The rest of this chapter is devoted to the proof of this theorem.
Before starting the curvature computations let us make a remark about

the surgery cap.

Definition 13.3. The image in S of Bg0(p0, 0, A0 + 4) is called the
surgery cap.

The following is immediate from the definitions provided that δ > 0 is
sufficiently small.

Lemma 13.4. The surgery cap in (S, g̃) has a metric that differs from
the one coming from a rescaled version of the standard solution. Thus, the
image of this cap is not necessarily a metric ball. Nevertheless for ǫ < 1/200
the image of this cap will be contained in the metric ball in S centered at p0

of radius R(x0)
−1/2(A0 + 5) and will contain the metric ball centered at p0
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of radius R(x0)
−1/2(A0 + 3). Notice also that the complement of the closure

of the surgery cap in S is isometrically identified with N−.

2. Preliminary computations

We shall compute in a slightly more general setup. Let I be an open
interval contained in (−δ−1, 4 +A0) and let h be a metric on S2 × I within

δ in the C [1/δ]-topology of the restriction to this open submanifold of the
standard metric h0 × ds2. We let ĥ = e−2fh. Fix local coordinates near a
point y ∈ S2 × I. We denote by ∇ the covariant derivative for h and by ∇̂
the covariant derivative for ĥ. We also denote by (Rijkl) the matrix of the
Riemann curvature operator of h in the associated basis of ∧2T (S2 × I) and

by (R̂ijkl) the matrix of the Riemann curvature operator of ĥ with respect to
the same basis. Recall the formula for the curvature of a conformal change
of metric (see, (3.34) on p.51 of [60]):

R̂ijkl = e−2f (Rijkl − fjfkhil + fjflhik + fifkhjl − fiflhjk(13.1)

−(∧2h)ijkl|∇f |2 − fjkhil + fikhjl + fjlhik − filhjk
)
.

Here, fi means ∂if ,

fij = Hessij(f) = ∂ifj − flΓ
l
ij,

and ∧2h is the metric induced by h on ∧2TN , so that

∧2hijkl = hikhjl − hilhjk.

Now we introduce the notation O(δ). When we say that a quantity is
O(δ) we mean that there is some universal constant C such that, provided
that δ > 0 is sufficiently small, the absolute value of the quantity is ≤ Cδ.
The universal constant is allowed to change from inequality to inequality.

In our case we take local coordinates adapted to the δ-neck: (x0, x1, x2)
where x0 agrees with the s-coordinate and (x1, x2) are Gaussian local coor-
dinates on the S2 such that dx1 and dx2 are orthonormal at the point in
question in the round metric h0. The function f is a function only of x0.
Hence fi = 0 for i = 1, 2. Also, f0 = q

s2
f . It follows that

|∇f |h =
q

s2
f · (1 +O(δ)),

so that

|∇f |2h =
q2

s4
f2 · (1 +O(δ)).

Because the metric h is δ-close to the product h0 × ds2, we see that
hij(y) = (h0)ij(y) +O(δ) and the Christoffel symbols Γkij(y) of h are within

δ in the C([1/δ]−1)-topology of those of the product metric h0 × ds2. In
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particular, Γ0
ij = O(δ) for all ij. The components fij of the Hessian with

respect to h are given by

f00 =

(
q2

s4
− 2q

s3

)
f +

q

s2
fO(δ),

fi0 =
q

s2
fO(δ) for 1 ≤ i ≤ 2,

fij =
q

s2
fO(δ) for 1 ≤ i, j ≤ 2.

In the following a, b, c, d are indices taking values 1 and 2. Substituting in
Equation (13.1) yields

R̂0a0b = e−2f

(
R0a0b +

q2

s4
f2hab − hab(

q2

s4
)f2(1 +O(δ)) +

(
q2

s4
− 2q

s3

)
fhab

+
q

s2
fO(δ) )

= e−2f

(
R0a0b +

(
q2

s4
− 2q

s3

)
fhab + hab(

q2

s4
)f2O(δ) +

q

s2
fO(δ)

)
.

Also, we have

R̂ab0c = e−2f

(
Rab0c − (∧2h)ab0c(

q2

s4
)f2(1 +O(δ)) +

q

s2
fO(δ)

)

= e−2f

(
Rab0c + (

q2

s4
)f2O(δ) +

q

s2
fO(δ)

)
.

Lastly,

R̂1212 = e−2f

(
R1212 − (∧2h)1212

q2

s4
f2(1 +O(δ)) +

q

s2
fO(δ)

)

= e−2f

(
R1212 −

q2

s4
f2(1 +O(δ)) +

q

s2
fO(δ)

)
.

Now we are ready to fix the constant q. We fix it so that for all s ∈
[0, 4 +A0] we have

(13.2) q ≫ (4 +A0)
2 and

q2

s4
e−q/s ≪ 1.

It follows immediately that q2/s4 ≫ q/s3 for all s ∈ [0, 4 +A0]. We are not
yet ready to fix the constant C0, but once we do we shall always require δ
to satisfy δ ≪ C−1

0 so that for all s ∈ [0, 4 +A0] we have

q

s2
f2 ≪ q2

s4
f2 ≪ q

s2
f ≪ 1.

(These requirements are not circular, since C0 and q are chosen independent
of δ.)

Using these inequalities and putting our computations in matrix form
show the following.
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Corollary 13.5. There is δ′2 > 0, depending on C0 and q, such that if
δ ≤ δ′2 then we have
(13.3)

(
R̂ijkl

)
= e−2f


(Rijkl) +



− q2

s4
f2 0

0
(
q2

s4
− 2q

s3

)
f

(
1 0
0 1

)

+

( q
s2
fO(δ)

)

 .

Similarly, we have the equation relating scalar curvatures

R̂ = e2f
(
R+ 4△f − 2|∇f |2

)
,

and hence

R̂ = e2f
(
R+ 4

(
q2

s4
− 2q

s3

)
f − 2

q2

s4
f2 +

q

s2
fO(δ)

)
.

Corollary 13.6. For any constant C0 <∞ and any δ < min(δ′2, C
−1
0 )

we have R̂ ≥ R.

Proof. It follows from the conditions on q that, since C0δ < 1, we have
f2 ≪ f and q2/s4 ≫ max(q/s3, q/s2). The result then follows immediately
from the above formula. �

Now let us compute the eigenvalues of the curvature Rijkl(y) for any
y ∈ S2 × I.

Lemma 13.7. There is a δ′3 > 0 such that the following hold if δ ≤ δ′3.
Let {e0, e1, e2} be an orthonormal basis for the tangent space at a point
y ∈ S2 × I for the metric h0 × ds2 with the property that e0 points in the
I-direction. Then there is a basis {f0, f1, f2} for this tangent space so that
the following hold:

(1) The basis is orthonormal in the metric h.
(2) The change of basis matrix expressing the {f0, f1, f2} in terms of

{e0, e1, e2} is of the form Id +O(δ).
(3) The Riemann curvature of h in the basis {f0 ∧ f1, f1 ∧ f2, f2 ∧ f0}

of ∧2Ty(S
2 × I) is




1/2 0 0
0 0 0
0 0 0


+O(δ).

Proof. Since h is within δ of h0 × ds2 in the C [1/δ]-topology, it follows
that the matrix for h(y) in {e0, e1, e2} is within O(δ) of the identity matrix,
and the matrix for the curvature of h in the associated basis of ∧2Ty(S

2×I) is
within O(δ) of the curvature matrix for h0×ds2, the latter being the diagonal
matrix with diagonal entries {1/2, 0, 0}. Thus, the usual Gram-Schmidt
orthonormalization process constructs the basis {f0, f1, f2} satisfying the
first two items. Let A = (Aab) be the change of basis matrix expressing the
{fa} in terms of the {eb}, so that A = Id +O(δ). The curvature of h in this
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basis is then given by Btr(Rijkl)B where B = ∧2A is the induced change
of basis matrix expressing the basis {f0 ∧ f1, f1 ∧ f2, f2 ∧ f0} in terms of
{e0 ∧ e1, e1 ∧ e2, e2 ∧ e0}. Hence, in the basis {f0 ∧ f1, f1 ∧ f2, , f2 ∧ f0} the
curvature matrix for h is within O(δ) of the same diagonal matrix. For δ
sufficiently small, the eigenvalues of the curvature matrix for h are within
O(δ) of (1/2, 0, 0). �

Corollary 13.8. The following holds provided that δ ≤ δ′3. It is possible
to choose the basis {f0, f1, f2} satisfying the conclusions of Lemma 13.7 so
that in addition the curvature matrix for (Rijkl(y)) is of the form



λ 0 0
0 α β
0 β γ




with |λ− 1
2 | ≤ O(δ) and |α|, |β|, |γ| ≤ O(δ).

Proof. We have an h-orthonormal basis {f0 ∧ f1, f1 ∧ f2, f2 ∧ f0} for
∧2Ty(S

2 × R) in which the quadratic form (Rijkl(y) is



1/2 0 0
0 0 0
0 0 0


+O(δ).

It follows that the restriction to the h-unit sphere in ∧2Ty(S
2 × R) of this

quadratic form achieves its maximum value at some vector v, which, when
written out in this basis, is given by (x, y, z) with |y|, |z| ≤ O(δ) and |x−1| ≤
O(δ). Of course, this maximum value is within O(δ) of 1/2. Clearly, on the
h-orthogonal subspace to v, the quadratic form is given by a matrix all
of whose entries are O(δ) in absolute value. This gives us a new basis of
∧2Ty(S

2 × I) within O(δ) of the given basis in which (Rijkl(y)) is diagonal.
The corresponding basis for Ty(S

2 × R) is as required. �

Now we consider the expression (R̂ijkl(y)) in this basis.

Lemma 13.9. Set δ′4 = min(δ′2, δ
′
3). Suppose that δ ≤ min(δ′4, C

−1
0 ).

Then in the basis {f0, f1, f2} for Ty(S
2 × I) as in Corollary 13.8 we have

(R̂ijkl(y)) − e−2f





λ 0 0
0 α β
0 β γ


+



− q2

s4
f2 0

0
(
q2

s4
− 2q

s3

)
f

(
1 0
0 1

)





is of the form (
q2

s4
fO(δ)

)

where λ, α, β, γ are the constants in Corollary 13.8 and the first matrix is
the expression for (Rijkl(y)) in this basis.
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Proof. We simply conjugate the expression in Equation (13.3) by the
change of basis matrix and use the fact that by our choice of q and the fact
that C0δ < 1, we have f ≫ f2 and q/s3 ≪ q2/s4. �

Corollary 13.10. Assuming that δ ≤ min(δ′4, C
−1
0 ), there is an h-

orthonormal basis {f0, f1, f2} so that in the associated basis for ∧2Ty(S
2×I)

the matrix (Rijkl(y)) is diagonal and given by


λ 0 0
0 µ 0
0 0 ν




with |λ − 1/2| ≤ O(δ) and |µ|, |ν| ≤ O(δ). Furthermore, in this same basis

the matrix (R̂ijkl(y)) is

e−2f





λ 0 0
0 µ 0
0 0 ν


+



− q2

s4
f2 0

0
(
q2

s4 − 2q
s3

)
f

(
1 0
0 1

)

+

q2

s4
fO(δ)


 .

Proof. To diagonalize the curvature operator, (Rijkl(y)), we need only
rotate in the {f1∧f2, f2∧f3}-plane. Applying this rotation to the expression
in Lemma 13.7 gives the result. �

Corollary 13.11. There is a constant A < ∞ such that the following
holds for the given value of q and any C0 provided that δ is sufficiently
small. Suppose that the eigenvalues for the curvature matrix of h at y are
λ ≥ µ ≥ ν. Then the eigenvalues for the curvature of ĥ at the point y are
given by λ′, µ′, ν ′, where

∣∣∣∣λ′ − e2f
(
λ− q2

s4
f2

)∣∣∣∣ ≤
q2

s4
fAδ,

∣∣∣∣µ′ − e2f
(
µ+

(
q2

s4
− 2q

s3

)
f

)∣∣∣∣ ≤
q2

s4
fAδ,

∣∣∣∣ν ′ − e2f
(
ν +

(
q2

s4
− 2q

s3

)
f

)∣∣∣∣ ≤
q2

s4
fAδ.

In particular, we have

ν ′ ≥ e2f
(
ν +

q2

2s4
f

)
,

µ′ ≥ e2f
(
µ+

q2

2s4
f

)
.

Proof. Let {f0, f1, f2} be the h-orthonormal basis as in Corollary 13.10.

Then {eff0, e
ff1, e

ff2} is orthonormal for ĥ = e−2fh. This change multi-
plies the curvature matrix by e4f . Since f ≪ 1, e4f < 2 so that the ex-
pression for (R̂ijkl(y)) in this basis is exactly the same as in Lemma 13.9

except that the factor in front is e2f instead of e−2f . Now, it is easy to see
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that since ((q2/s4)fAδ)2 ≪ (q2/s4)fAδ, the eigenvalues will differ from the
diagonal entries by at most a constant multiple of (q2/s4)fAδ.

The first three inequalities are immediate from the previous corollary.
The last two follow since q2/s4 ≫ q/s3 and δ ≪ 1. �

One important consequence of this computation is the following:

Corollary 13.12. For the given value of q and for any C0, assuming
that δ > 0 is sufficiently small, the smallest eigenvalue of Rmĥ is greater
than the smallest eigenvalue of Rmh at the same point. Consequently, at
any point where h has non-negative curvature so does ĥ.

Proof. Since |λ−1/2|, |µ|, |ν| are all O(δ) and since q2

s4
f ≪ 1, it follows

that the smallest eigenvalue of (R̂ijkl(y)) is either µ′ or ν ′. But it is imme-
diate from the above expressions that µ′ > µ and ν ′ > ν. This completes
the proof. �

Now we are ready to fix C0. There is a universal constant K such that
for all δ > 0 sufficiently small and for any δ-neck (N,h) of scale 1, every
eigenvalue of Rmh is at least −Kδ. We set

C0 = 2Keq.

Lemma 13.13. With these choices of q and C0 for any δ > 0 sufficiently
small we have ν ′ > 0 and µ′ > 0 for s ∈ [1, 4 +A0] and λ′ > 1/4.

Proof. Then by the previous result we have

ν ′ ≥ e2f
(
ν +

q2

2s4
f

)
.

It is easy to see that since q ≫ (4+A0) the function (q2/2s4)f is an increas-
ing function on [1, 4 +A0]. Its value at s = 1 is (q2/2)e−qC0δ > Kδ. Hence

ν + q2

2s4
f > 0 for all s ∈ [1, 4 +A0] and consequently ν ′ > 0 on this subman-

ifold. The same argument shows µ′ > 0. Since q2/s4f2 ≪ 1 and 0 < f , the
statement about λ′ is immediate. �

3. The proof of Theorem 13.2

3.1. Proof of the first two items for s < 4. We consider the metric
in the region s−1(−δ−1, 4) given by

h = α(s)Rg(x0)ρ
∗g + (1 − α(s))ηg0.

There is a constant K ′ < ∞ (depending on the C [1/δ]-norm of α) such

that h is within K ′δ of the product metric in the C [1/(K ′δ)]-topology. Thus,
if δ is sufficiently small, all of the preceding computations hold with the
error term (q2/s4)fAK ′δ. Thus, provided that δ is sufficiently small, the
conclusions about the eigenvalues hold for e−2fh in the region s−1(−δ−1, 4).
But e−2fh is exactly equal to R(x0)g̃ in this region. Rescaling, we conclude
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that on s−1(−δ−1, 4) the smallest eigenvalue of g̃ is greater than the smallest
eigenvalue of g at the corresponding point and that Reg ≥ Rg in this same
region.

The first conclusion of Theorem 13.2 follows by applying the above con-
siderations to the case of h = Rg(x0)ρ

∗g. Namely, we have:

Proposition 13.14. Fix δ > 0 sufficiently small. Suppose that for some
t ≥ 0 and every point p ∈ N the curvature of h satisfies:

(1) R(p) ≥ −6
1+4t , and

(2) R(p) ≥ 2X(p) (logX(p) + log(1 + t) − 3) whenever 0 < X(x, t).

Then the curvature (S, g̃) satisfies the same equation with the same value
of t in the region s−1(−δ−1, 4). Also, the curvature of g̃ is positive in the
region s−1[1, 4).

Proof. According to Corollary 13.12, the smallest eigenvalue of ĥ at
any point p is greater than or equal to the smallest eigenvalue of h at the
corresponding point. According to Corollary 13.6, R̂(p) ≥ R(p) for every
p ∈ S. Hence, Xĥ(p) ≤ Xh(p). If Xh(p) ≥ e3/(1 + t), then we have

R̂(p) ≥ R(p)

≥ 2Xh(p)(logXh(p) + log(1 + t) − 3)

≥ 2Xĥ(p)(logXĥ(p) + log(1 + t) − 3).

If Xh(p) < e3(1 + t), then Xĥ(p) < e3/(1 + t). Thus, in this case since we
are in a δ-neck, provided that δ is sufficiently small, we have R(p) ≥ 0 and
hence

R̂(p) ≥ R(p) ≥ 0 > 2Xĥ(p)(logXĥ(p) + log(1 + t) − 3).

This completes the proof in both cases.
This establishes the first item in the conclusion of Theorem 13.2 for

δ > 0 sufficiently small on s−1(−δ−1, 4). As we have seen in Lemma 13.13,
the curvature is positive on s−1[1, 4). �

3.2. Proof of the first two items for s ≥ 4. Now let us show that
the curvature on g̃ is positive in the region s−1([4, 4 + A0]). First of all in
the preimage of the interval [4, 4+A0,−r0] this follows from Corollary 13.12
and the fact that ηg0 has non-negative curvature. As δ tends to zero, the
restriction of g̃ to the subset s−1([4 + A0 − r0, 4 + A0]) tends smoothly to
the restriction of the metric g0 to that subset. The metric g0 has positive
curvature on s−1([4+A0 − r0, 4+A0]). Thus, for all δ > 0 sufficiently small
the metric g̃ has positive curvature on all of s−1([4 +A0 − r0, 4 +A0]). This
completes the proof of the first two items.

3.3. Proof of the third item. By construction the restriction of the
metric g̃ to s−1((−δ−1, 0]) is equal to the metric ρ∗g. Hence, in this region
the mapping is an isometry. In the region s−1([0, 4]) we have R(x0)ρ

∗g ≥
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ηg0 so that by construction in this region ρ∗g ≥ g̃. Lastly, in the region
s−1([4, A0 +4]) we have R(x0)

−1ηg0 ≥ g̃. On the other hand, it follows from
Claim 13.1 that the map from ([0, δ−1]×S2, R(x0)ρ

∗g) to (B(p0, 4+A0), ηg)
is distance decreasing. This completes the proof of the third item.

3.4. Completion of the proof. As δ goes to zero, f tends to zero in
the C∞-topology and η limits to 1. From this the fourth item is clear.

This completes the proof of Theorem 13.2.

4. Other properties of the result of surgery

Lemma 13.15. Provided that δ > 0 is sufficiently small the following
holds. Let (N, g) be a δ-neck and let (S, g̃) be the result of surgery along
the cental 2-sphere of this neck. Then for any given 0 < D < ∞ the ball
Beg(p,D + 5 +A0) ⊂ S has boundary contained in s−1

N (−(2D + 2),−D/2).
Proof. The Riemannian manifold (S, g̃) is identified by a diffeomor-

phism with the union of s−1
N (−δ−1, 0] to Bg0(p0, A0 + 4) glued along their

boundaries. Thus, we have a natural identification of S with the ball
Bg0(p,A0 + 4 + δ−1) in the standard solution. This identification pulls back
the metric g̃ to be within 2δ of the standard initial metric. The result then
follows immediately for δ sufficiently small. �





CHAPTER 14

Ricci Flow with surgery: the definition

In this chapter we introduce Ricci flows with surgery. These objects
are closely related to generalized Ricci flows but they differ slightly. The
space-time of a Ricci flow with surgery has an open dense subset that is
a manifold, and the restriction of the Ricci flow with surgery to this open
subset is a generalized Ricci flow. Still there are other, more singular points
allowed in a Ricci flow with surgery.

1. Surgery space-time

Definition 14.1. By a space-time we mean a paracompact Hausdorff
space M with a continuous function t : M → R, called time. We require that
the image of t be an interval I, finite or infinite with or without endpoints,
in R. The interval I is called the time-interval of definition of space-time.
The initial point of I, if there is one, is the initial time and the final point
of I, if there is one, is the final time. The level sets of t are called the
time-slices of space-time, and the preimage of the initial (resp., final) point
of I is the initial (resp., final) time-slice.

We are interested in a certain class of space-times, which we call surgery
space-times. These objects have a ‘smooth structure’ (even though they are
not smooth manifolds). As in the case of a smooth manifold, this smooth
structure is given by local coordinate charts with appropriate overlap func-
tions.

1.1. An exotic chart. There is one exotic chart, and we begin with its
description. To define this chart we consider the open unit square (−1, 1)×
(−1, 1). We shall define a new topology, denoted by P, on this square.
The open subsets of P are the open subsets of the usual topology on the
open square together with open subsets of (0, 1) × [0, 1). Of course, with
this topology the ‘identity’ map ι : P → (−1, 1) × (−1, 1) is a continuous
map. Notice that the restriction of the topology of P to the complement of
the closed subset [0, 1) × {0} is a homeomorphism onto the corresponding
subset of the open unit square. Notice that the complement of (0, 0) in P is
a manifold with boundary, the boundary being (0, 1) × {0}. (See Fig. 5 in
the Introduction.)

Next, we define a ‘smooth structure’ on P by defining a sheaf of germs
of ‘smooth’ functions. The restriction of this sheaf of germs of ‘smooth

343



344 14. RICCI FLOW WITH SURGERY: THE DEFINITION

functions’ to the complement of (0, 1)×{0} in P is the usual sheaf of germs
of smooth functions on the corresponding subset of the open unit square.
In particular, a function is smooth near (0, 0) if and only if its restriction
to some neighborhood of (0, 0) is the pullback under ι of a usual smooth
function on a neighborhood of the origin in the square. Now let us consider
the situation near a point of the form x = (a, 0) for some 0 < a < 1.
This point has arbitrarily small neighborhoods Vn that are identified under
ι with open subsets of (0, 1) × [0, 1). We say that a function f defined in
a neighborhood of x in P is smooth at x if its restriction to one of these
neighborhoods Vn is the pullback via ι|Vn of a smooth function in the usual
sense on the open subset ι(Vn) of the upper half space. One checks directly
that this defines a sheaf of germs of ‘smooth’ functions on P. Notice that
the restriction of this sheaf to the complement of (0, 0) is the structure sheaf
of smooth functions of a smooth manifold with boundary. Notice that the
map ι : P → (−1, 1) × (−1, 1) is a smooth map in the sense that it pulls
back smooth functions on open subsets of the open unit square to smooth
functions on the corresponding open subset of P.

Once we have the notion of smooth functions on P, there is the categor-
ical notion of a diffeomorphism between open subsets of P: namely a home-
omorphism with the property that it and its inverse pull back smooth func-
tions to smooth functions. Away from the origin, this simply means that the
map is a diffeomorphism in the usual sense between manifolds with bound-
ary, and in a neighborhood of (0, 0) it factors through a diffeomorphism of
neighborhoods of the origin in the square. While ι : P → (−1, 1) × (−1, 1)
is a smooth map, it is not a diffeomorphism.

We define the tangent bundle of P in the usual manner. The tangent
space at a point is the vector space of derivations of the germs of smooth
functions at that point. Clearly, away from (0, 0) this is the usual (2-plane)
tangent bundle of the smooth manifold with boundary. The germs of smooth
functions at (0, 0) are, by definition, the pullbacks under ι of germs of smooth
functions at the origin for the unit square, so that the tangent space of P
at (0, 0) is identified with the tangent space of the open unit square at
the origin. In fact, the map ι induces an isomorphism from the tangent
bundle of P to the pullback under ι of the tangent bundle of the square.
In particular, the tangent bundle of P has a given trivialization from the
partial derivatives ∂x and ∂y in the coordinate directions on the square. We
use this trivialization to induce a smooth structure on the tangent bundle of
P: that is to say, a section of TP is smooth if and only if it can be written
as α∂x + β∂y with α and β being smooth functions on P. The smooth
structure agrees off of (0, 0) ∈ P with the usual smooth structure on the
tangent bundle of the smooth manifold with boundary. By a smooth vector
field on P we mean a smooth section of the tangent bundle of P. Smooth
vector fields act as derivations on the smooth functions on P.
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We let tP : P → R be the pullback via ι of the usual projection to the
second factor on the unit square. We denote by χP the smooth vector field
ι∗∂2. Clearly, χP(tP) = 1. Smooth vector fields on P can be uniquely
integrated locally to smooth integral curves in P. (For a manifold with
boundary point, of course only vector fields pointing into the manifold along
its boundary can be locally integrated.)

1.2. Coordinate charts for a surgery space-time. Now we are
ready to introduce the types of coordinate charts that we shall use in our
definition of a surgery space-time. Each coordinate patch comes equipped
with a smooth structure (a sheaf of germs of smooth functions) and a tan-
gent bundle with a smooth structure, so that smooth vector fields act as
derivations on the algebra of smooth functions. There is also a distinguished
smooth function, denoted t, and a smooth vector field, denoted χ, required
to satisfy χ(t) = 1. There are three types of coordinates:

(1) The coordinate patch is an open subset of the strip R
n×I, where I

is an interval, with its usual smooth structure and tangent bundle;
the function t is the projection onto I; and the vector field χ is the
unit tangent vector in the positive direction tangent to the foliation
with leaves {x} × I. The initial point of I, if there is one, is the
initial time of the space-time and the final point of I, if there is
one, is the final time of the space-time.

(2) The coordinate patch is an open subset of R
n × [a,∞), for some

a ∈ R, with its usual smooth structure as a manifold with boundary
and its usual smooth tangent bundle; the function t is the projec-
tion onto the second factor; and the vector field is the coordinate
partial derivative associated with the second factor. In this case we
require that a not be the initial time of the Ricci flow.

(3) The coordinate patch is a product of P with an open subset of R
n−1

with the smooth structure (i.e., smooth functions and the smooth
tangent bundle) being the product of the smooth structure defined
above on P with the usual smooth structure of an open subset of
R
n−1; the function t is, up to an additive constant, the pullback

of the function tP given above on P; and the vector field χ is the
image of the vector field χP on P, given above, under the product
decomposition.

An ordinary Ricci flow is covered by coordinate charts of the first type.
The second and third are two extra types of coordinate charts for a Ricci
flow with surgery that are not allowed in generalized Ricci flows. Charts
of the second kind are smooth manifold-with-boundary charts, where the
boundary is contained in a single time-slice, not the initial time-slice, and
the flow exists for some positive amount of forward time from this manifold.
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All the structure described above for P — the smooth structure, the
tangent bundle with its smooth structure, smooth vector fields acting as
derivations on smooth functions — exist for charts of the third type. In
addition, the unique local integrability of smooth vector fields hold for co-
ordinate charts of the third type. Analogous results for coordinate charts of
the first two types are clear.

Now let us describe the allowable overlap functions between charts. Be-
tween charts of the first and second type these are the smooth overlap func-
tions in the usual sense that preserve the functions t and the vector fields
χ on the patches. Notice that because the boundary points in charts of the
second type are required to be at times other than the initial and final times,
the overlap of a chart of type one and a chart of type two is disjoint from the
boundary points of each. Charts of the first two types are allowed to meet
a chart of the third type only in its manifold and manifold-with-boundary
points. For overlaps between charts of the first two types with a chart of the
third type, the overlap functions are diffeomorphisms between open subsets
preserving the local time functions t and the local vector fields χ. Thus, all
overlap functions are diffeomorphisms in the sense given above.

1.3. Definition and basic properties of surgery space-time.

Definition 14.2. A surgery space-time is a space-time M equipped
with a maximal atlas of charts covering M, each chart being of one of the
three types listed above, with the overlap functions being diffeomorphisms
preserving the functions t and the vector fields χ. The points with neighbor-
hoods of the first type are called smooth points, those with neighborhoods of
the second type but not the first type are called exposed points, and all the
other points are called singular points. Notice that the union of the set of
smooth points and the set of exposed points forms a smooth manifold with
boundary (possibly disconnected). Each component of the boundary of this
manifold is contained in a single time-slice. The union of those components
contained in a time distinct from the initial time and the final time is called
the exposed region. and the boundary points of the closure of the exposed
region form the set of the singular points of M. (Technically, the exposed
points are singular, but we reserve this word for the most singular points.)
An (n + 1)-dimensional surgery space-time is by definition of homogeneous
dimension n+ 1.

By construction, the local smooth functions t are compatible on the over-
laps and hence fit together to define a global smooth function t : M → R,
called the time function. The level sets of this function are called the time-
slices of the space-time, and t−1(t) is denoted Mt. Similarly, the tangent
bundles of the various charts are compatible under the overlap diffeomor-
phisms and hence glue together to give a global smooth tangent bundle on
space-time. The smooth sections of this vector bundle, the smooth vector



1. SURGERY SPACE-TIME 347

fields on space time, act as derivations on the smooth functions on space-
time. The tangent bundle of an (n + 1)-dimensional surgery space-time is
a vector bundle of dimension n + 1. Also, by construction the local vector
fields χ are compatible and hence glue together to define a global vector
field, denoted χ. The vector field and time function satisfy

χ(t) = 1.

At the manifold points (including the exposed points) it is a usual vector
field. Along the exposed region and the initial time-slice the vector field
points into the manifold; along the final time-slice it points out of the man-
ifold.

Definition 14.3. Let M be a surgery space-time. Given a space K and
an interval J ⊂ R we say that an embedding K×J → M is compatible with
time and the vector field if: (i) the restriction of t to the image agrees with
the projection onto the second factor and (ii) for each x ∈ X the image of
{x} × J is the integral curve for the vector field χ. If in addition K is a
subset of Mt we require that t ∈ J and that the map K × {t} → Mt be
the identity. Clearly, by the uniqueness of integral curves for vector fields,
two such embeddings agree on their common interval of definition, so that,
given K ⊂ Mt there is a maximal interval JK containing t such that such
an embedding is defined on K × JK . In the special case when K = {x}
for a point x ∈Mt we say that such an embedding is the maximal flow line
through x. The embedding of the maximal interval through x compatible
with time and the vector field χ is called the domain of definition of the flow
line through x. For a more general subset K ⊂ Mt there is an embedding
K × J compatible with time and the vector field χ if and only if, for every
x ∈ K, the interval J is contained in the domain of definition of the flow
line through x.

Definition 14.4. Let M be a surgery space-time with I as its time
interval of definition. We say that t ∈ I is a regular time if there is an
interval J ⊂ I which is an open neighborhood in I of t, and a diffeomorphism
Mt × J → t−1(J) ⊂ M compatible with time and the vector field. A time
is singular if it is not regular. Notice that if all times are regular, then
space-time is a product Mt× I with t and χ coming from the second factor.

Lemma 14.5. Let M be an (n+ 1)-dimensional surgery space-time, and
fix t. The restriction of the smooth structure on M to the time-slice Mt

induces the structure of a smooth n-manifold on this time-slice. That is to
say, we have a smooth embedding of Mt → M. This smooth embedding
identifies the tangent bundle of Mt with a codimension-1 subbundle of the
restriction of tangent bundle of M to Mt. This subbundle is complementary
to the line field spanned by χ. These codimension-1 sub-bundle along the
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various time-slices fit together to form a smooth, codimension-1 subbundle
of the tangent bundle of space-time.

Proof. These statements are immediate for any coordinate patch, and
hence are true globally. �

Definition 14.6. We call the codimension-1 subbundle of the tangent
bundle of M described in the previous lemma the horizontal subbundle, and
we denote it HT (M).

2. The generalized Ricci flow equation

In this section we introduce the Ricci flow equation for surgery space-
times, resulting in an object that we call Ricci flow with surgery.

2.1. Horizontal metrics.

Definition 14.7. By a horizontal metric G on a surgery space-time M
we mean a C∞ metric on HTM. For each t, the horizontal metric G induces
a Riemannian metric, denoted G(t), on the time-slice Mt. Associated to a
horizontal metric G we have the horizontal covariant derivative, denoted ∇.
This is a pairing between horizontal vector fields

X ⊗ Y 7→ ∇XY.

On each time slice Mt it is the usual Levi-Civita connection associated to the
Riemannian metric G(t). Given a function F on space-time, by its gradient
∇F we mean its horizontal gradient. The value of this gradient at a point
q ∈ Mt is the usual G(t)-gradient of F |Mt . In particular, ∇F is a smooth
horizontal vector field on space-time. The horizontal metric G on space-
time has its (horizontal) curvatures RmG. These are smooth symmetric
endomorphisms of the second exterior power of HTM. The value of RmG

at a point q ∈Mt is simply the usual Riemann curvature operator of G(t) at
the point q. Similarly, we have the (horizontal) Ricci curvature Ric = RicG,
a section of the symmetric square of the horizontal cotangent bundle, and
the (horizontal) scalar curvature denoted R = RG. The reason for working
in HTM rather than individually in each slice is to emphasize the fact that
all these horizontal quantities vary smoothly over the surgery space-time.

Suppose that t ∈ I is not the final time and suppose that U ⊂Mt is an
open subset with compact closure. Then there is ǫ > 0 and an embedding
iU : U × [t, t+ ǫ) ⊂ M compatible with time and the vector field. Of course,
two such embeddings agree on their common domain of definition. Notice
also that for each t′ ∈ [t, t + ǫ) the restriction of the map iU to U × {t′}
induces a diffeomorphism from U to an open subset Ut′ of Mt′ . It follows
that the local flow generated by the vector field χ preserves the horizontal
subbundle. Hence, the vector field χ acts by Lie derivative on the sections
of HT (M) and on all associated bundles (for example the symmetric square
of the dual bundle).
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2.2. The equation.

Definition 14.8. A Ricci flow with surgery is a pair (M, G) consisting
of a surgery space-time M and a horizontal metric G on M such that for
every x ∈ M we have

(14.1) Lχ(G)(x) = −2RicG(x))

as sections of the symmetric square of the dual to HT (M). If space-time
is (n + 1)-dimensional, then we say that the Ricci flow with surgery is n-
dimensional (meaning of course that each time-slice is an n-dimensional
manifold).

Remark 14.9. Notice that at an exposed point and at points at the
initial and the final time the Lie derivative is a one-sided derivative.

2.3. Examples of Ricci flows with surgery.

Example 14.10. One example of a Ricci flow with surgery is M =
M0 × [0, T ) with time function t and the vector field χ coming from the
second factor. In this case the Lie derivative Lχ agrees with the usual
partial derivative in the time direction, and hence our generalized Ricci flow
equation is the usual Ricci flow equation. This shows that an ordinary Ricci
flow is indeed a Ricci flow with surgery.

The next lemma gives an example of a Ricci flow with surgery where the
topology of the time-slices changes.

Lemma 14.11. Suppose that we have manifolds M1×(a, b] and M2×[b, c)
and compact, smooth codimension-0 submanifolds Ω1 ⊂ M1 and Ω2 ⊂ M2

with open neighborhoods U1 ⊂ M1 and U2 ⊂ M2 respectively. Suppose we
have a diffeomorphism ψ : U1 → U2 carrying Ω1 onto Ω2. Let (M1 × (a, b])0
be the subset obtained by removing (M1 \ Ω1) × {b} from M1 × (a, b]. Form
the topological space

M = (M1 × (a, b])0 ∪M2 × [b, c)

where Ω1×{b} in (M1×(a, b])0 is identified with Ω2×{b} using the restriction
of ψ to Ω1. Then M naturally inherits the structure of a surgery space-time
where the time function restricts to (M1 × (a, b])0 and to M2 × [b, c) to be
the projection onto the second factor and the vector field χ agrees with the
vector fields coming from the second factor on each of (M1 × (a, b])0 and
M2 × [b, c).

Lastly, given Ricci flows (M1, g1(t)), a < t ≤ b, and (M2, g2(t)), b ≤
t < c, if ψ : (U1, g1(b)) → (U2, g2(b)) is an isometry, then these families fit
together to form a smooth horizontal metric G on M satisfying the Ricci
flow equation, so that (M, G) is a Ricci flow with surgery.
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Proof. As the union of Hausdorff spaces along closed subsets, M is
a Hausdorff topological space. The time function is the one induced from
the projections onto the second factor. For any point outside the b time-
slice there is the usual smooth coordinate coming from the smooth manifold
M1× (a, b) (if t < b) or M2× (b, c) (if t > b). At any point of (M2 \Ω2)×{b}
there is the smooth manifold with boundary coordinate patch coming from
M2 × [b, c). For any point in int(Ω1) × {b} we have the smooth manifold
structure obtained from gluing (int(Ω1)) × (a, b] to int(Ω2) × [b, c) along
the b time-slice by ψ. Thus, at all these points we have neighborhoods
on which our data determine a smooth manifold structure. Lastly, let us
consider a point x ∈ ∂Ω1 × {b}. Choose local coordinates (x1, . . . , xn) for a
neighborhood V1 of x such that Ω1 ∩V1 = {xn ≤ 0}. We can assume that ψ
is defined on all of V1. Let V2 = ψ(V1) and take the local coordinates on V2

induced from the xi on V1. Were we to identify V1 × (a, b] with V2 × [b, c)
along the b time-slice using this map, then this union would be a smooth
manifold. There is a neighborhood of the point (x, b) ∈ M which is obtained
from the smooth manifold V1×(a, b]∪ψV2×[b, c) by inducing a new topology
where the open subsets are, in addition to the usual ones, any open subset of
the form {xn > 0} × [b, b′) where b < b′ ≤ c. This then gives the coordinate
charts of the third type near the points of ∂Ω2 × {b}. Clearly, since the
function t and the vector field ∂/∂t are smooth on V1 × (a, b] ∪ψ V2 × [b, c),
we see that these objects glue together to form smooth objects on M.

Given the Ricci flows g1(t) and g2(t) as in the statement, they clearly
determine a (possibly singular) horizontal metric on M. This horizontal
metric is clearly smooth except possibly along the b time-slice. At any point
of (M2 \Ω2)×{b} we have a one-sided smooth family, which means that on
this set the horizontal metric is smooth. At a point of int(Ω2) × {b}, the
fact that the metrics fit together smoothly is an immediate consequence of
Proposition 3.12. At a point x ∈ ∂Ω2×{b} we have neighborhoods V2 ⊂M2

of x and V1 ⊂ M1 of ψ−1(x) that are isometrically identified by ψ. Hence,
again by Proposition 3.12 we see that the Ricci flows fit together to form a
smooth family of metrics on V1 × (a, b] ∪ψ V2 × [b, c). Hence, the induced
horizontal metric on M is smooth near this point. �

The following is obvious from the definitions.

Proposition 14.12. Suppose that (M, G) is a Ricci flow with surgery.
Let intM be the open subset consisting of all smooth (n+1)-manifold points,
plus all manifold-with-boundary points at the initial time and the final time.
This space-time inherits the structure of a smooth manifold with boundary.
The restrictions to it of t, of the vector field χ, and of the horizontal met-
ric G, define a generalized Ricci flow whose underlying smooth manifold is
intM.
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2.4. Scaling and translating. Let (M, G) be a Ricci flow with sur-
gery and let Q be a positive constant. Then we can define a new Ricci flow
with surgery by setting G′ = QG, t′ = Qt and χ′ = Q−1χ. It is easy to
see that the resulting data still satisfies the generalized Ricci flow equation,
Equation (14.1). We denote this new Ricci flow with surgery by (QM, QG)
where the changes in t and χ are indicated by the factor Q in front of the
space-time.

It is also possible to translate a Ricci flow with surgery (M, G) by re-
placing the time function t by t′ = t + a for any constant a, and leaving χ
and G unchanged.

2.5. More basic definitions.

Definition 14.13. Let (M, G) be a Ricci flow with surgery, and let x be
a point of space-time. Set t = t(x). For any r > 0 we define B(x, t, r) ⊂Mt

to be the metric ball of radius r centered at x in the Riemannian manifold
(Mt, G(t)).

Definition 14.14. Let (M, G) be a Ricci flow with surgery, and let x be
a point of space-time. Set t = t(x). For any r > 0 and ∆t > 0 we say that
the backward parabolic neighborhood P (x, t, r,−∆t) exists in M if there is an
embedding B(x, t, r)× (t−∆t, t] → M compatible with time and the vector
field. Similarly, we say that the forward parabolic neighborhood P (x, t, r,∆t)
exists in M if there is an embedding B(x, t, r)× [t, t+∆t) → M compatible
with time and the vector field. A parabolic neighborhood is either a forward
or backward parabolic neighborhood.

Definition 14.15. Fix κ > 0 and r0 > 0. We say that a Ricci flow
with surgery (M, G) is κ-non-collapsed on scales ≤ r0 if the following holds
for every point x ∈ M and for every r ≤ r0. Denote t(x) by t. If the
parabolic neighborhood P (x, t, r,−r2) exists in M and if |RmG| ≤ r−2 on
P (x, t, r,−r2), then VolB(x, t, r) ≥ κr3.

Remark 14.16. For ǫ > 0 sufficiently small, an ǫ-round component
satisfies the first condition in the above definition for some κ > 0 depending
only on the order of the fundamental group of the underlying manifold, but
there is no universal κ > 0 that works for all ǫ-round manifolds. Fixing
an integer N let CN be the class of closed 3-manifolds with the property
that any finite free factor of π1(M) has order at most N . Then any ǫ-
round component of any time-slice of any Ricci flow (M, G) whose initial
conditions consist of a manifold in CN will have fundamental group of order
at most N and hence will satisfy the first condition in the above definition
for some κ > 0 depending only on N .

We also have the notion of the curvature being pinched toward positive,
analogous to the notions for Ricci flows and generalized Ricci flows.
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Definition 14.17. Let (M, G) be a 3-dimensional Ricci flow with sur-
gery, whose time domain of definition is contained in [0,∞). For any x ∈ M
we denote the eigenvalues of Rm(x) by λ(x) ≥ µ(x) ≥ ν(x) and we set
X(x) = max(0,−ν(x)). We say that its curvature is pinched toward positive
if the following hold for every x ∈ M:

(1) R(x) ≥ −6
1+4t(x) .

(2) R(x) ≥ 2X(x) (logX(x) + log(1 + t(x)) − 3), whenever 0 < X(x).

Let (M,g) be a Riemannian manifold and let T ≥ 0. We say that
(M,g) has curvature pinched toward positive up to time T if the above two
inequalities hold for all x ∈M with t(x) replaced by T .

Lastly, we extend the notion of canonical neighborhoods to the context
of Ricci flows with surgery.

Definition 14.18. Fix constants (C, ǫ) and a constant r. We say that
a Ricci flow with surgery (M, G) satisfies the strong (C, ǫ)-canonical neigh-
borhood assumption with parameter r if every point x ∈ M with R(x) ≥ r−2

has a strong (C, ǫ)-canonical neighborhood in M. In all cases except that of
the strong ǫ-neck, the strong canonical neighborhood of x is a subset of the
time-slice containing x, and the notion of a (C, ǫ)-canonical neighborhood
has exactly the same meaning as in the case of an ordinary Ricci flow. In the
case of a strong ǫ-neck centered at x this means that there is an embedding(
S2 × (−ǫ−1, ǫ−1)

)
×(t(x)−R(x)−1, t(x)] → M, mapping (q0, 0) to x, where

q0 is the basepoint of S2, an embedding compatible with time and the vector
field, such that the pullback of G is a Ricci flow on S2 × (−ǫ−1, ǫ−1) which,
when the time is shifted by −t(x) and then the flow is rescaled by R(x),

is within ǫ in the C [1/ǫ]-topology of the standard evolving round cylinder(
S2 × (−ǫ−1, ǫ−1), h0(t) × ds2

)
, −1 < t ≤ 0, where the scalar curvature of

the h0(t) is 1 − t.

Notice that if x is an exposed point or sufficiently close to an exposed
point, then x cannot be the center of a strong ǫ-neck.



CHAPTER 15

Controlled Ricci flows with surgery

We do not wish to consider all Ricci flows with surgery. Rather we
shall concentrate on 3-dimensional flows (that is to say 4-dimensional space-
times) whose singularities are closely controlled both topologically and ge-
ometrically. We introduce the hypotheses that we require these evolutions
to satisfy. The main result, which is stated in this chapter and proved in
the next two, is that these controlled 3-dimensional Ricci flows with surgery
always exist for all time with any compact 3-manifold as initial metric.

0.6. Normalized initial conditions. A compact connected Riemann-
ian 3-manifold (M,g(0)) is normalized or is a normalized metric if it satisfies
the following:

(1) |Rm(x, 0)| ≤ 1 for all x ∈M and
(2) for every x ∈M we have VolB(x, 0, 1) ≥ ω/2 where ω is the volume

of the unit ball in R
3.

If (M,g(0)) is the initial manifold of a Ricci flow with surgery, then we
say that it is a normalized initial metric, and we shall say that the Ricci
flow with surgery has normalized initial conditions provided that (M,g(0)) is
normalized. Of course, given any compact Riemannian 3-manifold (M,g(0))
there is a positive constant Q <∞ such that (M,Qg(0)) is normalized.

Starting with a normalized initial metric implies that the flow exists
and has uniformly bounded curvature for a fixed amount of time. This
is the content of the following claim which is an immediate corollary of
Theorem 3.11, Proposition 3.12, Theorem 3.28, and Proposition 4.11.

Claim 15.1. There is κ0 such that the following holds. Let (M,g(0))
be a normalized initial metric. Then the solution to the Ricci flow equation
with these initial conditions exists for t ∈ [0, 2−4], and |R(x, t)| ≤ 2 for all
x ∈M and all t ∈ [0, 2−4]. Furthermore, for any t ∈ [0, 2−4] and any x ∈M
and any r ≤ ǫ we have VolB(x, t, r) ≥ κ0r

3.

1. Gluing together evolving necks

Proposition 15.2. There is 0 < β < 1/2 such that the following holds
for any ǫ < 1. Let (N × [−t0, 0], g1(t)) be an evolving βǫ-neck centered at x
with R(x, 0) = 1. Let (N ′×(−t1,−t0], g2(t)) be a strong βǫ/2-neck. Suppose
we have an isometric embedding of N×{−t0} with N ′×{−t0} and the strong

353
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βǫ/2-neck structure on N ′ × (−t1,−t0] is centered at the image of (x,−t0].
Then the union

N × [−t0, 0] ∪N ′ × (−t1,−t0]
with the induced one-parameter family of metrics contains a strong ǫ-neck
centered at (x, 0).

Proof. Suppose that the result does not hold. Take a sequence of βn
tending to zero and counterexamples

(Nn × [−t0,n, 0], g1,n(t)); (N ′
n × (−t1,n,−t0,n], g2,n(t)).

Pass to a subsequence so that the t0,n tend to a limit t0,∞ ≥ 0. Since βn
tends to zero, we can take a smooth limit of a subsequence and this limit is
an evolving cylinder (S2 × R, h(t) × ds2), where h(t) is the round metric of
scalar curvature 1/(1−t) defined for some amount of backward time. Notice
that, for all β sufficiently small, on a βǫ-neck the derivative of the scalar
curvature is positive. Thus, Rg1,n(x,−t0,n) < 1. Since we have a strong
neck structure on N ′

n centered at (x,−t0,n), this implies that t1,n > 1 so
that the limit is defined for at least time t ∈ [0, 1 + t0,∞). If t0,∞ > 0, then,
restricting to the appropriate subset of this limit, a subset with compact
closure in space-time, it follows immediately that for all n sufficiently large
there is a strong ǫ-neck centered at (x, 0). This contradicts the assumption
that we began with a sequence of counterexamples to the proposition.

Let us consider the case when t0,∞ = 0. In this case the smooth limit
is an evolving round cylinder defined for time (−1, 0]. Since t1,n > 1 we
see that for any A < ∞ for all n sufficiently large the ball B(xn, 0, A) has
compact closure in every time-slice and there are uniform bounds to the
curvature on B(xn, 0, A)× (−1, 0]. This means that the limit is uniform for
time (−1, 0] on all these balls. Thus, once again for all n sufficiently large
we see that (x, 0) is the center of a strong ǫ-neck in the union. In either case
we have obtained a contradiction, and hence we have proved the result. See
Fig. 1. �

1.1. First assumptions. Choice of C and ǫ: The first thing we need
to do is fix for the rest of the argument C <∞ and ǫ > 0. We do this in the

following way. We fix 0 < ǫ ≤ min(1/200,
(√

D(A0 + 5)
)−1

, ǫ1/2, ǫ
′/2, ǫ0)

where ǫ1 is the constant from Proposition 2.19, ǫ′ is the constant from The-
orem 9.93, ǫ0 is the constant from Section 1 of Chapter 10, and A0 and D
are the constants from Lemma 12.3. We fix β < 1/2, the constant from
Proposition 15.2. Then we let C be the maximum of the constant C(ǫ) as
in Corollary 9.94 and C ′(βǫ/3) + 1 as in Theorem 12.32.

For all such ǫ, Theorem 10.2 holds for ǫ and Proposition 2.19, Propo-
sition 9.79 and Corollaries 9.94 and 9.95 and Theorems 11.1 and 11.8 hold
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Figure 1. Gluing together necks.

for 2ǫ. Also, all the topological results of the Appendix hold for 2ǫ and
α = 10−2.

Now let us turn to the assumptions we shall make on the Ricci flows
with surgery that we shall consider. Let M be a space-time. Our first set
of assumptions are basically topological in nature. They are:

Assumption (1). Compactness and dimension: Each time-slice Mt of
space-time is a compact 3-manifold containing no embedded RP 2 with trivial
normal bundle.

Assumption (2). Discrete singularities: The set of singular times is a
discrete subset of R.

Assumption (3). Normalized initial conditions: 0 is the initial time of
the Ricci flow with surgery and the initial metric (M0, G(0)) is normalized.

It follows from Assumption (2) that for any time t in the time-interval
of definition of a Ricci flow with surgery, with t being distinct from the
initial and final times (if these exist), for all δ > 0 sufficiently small, the
only possible singular time in [t− δ, t + δ] is t. Suppose that t is a singular
time. The singular locus at time t is a closed, smooth subsurface Σt ⊂ Mt.
From the local model, near every point of x ∈ Σt we see that this surface
separates Mt into two pieces:

Mt = Ct ∪Σt Et,
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where Et is the exposed region at time t and Ct is the complement of the
interior of Et in Mt. We call Ct the continuing region. It is the maximal
subset of Mt for which there is δ > 0 and an embedding

Ct × (t− δ, t] → M
compatible with time and the vector field.
Assumption (4). Topology of the exposed regions: At all singular
times t we require that Et be a finite disjoint union of 3-balls. In particular,
Σt is a finite disjoint union of 2-spheres.

The next assumptions are geometric in nature. Suppose that t is a

surgery time. Let M(−∞,t) be t−1((−∞, t)) and let (M̂(−∞,t), Ĝ) be the
maximal extension of (M(−∞,t), G) to time t, as given in Definition 11.22.
Assumption (5). Boundary components of the exposed regions:
There is a surgery control parameter function, δ(t) > 0, a non-increasing
function of t, such that each component of Σt ⊂ Mt is the central 2-sphere

of a strong δ(t)-neck in (M̂(−∞,t), Ĝ).

Suppose that t is a singular time. Then for all t− < t with t− sufficiently
close to t, the manifolds Mt− are diffeomorphic and are identified under
the flow. Applying the flow (backward) to Ct produces a diffeomorphism
from Ct onto a compact submanifold with boundary Ct− ⊂ Mt− . Our next
assumption concerns the nature of the metrics G(t−) on the disappearing
region Dt− = Mt− \ Ct− . The following holds for every t− < t sufficiently
close to t.
Assumption (6). Control on the disappearing region: For any sin-
gular time t, for all t− < t sufficiently close to t, each point of x ∈ Dt− has
a strong (C, ǫ)-canonical neighborhood in Mt− .
Assumption (7). Maximal flow intervals: Let t be the initial time or
a singular time and let t′ be the first singular time after t if such exists,
otherwise let t′ be the least upper bound of the time-interval of definition
of the Ricci flow with surgery. Then the restriction of the Ricci flow with
surgery to [t, t′) is a maximal Ricci flow. That is to say, either t′ = ∞ or, as
t→ t′ from below, the curvature of G(t) is unbounded so that this restricted
Ricci flow cannot be extended as a Ricci flow to any larger time.

From now on C and ǫ have fixed values as described above
and all Ricci flows with surgeries are implicitly assumed to satisfy
Assumptions (1) – (7).

2. Topological consequences of Assumptions (1) – (7)

Next we show that the topological control that we are imposing on 3-
dimensional Ricci flows with surgery is enough to allow us to relate the
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topology of a time-slice MT in terms of a later time-slice MT ′ and topolog-
ically standard pieces. This is the result that will be used to establish the
topological theorems stated in the introduction.

Proposition 15.3. Suppose that (M, G) is a generalized Ricci flow sat-
isfying Assumptions (1) – (7). Let t be a singular time. Then the following
holds for any t− < t sufficiently close to t. The manifold Mt− is diffeomor-
phic to a manifold obtained in the following way. Take the disjoint union
of Mt, finitely many 2-sphere bundles over S1, and finitely many closed
3-manifolds admitting metrics of constant positive curvature. Then perform
connected sum operations between (some subsets of) these components.

Proof. Fix t′ < t but sufficiently close to t. By Assumption (4) every
component of Et is a 3-ball and hence every component of ∂Et = ∂Ct is a
2-sphere. Since Ct is diffeomorphic to Ct′ ⊂Mt′ we see that every component
of ∂Ct′ = ∂Dt′ is a 2-sphere. Since every component of Et is a 3-ball,
the passage from the smooth manifold Mt′ to the smooth manifold Mt is
effected by removing the interior of Dt′ from Mt′ and gluing a 3-ball onto
each component of ∂Ct′ to form Mt.

By Assumption (5) every point ofDt′ has a strong (C, ǫ)-canonical neigh-
borhood. Since ǫ is sufficiently small it follows from Proposition A.25 that
every component of Dt′ that is also a component of Mt′ is diffeomorphic
either to a manifold admitting a metric of constant positive curvature (a
3-dimensional space-form), to RP 3#RP 3 or to a 2-sphere bundle over S1.
In the passage from Mt′ to Mt these components are removed.

Now let us consider a component of Dt′ that is not a component of
Mt′ . Such a component is a connected subset of Mt′ with the property that
every point is either contained in the core of a (C, ǫ)-cap or is the center of
an ǫ-neck and whose frontier in Mt′ consists of 2-spheres that are central
2-spheres of ǫ-necks. If every point is the center of an ǫ-neck, then according
to Proposition A.19, Dt′ is an ǫ-tube and in particular is diffeomorphic to
S2 × I. Otherwise Dt′ is contained in a capped or double capped ǫ-tube.
Since the frontier of Dt′ is non-empty and is the union of central 2-spheres
of an ǫ-neck, it follows that either Dt′ is diffeomorphic to a capped ǫ-tube
or to an ǫ-tube. Hence, these components of Dt′ are diffeomorphic either
to S2 × (0, 1), to D3, or to RP 3 \B3. Replacing a 3-ball component of Dt′

by another 3-ball leaves the topology unchanged. Replacing a component
of Dt′ that is diffeomorphic to S2 × I by the disjoint union of two 3-balls
has the effect of doing a surgery along the core 2-sphere of the cylinder
S2 × I in Mt′ . If this 2-sphere separates Mt′ into two pieces then doing this
surgery effects a connected sum decomposition. If this 2-sphere does not
separate, then the surgery has the topological effect of doing a connected sum
decomposition into two pieces, one of which is diffeomorphic to S2×S1, and
then removing that component entirely. Replacing a component of Dt′ that
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is diffeomorphic to RP 3 \B3 by a 3-ball, has the effect of doing a connected
sum decomposition on Mt′ into pieces, one of which is diffeomorphic to RP 3,
and then removing that component.

From this description the proposition follows immediately. �

Corollary 15.4. Let (M, G) be a generalized Ricci flow satisfying As-
sumptions (1) – (7) with initial conditions (M,g(0)). Suppose that for some
T the time-slice MT of this generalized flow satisfies Thurston’s Geometriza-
tion Conjecture. Then the same is true for the manifold Mt for any t ≤ T ,
and in particular M satisfies Thurston’s Geometrization Conjecture. In ad-
dition:

(1) If for some T > 0 the manifold MT is empty, then M is a connected
sum of manifolds diffeomorphic to 2-sphere bundles over S1 and 3-
dimensional space-forms, i.e., compact 3-manifolds that admit a
metric of constant positive curvature.

(2) If for some T > 0 the manifold MT is empty and if M is connected
and simply connected, then M is diffeomorphic to S3.

(3) If for some T > 0 the manifold MT is empty and if M has finite
fundamental group, then M is a 3-dimensional space-form.

Proof. Suppose that MT satisfies the Thurston Geometrization Con-
jecture and that t0 is the largest surgery time ≤ T . (If there is no such
surgery time then MT is diffeomorphic to M and the result is established.)
Let T ′ < t0 be sufficiently close to t0 so that t0 is the only surgery time in the
interval [T ′, T ]. Then according to the previous proposition MT ′ is obtained
from MT by first taking the disjoint union of MT and copies of 2-sphere bun-
dles over S1 and 3-dimensional space forms. In the Thurston Geometriza-
tion Conjecture the first step is to decompose the manifold as a connected
sum of prime 3-manifolds and then to treat each prime piece independently.
Clearly, the prime decomposition of MT ′ is obtained from the prime decom-
position of MT by adding a disjoint union with 2-sphere bundles over S1

and 3-dimensional space forms. By definition any 3-dimensional space-form
satisfies Thurston’s Geometrization Conjecture. Since any diffeomorphism
of S2 to itself is isotopic to either the identity or to the antipodal map, there
are two diffeomorphism types of 2-sphere bundles over S1: S2 × S1 and the
non-orientable 2-sphere bundle over S1. Each is obtained from S2 × I by
gluing the ends together via an isometry of the round metric on S2. Hence,
each has a homogeneous geometry modeled on S2 × R, and hence satisfies
Thurston’s Geometrization Conjecture. This proves that if MT satisfies this
conjecture, then so does MT ′ . Continuing this way by induction, using the
fact that there are only finitely many surgery times completes the proof of
the first statement.
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Statement (1) is proved analogously. Suppose thatMT is a disjoint union
of connected sums of 2-sphere bundles over S1 and 3-dimensional space-
forms. Let t0 be the largest surgery time ≤ T and let T ′ < t0 be sufficiently
close to t0. (As before, if there is no such t0 then MT is diffeomorphic to M
and the result is established.) Then it is clear from the previous proposition
that MT ′ is also a disjoint union of connected sums of 3-dimensional space-
forms and 2-sphere bundles over S1. Induction as in the previous case
completes the argument for this case.

