Harmonic Analysis of Tempered Distributions
on Semisimple Lie Groups
of Real Rank One

JAMES G. ARTHUR

SUMMARY. Let G be a real semisimple Lie group. Harish-Chandra has
defined the Schwartz space, #(G), on G. A tempered distribution on G is
a continuous linear functional on Z(G).

If the real rank of G equals one, Harish-Chandra has published a version
of the Plancherel formula for L?(G) [3(k), §24]. We restrict the Fourier
transform map to % (G), and we compute the image of the space % (G)
[Theorem 3]. This permits us to develop the theory of harmonic analysis
for tempered distributions on G [Theorem 5).
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§1. Introduction. Let G be a real semisimple Lie group. The Fourier trans-
form map, &, can be regarded as an isometry form L2(G) onto L2(G). L%(G)
is a Hilbert space defined with the help of the discrete series, &;, and the various
continuous series, &,, of irreducible unitary representations of G. L? (G) consists
of certain functions whose domain is &; U &, and whose range is the space of
Hilbert-Schmidt operators on the Hilbert spaces on which the representations in
& U &, act. :

In [3(1)] Harish-Chandra introduces the Schwartz space, & (G), of functions
on G. It is analogous to the space, #(R), of rapidly decreasing functions on the
real line. &(G) is a Fréchet space. It is dense in L2(G), and its injection into
L2(G) is continuous. It is of interest to ask about the image of Z(G) in L?(G)
under .F. There is a candidate, € (G), for this image space. &(G) is a Fréchet
space defined by a natural family of seminorms on L2 (é).

A tempered distribution on G is a continuous linear functional on &(G). If we
can prove that the Fourier transform gives a topological isomorphism from #(G)
onto Z(G), we could define the Fourier transform of a tempered distribution as
a continuous linear functional on & (). This would include as a special case the
theory of Fourier transforms on L%(G).

We confine ourselves to the case in which the real rank of G equals one. In
this case Harish-Chandra has published a version of the Plancherel formula for
L?(G) [3(k), §24]. Our main result is Theorem 3, which asserts the bijectivity
between Z(G) and & (G) of the Fourier transform, &

The most difficult part of this theorem is to prove surjectivity. We have to
show that the inverse Fourier transform of an element in % (3), which is a priori
in L%(G), is actually in € (G). We use some estimates which Harish-Chandra
develops from the study of a differential equation on G [3(1), §27]. In §9 we
review his work and show that his estimates are actually uniform, in a sense
which will become clear. In §10 we use these estimates to prove that & (% (G))
contains %(G), a subspace of Z(G) associated with the discrete series.

To prove that F (Z(G)) contains % (G), the subspace of €(G) associated
with the continuous series, requires more work. It is necessary to derive a formula
(Lemma 41) for the norms of certain linear transformations, ¢*(A) and ¢~ (A),
which arise in §12. This we do in §13 by studying a second-order symmetric
differential operator on a,, a one-dimensional subspace of the Lie algebra of G.
As a biproduct of this formula we obtain in §14 a condition for irreducibility of
certain representations in the continuous series.

For convenience we work with generalized spherical functions. We develop
the pertinent information in §5 and then use it in §6 to prove the injectivity of
the Fourier transform.

In §16 we define the Fourier transform of a tempered distribution on G. The-
orem 6 proves that any continuous linear functional on ‘g(é) is a certain sum
of tempered distributions on the real line.

It seems likely that some of our methods can be used for proving the analogue
of Theorem 3 for arbitrary G. The injectivity of the Fourier transform should
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carry over quite easily. Harish-Chandra’s estimates are proved in [3(1), §27] for
arbitrary G. That these estimates are uniform can also be shown, although the
proof of this is somewhat more complicated than in the real rank 1 case. Our
proof of Lemma, 27 does not carry over in general. However, it gives a good start
toward a general proof.

The general Plancherel formula will be complicated by the existence of more
than one continuous series of representations. However, in each continuous series
linear transformations c¢(A) can be defined. The formulae in Lemma 41 can
probably be proved, although perhaps not by our methods. In general, Lemma
44 would be proved by induction on the real rank of G. Harish-Chandra does
this for ordinary spherical functions in [3(h), Theorem 3].

2. Preliminaries. Let G be a connected real semisimple Lie group with Lie
algebra g. Let

g=¢t+p

be a fixed Cartan decomposition with Cartan involution #. Let g, be a fixed
maximal abelian subspace of p. The dimension of a, is called the real rank of G.
We shall assume that dima, = 1.

Let a; be a subspace of € such that

a=oat+a

is a Cartan subalgebra of g. Let K be the analytic subgroup of G corresponding
to t. We assume that G has finite center. This implies that K is compact.

We can make further technical assumptions on G without losing generality.
In order to do this we state some definitions of Harish-Chandra.

If L is a connected reductive Lie group over the reals, R, with Lie algebra [,
let

J:ICl

be inclusion into the complexification of [. (From now on, if b is any real Lie
algebra we write b for its complexification.) Then if L. is a complex analytic
group with Lie algebra [, L. is called a complexification of L if j extends to
a homomorphism of L into L.. Let [ = [; + ¢, where [; is semisimple and ¢
is abelian. Let [;. and ¢, be the respective complexifications of I; and ¢. Let
Ly, C(Lie, Ce) be the analytic subgroups of L(L,) corresponding to Iy, ¢(lic ,¢c)
respectively. We call L., quasi-simply connected (q.s.c.) if L1 NCe = {1} and if
L. is simply connected. We say that L is q.s.c. if it has a q.s.c. complexification.

Fix a complexification j: L — L. and let h be a Cartan subalgebra of . Let
A and A. be the Cartan subgroups of L and L. corresponding to h and b, (that
is, the centralizers of h and b in G and G, respectively). Clearly j(4) C Ae.
It is known that A, is connected [3(j), corollary to Lemma 27]. If X is a linear
functional on b, there exists at most one complex analytic homomorphism

Er: Ac — C



16 J. G. ARTHUR

such that for every H in b
Ex(exp H) = ().
We also write &, for the homomorphism
£roj: A—>C.
€ can be seen to be independent of the complexification L. used, provided that

& is defined on that complexification.

Clearly &, exists for any root o of (Ic,b.). If Py is the set of positive roots
relative to some ordering, let

- It is easy to see that the question of the existence of ¢, is independent of the
ordering of the roots of (I¢,hc) and of the choice of Cartan subalgebra b. If &,
exists we call L, acceptable. We say that L is acceptable if it has an acceptable
complexification.

If L is g.s.c., it is known that it is acceptable [3(j), Lemma 29]. If L NC is
finite, it is clear that L has a finite, and hence acceptable, cover.

Suppose L is a compact, connected acceptable Lie group with Lie algebra [.
Let b, Py, A, and p be defined as above. For each a define an element H, in b,
by

B(HQ,H) = O!(H)
for all H in b, where B is the Killing form of b, restricted to be. Put

& =[] He-
acP
@ is in S(h), the symmetric algebra on he. Let II be the lattice of linear
functionals
A (=)o R

for which & exists. Let II' = {A € II: @(A) # 0}. If W is the Weyl group of
(le/be), W acts on (—1)1/2p. Then W acts on II as follows:

su(H) = p(s™ H)

for 4 in I, s in W, and H in (—1)Y/2h. For s in W, put &(s) = (—1)*(*), where
n(s) is the number of positive roots that are mapped by s into negative roots.
For h a regular element of A, put

A(h) = &,(h) [ (1 - &a(r™)).
aEPy

LEMMA 1. There i3 a map u — o{p) from II' onto the set of unitary equiv-
alence classes of irreducible representations of L. o{u1) = o{uz2) if and only if
11 = sug for some s in W. Furthermore, if h is a regular element of A,

tro(u)(h) = (signd(p)) - AR) ™ - (Z e(s)fs#(h)) :

s€w
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Also there exists a constant ¢z, independent of u, such that

dimo(p) = crl@(p)l.

Finally, of u is in I, and B(u, o) > O for each o in Py, then p— p 1s the highest
weight of the representation of the Lie algebra [ corresponding to a()).

PROOF. Since L has a finite g.s.c. cover, we will assume without loss of
generality that L is q.s.c. We can assume further that L is semisimple. Then L
is simply connected, so II is precisely the lattice of weights of § [3(j), Lemma
29). If y' is a dominant integral function (in the terminology of [5, p. 215}),
and if u = y’ + p, then B(u,a) > 0 for any o in Py so p is in II'. Conversely,
if u is in II’, there exists a unique s such that B(su,a) > 0 for each o in F.
Then ' = u — p is a dominant integral function on . This demonstrates the
relation between u and the highest weight of (). The correspondence between
representations and dominant integral functions is well known (see {5, Chapter
vII)).

The other two statements of the lemma follow from the Weyl character formula
[5, p. 255] and the Weyl dimension formula [5, p. 257]. O

Now let us return to our group G. By going to a finite cover we can assume
that G is q.s.c. and hence acceptable. Thus, if j: g T g and G, is a simply
connected analytic group with Lie algebra g, then j extends to a homomorphism

j: G — Ge.

Now K is reductive. Therefore, by going to a further finite cover of G, we may
also assume that K is acceptable.

If we understand the harmonic analysis of a finite cover, é, of G then we
understand the theory for G. We merely throw out those unitary representations
of G which are nontrivial on the kernel of the covering projection. Therefore,
the above two assumptions can be made with no loss of generality.

There are two possibilities for G.

Case 1. There exists a Cartan subalgebra b of g such that b is contained in &
We can assume that b has been chosen so that it contains a;. Then it is known
that {b,a} is a set of representatives of conjugacy classes of Cartan subalgebras
of g.

Case II. Such a b does not exist. Then there is only one conjugacy class of
Cartan subalgebras and it is represented by a.

We shall try as far as possible to deal with these two cases together. Whenever
we speak of b, we shall be implicitly referring to Case 1. However, any mention
of a, unless otherwise stated, will refer to either case.

Let B be the Cartan subgroup of G corresponding to b. Since it is a maximal
abelian subgroup in the compact connected Lie group K, it is connected [4,
Corollary 2.7, p. 247].

Let A be the Cartan subgroup of G corresponding to a. Then

A= A4,
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where A, = expay, and Ay is contained in K. In Case II, Ar is a Cartan
subgroup of K and is connected. Otherwise, A; may not be connected. In any
case, let m and M be the centralizers of a in € and K, respectively. Then M is
compact with a finite number of connected components.

Fix compatible orders on the real dual spaces of a, and a, + (—1)/2a,. Let P
be the set of positive roots of (g, ac) relative to this order. Let P, be the set of
roots in P which do not vanish on a, and let Py equal P — Py. a; is a Cartan
subalgebra of the reductive Lie algebra m and we can regard Py as the set of
positive roots of (m,ay).

Let M© and A(} be the connected components of M and A;. Let W and W;
be the Weyl groups of (g/a) and (m/a), respectively. Now in any connected
component of M, it is possible to choose an element ~; such that

Adyy e = ap.

But Ad~y; leaves a, pointwise fixed. Therefore, the action of «; on a; can be
regarded as coming from an element of the subgroup of W generated by those
roots in P which vanish on a,. That is, the action of Ad~; on a; is the same
as for some element in W;. Therefore, we can choose a new element +, in the
same component of M, that leaves a¢ pointwise fixed. This means that « is in
Ajr. Therefore, A; has the same number of connected components as M.

As usual, let
1 1
p=§za’ PM=§Za
aEP aEPp

Then since G is acceptable, it is known that M? is also acceptable and that for
any a; in AY

(2.1) €p(a1) = &, (a1)

[see 3(j), Lemma 30].

Let &y be the set of equivalence classes of irreducible unitary representations
of M. Let C be the set of irreducible characters of the group Ay (the set of
characters coming from irreducible representations of A;). For ¢ in C and a in
Aj write (¢, a) for the value of ¢ at a. It is clear that Wy operates on C.

Put @™ = [],cp,, Ha and let L; be the lattice of real linear functionals, ,
on (—1)'/2q, such that ¢, exists. Let L} = {u € L1: @™(u) # 0}. Let Z(A) =
{7 € Ar: 5(7) € exp(~1)'/%ar}. Then Z(A) is a finite subgroup of A;. It is
known that if v is in Z(A) and m is in M©, then 4 and m commute [3(j), Lemma
51]. Also Z(A)AY = A;, by [3(k), Lemma 20], so Z(A)M® = M. Let Z(A)® =
Z(A)N A9. Z(A)O is a central subgroup of both Z(A) and M°. Then M is the
central product of M° and Z(A) with respect to Z(A)° (see [2, p. 29]). Thus if
- 0 S
M = M° x Z(A) and Z(A) = {(7,771): v € Z(A)°} then Z(A) is a discrete
normal subgroup of M. M is isomorphic to M/Z(A) . Similarly, if Ay = A% x
Z(A), then Ay is isomorphic to A7 /Z(A)°. Therefore, irreducible representations
of M (or A;) are in one-to-one correspondence with representations of M (or
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Aj) which are trivial on Z(A) . An irreducible representation of A; is of the
form £, ® 6, where p is in L; and 6 is an irreducible representation of Z(A).
Let C’ be the set of irreducible characters ¢ in C that come from representations
€, ®6 of M for which 4 is actually in L). If u and ¢ are so related, we shall write
i = pe. We would like to prove a lemma which will relate the representations in
& with characters in C'.

Let o be an arbitrary representation of M. Then

(2.2) ' o0=0pXE

where oo and € are irreducible representations of M® and Z(A), respectively,
such that for any v in Z(A)°, oo(v) ® e(v5 ') is the identity. Z(A)° is in the
center of both M° and Z(A) so 0o(0) and €(o) are both scalars. Therefore

oo(0) = €(0)-

Suppose that oo = o¢(u) in the notation of Lemma 1. u is a linear functional
in L. Then there exists an s in W such that sy — p is the highest weight for
0o. Let yo be an element in Z(A4)°. By looking at the action of £, — p(70) on a
highest weight vector for oo we see that the scalar oo(7o) is equal to &, — p(70)-
Therefore

£(0) = 00(Y0) = Esu(10)&o(W ) = Eu(s7 0)é0 (5 1)-

However, 7o is in the center of M so s~!+o = ~o. Therefore

(2.3) £(10)€5(0) = &u(0)

for any o in Z(A)°.
For any ~ in Z(A), define

(2.4) 6(v) = ()& (v)-

This is an irreducible representation of Z(A) and by (2.3), , ®6 can be regarded
as in irreducible representation of Aj. Let

(2.5) {¢,7a0) = su(ao) - tré(v)

for ap in A9, v in Z(A). ¢ is an element in C’ and p = .. Therefore, given a o
in &, we have constructed an element ¢ in C’. We write o = o(¢).

Conversely, let us start with an element in C’. By working backward we can
show that there is a unique element o in & such that ¢ = o(¢).

Suppose that ag is a regular element of A9 and v is in Z(A). We wish to
compute the trace of o(ag~y). Define

An(ao) = &p(ao) - [T (1—&alag™).

a€ Py

In the above notation

tro(agny) = trog(ao) - tre(y).
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But from Lemma 1,

tro(ao) = (sign@™(u)) - Am(ao) ™" - (Z 6(8)€su(ao)) :

8€W1

Therefore, the trace of o(apy) is equal to

(sign@™ (1)) - Anr(ao) ™" - (E e(s)(ss, 007)) ().

SEW,
Now it is easy to show that if 4. is in j(Z(A)) then (v.)? = 1. Therefore if v
is in Z(A4), &,(y) = &(v)~!. For future convenience, we rewrite the trace of
o(apy) as

(2.6) (sign@™(w)) - Anr(ao)™" - (Z e(s)(ss, ao’V)) &o(7)-
SEW,
LEMMA 2. There is a map ¢ — o(¢) from C’ onto &y. o(1) = o(¢2) if and
only if s¢1 = ¢ for some s in Wy. If ag is a regular element in A) and v is in
Z(A) then the trace of o(¢)(aon) equals

(sign&™ () - Ane(ao)™" - ( > e(s) (85‘,00’7)) “&p(7)-

8€W1
Also, there exists a constant Cyy, tndependent of ¢, such that

dimo(¢) = Car - |@™(p¢)| - dimg.

(dim¢ means the dimension of the representation of Ar of which ¢ 13 the
character.)

PROOF. The dimension formula follows from Lemma 1. All other statements
in the lemma follow from the above discussion. O

Let us say that the linear functional u. is associated with o if 0 = o(¢), in the
above notation. For any o in &) there are exactly [W;] associated real linear
functionals on a;.

Now with B there is associated a discrete series of unitary representations of
G. With A there is associated a continuous series. We shall describe these.

For the discrete series there is a formal analogy with Lemma 1. Let X be the
set of positive roots of (gc, be) relative to some order. For any o in ¥ define H,
in (~1)!/2b by the formula

B(Ha, H) = o(H)

for any H in be. Put @° = [],cp Ha. Let L be the lattice of real linear
functionals, A, on (—1)1/2b such that ¢ exists. Let L' = {\ € L: &*(}X) # 0}.
Let N(B) be the normalizer of B in G. Define

Wg = Wg,s = N(B)/B.
This is a finite group. It acts on B and therefore on L.
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An irreducible representation 7 of G on a Hilbert space # is said to be square-
integrable if there exist nonzero vectors ®,, ®, if # such that (®,,n(z)®2) isa
square-integrable function of z. If # and n’ are square-integrable representations
on # and #’ and if 7 and #’ are not unitarily equivalent, then for ®;, ®; in
# and ¥}, ¥, in &,

2.7) /G (1, 7(2)®3) (' (2)®}, ) de = 0.

On the other hand, there is a number (r), the formal degree of 7, such that for
every Ql, q>2,' \I’I, ¥, and Z,

(2.8) /G (@1, 7(2)®3) (n(2)¥s, 1) dz = A(r) "1 (1, U1)(¥3, &2).

These are the Schur orthogonality relations on G. They are proved in [3(d),
Theorem 1].

Let &; be the set of unitary equivalence classes of square-integrable repre-
sentations of G. Harish-Chandra gives a map A — w(}A) from L’ onto &; [see
3(1), Theorem 16]. w(A1) = w(A2) if and only if there is an s in Wg such that
sA1 = A2. Finally, there is a constant Cg, independent of ), such that

Bw(N) = Cal@* (V)]
LEMMA 3. {B(w): w € &;} is bounded away from zero.

PROOF. It is clearly enough to show that for any a in X, {A(Hqa)}rcr is
bounded away from zero. Let L be the lattice of real linear functionals on
(=1)1/2p generated by the roots. Then it is known that L/L is isomorphic to
the center of G, which is finite. It is also known that {S‘(Ha)}ie 7 is a lattice in
R. Therefore {\(H,)}xeL is also a lattice in R. But if A is in L', A(Hy) # 0,
so the lemma follows. O

Now we shall-describe the continuous series. There is a linear functional pg
from a, to R such that the restriction of any root in Py to a, is either ug or 2uo.
Fix Hp in a;, so that po(Hp) = 1. Extend the definition of uo to a by letting it
equal zero on ay.

Let ne = ) ¢ Py CX,, where for any a in P, X, is a fixed root vector. Let
n=ncNg. Let N be the analytic subgroup of G corresponding to n. It is well
known (see [4, p. 373]) that the map

(k,a,n) — kan, ke K, ac€ Ay, neN,

is a diffeomorphism of K x A, x N with G. For f in C§°(G),
(2.9) / flz)dz = / f(kan)e?*(1°89) gk da dn
G KxAyxN

for a suitable normalization of the Haar measure dz. If z = kan, write K(z) =k
and H(z) =loga.
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It is clear that P = M A,N is a subgroup of G. If o in &y acts on a finite
dimensional Hilbert space V,, and if A is in R, then the map ox from P into
End(V,) given by

oa{m - exptHgp - n) = o(m)e At meM, neN,teR
is an irreducible unitary representation of P. (We shall sometimes write ¢ instead
of (—1)1/2.) Let 7, s be the unitary representation of G on the Hilbert space

Zg, obtained by inducing o from P to G.
Then #; 4 is the set of functions ® from G into V, such that

(2.10) (267 1) =0a(6)®(z), 2€G, E€P

(2.11) (k) is a Borel function on K,

(2.12) /K |@(k)||? dk < oo.

The inner product on #; j is given by
@)= [ @0 YOy db  B¥ETn,
K

where (, )y, is the inner product in V,,. If @ is in #5 A, 7oA (y)® is given by
(2.13) (Toa(¥)@)(2) = By~ 12)e PHOTDHHE) 4y eq.

For any real A, and any ® in % 5 we can define a function & from K to
V, by restricting ® to K. This identifies #, » with a Hilbert space, #;, of
square-integrable functions from K into V,. /#, is independent of A. In fact, if
Te is the representation of K obtained by inducing o to K, /%, is the Hilbert
space on which 7, acts. The above equivalence between 7, and # 5 gives an
intertwining operator between 7, and 74 4|k, the restriction of 7, A to K.

Let M’ be the normalizer of a, in K. M is a normal subgroup of M’'. M’ /M
is a group consisting of two elements, {1,6} say. § acts on a, by reflection. ¢
also induces an automorphism of M, modulo the group of inner automorphisms.
Therefore 6 defines a bijection.

6:0 -0

of &y onto itself. If we let § act on P, we can transform the representation o,
into the representation (6’)-5. Now, if A is real and o is in &)y, it is known that
the representation 7, 5 is equivalent to 7,/ _4. Furthermore, the representations
{mo.r}, 0 € &r, A > 0 are all irreducible and inequivalent [see 1, Theorem 7; 2.

For each o in &y and A # 0, let N;(A) be a fixed unitary intertwining operator
between the representations 7, s and 7,/ _4. Then

N¢,(A)7'A',,,A(a:)N¢,(A)'1 = Ty, —A(Z), z€QG.
Notice that since 7, 5 is irreducible,

(2.14) Ny:(=A) = N,(A)~L.
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It will be convenient to assign a positive real number to any equivalence class
of representations in either &; or &y. If w is in &}, choose A in L’ such that
w = w(A). The Killing form, B, of g, can be regarded as a positive definite form
on either (—1)1/2b or its real dual space. Then put

(w2 = B(A, A).

Since Wg acts on (—1)1/2b as a group of isometries under the Killing form, |w|
is well defined. Simi}arly, for o in &y, we define

lo|? = B(uo, pio)

where y, is any real linear functional on (—1)'/2a, associated with 0. |o] is well
defined by the above argument.

Let &% be the set of unitary equivalence classes of irreducible representations
of K. Let b be the subspace of £ which is equal to either b or a;, depending on
whether we are in Case I or Case II. § is a Cartan subalgebra of ¢&. In either case,
we have already ordered the dual space of . K is acceptable by assumption,
so the representations in &x can be indexed by certain real linear functionals
on (—=1)/2h as in Lemma 1. If 7 is in & and 7 = 7(u) for some real linear
functional u on (—1)/2p, then we write

|r? = B(u, ).
|7] is well defined.

3. Plancherel formula for L?(G). In order to put the Plancherel formula
for G into the form we want, we must discuss characters of unitary representa-
tions of G. To do this we must introduce some more notation of Harish-Chandra.

