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SUMMARY. Let G be a real semisimple Lie group. Harish-Chandra has 
defined the Schwartz space, V[G), on G. A tempered distribution on G is 
a continuous linear functional on R G ) .  

If the real rank of G equals one, Harish-Chandra has published a version 
of the Plancherel formula for I^(G) [3(k), 5241. We restrict the Fourier 
transform map to %(G), and we compute the image of the space V(G) 
[Theorem 31. This permits us to  develop the theory of harmonic analysis 
for tempered distributions on G [Theorem 51. 
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$1. Introduction. Let G be a real semisimple Lie group. The Fourier trans- 
form map, 9 ,  can be regarded as an isometry form L2(G) onto L~(G) .  L ~ ( G )  
is a Hilbert space defined with the help of the discrete series, 8, and the various 
continuous series, 6, of irreducible unitary representations of G. L ~ ( G )  consists 
of certain functions whose domain is l%j U & and whose range is the space of 
Hilbert-Schmidt operators on the Hilbert spaces on which the representations in 
Zd U % act. 

In [3(1)] Harish-Chandra introduces the Schwartz space, %(G), of functions 
on G. It is analogous to the space, 9 ( R ) ,  of rapidly decreasing functions on the 
real line. %(G) is a Frbchet space. It is dense in L2(G), and its injection into 
L2(G) is continuous. It is of interest to ask about the image of %(G) in L^(G) 
under 9. There is a candidate, %(G), for this image space. ^(G) is a Frbchet 
space defined by a natural family of seminorms on h2(G). 

A tempered distribution on G is a continuous linear functional on %(G). If we 
can prove that the Fourier transform gives a topological isomorphism from %(G) 
onto %(G), we could define the Fourier transform of a tempered distribution as 
a continuous linear functional on (̂G). This would include as a special case the 
theory of Fourier transforms on L2(G). 

We confine ourselves to the case in which the real rank of G equals one. In 
this case ~arish-Chandrahas published a version of the Plancherel formula for 
L2(G) [3(k), $241. Our main result is Theorem 3, which asserts the bijectivity 
between %(G) and %(G) of the Fourier transform, F. 

The most difficult part of this theorem is to prove surjectivity. We have to 
show that the inverse Fourier transform of an element in %(G), which is a priori 
in L2(G), is actually in %(G). We use some estimates which Harish-Chandra 
develops from the study of a differential equation on G [3(1), $271. In $9 we 
review his work and show that his estimates are actually uniform, in a sense 
which will become clear. In $10 we use these estimates to prove that F (%(G) )  
contains %(G), a subspace of %(G) associated with the discrete series. 

To prove that F(^{G}) contains %(G), the subspace of %(G) associated 
with the continuous series, requires more work. It is necessary to derive a formula 
(Lemma 41) for the norms of certain linear transformations, c+(A) and c ( A ) ,  
which arise in $12. This we do in $13 by studying a second-order symmetric 
differential operator on up, a one-dimensional subspace of the Lie algebra of G. 
As a biproduct of this formula we obtain in $14 a condition for irreducibility of 
certain representations in the continuous series. 

For convenience we work with generalized spherical functions. We develop 
the pertinent information in $5 and then use it in $6 to prove the injectivity of 
the Fourier transform. 

In $16 we define the Fourier transform of a tempered distribution on G. The- 
orem 6 proves that any continuous linear functional on %(G) is a certain sum 
of tempered distributions on the real line. 

It seems likely that some of our methods can be used for proving the analogue 
of Theorem 3 for arbitrary G. The injectivity of the Fourier transform should 
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carry over quite easily. Harish-Chandra's estimates are proved in [3(1), 5271 for 
arbitrary G. That these estimates are uniform can also be shown, although the 
proof of this is somewhat more complicated than in the real rank 1 case. Our 
proof of Lemma 27 does not carry over in general. However, it gives a good start 
toward a general proof. 

The general Plancherel formula will be complicated by the existence of more 
than one continuous series of representations. However, in each continuous series 
linear transformations c(A) can be defined. The formulae in Lemma 41 can 
probably be proved, although perhaps not by our methods. In general, Lemma 
44 would be proved by induction on the real rank of G. Harish-Chandra does 
this for ordinary spherical functions in [3(h), Theorem 31. 

2. Preliminaries. Let G be a connected real semisimple Lie group with Lie 
algebra a. Let 

g = t + p  

be a fixed Cartan decomposition with Cartan involution 6. Let a,, be a fixed 
maximal abelian subspace of p. The dimension of a,, is called the real rank of G. 
We shall assume that dimap = 1. 

Let ~f be a subspace of t  such that 

is a Cartan subalgebra of a. Let K be the analytic subgroup of G corresponding 
to t. We assume that G has finite center. This implies that K is compact. 

We can make further technical assumptions on G without losing generality. 
In order to do this we state some definitions of Harish-Chandra. 

If L is a connected reductive Lie group over the reals, R, with Lie algebra [, 
let 

j: [ ' C L  

be inclusion into the complexification of K. (R-om now on, if (5 is any real Lie 
algebra we write Ijc for its complexification.) Then if LC is a complex analytic 
group with Lie algebra 4, LC is called a complexification of L if j extends to 
a homomorphism of L into LC. Let K = Kl + c, where Ki is semisimple and c 
is abelian. Let Klc and cc be the respective complexifications of l1 and c. Let 
Ll, C(Llc, Cc) be the analytic subgroups of L(Lc) corresponding to (1, c(Klc, cc) 
respectively. We call LC quasi-simply connected (q.s.c.) if Llc n Cc = {I} and if 
Lie is simply connected. We say that L is q.s.c. if it has a q.s.c. complexification. 

Fix a complexification j: L Ã‘ LC and let (5 be a Cartan subalgebra of I. Let 
A and Ac be the Cartan subgroups of L and LC corresponding to (5 and Ijc (that 
is, the centralizers of (5 and Oc in G and Gc respectively). Clearlyej(A) C Ac. 
It is known that Ac is connected [3(j), corollary to Lemma 271. If A is a linear 
functional on he, there exists at most one complex analytic homomorphism 
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such that for every H in bc 

We also write &, for the homomorphism 

Â£ can be seen to be independent of the complexification LC used, provided that 
<A is defined on that complexification. 

Clearly exists for any root a of (&,bc). If Ph is the set of positive roots 
relative to some ordering, let 

It is easy to see that the question of the existence of Cp is independent of the 
ordering of the roots of (lc, be) and of the choice of Cartan subalgebra 0. If Cp 
exists we call LC acceptable. We say that L is acceptable if it has an acceptable 
complexification. 

If LC is q.s.c., it is known that it is acceptable [3(j), Lemma 291. If Ll D C is 
finite, it is clear that L has a finite, and hence acceptable, cover. 

Suppose L is a compact, connected acceptable Lie group with Lie algebra I. 
Let 0, Ph, A, and p be defined as above. For each a define an element Ha in fjc 

by 
B(Ha, H)  = a(H) 

for all H in be, where B is the Killing form of be restricted to be. Put 

Ã is in S(bc), the symmetric algebra on be. Let 11 be the lattice of linear 
func t ionals 

A: (-1)lI2f^ R 

for which <A exists. Let II' = {A ? 11: G(A) # O}. If W is the Weyl group of 
(lc/bc), W acts on (-l)'I2b. Then W acts on 11 as follows: 

for p in 11, s in W, and H in (-1)lI2?). For s in W, put e ( s )  = (-I)"^), where 
n ( s )  is the number of positive roots that are mapped by s into negative roots. 
For h a regular element of A, put 

LEMMA 1. There is  a map p + u(p) from II' onto the set of unitary equiv- 
alence classes of irreducible representations of L. u(pl) = u(p2) if and only i f  
pi = sp2 for some s i n  W. Furthermore, if h i s  a regular element of A, 



HARMONIC ANALYSIS OF TEMPERED DISTRIBUTIONS 17 

Also there exists a constant CL, independent of p, such that 

Finally, i f  p is in  II',  and B(p, a) > 0 for each a in  Ph, then p - p is the highest 
weight of the representation of the Lie algebra 1c corresponding to #(A). 

PROOF. Since L has a finite q.s.c. cover, we will assume without loss of 
generality that L is q.s.c. We can assume further that L is semisimple. Then L 
is simply connected, so 11 is precisely the lattice of weights of t )  [3(j), Lemma 
291. If p' is a dominant integral function (in the terminology of [5, p. 215]), 
and if p = p' + p, then B(p, a )  > 0 for any a in Ph so p is in II'. Conversely, 
if p is in II ' ,  there exists a unique s such that B(sp, a )  > 0 for each a in Pb. 
Then p' = p - p is a dominant integral function on I). This demonstrates the 
relation between p and the highest weight of o(p). The correspondence between 
representations and dominant integral functions is well known (see (5, Chapter 
VII]). 

The other two statements of the lemma follow from the Weyl character formula 
[5, p. 2551 and the Weyl dimension formula [5, p. 2571. 0 

Now let us return to our group G. By going to a finite cover we can assume 
that G is q.s.c. and hence acceptable. Thus, if j: g C flc and Gc is a simply 
connected analytic group with Lie algebra flc then j extends to a homomorphism 

Now K is reductive. Therefore, by going to a further finite cover of G, we may 
also assume that K is acceptable. 

If we understand the harmonic analysis of a finite cover, G, of G then we 
understand the theory for G. We merely throw out those unitary representations 
of G which are nontrivial on the kernel of the covering projection. Therefore, 
the above two assumptions can be made with no loss of generality. 

There are two possibilities for G. 
Case I. There exists a Cartan subalgebra b of g such that b is contained in t. 

We can assume that b has been chosen so that it contains q. Then it is known 
that {b, a} is a set of representatives of conjugacy classes of Cartan subalgebras 
of g. 

Case 11. Such a b does not exist. Then there is only one conjugacy class of 
Cartan subalgebras and it is represented by a. 

We shall try as far as possible to deal with these two cases together. Whenever 
we speak of b, we shall be implicitly referring to Case I. However, any mention 
of a, unless otherwise stated, will refer to either case. 

Let B be the Cartan subgroup of G corresponding to b. Since it is a maximal 
abelian subgroup in the compact connected Lie group K,  it is connected [4, 
Corollary 2.7, p. 2471, 

Let A be the Cartan subgroup of G corresponding to a. Then 
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where An = expap, and AJ is contained in K ,  In Case 11, AJ is a Cartan 
subgroup of K and is connected. Otherwise, AJ may not be connected. In any 
case, let m and M be the centralizers of an in 6 and K,  respectively. Then M is 
compact with a finite number of connected components. 

Fix compatible orders on the real dual spaces of $ and an + (-l)ll2tq. Let P 
be the set of positive roots of (gc, Q) relative to this order. Let P+ be the set of 
roots in P which do not, vanish on an and let PM equal P - P+. q is a Cartan 
subalgebra of the reductive Lie algebra m and we can regard PM as the set of 
positive roots of (m, q ) .  

Let MO and A: be the connected components of M and AJ. Let W and Wl 
be the Weyl groups of (g/a) and (m/q),  respectively. Now in any connected 
component of M,  it is possible to choose an element 71 such that 

But Ad71 leaves an pointwise fixed. Therefore, the action of '71 on tq can be 
regarded as coming from an element of the subgroup of W generated by those 
roots in P which vanish on an. That is, the action of Ad71 on tq is the same 
as for some element in Wl. Therefore, we can choose a new element 7, in the 
same component of M,  that leaves tq pointwise fixed. This means that 7 is in 
AT. Therefore, AJ has the same number of connected components as M. 

As usual, let 
1 1 

P = s E f f ,  P M = ~  E ff. 

ff?P fff3'~ 

Then since G is acceptable, it is known that MO is also acceptable and that for 
any a1 in A? 

[see 3 (j) , Lemma 301. 
Let Î M be the set of equivalence classes of irreducible unitary representations 

of M. Let C be the set of irreducible characters of the group AJ (the set of 
characters coming from irreducible representations of AJ). For g in C and a in 
AJ write (g, a) for the value of g at a. It is clear that Wl operates on C. 

Put uJ"1 = RffEPM Ha and let Ll be the lattice of real linear functionals, p, 
on (-l)1/2tq such that &, exists. Let Li = {p ? Â£1 Gm(p) # O}. Let Z(A) = 
{"I AJ : j(7) ? e ~ ~ ( - l ) ~ / ~ a ~ } .  Then Z(A) is a finite subgroup of AJ. It is 
known that if 7 is in Z(A) and m is in MO, then 7 and m commute [3(j), Lemma 
511. Also Z(A)A: = AJ, by [3(k), Lemma 201, so Z(A)MO = M. Let Z(A)O = 
Z(A) fl A:. Z(A)O is a central subgroup of both Z(A) and MO. Then M is the 
central product of MO and Z(A) with respect to Z(A)O (see [2, p. 291). Thus if 
- 
M = MO x Z(A) and Z(A)Â = {(t, 7-I): 7 6 Z(A)O} then Z(A)Â is a discrete 
normal subgroup of J!. M is isomorphic to M/Z(A)Â¡ Similarly, if A{ = A? x -- 
Z(A), then AJ is isomorphic to AZ/z(A)O. Therefore, irreducible representations 
of M (or A/) are in one-to-one correspondence with representations of J! (or 
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Ai) which are trivial on ZIA). An irreducible representation of A[ is of the 
form $,( <S> 6, where p is in Ll and 6 is an irreducible representation of Z(A). 
Let C' be the set of irreducible characters <; in C that come from representations 
$,, <S>6 of At for which p is actually in L\. If p and <; are so related, we shall write 
p = {if. We would like to prove a lemma which will relate the representations in 
gM with characters in C'. 

Let a be an arbitrary representation of M. Then 

where CQ and s are irreducible representations of MO and Z(A), respectively, 
such that for any 70 in Z(A)O, ~ ~ ( 7 ~ )  <S> e(701) is the identity. Z(A)O is in the 
center of both MO and Z(A) so ~ ~ ( 7 ~ )  and &(TO) are both scalars. Therefore 

Suppose that a0  = uo(p) in the notation of Lemma 1. p is a linear functional 
in L\. Then there exists an s in Wl such that sp - p is the highest weight for 
ao. Let 70 be an element in Z(Al0. By looking at the action of ts,( - p(70) on a 
highest weight vector for a0 we see that the scalar ~ ~ ( 7 0 )  is equal to csu - ~(70) .  
Therefore 

However, 70 is in the center of M so sl-yo = 70. Therefore 

for any 70 in Z(A)O. 
For any 7 in Z(A), define 

This is an irreducible representation of Z(A) and by (2.3), ?,(ig>6 can be regarded 
as in irreducible representation of Ai. Let 

for a0 in A:, 7 in Z(A). <; is an element in C" and p = pc. Therefore, given a a 
in HM, we have constructed an element <; in C'. We write u = a(<;). 

Conversely, let us start with an element in C". By working backward we can 
show that there is a unique element a in gM such that a = a(<;). 

Suppose that a0 is a regular element of A! and 7 is in Z(A). We wish to 
compute the trace of a(ao7). Define 

In the above notation 
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But from Lemma 1, 

Therefore, the trace of a(ao7)  is equal to 

Now it is easy to show that if yC is in j ( Z ( A ) )  then (7c)2 = 1. Therefore if 7 
is in Z ( A ) ,  Cp(7) = C p ( 7 ) l .  For future convenience, we rewrite the trace of 
a(a07) as 

LEMMA 2.  There is a map f ->Â u(f )  from C' onto gM. a ( f l )  = a(̂ ) if and 
only if sf1 = (2 for some s in W l .  If a0 is a regular element in  A? and 7 is i n  
Z ( A )  then the trace of u(<;)(ao7) equals 

Also, there exists a constant C M ,  independent o f f ,  such that 

dims(<) = C M  . lGm(pc)l . dim f .  

( d i g  means the dimension of the representation of Ai of which $Â is the 
character.) 

PROOF. The dimension formula follows from Lemma 1. All other statements 
in the lemma follow from the above discussion. 

Let us say that the linear functional fir is associated with a if a = a ( ( ) ,  in the 
above notation. For any a in gM there are exactly [Wl]  associated real linear 
functionals on Q. 

Now with B there is associated a discrete series of unitary representations of 
G. With A there is associated a continuous series. We shall describe these. 

For the discrete series there is a formal analogy with Lemma 1. Let S be the 
set of positive roots of (gc, bc) relative to some order. For any a in E define Ha 
in ( - l ) l I2b by the formula 

for any H in be. Put Gb = naeE Ha. Let L be the lattice of real linear 
functionals, A, on (-l)'I2b such that ^\ exists. Let L = {A E L:  ̂ ( A )  # O}. 
Let N ( B )  be the normalizer of B in G. Define 

This is a finite group. It acts on B and therefore on L. 
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An irreducible representation r of G on a Hilbert space 2' is said to be square- 
integrable if there exist nonzero vectors $ 1 ,  a2 if %' such that ( $ 1 ,  r ( ~ ) @ ~ )  is a 
square-integrable function of x. If TT and d are square-integrable representations 
on 2' and %" and if r and r' are not unitarily equivalent, then for $1, $2 in 
%' and @;, @, in %", 

(2.7) (^,w(~)@~)(Tr'(x)G, @[) dx = 0. 

On the other hand, there is a number fi), the formal degree of T T ,  such that for 

These are the Schur orthogonality relations on G .  They are proved in 
Theorem 11. 

Let & be the set of unitary equivalence classes of square-integrable 
sentations of G .  Harish-Chandra gives a map A Ã‘Ã u(A) from L' onto & [see 
3(1), Theorem 161. w(Al) = ̂ ( A 2 )  if and only if there is an s in WG such that 
sAl = A2. Finally, there is a constant CG, independent of A ,  such that 

LEMMA 3 .  { /?(w) : w ? &} is bounded awadrorn zero. 

PROOF. It is clearly enough to show that for any a in E, is 
bounded away from zero. Let 2 be the lattice of real linear functionals on 
(- l) lI2b generated by the roots. Then it is known that LIE is isomorphic to 
the center of G ,  which is finite. It is also known that { X ( H ~ ) } ^ ~  is a lattice in 
R. Therefore { A ( H a ) } A p ~  is also a lattice in R. But if A is in L', \(Ha) # 0,  
so the lemma follows. 0 

Now we shall-describe the continuous series. There is a linear functional po 
from ap to R such that the restriction of any root in P+ to dp is either po or 2po. 
Fix Ho in a? so that po(Ho) = 1 .  Extend the definition of po to a by letting it 
equal zero on q. 

Let tic = Egp+ CXa,  where for any a in P ,  Xff is a fixed root vector. Let 
n = n g. Let N be the analytic subgroup of G corresponding to n. It is well 
known (see [4, p. 3731) that the map 

is a diffeomorphism of K x An x N with G.  For f in C r  (G) ,  

for a suitable normalization of the Haar measure dx. If x = kan, write K ( x )  = k 
and H(x) = loga. 
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It is clear that P = MApN is a subgroup of G. If a in gM acts on a finite 
dimensional Hilbert space Vu, and if A is in R,  then the map UA from P into 
End(Vu) given by 

is an irreducible unitary representation of P. (We shall sometimes write i instead 
of (-l)lI2.) Let r u , ~  be the unitary representation of G on the Hilbert space 
%yA obtained by inducing UA from P to G. 

Then %yA is the set of functions @ from G into Vu such that 

(2.11) $(k) is a Bore1 function on K, 

The inner product on ZUA is given by 

where ( , )vu is the inner product in Vu. If @ is in ZUA,  7ru,A(y)@ is given by 

For any real A, and any @ in % y , ~  we can define a function 6 from K to 
Vu by restricting @ to K. This identifies with a Hilbert space, %y, of 
square-integrable functions from K into Vu. is independent of A. In fact, if 
ru is the representation of K obtained by inducing a to K, Zu is the Hilbert 
space on which ru acts. The above equivalence between Zu and Zu,~ gives an 
intertwining operator between 7iu and r d K ,  the restriction of r u , ~  to K. 