The last two statements are immediate from this one. �

3. Further conditions on surgery

3.1. The surgery parameters. The process of doing surgery requires
fixing the scale h at which one does the surgery. We shall have to allow
this scale h to be a function of time, decreasing sufficiently rapidly with
t. In fact, the scale is determined by two other functions of time which
also decay to zero as time goes to infinity — a canonical neighborhood
parameter r(t) determining the curvature threshold above which we have
canonical neighborhoods and the surgery control parameter δ(t) determining
how close to cylinders (products of the round 2-sphere with an interval) the
regions where we do surgery are. In addition to these functions, in order to
prove inductively that we can do surgery we need to have a non-collapsing
result. The non-collapsing parameter κ > 0 also decays to zero rapidly as
time goes to infinity. Here then are the functions that will play the crucial
role in defining the surgery process.

Definition 15.5. We have: (i) a canonical neighborhood parameter,
r(t) > 0, and (ii) a surgery control parameter δ(t) > 0. We use these
to define the surgery scale function h(t). Set ρ(t) = δ(t)r(t). Let h(t) =

h(ρ(t), δ(t)) ≤ ρ(t) ·δ(t) = δ
2
(t)r(t) be the function given by Theorem 11.31.

We require that h(0) ≤ R
−1/2
0 where R0 is the constant from Theorem 13.2.

In addition, there is a function κ(t) > 0 called the non-collapsing pa-
rameter. All three functions r(t), δ(t) and κ(t) are required to be positive,
non-increasing functions of t.

We shall consider Ricci flows with surgery (M, G) that satisfy Assump-
tions (1) – (7) and also satisfy:
For any singular time t the surgery at time t is performed with
control δ(t) and at scale h(t) = h(ρ(t), δ(t)), where ρ(t) = δ(t)r(t),
in the sense that each boundary component of Ct is the central
2-sphere of a strong δ(t)-neck centered at some y with R(y) = h(t)−2.

There is quite a bit of freedom in the choice of these parameters. But it
is not complete freedom. They must decay rapidly enough as functions of t.
We choose to make r(t) and κ(t) step functions, and we require δ(t) to be
bounded above by a step function of t. Let us fix the step sizes.
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Definition 15.6. We set t0 = 2−5, and for any i ≥ 0 we define Ti = 2it0.

The steps we consider are [0, T0] and then [Ti, Ti+1] for every i ≥ 0. The
first step is somewhat special. Suppose that (M, G) is a Ricci flow with
surgery with normalized initial conditions. Then according to Claim 15.1
the flow exists on [0, T1] and the norm of the Riemann curvature is bounded
by 2 on [0, T1], so that by Assumption (7) there are no surgeries in this time
interval. Also, by Claim 15.1 there is a κ0 > 0 so that VolB(x, t, r) ≤ κ0r

3

for every t ≤ T1 and x ∈Mt and every r ≤ ǫ.

Definition 15.7. Surgery parameter sequences are sequences

(i) r = r0 ≥ r1 ≥ r2 ≥ · · · > 0, with r0 = ǫ,
(ii) K = κ0 ≥ κ1 ≥ κ2 ≥ · · · > 0 with κ0 as in Claim 15.1, and
(iii) ∆ = δ0 ≥ δ1 ≥ δ2 ≥ · · · > 0 with δ0 = min(βǫ/3, δ′0,K

−1,D−1)
where δ′0 is the constant from Theorem 13.2 and β < 1/2 is the
constant from Proposition 15.2, ǫ is the constant that we have al-
ready fixed, and K and D are the constants from Lemma 12.3.

We shall also refer to partial sequences defined for indices 0, . . . , i for some
i > 0 as surgery parameter sequences if they are positive, non-increasing
and if their initial terms satisfy the conditions given above.

We let r(t) be the step function whose value on [Ti, Ti+1) is ri+1 and
whose value on [0, T0) is r0. We say that a Ricci flow with surgery satisfies
the strong (C, ǫ)-canonical neighborhood assumption with parameter r if
it satisfies this condition with respect to the step function r(t) associated
with r. This means that any x ∈ M with R(x) ≥ r−2(t(x)) has a strong
(C, ǫ)-canonical neighborhood in M. Let κ(t) be the step function whose
value on [Ti, Ti+1) is κi+1 and whose value on [0, T0) is κ0. Given κ >
0, we say that a Ricci flow defined on [0, t] is κ-non-collapsed on scales
≤ ǫ provided that for every point x not contained in a component of its
time-slice with positive sectional curvature, if for some r ≤ ǫ, the parabolic
neighborhood P (x, t(x), r,−r2) exists in M and the norm of the Riemann
curvature is bounded on this backward parabolic neighborhood by r−2, then
VolB(x, t(x), r) ≥ κr3. We say that a Ricci flow with surgery is K-non-
collapsed on scales ǫ if for every t ∈ [0,∞) the restriction of the flow to [0, t]
is κ(t)-non-collapsed on scales ≤ ǫ. Lastly, we fix a non-increasing function
δ(t) > 0 with δ(t) ≤ δi+1 if t ∈ [Ti, Ti+1) for all i ≥ 0 and δ(t) ≤ δ0 for
t ∈ [0, T0). We denote the fact that such inequalities hold for all t by saying
δ(t) ≤ ∆.

Having fixed surgery parameter sequences K, r and ∆, defined step
functions r(t) and κ(t), and fixed δ(t) ≤ ∆ as above, we shall consider
only Ricci flows with surgery where the surgery at time t is defined using
the surgery parameter functions r(t) and δ(t). In addition, we require that
these Ricci flows with surgery satisfy Assumptions (1) – (7).
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What we shall show is that there are surgery parameter sequences r,
K and ∆ with the property that for any normalized initial metric and any
positive, non-increasing function δ(t) ≤ ∆, it is possible to construct a Ricci
flow with surgery using the surgery parameters r(t) and δ(t) with the given
initial conditions and furthermore that this Ricci flow with surgery satisfies
the Assumptions (1) – (7), has curvature pinched toward positive, satis-
fies the canonical neighborhood assumption, and satisfies the non-collapsing
assumption using these parameters.

In fact we shall prove this inductively, constructing the step functions
inductively one step at a time. Thus, given surgery parameter sequences
indexed by 0, . . . , i we show that there are appropriate choices of ri+1, κi+1

and δi+1 such that the following is true. Given a Ricci flow with surgery
defined on time [0, Ti) satisfying all the properties with respect to the first
set of data, that Ricci flow with surgery extends to one defined for time
[0, Ti+1) and satisfies Assumptions (1) – (7), the canonical neighborhood
assumption and the non-collapsing assumption with respect to the extended
surgery parameter sequences, and has curvature pinched toward positive. As
stated this is not quite true; there is a slight twist: we must also assume that
δ(t) ≤ δi+1 for all t ∈ [Ti−1, Ti+1). It is for this reason that we consider pairs
consisting of sequences ∆ and a surgery control parameter δ(t) bounded
above by ∆.

4. The process of surgery

We fix surgery parameter sequences {r0, . . . , ri+1}, {κ0, . . . , κi+1} and
∆i = {δ0, . . . , δi} and also a positive, decreasing function δ(t) ≤ ∆i, defined
for t ≤ Ti+1 with δ0 = min(αǫ/3, δ′0,K

−1,D−1) as above. Suppose that
(M, G) is a Ricci flow with surgery defined for t ∈ [0, T ) that goes singu-
lar at time T ∈ (Ti, Ti+1]. We suppose that it satisfies Assumptions (1) –
(7). Since the flow has normalized initial conditions and goes singular at
time T , it follows that i ≥ 1. We suppose that (M, G) satisfies the (C, ǫ)-
canonical neighborhood assumption with parameter ri+1 and that its curva-
ture is pinched toward positive. By Theorem 11.19 we know that there is a

maximal extension (M̂, Ĝ) of this generalized flow to time T with the T time-
slice being (Ω(T ), G(T )). Set ρ = δ(T )ri+1, and set h(T ) = h(ρ(T ), δ(T )) as
in Theorem 11.31. Since δ(T ) ≤ δ0 < 1, we see that ρ < ri+1. According to
Lemma 11.30 there are finitely many components of Ω(T ) that meet Ωρ(T ).

Let Ωbig(T ) be the disjoint union of all the components of Ω(T ) that meet
Ωρ(T ). Lemma 11.30 also tells us that Ωbig(T ) contains a finite collection
of disjoint 2ǫ-horns with boundary contained in Ωρ/2C , and the comple-
ment of the union of the interiors of these horns is a compact submanifold
with boundary containing Ωρ. Let H1, . . . ,Hj be a disjoint union of these
2ǫ-horns. For each i fix a point yi ∈ Hi with R(yi) = h−2(T ). According
to Theorem 11.31 for each i there is a strong δ(T )-neck centered at yi and
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contained in Hi. We orient the s-direction of the neck so that its positive
end lies closer to the end of the horn than its negative end. Let S2

i be the
center of this strong δ(T )-neck. Let H+

i be the unbounded complementary

component of S2
i in Hi. Let CT be the complement of

∐j
i=1 H+

i in Ωbig(T ).
Then we do surgery on these necks as described in Section 1 of Chapter 13,
using the constant q = q0 from Theorem 13.2, removing the positive half of
the neck, and gluing on the cap from the standard solution. This creates
a compact 3-manifold MT = CT ∪‘

i S
2
i
Bi, where each Bi is a copy of the

metric ball of radius A0 +4 centered around the tip of the standard solution
(with the metric scaled by h2(T ) and then perturbed near the boundary of
Bi to match g(T )). Notice that in this process we have removed every com-
ponent of Ω(T ) that does not contain a point of Ωρ(T ). The result of this
operation is to produce a compact Riemannian 3-manifold (MT , GT ) which
is the T time-slice of our extension of (M, G). Let (MT , G(t)), T ≤ t < T ′,
be the maximal Ricci flow with initial conditions (MT , GT ) at t = T . Our
new space-time (M′, G′) is the union of MT × [T, T ′) and (M, G)∪CT ×{T}
along CT ×{T}. Here, we view (M, G)∪CT ×{T} as a subspace of the max-

imal extension (M̂, Ĝ). The time functions and vector fields glue to provide
analogous data for this new space-time M′. Since the isometric embedding
CT ⊂MT extends to an isometric embedding of a neighborhood of CT in ΩT

into MT , according to Lemma 14.11, the horizontal metrics glue together
to make a smooth metric on space-time satisfying the generalized Ricci flow
equation, and hence defining a Ricci flow with surgery on (M′, G′).

Notice that the continuing region at time T is exactly CT whereas the
exposed region is

∐
iBi, which is a disjoint union of 3-balls. The disap-

pearing region is the complement of the embedding of CT in Mt′ for t′ < T
but sufficiently close to it, the embedding obtained by flowing CT ⊂ ΩT

backward. The disappearing region contains Mt′ \ Ω(T ) and also contains
all components of Ω(T ) that do not contains points of Ωρ(T ), as well as the
ends of those components of Ω(T ) that contain points of Ωρ(T ).

Definition 15.8. The operation described in the previous paragraph is
the surgery operation at time T using the surgery parameters δ(T ) and ri+1.

5. Statements about the existence of Ricci flow with surgery

What we shall establish is the existence of surgery satisfying Assump-
tions (1) – (7) above and also satisfying the curvature pinched toward pos-
itive assumption, the strong canonical neighborhood assumption, and the
non-collapsing assumption. This requires first of all that we begin with a
compact, Riemannian 3-manifold (M,g(0)) that is normalized, which we
are assuming. It also requires careful choice of upper bounds ∆ = {δi}
for the surgery control parameter δ(t) and careful choice of the canonical
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neighborhood parameter r = {ri} and of the non-collapsing step function
K = {κi}.

Here is the statement that we shall establish.

Theorem 15.9. There are surgery parameter sequences

K = {κi}∞i=1,∆ = {δi}∞i=1, r = {ri}∞i=1

such that the following holds. Let r(t) be the step function whose value on
[Ti−1, Ti) is ri. Suppose that δ : [0,∞) → R

+ is any non-increasing function
with δ(t) ≤ δi whenever t ∈ [Ti−1, Ti). Then the following holds: Suppose
that (M, G) is a Ricci flow with surgery defined for 0 ≤ t < T satisfying
Assumptions (1) – (7). In addition, suppose the following conditions hold:

(1) the generalized flow has curvature pinched toward positive,
(2) the flow satisfies the strong (C, ǫ)-canonical neighborhood assump-

tion with parameter r on [0, T ), and
(3) the flow is K non-collapsed on [0, T ) on scales ≤ ǫ.

Then there is an extension of (M, G) to a Ricci flow with surgery defined
for all 0 ≤ t <∞ and satisfying Assumptions (1) – (7) and the above three
conditions.

This of course leads immediately to the existence result for Ricci flows
with surgery defined for all time with any normalized initial conditions.

Corollary 15.10. Let K, r and ∆ be surgery parameter sequences pro-
vided by the previous theorem. Let δ(t) be a non-increasing positive func-
tion with δ(t) ≤ ∆. Let M be a compact 3-manifold containing no RP 2

with trivial normal bundle. Then there is a Riemannian metric g(0) on M
and a Ricci flow with surgery defined for 0 ≤ t < ∞ with initial metric
(M,g(0)). This Ricci flow with surgery satisfies the seven assumptions and
is K-non-collapsed on scales ≤ ǫ. It also satisfies the strong (C, ǫ)-canonical
neighborhood assumption with parameter r and has curvature pinched toward
positive. Furthermore, any surgery at a time t ∈ [Ti, Ti+1) is done using δ(t)
and ri+1.

Proof. (Assuming Theorem 15.9) Choose a metric g(0) so that (M,g0)
is normalized. This is possible by beginning with any Riemannian metric
on M and scaling it by a sufficiently large positive constant to make it
normalized. According to Proposition 4.11 and the definitions of Ti and
κ0 there is a Ricci flow (M,g(t)) with these initial conditions defined for
0 ≤ t ≤ T2 satisfying Assumptions (1) – (7) and the three conditions of
the previous theorem. The assumption that M has no embedded RP 2 with
trivial normal bundle is needed so that Assumption (1) holds for this Ricci
flow. Hence, by the previous theorem we can extend this Ricci flow to
a Ricci flow with surgery defined for all 0 ≤ t < ∞ satisfying the same
conditions. �
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Showing that after surgery Assumptions (1) – (7) continue to hold and
that the curvature is pinched toward positive is direct and only requires that
δ(t) be smaller than some universal positive constant.

Lemma 15.11. Suppose that (M, G) is a Ricci flow with surgery going
singular at time T ∈ [Ti−1, Ti). We suppose that (M, G) satisfies Assump-
tions (1) - (7), has curvature pinched toward positive, satisfies the strong
(C, ǫ)-canonical neighborhood assumption with parameter r and is K non-
collapsed. Then the result of the surgery operation at time T on (M, G) is
a Ricci flow with surgery defined on [0, T ′) for some T ′ > T . The resulting
Ricci flow with surgery satisfies Assumptions (1) – (7). It also has curvature
pinched toward positive.

Proof. It is immediate from the construction and Lemma 14.11 that
the result of performing the surgery operation at time T on a Ricci flow
with surgery produces a new Ricci flow with surgery. Assumptions (1) – (3)
clearly hold for the result. and Assumptions (4) and (5) hold because of the
way that we do surgery. Let us consider Assumption (6). Fix t′ < T so that
there are no surgery times in [t′, T ). By flowing backward using the vector

field χ we have an embedding ψ : Ct × [t′, T ] → M̂ compatible with time
and the vector field. For any p ∈Mt′ \ ψ(intCT × {t′}) the limit as t tends
to T from below of the flow line p(t) at time t through p either lies in Ω(T )
or it does not. In the latter case, by definition we have

limt→T−R(p(t)) = ∞.

In the former case, the limit point either is contained in the end of a strong
2ǫ-horn cut off by the central 2-sphere of the strong δ-neck centered at one
of the yi or is contained in a component of Ω(T ) that contains no point of
Ωρ(T ). Hence, in this case we have

limt→T−R(p(t)) > ρ−2 > r−2
i .

Since Mt′ \ψ(intCT ×{t′}) is compact for every t′, there is T1 < T such that
R(p(t)) > r−2

i for all p ∈Mt′ \ψ(intCT ×{t′}) and all t ∈ [T1, T ). Hence, by
our assumptions all these points have strong (C, ǫ)-canonical neighborhoods.
This establishes that Assumption (6) holds at the singular time T . By
hypothesis Assumption (6) holds at all earlier singular times. Clearly, from
the construction the Ricci flow on [T, T ′) is maximal. Hence, Assumption
(7) holds for the new Ricci flow with surgery.

From Theorem 13.2 the fact that δ(T ) ≤ δi ≤ δ0 ≤ δ′0 and h(T ) ≤ R
−1/2
0

imply that the Riemannian manifold (MT , G(T )) has curvature pinched to-
ward positive for time T . It then follows from Theorem 4.32 that the Ricci
flow defined on [T, T ′) with (MT , G(T )) as initial conditions has curvature
pinched toward positive. The inductive hypothesis is that on the time-
interval [0, T ) the Ricci flow with surgery has curvature pinched toward
positive. This completes the proof of the lemma. �
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Proposition 15.12. Suppose that (M, G) is a Ricci flow with surgery
satisfying Assumptions (1) – (7) in Section 1.1. Suppose that T is a surgery
time, suppose that the surgery control parameter δ(T ) is less than δ0 in
Definition 15.7, and suppose that the scale of the surgery h(T ) is less than

R
−1/2
0 where R0 is the constant from Theorem 13.2. Fix t′ < T sufficiently

close to T . Then there is an embedding ρ : Mt′ × [t′, T ) → M compatible
with time and the vector field. Let X(t′) be a component of Mt′ and let
X(T ) be a component obtained from X(t′) by doing surgery at time T . We
view ρ∗G as a one-parameter family of metrics g(t) on X(t′). There is
an open subset Ω ⊂ X(t′) with the property that limt′→T−g(t′)|Ω exists (we
denote it by g(T )|Ω) and with the property that ρ|Ω×[t′,T ) extends to a map
ρ̂ : Ω × [t′, T ] → M. This defines a map for Ω ⊂ X(t′) onto an open subset
Ω(T ) of X(T ) which is an isometry from the limiting metric g(T ) on Ω to
G(T )|Ω. Suppose that all of the 2-spheres along which we do surgery are
separating. Then this map extends to a map X(t′) → X(T ). For all t < T
but sufficiently close to T this extension is a distance decreasing map from
(X(t′) \ Ω, g(t)) to X(T ).

Proof. This is immediate from the third item in Theorem 13.2. �

Remark 15.13. If we have a non-separating surgery 2-sphere then there
will a component X(T ) with surgery caps on both sides of the surgery
2-sphere and hence we cannot extend the map even continuously over all
of X(t′).

The other two inductive properties in Theorem 15.9 — that the re-
sult is K-non-collapsed and also that it satisfies the strong (C, ǫ)-canonical
neighborhood assumption with parameter r — require appropriate induc-
tive choices of the sequences. The arguments establishing these are quite
delicate and intricate. They are given in the next two sections.

6. Outline of the proof of Theorem 15.9

Before giving the proof proper of Theorem 15.9 let us outline how the
argument goes. We shall construct the surgery parameter sequences ∆,
r, and K inductively. Because of Proposition 4.11 we have the beginning
of the inductive process. We suppose that we have defined sequences as
required up to index i for some i ≥ 1. Then we shall extend them one more
step to sequences defined up to (i + 1), though there is a twist: to do this
we must redefine δi in order to make sure that the extension is possible.
In Chapter 16 we establish the non-collapsing result assuming the strong
canonical neighborhood result. More precisely, suppose that we have a Ricci
flow with surgery (M, G) defined for time 0 ≤ t < T with T ∈ (Ti, Ti+1]
so that the restriction of this flow to the time-interval [0, Ti) satisfies the
inductive hypothesis with respect to the given sequences. Suppose also that
the entire Ricci flow with surgery has strong (C, ǫ)-canonical neighborhoods
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for some ri+1 > 0. Then there is δ(ri+1) > 0 and κi+1 > 0 such that,
provided that δ(t) ≤ δ(ri+1) for all t ∈ [Ti−1, T ), the Ricci flow with surgery
(M, G) is κi+1-non-collapsed on scales ≤ ǫ.

In Section 1 of Chapter 17 we show that the strong (C, ǫ)-canonical
neighborhood assumption extends for some parameter ri+1, assuming again
that δ(t) ≤ δ(ri+1) for all t ∈ [Ti−1, T ).

Lastly, in Section 2 of Chapter 17 we complete the proof by showing that
the number of surgeries possible in [0, Ti+1) is bounded in terms of the initial
conditions and δ(T ). The argument for this is a simple volume comparison
argument. Namely, under Ricci flow with normalized initial conditions, the
volume grows at most at a fixed exponential rate and under each surgery an
amount of volume, bounded below by a positive constant depending only on
δ(Ti+1), is removed.



CHAPTER 16

Proof of non-collapsing

The precise statement of the non-collapsing result is given in the next
section. Essentially, the proof of non-collapsing in the context of Ricci flow
with surgery is the same as the proof in the case of ordinary Ricci flows.
Given a point x ∈ M, one finds a parabolic neighborhood whose size, r′,
is determined by the constants ri, C and ǫ, contained in t−1([Ti−1, Ti))
and on which the curvature is bounded by (r′)−2. Hence, by the induc-
tive hypothesis, the final time-slice of this neighborhood is κi-non-collapsed.
Furthermore, we can choose this neighborhood so that the reduced L-length
of its central point from x is bounded by 3/2. This allows us to produce
an open subset at an earlier time whose reduced volume is bounded away
from zero. Then using Theorem 8.1 we transfer this conclusion to a non-
collapsing conclusion for x. The main issue in this argument is to show that
there is a point in each earlier time-slice whose reduced length from x is
at most 3/2. We can argue as in the case of a Ricci flow if we can show
that any curve parameterized by backward time starting at x (a point where
the hypothesis of κ-non-collapsing holds) that comes close to a surgery cap
either from above or below must have large L-length. In establishing the
relevant estimates we are forced to require that δi be sufficiently small.

1. The statement of the non-collapsing result

Here, we shall assume that after surgery the strong canonical neighbor-
hood assumption holds, and we shall establish the non-collapsing result.

Proposition 16.1. Suppose that for some i ≥ 0 we have surgery pa-
rameter sequences δ0 ≥ δ1 ≥ · · · ≥ δi > 0, ǫ = r0 ≥ r1 ≥ · · · ≥ ri > 0
and κ0 ≥ κ1 ≥ · · · ≥ κi > 0. Then there is 0 < κ ≤ κi and for any
0 < ri+1 ≤ ri there is 0 < δ(ri+1) ≤ δi such that the following holds.
Suppose that δ : [0, Ti+1] → R

+ is a non-increasing function with δ(t) ≤ δj
for all t ∈ [Tj , Tj+1) and δ(t) ≤ δ(ri+1) for all t ∈ [Ti−1, Ti+1). Suppose
that (M, G) is a Ricci flow with surgery defined for 0 ≤ t < T for some
T ∈ (Ti, Ti+1] with surgery control parameter δ(t). Suppose that the restric-
tion of this Ricci flow with surgery to the time-interval [0, Ti) satisfies the
hypothesis of Theorem 15.9 with respect to the given sequences. Suppose also
that the entire Ricci flow with surgery (M, G) satisfies Assumptions (1) –

367
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(7) and the strong (C, ǫ)-canonical neighborhood assumption with parameter
ri+1. Then (M, G) is κ-non-collapsed on all scales ≤ ǫ.

Remark 16.2. Implicitly, κ and δ(ri+1) are also allowed to depend on
t0, ǫ, and C, which are fixed, and also i+1. Also recall that the non-collapsing
condition allows for two outcomes: if x is a point at which the hypothesis
of the non-collapsing holds, then there is a lower bound on the volume of
a ball centered at x, or x is contained in a component of its time-slice that
has positive sectional curvature.

2. The proof of non-collapsing when R(x) = r−2 with r ≤ ri+1

Let us begin with an easy case of the non-collapsing result, where non-
collapsing follows easily from the strong canonical neighborhood assumption,
rather than from using L-length and monotonicity along L-geodesics. We
suppose that we have a Ricci flow with surgery (M, G) defined for 0 ≤ t < T
with T ∈ [Ti, Ti+1), and a constant ri+1 ≤ ri, all satisfying the hypothesis
of Proposition 16.1. Here is the result that establishes the non-collapsing in
this case.

Proposition 16.3. Let x ∈ M with t(x) = t and with R(x) = r−2 ≥
r−2
i+1. Then there is κ > 0 depending only on C such that M is κ-non-

collapsed at x; i.e., if R(x) = r−2 with r ≤ ri+1, then VolB(x, t, r) ≥ κr3,
or x is contained in a component of Mt with positive sectional curvature.

Proof. Since R(x) ≥ r−2
i+1, by assumption any such x has a strong

(C, ǫ)-canonical neighborhood. If this neighborhood is a strong ǫ-neck cen-
tered at x, then the result is clear for a non-collapsing constant κ which is
universal. If the neighborhood is an ǫ-round component containing x, then
x is contained in a component of positive sectional curvature. Likewise, if
x is contained in a C-component, then by definition it is contained in a
component of its time-slice with positive sectional curvature.

Lastly, we suppose that x is contained in the core Y of a (C, ǫ)-cap C. Let
r′ > 0 be such that the supremum of |Rm| on B(x, t, r′) is (r′)−2. Then, by
the definition of a (C, ǫ)-cap, volB(x, t, r′) ≥ C−1(r′)3. Clearly, r′ ≤ r and

there is a point y ∈ B(x, t, r′) with R(y) = (r′)−2. On the other hand, by
the definition of a (C, ǫ)-cap, we have R(y)/R(x) ≤ C, so that r′/r ≥ C−1/2.

Thus, the volume of B(x, t, r) is at least C−5/2r3.
This completes an examination of all cases and establishes the proposi-

tion. �

3. Minimizing L-geodesics exist when R(x) ≤ r−2
i+1: the statement

The proof of the non-collapsing result when R(x) = r−2 with ri+1 < r ≤
ǫ is much more delicate. As we indicated above, it is analogous to the proof
of non-collapsing for Ricci flows given in Chapter 8. That is to say, in this
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case the result is proved using the length function on the Ricci flow with
surgery and the monotonicity of the reduced volume. Of course, unlike the
case of Ricci flows treated in Chapter 8, here not all points of a Ricci flow
with surgery M can be reached by minimizing L-geodesics, or rather more
precisely by minimizing L-geodesics contained in the open subset of smooth
points of M. (It is only for the latter L-geodesics that the analytic results
of Chapter 6 apply.) Thus, the main thing to establish in order to prove
non-collapsing is that for any Ricci flow with surgery (M, G) satisfying the
hypothesis of Proposition 16.1, there are minimizing L-geodesics in the open
subset of smooth points of M to ‘enough’ of M so that we can run the same
reduced volume argument that worked in Chapter 8. Here is the statement
that tells us that there are minimizing L-geodesics to ‘enough’ of M.

Proposition 16.4. For each ri+1 with 0 < ri+1 ≤ ri, there is δ =
δ(ri+1) > 0 (depending implicitly on t0, C, ǫ, and i) such that if δ(t) ≤ δ
for all t ∈ [Ti−1, Ti+1] then the following holds. Let (M, G) be a Ricci flow
with surgery satisfying the hypothesis of Proposition 16.1 with respect to the
given sequences and ri+1, and let x ∈ M have t(x) = T with T ∈ [Ti, Ti+1).
Suppose that for some r ≥ ri+1 the parabolic neighborhood P (x, r, T,−r2)
exists in M and |Rm| ≤ r−2 on this neighborhood. Then there is an open
subset U of t−1[Ti−1, T ) contained in the open subset of smooth manifold
points of M with the following properties:

(1) For every y in U there is a minimizing L-geodesic connecting x to
y.

(2) Ut = U ∩ t−1(t) is non-empty for every t ∈ [Ti−1, T ).
(3) For each t ∈ [Ti−1, T ) the restriction of L to Ut achieves its mini-

mum and that minimum is at most 3
√

(T − t).
(4) The subset of U consisting of all y with the property that L(y) ≤

L(y′) for all y′ ∈ t−1(t(y)) has the property that its intersection
with t−1(I) is compact for every compact interval I ⊂ [Ti−1, T ).

The basic idea in proving this result is to show that all paths beginning
at x and parameterized by backward time that come close to the exposed
regions have large L-length. If we can establish this, then the existence of
such paths will not be an impediment to using the analytic estimates from
Chapter 6 to show that for each t ∈ [Ti−1, T ) there is a point whose L-
length from x is at most 3

√
T − t, and that the set of points that minimize

the L-length from x in a given time-slice form a compact set.
Given Proposition 16.4, arguments from Chapter 8 will be applied to

complete the proof of Proposition 16.1.

4. Evolution of neighborhoods of surgery caps

We begin the analysis required to prove Proposition 16.4 by studying the
evolution of surgery caps. Proposition 16.5 below is the main result along
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these lines. Qualitatively, it says that if the surgery control parameter δ is
sufficiently small, then as a surgery cap evolves in a Ricci flow with surgery,
it stays near the rescaled version of the standard flow for any rescaled time
less than 1 unless the entire cap is removed (all at once) by some later
surgery. In that case, the evolution of the cap is close to the rescaled version
of the standard flow until it is removed. Using this result we will show that
if a path parameterized by backward time has final point near a surgery cap
and has initial point with scalar curvature not too large, then this path must
enter this evolving neighborhood either from the ‘top’ or ‘side’ and because
of the estimates that we derive in this chapter such a path must have large
L-length.

Proposition 16.5. Given A < ∞, δ′′ > 0 and 0 < θ < 1, there is
δ′′0 = δ′′0 (A, θ, δ′′) (δ′′0 also depends on ri+1, C, and ǫ, which are all now
fixed) such that the following holds. Suppose that (M, G) is a Ricci flow with
surgery defined for 0 ≤ t < T with surgery control parameter δ(t). Suppose
that it satisfies the strong (C, ǫ)-canonical neighborhood assumption at all
points x with R(x) ≥ r−2

i+1. Suppose also that (M, G) has curvature that is

pinched toward positive. Suppose that there is a surgery at some time t with

Ti−1 ≤ t < T with h as the surgery scale parameter. Set T ′ = min(T, t+θh
2
).

Let p ∈ Mt be the tip of the cap of a surgery disk. Then, provided that

δ(t) ≤ δ′′0 one of the following holds:

(a) There is an embedding ρ : B(p, t, Ah) × [t, T ′) → M compatible
with time and the vector field. Let g′(t), t ≤ t < T ′, be the one-
parameter family of metrics on B(p, t, Ah) given by ρ∗G. Shifting
this family by −t to make the initial time 0 and scaling it by h−2

produces a family of metrics g(t), 0 ≤ t < min((T − t)h−2, θ), on

Bg(p, 0, A) that are within δ′′ in the C [1/δ′′]-topology of the standard
flow on the ball of radius A at time 0 centered at the tip of its cap.

(b) There is t+ ∈ (t, T ′) and an embedding B(p, t, Ah) × [t, t+) → M
compatible with time and the vector field so that the previous item
holds with t+ replacing T ′. Furthermore, for any t < t+ but suf-
ficiently close to t+ the image of B(p, t, Ah) × {t} is contained in
the region Dt ⊂Mt that disappears at time t+.

See Fig. 1.

Proof. The method of proof is to assume that the result is false and
take a sequence of counterexamples with surgery control parameters δn tend-
ing to zero. In order to derive a contradiction we need to be able to take
smooth limits of rescaled versions of these Ricci flows with surgery, where
the base points are the tips of the surgery caps. This is somewhat delicate
since the surgery cap is not the result of moving forward for a fixed amount
of time under Ricci flow, and consequently Shi’s theorem does not apply.
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Figure 1. Evolution of a surgery cap.

Fortunately, the metrics on the cap are bounded in the C∞-topology so
that Shi’s theorem with derivatives does apply. Let us start by examining
limits of the sort we need to take.

Claim 16.6. Let (N, gN ) be a strong δ′-neck with N0 its middle half.
Suppose that (S, g) is the result of doing surgery on (the central 2-sphere) of
N , adding a surgery cap C to N−. Let h be the scale of N . Let (S0(N), g′) be
the union of N−

0 ∪C with its induced metric as given in Section 1 of Chapter
13, and let (S0(N), ĝ0) be the result of rescaling g0 by h−2. Then for every
ℓ <∞ there is a uniform bound to |∇ℓRmbg0(x)| for all x ∈ S0(N).

Proof. Since (N, gN ) is a strong δ′-neck of scale h, there is a Ricci flow
on N defined for backward time h2. After rescaling by h−2 we have a flow
defined for backward time 1. Furthermore, the curvature of the rescaled
flow is bounded on the interval (−1, 0]. Since the closure of N0 in N is
compact, the restriction of h−2gN to N0 ⊂ N at time 0 is uniformly bounded
in the C∞-topology by Shi’s theorem (Theorem 3.28). The bound on the
kth-derivatives of the curvature depends only on the curvature bound and
hence can be taken to be independent of δ′ > 0 sufficiently small and also
independent of the strong δ′-neck N . Gluing in the cap with a C∞-metric
that converges smoothly to the standard initial metric g0 as δ′ tends to zero
using a fixed C∞-partition of unity produces a family of manifolds uniformly
bounded in the C∞-topology. �

This leads immediately to:

Corollary 16.7. Given a sequence of δ′n → 0 and strong δ′n-necks
(N(n), gN(n)) of scales hn and results of surgery (S0(N(n)), g(n)) with tips
pn as in the previous claim, then after passing to a subsequence there is a
smooth limit (S∞, g∞, p∞) of a subsequence of the (S0(N(n)), h−2

n g0(n)), pn).
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This limit is the metric from Section 1 of Chapter 13 that gives the standard
initial conditions for a surgery cap.

Proof. That there is a smooth limit of a subsequence is immediate from
the previous claim. Since the δn tend to zero, it is clear that the limiting
metric is the standard initial metric. �

Lemma 16.8. Suppose that we have a sequence of 3-dimensional Ricci
flows with surgeries (Mn, Gn) that satisfy the strong (C, ǫ)-canonical neigh-
borhood assumption with parameter ri+1, and have curvature pinched toward
positive. Suppose that there are surgeries in Mn at times tn with surgery
control parameters δ′n and scales hn. Let pn be the tip of a surgery cap
for the surgery at time tn. Also suppose that there is 0 ≤ θn < 1 such
that for every A < ∞, for all n sufficiently large there are embeddings
B(pa, tn, Ahn) × [tn, tn + h2

nθn) → Mn compatible with time and the vec-
tor field. Suppose that δ′n → 0 and θn → θ < 1 as n→ ∞. Let (M′

n, G
′
n, pn)

be the Ricci flow with surgery obtained by shifting time by −tn so that surgery
occurs at t = 0 and rescaling by h−2

n so that the scale of the surgery becomes
1. Then, after passing to a subsequence, the sequence converges smoothly
to a limiting flow (M∞, g∞(t), (p∞, 0)), 0 ≤ t < θ. This limiting flow is
isomorphic to the restriction of the standard flow to time 0 ≤ t < θ.

Proof. Let Q < ∞ be an upper bound for the scalar curvature of the
standard flow on the time interval [0, θ). Since δ′n → 0, according to the
previous corollary, there is a smooth limit at time 0 for a subsequence, and
this limit is the standard initial metric. Suppose that, for some 0 ≤ θ′ < θ,
we have established that there is a smooth limiting flow on [0, θ′]. Since the
initial conditions are the standard solution, it follows from the uniqueness
statement in Theorem 12.5 that in fact the limiting flow is isomorphic to
the restriction of the standard flow to this time interval. Then the scalar
curvature of the limiting flow is bounded byQ. Hence, for any A <∞, for all
n sufficiently large, the scalar curvature of the restriction of G′

n to the image
of BG′

n
(pn, 0, 2A)× [0, θ′] is bounded by 2Q. According to Lemma 11.2 there

is an η > 0 and a constant Q′ <∞, each depending only on Q, ri+1, C and
ǫ, such that for all n sufficiently large, the scalar curvature of the restriction
of G′

n to BG′
n
(pn, 0, A) × [0,min(θ′ + η, θn)) is bounded by Q′. Because

of the fact that the curvature is pinched toward positive, this implies that
on the same set the sectional curvatures are uniformly bounded. Hence,
by Shi’s theorem with derivatives (Theorem 3.29), it follows that there are
uniform bounds for the curvature in the C∞-topology. Thus, passing to a
subsequence we can extend the smooth limit to the time interval [0, θ′+η/2]
unless θ′ + η/2 ≥ θ. Since η depends on θ (through Q), but is independent
of θ′, we can repeat this process extending the time-interval of definition of
the limiting flow by η/2 until θ′ + η/2 ≥ θ. Now suppose that θ′ + η/2 ≥ θ.
Then the argument shows that by passing to a subsequence we can extend
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the limit to any compact subinterval of [0, θ). Taking a diagonal sequence
allows us to extend it to all of [0, θ). By the uniqueness of the standard flow,
this limit is the standard flow. �

Corollary 16.9. With the notation and assumptions of the previous
lemma, for all A < ∞, and any δ′′ > 0, then for all n sufficiently large,
the restriction of G′

n to the image BG′
n
(pn, 0, A) × [0, θn) is within δ′′ in

the C [1/δ′′]-topology of the restriction of the standard solution to the ball of
radius A about the tip for time 0 ≤ t < θn.

Proof. Let η > 0 depending on θ (though Q) as well as ri+1, C and ǫ
be as in the proof of the previous lemma, and take 0 < η′ < η. For all n
sufficiently large θn > θ−η′, and consequently for all n sufficiently large there
is an embedding BGn(pn, tn, Ahn)× [tn, tn+h2

n(θ− η′)] into Mn compatible
with time and with the vector field. For all n sufficiently large, we consider
the restriction of G′

n to BG′
n
(pn, 0, A)× [0, θ− η′]. These converge smoothly

to the restriction of the standard flow to the ball of radius A on the time
interval [0, θ−η′]. In particular, for all n sufficiently large, the restrictions to

these time intervals are within δ′′ in the C [1/δ′′]-topology of the standard flow.
Also, for all n sufficiently large, θn− (θ− η′) < η. Thus, by Lemma 11.2, we
see that the scalar curvature of G′

n is uniformly bounded (independent of n)
on BG′

n
(pn, 0, A) × [0, θn). By the assumption that the curvature is pinched

toward positive, this means that the sectional curvatures of the G′
n are also

uniformly bounded on these sets, and hence so are the Ricci curvatures.
(Notice that these bounds are independent of η′ > 0.) By Shi’s theorem
with derivatives (Theorem 3.29), we see that there are uniform bounds on
the curvatures in the C∞-topology on these subsets, and hence bounds in
the C∞-topology on the Ricci curvature. These bounds are independent of
both n and η′. Thus, choosing η′ sufficiently close to zero, so that θn− η′ is
also close to θ for all n sufficiently large, we see that for all such large n and
all t ∈ [θ − η′, θ), the restriction of G′

n to BG′
n
(pn, 0, A) × {t} is arbitrarily

close in the C [1/δ′′]-topology to G′
n(θ−η′). The same is of course true of the

standard flow. This completes the proof of the corollary. �

Now we turn to the proof proper of Proposition 16.5. We fix A < ∞,
δ′′ > 0 and θ < 1. We are free to make A larger so we can assume by Proposi-
tion 12.7 that for the standard flow the restriction of the flow to B(p0, 0, A)\
B(p0, 0, A/2) remains close to a standard evolving S2 × [A/2, A] for time
[0, θ]. Let K < ∞ be a constant with the property that R(x, t) ≤ K for all
x ∈ B(p0, 0, A) in the standard flow and all t ∈ [0, θ]. If there is no δ′′0 > 0
as required, then we can find a sequence δ′n → 0 as n → ∞ and Ricci flows
with surgery (Mn, Gn) with surgeries at time tn with surgery control pa-
rameter δn(tn) ≤ δ′n and surgery scale parameter hn = h(ri+1δn(tn), δn(tn))
satisfying the hypothesis of the lemma but not the conclusion. Let T ′

n be
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the final time of (Mn, Gn). Let θn ≤ θ be maximal subject to the condi-
tion that there is an embedding ρn : BGn(x, tn, Ahn)× [tn, tn+h2

nθn) → Mn

compatible with time and the vector field. Let G′
n be the result of shifting

the time by −tn and scaling the result by h−2
n . According to Corollary 16.9,

for all n sufficiently large, the restriction of G′
n to the image of ρn is within

δ′′ in the C [1/δ′′]-topology of the standard flow restricted to the ball of ra-
dius A about the tip of the standard solution on the time interval [0, θn). If
θn = min(θ, (T ′

n−tn)/h2
n), then the first conclusion of Proposition 16.5 holds

for (Mn, Gn) for all n sufficiently large, which contradicts our assumption
that the conclusion of this proposition holds for none of the (Mn, Gn). If
on the other hand θn < min(θ, (T ′

n − tn)/h
2
n), we need only show that all of

B(xn, tn, Ahn) disappears at time tn + h2
nθn in order to show that the sec-

ond conclusion of Proposition 16.5 holds provided that n is sufficiently large.
Again this would contradict the fact that the conclusion of this proposition
holds for none of the (Mn, Gn).

So now let us suppose that θn < min(θ, (T ′
n − tn)/h

2
n). Since there is

no further extension in forward time for B(pn, tn, Ahn), it must be the case
that tn + h2

nθn is a surgery time and there is some flow line starting at a
point of B(pn, tn, Ahn) that does not continue to time tn+h2

nθn. It remains
to show that in this case that for any t < tn + h2

nθn sufficiently close to
tn + h2

nθn we have ρn (BGn(x, tn, Ahn) × {t}) ⊂ Dt, the region in Mt that
disappears at time tn + h2

nθn.

Claim 16.10. Suppose that θn < min(θ, (T ′
n − tn)/h

2
n). Let Σ1, . . . ,Σk

be the 2-spheres along which we do surgery at time tn + h2
nθn. Then for any

t < tn+h2
nθn sufficiently close to tn+h2

nθn the following holds provided that
δ′n is sufficiently small. The image

ρn (Bgn(x, tn, Ahn) × {t})
is disjoint from the images {Σi(t)} of the {Σi} under the backward flow to
time t of the spheres Σi along which we do surgery at time tn + h2

nθn.

Proof. There is a constant K ′ < ∞ depending on θ such that for the
standard flow we have R(x, t) ≤ K ′ for all x ∈ B(p0, 0, A) and all t ∈ [0, θ)
for the standard solution. Consider the image

ρn
(
B(pn, tn, Ahn) × [tn, tn + h2

nθn)
)
.

After time shifting by −tn and rescaling by h−2
n , the flow G′

n on the image of
ρn is within δ′′ of the standard flow. Thus, we see that for all n sufficiently
large and for every point x in the image of ρn we have RG′

n
(x) ≤ 2K ′ and

hence RGn(x) ≤ 2K ′h−2
n .

Let h′n be the scale of the surgery at time tn + h2
nθn. (Recall that hn is

the scale of the surgery at time tn.) Suppose that ρn(B(pn, tn, Ahn)× {t′})
meets one of the surgery 2-spheres Σi(t

′) at time t′ at a point y(t′). Then,
for all t ∈ [t′, tn + h2

nθn) we have the image y(t) of y(t′) under the flow. All
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these points y(t) are points of intersection of ρn(B(p, tn, Ahn) × {t}) with
Σi(t). Since y(t) ∈ ρn(B(p, tn, Ahn) × {t}), we have R(y(t)) ≤ 2K ′h−2

n . On
the other hand R(y(t))(h′n)

2 is within O(δ) of 1 as t tends to tn+h2
nθn. This

means that hn/h
′
n ≤

√
3K ′ for all n sufficiently large. Since the standard

solution has non-negative curvature, the metric is a decreasing function of t,
and hence the diameter of B(p0, t, A) is at most 2A in the standard solution.
Using Corollary 16.9 we see that for all n sufficiently large, the diameter of
ρn (B(p, tn, Ahn) × {t}) is at most Ahn ≤ 4

√
K ′Ah′n. This means that for

δ′n sufficiently small the distance at time t from Σi(t) to the complement
of the t time-slice of the strong δn(tn + h2

nθn)-neck Ni(t) centered at Σi(t)
(which is at least (δ′n)

−1h′n/2) is much larger than the diameter of

ρn(B(pn, tn, Ahn) × {t}).
Consequently, for all n sufficiently large, the image ρn(B(pn, tn, Ahn) ×
{t}) is contained in Ni(t). But by our choice of A, and Corollary 16.9
there is an ǫ-neck of rescaled diameter approximately Ahn/2 contained in
ρn(B(pn, tn, Ahn) × {t}). By Corollary A.3 the spheres coming from the
neck structure in

ρn(B(pn, tn, Ahn) × {t})
are isotopic in Ni(t) to the central 2-sphere of this neck. This is a contra-
diction because in Ni(t) the central 2-sphere is homotopically non-trivial
whereas the spheres in ρn(B(pn, tn, Ahn) × {t}) clearly bound 3-disks. �

Since ρn(B(pn, tn, Ahn)×{t}) is disjoint from the backward flow to time
t of all the surgery 2-spheres Σi(t) and since ρn(B(pn, tn, Ahn) × {t}) is
connected, if there is a flow line starting at some point z ∈ B(p, tn, Ahn) that
disappears at time tn+h2

nθn, then the flow from every point of B(p, tn, Ahn)
disappears at time tn + h2

nθn. This shows that if θn < min(θ, T ′
n − tn/h

2
n),

and if there is no extension of ρn to an embedding defined at time tn+h2
nθn,

then all forward flow lines beginning at points of B(p, tn, Ahn) disappear at
time tn + h2

nθn, which of course means that for all t < tn + h2
nθn sufficiently

close to tn + h2
nθn the entire image ρn(B(p, tn, Ahn) × {t}) is contained in

the disappearing region Dt. This shows that for all n sufficiently large, the
second conclusion of Proposition 16.5 holds, giving a contradiction.

This completes the proof of Proposition 16.5. �

Remark 16.11. Notice that it is indeed possible that BG(x, t,Ah) is re-
moved at some later time, for example as part of a capped ǫ-horn associated
to some later surgery.

5. A length estimate

We use the result in the previous section about the evolution of surgery
caps to establish the length estimate on paths parameterized by backward
time approaching a surgery cap from above.
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Definition 16.12. Let c > 0 be the constant from Proposition 12.31.

Fix 0 < δ0 < 1/4 such that if g is within δ0 of g0 in the C [1/δ]-topology then

|Rg′(x) −Rg0(x)| < c/2 and |Ricg′ − Ricg0| < 1/4.

Here is the length estimate.

Proposition 16.13. For any ℓ <∞ there is A0 = A0(ℓ) <∞, 0 < θ0 =
θ0(ℓ) < 1, and for any A ≥ A0 for the constant δ′′ = δ′′(A) = δ′′0 (A, θ0, δ0) >
0 from Proposition 16.5, the following holds. Suppose that (M, G) is a Ricci
flow with surgery defined for 0 ≤ t < T < ∞. Suppose that it satisfies the
strong (C, ǫ)-canonical neighborhood assumption at all points x with R(x) ≥
r−2
i+1. Suppose also that the solution has curvature pinched toward positive.

Suppose that there is a surgery at some time t with Ti−1 ≤ t < T with δ(t)
as the surgery control parameter and with h as the surgery scale parameter.
Then the following holds provided that δ(t) ≤ δ′′. Set T ′ = min(T, t+ h2θ0).
Let p ∈ Mt be the tip of the cap of a surgery disk at time t. Suppose that
P (p, t, Ah, T ′ − t) exists in M. Suppose that we have t′ ∈ [t, t + h2/2] with
t′ ≤ T ′, and suppose that we have a curve γ(τ) parameterized by backward
time τ ∈ [0, T ′ − t′] so that γ(τ) ∈ MT ′−τ for all τ ∈ [0, T ′ − t′]. Suppose
that the image of γ is contained in the closure of P (p, t, Ah, T ′ − t) ⊂ M.
Suppose further:

(1) either that T ′ = t + θ0h
2 ≤ T or that γ(0) ⊂ ∂B(p, t, Ah) × {T ′};

and
(2) γ(T ′ − t′) ∈ B(p, t, Ah/2) × t′.

Then ∫ T ′−t′

0

(
R(γ(t)) + |Xγ(t)|2

)
dt > ℓ.

See Fig. 2.

Proof. The logic of the proof is as follows. We fix ℓ <∞. We shall de-
termine the relevant value of θ0 and then of A0 in the course of the argument.
Then for any A ≥ A0 we define δ′′(A) = δ′′0 (A, θ0, δ0), as in Proposition 16.5.

The integral expression is invariant under time translation and also un-
der rescaling. Thus, we can (and do) assume that t = 0 and that the scale h
of the surgery is 1. We use the embedding of P (p, 0, A, T ′) → M and write
the restriction of the flow to this subset as a one-parameter family of metrics
g(t), 0 ≤ t ≤ T ′, on B(p, 0, A). With this renormalization, 0 ≤ t′ ≤ 1/2,
also T ′ ≤ θ0, and τ = T ′ − t.

Let us first consider the case when T ′ = θ0 ≤ T . Consider the standard
flow (R3, g0(t)), and let p0 be its tip. According to Proposition 12.31, for all
x ∈ R

3 and all t ∈ [0, 1) we have Rg0(x, t) ≥ c/(1 − t). By Proposition 16.5

and since we are assuming that δ(t) ≤ δ′′ = δ′′0 (A, θ0, δ0), we have that
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γ′

γ

surgery cap

evolution of cap
close to standard
flow

Ricci flow
with surgery

l(γ) ≥ ℓ, l(γ′) ≥ ℓ

Figure 2. Paths in evolving surgery caps are long.

R(a, t) ≥ c/2(1 − t) for all a ∈ B(p, 0, A) and all t ∈ [0, θ]. Thus, we have
∫ θ0−t′

0

(
R(γ(τ)) + |Xγ(τ)|2

)
dτ ≥

∫ θ0

t′

c

2(1 − t)
dt

=
−c
2

(
log(1 − θ0) − log(1 − t′)

)
dt

≥ −c
2

(log(1 − θ0) + log(2)) .

Hence, if θ0 < 1 sufficiently close to 1, the integral will be > ℓ. This fixes
the value of θ0.

Claim 16.14. There is A′
0 < ∞ with the property that for any A ≥ A′

0

the restriction of the standard solution g0(t) to (B(p0, 0, A) \B(p0, 0, A/2))×
[0, θ0] is close to an evolving family (S2 × [A/2, A], h0(t) × ds2). In partic-
ular, for any t ∈ [0, θ0], the g0-distance at time t from B(p0, 0, A/2) to the
complement of B(p0, 0, A) in the standard solution is more than A/4.

Proof. This is immediate from Proposition 12.7 and the fact that θ0 <
1. �

Now fix A0 = max(A′
0, 10

√
ℓ) and let A ≥ A0.

Since δ0 < 1/4 and since T ′ ≤ θ0, for δ(t) ≤ δ′′0 (A, θ0, δ0) by Proposi-
tion 16.5 the g(T ′)-distance between B(p, 0, A/2) and ∂B(p, 0, A) is at least
A/5.

Since the flow on B(p, 0, A)× [0, T ′] is within δ0 of the standard solution,
and since the curvature of the standard solution is non-negative, for any
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horizontal tangent vector X at any point of B(p, 0, A)× [0, T ′] we have that

Ricg(X,X) ≥ −1

4
|X|2g0 ≥ −1

2
|X|2g,

and hence
d

dt
|X|2g ≤ |X|2g.

Because T ′ ≤ 1, we see that

|X|2g(T ′) ≤ e · |X|2g(t) < 3|X|2g(t)
for any t ∈ [0, T ′].

Now suppose that γ(0) ∈ ∂B(p, 0, A) × {T ′}. Since the image of γ
is contained in the closure of P (p, 0, A, T ′), for every τ ∈ [0, T ′] we have√

3|Xγ(τ)|g(T ′−τ) ≥ |Xγ(τ)|g(T ′). Since the flow g(t) on P (p, 0, A, T ′) is

within δ0 in the C [1/δ0]-topology of the standard flow on the corresponding
parabolic neighborhood, R(γ(t)) ≥ 0 for all t ∈ [0, T ′]. Thus, because of
these two estimates we have

(16.1)

∫ T ′−t′

0

(
R(γ(τ)) + |Xγ(τ)|2

)
dτ ≥

∫ T ′−t′

0

1

3
|Xγ(τ)|2g(T ′)dτ.

Since γ(0) ∈ ∂B(p, 0, A) × {T ′} and γ(T ′) ∈ B(p, 0, A/2), it follows from
Cauchy-Schwarz that

(T ′ − t′)2
∫ T ′

0
|Xγ(τ)|2g(T ′)dτ ≥

(∫ T ′−t′

0
|Xγ(τ)|g(T ′)dτ

)2

≥
(
dg(T ′)(B(p, 0, A/2), ∂B(p, 0, A))

)2 ≥ A2

25
.

Since T ′ − t′ < 1, it immediately follows from this and Equation (16.1) that
∫ T ′−t′

0

(
R(γ(τ)) + |Xγ(τ)|2

)
dτ ≥ A2

75
.

Since A ≥ A0 ≥ 10
√
ℓ, this expression is > ℓ. This completes the proof of

Proposition 16.13 �

5.1. Paths with short L+-length avoid the surgery caps. Here
we show that a path parameterized by backward time that ends in a surgery
cap (or comes close to it) must have long L-length. Let (M, G) be a Ricci
flow with surgery, and let x ∈ M be a point with t(x) = T ∈ (Ti, Ti+1].
We suppose that these data satisfy the hypothesis of Proposition 16.4 with
respect to the given sequences and r ≥ ri+1 > 0. In particular, the para-
bolic neighborhood P (x, T, r,−r2) exists in M and |Rm| is bounded on this
parabolic neighborhood by r−2.

Actually, here we do not work directly with the length function L de-
fined from x, but rather with a closely related function. We set R+(y) =
max(R(y), 0).
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Lemma 16.15. Given L0 < ∞, there is δ1 = δ1(L0, ri+1) > 0, indepen-
dent of (M, G) and x, such that if δ(t) ≤ δ1 for all t ∈ [Ti−1, T ), then for
any curve γ(τ), 0 ≤ τ ≤ τ0, with τ0 ≤ T − Ti−1, parameterized by backward
time with γ(0) = x and with

L+(γ) =

∫ τ0

0

√
τ
(
R+(γ(τ)) + |Xγ |2

)
dτ < L0,

the following two statements hold:

(1) Set

τ ′ = min

(
r4i+1

(256)L2
0

, ln(
3
√

2)r2i+1

)
.

Then for all τ ≤ min(τ ′, τ0) we have γ(τ) ∈ P (x, T, r/2,−r2).
(2) Suppose that t ∈ [T − τ0, T ) is a surgery time with p being the tip

of the surgery cap at time t and with the scale of the surgery being

h. Suppose t′ ∈ [t, t+ h
2
/2] is such that there is an embedding

ρ : B(p, t, (50 +A0)h) × [t, t′] → M
compatible with time and the vector field. Then the image of ρ is
disjoint from the image of γ. See Fig. 3.

Remark 16.16. Recall that (A0 + 4)h is the radius of the surgery cap
(measured in the rescaled version of the standard initial metric) that is glued
in when performing surgery with scale h.

Figure 3. Avoiding neighborhoods of surgery caps
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Proof. We define ℓ = L0/
√
τ ′, then define A = max(A0(ℓ), 2(50+A0))

and θ = θ0(ℓ). Here, A0(ℓ) and θ0(ℓ) are the constants in Proposition 16.13.
Lastly, we require δ1 ≤ δ′′(A) from Proposition 16.13. Notice that, by
construction, δ′′(A) = δ′′0 (A, θ, δ0) from Proposition 16.5. Thus, if p is the

tip of a surgery cap at time t with the scale of the surgery being h, then it
follows that for any ∆t ≤ θ, if there is an embedding

ρ : B(p, t, Ah) × [t, t+ h
2
∆t) → M

compatible with time and the vector field, then the induced flow (after time

shifting by −t and scaling by h−2) is within δ0 in the C [1/δ0]-topology of the
standard solution. In particular, the scalar curvature at any point of the
image of ρ is positive and is within a multiplicative factor of 2 of the scalar
curvature at the corresponding point of the standard flow.

Recall that we have r ≥ ri+1 and that P (x, T, r,−r2) exists in M and
that |Rm| ≤ r−2 on this parabolic neighborhood. We begin by proving
by contradiction that there is no τ ≤ τ ′ with the property that γ(τ) 6∈
P (x, T, r/2,−r2). Suppose there is such a τ ≤ τ ′. Notice that by con-
struction τ ′ < r2i+1 < r2. Hence, for the first τ ′′ with the property that

γ(τ ′′) 6∈ P (x, T, r/2,−r2) the point γ(τ ′′) ∈ ∂B(x, T, r/2) × {T − τ ′′}.

Claim 16.17.
∫ τ ′′
0 |Xγ(τ)|dτ > r/2

√
2.

Proof. Since |Rm| ≤ r−2 on P (x, T, r,−r2), it follows that |Ric| ≤ 2r−2

on P (x, T, r,−τ ′′). Thus, for any tangent vector v at a point of B(x, T, r)
we have ∣∣∣∣

d(〈v, v〉G(T−τ))

dτ

∣∣∣∣ ≤ 2r−2〈v, v〉G(T−τ)

for all τ ∈ [0, τ ′′]. Integrating gives that for any τ ≤ τ ′′ we have

exp(−2r−2τ ′′)〈v, v〉G(T ) ≤ 〈v, v〉G(T−τ) ≤ exp(2r−2τ ′′)〈v, v〉G(T ).