For t in R, put h; = exptHy. For g in CP(MPA,;), write

F," (aohs) = A (o) - g(m*~ aghym") dm"
MO /A9

for ag in A(} and aghy a regular element in A. Here dm* is the invariant measure
on the homogeneous space M?/A9. It is known that there exists a constant
c1 > 0 such that for any g in C*(M°A4,)

(31) / g(moht) dmo dt = C1 / AM(ao) . F;w (aoht) dao dt
MOXR AYXR

(see [3(j), Lemma 41]).
For a in A; and ah; a regular element in A write

Aahs) = Ep(ahe) - [T (1 - €alahe)™),

acEP
erfahy) =1 ift>0, =-1 ift<O.

If f is in C§°(G) write

F¢(ah:) = er(ahy) - Aahy) /G f(z*tahz*) dz*.
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(G* is the homogeneous space G/Ap where Ay is the center of A. Let dz* be
the G invariant measure on G*). It is clear that

(3.2) Fy(sah;) = e(8)Fy(ahy), s € W;.

It is known that if f is in C§°(G), then Fy extends to an infinitely differentiable
function on A (see [3(f), Lemma 40]). Furthermore, Fy has compact support in
A [3(f), Theorem 2).
Let & = @® = [[,cp Ha. Let
¢ = 3(dimg — dim#& — rank g + rank¥).
It is known that ¢ is an integer. If we are in Case II, the Cartan subgroup A is
fundamental, in the terminology of [3(f), p. 759]. Then Harish-Chandra’s limit

formula applies to Fy [3(f), Theorem 4]. Namely, there is a positive constant ¢
such that for any f in C§°(G)

(3.3) ef(1) = (~1)Fy (1;).
Here & is to be regarded as a differential operator on A.
For f in C§°(G) define a function gy in C§°(M Ay) by
g5 (mhy) = ef(tH0) / / f(kmhink™1) dk dn, meM, teR.
NJK
For ~ in Z(A) and mg in M put

97.~(mohs) = g5 (ymoh).
Then in [3(j), Lemma 52] it is shown that there is a constant ¢, > 0 such that

(34) Fy(yaohy) = c2 - () F,, (aohs).

While we are at it, we shall state another Jacobian formula which we shall need
later in the paper (see [4, p. 381, Proposition 1.17]). The map from K X a;,*‘ x K
into G given by

(ki,tHg, kz) — k1 -exptHg - ko

is a diffeomorphism onto G. (We write a;,F = {tHgy: t > 0}.) Furthermore, there
is a constant ¢ > 0 such that for any f in C§°(G)

/G f@)dz =c /0 °° /K Sl - expty - k) DO ks dka e
(3.5) x

o0
= E/ / f(ky - exptHyg - k2)|D(t)| dky dk- dt.
2 -0 JKXK

Here D(t) = (e —e~t)™ - (¢t —e~2%)2, where r; and 7 are the number of roots
in Py which, when restricted to ay, are respectively equal to o and 2pue.

Let 7 be an irreducible unitary representation of G on the Hilbert space #.
Let f be a function in C§°(G). It is known that the operator

x(f) = /G f(@)n(z) dz
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is of trace class. The map
f—trm(f)

is a distribution on C§°(G) (see [3(c), §5]). This distribution is called the char-
acter of .

If 0 is in &y, and A is in R, let B, 5 be the character of the representation
Tep. Let m = %(dlm g — rankg). Choose ¢ in C’ and the associated . in L,
such that ¢ = o(¢) as in Lemma 2.

THEOREM 1. There ezists a constant co > 0 such that fbr every f in C(G),
B,.A(f) is equal to

co(—1)"F*(sign @™ (1)) / Fy(ahs)(s,a)e A da dt,
ArxR

where ¢ equals 1 or 0 depending on whether we are in Case 1 or Case II.

PROOF. Let A be the operator
/G f(@)7ea(z) dz

on #Z; A. We want to compute the trace of A. tr A is equal to tr A* where A* is
the adjoint operator of A and the bar denotes complex conjugation. If ® is in
HAgp and ky isin K

(4°®) (k) = ( | Ty da- <1>) (k)
= / (@) ®(zky e P H kD)) dy
G

- / Tk D@ (z)e~?H®) dg.
G

Assume that the Haar measure on A; has been normalized so that dh; = dt.
Then by (2.9) the above integral equals

/ fkhenk;1)etAtertHO) &(k) dk dt dn.
KXRXN

In this integral, substitute km for k and integrate with respect to M. Then
(A*®)(k;) equals

/ f(kmhenky o (m=1)eiAtertHO) & (k) dm dt dn dk.
KXMxRXN
Now to deal further with this expression we consider the principal fiber bundle

M — K — K/M.

The map m — o(m~1!) defines a complex vector bundle E, over K/M with fiber
Ve, the space on which o acts. Let F(k;, k) be the function

f flkmhenky Yo (m™1)eAte?tH0) gm dt dn.
MXRXN
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Now it is easy to check that M normalizes N and that for fixed m in M the
measures dn and d(mnm™!) on N are equal. Then for Wy, M in M,

F(kym1, km) = o(my *)F(ki, k)o ().

Therefore F'(ki,k) can be regarded as a section of E, ® E, where E} is the
adjoint bundle of E, and E, & E is the exterior tensor product of E, and E},
a bundle with base space K/M x K/M and fiber V, V).

Now there is a natural equivalence between #; 5 and the space #; defined
earlier. However, #, is the space of square-integrable sections of E, with respect
to a K-invariant measure on K/M. F(ki,k) can be regarded as the kernel of
the linear operator A* on this space. Then for any ® on #Z,

(A*®) (k1) = /K F(ky, k)® (k) dk.

To evaluate the trace of A* we appeal to the following lemma.

LEMMA 4. Let X be a compact infinitely differentiable manifold of dimension
n. Let dx be a positive nowhere-vanishing differentiable n-form on X. If E — X
is a differentiable Hilbert bundle of fiber dimension s, let L*(E) be the Hilbert
space of square-integrable sections of E. If F(z1,x) is a continuous section of
ERE*, F(z1,7) defines a bounded linear operator F on L?(E) in the obvious
manner. Then if F(z1,z) is differentiable in both variables, F is of trace class.
Furthermore

| trF=/X(trF(:z:,z))dz.

PROOF. Let T be the closed unit n-cube with opposite sides identified. T is
an n-torus and there is a canonical n-form dt on T'. Let

S={teR": |t| <1}

S is an open subset of T'.

Choose a finite differentiable partition of unity {¥,}eer and a collection
{Us}aer of open subsets of X such that the support of ¥, is contained in U,.
We assume that for every (a,) in I x I there is a diffeomorphism A,p from
Us UUp onto S,s, an open subset of S. It can be seen that with no loss of
generality we may also assume that

(1) Ayp(dt) = dz.

(ii) If Enp is the restriction of E to U, U U, then Eyg is trivial.

(iii) The map Aqg lifts to a bundle map

Aaﬁ: E'ap - Sag x R*®

which is an isomorphism between Hilbert bundles preserving the inner product
on each fiber. (We assume that R? is equipped with the natural scalar product.)
Let F,p be the integral operator on L%(E) with kernel

Fop(z1,2) = Uo(z1)F (21, 2)¥a(x).
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It is clear that if each F,hp is of trace class then so is F. In that case tr F =
Yap tr Fop. Furthermore

/X (tr (2, 2)) dz = /X (Xa: \Ila(z)) (tr F(z,3)) (? qlﬂ(z)) dz

- ; /X (br Fous (x, 7)) da.

Therefore it is enough to prove our lemma for the operators Fug.

L%(E,p) is a closed subspace of L?(E). It is an invariant subspace for the
operator Fng. F,p equals zero on the complement of L%(E,p) in L*(E), so
the trace of F,p is equal to the trace of the restriction of Fog to L%(Eqgp).
Let &(R*®) be the space of linear transformations of R®. Use the map Aqap to
transform F,p(z1,z) into a section R(t1,t) of (Sap X Sap) X &(R®). Then we
can regard R(t1,t) as an element in C®°(T x T) x & (R®). We have reduced our
lemma to the case where X =T, dz =dt, E=T xR®° and F = R.

Let {¢1(t), #2(t),-. . } be an orthonormal basis L2(T) @ R®, consisting of func-
tions of the form

e21ri(u,t) Sv.

Here v will be an n-tuple of integers and v will be a unit vector in R®. Let
(3.6) Tij = / (R(t1, t)d)i(t), ¢j(t1)) dtdt,.
TXT

The above inner product is of course in R®. Since R(ty,t) is differentiable, we
can show from the harmonic analysis of the group T x T that if my, mq are any
positive integers,

3.7 sup [ri;|(1 + ¢)™* (1 + 7)™ < oo.
. g

This shows that R is of trace class.
If v is in R®, then from (3.6) we can show that for any ¢;,¢in T

R(t1,t) =Y rij(¢i(t),v)85(t1).
i

Therefore

(3.8) trR(t1,t) = Y 15 ((t), 65 (t1))-
)
We now compute the trace of the operator R.

trR = Zm = Zﬁrii(¢i(t)’¢i(t)) dt
= Z /T rij(#:(t), ¢5(2)) dt.
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This last expression is absolutely convergent by (3.7). Therefore
trR = / Zrij(¢i(t), #4(t)) dt.
T
By (3.8) this expression is equal to

/ (tr R(, 1)) dt.
T
This completes the proof of Lemma 4. O
Let us return to the proof of the theorem. By the lemma, tr A* equals

/ f(kmhenkT?) - tro(m=1)eAter(tHo) d dm dt dn.
KxMxRxN

Therefore
tr A = tr A*
= / f(kmhsnk=) tro(m—T1)e *Ate?(tHo) gk dm dt dn
KxMxRXN
= / g5 (mhs) - tro(m) - e~ dmadt,
MxR
since

tro(m—1) = tro(m)* = tra(m).
Let Z4 be a set of representatives of cosets of Z(A4)/Z(A)°. Then M is
diffeomorphic with Z4 x M°. Therefore the trace of A equals

E / g5 (ymohs) - tro(yme)e ™At dmy dt.
VEZ4 MOXR

For any finite set S let [S] denote the number of elements in S. Then [P] = m.
Recall that
g = 3(dimg — dim ¢ — rank g + rank ).

Then
g=3(P+]+1) in Casel,

g=3%[P;y] inCasell

Therefore
[Pu] =[P] - [Py]=m—2¢+..
If ag is in A9 then
An(ao) = Apr(ao)(—1)M = Aps(a)(—1)™ .
Now for any mg in M

tr o(mg 1vagmo) = tra(vao).

Therefore, from (3.1) we see that tr A equals

1 E / F;fn (aohs) - Arr(ao) - tro(ag) - e~ *A* dag dt.
YEZ4 Apx
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By Lemma 2, this equals
G )0 e T [ FY, (aoh)
%

VE€EZ4
x g At <Z e(s)(s¢, ’yao)) dag dt.
8

€W,
By formula (3.4) this expression then equals

G )0 (2) 2 [ Fraobge

YEZA
X (Z e(s)(sg,'yao)) dag dt

seEW,

— g )™ (2) [ Fylahgenis
x (E e(s)(s¢, a)) dadt.

sEW,
Now if g is in W, substitute sa for a in the above expression. From (3.2) we
obtain the formula
trd = Gigna™(u) - (1™ (2) il [ Fylahe (s, dade.
C2 A IXR
This proves the theorem if we let ¢o = (¢1/c2)[W1]. O

For every ¢ in C’ there is associated a unique y; in L}. For any real A we

write
&(5,A) = &g + iAuo).
For our discussion of the Plancherel formula it is necessary to examine this
expression separately for Cases I and II. We have the formula
(3.9) @5, ) = @™(ue) - [T (e +iMno, Ha).
a€Py

Now P, is the union of the positive real roots, Pr, and the positive complex
roots P.. Let i be the conjugation of g. with respect to the real form g. 5 acts
as a permutation of period 2 on P;. A root in P, is fixed by # if and only if
it is a real root, so the positive complex roots occur in pairs. Since dima, = 1,
there can be at most one positive real root. Now it is known that a has a real
root if and only if a is not fundamental. Therefore there exists a real root if and
only if we are in Case L.

If o is a complex root and a7 is its conjugate root, then

(¢ + tApo, Ha) - (pe +tApo, HY) = —(pe (Ha)* + A2 po(Ha)?).
Therefore the sign of the real number

TT (e +iAuo, Ha)
a€P,
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is equal to (—1)[P<l/2 which equals (—1)9+*. Therefore

&(¢,A) - |0(¢, A7 = 4(=1)7+* - sign A - sign@™(p,) in Case I,

(3.10) &(¢,A) - |@(¢, A)|"! = (1) - sign@™ () in Case IL.

It is also clear that
(3.11) o w(s,—A) = (=1)'a(s, A).

If ¢ is in C’, choose o in &y such that o = o(¢). In §2 we defined the
representation o’. Choose ¢/ in C’ such that ¢/ = ¢'(¢’). Given ¢, ¢’ is not
uniquely defined. However the expression

sign @™ (pgr) - (', A)
is well defined for any real A. Furthermore
(3.12) sign ™ (uer) - @(s', A) = sign @™ (uc) - 9(¢, A).

For any w in &, let ©,, and B(w) be the character and formal degree of w. A
formula for #(w) was quoted in §2. It is clear that there is a polynomial p such
that -

(3.13) Bw) <p(lwl), we&.

LEMMA 5. There exists a nonnegative function 8(o,A) on &y X R such that
for any f in C(G),

0= e+ ¥ / ” B(0,0)80a(f) dA.

wEZy o€

In addition B(o,A) has the following properties.

(i) ﬂ(a’ A) = ,3(0', _A) = ﬂ(o”,A).

(ii) For any o in &u, B(0, A) is the restriction to R of a meromorphic function
on C with no real poles.

(iii) If o i3 in & and A # 0, then B(o,A) #0.

(iv) For every r > 0, there are polynomials py, pg such that for o in &p, A
mR,

| (JLA) 8, A)‘ < pa(lo) - pa(lA))-

PROOF. We deal with Case I first. Although the lemma is true in general for
Case I, Harish-Chandra in [3(k), §24] proves it only in case j is one-to-one; that
is, G € G.. We shall content ourselves with dealing with this situation.

Let CE = {¢ € C: {¢,exp(—1)/2wHg) = £1}. Since (exp(—1)}/?xHp)? =1,
any element in C is in either C* or C~. Then in [{3(k), Lemma 56}, Harish-
Chandra shows that there is a constant, which he writes as ¢4/ccp, such that
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for every f in C§°(G)
F(1) =Y Bw)Bu(f) - (ca/ececp) i

wegy

[o o]
< (=1)mte { Z /0 coth % -@(¢,A) (/A RFf(aht)(g, a) - €'\t da dt) dA
sect 1%

¢ceC—
This equals
Y Bw)Bu(f) - (ca/coces) -4

wEEy

0
+ Y / 'tanhﬂ-w(g,A) ( / Ff(aht)(g,d)eiA‘dadt> dA ;.
0 2 AIxR

¢eCct

(1o { > /0 " eoth T 5(5,A) - sign () - Br),-4 (/)

+ Z/o tanh%'JJ(§1A)'Sign‘:}m(/‘g)'ea(g),—l\(f)}'

¢eC-
We then define
TA
coth >
(3.14) B(s,A) = (ca/coces)(—i)(-1)771 " - sign @™ (u,),
g

where coth(7A/2) or tanh(wA/2) is used depending on whether ¢ is in CT or
Cc-.

Now let us deal with Case II. Then & is empty. We can use the limit formula
(3.3). Therefore

(1) = (1/e)(-1)*Fs(1;@).
By the Fourier inversion formula on the connected abelian group A; x R,
o0
i) = <l) (=19 Z/ [/ Fy(ahs; @) (s, a)eth? dadt] dA.
¢ sec’—oo LJAIxR

Since m = [P] and since Fy is in C§°(Ar x R), we see by integration by parts
that f(1) is equal to

o0
(1> S / (¢, A) [ / Fy(ahe)(s, a)eht dadt] dA.
4 gec —00 ArXR

By Theorem 1 this expression equals

1 bl ..

() 07 [ ole,4)-sigm 1) -4 7).

0 ¢eCcy —®

We then define

(3.15) B¢, A) = (2/coc)(—1)7 - (s, A) - sign &™ ().
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In either case, we see from (3.10) that 3(¢, A) is nonnegative. Also from (3.11)
we see that

B(s,—A) = B(s, A).
It is clear that the expression 3(¢/,A) is well defined. (3.12) implies the formula

B¢, A) = B(s, A).
Since for any A # 0 the representations 7, 5 and ms _a are equivalent,
eo",A = eo,—A-

Therefore in either Case I or Case II we obtain the formula

W= bwe.+¥ / ” 86, )80y a(f) dA.

wEEy ¢eC
It is clear in either case that

B(s¢,A) = B(¢,A), s € Ws.
Then if o is in &y, choose any ¢ in C’ such that o = o(¢). Define

ﬂ(o’ '7) = [Wl]ﬁ(g’ A)

Then B(o, A) is well defined and §(o, A) satisfies the formula of the lemma.
Property (i) of the lemma follows from the above discussion. Properties (ii),
(iii), and (iv) follow easily from formulae (3.14) and (3.15). O

For w in &, let 7, be a representation in the class of w, acting on the Hilbert
space #,. Let #(w) be the space of Hilbert-Schmidt operators on #, with the
Hilbert-Schmidt norm || - ||2. Similarly, for o in &y, write #3(o) as the space of
Hilbert-Schmidt operators on Z.

Let L3(G) be the set of functions

ag: &3 — @ Ho(w)
w€eEy
such that
(i) ap(w) is in #5(w) for each w in &;.
(i1) llaoll® = Xueg, llao(w)l3B(w) < co. .
Notice that if we are in Case II, & is empty so that L3(G) is empty.
Let L2(G) be the set of functions

a1: &u xR~ P H(o)
€&y
such that
(i) ai(o,A) is in (o) for each o in &y and A in R.
(ii) a1(0’,—A) = Ny (A)a;(0, A)N,(A)"1, 0 € &p, A #0.
(iii) For any o in &, a1(0, A) is a Borel function of A.
(iv)
1 o0
laslP =3 5 [ laa(o, DIEBA) s < o0,

€& T
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(In (ii) we can regard the operators N,(A) as maps from #, to #Z, if we recall
the canonical isomorphisms #; A « #y, #g1,_p «— #o.)
Notice that since N,(A) is unitary, condition (ii) implies that

llax(@’, =M)3 = llas (o, A)]3-

Therefore

(3.16) =S| ” llax (o, A)[28(0, A) dA.

o€&m

L3(G) and Li(@’) are Hilbert spaces. Let L&) =L3G) @ L3G). If fisin
C$°(G), define f in L?(G) by

f= (fo(w),fl(U’A)),
folw) = /G f@ru(e)ds, we

filo,A) = /G f(@)Ton(x)dz, €&y, A€R.

(We can regard fi(o,A) as an operator on %.)
THEOREM 2 (PLANCHEREL FORMULA). The map
f—f  fecG),
extends uniquely to an isometry from L*(G) onto L3(G).

PROOF. Fix f in C§°(G). Define
o(z) = /G [T dy, zeG.

Clearly g is in C$°(G) and ¢(1) equals || f||3. If 7 is an irreducible unitary
representation of G,

r(g) = /G STy x(a) de
'=/ f@) f(z=1) - n(yz) dydz
GxG

= ([ 10)-stav) ([ 1@)- @ o)
=x(f)-n(f)*
where 7(f)* is the adjoint of 7(f). Therefore
trr(g) = [=(NI = 1/ (13-
Therefore, applying Lemma 5 to g(z) we see that
1713 = I1/1.

Thus, the map f — f is an isometry. We need only show that it is surjective.
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By the Schur orthogonality relations (2.7) and (2.8), the map is onto L3(Q3).
We must show that it is onto L3(G).
Let p; be the representation of G x G on L2(G) given by

p1(,9)a1(0, A) = mo(2)a1 (0, A)Toa (y ™)

for o € &y, A € R, and (z,y) € G X G. G x G, being semisimple, is of type
I [3(a), p- 30], s0 p; isof type I. Let Rt = {A € R: A > 0}, S = & x R,
and let C be the measure class on S defined by the discrete measure on &
and Lebesgue measure on R*. (o, A) does not vanish for any (0,A) in S, and
the representations {7y A X 7y a: (0,A) € S} of G X G are all irreducible and
inequivalent. p is clearly the direct integral of these representations of G x G
with respect to the measure class C. Therefore p; is multiplicity-free by [6(b),
Theorem 5]. This means that the algebra R(p1, 1) of intertwining operators of
p1 is commutative.

Let p be the two-sided regular representation of G x G on L?(G). Then the
map

f_"fl’ feLz(G)9

is an intertwining operator between p and ;. Thus if L is the closure of the set
{f1: f € L*(G)}, and P is the orthogonal projection of L3(G) onto L, then P is
in R(p1,p1). But since R(p1, p1) is commutative, it is well known that P is of
the form Pg, where E is a Borel subset of S and

Pg={a; € Lf (C): a1 vanishes outside E}.

To complete the proof of the surjectivity of the map f — fl, we need only show
that the complement of E in S is a null set with respect to C.

Let us assume the contrary. Then there is a ¢ in &3 and a subset By of Rt
of positive Lebesgue measure such that for any f in C§°(G),

f (0,A) =0 for almost all A in R;.

Choose a 7 in £ for which there is a nonzero intertwining operator T between
the restriction of 7 to M and o. Choose a vector £ in the space on which 7 acts
such that T¢ # 0. Define

O(k) = T(r(k~1)¢), ke K.
Then @ is in #,. For any f in C§°(G),
(o)) = ([ f@rn(a) - @) )
=/ f@H)®(z)e " HE) dy.
G
Then by (2.9), (f(c,A)®)(1) is equal to

/ f(n™! - exp(—tHp) - k~1)eCA+P(HOD (k) dk dt dn.
KXRXN
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Let f(n~!-exp(—tHp) - k~!) equal

x(k) - at) - v(n)
where x(k) = (r(k)¢&, €) and v is any function in C§°(N) such that [ v(n)dn =
1. a is some function in C§°(R) such that [0 a(t)e(iAT#(Ho)t dt is not equal
to zero for any A belonging to a subset Ry of R; of positive measure. Clearly

such an o exists.
For a fixed Ag in.Rs,

(o480 =T(©) - [ a(petorstmonta,

This is a nonzero vector in the space on which o acts. However, (f(o, Ag)®)(k) is
a continuous function of k, so (f(o,Ag)®)(k) is nonzero for a subset of K of pos-
itive measure. Therefore f (0,A0)® is a nonzero vector in /7. This means that
the operators f, (6yA) do not vanish for any A in R;. We have a contradiction.
The proof of Theorem 2 is now complete. 0O

4. Statement of Theorem 3. For z in G, define
a@:/ewmwmh
K

Define a norm on g by putting
”X”2 = —B(X,HX), Xe 9

where B is the Killing form on g. Since G = K A, K there exist a unique function
o on G such that

(1) 0(k123k2) = 0'(22), ki,ko € K, 2z € G;

(i) o(exp H) = ||H|, H € gy.
It is known that there exist numbers ¢, d such that for any a in A;‘
(= {exptHo: t.> 0}),

(4.1) 1 € E(a)e?(°8%) 2 ¢(1 + o(a))?
(see [3(g), Theorem 3 and Lemma 36]). Also there is an ro > 0 such that

(4.2) /G ()?(1 + ()" dz = N(ro) < 0o

(see [3(1), Lemma 11)).
Choose 6 in K such that 6 1aé = a™! for any a in A,. We obtain the formulae

E(a~1) = E(6'ab) = E(a),

(4.3) o(a™) = o(6ab) = o(a).