Let MI be the normalizer of ap in K. M is a normal subgroup of M'. M'/M 
is a group consisting of two elements, {I, 6} say. 6 acts on % by reflection. 6 
also induces an automorphism of M,  modulo the group of inner automorphisms. 
Therefore 6 defines a bijection. 

of gM onto itself. If we let 6 act on P, we can transform the representation UA 

into the representation (a')-A. Now, if A is real and a is in &, it is known that 
the representation V u , ~  is equivalent to v,,I,-A. Furthermore, the representations 
{rUA}, a ? gM, A > 0 are all irreducible and inequivalent [see 1, Theorem 7; 21. 

For each a in gM and A # 0, let Nu(A) be a fixed unitary intertwining operator 
between the representations %,A and ~ y i - ~ .  Then 

Notice that since %,A is irreducible, 
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It will be convenient to assign a positive real number to any equivalence class 
of representations in either & or 2%. If w is in &, choose A in L' such that 
w = w(A). The Killing form, B, of flc can be regarded as a positive definite form 
on either (-l)lI2b or its real dual space. Then put 

w12 = B(A, A). 

Since WG acts on (-l)'l2b as a group of isometrics under the Killing form, \w\  
is well defined. Similarly, for a in ^M, we define 

where pu is any real linear functional on (-l)lI2q associated with a. \a\ is well 
defined by the above argument. 

Let gK be the set of unitary equivalence classes of irreducible representations 
of K. Let h be the subspace of 6 which is equal to either b or Q, depending on 
whether we are in Case I or Case 11. b is a Cartan subalgebra of 6. In either case, 
we have already ordered the dual space of b. K is acceptable by assumption, 
so the representations in & can be indexed by certain real linear functionals 
on (-l)lI2b as in Lemma 1. If T is in gK and T = ~ ( p )  for some real linear 
functional p on (-l)ll2b, then we write 

r l  is well defined. 

3. Plancherel formula for L2(G). In order to put the Plancherel formula 
for G into the form we want, we must discuss characters of unitary representa- 
tions of G. To do this we must introduce some more notation of Harish-Chandra. 

For t in R, put ht = exptHo. For g in Cg':'(M0AP), write 

Fr(a0ht) = A M ( ~ o )  .]MolAo g(m*laohtm*) dm* 
I 

for a0 in A? and aoht a regular element in A. Here dm* is the invariant measure 
on the homogeneous space MO/Ay. It is known that there exists a constant 
cl > 0 such that for any g in Cg':'(M0AP) 

(see [3(j), Lemma 411). 
For a in A1 and aht a regular element in A write 

If f is in CgÂ¡(G write 

Ff(aht) = -(aht) . A(aht) . f (x*-'ahtx*) dx*. L 
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(G* is the homogeneous space G/Ao where A. is the center of A. Let dx* be 
the G invariant measure on G*). It is clear that 

It is known that if f is in Cr (G) ,  then Ff extends to an infinitely differentiable 
function on A (see [3(f), Lemma 401). Furthermore, Ff has compact support in 
A [3(f), Theorem 21. , 

Let h, = Ya = nep Ha. Let 

q = i(dimg - dimt - rankg + rankt). 

It is known that q is an integer. If we are in Case 11, the Cartan subgroup A is 
fundamental, in the terminology of [3(f), p. 7591. Then Harish-Chandra's limit 
formula applies to Ff [3(f), Theorem 41. Namely, there is a positive constant c 
such that for any f in C r  (G) 

(3.3) cf (1) = (-1IqFf (1; h,). 

Here G is to be regarded as a differential operator on A. 
For f in C r ( G )  define a function gf in Cr (MAp)  by 

gf (mht) = efW !1 f (kmhtnk l )  dk dn, m ? M, t ? R. 

For 7 in Z(A) and mo in MO put 

Then in [3(j), Lemma 521 it is shown that there is a constant 02 > 0 such that 

While we are at it, we shall state another Jacobian formula which we shall need 
later in the paper (see [4, p. 381, Proposition 1.171). The map from K x a: x K 
into G given by 

(k1,tHo, k2) + kl .exptHo. k2 

is a diffeomorphism onto G. (We write a^ = {tHo : t > O}.) Furthermore, there 
is a constant c > 0 such that for any f in C r ( G )  

f (ki . exp tHo . k2) \ D(t)\ dkl dk2 dt 

(3.5) 
f (ki . exptHo - k2)1D(t)\ dkl dk2 dt. 

Here D(t) = (et - e"*)"~ . (e2* - e"2t)"2, where r1 and r2 are the number of roots 
in P+ which, when restricted to a,,, are respectively equal to {IQ and 2po. 

Let TT be an irreducible unitary representation of G on the Hilbert space A?'. 
Let f be a function in C^Â¡{G) It is known that the operator 
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is of trace class. The map 
f - tra"(f) 

is a distribution on C r ( G )  (see [3(c), $51). This distribution is called the char- 
acter of a". 

If u is in gM, and A is in R, let be the character of the representation 
ro ,~.  Let m = i(dirng - rankg). Choose $Â in C' and the associated in Ll 
such that u = u(f) as in Lemma 2. 

THEOREM 1. ~ h k e  exists a constant CQ > 0 such that for every f in C?(G), 
Oo,A( f )  is equal to 

c;(-l)"+'(sigll ~ ~ ( p ~ ) )  / FW*, ~ ) e - ' ~ ~  da dt, 
A I X R  

where L equals 1 or 0 depending on whether we are in Case I or Case 11. 

PROOF. Let A be the operator 

on ZoA. We want to compute the trace of A. tr A is equal to trA* where A* is 
the adjoint operator of A and the bar denotes complex conjugation. If @ is in 

and kl is in K  

.Assume that the Haar measure on An has been normalized so that dht = dt. 
Then by (2.9) the above integral equals 

f (khtnk~l)e"ltep(tHO)@(k) dkdt dn. 
KxRxN 

In this integral, substitute km for k and integrate with respect to M .  Then 
(A*@)(kl) equals 

J f (kmhtnk~l)u(m-l)e^ep(tHO)@(k) dm dt dn dk. 
K x M x R x N  

Now to deal further with this expression we consider the principal fiber bundle 

M + K - + K / M .  

The map m Ã‘ u ( m l )  defines a complex vector bundle E,, over K / M  with fiber 
Vy, the space on which u acts. Let F(ki, k) be the function 

/ f (kmhtnkll)u(m-l)e'Atep(tHO) dm dt dn. 
M x R x N  
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Now it is easy to check that M normalizes N and that for fixed m in M the 
measures dn and d(mnm-l) on N are equal. Then for mi, Ri in M, 

F ( k l m ,  km) = U ( T E ) F ( ~ ~ ,  k )~ (m) .  

Therefore F(kl, k) can be regarded as a section of En S E*, where E* is the 
adjoint bundle of En and En S E* is the exterior tensor product of En and E*, 
a bundle with base space KIM x KIM and fiber Vn â‚ V*. 

Now there is a natural equivalence between %yA and the space %o defined 
earlier. However, Z is the space of square-integrable sections of En with respect 
to a K-invariant measure on KIM. F(k1, k) can be regarded as the kernel of 
the linear operator A* on this space. Then for any @ on Zn 

To evaluate the trace of A* we appeal to the following lemma. 

LEMMA 4 .  Let X be a compact infinitely differentiable manifold of dimension 
n. Let dx be a positive nowhere-vanishing differentiable n-form on X .  If E + X 
is  a differentiable Hilbert bundle of fiber dimension s, let L2(E) be the Hilbert 
space of square-integrable sections of E. I f  F(x1,x) is a continuous section of 
E S E*, F(xl, x) defines a bounded linear operator F on  L ~ ( E )  i n  the obvious 
manner. Then if F(xl,x) is differentiable i n  both variables, F is of trace class. 
Furthermore 

r 

tr F = ] ( t r  ~ ( x ,  x)) dx. 

PROOF. Let T be the closed unit n-cube with opposite sides identified. T is 
an n-torus and there is a canonical n-form dt  on T. Let 

S is an open subset of T. 
Choose a finite differentiable partition of unity {!Pa}aeI and a collection 

{Ua}aEI of open subsets of X such that the support of !Pa is contained in Ua. 
We assume that for every (a,/3) in I x I there is a diffeomorphism Aa3 from 
Ua U Up onto Sap, an open subset of S. It can be seen that with no loss of 
generality we may also assume that 

(i) AagW = dx. 
(ii) If Eap is the restriction of E to Ua U Up, then Eap is trivial. 
(iii) The map Asp lifts to a bundle map 

which is an isomorphism between Hilbert bundles preserving the inner product 
on each fiber. (We assume that R3 is equipped with the natural scalar product.) 

Let Fop be the integral operator on L2(E) with kernel 
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It is clear that if each Fag is of trace class then so is F. In that case tr  F = 
EaO tr Fa@. Furthermore 

/- (tr F ( X ,  a:)) dx = 

Therefore it is enough to prove our lemma for the operators Fa@. 
L2(Eas) is a closed subspace of L2(E) .  It is an invariant subspace for the 

operator Faff- Faff equals zero on the complement of L2(Eap) in L2(E) ,  so 
the trace of Fa@ is equal to the trace of the restriction of Fap to L2(Effp) .  
Let 8 ( R 8 )  be the space of linear transformations of R8, Use the map Aag to 
transform Faa(x1, x) into a section R ( t l ,  t )  of (Sap x Sa0) x 8 (R8) .  Then we 
can regard R ( t l ,  t )  as an element in Cw(T x T )  x w). We have reduced our 
lemma to the case where X = T ,  dx = dt, E = T x R8 and F = R. 

Let {$I  ( t ) ,  $2 ( t ) ,  . . . } be an orthonormal basis L2 ( T )  @R8, consisting of func- 
tions of the form 

2 w i ( v , t )  @ v. 

Here v will be an n-tuple of integers and v will be a unit vector in R s .  Let 

The above inner product is of course in R s .  Since R ( t l ,  t )  is differentiable, we 
can show from the harmonic analysis of the group T x T that if m i ,  m2 are any 
positive integers, 

sup lrijl(l + i)ml ( 1  + j)m2 < oo. 
i j 

This shows that R is of trace class. 
If v is in R8,  then from (3.6) we can show that for any t i ,  t in T 

Therefore 

We now compute the trace of the operator R. 
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This last expression is absolutely convergent by (3.7). Therefore 

By (3.8) this expression is equal to 

This completes the proof of Lemma 4. 0 

Let us return to the proof of the theorem. By the lemma, t r  A* equals 

/ f (kmhtnk;l) . t r  u(m-l)eiAte~(tHO) dk dm dt dn. 
KxMxRxPI 

Therefore 
- 

t r  A = t r  A* 

f (kmhtnk-l) t r ~ ( m - l ) e - ~ ~ ~ e p ( ~ ~ ~ )  dk dm dt dn 

= / gf (mht) . tru(m) . e-iAt dmdt, 
M x R  

since 
tru(m-l) = tru(m)* = tru(m). 

Let ZA be a set of representatives of cosets of Z(A)/Z(A)O. Then M is 
diffeomorphic with ZA x MO. Therefore the trace of A equals 

x / gf (7m0ht) . t r  u ( ~ m o ) e - ' ~ ~  dmo dt. 
~ â ‚ ¬  MOxR 

For any finite set S let [S] denote the number of elements in S. Then [PI = m. 
Recall that 

q = i(dimg - dime - rankg + rankt). 

Then 
q = $([P+] + 1) in Case I, 

q = ! j [ ~ + ]  inCase11. 

Therefore 
[PM] = [PI - [P+] = m - 29 + L. 

If a0 is in A: then 

Now for any mo in M 

Therefore, from (3.1) we see that tr A equals 

F:~ (aoht) - AM (ao) - t r  u(7a0) . e-'At duo dt. 
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By Lemma 2, this equals ,. 
(sign ~ ~ ( p ~ ) ) ( - l ) ~ + ~ c l  

YCZA 

By formula (3.4) this expression then equals 

x &(S)(Sf, a)) dadt- 

Now if s is in Wl 
obtain the formula 

trA = (signGm(pc 

, substitute sa for a in the above expression. Rom (3.2) we 

This proves the theorem if we let co = (c1/c2) [Wl]. 0 

For every < in C' there is associated a unique pC in Li .  For any real A we 
write 

G(c, A) = G(pC + iAp0). 

For our discussion of the Plancherel formula it is necessary to examine this 
expression separately for Cases I ahd 11. We have the formula 

(3-9) G(f,A) = Grn(/JC). JJ (PC +iApo,Ha). 
aâ‚¬ 

Now P+ is the union of the positive real roots, PR, and the positive complex 
roots PC. Let q be the conjugation of & with respect to the real form g. q acts 
as a permutation of period 2 on P+. A root in P+ is fixed by q if and only if 
it is a real root, so the positive complex roots occur in pairs. Since dimap = 1, 
there can be at most one positive real root. Now it is known that a has a real 
root if and only if a is not fundamental. Therefore there exists a real root if and 
only if we are in Case I. 

If a is a complex root and aq is its conjugate root, then 

(PC + i k o ,  Ha) - (PC + i b o ,  HZ) = - ( p C ( ~ a ) ~  + A 2 ~ o ( ~ a ) 2 ) .  

Therefore the sign of the real number 
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is equal to (- 1) [p=l12, which equals (- l)q+&. Therefore 

&(<,A) . lG(g,~)]-l = i(-1Iq+& . signA. signGm(pc) in Case I, 
(3.10) 

G(<, A) - lG(g, A)]-' = (-1Iq . sign Gm(pc) in Case 11. 

It is also clear that 

If < is in Ct, choose u in gM such that u = u(<). In 52 we defined the 
representation ut. Choose gt in C' such that ut = ut(gt). Given g, gt is not 
uniquely defined. However the expression 

sign Gm(pct ) - G(gt, A) 

is well defined for any real A. hrthermore 

(3.12) signGm(pct) . G(gl, A) = signGm(pc) . G(<, A). 

For any w in gd, let eW and p(w) be the character and formal degree of w. A 
formula for p(w) was quoted in 52. It is clear that there is a polynomial p such 
that 

LEMMA 5. There exists a nonnegative function @(u, A) on gM x R such that 
for any f i n  Cr(G) ,  

In  addition p(u, A) has the following properties. 

6) D(0, A) = P(0, -A) = D(ut , A). 
(ii) For any u i n  gM, @(u, A) i s  the restriction to R of a meromorphic function 

on C with no real poles. 
(iii) If u is in gM and A # 0, then /?(cry A) # 0. 
(iv) For every r > 0, there are polynomials pl, p2 such that for u in ZM, A 

in R, 

PROOF. We deal with Case I first. Although the lemma is true in general for 
Case I, Harish-Chandra in [3(k), 5241 proves it only in case j is one-to-one; that 
is, G T Gc. We shall content ourselves with dealing with this situation. 

Let C* = {g E C: ( < , ~ X ~ ( - ~ ) ~ ~ ~ T H ~ )  = *I}. Since (exp(- l )112~~o)2 = 1, 
any element in C is in either C+ or C-. Then in [3(k), Lemma 561, Harish- 
Chandra shows that there is a constant, which he writes as c ~ / c c ~ ,  such that 
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O0 7rA - ( - I ) ~ + '  { l coth G(<, A) Ff (aht) (c, a) . eaAt da dt 
<â‚¬ 

We then define 

where coth(7rA/2) or tanh(7rAl2) is used depending on whether < is in C+ or 
c- . 

Now let us deal with Case 11. Then gd is empty. We can use the limit formula 
(3.3). Therefore 

f (1) = ( l / ~ ) ( - l ) ~ F ~  (1; G). 

By the Fourier inversion formula on the connected abelian group AI x R, 

Since m = [PI and since Ff is in C ~ ( A I  x R), we see by integration by parts 
that j(1) is equal to 

By Theorem 1 this expression equals 
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In either case, we see from (3.10) that @($, A) is nonnegative. Also from (3.11) 
we see that 

@($, --A) = @($, A)- 

It is clear that the expression @($', A) is well defined. (3.12) implies the formula 

Since for any A # 0 the representations x u t , ~  and T,,,-A are equivalent, 

e u t , ~  = ~U,-A. 

Therefore in either Case I or Case I1 we obtain the formula 

It is clear in either case that 

Then if u is in gM, choose any $ in C' such that u = u(c). Define 

Then @(o, A) is well defined and @(IT, A) satisfies the formula of the lemma. 
Property (i) of the femma follows from the above discussion. Properties (ii), 

(iii), and (iv) follow easily from formulae (3.14) and (3.15). 0 

For w in gd, let xu be a representation in the class of w, acting on the Hilbert 
space Zw. Let Z2(w) be the space of Hilbert-Schmidt operators on Zw with the 
Hilbert-Schmidt norm 11 . 112. Similarly, for u in g ~ ,  write %(u) as the space of 
Hilbert-Schmidt operators on Zu. 

Let L;(G) be the set of functions 

such that 
(i) ao(w) is in %(w) for each w in gd. 
( 4  llaol12 = l l ~ o ~ ~ ~ l l ~ @ ~ ~ ~  < 

Notice that if we are in Case 11, & is empty so that L;(G) is empty. 
Let L:(G) be the set of functions 

a l :  2% x R +  @ %(u) 
Uc%f 

such that 
(i) a1 (0, A) is in (0) for each u in gM and A in R. 
(ii) aI(ut, -A) = Nu(A)al(o, A)N~(A)-', o â g ~ ,  A # 0. 
(iii) For any u in gM, a1 (u, A) is a Bore1 function of A. 
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(In (ii) we can regard the operators Nu(A) as maps from to if we recall 
the canonical isomorphisms %,A Â¥Â¥- âi %,-A Â¥Â¥- Â¥^I. 

Notice that since Nu(A) is unitary, condition (ii) implies that 

Therefore 

L;(G) i d  L\(G) are Hilbert spaces. Let L ~ ( G )  = L;(G) @ L; (G). If f is in 
CgÂ (G), define f in L2 (G) by 

/ = (/o(w), /I (0, A)), 

(We can regard /l(u, A) as an operator on %.) 

THEOREM 2 (PLANCHEREL FORMULA). The map 

f - /, f C^(G), 

extends uniquely to an isometry from L2(G) onto L^(G). 

PROOF. Fix f in CgÂ (G) . Define 

Clearly g is in CgÂ¡(G and g(1) equals 11 f 11;. If TT is an irreducible unitary 
representation of GI 

= ~ ( f  1 4 f  I* 
where TT( f)* is the adjoint of 7r( f) .  Therefore 

Therefore, applying Lemma 5 to g(x) we see that 

I I f  IIJ = l l / l12.  
Thus, the map f Ã‘ / is an isometry. We need only show that it is surjective. 
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By the Schur orthogonality relations (2.7) and (2.8), the map is onto L;(G). 
We must show that it is onto A?((?). 

Let pi be the representation of G x G on L;(G) given by 

for a ? S'M, A ? R, and (x, y) G x G. G x G, being semisimple, is of type 
I [3(a), p. 301, so pi is'of type I. Let R +  = {A e R :  A > O}, S = & x R + ,  
and let C be the measure class on S defined by the discrete measure on S'M 
and Lebesgue measure on R+. /?(a, A) does not vanish for any (u, A) in S, and 
the representations { T ~ A  x T ~ , A  : (0, A) ? S} of G x G are all irreducible and 
inequivalent. pi is clearly the direct integral of these representations of G x G 
with respect to the measure class C. Therefore is multiplicity-free by [6(b), 
Theorem 51. This means that the algebra R(p1, pi) of intertwining operators of 
pi is commutative. 

Let p be the two-sided regular representation of G x G on L2(G). Then the 
map 

f 4 ,  ~̂L\G), 

is an intertwining operator between p and p\. Thus if L is the closure of the set 
{/I : f ? L2(G)}, and P i s  the orthogonal projection of L;(G) onto L, then P is 
in R(p1,pi). But since R(p1,pi) is commutative, it is well known that P is of 
the form PE, where E is a Bore1 subset of S and 

PE = {a1 6 L?(G) : a1 vanishes outside E}. 

To complete the proof of the surjectivity of the map f + f\, we need only show 
that the complement of E in S is a null set with respect to C. 