Since τ ′′ ≤ τ ′ and r ≥ ri+1 by the assumption on τ ′ we have

exp(2r−2τ ′′) ≤ exp(2
3
√

2) < 2.

This implies that for all τ ≤ τ ′′ we have

1√
2
|Xγ(τ)|G(T ) < |Xγ(τ)|G(T−τ) <

√
2|Xγ(τ)|G(T ),

and hence
∫ τ ′′

0
|Xγ(τ)|dτ >

1√
2

∫ τ ′′

0
|Xγ(τ)|G(T ) ≥

r

2
√

2
,

where we use the fact that dT (γ(0), γ(τ ′′)) = r/2. �
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Applying Cauchy-Schwarz to τ1/4|Xγ | and τ−1/4 on the interval [0, τ ′′]
yields

∫ τ ′′

0

√
τ
(
R+(γ(τ)) + |Xγ(τ)|2

)
dτ ≥

∫ τ ′′

0

√
τ |Xγ(τ)|2dτ

≥

(∫ τ ′′
0 |Xγ(τ)|dτ

)2

∫ τ ′′
0 τ−1/2dτ

>
r2

16
√
τ ′′

≥ L0.

Of course, the integral from 0 to τ ′′ is less than or equal to the entire
integral from 0 to τ0 since the integrand is non-negative, contradicting the
assumption that L+(γ) ≤ L0. This completes the proof of the first numbered
statement.

We turn now to the second statement. We impose a further condition
on δ1. Namely, require that δ 2

1 < ri+1/2. Since ri ≤ r0 ≤ ǫ < 1, we have

δ 2
1 ri < ri+1/2. Thus, the scale of the surgery, h, which is ≤ δ

2
1ri by definition,

will also be less than ri+1/2, and hence there is no point of P (x, T, r,−r2)
(where the curvature is bounded by r−2 ≤ r−2

i+1) in the image of ρ (where

the scalar curvature is greater than h−2/2 > 2r−2
i+1). Thus, if τ ′ ≥ τ0 we

have completed the proof. Suppose that τ ′ < τ0. It suffices to establish that
for every τ1 ∈ [τ ′, τ0] the point γ(τ1) is not contained in the image of ρ for
any surgery cap and any t′ as in the statement. Suppose that in fact there is
τ1 ∈ [τ ′, τ0] with γ(τ1) contained in the image of ρ(B(p, t, (A0+50)h)× [t, t′])
where t ≤ t′ ≤ t+ h2/2 and where p is the tip of some surgery cap at time
t. We estimate

∫ τ0

0

√
τ
(
R+(γ(τ)) + |Xγ(τ)|2

)
dτ ≥

∫ τ0

τ ′

√
τ
(
R+(γ(τ)) + |Xγ(τ)|2

)
dτ

(16.2)

≥
√
τ ′
∫ τ1

τ ′

(
R+(γ(τ)) + |Xγ(τ)|2

)
dτ.

Let ∆t ≤ T − t be the supremum of the set of s for which there
is a parabolic neighborhood P (p, t, Ah, s) embedded in t−1((−∞, T ]) ⊂
M. Let ∆t1 = min(θh

2
,∆t). We consider P (p, t, Ah,∆t1). First, no-

tice that since h ≤ δ 2
1 ri < ri+1/2, the scalar curvature on P (p, t, Ah,∆t1)

is larger than h−2/2 > r−2
i+1 ≥ r−2. In particular, the parabolic neigh-

borhood P (x, T, r,−r2) is disjoint from P (p, t, Ah,∆t1). This means that
there is some τ ′′ ≥ τ ′ such that γ(τ ′′) ∈ ∂P (p, t, Ah,∆t1) and γ|[τ ′′,τ1] ⊂
P (p, t, Ah,∆t1). There are two cases to consider. The first is when ∆t1 =
θh 2, τ ′′ = T−(t+∆t1) and γ(τ ′′) ∈ B(p, t, Ah)×{t+∆t1}. Then, according
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to Proposition 16.13,

(16.3)

∫ τ1

τ ′′
R+(γ(τ))dτ > ℓ.

Now let us consider the other case. If ∆t1 < θh 2, this means that either
t+ ∆t1 = T or, according to Proposition 16.5, at the time t+ ∆t1 there is
a surgery that removes all of B(p, t, Ah). Hence, under either possibility it
must be the case that γ(τ ′′) ∈ ∂B(p, t, Ah)×{T − τ ′′}. Thus, the remaining
case to consider is when, whatever ∆t1 is, γ(τ ′′) ⊂ ∂B(p, t, Ah)×{T − τ ′′}.
Lemma 16.13 and the fact that R ≥ 0 on P (p, t, Ah,∆t1) imply that

ℓ <

∫ τ1

τ ′′

(
R(γ(τ)) + |Xγ(τ)|2

)
dτ =

∫ τ1

τ ′′

(
R+(γ(τ)) + |Xγ(τ)|2

)
dτ.

Since ℓ = L0/
√
τ ′ and τ ′′ ≥ τ ′, it follows from Equation (16.2) that in

both cases

L+(γ) ≥
∫ τ1

τ ′′

√
τ
(
R+(γ(τ)) + |Xγ(τ)|2

)
dτ > ℓ

√
τ ′ = L0,

which contradicts our hypothesis. This completes the proof of Lemma 16.15.
�

5.2. Paths with small energy avoid the disappearing regions.
At this point we have shown that paths of small energy do not approach
the surgery caps from above. We also need to rule out that they can be
arbitrarily close from below. That is to say, we need to see that paths whose
L-length is not too large avoid neighborhoods of the disappearing regions
at all times just before the surgery time at which they disappear. Unlike
the previous estimates which were universal for all (M, G) satisfying the
hypothesis of Proposition 16.4, in this case the estimates will depend on the
Ricci flow with surgery. First, let us fix some notation.

Definition 16.18. Suppose that t is a surgery time, that τ1 > 0,
and that there are no other surgery times in the interval (t − τ1, t]. Let
{Σi(t)}i be the 2-spheres on which we do surgery at time t. Each Σi

is the central 2-sphere of a strong δ-neck Ni. We can flow the cylinders
J0(t) = ∪is−1

Ni
(−25, 0]) backward to any time t ∈ (t− τ1, t]. Let J0(t) be the

result. There is an induced function, denoted
∐
i sNi(t), on J0(t). It takes

values in (−25, 0]. We denote the boundary of J0(t) by
∐
iΣi(t). Of course,

this boundary is the result of flowing
∐
iΣi(t) backward to time t. (These

backward flows are possible since there are no surgery times in (t − τ1, t).)
For each t ∈ [t− τ1, t) we also have the region, Dt, that disappears at time
t. It is an open submanifold whose boundary is

∐
iΣi(t). Thus, for every

t ∈ (t−τ1, t) the subset J(t) = J0(t)∪Dt is an open subset of Mt. We define

J(t− τ1, t) = ∪t∈(t−τ1,t)J(t).

Then J(t− τ1, t) is an open subset of M. See Fig. 4.
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Figure 4. Paths of short length avoid disappearing regions.

Lemma 16.19. Fix a Ricci flow with surgery (M, G), a point x ∈ M
and constants r ≥ ri+1 > 0 as in the statement of Proposition 16.4. For
any 1 < ℓ < ∞ the following holds. Suppose that t ∈ [Ti−1, T ) is a surgery
time and that γ(τ) is a path with γ(τ) ∈ Mt−τ . Let {p1, . . . , pk} be the tips

of all the surgery caps at time t and let h be the scale of surgery at time

t. Suppose that for some 0 < τ1 ≤ ℓ−1h
2

there are no surgery times in the
interval (t− τ1, t). We identify all Mt for t ∈ [t− τ0, t) with Mt−τ1 using the

flow. Suppose that γ(0) ∈Mt \ ∪ki=1B(pi, t, (50 +A0)h), and lastly, suppose
that ∫ τ1

0
|Xγ(τ)|2dτ ≤ ℓ.

Then γ is disjoint from the open subset J(t− τ1, t)) of M.

Proof. Suppose that the lemma is false and let γ : [0, τ ] → M be a
path satisfying the hypothesis of the lemma with γ(τ ) ∈ J(t− τ1, t). Since

γ(0) ∈Mt \ ∪iB(pi, t, (50 +A0)h),

if follows that γ(0) is separated from the boundary of s−1
Ni

(−25, 0] by distance

at least 20h. Since the J0(t) are contained in the disjoint union of strong
δ-necks Ni centered at the 2-spheres along which we do surgery, and since
τ1 ≤ h 2/ℓ < h 2, it follows that, provided that δ is sufficiently small, for
every t ∈ [t− τ1, t), the metric on J0(t) is at least 1/2 the metric on J0(t). It
follows that, for δ sufficiently small, if there is a τ ∈ [0, τ1] with γ(τ) ∈ J(t)
then

∫ τ1
0 |Xγ |dτ > 10h. Applying Cauchy-Schwarz we see that

∫ τ1

0
|Xγ(τ)|2dτ ≥ (10h)2/τ1.
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Since τ1 ≤ ℓ−1h 2, we see that
∫ τ ′

0
|Xγ(τ)|2dτ > ℓ,

contradicting our hypothesis. �

5.3. Limits of a sequence of paths with short L-length. Now
using Lemmas 16.15 and 16.19 we show that it is possible to take limits
of certain types of sequences of paths parameterized by backward time to
create minimizing L-geodesics.

We shall work with a compact subset of t−1([Ti−1, T ]) that is obtained
by removing appropriate open neighborhoods of the exposed regions.

Definition 16.20. Fix ℓ <∞. Let θ0 = θ0(ℓ) be as in Proposition 16.13.
For each surgery time t ∈ [Ti−1, T ], let h(t) be the scale of the surgery. Let
p1, . . . , pk be the tips of the surgery caps at time t. For each 1 ≤ j ≤ k, we
consider Bj(t) = B(pj, t, (A0 + 10)h(t)), and we let

∆tj ≤ min(θ0, (T − t)/h2(t))

be maximal subject to the condition that there is an embedding ρj : Bj(t)×
[t, t+ h2(t)∆tj) into M compatible with time and the vector field. Clearly,

B′
j = B(pj, t, (10 + A0)h) ∩ Ct is contained in J(t). Let t

′
be the previous

surgery time if there is one, otherwise set t
′

= 0. Also for each t we set

τ1(ℓ, t) = min
(
h(t)2/ℓ, t− t

′
)
. For each t ∈ (t−τ1(ℓ, t), t) let J̃(t) ⊂ J(t) be

the union of Dt, the disappearing region at time t, and
∐
iB

′
i(t), the result

of flowing
∐
iB

′
i backward to time t. Then we set

J̃(t− τ1(ℓ, t), t) ⊂ J(t− τ1(ℓ, t), t)

equal to the union over t ∈ (t− τ1(ℓ, t), t) of J̃(t).
By construction, for each surgery time t, the union

νsing(ℓ, t) = J̃(t− τ1(ℓ, t), t) ∪ ∪iBi × [t, t+ h2(t)∆ti)

is an open subset of M containing all the exposed regions and singular points
at time t.

We define Y (ℓ) ⊂ t−1([Ti−1, T ]) to be the complement of the ∪tνsing(ℓ, t)
where the union is over all surgery times t ∈ [Ti−1, T ]. Clearly, Y (ℓ) is a
closed subset of t−1([Ti−1, T ]) and hence Y (ℓ) is a compact subset contained
in the open subset of smooth points of M. (Notice that Y (ℓ) depends on ℓ
because τ1(ℓ, t) and θ0 depend on ℓ.)

Proposition 16.21. Fix 0 < L <∞. Set

L0 = L+ 4(Ti+1)
3/2.

Suppose that for all t ∈ [Ti−1, Ti+1], the surgery control parameter δ(t) ≤
δ1(L0, ri+1) where the right-hand side is the constant from Lemma 16.15.
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Suppose that γn is a sequence of paths in (M, G) parameterized by backward
time τ ∈ [0, τ ] with τ ≤ T − Ti−1, with γn(0) = x and with

L(γn) ≤ L

for all n. Then:

(1) After passing to a subsequence, there is a limit γ defined on [0, τ ].
The limit γ is a continuous path and is a uniform limit of the γn.
The limit is contained in the open subset of smooth points of M
and has finite L-length satisfying

L(γ) ≤ liminfn→∞L(γn).

(2) If there is a point y ∈ MT−τ such that γn(τ) = y for all n, and if
the γn are a sequence of paths parameterized by backward time from
x to y with limn→∞L(γn) being no greater than the L-length of any
path from x to y, then the limit γ of a subsequence is a minimizing
L-geodesic connecting x to y contained in the open subset of smooth
points of M.

(3) There is ℓ <∞ depending only on L such that any path γ parame-
terized by backward time from x to a point y ∈ t−1([Ti−1, T )) whose
L-length is at most L is contained in the compact subset Y (ℓ) given
in the previous definition.

Proof. Given L0, we set

τ ′ = min

(
r4i+1

(256)L2
0

, ln(
3
√

2)r2i+1

)

as in Lemma 16.15 and then define ℓ = L0/
√
τ ′. We also let

A = min(2(50 +A0), A0(ℓ)) and θ0 = θ0(ℓ)

be as in Proposition 16.13. Lastly, we let δ1(L0, ri+1) = δ′′(A) = δ′′(A, θ0, δ0)
from Propositions 16.13 and 16.5. We suppose that δ(t) ≤ δ1(L0, ri+1) for
all t ∈ [Ti−1, T ].

Let t ∈ [Ti−1, T ] be a surgery time, and let h be the scale of the surgery
at this time. For each surgery cap C with tip p at a time t ∈ [Ti−1, T ] let

∆t(C) be the supremum of those s with 0 ≤ s ≤ θ0h
2

for which there is an
embedding

ρC : B(p, t, 2(A0 + 50)h) × [t, t+ s) → M
compatible with time and the vector field. We set

P0(C) = ρC
(
B(p, t, (A+ 50)h) × [t, t+ min(h 2/2,∆t(C)))

)
.

Claim 16.22. Any path γ beginning at x and parameterized by backward
time misses P0(C) if L(γ) < L.
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Proof. Set τ0 = T−t. Of course, τ0 ≤ T−Ti−1 ≤ Ti+1−Ti−1. Consider
the restriction of γ to [0, τ0]. We have
∫ τ0

0

√
τ
(
R+(γn(τ)) + |Xγn(τ)|2

)
dτ

≤
∫ T−Ti−1

0

√
τ
(
R+(γn(τ)) + |Xγn(τ)|2

)
dτ

≤
∫ T−Ti−1

0

√
τ
(
R(γn(τ)) + |Xγn(τ)|2

)
dτ +

∫ T−Ti−1

0
6
√
τdτ

=

∫ T−Ti−1

0

√
τ
(
R(γn(τ)) + |Xγn(τ)|2

)
dτ + 4(T − Ti−1)

3/2

≤
∫ τ0

0

√
τ
(
R(γn(τ)) + |Xγn(τ)|2

)
dτ + 4(Ti+1)

3/2.

Thus, the hypothesis that L(γn) ≤ L implies that

(16.4)

∫ τ0

0

√
τ
(
R+(γn(τ)) + |Xγn(τ)|2

)
dτ ≤ L0.

The claim now follows immediately from Lemma 16.15. �

Now set t′ equal to the last surgery time before t or set t′ = 0 if t is the
first surgery time. We set τ1(t) equal to the minimum of t− t′ and h 2/ℓ.

Assume that γ(0) = x and that L(γ) ≤ L. It follows from Lemma 16.15
that the restriction of the path γ to [0, τ ′] lies in a region where the Riemann
curvature is bounded above by r−2 ≤ r−2

i+1. Hence, since h < δ(t)2ri+1 ≪
ri+1, this part of the path is disjoint from all strong δ-necks (evolving back-
ward for rescaled time (−1, 0]). That is to say, γ|[0,τ ′] is disjoint from J0(t)

for every t ∈ (t− τ1(t), t) for any surgery time t ≤ T . It follows immediately
that γ|[0,τ ′] is disjoint from J(t− τ1(t), t).

Claim 16.23. For every surgery time t ∈ [Ti−1, T ], the path γ starting
at x with L(γ) ≤ L is disjoint from J(t, t− τ1(t)).

Proof. By the remarks above, it suffices to consider surgery times t ≤
T − τ ′. It follows immediately from the previous claim that for any surgery
time t, with the scale of the surgery being h and with p being the tip of a
surgery cap at this time, we have γ is disjoint from B(p, t, (50+A0)h). Also,

∫ T−t+τ1(t)

T−t

√
τ |Xγ(τ)|2dτ ≤ L+(γ) ≤ L0.

Since we can assume T − t ≥ τ ′ this implies that
∫ T−t−τ1(t)

T−t
|Xγ(τ)|2dτ ≤ L0/

√
τ ′ = ℓ.

The claim is now immediate from Lemma 16.19. �
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From these two claims we see immediately that γ is contained in the
compact subset Y (ℓ) which is contained in the open subset of smooth points
of M. This proves the third item in the statement of the proposition. Now
let us turn to the limit statements.

Take a sequence of paths γn as in the statement of Proposition 16.21.
By Lemma 16.15 the restriction of each γn to the interval [0,min(τ , τ ′)] is
contained in P (x, T, r/2,−r2). The arguments in the proof of Lemma 7.2
(which involve changing variables to s =

√
τ) show that, after passing to a

subsequence, the restrictions of the γn to [0,min(τ , τ ′)] converge uniformly
to a path γ defined on the same interval. Furthermore,

∫ min(τ ,τ ′)

0

√
τ |Xγ(τ)|2dτ ≤ liminfn→∞

∫ min(τ ,τ ′)

0

√
τ |Xγn(τ)|2dτ,

so that

(16.5)

∫ min(τ ,τ ′)

0

√
τ
(
R(γ(τ) + |Xγ(τ)|2

)
dτ

≤ liminfn→∞

∫ min(τ ,τ ′)

0

√
τ
(
R(γn(τ)) + |Xγn(τ)|2

)
dτ.

If τ ≤ τ ′, then we have established the existence of a limit as required.
Suppose now that τ > τ ′. We turn our attention to the paths γn|[τ ′,τ ].
Let Ti−1 < t ≤ T − τ ′ be either a surgery time or T − τ ′, and let t′ be
the maximum of the last surgery time before t and Ti−1. We consider the
restriction of the γn to the interval [T − t, T − t′]. As we have seen, these
restrictions are disjoint from J(t− τ1(t), t) and also from the exposed region
at time t, which is denoted E(t), and from J0(t). Let

Y = t−1([T − t′, T − t]) \
(
J(t− τ1(t), t) ∪ (E(t) ∪ J0(t))

)
.

This is a compact subset with the property that any point y ∈ Y is connected
by a backward flow line lying entirely in Y to a point y(t′) contained in Mt′ .

Since Y is compact there is a finite upper bound on the Ricci curvature
on Y , and hence to Lχ(G) at any point of Y . Since all backward flow lines
from points of Y extend all the way to Mt′ , it follows that there is a constant
C ′ such that

|Xγn(τ)|G(t′) ≤ C ′|Xγn(τ)|G(t)

for all t ∈ [t′, t]. Our hypothesis that the L(γn) are uniformly bounded, the
fact that the curvature is pinched toward positive and the fact that there is
a uniform bound on the lengths of the τ -intervals imply that the

∫ T−t′

T−t

√
τ |Xγn(τ)|2dτ

are uniformly bounded. Because T − t is at least τ ′ > 0, it follows that the∫ T−t′
T−t |Xγn |2dτ have a uniform upper bound. This then implies that there
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is a constant C1 such that for all n we have
∫ T−t′

T−t
|Xγn(τ)|2G(t′)dτ ≤ C1.

Thus, after passing to a subsequence, the γn converge uniformly to a con-
tinuous γ defined on [T − t, T − t′]. Furthermore, we can arrange that the
convergence is a weak convergence in W 1,2. This means that γ has a deriv-
ative in L2 and

∫ T−t′

T−t
|Xγ(τ)|2dτ ≤ liminfn→∞

∫ T−t′

T−t
|Xγn(τ)|2dτ.

Now we do this simultaneously for all t = T − τ ′ and for all the fi-
nite number of surgery times in [Ti−1, T − τ ′]. This gives a limiting path
γ : [τ ′, τ ] → M. Putting together the above inequalities we see that the
limit satisfies

(16.6)

∫ τ

τ ′

√
τ
(
R(γ(τ)) + |Xγ(τ)|2

)
dτ

≤ liminfn→∞

∫ τ

τ ′

√
τ
(
R(γn(τ)) + |Xγn(τ)|2

)
dτ.

Since we have already arranged that there is a limit on [0, τ ′], this produces
a limiting path γ : [0, τ0] → M. By Inequalities (16.5) and (16.6) we see
that

L(γ) ≤ liminfi→∞L(γn).

The limit lies in the compact subset Y (ℓ) and hence is contained in the
open subset of smooth points of M. This completes the proof of the first
statement of the proposition.

Now suppose, in addition to the above, that all the γn have the same
endpoint y ∈ MT−τ0 and that limn→∞L(γn) is less than or equal to the
L-length of any path parameterized by backward time connecting x to y.
Let γ be the limit of a subsequence as constructed in the proof of the first
part of this result. Clearly, by what we have just established, γ is a path
parameterized by backward time from x to y and L(γ) ≤ limn→∞L(γn).
This means that γ is a minimizing L-geodesic connecting x to y, an L-
geodesic contained in the open subset of smooth points of M.

This completes the proof of the proposition. �

Corollary 16.24. Given L < ∞, let δ1 = δ1(L + 4(T
3/2
i+1 , ri+1) be as

given in Lemma 16.15. If δ(t) ≤ δ1 for all t ∈ [Ti−1, Ti+1], then for any
x ∈ t−1([Ti, Ti+1)) and for any y ∈MTi−1 , if there is a path γ parameterized
by backward time connecting x to y with L(γ) ≤ L, then there is a minimizing
L-geodesic contained in the open subset of smooth points of M connecting
x to y.
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Proof. Choose an L-minimizing sequence of paths from x to y and
apply the previous proposition. �

5.4. Completion of the proof of Proposition 16.4. Having found
a compact subset of the open subset of smooth points of M that contains all
paths parameterized by backward time whose L-length is not too large, we
are in a position to prove Proposition 16.4, which states the existence of a
minimizing L-geodesics in M from x and gives estimates on their L-lengths.

Proof. (of Proposition 16.4). Fix r ≥ ri+1 > 0. Let (M, G) and x ∈ M
be as in the statement of Proposition 16.4. We set L = 8

√
Ti+1(1 + Ti+1),

and we set

δ = min
(
δi, δ1(L+ 4(Ti+1)

3/2, ri+1)
)
,

where δ1 is as given in Lemma 16.15. Suppose that δ(t) ≤ δ for all t ∈
[Ti−1, Ti+1). We set U equal to the subset of t−1([Ti−1, T )) consisting of all
points y for which there is a path γ from x to y, parameterized by backward
time, with L(γ) < L. For each t ∈ [Ti−1, T ) we set Ut = U ∩Mt. According
to Corollary 16.24 for any y ∈ U there is a minimizing L-geodesic connecting
x to y and this geodesic lies in the open subset of M consisting of all the
smooth points of M; in particular, y is a smooth point of M. Let Lx : U → R

be the function that assigns to each y ∈ U the L-length of a minimizing L-
geodesic from x to y. Of course, Lx(y) < L for all y ∈ U . Now let us show
that the restriction of Lx to any time-slice Ut ⊂ U achieves its minimum
along a compact set. For this, let yn ∈ Ut be a minimizing sequence for
Lx and for each n let γn be a minimizing L-geodesic connecting x to yn.
Since L(γn) < L for all n, according to Proposition 16.21, we can pass to a
subsequence that converges to a limit, γ, connecting x to some point y ∈Mt

and L(γ) ≤ infnL(γn) < L. Hence, y ∈ Ut, and clearly Lx|Ut achieves its
minimum at y. Exactly the same argument with yn being a sequence of
points at which Lx|Ut achieves its minimum shows that the subset of Ut at
which Lx achieves its minimum is a compact set.

We set Z ⊂ U equal to the set of y ∈ U such that Lx(y) ≤ Lx(y′) for all
y′ ∈ Ut(y).

Claim 16.25. The subset Z ′ = {z ∈ Z|Lx(z) ≤ L/2} has the property
that for any compact interval I ⊂ [Ti−1, T ) the intersection t−1(I) ∩ Z ′ is
compact.

Proof. Fix a compact interval I ⊂ [Ti−1, T ). Let {zn} be a sequence in
Z ′ ∩ t−1(I). By passing to a subsequence we can assume that the sequence
t(zn) = tn converges to some t ∈ I, and that Lx(zn) converges to some
D ≤ L/2. Since the surgery times are discrete, there is a neighborhood J
of t in I such that the only possible surgery time in J is t itself. By passing
to a further subsequence if necessary, we can assume that tn ∈ J for all n.
Fix n. First, let us consider the case when tn ≥ t. Let γn be a minimizing
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L-geodesic from x to zn. Then we form the path γ̂n which is the union of
γn followed by the flow line for the vector field χ from the endpoint of γn to
Mt. (This flowline exists since there is no surgery time in the open interval
(t, tn].) If tn < t, then we set γ̂n equal to the restriction of γn to the interval
[0, T − t]. In either case let ŷn ∈ Mt be the endpoint of γ̂n. Since Mt is
compact, by passing to a subsequence we can arrange that the ŷn converge
to a point y ∈Mt. Clearly, limn→∞zn = y.

It is also the case that limn→∞L(γ̂n) = limn→∞L(γn) = D ≤ L/2. This
means that y ∈ U and that Lx(y) ≤ D ≤ L/2. Hence, the greatest lower
bound of the values of Lx on Ut is at most D ≤ L/2, and consequently
Z ′ ∩ Ut 6= ∅. Suppose that the minimum value of Lx on Ut is D′ < D.
Let z ∈ Ut be a point where this minimum value is realized, and let γ be
a minimizing L-geodesic from x to z. Then by restricting γ to subintervals
[0, t− µ] shows that the minimum value of Lx on Ut+µ ≤ (D′ +D)/2 for all
µ > 0 sufficiently small. Also, extending γ by adding a backward vertical
flow line from z shows that the minimum value of Lx on Ut−µ is at most
(D′+D)/2 for all µ > 0 sufficiently small. (Such a vertical flow line backward
in time exists since z ∈ U and hence z is contained in the smooth part of M.)
This contradicts the fact that the minimum values of Lx on Utn converge to
D as tn converges to t. This contradiction proves that the minimum value
of Lx on Ut is D, and consequently the point y ∈ Z ′. This proves that
Z ′ ∩ t−1(I) is compact, establishing the claim. �

At this point we have established that properties (1), (2), and (4); So it
remains only to prove property (3) of Proposition 16.4. To do this we define
the reduced length function lx : U → R by

lx(q) =
Lx(q)

2
√
T − t(q)

and lmin
x (τ) = minq∈Mtlx(q).

We consider the subset S of τ ′ ∈ (0, T − Ti−1] with lmin
x (τ) ≤ L/2 for all

τ ≤ τ ′. Recall that by the choice of L, we have 3
√
T − Ti−1 < L/2. Clearly,

the minimum value of lx on UT−τ converges to 0 as τ → 0, implying that
this set is non-empty. Also, from its definition, S is an interval with 0 being
one endpoint.

Lemma 16.26. Let lmin
x (τ ′) be the minimum value of lx on UT−τ ′ . For

any τ ∈ S we have lmin
x (τ) ≤ 3/2.

Proof. Given that we have already established properties (1), (2), and
(4) of Proposition 16.4, this is immediate from Corollary 7.12. �

Now let us establish that S = (0, T − Ti−1]. As we remarked above, S
is a non-empty interval with 0 as one endpoint. Suppose that it is of the
form (0, τ ] for some τ < T − Ti−1. Then by the previous claim, we have
lmin
x (τ) ≤ 3/2 so that there is an L-geodesic γ from x to a point y ∈ MT−τ
with L(γ) ≤ 3

√
τ < L/2. This implies that for all τ ′ > τ but sufficiently
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close to τ , there is a point y(τ ′) ∈ UT−τ ′ with Lx(y(τ ′)) < L/2. This shows
that all τ ′ greater than and sufficiently close to τ are contained in S. This
is a contradiction of the assumption that S = (0, τ ].

Suppose now that S is of the form (0, τ), and set t = T − τ . Let tn → t
and zn ∈ Z ′ ∩ Ut′ . The same argument as above shows that for every n we
have Lx(zn) ≤ 3

√
T − tn. For all n sufficiently large, there are no surgery

times in the interval (t, tn). Hence, by passing to a subsequence, we can
arrange that the zn converge to a point z ∈Mt. Clearly,

Lx(z) ≤ limsupn→∞Lx(zn) ≤ 3
√
T − t,

so that τ ∈ S. This again contradicts the assumption that S = (0, τ).
The only other possibility is that the set of τ is (0, T − Ti−1] and the

minimum value of L on Ut is at most 3
√
T − t for all t ∈ [Ti−1, T ). This is

exactly the third property stated in Proposition 16.4. This completes the
proof of that proposition. �

6. Completion of the proof of Proposition 16.1

Now we are ready to establish Proposition 16.1, the non-collapsing result.
We shall do this by finding a parabolic neighborhood whose size, r′, depends
only on ri, C and ǫ, on which the sectional curvature is bounded by (r′)−2

and so that the L-distance from x to any point of the final time-slice of this
parabolic neighborhood is bounded. Recall that in Section 2 we established
it when R(x) = r−2 with r ≤ ri+1 < ǫ. Here we assume that ri+1 < r ≤ ǫ.
Fix δ = δ(ri+1) from Proposition 16.4 and set L = 8

√
Ti+1(1 + Ti+1).

First of all, in Claim 15.1 we have seen that there is κ0 such that
t−1[0, T1] is κ0-non-collapsed on scales ≤ ǫ. Thus, we may assume that
i ≥ 1.

Recall that t(x) = T ∈ (Ti, Ti+1]. Let γ be an L-geodesic contained in
the smooth part of M from x to a point in MTi−1 with L(γ) ≤ 3

√
T − Ti−1.

That such a γ exists was proved in Proposition 16.4. We shall find a point
y on this curve with R(y) ≤ 2r−2

i . Then we find a backward parabolic
neighborhood centered at y on which L is bounded and so that the slices
have volume bounded from below. Then we can apply the results from
Chapter 8 to establish the κ-non-collapsing.

Claim 16.27. There is τ0 with max(ǫ2, T −Ti) ≤ τ0 ≤ T −Ti−1− ǫ2 such
that R(γ(τ0)) < r−2

i .

Proof. Let T ′ = max(ǫ2, T − Ti) and let T ′′ = T − Ti−1 − ǫ2, and
suppose that R(γ(τ)) ≥ r−2

i for all τ ∈ [T ′, T ′′]. Then we see that

∫ T ′′

T ′

√
τ
(
R(γ(τ) + |Xγ(τ)|2

)
dτ ≥ 2

3
r−2
i

(
(T ′′)3/2 − (T ′)3/2

)
.
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Since R ≥ −6 because the curvature is pinched toward positive, we see that

L(γ) ≥ 2

3
r−2
i

(
(T ′′)3/2 − (T ′)3/2

)
−
∫ T ′

0
6
√
τdτ −

∫ T−Ti−1

T ′′

6
√
τdτ

=
2

3
r−2
i

(
(T ′′)3/2 − (T ′)3/2

)
− 4(T ′)3/2 − 4

(
(T − Ti−1)

3/2 − (T ′′)3/2
)
.

Claim 16.28. We have the following estimates:

(T ′′)3/2 − (T ′)3/2 ≥ 1

4
(T − Ti−1)

3/2,

4(T ′)3/2 ≤ 4(T − Ti−1)
3/2,

4
(
(T − Ti−1)

3/2 − (T ′′)3/2
)
≤ 2t0

25

√
(T − Ti−1).

Proof. Since Ti − Ti−1 ≥ t0 and T ≥ Ti, we see that T ′′/(T − Ti−1) ≥
0.9. If T ′ = T − Ti, then since T < Ti+1 = 2Ti = 4Ti−1, it follows that
T ′/(T − Ti−1) ≤ 2/3. If T ′ = ǫ2, since ǫ2 ≤ t0/50, and T − Ti−1 ≥ t0, we see
that T ′ ≤ (T − Ti−1)/50. Thus, in both cases we have T ′ ≤ 2(T − Ti−1)/3.

Since (0.9)3/2 > 0.85 and (2/3)3/2 ≤ 0.6, the first inequality follows.
The second inequality is clear since T ′ < (T − Ti−1).
The last inequality is clear from the fact that T ′′ = T − Ti−1 − ǫ2 and

ǫ ≤
√
t0/50. �

Putting these together yields

L(γ) ≥
[(

1

6
r−2
i − 4

)
(T − Ti−1) −

2t0
25

]√
T − Ti−1.

Since
r−2
i ≥ r−2

0 ≥ ǫ−2 ≥ 50/t0,

and T − Ti−1 ≥ t0 we see that

L(γ) ≥
[(

50

6t0
− 4

)
t0 −

2t0
25

]√
T − Ti−1

≥ (8 − 5t0)
√
T − Ti−1

≥ 4
√
T − Ti−1.

(The last inequality uses the fact that t0 = 2−5.) But this contradicts
the fact that L(γ) ≤ 3

√
T − Ti−1. �

Now fix τ0 satisfying Claim 16.27. Let γ1 be the restriction of γ to the
subinterval [0, τ0], and let y = γ1(τ0). Again using the fact that R(γ(τ)) ≥
−6 for all τ , we see that

(16.7) L(γ1) ≤ L(γ) + 4(T − Ti−1)
3/2 ≤ 3(Ti+1)

1/2 + 4(Ti+1)
3/2.

Set t′ = T − τ0. Notice that from the definition we have t′ ≤ Ti.
Consider B = B(y, t′, ri2C ), and define ∆ = min(r2i /16C, ǫ

2). According
to Lemma 11.2 every point z on a backward flow line starting in B and
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defined for time at most ∆ has the property that R(z) ≤ 2r−2
i . For any

surgery time t in [t′−∆, t′) ⊂ [Ti−1, T ) the scale h of the surgery at time t is
≤ δ(t)2ri, and hence every point of the surgery cap has scalar curvature at
least D−1δ(t)−4r−2

i . Since δ(t) ≤ δ ≤ δ0 ≤ min(D−1, 1/10), it follows that

every point of the surgery cap has curvature at least δ−3
0 r−2

i ≥ 1000r−2
i .

Thus, no point z as above can lie in a surgery cap. This means that the
entire backward parabolic neighborhood P (y, t′, ri2C ,−∆) exists in M, and

the scalar curvature is bounded by 2r−2
i on this backward parabolic neigh-

borhood. Because of the curvature pinching toward positive assumption,
there is C ′ <∞ depending only on ri and such that the Riemann curvature
is bounded by C ′ on P (y, t′, ri2C ,−∆).

Consider the one-parameter family of metrics g(τ), 0 ≤ τ ≤ ∆, on
B(y, t′, ri2C ) obtained by restricting the horizontal metric G to the backward
parabolic neighborhood. There is 0 < ∆1 ≤ ∆/2 depending only on C ′ such
that for every τ ∈ [0,∆1] and every non-zero tangent vector v at a point of
B(y, t′, ri2C ) we have

1

2
≤

|v|2g(τ)
|v|2g(0)

≤ 2.

Set r̂ = min( ri
32C ,∆1/2); it depends only on ri, C and ǫ. Set t′′ = t′ − ∆1.

Clearly, B(y, t′′, r̂) ⊂ B(y, t′, ri2C ) so that B(y, t′′, r̂) ⊂ P (y, t′, ri2C ,−∆). Of
course, it then follows that the parabolic neighborhood P (y, t′′, r̂,−∆1) ex-
ists in M and

P (y, t′′, r̂,−∆1) ⊂ P (y, t′,
ri
2C

,−∆),

so that the Riemann curvature is bounded above by C ′ on the parabolic
neighborhood P (y, t′′, r̂,−∆1). We set r′ = min(r̂, (C ′)−1/2,

√
∆1/2), so

that r′ depends only on ri, C, and ǫ. Then the parabolic neighborhood
P (y, t′′, r′,−(r′)2) exists in M and |Rm| ≤ (r′)−2 on P (y, t′′, r′,−(r′)2).
Hence, by the inductive non-collapsing assumption either y is contained in
a component of Mt′′ of positive sectional curvature or

VolB(y, t′′, r′) ≥ κi(r
′)3.

If y is contained in a component of Mt′′ of positive sectional curvature,
then by Hamilton’s result, Theorem 4.23, under Ricci flow the component
of Mt′′ containing y flows forward as a family of components of positive sec-
tional curvature until it disappears. Since there is a path moving backwards
in time from x to y, this means that the original point x is contained in a
component of its time-slice with positive sectional curvature.

Let us consider the other possibility when VolB(y, t′′, r′) ≥ κi(r
′)3. For

each z ∈ B(y, t′′, r′) let

µz : [T − t′, T − t′′] → B(y, t′,
ri
2C

)
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be the G(t′)-geodesic connecting y to z. Of course

|Xµz (τ)|G(t′) ≤
r′

∆1

for every τ ∈ [0,∆1]. Thus,

|Xµz (τ)|G(T−τ) ≤
√

2r′

∆1

for all τ ∈ [T −t′, T −t′′]. Now we let µ̃z be the resulting path parameterized
by backward time on the time-interval [T − t′, T − t′′]. We estimate

L(µ̃z) =

∫ T−t′′

T−t′

√
τ
(
R(µ̃z(τ)) + |Xeµz

(τ)|2
)
dτ

≤
√
T − t′′

∫ T−t′′

T−t′

(
2r−2
i +

2(r′)2

∆2
1

)
dτ

≤
√
T − t′′(2r−2

i ∆1 +
1

2
) ≤

√
T

(
1

16C
+

1

2

)
.

In passing to the last inequality we use the fact, from the definitions, that
r′ ≤

√
∆1/2 and ∆ ≤ r2i /16C, whereas ∆1 ≤ ∆/2.

Since C > 1, we see that

L(µ̃z) ≤
√
T .

Putting this together with the estimate, Equation (16.7), for L(γ1) tells us
that for each z ∈ B(y, t′′, r′) we have

L(γ1 ∗ µ̃z) ≤ 4(Ti+1)
1/2 + 4(Ti+1)

3/2 ≤ L/2.

Hence, by Proposition 16.4 and the choice of L, there is a minimizing L-
geodesic from x to each point of B(y, t′′, r′) of length ≤ L/2, and these
geodesics are contained in the smooth part of M. In fact, by Proposi-
tion 16.21 there is a compact subset Y of the open subset of smooth points
of M that contains all the minimizing L-geodesics from x to points of
B(y, t′′, r′).

Then, by Corollary 6.67 (see also, Proposition 6.56), the intersection, B′,
of Ux with B(y, t′′, r′) is an open subset of full measure in B(y, t′′, r′). Of
course, VolB′ = VolB(y, t′′, r′) ≥ κi(r

′)3 and the function lx is bounded by
L/2 on B′. It now follows from Theorem 8.1 that there is κ > 0 depending
only on κi, r

′, ǫ and L such that x is κ non-collapsed on scales ≤ ǫ. Recall
that L depends only on Ti+1, and r′ depends only on ri, C,C

′ and ǫ, whereas
C ′ depends only on ri. Thus, in the final analysis, κ depends only on κi and
ri (and C and ǫ which are fixed). This entire analysis assumed that for all

t ∈ [Ti−1, Ti+1) we have the inequality δ(t) ≤ δ1(L + 4(ti+1)
3/2, ri+1) as in

Lemma 16.15. Since L depends only on i and t0, this shows that the upper
bound for δ depends only on ri+1 (and on i, t0, C, and ǫ). This completes
the proof of Proposition 16.1.



CHAPTER 17

Completion of the proof of Theorem 15.9

We have established the requisite non-collapsing result assuming the
existence of strong canonical neighborhoods. In order to complete the proof
of Theorem 15.9 it remains for us to show the existence of strong canonical
neighborhoods. This is the result of the next section.

1. Proof of the strong canonical neighborhood assumption

Proposition 17.1. Suppose that for some i ≥ 0 we have surgery pa-
rameter sequences δ0 ≥ δ1 ≥ · · · ≥ δi > 0, ǫ = r0 ≥ r1 ≥ · · · ≥ ri > 0
and κ0 ≥ κ1 ≥ · · · ≥ κi > 0. For any ri+1 ≤ ri, let δ(ri+1) > 0 be the
constant in Proposition 16.1 associated to these three sequences and to ri+1.
Then there are positive constants ri+1 ≤ ri and δi+1 ≤ δ(ri+1) such that the
following holds. Suppose that (M, G) is a Ricci flow with surgery defined
for 0 ≤ t < T for some T ∈ (Ti, Ti+1] with surgery control parameter δ(t).
Suppose that the restriction of this Ricci flow with surgery to t−1([0, Ti))
satisfies Assumptions (1) – (7) and also the five properties given in the hy-
pothesis of Theorem 15.9 with respect to the given sequences. Suppose also
that δ(t) ≤ δi+1 for all t ∈ [Ti−1, T ]. Then (M, G) satisfies the strong
(C, ǫ)-canonical neighborhood assumption with parameter ri+1.

Proof. Suppose that the result does not hold. Then we can take a
sequence of ra → 0 as a → ∞, all less than ri, and for each a a sequence
δa,b → 0 as b → ∞ with each δa,b ≤ δ(ra), where δ(ra) ≤ δi is the constant
in Proposition 16.1 associated to the three sequences given in the statement
of this proposition and ra, such that the following holds. For each a, b there
is a Ricci flow with surgery (M(a,b), G(a,b)) defined for 0 ≤ t < T(a,b) with

Ti < T(a,b) ≤ Ti+1 with control parameter δ(a,b)(t) such that the flow satisfies
the hypothesis of the proposition with respect to these constants but fails
to satisfy the conclusion.

Lemma 17.2. For each a and for all b sufficiently large, there is t(a,b) ∈
[Ti, T(a,b)) such that the restriction of (M(a,b), G(a,b)) to t−1

(
[0, t(a,b))

)
sat-

isfies the strong (C, ǫ)-canonical neighborhood assumption with parameter ra
and such that there is x ∈ M(a,b) with t(x(a,b)) = t(a,b) at which the strong
(C, ǫ)-canonical neighborhood assumption with parameter ra fails.

395
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Proof. Fix a. By supposition, for each b there is a point x ∈ M(a,b)

at which the strong (C, ǫ)-canonical neighborhood assumption fails for the
parameter ra. We call points at which this condition fails counterexample
points. Of course, since ra ≤ ri and since the restriction of (M(a,b), g(a,b))

to t−1([0, Ti)) satisfies the hypothesis of the proposition, we see that any
counterexample point x has t(x) ≥ Ti. Take a sequence xn = xn,(a,b) of
counterexample points with t(xn+1) ≤ t(xn) for all n that minimizes t
among all counterexample points in the sense that for any ξ > 0 and for
any counterexample point x ∈ M(a,b) eventually t(xn) < t(x) + ξ. Let
t′ = t′(a,b) = limn→∞t(xn). Clearly, t′ ∈ [Ti, T(a,b)), and by construction

the restriction of (M(a,b), G(a,b)) to t−1([0, t′)) satisfies the (C, ǫ)-canonical
neighborhood assumption with parameter ra. Since the surgery times are
discrete, there is t′′ = t′′(a,b) with t′ < t′′ ≤ T(a,b) and a diffeomorphism

ψ = ψ(a,b) : Mt′ × [t′, t′′) → t−1([t′, t′′)) compatible with time and the vector
field. We view ψ∗G(a,b) as a one-parameter family of metrics g(t) = g(a,b)(t)
on Mt′ for t ∈ [t′, t′′). By passing to a subsequence we can arrange that
t(xn) ∈ [t′, t′′) for all n. Thus, for each n there are yn = yn,(a,b) ∈ Mt′ and
tn ∈ [t′, t′′) with ψ(yn, tn) = xn. Since Mt′ is a compact 3-manifold, by
passing to a further subsequence we can assume that yn → x(a,b) ∈Mt′ . Of

course, tn → t′ as n→ ∞ and limn→∞xn = x(a,b) in M(a,b,).
We claim that, for all b sufficiently large, the strong (C, ǫ)-canonical

neighborhood assumption with parameter ra fails at x(a,b). Notice that
since x(a,b) is the limit of a sequence where the strong (C, ǫ)-neighborhood
assumption fails, the points in the sequence converging to x(a,b) have scalar

curvature at least r−2
a . It follows that R(x(a,b)) ≥ r−2

a . Suppose that x(a,b)

satisfies the strong (C, ǫ)-canonical neighborhood assumption with parame-
ter ra. This means that there is a neighborhood U = U(a,b) of x(a,b) ∈ Mt′

which is a strong (C, ǫ)-canonical neighborhood of x(a,b). According to Def-
inition 9.78 there are four possibilities. The first two we consider are that
(U, g(t′)) is an ǫ-round component or a C-component. In either of these
cases, since the defining inequalities given in Definition 9.76 and 9.75 are
strong inequalities, all metrics on U sufficiently close to g(t′) in the C∞-
topology satisfy these same inequalities. But as n tends to ∞, the metrics
g(tn)|U converge in the C∞-topology to g(t′)|U . Thus, in these two cases, for
all n sufficiently large, the metrics g(tn) on U are (C, ǫ)-canonical neighbor-
hood metrics of the same type as g(t′(a,b))|U . Hence, in either of these cases,

for all n sufficiently large xn,(a,b) has a strong (C, ǫ)-canonical neighborhood
of the same type as x(a,b), contrary to our assumption about the sequence
xn,(a,b).

Now suppose that there is a (C, ǫ)-cap whose core contains x(a,b). This
is to say that (U, g(t′)) is a (C, ǫ)-cap whose core contains x(a,b). By Propo-
sition 9.79, for all n sufficiently large, (U, g(tn)) is also a (C, ǫ)-cap with the
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same core. This core contains yn for all n sufficiently large, showing that xn
is contained in the core of a (C, ǫ)-cap for all n sufficiently large.

Now let us consider the remaining case when x(a,b) is the center of a
strong ǫ-neck. In this case we have an embedding

ψU(a,b)
: U(a,b) × (t′(a,b) −R−1(x(a,b)), t

′
(a,b)] → M(a,b)

compatible with time and the vector field and a diffeomorphism f(a,b) : S
2 ×

(−ǫ−1, ǫ−1) → U(a,b) such that

(f(a,b) × Id)∗ψ∗
U(a,b)

(R(x(a,b))G(a,b))

is ǫ-close in the C [1/ǫ]-topology to the evolving product metric

h0(t) × ds2, −1 < t ≤ 0,

where h0(t) is a round metric of scalar curvature 1/(1 − t) on S2 and ds2

is the Euclidean metric on the interval. Here, there are two subcases to
consider.

(i) ψU(a,b)
extends backward past t′(a,b) −R−1(x(a,b)).

(ii) There is a flow line through a point y(a,b) ∈ U(a,b) that is defined

on the interval [t′(a,b) − R−1(x(a,b)), t
′
(a,b)] but with the value of the

flow line at t′(a,b) −R−1(x(a,b)) an exposed point.

Let us consider the first subcase. The embedding ψU(a,b)
extends forward

in time because of the diffeomorphism ψ(a,b) : Mt′
(a,b)

× [t′(a,b), t
′′
(a,b)) → M(a,b)

and, by assumption, ψU(a,b)
extends backward in time some amount. Thus,

for all n sufficiently large, we can use these extensions of ψU(a,b)
to define an

embedding ψn,(a,b) : U(a,b) × (t(xn,(a,b)) − R−1(xn,(a,b)), t(xn,(a,b))] → M(a,b)

compatible with time and the vector field. Furthermore, since the ψn,(a,b)
converge in the C∞-topology to ψU(a,b)

as n tends to infinity, the Riemannian

metrics (f(a,b) × Id)∗ψ∗
n,(a,b)(R(xn,(a,b))Ga,b) converge in the C∞-topology to

the pullback (f(a,b) × Id)∗ψ∗
U(a,b)

(R(x(a,b))Ga,b). Clearly then, for fixed (a, b)

and for all n sufficiently large the pullbacks of the rescalings of these metrics
by R(xn,(a,b)) are within ǫ in the C [1/ǫ]-topology of the standard evolving

flow h0(t) × ds2,−1 < t ≤ 0, on the product of S2 with the interval. Under
these identifications the points xn,(a,b) correspond to points

(pn,(a,b), sn,(a,b)) ∈ S2 × (−ǫ−1, ǫ−1)

where limn→∞sn,(a,b) = 0. The last thing we do is to choose diffeomorphisms

ϕn,(a,b) : (−ǫ−1, ǫ−1) → (−ǫ−1, ǫ−1) that are the identity near both ends, such
that ϕn,(a,b) carries 0 to sn,(a,b) and such that the ϕn,(a,b) converge to the
identity in the C∞-topology for fixed (a, b) as n tends to infinity. Then, for
all n sufficiently large, the composition

S2 × (−ǫ−1, ǫ−1)
Id×ϕn,(a,b)−→ S2 × (−ǫ−1, ǫ−1)

f(a,b)−→ U
ψn,(a,b)−→ M(a,b)
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is a strong ǫ-neck centered at xn,(a,b). This shows that for any b for which
the first subcase holds, for all n sufficiently large, there is a strong ǫ-neck
centered at xn,(a,b).

Now suppose that the second subcase holds for all b. Here, unlike all
previous cases, we shall have to let b vary and we shall prove the result only
for b sufficiently large. We shall show that for all b sufficiently large, x(a,b)

is contained in the core of a (C, ǫ)-cap. This will establish the result by
contradiction, for as we showed in the previous case, if x(a,b) is contained in
the core of a (C, ǫ)-cap, then the same is true for the xn for all n sufficiently
large, contrary to our assumption.

For the moment fix b. Set t(a,b) = t′(a,b) − RG(a,b)
(x(a,b))

−1. Since, by

supposition the embedding ψU(a,b)
does not extend backwards past t(a,b), it

must be the case that t(a,b) is a surgery time and furthermore that there
is a surgery cap C(a,b) at this time with the property that there is a point
y(a,b) ∈ U(a,b) such that ψU(a,b)

(y(a,b), t) converges to a point z(a,b) ∈ C(a,b) as

t tends to t(a,b) from above. (See Fig. 1.) We denote by p(a,b) the tip of

C(a,b), and we denote by h(a,b) the scale of the surgery at time t(a,b).
Since the statement that x(a,b) is contained in the core of a (C, ǫ)-cap

is a scale invariant statement, we are free to replace (M(a,b), G(a,b)) with

(M̃(a,b), G̃(a,b)), which has been rescaled to make h(a,b) = 1 and shifted in

time so that t(a,b) = 0. We denote the new time function by t̃. (Notice
that this rescaling and time-shifting is different from what we usually do.
Normally, when we have a base point like x(a,b) we rescale to make its scalar
curvature 1 and we shift time to make it be at time 0. Here we have rescaled
based on the scale of the surgery cap rather than R(x(a,b)).) We set Q̃(a,b) =

R eG(a,b)
(x(a,b)) and we set t̃′(a,b) = t̃(x(a,b)). Since the initial time of the strong

ǫ-neck is zero, t̃′(a,b) = Q̃−1
(a,b). We denote the flow line backward in time from

y(a,b) by y(a,b)(t̃), 0 ≤ t̃ ≤ t̃′(a,b), so that y(a,b)(t̃
′
(a,b)) = y(a,b). Since U(a,b) is a

strong ǫ-neck, by our choice of ǫ, it follows from Lemma A.2 and rescaling

that R(ψ(y(a,b), t̃)) is within (0.01)Q̃(a,b) of Q̃(a,b)/(1+Q̃(a,b)(t̃
′
(a,b)− t̃)) for all

t ∈ (0, t̃′(a,b)]. By taking limits as t approaches 0, we see that R eG(a,b)
(z(a,b))

is within (0.01)Q̃(a,b) of Q̃(a,b)/2. Let D be the universal constant given
in Lemma 12.3, so that the scalar curvature at any point of the standard
initial metric is at least D−1 and at most D. It follows from the third item
in Theorem 13.2 that, since we have rescaled to make the surgery scale 1,
for all b sufficiently large the scalar curvature on the surgery C(a,b) is at least

(2D)−1 and at most 2D. In particular, for all b sufficiently large

(2D)−1 ≤ R eG(a,b)
(z(a,b)) ≤ 2D.
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Together with the above estimate relating R eG(a,b)
(z(a,b)) and Q̃(a,b), this gives

(17.1) (5D)−1 ≤ Q̃(a,b) ≤ 5D.

Since the flow line from z(a,b) to y(a,b) lies in the closure of a strong ǫ-neck of

scale Q̃
−1/2
(a,b) , the scalar curvature is less than 6D at every point of this flow

line. According to Proposition 12.31 there is θ1 < 1 (depending only on D)
such that R(q, t) ≥ 8D for all (q, t) in the standard solution with t ≥ θ1.

Figure 1. A strong neck with initial time in a surgery cap.

By the fifth property of Theorem 12.5 there is A′(θ1) <∞ such that in
the standard flow, B(p0, 0, A) contains B(p0, θ1, A/2) for every A ≥ A′(θ1).
We set A equal to the maximum of A′(θ1) and

3
(
(1.2)

√
5Dǫ−1 + (1.1)(A0 + 5) + C

√
5D
)
.

Now for any δ > 0 for all b sufficiently large, we have δ(a,b) ≤ δ′′(A, θ1, δ),

where δ′′(A, θ1, δ) is the constant given in Proposition 16.13.

Claim 17.3. Suppose b is sufficiently large so that δ(a,b) ≤ δ′′(A, θ1, δ0),

where δ0 is the constant given in Definition 16.12. Then t̃′(a,b) ≤ θ1.

Proof. In this proof we shall fix (a, b), so we drop these indices from
the notation. Consider s ≤ θ1 maximal so that there is an embedding

ψ = ψ(a,b) : B(p0, 0, A) × [0, s) → M̃(a,b)

compatible with time and the vector field. First suppose that s < θ1. Then
according to Proposition 16.5 either the entire ball B(p, 0, A) disappears at
time s or s is the final time of the time interval of definition for the flow
(M̃(a,b), G̃(a,b)). Since we have the flow line from z ∈ B(p0, 0, A) extending

to time t̃′ = t̃′(a,b), in either case this implies that t̃′ < s, proving that t′ < θ1
in this case.

Now suppose that s = θ1. By the choice of θ1, for the standard solution
the scalar curvature at every (q, θ1) is at least 8D. Since δ(a,b) ≤ δ′′(A, θ1, δ0),
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by the definition of δ0 given in Definition 16.12 and by Proposition 16.5 the
scalar curvature of the pullback of the metric under ψ is within a factor of 2
of the scalar curvature of the rescaled standard solution. Hence, the scalar
curvature along the flow line (z, t) through z limits to at least 8D as t tends

to θ1. Since the scalar curvature on (z, t) for t ∈ [0, t̃′] is bounded above by
6D, it follows that t̃′ < θ1 in this case as well. This completes the proof of
the claim. �

Thus, we have maps

ψ(a,b) : B(p0, 0, A) × [0, t̃′(a,b)] → M̃(a,b)

compatible with time and the vector field, with the property that for each

δ > 0, for all b sufficiently large the pullback under this map of G̃(a,b) is

within δ in the C [1/δ]-topology of the restriction of the standard solution.
Let w(a,b) be the result of flowing x(a,b) backward to time 0.

Claim 17.4. For all b sufficiently large, w(a,b) ∈ ψ(a,b)(B(p0, 0, A)×{0}).

Proof. First notice that, by our choice of ǫ, every point in the 0 time-
slice of the closure of the strong ǫ-neck centered at x(a,b) is within distance

(1.1)Q̃−1
(a,b)ǫ

−1 of w(a,b). In particular,

d eG(a,b)
(w(a,b), y(a,b)) < (1.1)Q̃

−1/2
(a,b) ǫ

−1.

Since y(a,b) is contained in the surgery cap and the scale of the surgery at
this time is 1, y(a,b) is within distance A0 +5 of p(a,b). Hence, by the triangle
inequality and Inequality (17.1), we have

d eG(a,b)
(w(a,b), p(a,b)) < (1.1)Q̃

−1/2
(a,b) ǫ

−1 + (A0 + 5)

< (1.1)
√

5Dǫ−1 + (A0 + 5).

For b sufficiently large, the image ψ(a,b)(B(p0, 0, A)) contains the ball of
radius (0.95)A centered at p(a,b). Since by our choice of A we have (0.95)A >

(1.1)
√

5Dǫ−1 + (A0 + 5), the claim follows. �

We define q(a,b) ∈ B(p0, 0, A) so that ψ(a,b)(q(a,b), 0) = w(a,b). Of course,

ψ(a,b)(q(a,b), t̃
′
(a,b)) = x(a,b).

If follows from the above computation that for all b sufficiently large we have

d0(q(a,b), p0) < (1.15)Q̃
−1/2
(a,b) ǫ

−1 + (1.05)(A0 + 5).

Since the standard flow has non-negative curvature, it is a distance non-
increasing flow. Therefore,

det′
(a,b)

(q(a,b), p0) < (1.15)Q̃
−1/2
(a,b) ǫ

−1 + (1.05)(A0 + 5).
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Suppose that a point (q, t̃′(a,b)) in the standard solution were the center

of a βǫ/3-neck, where β is the constant from Proposition 15.2. Of course,

for all b sufficiently large, R(q, t̃′(a,b)) > (0.99)Q̃(a,b). Since β < 1/2 and

ǫ <
√

5D(A0 + 5)/2 and Q̃(a,b) ≤ 5D, it follows from the above distance

estimate that this neck would contain (p0, t̃
′
(a,b)). But this is impossible:

since (p0, t̃
′
(a,b)) is an isolated fixed point of an isometric SO(3)-action on the

standard flow, all the sectional curvatures at (p0, t̃
′
(a,b)) are equal, and this is

in contradiction with estimates on the sectional curvatures at any point of
an ǫ-neck given in Lemma A.2. We can then conclude from Theorem 12.32
that for all b sufficiently large, the point (p0, t̃

′
(a,b)) is contained in the core of

a (C(βǫ/3), βǫ/3)-cap Y(a,b) in the t̃′(a,b) time-slice of the standard solution.