Let & be the universal enveloping algebra of g.. We can identify & with the
algebra of left invariant differential operators on G. Let p be the canonical anti-
isomorphism with . Z and the algebra of right invariant differential operators on
G. If g; and g, are in & and f is a differentiable function on G, then the actions
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of p(g1) and g2 on f commute. We denote the resultant of this action at any =

in G by f(g1;%; g2)-
Now for every g1, g2, in & and s in R, we define a seminorm on C®°(G) by

£ llgr.2,6 = sup [f(9157;92)|B(z) (1 + 0(z))°,  f€C®(G).

Let €(G) = {f @ C(G): ||fllgy,92,6 < 00, for any gy, g2 in & and s in R}.
These seminorms make % (G) into a Fréchet space.
Clearly
CP(G) TZE(G)
is a continuous inclusion, and it is known that C§°(G) is dense in &(G) [3(1),
Theorem 2]. Also from (4.2) we see that there is a continuous inclusion of Z(G)
into L?(G). % (Q) is called the Schwartz space of G.

We wish to define a subspace of L? (G) which will ultimately turn out to be
the image of € (G) under the Fourier transform map, f — f . We shall need to
fix appropriate bases for the Hilbert spaces #, and #; 4.

For each w in &; let w,, be a representation in the class of w acting on the
Hilbert space #,. We can choose an orthonormal basis

(4.4) {Q'r,i = (pr,i (w)}'regx

of Z, such that &, ; transforms under 7, |k, the restriction of 7, to K, according
to the irreducible representation 7 of K. The second subscript, ¢, ranges from 1
to [w: 7] - dim7, where [w: 7] is the multiplicity of 7 in m,|k. It is known that
[w: 7] € dim 7 (see [3(b), Theorem 4]).

We shall construct explicit bases for the Hilbert spaces % 2. As we remarked
earlier, there is a canonical intertwining operator between the representations
7oAk and 7, of K. Therefore we shall choose a fixed orthonormal basis for the
Hilbert space #,.

The multiplicity of 7 in 7, alk equals the multiplicity of 7 in m,. But 7, is
just the representation ¢ induced to K. Therefore by the Frobenius reciprocity
theorem for compact groups [6(a), Theorem 8.2], these multiplicities are just
equal to [7: o], the multiplicity of o in 7{ps (7]as is the restriction of 7 to M).

Fix 7 in &« and o in &y acting on the Hilbert spaces V; and V,, of dimension
t and s respectively. Let R(r,0) be the set of intertwining operators from V; to
Vs for 7|ar and o. The Hilbert-Schmidt norm makes R(r, o) into a Hilbert space
of dimension [7: o].

Now suppose T is in R(r,c). Since o is irreducible, we can assume that there
are orthonormal bases {£1,...,&} and {71,...,7s} of V; and V, respectively
such that there is a constant ¢ for which

TE@' =Ny, 1€ 3y

T¢ =0, > 8.
Suppose T has been normalized such that ¢ = (t/s)!/2. Then
TEI' = (t/8)1/27h’, 1€ 3,

4.5
“ Tl = /2
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Fix an element ¢ of norm 1 in V,. Write 7*(k) for (k1) if k is in K. Define
®(k) =T(r*(k)E), keK.

Then

(i)

®(km™*) = T(r(m)7*(k)€) = o(m)T (r* (k)€)
= o(m)®(k), meM, ke K.
Therefore ® is an element in 7. -
(ii) ||®|| = 1, because
(@.9)= [ (0 ()9, 76" () de
K

= [ St me )6l Tl w9e )6 de

> [ (w6 e 0", €om - (£)

> [ weermERa (1)

; .
= ( ;) . (gﬁi:) (by the Schur orthogonality relations on K)

=1.
Conversely, let ® be any unit vector in #, such that ® transforms under 7,

according to 7. Then there exists a unit vector £ in V; and a T in R{r,0) with
IT|| = (dim7)/2 such that

®(k) = T(-*(k)€), keK.

For @ defined as above, the vector N, (A)® is in #/. Clearly N,(A)® trans-
forms under w,s according to 7. Then there exists a unique 7 in R(r,0') with
IT’[| = (dim7)'/2 such that

(No(M)2)(k) =T'(r"(k)€), keEK.
The map T — T’ from R(r,0) into R(r,0’) will be denoted n,(A), so T' =
ng(A)T. ng(A) is norm-preserving and hence unitary.

Fix an orthonormal base {T1,...,T,} of R(r,0) of elements of norm equal to
(dim7)1/2. For 1212 7,14 52t and k in K, define

(4.6) @, (1-1)t+5(k) = Ti(r* (k)&5)-
Then {®,;: 7€ &, 1< 1 £ [r: 0]dim7} is an orthonormal base for Z;.

The bases (4.4) and (4.6) can be used to define a collection of seminorms
on L2(G) and L?(QG) respectively. For each triplet (p,q;,gz) of polynomials we
define a seminorm on L3(G) by letting ||ag)lp.¢,,e be the supremum over w,
(71,%1), (72,%2) of the expressions

(4.7) (®11,41, 60(W)@r, ia) IP(W)a1 (i1 aa(l72]), a0 € LF(G).
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Let %(G) be the set of all ag in LE(G) for which [|agllp,g, ¢, < 00 for every
triplet (p,q1,42)-

For each set of polynomials (p;,p2,q1,92) and each integer n define a semi-
norm on L2(G) as follows: put la1l(p1,p2,q1,q2: ») = 00 if for some o in & and
some &, ; and ®,, ;, the function (®,, ;,,a1(0,A)®,, ;,) is not n times contin-
uously differentiable in A. Otherwise, let ||a1/(p,,p2,q1,42: n) €qual the supremum
over (0,A), (11,%1), (72,%2) of the expressions

68 |(5) @nisalo @0 )| piloDraADarimas(im).

Let %(G) be the set of all a; in L?(G) for which [|a; l(p1,p2,q1,q2: n) < 00 for

every set (p1,p2,q1,q2: 1) ) )
The above seminorms define topologies on %(G) and % (G). Define

7 (G) =%(G) o &(G).
#(G) is a Fréchet space.

THEOREM 3. The map [ — f gives a topological isomorphism of % (G) onto
Z(G).

We shall spend most of the rest of this paper proving this theorem.

5. Spherical functions.  In this section we shall define 7-spherical functions
on G and develop some of their elementary properties.

A unitary double representation 7 of the compact group K is a Hilbert space
on which there is both a left and a right unitary K action. In addition, these
actions are required to commute with each other. We denote both the left and
the right action of K by 7. If 7 is a unitary double representation of K on the
vector space V;, define a representation 7’ of K x K on V; by

' (k1, ko)v = 7(ky)vr(kz'), veEV;, ki,ks €K.

There is a one-to-one correspondence between double representations of K and
representations of K x K.

Suppose 7 is a unitary double representation of K on the vector space V,. A
function ¢ from G to V; is said to be r-spherical if for every k;, ks in K and =
in G,

S(k1zke) = 71(k1)p(z)72(k2)-

We shall write |¢(z)| to indicate the norm of ¢(z) in V;.

Suppose f(z) is a continuous complex-valued function on G such that the left
and right translates of f by elements in K span a finite-dimensional space of
functions on G. We shall use f to define a spherical function.

Let ¢ be the function from G into L2(K x K) defined by

o(x)(ky, ko) = fk7 zksY), =z €G, ki,kz €K.



HARMONIC ANALYSIS OF TEMPERED DISTRIBUTIONS 39

Define a double K representation x on L2(K x K) by

[(er)u) (K1, k) = u(ky Yy, k2),
[up(ks)](k1, ko) = ulky, koks 1),

for u in L2(K x K) and ki, ka, k1, k2 in K. Let V, equal sp;eg{¢(z)}, the
finite-dimensional subspace of LZ(K x K) spanned by {¢(z): = € G}. Then for
any z in G, and ky, kg, ki, ko in K,

B(krzka) k1, k2) = f (k7 Fazkakz ) = F((RT ka) ™ a(kaky )0

This expression equals
(u(k1)(z)a(ks)) (K1, k2)-

Therefore ¢ is a u-spherical function, which we shall call the u-spherical function
associated with f.

Notice that if 7 is an irreducible unitary double representation of K on the
finite-dimensional Hilbert space V;, then 7 can be regarded as an irreducible
representation 73 ® 75 of K x K on V; ® V. Here 1y and r; are irreducible
representations of K on the spaces V; and Va, and 75 is the dual representation
of 75 acting on V', the dual space of V;. We write 7 as (r1,72) and |r| as
1] + |72|. Let &2 be the set of equivalence classes of irreducible unitary double
representations of K.

Suppose that f(z) is the function (®4,7(z)®2) where 7 is a unitary repre-
sentation of G on a Hilbert space /#. We assume that fora = 1 or 2, ®, is a
unit vector in & that transforms under 7|k according to the irreducible unitary
representation 7, of K, acting on the Hilbert space V,,. Let 7 = {r1,73) -7 is in
&2 and acts on the Hilbert space V, = Vi ® V. We shall find a formula for
the spherical function ¢ associated with f. Then we shall specialize to the case
where 7 is one of the induced representations 7, 5 defined in §2.

Let 7, have dimension ¢, and let {£,1,..., as, } De an orthonormal base for
Va, for o = 1 or 2. Let V, be the subspace of # spanned by {n(k)®,: k € K}.
Choose an orthonormal base {®41, ..., Pz, } of V. such that the correspondence

€ai — Do, 1=1,2,...,tq,

gives an intertwining operator between 7, and 7|k acting on the space V.. Define
functions e;(k;) and eg;(ko) as follows:

eri(k1) = (m(k1)®@1, ®14), ki € K,
ea;(ke) = (m(k71)®q, ®gj) = (w(k2)®2;,®2), k2 € K.
Then
¢(z) (k1 ka) = (ki zk3 ") = (w(k1)®1, m(z)m (k7 1) ®2).

This is equal to the expression
> eni(ka)es; (ka) (R1i, (z) ;).
4]
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V, is the subspace of L?(K x K) spanned by the functions e;;(k;)e2;(k2). Let
{€515- -+, 34, } be the dual basis in V¥ to {£21,...,&2¢, 1. Then for 1 €4 £ ¢y,
1 € j € tg, identify e1;(k1)es;(ka) with (t122)"1/2£1; ® £3;. This gives an
intertwining operator between the double representations y and r. Therefore,
we can regard ¢ as a r-spherical function from G to V;. We have the formula

(5.1) $(z) = (t12) "2 Y 1 ® £5,(B1s, m(2)B25),  zE€G.
, >
Now suppose that 7 is one of the representations 7,4, for o in &y and A in
R. Recall that R(r,,0) was the space of intertwining operators between 7, and
o. Fix T,, in R(7,,0) such that

IToll? =dimre =t,, a=1,2.

Suppose that &; and & are unit vectors in V7 and V, respectively. Let

&, (k) = Tolry(k)éa), keK, a=1,2.
Then ®; and ®, are unit vectors in #,. Define

®,i(k) = Ta(ra(k)as), keK, a=1,2, and 1 €1 € {,.

Then {®,;} is an orthonormal basis of V. Also

f() = (1, 76,4(2)@2) = (Mg,a(z™1) @1, D2).
This is equal to the expression

62 [ (Tl K@)l Talr ()]s ) g

The inner product in this integrand is on V,, the space on which o acts. H(zk)
and K (zk) were defined in §2. Combining the formulae (5.1) and (5.2) we obtain
the following formula

$(z) = (b1ta) 2D £ ® E3, - / (T1[r1 (K(zk))&1s),
(5.3) ij K
Tyr3 (k) gzj])e(iAuo—p)(H =k dr.
Let L = L™ be the following set of functions on M:
{¥: M — V,: Y(mimmy) = r(mq)yY(m)r(mz), m,m;,my € M}.

L7 is a Hilbert space with inner product

(Y1,%2)Mm = /M(qpl(m),ng(m))dm
= /M(n(m)«ml),n(mm(n)dm = ($1(1), ¥2(1)).

If ¢ is in L7, then (1) is in V; ® V¥ and it can be regarded as an intertwining
operator from V2 to Vi for 73| pr and 11| as. Conversely, if S is such an intertwining
operator, then

P(m) = 11(m)S = S1y(m)

is a function in L”.
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If o is in &)y, let LT, be the set of functions ¢ in L” such that ¢)(m) transforms
under left and right translates of M according to the representation o of M. Then
there exists a finite number of representations {o,...,0,} in &y such that

L7=L,T,1 @...@L;r.
For any v in L7 let us extend the domain of ¥ to all of G by defining
P(kan) = 1 (k)yp(1), ke K, ac Ay, neN.
Let us return to our function ¢(z) above. Define
T : Ve —» V1
as the adjoint of T3. Let
S=TfT21 V2 —*Vl.

S is an intertwining operator for 72|as and 71 |ps. S is also canonically an element
in V; ® V5. Note that

S = (tat9)"1/? Z €15 ® &3, (€14, SE25)wy -
)
Therefore
(5.4) S=(trt2) "2 €14 ® £5;(T1 10, o )vi, -
iy

The subscripts V; and V, indicate in what space the inner product is taken.
Then the function

Y(m) = 11(m)S = Sta(m), meM,
isin L]. Also

I3, = ((1),%(1)) = (5,5)

= (tata) ™2 Y |(T1 i, Tobey)I*
iy

Since [|Ta]l = (to)!/?, it can be shown from (4.5) that this last expression is

equal to dimo.
From (5.3) and (5.4) we obtain the formula

(5.5) #(z) = / (k)T (k1 )elibuo—P)(H(EH) g
K
For any 9 in L™ we write
EA('(,b: IE) = / w(xk)‘r(k_l)e(iAﬂo—P)(H(Zk)) dk.
K

E\(4: z) is called the Einsenstein integral of 1/ and A.

Suppose, conversely, that we were given ¢ in L7, such that ||¢||2, = dimo.
Then we could choose Ty, in R(7,,0) with ||T,||? = dim7, for a = 1 or 2 such
that ‘

(1) =11 T3.
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Again we can define
®4i(k) = Ta(ry(k)as), ke K, a=1,2.
Then ®,; is a unit vector in /#,. Working backward we can obtain the formula
(5.6) Er(¢: 2) = (t1t2) "2 ) €1 ® &5(D1is Mo a (7)D2y)-
)

Now, if /(1) = Ty T2 as above, and A # 0, then n,(A)T, is in R(7,,0') and
(ITol|?> = to for o equal to 1 or 2. Define
(5.7) (M (A)%)(1) = (no (A)T1)* (1o (A)T2)-

Then M, (A)y can be regarded as a function in L},. It has the same norm as
1. Therefore, M,(A) is a unitary map of L], onto L7,. We can then define a
unitary linear transformation M(A) of L by defining it to be M, (A) on each of
the orthogonal subspaces L7 of L7.

If A # 0 we have the equation

(‘I)lﬂra,A(z)¢2) = (NU(A)Ql,Wo’,—A(x)No(A)q)2)'
Then from (5.6) we obtain the formula
(5.8) Ex(p: 2) = E_A(M(A)¥: 2).

This is the functional equation for the Eisenstein integral.
From (5.7) and (2.14) we obtain the formula

(5.9) M(A)™Y = M(-A).
Since M(A) is unitary, it is clear that
(5.10) M(A)* = M(A)™! = M(—A).

We make a final remark about the irreducibility of the representations n, g,
for o in &. These representations may or may not be irreducible. If m,q
is irreducible, then for any nonzero vectors ®; and ®; in #; o the function
(®1,7,0(x)®2) cannot vanish identically in z. Therefore if 7 is in &2 and ¢ is
any nonzero vector in L7, Eq(1: z) does not vanish identically in z.

On the other hand, suppose that

Ao =HOH

where /] and /% are nonzero closed subspaces of #; o which are invariant under
Ts,0- 1t is possible to choose nonzero vectors @, in # such that &, transforms
under 7,0/ x according to some irreducible representation 7, of K, for o equal to
1 or 2. Let 7 be the double representation (r1,7). Then there exists a nonzero
element 9 in L], such that Eg(t: z) vanishes identically in z.
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6. Proof that the map is injective. Let 7 be a unitary representation of
G on a Hilbert space #. If v is a vector in # such that the map from G to Z
given by
z — m(z)v, z €G,
is infinitely differentiable, v is called a differentiable vector. Let £ be the set
of differentiable vectors in #. If v is in £ and X is in g, define

(X))o = tlin(l) %(’n(exp tX)v—v)..

It can be checked that this gives a representation of the Lie algebra g on the vector
space # . It extends to a representation, again denoted , of the universal
enveloping algebra, &, of gc.
Let 3 be the center of % . If the restriction of 7 to 3 is one-dimensional, we
obtain a homomorphism
x:3—C.

In this case we say that 7 is quasisimple, and we call x the infinitesimal character
of . It is known that any irreducible unitary representation of G is quasisimple.

Let n be the conjugation of g. with respect to the real form g. We define
three involutions on g. by

X* = -—nX, X €ge,
Xt =-X, X € ge,
X=1nX, XE€Eg.
If X and Y are in gc and ¢ is a complex number, it is easy to show that
[_X-7 ?] = [ﬁ]a (a—) = EY,
(Xt Yt =-1X,Y]", (cX)t =cXT,
X% Y*] =-[X,Y}), (eX)* =eX*.

All three involutions extend to involutions of & .
If 7 is a unitary representation of G, then for g in &,

m(g") = n(9)*
where m(g)* is the adjoint operator of 7(g).

LEMMA 6. Suppose that 7 is quasisimple. Assume ®1 and $, are vectors in
A such that the vector spaces

sp{m(k)®;: k @ K}, a=1,2,

are both finite-dimensional. Then ®; and &2 are in Z°°. Furthermore if g1 and
g2 are in %, and

f(SE) = (le W(m)q,2)7
then
F(91:; g2) = (m(g7 ) @1, 7(2)7(2) ).
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PROOF. By [3(a), Theorem 6], ®; and ®, are actually “analytic vectors” for
the representation # so in particular they are differentiable. The other statement
of the lemma is easy to check. 0O

Now, in order to discuss the infinitesimal characters of the representations =,
and m, 5 we shall quickly review how Harish-Chandra classifies homomorphisms
from 3 to C.

Let 90, Ay, Ay, and A be the universal enveloping algebras of me, ay ¢, ay ¢,
and a. respectively. Let 3ar be the center of 9. Then 9, is the universal
enveloping algebra of m¢ + 6 ¢, and its center is 35/2,.

If z is in 3, there exists a unique element ~;(z) in 342, such that z — 4(2)
isin ) ,ep, #FXo [see 3(k), Lemma 13].

If 2 is in 3ps%p, there exists a unique element ~{(z;) in A such that z; —+ (21)

isin 3} cp_py PUy Xy [see 3(e), Lemma 13].

If z is in 3, there exists a unique element +/(2) in 2 such that z — 4/(2) is in
Y acp#Xq [see 3(e), Lemma 18].

Notice that if z is in 3,

z =7 (%(2) = (z = 0(2)) + (v0(2) — 11 (76(2))-
The right-hand sum is an element in ) . p» % X,. Therefore
(6.1) Yo ="7"
Define automorphisms 3 and 5; of A by

B(H)=H+p(H), HEe€ac,
Bi(H) = H + pn(H), Heaq,..

Let y=/8"'o+ and let v; = f7 ' o 4,. It is known that the maps
7:3—-2A, v I —

are algebraic isomorphisms onto those elements in 2 which are invariant under
W and W; respectively [3(e), Lemma 19]. 2 can be regarded as the algebra of
polynomial functions from the dual space, ag, of a, into C. If A is in aF, denote
the evaluation of p in S{a.) at A by (p,A). Then for any A in a} define the
homomorphism x,: 3 — C by

xa(2) = (v(2),A), z€3.

Any homomorphism from 3 into C is of this form and xx, = X, if and only
if A; = sAg for some s in W. We shall sometimes call x, the homomorphism
corresponding to the linear functional A. Similarly, we can define x¥ : 352, —
C by
Xl)\w(zl) = ('71(2:1), ’\)’ 21 € 3M2lp
Define an automorphism fFg as follows:
Bo(X) =X, Xem,,
Bo(H) = H + p(H), Hea.
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Bo takes 3%, onto itself. Put 4o = 85" o). By (2.5) and (6.1) we see that
(6.2) 7= 71°%:-

Now, what are infinitesimal characters of the representations in &;? It is
known that all Cartan subalgebras of the complex Lie algebra g. are conjugate
under an element in G¢. Fix y in G, such that Ady - b = a.. Then Ady
preserves the Killing form on g., and Ady maps the roots of (ge,bc) onto the
roots of (gc,ac). Therefore Ady maps (—1)1/2b onto (—1)'/2ay + a,. We can
also assume that Ad y maps the positive roots of (g, be) onto the positive roots
of (gc,ac). If A is in L, define

A(H)=A(Ady-H), Heqe.

Then

(6.3) B()\,A) = B(A, ), A€l
Also

(6.4) AP =a%),), AelL.

If Aisin L' and w = w(}) is in &, then by [3(1), Theorems 15 and 16], x»,
is the infinitesimal character of any representation in the equivalence class of w.
Write L, and L;, as the image of L and L’ under y.

Now if o is in &, let u be a real linear functional on (—1)'/2a, associated
with 0. Regard u as a linear functional on (—1)'/?ay + 0, by making it equal
zero on d;. By looking at a highest weight vector for o, we can easily check that
for any z; in 3as

(6.5) o(z1) = x3 (21) = (m(21), )
LEMMA 7. Fizo in &y and A in R. Then for any z in 3,
T A(2) = X—p—iApo (2)-

PROOF. It is known that the representation 7, 5 is quasi-simple [3(a), p.
243]. Therefore, there exists a complex linear functional A on a. such that

TeA(2) = X2 (2), z€3.

Our job is to evaluate A.

Choose a 7 in &2 such that L] # 0. Fix ¢ in L, so that ||¢]|2, = dimo.
Then by (5.6) (using the notation in that formula) and Lemma 6, we obtain the
formula

XAZ) Ea(w: 2) =) (tata) "2 61 ® £3; - (@1i T A (2) 0,0 (2)D3;)
gy
=E\(¢: z; 2), zZ €3
Let F(z) = (z)e(Aro—n)(H(z))  and define

F(z: k) = F(zk)r(k™1), z€G, kEK.
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Then by (5.5),
EA(zp:x):/KF(z:k)dk.

Let 2 be an arbitrary element in 3. It can be regarded as a left and right invariant
differential operator, so

F(z;2: k) = F(zk; 2)r(k™1).

Therefore
Ep(¢: z;2) =/ F(z;z: k)dk
K

=/ F(zk; 2)r(k~ 1) dk.
K

Clearly F(zn) = F(z) for any n in N, so if g is in #&n, F(z;g) = 0. Therefore
Ex($: 2;2) = / F(zk; A (2))r (k™) dk
K

= /K F(ak; foro(2))r(k™") dk.