Let us assume the contrary. Then there is a a in HM and a subset Rl of R +  
of positive Lebesgue measure such that for any f in C(?Â¡(G) 

/I (a, A) = 0 for almost all A in Rl . 

Choose a T in & for which there is a nonzero intertwining operator T between 
the restriction of T to M and a. Choose a vector $ in the space on which T acts 
such that T$ # 0. Define 

Then @ is in x.  For any f in C(?Â¡(G) 

Then by (2.9), (/(a, ~ ) @ ) ( l )  is equal to 

. exp(- t~o)  . k-l)e(aA+p(Ho))t@(k) dk dt dn. 
/ K m m  (n-l 
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Let f (n-I . exp(-tHo) . k-l) equal 

where ~ ( k )  = (~(k)$ ,  $) and v is any function in C r ( N )  such that sN v(n) dn = 
1. a is some function in C r  (R) such that fm a(t)e(iA+^HO))t dt is not equal 
to zero for any A belonging to a subset R2 of Rl of positive measure. Clearly 
such an a exists. 

For a fixed An in, R2, 

This is a nonzero vector in the space on which u acts. However, (f (u, Ao)$)(k) is 
a continuous function of k, so (f(u, Ao)$)(k) is nonzero for a subset of K of pos- 
itive measure. Therefore /(u, Ao)$ is a nonzero vector in Za- This means that 
the operators fl(u, A) do not vanish for any A in R2. We have a contradiction. 
The proof of Theorem 2 is now complete. 

4. Statement of Theorem 3. For x in G, define 

Define a norm on g by putting 

where B is the Killing form on g. Since G = KApK there exist a unique function 
u on G such that 

(i) u(klxk2) = u(x), kl, k2 ? K,  x ? G; 
(ii) u(exp H)  = IIHII, H E ap. 

It is known that there exist numbers c, d such that for any a  in A: 
(= {exptHo: t.^O}), 

(see [3(g), Theorem 3 and Lemma 361). Also there is an TO > 0 such that 

(see [3(1), Lemma 111). 
Choose 1$ in K such that 6 l a 6  = a 1  for any a  in A,,. We obtain the formulae 

Let 9 be the universal enveloping algebra of flc. We can identify 9 with the 
algebra of left invariant differential operators on G. Let p be the canonical anti- 
isomorphism with 9 and the algebra of right invariant differential operators on 
G. If gl and 92 are in 9 and f is a differentiable function on G, then the actions 
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of p(g1) and 92 on f commute. We denote the resultant of this action at any x 
in G by f(91;a-;92). 

Now for every g1, g2, in S8 and s in R ,  we define a seminorm on CW(G) by 

Let g ( G )  = { j  CÂ¡Â¡{G llf l lgi ,g2,s  < oo, for any 91, 92 in SB and s in R}. 
These seminorms make %(G) into a Frbchet space. 

Clearly 
C r  (G) C 

is a continuous inclusion, and it is known that C r ( G )  is dense in {̂GI [3(1), 
Theorem 21. Also from (4.2) we see that there is a continuous inclusion of g ( G )  
into L2(G). {̂GI is called the Schwartz space of G. 

We wish to define a subspace of L ~ ( G )  which will ultimately turn out to be 
the image of %(G) under the Fourier transform map, f + /. We shall need to 
fix appropriate bases for the Hilbert spaces <% and ZUA. 

For each w in & let rw be a representation in the class of w acting on the 
Hilbert space <%. We can choose an orthonormal basis 

(4.4) {@r,i = @T,Ãˆ(W)}~â 

of Z such that transforms under V^\K, the restriction of rw to K ,  according 
to the irreducible representation r of K. The second subscript, i, ranges from 1 
to [w : r] . dim r, where [w : r] is the multiplicity of r in rwlK. It is known that 
[w : r] < dim r (see [3(b), Theorem 41). 

We shall construct explicit bases for the =lbert spaces &,A. As we remarked 
earlier, there is a canonical intertwining operator between the representations 
rUAlK and ru of K. Therefore we shall choose a fixed orthonormal basis for the 
Hilbert space Zu. 

The multiplicity of r in equals the multiplicity of T in re. But rg is 
just the representation u induced to K. Therefore by the Frobenius reciprocity 
theorem for compact groups [6(a), Theorem 8.21, these multiplicities are just 
equal to [r: u], the multiplicity of a in T I M  (TIM is the restriction of r to M ) .  

Fix r in gK and u in ^f acting on the Hilbert spaces Vr and Vu of dimension 
t and 5 respectively. Let R(r, u) be the set of intertwining operators from Vr to 
Vu for T I M  and u. The Hilbert-Schmidt norm makes R(r, a )  into a Hilbert space 
of dimension [r : u] . 

Now suppose T is in R(r, 0). Since u is irreducible, we can assume that there 
are orthonormal bases {&,. . . , $(} and {??I,. . . , rjs} of Vr and Vu respectively 
such that there is a constant c for which 

T$i=eq,, i < s ,  

Tf-i=O, i > s .  

Suppose T has been normalized such that c = (t/s)lI2. Then 
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Fix an element $ of norm 1 in Vr. Write r*(k)  for r ( k l )  if k is in K .  Define 

@(k)  = T(r*(k)$),  k ? K.  

Then 

=u(m)@(k) ,  m ? M , k ? K .  
Therefore @ is an element in %. 
(ii) l l @ l l  = 1, because 

=Â£/ ( 'Â¥*(k) t  /:i)(T*(k)<, ti) dk - (3 
i=l 

dim u 
= (i) + (=) (by the Schur orthogonality relations on K )  

Conversely, let @ be any unit vector in such that @ transforms under 7r0. 
according to T .  Then there exists a unit vector < in Vr and a T in R(T,u) with 
IITII = (dirnr)lI2 such that 

For $ defined as above, the vector Nu (A)@ is in %yi . Clearly N(,(A)$ trans- 
forms under ~ 0 "  according to T .  Then there exists a unique T' in R(r,  a t )  with 
IJTtll = (dirnr)lI2 such that 

(NU(A)$)(k)  = T'(T* ( k ) f l ,  k ? K. 

The map T -> T t  from R(T,u) into R(T,u') will be denoted nu(A), so T' = 
nu (A)T.  nu (A)  is norm-preserving and hence unitary. 

Fix an orthonormal base { T I ,  . . . , Tr}  of R(r,  a )  of elements of norm equal to 
(dimr)l12. For 1 a < r,  1 < j < t ,  and k in K ,  define 

(4.6) +r , (~- i ) t+~(k)  = T i ( ~ * ( k ) t j ) .  

Then {a7,i : T e gK, 1 < 2 < [ T :  u] dim T }  is an orthonormal base for %'Ã£ 
The bases (4.4) and (4.6) can be used to define a collection of seminorms 

on L ~ ( G )  and L ~ G )  respectively. For each triplet (pi ql , a) of polynomials we 
define a seminorm on L;(G) by letting ]lao]]p,q1,q2 be the supremum over w, 
(71 ,  21 ), ( 7 2 )  22) of the expressions 

(4'7) l('Tl,il 7 a ~ ( w ) ~ , i 2 ) I ~ ( I w I ) q i  ( [ T I  I)q2(Ir21), ? L;(G). 
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Let &(G) be the set of all a0 in L;(G) for which l~aol~p,q,,q2 < oo for every 
triplet ( P ,  91,92). 

For each set of polynomials (p i ,  pa, 91, q2) and each integer n define a semi- 
norm on L: (G) as follows: put llal 1 1  ,p2 ,ql ,q3 : n )  = oo if for some u in gM and 
some <S>Tl ,i1 and @ r i i 2  the function ($r l , , l ,  a1 (u, is not n times contin- 
uously differentiable in A. Otherwise, let llal l l ~ p l , p 2 , q 1 , q 2  : equal the supremum 
over (u, A), ( 7 1 ,  i i  ) , (r2, &) of the expressions 

Let %(G) be the set of all a1 in L:(G) for which llal l ~ ~ p l , p 2 , q l , q 2  : n)  < GO for 
every set (p i ,  ~2,913 92 : n) .  

The above seminorms define topologies on & (G) and 6 (G).  Define 

^(G) is a Frbchet space. 

THEOREM 3 .  The map f Ã‘ f gives a topological isomorphism ofW(G) onto 
W )  . 

We shall spend most of the rest of this paper proving this theorem. 

5. Spherical functions. In this section we shall define r-spherical functions 
on G and develop some of their elementary properties. 

A unitary double representation T of the compact group K is a Hilbert space 
on which there is both a left and a right unitary K action. In addition, these 
actions are required to commute with each other. We denote both the left and 
the right action of K by r .  If r is a unitary double representation of K on the 
vector space Vr, define a representation r' of K x K on Vr by 

There is a one-to-one correspondence between double representations of K and 
representations of K x K .  

Suppose r is a unitary double representation of K on the vector space Vr. A 
function 4 from G to Vr is said to be r-spherical if for every ki,  k2 in K and x 
in G ,  

4 ( k i ~ k 2 )  = TI ( k i ) 4 ( ~ ) ~ 2 ( k 2 ) .  

We shall write \+(x)\ to indicate the norm of 4 ( x )  in Vr. 
Suppose f (a; )  is a continuous complex-valued function on G such that the left 

and right translates of f by elements in K span a finite-dimensional space of 
functions on G .  We shall use f to define a spherical function. 

Let be the function from G into L2(K x K )  defined by 
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Define a double K representation p on L 2 ( ~  x K )  by 

for u in L2(K x K )  and kl, k2, E l ,  k̂  in K. Let Vo equal spxec{4(x)}, the 
finite-dimensional subspace of L^fK x K )  spanned by {4(x) : x ? G}. Then for 
any xinG,and k\, &, kl, k2 in K ,  

4(ElxE2)(k1, k2) = f (ky1E1~E2kF1) = f ( ( E T ~ ~ ~ ) - ~ x ( ~ ~ E F ~ ) - ~ .  

Therefore is a p-spherical function, which we shall call the p-spherical function 
associated with f .  

Notice that if r is an irreducible unitary double representation of K on the 
finite-dimensional Hilbert space Vr, then r can be regarded as an irreducible 
representation rl <8> r! of K x K on Vl 8 V f .  Here TI  and r2 are irreducible 
representations of K on the spaces Vl and V2, and r! is the dual representation 
of 7 2  acting on V., the dual space of V2. We write r as (rl,r2) and lrl as 
r l  I + Ira/. Let be the set of equivalence classes of irreducible unitary double 
representations of K. 

Suppose that f(x) is the function (@1,7r(x)@2) where 71- is a unitary repre- 
sentation of G on a Hilbert space 2'. We assume that for a = 1 or 2, is a 
unit vector in %' that transforms under 71-IK according to the irreducible unitary 
representation ra of K ,  acting on the Hilbert space Va. Let T = ( ~ 1 ,  72) . r is in 

and acts on the Hilbert space Vr = Vl <8> V . .  We shall find a formula for 
the spherical function # associated with f .  Then we shall specialize to the case 
where TT is one of the induced representations V,,A defined in 52. 

Let ra have dimension ta and let { & I ,  . . . , tat-} be an orthonormal base for 
Va, for a = 1 or 2. Let VA be the subspace of 2' spanned by {71-(k)aa : k G K}.  
Choose an orthonormal base {Qa1,. . . , of Va such that the correspondence 

gives an intertwining operator between ra and V\K acting on the space V& Define 
functions eli(kl) and egj(k2) as follows: 
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Vu, is the subspace of L^ (K x K) spanned by the functions eli (k1)e2j (k2). Let 
{&,. . . , Gt2} be the dual basis in Vf to {&, . . . , t2t2}. Then for 1 < m, 
1 < j < t2, identify e1,(kl)e2;,(k2) with (tit2)-I/2& '81 Qj. This gives an 
intertwining operator between the double representations p and r. Therefore, 
we can regard 4 as a r-spherical function from G to Vr. We have the formula 

Now suppose that TT is one of the representations T T ~ A ,  for a in M̂ and A in 
R. Recall that R(ra, a )  was the space of intertwining operators between ra and 
a. Fix Ta in R(ra,a) such that 

Suppose that $1 and $2 are unit vectors in Vl and V2 respectively. Let 

@a(k) = Ta(T*(k)ca), k â K, a = 1,2. 

Then $1 and $2 are unit vectors in Sfr-  Define 

@ai(k) = Ta(T^(k)(&), k â K, a = 1,2, and 1 < i < ta. 

Then {aa,} is an orthonormal basis of Vn. Also 

This is equal to the expression 

The inner product in this integrand is on VU, the space on which a acts. H(xk) 
and K(xk) were defined in $2. Combining the formulae (5.1) and (5.2) we obtain 
the following formula 

T2[r; (k)$2j])e('A~o-p)(H(zk)) dk. 

Let L = Lr be the following set of functions on M :  

Lr is a Hilbert space with inner product 

If $ is in Lr, then $(I) is in Vl <SÃ Vf and it can be regarded as an intertwining 
operator from V2 to Vl for r21 and TI l M .  Conversely, if S is such an intertwining 
operator, then 

$(m) = rl (m)S = Sr2 (m) 

is a function in Lr. 
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If u is in ^M, let Lg be the set of functions i f )  in Lr such that if)(m) transforms 
under left and right translates of M according to the representation u of M. Then 
there exists a finite number of representations {ul,. . . ,or} in gM such that 

LT = L ;  9 ---QL./ 

For any i f )  in Lr let us extend the domain of i f )  to all of G by defining 

i{}{kan) = rl (k)if)(l), k ? K, a ? Ap,  n ? N. 

Let us return to our function &(x) above. Define 

as the adjoint of Ti. Let 
S = T;T2 : V2 4 1 .  

S is an intertwining operator for T^\M and TI l M .  S is also canonically an element 
in Vl Ã V,* . Note that 

(5.4) s = (titi)-'" Y, hi Ã ~ j (T iC i i ,  T2faj)v,. 
i j 

The subscripts Vl and Va indicate in what space the inner product is taken. 
Then the function 

Since \Ta\\ = (ta)lI2, it can be shown from (4.5) that this last expression is 
equal to dimu. 

From (5.3) and (5.4) we obtain the formula 

For any i f )  in Lr we write 

E~(if): x) is called the Emsenstein integral of i f )  and A. 
Suppose, conversely, that we were given i f )  in Lg such that [lif)ll& = dimu. 

Then we could choose Ta in R(ra,o) with [ITa [ I 2  = dimra for a = 1 or 2 such 
that 

^(I) = T O .  
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Again we can define 

Then is a unit vector in z. Working backward we can obtain the formula 

Now, if $(I) = Tj-T2 as above, and A # 0, then nu(A)Ta is in R(ra, 0') and 
1 1 ~ ~ l l ~  = ta for a equal to 1 or 2. Define 

Then Mu(A)if) can be regarded as a function in L s .  It has the same norm as 
ip. Therefore, Mu(A) is a unitary map of L: onto Lz,. We can then define a 
unitary linear transformation M(A) of LT by defining it to be Mu(A) on each of 
the orthogonal subspaces L: of LT. 

If A # 0 we have the equation 

Then from (5.6) we obtain the formula 

This is the functional equation for the Eisenstein integral. 
From (5.7) and (2.14) we obtain the formula 

Since M(A) is unitary, it is clear that 

We make a final remark about the irreducibility of the representations 7rU,o, 
for a in &. These representations may or may not be irreducible. If xU,o 
is irreducible, then for any nonzero vectors $1 and $2 in z,o the function 
(ai, ~ T ~ , ~ ( X ) @ ~ )  cannot vanish identically in x. Therefore if r is in and i f )  is 
any nonzero vector in L;, Eo(if): x) does not vanish identically in x. 

On the other hand, suppose that 

where %[ and ^2 are nonzero closed subspaces of ZVo which are invariant under 
7ru,o. It is possible to choose nonzero vectors in <% such that transforms 
under v ~ , ~ ~ ~  according to some irreducible representation ra of K ,  for ec equal to 
1 or 2. Let r be the double representation (TI, r2). Then there exists a nonzero 
element i f )  in Lg such that Eo(if) : x) vanishes identically in x. 
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6. Proof that the map is injective. Let TT be a unitary representation of 
G on a Hilbert space Sf. If v is a vector in 2' such that the map from G to Sf 
given by 

x + TT(X)V, x ? G, 

is infinitely differentiable, v is called a differentiable vector. Let Sfw be the set 
of differentiable vectors in Sf. If v is in Sfm and X is in g, define 

It can be checked that this gives a representation of the Lie algebra g on the vector 
space P. It extends to a representation, again denoted TT, of the universal 
enveloping algebra, 9, of &. 

Let 3 be the center of 9. If the restriction of TT to 3 is one-dimensional, we 
obtain a homomorphism 

x: 3 - C .  

In this case we say that TT is quasisimple, and we call x the infinitesimal character 
of TT. It is known that any irreducible unitary representation of G is quasisimple. 

Let 7 be the conjugation of flc with respect to the real form g. We define 
three involutions on flc by 

If X and Y are in flc and c is a complex number, it is easy to show that 

All three involutions extend to involutions of 9. 
If TT is a unitary representation of G, then for g in 9, 

where v(g)* is the adjoint operator of v(g). 

LEMMA 6.  Suppose that TT is quasisimple. Assume and a2 are vectors i n  
Sf such that the vector spaces 

sp{w(k)^: k K}, a = 1,2, 

are both finite-dimensional. Then and a2 are i n  Sfm. Furthermore i f  gl and 
92 are i n  9, and 

f (a:) = (@1,7r(a:)@2), 
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PROOF. By l3(a), Theorem 61, $1 and $2 are actually "analytic vectors" for 
the representation TT so in particular they are differentiable. The other statement 
of the lemma is easy to check. 

Now, in order to discuss the infinitesimal characters of the representations T T ~  

and we shall quickly review how Harish-Chandra classifies homomorphisms 
from 3 to C .  

Let 251, 21p, 24, and 21 be the universal enveloping algebras of %, ~ n , ~ ,  apt, 
and % respectively. Let 3M be the center of 251. Then is the universal 
enveloping algebra of  TO^ + apt, and its center is 3 ~ 2 1 ~ .  

If z is in 3, there exists a unique element 'y;(z) in 3 ~ 2 1 ~  such that z - 7;(z) 
is in EQgp a [see 3(k), Lemma 131. 

If zl is in 3M21p, there exists a unique element -y( (21) in 21 such that zl -7: (21) 
is in Eaep-p+ <OT̂lPXQ [see 3(e), Lemma 131. 

If z is in 3, there exists a unique element 'Â¥/(z in 21 such that z - 'yl(z) is in 
Eaep 9 X a  [see 3(e), Lemma 181. 

Notice that if z is in 3, 

are algebraic isomorphisms onto those elements in 21 which are invariant under 
W and Wi respectively [3(e), Lemma 191. 21 can be regarded as the algebra of 
polynomial functions from the dual space, a*, of a, into C .  If A is in a*, denote 
the evaluation of p in S(&) at A by (p, A). Then for any A in a* define the 
homomorphism )c\ : 3 + C by 

Any homomorphism from 3 into C is of this form and X A  = XA, if and only 
if Al  = sAa for some s in W. We shall sometimes call the homomorphism 
corresponding to the linear functional A. Similarly, we can define xy : 3MaP -> 

c by 
x M ( ^ l ) = ( ' y l ( ~ l ) , ~ ,  Z l ~ 3 ~ 2 1 p .  

Define an automorphism By as follows: 

Oo(X)=X, xemc, 
= H+p(H) ,  H q.I- 



HARMONIC ANALYSIS OF TEMPERED DISTRIBUTIONS 45 

takes 3 M g p  onto itself. put 70 = o 6. BY (2.5) and (6.1) we see that 

Now, what are infinitesimal characters of the representations in &? It is 
known that all Cartan subalgebras of the complex Lie algebra flc are conjugate 
under an element in Gc. Fix y in Gc such that Ad y - bc = Q. Then Ad y 
preserves the Killing form on flc, and Ad y maps the roots of (flc, bc) onto the 
roots of (flc, Q). Therefore Ad y maps (- 1) b onto (-1) + dp. We can 
also assume that Ad y maps the positive roots of (flc, bc) onto the positive roots 
of (flc, Q). If A is in L, define 

Then 

Also 

If A is in L' and w = w(A) is in Hd, then by [3(1), Theorems 15 and 161, \A,, 

is the infinitesimal character of any representation in the equivalence class of w. 
Write Ly and Lh as the image of L and L' under y. 