Now note that for all b sufficiently large, the scalar curvature of (q(a,b), t̃
′
(a,b))

is at least (0.99)Q̃(a,b), since the scalar curvature of x(a,b) is equal to Q(a,b).
This implies that the diameter of Y(a,b) is at most

(1.01)Q̃
−1/2
(a,b) C(βǫ/3) < (1.1)

√
5DC(βǫ/3).

Since B(p0, 0, A) contains B(p0, t̃
′
(a,b), A/2), and since C > C(βǫ/3), it fol-

lows from the definition of A, the above distance estimate, and the triangle
inequality that for all b sufficiently large B(p0, 0, A)×{t̃′(a,b)} contains Y(a,b).

Since C > C(βǫ/3) + 1 and since for b sufficiently large ψ∗
(a,b)G̃(a,b) is

arbitrarily close to the restriction of the standard solution metric, it follows
from Theorem 12.32 and Proposition 9.79 that for all b sufficiently large,
the image ψ(a,b)(Y(a,b)) is a (C, ǫ)-cap whose core contains x(a,b). As we have
already remarked, this contradicts the assumption that no xn has a strong
(C, ǫ)-canonical neighborhood.

This completes the proof in the last case and establishes Lemma 17.2. �

Remark 17.5. Notice that even though x(a,b) is the center of a strong
ǫ-neck, the canonical neighborhoods of the xn constructed in the second case
are not strong ǫ-necks but rather are (C, ǫ)-caps coming from applying the
flow to a neighborhood of the surgery cap C.

Now we return to the proof of Proposition 17.1. For each a, we pass to
a subsequence (in b) so that Lemma 17.2 holds for all (a, b). For each (a, b),
let t(a,b) be as in that lemma. We fix a point x(a,b) ∈ t−1(t(a,b)) ⊂ M(a,b)

at which the canonical neighborhood assumption with parameter ra fails.
For each a choose b(a) such that δb(a) → 0 as a → ∞. For each a we
set (Ma, Ga) = (M(a,b(a)) , G(a,b(a))), we set ta = t(a,b(a)), and we let xa =

x(a,b(a)) ∈ Ma. Let (M̃a, G̃a) be the Ricci flow with surgery obtained from
(Ma, Ga) by shifting ta to 0 and rescaling the metric and time by R(xa).

We have the points x̃a in the 0 time-slice of M̃a corresponding to xa ∈ Ma.
Of course, by construction R eGa

(x̃a) = 1 for all a.
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We shall take limits of a subsequence of this sequence of based Ricci flows
with surgery. Since ra → 0 and R(xa) ≥ r−2

a , it follows that R(xa) → ∞.
By Proposition 16.1, since δb(a) ≤ δ(ra) it follows that the restriction of

(M̃a, G̃a) to t−1(−∞, 0) is κ-non-collapsed on scales ≤ ǫR
1/2
Ga

(xa). By pass-
ing to a subsequence we arrange that one of the following two possibilities
holds:

(i) There is A < ∞ and t′ < ∞ such that, for each a there is a flow
line through a point ya of B eGa

(x̃a, 0, A) that is not defined on all

of [−t′, 0]. (See Fig. 2.)
(ii) For every A < ∞ and every t′ < ∞, for all a sufficiently large all

flow lines through points of B eGa
(x̃a, 0, A) are defined on the interval

[−t′, 0].

Figure 2. Possibility (i).

Let us consider the second case. By Proposition 16.1 these rescaled
solutions are κ-non-collapsed on scales ≤ ǫRGa(xa)

1/2 for all t < 0. Since this
condition is a closed constraint, the same is true if t = 0. Since R(xa) ≥ r−2

a ,

by construction every point x̃ ∈ (M̃a, G̃a) with R(x̃) ≥ 1 and t(x̃) < 0 has
a strong (C, ǫ)-canonical neighborhood.

Claim 17.6. For all a sufficiently large, every point x̃ ∈ (M̃a, G̃a) with
R(x̃) > 1 and t(x̃) = 0 has a (2C, 2ǫ)-canonical neighborhood.

Proof. Assume that x̃ ∈ M̃ has R(x̃) > 1. Suppose that x̃ is an
exposed point. If a is sufficiently large, then δb(a) is arbitrarily close to zero
and hence by the last item in Theorem 13.2 and the structure of the standard
initial condition, we see that x̃ is contained in the core of a (2C, 2ǫ)-cap.
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Suppose now that x̃ is not an exposed point. Then we can take a se-

quence of points ỹn ∈ M̃a all lying on the flow line for the vector field
through x̃ converging to x̃ with t(ỹn) < 0. Of course, for all n sufficiently
large R(ỹn) > 1, which implies that for all n sufficiently large ỹn has a
strong (C, ǫ)-canonical neighborhood. Passing to a subsequence, we can ar-
range that all of these canonical neighborhoods are of the same type. If they
are all ǫ-round components, all C-components, or all (C, ǫ)-caps whose cores
contain yn, then by taking limits and arguing as in the proof of Lemma 11.23
we see that x̃ has a strong (2C, 2ǫ)-canonical neighborhood of the same type.
On the other hand, if ỹn is the center of a strong ǫ-neck for all n, then accord-
ing to Claim 11.24, the limit point x̃ is the center of a strong 2ǫ-neck. �

Since we have chosen ǫ > 0 sufficiently small so that Theorem 11.8
applies with ǫ replaced by 2ǫ, applying this theorem shows that we can
pass to a subsequence and take a smooth limiting flow of a subsequence of

the rescaled flows (M̃a, G̃a) based at x̃a and defined for all t ∈ (−∞, 0].
Because the (Ma, Ga) all have curvature pinched toward positive and since
R(xa) → ∞ as a tends to infinity, this result says that the limiting flow has
non-negative, bounded curvature and is κ-non-collapsed on all scales. That
is to say, the limiting flow is a κ-solution. By Corollary 9.95 this contradicts
the fact that the strong (C, ǫ)-canonical neighborhood assumption fails at
xa for every a. This contradiction shows that in the second case there is a
subsequence of the a such that xa has a strong canonical neighborhood and
completes the proof of the second case.

Let us consider the first case. In this case we will arrive at a contradiction
by showing that for all a sufficiently large, the point xa lies in a strong
(C, ǫ)-canonical neighborhood coming from a surgery cap. Here is the basic
result we use to find that canonical neighborhood.

Lemma 17.7. Suppose that there are A′,D′, t′ <∞ such that the follow-
ing holds for all a sufficiently large. There is a point ya ∈ B eGa

(x̃a, 0, A
′)

and a flow line of χ beginning at ya, defined for backward time and ending
at a point za in a surgery cap Ca at time −ta for some ta ≤ t′. We denote
this flow line by ya(t),−ta ≤ t ≤ 0. Furthermore, suppose that the scalar
curvature on the flow line from ya to za is bounded by D′. Then for all a
sufficiently large, xa has a strong (C, ǫ)-canonical neighborhood.

Proof. The proof is by contradiction. Suppose the result does not hold.
Then there are A′,D′, t′ <∞ and we can pass to a subsequence (in a) such
that the hypotheses of the lemma hold for every a but no xa has a strong
(C, ǫ)-canonical neighborhood. The essential point of the argument is to
show that in the units of the surgery scale the elapsed time between
the surgery time and 0 is less than 1 and the distance from the point za to
the tip of the surgery cap is bounded independent of a.
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By Lemma 12.3, the fact that the scalar curvature at za is bounded by
D′ implies that for all a sufficiently large the scale ha of the surgery at time
−ta satisfies

(17.2) h 2
a ≥ (2D′D)−1.

(Recall that we are working in the rescaled flow (M̃a, G̃a).)
Now we are ready to show that the elapsed time is bounded less than 1

in the surgery scale.

Claim 17.8. There is θ1 < 1, depending on D′ and t′, such that for all

a sufficiently large we have ta < θ1h
2
a.

Proof. We consider two cases: either ta ≤ h 2
a /2 or h 2

a /2 < ta. In the
first case, the claim is obviously true with θ1 anything greater than 1/2 and
less than 1. In the second case, the curvature everywhere along the flow
line is at most D′ < (2taD

′)h−2
a ≤ (2t′D′)h−2

a . Using Proposition 12.31
fix 1/2 < θ1 < 1 so that every point of the standard solution (x, t) with
t ≥ (2θ1 − 1) satisfies R(x, t) ≥ 6t′D′. Notice that θ1 depends only on D′

and t′. If ta < θ1h
2
a , then the claim holds for this value of θ1 < 1. Suppose

ta ≥ θ1h
2
a , so that −ta + (2θ1 − 1)h 2

a < 0. For all a sufficiently large we
have δa ≤ δ′′0 (A0 + 5, θ1, δ0) where δ0 is the constant from Definition 16.12
and δ′′0 is the constant from Proposition 16.5. This means that the scalar
curvatures at corresponding points of the rescaled standard solution and the

evolution of the surgery cap (up to time 0) in M̃a differ by at most a factor
of two. Thus, for these a, we have R(ya, (−ta + (2θ1 − 1)h 2

a )) ≥ 3(t′D′)h−2
a

from the definition of δ0 and Proposition 16.5. But this is impossible since
−ta(2θ1 − 1)h 2

a < 0 and 3t′D′/h 2
a ≥ 3taD

′/h 2
a > D′ as ta > h 2

a/2. Hence,
R(ya, (−ta+(2θ1−1)h 2

a )) ≤ 2taD
′h−2
a ≤ 2t′D′h−2

a . This contradiction shows
that if a is sufficiently large then ta < θ1h

2
a . �

We pass to a subsequence so that tah
−2
a converges to some θ ≤ θ1.

We define C̃ to be the maximum of C and 3ǫ−1β−1. Now, using part 5

of Theorem 12.5 we set A′′ ≥ (9C̃ + 3A′)
√

2DD′ + 6(A0 + 5) sufficiently
large so that in the standard flow B(p0, 0, A

′′) contains B(p0, t, A
′′/2) for

any t ≤ (θ1 +1)/2. This constant is chosen only to depend on θ1, A
′, and C.

As a tends to infinity, δa tends to zero which means, by Proposition 16.5,
that for all a sufficiently large there is an embedding

ρa : B(p0,−ta, A′′ha) × [−ta, 0] → M̃a

compatible with time and the vector field such that (after translating by
ta to make the flow start at time 0 and scaling by h−2

a ) the restriction

of G̃a to this image is close in the C∞-topology to the restriction of the
standard flow to B(p0, 0, A

′′) × [0, h−2
a ta]. The image ρa(p0,−ta) is the tip

pa of the surgery cap Ca in M̃a. Thus, for all a sufficiently large the image
ρa
(
B(p0,−ta, A′′ha) × {0}

)
contains the A′′ha/3-neighborhood of the image
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ρa(p0, 0) of the tip of the surgery cap under the flow forward to time 0. By
our choice of A′′, and Equation (17.2), this means that for all a sufficiently

large ρa
(
B(p0,−ta, A′′ha) × {−ta}

)
contains the (3C̃ + A′) + 2(A0 + 5)ha-

neighborhood of pa = ρa(p0,−ta). Notice also that, since the standard
solution has positive curvature and hence the distance between points is non-
increasing in time by Lemma 3.14, the distance at time 0 between ρa(p0, 0)
and ya is less than 2(A0 + 5)ha. By the triangle inequality, we conclude

that for all a sufficiently large, ρa
(
B(p0,−ta, A′′ha) × {0}

)
contains the 3C̃-

neighborhood of xa. Since the family of metrics on

ρa
(
B(p0,−ta, A′′ha) × [−ta, 0]}

)

(after time-shifting by ta and rescaling by h−2
a ) are converging smoothly to

the ball B(p0, 0, A
′′) × [0, θ] in the standard flow, for all a sufficiently large,

the flow from time −ta to 0 on the 3C̃-neighborhood of xa is, after rescal-
ing by h−2

a , very nearly isometric to the restriction of the standard flow

from time 0 to h−2
a ta on the 3C̃h−1

a -neighborhood of some point qa in the
standard flow. Of course, since the scalar curvature of xa is 1, R(qa, h

−2
a ta)

in the standard flow is close to h−2
a . Hence, by Theorem 12.32 there is

a neighborhood X of (qa, h
−2
a ta) in the standard solution that either is a

(C, ǫ)-cap, or is an evolving βǫ/3-neck centered at (qa, h
−2
a ta). In the lat-

ter case either the evolving neck is defined for backward time (1 + βǫ/3)
or its initial time-slice is the zero time-slice and this initial time-slice lies
at distance at least 1 from the surgery cap. Of course, X is contained in
the CR(qa, h

−2
a ta)

−1/2-neighborhood of (qa, h
−2
a ta) in the standard solution.

Since C̃ ≥ C and R(qa, h
−2
a ta) is close to h−2

a , the neighborhood X is con-

tained in the 2C̃h−1
a -neighborhood of (qa, h

−2
a ta) in the standard solution.

Hence, after rescaling, the corresponding neighborhood of xa is contained in

the 3C̃-neighborhood of xa. If either of the first two cases in Theorem 12.32
occurs for a subsequence of a tending to infinity, then by Lemma 9.79 and

the fact that C̃ > max(C, ǫ−1), we see that there is a subsequence of a for
which xa either is contained in the core of a (C, ǫ)-cap or is the center of a
strong ǫ-neck.

We must examine further the last case. We suppose that for every a
this last case holds. Then for all a sufficiently large we have an βǫ/3-neck

Na in the zero time-slice of M̃a centered at xa. It is an evolving neck and

there is an embedding ψ : Na × [−ta, 0] → M̃a compatible with time and
the vector field so that the initial time-slice ψ(Na×{−ta}) is in the surgery
time-slice M−ta and is disjoint from the surgery cap, so in fact it is contained
in the continuing region at time −ta. As we saw above, the image of the
central 2-sphere ψ(S2

a×{−ta}) lies at distance at most A′′ha from the tip of
the surgery cap pa (where, recall, A′′ is a constant independent of a). The
2-sphere, Σa, along which we do surgery, creating the surgery cap with pa as
its tip, is the central 2-sphere of a strong δb(a)-neck. As a tends to infinity
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the surgery control parameter δb(a) tends to zero. Thus, for a sufficiently
large this strong δb(a)-neck will contain a strong βǫ/2- neck N ′ centered at
ψ(xa,−ta). Since we know that the continuing region at time −ta contains a
βǫ/3-neck centered at (xa,−ta), it follows that N ′ is also contained in C−ta .
That is to say, N ′ is contained in the negative half of the δb(a)-neck centered
at Σa. Now we are in the situation of Proposition 15.2. Applying this result
tells us that xa is the center of a strong ǫ-neck.

This completes the proof that for all a sufficiently large, xa has a
(C, ǫ)-canonical neighborhood in contradiction to our assumption. This con-
tradiction completes the proof of Lemma 17.7. �

There are several steps in completing the proof of Proposition 17.1. The
first step helps us apply the previous claim to find strong (C, ǫ)-canonical
neighborhoods.

Claim 17.9. Given any A < ∞ there is D(A) < ∞ and δ(A) > 0 such
that for all a sufficiently large, |Rm| is bounded by D(A) along all backward
flow lines beginning at a point of B eGa

(x̃a, 0, A) and defined for backward

time at most δ(A).

Proof. Since all points y ∈ (Ma, Ga) with RGa(y) ≥ r−2
a and t(y) <

t(xa) have strong (C, ǫ)-canonical neighborhoods, and since R(xa) = r−2
a , we

see that all points y ∈ (M̃a, G̃a) with t(ya) < 0 and with R eGa
(ya) ≥ 1 have

strong (C, ǫ)-canonical neighborhoods. It follows that all points in (M̃a, G̃a)
with t(y) ≤ 0 and R(y) > 1 have strong (2C, 2ǫ)-canonical neighborhoods.
Also, since δa ≤ δ(ra), where δ(ra) is the constant given in Proposition 16.1,
and since the condition of being κ-non-collapsed is a closed constraint, it
follows from Proposition 16.1 that these Ricci flows with surgery are κ-non-
collapsed for a fixed κ > 0. It is now immediate from Theorem 10.2 that
there is a constant D0(A) such that R is bounded above on B eGa

(x̃a, 0, A) by

D0(A). Since every point y ∈ (Ma, Ga) with R(y) > 1 with scalar curvature
at least 1 has a (C, ǫ)-canonical neighborhood, it follows from the definition
that for every such point y we have |∂R(y)/∂t| < CR(y)2. Arguing as in
Lemma 11.2 we see that there are constants δ(A) > 0 and D′(A) < ∞,
both depending only on D0(A), such that the scalar curvature at all points
of backward flow lines beginning in B eGa

(x̃a, 0, A) and defined for backward

time at most δ(A) is bounded by D′(A). Since the curvature is pinched
toward positive, it follows that there is a D(A) < ∞, depending only on
D′(A) such that |Rm| ≤ D(A) on the same flow lines. �

Claim 17.10. After passing to a subsequence (in a), either:

(1) for each A < ∞ there are D(A) < ∞ and t(A) > 0 such that for

all a sufficiently large P eGa
(x̃a, 0, A,−t(A)) exists in M̃a and |Rm|

is bounded by D(A) on this backward parabolic neighborhood, or
(2) each xa has a strong (C, ǫ)-canonical neighborhood.
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Proof. First notice that if there is t(A) > 0 for which the back-
wards parabolic neighborhood P = P eGa

(x̃a, 0, A,−t(A)) exists, then, by

Claim 17.9, there are constants D(A) <∞ and δ(A) > 0 such that, replac-
ing t(A) by min(t(A), δ(A)), |Rm| is bounded by D(A) on P . Thus, either
item (1) holds or passing to a subsequence, we can suppose that there is
some A < ∞ for which no t(A) > 0 as required by item (1) exists. Then,
for each a we find a point ya ∈ B eGa

(x̃a, 0, A) such that the backwards flow

line from ya meets a surgery cap at a time −ta where lima→∞(ta) = 0.
Then, by the previous claim, for all a sufficiently large, the sectional curva-
ture along any backward flow line beginning in B eGa

(x̃a, 0, A) and defined for

backward time ta is bounded by a constant D(A) independent of a. Under
our assumption this means that for all a sufficiently large, there is a point
ya ∈ B eGa

(x̃a, 0, A) and a backwards flow line starting at ya ending at a point
za of a surgery cap, and the sectional curvature along this entire flow line is
bounded by D(A) < ∞. Thus, applying Lemma 17.7 produces the strong
(C, ǫ)-canonical neighborhood around xa, proving the claim. �

But we are assuming that no xa has a strong (C, ǫ)-canonical neighbor-
hood. Thus, the consequence of the previous claim is that for each A < ∞
there is a t(A) > 0 such that for all a sufficiently large P eGa

(x̃a, 0, A,−t(A))

exists in M̃a and there is a bound, depending only on A for |Rm| on this
backward parabolic neighborhood. Applying Theorem 5.11 we see that, af-
ter passing to a subsequence, there is a smooth limit (M∞, g∞, x∞) to the

zero time-slices (M̃a, G̃a, x̃a). Clearly, since the curvatures of the sequence
are pinched toward positive, this limit has non-negative curvature.

Lastly, we show that (M∞, g∞) has bounded curvature. By part 3 of
Proposition 9.79 each point of (M∞, g∞) with scalar curvature greater than
one has a (2C, 2ǫ)-canonical neighborhood. If a point lies in a 2ǫ-component
or in a 2C-component, then M∞ is compact, and hence clearly has bounded
curvature. Thus, we can assume that each y ∈ M∞ with R(y) > 1 is either
the center of a 2ǫ-neck or is contained in the core of a (2C, 2ǫ)-cap. According
to Proposition 2.19 (M∞, g∞) does not contain 2ǫ-necks of arbitrarily high
curvature. It now follows that there is a bound on the scalar curvature of
any 2ǫ-neck and of any (2C, 2ǫ)-cap in (M∞, g∞), and hence it follows that
(M∞, g∞) has bounded curvature.

Claim 17.11. If the constant t(A) > 0 cannot be chosen independent of
A, then after passing to a subsequence, the xa have strong (C, ǫ)-canonical
neighborhoods.

Proof. Let Q be the bound on the scalar curvature of (M∞, g∞, x∞).
Then by Lemma 11.2 there is a constant ∆t > 0 such that if R eGa

(y, 0) ≤ 2Q,
then the scalar curvature is bounded by 16Q on the backward flow line from
y defined for any time ≤ ∆t. Suppose that there is A <∞ and a subsequence



408 17. COMPLETION OF THE PROOF OF THEOREM 15.9

of a for which there is a flow line beginning at a point ya ∈ B eGa
(x̃a, 0, A)

defined for backward time at most ∆t and ending at a point za of a surgery
cap. Of course, the fact that the scalar curvature of (M∞, g∞) is at most Q
implies that for all a sufficiently large, the scalar curvature of B eGa

(x̃a, 0, A)

is less than 2Q. This implies that for all a sufficiently large the scalar
curvature along the flow line from ya to za in a surgery cap is ≤ 16Q. Now
invoking Lemma 17.7 we see that for all a sufficiently large the point x̃a has
a strong (C, ǫ)-canonical neighborhood. This is a contradiction, and this
contradiction proves that we can choose t(A) > 0 independent of A. �

Since we are assuming that no xa has a strong (C, ǫ)-canonical neigh-
borhood, this means that it is possible to find a constant t′ > 0 such that
t(A) ≥ t′ for all A < ∞. Now let 0 < T ′ ≤ ∞ be the maximum possi-
ble value for such t′. Then for every A and every T < T ′ the parabolic
neighborhood P eGa

(x̃a, 0, A, T ) exists for all a sufficiently large. According
to Theorem 11.8, after passing to a subsequence, there is a limiting flow
(M∞, g∞(t), x∞), −T ′ < t ≤ 0, and this limiting flow has bounded, non-
negative curvature. If T = ∞, this limit is a κ-solution, and hence the xa
have strong (C, ǫ)-canonical neighborhoods for all a sufficiently large, which
is a contradiction.

Thus, we can assume that T ′ < ∞. Let Q be the bound for the scalar
curvature of this flow. Since T ′ is maximal, for every t > T ′, after passing
to a subsequence, for all a sufficiently large there is A <∞ and a backwards
flow line, defined for a time less than t, starting at a point ya of B eGa

(x̃a, 0, A)
and ending at a point za of a surgery cap. Invoking Lemma 11.2 again, we see
that for all a sufficiently large, the scalar curvature is bounded on the flow
line from ya to za by a constant independent of a. Hence, as before, we see
that for all a sufficiently large xa has a strong (C, ǫ)-canonical neighborhood;
again this is a contradiction.

Hence, we have now shown that our assumption that the strong
(C, ǫ)-canonical neighborhood assumption fails for all ra and all δa,b leads
to a contradiction and hence is false.

This completes the proof of Proposition 17.1. �

2. Surgery times don’t accumulate

Now we turn to the proof of Theorem 15.9. Given surgery parameter
sequences

∆i = {δ0, . . . , δi},
ri = {r0, . . . , ri},

Ki = {κ0, . . . , κi},
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we let ri+1 and δi+1 be as in Proposition 17.1 and then set κi+1 = κ(ri+1)
as in Proposition 16.1. Set

ri+1 = {ri, ri+1},
Ki+1 = {Ki, κi+1},
∆i+1 = {δ0, . . . , δi−1, δi+1, δi+1}.

Of course, these are also surgery parameter sequences.
Let δ : [0, T ] → R

+ be any non-increasing positive function and let
(M, G) be a Ricci flow with surgery defined on [0, T ) for some T ∈ [Ti, Ti+1)
with surgery control parameter δ. Suppose δ ≤ ∆i+1 and that this Ricci flow
with surgery satisfies the conclusion of Theorem 15.9 with respect to these
sequences on its entire interval of definition. We wish to extend this Ricci
flow with surgery to one defined on [0, T ′) for some T ′ with T < T ′ ≤ Ti+1

in such a way that δ is the surgery control parameter and the extended Ricci
flow with surgery continues to satisfy the conclusions of Theorem 15.9 on
its entire interval of definition.

We may as well assume that the Ricci flow (M, G) becomes singular at
time T . Otherwise we would simply extend by Ricci flow to a later time
T ′. By Proposition 16.1 and Proposition 17.1 this extension will continue to
satisfy the conclusions of Theorem 15.9 on its entire interval of definition.
If T ≥ Ti+1, then we have extended the Ricci flow with surgery to time Ti+1

as required and hence completed the inductive step. Thus, we may as well
assume that T < Ti+1.

Consider the maximal extension of (M, G) to time T . Let T− be the pre-
vious surgery time, if there is one, and otherwise be zero. If the T time-slice,
Ω(T ), of this maximal extension is all of MT− , then the curvature remains
bounded as t approaches T from below. According to Proposition 4.12 this
means that T is not a surgery time and we can extend the Ricci flow on
(MT− , g(t)), T− ≤ t < T , to a Ricci flow on (MT− , g(t)), T− ≤ t < T ′ for
the maximal time interval (i.e. so that the flow becomes singular at time T ′

or T ′ = ∞). But we are assuming that the flow goes singular at T . That
is to say, Ω(T ) 6= MT− . Then we can do surgery at time T using δ(T ) as
the surgery control parameter, setting ρ(T ) = ri+1δ(T ). Let (MT , G(T )) be
the result of surgery. If Ωρ(T )(T ) = ∅, then the surgery process at time T
removes all of MT ′ . In this case, the Ricci flow is understood to exist for
all time and to be empty for t ≥ T . In this case we have completed the
extension to Ti+1, and in fact all the way to T = ∞, and hence completed
the inductive step in the proof of the proposition.

We may as well assume that Ωρ(T )(T ) 6= ∅ so that the result of surgery is
a non-empty manifold MT . Then we use this compact Riemannian
3-manifold as the initial conditions of a Ricci flow beginning at time T .
According to Lemma 15.11 the union along Ω(T ) at time T of this Ricci
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flow with (M, G) is a Ricci flow with surgery satisfying Assumptions (1) –
(7) and whose curvature is pinched toward positive.

Since the surgery control parameter δ(t) is at most δ(ri+1), the con-
stant from Proposition 16.1, for all t ∈ [Ti−1, T ], since T ≤ Ti+1, and since
the restriction of (M, G) to t−1([0, Ti)) satisfies Proposition 16.1, we see
by Proposition 17.1 that the extended Ricci flow with surgery satisfies the
conclusion of Theorem 15.9 on its entire time interval of definition.

Either we can repeatedly apply this process, passing from one surgery
time to the next and eventually reach T ≥ Ti+1, which would prove the
inductive step, or there is an unbounded number of surgeries in the time
interval [Ti, Ti+1). We must rule out the latter case.

Lemma 17.12. Given a Ricci flow with surgery (M, G) defined on [0, T )
with T ≤ Ti+1 with surgery control parameter δ a non-increasing positive
function defined on [0, Ti+1] satisfying the hypotheses of Theorem 15.9 on
its entire time-domain of definition, there is a constant N depending only
on the volume of (M0, g(0)), on Ti+1, on ri+1, and on δ(Ti+1) such that this
Ricci flow with surgery defined on the interval [0, T ) has at most N surgery
times.

Proof. Let (Mt, g(t)) be the t time-slice of (M, G). If t0 is not a surgery
time, then Vol(t) = Vol(Mt, g(t)) is a smooth function of t near t0 and

dVol

dt
(t0) = −

∫

Mt0

Rdvol,

so that, because of the curvature pinching toward positive hypothesis, we
have dVol

dt (t0) ≤ 6Vol(t0). If t0 is a surgery time, then either Mt0 has fewer
connected components than Mt−0

or we do a surgery in an ǫ-horn of Mt−0
. In

the latter case we remove the end of the ǫ-horn, which contains the positive
half of a δ(t0)-neck of scale h(t0). We then sew in a ball with volume at most
(1+ǫ)Kh3(t0), where K <∞ is the universal constant given in Lemma 12.3.
Since h(t0) ≤ δ 2(t0)r(t0) ≤ δ20r(t0) and since we have chosen δ(t0) ≤ δ0 <
K−1, it follows that this operation lowers volume by at least δ−1h2(t0)/2.
Since δ(t0) ≥ δ(Ti+1) > 0 and the canonical neighborhood parameter r at
time t0 is at least ri+1 > 0, it follows that h(t0) ≥ h(Ti+1) > 0. Thus, each
surgery at time t0 ≤ Ti+1 along a 2-sphere removes at least a fixed amount
of volume depending on δ(Ti+1) and ri+1. Since under Ricci flow the volume
grows at most exponentially, we see that there is a bound depending only on
δ(Ti+1), Ti+1, ri+1 and Vol(M0, g(0)) on the number of 2-sphere surgeries
that we can do in this time interval. On the other hand, the number of
components at any time t is at most N0 + S(t) − D(t) where N0 is the
number of connected components of M0, S(t) is the number of 2-sphere
surgeries performed in the time interval [0, t) and D(t) is the number of
connected components removed by surgeries at times in the interval [0, t).
Hence, there is a bound on the number of components in terms of N0 and
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S(T ) that can be removed by surgery in the interval [0, T ). Since the initial
conditions are normalized, N0 is bounded by the volume of (M0, g(0)). This
completes the proof of the result. �

This lemma completes the proof of the fact that for any T ≤ Ti+1,
we encounter only a fixed bounded number of surgeries in the Ricci flow
with surgery from 0 to T . The bound depends on the volume of the initial
manifold as well as the surgery constants up to time Ti+1. In particular, for
a given initial metric (M0, g(0)) there is a uniform bound, depending only
on the surgery constants up to time Ti+1, on the number of surgeries in any
Ricci flow with surgery defined on a subinterval of [0, Ti+1). It follows that
the surgery times cannot accumulate in any finite interval. This completes
the proof of Theorem 15.9.

To sum up, we have sequences ∆, K and r as given in Theorem 15.9. Let
δ : [0,∞) → R be a positive, non-increasing function with δ ≤ ∆. Let M be
a compact 3-manifold that contains no embedded RP 2 with trivial normal
bundle. We have proved that for any normalized initial Riemannian metric
(M0, g0) there is a Ricci flow with surgery with time-interval of definition
[0,∞) and with (M0, g0) as initial conditions. This Ricci flow with surgery
is K-non-collapsed and satisfies the strong (C, ǫ)-canonical neighborhood
theorem with respect to the parameter r. It also has curvature pinched
toward positive. Lastly, for any T ∈ [0,∞) if there is a surgery at time T
then this surgery is performed using the surgery parameters δ(T ) and r(T ),
where if T ∈ [Ti, Ti+1) then r(T ) = ri+1. In this Ricci flow with surgery,
there are only finitely many surgeries on each finite time interval. As far as
we know there may be infinitely many surgeries in all.
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CHAPTER 18

Finite-time extinction

Our purpose in this chapter and the next is to prove the following finite-
time extinction theorem for certain Ricci flows with surgery which, as we
shall show below, when combined with the theorem on the existence of Ricci
flows with surgery defined for all t ∈ [0,∞) (Theorem 15.9), immediately
yields Theorem 0.1, thus completing the proof of the Poincaré Conjecture
and the 3-dimensional space-form conjecture.

1. The result

Theorem 18.1. Let (M,g(0)) be a compact, connected normalized Rie-
mannian 3-manifold. Suppose that the fundamental group of M is a free
product of finite groups and infinite cyclic groups. Then M contains no
RP 2 with trivial normal bundle. Let (M, G) be the Ricci flow with surgery
defined for all t ∈ [0,∞) with (M,g(0)) as initial conditions given by The-
orem 15.9. This Ricci flow with surgery becomes extinct after a finite time
in the sense that the time-slices MT of M are empty for all T sufficiently
large.

Let us quickly show how this theorem implies our main result, Theo-
rem 0.1.

Proof. (of Theorem 0.1 assuming Theorem 18.1). Fix a normalized
metric g(0) on M , and let (M, G) be the Ricci flow with surgery defined for
all t ∈ [0,∞) produced by Theorem 15.9 with initial conditions (M,g(0)).
According to Theorem 18.1 there is T > 0 for which the time-slice MT

is empty. By Corollary 15.4, if there is T for which MT is empty, then
for any T ′ < T the manifold MT ′ is a disjoint union of connected sums of
3-dimensional spherical space forms and 2-sphere bundles over S1. Thus,
the manifold M = M0 is a connected sum of 3-dimensional space-forms
and 2-sphere bundles over S1. This proves Theorem 0.1. In particular,
if M is simply connected, then M is diffeomorphic to S3, which is the
statement of the Poincaré Conjecture. Similarly, if π1(M) is finite then M
is diffeomorphic to a connected sum of a 3-dimensional spherical space-form
and 3-spheres, and hence M is diffeomorphic to a 3-dimensional spherical
space-form. �

415
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The rest of this chapter and the next is devoted to the proof of Theo-
rem 18.1, which will then complete the proof of Theorem 0.1.

1.1. History of this approach. The basic idea for proving finite-time
extinction is to use a min-max function based on the area (or the closely
related energy) of 2-spheres or 2-disks in the manifold. The critical points
of the energy functional are harmonic maps and they play a central role in
the proof. For a basic reference on harmonic maps see [59], [61], and [42].
Let us sketch the argument. For a compact Riemannian manifold (M,g)
every non-zero element β ∈ π2(M) has associated with it an area, denoted
W2(β, g), which is the infimum over all maps S2 →M in the free homotopy
class of β of the energy of the map. We find it convenient to set W2(g) equal
to the minimum over all non-zero homotopy classes β of W2(β, g). In the
case of a Ricci flow g(t) there is an estimate (from above) for the forward
difference quotient of W2(g(t)) with respect to t. This estimate shows that
after a finite time W2(g(t)) must go negative. This is absurd since W2(g(t))
is always non-negative. This means that the Ricci flow cannot exist for all
forward time. In fact, using the distance-decreasing property for surgery in
Proposition 15.12 we see that, even in a Ricci flow with surgery, the same
forward difference quotient estimate holds for as long as π2 continues to be
non-trivial, i.e., is not killed by the surgery. The forward difference quotient
estimate means that eventually all of π2 is killed in a Ricci flow with surgery
and we arrive at a time T for which every component of the T time-slice, MT ,
has trivial π2. This result holds for all Ricci flows with surgery satisfying
the conclusion of Theorem 15.9.

Now we fix T0 so that every component of MT0 has trivial π2. It follows
easily from the description of surgery that the same statement holds for
all T ≥ T0. We wish to show that, under the group-theoretic hypothesis
of Theorem 18.1, at some later time T ′ > T0 the time-slice MT ′ is empty.
The argument here is similar in spirit. There are two approaches. The first
approach is due to Perelman [54]. Here, one represents a non-trivial element
in π3(MT0 , x0) by a non-trivial element in π2(ΛM, ∗), where ΛM is the free
loop space on M and ∗ is the trivial loop at x0. For any compact family
Γ of homotopically trivial loops in M we consider the areas of minimal
spanning disks for each of the loops in the family and set W (Γ) equal to
the maximal area of these minimal spanning disks. For a given element
in γ ∈ π2(ΛM) we set W (γ) equal to the infimum over all representative
2-sphere families Γ for γ of W (Γ). Under Ricci flow, the forward difference
quotient of this invariant satisfies an inequality and the distance-decreasing
property of surgery (Proposition 15.12) says that the inequality remains
valid for Ricci flow with surgery. The inequality implies that the value
W (γ) goes negative in finite time, which is impossible.

The other approach, by Colding-Minicozzi [15], is to represent a non-
trivial element in π3(MT ) as a non-trivial element in π1(Maps(S2,M)), and
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associate to such an element the infimum over all representative families of
the maximal energy of the 2-spheres in the family. Again, one shows that
under Ricci flow the forward difference quotient of this minimax satisfies
an inequality that implies that it goes negative in finite time. As before,
the distance-decreasing property of surgery (Proposition 15.12) implies that
this inequality is valid for Ricci flows with surgery. This tells us that the
manifold must completely disappear in finite time.

Our first reaction was that, of the two approaches, the one considered by
Colding-Minicozzi was preferable since it seemed more natural and it had the
advantage of avoiding the boundary issues that occupy most of Perelman’s
analysis in [54]. In the Colding-Minicozzi approach one must construct
paths of 2-spheres with the property that when the energy of the 2-sphere
is close to the maximum value along the path, then the 2-sphere in question
represents a point in the space Maps(S2,M) that is close to a (usually) non-
minimal critical point for the energy functional on this space. Such paths are
needed in order to establish the forward difference quotient result alluded to
above. In Perelman’s approach, one deals only with area-minimizing disks
so that one avoids having to deal with non-minimal critical points at the
expense of dealing with the technical issues related to the boundary. Since
the latter are one-dimensional in nature, they are much easier to handle. In
the end we decided to follow Perelman’s approach, and that is the one we
present here. In [54] there were two points that we felt required quite a bit
of argument beyond what Perelman presented. In §2.2 on page 4 of [54],
Perelman asserts that there is a local, pointwise curvature estimate that
can be obtained by adapting arguments in the literature; see Lemmas 19.24
and 19.58 for the precise statement. To implement this adaption required
further non-trivial arguments. We present these arguments in Section 8 of
Chapter 19. In §2.5 on page 5 of [54] Perelman asserts that an elementary
argument establishes a lower bound on the length of a boundary curve of a
minimal annulus; see Proposition 19.35 for a precise statement. While the
statement seems intuitively clear, we found the argument, while elementary,
was quite intricate. We present this argument in Section 7 of Chapter 19.

The first use of these types of ideas to show that geometric objects must
disappear in finite time under Ricci flow is due to Hamilton [36]. He was
considering a situation where a time-slice (M,g(t0)) of a 3-dimensional Ricci
flow had submanifolds on which the metric was close to (a truncated version)
of a hyperbolic metric of finite volume. He wished to show that eventually
the boundary tori of the truncation were incompressible in the 3-manifold.
If not, then there would be an immersed minimal disk in M whose boundary
was a non-trivial loop on the torus. He represented this relative homotopy
class by a minimal energy disk in (M,g(t0)) and proved the same sort of
forward difference quotient estimate for the area of the minimal disk in the
relative homotopy class. The same contradiction – the forward difference
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quotient implies that after a finite time the area would go negative if the
disk continued to exist — implies that after a finite amount of time this com-
pressing disk must disappear. Using this he showed that for sufficiently large
time all the boundary tori of almost hyperbolic submanifolds in (M,g(t))
were incompressible.

In the next section we deal with π2 and, using W2, we show that given
a Ricci flow with surgery as in Theorem 15.9 there is T1 <∞ such that for
all T ≥ T1 every connected component of MT has trivial π2. Then in the
section after that, by analyzing 3-dimensional analogue W3, we show that,
under the group-theoretic hypothesis of Theorem 18.1, there is a T2 < ∞
such that MT = ∅ for all T ≥ T2. In both these arguments we need the same
type of results – a forward difference inequality for the energy function; the
statement that away from surgery times this function is continuous; and
lastly, the statement that the value of the energy function at a surgery time
is at most the liminf of its values at a sequence of times approaching the
surgery time from below.

1.2. Existence of the Ricci flow with surgery. Let (M,g(0)) be
as in the statement of Theorem 18.1, so that M is a compact, connected
3-manifold whose fundamental group is a free product of finite groups and
infinite cyclic groups. By scaling g(0) by a sufficiently large constant, we can
assume that g(0) is normalized. Let us show that such a manifold cannot
contain an embedded RP 2 with trivial normal bundle. First note that since
RP 2 has Euler characteristic 1, it is not the boundary of a compact 3-
manifold. Hence, an RP 2 embedded with trivial normal bundle does not
separate the connected component of M containing it. Also, any non-trivial
loop in RP 2 has non-trivial normal bundle in M so that inclusion of RP 2

into M induces an injection on fundamental groups. Under the fundamental
group hypotheses, M decomposes as a connected sum of 3-manifolds with
finite fundamental groups and 2-sphere bundles over S1, see [39]. Given
an RP 2 with trivial normal bundle embedded in a connected sum, it can
be replaced by one contained in one of the connected factors. [Proof: Let
Σ = Σ1 ∪ · · · ∪ Σn be the spheres giving the connected sum decomposition
of M . Deform the RP 2 until it is transverse to Σ and let γ be a circle
of intersection of RP 2 with one of the Σi that is innermost on Σi in the
sense that γ bounds a disk D in Σi disjoint from all other components of
intersection of Σi and RP 2. The loop γ also bounds a disk D′ in RP 2.
Replace D′ by D and push D slightly off to the correct side of Σi. This will
produce a new embedded RP 2 with trivial normal bundle in M and at least
one fewer component of intersection with Σ. Continue inductively until all
components of intersection with Σ are removed.]

Now suppose that we have an RP 2 with trivial normal bundle embedded
disjointly from Σ, and hence embedded in one of the prime factors of M .
Since it does not separate this factor, by the Mayer-Vietoris sequence (see
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p. 149 of [38]) the first homology of the factor in question maps onto Z

and hence the factor in question has infinite fundamental group. But this
group also contains the cyclic subgroup of order 2, namely the image of
π1(RP

2) under the map induced by the inclusion. Thus, the fundamental
group of this prime factor is not finite and is not infinite cyclic. This is
a contradiction. (We have chosen to give a topological argument for this
result. There is also an argument using the theory of groups acting on trees
which is more elementary in the sense that it uses no 3-manifold topology.
Since it is a more complicated, and to us, a less illuminating argument, we
decided to present the topological argument.)

Thus, by Theorem 15.9, for any compact 3-manifold M whose fundamen-
tal group is a free product of finite groups and infinite cyclic groups and for
any normalized metric g(0) on M there is a Ricci flow with surgery (M, G)
defined for all time t ∈ [0,∞) satisfying the conclusion of Theorem 15.9 with
(M,g(0)) as the initial conditions.

Definition 18.2. Let I be an interval (which is allowed to be open
or closed at each end and finite or infinite at each end). By a path of
components of a Ricci flow with surgery (M, G) defined for all t ∈ I we
mean a connected, open subset X ⊂ t−1(I) with the property that for every
t ∈ I the intersection X (t) of X with each time-slice Mt is a connected
component of Mt.

Let X be a path of components in a Ricci flow with surgery (M, G), a
path defined for all t ∈ I. Let I ′ be a subinterval of I with the property
that no point of I ′ except possibly its initial point is a surgery time. Then
the intersection of X with t−1(I ′) is the Ricci flow on the time interval I ′

applied to X (t) for any t ∈ I ′. Thus, for such intervals I ′ the intersection,
X (I ′), of X with t−1(I ′) is determined by the time-slice X (t) for any t ∈ I ′.
That is no longer necessarily the case if some point of I ′ besides its initial
point is a surgery time. Let t ∈ I be a surgery time, distinct from the initial
point of I (if there is one), and let I ′ ⊂ I be an interval of the form [t′, t) for
some t′ < t sufficiently close to t so that there are no surgery times in [t′, t).
Then, as we have just seen, X (I ′) is a Ricci flow on the connected manifold
X (t′). There are several possible outcomes of the result of surgery at time
t on this manifold. One possibility is that the surgery leaves this connected
component unchanged (affecting only other connected components). In this
case, there is no choice for X (t): it is the continuation to time t of the Ricci
flow on X (t′). Another possibility is that X (t′) is completely removed by
the surgery at time t. In this case the manifold X cannot be continued to
time t, contradicting the fact that the path of components X exists for all
t ∈ I. The last possibility is that at time t surgery is done on X (t′) using
one or more 2-spheres contained in X (t′). In this case the result of surgery
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on X (t′) results in one or several connected components and X (t) can be
any one of these.

2. Disappearance of components with non-trivial π2

Let (M, G) be a Ricci flow with surgery satisfying the conclusions of
Theorem 15.9. We make no assumptions about the fundamental group of
the initial manifold M0. In this section we shall show that at some finite time
T1 every connected component of MT1 has trivial π2 and that this condition
persists for all times T ≥ T1. There are two steps in this argument. First,
we show that there is a finite time T0 such that after time T0 every 2-sphere
surgery is performed along a homotopically trivial 2-sphere. (Using Kneser’s
theorem on finiteness of topologically non-trivial families of 2-spheres, one
can actually show by the same argument that after some finite time all
2-sphere surgeries are done along 2-spheres that bound 3-balls. But in fact,
Kneser’s theorem will follow from what we do here.)

After time T0 the number of components with non-trivial π2 is a weakly
monotone decreasing function of time. The reason is the following. Consider
a path of components X defined for t ∈ [T0, t

′] with the property that each
time-slice X (t) has non-trivial π2. Using the fact that after time T0 all
the 2-sphere surgeries are along homotopically trivial 2-spheres, one shows
easily that X is determined by its initial time-slice X (T0). Also, it is easy
to see that if there is a component of Mt′ with non-trivial π2, then it is
the final time-slice of some path of components defined for t ∈ [T0, t

′] with
every time-slice of this path having non-trivial π2. This then produces an
injection from the set of connected components of Mt with non-trivial π2

into the set of connected components of MT0 with non-trivial π2.
The second step in the argument is to fix a path X (t), T0 ≤ t ≤ t′, of

connected components with non-trivial π2 and to consider the functionW2 =
WX

2 that assigns to each t ∈ [T0, t
′] the minimal area of a homotopically non-

trivial 2-sphere mapping into X (t). We show that this function is continuous
except at the surgery times. Furthermore, we show that if t is a surgery time,
then W2(t) ≤ liminft′→t−W2(t). Lastly, we show that at any point t ≥ T0

we have

dW2

dt
(t) ≤ −4π − 1

2
Rmin(t)W2(t),

in the sense of forward difference quotients. From the bound Rmin(t) ≥
−6/(4t + 1), it follows that there is T1(X ) such that W2 with these three
properties cannot be non-negative for all t ∈ [T0, T1(X )] and hence t′ < T1.
Since there are only finitely many components with non-trivial π2 at time
T0 it follows that there is T1 < ∞ such that every component of MT has
trivial π2 for every T ≥ T1.
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2.1. A group theory lemma. To bound the number of homotopically
non-trivial 2-spheres in a compact 3-manifold we need the following group
theory lemma.

Lemma 18.3. Suppose that G is a finitely generated group, say generated
by k elements. Let G = G1 ∗ · · · ∗ Gℓ be a free product decomposition of G
with non-trivial free factors, i.e., with Gi 6= {1} for each i = 1, . . . , ℓ. Then
ℓ ≤ k.

Proof. This is a consequence of Grushko’s theorem [68], which says
that given a map of a finitely generated free group F onto the free product
G, one can decompose the free group as a free product of free groups F =
F1 ∗ · · · ∗ Fℓ with Fi mapping onto Gi. �

2.2. Homotopically non-trivial families of 2-spheres.

Definition 18.4. Let X be a compact 3-manifold (possibly discon-
nected). An embedded 2-sphere in X is said to be homotopically essential
if the inclusion of the 2-sphere into X is not homotopic to a point map of
the 2-sphere to X. More generally, let F = {Σ1, . . . ,Σn} be a family of dis-
jointly embedded 2-spheres in X. We say that the family is homotopically
essential if

(i) each 2-sphere in the family is homotopically essential, and
(ii) for any 1 ≤ i < j ≤ n, the inclusion of Σi into X is not homotopic

in X to the inclusion of Σj into X.

Notice that if F = {Σ1, . . . ,Σn} is a homotopically essential family of
disjointly embedded 2-spheres in X, then any subset F is also homotopically
essential.

Lemma 18.5. Let X be a compact 3-manifold (possibly disconnected).
Then there is a finite upper bound to the number of spheres in any homo-
topically essential family of disjointly embedded 2-spheres.

Proof. Clearly, without loss of generality we can assume that X is
connected. If F is a homotopically essential family of 2-spheres in X, then
by van Kampen’s theorem, see p. 40 of [38], there is an induced graph of
groups decomposition of π1(X) with all the edge groups being trivial. Since
the family is homotopically essential, it follows that the group associated
with each vertex of order 1 and each vertex of order 2 is a non-trivial group.
The rank of the first homology of the graph underlying the graph of groups,
denoted k, is bounded above by the rank of H1(X). Furthermore, by the
theory of graphs of groups there is a free product decomposition of π1(X)
with the free factors being the vertex groups and then k infinite cyclic factors.
Denote by Vi the number of vertices of order i and by E the number of edges
of the graph. The number E is the number of 2-spheres in the family F .
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An elementary combinatorial argument shows that

2V1 + V2 ≥ E + 3(1 − k).

Thus, there is a free product decomposition of π1(X) with at least
E + 3(1 − k) non-trivial free factors. Since k is bounded by the rank of
H1(X), applying Lemma 18.3 and using the fact that the fundamental group
of a compact manifold is finitely presented establishes the result. �

2.3. Two-sphere surgeries are trivial after finite time.

Definition 18.6. Let (M, G) be a Ricci flow with surgery. We say
that a surgery along a 2-sphere S0(t) at time t in (M, G) is a homotopically
essential surgery if, for every t′ < t sufficiently close to t, flowing S0(t)
backwards from time t to time t′ results in a homotopically essential 2-sphere
S0(t

′) in Mt′ .

Proposition 18.7. Let (M, G) be a Ricci flow with surgery satisfying
Assumptions (1) – (7) in Chapter 14. Then there can be only finitely many
homotopically essential surgeries along 2-spheres in (M, G).

Proof. Associate to each compact 3-manifold X the invariant s(X)
which is the maximal number of spheres in any homotopically essential fam-
ily of embedded 2-spheres in X. The main step in establishing the corollary
is the following:

Claim 18.8. Let (M, G) be a Ricci flow with surgery and for each t set
s(t) = s(Mt). If t′ < t then s(t′) ≥ s(t). If we do surgery at time t along at
least one homotopically essential 2-sphere, then s(t) < s(t′) for any t′ < t.

Proof. Clearly, for any t0 we have s(t) = s(t0) for t ≥ t0 sufficiently
close to t0. Also, if t is not a surgery time, then s(t) = s(t′) for all t′ < t
and sufficiently close to t. According to Proposition 15.3, if t is a surgery
time then for t′ < t but sufficiently close to it, the manifold Mt is obtained
from Mt′ by doing surgery on a finite number of 2-spheres and removing cer-
tain components of the result. We divide the operations into three types: (i)
surgery along homotopically trivial 2-spheres inMt′ , (ii) surgery along homo-
topically non-trivial 2-spheres in Mt′ , (iii) removal of components. Clearly,
the first operation does not change the invariant s since it simply creates
a manifold that is the disjoint union of a manifold homotopy equivalent to
the original manifold with a collection of homotopy 3-spheres. Removal of
components will not increase the invariant. The last operation to consider is
surgery along a homotopically non-trivial 2-sphere. Let Ft be a homotopi-
cally essential family of disjointly embedded 2-spheres in Mt. This family of
2-spheres in Mt can be deformed to miss the 3-disks (the surgery caps) in
Mt that we sewed in doing the surgery at time t along a homotopically non-
trivial 2-sphere. After deforming the spheres in the family Ft away from the
surgery caps, they produce a disjoint family F ′

t′ of 2-spheres in the manifold



2. DISAPPEARANCE OF COMPONENTS WITH NON-TRIVIAL π2 423

Mt′ , for t′ < t but t′ sufficiently close to t. Each 2-sphere in F ′
t′ is disjoint

from the homotopically essential 2-sphere S0 along which we do surgery at
time t. Let Ft′ be the family F ′

t′ ∪{S0}. We claim that Ft′ is a homotopically
essential family in Mt′ .

First, suppose that one of the spheres Σ in Ft′ is homotopically trivial in
Mt′ . Of course, we are in the case when the surgery 2-sphere is homotopically
essential, so Σ is not S0 and hence is the image of one of the 2-spheres in
Ft. Since Σ is homotopically trivial, it is the boundary of a homotopy 3-ball
B in Mt′ . If B is disjoint from the surgery 2-sphere S0, then it exists in Mt

and hence Σ is homotopically trivial in Mt, which is not possible from the
assumption about the family Ft. If B meets the surgery 2-sphere S0, then
since the spheres in the family Ft′ are disjoint, it follows that B contains
the surgery 2-sphere S0. This is not possible since in this case S0 would be
homotopically trivial in Mt′ , contrary to assumption.

We also claim that no distinct members of Ft′ are homotopic. For sup-
pose that two of the members Σ and Σ′ are homotopic. It cannot be the
case that one of Σ or Σ′ is the surgery 2-sphere S0 since, in that case, the
other one would be homotopically trivial after surgery, i.e., in Mt. The 2-
spheres Σ and Σ′ are the boundary components of a submanifold A in Mt′

homotopy equivalent to S2 × I. If A is disjoint from the surgery 2-sphere
S0, then A exists in Mt and Σ and Σ′ are homotopic in Mt, contrary to
assumption. Otherwise, the surgery sphere S0 must be contained in A. Ev-
ery 2-sphere in A is either homotopically trivial in A or is homotopic in A
to either boundary component. If S0 is homotopically trivial in A, then it
would be homotopically trivial in Mt′ and this contradicts our assumption.
If S0 is homotopic in A to each of Σ and Σ′, then each of Σ and Σ′ is homo-
topically trivial in Mt′ , contrary to assumption. This shows that the family
Ft′ is homotopically essential. It follows immediately that doing surgery on
a homotopically non-trivial 2-sphere strictly decreases the invariant s. �

Proposition 18.7 is immediate from this claim and the previous lemma.
�

2.4. For all T sufficiently large π2(MT ) = 0. We have just estab-
lished that given any Ricci flow with surgery (M, G) satisfying the conclu-
sion of Theorem 15.9 there is T0 < ∞, depending on (M, G), such that all
surgeries after time T0 either are along homotopically trivial 2-spheres or re-
move entire components of the manifold. Suppose thatMT0 has a component
X (T0) with non-trivial π2, and suppose that we have a path of components
X (t) defined for t ∈ [T0, T ) with the property that each time-slice has non-
trivial π2. If T is not a surgery time, then there is a unique extension of X
to a path of components with non-trivial π2 defined until the first surgery
time after T . Suppose that T is a surgery time and let us consider the effect
of surgery at time T on X (t) for t < T but close to it. Since no surgery
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after time T0 is done on a homotopically essential 2-sphere there are three
possibilities: (i) X (t) is untouched by the surgery, (ii) surgery is performed
on one or more homotopically trivial 2-spheres in X (t), or (iii) the compo-
nent X (t) is completely removed by the surgery. In the second case, the
result of the surgery on X (t) is a disjoint union of components one of which
is homotopy equivalent to X (t), and hence has non-trivial π2, and all others
are homotopy 3-spheres. This implies that there is a unique extension of
the path of components preserving the condition that every time-slice has
non-trivial π2, unless the component X (t) is removed by surgery at time T ,
in which case there is no extension of the path of components to time T .
Thus, there is a unique maximal such path of components starting at X (T0)
with the property that every time-slice has non-trivial π2. There are two
possibilities for the interval of definition of this maximal path of components
with non-trivial π2. It can be [T0,∞) or it is of the form [T0, T ), where the
surgery at time T removes the component X (t) for t < T sufficiently close
to it.

Proposition 18.9. Let (M, G) be a Ricci flow with surgery satisfying
the conclusion of Theorem 15.9. Then there is some time T1 <∞ such that
every component of MT for any T ≥ T1 has trivial π2. For every T ≥ T1,
each component of MT either has finite fundamental group, and hence has
a homotopy 3-sphere as universal covering, or has contractible universal
covering.

If M is a connected 3-manifold with π2(M) = 0, then the universal

covering, M̃ , of M is a 2-connected 3-manifold. The covering M̃ is compact

if and only if π1(M) is finite. In this case M̃ is a homotopy 3-sphere. If M̃

is non-compact then H3(M̃ ) = 0, so that all its homology groups and hence,
by the Hurewicz theorem, all its homotopy groups vanish. It follows from

the Whitehead theorem that M̃ is contractible in this case. This proves the
last assertion in the proposition modulo the first assertion.

The proof of the first assertion of this proposition occupies the rest of
this subsection. By the above discussion we see that the proposition holds
unless there is a path of components X defined for all t ∈ [T0,∞) with the
property that every time-slice has non-trivial π2. We must rule out this
possibility. To achieve this we introduce the area functional.

Lemma 18.10. Let X be a compact Riemannian manifold with π2(X) 6=
0. Then there is a positive number e0 = e0(X) with the following two prop-
erties:

(1) Any map f : S2 → X with area less than e0 is homotopic to a point
map.

(2) There is a minimal 2-sphere f : S2 → X, which is a branched im-
mersion, with the property that the area of f(S2) = e0 and with the
property that f is not homotopic to a point map.
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Proof. The first statement is Theorem 3.3 in [59]. As for the second,
following Sacks-Uhlenbeck, for any α > 1 we consider the perturbed energy
Eα given by

Eα(s) =

∫

S2

(
1 + |ds|2

)α
da.

According to [59] this energy functional is Palais-Smale on the space of
H1,2α maps and has an absolute minimum among homotopically non-trivial
maps, realized by a map sα : S2 → X. We consider a decreasing sequence
of α tending to 1 and the minimizers sα among homotopically non-trivial
maps. According to [59], after passing to a subsequence, there is a weak
limit which is a strong limit on the complement of a finite set of points in S2.
This limit extends to a harmonic map of S2 →M , and its energy is less than
or equal to the limit of the α-energies of sα. If the result is homotopically
non-trivial then it realizes a minimum value of the usual energy among all
homotopically non-trivial maps, for were there a homotopically non-trivial
map of smaller energy, it would have smaller Eα energy than sα for all α
sufficiently close to 1. Of course if the limit is a strong limit, then the map
is homotopically non-trivial, and the proof is complete.