Suppose that
Yo(z) = zihi, 2 €3m, hi €%
i
Then Bovo(2) = 2=; Bo(hi).
Now F(yexptHo) = F(y)(¢At — p(tHp)), so for any h in %,
F(y; Bo(h)) = F(y){Bo(h), iAo — p)
= F(y)(h, tApo).
On the other hand, if m is in M,
=1 (K(y)) - T} - o(m) - Ty - (FAro—p)(H(¥))
where ¢ (1) = T} T: in the notation of §5. Therefore, if 2ps is in 3
F(y;2m) =11 (K(y)) - T7 - 0(2m) - Ty - BAro—A)(HED)
=7 (K@) T (m(zm), 1) - Ta . e(ihuo—p)(H(y))

= (m(em), W F(y).
Therefore we see that

F(y; Bovo(2)) = F(y) <Z M (2:)hi, u + iAuo>

= F(y)
= F(y)

Y170(2), 1 + tApo)
~(z), b + iApo).

—— e~

Therefore,
Ex(: z;2) = EA(¥: 2)(v(2), u + 1Apo).
It follows that

XA (2) = (7(2), p + 1A po)-
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However, z was an arbitrary element in 3. It is easy to show, then, that A =
—u — tApg. The proof of Lemma 7 is complete. 0O

The linear transformation 4 is orthogonal with respect to the bilinear form B.
6 has eigenvalues of +1 and —1 on (—1)!/2ay and ay respectively. This implies
that a, is orthogonal to (—1)!/2a, with respect to B.

Suppose the rank of g equals n. Then let Hy and Hy,..., H, be orthonormal
bases of a, and (—1)/2a, respectively. For any a in P, fix root vectors X, and
X_o in such a way that B(X,,X_o) = 1. Then [X,, X_5] = Hy. (If X is any
linear functional on a., define H) to satisfy the property

B(Hx,H)=X(H), HEe€ac)
The Casimir element of B is given by
(6.6) wg=Hi+ -+ H2 4+ Y (XaX_o +X_oXa).
aEP
wg is in 3 and is equal to the expression
Hi+ -+ H:+ ) ([Xa,X—a] +2X_oXa),
a€P
so we see that
(6.7) Y(wg) =Hi+---+H2+ > Ho=)» H}+2H,
aEP T
Therefore,

Vwg) = D _(H: = p(H:))? + 2H, — 2p(H,)
=D _HI =3 2p(H)H; + 3 p(H:) - p(H;) + 2H, — 2B(p.p)
=2_H! - B(p.p).

Then if A is any linear functional on a., we have the formula

(6.8) Xx(wg) = B(A, A) — B(p, p).

Suppose that 7, is a representation in the class of some w in &;. Then from
(6.3) and (6.8) we obtain the formula

(6.9) 7w (wg) = [w]* — B(p, p)-

The restriction of any root in P, to a, is equal to either ug or 2ug. Suppose
there are r; and r; roots in Py of each type. Then

B(Ho,Ho) =2 Y, B(Ho)* =2(r1 + 4r2).
BeEP,

Let 72 = 2(ry + 4r2). Then B(uo, o) = r~2. If 4 is any linear functional on a,
B(—p —tApg, —p — tApg) = B(p, u) — r—2A2,
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Therefore if 0 is in &y, and Aisin R,
(6.10) o a(Wg) = |a]2 —rT2A2 B(p, p).

The Lie algebra ¢ is reductive, so € = ¢ + ¥, where #; is semisimple and &
is abelian. Let JZ be the universal enveloping algebra of £, and let 3x be its
center. Let h be the Cartan subalgebra of ¥ defined at the end of §2. For linear
functionals v on b, we can define the homomorphism

xf::’;x—vC.

Since the Killing form of g, when restricted to € is K-invariant, this Killing
form is a linear combination of the Killing forms of & ; on €, where {€; ;} are
the simple ideals of #;. Then it is clear that we can choose an element w; in 3x
such that

(6.11) x¥ (wr) = B(v,v) — B(pk, px)

for any linear functional v on h.
Notice that

_— + —
6.12) Wy = Wg, Wg = wy, Wy = Wg,
Wy = W, Wy = wy, w;" = W

LEMMA 8. The map f — fo is a continuous map from € (G) into B (G).

PROOF. Fix polynomials p, g1, g2. For f in C(G), we have
I follpasee = sup (@16 fo(@)@r, i)l - P(I]) - g1 (I71]) - @2(]72)-

By sup we mean the supremum over all w, (r1,%1), (72,%2). This is an arbitrary
0

continuous seminorm on %(G).
Choose integers m, ny, ng such that

p(lwl) - qu(In]) - ga(lral) < (1 + [w*)™ - (L + [m )™ - (1 + [r2]?)"2.
Define elements g; and g5 in B by

g1 = (we + Bpxk, pxc) + 1)™*,
92 = (wg + B(p,p) + I)™ - (we + Blpxk, px) + 1)"2.

By (6.12), ¢ = g1 and g = go. Since &,,;, and ®,, i, transform under 7,
according to 7y and 7o respectively, we see that

Tw(91)®r 6, = (1 + |71'2)n1q>71,i17
T(92)®rpip = (L+ [72[*)™% - (1 + |w|*) ™ @, 4, -

Therefore,

“f0”P1(11,<12 < Slép I(WW(gl)Qn W1 fO(w)Ww(g2)¢Tz,i2)|'
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If h(z) is the function (®,, 4,, 7w (2)®r, i, ), We see from Lemma 6 that

/ f(@) - h(g1; 7; g2) dz
G

”fo ”P,th a2 S Slép

= sup / f(g1;7;92) - h(z)dz
0 G

< sup (/Glf(gl;z;gz)l2d$)l/2- (/G I{h(w)|2dw>1/2-

By (2.8) this last expression equals

1/2
sup ([ IfasmalPdz) - p) 2,
0 G

But {#(w)~'/?: w € &} is bounded by Lemma 3. Also, by (4.2),

(/G |£(g1; 2; g2) 2 dx)l/z

< sup(E(@)™ - (1+ (@) - |f (91553 92)]) - N(r0) /2.
z
We have bounded || fo“,[,,ql,q2 by a continuous seminorm for & (G) on f. Since
C§°(G) is dense in & (G), we have proved the lemma. (I

LEMMA 9. Let sup denote the supremum over all (0,A), (11,71), (72,12).
1
Then for nonnegative integers m, my, mg, and n, the continuous seminorms
d\" _
<d_A) [(Q‘fhil’al (0,0)®r,5,) - (1 + IU|2 -r 2A2)m]
A+ P (L4 )™, e € (G

“0'1 “ (m,mi,ma,n) = Sl:p

form a base for the topology of &, (G).

PROOF. By Leibnitz’ rule and induction on n, we can see that it is enough
to prove the lemma for the seminorms

d n
(55) @rsias(ot)@a)| -1+ 1of? = 22

A+ n )™ A+ )™, e € B(G).

sup
1

(6.13)

Fix o in &y and 7 in &x. There is a nonzero vector of the form ®,; in our
basis for /#; if and only if the representation o occurs in 7|5s. Suppose that this
is the case. Then if 7 acts on the finite-dimensional vector space V;, ¢ acts on
a subspace of V;. The Cartan subalgebras of m and ¢ are a; and § respectively,
and we have already ordered their dual spaces. Regard o as a representation
oo X € of M® x Z(A) as in §2, and let v and u be the highest weights of the
representations 7 and og respectively. Then

lo]> = B(u+ pm e+ prr), 1> = B(v + px, v + pi).-
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Write b = az @ by where bs is a Lie algebra of dimension 1 or 0, depending on
whether we are in Case I or II. Assume that B(ag, by) = 0. Extend y to a linear
functional on b by letting it equal zero on bs.

Let &€ be a highest weight vector in V, for o. V; is a direct sum of weight
spaces for 7. Examine the action of 7(h) on £. It is clear that there is a linear
functional uo on b which is zero on ap and such that 14 = u+ us is a weight for
7. Therefore

B(u,p) € B(v1,v1).
However,
B(v1,1)? € B(v1 + px, v1 + px)"/? + Blpk, px)*/>.
Since v is a highest weight for 7, we see by [5, Lemma 3, p. 248] that
B(vy + px,v1 + px) € B(v + pr, v + pK)-
We have shown that there is a constant C, independent of 7 and o, such that
(6.14) lo| € |r]+ C.
From (6.14) we obtain the additional formula
(6.15) A2 2 r%(1+ol® = P2AP) + 72 (1 + (O + 7))

Formulas (6.14) and (6.15) show that any seminorm of the form (4.8) is domi-
nated by a seminorm of the form (6.13). Since the seminorms (4.8) form a base
for the topology of & (G), our lemma is proved. O

LEMMA 10. The map f — fy is a continuous map from Z(G) into % (G).

PROOF. Let ||-||; be an arbitrary continuous seminorm on % (G). Since dim o,
dim 71, and dim 7, are bounded by polynomials in |o|, |r1|, and |72| respectively,
we can use Lemma 9 to choose integers m, my, ma, n such that for any a; in
Li(6),

llas|lx € sup(dimo - dim 7y - dim r2) =1/
1

d\" 2 om
(35) @010 80 ) o = 427
S+ )™ (L4 ()™
Therefore, for any f in C§°(G)

(%)n /G h(g1;;92) - f(z) dz

”fl"l < sup(dimo - dim 7y -dimrz)l/2 .
1

by (6.10). Here
h(x) = (¢71,i1’7r0,1\(z)®1'2,i2)’
g1 = (w! + B(PK,PK) + 1)"“7
g2 = (wg + B(p,p) + 1)™ - (we + Blpxk, px) + 1)™2.
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Therefore

(5) [ #e) Tarziam)az

Let 7 be the double representation (r1,72) of K. Then by (5.6) there is a ¢ in
L7, with ||[¢]|2, = dim g, such that the last expression in the above inequality is
bounded by

d n
sup(ama) ™2 [ |fgzian)-|(35) Batw: )
Now if k is in K,

I71]l1 € sup(dimo - dim 7y - dim ) ~Y/2 .
1

dz.

(k)] = ()] = [¥lla = (dimo)/2.
Therefore, by (5.5),

(%)n E\(y: 2)

/ (k)T (k™) - [ipo (H (zk))|™ - elihro—P) (H(H)) g
K

(dimo)~1/?

= (dim o) ~%/?

< [ luo(H (@RI - &) da,
K
LEMMA 11. For anyx in G,

lwo(H(2))| € r~o(2).

Assuming the proof of Lemma 11 for the moment, we see that

(dima)~1/2 (a"x)"EAw: 2)

2/ r~"o(zk) e~ PH(K) g
K

=r""o(z)" / e~ PH(E)) 4
K

=r""o(z)" - B(x).
Therefore
il < e~ [ 1fosizi00)]- o0 - Ele) da.
By (4.2), the right-hand side of this inequality is bounded by
r" - N(ro) - sup(E(s) 71+ o(@))™™ -1/ (9137 02
We have dominated |fi]l; by a continuous seminorm for #(G) on f. Since
C§°(G) is dense in % (G), this is enough to prove Lemma 10. 0O

We still must prove Lemma 11. If z is in G, we can find &/, £ in K, and ¢ in
R such that £ = k' - exptHy - k. There exists a real number ¢, such that

H(z) = H(exptHp - k) = txHo.

Now [3(g), Lemma 35] and [3(g), Lemma 35, Corollary 2] establish precisely
that —t € t; € t. Therefore,

luo(H(z))| = |te| € t| =~ 'o(z). O
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Lemmas 8 and 10 show that the Fourier transform is a continuous map from
% (G) into £(G). It will be more difficult to prove surjectivity.

7. Theorem 3’ and some elementary formulae. Let a = (ag,a;) be an
element in L2(G). There exists a unique function f in L2(G) such that f = a.
We wish to find a formula for f. f is the unique function in L?(G) such that for
every g in C§°(G),

[ rei@e = @),
(The latter inner product is that of L2(G).) We shall write 3" to denote sum-
0
mation over all w, (1,%1), (2,72). We write > to denote summation over all o,
1

(r1,41), (72,12).
Then (a, §) equals

Z(GO (w)q)Tz,iz 1 Oriig )(¢11 1> §o (w)é‘rz %2 )ﬂ(w)
0
+ Z / (a'l (07 A)q)fz,iz’ ;i )(¢T1 i 91 G A)Q‘l’zyiz) - Blo, A) dA
1 —0Q
= Z/ (a0(w)-q)72,i2’ 2 )(q>71 i1 Tw (.’L’)‘I),-?,i?) : ﬁ(w)g(x) dz
o Je

oo
+Z/ L(al(d’A)sz,iz’Qn,‘il)(Q‘rl,il’ﬂ'a,A(z)Q‘m,iz)
1 V= ‘

- B(o,A) - g(z) dz dA.

Let us assume that the integrals in the last expression are absolutely convergent.
This is true for example if a is in €(G). Then we may take the integration on
G outside. Define functions do{x) and &, (z) by

do(z) = Z(ao(w)sz,iz 2 @i ) (@701 T (2)Pr, ,iz)ﬂ(w)a
0

(7.1) 0o
610) = 5 [ (01000000 81,2) B, T (8)8122)(0, ) .
1 =00

Then we have the formula
L 1@@ e = [ (to(@) + st da.
Since the function g(z) is arbitrary we see that
f(z) = do(z) + &1(z).
By definition of f(z), we have the formulae
(7.2) &o = ao, &1 = a;.

To prove the surjectivity in Theorem 3, we have to show that both do(z)
and &;(z) are in €(G). If h is in 5 (R), the Schwartz space of R, we shall be
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studying the functions
Jo(z) = ((I)Tl yiw"rw(z)q)h,iz)ﬂ(w)a

he)= [ " B(A)(@ry 502 Mo (2) @1y 13)(0, A) dA.

If v is a continuous seminorm on % (G), we will need to know that both v(f,)
and v(f1) are finite. Furthermore, we will have to determine the dependence of
v(fo) and v(f1) on the variables 11, 72, 0, w, and h.

It follows from the remarks of §5 that the study of the functions fo(z) and
f1(z) is equivalent to the study of certain (71, 72) spherical functions. To com-
plete the proof of Theorem 3 it is enough to prove the following

THEOREM 3'. Let 7 be in &2.

(a) Let ¢7, be a T-spherical function of the form (5.1) corresponding to a rep-
resentation 7, with w in &;. Then for each g1, g2 in &, and real 3, there are
polynomials p, q such that

sup |62,(915 2 92) B(W)E(2) ™ (1 + 0 ())°] < p(lw])g(I7])-
(b) If o is in &n, and o is in L7, with ||¢||m = 1, let Ex(4¢: z) be the

Evsenstein integral as in (5.6). Then for each g1, g2 in &, and real s, there exist
polynomials p1, p1, q, and an integer N, such that whenever h is in S (R),

/_oo R(MEA(¢¥: g1;7;92)B(0,A) dA - E(z) 1 (1 + o(z))®
(EdX) h(A)l.

We shall devote most of our remaining work to proving Theorem 3'.
Let Z?(G) and % (G) be defined analogously to L?(G) and & (G) respec-
tively, but without the symmetry condition

ai(0’,—A) = Ny(A)as(o,A)N,(A)~1.
Now suppose that a; is in %2 (G), and that

S [ @18 80800, 0) d
1 —00

sup
zeG

€ pi(lol)g(l7]) - sup - sup(pz(|A])
12€tZ€N A€R

is absolutely convergent. This is true in particular if a; is in 4 (G). Then we
define &;(z) by the equation in (7.1).

Suppose that for each o in &, {® ;} is another orthonomal basis for #; such
that each @/ ; transforms under 7, according to the irreducible representation 7
of K. Then it is not hard to show that the expression

o0
E / (al (07 A)Q;'Q ,iz 3 q){n ,i; )(Q;l ,21? WU’A (z)Q;'z,iz )ﬂ(a’ A) dA
1 —00

is also absolutely convergent and equal to d;(z). Define
bi(o,A) = 1(a1(o,A) + N,(A) a1 (o’, —A)N,(A)).
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Then, using the above remark we can show that

bi(z) = &1 ().
Then by (7.2), &1(0,A) = b(c, A). Therefore, we have the formula
(7.3) d1(o,A) = zlai(o,A) + Ny(A)"ai(o’,—A)N,(A)].

Now let 7 = (7,72) be an irreducible double representation of K. It is of
interest to define Fourier transforms for r-spherical functions on G.
Choose 04,...,0, in &y such that

L"'=L, &---&L.
Suppose u is a function which maps R into L”. Then if A is in R, write
u(A) =ui(A) +-- -+ u.(A)
where u;(A) is the projection of u(A) onto L. Let us say that u is in L*(R;7)

if u; is in L2(R, B(04,A) dA) ® L], for each ¢, 1 € ¢ € r. Then if u is in L2(R;7),
define

r R
(7.4) i(z) =Y dimo; - lim f Ea(ui(A): 5)8(c, A) dA.
o1 R—oo J_p
The limit in this formula is taken in the topology of L?*(G) ® V;, where V is the
space on which 7 acts. Then 4 is a r-spherical function which is square-integrable.
On the other hand, if ¢ is a square-integrable r-spherical function, define a
function ¢ in L2(R;7) as follows. If ¢ is an arbitrary element in L7 then

(7.5) (B(8), ¥)ns = Jim /G (6(z), Ea(¥: 2))dz, AER.

Here Gy is any increasing sequence of compact sets whose union is &, and the
limit is taken in the topology of L#(R;7).

Using the formulae (5.6) and (7.3), and recalling the definition of M(A), it is
possible to derive the following formula for any function u in L#(R;7):

(7.6) 4(A) = u(A) + M(—A)u(-4)], A #0.
We shall use this formula in §13.

8. Basic estimates for derivatives. We open this chapter by stating a
lemma of E. Nelson.

LEMMA 12. Let n be an trreducible unitary representation of G on a Hilbert
space & . Fiz g in & . Then there are an integer my > 0 and a constant C, both
independent of 7, such that for every ® in #'

Im(g)@l € Clim((wg + we — 1))@
Here wy and we are the elements in Z and Zk respectively, defined in §6.

For a proof of this lemma see [7, Lemma 6.3]. It turns out that my can be
taken to equal the order of g. O
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Suppose p is the conjugation of g. with respect to the compact real form
u = £+ ip. We define a Hermitian scalar product on g. by

(X,Y)=—B(X,pY), X,Y @&ge.

We obtain a Hermitian inner product on ac by restriction. This permits us to
define an inner product on the dual space of a.. If A is a complex valued linear
functional on a., we write |A| as the norm of A with respect to this inner product.
Suppose 71 and 72 are in &¥x. Write 7 as the double representation (r1,72) of
K. Then )
[7] = |r1] + |72, dim7 = dim 7 - dim7,.

LEMMA 13. Letw be an trreducible unitary representation of G on the Hilbert
space #Z, with infinitestmal character x», for A a linear functional on a.. Sup-
pose g1 and g are in & . Then there exist polynomials p and q, independent of
A, such that the following (somewhat complicated) property is satisfied:

Whenever ®; and ®2 are unit vectors in 7 that transform under 7|k accord-
ing to the representations 1y and 72 in &k, set f(z) = (®1,7(x)P2). Then there
are two sets, {V1q: 1€ a € t1}, {Vop: 1 € B € ta}, of orthogonal vectors in
Z, and two sets {T1a: 1€ a € 11}, {rag: 1 € B € t3} of representations in &g
such that

(1) (I¥1all + 1%251) Z p(IA]) - o(l7])-

(ii) ¥1o and ¥ap transform under w|kx according to the representations 714
and Top respectively.

(i) (|71l + I7251) € a(lr)-

(iv) t1 +t2 € q(|7]).

™) flo1325502) = Ty s (Y1, (2) U2).

PROOF. By Lemma 6, f(z) is differentiable. If ¥; = 7(g])®; and ¥, =
(g2)®2, we have the formula
flg1; 75 92) = (Y1, 7(2)¥2).
By the last lemma, we can choose C and m such that
l7(g7)1l 2 Cllm((wg +we — 1)™) 4.

However, ®; transforms under 7|x according to ;. Therefore, by (6.8) and
(6.11) we see that

I7((wg +we = 1)™)@1[l = (B, X) = Blp, p) + |71[* = B(p, p) = 1)™ ¥4 ].

This last expression is bounded by polynomials in |A| and |r;]. Similarly, ||¥s]|
is bounded by a product of polynomials in |A| and |7|.

Suppose that g; has order m. Let %, be the set of elements in % of order
less than or equal to m. %, is a finite-dimensional vector space, and there is a
natural representation v of K on %, given by the adjoint map.

Define a linear map from the vector space %, ® Z > into £ by

g ® — 7(g)?®, gE By, e A
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> is a K-module under 7|k, 50 Fp, @ # *° is a K-module. If X isin g, k is
in K and ® is in #°°, then

w(k)m(X)® = tl_lg)lo n(k) -t (w(exptX) - 1I)- &.
This last expression equals
m(Adk - X) - m(k)®.
Therefore, the following diagram is commutative:
By QA ® —— F®
= Jx
By Q@A — F®

Therefore, since ® transforms under 7|y according to 71, the vector ¥; =
n(gf)@l transforms under 7|g as a vector in the space on which 7 ® v acts.
Then

(8.1) Uy =Typ + -+ Yy,

where the vectors {¥;,} are orthogonal to each other, and each ¥, transforms
under 7|k according to some irreducible representation 7, of K that occurs in
the decomposition of 7; ® v into irreducible representations of K.

Since (8.1) is an orthogonal decomposition,

[¥1all € W1l  P(IAD - q(l7), 12 aZ iy,
Also, we have the formula
t; € dim(n ® v) =dim7y - dimv.

This expression is bounded by a polynomial in |r;| by the Weyl dimension for-
mula.

Now if ¥, is not zero, 71, occurs in the decomposition of 13 ® v into irre-
ducible representations, for some irreducible representation vy of K occurring in
v. Let A1, Ag, and Ay, be the highest weights of 71, v, and 71 respectively. By
examining the formula for the multiplicity of m14 in 71 ® 1o [5, Pg. 262], we see
that there is a nonnegative sum, u, of positive roots, such that

(A1 4+ pk) + (Mo + pr) — (Mo + 20K) = u.
Therefore
(M +pk) + (Ao + oK) = (A1a + pK) + (1 + pK)-

Now B(A1q + 0k, 4+ pK) S 0since Ay + px is in the positive Weyl chamber.
It is then easy to show that

[T1al Z 11| + |vol

if we recall the definitions of |r14], |71], and |vp]. We have now verified conditions
(1)~(iv) for {¥1q} and {114}
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We define collections {¥ss} and {725} the same way. They satisfy conditions
(1)—(iv). It is clear that
ty t2

Flo;z592) = D Y (Vi w(2)¥3p).

a=1p3=1
The proof of Lemma 13 is complete. O

Suppose that 7 equals 7, a representation in the equivalence class of some w
in &, acting on the Hilbert space /#,. Suppose w = w(A) for some X in L'. The
infinitesimal character of 7, is X»,» Where y is the element in G defined in §6.
Furthermore, since Ady maps (—1)'/2b onto (—1)*/%ay + a,, p()y) equals —),.
Therefore

(82) Al = =By, p(Ay)) = B(Ay, Ay) = B(A, A) = |w]?.

If 7 = 7y, for o in &y, choose a real linear functional y on (—1)'/2q,
associated with o. The infinitesimal character of 7 A is X—u—iAu,, While p(u) =
—u and p(iApg) = 1Apg. Therefore

| — u—iApo|* = —B(p + iApo, p(i + iApo))

(83) = B(u, 1) — B(iApo, tApo) = lof® +r72A2.