Now if a is in gM, let p be a real linear functional on ( -1)1/2~ associated 
with a. Regard p as a linear functional on (-l)ll2^ + dp by making it equal 
zero on a,,. By looking at a highest weight vector for 0,  we can easily check that 
for any zl in 3 M  

LEMMA 7. Fix u in HM and A in R. Then for any z in 3, 

PROOF. It is known that the representation r u , ~  is quasi-simple [3(a), p. 
2431. Therefore, there exists a complex linear functional A on & such that 

Our job is to evaluate A. 
Choose a r in such that Lg # 0. Fix iff in Ly so that [ / $ / I &  = dimu. 

Then by (5.6) (using the notation in that formula) and Lemma 6, we obtain the 
formula 

X Ã ˆ ( ~  ' EA(iff: I) = x(t1t2)-1/2 ' (1, '8 gj . (@li,ru,A(x)ru.A(z)%j) 
i j  

E A ( i f f : x ; z ) ,  z e 3 .  
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Then by (5.5), 
fl 

Let z be an arbitrary element in 3. It can be regarded as a left and right invariant 
differential operator, so 

Therefore 
EA($:  X ; Z )  = 1 F ( X ; Z :  k ) d k  

= /' F(xk;  z ) r (k - ' )  dk. 

Clearly F ( x n )  = F ( x )  for any n in N, so if g is in g n ,  F(x;  g )  = 0. Therefore 
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However, z was an arbitrary element in 3. It is easy to show, then, that A = 
-p - Go. The proof of Lemma 7 is complete. 

The linear transformation 6 is orthogonal with respect to the bilinear form B. 
0 has eigenvalues of +1 and -1 on (-l)lI2@ and @ respectively. This implies 
that ap is orthogonal to (-l)lI2ap with respect to B. 

Suppose the rank of g equals n. Then let Hi and H2,. . . , Hn be orthonormal 
bases of a, and (-l)lI2a+ respectively. For any a in P ,  fix root vectors Xa and 
X-a in such a way that B(Xa,X-&) = 1. Then [ X a , X a ]  = Ha. (If A is any 
linear functional on &, define HA to satisfy the property 

The Casimir element of 93 is given by 

(6.6) U. = H;+ . . -+  H:+ Y,(x.x-~ +x-M. 
aâ‚ 

U~ is in 3 and is equal to the expression 

so we see that 

Therefore, 

a 

Then if A is any linear functional on &, we have the formula 

Suppose that TT,., is a representation in the class of some w in &. Then from 
(6.3) and (6.8) we obtain the formula 

The restriction of any root in P+ to an is equal to either po or 2po. Suppose 
there are ri  and r2 roots in P+ of each type. Then 

Let r2 = 2(r1 + 4-2). Then B(po, po) = r-2. If p is any linear functional on (4, 
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Therefore if u is in ZM, and A is in R, 

(6.10) m) = \u12 - r - 2 ~ 2  - B(p, p ) .  

The Lie algebra t is reductive, so t = ti + t 2 ,  where ti is semisimple and t2 
is abelian. Let X be the universal enveloping algebra of &, and let 3 K  be its 
center. Let t) be the Cartan subalgebra of 6 defined at the end of 52. For linear 
functionals v on he we can define the homomorphism 

Since the Killing form of gc when restricted to ti is K-invariant, this Killing 
form is a linear combination of the Killing forms of ti , ,  on t i ,  where { t i , , }  are 
the simple ideals of 6 1 .  Then it is clear that we can choose an element we in 3 K  
such that 

for any linear functional v on he. 
Notice that 

- w;=wg,  w g = w g ,  w(T=wg,  
(6.12) - 

w; -= we, we = we, wt1' = we. 

LEMMA 8 .  The map j Ã‘ fo is a continuous map from 'S'(G) into 'So (G) .  

PROOF. Fix polynomials p, g l  , 92. For j in CgÂ (G), we have 

By sup we mean the supremum over all w, (rl , i 1 ) ,  (r2, i 2 ) .  This is an arbitrary 
0 

continuous seminorm on 6 (G) . 
Choose integers m, n l ,  n-> such that 

By (6.12), gt = $1 and g  ̂ = g2.  Since @rl,,l  and transform under T,, 

according to TI and r2 respectively, we see that 

~ u ( g l ) @ r 1 . t 1  = (1 + l ~ l l ~ ) " ~ ^ , i , ,  

~ ( g 2 ) @ r 2 , i z  = (1 + 1 ~ 2 1 ~ ) " ~  . (1 + I W I ~ ) ~ % , +  
Therefore, 
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If h(x) is the function %(a;)&,^), we see from Lemma 6 that 

By (2.8) this last expression equals 

But { / ? ( w ) - ~ / ~ :  u e g^} is bounded by Lemma 3. Also, by (4.2), 

We have bounded llfollp,ql,q2 by a continuous seminorm for F(G) on f .  Since 
C r  (G) is dense in 'S'(G), we have proved the lemma. 

LEMMA 9 .  Let sup denote the supremum over all (a, A), (rl, il),  (r2, i2). 
1 

Then for nonnegative integers m, ml, m2, and n, the continuous seminorms 

IIal II(m,ml ,m2,n) = SUP 
1 

(1 + lri12)m1 - (1 + lr2j2)m2, a1 E &(G) 

form a base for the topology of ^fG). 
PROOF. By Leibnitz' rule and induction on n, we can see that it is enough 

to prove the lemma for the seminorms 

Fix a in gM and r in &. There is a nonzero vector of the form in our 
basis for 2T$ if and only if the representation a occurs in T I M .  Suppose that this 
is the case. Then if r acts on the finite-dimensional vector space Vr, a acts on 
a subspace of Vr. The Cartan subalgebras of m and 6 are q and Ij respectively, 
and we have already ordered their dual spaces. Regard a as a representation 
(TO x E of MO x Z(A)  as in 52, and let v and p be the highest weights of the 
representations r and a0 respectively. Then 
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Write t) = ag @ b2 where 62 is a Lie algebra of dimension 1 or 0, depending on 
whether we are in Case I or 11. Assume that B(ag, b2) = 0. Extend p to a linear 
functional on t) by letting it equal zero on b2. 

Let $ be a highest weight vector in Vr for 00. Vr is a direct sum of weight 
spaces for r. Examine the action of r(b) on $. It is clear that there is a linear 
functional p2 on f) which is zero on (4 and such that v\ = p + pz is a weight for 
r. Therefore 

B(^, P) < B(v1,vl). 

However, 

Since v is a highest weight for r, we see by [5, Lemma 3, p. 2481 that 

We have shown that there is a constant C, independent of r and a, such that 

From (6.14) we obtain the additional formula 

Formulas (6.14) and (6.15) show that any seminorm of the form (4.8) is domi- 
nated by a seminorm of the form (6.13). Since the seminorms (4.8) form a base 
for the topology of %(G), our lemma is proved. 

LEMMA 10. The map f -+ A is a continuous map from (̂G} into % (G). 

PROOF. Let be an arbitrary continuous seminorm on 6 (G). Since dimu, 
dimrl, and dimr2 are bounded by polynomials in 101, [qj, and 1721 respectively, 
we can use Lemma 9 to choose integers mi mi, m2, n such that for any a1 in 
LUG), 

. (1 + Jrl 12)"1 - (1 + lr212)m2 

Therefore, for any f in C r ( G )  

by (6.10). Here 
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Therefore 

Let T be the double representation (r1, r2) of K. Then by (5.6) there is a ip in 
LL, with 11ipl[^f = dimu, such that the last expression in the above inequality is 
bounded by 

Now if k is in K ,  

Wk)\  = Wl)I  = MM = ( d i m W 2 .  

Therefore, by (5.5), 
n 

(dim u)-1/2 \ (&) ~ ~ ( i p  : x) 1 

<-L lpo(H(xk))ln . e - p ( H ( x k ) )  dx. 

Assuming the proof of Lemma 11 for the moment, we see that 

By (4.2), the right-hand side of this inequality is bounded by 

r-" - N(ro) . S U ~ ( ~ ( X ) - ~  (1 + U ( X ) ) ~ + ^ ~  1 f (gl; x; g2)l). 
xeG 

We have dominated 11/1111 by a continuous seminorm for g ( G )  on f .  Since 
C r ( G )  is dense in g (G) ,  this is enough to prove Lemma 10. 

We still must prove Lemma 11. If x is in G, we can find kt, k in K,  and t in 
R such that x = k' - exp tHo . k. There exists a real number tic such that 

Now [3(g), Lemma 351 and [3(g), Lemma 35, Corollary 21 establish precisely 
that -t < t k  < t. Therefore, 
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Lemmas 8 and 10 show that the Fourier transform is a continuous map from 
g ( G )  into (̂d}. It will be more difficult to prove surjectivity. 

7. Theorem 3' and some elementary formulae. Let a = (ao,al)  be an 
element in There exists a unique function j  in L2(G) such that f = a. 
We wish to find a formula for j .  j  is the unique function in L2(G) such that for 
every g in C r ( G ) ,  ,. 

(The latter inner product is that of L ~ ( G ) . )  We shall write Y. to denote sum- 
n 

mation over all w, (q , ? ' I ) ,  ( ~ 2 ,  h). We write to denote summation over all u, 

. T I , & ) ,  (72,i2). 
Then (a, gl equals 

Let us assume that the integrals in the last expression are absolutely convergent. 
This is true for example if a is in W(G) .  Then we may take the integration on 
G outside. Define functions &o(x) and &l(x) by 

Then we have the formula 

Since the function g(x) is arbitrary we see that 

By definition of j(x),  we have the formulae 

(7.2) i0 = ao, i1 = G I .  

To prove the surjectivity in Theorem 3, we have to show that both &(a;) 

and &i (x )  are in W(G).  If h is in J^(R), the Schwartz space of R,  we shall be 
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If v is a continuous seminorm on g(G) ,  we will need to know that both v ( f o )  
and v ( f l )  are finite. Furthermore, we will have to determine the dependence of 
v ( f o )  and v ( f l )  on thevariables T I ,  rg, u ,  w, and h. 

It follows from the remarks of Â§ that the study of the functions fo(x) and 
f i  ( x )  is equivalent to the study of certain (r l ,  rg) spherical functions. To com- 
plete the proof of Theorem 3 it is enough to prove the following 

THEOREM 3'. Let r be in 82. 
(a) Let (f); be a r-spherical function of the form (5.1) corresponding to a rep- 

resentation ru with w in &. Then for each g l ,  g2 in 9, and real s, there are 
polynomials p, q such that 

sup x; g 2 ) / ? ( ~ ) 5 ( ~ ) - ~ ( 1 +  ~ ( x ) ) ~ !  < P ( I w I ) < ~ ( I ~ I ) .  
XPG 

(b) If u is in ^M, and ip is in Lz,  with \M\M = 1, let E ~ ( i p :  x )  be the 
Eisenstein integral as in (5.6). Then for each g l ,  g2 in 9, and real s, there exist 
polynomials pi, pi, q, and an integer N ,  such that whenever h is in .Y(R), 

sup h(A)E~(ip:gi;x;g2)/Ãˆ(u,A)dA~~(x)-~(l+u(x))~ 
XCG \L 

We shall devote most of our remaining work to proving Theorem 3'. 
Let S?{G\ and <9\{~)  be defined analogously to L;(G) and (G) respec- 

tively, but without the symmetry condition 

. al(ut , -A)=~u(A)al(u,A)~u(A)- l .  

Now suppose that a1 is in Z 2 ( G ) ,  and that 

is absolutely convergent. This is true in particular if a1 is in y\{G\. Then we 
define &(x)  by the equation in (7.1). 

Suppose that for each a in gM, {a;,,} is another orthonomal basis for Xu such 
that each a:,, transforms under ru according to the irreducible representation r 
of K. Then it is not hard to show that the expression 

is also absolutely convergent and equal to 61 (x) .  Define 
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Then, using the above remark we can show that 

61 (x) = &l (XI. 

Then by (7.2), i1(u, A) = b(u, A). Therefore, we have the formula 

Now let r = (r1, r2) be an irreducible double representation of K. It is of 
interest to define ~ourier transforms for r-spherical functions on G. 

Choose 01,. . . , 0,. in ZM such that 

L7 = LL, a3 . . - e LLr. 

Suppose u is a function which maps R into L7. Then if A is in R,  write 

where ui(A) is the projection of u(A) onto L&. Let us say that u is in L ~ ( R ;  r )  
if ui is in L2 (R, /?(ui, A) dA) (gi L& for each i, 1 < i < r. Then if u is in L~ (R; r) ,  
define 

The limit in this formula is taken in the topology of L2(G) g> V7, where V7 is the 
space on which r acts. Then 6 is a r-spherical function which is square-integrable. 

On the other hand, if 6 is a square-integrable r-spherical function, define a 
function (f> in L2(R; r )  as follows. If ip is an arbitrary element in L7 then 

Here GN is any increasing sequence of compact sets whose union is G, and the 
limit is taken in the topology of L2(RS r). 

Using the formulae (5.6) and (7.3), and recalling the definition of M(A), it is 
possible to derive the following formula for any function u in L2(R; r): 

We shall use this formula in 513. 

8. Basic estimates for derivatives. We open this chapter by stating a 
lemma of E. Nelson. 

LEMMA 12. Let TT be an  irreducible unitary representation of G on  a Hilbert 
space S f .  Fix g i n  9. Then there are an  integer mg 3 0 and a constant C ,  both 
independent of v, such that for every $ in P 

Here wg and we are the elements i n  2 and ZK respectively, defined i n  56. 

For a proof of this lemma see [7, Lemma 6.31. It turns out that my can be 
taken to equal the order of g. 
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Suppose p is the conjugation of gc with respect to the compact real form 
u = S + ip. We define a Hermitian scalar product on gc by 

(X, Y) = -B(X, pY), X, Y &. 

We obtain a Hermitian inner product on % by restriction. This permits us to 
define an inner product on the dual space of %. If A is a complex valued linear 
functional on %, we write IAI as the norm of A with respect to this inner product. 

Suppose TI and 72 are in &. Write r as the double representation (7-1, 72) of 
K. Then 

T\=lrll+Ir21, d i m r = d i m r l - d i i r 2 .  

LEMMA 13. Let v be an irreducible unitary representation of G on the Hilbert 
space Z ,  with infinitesimal character X A ,  for A a linear functional on ~ c .  Sup- 
pose gl and 92 are in 9. Then there exist polynomials p and q, independent of 
A, such that the following (somewhat complicated) property is satisfied: 

Whenever $1 and $2 are unit vectors in 2 that transform under V\K accord- 
ing to the representations 7-1 and r2 in &, set f (x) = (@1,7r(x)@2). Then there 
are two sets, {^la: 1 < a < ti}, {^23: 1 < /3 < t2}, of orthogonal vectors in 
Z, and two sets {ria : 1 < a < ti}, {r23: 1 < /? < t2} of representations in & 
such that 

i )  (llQlall+ 11̂ 2311) < ~ ( 1 A l )  . q(Ir1). 
(ii) Qla and Q23 transform under V\K according to the representations 7-la 

and r23 respectively. 
( 3  (klal + 17-231) < q(\T[). 
(iv) t l  + t2 < q(Irl1. 
(v) f(91;x; 92) = EL1 E^l(Qla>^)^).  

PROOF. By Lemma 6, f (x) is differentiable. If QI = v(g*l and Q2 = 
((fa)@2, we have the formula 

By the last lemma, we can choose C and m such that 

However, $1 transforms under V\K according to 7-1. Therefore, by (6.8) and 
(6.11) we see that 

This last expression is bounded by polynomials in [ A [  and [rll. Similarly, llQ211 
is bounded by a product of polynomials in \\\ and lrl. 

Suppose that gl has order m. Let be the set of elements in SÂ of order 
less than or equal to m. is a finite-dimensional vector space, and there is a 
natural representation v of K on given by the adjoint map. 

Define a linear map from the vector space a @ Zw into Zm by 
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Zrn is a K-module under rIK, so SSm. flrn is a K-module. If X is in g, k is 
in K and <S> is in Zrn ,  then 

r(k)~r(X)<S> = lim r(k) - t^(r(exptx) - I) . <S>. 
t -KÃ 

This last expression equals 

Therefore, the following diagram is commutative: 

Therefore, since <S> transforms under W\K according to TI, the vector Q1 = 
~(~t)<S>l transforms under V \ K  as a vector in the space on which rl @ v acts. 
Then 

where the vectors {^la} are orthogonal to each other, and each qlff transforms 
under V\K according t o  some irreducible representation 71-iff of K that occurs in 
the decomposition of 7-1 <S> v into irreducible representations of K. 

Since (8.1) is an orthogonal decomposition, 

Also, we have the formula 

t < dim(ri <S> v) = dim rl - dim v. 

This expression is bounded by a polynomial in jrl 1 by the Weyl dimension for- 
mula. 

Now if qlff is not zero, riff occurs in the decomposition of 7-1 63 vo into irre- 
ducible representations, for some irreducible representation VQ of K occurring in 
v. Let A l ,  Ao, and Alff be the highest weights of 7-1, vo, and riff respectively. By 
examining the formula for the multiplicity of riff in TI 0 vo [5, Pg. 2621, we see 
that there is a nonnegative sum, p, of positive roots, such that 

Therefore 

(A1 + PK) + (Ao + PK) = (Am + PK) + (p + PK). 

Now B(Aiff + PK, p +PK) 3 0 since \ia + PK is in the positive Weyl chamber. 
It is then easy to show that 

if we recall the definitions of [riff I ,  lrl I ,  and \vo \- We have now verified conditions 
i)-(iv) for {^la} and {riff}. 
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We define collections {!I?20} and {no} the same way. They satisfy conditions 
i)-(iv). It is clear that 

The proof of Lemma 13 is complete. 0 

Suppose that TT equals T T ~ ,  a representation in the equivalence class of some w 
in &, acting on the Hilbert space <%. Suppose w = w(A) for some A in L'. The 
infinitesimal character of rW is XA,, where y is the element in Gc defined in $6. 
Furthermore, since Ady maps (-l)lI2b onto (-l)'I2q + ap, p(Ay) equals -Ay. 
Therefore 

If TT = T T ~ , A ,  for a in gM, choose a real linear functional {I on (-l)lI2q 
associated with a. The infinitesimal character of TTU,A is x-^-~A^,, , while p(p) = 
-{I and p(iApo) = iApo. Therefore 

9. Preparation for the main estimates. Suppose {(j)\: A e S', r e TA} 
is a collection of infinitely differentiable r-spherical functions. r indexes cer- 
tain irreducible unitary double representations r = (rl, r2) of K on the finite- 
dimensional Hilbert spaces Vr = Vri @ VG - A indexes linear functions from % to 
C. We have the homomorphisms Y\ : 2' + C defined in $6. We assume that 

z<f>\ = x~(z)<f>A, z 3. 
By IAI we shall mean the real number [-B(A, p(~))]1/2 as in the last section. We 
assume that for any gl, g2 in LZ? there are polynomials p and q such that for 
each x in G 

In [3(1), $271, Harish-Chandra has defined for each (K an infinitely differ- 
entiable function 0 = O i  mapping MAp into Vr. 0 is 7-spherical, where 7 is 
the restriction of r to M. Harish-Chandra shows that 0 vanishes if $1 is in 
L2(G) <S> Vr. We shall make two assumptions on the collection of linear function- 
als {A: A ^}. It then turns out that there exist polynomials p and q, and a 
number e > 0, independent of (A, r) ,  such that for each t > 0, 

We shall review Harish-Chandra's work and prove the estimate (9.2). 
Recall that 9Jt2lp is the universal enveloping algebra of mc+apc ; let 31 = 3M24 

be its center. In $6 we defined isomorphisms 
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where J and J1 are the elements in S(&), the symmetric algebra on &, which 
are invariant under W and Wl respectively. (We can regard Wl as the Weyl 
group of I& + apc acting on &.) J is contained in Jl. We have defined the map 

Let HA be the annihilator of (j>\ in 3, and let illA = 31 . yo(&). Let 37 be the 
quotient algebra 31/U1A. We can regard 37 as a complex vector space on which 
there is a natural 31 action. 