We must examine the case when the limit is truly a weak limit. Let sn
be a sequence as above with a weak limit s. If the limit is truly a weak
limit, then there is bubbling. Let x ∈ S2 be a point where the limit s is not
a strong limit. Then according to [59] pre-composing with a sequence of
conformal dilations ρn centered at this point leads to a sequence of maps s′n
converging uniformly on compact subsets of R

2 to a non-constant harmonic
map s′ that extends over the one-point compactification S2. The energy of
this limiting map s′ is at most the limit of the α-energies of the sα. If s′

is homotopically non-trivial, then, arguing as before, we see that it realizes
the minimum energy among all homotopically non-trivial maps, and once
again we have completed the proof. We rule out the possibility that s′ is
homotopically trivial. Let α be the area, or equivalently the energy, of s′.
Let D ⊂ R

2 be a disk centered at the origin which contains three-quarters of
the energy of s′ (or equivalently three-quarters of the area of s′), and let D′

be the complementary disk to D in S2. For all n sufficiently large the area
of s′n|D minus the area of s′n|D′ is at least α/3. The restrictions of s′n on
∂D are converging smoothly to s′|∂D′. Let Dn ⊂ S2 be ρ−1

n (D). Then the
area of sn|Dn equals the area of s′n|D and hence is at least the area of s′|D′

plus α/4 for all n sufficiently large. Also, as n tends to infinity the image
sn(Dn) converges smoothly, after reparameterization, to s′(∂D). Thus, for
all n large, we can connect sn(∂Dn) to s′(∂D′) by an annulus An contained
in a small neighborhood of s′(∂D′) and whose area tends to 0 as n goes to
infinity. For all n sufficiently large, the resulting 2-sphere Σn made out of
sn|(S2 \Dn) ∪ An ∪ S′(D′) is homotopic to s(S2) since s′ is homotopically
trivial. Also, for all n sufficiently large, the area of Σn is less than the area
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of sn minus α/5. Reparameterizing this 2-sphere by a conformal map leads
to a homotopically non-trivial map of energy less than the area of sn minus
α/5. Since as n tends to infinity, the limsup of the areas of the sn converge
to at most e0, for all n sufficiently large we have constructed a homotopically
non-trivial map of energy less than e0, which contradicts the fact that the
minimal α energy for a homotopically non-trivial map tends to e0 as α tends
to 1.

Of course, any minimal energy map of S2 into M is conformal because
there is no non-trivial holomorphic quadratic differential on S2. It follows
that such a map is a branched immersion. �

Now suppose that X is a path of components defined for all t ∈ [T0,∞)
with π2(X (t)) 6= 0 for all t ∈ [T0,∞). For each t ≥ T0 we define W2(t)
to be e0(X (t)), where e0 is the invariant given in the previous lemma. Our
assumption on X means that W2(t) is defined and positive for all t ∈ [T0,∞).

Lemma 18.11.
d

dt
W2(t) ≤ −4π − 1

2
Rmin(t)W2(t)

in the sense of forward difference quotients. If t is not a surgery time, then
W2(t) is continuous at t, and if t is a surgery time, then

W2(t) ≤ liminft′→t−W2(t
′).

Let us show how this lemma implies Proposition 18.9. Because the
curvature is pinched toward positive, we have

Rmin(t) ≥ (−6)/(1 + 4t).

Let w2(t) be the function satisfying the differential equation

dw2

dt
= −4π +

3w2

1 + 4t

and w2(T0) = W2(T0). Then by Lemma 2.22 and Lemma 18.11 we have
W2(t) ≤ w2(t) for all t ≥ T0. On the other hand, we can integrate to find

w2(t) = w2(T0)
(4t+ 1)3/4

(4T0 + 1)3/4
+ 4π(4T0 + 1)1/4(4t+ 1)3/4 − 4π(4t + 1).

Thus, for t sufficiently large, w2(t) < 0. This is a contradiction since W2(t)
is always positive, and W2(t) ≤ w2(t).

This shows that to complete the proof of Proposition 18.9 we need only
establish Lemma 18.11.

Proof. (of Lemma 18.11) Let f : S2 → (X(t0), g(t0)) be a minimal
2-sphere.

Claim 18.12.

dAreag(t)(f(S2))

dt
(t0) ≤ −4π − 1

2
Rmin(g(t0))Areag(t0)f(S2).
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Proof. Recall that, for any immersed surface f : S2 → (M,g(t0)), we
have (see the proof of Theorem 11.1 in [36])

d

dt
Areag(t)(f(S2))

∣∣
t=t0

=

∫

S2

1

2
Tr|S2

(∂g
∂t

)∣∣∣
t=t0

da(18.1)

= −
∫

S2

(R− Ric(n,n))da

where R denotes the scalar curvature of M , Ric is the Ricci curvature of M ,
and n is the unit normal vector field of Σ in M . Now suppose that f(S2) is
minimal. We can rewrite this as

(18.2)
d

dt
Areag(t)(f(S2))

∣∣
t=0

= −
∫

S2

KS2da− 1

2

∫

S2

(|A|2 +R)da,

where KS2 is the Gaussian curvature of S2 and A is the second fundamental
form of f(S2) in M . (Of course, since f(S2) is minimal, the determinant
of its second fundamental form is −|A|2/2.) Even if f is only a branched
minimal surface, (18.2) still holds when the integral on the right is replaced
by the integral over the immersed part of f(S2). Then by the Gauss-Bonnet
theorem we have

(18.3)
d

dt
Areag(t)(f(S2))

∣∣
t=t0

≤ −4π − 1

2
Areag(t0)(S

2) min
x∈M

{Rg(x, t0)}.

�

Since f(S2) is a homotopically non-trivial sphere in X (t) for all t suffi-
ciently close to t0 we see that W2(t) ≤ Areag(t)f(S2). Since Areag(t)f(S2))
is a smooth function of t, the forward difference quotient statement in
Lemma 18.11 follows immediately from Claim 18.12.

We turn now to continuity at non-surgery times. Fix t′ ≥ T0 distinct
from all surgery times. We show that the function e0(t

′) is continuous at
t′. If f : S2 → X (t′) is the minimal area, homotopically non-trivial sphere,
then the area of f(S2) with respect to a nearby metric g(t) is close to the
area of f(S2) in the metric g(t′). Of course, the area of f(S2) in the metric
g(t) is greater than or equal to W2(t). This proves that W2(t) is upper
semi-continuous at t′. Let us show that it is lower semi-continuous at t′.

Claim 18.13. Let (M,g(t)), t0 ≤ t ≤ t1, be a Ricci flow on a com-
pact manifold. Suppose that |Ricg(t)| ≤ D for all t ∈ [t0, t1] Let f : S2 →
(M,g(t0)) be a C1-map. Then

Areag(t1)f(S2) ≤ Areag(t0)f(S2)e4D(t1−t0).

Proof. The rate of change of the area of f(S2) at time t is
∫

f(S2)

∂g

∂t
(t)da = −2

∫

f(S2)
Tr|TS2(Ricg(t))da ≤ 4DAreag(t)f(S2).

Integrating from t0 to t1 gives the result. �
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Now suppose that we have a family of times tn converging to a time t′

that is not a surgery time. Let fn : S2 → X (tn) be the minimal area non-
homotopically trivial 2-sphere in X (tn), so that the area of fn(S

2) in X (tn)
is e0(tn). Since t′ is not a surgery time, for all n sufficiently large we can
view the maps fn as homotopically non-trivial maps of S2 into X (t′). By the
above claim, for any δ > 0 for all n sufficiently large, the area of fn(S

2) with
respect to the metric g(t′) is at most the area of fn(S

2) plus δ. This shows
that for any δ > 0 we have W2(t

′) ≤ W2(tn) + δ for all n sufficiently large,
and hence W2(t

′) ≤ liminfn→∞W2(tn). This is the lower semi-continuity.
The last thing to check is the behavior of W2 near a surgery time t.

According to the description of the surgery process given in Section 4 of
Chapter 15, we write X (t) as the union of a compact subset C(t) and a fi-
nite number of surgery caps. For every t′ < t sufficiently close to t we have an
embedding nt′ : C(t) ∼= C(t′) ⊂ X (t′) given by flowing C(t) backward under
the flow to time t′. As t′ → t the maps ηt′ converge in the C∞-topology to
isometries, in the sense that the n∗t′(g(t

′))|C(t′) converge smoothly to g(t)|C(t).
Furthermore, since the 2-spheres along which we do surgery are homotopi-
cally trivial they separate Mt′ . Thus, the maps n−1

t′ : C(t′) → C(t) extend
to maps ψt′ : X (t′) → X (t). The image under ψt′ of X (t′) \ C(t′) is con-
tained in the union of the surgery caps. Clearly, since all the 2-spheres on
which we do surgery at time t are homotopically trivial, the maps ψt′ are
homotopy equivalences. If follows from Proposition 15.12 that for any η > 0
for all t′ < t sufficiently close to t, the map ψt′ : X (t′) → X (t) is a homo-
topy equivalence that is a (1 + η)-Lipschitz map. Thus, given η > 0 for all
t′ < t sufficiently close to t, for any minimal 2-sphere f : S2 → (X (t′), g(t′))
the area of ψt′ ◦ f : S2 → (X (t), g(t)) is at most (1 + η)2 times the area of
f(S2). Thus, given η > 0 for all t′ < t sufficiently close to t we see that
W2(t) ≤ (1 + η)2W2(t

′). Since this is true for every η > 0, it follows that

W2(t) ≤ liminft′→t−W2(t
′).

This establishes all three statements in Proposition 18.9 and completes
the proof of the proposition.

As an immediate corollary of Proposition 18.9, we obtain the sphere
theorem for closed 3-manifolds.

Corollary 18.14. Suppose that M is a closed, connected 3-manifold
containing no embedded RP 2 with trivial normal bundle, and suppose that
π2(M) 6= 0. Then either M can be written as a connected sum M1#M2

where neither of the Mi is homotopy equivalent to S3 or M1 has a prime
factor that is a 2-sphere bundle over S1. In either case, M contains an
embedded 2-sphere which is homotopically non-trivial.

Proof. Let M be as in the statement of the corollary. Let g be a nor-
malized metric on M , and let (M, G) be the Ricci flow with surgery defined
for all time with (M,g) as initial conditions. According to Proposition 18.9
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there is T < ∞ such that every component of MT has trivial π2. Thus, by
the analysis above, we see that there must be surgeries that kill elements in
π2: either the removal of a component with non-trivial π2 or surgery along a
homotopically non-trivial 2-sphere. We consider the first such surgery in M .
The only components with non-trivial π2 that can be removed by surgery
are S2-bundles over S1 and RP 3#RP 3. Since each of these has homotopi-
cally non-trivially embedded 2-spheres, if the first surgery killing an element
in π2 is removal of such a component, then, because all the earlier 2-sphere
surgeries are along homotopically trivial 2-spheres, the homotopically non-
trivial embedded 2-sphere in this component deforms back to an embedded,
homotopically non-trivial 2-sphere in M . The other possibility is that the
first time an element in π2(M) is killed it is by surgery along a homotopically
non-trivial 2-sphere. Once again, using the fact that all previous surgeries
are along homotopically trivial 2-spheres, deform this 2-sphere back to M
producing a homotopically non-trivial 2-sphere in M . �

Remark 18.15. Notice that it follows from the list of disappearing com-
ponents that the only ones with non-trivial π2 are those based on the ge-
ometry S2 × R; that is to say, 2-sphere bundles over S1 and RP 3#RP 3.
Thus, once we have reached the level T0 after which all 2-sphere surgeries
are performed on homotopically trivial 2-spheres the only components that
can have non-trivial π2 are components of these types. Thus, for example
if the original manifold has no RP 3 prime factors and no non-separating
2-spheres, then when we reach time T0 we have done a connected sum de-
composition into components each of which has trivial π2. Each of these
components is either covered by a contractible 3-manifold or by a homotopy
3-sphere, depending on whether its fundamental group has infinite or finite
order.

3. Components with non-trivial π3

Now we assume that the Ricci flow with surgery (M, G) satisfies the
conclusion of Theorem 15.9 and also has initial condition M that is a con-
nected 3-manifold whose fundamental group satisfies the hypothesis of The-
orem 18.1. The argument showing that components with non-trivial π3 dis-
appear after a finite time is, in spirit, very similar to the arguments above,
though the technical details are more intricate in this case.

3.1. Forward difference quotient for π3. Let M be a compact, con-
nected 3-manifold. Fix a base point x0 ∈ M . Denote by ΛM the free loop
space of M . By this we mean the space of C1-maps of S1 to M with the
C1-topology. The components of ΛM are the conjugacy classes of elements
in π1(M,x0). The connected component of the identity of ΛM consists of
all homotopically trivial loops in M . Let ∗ be the trivial loop at x0.
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Claim 18.16. Suppose that π2(M,x0) = 0. Then π2(ΛM, ∗) ∼= π3(M,x0)
and π2(ΛM, ∗) is identified with the free homotopy classes of maps of S2 to
the component of ΛM consisting of homotopically trivial loops.

Proof. An element in π2(ΛM, ∗) is represented by a map S2×S1 →M
that sends {pt} × S1 to x0. Hence, this map factors through the quotient
of S2 × S1 obtained by collapsing {pt} × S1 to a point. The resulting
quotient space is homotopy equivalent to S2 ∨ S3, and a map of this space
into M sending the wedge point to x0 is, up to homotopy, the same as an
element of π2(M,x0)⊕π3(M,x0). But we are assuming that π2(M,x0) = 0.
The first statement follows. For the second, notice that since π2(M,x0)

is trivial, π3(M,x0) is identified with H3 of the universal covering M̃ of
M . Hence, for any map of S2 into the component of ΛM containing the

trivial loops, the resulting map S2×S1 →M lifts to M̃ . The corresponding
element in π3(M,x0) is the image of the fundamental class of S2 × S1 in

H3(M̃) = π3(M). �

Definition 18.17. Fix a homotopically trivial loop γ ∈ ΛM . We set
A(γ) equal to the infimum of the areas of any spanning disks for γ, where
by definition a spanning disk is a Lipschitz map D2 → M whose boundary
is, up to reparameterization, γ. Notice that A(γ) is a continuous function
of γ in ΛM . Also, notice that A(γ) is invariant under reparameterization
of the curve γ. Now suppose that Γ: S2 → ΛM is given with the image
consisting of homotopically trivial loops. We define W (Γ) to be equal to
the maximum over all c ∈ S2 of A(Γ(c)). More generally, given a homotopy
class ξ ∈ π2(ΛM, ∗) we define W (ξ) to be equal to the infimum over all (not
necessarily based) maps Γ: S2 → ΛM into the component of ΛM consisting
of homotopically trivial loops representing ξ of W (Γ).

Now let us formulate the analogue of Proposition 18.9 for π3. Suppose
that X is a path of components of the Ricci flow with surgery (M, G) defined
for t ∈ [t0, t1]. Suppose that π2(X (t0), x0) = 0 and that π3(X (t0), x0) 6= 0.
Then, the same two conditions hold for X (t) for each t ∈ [t0, t1]. The reason
is that at a surgery time t, since all the 2-spheres in X (t′) (t′ < t but
sufficiently close to t) along which we are doing surgery are homotopically
trivial, the result of surgery is a disjoint union of connected components:
one connected component is homotopy equivalent to X (t′) and all other
connected components are homotopy 3-spheres. This means that either X (t)
is homotopy equivalent to X (t′) for t′ < t or X (t) is a homotopy 3-sphere.
In either case both homotopy group statements hold for X (t). Even more is
true: The distance-decreasing map X (t′) → X (t) given by Proposition 15.12
is either a homotopy equivalence or a degree-1 map of X (t′) → X (t). In
either case, it induces an injection of π3(X (t′)) → π3(X (t)). In this way a
non-zero element in ξ(t0) ∈ π3(X (t0)) produces a family of non-zero elements
ξ(t) ∈ π3(X (t)) with the property that under Ricci flow these elements agree
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and at a surgery time t the degree-1 map constructed in Proposition 15.12
sends ξ(t′) to ξ(t) for all t′ < t sufficiently close to it. Since π2(X (t)) is trivial
for all t, we identify ξ(t) with a homotopy class of maps of S2 to ΛX (t). We
now define a function Wξ(t) by associating to each t the invariant W (ξ(t)).

Here is the result that is analogous to Lemma 18.11.

Proposition 18.18. Suppose that (M, G) is a Ricci flow with surgery
as in Theorem 15.9. Let X be a path of components of M defined for all
t ∈ [t0, t1] with π2(X (t0)) = 0. Suppose that ξ ∈ π3(X(t0), ∗) is a non-trivial
element. Then the function Wξ(t) satisfies the following inequality in the
sense of forward difference quotients:

dWξ(t)

dt
≤ −2π − 1

2
Rmin(t)Wξ(t).

Also, for every t ∈ [t0, t1] that is not a surgery time the function Wξ(t) is
continuous at t. Lastly, if t is a surgery time then

Wξ(t) ≤ liminft′→t−Wξ(t
′).

In the next subsection we assume this result and use it to complete the
proof.

3.2. Proof of Theorem 18.1 assuming Proposition 18.18. Ac-
cording to Proposition 18.9 there is T1 such that every component of MT

has trivial π2 for every T ≥ T1. Suppose that Theorem 18.1 does not hold
for this Ricci flow with surgery. We consider a path of components X (t) of
M defined for [T1, T2]. We shall show that there is a uniform upper bound
to T2.

Claim 18.19. X (T1) has non-trivial π3.

Proof. By hypothesis the fundamental group of M0 is a free product
of infinite cyclic groups and finite groups. This means that the same is true
for the fundamental group of each component of Mt for every t ≥ 0, and in
particular it is true for X (T0). But we know that π2(X (T0)) = 0.

Claim 18.20. Let X be a compact 3-manifold. If π1(X) is a non-trivial
free product or if π1(X) is isomorphic to Z, then π2(X) 6= 0.

Proof. See [39], Theorem 5.2 on page 56 (for the case of a copy of Z)
and [39] Theorem 7.1 on page 66 (for the case of a free product decomposi-
tion). �

Thus, it follows that π1(X (T1)) is a finite group (possibly trivial). But a
3-manifold with finite fundamental group has a universal covering that is a
compact 3-manifold with trivial fundamental group. Of course, by Poincaré
duality any simply connected 3-manifold is a homotopy 3-sphere. It follows
immediately that π3(X (T1)) ∼= Z. This completes the proof of the claim. �
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Now we can apply Proposition 18.18 to our path of components X
defined for all t ∈ [T1, T2]. First recall by Theorem 15.9 that the curva-
ture of (M, G) is pinched toward positive which implies that Rmin(t) ≥
(−6)/(1 + 4t). Let w(t) be the function satisfying the differential equation

w′(t) = −2π +
3

1 + 4t
w(t)

with initial condition w(T1) = Wξ(T1). According to Proposition 18.18
and Lemma 2.22 we see that Wξ(t) ≤ w(t) for all t ∈ [T1, T2]. But direct
integration shows that

w(t) = Wξ(T1)
(4t+ 1)3/4

(4T1 + 1)3/4
+ 2π(4T0 + 1)1/4(4t+ 1)3/4 − 2π(4t + 1).

This clearly shows that w(t) becomes negative for t sufficiently large, how
large depending only on Wξ(T1) and T1. On the other hand, since Wξ(t) is
the infimum of areas of disks, Wξ(t) ≥ 0 for all t ∈ [T1, T2]. This proves that
T2 is less than a constant that depends only on T1 and on the component
X (T1). Since there are only finitely many connected components of MT1 ,
this shows that T2 depends only on T1 and the Riemannian manifold MT1 .
This completes the proof of Theorem 18.1 modulo Proposition 18.18. �

Thus, to complete the argument for Theorem 18.1 it remains only to
prove Proposition 18.18.

4. First steps in the proof of Proposition 18.18

In this section we reduce the proof of Proposition 18.18 to a more tech-
nical result, Proposition 18.24 below.

4.1. Continuity of Wξ(t). In this subsection we establish the two con-
tinuity conditions for Wξ(t) stated in Proposition 18.18.

Claim 18.21. If t is not a surgery time, then Wξ(t) is continuous at t.

Proof. Since t is not a surgery time, a family Γ(t) : S2 → ΛX (t) is also
a family Γ(t′) : S2 → ΛX (t′) for all nearby t′. The minimal spanning disks
for the elements of Γ(t)(x) are also spanning disks in the nearby X (t′) and
their areas vary continuously with t. But the maximum of the areas of these
disks is an upper bound for Wξ(t). This immediately implies that Wξ(t) is
upper semi-continuous at t.

The result for lower semi-continuity is the same as in the case of
2-spheres. Given a time t distinct from a surgery time and a family Γ: S2 →
ΛX (t′) for a time t′ near t we can view the family Γ as a map to ΛX (t).
The areas of all minimal spanning disks for the loops represented by points
Γ measured in X (t) are at most (1 + η(|t− t′|)) times their areas measured
in X (t′), where η(|t− t′|) is a function going to zero as |t− t′| goes to zero.
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This immediately implies the lower semi-continuity at the non-surgery time
t. �

Claim 18.22. Suppose that t is a surgery time. Then

Wξ(t) ≤ liminft′→t−Wξ(t
′).

Proof. This is immediate from the fact from Proposition 15.12 that
for any η > 0 for every t′ < t sufficiently close to t there is a homotopy
equivalence X (t′) → X (t) which is a (1 + η)-Lipschitz map. �

To prove Proposition 18.18 and hence Theorem 18.1, it remains to
prove the forward difference quotient statement for Wξ(t) given in Proposi-
tion 18.18.

4.2. A reduction of Proposition 18.18. Let Γ: S2 → ΛX (t0) be a
family. We must construct an appropriate deformation of the family of loops
Γ in order to establish Proposition 18.18. Now we are ready to state the more
technical estimate for the evolution of W (Γ) under Ricci flow that will imply
the forward difference quotient result for Wξ(t) stated in Proposition 18.18.
Here is the result that shows a deformation as required exists.

Definition 18.23. Let (M,g(t)), t0 ≤ t ≤ t1, be a Ricci flow on a
compact 3-manifold. For any a and any t′ ∈ [t0, t1] let wa,t′(t) be the solution
to the differential equation

(18.4)
dwa,t′

dt
= −2π − 1

2
Rmin(t)wa,t′(t)

with initial condition wa,t′(t
′) = a. We also denote wa,t0 by wa.

Proposition 18.24. Let (M,g(t)), t0 ≤ t ≤ t1, be a Ricci flow on a
compact 3-manifold. Fix a map Γ of S2 to ΛM whose image consists of
homotopically trivial loops and ζ > 0. Then there is a continuous family

Γ̃(t), t0 ≤ t ≤ t1, of maps S2 → ΛM whose image consists of homotopically

trivial loops with [Γ̃(t0)] = [Γ] in π3(M, ∗) such that for each c ∈ S2 we

have |A(Γ̃(t0)(c)) −A(Γ(c))| < ζ and furthermore, one of the following two
alternatives holds:

(i) The length of Γ̃(t1)(c) is less than ζ.

(ii) A(Γ̃(t1)(c)) ≤ wA(eΓ(t0)(c))(t1) + ζ.

Here we shall show that this proposition implies the forward differ-
ence quotient result in Proposition 18.18. The next chapter is devoted
to proving Proposition 18.24. Let X be a path of components. Sup-
pose that π2(X (t), x0) = 0 for all t. Fix t0 and fix a non-trivial ele-
ment ξ ∈ π3(X (t0), x0), which we identify with a non-trivial element in
ξ ∈ π2(ΛX (t0), ∗). Fix an interval [t0, t1] with the property that there are
no surgery times in the interval (t0, t1]. Restricting to this interval the fam-
ily X (t) is a Ricci flow on X (t0). In particular, all the X (t) are identified
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under the Ricci flow. Let w(t) be the solution to Equation (18.4) with value
w(t0) = Wξ(X , t0). We shall show that Wξ(t1) ≤ w(t1). Clearly, once we
have this estimate, taking limits as t1 approaches t0 establishes the forward
difference quotient result at t0.

Definition 18.25. Let B(t) =
∫ t
t′

1
2Rmin(s)ds.

Direct integration shows the following:

Claim 18.26. We have

wa,t′(t
′′) = exp(−B(t′′))

(
a− 2π

∫ t′′

t′
exp(B(t))dt

)
.

If a′ > a, then for t0 ≤ t′ < t′′ ≤ t1, we have

wa′,t′(t
′′) = wa,t′(t

′′) + (a′ − a)exp(−B(t′′)).

The next thing to establish is the following.

Lemma 18.27. Let (X, g) be a compact Riemannian manifold with trivial
π2. Then there is ζ > 0 such that if ξ ∈ π3(X ) is represented by a family
Γ: S2 → ΛX with the property that for every c ∈ S2 the length of the loop
Γ(c) is less than ζ, then ξ is the trivial homotopy element.

Proof. We choose ζ smaller than the injectivity radius of (X, g). Then
any pair of points at distance less than ζ apart are joined by a unique
geodesic of length less than ζ. Furthermore, the geodesic varies smoothly
with the points. Given a map Γ: S2 → ΛX such that every loop of the
form Γ(c) has length at most ζ, we consider the map f : S2 → X defined
by f(c) = Γ(c)(x0), where x0 is the base point of the circle. Then we can
join each point Γ(c)(x) to Γ(c)(x0) by a geodesic of length at most ζ to fill

out a map of the disk Γ̂(c) : D2 → X. This disk is smooth except at the

point Γ(c)(x0). The disks Γ̂(c) fit together as c varies to make a continuous
family of disks parameterized by S2 or equivalently a map S2 × D2 into
X whose boundary is the family of loops Γ(c). Now shrinking the loops

Γ(c) across the disks Γ̂(c) to Γ(c)(x0) shows that the family Γ is homotopic
to a 2-sphere family of constant loops at different points of X. Since we
are assuming that π2(X) is trivial, this means the family of loops is in fact
trivial as an element of π2(ΛX, ∗), which means that the original element
ξ ∈ π3(X) is trivial. �

Notice that this argument also shows the following:

Corollary 18.28. Let (X, g) be a compact Riemannian manifold. For
any η > 0 there is a 0 < ζ < η/2 such that any C1-loop c : S1 → X of length
less than η bounds a disk in X of area less than η.
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Now we return to the proof that Proposition 18.24 implies Proposi-
tion 18.18. We consider the restriction of the path X to the time interval
[t0, t1]. As we have already remarked, since there are no surgery times in
(t0, t1], this restriction is a Ricci flow and all the X (t) are identified with each
other under the flow. Let w(t) be the solution to Equation (18.4) with initial
condition w(t0) = Wξ(t0). There are two cases to consider: (i) w(t1) ≥ 0
and w(t1) < 0.

Suppose that w(t1) ≥ 0. Let η > 0 be given. Then by Claim 18.26 and
Corollary 18.28, there is 0 < ζ < η/2 such that the following two conditions
hold:

(a) Any loop in X (t1) of length less than ζ bounds a disk of area less
than η.

(b) For every a ∈ [0,Wξ(t0) + 2ζ] the solution wa satisfies wa(t1) <
w(t1) + η/2.

Now fix a map Γ: S2 → ΛX (t0), whose image consists of homotopically
trivial loops, with [Γ] = ξ, and with W (Γ) < Wξ(t0) + ζ. According to

Proposition 18.24 there is a one-parameter family Γ̃(t), t0 ≤ t ≤ t1, of
maps S2 → ΛX (t), whose images consist of homotopically trivial loops,

with [Γ̃(t0)] = [Γ] = ξ such that for every c ∈ S2 we have A(Γ̃(t0)(c)) <
A(Γ(c)) + ζ and one of the following holds:

(i) the length of Γ̃(t1)(c) is less than ζ, or
(ii)

A(Γ̃(t1)(c)) < wA(eΓ(t0)(c))(t1) + ζ.

Since A(Γ̃(t0)(c)) < A(Γ(c))+ ζ < Wξ(t0)+ 2ζ, it follows from our choice of
ζ that for every c ∈ S2 either

(a) Γ̃(t1)(c) has length less than ζ and hence bounds a disk of area less
than η, or

(b) A(Γ̃(t1)(c)) < wWξ(t0)+2ζ(t1) + ζ < w(t1) + η/2 + η/2 = w(t1) + η.

Since we are assuming that w(t1) ≥ 0, it now follows that for every c ∈ S2 we

have A(Γ̃(t1)(c)) < w(t1) + η, and hence W (Γ̃(t1)) < w(t1) + η. This shows

that for every η > 0 we can find a family Γ̃(t) with Γ̃(t0) representing ξ and

with W (Γ̃(t1)) < w(t1) + η. This completes the proof of Proposition 18.24
when w(t1) ≥ 0.

Now suppose that w(t1) < 0. In this case, we must derive a contradiction

since clearly it must be the case that for any one-parameter family Γ̃(t) we

have W (Γ̃(t1)) ≥ 0. We fix η > 0 such that w(t1) + η < 0. Then using
Lemma 18.27 and Claim 18.26, we fix ζ with 0 < ζ < η/2 such that:

(i) If Γ: S2 → ΛX (t1) is a family of loops and each loop in the family
is of length less than ζ, then the family is homotopically trivial.

(ii) For any a ∈ [0,Wξ(t0) + 2ζ] we have wa(t1) < w(t1) + η/2.
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We fix a map Γ: S2 → X (t0) with [Γ] = ξ and with W (Γ) < Wξ(t0) + ζ.

Now according to Proposition 18.24 there is a family of maps Γ̃(t) : S2 →
ΛX (t) with [Γ̃(t0)] = [Γ] = ξ and for every c ∈ S2 we have A(Γ̃(t0)(c)) <

A(Γ(c))+ ζ and also either A(Γ̃(t1)(c)) ≤ w
A(eΓ(t0)(c))

(t1)+ ζ or the length of

Γ̃(t1)(c) is less than ζ. It follows that for every c ∈ S2 we have A(Γ̃(t0)(c)) ≤
W (Γ) + ζ < Wξ(t0) + 2ζ. From the choice of ζ this means that

A(Γ̃(t1)(c)) < w(t1) + η/2 + ζ < w(t1) + η < 0

if the length of Γ̃(t1)(c) is at least ζ. Of course, by definition A(Γ̃(t1)(c)) ≥ 0

for every c ∈ S2. This implies that for every c ∈ S2 the loop Γ̃(t1)(c) has

length less than ζ. By Lemma 18.27 this implies that Γ̃(t1) represents the
trivial element in π2(ΛX (t1)), which is a contradiction.

At this point, all that remains to do in order to complete the proof of
Theorem 18.1 is to establish Proposition 18.24. The next chapter is devoted
to doing that.



CHAPTER 19

Completion of the Proof of Proposition 18.24

1. Curve-shrinking

Given Γ, the idea for constructing the one-parameter family Γ̃(t) required

by Proposition 18.24 is to evolve an appropriate approximation Γ̃(t0) of
Γ by the curve-shrinking flow. Suppose that (M,g(t)), t0 ≤ t ≤ t1, is
a Ricci flow of compact manifolds and that c : S1 × [t0, t1] → (M,g(t0))
is a family of parameterized, immersed C2-curves. We denote by x the
parameter on the circle. Let X(x, t) be the tangent vector ∂c(x, t)/∂x and
let S(x, t) = X(x, t)/(|X(x, t)|g(t)) be the unit tangent vector to c. We
denote by s the arc length parameter on c. We set H(x, t) = ∇S(x,t)S(x, t),
the curvature vector of c with respect to the metric g(t). We define the
curve-shrinking flow by

∂c(x, t)

∂t
= H(x, t),

where c(x, t) is a one-parameter family of curves and H(x, t) is the curvature
vector of the curve c(·, t) at the point x with respect to the metric g(t). We
denote by k(x, t) the curvature function: k(x, t) = |H(x, t)|g(t). We shall
often denote the one-parameter family of curves by c(·, t). Notice that if
c(x, t) is a curve-shrinking flow and if x(y) is a reparameterization of the
domain circle, then c′(y, t) = c(x(y), t) is also a curve-shrinking flow.

Claim 19.1. For any immersed C2-curve c : S1 → (M,g(t0)) there is a
curve-shrinking flow c(x, t) defined for t ∈ [t0, t

′
1) for some t′1 > t0 with the

property that each c(·, t) is an immersion. Either the curve-shrinking flow
extends to a curve-shrinking flow that is a family of immersions defined at
t′1 and beyond, or maxx∈S1k(x, t) blows up as t approaches t′1 from below.

For a proof of this result, see Theorem 1.13 in [2].

1.1. The proof of Proposition 18.24 in a simple case. The main
technical hurdle to overcome is that in general the curve shrinking flow may
not exist if the original curve is not immersed, and even if the original curve
is immersed, the curve-shrinking flow can develop singularities, where the
curvature of the curve goes to infinity. Thus, we may not be able to define
the curve-shrinking flow as a flow defined on the entire interval [t0, t1], even
though the Ricci flow is defined on this entire interval. But to show the
idea of the proof, let us suppose for a moment that the starting curve is

437
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embedded and that no singularities develop in the curve-shrinking flow and
show how to prove the result.

Lemma 19.2. Suppose that c ∈ ΛM is a homotopically trivial, embedded
C2-loop. and suppose that there is a curve-shrinking flow c(x, t) defined for
all t ∈ [t0, t1] with each c(·, t) being an embedded smooth curve. Consider
the function A(t) which assigns to t the minimal area of a spanning disk for
c(·, t). Then A(t) is a continuous function of t and

dA

dt
(t) ≤ −2π − 1

2
Rmin(t)A(t)

in the sense of forward difference quotients.

Proof. According to results of Hildebrandt and Morrey, [40] and [52],
for each t ∈ [t0, t1], there is a smooth minimal disk spanning c(·, t). Fix
t′ ∈ [t0, t1) and consider a smooth minimal disk D → (M,g(t′)) spanning
c(·, t). It is immersed, see [37] or [27]. The family c(·, t) for t near t′ is an
isotopy of c(·, t′). We can extend this to an ambient isotopy ϕt : M → M
with ϕt′ = Id. We impose coordinates {xα} on D; we let hαβ(t

′) be the
metric induced on ϕt′(D) by g(t′), and we let da be the area form induced
by the Euclidean coordinates on D. We compute

d

dt

∣∣
t=t′

Area(ϕt(D)) =
d

dt

∣∣
t=t′

∫

ϕt(D)

√
det(hαβ)(t)da.

Of course,

d

dt

∣∣
t=t′

∫

ϕt(D)

√
det(hαβ(t))da = −

∫

ϕt′(D)

(
TrRicT

)√
det(hαβ(t))da

+

∫

ϕt′ (D)
div

(
∂ϕt′

dt

)T √
det(hαβ(t))da.

Here, RicT denotes the restriction of the Ricci curvature of g(t′) to the

tangent planes of ϕt′(D) and
∂(ϕt′ )

T

∂t is the component of ϕt′ tangent to

ϕt′(D). Setting Â equal to the second fundamental form of ϕt′(D), using
the fact that ϕt′(D) is minimal and arguing as in the proof of Claim 18.12,
we have

−
∫

ϕt′ (D)

(
Tr RicT

)√
det(hαβ(t′))da

= −
∫

ϕt′(D)
Kϕt′ (D)da−

1

2

∫

ϕt′ (D)
(|Â|2 +R)da

≤ −
∫

ϕt′(D)
Kϕt′ (D)

√
det(hαβ(t′))da−

1

2
Area(ϕt′(D)) min

x∈M
{R(x, t′)}.
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Integration by parts shows that
∫

ϕt′(D)
div

(
∂ϕt′

dt

)T √
det(hαβ(t′))da = −

∫

ϕt′ (∂D)

(
dϕt
dt

∣∣
t=t′

)
· nds,

where n is the inward pointing normal vector to ϕt′(D) along ϕt′(∂D). Of
course, by definition, if the variation along the boundary is given by the
curve-shrinking flow, then along ϕt′(∂D) we have

(
dϕt
dt

∣∣
t=t′

)
· n = kgeod.

Thus, we have

d

dt

∣∣
t=t′

∫

ϕt(D)

√
det(hαβ(t))da

≤ −
∫

ϕt′(D)
Kϕt′ (D)da−

∫

ϕt′(∂D)
kgeodds−

1

2
Rmin(t

′)Area(ϕt′(D)).

Of course, the Gauss-Bonnet theorem allows us to rewrite this as

d

dt

∣∣
t=t′

∫

ϕt(D)

√
det(hαβ(t))da ≤ −2π − 1

2
Rmin(t

′)Area(ϕt′(D)).

�

Let ψ(t) be the solution to the ODE

ψ′(t) = −2π − 1

2
Rmin(t)ψ(t)

with ψ(t−) = A(t−). The following is immediate from the previous lemma
and Lemma 2.22.

Corollary 19.3. With notation and assumptions as above, if the curve-
shrinking flow is defined on the interval [t−, t+] and if the curves c(·, t) are
embedded for all t ∈ [t−, t+] then

A(t+) ≤ ψ(t+).

Actually, the fact that the loops in the curve-shrinking flow are embed-
ded is not essential in dimensions ≥ 3.

Lemma 19.4. Suppose that the dimension of M is at least 3 and that
c(·, t) is a C2-family of homotopically trivial, immersed curves satisfying the
curve-shrinking flow defined for t− ≤ t ≤ t+. For each t, let A(t) be the
infimum of the areas of spanning disks for c(·, t). Then A(t) is a continuous
function and, with ψ as above, we have

A(t+) ≤ ψ(t+).

Proof. We first remark that continuity has already been established.
To show the inequality, we begin with a claim.
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Claim 19.5. It suffices to prove the following for every δ > 0. There
is a C2-family ĉ(x, t) of immersions within δ in the C2-topology to c(x, t)
defined on the interval [t−, t+] such that

A(t+) ≤ ψδ,ĉ(t
+)

where ψδ,ĉ is the solution of the ODE

ψ′
δ,ĉ(t) = −2π + 2δLĉ(t) −

1

2
Rmin(t)ψδ,ĉ(t)

with value A(ĉ(t−)) at t−, and where Lĉ(t) denotes the length of the loop
ĉ(·, t).

Proof. (of the claim) Suppose that for each δ there is such a C2-family
as in the statement of the claim. Take a sequence δn tending to zero, and
let ĉn(·, t) be a family as in the claim for δn. Then by the continuity of the
infimum of areas of the spanning disk in the C1-topology, we see that

limn→∞A(ĉn(·, t±)) = A(c(·, t±)).

Since the ĉn(x, t) converge in the C2-topology to c(x, t), the lengths L(ĉn(t))
are uniformly bounded and the A(ĉn(t

−)) converge to A(c(t)). Thus, the
ψδn,ĉn converge uniformly to ψ on [t−, t+], and taking limits shows the re-
quired inequality for A(c(t)), thus proving the claim. �

Now we return to the proof of the lemma. Let ĉ(x, t) be a generic
C2-immersion sufficiently close to c(x, t) in the C2-topology so that the
following hold:

(1) the difference of the curvature of ĉ and of c at every (x, t) is a vector
of length less than δ,

(2) the difference of ∂ĉ/∂t and ∂c/∂t is a vector of length less than δ,
(3) the ratio of the arc lengths of ĉ and c at every (x, t) is between

(1 − δ) and (1 + δ).

The generic family ĉ(x, t) consists of embedded curves for all but a finite
number of t ∈ [t−, t+] and at the exceptional t values the curve is immersed.
Let t1 < t2 < · · · < tk be the values of t for which ĉ(·, t) is not embedded.
We set t0 = t− and tk+1 = t+. Notice that it suffices to show that

A(ĉ(ti+1)) −A(ĉ(ti)) ≤ ψδ,ĉ(ti+1) − ψδ,ĉ(ti)

for i = 0, . . . , k. To establish this inequality for the interval [ti, ti+1], by con-
tinuity it suffices to establish the corresponding inequality for every compact
subinterval contained in the interior of this interval. This allows us to as-
sume that the approximating family is a family of embedded curves. Let the
endpoints of the parameterizing interval be denoted a and b. Fix t′ ∈ [a, b]
and let D be a minimal disk spanning ĉ(·, t′), and let ϕt be an isotopy as in
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the argument given the proof of Lemma 19.2. According to this argument
we have

d

dt
A(ĉ(t))|t=t′ ≤ −2π − 1

2
Rmin(t

′)A(c(t′))

+

∫

c(x,t′)

[
kgeod(ĉ) −

(
dϕt
dt

|t=t′
)
· n
]
ds

in the sense of forward difference quotients. The restriction of dϕt

dt |t=t′ to
the boundary of D agrees with ∂ĉ(x, t)/∂t. Hence, by our conditions on the
approximating family, and since for c(·, t) the corresponding quantities are
equal, ∣∣∣∣kgeod(ĉ) −

(
dϕt
dt

|t=t′
)
· n
∣∣∣∣ < 2δ.

Integrating over the circle implies that

d

dt
A(ĉ(t))|t=t′ ≤ −2π − 1

2
Rmin(t

′)A(c(t′)) + 2δLĉ(t).

The result is then immediate from Lemma 2.22. �

2. Basic estimates for curve-shrinking

Let us establish some elementary formulas. To simplify the formulas we
often drop the variables x, t from the notation, though they are understood
to be there.

Lemma 19.6. Assume that (M,g(t)), t0 ≤ t ≤ t1, is a Ricci flow and
that c = c(x, t) is a solution to the curve-shrinking flow. We have vector
fields X = ∂/∂x and H = ∂/∂t defined on the domain surface. We de-
note by |X|2c∗g the function on the domain surface whose value at (x, t) is

|(X(x, t))|2g(t). We define S = |X|−1
c∗gX, the unit vector in the x-direction

measured in the evolving metric. Then,

∂

∂t
(|X|2c∗g)(x, t) = −2Ricg(t)(X(x, t),X(x, t)) − 2k2|X(x, t)|2g(t),

and

[H,S](x, t) =
(
k2 + Ricg(t)(S(x, t), S(x, t))

)
S(x, t).

Proof. Notice that as t varies |X|2c∗g is not the norm of the vector
field X with respect to the pullback of a fixed metric g(t). On the other
hand, when we compute ∇HX at a point (x, t) we are taking a covariant
derivative with respect to the pullback of a fixed metric g(t) on the surface.
Hence, in computing H(|X|2c∗g) the usual Leibniz rule does not apply. In

fact, there are two contributions to H(|X|2c∗g): one, the usual Leibniz rule
differentiating in a frozen metric g(t) and the other coming from the effect
on |X|2c∗g of varying the metric with t. Thus, we have

H(|X|2c∗g)(x, t) = −2Ricc∗g(t)(X(x, t),X(x, t)) + 2〈∇HX(x, t),X(x, t)〉c∗g(t).
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Since t and x are coordinates on the surface swept out by the family of
curves, ∇HX = ∇XH, and hence the second term on the right-hand side of
the previous equation can be rewritten as 2〈∇XH(x, t),X(x, t)〉c∗g(t). Since
X(x, t) and H(x, t) are orthogonal in c∗g(t) and since X = |X|c∗gS, com-
puting covariant derivatives in the metric c∗g(t), we have

2〈∇XH,X〉c∗g(t) = −2〈H,∇XX〉c∗g(t)
= −2〈H, |X|2g(t)∇SS〉c∗g(t) − 2〈H, |X|g(t)S(|X|c∗g)S〉c∗g(t)
= −2〈H,H〉c∗g(t)|X|2g(t)
= −2k2|X|2c∗g.

This proves the first inequality. As for the second, since X and H commute
we have

[H,S] = [H, |X|−1
c∗gX] = H

(
(|X|2c∗g)−1/2

)
X =

−1

2
(
|X|2g

)3/2H(|X|c∗g)2)X.

According to the first equation, we can rewrite this as

[H,S](x, t) =
(
k2 + Ricc∗g(t)(S(x, t), S(x, t))

)
S(x, t).

�

Now let us compute the time derivative of k2. In what follows we drop
the dependence on the metric c∗g(t) from all the curvature terms, but it is
implicitly there.

Lemma 19.7.

∂

∂t
k2 =

∂2

∂s2
(k2) − 2〈(∇XH)⊥, (∇SH)⊥〉c∗g + 2k4

− 2Ric(H,H) + 4k2Ric(S, S) + 2Rm(H,S,H, S),

where the superscript ⊥ means the image under projection to the orthogonal
complement of X.

Proof. Using the same conventions as above for the function |H|c∗g
and leaving the metric implicit, we have

(19.1)
∂

∂t
k2 =

∂

∂t
(|H|2c∗g) = −2Ric(H,H) + 2〈∇HH,H〉c∗g.

Now we compute (using the second equation from Lemma 19.6)

∇HH = ∇H∇SS

= ∇S∇HS + ∇[H,S]S + R(H,S)S

= ∇S∇SH + ∇S([H,S]) + ∇[H,S]S + R(H,S)S

= ∇S∇SH + ∇S

(
(k2 + Ric(S, S))S

)
+ (k2 + Ric(S, S))∇SS

+ R(H,S)S

= ∇S∇SH + 2(k2 + Ric(S, S))H + S(k2 + Ric(S, S))S + R(H,S)S.
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Using this, and the fact that 〈H,S〉c∗g = 0, we have
(19.2)
2〈∇HH,H〉c∗g = 2g(∇S∇SH,H) + 4k4 + 4k2Ric(S, S)) + 2Rm(H,S,H, S).

On the other hand,

(19.3) S(S(〈H,H〉c∗g)) = 2〈∇S∇SH,H〉c∗g + 2〈∇SH,∇SH〉c∗g.
We write

∇SH = (∇SH)⊥ + 〈∇SH,S〉c∗gS.
Since H and S are orthogonal, we have 〈∇SH,S〉c∗g = −〈H,∇SS〉c∗g =
−〈H,H〉. Thus, we have

∇SH = (∇SH)⊥ − 〈H,H〉c∗gS.
It follows that

−2〈∇SH,∇SH〉c∗g = −2〈(∇SH)⊥, (∇SH)⊥〉c∗g − 2k4.

Substituting this into Equation (19.3) gives

(19.4) 2〈∇S∇SH,H〉c∗g = S(S(|H|2c∗g)) − 2〈(∇SH)⊥, (∇SH)⊥〉c∗g − 2k4.

Plugging this into Equation (19.2) and using Equation (19.1) yields

∂

∂t
k2 = −2Ric(H,H) + S(S〈H,H〉c∗g) − 2〈(∇SH)⊥, (∇SH)⊥〉c∗g

+ 2k4 + 4k2Ric(S, S) + 2Rm(H,S,H, S).

Of course, S(S(〈H,H〉c∗g)) = (k2)′′ so that this gives the result. �

Grouping together the last three terms in the statement of the previous
lemma, we can rewrite the result as

(19.5)
∂

∂t
k2 ≤ (k2)′′ − 2〈(∇SH)⊥, (∇SH)⊥〉c∗g + 2k4 + Ĉk2,

where the primes refer to the derivative with respect to arc length along the

curve and Ĉ is a constant depending only on an upper bound for the norm
of the sectional curvatures of the ambient manifolds in the Ricci flow.

Claim 19.8. There is a constant C1 < ∞ depending only on an upper
bound for the norm of the sectional curvatures of the ambient manifolds in
the Ricci flow (M,g(t)), t0 ≤ t ≤ t1, such that

∂

∂t
k ≤ k′′ + k3 + C1k.

Proof. We set C1 = Ĉ/2, where Ĉ is as in Inequality (19.5). It follows
from Inequality (19.5) that

(19.6) 2k
∂k

∂t
≤ 2kk′′ + 2(k′)2 + 2k4 − 2〈(∇SH)⊥, (∇SH)⊥〉c∗g + Ĉk2.



444 19. COMPLETION OF THE PROOF OF PROPOSITION 18.24

Since k2 = 〈H,H〉c∗g, we see that (k2)′ = 2〈∇SH,H〉c∗g. Since H is perpen-

dicular to S, this can be rewritten as (k2)′ = 2〈(∇SH)⊥,H〉c∗g. It follows
that

k′ =
〈(∇SH)⊥,H〉c∗g

|H|c∗g
.

Hence,

(k′)2 ≤
〈(∇SH)⊥,H〉2c∗g

|H|2c∗g
≤ 〈(∇SH)⊥, (∇SH)⊥〉c∗g.

Plugging this into Equation (19.6) gives

∂k

∂t
≤ k′′ + k3 + C1k.

�

Now we define the total length of the curve c(x, t),

L(t) =

∫
|X|c∗gdx =

∫
ds.

We also define the total curvature of the curve c(x, t),

Θ(t) =

∫
k|X|c∗gdx =

∫
kds.

Lemma 19.9. There is a constant C2 < ∞ depending only on an upper
bound for the norm of the sectional curvatures of the ambient manifolds in
the Ricci flow such that

(19.7)
d

dt
L ≤

∫
(C2 − k2)ds

and
d

dt
Θ ≤ C2Θ.

Proof.
d

dt
L =

∫
∂

∂t

√
|X|2c∗gdx.

By Lemma 19.6 we have

d

dt
L =

∫
1

2|X|c∗g
(
−2Ric(X,X) − 2k2|X|2c∗g

)
dx.

Thus,

(19.8)
d

dt
L =

∫
(−Ric(S, S) − k2)|X|c∗gdx =

∫
(−Ric(S, S) − k2)ds.

The first inequality in the lemma then follows by taking C2 to be an upper
bound for the norm of Ricg(t).

Now let us consider the second inequality in the statement.

d

dt
Θ =

∫
∂

∂t
(k|X|c∗g)dx =

∫ (
∂k

∂t
|X|c∗g + k

∂|X|c∗g
∂t

)
dx.
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Thus, using Claim 19.8 and the first equation in Lemma 19.6 we have

d

dt
Θ ≤

∫
(k′′ + k3 + C1k)ds +

∫
k

2|X|c∗g
(−2Ric(X,X) − 2k2|X|2c∗g)dx

=

∫
(k′′ + k3 + C1k)ds −

∫
k(Ric(S, S) + k2)ds

=

∫
(k′′ + C1k − kRic(S, S))ds.

Since
∫
k′′ds = 0 by the fundamental theorem of calculus, we get

d

dt
Θ ≤ C2Θ,

for an appropriate constant C2 depending only on an upper bound for the
norm of the sectional curvatures of the ambient family (M,g(t)). �

Corollary 19.10. The following holds for the constant C2 as in the
previous lemma. Let c(x, t) be a curve-shrinking flow, let L(t) be the total
length of c(t) and let Θ(t) be the total curvature of c(t). Then for any
t0 ≤ t′ < t′′ ≤ t1 we have

L(t′′) ≤ L(t′)eC2(t′′−t′),

Θ(t′′) ≤ Θ(t′)eC2(t′′−t′).

3. Ramp solutions in M × S1

As we pointed out in the beginning of Section 1 the main obstacle we
must overcome is that the curve-shrinking flow does not always exist for the
entire time interval [t0, t1]. The reason is the following: Even though, as we
shall see, it is possible to bound the total curvature of the curve-shrinking
flow in terms of the total curvature of the initial curve and the ambient Ricci
flow, there is no pointwise estimate on the curvature for the curve-shrinking
flow. The idea for dealing with this problem, which goes back to [2], is to
replace the original situation of curves in a manifold with graphs by taking
the product of the manifold with a circle and using ramps. We shall see
that in this context the curve-shrinking flow always exists. The problem
then becomes to transfer the information back from the flows of ramps to
the original manifold.

Now suppose that the Ricci flow is of the form (M,g(t)) × (S1
λ, ds

2)
where (S1

λ, ds
2) denotes the circle of length λ. Notice that the sectional

curvatures of this product flow depend only on the sectional curvatures of
(M,g(t)) and, in particular, are independent of λ. Let U denote the vector
field made up of unit tangent vectors in the direction of the circle factors.
Let u(x, t) = 〈S,U〉g(t).
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Claim 19.11.
∂u

∂t
= u′′ + (k2 + Ric(S, S))u ≥ u′′ −C ′u,

where C ′ is an upper bound for the norm of the Ricci curvature of (M,g(t)).

Proof. Since U is a constant vector field and hence parallel along all
curves and since Ric(V,U) = 0 for all tangent vectors V , by Lemma 19.6 we
have

∂

∂t
〈S,U〉g(t) = −2Ric(S,U) + 〈dc(∇HS), U〉g(t)

= 〈dc(∇HS), U〉g(t) = 〈dc([H,S] + ∇SH), U〉g(t)
= (k2 + Ric(S, S))u+ 〈dc(∇SH), U〉g(t)
= (k2 + Ric(S, S))u+ S(dc(〈H), U〉g)
= (k2 + Ric(S, S))u+ S(〈dc(∇SS), U〉g)
= (k2 + Ric(S, S))u+ S(S(u)) = (k2 + Ric(S, S))u+ u′′.

�

Definition 19.12. A curve c : S1 →M × S1
λ is said to be a ramp if u is

strictly positive.

The main results of this section show that the curve-shrinking flow is
much better behaved for ramps than for the general smooth curve. First of
all, as the next corollary shows, the curve-shrinking flow applied to a ramp
produces a one-parameter family of ramps. The main result of this section
shows that for any ramp as initial curve, the curve-shrinking flow does not
develop singularities as long as the ambient Ricci flow does not.

Corollary 19.13. If c(x, t), t0 ≤ t < t′1 < ∞, is a solution of the
curve shrinking flow in (M,g(t)) × (S1

λ, ds
2) and if c(t0) a ramp, then c(t)

is a ramp for all t ∈ [t0, t
′
1).

Proof. From the equation in Claim 19.11, we see that for C ′ an upper
bound for the norm of the Ricci curvature, we have

∂

∂t

(
eC

′tu
)
≥
(
eC

′tu
)′′
.

It now follows from a standard maximum principle argument that the min-
imum value of eC

′tu is a non-decreasing function of t. Hence, if c(t0) is a
ramp, then each c(t) is a ramp and in fact u(x, t) is uniformly bounded away
from zero in terms of the minimum of u(x, t0) and the total elapsed time
t1 − t0. �

Lemma 19.14. Let (M,g(t)), t0 ≤ t ≤ t1, be a Ricci flow. Suppose that
c : S1 → (M × S1

λ, g(t) × ds2) is a ramp. Then there is a curve-shrinking
flow c(x, t) defined for all t ∈ [t0, t1] with c as the initial condition at time
t = t0. The curves c(·, t) are all ramps.
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Proof. The real issue here is to show that the curve-shrinking flow
exists for all t ∈ [t0, t1]. Given this, the second part of the statement follows
from the previous corollary. If the curve shrinking flow does not exist on all
of [t0, t1] then by Claim 19.1 there is a t′1 ≤ t1 such that the curve-shrinking
flow exists on [t0, t

′
1) but k is unbounded on S1 × [t0, t

′
1). Thus, to complete

the proof we need to see that for any t′1 for which the curve-shrinking flow
is defined on [t0, t

′
1) we have a uniform bound on k on this region.

Using Claim 19.8 and Claim 19.11 we compute

∂

∂t

(
k

u

)
=

1

u

∂k

∂t
− k

u2

∂u

∂t

≤ k′′ + k3 + C1k

u
− k

u2

(
u′′ + (k2 + Ric(S, S))u

)

=
k′′

u
− ku′′

u2
+
C1k

u
− k

u
Ric(S, S).

On the other hand,
(
k

u

)′′
=
k′′u− u′′k

u2
− 2

(
u′

u

)(
k′u− u′k

u2

)
.

Plugging this in, and using the curvature bound on the ambient manifolds
we get

∂

∂t

(
k

u

)
≤
(
k

u

)′′
+

(
2u′

u

)(
k

u

)′
+ C ′k

u
,

for a constant C ′ depending only on a bound for the norm of the sectional
curvature of the ambient Ricci flow. A standard maximum principle argu-
ment shows that the maximum of k/u at time t grows at most exponentially
rapidly in t. Since u stays bounded away from zero, this implies that for
ramp solutions on a finite time interval, the value of k is bounded. �

Next let us turn to the growth rate of the area of a minimal annulus
connecting two ramp solutions.

Lemma 19.15. Suppose that the dimension, n, of M is at least 3. Let
c1(x, t) and c2(x, t) be ramp solutions in (M,g) × (S1

λ, ds
2) with the image

under the projection to S1
λ of each ci being of degree 1. Let µ(t) be the

infimum of the areas of annuli in (M×S1
λ, g(t)×ds2) with boundary c1(x, t)∪

c2(x, t). Then µ(t) is a continuous function of t and

d

dt
µ(t) ≤ (2n − 1)maxx∈M |Rm(x, t)|µ(t),

in the sense of forward difference quotients.

Proof. Fix a time t′. First assume that the loops c1(·, t′) and c2(·, t′) are
disjoint. Under Ricci flow the metrics on the manifold immediately become
real analytic (see [3]) and furthermore, under the curve-shrinking flow the
curves c1 and c2 immediately become analytic (see [21]). [Neither of these
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results is essential for this argument because we could approximate both
the metric and the curves by real analytic objects.] Establishing the results
for these and taking limits would give the result in general. Since c1(·, t′)
and c2(·, t′) are homotopic and are homotopically non-trivial, there is an
annulus connecting them and there is a positive lower bound to the length
of any simple closed curve in any such annulus homotopic to a boundary
component. Hence, there is a minimal annulus spanning c1(·, t′)

∐
c2(·, t′)

According to results of Hildebrandt ([40]) and Morrey ([52]) any minimal
annulus A with boundary the union of these two curves is real analytic up
to and including the boundary and is immersed except for finitely many
branch points. By shifting the boundary curves slightly within the annulus,
we can assume that there are no boundary branch points. Again, if we can
prove the result for these perturbed curves, taking limits will give the result
for the original ones. Given the deformation vector H on the boundary of
the annulus, extend it to a deformation vector Ĥ on the entire annulus. The
first order variation of the area at time t′ of the resulting deformed family
of annuli is given by

dAreaA

dt
(t′) =

∫

A
(−Tr(RicT (g(t′))))da +

∫

∂A
−kgeodds,

where RicT is the Ricci curvature in the tangent directions to the annulus.
(The first term is the change in the area of the fixed annulus as the metric
deforms. The second term is the change in the area of the family of annuli
in the fixed metric. There is no contribution from moving the annulus in the
normal direction since the original annulus is minimal.) If A is embedded,
then by the Gauss-Bonnet theorem, we have

∫

∂A
−kgeodds =

∫

A
Kda

where K is the Gaussian curvature of A. More generally, if A has interior
branch points of orders n1, . . . , nk then there is a correction term and the
formula is ∫

∂A
−kgeodds =

∫

A
Kda−

k∑

i=1

2π(ni − 1).

Thus, we see

dAreaA

dt
(t′) ≤

∫

A
(−Tr(RicT (g(t′))) +K)da.

On the other hand, since A is a minimal surface, K is at most the sec-
tional curvature of (M,g(t′))× (S1

λ, ds
2) along the two-plane tangent to the

annulus. Of course, the trace of the Ricci curvature along A is at most
2(n− 1)|maxx∈MRm(x, t′)|. Hence,

dAreaA

dt
(t′) ≤ (2n − 1)|maxx∈MRm(x, t′)|µ(t′).