9. Preparation for the main estimates. Suppose {¢}: A € &, 7 € T}
is a collection of infinitely differentiable 7-spherical functions. 7 indexes cer-
tain irreducible unitary double representations 7 = (71,72) of K on the finite-
dimensional Hilbert spaces V; =V, ® V) - A indexes linear functions from a, to
C. We have the homomorphisms x): Z — C defined in §6. We assume that

205 = xa(2)¢,  z€3
By |A| we shall mean the real number [—B(), p(1))]*/? as in the last section. We

assume that for any g;, g2 in & there are polynomials p and ¢ such that for
eachzin G

(9.1) #3915 75 g2)| < p(IADa(I)E(2).

In [3(1), §27], Harish-Chandra has defined for each ¢} an infinitely differ-
entiable function § = 6] mapping M A, into V;. 6 is T-spherical, where 7 is
the restriction of r to M. Harish-Chandra shows that # vanishes if ¢7 is in
L%(G) ®V,. We shall make two assumptions on the collection of linear function-
als {A: A @ &}. It then turns out that there exist polynomials p and ¢, and a
number ¢ > 0, independent of (A, 7), such that for each ¢ > 0,

(9.2) |e?(tH0) 47 (exptHo) — 0% (exp tHo)| € p(|A|)q(Ir[)e~=".

We shall review Harish-Chandra’s work and prove the estimate (9.2).
Recall that 9, is the universal enveloping algebra of me+aye ; let 3; = 3 My
be its center. In §6 we defined isomorphisms

N:3—J, m: 3 —Ji,
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where J and Jj are the elements in S(a.), the symmetric algebra on a¢, which
are invariant under W and W; respectively. (We can regard Wi as the Weyl
group of m¢ + ape acting on a..) J is contained in J;. We have defined the map

Yo =71 07:3— 3.

Let &) be the annihilator of ¢3 in 3, and let #;) = 31 - v (&)). Let 3] be the
quotient algebra 3; /4;x. We can regard 3} as a complex vector space on which
there is a natural 3; action.

If ¢ is in 34, let ¢* be the projection of ¢ onto 3i. Let 3}* be the vector space
dual of 3. Let 7; =V, ® 31*. Make Z; a double K-module by letting K act
trivially on 33*. Make it a 3;-module by defining

T(R)v®¢**) =v® 2™, 2€ 31, vEV,, ™ e 3t

(Since 3% is a 31-module, there is a natural action of 3; on 3}* obtained by
taking transposes.)

Let us examine the algebras J and J; more closely, in order to obtain a basis
of 3%. Such results appear in [3(g), §3]. We identify S = S(ac) with the algebra
of polynomial functions on a, the dual space of a.. Let C(S), C(J1), and C(J)
be the quotient fields of S, J;, and J respectively.

LEMMA 14. If [W: Wy] = r, then there are homogeneous elements vy = 1,
Va,...,Up tn J; such that J; = leizr Ju;. Moreover, the elements vy,..., U,
are linearly independent over C(J).

For a proof of this lemma, see [3(g), Lemma 8]. C(S)/C(J1) and C(S)/C(J)
turn out to be normal extensions with Galois groups Wy and W respectively. 0O
Now suppose that ) is in a;. Let S) be the ideal of polynomial functions in S
that vanish at A\. Let J, = JNS, and let Jip = J1NS\. J =C&J, is a vector
space decomposition of J and the projection from J onto J/J, = C is given by

w — w(A), w € J.

J1J) is an ideal in J; and it is clear that ~; defines an isomorphism from 3}
onto Jy/J;1Jx. We shall obtain a basis of J;/J1J) over the complex numbers.
We have the formula
J1 = Z Ju; = ZCU,‘ +ZJ)"U,‘.
1€igr i i
But 3, Juv; is in JyJy so {v;: 1 € ¢ € 7} spans J;/J1Jx. On the other hand,
suppose {c;} is a set of complex numbers such that the vector . c;v; is in J1Jj.

Now
Jida= 0 Jvi)da =) Javi.
4 i

However, {v;: 1 € ¢ € r} are linearly independent over C(J) so each ¢; is in
J. This implies that each ¢; equals zero. Therefore, {v;: 1 € 7 € r} is a basis
for the vector space J,/J1Jx. Let us regard Jy/J;Jx as a Hilbert space with
orthonormal basis {v1,...,v,}.
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Define elements 7; = 1,72,...,7, in 31 by

'71(771'):”0', 1<2<T
Then {n},...,n}} is a basis for 3}. Let {ni*,...,n;*} be the dual basis 37*. If
we make 3}* into a Hilbert space with orthonormal basis {n}*,...,n;*}, we can

regard 7; as a Hilbert space.
Define a function on M A, by

d(ma) = e?1°8 ) a € Ay, me M.
We define an automorphism ¢ — ¢’ of 3; by
¢'=dl¢cod, ¢ € 3.
(We are regarding 3; as an algebra of differential operators on M°A4,.)
If fisin C®(MAy), visin 9MAy, mis in M, and a is in Ay, we can define
f(ma;v) even though M A, may not be connected. If X is in m + a,, we just

write d
f(ma; X) = -ﬁf(maexth)lto.

We extend the definition to all v in the universal enveloping algebra 9, in
the usual way. Since MA, = Z(A)MPA,, and since Z(A4) and M°A; commute,
any ¢ in 31 can be regarded as a left and right invariant differential operator on
C*®(MA;).
For m in M and a in A, define
¢i(ma) = d(ma)¢5(ma; ;).
Define
®(ma) = Z ¢i(ma) @ n;*

12i<r
If ¢ is in 3y, choose complex numbers {c;;: 1 € ¢ € r} such that the differential
operators

=Y emi=ul), 1<igm
are in ;. Then define

U (ma) = Z d(ma)é} (ma; ui(¢)) ® n*

1Z2iZr
® and ¥, are functions from M A, to the vector space 7;. Also, ® and ¥, are
both 7-spherical functions on M Ay, since elements in 3; act on C*°(MA;) as
left and right invariant differential operators.

LEMMA 15. Let¢ be in 31. Then for m in M and a in A,
®(ma;¢) =T(¢)®(ma) + ¥, (ma).
PROOF. We have the equation
®(ma;¢) = Y d(ma)d}(ma;¢'ni) @ nf*.
i
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Also,
¢'ni = (¢m)' = z cigny + ui(s)-
J

Therefore, ®(ma;¢) is equal to

33" d(ma)g} (ma;in)) @03 + Y d(ma)e (ma; ui(s)'),
[ 7 [

which in turn equals

Z cijd;(ma) ® ;™ + ¥¢(ma).
iy

Since u;(¢)* = 0, we have the formula
(mi)* =Y cijm}.
J

But {n}*} is a dual basis of {n]}, so the matrix of the linear transformation ¢
acting on 3%* is the transpose matrix of its action on 37, with respect to these
bases. Therefore,

T'(Hp)®(ma) = Zcﬁq}i(ma) ®n;" = Z cijdi(ma) @n;*.
ij i

This proves the lemma. O

Clearly Hp is in 3. Write ¥y, as ¥.

COROLLARY. For anym in M, a in Ay, and T in R, we have the integral
equation

T
®(ma - expTHp) = eTTHo) $(ma) +/ T (Ho) g (ma - exp t Ho) dt.
0

PROOF. If ¢t is in R, we see that
d

E(e‘tr(%)‘D(ma -exptHp))

= ¢~ T (Ho)@(ma - exp tHo; Ho) — e~ T HOIT (Hy)®(ma - exp tHp)
= ¢~ tT(Ho)W(ma - exp tHp).

Integrate the above equation by fOT dt. We obtain the formula
T
¢~ TT(Ho)®(ma exp THy) — ®(ma) = / ¢~ tT(Ho) ¥(ma - exptHy) dt.
0

Multiply by eTT(Ho)  This proves the corollary. O

Now, fix ¢ in 3;. We would like to obtain an estimate for ¥.(ma). To do this,
we must first express the differential operators u;(¢) in another form.
By Lemma 14, there exist elements w;; in J such that for 1 €1 € r,

()i = Y wijvs.
;
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Now, the coordinates of 1 (¢)v; relative to the basis {v;} of J1/J1Jx are clearly
{wi;j(A): 1 € j € r}. Then the element

m(ui(6)) = (v — Y_ wi;(Nv;
7

is in J1Jx. 1(us(¢)) is equal to
> (wis — wis(A)vs.
J

For each ¢ and j, (wi; — wij(})) is in Ja. Let z;\j be the differential operator

T (wij — wig (X))

Then ]
wils) =Y () (v) = Y w0(=)n;.
3 3
Let u,"] be the differential operator
Z{\j - (2:\1)'
u;; is an element of B, and it is independent of A. Recall that ¢ is the Cartan

involution of gc. In the appendix of [3(1)] it is shown that there exist elements
N;; in ne and g;; in &, both independent of A, such that

ui; = 0(Nij)gij, 1<4, j<r
LEMMA 16. For fized ¢ in 31 and h in %,, there are polynomials p and q
and an integer d, independent of (A, 1), such that for everyt >0
|¥ (exptHo; k)| < p(IA])g(lr)e~*(1 + ).
PROOF. We have the equations
U (exptHos h) = D e#(H0) 7 (exptHo; h'us(c)') @ nf*
i

= Z et?(Ho) ¢7 (exp t Ho; h'n;qo(zf‘j)') ®n*.
i
Since z;\j is in 4, the annihilator of ¢}, this last expression is equal to
> e#Ho) g7 (exp tHo; h'njjui) © ni*
4]
= E et?(Ho) g7 (exp tHo; uijh'n);) ® n}™*
]
=Y et(Ho) 47 (exp tHo; 0(Nij)gismh') @ mi*.
i
If N is any vector in ne, N is equal to D p, Xa, Where {X4a} are vectors in
gc such that [Ho, Xa] = a(Hp)X,. But if @ is in Py,

% (exp tHo; 0(Xa)gimih') = e~ Ho) g7 (9(X,); exp tHo; gismyh').
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But e~t(Ho) equals either e~ or e~2t. The lemma then follows from (9.1) and
(41). o

Recall that & = [] o p Ho. In particular, & is in S. For the rest of this section
we make the following assumption.

Assumption 1. For each A in &, &()) is not equal to zero.

We would like to find the eigenvalues of the linear transformation Hy acting
on the vector space Jy 7J1 Jr. We also want to find the norms of the projections
of Jy/J1J onto these eigenspaces. (These are norms as operators on the Hilbert
space Jy/J1Jx; these projections are not necessarily selfadjoint.)

The field C(J;) is an extension of degree r of the field C(J). Therefore the
trace, tro(g,)/c(g), is a function from C(J;) into C(J). Define an element v* in
C(J1) by . .

tre(n) /o (V') = 65, 124, 52r.
(83 = 0if 1 # 7, 6} = 1.) Recall that &™ = [[,cp, Ha. Define
D=a&/&™, 1= Dv'.
Then D and 7* are both in C(S). In [3(g), Lemma 12] Harish-Chandra shows
that 7¢ is actually in S.

Now let {81 = 1,82,...,8,} be a set of representatives of right cosets of W,

inW. If v is in C(J1), then
tro(ny/ow) (v) = > s7iw).
1€igr
However,
> ri(skA) - vj(s£A)/D(siA) = 6.

12k€r
Define Aik = Ti(sk/\) and Bkj = ‘l)j(sk/\)/D(Sk/\). Then A = (Ailc) and B =
(Bkj) are r x r matrices, and AB = I. Define

(9.3) for = D_7*(3:))vk.
k
Then {fs;x: 1 €4 € r} is a base for J;/J;Jx. Also
(9.4) vi = (0;(55A)/D(8kX) fopn-
k

LEMMA 17. Ifpisin Jy
Pfsir =0(8iA) fs;x  (mod JyJy).
The proof of this lemma is in [3(g), Lemma 15]. [

In particular, the operator p on J;/J1J) is semisimple. Since Hy is in Jy, the
lemma tells us that the set of eigenvalues of Hy is

(9.5) {A\(Ho), A(s3 Ho), .- ., A(s7 " Ho)}-

We can lift J; to 3; by 7. Then if ¢ is in 3;, we have an analogous statement
to Lemma 17 for the eigenvalues of the operator I'(¢) on Z;. In particular, the
eigenvalues of I'(Hy) are also given by (9.5).



HARMONIC ANALYSIS OF TEMPERED DISTRIBUTIONS 63

Let {E; ,...,E} } be the projections in Jy/J;J) relative to the direct de-

composition
Ji/J1In=Cfs;2® - D Cfs .
Define
Ey=(1d)® (v 'Eym), 1<L1Zr,

where Id stands for the identity operator on V;, and the star denotes the vector
space transpose operator. Then the operators {E,,} are the projections of 77
onto the eigenspaces of I'(3;). )

If u is a vector in 77, there are elements uy,...,u, in V; such that

u=(u®ni")+- -+ (u ®n7%).
Denote u; by t;(u).

LEMMA 18. There is a fized set of elements {p};: 1 € i,j,1 € r} in S,
independent of 7 and A, such that for any u in 75

ti(Eayw) = 3 (0l (N)/@(0)5(w)-
i=1
PROOF. (9.4) implies the formula

r
ELv; =B, | > (vi(3;3)/D(8;0)) fo;x | = @i(s10)/D(512)) - foun-
j=1
By (9.3) this last expression is equal to

(vi(s1A)/D(8N)) - er (stA)v;.

Now D(s;A) equals (W(A)/@™(A))e, where € equals either 1 or —1. This is enough
to prove the lemma. 0O

The set of eigenvalues of either the linear transformation Ho on J;/J1J) or
T'(Hp) on 75 is given by (9.5). Let @*, @, Q° be the subsets of these eigenvalues
with real parts greater than, less than, or equal to zero, respectively. Let E'+,
E'-, E®, and ET, E~, E° be the corresponding projections in J;/J1J and 75
respectively.

Let &' be the minimum of the absolute values of the real parts of the numbers
in the set QT UQ~. (Set &' =1if QY UQ~ is empty.)

For the remainder of this chapter we make the following assumption.

Assumption 2. The real parts of all eigenvalues (9.5), as A ranges in &,
generate a lattice in R. In particular, ¢/ is bounded away from zero independently
of \in &.

LEMMA 19. The norm of Hg as an operator on Ji/J1Jx is bounded by a
polynomial in |A|.

PROOF. {vy,...,v,} is an orthonormal base for J; /J1J). By Lemma 14 there
exist elements w;; in J, independent of A, such that

Hov; = wijivr + - - - + wirvr, 1272
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This means that
Hov; = wiy(A\)v1 + - - + wiy (N, (mod JyJy).

Now w;;(]A) is a polynomial function in A, so it is bounded by a polynomial in
[Al. Since {v;} is an orthonormal basis for Jy/J1Jy, the lemma follows. 0O

LEMMA 20. Choose a complex number £ in the resolvent set of the operator
Hy. Let d be the distance from & to the spectrum of Hy. Then there are poly-
nomials py and pa, independent of £ and X, such that the norm of the operator
(€ — Ho)™' s bounded by d="p1([€])p2(]M).

PROOF. By Lemma 19 the matrix W(X) = {w;;(A)} of the linear transfor-
mation Hp with respect to the orthonormal basis {vi,...,v.} of Ji/J1Jx has
entries which are bounded by a polynomial in |A|. Let u; = (£ — Ho)v;. Then
for12:¢<r

(9.6) u; = €vi — »_ wis(A)v;.
7

We can solve the equations (9.6) to obtain the formula

v = det(¢1 =W ()71 D pis (€ My

where p;;(€, A) are polynomial functions of £ and A. In particular, each pi; (&, )
is bounded by a polynomial in |¢| and |A|. Now

det(¢1 W (X)) = [ ] (6 - A(s; " Ho))-
7=1
Therefore
|det(7 =W W)~ €d".

Since (¢ — Hp)™lu; = vj, our lemma is proved. O
Let £ be the minimum of ¢'/3 and 1/3.

LEMMA 21. There exists a polynomial p such that

e~ THIEF| 4 | THIE~| 2 p(|A)e™?*,  ¢>0,
|eT(HIEC| 2 p(|A])e?,  t€R.

PROOF. It is clearly enough to prove the same statements for the linear
transformations e~t#o 't ¢tHo B’ and etHo E'0 on the Hilbert space J;/J1J}.

Let I't, I'", and T'® be closed curves in the complex plane that wind around
the corresponding sets of eigenvalues Q%, Q—, and QO in a positive sense, but
which contain no other eigenvalues. By looking at Assumption 2 and the eigen-
values (9.5) we see that the curves can be chosen to satisfy the following condi-
tions.

(1) 1€| is bounded by a polynomial in [A| for any £ on one of the curves.

(ii) The arc length of each of the curves is bounded by a polynomial in |A|.
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(iii) If € is on one of the curves, the distance from ¢ to the spectrum of Hy is
not less than ¢.
(iv) If € is a complex number, let ég be its real part. Then

ErS>2 foréonTlT,
ER € -2 foréonT™,
|ér| € € for £ on I'°.

From the spectral theory for a linear transformation on a finite-dimensional
vector space we have the formulae

etopt = [ oH(e-H) e, t30,
r+
etHop'~ = / (6 —Hy) lde, t30,

etHo g0 = /0 e*(6—Hy) lde, teR.
Therefore if t S 0 ’
emtHopt < [ 176 - Ho) e
By Lemma 20 and conditions (iii) r:;nd (iv), this last expression is bounded by

et pa((A) [ mlede.
Therefore by conditions (i) and (ii) there exists a polynomial p such that
e B | 2 e p(IA]),  t>0.

The inequalities for [e!fo E'~| and |e!Ho E™0| follow in the same way. O
Write EX® as ®* and E°® as &°.

LEMMA 22. For any fized h in A, there are polynomials p and q such that
foranyT >0

|®~ (exp T Ho; h)| < p(|A\)g(I7])e*".
PROOF. T'(Hp) and E~ commute. Therefore by the corollary to Lemma 15,
&~ (expTHpy; h) is equal to

T
eTI‘(Ho)q)—(l; k) +/ e(T—t)T{Ho) . E~¥(expTHy; h) dt.
0

The first term of this expression is easily handled with the help of (9.1) and
Lemma 21. On the other hand, Lemma 21 tells us that

T
/ e(T—T(Ho) B~y (expt Ho; ) dt
1]

T
< p(A)) / ¢=2T=0) | (exp tHo; h) | dt
0

T/2 T
< p(A)e / (¥ (exp tHo; k)| dt + p(I) [ ety Bt
0 T/2

Our lemma then follows from Lemma 16. O
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LEMMA 23. For any fized h in Ay there are polynomsials p and q such that

foranyT >0
|®* (exp THo; h)| < p(I1A)g(I7])e™=".

PROOF. By means of a change of variables we can rewrite the integral equa-

tion of the corollary of Lemma 15. Then for a in 2, and ¢ in R
: T
®(a; h) = e TT(H)@(qa . exp THy; h) —/ e~ tT(Ho) W (g exp tHy; h) dt.
0

Operate on both sides of this equation by E7, and let T' approach co. Now
|e~TT(Ho) E+| decreases exponentially in 7. However, by (9.1) and (4.1),
|®(a expT Hy; k)| is bounded by a polynomial in T. Therefore, the first term
of right-hand side of the above equation approaches zero. We have the formula

[o o}
®*(a;h) = - / ¢~ tT(Ho) E+ W (q exptHo; h) dt.
0

Let a equal expTHy. We obtain the equation

o0
&+ (expTHo; h) = — / e~ (¢=T)T(Ho) g+ (exp t Hy; h) dt.
T

Now |e~(¢=T)T{(Ho) £+ |is bounded by a polynomial in |A| if ¢ S 7. Our lemma
then follows from Lemma 16. O
For a in Ay, m in M, define

o o]
8(ma) = ®°(ma) +/ et (Ho) EOW(ma exp tHy) dt.
0
(The integral converges absolutely by Lemmas 16 and 21.) It is clear that for
any h in 2
[o o]
©(ma; h) = ®°(ma; h) + / ¢~ tT(Ho) EOW (maexp tHo; h) dt.

0

From the corollary of Lemma 15 we obtain the formula
6(ma) = Tlim e~ TT(Ho) §%(ma exp T Hp).
—00

Therefore
(9.7 O(maexptHy) = el (H0)Q(ma), meM, ac A, t@R.

Since ¥ is T-spherical, and since both the left and right actions of 7(m) on 77
commute with E®, we have the formula

(9.8) B8(mymams) = F(m1)8(ma)7T(ms), my,my,mEM, a € A,.
If < isin 31

O(ma;¢) = tlir{.lo e~ T (Ho) @0 (mg exp tHy; ¢).
By Lemma 15 this expression is equal to

I'(¢)8(ma) + Jim e~ tT(Ho) EOF (ma - exp tHop).
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Now, the last term in this formula approaches 0 as t approaches oo by Lemmas
16 and 21. Therefore

(9.9) 6(ma;¢) =T'(5)6(ma).

LEMMA 24. For any fized h in Ay, there are polynomials p and q such that
for anyt >0,

|e*T(H0) @0 (exp tHo; h) — ©(1; k)| € p(|A)a(Ir)e=2".
PROOF. Using the definition of © and the formula (9.'? )} we see that
o(1; h)/= e~ TT(Ho)g(exp T Hy; h)
= ¢~ TT(Ho)§0(exp THy; h) + /Too e~ tT(Ho) EOW (exp tHy; h) dt.

The lemma then follows from Lemmas 16 and 21. O

COROLLARY. For any fized h in 2, there are polynomials p and q such that
foranyts>0
|®(exptHo; h) — ©(exp tHo; h)| < p(|A)g(|7])e™".
PROOF. We see that
|®(exp tHo; h) — ©(exp tHo; h)|
Z |@* (exp tHo; h)| + |® (exptHo; h)]
+ |e!T(HO) EO) . |~ tT (Ho) g0 (exp t Ho; h) — ©(1; h)|.
The corollary then follows from Lemmas 21, 22, 23, and 24. O
It is clear from the definition of © that for any a in A,
(9.10) E%8(a) = O(a).
For a in Ay, and 1 € j € r, let 8;(a) equal the vector ¢;(6(a)). Then
6@ =Y o) en;.
1&€52r
Write 6; as 6.

LEMMA 25. For any nonnegative integer n there are polynomials p and g
such that for anyt >0

‘ (%)n [etP(Ho) 4% (exp t Hp) — O(exp tHy)]

PROOF. The expression

(%) [e2?(H0) 7 (exp tHy) — O(exp tHp)]

Z p(IA)a(Ir))e="

is equal to
t1(®(exp tHo; Hy') — ©(exptHo; Hy ).

Now for any u in 77, |t;(u)| € |u|. Our lemma then follows from the corollary
to Lemma 24. O
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LEMMA 26. If ¢ is in L?(G) ® V;, 0 is equal to zero.
PROOF. The function D(t) was defined in §3. Let
St ={t>0: D(t) € Letr(Hol},

St is compact. Let R = {¢ > 0}. Break up the integral
B o0
| e (expeo) o

into the sum of the integral over ST and the integral over R* — S*. The integral
over ST is finite since ¢7 is continuous. Now

/ |et#(Ho) 47 (exp tHo)[2 dt < 2 - / |D(t)] - |43 (exp tHo)|* dt
R+—S+ R+-5+

[o o]
<2 [ D() 163 (exptHo)  dr.
0
By (3.5) this last integral equals (2/c) [, [#3(2)|? dz, which is finite. Therefore,

o0
/0 et (H0) |47 (exp tHp)|? dt < oo.