If (; is in 31, let (;* be the projection of <; onto 3:. Let 3i* be the vector space 
dual of 3;. Let % = Vr @ 3". Make % a double K-module by letting K act 
trivially on 3;*. Make it a 31-module by defining 

(Since 3; is a 31-module, there is a natural action of 31 on 3" obtained by 
taking transposes.) 

Let us examine the algebras J and Jl more closely, in order to obtain a basis 
of 3;. Such results appear in [3(g), 531. We identify S = S(&) with the algebra 
of polynomial functions on a*, the dual space of &. Let C(S), C(Jl) ,  and C( J )  
be the quotient fields of S ,  Jl, and J respectively. 

LEMMA 14.  If [w: Wl] = r,  then there are homogeneous elements vl = 1, 
v2,. . . ,vr in Jl such that Jl = xleie,. Jvi. Moreover, the elements vl,. . . , v,. 
are linearly independent over C(J) .  

For a proof of this lemma, see [3(g), Lemma 81. C(S)/C(Jl) and C(S)/C(J) 
turn out to be normal extensions with Galois groups W1 and W respectively. 

Now suppose that A is in a*. Let SA be the ideal of polynomial functions in S 
that vanish at A. Let JA = J fl SA and let JIA = Jl n SA. J = C @ JA is a vector 
space decomposition of J and the projection from J onto J/JA = C is given by 

Jl JA is an ideal in Jl and it is clear that 71 defines an isomorphism from 3; 
onto J1/ J1 JA. We shall obtain a basis of J1 / Jl JA over the complex numbers. 

We have the formula 

But JAV, is in Jl JA so {v, : 1 < i < r }  spans J1/J1 JA. On the other hand, 
suppose {ci} is a set of complex numbers such that the vector civj is in Jl JA. 
Now 

a i 

However, {vi: 1 < i < r }  are linearly independent over C ( J )  so each c* is in 
JA. This implies that each ci equals zero. Therefore, {v,: 1 < i < r }  is a basis 
for the vector space J1 / J1 JA. Let us regard Ji/ Jl JA as a Hilbert space with 
orthonormal basis {vl, . . . , v,.}. 
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Define elements ql = 1, m, . . . , qr in 31 by 

Then {q;,  . . . , q*} is a basis for 3;. Let {qT*, . . . , q**} be the dual basis 3;*. If 
we make 3;* into a Hilbert space with orthonormal basis {qT*, , . . , q,"}, we can 
regard 2  ̂as a Hilbert space. 

Define a function on M A p  by 

We define an automorphism ( + (' of 31 by 

(We are regarding 31 as an algebra of differential operators on MOAp.) 
If f is in C m ( M A p ) ,  v is in SCTSlp , m is in M ,  and a is in An, we can define 

f (ma; v )  even though M A p  may not be connected. If X is in m + ap, we just 
write 

d 
f ( m a ; X )  = - f (maexptX)\t=o. 

dt 
We extend the definition to all v in the universal enveloping algebra 97!2tp in 
the usual way. Since M A p  = Z ( A ) M O A p ,  and since Z ( A )  and MOAp commute, 
any c in 31 can be regarded as a left and right invariant differential operator on 
C m ( M A p ) .  

For m in M and a in An, define 

4, (ma)  = d(ma)o\(ma; q;). 

Define 

If ( is in 3i, choose complex numbers {cij : 1 < z < r }  such that the differential 

are in UIA.  Then define 

t , ( m a )  = d(ma)& (ma; ui (0') Ã q;* . 
lei^? 

$ and !PC are functions from M A p  to the vector space T. Also, and QC are 
both T-spherical functions on M A p ,  since elements in 31 act on C m ( M A p )  as 
left and right invariant differential operators. 

LEMMA 15.  Let( be in31 .  Then form i n M  anda i n A p ,  

PROOF. We have the equation 

$(ma; () = y^ d ( m a ) G  (ma; ('qi) 8 q? - 
a 
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3 

Therefore, $(ma; <;) is equal to 

which in turn equals 

Since ui(<;)* = 0, we have the formula 

But {Q"} is a dual basis of {$}, so the matrix of the linear transformation c 
acting on 3T* is the transpose matrix of its action on 3T, with respect to these 
bases. Therefore, 

This proves the lemma. 0 

Clearly Ho is in 31. Write tH0 as 52. 

COROLLARY. For any m in M ,  a in Ap, and T in R, we have the integral 
equation 

. expTHo) = e T r ( H ~ ) q m a )  + e(T-t)r(HO)Q(ma a exp tHo) dt. r 
PROOF. If t is in R, we see that 

d - (e-tr(Ho)$(ma - exp tHo))  
dt 

= e- tr (H~)@(ma . exp tHo; Ho) - e-tr(HO)I '(~o)$(ma - exp tHo) 

= e-tr(HO)Q(ma - exp tHo). 

Integrate the above equation by $: dt. We obtain the formula 

e - T r ( H o ) $ ( m a e x p ~ ~ o )  - $(ma) = e-tr(HO)Q(ma . exptHo) dt. r 
Multiply by eTr^O). This proves the corollary. 0 

Now, fix c in 31. We would like to obtain an estimate for Qc(ma). To do this, 
we must first express the differential operators ui(c) in another form. 

By Lemma 14, there exist elements w n  in J such that for 1 < i < r, 
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Now, the coordinates of 7i (<)vi relative to the basis {vj} of J1/ Jl JA are clearly 
{wij(A) : 1 < j < r}. Then the element 

For each i and j, (wij - wij (A)) is in JA.  Let z$ be the differential operator 

Then 

1 3 
Let u$ be the differential operator 

uij is an element of 93, and it is independent of A. Recall that 6 is the Cartan 
involution of flc. In the appendix of (3(1)] it is shown that there exist elements 
Nij in tic and gij in 9, both independent of A, such that 

LEMMA 16. For fixed f in 31 and h in q, there are polynomials p and q 
and an integer d, independent of (A, T), such that for every t 0 

PROOF. We have the equations 

Since z; is in ilA, the annihilator of $1, this last expression is equal to 

e t p ( H O ) ~ e x p  ~HO;  ht$uij) â‚ r$* 
i j  

= x e t p W & ( e x p t ~ o ;  uijhtrf,) Ã fl 
. . 
1] 

= x etp(HO)&(expt~o; 6(Nij)giji);ht) Ã q r .  
i j  

If N is any vector in tic, N is equal to Eagp Xa, where {Xa} are vectors in 
flc such that [Ho, Xa] = a(Ho)Xa. But if a is in P+, 
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But e-t*O) equals either e-* or e-2t. The lemma then follows from (9.1) and 
(4.1). a 

Recall that oÃ = Lep Ha. In particular, oÃ is in S. For the rest of this section 
we make the following assumption. 

Assumption 1. For each A in 8, (^(A) is not equal to zero. 
We would like to find the eigenvalues of the linear transformation Ho acting 

on the vector space J ~ ) J ~  JA. We also want to find the norms of the projections 
of J1/ J1 JA onto these eigenspaces. (These are norms as operators on the Hilbert 
space J1 / Jl JG these projections are not necessarily selfadjoint.) 

The field C(J l )  is an extension of degree r of the field C(J).  Therefore the 
trace, trc( Ji)/c( J), is a function from C(Jl)  into C(J). Define an element vi in 

C(J1) by 
trc(J1)/c(J)(~'~j)  = 6;, 1 < i, j < r. 

(6; = 0 if i # j ,  6f = 1.) Recall that 0)'" = LePM HO- Define 

D=UJ/^, r ' = D v Z .  

Then D and r' are both in C(S). In [3(g), Lemma 121 Harish-Chandra shows 
that r' is actually in S. 

Now let {sl = 1 , ~ 2 , .  . . , sr} be a set of representatives of right cosets of Wl 
in W. If v is in C(Jl) ,  then 

However, x ri(skA) - vj(skA)/D(skA) = q. 
l < k < r  

Define A,fc = ri(SkA) and Bkj = v~(S~>)/D(S~A). Then A = (Aik) and B = 
(Bkj) are r x r matrices, and AB = I. Define 

(9.3) f a i l  ' x rk(s i~)vk.  
k 

Then { f s i ~  : 1 < i < r} is a base for Jl/ Jl JA. Also 

(9.4) j = y > j ( s k ~ ) / ~ ( s k . ~ ) ) f ~ ~ ~ .  
k 

LEMMA 17. Ifp is in Jl 

p f s , ~  = p(siA)fa,A (mod JI JA). 

The proof of this lemma is in [3(g), Lemma 151. 

In particular, the operator p on J\I Jl JA is semisimple. Since Hy is in Jl , the 
lemma tells us that the set of eigenvalues of Ho is 

(9.5) {WO),  ~(s^Ho) ,  . . . , ̂;lHo)}. 

We can lift Jl to 31 by 7 ~ 1 .  Then if $Â is in 31, we have an analogous statement 
to Lemma 17 for the eigenvalues of the operator I?($Â¥ on K .  In particular, the 
eigenvalues of I'(Ho) are also given by (9.5). 
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Let { E L  , . . . , E L }  be the projections in J l / J l  JA relative to the direct de- 
composition 

J i / J i  JA = C j s , ~  @ .  . - @ C j s , ~ .  
Define 

E ~ ^ W ~ ~ > ( - ~ ~ E : ~ - X ) * ,  i ^ l ^ r ,  
where Id stands for the identity operator on Vr,  and the star denotes the vector 
space transpose operator. Then the operators { E s l }  are the projections of % 
onto the eigenspaceg of I'(31). 

If u is a vector in %, there are elements u l ,  . . . , ur in Vr such that 

u = (u1 (2) $*) + - - - + (ur (2) $*). 

Denote ui by t i (u) .  

LEMMA 18. There is a fixed set of elements {?-: 1 < i ,  j , l  < r }  in  S ,  
independent of r and A, such that for any u in % 

r 

t * (Es ,4  = y > ; , ( ~ ) / i i ( ~ ) ) t j ( ~ ) .  
j=l 

PROOF. (9.4) implies the formula 

By (9.3) this last expression is equal to 

(v,(slA)/D(sl*)) + E ' ( s 1 A ) v j .  
j 

Now D(si\) equals ( a ) ( A ) / P ( A ) ) & ,  where e equals either 1 or -1. This is enough 
to prove the lemma. 0 

The set of eigenvalues of either the linear transformation Ho on J1/ J1 JA or 
I'(Ho) on % is given by (9.5). Let Q+, Q-, QO be the subsets of these eigenvalues 
with real parts 'greater than, less than, or equal to zero, respectively. Let E ^ ,  
E'-, E'Â¡ and E+, E-, EO be the corresponding projections in J f i  JA and Z 
respectively. 

Let E' be the minimum of the absolute values of the real parts of the numbers 
in the set Q+ U Q-. (Set E' = 1 if Q+ U Q" is empty.) 

For the remainder of this chapter we make the following assumption. 
Assumption 2. The real parts of all eigenvalues (9.5), as A ranges in 8, 

generate a lattice in R. In particular, E' is bounded away from zero independently 
of A in 8. 

LEMMA 19. The norm of Ho as an operator on J ~ / J ~ J A  is bounded by a 
polynomial in \\\. 

PROOF. {v l , .  . . , vr}  is an orthonormal base for J l / J l  JA. By Lemma 14 there 
exist elements w,j in J ,  independent of A, such that 
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This means that 

Hov, z W,I ( A ) v ~  + * - .  + wir(X)Vr (mod Ji JA).  

Now wij(A) is a polynomial function in A, so it is bounded by a polynomial in 
[Al. Since {v,} is an orthonormal basis for J1/J1  JA,  the lemma follows. 0 

LEMMA 20.  Choose a complex number $ in the resolvent set of the operator 
HO. Let d be the distance from f to the spectrum of Ho. Then there are poly- 
nomials pl and pi, independent of $ and A, such that the norm of the operator 
($ - Ho)-l is bounded by d ^ p i  ([$l)p2(lAl). 

PROOF. By Lemma 19 the matrix W ( A )  = {wij(A)} of the linear transfor- 
mation Ho with respect to the orthonormal basis {vl , . . . , vr}  of J1 / Jl JA has 
entries which are bounded by a polynomial in /A[. Let u,  = ($ - Ho)ui. Then 
f o r l < i < r  

(9.6) U ,  = $v, - x w , ~ ( A ) v ~ .  
3 

We can solve the equations (9.6) to obtain the formula 

where pi,($, A )  are polynomial functions of $ and A. In particular, each pij($, A) 
is bounded by a polynomial in ]$I and IAI. Now 

Therefore 
Idet($I - w(A))I-l e-" 

Since ($ - H o ) ' u j  = v j ,  our lemma is proved. 0 

Let E be the minimum of 4 3  and 113. 

LEMMA 2 1 . There exists a polynomial p such that 

g - t r ( H o ) ~ + j  + l e t r (Ho)~- i  < p( \~[)e-2Et ,  t 3 0 ,  

e t r ( H o ) ~ O l  < p(lAl)e6t, t â R. 

PROOF. It is clearly enough to prove the same statements for the linear 
transformations e-tHo El+, etHO El-, and etHO El0 on the Hilbert space J1/ J1 JA. 

Let I'+, r ,  and r0 be closed curves in the complex plane that wind around 
the corresponding sets of eigenvalues Q+, Q ,  and QO in a positive sense, but 
which contain no other eigenvalues. By looking at Assumption 2 and the eigen- 
values (9.5) we see that the curves can be chosen to satisfy the following condi- 
t ions. 

(i) I$[ is bounded by a polynomial in IAI for any $ on one of the curves. 
(ii) The arc length of each of the curves is bounded by a polynomial in 1 Al. 
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(iii) If < is on one of the curves, the distance from < to the spectrum of Ho is 
not less than e. 

(iv) If t is a complex number, let tR be its real part. Then 

tR 3 2e for $ on r+, 
tR < -2.5 for < on r-, 

< e for < on rO. 
From the spectral theory for a linear transformation on a finite-dimensional 

vector space we have the formulae 

Therefore if t 3 0 

le-tHO~'+l < / lt-tcl . I(( - Ho)-'I d$. 
r+ 

By Lemma 20 and conditions (iii) and (iv), this last expression is bounded by 

Therefore by conditions (i) and (ii) there exists a polynomial p such that 
l e - t H o ~ I +  < e - 2 ~ t .  I P(IAl), t 3 0. 

The inequalities for 1etH0E1\ and \etHOE'o\ follow in the same way. 
Write E* as @ and EO$ as QO. 

LEMMA 22. For any fixed h in 2fp there are polynomials p and q such that 
for any T 3 0 

PROOF. r(Ho) and E commute. Therefore by the corollary to Lemma 15, 
$ (exp THO; h) is equal to 

eTr(Ho)$-(l; h) + e(T-t)r(Ho) . E-Q(expTHo; h) dt. r 
The first term of this expression is easily handled with the help of (9.1) and 
Lemma 21. On the other hand, Lemma 21 tells us that 

Our lemma then follows from Lemma 16. 0 



66 J. G. ARTHUR 

LEMMA 23. For any fixed h in 2lP there are polynomials p and q such that 
for any T 3 0 

I@+ (expTff0; h)l < p( I~ l )q ( l r l ) e -~~ .  

PROOF. By means of a change of variables we can rewrite the integral equa- 
tion of the corollary of Lemma 15. Then for a in Sip and t in R 

@(a; h) = e-Tr(HO)@(a - expTHo; h) - e-tr(HO)XP(aexpt~o; h) dt. r 
Operate on both sides of this equation by E+,  and let T approach oo. Now 
e-Tr(Ho) E+ 1 decreases exponentially in T. However, by (9.1) and (4. I),  
\@(aexpTHo; h)\ is bounded by a polynomial in T. Therefore, the first term 
of right-hand side of the above equation approaches zero. We have the formula 

@+(a; h) = - e-tr(HO)~+XP(aexpt~o; h) dt. !: 
Let a equal expTHo. We obtain the equation 

a+ (exp T H ~ ;  h) = - e-(t-T)r(HO)~+f(exp tHo; h) dt. I: 
Now le-(t-T)r(HO)~+)-is bounded by a polynomial in IAI if t 3 T. Our lemma 
then follows from Lemma 16. 

For a in An, m in At, define 

(The integral converges absolutely by Lemmas 16 and 21.) It is clear that for 
any h in Sip 

e(ma;  h) = $'(ma; h) + e-tr(HO) EOXP(ma exp tHo; h) dt. Jo 
From the corollary of Lemma 15 we obtain the formula 

e(ma)  = lirn e-^-^@(ma ~ X ~ T H ~ ) .  
T+oo 

Therefore 

(9.7) e(maexptH0) = e^^Q(ma), m ? At, a e An, t R. 

Since Q is 7-spherical, and since both the left and right actions of r(m) on 
commute with EO, we have the formula 

By Lemma 15 this expression is equal to 

r(<)e(ma) + lim e-tr(HO) E0XPC (ma . exp tHo). 
t-tm 
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Now, the last term in this formula approaches 0 as t approaches oo by Lemmas 
16 and 21. Therefore 

LEMMA 24. For any fixed h in Sip there are polynomials p and q such that 
for any t > 0, 

e- tr(Ho)$o(expt~o;  h) - e (1 ;  h)\ < p(\X\)q(l~\)e-2Et. 

PROOF. Using the definition of 8 and the formula (9.7) we see that 

e(1;  h) = e - T r ( H 0 ) 8 ( e x p ~ ~ o ;  h) 

= e-Tr(HO)^fexp THO; h) + e-tr(HO)~O@(exp tH0; h) dt. r 
The lemma then follows from Lemmas 16 and 21. 0 

COROLLARY. For any fixed h in Sip there are polynomials p and q such that 
for any t 3 0 

PROOF. We see that 
l$(exptHo; h) - e(exptH0; h)\ 

< I@+(exptHo; h)l + I@-(exptHo; h)l 

+ letr(Ho)~Ol . ~e-tr(Ho)$o(expt~o; h) - e(1 ;  h)[. 

The corollary then follows from Lemmas 21, 22, 23, and 24. 0 

It  is clear from the definition of 8 that for any a in An 

For a in An, and 1 < j < r,  let Oj(a) equal the vector tj(Q(a)). Then 

Write 4 as 6. 

LEMMA 25. For any nonnegative integer n there are polynomials p and q 
such that for any t > 0 

PROOF. The expression 

is equal to 
ti(Q(exptH0; Hg) - e(exptH0; HS) ) .  

Now for any u in z, ltl(u)l < lul. Our lemma then follows from the corollary 
to Lemma 24. 0 



68 J. G .  ARTHUR 

LEMMA 26. If 41 is in L2(G) Wr, 6 is equal to zero. 

PROOF. The function D(t) was defined in 53. Let 

S+ is compact. Let R+ = {t 3 O}. Break up the integral 

into the sum of the integral over S+ and the integral over R+ - S+. The integral 
over S+ is finite since $1 is continuous. Now 

By (3.5) this last integral equals (21~)  f,, l<A (̂x)12 dx, which is finite. Therefore, 

Therefore, by Lemma 25 
00 

6(exptHo)\- dt < oo. 