4. APPROXIMATING THE ORIGINAL FAMILY Γ 449

This computation was done assuming c2(·, t′) is disjoint from c1(·, t′). In
general, since the dimension of M is at least 3, given c1(·, t′) and c2(·, t′) we
can find c3(·, t) arbitrarily close to c2(·, t′) in the C2-sense and disjoint from
both c1(·, t′) and c2(·, t′). Let A3 be a minimal annulus connecting c1(·, t′) to
c3(·, t′) and A2 be a minimal annulus connecting c3(·, t′) to c2(·, t′). We apply
the above argument to these annuli to estimate the growth rate of minimal
annuli connecting the corresponding curve-shrinking flows. Of course the
sum of these areas (as a function of t) is an upper bound for the area of a
minimal annulus connecting the curve-shrinking flows starting from c1(·, t′)
and c2(·, t′). As we choose c3(·, t′) closer and closer to c2(·, t′), the area of
A2 tends to zero and the area of A3 tends to the area of a minimal annulus
connecting c1(·, t′) and c2(·, t′). This establishes the continuity of µ(t) at t′

and also establishes the forward difference quotient estimate in the general
case. �

Corollary 19.16. Given curve-shrinking flows c1(·, t) and c2(·, t) for
ramps of degree 1 in (M,g(t)) × (S1

λ, ds
2) the minimal area of an annulus

connecting c1(·, t) and c2(·, t) grows at most exponentially with time with an
exponent determined by an upper bound on the sectional curvature of the
ambient flow, which in particular is independent of λ.

4. Approximating the original family Γ

Now we are ready to use the curve-shrinking flow for ramps in M × S1
λ

to establish Proposition 18.24 for M . As we indicated above, the reason for
replacing the flow (M,g(t)) that we are studying with its product with S1

λ

and studying ramps in the product is that the curve-shrinking flow exists
for all time t ∈ [t0, t1] for these. By this mechanism we avoid the difficulty
of finite time singularities in the curve shrinking flow. On the other hand,
we have to translate results for the ramps back to results for the original
Ricci flow (M,g(t)). This requires careful analysis.

The first step in the proof of Proposition 18.24 is to identify the approx-
imation to the family Γ that we shall use. Here is the lemma that gives the
needed approximation together with all the properties we shall use.

Given a loop c in M and λ > 0 we define a loop cλ in M × S1
λ. The

loop cλ is obtained by setting cλ(x) = (c(x), x) where we use a standard
identification of the domain circle (the unit circle) for the free loop space
with S1

λ, an identification that defines a loop in S1
λ of constant speed λ/2π.

Lemma 19.17. Given a continuous map Γ: S2 → ΛM representing an

element of π3(M, ∗) and 0 < ζ < 1, there is a continuous map Γ̃ : S2 → ΛM
with the following properties:

(1) [Γ̃] = [Γ] in π3(M, ∗).
(2) For each c ∈ S2 the loop Γ̃(c) is a C2-loop.

(3) For each c ∈ S2 the length of Γ̃(c) is within ζ of the length of Γ(c).
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(4) For each c ∈ S2, we have |A(Γ̃(c)) −A(Γ(c))| < ζ.
(5) There is a constant C0 < ∞ depending only on Γ, on the bounds

for the norm of the Riemann curvature operator of the ambient
Ricci flow, and on ζ such that for each c ∈ S2 and each λ ∈ (0, 1)

the total length and the total curvature of the ramp Γ̃(c)λ are both
bounded by C3.

Before proving this lemma we need some preliminary definitions and
constructions.

Definition 19.18. Let c : S1 →M be a C1-map. Fix a positive integer
n. By a regular n-polygonal approximation to c we mean the following. Let
ξn = exp(2πi/n), and consider the points pk = c(ξkn) for k = 1, . . . , n + 1.
For each 1 ≤ k ≤ n, let Ak be a minimal geodesic in M from pk to pk+1. We
parameterize Ak by the interval [ξkn, ξ

k+1
n ] in the circle at constant speed.

This gives a piecewise geodesic map cn : S1 →M .

The following is immediate from the definition.

Claim 19.19. Given ζ > 0 and a C1-map c : S1 → M then for all n
sufficiently large, the following hold for the n-polygonal approximation cn of
c:

(a) The length of cn is within ζ of the length of c.
(b) There is a map of the annulus S1 × I to M connecting cn to c with

the property that the image is piecewise smooth and of area less
than ζ.

Proof. The length of c is the limit of the lengths of the n-polygonal
approximations as n goes to infinity. The first item is immediate from this.
As to the second, for n sufficiently large, the distance between the maps c
and cn will be arbitrarily small in the C0-topology, and in particular will
be much smaller than the injectivity radius of M . Thus, for each k we can
connect Ak to the corresponding part of c by a family of short geodesics.
Together, these form an annulus, and it is clear that for n sufficiently large
the area of this annulus is arbitrarily small. �

As the next result shows, for ζ > 0, the integer n(c) associated by the
previous claim to a C1-map c can be made uniform as c varies over a compact
subset of ΛM .

Claim 19.20. Let X ⊂ ΛM be a compact subset and let ζ > 0 be fixed.
Then there is N depending only on X and ζ such the conclusion of the
previous claim holds for every c ∈ X and every n ≥ N .

Proof. Suppose the result is false. Then for each N there is cN ∈ X
and n ≥ N so that the lemma does not hold for cN and n. Passing to a
subsequence, we can suppose that the cN converge to c∞ ∈ X. Applying
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Claim 19.19 we see that there is N such that the conclusion of Claim 19.19
holds with ζ replaced by ζ/2 for c∞ and all n ≥ N . Clearly, then by
continuity for all n ≥ N the conclusion of Claim 19.19 holds for the n-
polygonal approximation for every cl for all l sufficiently large. This is a
contradiction. �

Corollary 19.21. Let Γ: S2 → ΛM be a continuous map with the
property that Γ(c) is homotopically trivial for all c ∈ S2. Fix ζ > 0. For
any n sufficiently large denote by Γn the family of loops defined by setting
Γn(c) equal to the n-polygonal approximation to Γ(c). There is N such that
for all n ≥ N we have:

(1) Γn is a continuous family of n-polygonal loops in M .
(2) For each c ∈ S2, the loop Γn(c) is a homotopically trivial loop in

M and its length is within ζ of the length of Γ(c).
(3) For each c ∈ S2, we have |A(Γn(c)) −A(Γ(c))| < ζ.

Proof. Given Γ there is a uniform bound over all c ∈ S2 on the maximal
speed of Γ(c). Hence, for all n sufficiently large, the lengths of the sides in
the n-polygonal approximation to Γ(c) will be uniformly small. Once this
length is less than the injectivity radius ofM , the minimal geodesics between
the endpoints are unique and vary continuously with the endpoints. This
implies that for n sufficiently large the family Γn is uniquely determined and
itself forms a continuous family of loops in M . This proves the first item.
We have already seen that, for n sufficiently large, for all c ∈ S2 there is
an annulus connecting Γ(c) and Γn(c). Hence, these loops are homotopic
in M . The first statement in the second item follows immediately. The
last statement in the second item and third item follow immediately from
Claim 19.20. �

The next step is to replace these n-polygonal approximations by
C2-curves. We fix, once and for all, a C∞ function ψn from the unit circle
to [0,∞] with the following properties:

(1) ψn is non-negative and vanishes to infinite order at the point 1 on
the unit circle.

(2) ψn is periodic with period 2πi/n.
(3) ψn is positive on the interior of the interval [1, ξn] on the unit

circle, and the restriction of ψn to this interval is symmetric about
exp(πi/n), and is increasing from 1 to exp(πi/n).

(4)
∫ ξn
1 ψn(s)ds = 2π/n.

Now we define a map ψ̃n : S1 → S1 by

ψ̃n(x) =

∫ x

1
ψn(y)dy.
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It is easy to see that the conditions on ψn imply that this defines a C∞-map
from S1 to S1 which is a homeomorphism and is a diffeomorphism on the
complement of the nth roots of unity.

Now given an n-polygonal loop cn we define the smoothing c̃n of cn by

c̃n = cn ◦ ψ̃n. This smoothing c̃n is a C∞-loop in M with the same length
as the original polygonal loop cn. Notice that the curvature of c̃n is not
itself a continuous function: just like the polygonal map it replaces, it has
a δ-function at the ‘corners’ of cn.

Proof. (of Lemma 19.17) Given a continuous map Γ: S2 → ΛM and
ζ > 0 we fix n sufficiently large so that Corollary 19.21 holds for these

choices of Γ and ζ. Let Γ̃ = Γ̃n be the family of smoothings of the family
Γn of n-polygonal loops. Since this smoothing operation changes neither
the length nor the area of a minimal spanning disk, it follows immediately

from the construction and Corollary 19.21 that Γ̃ satisfies the conclusions of
Lemma 19.17 except possibly the last one.

To establish the last conclusion we must examine the lengths and total

curvatures of the ramps Γ̃(c)λ associated to this family of C2-loops. Fix λ
with 0 < λ < 1, and consider the product Ricci flow (M,g(t)) × (S1

λ, ds
2)

where the metric on S1
λ has length λ.

Claim 19.22. For any 0 < λ < 1, the length of the ramp Γ̃(c)λ is at

most λ plus the length of Γ(c). The total curvature of Γ̃(c)λ is at most nπ.

Proof. The arc length element for Γ̃(c)λ is
√
a(x)2 + (λ/2π)2dx, which

is at most (a(x)+λ/2π)dx, where a(x)dx is the arc length element for Γ̃(c).
Integrating gives the length estimate.

The total curvature of Γ̃(c)λ is the sum over the intervals [ξkn, ξ
k+1
n ] of

the total curvature on these intervals. On any one of these intervals we have
a curve in a totally geodesic, flat surface: the curve lies in the product of
a geodesic arc in M times S1

λ. Let u and v be unit tangent vectors to this
surface, u along the geodesic (in the direction of increasing x) and v along the
S1
λ factor. These are parallel vector fields on the flat surface. The tangent

vector X(x) to the restriction of Γ̃(c)λ to this interval is Lψn(x)u+(λ/2π)v,
where L is the length of the geodesic segment we are considering. Consider
the first-half subinterval [ξkn, ξ

k
n · exp(πi/n)]. The tangent vector X(x) is

(λ/2π)v at the initial point of this subinterval and is Lψn(ξ
k
n ·exp(πi/2))u+

(λ/2π)v at the final point. Throughout this interval the vector is of the
form a(x)u+ (λ/2π)v where a(x) is an increasing function of x. Hence, the
tangent vector is always turning in the same direction and always lies in the
first quadrant (using u and v as the coordinates). Consequently, the total
turning (the integral of k against arc-length) over this interval is the absolute
value of the difference of the angles at the endpoints. This difference is less
than π/2 and tends to π/2 as λ tends to zero, unless L = 0 in which case
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there is zero turning for any λ > 0. By symmetry, the total turning on the
second-half subinterval [ξkn · exp(πi/n), ξk+1

n ] is also bounded above by π/2.
Thus, for any λ > 0, the total turning on one of the segments is bounded
above by π. Since there are n segments this gives the upper bound of nπ on

the total turning of Γ̃(c)λ as required. �

This claim completes the proof of the last property required of Γ̃ = Γ̃n
and hence completes the proof of Lemma 19.17. �

Having fixed Γ and ζ > 0, we fix n and set Γ̃ = Γ̃n. We choose n

sufficiently large so that Γ̃ satisfies Lemma 19.17. Fix λ ∈ (0, 1) and define

Γ̃λ : S2 → (M × S1
λ), by setting Γ̃λ(c) = Γ̃(c)λ.

Fix c ∈ S2, and let Γ̃λc (t), t0 ≤ t ≤ t1, be the curve-shrinking flow

given in Lemma 19.14 with initial data the ramp Γ̃λ(c) . As c varies over

S2 these fit together to produce a one-parameter family Γ̃λ(t) of maps
S2 → Λ(M × S1

λ). Let p1 denote the projection of M × S1
λ to M . No-

tice that for any λ we have Γ̃λc (t0) = Γ̃λ(c), so that p1Γ̃
λ
c (t0) = Γ̃(c). We

shall show that for λ > 0 sufficiently small, the family p1Γ̃
λ(t) satisfies the

conclusion of Proposition 18.24 for the fixed Γ and ζ > 0. We do this in
steps. First, we show that fixing one c ∈ S2, for λ sufficiently small (de-
pending on c) an analogue of Proposition 18.24 holds for the one-parameter

family of loops p1Γ̃
λ
c (t). By this we mean that either p1Γ̃

λ
c (t1) has length less

than ζ or A(p1Γ̃
λ
c (t1)) is at most the value v(t1) + ζ, where v is the solution

to Equation (18.4) with initial condition v(t0) = A(Γ̃(c)). (Actually, we
establish a slightly stronger result, see Lemma 19.25.) The next step in the
argument is to take a finite subset S ⊂ S2 so that for every c ∈ S2 there is

ĉ ∈ S such that Γ̃(c) and Γ̃(ĉ) are sufficiently close. Then, using the result
of a single c, we fix λ > 0 sufficiently small so that the analogue of Propo-
sition 18.24 for individual curves (or rather the slightly stronger version of
it) holds for every ĉ ∈ S. Then we complete the proof of Proposition 18.24

using the fact that for every c the curve Γ̃(c) is sufficiently close to a curve

Γ̃(ĉ) associated to an element ĉ ∈ S.

5. The case of a single c ∈ S2

According to Lemma 19.17, for all λ ∈ (0, 1) the lengths and total cur-

vatures of the Γ̃λ(c) are uniformly bounded for all c ∈ S2. Hence, by Corol-

lary 19.10 the same is true for Γ̃λc (t) for all c ∈ S2 and all t ∈ [t0, t1].

Claim 19.23. There is a constant C4, depending on t1 − t0, on the
curvature bound of the sectional curvature of the Ricci flow (M,g(t)), t0 ≤
t ≤ t1, on the original family Γ and on ζ such that for any c ∈ S2 and any
t0 ≤ t′ < t′′ ≤ t1 we have

A(p1Γ̃
λ
c (t

′′)) −A(p1Γ̃
λ
c (t

′)) ≤ C4(t
′′ − t′).
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Proof. All the constants in this argument are allowed to depend on
t1 − t0, on the curvature bound of the sectional curvature of the Ricci flow
(M,g(t)), t0 ≤ t ≤ t1, on the original family Γ and on ζ but are independent
of λ, c ∈ S2, and t′ < t′′ with t0 ≤ t′ and t′′ ≤ t1. First, let us consider
the surface Sλc [t′, t′′] in M × S1

λ swept out by c(x, t), t′ ≤ t ≤ t′′. We

denote by Area (Sλc [t′, t′′]) the area of this surface with respect to the metric
g(t′′) × ds2. We compute the derivative of this area for fixed t′ as t′′ varies.
There are two contributions to this derivative: (i) the contribution due to
the variation of the metric g(t′′) with t′′ and (ii) the contribution due to
enlarging the surface. The first is

∫

Sλ
c [t′,t′′]

−TrRicTda

where RicT is the restriction of the Ricci tensor of the ambient metric g(t′′)
to the tangent planes to the surface and da is the area form of the surface in
the metric g(t′′) × ds2. The second contribution is

∫
c(x,t′′) |H|ds. According

to Lemma 19.9 there is a constant C ′ (depending only on the curvature
bound for the manifold flow, the initial family Γ(t) and ζ and t1 − t0) such
that the second term is bounded above by C ′. The first term is bounded
above by C ′′AreaSλc [t′, t′′] where C ′′ depends only on the bound on the
sectional curvatures of the ambient Ricci flow. Integrating we see that there
is a constant C ′

1 such that the derivative of the area function is at most
C ′

1. Since its value at t′ is zero, we see that AreaSλc [t′, t′′] ≤ C ′
1(t

′′ − t′).
It follows that the area of p1S

λ
c [t′, t′′] with respect to the metric g(t′′) is at

most C ′
1(t

′′ − t′).
Now we compute an upper bound for the forward difference quotient of

A(p1Γ̃
λ
c (t)) at t = t′. For any t′′ > t′ we have a spanning disk for p1Γ̃

λ
c (t

′′)
defined by taking the union of a minimal spanning disk for p1Γ̃

λ
c (t

′) and
the annulus p1S

λ
c [t′, t′′]. As before, the derivative of the area of this family

of disks has two contributions, one coming from the change in the metric
over the minimal spanning disk at time t′ and the other which we com-
puted above to be at most C ′

1. Thus, the derivative is bounded above by

C ′
2A(p1Γ̃

λ
c (t

′)) + C ′
1. This implies that the forward difference quotient of

A(p1Γ̃
λ
c (t

′)) is bounded above by the same quantity. It follows immediately
that the areas of all the minimal spanning surfaces are bounded by a con-
stant depending only on the areas of the minimal spanning surfaces at time
t0, the sectional curvature of the ambient Ricci flow and t1−t0. Hence, there

is a constant C4 such that the forward difference quotient of A(p1Γ̃
λ
c (t)) is

bounded above by C4. This proves the claim. �

Next, by the uniform bounds on total length of all the curves Γ̃λc (t), it
follows from Equation (19.7) that there is a constant C5 (we take C5 > 1)
depending only on the curvature bound of the ambient manifolds and the
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family Γ such that for any c ∈ S2 we have

(19.9)

∫ t1

t0

∫

eΓλ
c (t)

k2dsdt ≤ C5.

Thus, for any constant 1 < B < ∞ there is a subset IB(c, λ) ⊂ [t0, t1] of
measure at least (t1 − t0) − C5B

−1 such that
∫

eΓλ
c (t)

k2ds ≤ B

for every t ∈ IB(c, λ). (Later, we shall fix B sufficiently large depending on
Γ and ζ.)

Now we need a result for curve-shrinking that in some ways is reminiscent
of Shi’s theorem for Ricci flows.

Lemma 19.24. Let (M,g(t)), t0 ≤ t ≤ t1, be a Ricci flow. Then there

exist constants δ > 0 and C̃i < ∞ for i = 0, 1, 2, . . ., depending only on
t1 − t0 and a bound for the norm of the curvature of the Ricci flow, such
that the following holds. Let c(x, t) be a curve-shrinking flow that is an
immersion for each t. Suppose that at a time t′ for some 0 < r < 1 such
that t′ + δr2 < t1, the length of c(·, t′) is at least r and the total curvature of
c(·, t′) on any sub-arc of length r is at most δ. Then for every t ∈ [t′, t′+δr2)
the curvature k and the higher derivatives satisfy

k2 ≤ C̃0(t− t′)−1,

|∇SH|2 ≤ C̃1(t− t′)−2,

|∇i
SH|2 ≤ C̃i(t− t′)−(i+1).

The first statement follows from arguments very similar to those in Sec-

tion 4 of [2]. Once k2 is bounded by C̃0/(t− t′) the higher derivative state-
ments are standard, see [1]. For completeness we have included the proof of
the first inequality in the last section of this chapter.

We now fix δ > 0 (and also δ < 1) as described in the last lemma for
the Ricci flow (M,g(t)), t0 ≤ t ≤ t1. By Cauchy-Schwarz it follows that for

every t ∈ IB(c, λ), and for any arc J in Γ̃λc (·, t) of length at most δ2B−1 we
have ∫

J×{t}
k ≤ δ.

Applying the previous lemma, for each a ∈ IB(c, λ) with a ≤ t1 − B−1 −
δ5B−2 we set J(a) = [a + δ5B−2/2, a + δ5B−2] ⊂ [t0, t1 − B−1]. Then

for all t ∈ ∪a∈IB(c,λ)J(a) for which the length of Γ̃λc (·, t) is at least δ2B−1

we have that k and all the norms of spatial derivatives of H are pointwise
uniformly bounded. Since IB(c, λ) covers all of [t0, t1] except a subset of

measure at most C5B
−1, it follows that the union ĴB(c, λ) of intervals J(a)

for a ∈ IB(c, λ)∩ [t0, t1 −B−1− δ5B−2] cover all of [t0, t1] except a subset of



456 19. COMPLETION OF THE PROOF OF PROPOSITION 18.24

measure at most C5B
−1+B−1+δ5B−1 < 3C5B

−1. Now it is straightforward
to pass to a finite subset of these intervals J(ai) that cover all of [t0, t1]
except a subset of measure at most 3C5B

−1. Once we have a finite number
of J(ai), we order them along the interval [t0, t1] so that their initial points
form an increasing sequence. (Recall that they all have the same length.)
Then if we have Ji ∩ Ji+2 6= ∅, then Ji+1 is contained in the union of Ji and
Ji+2 and hence can be removed from the collection without changing the
union. In this way we reduce to a finite collection of intervals Ji, with the
same union, where every point of [t0, t1] is contained in at most two of the
intervals in the collection. Once we have arranged this we have a uniform
bound, independent of λ and c ∈ S2, on the number of these intervals. We
let JB(c, λ) be the union of these intervals. According to the construction
and Lemma 19.24 these sets JB(c, λ) satisfy the following:

(1) JB(c, λ) ⊂ [t0, t1 − B−1] is a union of a bounded number of inter-
vals (the bound being independent of c ∈ S2 and of λ) of length
δ5B−2/2.

(2) The measure of JB(c, λ) is at least t1 − t0 − 3C5B
−1.

(3) For every t ∈ JB(c, λ) either the length of Γ̃λc (t) is less than δ2B−1

or there are uniform bounds, depending only on the curvature
bounds of the ambient Ricci flow and the initial family Γ, on the

curvature and its higher spatial derivatives of Γ̃λc (t).

Now we fix c ∈ S2 and 1 < B < ∞ and we fix a sequence of λn tending
to zero. Since the number of intervals in JB(c, λ) is bounded independent
of λ, by passing to a subsequence of λn we can suppose that the number
of intervals in JB(c, λn) is independent of n, say this number is N , and
that their initial points (and hence the entire intervals since all their lengths

are the same) converge as n goes to infinity. Let Ĵ1, . . . , ĴN be the limit

intervals, and for each i, 1 ≤ i ≤ N , let Ji ⊂ Ĵi be a slightly smaller interval
contained in the interior of Ĵi. We choose the Ji so that they all have the
same length. Let JB(c) ⊂ [t0, t1 − B−1] be the union of the Ji. Then an
appropriate choice of the length of the Ji allows us to arrange the following:

(1) JB(c) ⊂ JB(c, λn) for all n sufficiently large.
(2) JB(c) covers all of [t0, t1] except a subset of length 4C5B

−1.

Now fix one of the intervals Ji making up JB(c). After passing to a
subsequence (of the λn), one of the following holds:

(3) there are uniform bounds for the curvature and all its derivatives

for the curves Γ̃λn
c (t), for all t ∈ Ji and all n, or

(4) for each n there is tn ∈ Ji such that the length of Γ̃λn
c (tn) is less

than δ2B−1.

By passing to a further subsequence, we arrange that the same one of
the Alternatives (3) and (4) holds for every one of the intervals Ji making
up JB(c).
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The next claim is the statement that a slightly stronger version of Propo-

sition 18.24 holds for p1Γ̃
λ
c (t).

Lemma 19.25. Given ζ > 0, there is 1 < B <∞, with B > (t1 − t0)
−1,

depending only on Γ and the curvature bounds on the ambient Ricci flow
(M,g(t)), t0 ≤ t ≤ t1, such that the following holds. Let t2 = t1 − B−1.
Fix c ∈ S2. Let vc be the solution to Equation (18.4) with initial condition

vc(t0) = A(p1(Γ̃(c))), so that in our previous notation vc = wA(p1(eΓ(c))).

Then for all λ > 0 sufficiently small, either A(p1Γ̃
λ
c (t1)) < vc(t1) + ζ/2 or

the length of Γ̃λc (t) is less than ζ/2 for all t ∈ [t2, t1].

Proof. In order to establish this lemma we need a couple of claims
about functions on [t0, t1] that are approximately dominated by solutions to
Equation (18.4). In the first claim the function in question is dominated on a
finite collection of subintervals by solutions to these equations and the subin-
tervals fill up most of the interval. In the second, we also allow the function
to only be approximately dominated by the solutions to Equation (18.4) on
these sub-intervals. In both claims the result is that on the entire interval
the function is almost dominated by the solution to the equation with the
same initial value.

Claim 19.26. Fix C4 as in Claim 19.23 and fix a constant Ã > 0. Given

ζ > 0 there is δ′ > 0 depending on C4, t1−t0, and Ã as well as the curvature
bound of the ambient Ricci flow such that the following holds. Suppose that
f : [t0, t1] → R is a function and suppose that J ⊂ [t0, t1] is a finite union of
intervals. Suppose that on each interval [a, b] of J the function f satisfies

f(b) ≤ wf(a),a(b).

Suppose further that for any t′ < t′′ we have

f(t′′) ≤ f(t′) +C4(t
′′ − t′).

Then, provided that the total length of [t0, t1] \ J is at most δ′ and 0 ≤
f(t0) ≤ Ã, we have

f(t1) ≤ wf(t0),t0(t1) + ζ/4.

Proof. We write J as a union of disjoint intervals J1, . . . , Jk so that
Ji < Ji+1 for every i. Let ai, resp. bi, be the initial, resp. final, point of Ji.
For each i let δi be the length of the interval between Ji and Ji+1. (Also, we
set δ0 = a1 − t0, and δk = t1 − bk.) Let C6 ≥ 0 be such that Rmin(t) ≥ −2C6

for all t ∈ [t0, t1]. Let V (a) be the maximum value of |wa,t0 | on the interval
[t0, t1] and let V = max

a∈[0, eA]
V (a). Let C7 = C4 + 2π + C6V . We shall

prove by induction that

f(ai) − wf(t0),t0(ai) ≤
i−1∑

j=0


C7δj

i−1∏

ℓ=j+1

eC6|Jℓ|



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and

f(bi) − wf(t0),t0(bi) ≤
i−1∑

j=0


C7δj

i∏

ℓ=j+1

eC6|Jℓ|


 .

We begin the induction by establishing the result at a1. By hypothesis
we know that

f(a1) ≤ f(t0) + C4δ0.

On the other hand, from the defining differential equation for wf(t0),t0 and
the definitions of C6 and V we have

wf(t0),t0(a1) ≥ f(t0) − (C6V + 2π)δ0.

Thus,

f(a1) − wf(t0),t0(a1) ≤ (C4 + 2π + C6V )δ0 = C7δ0,

which is exactly the formula given in the case of a1.
Now suppose that we know the result for ai and let us establish it for

bi. Let αi = f(ai) − wf(t0),t0(ai), and let βi = f(bi) − wf(t0),t0(bi). Then by
Claim 18.26 we have

βi ≤ eC6|Ji|αi.

Given the inductive inequality for αi, we immediately get the one for βi.
Now suppose that we have the inductive inequality for βi. Then

f(ai+1) ≤ f(bi) + C4δi.

On the other hand, by the definition of C6 and V we have

wf(t0),t0(ai+1) − wf(t0),t0(bi) ≥ −(C6V + 2π)δi.

This yields

f(ai+1) − wf(t0),t0(ai+1) ≤ βi + C7δi.

Hence, the inductive result for βi implies the result for αi+1. This completes
the induction.

Applying this to ak+1 = t1 gives

f(t1) − wf(t0),t0(t1) ≤
k∑

j=0


C7δj

k∏

ℓ=j+1

eC6|Jℓ|


 ≤ C7

k∑

j=0

δje
C6(t1−t0).

Of course
∑k

j=1 δj = t1 − t0 − ℓ(J) ≤ δ′, and C7 only depends on C6, C4

and V , while V only depends on Ã and C6 only depends on the sectional

curvature bound on the ambient Ricci flow. Thus, given C4, Ã and t1−t0 and
the bound on the sectional curvature of the ambient Ricci flow, making δ′

sufficiently small makes f(t1)−wf(t0),t0(t1) arbitrarily small. This completes
the proof of the claim. �

Here is the second of our claims:
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Claim 19.27. Fix ζ > 0, A and C6, C4 as in the last claim, and let
δ′ > 0 be as in the last claim. Suppose that we have J ⊂ [t0, t1] which is a
finite disjoint union of intervals with t1 − t0−|J | ≤ δ′. Then there is δ′′ > 0
(δ′′ is allowed to depend on J) such that the following holds. Suppose that
we have a function f : [t0, t1] → R such that:

(1) For all t′ < t′′ in [t0, t1] we have f(t′′) − f(t′) ≤ C4(t
′′ − t′).

(2) For any interval [a, b] ⊂ J we have f(b) ≤ wf(a),a(b) + δ′′.

Then f(t1) ≤ wf(t0),t0(t1) + ζ/2.

Proof. We define C7 as in the previous proof. We use the notation
J = J1

∐ · · ·∐ Jk with J1 < J2 < · · · < Jk and let δi be the length of the
interval separating Ji−1 and Ji. The arguments in the proof of the previous
claim work in this context to show that

f(ai) − wf(t0),t0(ai) ≤
i−1∑

j=0


C7δj

i−1∏

ℓ=j+1

(eC6|Jℓ| + δ′′)


 .

Applying this to ak+1 and taking the limit as δ′′ tends to zero, the right-
hand side tends to a limit smaller than ζ/4. Hence, for δ′′ sufficiently small
the right-hand side is less than ζ/2. �

Now let us return to the proof of Lemma 19.25. Recall that c ∈ S2 is

fixed. We shall apply the above claims to the curve-shrinking flow Γ̃λc (t) and

thus prove Lemma 19.25. Now it is time to fix B. First, we fix Ã = W (Γ)+ζ,
we let C2 be as in Corollary 19.10, C4 be as in Claim 19.23, C5 be as in
Equation (19.9), and C6 be as in the proof of Claim 19.26. Then we have δ′

depending on C6, C4, Ã as in Claim 19.26. We fix B so that:

(1) B ≥ 3C5(δ
′)−1,

(2) B ≥ 3eC2(t1−t0)ζ−1, and
(3) B > C2/(log4 − log3).

The first step in the proof of Lemma 19.25 is the following:

Claim 19.28. After passing to a subsequence of {λn}, either:

(1) for each n sufficiently large there is tn ∈ JB(c) with the length of

Γ̃λn
c (tn) < δ2B−1, or

(2) for each component Ji = [t−i , t
+
i ] of JB(c), after composing Γ̃λn

c (x, t)
by a reparameterization of the domain circle (fixed in t but a dif-

ferent reparameterization for each n) so that the Γ̃λn
c (t−i ) have con-

stant speed, there is a smooth limiting curve-shrinking flow denoted

Γ̃c(t), for t ∈ Ji for the sequence p1Γ̃
λn
c (t), t−i ≤ t ≤ t+i . The

limiting flow consists of immersions.

Proof. Suppose that the first case does not hold for any subsequence.
Fix a component Ji of JB(c). Then, by passing to a subsequence, by the
fact that JB(c) ⊂ JB(c, λn) for all n, the curvatures and all the derivatives
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of the curvatures of Γ̃λn
c (t) are uniformly bounded independent of n for all

t ∈ JB(c). We reparameterize the domain circle so that the Γ̃λn
c (t−i ) have

constant speed. By passing to a subsequence we can suppose that the lengths

of the Γ̃λn
c (t−i ) converge. The limit is automatically positive since we are

assuming that the first case does not hold for any subsequence. Denote by

Sn = Sλn
c (t−i ) the unit tangent vector to Γ̃λn

c (t−i ) and by un the inner product
〈Sn, U〉. Now we have a family of loops with tangent vectors and all higher
derivatives bounded. Since un is everywhere positive, since

∫
unds = λn,

since the length of the loop Γ̃λn
c (t−i ) is bounded away from 0 independent

of n, and since |(un)′| = |〈∇SnSn, U〉| is bounded above independent of n,
we see that un tends uniformly to zero as n tends to infinity. This means
that the |p1(Sn)| converge uniformly to 1 as n goes to infinity. Since the
ambient manifold is compact, passing to a further subsequence we have a

smooth limit of the p1Γ̃
λn
c (t−i ). The result is an immersed curve in (M,g(t−i ))

parameterized at unit speed. Since all the spatial and time derivatives of

the p1Γ̃
λn
c (t) are uniformly bounded, by passing to a further subsequence,

there is a smooth map f : S1 × [t−i , t
+
i ] →M which is a smooth limit of the

sequence Γ̃λn
c (t), t−i ≤ t ≤ t+i . If for some t ∈ [t−i , t

+
i ] the curve f |S1×{t}

is immersed, then this limiting map along this curve agrees to first order
with the curve-shrinking flow. Thus, for some t > t−i the restriction of f
to the interval [t−i , t] is a curve-shrinking flow. We claim that f is a curve-

shrinking flow on the entire interval [t−i , t
+
i ]. Suppose not. Then there is a

first t′ ≤ t+i for which f |S1×{t′} is not an immersion. According to Claim 19.1
the maximum of the norms of the curvature of the curves f(t) must tend
to infinity as t approaches t′ from below. But the curvatures of f(t) are

the limits of the curvatures of the family p1Γ̃
λn
c (t) and hence are uniformly

bounded on the entire interval [t−i , t
+
i ]. This contradiction shows that the

entire limiting surface

f : S1 × [t−i , t
+
i ] → (M,g(t))

is a curve-shrinking flow of immersions. �

Remark 19.29. Notice that if the first case holds, then by the choice of

B we have a point tn ∈ JB(c) for which the length of Γ̃λn
c (tn) is less than

e−C2(t1−t0)ζ/3.

For each n, the family of curves p1Γ̃
λn
c (t) in M all have p1Γ̃

λn
c (t0) = Γ̃(c)

as their initial member. Thus, these curves are all homotopically trivial.

Hence, for each t ∈ JB(c) the limiting curve Γ̃(c)(t) of the p1Γ̃
λn
c (t) is then

also homotopically trivial. It now follows from Lemma 19.4, Claim 19.28
and Remark 19.29 that one of the following two conditions holds:

(1) for some t ∈ JB(c) the length of Γ̃(c)(t) is less than or equal to

e−C2(t1−t0)ζ/3 or
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(2) the function A(t) that assigns to each t ∈ JB(c) the area of the

minimal spanning disk for p1Γ̃(c)(t) satisfies

dA(t)

dt
≤ −2π − 1

2
Rmin(t)A(t)

in the sense of forward difference quotients.

By continuity, for any δ′′ > 0 then for all n sufficiently large one of the
following two conditions holds:

(1) there is tn ∈ JB(c) such that the length of Γ̃λn
c (tn) is less than

e−C2(t1−t0)ζ/2, or
(2) for every t ∈ JB(c), the areas of the minimal spanning disks for

p1(Γ̃
λn
c (t)) satisfy

dA(p1Γ̃
λn
c (t))

dt
≤ −2π − 1

2
Rmin(t)A(p1Γ̃

λn
c (t)) + δ′′

in the sense of forward difference quotients.

Suppose that for every n sufficiently large, for every t ∈ JB(c) the length

of Γ̃λn
c (t) is at least e−C2(t1−t0)ζ/2. We have already seen in Claim 19.23 that

for every t′ < t′′ in [t0, t1] the areas satisfy

A(p1(Γ̃
λn
c (t′′))) −A(p1(Γ̃

λn
c (t′))) ≤ C4(t

′′ − t′).

Since the total length of the complement JB(c) in [t0, t1] is at most 3C5B
−1,

it follows from our choice of B that this total length is at most the constant δ′

of Claim 19.26. Invoking Claim 19.27 and the fact that A(Γ̃(c)) ≤W (Γ(c))+

ζ ≤W (Γ) + ζ = Ã, we see that for all n sufficiently large we have

A(p1(Γ̃
c
λn

(t1))) − vc(t1) < ζ/2.

The other possibility to consider is that for each n there is tn ∈ JB(c)

such that the length of Γ̃λn
c (tn) < e−C2(t1−t0)ζ/2. Since JB(c) is contained

in [t0, t1 −B−1], in this case we invoke the first inequality in Corollary 19.10

to see that the length of Γ̃λn
c (t) < ζ/2 for every t ∈ [t1 − B−1, t1]. This

completes the proof of Lemma 19.25. �

6. The completion of the proof of Proposition 18.24

Now we wish to pass from Lemma 19.25 which deals with an individual
c ∈ S2 to a proof of Proposition 18.24 which deals with the entire family

Γ̃. Let us introduce the following notation. Suppose that ω ⊂ S2 is an arc.

Then Γ̃(ω) = ∪c∈ωΓ̃(c) is an annulus in M and for each t ∈ [t0, t1] we have

the annulus Γ̃λω(t) in M × S1
λ.

A finite set S ⊂ S2 with the property that for c ∈ S2 there is ĉ ∈ S and

an arc ω in S2 joining c to ĉ so that the area of the annulus Γ̃(ω) is less than

ν is called a ν-net for Γ̃. Similarly, if for every c ∈ S2 there is ĉ ∈ S and

an arc ω connecting them for which the area of the annulus Γ̃λω(t0) is less
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than ν, we say that S is a ν-net for Γ̃λ. Clearly, for any ν there is a subset

S ⊂ S2 that is a ν-net for Γ̃ and for Γ̃λ for all λ sufficiently small.

Lemma 19.30. There is a µ > 0 such that the following holds. Let
c, ĉ ∈ S2. Suppose that there is an arc ω in S2 connecting c to ĉ with the

area of the annulus Γ̃λω(t0) in M × S1
λ less than µ. Let vĉ, resp., vc, be the

solution to Equation (18.4) with initial condition vĉ(t0) = A(Γ̃(ĉ)), resp.,

vc(t0) = A(Γ̃(c)). If

A(p1Γ̃
λ
ĉ (t1)) ≤ vĉ + ζ/2,

then

A(p1(Γ̃
λ
c (t1)) ≤ vc + ζ.

Proof. First of all we require that µ < e−(2n−1)C′(t1−t0)ζ/4 where C ′

is an upper bound for the norm of the Riemann curvature tensor at any
point of the ambient Ricci flow. By Lemma 19.15 the fact that the area

of the minimal annulus between the ramps Γ̃λc (t0) and Γ̃λĉ (t0) is less than µ

implies that the area of the minimal annulus between the ramps Γ̃λc (t1) and

Γ̃λĉ (t1) is less than µe(2n−1)C′(t1−t0) = ζ/4. The same estimate also holds for
the image under the projection p1 of this minimal annulus. Thus, with this
condition on µ, and for λ sufficiently small, we have∣∣∣A(p1Γ̃

λ
c (t1)) −A(p1Γ̃

λ
ĉ (t1))

∣∣∣ < ζ/4.

The other condition we impose upon µ is that if a, â are positive numbers
at most W (Γ) + ζ and if a < â+ µ then

wa,t0(t1) < wâ,t0(t1) + ζ/4.

Applying this with a = A(Γ̃(c)) and â = A(Γ̃(ĉ)) (both of which are at most

W (Γ̃) < W (Γ) + ζ), we see that these two conditions on µ together imply
the result. �

We must also examine what happens if the second alternative holds for

Γ̃λĉ . We need the following lemma to treat this case.

Lemma 19.31. There is δ > 0 such that for any r > 0 there is µ > 0,
depending on r and on the curvature bound for the ambient Ricci flow such
that the following holds. Suppose that γ and γ̂ are ramps in (M,g(t)) × S1

λ.
Suppose that the length of γ is at least r and suppose that on any sub-interval
I of γ of length r we have ∫

I
kds < δ.

Suppose also that there is an annulus connecting γ and γ̂ of area less than
µ. Then the length of γ̂ is at least 3/4 the length of γ.

We give a proof of this lemma in the next section. Here we finish the
proof of Proposition 18.24 assuming it.
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Claim 19.32. There is µ > 0 such that the following holds. Suppose that
c, ĉ ∈ S2 are such that there is an arc ω in S2 connecting c and ĉ such that

the area of the annulus Γ̃λ(ω) is at most µ. Set t2 = t1 −B−1. If the length

of Γ̃λĉ (t) is less than ζ/2 for all t ∈ [t2, t1], then the length of p1Γ̃
λ
c (t1) is less

than ζ.

Proof. The proof is by contradiction. Suppose the length of p1Γ̃
λ
c (t1)

is at least ζ and the length of Γ̃λĉ (t) is less than ζ/2 for all t ∈ [t2, t1]. Of

course, it follows that the length of Γ̃λc (t1) is also at least ζ. The third
condition on B is equivalent to

eC2B−1
< 4/3.

It then follows from Corollary 19.10 that for every t ∈ [t2, t1] the length of

Γ̃cλ(t) is at least 3ζ/4. On the other hand, by hypothesis for every such t,

the length of Γ̃λĉ (t) is less than ζ/2. It follows from Equation (19.7) that

∫ t1

t2

(∫
k2ds

)
dt ≤ C2

(∫ t1

t2

L(Γ̃λc (t))dt

)
− L(Γ̃λc (t1)) + L(Γ̃λc (t2)).

(Here L is the length of the curve.) From this and Corollary 19.10 we see
that there is a constant C8 depending on the original family Γ and on the
curvature of the ambient Ricci flow such that

∫ t1

t2

(∫

eΓλ
c (t)

k2ds

)
dt ≤ C8.

Since t1 − t2 = B−1, this implies that there is t′ ∈ [t2, t1] with
∫

eΓλ
c (t′)

k2ds ≤ C8B.

By Cauchy-Schwarz, for any subinterval I of length ≤ r in Γ̃λc (t
′) we have

∫

I
kds ≤

√
C8Br.

We choose 0 < r ≤ ζ sufficiently small so that
√
C8Br is less than or equal

to the constant δ given in Lemma 19.31. Then we set µ equal to the constant
given by that lemma for this value of r.

Now suppose that µ is sufficiently small so that the solution to the
equation

dµ(t)

dt
= (2n− 1)|Rmg(t)|µ(t)

with initial condition µ(t0) ≤ µ is less than µ on the entire interval [t0, t1].
With this condition on µ, Lemma 19.15 implies that for every t ∈ [t0, t1] the

ramps Γ̃λc (t) and Γ̃λĉ (t) are connected by an annulus of area at most µ. In
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particular, this is true for Γ̃λc (t
′) and Γ̃λĉ (t

′). Now we have all the hypotheses
of Lemma 19.31 at time t′. Applying this lemma we conclude that

L(Γ̃λĉ (t
′)) ≥ 3

4
L(Γ̃λc (t

′)).

But this is a contradiction since by assumption L(Γ̃λĉ (t
′)) < ζ/2 and the

supposition that L(p1Γ̃
λ
c (t1)) ≥ ζ led to the conclusion that L(Γ̃λc (t

′)) ≥
3ζ/4. This contradiction shows that our supposition that L(p1Γ̃

λ
c (t1)) ≥ ζ

is false. �

Now we complete the proof of Proposition 18.24.

Proof. (of Proposition 18.24.) Fix µ > 0 sufficiently small so that

Lemma 19.30 and Claim 19.32 hold. Then we choose a µ/2-net X for Γ̃.
We take λ sufficiently small so that Lemma 19.25 holds for every ĉ ∈ S. We

also choose λ sufficiently small so that X is a µ-net for Γ̃λ. Let c ∈ S2.
Then there is ĉ ∈ S and an arc ω connecting c and ĉ such that the area

of Γ̃λ(ω) < µ. Let vĉ, resp. vc, be the solution to Equation (18.4) with

initial condition vĉ(t0) = A(Γ̃(ĉ)), resp. vc(t0) = A(Γ̃(c)). According to

Lemma 19.25 either A(p1Γ̃
λ
ĉ (t1)) < vĉ(t1) + ζ/2 or the length of Γ̃λĉ (t) is

less than ζ/2 for every t ∈ [t2, t1] where t2 = t1 − B−1. In the second case,

Claim 19.32 implies that the length of p1Γ̃
λ
c (t1) is less than ζ. In the first

case, Lemma 19.30 tells us that A(p1Γ̃
λ
c (t1)) < vc(t1) + ζ. This completes

the proof of Proposition 18.24. �

7. Proof of Lemma 19.31: annuli of small area

Except for the brief comments that follow, our proof involves geometric
analysis that takes place on an abstract annulus with bounds on its area,
upper bounds on its Gaussian curvature, and on integrals of the geodesic
curvature on the boundary. Proposition 19.35 below gives the precise result
along these lines. Before stating that proposition, we show that its hy-
potheses hold in the situation that arises in Lemma 19.31. Let us recall the
situation of Lemma 19.31. We have ramps γ and γ̂, which are real analytic
embedded curves in the real analytic Riemannian manifold (M×S1

λ, g×ds2).
By a slight perturbation we can assume they are disjointly embedded. These
curves are connected by an annulus A0 → M × S1

λ of small area, an area
bounded above by, say, µ. We take an energy minimizing map of an annulus
ψ : A → M × S1

λ spanning γ
∐
γ̂. According to [40], ψ is a real analytic

map and the only possible singularities (non-immersed points) of the image
come from the branch points of ψ, i.e., points where dψ vanishes. There are
finitely many branch points. If there are branch points on the boundary,
then the restriction of ψ to ∂A will be a homeomorphism rather than a dif-
feomorphism onto γ

∐
γ̂. Outside the branch points, ψ is a conformal map

onto its image. The image is an area minimizing annulus spanning γ
∐
γ̂.
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Thus, the area of the image is at most µ. According to [71] the only branch
points on the boundary are false branch points, meaning that a local smooth
reparameterization of the map on the interior of A near the boundary branch
point removes the branch point. These reparameterizations produce a new
smooth structure on A, identified with the original smooth structure on the
complement of the boundary branch points. Using this new smooth struc-
ture on A the map ψ is an immersion except at finitely many interior branch
points. From now on the domain surface A is endowed with this new smooth
structure. Notice that, after this change, the domain is no longer real ana-
lytic; it is only smooth. Also, the original annular coordinate is not smooth
at the finitely many boundary branch points.

The pullback of the metric g × ds2 is a smooth symmetric two-tensor
on A. Off the finite set of interior branch points it is positive definite and
hence a Riemannian metric, and in particular, it is a Riemannian metric
near the boundary. It vanishes at each interior branch point. Since the
geodesic curvature kgeod of the boundary of the annulus is given by k · n
where n is the unit normal vector along the boundary pointing into A, we
see that the restriction of the geodesic curvature to γ, kgeod : γ → R has the
property that for any sub-arc I of γ of length r we have∫

I
|kgeod|ds < δ.

Lastly, because the map of A into M × S1
λ is minimal, off the set of interior

branch points, the Gaussian curvature of the pulled back metric is bounded
above by the upper bound for the sectional curvature of M×S1

λ, which itself
is bounded independent of λ and t, by say C ′ > 0.

Next, let us deal with the singularities of the pulled back metric on A
caused by the interior branch points. As the next claim shows, it is an
easy matter to deform the metric slightly near each branch point without
increasing the area much and without changing the upper bound on the
Gaussian curvature too much. Here is the result:

Claim 19.33. Let ψ : A ⊂M×S1
λ be an area-minimizing annulus of area

at most µ with smoothly embedded boundary as constructed above. Let h be
the induced (possibly singular) metric on A induced by pulling back g×ds2 by
ψ, and let C ′′ > 0 be an upper bound on the Gaussian curvature of h (away

from the branch points). Then there is a deformation h̃ of h, supported near
the interior branch points, to a smooth metric with the property that the area
of the deformed smooth metric is at most 2µ and where the upper bound for

the curvature of h̃ is 2C ′′.

Proof. Fix an interior branch point p. Since ψ is smooth and conformal
onto its image, there is a disk in A centered at p in which h = f(z, z)|dz|2
for a smooth function f on the disk. The function f vanishes at the origin
and is positive on the complement of the origin. Direct computation shows
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that the Gaussian curvature K(h) of h in this disk is given by

K(h) =
−△f
2f2

+
|∇f |2
2f3

≤ C,

where △ is the usual Euclidean Laplacian on the disk and

|∇f |2 = (∂f/∂x)2 + (∂f/∂y)2.

Now consider the metric (f + ǫ)|dz|2 on the disk. Its Gaussian curvature is

−△f
2(f + ǫ)2

+
|∇f |2

2(f + ǫ)3
.

Claim 19.34. For all ǫ > 0 the Gaussian curvature of (f + ǫ)|dz|2 is at
most 2C ′′.

Proof. We see that −△f ≤ C ′′f2, so that

−△f
(f + ǫ)2

+
|∇f |2

(f + ǫ)3
=

(f + ǫ)(−△f) + |∇f |2
(f + ǫ)3

≤ C ′′f3 − ǫ△f
(f + ǫ)3

≤ C ′′ +
ǫf2C ′′

(f + ǫ)3
≤ 2C ′′.

�

Now we fix a smooth function ρ(r) which is identically 1 on a subdisk
D′ of D and vanishes near ∂D and we replace the metric h on the disk by

hǫ = (f + ǫρ(r))|dz|2.
The above computation shows that the Gaussian curvature of hǫ on D′ is
bounded above by 2C ′′. As ǫ tends to zero the restriction of the metric
hǫ to D \ D′ converges uniformly in the C∞-topology to h. Thus, for all
ǫ > 0 sufficiently small the Gaussian curvature of hǫ on D \D′ will also be
bounded by 2C ′′. Clearly, as ǫ tends to zero the area of the metric hǫ on D
tends to the area of h on D.

Performing this construction near each of the finite number of interior

branch points and taking ǫ sufficiently small gives the perturbation h̃ as
required. �

Thus, if γ and γ̂ are ramps as in Lemma 19.31, then replacing γ̂ by a
close C2 approximation we have an abstract smooth annulus with a Rie-
mannian metric connecting γ and γ̂. Taking limits shows that establishing
the conclusion of Lemma 19.31 for a sequence of better and better approx-
imations to γ̂ will also establish it for γ̂. This allows us to assume that γ
and γ̂ are disjoint. The area of this annulus is bounded above by a constant
arbitrarily close to µ. The Gaussian curvature of the Riemannian metric
is bounded above by a constant depending only on the curvature bounds
of the ambient Ricci flow. Finally, the integral of the absolute value of the
geodesic curvature over any interval of length r of γ is at most δ.
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With all these preliminary remarks, we see that Lemma 19.31 follows
from:

Proposition 19.35. Fix 0 < δ < 1/100. For each 0 < r and C ′′ < ∞
there is a µ > 0 such that the following holds. Suppose that A is an annulus
with boundary components c0 and c1. Denote by l(c0) and l(c1) the lengths of
c0 and c1, respectively. Suppose that the Gaussian curvature of A is bounded
above by C ′′. Suppose that l(c0) > r and that for each sub-interval I of c0
of length r, the integral of the absolute value of the geodesic curvature along
I is less than δ. Suppose that the area of A is less than µ. Then

l(c1) ≥
3

4
l(c0).

To us, this statement was intuitively extremely reasonable but we could
not find a result along these lines stated in the literature. Also, in the end,
the argument we constructed is quite involved, though elementary.

The intuition is that we exponentiate in from the boundary component
c0 using the family of geodesics perpendicular to the boundary. The bounds
on the Gaussian curvature and local bounds on the geodesic curvature of c0
imply that the exponential mapping will be an immersion out to some fixed
distance δ or until the geodesics meet the other boundary, whichever comes
first. Furthermore, the metric induced by this immersion will be close to the
product metric. Thus, if there is not much area, it must be the case that, in
the measure sense, most of the geodesics in this family must meet the other
boundary before distance δ. One then deduces the length inequality.

There are two main difficulties with this argument that must be dealt
with. The first is due to the fact that we do not have a pointwise bound on
the geodesic curvature of c0, only an integral bound of the absolute value
over all curves of short length. There may be points of arbitrarily high
geodesic curvature. Of course, the length of the boundary where the geodesic
curvature is large is very small. On these small intervals the exponential
mapping will not be an immersion out to any fixed distance.

We could of course, simply omit these regions from consideration and
work on the complement. But these small regions of high geodesic curvature
on the boundary can cause focusing (i.e., crossing of the nearby geodesics).
We must estimate out to what length along the boundary this happens.
Our first impression was that the length along the boundary where focusing
occurred would be bounded in terms of the total turning along the arc in
c0. We were not able to establish this. Rather we found a weaker estimate
where this focusing length is bounded in terms of the total turning and
the area bounded by the triangle cut out by the two geodesics that meet.
This is a strong enough result for our application. Since the area is small
and the turning on any interval of length r is small, a maximal collection
of focusing regions will meet each interval of length r in c0 in a subset of
small total length. Thus, on the complement (which is most of the length of
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c0) the exponential mapping will be an immersion out to length δ and will
be an embedding when restricted to each interval of length 1. The second
issue to face is to show that the exponential mapping on this set is in fact
an embedding, not just an immersion. Here one uses standard arguments
invoking the Gauss-Bonnet theorem to rule out various types of pathologies,
e.g., that the individual geodesics are not embedded or geodesics that end
on c0 rather than c1, etc. Once these are ruled out, one has established
that the exponential map on this subset is an embedding and the argument
finishes as indicated above.

7.1. First reductions. Of course, if the hypothesis of the proposition
holds for r > 0 then it holds for any 0 < r′ < r. This allows us to assume
that r < min((C ′′)−1/2, 1). Now let us scale the metric by 4r−2. The area
of A with the rescaled metric is 4r−2 times the area of A with the original
metric. The Gaussian curvature of A with the rescaled metric is less than
r2C ′′/4 ≤ 1. Furthermore, in the rescaled metric c0 has length greater than
2 and the total curvature along any interval of length 1 in c0 is at most δ.
This allows us to assume (as we shall) that r = 1, that C ′′ ≤ 1, and that
l(c0) ≥ 2. We must find a µ > 0 such that the proposition holds provided
that the area of the annulus is less than µ.

The function kgeod : c0 → R is smooth. We choose a regular value α for
kgeod with 1 < α < 1.1. In this way we divide c0 into two disjoint subsets,
Y where kgeod > α, and X where kgeod ≤ α. The subset Y is a union of
finitely many disjoint open intervals and X is a disjoint union of finitely
many closed intervals.

Remark 19.36. The condition on kgeod implies that for any arc J in c0
of length 1 the total length of J ∩ Y is less than δ.

Fix δ′ > 0. For each x ∈ X there is a geodesic Dx in A whose initial
point is x and whose initial direction is orthogonal to c0. Let f(x) be the
minimum of δ and the distance along Dx to the first point (excluding x) of
its intersection with ∂A. We set

SX(δ′) = {(x, t) ∈ X × [0, δ′]
∣∣ t ≤ f(x)}.

The subset SX(δ′) inherits a Riemannian metric from the product of the
metric on X induced by the embedding X ⊂ c0 and the standard metric on
the interval [0, δ′].

Claim 19.37. There is δ′ > 0 such that the following holds. The expo-
nential mapping defines a map exp: SX(δ′) → A which is a local diffeomor-
phism and the pullback of the metric on A defines a metric on SX(δ′) which
is at least (1 − δ)2 times the given product metric.

Proof. This is a standard computation using the Gaussian curvature
upper bound and the geodesic curvature bound. �
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Now we fix 0 < δ′ < 1/10 so that Claim 19.37 holds, and we set SX =
SX(δ′). We define

∂+SX = {(x, t) ∈ SX
∣∣ t = f(x)}.

Then the boundary of SX is made up ofX, the arcs {x}×[0, f(x)] for x ∈ ∂X
and ∂+(SX). For any subset Z ⊂ X we denote by SZ the intersection
(Z × [0, δ]) ∩ SX , and we denote by ∂+(SZ) the intersection of SZ ∩ ∂+SX .

Lastly, we fix µ > 0 with µ < (1 − δ)2(δ′)/10. Notice that this implies
that µ < 1/100. We now assume that the area of A is less than this value
of µ (and recall that r = 1, C ′′ = 1 and l(c0) ≥ 2). We must show that
l(c1) > 3l(c0)/4.

7.2. Focusing triangles. By a focusing triangle we mean the follow-
ing. We have distinct points x, y ∈ X and sub-geodesics D′

x ⊂ Dx and
D′
y ⊂ Dy that are embedded arcs with x, respectively y, as an endpoint.

The intersection D′
x ∩ D′

y is a single point which is the other endpoint of
each of D′

x and D′
y. Notice that since D′

x ⊂ Dx and D′
y ⊂ Dy, by con-

struction both D′
x and D′

y have lengths at most δ′. We have an arc ξ in c0
with endpoints x and y and the loop ξ ∗D′

y ∗ (D′
x)

−1 bounds a disk B in A.
The arc ξ is called the base of the focusing triangle and with, respect to an
orientation of c0, if x is the initial point of ξ then D′

x is called the left-hand
side of the focusing triangle and D′

y is called its right-hand side. See Fig. 1.

Figure 1. Focusing triangle.

Our main goal here is the following lemma which gives an upper bound
for the length of the base, ξ, of a focusing triangle in terms of the turning
along the base and the area of the region B enclosed by the triangle.

Lemma 19.38. Suppose that we have a focusing triangle T with base ξ
bounding a disk B in A. Suppose that the length of ξ is at most 1. Then

l(ξ) ≤
(∫

ξ
kgeodds+ Area(B)

)
.
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Proof. We begin with a preliminary computation. We denote by a(B)
the area of B. We define

tξ =

∫

ξ
kgeodds and Tξ =

∫

ξ
|kgeod|ds.

Recall that given a piecewise smooth curve, its total turning is the in-
tegral of the geodesic curvature over the smooth part of the boundary plus
the sum over the break points of π minus the interior angle at the break
point. The Gauss-Bonnet theorem tells us that for any compact surface with
piecewise smooth boundary the integral of the Gaussian curvature over the
interior of the surface plus the total turning around the boundary equals 2π
times the Euler characteristic of the surface.

Claim 19.39. The angle θB between D′
x and D′

y at the vertex v satisfies

θB ≤ tξ + a(B)

and for any measurable subset B′ ⊂ B we have

θB − tξ − a(B) ≤
∫

B′

Kda < a(B).

Proof. Since D′
x and D′

y meet ∂A in right angles, the total turning
around the boundary of B is

tξ + 2π − θB .

Thus, by Gauss-Bonnet, we have

θB =

∫

B
Kda+ tξ.

But K ≤ 1, giving the first stated inequality. On the other hand
∫
BKda =∫

BK
+da +

∫
BK

−da, where K+ = max(K, 0) and K− = K − K+. Since
0 ≤

∫
BK

+da ≤ a(B) and
∫
BK

− ≤ 0, the second string of inequalities
follows. �

In order to make the computation we need to know that this triangle is
the image under the exponential mapping of a spray of geodesics out of the
vertex v. Establishing that requires some work.