Therefore, by Lemma 25
o0
/ |0(exp tH)|? dt < co.
0

Now B(exptH,) = €T(Ho)g(1). But by (9.10), ©(1) is nonzero only on the
subspace of 7, spanned by eigenvectors of I'(Hp) that are associated with purely
imaginary eigenvalues. Therefore, § must be zero. O

10. Completion of the proof of Theorem 3’'(a). We would like to ap-
ply the results of §9 to the collection {¢7,(z): w € &, 7 € &2} of r-spherical
functions which are derived from the matrix elements of square-integrable rep-
resentations. That is,

(10.1) #(z) = ¢,(2) = (dim7) "2 Y " £1; ® &5;(®u1s, 7 () B5)

i
in the notation of (5.1). Here =, is a square-integrable representation in the class
of w, acting on the Hilbert space Z,. If 7 = (r1,72) then ®,; and ®,; are unit
vectors in #, that transform under 7, |x according to 71 and 7 respectively.

{€1:} and {&2;} are orthonormal bases for the spaces on which 7y and 7, act, so
{é:i® 55_1} is an orthonormal base for V,, the space on which 7 acts. Therefore

(10.2) |#5,@)1* = (dim7) ™" D |(®16, 7 (2)@25) 1%
iy

It follows that
(10.3) ¢, (2)| €1, z€G.
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From the Schur orthogonality relations on G, (2.7) and (2.8), we see that
(10.9) | 1607 az = gy,

Now we need to establish the estimate (9.1) for our collection {¢7,}. Fix gy, g2
in &. We use (10.1) and Lemma 13 to obtain an expression for ¢7,(g1; z; g2). We
obtain polynomials p and ¢, orthogonal sets of vectors {¥iq}izaet,,
{¥35}12p2t, In #,, and representations {71a}12a<t,, {T26}12p<t, in &k that
satisfy the conditions of Lemma 13 and such that

ty iz

(10.5) 160(9152:92) = D~ D 1(Y1as Tu(2) U26) .

a=1p=1
Suppose w = w(A) for some A in L’. Then the infinitesimal character of =, is
Xx,- (8.2) tells us that |[Ay|?> = |[w[?>. Therefore from (10.5) and the conditions
of Lemma 13 we obtain the inequality
(10.6) |67, (91523 92) I € tatz - p(lw]) - o(lI71) < p(Iw]) - q(I7])°
for any z in G. From (2.8) and (10.5) we also see that

01 [ 16leimaPds< s plle) ol < @G.
LEMMA 27. There are polynomials p and q such that for any z in G,

6% (2)] < p(lw]) - a(I7])E(z)-

PROOF. Recall that r; and ro denote the number of roots in Py which when
restricted to a, are respectively equal to po and 2uo. Then p(Hp) = (r1 +2r3).
Also

B(HQ,H()) = 2(1‘1 + 41‘2) =72,
Define D(t) as.in (3.5). Define a set S by
S = {t e R: |D(t)| € Le?Itle(Ho)},

S is bounded. Define a positive infinitely differentiable function # on R such
that for ¢t not in S
Let h(t) be the function

¢7 (exptHy) - n'/3(t).
Clearly h(t) is infinitely differentiable. We wish to show that A(t) is in #(R)®V,
the tensor product of the Schwartz space of R with V;, the Hilbert space on which

T acts.
For any nonnegative integer n

(%)n h(t) = Z GZ%')_'({)T (%)i o (exp tHo) - (%)n_i /2 (2).
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There exist constants C* such that

(&) w0

for all ¢ not in S and for 0 € 7 € n. Therefore since 5'/%(t) is differentiable,
there is a constant C), such that

8o

for all real ¢ and for 0 € ¢ € n. Now ¢7, is in F(G) ® V; by [3(1), Lemma 65,
Corollary 1}, so for each s there is a constant C7, such that

|67, (exp tHo; Hg)| € C, - E(exptHo) - (1+ o(tHo))™*
fortin R and 0 € ¢ € n. But
1+ o(exptHp) = 1+ rjt|, teR.

< Cleltle(Ho)

Z C,eltlp(Ho)

By (4.1)
E(exptHo) € o1 + rt|)delHle(Ho) - e R.

Therefore for all real ¢,

<%) h(t)' < (; (n_—rz')@) ¢+ CL - Cn(1+rt])~s+.

This proves that h is in #(R) ® V.
We shall take the Fourier transform of h(t) on R. Write

oo
h(s) = / h(t)e~itdt, scR.
—o0
For any real ¢

Ih(t)] = (2m)?

w -~ .
/ h(s)e**t ds
—o0

/oo h(s)e*t(1+1is) - (1 +1is)"1ds

<o ([~ heariora) ([T )"

If we write h' for the derivative of A, this last expression equals (7)~1/2||h+ /|2,
which in turn is equal to (7)~1/2||k + k'||5. Therefore for any real ¢

()] € 7712 ({Ikfla + |]l2).

We have used the fact that all the above integrals are absolutely convergent.
This is true because both & and k are in #(R) ® V;.

We see that it is necessary to estimate both k]| and ||A'[|2. Clearly |h||2 is
equal to

Z (2m)7 !

[ 16w tBo) (e de + [ WlexmtBo)n( d
S R-S
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Now n(t) is bounded on S, so by (10.3) there is a constant C; independent of w
and 7, such that

[ e tHo)n®)dt < .
On the other hand,
[ W (exptHo)Pn(e) a
R-S .
<z Jol(emtHo) - 1DO) d
R-S
<2 [ (e th)? - DO
<2f [ 1600 exptHo - ka)? D) dedky dh
KxKJR
By (3.5) this last integral equals
4
> [1en@P da.
e
This expression equals (2)4(w)~! by (10.4). Since B(w)~! is bounded indepen-

dently of w, by Lemma 3, ||||2 is bounded independently of w and 7.
Now we shall estimate ||A’||2. First of all we need a bound on the expression

/R |¢7,(exp tHo; Ho)|? - | D(t)] dt.

For any z in G we have the following formula by (10.5)

ty  t2

|65(z Ho)® =D D (100 T (2) ¥2p)

A a=1p=1
where {U1,}, {¥23}, t1 and ¢ satisfy the conditions of Lemma 13. Define
fa,ﬂ(x) = (‘I’laaﬂw(z)q@ﬂ)c

By (10.7) and Lemma 3, there are polynomials p; and ¢; such that

/ S | fap (@) dz < g1 (j0]) - aa (I7]).
G a,8

Let 7, 5 be the double representation (714, 72g) of K. As we did in §5, we can
associate a 7, g-spherical function ¢4 g to each f, g. (Unlike the situation in §5,
¥, and ¥yp are not of norm 1.) Formula (10.2) and the Schur orthogonality
relations, (2.7) and (2.8), can be used to derive

[ Vas@Pds= [ 6us(@)?da.
G G
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Using this and formulas (10.2) and (3.5), we obtain the following inequality:
[ Vastentto)? - D0
€ dim 71, - dimep / |a,6(exptHo)|? - |D(¢)| dt
R
= dim g - dim7ag - / / |6oe.g(ky - exp tHo - ka)[? - |D()] dt dy dks
’ KxKJR
= (2/c)dim 7y, - dimrop / |pa,5(z)|? dz
G

— (2/¢) dimma - dimrs - /G \fap(@)P de.

Now the dimensions of 714 and 7ag are bounded by polynomials in |r14| and
Ir2p}, which in turn are bounded by polynomials in |r| by Lemma 13. Therefore
there are polynomials p2 and ¢o such that

[ 160 exptHo Ho)? 1D

Z (2/c)pz(|w]) - p2(I7]) - | fa,8(2)|? de.
Therefore
/R 6%, (exp t Ho; Ho)|?| D(t)| dt
Z (2/c)p1(|w]) - p2(lw]) - 1 (I7]) - g2(]7])-

We can now estimate ||h'[|]z. This norm is the sum of the following two ex-

(10.8)

pressions:
@)
2 1/2
(/ I—¢’(exptHo) -n(t)dt) .
(i)
1/2
([ |67 (exptHo)|” - 1/2(t) ) .
There is a constant ¢o such that
4| < canto)

Therefore the second expression is bounded by c2f|h||2. We break up the integral
in the first expression into integrals over R— .S and S. The integral over S causes
no problem because #(t) is bounded on S, and by (10.6), |(d/dt)¢7,(exp tHp)| is
bounded by a polynomial in |w| and |r|. On the other hand,

d , 2
/R |Gt avd< /

/ »—'df (exptHp)

2

4 g1 (exptHo)| - |D()]di

2
-|D(t)! dt.
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By (10.8) this last expression is bounded by a polynomial in |w| and |7|. Therefore
there are polynomials ps and g3 such that
I17'l2 € p3(lwl) - gs(I7])-
We have now shown that there are polynomials py and ¢4 such that
[h(®)] € pa(lw]) - ga(7]),  tE€R.
This implies the in(a‘quality
(8%, (exp tHo)| € 02 (@)pa(w]) - ga(i7])-
There is a constant ¢s such that
n_1/2(t) Z 63e—lt|P(Ho)’ tcR.
Also, by (4.1) and (4.3),
e~ ItP(Ho) 2 B(exptHy), teR.
Therefore, we can choose polynomials p and ¢ such that
|¢% (exptHo)| € p(|wl) - q(|7]) - E(exptHo),  tE€R.
However, each z in G is of the form k; - exptHy - kg for k; and k2 in K and ¢ in
R. Therefore
6%, (z)] = |71 (k1)@ (exp tHo)7a(k2)| = |¢7, (exp ¢t Ho)|
Z p(|wl]) - g(I7]) - E(exp tHo)
=p(lwl) - q(I7]) - E(z).
This proves our lemma. O
COROLLARY. For any g1 and go tn & there are polynomials p and q such

that
195 (91; 5 92)| € p(lw) - q(I7]) -E(z), z€G.

PROOF. By (10.5) we have the formula

t t2
167, (9152 92) 12 = D D (W10 M () T2p) .
a=1p8=1

Let ¢o,p be the (714, 723)-spherical function associated with (W14, 7, (z)¥24).
Apply Lemma 27 to ¢o,p. The proof of the corollary then follows from the
conditions in Lemma 13. O

This corollary verifies the inequality (9.1) for our collection {¢7,}.

Each A in Lj, is regular, so Assumption 1 of §9 holds. To see that Assumption
2 is valid, we must look at the eigenvalues of the linear transformation I'(Hp)
defined in §9. (I'(Hp), of course, depends on w.) We see from Lemma 17, using
the notation there, that the set of eigenvalues of I'(Hp) is equal to

{(si\Ho): \@® Ly, 123 Zr}.

Assumption 2 then is established by the following lemma.
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LEMMA 28. {{(s;A\,Ho): A € Ly, 1 £ ¢ Z r} is a set of real numbers which
generates a lattice in R.

PROOF. Any X in L/, assumes real values on the vector space a, + (—1)*/a,.
Furthermore, any element in W maps the real vector space a, + (—1)*/2a; onto
itself. (s;), Hp) is equal to /\(si_lHo), which is then a real number.

Let I’:; be the lattice of functions from a. into C generated by the positive
roots P. f; is invariant under the action of W. If p is in f;, the real number
(s;p, Hp) is an integer because for any ¢ in P, a(Hp) is either 0, 1, or 2. But
Zy is of finite index in L, since G has finite center. This proves the lemma. 0O

We have shown that we can apply the results of §9 to our collection {¢7,}. By
Lemma 26, the function ¢ defined in §9 is zero. Then by Lemma 25 there are
polynomials p and ¢ such that

|67, (exptHo)| < p(|w]) - g(|7]) - e HIe™e%, 0.
Therefore, for any s S 0 there are polynomials p and ¢ such that
4L (exptHo)| € p(jw]) - g(Ir]) - e~ Fo) (1 +7t)™,  t>0.
But for t > 0 we have the formulae
e~tP(Ho) 2 B(exp tHy), 1+ o(exptHp) =1+ rt.
Now each z in G is of the form k; - exptHg - k2 for £ > 0 and k; and kg in K.

But ¢, is r-spherical and E and o are bi-invariant under K. We have proved
the following lemma

LEMMA 29. For anyz in G

[¢% (@) € p(lwl]) - q(i7]) - E(z)(1 +0(2))"°. O
COROLLARY. For any g1 and g2 in & there are polynomials p and g such
that for any = in G

6% (91575 92)| € p(lwl]) - g(I7]) - E(2)(1 + o(2))~°.
PROOF. The proof follows from Lemma 29 in the same way as the corollary
to Lemma 27 followed from Lemma 27. O

We have proved Theorem 3'(a).

11. Application to the continuous series. Let 7 be an irreducible unitary
double representation of K on the Hilbert space V. Recall from §5 that
I'=@ 1
o€y
is an orthogonal direct sum. For any fixed 7, L7 = 0 for all but a finite number
of o.

We would like to apply the results of §9 to the collection {Ex(¥]: z)} of
Eisenstein integrals. A is to range over the nonzero reals, and 7 and ¢ will range
over &2 and &) respectively. 97 will be any unit vector in L7.

We will have to check the estimate (9.1) and Assumptions 1 and 2 of §9 for
our collection {Ej (¥7: z)}. Then we will examine the functions § = 8, (¢ : ma)
associated with Ej(¢7: z) in §9.
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LEMMA 30. Fiz g1, g2 in B. Then for fized z in G, EA(Y]: g1;%;92) can
be regarded as an entire function of A. Also, there are polynomials p1, p2, and
g, dependent only on g1 and g2, such that for every integer nS 0, fort > 0, and
for A in C,

d n
(—) En(¥g: g1;exptHo; g2)

dA
< et pi(lo]) - 2 (1A - g(|7]) - ElexptHo) - ¢

(We write Ay for the imaginary part of the complez number A.)

PROOF. We have the formula {5.5):
Erx(¢y:2) = / W7 (k)7 (k™1 )elHAro—p) (H(zK) g
K

For fixed z, this is clearly an entire function of A. Derivatives of Ex(¢7: ) by
means of left or right invariant differential operators are entire functions in A.
From (5.6) we obtain the formula
d\" d\"
(5) Eatvzio= i) o, (5) @umoataie),

where t1¢, is the dimension of the representation 7. We apply Lemma 13 to
each of the functions (®14, 7oA (z)P2;). As a result we obtain polynomials p, g,
orthogonal sets of vectors

{Uia:12agti}, {¥gp:1Z <1t}
in #Z; A, and the representations
{ra: 1€ a€t1}, {rop: 12 B < ta}

in & that satisfy the conditions of Lemma 13. In addition
2 t1 t2

2.2

a=1 =1

n 2
(11.1) (%) (Y1a: To,a(2)¥28)| -

d\"
(d_A> Ex(¥}: 91;%; 92)

For any (o, 3), the vectors ¥y, and ¥op transform under 7, |k according
to the representations 7y, and 7og respectively. Let 7, g be the double represen-
tation (714,728) of K. Fix a vector v, g in L™ such that Ep(¢ap: z) is the
Ta,p-Spherical function associated with the function (¥14, 7,1 (2)¥25). By (5.6)
we have the inequality

d\" ‘
I(‘}X) (Y1, To,a(exptHp)¥2pa)

Z (dim,,6)"/% -

d n
(H) Ep(Ya,p: exptHp)

By (5.5), the right-hand side of this inequality equals

n
(diA) / Ya,p(exptHo - kYo (k1) - eliAro—p)(H(exp tH°'k))dk1 ,
K

(dim 74, 5)/2-
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and this expression equals

(dimra 5)/2 - /K Ve p(exp tHo - k)ra 5 (k) - to(H (exptHo - k)™

. elihAuo—p)(H(exp tHo k)) qp|

Now there is a real ¢ such that
H(exptHy - k) = txHp.
Then [3(g), Lemma 35] and [3(g), Lemma 35, Corollary 2] tell us that
ltx] €¢t, ¢>0, ke K.
Therefore, if ¢ S 0, we have the two inequalities
luo(H (exptHo - k)" = [tx" 2 ¢",

and
le(iAI‘O-P)(H(ethHO‘k))I Z elhrlt,

Notice also that
[%e,5(exptHo - k)7o,8(k™)| = [a,8(1)].

Therefore, for ¢t > 0, we have the inequality

d n
(ﬁ) (Y1a, Toa(exptHo)Uop)

< (dim7a,p)"? - [ha,p(1)] - €A1 g7 - / ¢mP(H(exp tHo k) g
= (dim74,5)Y? - [tha,p(1)] - €11t . ¢n . El((exptHo).
But (¥a,5(1)| = {|%a,s]lp- From the remarks in §5 we see that
[%a,6lla = (dima) /2 - |W1q]| - [[Wap])-
However, by Lemma 13(i) and formula (8.3),
[191all? - 1¥25]% € p((Jo]? +r2|AIP)2)? - g(|7])>.

Now dim 7, 5 and dim ¢ are bounded by polynomials in |, g| and |o| respectively,
by the Weyl dimension formula. But by Lemma 13, |7 g|, t1, and t9 are all
bounded by polynomials in |r|. The inequality in our lemma then follows from

formula (11.1). O

Recall the definitions of @™, Ly, and L} from §2. Let f{ be the lattice of real
linear functionals on (—1)/2a, which is generated by the restrictions of roots of

{g,a). Then f; C L; and Z; is a lattice of finite index in L;. Recall that

1[Py]+1 in Casel,

1[P4] in CaseIL

LEMMA 31. There is a 6; > O such that for any p in L} the function
A% H(—p — iApo) ™

g = 1(dimg — dim € — rank g + rank ) = {
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18 holomorphic in the region |A;| < 6;. In addition, there ezists a polynomial p,
independent of u, such that for p in L and |Af]| < 61,

|A%9 - &(—p — iApo) Y| Z p(IA]).
PROOF. We have the formula

D(—p—ihpo) T = a™(—p) ™t [] (-~ — ihpo, Ho) ™.
&€P+

Note that A%9 - &(—u — tAug)~! is a meromorphic function of A.

Since p is in L}, @™ (u) is not equal to zero. The numbers {|&@™(—p)|: p € L} }
are actually bounded away from zero. This can be seen by an argument similar
to that used in the proof of Lemma 3.

If a is in P4, the number {(—u — 7Aug, H,) equals zero only if

A= ip(Ha) - po(Ha) ™.

It is well known that the numbers {i(H,): ji € L } generate a lattice in R.
Therefore, since L; is of finite index in L;, the numbers

{/‘(Ha) ’ I‘O(Ha)—li ne Ll}
generate a lattice in R. Let e, be the positive generator of this lattice. Put

b= inf (ea).

Then for any o in Py and any g in Lj, either
|u(Ha) - po(Ha) ™ =0
or
I/‘(Ha) ) l‘O(Ha)—I' > 26;.
In either case, the function
A {—p—ihpo, Ha) ™!

is holomorphic in the region |A;| < &1, and it is bounded independently of u by
a polynomial in [A|. Our lemma follows from the fact that 2¢ > [Py ].

COROLLARY. If u s in L and A 3 not equal to zero, then O(—p — zAuo) 18
not equal to zero. 0O

LEMMA 32. The real parts of the set
{<_/‘ - iA[lo, 3H0>: He LI’A € R,S € W}
of complex numbers form a lattice in R.

PROOF. The real part of (—u — tAug, sHp) is equal to — (s~ 14, Ho). If uis
in L;, we can regard u as an integral sum of roots of (g,a). Then s~1u is also
an integral sum of roots of (g,a). If a is a root of of (g,a), a(Ho) is an integer.
Therefore —(s i, Hp) is an integer for any p in L;. Our lemma follows from
the fact that L is of finite index in L. O
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Lemma 30, the corollary to Lemma 31, and Lemma 32 verify the estimate
(9.1) and Assumptions 1 and 2 of §9 for our collection {Ej (%] : z)}. We define
the function 6y = 65 (¥7%: ma) from M A, to V; as in §9. By Lemma 25, there
exists, for every nonnegative integer n, polynomials p;, p2, ¢, and a number
€ > 0, all independent of A, o, and 7, such that for any ¢t > 0,

d n
(§) e Batvz: expto) = oa(u: expto)
Z p1(lol) - p2(A]) - q(lr]) - e**.

12. The linear transformations c¢t(A) and ¢~ (A). Let us fix 7 in &2
and o in &. Let u be a real linear functional on (—1)1/ 2q, associated with o.
Fix ¢ in L]. We shall let A # 0 vary in R. Put ¢(z) = Er(¢: ). For m
in M, and a in A, define ®5(ma) = ®2(¥: ma), Ys(ma) = ¥Y4(¢): ma), and
O (ma) = B, (¢ : ma) corresponding to the function ¢, as in §9.

The projections {E,,} were defined in §9. Then

8x(ma) = E,,65(ma) + - - + E,, O (ma).
Let A be the linear functional —u — tAug. If ¢ is in 31, then by Lemma 17

(12.1) T(¢)(Es;Oa)(ma) = {71(¢), 8iA)(Es,04)(ma).

Recall that 7 was the restriction of 7 to M. By (9.8), ©, is 7-spherical. Let
©); = E;,0). Since the actions of 7(M) and I'(31) on the vector space 7;
commute, and since the 6, ; are eigenvectors of I'(¢), each 8, ; is a 7-spherical
function.

Now suppose for some s; that the linear functional s;uo does not vanish on
a;. We will show that ©, ; = 0. If ¢pr is in 3, and m is in M, by (9.9) and
(12.1) we see that
(12.2) O4,i(m; p) = T(sm)Bn,i(m) = (v1(sm), 8iA)On i(m).

Thus if B, ; is regarded as a function on the compact group M, it is an eigen-
function of 3ps. The infinitesimal character corresponds to the restriction of the
linear functional s;A = —s; (1 + 7Auo) to ap. Now 7A(8;u0) is real-valued on a,
so that s;\ is not purely imaginary on a;. However, it is well known that the
eigenfunctions of a compact Lie group have eigenvalues corresponding to purely
imaginary linear functionals on a Cartan subalgebra. Therefore 64 ; must be
Z€ro.

Then we can write

(11.2)

O\ = 9;{- + 6;.
O} and ©j are the sums of those 6, ; for which the Weyl group element s,
when restricted to ay, is respectively the identity or reflection about 0. Now by
9.7),
84,i(mexptHo) = T (H)Q ;(m).

Therefore .
87 (mexptHp) = 40 (m),

6 (mexptHp) = e *At0} (m).
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In the notation of §9, 8(ma) = t1(Oa(ma)). Let 65 (ma) = t1(O] (ma)),

0y (ma) = t;(8} (ma)). Then
Oa(mexptHo) = e20F (m) + e7*A%05 (m).

Since the functions ©F (m) are 7-spherical, so are the functions 6% (m). This
means that the functions §(m) are in L”. 6] depend linearly on the ¢ in L7
that we fixed at the beginning of the section. We write this as 8f = c¢*(A)y.
¢t (A) and ¢~ (A) are linear transformations from L7 into L. Since L” is an
orthogonal direct sum of spaces L7, we can extend the definition of ¢*(A) and
¢~ (A) to all of L7. Then c¢*(A) are linear transformations of L7 into itself.