Now @(exptHo) = etr^e(l). But by (9.10), @(I) is nonzero only on the 
subspace of spanned by eigenvectors of I'(Ho) that are associated with purely 
imaginary eigenvalues. Therefore, 6 must be zero. 0 

10. Completion of the proof of Theorem 3'(a). We would like to ap- 
ply the results of 59 to the collection {&(a:): w ? &, r E e} of r-spherical 
functions which are derived from the matrix elements of square-integrable rep- 
resentations. That is, 

in the notation of (5.1). Here 7~~ is a square-integrable representation in the class 
of w, acting on the Hilbert space ,%. If r = (rl, r2) then and @2j are unit 
vectors in that transform under ~ J \ K  according to rl and r2 respectively. 

and {$2j} are orthonormal bases for the spaces on which rl and r2  act, so 
{ti, <Ã G} is an orthonormal base for Vr, the space on which r acts. Therefore 
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From the Schur orthogonality relations on G ,  (2.7) and (2.8), we see that 

Now we need to establish the estimate (9.1) for our collection {&}. Fix gl, $2 
in 9. We use (10.1) and Lemma 13 to obtain an expression for & ( g l ;  a;; g2). We 
obtain polynomials p and q, orthogonal sets of vectors {*la}lsiafti ,  
{%}1i^ t2  in >̂, and representations { ~ \ a } \ ^ ~ t ~ ,  { ^ p } ~ ~ p &  in %- that 
satisfy the conditions of Lemma 13 and such that 

Suppose w = w(A) for some A in L'. Then the infinitesimal character of v̂  is 
x ~ .  (8.2) tells us that [Ay l 2  = lw12. Therefore from (10.5) and the conditions 
of Lemma 13 we obtain the inequality 

for any x in G.  From (2.8) and (10.5) we also see that 

(10.7) l g 1 ;  I; g2)12 dX < !s(u)-l . P ( I W I )  . ? ( I ~ I ) ' ,  x G. 

LEMMA 27. There are polynomials p and q such that for any x in G, 

PROOF. Recall that rl and rz denote the number of roots in P+ which when 
restricted to ap are respectively equal to po and 2po. Then p(Ho) = $ ( T I  +2r2). 
Also 

B(Ho,  Ho) = 2(r1 + ̂ )  = r2. 

Define D ( t )  =.in (3.5). Define a set S by 

S is bounded. Define a positive infinitely differentiable function q on R such 
that for t not in S 

f i )  = $ e 2 1 t l ~ ( H ~ ) .  

Let h ( t )  be the function 

^.(exp tH0) - ql^ ) .  

Clearly h ( t )  is infinitely differentiable. We wish to show that hi t )  is iny{R)@Vr, 
the tensor product of the Schwartz space of R with Vr , the Hilbert space on which 
r acts. 

For any nonnegative integer n 
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There exist constants (7' such that 

for all t not in S and for 0 < i < n. Therefore since $i2(t) is differentiable, 
there is a constant Cn such that 

for all real t and for 0 < i < n. Now <%, is in {̂GI 8) Vr by [3(1), Lemma 65, 
Corollary I], so for each s there is a constant C1. such that 

I<%,(exptHo; Hi)[  < C$ - S(exptH0) - (1 + u ( t H ~ ) ) - ~  

for t in R and 0 < i < n. But 

1 +u(exptHo) = 1 +r\t\, t E R. 

BY (4.1) 
l(exptHo) < c(l  + r~ t j )~e- l*^~) ,  t ? R. 

Therefore for all real t, 

This proves that h is in 9 ( R )  8) Vr. 
We shall take the Fourier transform of h(t) on R.  Write 

00 

h(s) = [ h(t)e-'" dt, 8 6 R. 

For any real t 

If we write h' for the derivative of h, this last expression equals ( r ) l l 2  jlh+ 
which in turn is equal to ( ~ r ) - ~ / ~ I l h  + h'\[2. Therefore for any real t 

< r-1/2(llhl12 + IIh1ll2). 

We have used the fact that all the above integrals are absolutely convergent. 
This is true because both h and h are in 9 ( R )  8) V,-. 

We see that it is necessary to estimate both [lhl12 and llh'j12. Clearly llhl12 is 
equal to 

l & ( e x p t ~ o ) 1 2 v ( t ) d t + /  I.~,(exptffo)l'l(t)dt. 
R-S 
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Now q(t) is bounded on S, so by (10.3) there is a constant Cl independent of w 
and r, such that 

On the other hand, 

By (3.5) this last integral equals 

This expression equals (!)/?((*/)' by (10.4). Since /?((*/)-' is bounded indepen- 
dently of u, by Lemma 3, 11 hll2 is bounded independently of w and r .  

Now we shall estimate llh'l12. First of all we need a bound on the expression 

For any x in G we have the following formula by (10.5) 

where {*la}, {*2o}, ti and t2 satisfy the conditions of Lemma 13. Define 

By (10.7) and Lemma 3, there are polynomials pi and ql such that 

Let ~ o , g  be the double representation (ria, ryg) of K. As we did in $5, we can 
associate a ra,o-spherical function to each fO. (Unlike the situation in $5, 
*la and !42@ are not of norm 1.) Formula (10.2) and the Schur orthogonality 
relations, (2.7) and (2.8), can be used to derive 
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Using this and formulas (10.2) and (3.5), we obtain the following inequality: 

/ l/a,,(exp tffo)12 . lD(t)l dt 

= dim ria . dim 7 2 ,  - kxK L I4a,dki  . exp t f fo  . k2)12 * [D(t) l  dt dkl dk2 

= ( 2 / c )  dim ria - dim ~ 2 ,  - 

= ( 2 1 ~ )  dim ria - dim 7 2 ,  - ] ja,,(x) j 2  dx. /a 
Now the dimensions of ria and r̂ g are bounded by polynomials in lrlal and 
 IT^^^, which in turn are bounded by polynomials in lrl by Lemma 13. Therefore 
there are polynomials p2 and 92 such that 

Therefore 

(2/c)pi( lwl)  . ~ 2 ( b l )  - gi(lr1) .92(1~1).  
We can now estimate llh'l12. This norm is the sum of the following two ex- 

pressions: 

There is a constant c2 such that 

Therefore the second expression is bounded by c2 1 1  h 1 1  2. We break up the integral 
in the first expression into integrals over R-S and S. The integral over S causes 
no problem because q ( t )  is bounded on 5, and by (10.6), l(d/dt)q5;(exp t Ho)l is 
bounded by a polynomial in lwl and lrl. On the other hand, 
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By (10.8) this last expression is bounded by a polynomial in \w] and [ T I .  Therefore 
there are polynomials p3 and 93 such that 

We have now shown that there are polynomials p4 and 94 such that 

There is a constant 03 such that 

Also, by (4.1) and (4.3), 

Therefore, we can choose polynomials p and q such that 

However, each x in G is of the form kl . exp tHo - k2 for kl and k2 in K and t in 
R. Therefore 

1^)1 = I~l(fcl)^(exptHo)~2(k2)1 = l^(exptHo)l 

< P(H)  . q(Ir1) . E(exptH0) 

= ~ ( 1 ~ 1 )  q(M) . 5 ( ~ ) .  
This proves our lemma. 0 

COROLLARY. For any 91 and 92 in 9 there are polynomials p and q such 
that 

1̂ (<71; x; g2)l < P(l^l) . <?(IT[) - 5(4, a; G. 

PROOF. By (10.5) we have the formula 

Let <j)a,g be the  spherical function associated with (!klct,7ru(x)!k2~). 
Apply Lemma 27 to <j)a,O. The proof of the corollary then follows from the 
conditions in Lemma 13. 0 

This corollary verifies the inequality (9.1) for our collection {(K.,}. 
Each A in LL is regular, so Assumption 1 of 59 holds. To see that Assumption 

2 is valid, we must look at the eigenvalues of the linear transformation I'(Ho) 
defined in 59. (I'(Ho), of course, depends on w.) We see from Lemma 17, using 
the notation there, that the set of eigenvalues of I'(Ho) is equal to 

{(si\, Ho): A Lb, 1 < i < r}. 

Assumption 2 then is established by the following lemma. 
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LEMMA 28. {(si\, Ho): A ? Lb, 1 ̂ . i < r} is a set of real numbers which 
generates a lattice in R. 

PROOF. Any A in Lh assumes real values on the vector space up + (-l)'l2@. 
Furthermore, any element in W maps the real vector space up + (-l)1/2ag onto 
itself. (si\, Ho) is equal to \ { s .  HO), which is then a real number. 

Let & be the lattice of functions from dc into C generated by the positive 
roots P. & is invariant under the action of W. If p is in G, the real number 
(sip,, Ho) is an integer because for any a in P, a[Ho) is either 0, 1, or 2. But 
&, is of finite index in Ly since G has finite center. This proves the lemma. a 

We have shown that we can apply the results of 59 to our collection {&}. By 
Lemma 26, the function 0 defined in 59 is zero. Then by Lemma 25 there are 
polynomials p and q such that 

l&(exptHo)l < p(Iw1) . q(Ir1) - e-^^e-^ , t 3 0 .  

Therefore, for any s 3 0 there are polynomials p and q such that 

l&(exptHo)l < p(Iw1) . q(Ir1) - e-tp(Ho)(l + ~ t ) - ~ ,  t 3 0. 

But for t 3 0 we have the formulae 

e-tp(Ho) < Z(exptHo), 1 + u(exptHo) = 1 + rt. 

Now each x in G is of the form kl . exp tHo . k2 for t 3 0 and kl and k2 in K. 
But <%, is r-spherical and 5 and a are bi-invariant under K. We have proved 
the following lemma 

LEMMA 29. For any x in G 

l^(x)l ^ P ( H )  . <?(Id) - E(x)(l+ 
COROLLARY. For any gl and g2 in 9 there are polynomials p and q such 

that for any x in G 

l^(g1; x; g2)l <S ~ ( 1 ~ 1 )  .<?(Irl) .5 (x) ( l+  U(X))-~.  
PROOF. The proof follows from Lemma 29 in the same way as the corollary 

to Lemma 27 followed from Lemma 27. 0 

We have proved Theorem 3'(a). 

11. Application to the continuous series. Let r be an irreducible unitary 
double representation of K on the Hilbert space Vr. Recall from 55 that 

Lr = @ L. 
<'â‚ 

is an orthogonal direct sum. For any fixed r, Li = 0 for all but a finite number 
of a. 

We would like to apply the results of 59 to the collection {E^7,: x)} of 
Eisenstein integrals. A is to range over the nonzero reals, and r and a will range 
over and HM respectively. $: will be any unit vector in Li. 

We will have to check the estimate (9.1) and Assumptions 1 and 2 of $9 for 
our collection {EA(t,bg : x)}. Then we will examine the functions 6 = oA(t,bi : ma) 
associated with EA($:: x) in 59. 
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LEMMA 30 .  Fix gl,  g2 in  9. Then for fixed x i n  G, EA(t+!J7,' : 91; x;  92) can 
be regarded as an entire function of A. Also, there are polynomials pi, pa, and 
q, dependent only on 91 and 92, such that for every integer n 3 0,  for t 3 0 ,  and 
for A in C ,  

< e IA~I t  . P I ( I ~ I )  . P~(IAI)I . ~ ( I T I )  . S(exptffo) . f n .  

( W e  write AJ for the imaginary part of the complex number A.) 

PROOF. We have the formula (5.5): 

For fixed x ,  this is clearly an entire function of A. Derivatives of EA(~+!J~,': x )  by 
means of left or right invariant differential operators are entire functions in A. 

From (5.6) we obtain the formula 

where t1t2 is the dimension of the representation T.  We apply Lemma 13 to 
each of the functions (ali, T ~ , ~ ( X ) $ ~ ~ ) .  As a result we obtain polynomials p, q, 
orthogonal sets of vectors 

{ * 1 a : l < a ^ 1 } ,  { ^ I < ^ ^ }  

in %,A, and the representations 

{ r i a : l < a < t i } ,  { T t g : l ^ / 3 ^ h l  

in & that satisfy the conditions of Lemma 13. In addition 

For any (a,/?), the vectors *la and Ŝ128 transform under ~ ~ , ~ l ~  according 
to the representations qa and r^g respectively. Let ~ ~ , g  be the double represen- 
tation ( r ~ ~ , r ~ ~ )  of K. Fix a vector t + ! J a g  in L?'@ such that E^tpaQ : x )  is the 
 spherical function associated with the function (*la, x a A  ( x ) @ ~ ~ ) .  By (5.6) 
we have the inequality 

By (5.5), the right-hand side of this inequality equals 
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and this expression equals 

Now there is a real tk such that 

H(exptHo - k) = tkHo. 

Then [3(g), Lemma 351 and [3(g), Lemma 35, Corollary 21 tell us that 

141 Ã‡ t 3 0 ,  k e K. 

Therefore, if t 3 0, we have the two inequalities 

bo(H(ex~tH0 ' k))ln = Itkin an, 
and 

e( iAno-f ) (H(ex~tHo-k))  < e  / lA11t . 

Therefore, for t 3 0, we have the inequality 

= (dimra,^ l&,p(l)[  . elAx1* . tn - 5(exptHo). 

But \ipap(l) \ = [l$a,Q\\ M .  From the remarks in $5 we see that 

\\^a,0\\~ =   dim^)^'^ l l & l l  ' Il^2p[l. 

However, by Lemma 13(i) and formula (8.3), 

Now dimra,p and dim0 are bounded by polynomials in \Tap\ and 101 respectively, 
by the Weyl dimension formula. But by Lemma 13, \Ta,p\- tl, and t2 are all 
bounded by polynomials in IT[ .  The inequality in our lemma then follows from 
formula (11.1). D 

Recall the definitions of Gm, Ll, and Li from $2. Let L\ be the lattice of real 
linear functionals on (-l)lI2@ which is generated by the restrictions of roots of 
(a, a). Then L\ C Ll and is a lattice of finite index in Ll. Recall that 

;[P+] + 1 in Case I, 
q = ;(dim0 - dimt - rankg + rankt) = 

[P+] in Case 11. 

LEMMA 3 1, There is a 61 > 0 such that for any p in L\ the function 

A2q . u>(-p - iApo)-l 
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i s  holomorphic in the region IAII < 61. In addition, there exists a polynomial p, 
independent of p, such that for p in  L\ and lAIl < 61, 

PROOF. We have the formula 

Note that A2'J . G(-'p - i A u o ) l  is a meromorphic function of A. 
Since p is in L\, P ( p )  is not equal to zero. The numbers {lGrn(-p)/ : p ? L\} 

are actually bounded away from zero. This can be seen by an argument similar 
to that used in the proof of Lemma 3. 

If a is in P+, the number ( -p  - iApo, H a )  equals zero only if 

It is well known that the numbers {j l (Ha):  ji ? &} generate a lattice in R. 
Therefore, since % is of finite index in L l ,  the numbers 

generate a lattice in R. Let ~ e c  be the positive generator of this lattice. Put 

& = inf ( i e  ). 
a?P+ 2 

Then for any a in P+ and any p in L\, either 

or 
lp(^a) - ^ ( ~ a ) - l I  -1. 

In either case, the function 

is holomorphic in the region lA11 < 61, and it is bounded independently of p by 
a polynomial in IAI. Our lemma follows from the fact that 29 3 [P+]. 

COROLLARY. If p is i n  L\ and A is not equal to zero, then G(-p - iApo) is 
not equal to zero. 

LEMMA 32.  The real parts of the set 

of complex numbers form a lattice i n  R. 

PROOF. The real part of ( -p  - iA.po, sHo)  is equal to - ( s l p ,  Ho). If p is 
in z, we can regard p as an integral sum of roots of (g, a). Then s l p  is also 
an integral sum of roots of (g, a). If a is a root of (g,a), a ( H o )  is an integer. 
Therefore - ( s l p ,  Ho) is an integer for any p in L\. Our lemma follows from 
the fact that % is of finite index in L1. 
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Lemma 30, the corollary to Lemma 31, and Lemma 32 verify the estimate 
(9.1) and Assumptions 1 and 2 of $9 for our collection {E~(if}i: a ; ) } .  We define 
the function OA = ̂ A.(if}i: ma) from MAn to Vr as in $9. By Lemma 25, there 
exists, for every nonnegative integer n, polynomials pi, pa, q, and a number 
e > 0, all independent of A, a, and T, such that for any t 3 0, 

1 ( $) " [etf'yO) EA (if}: : exp t Ho) - 6~ (if}: : exp t ffo )I 
(11.2) 

12. The linear transformations c+(A) and c (A) .  Let us fix r in @ 
and a in gM. Let p be a real linear functional on (-l)lIaQ associated with a. 
Fix i f }  in Li.  We shall let A # 0 vary in R. Put 4~ (x) = EA($ : x). For m 
in M, and a in An, define aA(ma) = : ma), Q ~ ( m a )  = +A($ : ma), and 
eA(ma)  = QA(if} : ma) corresponding to the function 4 A  as in $9. 

The projections {E8} were defined in $9. Then 

Let A be the linear functional -p - iA.po. If $ is in 31, then by Lemma 17 

Recall that T was therestriction of T to M. By (9.8), QA is T-spherical. Let 
CIA,, = Esi eA. Since the actions of T(M) and F(31) on the vector space % 
commute, and since the QAi are eigenvectors of I?((), each OA,i is a T-spherical 
function. 

Now suppose for some s, that the linear functional sip,o does not vanish on 
Q. We will show that SA,! = 0. If <M is in 3 M ,  and m is in M,  by (9.9) and 
(12.1) we see that 

Thus if SA,, is regarded as a function on the compact group M,  it is an eigen- 
function of 3 M .  The infinitesimal character corresponds to the restriction of the 
linear functional si A = -si(p + iApo) to Q. Now iA(sifio) is real-valued on Q, 

so that si\ is not purely imaginary on Q. However, it is well known that the 
eigenfunctions of a compact Lie group have eigenvalues corresponding to purely 
imaginary linear functionals on a Cartan subalgebra. Therefore OAi must be 
zero. 

Then we can write 
eA = e,{- +ei 

92 and are the sums of those â‚¬IA for which the Weyl group element st, 
when restricted to aÃ§ is respectively the identity or reflection about 0. Now by 
(9.71, 

QKi(mexptH0) = e "̂ eA,t(rn). 

Therefore 
@(mexptHo) = e^Q^m), 

ei (m exp t Ho) = e-iAt ei (m) . 
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In the notation of 59, w) = ti ( 8 ~ ( m a ) ) .  Let 0: (ma)  = t l  ( e a m a ) ) ,  
0, (ma)  = t (Q'̂  (ma)) .  Then 

iAt + 0A (m exp t H O )  = e eA (m) + e-^t ~i (m) . 
Since the functions 0:(m) are 7-spherical, so are the functions a m ) .  This 
means that the functions @(m) are in Lr. 0: depend linearly on the $ in L i  
that we fixed at the beginning of the section. We write this as 0: = &(A)^. 
c+(A) and c ( A )  are linear transformations from LL into L7. Since Lr is an 
orthogonal direct sum of spaces Li ,  we can extend the definition of &(A) and 
c-(A) to all of Lr. Then &(A) are linear transformations of L7 into itself. 

For m in M and t in R we have the formula 

(12.3) ê ip : m exp tHo) = eiAt (c+(A)$) (m) + e - y c -  (A)$) (m). 
Suppose that the restriction of some si to ap is the identity. Then 04 is an 

invariant subspace of s,. It is known that s, is in W l  . Since {sl  = 1, s2, . . . , sr} 
is a set of representatives of cosets of Wl in W ,  si = sl = 1. On the other hand, 
if the restriction of an element sj to dp is a reflection, we can represent sj as the 
nontrivial element in the group M'/M defined in $2. Therefore there is only one 
such S j ,  which we shall denote by 82. Therefore, if $ is any vector in Li,  

c+(A)$)(m)  = t l  ( e ~ , l  ( m ) ) ,  

(c- (A)$) ( m )  = tl ( 8 4 2  (m))- 
Suppose that $ is an eigenfunction of in Lr with infinitesimal character \ f ,  
for some p. in L\. Then from (12.2), we see that the infinitesimal characters of 
c+(A)$ and c (A)$ are xf and x;, respectively. Here p.' = $ 2 ~ .  

For any p. in L\ let ^ ~ f ( p . )  be the set of all a in gM such that the linear 
functional associated to either a or a' is p.. It is clear that \a\ = \a'\ for any a 
in ZM. Therefore, for any 01, a2 in gM (p) ,  

(12.4) la11 = 1021. 