Claim 19.40. Let a ∈ int ξ. There is a shortest path in B from a to v.
This shortest path is a geodesic meeting ∂B only in its end points. It has
length ≤ (1/2) + δ′.

Proof. The length estimate is obvious: Since ξ has length at most 1, a
path along ∂A ∩B from a to the closest of x and y has length at most 1/2.
The corresponding side has length at most δ′. Thus, there is a path from a
to v in B of length at most (1/2) + δ′.

Standard convergence arguments show that there is a shortest path in
B from a to v. Fix a ∈ int(∂A∩B). It is clear that the shortest path cannot
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meet either of the ‘sides’ D′
x and D′

y at any point other than v. If it did,
then there would be an angle at this point and a local shortcut, cutting off
a small piece of the angle, would provide a shorter path. We must rule out
that the shortest path from a to v meets ∂A ∩ B in another point. If it
does, let a′ be the last such point (parameterizing the geodesic starting at
a). The shortest path from a then leaves ∂A at a′ in the direction tangent
at a′ to ∂A. (Otherwise, we would have an angle which would allow us to
shorten the path just as before.) This means that we have a geodesic γ from
v to a′ whose interior is contained in the interior of B and which is tangent
to ∂A at a′. We label the endpoints of ∂A ∩ B so that the union of γ and
the interval on ∂A ∩ B from a′ to y gives a C1-curve. Consider the disc B′

bounded by γ, the arc of ∂A from a′ to y, and D′
y. The total turning around

the boundary is at most 3π/2+δ, and the integral of the Gaussian curvature
over B′ is at most the area of B, which is less than µ < 1/20 < (π/4) − δ.
This contradicts the Gauss-Bonnet theorem. �

Claim 19.41. For any a ∈ ∂A ∩ B there is a unique minimal geodesic
in B from a to v.

Proof. Suppose not; suppose there are two γ and γ′ from v to a. Since
they are both minimal in B, each is embedded, and they must be disjoint ex-
cept for their endpoints. The upper bound on the curvature and the Gauss-
Bonnet theorem imply that the angles that they make at each endpoint are
less than µ < π/2. Thus, there is a spray of geodesics (i.e. geodesics deter-
mined by an interval β in the circle of directions at v) coming out of v and
moving into B with extremal members of the spray being γ and γ′. The
geodesics γ and γ′ have length at most (1/2)+δ′, and hence the exponential
mapping from v is a local diffeomorphism on all geodesics of length at most
the length of γ. Since the angle they make at a is less than π/2 and since
the exponential mapping is a local diffeomorphism near γ, as we move in
from the γ end of the spray we find geodesics from v of length less than
the length of γ ending on points of γ′. The same Gauss-Bonnet argument
shows that the angle that each of these shorter geodesics makes with γ′ is at
most µ. Consider the subset β′ of β which are directions of geodesics in B
of length < (1/2) + δ′ that end on points of γ′ and make an angle less than
µ with γ′. We have just seen that β′ contains an open neighborhood of the
end of β corresponding to γ. Since the Gaussian curvature is bounded above
by 1, and these geodesics all have length at most 1/2+ δ, it follows that the
exponential map is a local diffeomorphism near all such geodesics. Thus, β′

is an open subset of β. On the other, hand if the direction of γ′′ 6= γ′ is a
point b′′ ∈ β which is an endpoint of an open interval β′, and if this interval
separates b′′ from the direction of γ, then the length of γ′′ is less than the
length of each point in the interval. Hence, the length of γ′′ is less than
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(1/2) + δ′. Invoking Gauss-Bonnet again we see that the angle between γ′′

and γ′ is < µ.
This proves that if U is an open interval in β′ then the endpoint of U

closest to the direction of γ′ is also contained in β′ (unless that endpoint is
the direction of γ′). It is now elementary to see that β′ is all of β except the
endpoint corresponding to γ′. But this is impossible. Since the exponential
mapping is a local diffeomorphism out to distance (1/2) + δ′, and since γ′

is embedded, any geodesic from v whose initial direction is sufficiently close
to that of γ′ and whose length is at most (1/2) + δ′ will not cross γ′. �

See Fig. 2

Figure 2. Spray of geodesics from v.

Remark 19.42. The same argument shows that from any a ∈ ∂A ∩ B
there is a unique embedded geodesic in B from v to a with length at most
(1/2) + δ′. (Such geodesics may cross more than once, but the argument
given in the lemma applies to sub-geodesics from v to the first point of
intersection along γ.)

Let E be the sub-interval of the circle of tangent directions at v consisting
of all tangent directions of geodesics pointing into B at v. The endpoints
of E are the tangent directions for D′

x and D′
y. We define a function from

ξ to the interval E by assigning to each a ∈ ξ the direction at v of the
unique minimal geodesic in B from v to a. Since the minimal geodesic is
unique, this function is continuous and, by the above remark, associates to
x and y the endpoints of E. Since geodesics are determined by their initial
directions, this function is one-to-one. Hence it is a homeomorphism from ξ
to E. That is to say the spray of geodesics coming out of v determined by
the interval E produces a diffeomorphism between a wedge-shaped subset of
the tangent space at v and B. Each of the geodesics in question ends when
it meets ξ.

Now that we have shown that the region enclosed by the triangle is
the image under the exponential map from the vertex v of a wedge-shaped
region in the tangent space at v, we can make the usual computation relating
length and geodesic curvature. To do this we pull back to the tangent space
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at v, and, using polar coordinates, we write ξ as {s = h(ψ);ψ ∈ E} where
s is the radial coordinate and ψ is the angular coordinate. Notice that
h(ψ) ≤ (1/2) + δ′ for all ψ ∈ E. (In fact, because the angles of intersection
at the boundary are all close to π/2 we can give a much better estimate on
h but we do not need it.) We consider the one-parameter family of arcs λ(t)
defined to be the graph of the function t 7→ s(t) = th(ψ), for 0 ≤ t ≤ 1. We
set l(t) equal to the length of λ(t).

Claim 19.43.

dl

dt
(t) ≤ maxψ∈Eh(ψ)

∫

λ(t)
kgeodds.

Proof. First of all notice that, by construction, the curve ξ, which is
defined by {s = h(ψ)}, is orthogonal to the radial geodesics to the endpoints.
As a consequence, h′(ψ) = 0 at the endpoints. Thus, each of the curves λ(t)
is orthogonal to the radial geodesics through its end points. Therefore, as
we vary the family λ(t) the formula for the derivative of the length is

l′(t) =

∫

λ(t)
kgeod(ψ)h(ψ)|cos(θ(ψ, t))|ds

where θ(ψ, t) is the angle at (th(ψ), ψ) between the curve s = th(ψ) and the
radial geodesic. The result follows immediately. �

Next, we must bound the turning of λ(t). For this we invoke the Gauss-
Bonnet theorem once again. Applying this to the wedge-shaped disk W (t)
cut out by λ(t) gives

∫

W (t)
Kda+

∫

λ(t)
kgeodds = θB.

From Claim 19.39 we conclude that∫

λ(t)
kgeodds ≤ tξ + a(B).

Of course, by Claim 19.40 we have maxψ∈Eh(ψ) ≤ (1/2) + δ′. Since
l(0) = 0, this implies that

l(ξ) = l(1) ≤ (a(B) + tB)((1/2) + δ′) < a(B) + tB .

This completes the proof of Lemma 19.38. �

Corollary 19.44. Suppose that T is a focusing triangle with base ξ of
length at most 1. Then the length of ξ is at most δ + µ. More generally,
suppose we have a collection of focusing triangles T1, . . . ,Tn whose bases all
lie in a fixed interval of length 1 in c0. Suppose also that the interiors of
disks bounded by these focusing triangles are disjoint. Then the sum of the
lengths of the bases is at most δ + µ.
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Proof. The first statement is immediate from the previous lemma. The
second comes from the fact that the sum of the areas of the disks bounded
by the Ti is at most µ and the sum of the total turnings of the ξi is at most
δ. �

This completes our work on the local focusing issue. It remains to deal
with global pathologies that would prevent the exponential mapping from
being an embedding out to distance δ′.

7.3. No Dx is an embedded arc with both ends in c0. One thing
that we must show is that the geodesics Dx are embedded. Here is a special
case that will serve some of our purposes.

Lemma 19.45. For each x ∈ X, there is no non-trivial sub-geodesic of
Dx which is a homotopically trivial embedded loop in A.

Proof. Were there such a loop, its total turning would be π minus the
angle it makes when the endpoints of the arc meet. Since K ≤ 1 and the
area of the disk bounded by this loop is less than the area of A which in
turn is less than µ < π, one obtains a contradiction to the Gauss-Bonnet
theorem. �

Next, we rule out the possibility that one of the geodesics Dx has both
endpoints contained in c0. This is the main result of this section. In a sense,
what the argument we give here shows that if there is a Dx with both ends
on c0, then under the assumption of small area, Dx cuts off a thin tentacle
of the annulus. But out near the end of this thin tentacle there must be a
short arc with large total turning, violating our hypothesis on the integrals
of the geodesic curvature over arcs of length at most 1.

Lemma 19.46. There is no x for which Dx is an embedded arc with both
endpoints on c0 and otherwise disjoint from ∂A.

Proof. Suppose that there were such a Dx. Then Dx separates A
into two components, one of which, B, is a topological disk. Let c′0 be the
intersection of c0 with B. We consider two cases: Case (i): l(c′0) ≤ 1 and
Case (ii): l(c′0) > 1.

Let us show that the first case is not possible. Since Dx is a geodesic and
Dx is perpendicular to c0 at one end, the total turning around the boundary
of B is at most

3π/2 +

∫

c′0

kgeodds < 3π/2 + δ,

where the last inequality uses the fact that the length of c′0 is at most 1. On
the other hand,

∫
BKda < µ, and µ < 1/20 < (π/2) − δ. This contradicts

the Gauss-Bonnet theorem.
Now let us consider the second case. Let J be the subinterval of c′0 with

one end point being x and with the length of J being 1. We orient J so that x
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is its initial point. We set XJ = J ∩X. We define SXJ
(B) ⊂ SXJ

as follows.
For each y ∈ XJ we let fB(y) be the minimum of δ′ and the distance along
Dy to the first point (excluding y) of Dy contained in ∂B and let Dy(B) be
the sub-geodesic of Dy of this length starting at y. Then SXJ

(B) ⊂ SXJ
is

the union over y ∈ XJ of [0, fB(y)]. Clearly, the exponential mapping defines
an immersion of SXJ

(B) into B. We need to replace XJ by a slightly smaller
subset in order to make the exponential mapping be an embedding. To do
this we shall remove bases of a maximal focusing triangles in B.

First notice that for each y ∈ XJ the exponential mapping is an em-
bedding on Dy(B). The reason is that the image of Dy(B) is a geodesic
contained in the ball B. Lemma 19.45 then shows that this geodesic is
embedded. This leads to:

Claim 19.47. For any component c of XJ , the restriction of the expo-
nential mapping to Sc(B) = (c× [0, δ′)) ∩ SXJ

(B) is an embedding.

Proof. Since the geodesics that make up Sc(B) have length at most
δ′ < 1/10 and since the curvature of the annulus is bounded above by 1, the
restriction of the exponential mapping to Sc(B) is a local diffeomorphism.
The restriction to each {y} × [0, fB(y)] is an embedding onto Dy(B). If the
restriction of the exponential mapping to Sc(B) is not an embedding, then
there are y 6= y′ in c such that the geodesics Dy(B) and Dy′(B) meet. When
they meet, they meet at a positive angle and by the Gauss-Bonnet theorem
this angle is less than µ + δ. Thus, all the geodesics starting at points
sufficiently close to y′ and between y and y′ along c must also meet Dy(B).
Of course, if a sequence of Dyi(B) meet Dy(B), then the same is true for
the limit. It now follows that Dy′′(B) meets Dy(B) for all y′′ between y and
y′. This contradicts the fact that Dy(B) is embedded. �

Claim 19.48. Any focusing triangle for J must contain a component of
J \XJ . If {Tn} is an infinite sequence of focus triangles for J , then, after
passing to a subsequence, there is a limiting focusing triangle for J .

Proof. The first statement is immediate from Claim 19.47. Since X∩J
is compact, it is clear that after passing to a subsequence each of the sequence
of left-hand sides and the sequence of right-hand sides converge to a geodesic
arc orthogonal to J at points of X. Furthermore, these limiting geodesics
meet in a point at distance at most δ′ from the end of each. The only thing
remaining to show is that the limiting left- and right-hand sides do not begin
at the same point of X. This is clear since each focusing triangle contains
one of the finitely many components of J \XJ . �

Using Claim 19.48 we see that if there is a focusing triangle for J there is
a first point x1 in XJ whose associated geodesic contains the left-hand side of
a focusing triangle for J . Then since the base length of any focusing triangle
is bounded by a fixed constant, invoking again Claim 19.48, that there is a
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focusing triangle T1 for J that has left-hand side contained in the geodesic
Dx1 and has a maximal base among all such focusing triangles, maximal
in the sense that the base of this focusing triangle contains the base of any
other focusing triangle with left-hand side contained in Dx1. Denote its base
by ξ1 and denote the right-hand endpoint of ξ1 by y1. For the triangle we
take the geodesic arcs to the first point of intersection measured along Dy1 .

Set J1 = J \ ξ, and repeat the process for J1. If there is a focusing triangle
for J1 we find the first left-hand side of such focusing triangles and then find
the maximal focusing triangle T2 with this left-hand side.

Claim 19.49. The interior of T2 is disjoint from the interior of T1.

Proof. Since by construction the interiors of the bases of T1 and T2 are
disjoint, if the interior of T2 meets T1, then one of the sides of T2 crosses the
interior of one of the sides of T1. But since T1 is a maximal focusing triangle
with its left-hand side, neither of the sides of T2 can cross the interior of
the left-hand side of T1. If one of the sides of T2 crosses the interior of the
right-hand side of T1, then the right-hand side of T1 is the left-hand side of
a focusing triangle for J1. Since by construction the left-hand side of T2 is
the first such, this means that the left-hand side of T2 is the right-hand side
of T1. This means that the right-hand side of T2 terminates when it meets
the right-hand side of T1 and hence the right-hand side of T2 ends the first
time that it meets the right-hand side of T1 and hence does not cross it. �

We continue in this way constructing focusing triangles for J with dis-
joint interiors. Since each focusing triangle for J contains a component of
J \ XJ , and as there are only finitely many such components, this pro-
cess must terminate after a finite number of steps. Let T1, . . . ,Tk be the
focusing triangles so constructed, and denote by ξi the base of Ti. Let
X ′
J = XJ \ ∪ki=1ξi.

Definition 19.50. We call the triangles T1, . . . ,Tk constructed above,
the maximal set of focusing triangles for J relative to B.

Claim 19.51. The length of X ′
J is at least 1 − 2δ − µ.

Proof. Since the interiors of the Ti are disjoint, according to Corol-
lary 19.44, we have

∑
i l(ξi) < δ + µ. We also know by Remark 19.36 that

the length of XJ is at least (1 − δ). Putting these together gives the re-
sult. �

We define SX′
J
(B) to be the intersection of SXJ

(B) with SX′
J
.

Claim 19.52. The restriction of the exponential mapping to SX′
J
(B) is

an embedding.

Proof. Suppose that we have distinct points x′, y′ in X ′
J such that

Dx′(B) ∩ Dy′(B) 6= ∅. We assume that x′ < y′ in the orientation on J .
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Then there is a focusing triangle for J whose base is the sub-arc of J with
endpoints x′ and y′, and hence the left-hand side of the focusing triangle is
contained in Dx′(B). Since x′ is not a point of ∪iξi either it lies between
two of them, say ξj and ξj+1 or it lies between the initial point x of J and
the initial point of ξ1 or it lies between the last ξn and the final point of J .

But x′ cannot lie before ξ1, for this would contradict the construction
which took as the left-hand endpoint of ξ1 the first point of J whose geo-
desic contained the left-hand side of a focusing triangle for J . Similarly, x′

cannot lie between ξj and ξj+1 for any j since the left-hand endpoint of ξj+1

is the first point at or after the right-hand endpoint of ξj whose geodesic
contains the left-hand side of a focusing triangle for J . Lastly, x′ cannot lie
to the right of the last ξk, for then we would not have finished the inductive
construction. �

We pull back the metric of A to the SX′
J
(B) by the exponential mapping.

Since this pullback metric is at least (1−δ)2 times the product of the metric
on X ′

J induced from c0 and the usual metric on the interval, and since the
map on this subset is an embedding, we see that the area of the region of the
annulus which is the image under the exponential mapping of this subset is
at least

(1 − δ)2
∫

X′
J

fB(x)ds,

where s is arc length along X ′
J . Of course, the area of this subset is at most

µ. This means that, setting Z equal to the subset of X ′
J (δ′) given by

Z = {z ∈ X ′
J |fB(z) < δ′},

the total length of X ′
J \ Z satisfies

l(X ′
J \ Z) ≤ (1 − δ)−2(δ′)−1µ <

1

10
,

where the last inequality is an immediate consequence of our choice of µ.
Thus, the length of Z is at least (0.9− 2δ− µ) ≥ 0.87. Let ∂+SZ(B) be the
union of the final endpoints (as opposed to the initial points) of the Dx(B)
as x ranges over Z. Of course, since fB(z) < δ′ for all z ∈ Z, it must be the
case that the exponential mapping embeds ∂+SZ(B) into ∂B. Furthermore,
the total length of the image of ∂+SZ(B) is at least (1− δ)l(Z) ≥ 0.86. The
boundary of B is made up of two pieces: Dx and an arc on c0. But the length
of Dx is at most δ′ < 1/20 so that not all of ∂+SZ(B) can be contained in
Dx. Thus, there is z ∈ Z, distinct from x such that Dz has both endpoints
in c0. It then follows that all points of Z that are separated (along J) from
x by z have the same property. Since the length of Z is at least 0.86, it
follows that there is a point z ∈ X at least distance 0.85 along J from x
with the property that Dz has both endpoints in c0. The complementary
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component of Dz in A, denoted B′, is a disk that is contained in B and the
length of B′ ∩ c0 is at least 0.85 less than the length of B ∩ c0.

The length of B′∩c0 cannot be less than 1, for that gives a contradiction.
But if the length of B′∩c0 is greater than 1, we now repeat this construction
replacing B by B′. Continuing in this way we eventually we cut down the
length of B ∩ c0 to be less than 1 and hence reach a contradiction. �

7.4. For every x ∈ X, the geodesic Dx is embedded. The steps
in the above argument, inductively constructing disjoint maximal focusing
triangles and showing that their bases have a small length and that off of
them the map is an embedding, will be repeated in two other contexts.
The next context is to rule out the case when a sub-arc of Dx forms a
homotopically non-trivial loop in A.

Lemma 19.53. For any x ∈ X there is no sub-geodesic of Dx that is an
embedded loop in A.

Proof. We have already treated the case when the loop bounds a disk.
Now we need to treat the case when the loop is homotopically non-trivial in
A. Let D′

x ⊂ Dx be the minimal compact sub-geodesic containing x that is
not an embedded arc. Let intB be the complementary component of D′

x in
A that contains c0 \ {x}. There is a natural compactification of intB as a
disk and an immersion of this disk into A, an immersion that is two-to-one
along the shortest sub-geodesic of D′

x from x to the point of intersection
of Dx with itself. We do exactly the same construction as before. Take a
sub-arc J of length 1 with x as an endpoint and construct SXJ

(B) consisting
of the union of the sub-geodesics of Dz, for z ∈ J ∩X that do not cross the
boundary of B. We then construct a sequence of maximal focusing triangles
along J relative to B just as in the previous case. In this way we construct
a subset Z of X ∩ J of total length at least 0.87 with the property that for
every z ∈ Z the final end of D′

z(B) lies in ∂B. Furthermore, the length of
the arcs that these final ends sweep out is at least 0.86. Hence, since the
total length of the part of the boundary of B coming from D′

x is at most
2δ′ < 0.2, there must be a z ∈ Z for which Dz(B) has both ends in c0. This
puts us back in the case ruled out in Lemma 19.46. �

7.5. Far apart Dx’s don’t meet. Now the last thing that can prevent
the exponential mapping in the complement of the focusing triangles from
being an embedding is that geodesics Dx and Dy might meet even though
x and y are far apart along c0. Our next goal is to rule this out.

Lemma 19.54. Let x, y be distinct points of X. Suppose that there are
sub-geodesics D′

x ⊂ Dx and D′
y ⊂ Dy with a common endpoint. Then the

arc D′
x ∗ (D′

y)
−1 cuts A into two complementary components, exactly one of

which is a disk, denoted B. Then it is not possible for B ∩ c0 to contain an
arc of length 1.
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Proof. The proof is exactly the same as in Lemma 19.46 except that the
part of the boundary of B that one wants to avoid has length at most 2δ′ <
0.2 instead of δ′. Still, since (in the notation of the proof of Lemma 19.46)
the total length of Z is at least 0.87 so that the lengths of the other ends
of the Dz as z ranges over Z is at least 0.86, there is z ∈ Z for which
both ends of Dz lie in c0. Again this puts us back in the case ruled out by
Lemma 19.46. �

As a special case of this result we have the following.

Corollary 19.55. Suppose that we have an arc ξ of length at most 1
on c0. Denote the endpoints of ξ by x and y and suppose that Dx ∩Dy 6= ∅.
Let D′

x and D′
y be sub-geodesics containing x and y respectively ending at

the same point, v, and otherwise disjoint. Then the loop ξ ∗ D′
y ∗ (D′

x)
−1

bounds a disk in A.

Proof. If not, then it is homotopically non-trivial in A and replacing
ξ by its complement, c0 \ int ξ, gives us exactly the situation of the previous
lemma. (The length of c0 \ int ξ is at least 1 since the length of c0 is at least
2.) �

Let us now summarize what we have established so far about the inter-
sections of the geodesics {Dx}x∈X .

Corollary 19.56. For each x ∈ X, the geodesic Dx is an embedded arc
in A. Either it has length δ′ or its final point lies on c1. Suppose there are
x 6= x′ in X with Dx ∩ Dx′ 6= ∅. Then there is an arc ξ on c0 connecting
x to x′ with the length of ξ at most δ + µ. Furthermore, for sub-geodesics
D′
x ⊂ Dx, containing x, and D′

x′ ⊂ Dx′, containing x′, that intersect exactly
in an endpoint of each, the loop ξ ∗D′

x′ ∗ (D′
x)

−1 bounds a disk B in A, and
the length of ξ is at most the turning of ξ plus the area of B.

7.6. Completion of the proof. We have now completed all the tech-
nical work on focusing and we have also shown that the restriction of the
exponential mapping to the complement of the bases of the focusing regions
is an embedding. We are now ready to complete the proof of Proposi-
tion 19.35.

Let J be an interval of length 1 in c0. Because of Corollary 19.56 we
can construct the maximal focusing triangles for J as follows. Orient J , and
begin at the initial point of J . At each step we consider the first x (in the
subinterval of J under consideration) which intersects a Dy for some later
y ∈ J . If we have such y, then we can construct the sides of the putative
triangle for sub-geodesics of Dx and Dy. But we need to know that we
have a focusing triangle. This is the content of Corollary 19.55. The same
reasoning works when we construct the maximal such focusing triangle with
a given left-hand side, and then when we show that in the complement of the
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focusing triangles the map is an embedding. Thus, as before, for an interval
J of length 1, we construct a subset X ′

J ⊂ X ∩J of length at least 0.97 such
that the restriction of the exponential mapping to SX′

J
is an embedding.

Again the area estimate shows that there is a subset Z ⊂ X ′
J whose length

is at least 0.87 with the property that for every z ∈ Z the geodesic Dz has
both endpoints in ∂A. By Lemma 19.46, the only possibility for the final
endpoints of all these Dz’s is that they lie in c1.

In particular, there are x ∈ X for which Dx spans from c0 to c1. We
pick one such, x0, contained in the interior of X, and use it as the starting
point for a construction of maximal focusing triangles all the way around
c0. What we are doing at this point actually is cutting the annulus open
along Dx0 to obtain a disk and we construct a maximal family of focusing
triangles of the interval [x′0, x

′′
0 ] obtained by cutting c0 open at x0 relative to

this disk. Here x′0 and x′′0 are the points of the disk that map to x0 when the
disk is identified to form A. Briefly, having constructed a maximal collection
of focusing triangles for a subinterval [x′0, x], we consider the first point y in
the complementary interval [x, x′′0 ] with the property that there is y′ in this
same interval, further along with Dy ∩Dy′ 6= 0. Then, using Corollary 19.56
we construct the maximal focusing triangle on [x, x′′0 ] with left-hand side
being a sub-geodesic of Dy. We then continue the construction inductively
until we reach x′′0. Denote by ξ1, . . . , ξk the bases of these focusing triangles
and let X ′ be X \ ∪iξi.

The arguments above show that the exponential mapping is an embed-
ding of SX′ to the annulus.

Claim 19.57. For every subinterval J of length 1 in c0 the total length
of the bases ξi that meet J is at most 2δ + µ < 0.03.

Proof. Since, by Corollary 19.44, every base of a focusing triangle has
length at most δ+µ, we see that the union of the bases of focusing triangles
meeting J is contained in an interval of length 1 + 2(δ + µ) < 2. Hence, the
total turning of the bases of these focusing triangles is at most 2δ whereas the
sum of their areas is at most µ. The result now follows from Corollary 19.44.

�

By hypothesis there is an integer n ≥ 1 such that the length l(c0) of c0
is greater than n but less than or equal to n + 1. Then it follows from the
above that the total length of the bases of all the focusing triangles in our
family is at most

(n+ 1)(2δ + µ) < 0.03(n + 1) ≤ 0.06n ≤ 0.06l(c0).

Since the restriction of the exponential mapping to SX′ is an embedding,
it follows from Claim 19.37 and the choice of δ′ that, for any open subset
Z of X ′, the area of the image under the exponential mapping of SZ is at
least (1− δ)2

∫
Z f(x)ds, where ds is the arc length along Z. Also, the image
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under the exponential mapping of ∂+(SZ) is an embedded arc in A of length
at least (1 − δ)l(Z). Since the length of X ′ is at least (0.94)l(c0) and since
the area of A is less than µ < (1 − δ)2δ′/10, it follows that the subset of
X ′ on which f takes the value δ′ has length at most 0.10 < (0.10)l(c0).
Hence, there is a subset X ′′ ⊂ X ′ of total length at least (0.84)l(c0) with the
property that f(x) < δ′ for all x ∈ X ′′. This means that for every x ∈ X ′′

the geodesic Dx spans from c0 to c1, and hence the exponential mapping
embeds ∂+SX′′ into c1. But we have just seen that the length of the image
under the exponential mapping of ∂+SX′′ is at least

(1 − δ)l(X ′′) > (0.99)l(X ′′) > (0.83)l(c0).

It follows that the length of c1 is at least (0.83)l(c0) > 3(l(c0))/4.
This completes the proof.

8. Proof of the first inequality in Lemma 19.24

Here is the statement that we wish to establish when the manifold
(W,h(t)) is the product of (M,g(t)) × (S1

λ, ds
2).

Lemma 19.58. Let (W,h(t)), t0 ≤ t ≤ t1, be a Ricci flow and fix Θ <∞.
Then there exist constants δ > 0 and 0 < r0 ≤ 1 depending only on the
curvature bound for the ambient Ricci flow and Θ such that the following
holds. Let c(x, t), t0 ≤ t ≤ t1, be a curve-shrinking flow with c(·, t) immersed
for each t ∈ [t0, t1] and with the total curvature of c(·, t0) being at most Θ.
Suppose that there is 0 < r ≤ r0 and at a time t′ ∈ [t0, t1−δr2] such that the
length of c(·, t′) is at least r and the total curvature of c(·, t′) on any sub-arc
of length r is at most δ. Then for every t ∈ [t′, t′ + δr2] the curvature k
satisfies

k2 ≤ 2

(t− t′)
.

The rest of this section is devoted to the proof of this lemma. In [2] such
a local estimate was established when the ambient manifold was Euclidean
space and the curve in question is a graph. A related result for hypersurfaces
that are graphs appears in [19]. The passage from Euclidean space to a
general Ricci flow is straightforward, but it is more delicate to use the bound
on total curvature on initial sub-arcs of length r to show that in appropriate
coordinates the evolving curve can be written as an evolving graph, so that
the analysis in [2] can be applied.

We fix δ > 0 sufficiently small. We fix t′ ∈ [t0, t1 − δr2] for which the
hypotheses of the lemma hold. The strategy of the proof is to first restrict to
the maximum subinterval of [t′, t2] of [t′, t′ + δr2] on which k is bounded by√

2/(t− t′). If t2 < t′ + δr2, then k achieves the bound
√

2/(t− t′) at time
t2. We show that in fact on this subinterval k never achieves the bound.
The result then follows. To show that k never achieves the bound, we show
that on a possibly smaller interval of time [t′, t3] with t3 ≤ t2 we can write
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the restriction of the curve-shrinking flow to any interval whose length at
time t′ is (0.9)r as a family of graphs in a local coordinate system so that
the function f (of arc and time) defining the graph has derivative along the
arc bounded in norm by 1/2. We take t3 ≤ t2 maximal with respect to these
conditions. Then with both the bound on k and the bound on the derivative
of f one shows that the spatial derivative of f never reaches 1/2 and also
that the curves do not move too much so that they always remain in the
coordinate patch. The only way that this can happen is that if t2 = t3, that
is to say, on the entire time interval where we have the curvature bound,
we also can write the curve-shrinking flow as a flow of graphs with small
spatial derivatives. Then it is convenient to replace the curve-shrinking flow
by an equivalent flow, introduced in [2], called the graph flow. Applying a
simple maximum principle argument to this flow we see that k never achieves
the value

√
2/(t− t′) on the time interval [t′, t2] and hence the curvature

estimate k <
√

2/(t− t′) holds throughout the interval (t′, t′ + δr2].

8.1. A bound for
∫
kds. Recall that k is the norm of the curvature

vector ∇SS, and in particular, k ≥ 0. For any sub-arc γt′ of c(·, t′) at time
t′ we let γt be the result at time t of applying the curve-shrinking flow to
γt′ . The purpose of this subsection is to show that

∫
γt
kds is small for all

t ∈ [t′, t′ + δr2] and all initial arcs γt′ of length at most r.

Claim 19.59. There is a constant D0 <∞, depending only on Θ and the
curvature bound of the ambient Ricci flow such that for every t ∈ [t′, t′+δr2]
and every sub-arc γt′ whose length is at most r, we have

∫
γt
kds < D0 and

l(γt) ≤ D0r, where l(γt) is the length of γt.

Proof. This is immediate from Corollary 19.10 applied to all of c(·, t).
�

Now we fix t2 ≤ t′ + δr2 maximal subject to the condition that k(x, t) ≤√
2
t−t′ for all x and all t ∈ [t′, t2]. If t2 < t′ + δr2 then there is x with

k(x, t2) =
√

2
(t2−t′) .

Now consider a curve γt′ of length r. From the integral estimate in the
previous claim and the assumed pointwise estimate on k, we see that

∫

γt

k2ds ≤ maxx∈γtk(x, t)

∫

γt

kds <

√
2

t− t′
·D0.

Using Equation (19.8), it follows easily that, provided that δ > 0 is suffi-
ciently small, the length of γt is at least (0.9)r for all t ∈ [t′, t2], and more
generally for any subinterval γ′t′ of γt′ and for any t ∈ [t′, t2] the length of
the corresponding interval γ′t is at least (0.9) times the length of γ′t′ . We
introduce a cut-off function on γt′ × [t′, t2] as follows. First, fix a smooth
function ψ : [−1/2, 1/2] → [0, 1] which is identically zero on [−0.50,−0.45]
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and on [0.45, 0.50], and is identically 1 on [−3/8, 3/8]. There is a constant
D′ such that |ψ′| ≤ D′ and |ψ′′| ≤ D′. Now we fix the midpoint x0 ∈ γt′

and define the signed distance from (x0, t), denoted

s : γt′ × [t′, t2] → R,

as follows:

s(x, t) =

∫ x

x0

|X(y, t)|dy.

We define the cut-off function

ϕ(x, t) = ψ

(
s(x, t)

r

)
.

Claim 19.60. There is a constant D1 depending only on the curvature
bound for the ambient Ricci flow such that for any sub-arc γt′ of length r,
defining ϕ(x, t) as above, for all x ∈ γt and all t ∈ [t′, t2] we have

∣∣∣∣
∂ϕ(x, t)

∂t

∣∣∣∣ ≤
D1

r
√
t− t′

+D1.

Proof. Clearly,

∂ϕ(x, t)

∂t
= ψ′

(
s(x, t)

r

)
· 1

r

∂s(x, t)

∂t
.

We know that |ψ′| ≤ D′ so that
∣∣∣∣
∂ϕ(x, t)

∂t

∣∣∣∣ ≤
D′

r

∣∣∣∣
∂s(x, t)

∂t

∣∣∣∣ .

On the other hand,

s(x, t) =

∫ x

x0

|X(y, t)|dy,

so that ∣∣∣∣
∂s(x, t)

∂t

∣∣∣∣ =

∣∣∣∣
∫ x

x0

∂|X(y, t)|
∂t

dy

∣∣∣∣ ,

By Lemma 19.6 we have

∂|X(y, t)|
∂y

dy =
(
−Ric(S(y, t), S(y, t)) − k2(y, t)

)
ds,

so that there is a constant D depending only on the bound of the sectional
curvatures of the ambient Ricci flow with∣∣∣∣

∂s(x, t)

∂t

∣∣∣∣ ≤
∫ x

x0

(D + k2)ds ≤ Dl(γt) +

∫ x

x0

k2(y, t)ds(y, t),

and hence by Claim 19.59
∣∣∣∣
∂s(x, t)

∂t

∣∣∣∣ ≤ DD0r +

∫ x

x0

k2(y, t)ds(y, t).
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Using the fact that k2 ≤ 2/(t− t′), we have
∫ x

x0

k2(y, t)ds(y, t) ≤
√

2

t− t′

∫ x

x0

kds ≤
√

2D0√
t− t′

.

Putting all this together, we see that there is a constant D1 such that
∣∣∣∣
∂ϕ(x, t)

∂t

∣∣∣∣ ≤ D1(
1

r
√
t− t′

+ 1).

�

Claim 19.61. There is a constant D2 depending only on the curvature
bound of the ambient Ricci flow and Θ and a constant D3 depending only on
the curvature bound of the ambient Ricci flow, such that for any t ∈ [t′, t2]
and any sub-arc γt′ of length r, we have

∣∣∣∣
d

dt

∫

γt

ϕkds

∣∣∣∣ ≤ D2

(
1 +

1

r
√
t− t′

)
+
D2

r2
+D3

∫

γt

ϕkds.

Proof. We have∣∣∣∣
d

dt

∫

γt

ϕkds

∣∣∣∣ ≤
∣∣∣∣
∫

γt

∂ϕ(x, t)

∂t
kds

∣∣∣∣+
∣∣∣∣
∫

γt

ϕ
∂(kds)

∂t

∣∣∣∣ .

Using Claim 19.60 for the first term and Claim 19.8 and arguing as in the
proof of Lemma 19.9 for the second term, we have
∣∣∣∣
d

dt

∫

γt

ϕkds

∣∣∣∣ ≤ D1

(
1 +

1

r
√
t− t′

)∫

γt

kds+

∣∣∣∣
∫

γt

ϕk′′ds

∣∣∣∣+
∫

γt

C ′
1ϕkds,

where C ′
1 depends only on the ambient curvature bound. We bound the first

term by

D1D0

(
1

r
√
t− t′

+ 1

)
,

where D0 is the constant depending on Θ and the ambient curvature bound
from Claim 19.59. Since the ends of γt are at distance at least (0.45)r from
x0 all t ∈ [t′, t2], we see that for all t ∈ [t′, t2],

∫

γt

ϕk′′ =

∫

c(·,t)
ϕk′′.

Integrating by parts we have
∫

c(·,t)
ϕk′′ds =

∫

c(·,t)
ϕ′′kds,

where the prime here refers to the derivative along c(·, t) with respect to arc

length. Of course |ϕ′′| ≤ D′

r2
. Thus, we see that

∣∣∣∣
∫

γt

ϕk′′ds

∣∣∣∣ ≤
D′

r2

∫

c(·,t)
kds ≤ D′D0

r2
.
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Putting all this together, we have

∣∣∣∣
d

dt

∫

γt

ϕkds

∣∣∣∣ ≤ D2

(
1 +

1

r
√
t− t′

)
+
D2

r2
+D3

∫

γt

ϕkds

for D2 = D0 max(D′,D1) and D3 = C ′
1. This gives the required estimate.

�

Corollary 19.62. For any t ∈ [t′, t2] and any sub-arc γt′ of length r
we have ∫

γt

ϕkds ≤ D4

√
δ

for a constant D4 that depends only on the sectional curvature bound of the
ambient Ricci flow and Θ.

Proof. This is immediate from the previous result by integrating from
t′ to t2 ≤ t′ + δr2, and using the fact that δ < 1 and r < 1, and using the
fact that ∫

γt′

ϕkds ≤
∫

γt′

kds < δ

since γt′ has length at most r. �

This gives:

Corollary 19.63. For γt′ ⊂ c(·, t′) a sub-arc of length at most r and
for any t ∈ [t′, t2], we have

∫

γt

kds ≤ 2D4

√
δ.

For any t ∈ [t′, t2] and any sub-arc J ⊂ c(·, t) of length at most r/2 with
respect to the metric h(t), we have

∫

J
k(x, t)ds(x, t) ≤ 2D4

√
δ.

Proof. We divide an interval γt′ ⊂ c(·, t′) of length at most r into two
subintervals γ′t′ and γ′′t′ of lengths at most r/2. Let γ̂′t′ and γ̂′′t′ be intervals
of length r containing γ′t′ and γ′′t′ respectively as middle subintervals. We
then apply the previous corollary to γ̂′t′ and γ̂′′t′ using the fact that ϕk ≥ 0
everywhere and ϕk = k on the middle subintervals of γ̂′t′ and γ̂′′t′ . For an
interval J ⊂ γt of length r/2, according to Lemma 19.10 the length of γt′ |J
with respect to the metric h(t′) is at most r, and hence this case follows
from the previous case. �
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8.2. Writing the curve flow as a graph. Now we restrict attention
to [t′, t2], the maximal interval in [t′, t′ + δr2] where k2 ≤ 2/(t − t′). Let γt′

be an arc of length r in c(·, t′) and let x0 be the central point of γt′ . Denote
γt′(x0) = p ∈ W . We take the h(t′)-exponential mapping from TpW → W .
This map will be a local diffeomorphism out to a distance determined by the
curvature of h(t′). For an appropriate choice of the ball (depending on the
ambient curvature bound) the metric on the ball induced by pulling back
h(t) for all t ∈ [t′, t2] will be within δ in the C1-topology to the Euclidean
metric h′ = h(t′)p. By this we mean that

(1)
∣∣〈X,Y 〉h(t) − 〈X,Y 〉h′

∣∣ < δ|X|h′ |Y |h′ for all tangent vectors in the
coordinate system, and

(2) viewing the connection Γ as a bilinear map on the coordinate
space with values in the coordinate space we have |Γ(X,Y )|h′ <
δ|X|h′ |Y |h′ .

We choose 0 < r0 ≤ 1 so that it is much smaller than this distance, and
hence r is also much smaller than this distance. We lift to the ball in TpW .

We fix orthonormal coordinates with respect to the metric h′ so that
the tangent vector of γt′(x0) points in the positive x1-direction. Using these
coordinates we decompose the coordinate patch as a product of an interval
in the x1-direction and an open ball, B, spanned by the remaining Euclidean
coordinates. From now on we shall work in this coordinate system using this
product structure. To simplify the notation in the coming computations,
we rename the x1-coordinate the z-coordinate. Ordinary derivatives of a
function α with respect to z are written αz. When we write norms and inner
products without indicating the metric we implicitly mean that the metric
is h(t). When we use the Euclidean metric on these coordinates we denote
it explicitly. Next, we wish to understand how γt moves in the Euclidean
coordinates under the curve-shrinking flow. Since we have |∇SS|h = k, it
follows that |∇SS|h′ ≤

√
1 + δk ≤ 2/

√
t− t′, and hence, integrating tells us

that for any x ∈ γt′ we have

|γt(x) − γt′(x)|h′ ≤ 4
√
t− t′ ≤ 4

√
δr.

This shows that for every t ∈ [t′, t2], the curve γt is contained in the coordi-
nate patch that we are considering. This computation also implies that the
z-coordinate of γt changes by at most 4

√
δr over this time interval.

Because the total curvature of γt′ is small and the metric is close to the
Euclidean metric, it follows that the tangent vector at every point of γt′

is close to the positive z-direction. This means that we can write γt′ as a
graph of a function f from a subinterval in the z-line to Y with |fz|h′ < 2δ.
By continuity, there is t3 ∈ (t′, t2] such that all the curves γt are written as
graphs of functions (over subintervals of the z-axis that depend on t) with
|fz|h′ ≤ 1/10. That is to say, we have an open subset U of the product of the
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z-axis with [t′, t3], and the evolving curves define a map γ̃ from U into the co-
ordinate system, where the slices at constant time are graphs z 7→ (z, f(z, t))
and are the curves γt. Using the coordinates (z, t) gives a new flow of curves
by moving in the t-direction. This new flow is called the graph flow. It
is a reparameterization of the curve shrinking flow in such a way that the
z-coordinate is preserved. We denote by Z = Z(z, t) the image under the
differential of the map γ̃ of the tangent vector in the z-direction and by
Y (z, t) the image under the differential of γ̃ of the tangent vector in the
t-direction. Notice that Z is the tangent vector along the parameterized
curves in the graph flow. Since we are now using a different parameteriza-
tion of the curves from the one determined by the curve-shrinking flow, the
tangent vector Z has the same direction but not necessarily the same length
as the tangent vector X from the curve-shrinking parameterization. Also,
notice that in the Euclidean norm we have |Z|2h′ = 1 + |fz|2h′ . It follows that
on U we have

(1 − δ)(1 + |fz|2h′) ≤ |Z(z, t)|2h(t) ≤ (1 + δ)(1 + |fz|2h′).
In particular, because of our restriction to the subset where |fz|h′ ≤ 1/10
we have (1 − δ) ≤ |Z(z, t)|2h(t) ≤ (1.01)(1 + δ).

Now we know that γt′ is a graph of a function f(z, t′) defined on some
interval I along the z-axis. Let I ′ be the subinterval of I centered in I with
h′-length (0.9) times the h′-length of I. By the above estimate on |Z| it
follows that the restriction of γt′ to I ′ has length between (0.8)r and r, and
also that the h′-length of I ′ is between (0.8)r and r. The above estimate
means that, provided that δ > 0 is sufficiently small, for every t ∈ [t′, t3]
there is a subinterval of γt that is the graph of a function defined on all
of I ′. We now restrict attention to the family of curves parameterized by
I ′× [t′, t3]. For every t ∈ [t′, t3] the curve γt|I′ has length between (0.8)r and
r. The curve-shrinking flow is not defined on this product because under the
curve-shrinking flow the z-coordinate of any given point is not constant. But
the graph flow defined above, and studied in [2] (in the case of Euclidean
background metric), is defined on I ′ × [t′, t3] since this flow preserves the
z-coordinate. The time partial derivative in the curve-shrinking flow is given
by

(19.10) ∇SS =
∇ZZ

|Z|2 − 1

|Z|4 〈∇ZZ,Z〉Z.

The time partial derivative in the graph-flow is given by Y = ∂γ̃/∂t. The
tangent vector Y is characterized by being h′-orthogonal to the z-axis and
differing from ∇SS by a functional multiple of Z.

Claim 19.64.

Y =
∇ZZ − 〈Γ(Z,Z), ∂z〉h′Z

|Z|2 = ∇SS +

(〈∇ZZ,Z〉
|Z|4 − 〈Γ(Z,Z), ∂z〉h′

|Z|2
)
Z.
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Proof. In our Euclidean coordinates, Z = (1, fz) so that ∇ZZ =
(0, fzz) + Γ(Z,Z). Thus,

〈∇ZZ, ∂z〉h′ = 〈Γ(Z,Z), ∂z〉h′ .
Since 〈Z, ∂z〉h′ = 1, it follows that

∇ZZ − 〈Γ(Z,Z), ∂z〉h′Z
|Z|2

is h′-orthogonal to the z-axis and hence is a multiple of Y . Since it differs
by a multiple of Z from ∇SS, it follows that it is Y . This gives the first
equation; the second follows from this and Equation (19.10). �

To simplify the notation we set

ψ(Z) =
〈Γ(Z,Z), ∂z〉h′

|Z|2 .

Notice that from the conditions on Γ and h′ it follows immediately that
|ψ(Z)| < (1.5)δ.

8.3. Proof that t3 = t2. At this point we have a product coordinate
system on which the metric is almost the Euclidean metric in the C1-sense,
and we have the graph flow given by

Y =
∂γ̃

∂t
=

∇ZZ

|Z|2 − ψ(Z)Z

defined on [t′, t3] with image always contained in the given coordinate patch
and written as a graph over a fixed interval I ′ in the z-axis. For every
t ∈ [t′, t3] the length of γt′ |I′ in the metric h(t′) is between (0.8)r and r.
The function f(z, t) whose graphs give the flow satisfies |fz|h′ ≤ 1/10. Our
next goal is to estimate |fz|h′ and show that it is always less than 1/10 as
long as k2 ≤ 2/(t − t′) and t− t′ ≤ δr2 for a sufficiently small δ, i.e., for all
t ∈ [t′, t2]; that is to say, our next goal is to prove that t3 = t2. In all the
arguments that follow C ′ is a constant that depends only on the curvature
bound for the ambient Ricci flow, but the value of C ′ is allowed to change
from line to line.

The first step in doing this is to consider the angle between ∇ZZ and
Z.

Claim 19.65. Provided that δ > 0 is sufficiently small, the angle (mea-
sured in h(t)) between Y and Z = (1, fz) is greater than π/4. Also:

(1)

k ≤ |Y | <
√

2k.

(2)
|〈∇ZZ,Z〉| < (k + 2δ)|Z|3.

(3)
|∇ZZ| < 2(|Y | + δ).
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(4)

|〈Y,Z〉| ≤ |Y ||fz|(1 + 3δ).

Proof. Under the hypothesis that |fz|h′ ≤ 1/10, it is easy to see that
the Euclidean angle between (0, fzz) and (1, fz) is at most π/2−π/5. From
this, the first statement follows immediately provided that δ is sufficiently
small. Since Y is the sum of ∇SS and a multiple of Z and since ∇SS is
h(t)-orthogonal to Z, it follows that |Y | = |∇SS| (cos(θ))−1, where θ is the
angle between ∇SS and Y . Since Y is a multiple of (0, fzz), it follows from
the first part of the claim that the h(t)-angle between Y and ∇SS is less
than π/4. Item (1) of the claim then follows from the fact that by definition
|∇SS| = k.

Since
∇ZZ

|Z|2 = Y + ψ(Z)Z,

and |Z|2 ≤ (1.01)(1 + δ), the third item is immediate. For item (4), since Y
is h′-orthogonal to the z-axis, we have

|〈Y,Z〉h′ | = |〈Y, (0, fz)〉h′ | ≤ |Y |h′ |fz|h′ .
From this and the comparison of h(t) and h′, item (4) is immediate. Lastly,
let us consider item (2). We have

〈Y,Z〉 =
〈∇ZZ,Z〉

|Z|2 − 〈Γ(Z,Z), ∂z〉h′ .

Thus, from item (4) we have

〈∇ZZ,Z〉
|Z|2 ≤ |Y ||fz|(1 + 3δ) + (1.5)δ.

Since Y <
√

2k and |fz| < 1/10, item (2) follows. �

Claim 19.66. The following hold provided that δ > 0 is sufficiently small:

(1) |Z(ψ(Z))| < C ′(1 + δ|Y |), and
(2) |Y (ψ(Z))| < C ′(|Y | + δ|∇ZY |).

(Recall that C ′ is a constant depending only on the curvature bound of the
ambient Ricci flow.)

Proof. For the first item, we write Z(ψ(Z)) as a sum of terms where
the differentiation by Z acts on the various. When the Z-derivative acts on
Γ the resulting term has norm bounded by a constant depending only on
the curvature of the ambient Ricci flow. When the Z-derivative acts on one
of the Z-terms in Γ(Z,Z) the norm of the result is bounded by 2δ|∇ZZ||Z|.
Action on each of the other Z-terms gives a term bounded in norm by the
same expression. Lastly, when the Z-derivative acts on the constant metric
h′ the norm of the result is bounded by 2δ2. Since |∇ZZ| ≤ 2(|Y | + δ), the
first item follows.
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We compute Y (ψ(Z)) in a similar fashion. When the Y -derivative acts
on the Γ, the norm of the result is bounded by C ′|Y |. When the Y -derivative
acts on one of the Z-terms the norm of the result is bounded by 2δ|∇Y Z|.
Lastly, when the Y -derivative acts on the constant metric h′, the norm of
the result is bounded by δ2|Y |. Putting all these terms together establishes
the second inequality above. �

Now we wish to compute
∫
I′×{t} |Z|2dz. To do this we first note that

using the definition of Y , and arguing as in the proof of the first equation
in of Lemma 19.6 we have

∂

∂t
|Z|2 = −2Ric(Z,Z) + 2〈∇Y Z,Z〉

= −2Ric(Z,Z) + 2〈∇ZY,Z〉.
Direct computation shows that

2〈∇Z

(∇ZZ

|Z|2
)
, Z〉 = Z

(
Z(|Z|2)
|Z|2

)
− 2

|∇ZZ|2
|Z|4 |Z|2.

Thus from the Claim 19.64, we have

∂

∂t
|Z|2 = 2〈∇ZY,Z〉 − 2Ric(Z,Z)

(19.11)

= Z

(
Z(|Z|2)
|Z|2

)
− 2

|∇ZZ|2
|Z|4 |Z|2 − 2〈∇Z(ψ(Z)Z), Z〉 − 2Ric(Z,Z)

= Z

(
Z(|Z|2)
|Z|2

)
− 2|Y |2|Z|2 + V,

where

V = −4|Z|2〈Y,ψ(Z)Z〉 − 2ψ2(Z)|Z|4 − 2〈∇Z(ψ(Z)Z), Z〉 − 2Ric(Z,Z).

By item (1) in Claim 19.66 and item (4) in Claim 19.65 we have

(19.12) |V | < C ′(1 + δ|Y |).
Using this and the fact that |Y | ≤

√
2k we compute:

d

dt

∫

I′×{t}
|Z|2dz ≤

∫

I′×{t}
Z

(
Z(|Z|2)
|Z|2

)
dz +

∫

I′×{t}

(
C ′(1 + δk)

)
dz

=
Z(|Z|2)
|Z|2

∣∣∣
a

0
+

∫

I′×{t}

(
C ′(1 + δk)

)
dz

= 2
〈∇ZZ,Z〉

|Z|2
∣∣∣
a

0
+

∫

I′×{t}

(
C ′(1 + δk)

)
dz,

where we denote the endpoints of I ′ by {0} and {a}. By item (2) in

Claim 19.65, the first term is at most 2(k + 2δ)
√

(1.01)(1 + δ), which is
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at most 8√
t−t′ and the second term is at most C ′(1 + δk)r. Now integrating

from t′ to t we see that for any t ∈ [t′, t3] we have
∫

I′×{t}
|Z|2dz ≤

∫

I′×{t′}
|Z|2dz + 16

√
δr + C ′δr3 + C ′δ3/2r2.

Since |fz(z, t′)|h′ ≤ 2δ and

(1 − δ)(1 + |fz|2h′) ≤ |Z|2 ≤ (1 + δ)(1 + |fz|2h′),
we see that

∫
I′×{t′} |Z|2dz ≤ (1+3δ)ℓh′(I

′). It follows that for any t ∈ [t′, t3]
we have ∫

I′×{t}
|Z|2dz ≤ (1 + 3δ)lh′(I

′) + C ′(
√
δr + δr3 + δ3/2r2).

Since |Z|2 is between (1 − δ)(1 + |fz|2h′) and (1 + δ)(1 + |fz|2h′), we see that
there is a constant C ′′

1 depending only on the ambient curvature bound such
that for any t ∈ [t′, t3], denoting by ℓh′(I

′) the length of I ′ with respect to
h′, we have∫

I′×{t}
|fz|2h′dz ≤ 4δℓh′(I

′) + C ′′
1 (
√
δr + δr3 + δ3/2r2).

Since (0.8)r ≤ ℓh′(I
′) ≤ r < 1, we see that provided that δ is sufficiently

small, for each t ∈ [t′, t3] there is z(t) ∈ I ′ such |fz(z(t), t)|2h′ ≤ 2C ′′
1

√
δ. If we

have chosen δ sufficiently small, this means that for each t ∈ [t′, t3] there is
z(t) such that |fz(z(t), t)|h′ ≤ 1/20. Since by Corollary 19.63

∫
I′×{t} kds <

2D4

√
δ, provided that δ is sufficiently small, it follows that for all t ∈ [t′, t3]

the curve γt|I′ is a graph of (z, t) and |fz|h′ < 1/10. But by construction
either t3 = t2 or there is a point in (z, t3) ∈ I ′×{t3} with |fz(z, t3)|h′ = 1/10.
Hence, it must be the case that t3 = t2, and thus our graph curve flow is
defined for all t ∈ [t′, t2] and satisfies the derivative bound |fz|h′ < 1/10
throughout the interval [t′, t2].

8.4. Proof that t2 = t′ + δr2. The last step is to show that the in-
equality k2 < 2/(t − t′) holds for all t ∈ [t′, t′ + δr2].

We fix a point x0. We continue all the notation, assumptions and results
of the previous section. That is to say, we lift the evolving family of curves
to the tangent space Tx0M using the exponential mapping, which is a local
diffeomorphism. This tangent space is split as the product of the z-axis and
B. On this coordinate system we have the evolving family of Riemannian
metrics h(t) pulled back from the Ricci flow and also we have the Euclidean
metric h′ from the metric h(t′) on Tx0M . We fix an interval I ′ on the z-axis
of h′-length between (0.8)r and r. We choose I ′ to be centered at x0 with
respect to the z-coordinate. On I ′ × [t′, t2] we have the graph-flow which is
reparameterization of the pullback of the curve-shrinking flow. The graph-
flow is given as the graph of a function f with |fz|h′ < 1/10. The vector
fields Z and Y are as in the last section.
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We follow closely the discussion in Section 4 of [2] (pages 293 -294).
Since we are not working in a flat background, there are two differences: (i)
we take covariant derivatives instead of ordinary derivatives and (ii) there
are various correction terms from curvature, from covariant derivatives, and
from the fact that Y is not equal to ∇ZZ/|Z|2.

Notice that

Z

(
Z(|Z|2)
|Z|2

)
=

|Z|2zz
|Z|2 −

(
|Z|2z

)2

|Z|4

=
|Z|2zz
|Z|2 − 4〈Y,Z〉2 − 8〈Y,Z〉ψ(Z)|Z|2 − 4ψ2(Z)|Z|4.

Thus, it follows from Equation (19.11) that we have

∂

∂t
|Z|2 =

(|Z|2)zz
|Z|2 − 2|Z|2|Y |2 − 4〈Z, Y 〉2 + V,

where |V | ≤ C ′(1+ δ|Y |) for a constant C ′ depending only on the curvature
bound of the ambient flow.

Similar computations show that

∂

∂t
|Y |2 =

(|Y |2)zz
|Z|2 − 2|∇ZY |2

|Z|2 − 4

|Z|2 〈
∇ZZ

|Z|2 , Y 〉〈∇ZY,Z〉

− 2Ric(Y, Y ) + 2
Rm(Y,Z, Y, Z)

|Z|2 − 2〈∇Y (ψ(Z)Z), Y 〉.

Of course,

〈∇ZZ

|Z|2 , Y 〉 = |Y |2 + ψ(Z)〈Z, Y 〉.

Hence, putting all this together and using Claim 19.66 we have

∂

∂t
|Y |2 =

(|Y |2)zz
|Z|2 − 2|∇ZY |2

|Z|2 − 4|Y |2
|Z|2 〈∇ZY,Z〉 +W,

where

|W | ≤ C ′|Y |(|Y | + δ|∇ZY |).

Now let us consider

Q =
|Y |2

2 − |Z|2 .

Notice that since |fz|h′ < 1/10, it follows that 1 − δ ≤ |Z|2 < (1.01)(1 + δ)
on all of [t′, t2]. We now follow the computations on p. 294 of [2], adding in
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the error terms.

Qt =
|Y |2t

(2 − |Z|2) +
|Y |2|Z|2t

(2 − |Z|2)2 =
|Y |2zz

|Z|2(2 − |Z|2) − 2|∇ZY |2
|Z|2(2 − |Z|2)

− 4|Y |2
|Z|2(2 − |Z|2)〈∇ZY,Z〉 +

W

(2 − |Z|2) +
|Y |2|Z|2zz

|Z|2(2 − |Z|2)2

− 2|Z|2||Y |4
(2 − |Z|2)2 − 4|Y |2

(2 − |Z|2)2 〈Z, Y 〉2 +
|Y |2

(2 − |Z|2)2V.

On the other hand,

Qzz
|Z|2 =

|Y |2zz
|Z|2(2 − |Z|2) +

|Y |2|Z|2zz
|Z|2(2 − |Z|2)2 +

2|Y |2z|Z|2z
|Z|2|(2 − |Z|2)2 +

2|Y |2
(
|Z|2z

)2

|Z|2(2 − |Z|2)3 .

From Claim 19.65 we have

|Z|2z = 2〈∇ZZ,Z〉 = 2|Z|2〈Y,Z〉 + 2ψ(Z)|Z|4.
Plugging in this expansion gives

Qzz
|Z|2 =

|Y |2zz
|Z|2(2 − |Z|2) +

|Y |2|Z|2zz
|Z|2(2 − |Z|2)2

+
8〈∇ZY, Y 〉〈Y,Z〉

(2 − |Z|2)2 +
8ψ(z)|Z|2〈∇ZY, Y 〉

(2 − |Z|2)2

+
8|Z|2|Y |2〈Y,Z〉2

(2 − |Z|2)3 +
16ψ(Z)|Z|4|Y |2〈Y,Z〉

(2 − |Z|2)3 +
8ψ2(Z)|Z|6|Y |2

(2 − |Z|2)3 .