For m in M and ¢ in R we have the formula

(12.3) Oa(¢: mexptHo) = € (c* (A)y)(m) + e M (™ (A)y) (m).
Suppose that the restriction of some s; to a, is the identity. Then a; is an
invariant subspace of s;. It is known that s; is in W;. Since {s; =1, 2,...,5-}
is a set of representatives of cosets of W; in W, s; = s; = 1. On the other hand,
if the restriction of an element s; to aj is a reflection, we can represent s; as the
nontrivial element in the group M’/M defined in §2. Therefore there is only one
such s;, which we shall denote by sa. Therefore, if 1 is any vector in L],
(¢t (A)¥)(m) = t1(B4,1(m)),
(c™(M)¥)(m) = 11(Ba,2(m)).
Suppose that ¢ is an eigenfunction of 35s in L™ with infinitesimal character X,’:” ,
for some p in L}. Then from (12.2), we see that the infinitesimal characters of
c¢t(A)¢ and ¢~ (A)y are xﬁ{ and x% , respectively. Here u’ = sopu.
For any p in L let &y (u) be the set of all o in &4 such that the linear
functional associated to either o or o’ is u. It is clear that |o| = |¢’| for any o
in &y. Therefore, for any o1, o2 in &y (u),

(12.4) lO’l' = l0'2].
Let L], be the direct sum of all L7 for which o is in &s(u). From the above
discussion we see that Lj, is an invariant subspace of the linear transformations
c(A).

We wish to prove some estimates for ¢*(A) and ¢~ (A). We need to examine
the functions

ti(‘I’A): MAp — V-r.

From the definition in §9,
(12.5) t:(Ua(¢: ma)) = d(ma)Ej(¢: ma;u;(Hp)').
We shall allow A to assume complex values.

LEMMA 33. Suppose ¢ is in L7, and ||¥||m = 1. Then for fized t S 0,
1:(¥a{th: exptHy)) s an entire function in A. Furthermore, there exist polyno-
mials p1, pe, and g such that for A in C andt > 0,

lt:(¥a(®: exptHo))| € e * D (14 rt)? - py(jo]) - p2(IA)) - g(|7]).
Here r?> = B(Hy, Hp)-
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PROOF. It is clear from (12.5) and Lemma 30 that ¢;(¥s(¢: exptHp)) is an
entire function of A.

Now, using the notation of the proof of Lemma 16, we see |¢;(¥ (exptHyp))|
equals

) et tHI By (2 exptHo; 0(Nij)gisn;)
—~°,

If t > 0, this expression is bounded by

et }

P(tHo) Z E\(1: 0(Ny;); exptHo; ginj)
J

Now by Lemma 30 there are polynomials p;, pe, and ¢ such that for any ¢t > 0

Y En(w: 8(Niz); exptHo; gijnj)
J

2 pa(lo]) - p2(IA]) - (7)) - 1" - E(exptHo)
2 pi(lo]) - p2(JA]) - g(Ir]) - lAr1* - =8 HO) . (1 4 i)
(this last inequality follows from (4.1)). Therefore [¢;(¥(exptHp))| is bounded
b
’ e U= (14 r8)® - pi(lo]) - p2(|Al) - q(I7). O
Let ¢ be the integer in Lemma 31.
LEMMA 34. Let § be the minimum of 6; and %, where 61 is the positive
constant in Lemma 31. Choose ¢ in LT, with ||¢||p = 1. Then if 1 €4, 5 <,

the function A%9 - ¢;(6, ;(v: 1)) is analytic in the region |A;| < 6. In addition,
there exist polynomials p1, p2, and q such that in the region |Af| < 6,

[A%9-1;(84,;(¥: 1))| € pa(lo]) - p2(JA]) - q(I7))-
PROOF. We have the formula

oC
8x(1) = B8, (1) + / ¢~tT(Ho) O, (exp t Ho) dt.
0

We assume that 6, ; is not zero, so by our earlier remarks, j = 1 or 2. Then
8;Ho = €jHp where ¢; = 1 or —1. Ej_ is the projection of Z; onto the eigenspace
of T'(Hp) corresponding to the eigenvalue (s;(u + tAuo), Ho) where p is a linear
functional in L) associated with o. This eigenvalue equals i¢;A, which is purely
imaginary. Therefore E; E® = E,_, so that

oo
A0, (1) = AME,, ®A(1) + A% / e A E, Uy (exptHo) dt.
0

Nowif1€lZr
t(®a(1)) = Ealx: L;mp)-
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By Lemma 30 there are polynomials p;, p2, ¢ such that
(12.6) [Ea(¥: 1;m1)] € pa(lol) - p2(IA]) - g(I7])-
By the last lemma we can also choose polynomials p;, po, ¢ such that for any
ts0,
|e~*€iA%,; (W (exp tHo))|
2 pi(lol) - pa(IA]) - g(J7]) - e 72D (1 4 ),
Therefore, the integra;.l \

(12.7)

oo
f e=ieshty, (W, (exp tHo)) dt
0

converges uniformly for A in compact subsets of |Af| < % and so is an analytic
function of A in this region. Furthermore, by Lemmas 18 and 31, the matrices
of the linear transformations A?9E,; relative to the basis {n3*,...,n;*} have
components which are analytic in [A;| < 6; and bounded by a polynomial in A
in this region. Therefore, the functions A29¢;(6, (1)) are analytic in the region
[Ar] < 8. We see from (12.6) and (12.7) that it is possible to choose polynomials
p1, P2, and ¢ such that for |[A7] < 6

|A%9(84,;(1))] € pa(le]) - p2(IA]) - o(I7]). O

COROLLARY. Choose ¢ in LT with ||¢¥]lar = 1. Then the functions
A29¢E(A)y(1) are analytic in the region |A;| < 6. Furthermore, there are poly-
nomials p1, p2, and g, independent of o, A, and 7 such that for |A;] < 6

[A%2c* (0)9(1)] Z p1(lo]) - p2(IA]) - (7))

PROOF. The corollary follows from the lemma if we recall that the functions
et (A)p(1) and ¢~ (A)¥(1) equal ¢1(B4,1(1)) and ¢1(B4,2(1)) respectively. O
- Therefore, ¢*(A)y(1) is meromorphic in |A;] < &, with the only possible pole
being at A = 0. Assume it has a pole of order N*(¢)) at A = 0. Let us agree to
write N*(¢) = 0 if ¢*(A)¢ has no poles at A = 0. Then

02 N*(y) € 2.

The function
gt (: A) = AN W (A)y(1)

is holomorphic in the region |A;| < §. For any A in this region we can write
(12.8) g*(W: ) = a5 +af (¢ ~A) +ax(s— A +--

where ¢ remains in some neighborhood of A, and ag:,a:f,azi, ... are vectors in
Vr.

LEMMA 35. For every nonnegative integer n there are polynomials p1, ps, q
such that in the region |Ar| < 6/2,

(%) 9= (¢ A)‘ Z pa(jol) - p2(|A)) - g(I7).
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PROOF. From (12.8), it is easy to show that

(&) -

=n!(2m)~!

nigemi) ™ - [ gt o€ - 0)7 g

[ et ©p0)- (6 -y e ag
r

where T is any curve in |7} < § that winds around A once. Choose I' such that
forany £ on T

() 6/2<|6-4Al <1,

(i) /2 < |él.
This is clearly possible since § < %. Lemma 35 then follows from the corollary
to Lemma 34. O

13. Relation between c*(A) and $(c,A). Let 7 = (71, 72) be an irreducible
unitary double representation of K on the finite-dimensional Hilbert space V.
Let &€ be the finite-dimensional vector space of endomorphisms of V,. Let 7
and %, be the universal enveloping algebras of €. and ay. respectively.

Let B = BR&. B acts on C(G) by left invariant differentiation, so there
is a natural action of & on C*(G) ® V;.

Fix h in A, such that h is not equal to the identity. Define

L={X®1-187(X): X €},
L={Adr HXR1-1®7(X): X €t}

£; and & are vector subspaces of ZB.
The following lemma generalizes [3(g), Lemma 21, Corollary 2].

LEMMA 36. Z is the direct sum of§1§+§§2 with ¥y ® &.

PROOF. If p denotes conjugation of g with respect to the compact real form
u = £+ 4p, then the inner product

-B(X,pY), X, YE€g

converts g. into a Hilbert space. Let q be the orthogonal complement in ge of
me + ayc With respect to this inner product. Let q@ = qN &, and let S(qe) be
the symmetric algebra on qe. Let ¢ be the image of S(qt) in & under the
canonical mapping. (The canonical mapping is defined in [3(a), p. 192]). It is
proved in [3(g), Lemma 21, Corollary 1] that every element in & has a unique
representation as an element of the form

E‘Baikh g eQ{‘_l, a; €Ny, ki e X
i

(The map b — b", for b in &, is the automorphism of & which coincides with
Ad(h) on g.) We shall then write & = QF 2, . Therefore

ZF=0'%70%.
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Let G = {Ad(h"))X ® 1 - 1® 71 (X): X € q¢}. Then it is easy to see that &
is the direct sum of §,% + Ft; with A, ® &. However, in [3(g), Lemma 21,
Corollary 2] it is shown that

0B+ Be=qt B + B

Therefore
B+ BYRE = B+ BYRE.

It then follows that
ﬁtg'f'%z = Ep@-}-@g.

This proves the lemma. O

COROLLARY. For anyb in % there is a unique element 6;,(b) in % ®& such
that b — 6}, (b) is in the vector space 8, F + Ft. DO

LEMMA 37. Let ¢: G — V; be an infinitely differentiable 7-spherical func-
tion. Then for any b in & and any h in Ay, h not equal to the identity, we have
the formula

¢(h;b) = B(h; 8,())-
(It s clear what the notation ¢(h; 5} (b)) means.)

PROOF. If b, is in Zk,, then it is clear that ¢(h;by) = 0. If by is in £, , we
shall assume that

by =(Ad(r )X ®1-1®7(X))B;
for some X in € and some B; in B. Then
é(h; b1) = &(X; h; By) — 11 (X)é(h; By).

This last term is equal to zero, since ¢(kh) = 11 (k)¢(h) for any k in K. This is
enough to prove the lemma. 0O

If g is in Z, identify g with the element g®1 in &. If T is in &, identify T
with the element 1® T in Z.

If X is a real linear functional on the vector space (—1)1/ 2qy + ap, define an
element Hy in (—1)!/2a; + a, by the property

B(Hx\,H)=XH), He(-1)"a+a.

Also, write X for that linear functional which equals A on a, and equals zero on
(_ 1) 1/2 as.

Define the vectors Hy,...,Hn, X4, X_4 in g and the Casimir operator wy
as in §5. Since 8 is an automorphism of g., 8(w,) equals wy.

Fix a nonzero H in a, and let h = exp H. We would like to compute &} (wg).
The following lemma will express 6; (wy) as a linear second-order differentiable
operator on Aj. The coefficients of this operator will be selfadjoint operators in
& which depend on h. The lemma is a generalization of [3(g), Lemma 27).



84 J. G. ARTHUR

LEMMA 38. There is a selfadjoint operator Q(H) in & such that

Sh(wg) = Hf + Y cotha(H)  Hs+ Q(H) - I.
a€P+

PROOF. wy equals 3(wg + 0(wg)). This is then equal to the expression

1 1
H+ - +HZ+ 5 Y (XaX-o+X_aXa) + 2 D 0(XaX_o+ X—aXa).
aEP aEP

If A and B are in & we shall say A is congruent to B and write A= Bif A- B
is in the vector space @2 +§1§. If 7 is greater than 1, H; is in (—1)1/ 2¢ 50 that
H? = r5(H;)2. This implies that 72(H;) is a selfadjoint operator on V;, since 72
is a unitary representation. For any « in P let R, be the expression

3 (XaX_a+0(X_oXa)) + 1 (X_aXo +0(XaX_a)).

Fix o such that either o or —a is in P;. Let X, = Y, + Z,, where Y,, equals
3(Xa — 0(X,)), a vector in pc, and Z, equals 3(X, + 0(X4)), a vector in k.
Then
ZE = L(XRTT +0(XR)) = Xa(bem o) 4 6(Xa) (2%

= 1Y, (e7@H) — g2y 4 L X, (emo(H) 4 g2,
Therefore we have the formula

(13.1) Y, =cotha(H) - Zy — cscha(H) - ZL‘_I .

It follows that
XoX_oa=Ya+Za)(Y_a+2Z_4)
= [(1 + cotha(H))Z, — cscha(H) - ZL'_I][Y_O, + Z_4]
= [(1+ cotha(H))Zy — cscha(H) - 11(Za)|[Y=a + 72(Z-4)]
= (14 cotha(H))Z,Y_o + (1 + cotha(H))Zy - 72(Z_4)
—cscha(H) - Y_q - 11(Zy) —cscha(H) - 11(Zy)12(Z-0)
= (1+cotha(H))[Z4,Y_o) + (1 + cotho(H))Y_q, - 12(Za)
+ (14 cotha(H))re(Z-o)2(Zs) — cscha(H) - Y_o - 11(Z4)
—cscha{H)r(Zy)12(Z2-4)
= (1 + cotha(H))[Zqa,Y-4]
+Y_4[(1+ cotha(H))re(Zy) — cscha(H) - 11(Zy)]
+ (1 4+ cotha(H))re(Z-a)12(Zy) — cscha(H) - 11(Zy)12(Z-0).
We let the Cartan involution 8 act on & by making it act on & in the usual
way and letting it act on & trivially. Notice that 8[Z,,Y_o] = ~[Za, Y_q], and

0(Y_o) = —Y_,. If we let 6 act on the above congruence, we obtain a new
congruence with respect to the space

0(@2 + E1E) = .—g;iz + E’l?
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where .
LE={X"®1-19n(X): X ct}.

It follows that
0(XoX_o) = —(1+cotha(H))[Za,Y_0s)
—Y_o[(1 + cotha(H))r2(Za) — cscha(H) - 11(Za))
+ (1 + cotha(H))r2(Z-4)72(2a) — cscha(H) - 11(Za)12(Z_a)
mod(ZE; + B,§). .
In this congruence, replace a by —a and H by —H. Then h = exp H is replaced
by h~! and FE, + f’lg becomes ZE; + ,.Z. Then
0(X_aXa) = —(1 +cotha(H))Z_,4,Ya)
— Yo[(1 + cotha(H))r2(Z-o) — csch a(H)11(Z-a)]
+ (14 cotha(H))12(Z,)12(Z—-0) — cscha(H) - 11(Z-a)72(Za)-
Now [X4, X_o] = Hy. Therefore
{ZouY—a] —[Z-a,Ya] = [Za, Y=o + [Ya, Z—a]
= 3[Xo +0(Xa), X—a — 0(X_a)] + §[Xa — 0(Xa), X—o + 0(X_4)]
= %(Ha - G(Ha)) = Hs.
We obtain the formula
XoX_o+0(X_oXs)={(1+cotha(H))H,
+ Y_4[(1 + coth a(H))12(Z,) — csch aH) - 11(Z4))
— Ya[(1 + cotha(H))re(Z_4) — cscha(H) - 11(Z_4)]
+ (14 coth a(H))[r2(Za)12(Z-0) + 12(Z-a)72(Z0))
—csch o H)[11(Za)12(Z2-0) + 11(Z-a)72(Z4)).

By substituting —a for « in this formula we obtain a similar expression for
X_o0Xa+0(XoX_a). Adding the two expressions together we obtain the formula

Ro = }XaX_a+0(X-aXa)] + 1{X-aXa +0(XaX_a)]
= cotha(H) - Hy + Y_qg[cotha(H) - 72(Zy) — cscha(H) - 11(Z4)]
—Yyfcotha(H) - 12(Z-4) — cscha(H) - 11(Z2_4))
+ [r2(Za)72(Z-a) + 72(Z-a)72(Za)]-
Using formula (13.1) for Y, and Y_,, we find that R, is congruent to the expres-
sion
cotha(H) - Hg — (coth a(H))?[r2(Z4)72(Z-o) + 12(Z_0)T2(Z4)]
~ (escho(H))?[r1(Za)r1(Z-a) + 11(Z-0)71(Za)]
+ 2cescha(H) coth a(H)[r2(Za)11(Z-a) + 12(Z-0)711(24)]
+12(Za)72(Z-a) + 12(Z-a)72(Za).
Using the fact that 1 — (cotha(H))? = —(csch o(H))? we obtain the formula

R, =cotha(H)-Hs — F,
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where F, is the following operator on &
(csch o(H))?[72(Za)72(Z-a) + 72(Z-0)72(Za)
+ 71 (Za)Tl (Z—a) + 7 (Z—a)Tl (Za)]
— cscha(H) - coth a(H)[r2(Za)r1(Z-a) + T2(Z—a)T1(Za)).

We want to show that Eae Py F, is a selfadjoint operator on V. Let # denote
conjugation of g, with respect to g. Then since 71 and 7o are unitary

(X)) = —n(nX), 2(X)* = —m2(nX)
for any X in &. It is easy to see that there exists a constant ¢, 7# 0 such that
NXa = caXon, nX_o = c;lX_an,
where o is the conjugate root of a. Since  commutes with 8, we see that
NZq = CaZan, NZ—o=C3 2 _on.

Therefore (Fy)* = Fun for any o in P, since o7 = a when restricted to a;, and
because the functions csch a(H) and coth a(H) are real-valued. Therefore

(Z Fa)*= > Fa

aEPy aEPy
We have shown that
wg=Hi+ Y cotha(H) Hs +Zr2 H)?- Y Fat+ Y R
a€P+ QGP+ a€Pny
We need only show that for any o in Py, R, is congruent to a selfadjoint
operator on V;. In this case
Ry =XoX_ o+ X_oX
Therefore
Ry = ro(X_o)2(Xa) + 12(Xo)72(X o).

But nRy = R,. Therefore m2(X_4)712(Xo) + 72(Xa)m2(X_4) is a selfadjoint
operator on V. This completes the proof of Lemma 38. [0

Recall that r; and ry stand for the number of roots in P, whose restrictions
to ap are up and 2pug respectively. As before, write

r? = 2(7’1 -+ 47‘2) = B(Ho,H).

Since B(H1, H;) =1, H? equals r—2HZ. Since B(H,,O,Ho) po(Ho) =1, Hy,,
equals r~2Hy. Therefore, if we write §/(wg) for &, .z, (wg) and Q(t) for Q(tHo),
we obtain the following formula from Lemma 38:

2
(13.2) 26 (wg) = (%) + (ry cotht + 273 coth 2t)% +72Q(t).

Recall that
D(t) = (2sinht)™ (2sinh 2¢)"2, teR.
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If ¢ is greater than zero, D(t) does not vanish. Define a new differential operator
6:(wg) on C®(RT) ® V; by

8¢(wg) = D(t)"/26,(wg) o D(t) /2.

LEMMA 39. For anyt > O there i3 a selfadjoint operator q(t) on V; such
that

2 (AN
6 (wg) = (E) +q(t).
PROOF. From (13.2) we obtain the formula

T25t(“’e) = T2D(t)1/25t’(w9) ° D(t)—l/z

d\?® 124 —172) 4
= (EZ) + (n cotht + 2rg coth 2t + 2D(t) ;1—tD(t) pri q(t).

g(t) is some operator obtained by adding real-valued scalar functions of ¢ to the
operator Q(t). In particular g(t) is selfadjoint. Now

d d
/2. =2 -1/2 _ _ -1 =
2D(t) dtD(t) D(t) dtD(t).
If we differentiate D(t) we obtain the formula
-D(t)"1. %D(t) = —[ry cotht + 273 coth 2t].
Therefore
d\?
2 — o
r*6s(wy) = (dt) +4q(t). O

We are now in a position to relate the linear transformations ¢*(A) and ¢~ (A)
of L™ with the Plancherel measure 3(c,A).
Ifyisin L™, A #0, and t S 0, define
fa(: £) = D(t)/2Ep(¢: exptHp).

Recall that L7 is a direct sum of a finite number of orthogonal subspaces of the
form L. If 4, is in L7, for some o in &, we have the formula

E\(Yo: exptHo;wg) = T p(wg) - EA(Ys: exptHp).
Fix g in L}. Choose oy and o3 in &y () and fix 4; and ¢ in L7, and L,
respectively. Using Lemma 37 we see that for o equal to 1 or 2,
8(ws) fa(va: t) = D(£)*/268](wg) Ea(va: exptHo)
= oo, A(Wg) - fa(Ya: t).

By Lemma 39 we obtain the formula

d\? \
(E) +q(t)| fal¥a:t) = r°me, a(wg) fa(Ya: t), a=1,2.



88 J. G. ARTHUR
Write £ fa(va: t) as fj(¥a: t). Fix Ag # 0. Then

L1(ar: 1), fhy 22 0) — (oW ), Faaltha: )]
= (fa(¥1: 1), fx,(W2: 1)) — (FA (%11 1), fao (21 1))
= 12 (To3,a(Wg) = Moy A (wg)) - (FA(¥1: 1), fao (%2 1))

We are using the fact that g(¢) is a selfadjoint operator on V; and that 7, 2 (wg)
is a real number. The scalar product above is of course on the space V. Now
by (12.4), |o1]| = |o2|. Therefore, by (6.10)

(Top,n (Wg) — oy A (W) = 7_2(A2 - Ag)-

For T a positive real number, define the number Vr(A, Ag) by

T
(13.3) V(A Ag) = /0 (Fa(Ws: ), fag (2 1)) dt.
Then Vr(A, Ag) is equal to the expression

(A% = AD)TH(fa (W2 1), fag (W21 1) — (Fa(¥1: 1), fao (2: )} -

Now D(t)1/2 -0 ast — 0, s0 fo(t2: t) — 0 as t — 0. Therefore the evaluation
of the above expression at t = 0 is equal to zero. We then have the formula
(13.4)

Vr(A,Ao) = (A? = AD)"H{(fa(1: T), fao (2: T)) — (f4(w1: T), fao (¥2: T))}-
Define the integer ¢ as in §3. Define the distribution Af\'oon C§(R) by

AL (R) = / Vr(A,Ag) -A%-h(A)dA, he@CP(R).

LEMMA 40. Ifh isin C§(R) and Ag # 0, the limit as T approaches infinity
of Afo {(h) is equal to each of the following expressions:
(i)
2n(ct (Ro)¥r, ¢* (Ao)a) a - A - h(Ao)

+ (™ (—Ao)¥1, ¢ (Ao)y2) m - (—A0)?? - h(—Ao).

(if)

2m(c™ (Ao)tb1, ¢~ (Ao)w2) a - AYY - h(Ao)

+ (et (—Ao)¥1,¢™ (Ao)¥2) M (—A0)?? - h(—Ao).