Let L i  be the direct sum of all L i  for which a is in gM(p.). From the above 
discussion we see that L i  is an invariant subspace of the linear transformations 
c* (A). 

We wish to prove some estimates for c+(A) and c ( A ) .  We need to examine 
the functions 

t w :  MAp -+ V7. 
From the definition in $9, 

(12.5) ti (*A ($ : ma))  = d ( m a ) E ~  ($ : ma; ui (Ho)'). 

We shall allow A to assume complex values. 

LEMMA 33.  Suppose $ is in L L  and \W\M = 1. Then for fixed t 3 0, 
ti(**($: exptHo))  is an entire function in A. Furthermore, there exist polyno- 
mials pi, pa, and q such that for A in C and t 3 0, 
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PROOF. It is clear from (12.5) and Lemma 30 that t , (Q~( ip :  exptHo)) is an 
entire function of A. 

Now, using the notation of the proof of Lemma 16, we see \ti(QA(e@Ho))I 
equals 

If t 3 0,  this expression is bounded by 

Now by Lemma 30 there are polynomials pi, pa, and q such that for any t > 0 

(this last inequality follows from (4.1)). Therefore \ti (% (exp t Ho)) 1 is bounded 

by 
e-( l - lA/ l t )  . ( 1  + rtId - P l ( I 4 )  . Pz(IAD . ̂ l ~ l ) .  

Let q be the integer in Lemma 31. 

LEMMA 34.  Let 6 be the minimum of 61 and i, where 61 is the positive 
constant in Lemma 31. Choose ip in Lg with \W\M = 1. Then i f  1 < i, j < r ,  
the function A2q . ti(eAj(ip: 1))  is analytic in the region \A[\ < 6. In addition, 
there exist polynomials pi, pa, and q such that in the region \AI\ < 8 ,  

PROOF. We have the formula 

We assume that Q A j  is not zero, so by our earlier remarks, j = 1 or 2. Then 
s j  Ho = E~ Ho where ej = 1 or -1. Es, is the projection of %$ onto the eigenspace 
of I'(Ho) corresponding to the eigenvalue ( s j ( f i  + iApo), Ho) where f i  is a linear 
functional in L\ associated with a. This eigenvalue equals iejA,  which is purely 
imaginary. Therefore Esj EO = E s j ,  so that 
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By Lemma 30 there are polynomials pi, p2, q such that 

By the last lemma we can also choose polynomials pi, pa, q such that for any 
t 9, 

e--^exp t ~ ~ ) )  1 
(12.7) 

s f .  pl(lul) . p2(lAl) . q(\r\) - e-t(1-21Arl) . (1 + rt ld.  

Therefore, the integral 

Jom -*At ti ( ^ A  (exp tH0))  dt 

converges uniformly for A in compact subsets of lAIl < and so is an analytic 
function of A in this region. Furthermore, by Lemmas 18 and 31, the matrices 
of the linear transformations A2qE8, relative to the basis {r);*, . . . , $*} have 
components which are analytic in [AI[  < 61 and bounded by a polynomial in A 
in this region. Therefore, the functions A2qt,(0A,j(l)) are analytic in the region 
[AI[  < 6. We see from (12.6) and (12.7) that it is possible to choose polynomials 
pi, p2, and q such that for lA11 < 6 

l A 2 q t i ( 0 ~ , j ( l ) ) !  s f .  ~ l ( k ~ ) ~ ~ 2 ( ~ ~ ~ ) ~ ~ ( ~ ~ ~ ) ~  

COROLLARY. Choose i f )  i n  L- with \M\M = 1. Then the functions 
A2qc*(A)if)(l) are analytic in the region lAIl < 6. Furthermore, there are poly- 
nomials p ~ ,  pi, and q, independent of a ,  A, and r such that for lA11 < 6 

PROOF. The corollary follows from the lemma if we recall that the functions 
c+ (A)i f)( l )  and c-(A)if)(l) equal t i  ( 0 ~ , 1  (1) )  and t l  (eA2 (1))  respectively. 

Therefore, c*(A)if)(l) is meromorphic in ( A I )  < 6, with the only possible pole 
being at A = 0. Assume it has a pole of order  if)) at A = 0. Let us agree to 
write N*) = 0 if c*(A)if) has no poles at A = 0. Then 

0 s f .   if)) s f .  29. 

The function 
g*( i f )  : A) = AN*(%* (~)i f)( i)  

is holomorphic in the region ] A I ]  < 6. For any A in this region we can write 

where f remains in some neighborhood of A, and a:, a f ,  a:, . . . are vectors in 
v r  . 

LEMMA 35 .  For every nonnegative integer n there are polynomials pi, p2, q 
such that in the region [AI ]  < 612, 

( i f ) :  A) s f .  Pl(If l1) - P2(IAl) - q(1rl). 1 
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PROOF. From (12.8), it is easy to show that 

where r is any curve in lfll < 6 that winds around A once. Choose F such that 
for any f on r 

(i) 612 < If - A1 < 1, 
(ii) 612 < If[. 

This is clearly possible since 6 < 1. Lemma 35 then follows from the corollary 
to Lemma 34. 

13. Relation between &(A) and o(o, A). Let r = (r1,r2) be an irreducible 
unitary double representation of K on the finite-dimensional Hilbert space Vr. 
Let 8 be the finite-dimensional vector space of endomorphisms of Vr. Let 3  ̂
and A%$ be the universal enveloping algebras of tc and dpc respectively. 

Let 3 = 9 @IS. S3 acts on Cm(G) by left invariant differentiation, so there 
is a natural action of 3 on Cm(G) â‚ Vr. 
Fix h in An such that h is not equal to the identity. Define 

ti and So are vector subspaces of 3. 
The following lemma generalizes [3(g), Lemma 21, Corollary 21. 

- - 
LEMMA 36. 3 is the direct sum of +a with % â‚ 8. 

PROOF. If p denotes conjugation of gc with respect to the compact real form 
u = t + ip, then the inner product 

converts gc into a Hilbert space. Let q be the orthogonal complement in gc of 
m<: + anc with respect to this inner product. Let qt = q fl tc, and let S(q0 be 
the symmetric algebra on qe. Let Qt be the image of S(qt) in S3 under the 
canonical mapping. (The canonical mapping is defined in [3(a), p. 1921). It is 
proved in [3(g), Lemma 21, Corollary 11 that every element in OS has a unique 
representation as an element of the form 

(The map b -+ bh, for b in 9, is the automorphism of OS which coincides with 
Ad(h) on g.) We shall then write S = C2t-q 3. Therefore 
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Let Up = { A d ( h - l ) X  123 1 - 1 1Ã r l ( X )  : X â qi}. Then it is easy to see that 
is the direct sum of ijIg + with 1Ã 8. However, in [3(g), Lemma 21, 
Corollary 21 it is shown that 

Therefore 

(P - l ^+^ t )  1Ã̂8 ( q ^ - ^ + ^ ) o ^  

It then follows that 
^+B2 =^+rn2. 

This proves the lemma. 0 

COROLLARY. For any b i n  9 there i s  a unique element G ( b )  i n  24, 1 Ã ˆ  such - -  - 
that b - G ( b )  is i n  the vector space t l S  + m. 0 

LEMMA 3 7 .  Let 6 : G Ã‘ Vr be an  infinitely differentiable r-spherical func- 
tion. Then for any b i n  S8 and any h in An, h not equal to  the identity, we have 
the formula 

6 ( h ;  b) = 6 ( h ;  6',,(b)). 

( I t  i s  clear what the notation <^(h;b(,(b)) means.) 
- - 

PROOF. If b2 is in t^t2, then it is clear that (f>(h; b2) = 0. If b1 is in ^SÂ¤: we 
shall assume that 

for some X in t and some Bl in S. Then 

This last term is equal to zero, since <b(kh) = r1(k)c$(h) for any k in K. This is 
enough to prove 'the lemma. 

If g is in 9 ,  identify g with the element g 8 1 in B. If T is in 8, identify T 
with the element 1 1Ã T in 3. 

If A is a real linear functional on the vector space ( - 1 ) 1 / 2 ~  + dp, define an 
element HA in ( - l ) ' j 2 q  + ap by the property 

Also, write 1 for that linear functional which equals A on ap and equals zero on 
(- l)1I2^.  

Define the vectors Hi,. . . , Hn, X a ,  X-& in flc and the Casimir operator wg 
as in $5. Since 0 is an automorphism of gc, O(wg) equals wg. 
Fix a nonzero H in dp and let h = exp H. We would like to compute G ( w g ) .  

The following lemma will express %(wg)  as a linear second-order differentiable 
operator on A;. The coefficients of this operator will be selfadjoint operators in 
'S which depend on h. The lemma is a generalization of [3(g), Lemma 271. 
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LEMMA 38. There is a selfadjoint operator Q(H) in I? such that 

PROOF. wg equals & (wg + 6(wg)). This is then equal to the expression 

If A and B are in 3 we shall say A is congruent to B and write A = B if A - B - - 
is in the vector space a + t l S .  If i is greater than 1, H, is in (-l)lI2t so that 
H i  = T ~ ( H , ) ~ .  This implies that r2(H,) is a selfadjoint operator on Vr, since 
is a unitary representation. For any a in P let Ra be the expression 

Fix a such that either a or -a is in P+. Let Xa = Ya + Za, where Ya equals 
-(xa - O(Xa)), a vector in pc, and Za equals -(xa + O(Xa)), a vector in tc. 
Then 

2:" = m" + ( ( ~ 2 ) )  = ~, , ( ;e-~("))  + O(xa)(+ea(H)) 
= Fa te-a(") - e ~ ( f f ) )  + +xde-a(H) + ea(H) 1. 

Therefore we have the formula 

(13.1) Ya = coth a(H) - Za - csch a(H) - 2:'' 
It follows that 

XaX-a = (Ya + Za) (Y-a + 2-a) 

= ((1 + coth a(H))Za - csch a(H) - Z ~ ] [ Y - ~  + La] 

= [(I + coth a(H))Za - csch a(H) - rl (&)I [Yda + r2 (2-a}} 

= (1 + coth a(H))ZJ-a + (1 + coth a(H))Za r2(Z-&) 
- csch a(H) . Y-a . r1 (Za) - csch a(H) - rl (Za)r2 (Z-a) 

= (1 + cotha(H))[Za, Y-a] + (1 + c ~ t h a ( H ) ) Y - ~  - r2(Za) 

+ (1 + ~ 0 t h  a(H))r2 (Z-a)~2(Za) - C S C ~  a(H) . Yda - rl (Za) 

- C S C ~  a(H)rl (Za)~2(Z-a) 

= (1 + coth a(H)) [Za, Y-&I 

+ Y-a[(l + coth a(H))r2(Za) - csch a(H) r1 (Za)] 
+ (1 + coth a ( H ) ) ~ 2 ( z - ~ ) r 2 ( 2 ~ )  - cscha(H) - r1(Z&2(Z-a). 

We let the Cartan involution 6 act on S8 by making it act on S in the usual 
way and letting it act on I? trivially. Notice that OIZa, Y-a] = -[Za, Y-,J, and 
O(Y-a) = -Yba. If we let 9 act on the above congruence, we obtain a new 
congruence with respect to the space 
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It follows that 
O(XaX-a) = - ( I+  cotha(H))[Za, Y-a] 

- Y-a ((1 + ~ 0 t h  a(H))r2(Za) - C S C ~  a(H) . TI (&)I 

+ (1 + ~ 0 t h  a(H))r2 (Z-a)~2 (Za) - C S C ~  a(H) * TI ( za )~2  (2-a) 

mod(& + t i ) .  

In this congruence, replace a by -a and H by -H. Then h = exp H is replaced 
by h-I and a + t\̂  becomes ̂ t2 + &<S. Then 

- Ya [(1 + coth &(H) )T~(Z-~)  - csch a(H)r1(2-~)] 

+ (1 + ~ 0 t h  CY(H))T~(Z~)T~(Z-~) - C S C ~  a(H) . ri (Z-a)~2(.Za). 

Now [Xa, X-a] = Ha. Therefore 

We obtain the formula 
XaXqa + e(X-aXa} = (1 + cotha(H))Ha 

+ Y-a [(1 + coth a(H))r2 (Za) - csch a(H) - TI (Za)] 

By substituting -a for a in this formula we obtain a similar expression for 
X-aXa +6(XaX-a). Adding the two expressions together we obtain the formula 

Using formula (13.1) for Ya and Y-a we find that Ra is congruent to the expres- 
sion 

~ 0 t h  a(^) . Ha - (cotha(~))~[~2(2~)r2(2-~) + ~ 2 ( 2 - ~ ) ~ 2 ( 2 a ) \  

- (csch *I2 [TI (&)TI (2-a) + 71 ( z - a ) ~ ~  (za)] 

+ 2 Csch a(H) ~ 0 t h  4 H )  [ ~ 2  (zff )TI (2-a ) + ~2 (2- a)Tl (Zff)] 

+ ~2(za)'?2(z-a) + ~2(z-a)~2(za) .  

Using the fact that 1 - ( ~ o t h a ( H ) ) ~  = - (~scha (H) )~  we obtain the formula 
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where Fa is the following operator on 8: 

( c s c ~ ~ ( H ) ) ~ [ T ~ ( z ~ ) T ~ ( z - ~ )  + ~2(z-a)~2(2a) 
+ TI (&)TI (2-a) + TI (Z-~)TI (Za)] 
- C S C ~  a(H) - ~ 0 t h  ~(H)[T~(Z~)T~ (La) + T~(Z-~)T~ (Za)]. 

We want to show that EaeP+ Fa is a selfadjoint operator on V.. Let Y] denote 
conjugation of flc with respect to g. Then since TI and r2 are unitary 

for any X in (c. It is easy to see that there exists a constant ca # 0 such that 

where â  is the conjugate root of a. Since Y] commutes with 0, we see that 

Therefore (Fa)* = Fai for any a in P+, since ô  = a when restricted to up, and 
because the functions csch a(H) and cotha(H) are real-valued. Therefore 

We have shown that 

We need only show that for any a in PM, Ra is congruent to a selfadjoint 
operator on V.. In this case 

Therefore 
Ra = ~2(X-a)~2(Xa) + ~2(Xa)~2(X-a)- 

But r)Ra = Ra. Therefore T~(X-~)T~(X~) + T~(X~)T~(X-~) is a selfadjoint 
operator on Vr. This completes the proof of Lemma 38. 

Recall that rl and r2 stand for the number of roots in P+ whose restrictions 
to up are (to and 2(to respectively. As before, write 

r2 = 2(ri + 4r2) = B(Ho, H). 
Since B(H1, HI) = 1, Hf equals r-2Hi. Since B(Hm, Ho) = po(Ho) = 1, Hue 
equals r2Ho. Therefore, if we write S@g) for i$Lp tHo (we) and Q(t) for Q(tHo), 
we obtain the following formula from Lemma 38: 

Recall that 
D(t) = (2 sinh t)" (2 sinh 2t)r2, t ? R. 
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If t is greater than zero, D(t )  does not vanish. Define a new differential operator 
6t(W8) on Cm(R+) < ~ i  VT by 

LEMMA 39. For any t > 0 there is a selfadjoint operator q(t) on VT such 
that 

PROOF. From (13.2) we obtain the formula 

r2bt(wo) = r 2 ~ ( t ) 1 / 2 & )  o D(t)-lI2 

d d 
= (i) + (rl  coth t + 2r2 coth 2t + ' 2 ~ ( t ) l / ~  - ~ ( t ) - ' / ~ )  - + q(t).  

dt dt 

q(t)  is some operator obtained by adding real-valued scalar functions of t to the 
operator Q(t) .  In particular q(t)  is selfadjoint. Now 

If we differentiate D(t )  we obtain the formula 

d 
- D ( t ) l  - -D(t)  = -[rl cotht + 2r2 coth2tI. 

dt 

Therefore 

We are now in a position to relate the linear transformations c+(A) and c ( A )  
of LT with the Plancherel measure /?(u, A). 

If $ is in LT, A # 0, and t 3 0, define 

Recall that LT is a direct sum of a finite number of orthogonal subspaces of the 
form L:. If $,, is in Lg for some u in we have the formula 

EA ($,, : exp tHo; wg) = r y , ~ ( w g )  . EA ($,, : exp tHo). 

Fix p, in L\ Choose 01 and 0 2  in ^f(p,)  and fix $1 and $2 in L: and L& 
respectively. Using Lemma 37 we see that for a equal to 1 or 2, 
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Write ma: t )  as f i ( $ ~ ~ :  t ) .  Fix AO # 0. Then 

d 
- [ ( /A (& dt : t ) ,  fAo($2 : t ) )  - ( /A(& : t ) ,  f ~ ~ ( h  : < ) ) I  

= ( ~ ( $ 1 :  t ) ,  f ;  ($2: t ) )  - (fA'($l: t ) ,  fA0($2 : t ) )  

= r 2 ( h A ( w g )  -ru1,A(wg)) . ( f A ( $ l :  t ) ,  fA0($2: t ) ) .  

We are using the fact that q(t)  is a selfadjoint operator on Vr and that ru, ,A (we) 
is a real number. The scalar product above is of course on the space Vr. Now 
by (12.4), lul[ = 1021. Therefore, by (6.10) 

For T a positive real number, define the number VT(A,  Ao) by 

rT 

Then VT(A,  Ao) is equal to the expression 

Now ~ ( t ) ' ^  -+ 0 as t -r 0 ,  so f ~ ( $ 2 :  t )  -+ 0 as t -+ 0. Therefore the evaluation 
of the above expression at t = 0 is equal to zero. We then have the formula 
(13.4) 

Vr(A,Ao) = (A2 - A:)- ' { (A(&:  T),fAo($2: T)) - ( f & :  T ) , f ~ ~ ( $ 2 :  T ) ) } .  

Define the integer q as in $3. Define the distribution Axon C r ( R )  by 

A:, ( h )  = 1" VT(A, Ao) . ~~q - h(A) dA, h C r ( R ) .  
-00 

LEMMA 40.  If h is in C r ( R )  and A. # 0, the limit as T approaches infinity 
of A : (h )  is equal to each of the following expressions: 

(1) 
2^(c+(Ao)$'l, c+(A0)$2)M ' h(A0) 

+ r(c-(-Ao)$i, ~ + ( A O ) $ ~ ) M  . ( - A O ) ~ ~  . h(-Ao). 

(ii) 

2r(c-(AO)$l, c-(A0)$2)M ' . h(A0) 

+ ̂ (c+(-Ao)$l, c - ( ~ 0 ) $ 2 )  M ( - A O ) ~ ~  ' h(-AO)- 

PROOF. Write O ( & :  t )  as the function 

Write $ o A ( $ ~ :  t )  as Owa : t ) .  Write ma: exptHo) as EA(&: exptHo).  
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It is clear that we can find a number 61 > 0 and a constant C such that for 
a n y t 3 0  

It is also clear that 

< \D(t)lI2 . E D a  : exp tHo) - etp(HO) EA : exp tHo)\ 
d + -$(~( t ) ) l /2  Â£A(& exptHo) - -,:(etp(HO)) - expt~0) I  

= \ e t ~ ( H O ) ~ '  A($a: exptHo)} - l e - * ^ ~ ) ~ ( t ) ~ / ~  - 11 

+ etp(HO)~A($a : exp tHo)l . (D(t)lI2) - ,(H~)I 

Now by (4.1) and Lemma 30, we observe that both letp(HO)~A($a : exp tHo)l 
and letp(HO)~A($a: exptHo)} are bounded by the product of (1 + rt)d and a 
polynomial in IAI. Therefore, there exists a 6 > 0 and a polynomial p such that 
for A in R and t 3 0 

It then follows from (11.2) that there exists a polynomial p and an e > 0 such 
that for Q = 1,2, A # 0, and t 3 0 

(13.6) 19% 01 < ~ ( l A l ) e - ~ ~ -  

By the same argument we obtain the inequality 

For A # 0, and T 3 0, let Q(A, T) be the sum of the following three terms: 

i )  (91(A,T)792(Ao,T)) - (^(A,T),92(Ao,T)), 
(ii) (91 (A, TI, ̂2 : TI) - (9; (A, TI, <?Ao ($2 : TI), 

( W 1 :  TI, 92(A0, TI) - ((^I : TI, 92(Ao, TI). 
By Lemma 34 it is clear that for a = 1,2, both [A2q9A($a: T)\  and 
lA2q9i($a: T)\  are bounded by a polynomial in IAI, independently of T. There- 
fore, using (13.6) and (13.7), we see that there is a polynomial p and an e > 0 
such that for A in R and T > 0 

(13.8) [A^Q(A, T)I < p([A[)e-^. 