Expanding, we have

Qzz
|Z|2 =

|Y |2zz
|Z|2(2 − |Z|2) +

|Y |2|Z|2zz
|Z|2(2 − |Z|2)2 +

8〈∇ZY, Y 〉〈Y,Z〉
(2 − |Z|2)2

+
8|Y |2|Z|2〈Y,Z〉2

(2 − |Z|2)3 + U,

where

|U | ≤ C ′(|Y |2 + δ|∇ZY ||Y | + δ|Y |3).
Comparing the formulas yields

Qt =
Qzz
|Z|2 − 8〈∇ZY, Y 〉〈Y,Z〉

(2 − |Z|2)2 − 8|Y |2|Z|2〈Y,Z〉2
(2 − |Z|2)3

− 2|∇ZY |2
|Z|2(2 − |Z|2) − 4|Y |2

|Z|2(2 − |Z|2)〈∇ZY,Z〉

− 2|Z|2||Y |4
(2 − |Z|2)2 − 4|Y |2

(2 − |Z|2)2 〈Z, Y 〉2 +A,

where

|A| ≤ C ′(|Y |2 + δ|∇ZY ||Y | + δ|Y |3).
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Using item (4) of Claim 19.65 this leads to

Qt ≤
Qzz
|Z|2 +

8(1 + 3δ)|Y |2|fz||∇ZY |
(2 − |Z|2)2 − 4|Y |2〈∇ZY, Y 〉

|Z|2(2 − |Z|2)

− 2|∇ZY |2
|Z|2(2 − |Z|2) − 2|Z|2||Y |4

(2 − |Z|2)2 + |A|.

Next, we have

Claim 19.67.

|〈∇ZY,Z〉| ≤ (|fz|(|∇ZY | + 2δ|Y |) + δ|Z|2|Y |)(1 + δ).

Proof. Since Y = (0, φ) for some function φ, we have ∇ZY = (0, φz)+
Γ(Z, Y ) and hence

|〈∇ZY,Z〉h′ | = |〈∇ZY, (1, fz)〉h′ |
≤ |〈fz, φz〉h′ | + |〈Γ(Z, Y ), Z〉h′ |
≤ |fz|h′ |φz |h′ + δ|Z|2|Y |.

On the other hand ∇ZY = (0, φz)+Γ(Z, Y ) so that |φz|h′ ≤ |∇ZY |+δ|Z||Y |.
From this the claim follows. �

Now for δ > 0 sufficiently small, using the fact that 1 − δ < |Z|2 <
(1 + δ)(1.01) we can rewrite this as

Qt ≤
Qzz
|Z|2 +

8(1 + 3δ)|Y |2|fz||∇ZY |
(2 − |Z|2)2 +

4|Y |2|(1 + δ)|∇ZY ||fz|
|Z|2(2 − |Z|2)

− 2|∇ZY |2
|Z|2(2 − |Z|2) − (1.95)|Y |4

(2 − |Z|2)2 + Ã,

where Ã ≤ C ′(|Y |2 + δ|Y ||∇ZY | + δ|Y |3). Of course, |Y ||∇ZY | + |Y |3 ≤
2|Y |2 + |∇ZY |2 + |Y |4. Using this, provided that δ is sufficiently small, we
can rewrite this as

Qt ≤
Qzz
|Z|2 +

1

(2 − |Z|2) ·
[8(1 + 3δ)|∇ZY ||fz||Y |2 − (0.9)|Y |4

(2 − |Z|2)

+
4|Y |2|(1 + δ)|∇ZY ||fz| − (1.9)|∇ZY |2

|Z|2
]
−Q2 + Ã′′

where Ã′′ ≤ C ′(|Y |2). We denote the quantity within the brackets by B and
we estimate

B ≤ 8(1 + 3δ)
|Y |2|∇ZY |(1/10)(1 + δ)

(2 − (1.01)(1 + δ))
+

4(1/10)(1 + δ)|Y |2|∇ZY |
(1 − δ)

− (1.9)

(1.01)(1 + δ)
|∇ZY |2 − (0.9)|Y |4

2 − (1.01)(1 + δ)

≤ (1.6)|Y |2|∇ZY | − (0.8)|∇ZY |2 − (0.8)|Y |4

≤ 0.
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Therefore,

Qt ≤
Qzz
|Z|2 −Q2 + |Ã| ≤ Qzz

|Z|2 − (Q− C ′
1)

2 + (C ′
1)

2,

for some constant C ′
1 > 1 depending only on the curvature bound for the

ambient Ricci flow.
Denote by l the length of I ′ under h′. As we have already seen, (0.8)r ≤

l ≤ r. We translate the z-coordinate so that z = 0 is one endpoint of I ′

and z = l is the other endpoint; the point x0 then corresponds to z = l/2.
Consider the function g = l2/(z2(l− z)2) on I ′ × [t′, t2]. Direct computation
shows that gzz ≤ 12g2. Now set

Q̃ = Q− C ′
1

and

h =
1

t− t′
+

4(1 − δ)−1l2

z2(l − z)2
+ C ′

1.

Then

−ht + (1 − δ)−1hzz + (C ′
1)

2 ≤ h2,

so that

(Q̃− h)t ≤
Q̃zz
|Z|2 − hzz

1 − δ
− Q̃2 + h2.

Since both h and hzz are positive, at any point where Q̃ − h ≥ 0 and

Q̃zz < 0, we have (Q̃− h)t < 0. At any point where Qzz ≥ 0, using the fact
that |Z|2 ≥ (1 − δ) we have

(Q̃− h)t ≤ (1 − δ)−1(Q̃− h)zz − Q̃2 + h2.

Thus, for any fixed t, at any local maximum for (Q̃−h)(·, t) at which (Q̃−h)
is ≥ 0 we have (Q̃−h)t ≤ 0. Since Q̃−h equals −∞ at the end points of I ′ for
all times, there is a continuous function f(t) = maxz∈I′(Q̃−h)(z, t), defined
for all t ∈ (t′, t2] approaching −∞ uniformly as t approaches t′ from above.
By the previous discussion, at any point where f(t) ≥ 0 we have f ′(t) ≤ 0
in the sense of forward difference quotients. It now follows that f(t) ≤ 0 for
all t ∈ (t′, t2]. This means that for all t ∈ (t′, t2] at the h′-midpoint x0 of I ′

(the point where z = l/2) we have

Q(x0, t) ≤
1

t− t′
+

16 · 4(1 − δ)−1

l2
+ C ′

1.

Since l ≥ (0.8)r and since t− t′ ≤ δr2, we see that provided δ is sufficiently
small (depending on the bound of the curvature of the ambient flow) we
have

Q(x0, t) <
3

2(t− t′)
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for all t ∈ [t′, t2]. Of course, since |Z|2 ≥ 1 − δ everywhere, this shows that

k2(x0, t) ≤ |Y (x0, t)|2 = (2 − |Z(x0, t)|2)Q(x0, t) <
2

(t− t′)

for all t ∈ [t′, t2]. Since x0 was an arbitrary point of c(·, t′), this shows that

k(x, t) <
√

2
t−t′ for all x ∈ c(·, t) and all t ∈ [t′, t2]. By the definition of t2

this implies that t2 = t′ + δr2 and completes the proof of Lemma 19.58.



APPENDIX

3-manifolds covered by canonical neighborhoods

Recall that an ǫ-neck structure on a Riemannian manifold (N, g) cen-
tered at a point x ∈ N is a diffeomorphism ψ : S2 × (−ǫ−1, ǫ−1) → N with
the property that x ∈ ψ(S2 ×{0}) and the property that R(x)ψ∗g is within

ǫ in the C [1/ǫ]-topology of the product metric h0 × ds2, where h0 is the
round metric on S2 of scalar curvature 1 and ds2 is the Euclidean metric
on the interval. Recall that the scale of the ǫ-neck is R(x)−1/2. We de-
fine s = sN : N → (−ǫ−1, ǫ−1) as the composition of ψ−1 followed by the
projection to the second factor.

1. Shortening curves

Lemma A.1. The following holds for all ǫ > 0 sufficiently small. Suppose
that (M,g) is a Riemannian manifold and that N ⊂M is an ǫ-neck centered
at x. Let S(x) be the central two-sphere of this neck and suppose that S(x)
separates M . Let y ∈ M . Orient s so that y lies in the closure of the
positive side of S(x). Let γ : [0, a] → M be a rectifiable curve from x to y.
If γ contains a point of s−1(−ǫ−1,−ǫ−1/2) then there is a rectifiable curve
from x to y contained in the closure of the positive side of S(x) whose length

is at most the length of γ minus 1
2ǫ

−1R(x)−1/2.

Proof. Since γ contains a point on the negative side of S(x) and it
ends on the positive side of S(x), there is a c ∈ (0, a) such that γ(c) ∈ S(x)
and γ|(c,a] is disjoint from S(x). Since γ|[0,c] has both endpoints in S(x) and

also contains a point of s−1(−ǫ−1,−ǫ−1/2), it follows that for ǫ sufficiently

small, the length of γ|[0,c] is at least 3ǫ−1R(x)−1/2/4. On the other hand,

there is a path µ in S(x) connecting x to γ(c) of length at most 2
√

2π(1+ǫ).
Thus, if ǫ is sufficiently small, the concatenation of µ followed by γ|[c,a] is
the required shorter path. �

2. The geometry of an ǫ-neck

Lemma A.2. For any 0 < α < 1/8 there is ǫ1 = ǫ1(α) > 0 such that the
following two conditions hold for all 0 < ǫ ≤ ǫ1.

(1) If (N, g) is an ǫ-neck centered at x of scale 1 (i.e., with R(x) = 1)
then the principal sectional curvatures at any point of N are within

497
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α/6 of {1/2, 0, 0}. In particular, for any y ∈ N we have

(1 − α) ≤ R(y) ≤ (1 + α).

(2) There is a unique two-plane of maximal sectional curvature at ev-
ery point of an ǫ-neck, and the angle between the distribution of
two-planes of maximal sectional curvature and the two-plane field
tangent to the family of two-spheres of the ǫ-neck structure is ev-
erywhere less than α.

Proof. The principal curvatures and their directions are continuous
functions of the metric g in the space of metrics with the C2-topology. The
statements follow immediately. �

Corollary A.3. The following holds for any ǫ > 0 sufficiently small.
Suppose that (N, g) is an ǫ-neck and that we have an embedding f : S2 → N
with the property that the restriction of g to the image of this embedding
is within ǫ in the C [1/ǫ]-topology to the round metric h0 of scalar curvature
1 on S2 and with the norm of the second fundamental form less than ǫ.
Then the two-sphere f(S2) is isotopic in N to any member of the family of
two-spheres coming from the ǫ-neck structure on N .

Proof. By the previous lemma, if ǫ is sufficiently small for every n ∈
N there is a unique two-plane, Pn, at each point on which the sectional
curvature is maximal. The sectional curvature on this two-plane is close to
1/2 and the other two eigenvalues of the curvature operator at n are close to
zero. Furthermore, Pn makes small g-angles with the tangent planes to the
S2-factors in the neck structure. Under the condition that the restriction
of the metric to f(S2) is close to the round metric h0 and the norm of the
second fundamental form is small, we see that for every p ∈ S2 the two-plane
df(TpS

2) makes a small g-angle with Pn and hence with the tangent planes
to the family of two-spheres coming from the neck structure. Since g is close
to the product metric, this means that the angle between df(TnS

2) and
the tangents to the family of two-spheres coming from the neck structure,
measured in the product metric, is also small. Hence, the composition of f
followed by the projection mapping N → S2 induced by the neck structure
determines a submersion of S2 onto itself. Since S2 is compact and simply
connected, any submersion of S2 onto itself is a diffeomorphism. This means
that f(S2) crosses each line {x} × (−ǫ−1, ǫ−1) transversely and in exactly
one point. Clearly then, it is isotopic in N to any two-sphere of the form
S2 × {s}. �

Lemma A.4. For any α > 0 there is ǫ2 = ǫ2(α) > 0 such that the
following hold for all 0 < ǫ ≤ ǫ2. Suppose that (N, g) is an ǫ-neck centered
at x and R(x) = 1. Suppose that γ is a minimal geodesic in N from p to q.
We suppose that γ is parameterized by arc length, is of length ℓ > ǫ−1/100,
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and that s(p) < s(q). Then for all s in the domain of definition of γ we
have

|γ′(s) − (∂/∂s)|g < α.

In particular, the angle between γ′ and ∂/∂s is less than 2α. Also, any
member S2 of the family of two-spheres in the N has intrinsic diameter at
most (1 + α)

√
2π.

Proof. Let us consider a geodesic µ in the product Riemannian mani-
fold S2×R with the metric on S2 being of constant Gaussian curvature 1/2,

i.e., radius
√

2. Its projections, µ1 and µ2, to S2 and to R, respectively, are
also geodesics, and |µ| =

√
|µ1|2 + |µ2|2. For µ to be a minimal geodesic,

the same is true of each of its projections. In particular, when µ is minimal,
the length of µ1 is at most

√
2π. Hence, for any α′ > 0, if µ is sufficiently

long and if the final endpoint has a larger s-value than the initial point, then
the angle between the tangent vectors µ′(s) and ∂/∂s is less than α′. This
establishes the result for the standard metric on the model for ǫ-necks.

The first statement now follows for all ǫ sufficiently small and all
ǫ-necks because minimal geodesics between a pair of points in a manifold
vary continuously in the C1-topology as a function of the space of metrics
with the Ck-topology, since k ≥ 2. The second statement is obvious since
the diameter of any member of the family of two-spheres in the standard
metric is

√
2π. �

Corollary A.5. For any α > 0 there is ǫ3 = ǫ3(α) > 0 such that the
following hold for any 0 < ǫ ≤ ǫ3 and any ǫ-neck N of scale 1 centered at x.

(1) Suppose that p and q are points of N with either |s(q) − s(p)| ≥
ǫ−1/100 or d(p, q) ≥ ǫ−1/100. Then we have

(1 − α)|s(q) − s(p)| ≤ d(p, q) ≤ (1 + α)|s(q) − s(p)|.
(2)

B(x, (1 − α)ǫ−1) ⊂ N ⊂ B(x, (1 + α)ǫ−1).

(3) Any geodesic that exits from both ends of N has length at least
2(1 − α)ǫ−1.

Corollary A.6. The following holds for all ǫ > 0 sufficiently small.
Let N be an ǫ-neck centered at x. If γ is a shortest geodesic in N between
its endpoints and if |γ| > R(x)−1/2ǫ−1/100, then γ crosses each two-sphere
in the neck structure on N at most once.

There is a closely related lemma.

Lemma A.7. The following holds for every ǫ > 0 sufficiently small.
Suppose that (M,g) is a Riemannian manifold and that N ⊂ M is an
ǫ-neck centered at x and suppose that γ is a shortest geodesic in M be-
tween its endpoints and that the length of every component of N ∩ |γ| has
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length at least R(x)−1/2ǫ−1/8. Then γ crosses each two-sphere in the neck
structure on N at most once; see Fig. 1.

shortest geodesics

ǫ-neck

shortest geodesic

ǫ-cap

core

Figure 1. Shortest geodesics in necks and caps.

Proof. We parameterize γ as a map from [a, b] →M . By Corollary A.6,
provided that ǫ > 0 is sufficiently small, each component of γ ∩ N crosses
each two-sphere of the neck structure at most once. Suppose that there is
some two-sphere S2 ×{x} that is crossed by two different components of γ.
Let c < d be two points of intersection of γ with S2 × {s}.

There are two cases to consider. Suppose that the two components
of γ ∩ N cross S2 × {x} in opposite directions. In this case, since each
component of γ ∩N has length at least ǫ−1/8, then applying Corollary A.5
we can take the two-sphere that they both cross to be S2 × {s} for some
s ∈ (−(0.9)ǫ−1, (0.9)ǫ−1). Applying Corollary A.5 again we see that the

distance from this sphere to the complement of N is at least R(x)−1/2ǫ−1/20.
Let c < d be the points of intersection. Remove γ([c, d]) from γ and replace
it by a path in S2 × {s} between γ(c) and γ(d). If ǫ is sufficiently small, by
Lemma A.4 we can choose this path to have length at most 2π, and hence
the result will be a shorter path.

The other possibility is that γ crosses S2 × {s} twice in the same direc-
tion. In this case the central two-sphere of N does not separate M and γ
makes a circuit transverse to the two-sphere. In particular, by Corollary A.5
the length of γ([c, d]) is bounded below by 2(1 − α)R(x)−1/2ǫ−1 where we
can take α > 0 as close to zero as we want by making ǫ smaller. Clearly,
then in this case as well, replacing γ([c, d]) with a path of length less than

2πR(x)−1/2 on S2 × {s} will shorten the length of γ. �
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Corollary A.8. The following holds for all ǫ > 0 sufficiently small and
any C < ∞. Let X be an (C, ǫ)-cap in a complete Riemannian manifold
(M,g), and let Y be its core and let S be the central two-sphere of the ǫ-neck
N = X − Y . We orient the s-direction in N so that Y lies off the negative

end of N . Let Ŷ be the union of Y and the closed negative half of N and

let S be the boundary of Ŷ . Suppose that γ is a minimal geodesic in (M,g)

that contains a point of the core Y . Then the intersection of γ with Ŷ is an
interval containing an endpoint of γ; see Fig. 1.

Proof. If γ is completely contained in Ŷ then the result is clear. Sup-
pose that the path is γ : [a, b] → M and γ(d) ∈ Y for some d ∈ [a, b].
Suppose that there are a′ < d < b′ with γ(a′) and γ(b′) contained in S.
Then, by Corollary A.5, replacing γ|[a′,b′] with a path on S joining γ(a′) to
γ(b′) creates a shorter path with the same endpoints. This shows that at

least one of the paths γ|[a,d] or γ|[d,b], let us say γ|[a,d], is contained in Ŷ . The

other path γ|[d,b] has an endpoint in Y and exits from Ŷ , hence by Corol-
lary A.6 there is a subinterval [d, b′] such that either γ(b′) is contained in the
frontier of X or b = b′ and furthermore γ([d, b′]) crosses each two-sphere of

the ǫ-neck structure on N at most once. Since γ is not contained in Ŷ , there
is b′′ ∈ [d, b′] such that γ(b′′) ∈ S. We have constructed a subinterval of the

form [a, b′′] such that γ([a, b′′]) is contained in Ŷ . If b′ = b, then it follows
from the fact that γ|[d,b] crosses each two-sphere of N at most once that
γ|[b′′,b] is disjoint from Y . This establishes the result in this case. Suppose

that b′ < b. If there is c ∈ [b′, b] with γ(c) ∈ Ŷ then the length of γ([b′′, c])
is at least twice the distance from S to the frontier of the positive end of N .
Thus, we could create a shorter path with the same endpoints by joining
γ(b′′) to γ(c) by a path of S. This means that γ|[b′,b] is disjoint from S and

hence from Ŷ , proving the result in this case as well. �

We also wish to compare distances from points outside the neck with
distances in the neck.

Lemma A.9. Given 0 < α < 1 there is ǫ4 = ǫ4(α) > 0 such that the
following holds for any 0 < ǫ ≤ ǫ4. Suppose that N is an ǫ-neck centered at
x in a connected manifold M (here we are not assuming that R(x) = 1). We
suppose that the central 2-sphere of N separates M . Let z be a point outside
of the middle two-thirds of N and lying on the negative side of the central
2-sphere of N . (We allow both the case when z ∈ N and when z 6∈ N .)
Let p be a point in the middle half of N . Let µ : [0, a] → N be a straight
line segment (with respect to the standard product metric) in the positive
s-direction in N beginning at p and ending at a point q of N . Then

(1 − α)(s(q) − s(p)) ≤ d(z, q) − d(z, p) ≤ (1 + α)(s(q) − s(p)).
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Proof. This statement is clearly true for the product metric on an
infinite cylinder, and hence by continuity, for any given α, the result holds
for all ǫ > 0 sufficiently small. �

N.B. It is important that the central two-sphere of N separates the ambient
manifold M . Otherwise, there may be shorter geodesics from z to q entering
the other end of N .

Lemma A.10. Given any α > 0 there is ǫ(α) > 0 such that the following
holds for any 0 < ǫ ≤ ǫ(α). Suppose that N is an ǫ-neck centered at x in a
connected manifold M (here we are not assuming that R(x) = 1) and that z
is a point outside the middle two-thirds of N . We suppose that the central
two-sphere of N separates M . Let p be a point in the middle sixth of N
at distance d from z. Then the intersection of the boundary of the metric
ball B(z, d) with N is a topological 2-sphere contained in the middle quarter
of N that maps homeomorphically onto S2 under the projection mapping
N → S2 determined by the ǫ-neck structure. Furthermore, if p′ ∈ ∂B(z, d)
then |s(p) − s(p′)| < αR(x)−1/2ǫ−1; see Fig. 2.

∂B(z, d)

ǫ-neck

z

Figure 2. Intersection of metric balls and necks.

Proof. The statement is scale-invariant, so we can assume that R(x) =
1. Denote by S(z, d) the boundary of the metric ball B(z, d). We orient
s so that z lies to the negative side of the central two-sphere of N . It
follows immediately from the previous result that, provided that ǫ > 0
is sufficiently small, S(z, d) intersects any line y × (−ǫ−1/3, ǫ−1/3) in at
most one point. To complete the proof we need only show that S(z, d) is
contained in s−1((s(p) − αǫ−1, s(p) + αǫ−1)). The distance from d to any
point in the two-sphere factor of N containing p is contained in the interval
[d − 2π, d + 2π]. Provided that ǫ is sufficiently small depending on α, the
result follows immediately from Lemma A.9. �

3. Overlapping ǫ-necks

The subject of this section is the internal geometric properties of ǫ-necks
and of intersections of ǫ-necks. We assume that ǫ ≤ 1/200.
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Proposition A.11. Given 0 < α ≤ 10−2, there is ǫ5 = ǫ5(α) > 0 such
that the following hold for all 0 < ǫ ≤ ǫ5. Let N and N ′ be ǫ-necks centered
at x and x′, respectively, in a Riemannian manifold X:

(1) If N ∩ N ′ 6= ∅ then 1 − α < R(x)/R(x′) < 1 + α. In particular,
denoting the scales of N and N ′ by h and h′ we have

1 − α <
h

h′
< 1 + α.

(2) Suppose y ∈ N ∩N ′ and S and S′ are the two-spheres in the ǫ-neck
structures on N and N ′, respectively, passing through y. Then the
angle between TSy and TS′

y is less than α.
(3) Suppose that y ∈ N∩N ′. Denote by ∂/∂sN and ∂/∂sN ′ the tangent

vectors in the ǫ-neck structures of N and N ′, respectively. Then at
the point y, either

|R(x)1/2(∂/∂sN ) −R(x′)1/2∂/∂sN ′ | < α

or

|R(x)1/2(∂/∂sN ) +R(x′)1/2∂/∂sN ′ | < α.

(4) Suppose that one of the two-spheres S′ of the ǫ-neck structure on N ′

is completely contained in N . Then S′ is a section of the projection
mapping on the first factor

p1 : S2 × (−ǫ−1, ǫ−1) → S2.

In particular, S′ is isotopic in N to any one of the two-spheres of
the ǫ-neck structure on N by an isotopy that moves all points in
the interval directions.

(5) If N ∩ N ′ contains a point y with (−0.9)ǫ−1 ≤ sN (y) ≤ (0.9)ǫ−1,
then there is a point y′ ∈ N ∩N ′ such that

−(0.96)ǫ−1 ≤ sN (y′) ≤ (0.96)ǫ−1,

−(0.96)ǫ−1 ≤ sN ′(y′) ≤ (0.96)ǫ−1.

The two-sphere S(y′) in the neck structure on N through y′ is con-
tained in N ′ and the two-sphere S′(y′) in the neck structure on N ′

through y′ is contained in N . Furthermore, S(y′) and S′(y′) are
isotopic in N ∩N ′. Lastly, N ∩N ′ is diffeomorphic to S2 × (0, 1)
under a diffeomorphism mapping S(y) to S2 × {1/2}, see Fig. 3.

Proof. Fix 0 < ǫ5(α) ≤ min(ǫ1(α1), ǫ2(α/3), ǫ3(α), α/3) sufficiently
small so that Corollary A.3 holds. The first two items are then immedi-
ate from Lemma A.2. The third statement is immediate from Lemma A.4,
and the fourth statement from Corollary A.3. Let us consider the last
statement. Let y ∈ N ∩ N ′ have −(0.9)ǫ−1 ≤ sN (y) ≤ (0.9)ǫ−1. By
reversing the s-directions of N and/or N ′ if necessary, we can assume
that 0 ≤ sN(y) ≤ (0.9)ǫ−1 and that ∂sN

and ∂sN′ almost agree at y. If
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Figure 3. Overlapping ǫ-necks.

−(0.96)ǫ−1 ≤ sN ′(y) ≤ (0.96)ǫ−1, we set y′ = y. Suppose that sN ′(y) >
(0.96)ǫ−1. We move along the straight line though y in the neck structure
on N in the negative direction to a point y′ with (0.96)ǫ−1 = sN ′(y′). Ac-
cording to item (3) of this result we have −(0.96)ǫ−1 ≤ sN (x′) ≤ (0.96)ǫ−1.
There is a similar construction when sN ′(y) < −(0.96)ǫ−1. In all cases this
allows us to find y′ such that both the following hold:

−(0.96)ǫ−1 ≤ sN (y′) ≤ (0.96)ǫ−1,

−(0.96)ǫ−1 ≤ sN ′(y′) ≤ (0.96)ǫ−1.

Let y′ be any point satisfying both these inequalities. According to
Lemma A.4 and part (1) of this result, the diameter of S(y′) is at most 2πh,
where h is the scale of N and N ′. Since ǫ−1 ≥ 200, it follows from Corol-
lary A.5 that S(y′) is contained in N ′. Symmetrically S′(y′) is contained in
N .

Now consider the intersection of any straight line in the neck structure
on N with N ′. According to part (3), this intersection is connected. Thus,
N ∩ N ′ is a union of open arcs in the sN -directions through the points of
S(y′). These arcs can be used to define a diffeomorphism from N ∩ N ′ to
S2 × (0, 1) sending S(y′) to S2 × {1/2}. Also, we have the straight line
isotopy from S′(y′) to S(y′) contained in N ∩N ′. �

4. Regions covered by ǫ-necks and (C, ǫ)-caps

Here we fix 0 < ǫ ≤ 1/200 sufficiently small so that all the results in the
previous two sections hold with α = 10−2.

4.1. Chains of ǫ-necks.

Definition A.12. Let (X, g) be a Riemannian manifold. By a finite
chain of ǫ-necks in (X, g), we mean a sequence Na, . . . ,Nb, of ǫ-necks in
(X, g) such that:

(1) for all i, a ≤ i < b, the intersection Ni ∩ Ni+1 contains the
positive-most quarter of Ni and the negative-most quarter of Ni+1



4. REGIONS COVERED BY ǫ-NECKS AND (C, ǫ)-CAPS 505

and is contained in the positive-most three-quarters of Ni and the
negative-most three-quarters of Ni+1, and

(2) for all i, a < i ≤ b, Ni is disjoint from the negative end of Na.

By an infinite chain of ǫ-necks in X we mean a collection {Ni}i∈I for some
interval I ⊂ Z, infinite in at least one direction, so that for each finite
subinterval J of I the subset of {Ni}i∈J is a chain of ǫ-necks.

Notice that in an ǫ-chain Ni ∩Nj = ∅ if |i− j| ≥ 5.

Lemma A.13. The union U of the Ni in a finite or infinite chain of
ǫ-necks is diffeomorphic to S2 × (0, 1). In particular, it is an ǫ-tube.

Proof. Let us first prove the result for finite chains. The proof that
U is diffeomorphic to S2 × (0, 1) is by induction on b − a + 1. If b = a,
then the result is clear. Suppose that we know the result for chains of
smaller cardinality. Then Na ∪ · · · ∪ Nb−1 is diffeomorphic to S2 × (0, 1).
Hence by part (5) of Proposition A.11, U is the union of two manifolds
each diffeomorphic to S2 × (0, 1) meeting in an open subset diffeomorphic
to S2 × (0, 1). Furthermore, by the same result in the intersection there is
a two-sphere isotopic to each of the two-sphere factors from the two pieces.
It now follows easily that the union is diffeomorphic to S2 × (0, 1). Now
consider an infinite chain. It is an increasing union of finite chains each
diffeomorphic to S2 × (0, 1) and with the two-spheres of one isotopic to
the two-spheres of any larger one. It is then immediate that the union is
diffeomorphic to S2 × (0, 1). �

Notice that the frontier of the union of the necks in a finite chain, U =
∪a≤i≤bNi, in M is equal to the frontier of the positive end of Nb union the
frontier of the negative end of Na. Thus, we have:

Corollary A.14. Let {Na, . . . ,Nb} be a chain of ǫ-necks. If a connected
set Y meets both U = ∪a≤i≤bNi and its complement, then Y either contains
points of the frontier of the negative end Na or of the positive end of Nb.

The next result shows there is no frontier at an infinite end.

Lemma A.15. Suppose that {N0, · · · } is an infinite chain of ǫ-necks in
M . Then the frontier of U = ∪∞

i=0Ni is the frontier of the negative end of
N0.

Proof. Suppose that x is a point of the frontier of U . Let xi ∈ U be a
sequence converging to x. If the xi were contained in a finite union of the
Nk, say N0∪· · ·∪Nℓ, then x would be in the closure of this union and hence
by the previous comment would be either in the frontier of the negative end
of N0 or in the frontier of the positive end of Nℓ. But the frontier of the
positive end of Nℓ is contained in Nℓ+1 and hence contains no points of the
frontier of U . Thus, in this case x is a point of the frontier of the negative
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end of N0. If {xi} is not contained in any finite union, then after passing to
a subsequence, we can suppose that xi ∈ Nk(i) where k(i) is an increasing
sequence tending to infinity. Clearly R(xi) converges to R(x) < ∞. Hence,
there is a uniform lower bound to the scales of the Nk(i). For all i sufficiently
large, xi 6∈ N0. Thus, for such i any path from xi to x must traverse either
N0 or Nk(j) for all j ≥ i + 5. The length of such a path is at least the
minimum of the width of N0 and the width of Nk(j) for some j sufficiently
large. But we have just seen that there is a positive lower bound to the
scales of the Nk(j) independent of j, and hence by Corollary A.5 there is
a positive lower bound, independent of j, to the widths of the Nk(j). This
shows that there is a positive lower bound, independent of i, to the distance
from xi to x .This is impossible since xi converges to x. �

In fact, there is a geometric version of Lemma A.13.

Lemma A.16. There is ǫ0 > 0 such that the following holds for all 0 <
ǫ ≤ ǫ0. Suppose that {Nj}j∈J is a chain of ǫ-necks in a Riemannian manifold
M . Let U = ∪j∈JNj. Then there exist an interval I and a smooth map
p : U → I such that every fiber of p is a two-sphere, and if y is in the middle
7/8’s of Nj then the fiber p−1(p(y)) makes a small angle at every point with
the family of two-spheres in the ǫ-neck Nj .

Proof. Since according to Lemma A.2 the two-spheres for Nj and Nj+1

almost line up, it is an easy matter to interpolate between the projection
maps to the interval to construct a fibration of U by two-spheres with the
given property. The interval I is simply the base space of this fibration. �

A finite or infinite chain {Nj}j∈J of ǫ-necks is balanced provided that for
every j ∈ J , not the largest element of J , we have

(A.1) (0.99)R(xj)
−1/2ǫ−1 ≤ d(xj , xj+1) ≤ (1.01)R(xj)

−1/2ǫ−1,

where, for each j, xj is the central point of Nj .
Notice that in a balanced chain Nj ∩Nj′ = ∅ if |j − j′| ≥ 3.

Lemma A.17. There exists ǫ0 > 0 such that for all 0 < ǫ ≤ ǫ0 the
following is true. Suppose that N and N ′ are ǫ-necks centered at x and x′,
respectively, in a Riemannian manifold M . Suppose that x′ is not contained
in N but is contained in the closure of N in M . Suppose also that the two-
spheres of the neck structure on N and N ′ separate M . Then, possibly after
reversing the ǫ-neck structures on N and/or N ′, the pair {N,N ′} forms a
balanced chain.

Proof. By Corollary A.5, Inequality (A.1) holds for d(x, x′). Once we
have this inequality, it follows immediately from the same corollary that,
possible after reversing, the s-directions {N,N ′} makes a balanced chain
of ǫ-necks. (It is not possible for the positive end of Nb to meet Na for
this would allow us to create a loop meeting the central two-sphere of Nb
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transversely in a single point, so that this two-sphere would not separate
M .) �

Lemma A.18. There exists ǫ0 > 0 such that for all 0 < ǫ ≤ ǫ0 the follow-
ing is true. Suppose that {Na, . . . ,Nb} is a balanced chain in a Riemannian
manifold M with U = ∪bi=aNi. Suppose that the two-spheres of the neck
structure of Na separate M . Suppose that x is a point of the frontier of U
contained in the closure of the plus end of Nb that is also the center of an
ǫ-neck N . Then possibly after reversing the direction of N , we have that
{Na, . . . ,Nb,N} is a balanced chain. Similarly, if x is in the closure of the
minus end of Na, then (again after possibly reversing the direction of N) we
have that {N,Na, . . . ,Nb} is a balanced ǫ-chain.

Proof. The two cases are symmetric; we consider only the first. Since
x is contained in the closure of Nb, clearly Nb ∩ N 6= ∅. Also, clearly,
provided that ǫ > 0 is sufficiently small, d(xb, x) satisfies Inequality (A.1) so
that Lemma A.17 the pair {Nb,N} forms an ǫ-chain, and hence a balanced
ǫ-chain. It is not possible for N to meet the negative end of Na since the
central two-sphere of Na separates M . Hence {Na, . . . ,Nb,N} is a balanced
chain of ǫ-necks. �

Proposition A.19. There exists ǫ0 > 0 such that for all 0 < ǫ ≤ ǫ0 the
following is true. Let X be a connected subset of a Riemannian manifold
M with the property that every point x ∈ X is the center of an ǫ-neck N(x)
in M . Suppose that the central two-spheres of these necks do not separate
M . Then there is a subset {xi} of X such that the necks N(xi) (possibly
after reversing their s-directions) form a balanced chain of ǫ-necks {N(xi)}
whose union U contains X. The union U is diffeomorphic to S2 × (0, 1). It
is an ǫ-tube.

Proof. According to Lemma A.18 for ǫ > 0 sufficiently small the fol-
lowing holds. Suppose that we have a balanced chain of ǫ-necks Na . . . ,Nb,
with Ni centered at xi ∈ X, whose union U does not contain X. Then one
of the following holds:

(1) It is possible to find an ǫ-neck Nb+1 centered at a point of the
intersection of X with the closure of the positive end of Nb so that
Na, . . . ,Nb+1 is a balanced ǫ-chain.

(2) It is possible to find an ǫ-neck Na−1 centered at a point of the
intersection of X with the closure of the negative end of Na so that
Na−1,Na, . . . ,Nb is a balanced ǫ-chain.

Now assume that there is no finite balanced chain of ǫ-necks N(xi) con-
taining X. Then we can repeatedly lengthen a balanced chain of ǫ-necks
centered at points of X by adding necks at one end or the other. Suppose
that we have a half-infinite balanced chain {N0,N1, . . . , }. By Lemma A.15
the frontier of this union is the frontier of the negative end of N0. Thus,
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if we can construct a balanced chain which is infinite in both directions,
then the union of the necks in this chain is a component of M and hence
contains the connected set X. If we can construct a balanced chain that
is infinite at one end but not the other that cannot be further extended,
then the connected set is disjoint from the frontier of the negative end of
the first neck in the chain and, as we have see above, the ‘infinite’ end of the
chain has no frontier. Thus, X is disjoint from the frontier of U in M and
hence is contained in U . Thus, in all cases we construct a balanced chain of
ǫ-necks containing X. By Lemma A.13 the union of the necks in this chain
is diffeomorphic to S2 × (0, 1) and hence is an ǫ-tube. �

Lemma A.20. The following holds for every ǫ > 0 sufficiently small. Let
(M,g) be a connected Riemannian manifold. Suppose that every point of M
is the center of an ǫ-neck. Then either M is diffeomorphic to S2× (0, 1) and
is an ǫ-tube, or M is diffeomorphic to an S2-fibration over S1.

Proof. If the two-spheres of the ǫ-necks do not separate M , then it
follows from the previous result that M is an ǫ-tube. If one of the two-

spheres does separate, then take the universal covering M̃ of M . Every

point of M̃ is the center of an ǫ-neck (lifting an ǫ-neck in M) and the two-

spheres of these necks separate M̃ . Thus the first case applies, showing that

M̃ is diffeomorphic to S2× (0, 1). Every point is the center of an ǫ-neck that
is disjoint from all its non-trivial translates under the fundamental group.
This means that the quotient is fibered by S2’s over S1, and the fibers of
this fibration are isotopic to the central two-spheres of the ǫ-necks. �

5. Subsets of the union of cores of (C, ǫ)-caps and ǫ-necks.

In this section we fix 0 < ǫ ≤ 1/200 so that all the results of this section
hold with α = 0.01.

Proposition A.21. For any C < ∞ the following holds. Suppose that
X is a connected subset of a Riemannian three-manifold (M,g). Suppose
that every point of X is either the center of an ǫ-neck or is contained in the
core of a (C, ǫ)-cap. Then one of the following holds (see Fig. 4):

(1) X is contained in a component of M that is the union of two
(C, ǫ)-caps and is diffeomorphic to one of S3, RP 3 or RP 3#RP 3.

(2) X is contained in a component of M that is a double C-capped
ǫ-tube. This component is diffeomorphic to S3, RP 3 or RP 3#RP 3.

(3) X is contained in a single (C, ǫ)-cap.
(4) X is contained in a C-capped ǫ-tube.
(5) X is contained in an ǫ-tube.
(6) X is contained in a component of M that is an ǫ-fibration, which

itself is a union of ǫ-necks.
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Figure 4. Components covered by ǫ-necks and ǫ-caps.

Proof. We divide the proof into two cases: Case I: There is a point of
X contained in the core of a (C, ǫ)-cap. Case II: Every point of X is the
center of an ǫ-neck.
Case I: We begin the study of this case with a claim.

Claim A.22. It is not possible to have an infinite chain of (C, ǫ)-caps
C0 ⊂ C1 ⊂ · · · in M with the property that for each i ≥ 1, the closure of the
core of Ci contains a point of the frontier of Ci−1

Proof. We argue by contradiction. Suppose there is such an infinite
chain. Fix a point x0 ∈ C0 and let Q0 = R(x0). For each i ≥ 1 let xi be
a point in the frontier of Ci−1 that is contained in the closure of the core
of Ci. For each i let Ni be the ǫ-neck in Ci that is the complement of the
closure of its core. We orient the sNi-direction so that the core of Ci lies
off the negative end of Ni. Let S′

i be the boundary of the core of Ci. It is
the central two-sphere of an ǫ-neck N ′

i in Ci. We orient the s-direction of
N ′
i so that the non-compact end of Ci lies off the positive end of N ′

i . We
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denote by hi−1 the scale of Ni−1 and by h′i the scale of N ′
i . By Lemma A.2

the ratio hi−1/h
′
i is between 0.99 and 1.01. Suppose that S′

i is disjoint from
Ci−1. Then one of the complementary components of S′

i in M contains Ci−i,
and of course, one of the complementary components of S′

i is the core of Ci.
These complementary components must be the same, for otherwise Ci−1

would be disjoint from the core of Ci and hence the intersection of Ci−1 and
Ci would be contained in Ni. This cannot happen since Ci−1 is contained
in Ci. Thus, if S′

i is disjoint from Ci−1, then the core of Ci contains Ci−1.
This means that the distance from x0 to the complement of Ci is greater
than the distance of x0 to the complement of Ci−1 by an amount equal to
the width of Ni. Since the scale of Ni is at least C−1/2R(x0)

−1/2 (see (5)
of Definition 9.72), it follows from Corollary A.5 that this width is at least

2(0.99)C−1/2R(x0)
−1/2ǫ−1.

Next suppose that S′
i is contained in Ci−1. Then one of the comple-

mentary components A of S′
i in M has closure contained in Ci−1. This

component cannot be the core of Ci since the closure of the core of Ci con-
tains a point of the frontier of Ci−1 in M . Thus, A contains Ni. Of course,
A 6= Ni since the frontier of A in M is S′

i whereas Ni has two components
to its frontier in M . This means that Ci does not contain A, which is a
contradiction since Ci contains Ci−1 and A ⊂ Ci−1.

Lastly, we suppose that S′
i is neither contained in Ci−1 nor in its com-

plement. Then S′
i must meet Ni−1. According to Proposition A.11 the

s-directions in Ni−1 and N ′
i either almost agree or are almost opposite. Let

x ∈ S′
i ∩ ∂Ni−1 so that sN ′

i
(x) = 0. Move from x along the sN ′

i
-direction

that moves into Ni−1 to a point x′ with |sNi(x
′)| = (0.05)ǫ−1. According

to Proposition A.11, (0.94)ǫ−1 < sNi−1(x
′) < (0.96)ǫ−1. Let S′(x′) be the

two-sphere in the neck structure for N ′
i through this point. According to

Proposition A.11, S′(x′) ⊂ Ni−1, and S′(x′) is isotopic in Ni−1 to its central
two-sphere. One of the complementary components of S′(x′) in Ci, let us call
it A′, is diffeomorphic to S2×(0, 1). Also, one of the complementary compo-
nents A of S′(x′) in M contains the core of Ci−1. As before, since Ci−1 ⊂ Ci,
the complementary component A cannot meet Ci in A′. This means that
the sNi−1- and sN ′

i
-directions almost line up along S′(x′). This means that

S′(x′) = s−1
N ′

i
(−(0.05)ǫ−1). Since the diameter of S′(x′) is less than 2πhi−1,

and since sNi−1(x
′) ≥ (0.94)ǫ−1, it follows that S′(x′) ⊂ S−1

Ni−1
((0.9ǫ−1, ǫ−1)).

Since the distance from S′
i to the central two-sphere is at least (0.99)ǫ−1h′i, It

follows from Corollary A.5 that the central two-sphere of Ni is disjoint from
Ci−1 and lies off the positive end of Ni−1. This implies that the distance
from x0 to the complement of Ci is greater than the distance from x0 to the
complement of Ci−1 by an amount bounded below by the distance from the
central two-sphere of Ni to its positive end. According to Corollary A.5 this
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distance is at least (0.99)ǫ−1hi, where hi is the scale of Ni. But we know

that hi ≥ C−1/2R(x0)
−1/2.

Thus, all cases either lead to a contradiction or to the conclusion that
the distance from x0 to the complement of Ci is at least a fixed positive
amount (independent of i) larger than the distance from x0 to the comple-
ment of Ci−1. Since the diameter of any (C, ǫ)-cap is uniformly bounded,
this contradicts the existence of an infinite chain C0 ⊂ C1 ⊂ · · · contrary to
the claim. This completes the proof of the claim. �

Now let us turn to the proof of the proposition. We suppose first that
there is a point x0 ∈ X that is contained in the core of a (C, ǫ)-cap. Apply-
ing the previous claim, we can find a (C, ǫ)-cap C0 containing x0 with the
property that no point of X contained in the frontier of C0 is contained in
the closure of the core of a (C, ǫ)-cap C1 that contains C0.

There are three possibilities to examine:

(i) X is disjoint from the frontier of C0.
(ii) X meets the frontier of C0 but every point of this intersection is

the center of an ǫ-neck.
(iii) There is a point of the intersection of X with the frontier of C0

that is contained in the core of (C, ǫ)-cap.

In the first case, since X is connected, it is contained in C0. In the
second case we let N1 be an ǫ-neck centered at a point of the intersection
of X with the frontier of C0, and we replace C0 by C0 ∪N1 and repeat the
argument at the frontier of C0 ∪ N1. We continue in this way creating C0

union a balanced chain of ǫ-necks C0 ∪N1 ∪N2 ∪ · · · ∪Nk. At each step it is
possible that either there is no point of the frontier containing a point of X,
in which case the union, which is a C-capped ǫ-tube, contains X. Another
possibility is that we can repeat the process forever creating a C-capped
infinite ǫ-tube. By Lemma A.15 this union is a component of M and hence
contains X.

We have shown that one of following holds:

(a) There is a (C, ǫ)-cap that contains X.
(b) There is a finite or infinite C-capped ǫ-tube that contains X.

(c) There is a (C, ǫ)-cap or a finite C-capped ǫ-tube C̃ containing a
point of X and there is a point of the intersection of X with the

frontier of C̃ that is contained in the core of a (C, ǫ)-cap.

In the first two cases we have established the proposition. Let us examine
the third case in more detail. Let N0 ⊂ C0 be the ǫ-neck that is the com-
plement of the closure of the core of C0. First notice that by Lemma A.20
the union N0 ∪N1 ∪ · · · ∪Nk is diffeomorphic to S2 × (0, 1), with the two-
spheres coming from the ǫ-neck structure of each Ni being isotopic to the

two-sphere factor in this product structure. It follows immediately that C̃
is diffeomorphic to C0. Let C ′ be a (C, ǫ)-cap whose core contains a point
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of the intersection of X with the frontier of C̃. We use the terminology ‘the

core of C̃’ to mean C̃ \ Nk. Notice that if k = 0, this is exactly the core
of C0. To complete the proof of the result we must show that the following
hold:

Claim A.23. If C ′ is a (C, ǫ)-cap whose core contains a point of the

frontier of C̃, then C̃ ∪ C ′ is a component of M containing X.

Proof. We suppose that C̃ is the union of C0 and a balanced chain
N0, . . . ,Nk of ǫ-necks. We orient this chain so that C0 lies off the negative
end of each of the Ni. Let S′ be the boundary of the core of C ′ and let N ′

be an ǫ-neck contained in C ′ whose central two-sphere is S′. We orient the
direction sN ′ so that the positive direction points away from the core of C ′.
The first step in proving this claim is to establish the following.

Claim A.24. Suppose that there is a two-sphere Σ ⊂ N ′ contained in

the closure of the positive half of N ′ and also contained in C̃. Suppose that

Σ is isotopic in N ′ to the central two-sphere S′ of N ′. Then C̃ ∪ C ′ is a
component of M , a component containing X.

Proof. Σ separates C̃ into two components: A, which has compact

closure in C̃, and B, containing the end of C̃. The two-sphere Σ also divides
C ′ into two components. Since Σ is isotopic in N ′ to S′, the complementary
component A′ of Σ in C ′ with compact closure contains the closure of the
core of C ′. Of course, the frontier of A in M and the frontier of A′ in M are
both equal to Σ. If A = A′, then the closure of the core of C ′ is contained in

the closure of A and hence is contained in C̃, contradicting our assumption

that C ′ contains a point of the frontier of C̃. Thus, A and A′ lie on opposite

sides of their common frontier. This means that A ∪ A′
is a component of

M . Clearly, this component is also equal to C̃ ∪ C ′. Since X is connected
and this component contains a point x0 of X, it contains X. This completes
the proof of Claim A.24. �

Now we return to the proof of Claim A.23. We consider three cases.

First Subcase: S′ ⊂ C̃. In this case we apply Claim A.24 to see that

C̃ ∪ C ′ is a component of M containing X.

Second Subcase: S′ is disjoint from C̃. Let A be the complementary

component of S′ in M containing C̃. The intersection of A with C ′ is either
the core of C ′ or is a submanifold of C ′ diffeomorphic to S2 × (0, 1). The

first case is not possible since it would imply that the core of C ′ contains C̃
and hence contains C0, contrary to the way we chose C0. Thus, the core of

C ′ and the complementary component A containing C̃ both have S′ as their
frontier and they lie on opposite sides of S′. Since the closure of the core

of C ′ contains a point of the frontier of C̃, it must be the case that S′ also
contains a point of this frontier. By Proposition A.11, the neck N ′ ⊂ C ′
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meets Nk and there is a two-sphere Σ ⊂ N ′ ∩ Nk isotopic in N ′ to S′ and

isotopic in Nk to the central two-sphere of Nk. Because Nk ⊂ C̃ and C̃
is disjoint from the core of C ′, we see that Σ is contained in the positive

half of N ′. Applying Claim A.24 we see that C̃ ∪ C ′ is a component of M
containing X.

Third Subcase: S′ ∩ C̃ 6= ∅ and S′ 6⊂ C̃. Clearly, in this case S′ contains

a point of the frontier of C̃ in M , i.e., a point of the frontier of the positive
end of Nk in M . Since Nk ∩N ′ 6= ∅, by Lemma A.2 the scales of Nk and N ′

are within 1±0.01 of each other, and hence the diameter of S′ is at most 2π
times the scale of Nk. Since the central two-sphere S′ of N ′ contains a point
in the frontier of the positive end of Nk, it follows from Lemma A.5 that S′

is contained on the positive side of the central two-sphere of Nk and that the
frontier of the positive end of Nk is contained in N ′. By Proposition A.11
there is a two-sphere Σ in the neck structure for N ′ that is contained in Nk

and is isotopic in Nk to the central two-sphere from that neck structure. Let

A be the complementary component of Σ in M that contains C̃ \Nk. If the

complementary component of Σ that contains C ′\N ′ is not A, then C̃∪C ′ is
a component of M containing X. Suppose that A is also the complementary
component of Σ in M that contains C ′ \N ′. Of course, A is contained in the

core of C ′. If k ≥ 1, we see that A and hence the core of C ′ contains C̃ \Nk,
which in turn contains the core of C0. This contradicts our choice of C0. If
k = 0, then C0 = A∪ (N0 ∩ (M \A)). Of course, A ⊂ C ′. Also, the frontier
of N0∩(M \A) in M is the union of A and the frontier of the positive end of
N0 in M . But we have already established that the frontier of the positive
end of N0 in M is contained in N ′. Since A ⊂ C ′, it follows that all of C0

is contained in C ′. On the other hand, there is a point of the frontier of C0

contained in the closure of the core of C ′. This then contradicts our choice
of C0.

This completes the analysis of all the cases and hence completes the
proof of Claim A.23. �

The last thing to do in this case in order to prove the proposition in

Case I is to show that C̃ ∪ C ′ is diffeomorphic to S3, RP 3, or RP 3#RP 3.

The reason for this is that C̃ is diffeomorphic to C0; hence C̃ either is
diffeomorphic to an open three-ball or to a punctured RP 3. Thus, the

frontier of C ′ in C̃ is a two-sphere that bounds either a compact three-ball or
the complement of an open three-ball in RP 3. Since C ′ itself is diffeomorphic
either to a three-ball or to a punctured RP 3, the result follows.
Case II: Suppose that every point of X is the center of an ǫ-neck. Then if
the two-spheres of these necks separate M , it follows from Proposition A.19
that X is contained in an ǫ-tube in M .

It remains to consider the case when the two-spheres of these necks do
not separate M . As in the case when the 2-spheres separate, we begin
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building a balanced chain of ǫ-necks with each neck in the chain centered
at a point of X. Either this construction terminates after a finite number
of steps in a finite ǫ-chain whose union contains X, or it can be continued
infinitely often creating an infinite ǫ-chain containing X or at some finite
stage (possibly after reversing the indexing and the s-directions of the necks)
we have a balanced ǫ-chain Na∪· · · ∪Nb−1 and a point of the intersection of
X with the frontier of the positive end of Nb−1 that is the center of an ǫ-neck
Nb with the property that Nb meets the negative end of Na. Intuitively, the
chain wraps around on itself like a snake eating its tail. If the intersection
of Na ∩ Nb contains a point x with sNa(x) ≥ −(0.9)ǫ−1, then according to
Proposition A.11 the intersection of Na ∩Nb is diffeomorphic to S2 × (0, 1)
and the two-sphere in this product structure is isotopic in Na to the central
two-sphere of Na and is isotopic in Nb to the central two-sphere of Nb. In this
case it is clear that Na∪ · · · ∪Nb is a component of M that is an ǫ-fibration.

We examine the possibility that the intersection Na ∩Nb contains some
points in the negative end of Na but is contained in s−1

Na
((−ǫ−1,−(0.9)ǫ−1)).

Set A = s−1
Na

((−ǫ−1,−(0.8)ǫ−1)). Notice that since X is connected and X
contains a point in the frontier of the positive end of Na (since we have added
at least one neck at this end), it follows that X contains points in s−1

Na
(s) for

all s ∈ [0, ǫ−1). If there are no points of X in A, then we replace Na by an
ǫ-neck N ′

a centered at a point of s−1
Na

(
(0.15)ǫ−1

)
∩X. Clearly, by Lemma A.5

N ′
a contains s−1

Na
(−(0.8)ǫ−1, ǫ−1) and is disjoint from s−1

Na
((−ǫ−1,−(0.9)ǫ−1),

so that N ′
a,Na+1, . . . ,Nb is a chain of ǫ-necks containing X. If there is a

point of X ∩ A, then we let Nb+1 be a neck centered at this point. Clearly,
Na ∪ · · · ∪Nb+1 is a component, M0, of M containing X. The preimage in
the universal covering of M0 is a chain of ǫ-necks infinite in both directions.
That is to say, the universal covering of M0 is an ǫ-tube. Furthermore, each
point in the universal cover of M0 is the center of an ǫ-neck that is disjoint
from all its non-trivial covering translates. Hence, the quotient M0 is an
ǫ-fibration.

We have now completed the proof of Proposition A.21. �

As an immediate corollary we have:

Proposition A.25. For all ǫ > 0 sufficiently small the following holds.
Suppose that (M,g) is a connected Riemannian manifold such that every
point is either contained in the core of a (C, ǫ)-cap in M or is the center of
an ǫ-neck in M . Then one of the following holds:

(1) M is diffeomorphic to S3, RP 3 or RP 3#RP 3, and M is either a
double C-capped ǫ-tube or is the union of two (C, ǫ)-caps.

(2) M is diffeomorphic to R
3 or RP 3 \ {point}, and M is either a

(C, ǫ-cap or a C-capped ǫ-tube.
(3) M is diffeomorphic to S2 × R and is an ǫ-tube.
(4) M is diffeomorphic to an S2-bundle over S1 and is an ǫ-fibration.
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[50] John Milnor. Towards the Poincaré conjecture and the classification of 3-manifolds.
Notices Amer. Math. Soc., 50(10):1226–1233, 2003.

[51] John Morgan and Gang Tian. Completion of Perelman’s proof of the Geometrization
Conjecture. In preparation.

[52] C. B. Morrey. The problem of Plateau on a Riemannian manifold. Ann. Math., 49:807–
851, 1948.

[53] Grisha Perelman. The entropy formula for the Ricci flow and its geometric applica-
tions. math.DG/0211159, 2002.

[54] Grisha Perelman. Finite extinction time for the solutions to the Ricci flow on certain
three-manifolds. math.DG/0307245, 2003.

[55] Grisha Perelman. Ricci flow with surgery on three-manifolds. math.DG/0303109,
2003.

[56] Stefan Peters. Convergence of Riemannian manifolds. Compositio Math., 62:3–16,
1987.

[57] Peter Petersen. Riemannian geometry, Second Edition, volume 171 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 2006.
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evolution under Ricci flow, 41
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exposed region, xxxii, 346
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partial, 90
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graph flow, 487, 487, 488
Gromov-Hausdorff convergence, see also
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Grushko’s theorem, 421

harmonic map flow, 306, 308
Hessian, 4
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homotopically essential
2-sphere, 421
family of 2-spheres, 421
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horizontal metric, 348
horizontal subbundle, 348
horizontal tangent space, 35
horn, 283

capped, 283, 283
double, 283, 283

initial metric, normalized, 353
initial metric, standard, 293
initial time, 343
injectivity domain, 117
injectivity radius, xvi
injectivity set, 116

Jacobi field, 12

Kneser’s theorem, 420
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Levi-Civita connection, 4
Lichnerowicz Laplacian, 304

maximum principle
heat equation, 63

strong, 69
scalar curvature, 63–65
scalar functions, 29
tensors, 65–67

non-collapsing parameter, 359

parabolic neighborhood, 36, 62, 351
parameter, canonical neighborhood, 352
parameterized by backward time, 106
path of components, 419, 419, 420, 423,

424, 426, 430, 431, 433
perturbed energy, 424
Poincaré Conjecture, ix
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polygonal approximation, 450
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reduced length function, xxv
monotonicity of, xxvi

reduced volume, xxvi, 140, 164, 169, 185
integrand, 142
monotonicity, 145

Ricci flow, x, 35
κ-non-collapsed, 351
equation, x, xix, 35
generalized, xxi, 60

compatible embedding, 61
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space-time, 59
time-slices, 60

Harnack inequality for, xxiii, 81, 181,
273

initial metric for, 35
normalized initial conditions, 67
soliton, 37, 81
space-time of, xxi, xxxii
standard metric, xxxi
standard solution, xvi
with surgery, xi, xxxi, 349

finite-time extinction, xii
long-time existence, xii
topological effect, xxxiv

Ricci-DeTurck flow, 306
Riemann curvature

tensor, 5

Riemann curvature operator, 179

Shi’s derivative estimates, xxi, 50–52
Shi’s Theorem, see also Shi’s derivative

estimates
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singular points, space-time, 346
soliton, see also Ricci flow
soul, 25
space-form, 9

3-dimensional, ix
conjecture, ix

space-time, 343
space-time, surgery, 346
splitting at infinity, 100
splitting result, 204
splitting theorem, xvii, 28
standard metric, see also Ricci flow
standard Ricci flow, 295

partial, 295
strong δ-neck, 287
surgery cap, 333

evolution of, 369, 370
surgery control parameter, 356, 359
surgery parameter sequence, 360
surgery, on a δ-neck, 331

Thurston’s Geometrization Conjecture,
xv, 358

time, 346
regular, 347
singular, 347

time-interval of definition, 343
time-slices, 343, 346
tip, of the standard initial metric, 331
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Toponogov theory, xvii, 23–24
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Uniformization Theorem, 8
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volume comparison, see also
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