We shall also need a weak bound on [& (A^Q(A, T))!. By using Lemma 30 
and Lemma 35 we can show that there exists a polynomial p and an integer n 
such that for A in R and T 3 0 
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We shall now break VT(A, Ao) up into a sum of terms which we can handle 
separately with the above estimates. 

A2^vT (A,  A0) 
- A 2 q  (A2 -hi)-1 ' { ( f l ( $ l :  T ) , f A o ( h :  T ) )  - ( f A ( $ l :  T ) , / A o ( $ ~ :  T ) ) }  

- - A2^ . (A2 - A;)-' (mi : T ) ,  0 .  ($2 : T ) )  

- A2^ . (A2 - ~ g ) - ' ( @ . ( $ ~  : T ) ,  (?Ao ($2 : T ) )  

+ A2^ . (A2 - A;)-' - Q(A, T ) .  

Recall that for any two vectors $ and $' in LT 

Then we obtain the following formula: 

A^VT (A,  A0) 
- - iA2^ - (A2 - A;)-' { (C+(A)$~ ,  c+ ( A ~ ) $ ~ )  - eaT(A-Ao) (Ao + A) 

+ ( c ( A ) $ l ,  c(A0)$2)M - e iT(-A+Ao) -A0 - A) 
+ (C+(A)^,  C - ( A O ) $ ~ ) M  . eiT^+^ -A0 + A) 

+ (c-(A)$l, C + ( A ~ ) & ) ~  . e"^-^ (A0 - A)} 

+ A^ - (A2 - A;)-' - Q(A, T ) .  

Now ( A  - Ao) - A2^ - VT(A, Ao) = 0 if A = Ao. Therefore, for any T 3 0,  

Now by (13.8), Q(Ao, T )  approaches 0 as T approaches oo, so 

This implies that Q(Ao, T )  = 0 for any T 3 0. In a similar manner, we can show 
that 

(c-(-AO)$l ~+(A0)$2) M = (c+(-AO)$l, c ( A o ) $ ~ ) M  
and that Q(-Ao, T )  = 0 for any T 3 0. 

The number 
A;, ( h )  = f h(A) - A" - VT (A, Ao) dA 

- (c- (A)$l, c- (Ao)&) . e-"^-^ } . h ( ~ ) ( - i ) ~ ~ ~  ( A  - ~ ~ ) - l  d ~ ,  

(ii) 
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(iii) 

L Q(A, T )  . A^ - h ( ~ )  . ( A ~  - AE)-~ dA. 

Let us assume for the moment that h vanishes in a neighborhood of (-Ao). We 
wish to examine the behavior of each of the above three terms as T approaches 
oo. We deal first with the third term. 

Let n be the integer in (13.9). The third term is equal to Il + I2 where 
Il and I2 are those parts of the integral in (iii) which are taken over the sets 
{A: IA - Aol < T-"-l} and {A: [A - Aol > T-"-l} respectively. Apply the 
mean value theorem to the function A2qQ(A, T)  of A. Since Q(Ao, T)  = 0, there 
is a real Al, with [Al - Aol < IA - Aol, such that 

Then by (13.9) we see that [Ill is bounded by a constant multiple of 
(1 + Tn)T-"-I. Therefore, 111[ approaches 0 as T -+ oo. On the other hand, 
there is a constant C,  independent of A and T, such that if [A - AoI > T-"-', 

. Â¥(A ( A ~  - A:)-' . Q(A,T)l < Cp(IA1) . lh(A)l . r"+l . e-'* 

by (13.8). (We have used the fact that h(A) vanishes in a neighborhood of -Ao .) 
This implies that 1121 approaches 0 as T approaches oo. Therefore, term (iii) 
goes to 0 as T goes to oo. 

To deal with term (ii), we observe that both 

and 
(-i) - A2q - (A + Ao)-l - (c- (A)$I, ~+(AO)&)M - h(A) 

are continuous functions of A, since h(A) vanishes in a neighborhood of (-Ao). 
Therefore, by the Riemann-Lebesgue lemma, term (ii) goes to 0 as T goes to oo. 

Now, since .(c+(AO)$l i ~+(A0)$2) M = ( c  (AO)$l, c- (A0)$2) M , we may 
rewrite term (i) as 

Now A^C+(A)$~ and A^C(A)$~  are both continuously differentiable in A by 
Lemma 35. Therefore, we can use the Riemann-Lebesgue lemma to prove that 

lim (1 J 2  1 + \ J3 1) = 0. 
T-Kx) 
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It follows that 
lim A T  ( h )  

Tdoo  

= T-+= lim ~L(C+(AO)$~, c + ( A o ) $ ~ ) M  . . h(A) . sinT(A - A<,) 

Now it is an easy fact that 

where the limit is taken in the topology of .Y'(R) and bAO is the Dirac distribu- 
tion at Ao. 

We have proved that if h vanishes in a neighborhood of (-Ao), 

Similarly, if h vanishes in a neighborhood Ao, we could show that 

This completes the proof of Lemma 40. 

For any a in ZM and A in R, /?(a, A) = /?(a', A) by Lemma 5. Then if a1 and 
a2 are in ZM ( p )  for some p in L i ,  /?(al, A) = /? (o2 ,  A). We write this number as 
fS(u, A). It is also easy to see from the Weyl dimension formula and the definition 
of ZM ( p )  that if a1 and 0-2 are in ZM ( p ) ,  dim al = dim 0 2 .  We write this number 
as dimp. 

LEMMA 41.  Assume A. # 0. Fix p in Li .  Then there is a constant C ,  
independent of Ao, such that the following operator equations hold on LL: 

(i) c+(Ao)*c+(Ao) = c-(Ao)*c-(Ao) = (C - /?(p, Ao))-l, 
+ A ) c (-Ao) = c-(Ao)*&(-Ao) = ( C  - /?(p, Ao))-l . M(-Ad .  (ii) c ( o * - 

PROOF. In Â§1 we remarked that Lu was an invariant subspace of &(Ao). 
Then Lu is also invariant under & ( A o ) * .  Then from Lemma 40 we obtain the 
equations 

c+ (A~)*c+ ( A ~ )  = C- (AO)*C- (AO), 

+ A ) * C - ( - A ~ )  = c - (A~)*c+( -A~) .  c ( 0  
Now fix ipi in L& and ipy in L& for el, (72 in ^ ~ ( p ) .  Also fix h in C r  (R). 
Then 

T 

= lim ~ ( t )  ~ ( E A ( $ ~  : e q t H o ) ,  E A ~ ( $ ~ :  e ~ t H o ) )  
T+oo 
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where GT = {kl - exp tHo . k2 : kl, k2 ? K, 0 < t < T}. Let us assume that h 
vanishes in a neighborhood of 0. Then we define 

/?(p, A) is infinitely differentiable and does not vanish if A # 0 by Lemma 5. 
Therefore u ? C e ( R )  <8> Lr. 

Then in the notation of (7.4) and (7.5) 

fan Al0 (h) = (c . dim p)'&(Ao), $2);. 
T-boo 

By (7.6) the right-hand side of this formula equals 

which in turn is equal to 

However, by the last lemma, limr-boo A^ (A) equals 

We can choose h so that h(Ao) and h(-Ao) are arbitrary. This proves the 
formulae 

C + ( A ~ ) * ~ + ( A ~ )  = (TI- - c . dimp - f i ,~~) ) - ' ,  

c+(Ao)*cb(-Ao) = (TI- . c . dim p - /?(p, Ao))- ' - ^(-Ao) . a  

14. A condition for irreducibility of  yo. We have now done enough 
work to prove Theorem 3'(b). However, we shall postpone this until $15. In 
this chapter we shall use the inequality (11.2) and Lemma 41 to give a sufficient 
condition for the irreducibility of the representation TI-Go. 

LEMMA 42. For any $ in LL, where r is in and a is in S'M, the rnero- 
morphic functions c+(A)$(l) and c(A)$( l )  have a pole of order at most one at 
A = 0. 

PROOF. If ip is fixed, then by (11.2) and (12.3) there is a polynomial p and 
an e > 0 such that 

e t p ( H o ) ~ A ( $  : exp tHo) - c+(A)ip(l) em - c-(A)ip(l) . e-̂ I 
(14.1) 

< p(lA[)e-^, t 3 0, A # 0. 
Therefore, for any t W ,  the function 

etp(Ho)~A($: exp tHo) - c+(A)$(l) - e  ̂ - c-(A)$(l) - e-'̂  

has no pole at A = 0. However, the function 
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is regular at A = 0, so the function 

c+(A)$(l) - e'̂  + c-(A)$(l) . e-^* 

is also regular at A = 0. 
Consider the Laurent expansions of the functions c+(A)$(l) - eiAt and 

c (A)$(l) e l A t .  The coefficients will be functions of t with values in Vr , the 
space on which T acts.  Allow t to vary. Suppose that one of the two functions 
has a pole of order greater than one at A = 0. Then it is easy to see from the 
Laurent expansions that this forces the function 

c+(A)$(l) . ê ' + c-(A)$(l) - e-^* 

to have a pole at A = 0 for some t 3 0. We have a contradiction. 

THEOREM 4. If u is in ZM and /3(u, 0) = 0, then the representation V ~ , O  of 
G is irreducible. 

PROOF. Assume the contrary. Then as we saw in 55, there is a T in e, acting 
on the space Vr , and a nonzero $ in L: such that Eo($ : exp tHo) vanishes for 
all t. We shall use the inequality (14.1) to obtain a contradiction. 

Since Eo($: exptHo) vanishes for all t 3 0, we can use the mean value 
theorem to show that for every A, t, 

A1 is some real number between 0 and A. However, by Lemma 30, there is a 
polynomial pi such that for any t 3 0, 

But by (4.1) 

i(exptHo) . t < - (1 + t)d+l, t 3 0. 

Therefore there is a polynomial pa such that for A ? R and t 3 0, 

(14.2) l e tp (Ho)~~($ :  exptHo)\ < IAI p2(lAl) . (1 + t)d+l. 

Since /3(u,0) = 0, Lemma 41 tells us that the functions c+(A)$(l) and 
c-(A)$(l) must both have a pole at A = 0. This pole must be of order 1 
by Lemma 42. Let 

c W ( 1 )  = C ~ A - '  + c$ + C$A + - - .  

be the Laurent expansions about A = 0 for these functions. c ? ~ ,  c& c t  , . . . are 
vectors in Vr, and neither c s  nor c I l  can equal zero. If t 3 0 is fixed, we apply 
Taylor's formula with remainder to the functions 

g * ( t , ~ )  = ~ c * ( ~ ) $ ( l ) e & ~ ~ .  

Then there is a real number Al between 0 and A such that 
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The function (d/dAl)2g+(t,A1) is equal to 

Then by Lemma 35 there exists a polynomial p3 such that 

This implies that we can choose a polynomial p4 such that for A # 0 and t 3 0, 

Similarly, we can show that 

Now for A # 0 and t 3 0 the expression 

is bounded by the sum of the following four terms: 
(i) ]c+(A)$(l)eM - ( C ~ A - '  + c$ + i ~ ? ~ t ) ] ,  
(ii) lc-(~)$(l)e-^ - ( ~ 1 ~ A - l  + c; - i~:~t)l, 
(iii) l e tp (HO)~~($ :  exp tHo)], 
(iv) jetp(HO)~A($: exptHo) - c + ( ~ ) $ ( l ) e ^ ' ~ ~  - c - ( ~ ) $ ( l ) e - 9 .  

By (14.1), (14.2), (14.3), and (14.4), there are polynomials p and p5 such that 
this sum is bounded by 

For a fixed t and.for 0 < A < 1 this expression is clearly bounded. Therefore 

(14.5) cT1 + cI1 = 0. 

Let 
P = sup p(A), P5 = sup p5 (A). 

0<A<1 0<AÃ‡ 

Then for any t 3 0 and for 0 < A < 1, 

Let A = t ( d+3 ) ,  and let t approach oo. Then we see that 
- 

czl - c-I = 0. 

Therefore, by (14.5) 
C+ - - - 0  -1 - C-1 - - 

We have a contradiction, so Theorem 4 is proved. 0 
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15. Completion of the proof of Theorem 3'(b). 

LEMMA 43. Suppose that i f )  is in LE for T in e, a in gM, and assume 
that \W\M = 1. Then cyA)if)(l) /?(a,A) is an infinitely differentiable function 
from R into Vr, the space on which T acts. Furthermore, for every nonnegative 
integer n there are polynomials p1, p2, q independent of a, A, r such that 

PROOF. c* (A)if)(l) ./?(a, A) is equal to A2qcyA)if)(l) -/?(a, L~)A-~-? .  This is the 
restriction to R of a function h(A) which is meromorphic in the region lA1l < 6. 
(See Lemma 5, (ii), and the corollary to Lemma 34.) The only possible real pole 
of h(A) is at A = 0. For any real A # 0 

lc^~)if)(l) . /?(a, 41 = /?(a, A) . (C*(Nif), c ^ ~ ) i f ) ) l / ~  
= (C*(A)*C~(A)~~) ,  if))lI2 . B(U, A). 

Therefore, by Lemma 41, 

(15.1) c i (~) i f ) ( l )  - /?(a, All = ( 0 - I  - (h$)112 - /?(a, A)11y. 

But by Lemma 5, /?(a, A) is regular at A = 0, so \h(A)\ is bounded for all real A 
in a neighborhood of 0. Therefore, h(A) has no real pole and hence is infinitely 
differentiable at any real A. 

Since /?(a, A) is regular at A = 0, the functions ci(A)if)(l) cannot have a zero 
at A = 0. Let N(if)) be the order of the pole of the functions c+(A)if)(l) and 
c(A)if)(l)  at A = 0. N(if)) is a nonnegative integer. We see from (15.1) that 
/?(a, A) has a zero of order 2N(if)) at A = 0. Then write 

~ ~ ( ~ ) i f ) ( i ) p ( ~ ,  A) = A~(*)C%(I) - A-~(*)@(u, A). 

The estimate for (d/dA)"(ci(A)$(1)/?(u,A)) in the lemma then follows from 
Lemma 5, (iv), Lemma 35, and Leibnitz' rule. 

LEMMA 44. Choose i f )  in L; with \MM = 1. Then for every nonnegative 
integer s there are polynomials pi, pa, q such that for every h in Y ( R ) ,  

PROOF. Every x in G is of the form kl .exptHo. ky, for kl, ky in K, and 
t > 0. By (4.1) it is enough to prove the lemma when the left-hand side of the 
inequality is replaced by 

EA ( i f )  : exp tHo) . h(A) @(a, A) dA 

($0 
~ u p e * ^ ~ ~ ) ( l + r t ) '  E~(if):exptH~).h(A)./?(a,A)dA. 

If t 3 0, the expression 
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is bounded by the sum of the following two expressions: 
00 

( i) 11 (t) = (1 + rtlS - f _  I ~ ( A ) I  - 1/?(0, A) I  

- I ~ ^ o ) E ~ ( $ :  exptHo) - c+(A)$(1)eaAt - c-(A)$(l)e-^I dA, 

(ii) 12(t) = 1 j~OO(c+(~)$( l )e iAt  - c-(A)$(l)e-%A)/3(a,A) dA - (1 + ~ t ) ~ ] .  

By (11.2) and (12.3), there are polynomials pi, p2, q, and a number e > 0, all 

where 

This takes care of Il (t) . 
We now obtain a bound for I2(t). Define 

f l  is in Y(R) g> Vr. We see that 

Now by Liebnitz' rule and Lemma 43 there are polynomials pi, pa, q such that 

sup ( I +  1 ~ 1 ~ )  ( l k i r -  & ) ~ + ( A ) I  
A?R 

Therefore, we see that 

where c = 2 J-3 + JA12)-l dA. We have proved Lemma 44. 0 
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COROLLARY. Suppose ip is i n  Ly and l[ip[lM = 1. Then for every 91, g2 in 
9, and every nonnegative integer 8 ,  there are polynomials pi,  pa, q such that 
for every h in y{R), 

where @la and Q are the same as in (11.1). Now let EA(?,ha,/) : x) be the 
(ria, r2~)-spherical function corresponding to (@la, T ~ , ~ ( x ) @ ~ ~ ) .  Apply Lemma 
44 to E ~ ( i p ~ , ~  : x). The corollary follows from the conditions on {@la}7 
and {ria}, {r2~} given in Lemma 13. 

This corollary establishes the proof of Theorem 3'(b). The proof of Theorem 
3 is now complete. 

16. Tempered distributions. Having proved Theorem 3, we can now ex- 
tend the definition of Fourier transform to tempered distributions on G. 

A distribution on G is said to be tempered if it extends to a continuous linear 
functional from ^(G) to C. Since CgÂ¡(G is dense in 'S'{G), and since the 
inclusion map 

Cy{G) r ̂ {G) 

is continuous, we can regard the space of tempered distributions as the dual 
space of ^(G), that is, the space of continuous linear functionals from ^(G) 
into C. 

Let F ( G )  be the set of tempered distributions on G. It becomes a locally 
convex topological vector space when endowed with the weak topology. (A base 
for the weak topology of P ( G )  is given by the seminorms {I1 - [ I  : f ? ̂ (G)}, 
where if T is in P ( G ) ,  \TI[ j = lT(j)l.) 

Let P ( G )  be the dual space of (̂G). Then 

where ^0(6) and ^(G) are the dual spaces of G(G)  and & (G) respectively. 
Endow ^'(G), @(G), and %(G) each with the weak topology induced from 
^(G), %(G), and & (G) respectively. 

THEOREM 5. Denote the map f -> f of %(G) onto (̂G} by F f .  Then 
F*, the transpose of 9, is a topological isomorphism from P ( G )  onto gl(G). 

PROOF. The theorem follows directly from the fact that F is a topological 
isomorphism. 0 
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It is of interest to obtain a slightly different characterization of the space 
@(G). Define the space 8 (G) as in 57. For a1 in (̂G) define the function 

ill: G + C  

as in 57. Then 

&i{x) is in %(G) by Theorem 3'(b). 
For a1 in .̂ (G) define 

Then by (7.3) 
61 ((7, A) = (Sa1 )(u, A). 

Therefore, by Theorem 3'(b) and Lemma 10, the map 

is a continuous transformation from S\ (G) into 6 (G). If a1 is in l̂ (G), Sal = 
a1 . Therefore S is a continuous projection from Â¥y (G) onto ̂ i (G). Since ̂ l (G) 
is the kernel of the continuous map S - 1 on 3 (G), 'S'i (G) is a closed subspace 
of 3 (G) . 

Let ŷ G) be the space of distributions on .̂ (G). We can regard the map 
S as going from ^.(G) to either %(G) or %(G). In either case let S* be its 
transpose. Then if T is in either ^(G) or %(G), S*T is a distribution in 
^/(G), and 

(S*T)(al) = T(Sal), a1 ? ̂ .(G). 

THEOREM 6 .  S* is a canonical isomorphism from (̂G) onto the closed 
subspace 

y'{G} = {T ? ̂ /(G) : S*T = T} 

PROOF. Clearly S* is a one-to-one map of @(G) into ̂ (G). Now suppose 
that T is in Z ( G ) .  We can define a new distribution Ti in ^(G) as the 
restriction of T to the closed subspace 6 (G) of 3 (G). If a1 is in 3 (G), 

Therefore the map 
s*: ^{G} ^ yw) 

is surjective. Our theorem is proved. 
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