PROOF. Write (¢, : t) as the function

et (Ao (1)t + ¢~ (A)hg (1) A%,
Write %OA(Q/)(,: t) as 0} (Yo : t). Write %EA(iﬁa: exptHy) as E} (Yo : exptHp).
Let
Ga(At) = fA(Ya: t) — 05 (Va: t),

da(A,t) = fa(Wa: t) — Ox(Ya: t)
fora=1,2,A#0,and t > 0.
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It is clear that we can find a number §; > 0 and a constant C such that for
any t >0

Ie—tp(Ho)D(t)1/2 _ 1| + e—tp(Ho) A %(D(t)l/z) _ P(HO) € Ce—&t’

It is also clear that

fA(@a: t) — -[ tp(H°)EA(¢a' exptHp)]
< |D()Y?- . By(fa: exptHp) — U0 By (g: exptHo)|

+ E?(D(t))l/"’-EA(z/za: exptHy) — ;E(etp(Ho)) - Ep(¢o: exptHp)

= [e"?(HO) B} (o : exptHy)| - [e~*Ho) D(t)'/2 — 1

o~H#10) £ (D(#)'/%) — p(Ho)

+ [et?(HO) By (o : exptHp)| -

Now by (4.1) and Lemma 30, we observe that both |e??(Ho) By (v, : exptHy)|
and |et?(Ho)E} (1 : exptHp)| are bounded by the product of (1 + rt)¢ and a
polynomial in |A|. Therefore, there exists a § > 0 and a polynomial p such that
forAnRandt>0

(135)  |fia: t) = ST Er(a: exptho))| < pllADe.

It then follows from (11.2) that there exists a polynomial p and an & > 0 such
that fora=1,2, A#0,andt >0

(13.6) lae.(A,8)] Z p(JA)e™=".
By the same argument we obtain the inequality

(13.7) lga(A, 8)] € p(JA])e*.

For A#0,and T > 0, let Q(A,T) be the sum of the following three terms:

() (01(A,T), ¢5 (A0, T)) — (@4(A, T), g2(Ao, T)),

(i) (q1(A,T), 04, (¥2: T)) — (¢1(A, T), 040 (¥2: T)),

(i) (6o (1 : T), @5(Ao, 7)) — (8 (1: T), az(ho, T).
By Lemma 34 it is clear that for « = 1,2, both [A%%6,(¢): T)| and
|A299), (34 : T)| are bounded by a polynomial in [A|, independently of 7. There-
fore, using (13.6) and (13.7), we see that there is a polynomial p and an € > 0
such that for Ain Rand T >0

(13.8) IA%Q(A, T)| < p(|Al)e™*".

We shall also need a weak bound on | & (A2Q(A,T))|. By using Lemma 30
and Lemma 35 we can show that there exists a polynomial p and an integer n
such that for AinRand T >0
(13.9) l d

QUL T)| < p(ADL+T)"
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We shall now break Vr(A, Ag) up into a sum of terms which we can handle
separately with the above estimates.

A%Vr(A, Ag)
=A% (A2 = AD) 7Y {(f1 (912 T, fho (Wh2: T)) = (Fa(1: T, fao (22 T))}
= A% (A2 = A3) 7 (6a(¥1: T), 8, (: T)
— A% (A% ~ AZ) (64 (12 T), 050 (%2: T))
+A%29. (A2 —A2)71.Q(A,T).
Recall that for any two vectors ¢ and ¢’ in L
(W, 9" ) = (¥(1),%(1))-
Then we obtain the following formula:
A%z (A, Ag)
=A% (A% — AZ) (et (A1, ¢ (Ao)tha) as - €T AR (Ao + A)
+ (¢~ (A1, ¢ (Ao)ta) ar - €T (TAHR (—pg — A)
+ (ct (M), ¢ (Ro)wg) a - €TAFAD (—Ag + A)
+ (¢ (A1, ¢ (Ao)wa)ar - €722 (Ag — A)}
+ A% (A2 - A2 QA,T).
Now (A — Ag) - A%29 - Vp(A,Ag) = 0 if A = Ag. Therefore, for any T > 0,
— iA3%{(c* (Ao)¥1, ¢ (Ao)tha)m — (¢~ (Ao)¥hr, ¢ (Ao)wha)ar}
+A27 - (240)71 - Q(Ao, T) = 0.
Now by (13.8), Q(Ag,T) approaches 0 as T approaches 0o, so
(¢t (Ao)y, et (Ao)¥2)m = (¢~ (Ao)¥1, ¢~ (Ao)¥h2) i
This implies that Q(Ag,T) = 0 for any T' > 0. In a similar manner, we can show
that
(¢~ (=Ao)¥1, ¢t (Ao)p2) M = (¥ (—Ao)1, ¢ (Ao)2) M
and that Q(—Ag,T) =0 for any T > 0.
The number
AT (h) = /R h(A) - A22 . Vip(A, Ag) dA

is e(q)ual to the sum of the following three terms:
i
J A Wb, (o)) - €70
— (™ (A)¥1, ™ (Ao)tpa)ar - €~ TR} B(A)(—6)A%? - (A — Ao) ™" dA,
(i)
[ W™ (Ao - 740
— (c™(A)¢1, ¢t (Ao)a) ar - € T(AHAIY L B(A)(—0)A%9 - (A + Ag) 1 dA,
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(iif)

f Q(A,T) - A% - h(A) - (A2 — A2)~L dA.
R

Let us assume for the moment that & vanishes in a neighborhood of (—Ag). We
wish to examine the behavior of each of the above three terms as T" approaches
0o. We deal first with the third term.

Let n be the integer in (13.9). The third term is equal to Iy + I where
I, and I, are those parts of the integral in (iii) which are taken over the sets
{A:]JA — Aol € T~""1} and {A: |A — Ag| > T~™"!} respectively. Apply the
mean value theorem to the function A22Q(A, T) of A. Since Q(Ag,T) = 0, there
is a real Ay, with A1 — Ag| < |A — Ag}, such that

A2Q(A,T) = (A —Ao) - a%—(quQ(Al,T)).
1

Then by (13.9) we see that |I;| is bounded by a constant multiple of
(14 T™)T~""1. Therefore, |I;| approaches 0 as T — co. On the other hand,
there is a constant C, independent of A and T, such that if [A — Ag| > T~ ™71,

1A% h(A) - (A% = AD)™! - Q(A, T)| < Cp(IAl) - [R(A)] - T™*! - €

by (13.8). (We have used the fact that A(A) vanishes in a neighborhood of —Ag.)
This implies that |I3| approaches 0 as T approaches oo. Therefore, term (iii)
goes to 0 as T goes to oo.

To deal with term (ii), we observe that both

(=3) - A% - (A + Ao) ™" - (e (A)g1, ¢~ (Ao)¥2)u - h(A)
and
(=0) - A% (A+A0) ™" - (c™ (M), ¢+ (Ao)w2) s - B(A)
are continuous functions of A, since h(A) vanishes in a neighborhood of (—Ag).
Therefore, by the Riemann-Lebesgue lemma, term (ii) goes to 0 as T goes to co.
Now, since ,(c+(Ao)’(/)1,C+(A0)’l/}2)M = (c' (Ao)lbl, c” (A0)¢2)M, we may
rewrite term (i) as

2 /R (c+(Ao)ebr, c* (Aa)yba)ar - A% - h(A) -sin T(A — Ag) - (A — Ag) ™ dA

+ (=) /R (ct(A)y1 — ¢t (Ao)tr, et (Ao))n - (A — Ag) ™1 - A%0 - h(A)

. eiT(A—Ao) dA

+ (3) L(C_ (A1 — ¢~ (Ao)¥1, ¢~ (Ao)¥2)m - (A — Ao) ™1 - A% - h(A)
et T(A~Ao) gA
=Ji+J2+J3, say.

Now A2%¢*(A)y; and A%29¢—(A)1p; are both continuously differentiable in A by
Lemma 35. Therefore, we can use the Riemann-Lebesgue lemma to prove that

Jim (1] +Js]) = 0.
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It follows that
: T
Jim_ AT, (4

= lim 2 / (* (Ao)¥1, ¥ (Ao)bz) s - A% - h(A) - sin T(A — Ao)
T—00 R

(A —Ag)tdA.
Now it is an easy fact that
lim sinT(A - Ao) . (A - Ao)_l = T0pq-
T—oo
where the limit is taken in the topology of .%/(R) and 8, is the Dirac distribu-

tion at Ao. :
We have proved that if A vanishes in a neighborhood of (—Ao),

Jim A7 () = 2m(c* (Ao)r, ¢* (Ao)a)as - A’ - h(Ao).
Similarly, if h vanishes in a neighborhood Ag, we could show that
Jim AT, (h) = 2m(c™ (~Ao)ibr, ¢+ (Ro)2)ne - (~R0)* - h(=Ao).
This completes the proof of Lemma 40.
For any o in &y and A in R, 8(0,A) = B(0’,A) by Lemma 5. Then if 03 and
oo are in &y (u) for some p in LY, B(oy,A) = B(o2,A). We write this number as
B(u, A). 1t is also easy to see from the Weyl dimension formula and the definition

of & (u) that if o1 and o are in &y (u), dim oy = dimoz. We write this number
as dim p.

LEMMA 41. Assume Ag # 0. Fiz u in L. Then there i3 a constant C,
independent of Aq, such that the following operator equations hold on Li:
(i) ¢ (Ao)*c* (Ag) = ¢~ (Ao)*c™(Ao) = (C - Blu, A0)) 7%,
(ii) c*(Ao)*c™(—Ao) = ¢~ (Ag)*c* (~Ao) = (C - B4, Ao)) ™" - M(—Ao).
PROOF. In §12 we remarked that L, was an invariant subspace of ¢ (Ag).
Then L, is also invariant under ¢£(Ao)*. Then from Lemma 40 we obtain the
equations
¢t (Ao)*ct (Ao) = ¢ (A)* ¢ (Ao),
¥ (Ao)*c™(—Ao) = ¢~ (A0)"c* (~Ao).
Now fix ¢, in L7, and 93 in L], for oy, 02 in Ep(p). Also fix b in C§°(R).
Then

TlgnooA{o(h)= Jim /}; h(A) - A%9 -V (A, Ag) dA
T
= Jim /0 /R (Fa(Wr: £), fag (W2 £)) - A22 - h(A) dA dt
T
= lm /0 D(t) /R (Ex(abr: exptHo), Eny(Y2: exptHo))

- A% - h(A) dA dt
= lim (¢)™? [G /R (Ea($1: ), By (2t 7)) - A% - h(A) dA da

T—o0
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where Gt = {ky - exptHgy - ky: ki, ko € K,0 € t € T}. Let us assume that A
vanishes in a neighborhood of 0. Then we define
u(A) =A% h(A)-B(u,A)" 1, A€R.

B(u,A) is infinitely differentiable and does not vanish if A # 0 by Lemma 5.
Therefore u € CP(R) @ L".
Then in the notation of (7.4) and (7.5)

Jim AX (k) = (c - dim p) " i(Ao), Y2) -
By (7.6) the right-hand side of this formula equals
(2¢ - dim p) ™ (u(Ag) + M (—Ao)u(—Ao), ¥2) M,
which in turn is equal to
(2¢ - dim - B, A0)) T AQ? - h(Ao) - (%1, ¥2)m
+(2¢ - dimp - B, 40)) ™ Ag? - h(Ao) - (M(=Ro)s, %2) m-
However, by the last lemma, limz_, o Af{o (h) equals
27 - AJ? - h(Ao) - (¢ (Ao)*ct (Ao)¥1, ¥2)m
+ 271 - (—A0)% - h(—Aq) - (¢t (Ao)*c™ (—Ao)¥1,%2) M-

We can choose h so that h{Ag) and h(—Ag) are arbitrary. This proves the
formulae

¢t (Ao)*ct(Ag) = (- ¢~ dimp - B, Ao)) 7%,
¢t (Ao)*e™(—Ao) = (- ¢ - dimp - B(u, Ao)) ™" - M(—Ao). O
14. A condition for irreducibility of 7,,. We have now done enough
work to prove Theorem 3'(b). However, we shall postpone this until §15. In

this chapter we shall use the inequality (11.2) and Lemma 41 to give a sufficient
condition for the irreducibility of the representation 7, g.

LEMMA 42. For any v in L7, where 7 13 in &2 and o is in &y, the mero-

o

morphic functions ¢t (A)y(1) and ¢~ (A)y(1) have a pole of order at most one at
A=0.

PROOF. If ¢ is fixed, then by (11.2) and (12.3) there is a polynomial p and
an € > 0 such that
[etPHO By (: exptHy) — et (A)y(1) - €A — ¢~ (A)y(1) - e~
Zp(|A])e™®,  t30, A#0.
Therefore, for any ¢t S 0, the function

e HIEL(y: exptHo) — T (A)p(1) - €4 — ™ (A)pp(1) - 7

(14.1)

has no pole at A = 0. However, the function

et”(H")EA(z/): exptHp)
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is regular at A = 0, so the function
ct(A)P(1) - €4 + e (A)gp(1) - e7*A
is also regular at A = 0.

Consider the Laurent expansions of the functions ct(A)y(1) - €*At and
¢~ (A)¥(1) - e7*At. The coefficients will be functions of ¢t with values in V;, the
space on which 7 acts.. Allow ¢ to vary. Suppose that one of the two functions
has a pole of order greater than one at A = 0. Then it is easy to see from the
Laurent expansions that this forces the function

et (A)P(1) - €4 + e (A)p(1) - e
to have a pole at A = 0 for some ¢ > 0. We have a contradiction. O

THEOREM 4. If o is in &y and B(0,0) = 0, then the representation n, 0 of
G 1s irreducible.

PROOF. Assume the contrary. Then as we saw in §5, there is a 7 in &2, acting
on the space V;, and a nonzero % in L7, such that Eg(v): exptHp) vanishes for
all t. We shall use the inequality (14.1) to obtain a contradiction.

Since Eg(t: exptHg) vanishes for all ¢ S 0, we can use the mean value
theorem to show that for every A, ¢,

d
Ex(y: exptHo) =A- EEM(W exp tHp).

A; is some real number between 0 and A. However, by Lemma 30, there is a
polynomial p; such that for any ¢t > 0,

d =
6tp(H°)mEA1('/’: exptHp)| 2 pi(|A1]) - E(exptHp) - t.

But by (4.1)

E(exptHp) -t € e~(Ho) . (1 443+ ¢,
Therefore there is a polynomial ps such that for A€ R and t S 0,
(14.2) [et?HOI By (3 exptHy)| 2 |A] - p2(JA]) - (1 + )41,

Since B(0,0) = 0, Lemma 41 tells us that the functions ¢*(A)y(1) and
¢~ (A)¥(1) must both have a pole at A = 0. This pole must be of order 1
by Lemma 42. Let

EA)P(1) = AT +e5 F A+
+

be the Laurent expansions about A = 0 for these functions. cfl,cg:, c7,... are
vectors in V;, and neither ¢t nor ¢Z; can equal zero. If ¢ > 0 is fixed, we apply
Taylor’s formula with remainder to the functions

g% (t,A) = Ac* (A)p(1)e™ .

Then there is a real number A; between 0 and A such that

2
g (t,A) = cXy + Aleg +ick ) + A% (ﬁ—) gt (t, A1)
1
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The function (d/dA1)2g7 (¢,A1) is equal to
. d \? . d
et —— ) (At (A)p(1)) + €1t - 2it - ——(Aret (Ar)(1))
dAy dA;

— gt 42, (A16+(A1)"/)(1))-

Then by Lemma 35 there exists a polynomial ps such that

(ﬁ—l)z g*(t, A1)

This implies that we can choose a polynomial ps such that for A # 0 and ¢ > 0,
(14.3)  |et(W)p(V)ert = (cF A7 +ef +ict )| 2 (Al pa(lA]) - (1+2)%

Z ps(lAaf) (1 +)%

Similarly, we can show that
(14.4) e (A)P(1)e™™* — (cZ1A7! + e —ieZ;t)] 2 1Al - pa(IA]) - (1 + )%

Now for A # 0 and ¢ > 0 the expression

[ty + e DA™ + (cf +eg) +i(cdy — Ty

is bounded by the sum of the following four terms:

(i) let (A)p(1)e — (X A~ + e +ick 2],

(ii) e~ (A)p(1)e™ A — (cZ, AL + ¢ —icZ, b)),

(iii) e*?(HO) Ex(y: exptHo)l,

(iv) |etP(HO) Ep (4 exptHy) — ¢t (A)g(1)e™At — ¢ (A)y(1)e*AY|.
By (14.1), (14.2), (14.3), and (14.4), there are polynomials p and ps such that
this sum is bounded by

p(IADe™®" + |A] - ps([A]) - (1 +8)4+2.

For a fixed ¢ and.for 0 < A € 1 this expression is clearly bounded. Therefore
(14.5) cti+eZ;=0.

Let

P= sup p(A), Ps= sup ps(A).
0<AZ1 0<A<1

Then for any t S0and for 0 < A £ 1,
l(ed +¢5) +ilety —cl )t € P-e7® + Py - A- (14 6)*F2.

Let A = ¢t—(4+3) and let ¢ approach oo. Then we see that

¢t —cZ;=0.

Therefore, by (14.5)

ct,=cZ; =0

We have a contradiction, so Theorem 4 is proved. 0O
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15. Completion of the proof of Theorem 3'(b).

LEMMA 43. Suppose that ¢ is in LT, for 7 in &2, o in &y, and assume
that ||¢|lar = 1. Then ct(A)y(1) - B(o, A) is an infinitely differentiable function
from R into V;, the space on which T acts. Furthermore, for every nonnegative
integer n there are polynomials py, ps, q independent of o, A, 7 such that

(z%) (EA)W(1) - Ao, 4)| < paloD) - pa(IA]) - g(Ir))-

PROOF. ¢t (A)y(1)-B(o, A) is equal to A22¢*(A)y(1)-B(o, A)A~29. This is the
restriction to R of a function A(A) which is meromorphic in the region |A;] < 6.
(See Lemma 5, (ii), and the corollary to Lemma 34.) The only possible real pole
of h(A) is at A = 0. For any real A #£0

= (A)%(1) - B(a, A)| = Bo, A) - (¢ (M), = (A)y)/?
= (¢*(A)*c*(A)%,9)'/2 - (o, A).

Therefore, by Lemma 41,

(15.1) = (A)%(1) - Blo,A)] = (O) - (@, 9)'/2 - Blo, 1)/,

But by Lemma 5, 8(c, A) is regular at A = 0, so |h{(A)] is bounded for all real A
in a neighborhood of 0. Therefore, h(A) has no real pole and hence is infinitely
differentiable at any real A.

Since B(o, A) is regular at A = 0, the functions ¢*(A)#(1) cannot have a zero
at A = 0. Let N(¢) be the order of the pole of the functions ¢*(A)y(1) and
¢ (A)Y(1) at A = 0. N(¢) is a nonnegative integer. We see from (15.1) that
B(o,A) has a zero of order 2N (3) at A = 0. Then write

F(A)p(1)B(0,4) = ANV eF (A)y(1) - A~V 5o, A).
The estimate for (d/dA)™(c*(A)¥(1)B(co,A)) in the lemma then follows from
Lemma 5, (iv), Lemma 35, and Leibnitz’ rule. 0O

LEMMA 44. Choose o in L, with |||l = 1. Then for every nonnegative
integer 8 there are polynomials py, ps, q such that for every h in & (R),

/R h(A)VEx($: 2)B(0, A) dA - E(z) "1 (1 + o(z))*

(&)

PROOF. Every z in G is of the form k; - exptHy - ko, for ki1, k2 in K, and
t > 0. By (4.1) it is enough to prove the lemma when the left-hand side of the
inequality is replaced by

ete(Ho)(1 +rt)“"’/oo Ex(y: exptHo) - h(A) - B(o,A) dAl'

sup
z€G

Z pi(lol) - q(|7]) - sup -sup (pz(IAI)
0€i€s ACR

sup
50

If t S 0, the expression

etP(Ho) (1 4 rt)® /oo Ex(¢: exptHo) - h(A) - (0, A) dAl
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is bounded by the sum of the following two expressions:

6 1@ =+ [ A 19,4)
et O Ep (2 exptHo) — et (A)p(1)e™ — ¢~ (A)p(1)e ™A dA,
(i) (1) = | J2(F (A)p(1)e™h — = (A)(1)e*A)h(A) (0, A) dA - (1 + 12)°].

By (11.2) and (12.3), there are polynomials p, p2, g, a.nd a number £ > 0, all
independent of o, A, 7, such that

L(t)  pa(lol) - q(lr)) - (1 +78)* - et Lpz(lAl) - [R(A)]1B(e, A)| dA.
But by Lemma 5, (iv), there exist polynomials p} and p}, such that
Blo,A) Z py(lo]) - Pa([A]).

Therefore
f‘;%Il(t) Z ¢ - pa(lol) - pr(lol) - q(I7])

- sup (p2(JA]) - p3(1A]) - (1 +|A]%) - [R(A)]),
A€R

where
Cs = / (1+]A]?)"YdA - sup(1 + rt)%e 5.
R tS0

This takes care.of I1(t).
We now obtain a bound for I,(t). Define

¢=(A) = c=(A)y(1)B(0, A) - h(A).
¢* is in (R) ® V;. We see that

I(t) € l/:o ¢T(A)etrt dAI S 4rt) +

) ¢+<A>dA|
+|/_°;e-'“ (l—zr %)sW(A)dA :

Now by Liebnitz’ rule and Lemma 43 there are polynomials p;, p2, ¢ such that

1+ AP) (1£ir —) )
(2]

(&)

where ¢ =2 % (1+ |A|?)"* dA. We have proved Lemma 44. O

—iAt dA‘ -(14rt)°

sup
A€ER

< pullol) - glirl) - sup - sup (m(IAI)

1<8

Therefore, we see that

)

I(t) 2 ¢~ pi(lo]) - q(I7]) - ,Sup - sup (Pz(lA])

1Zi€s
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COROLLARY. Suppose ¢ i3 in L7, and ||¢||pm = 1. Then for every g1, g2 in
A, and every nonnegative integer s, there are polynomials py, p2, q such that
for every h in #(R),

sup
z€G

/R R(A)Ex(6: 91375 92) - B0, A) dA - B(z)~1(1 + 0())° do

) .

< pille) -a(il) - sup - sup (m(IAI) I (%) h(A)

PROOF. By (11.1)

ti ta
IEA($: 9152392)17 = ) D (W10 To,4(2) W2p) |
a=1 =1

where W1, and ¥y are the same as in (11.1). Now let Ex(¥q: z) be the
(T1a, T2p)-spherical function corresponding to (¥14, 70,4 (2)¥25). Apply Lemma
44 to Ep(%q,p: ). The corollary follows from the conditions on {¥14}, {¥2s}
and {714}, {72p} given in Lemma 13. O

This corollary establishes the proof of Theorem 3'(b). The proof of Theorem
3 is now complete. -

16. Tempered distributions. Having proved Theorem 3, we can now ex-
tend the definition of Fourier transform to tempered distributions on G.

A distribution on G is said to be tempered if it extends to a continuous linear
functional from % (G) to C. Since C(G) is dense in F(G), and since the
inclusion map

CP(G)TE(G)

is continuous, we can regard the space of tempered distributions as the dual
space of €(G), that is, the space of continuous linear functionals from % (G)
into C.

Let &'(G) be the set of tempered distributions on G. It becomes a locally
convex topological vector space when endowed with the weak topology. (A base
for the weak topology of &’(G) is given by the seminorms {|| - [|s: f € F(G)},
where if T is in €'(G), ||T|ly = |T(f)|.)

Let '(G) be the dual space of Z(G). Then

?'(6) =% ()0 %G

where %O'(G‘) and € (G) are the dual spaces of %(G) and % (G) respectively.
Endow %'(G), %, (G), and &/ (G) each with the weak topology induced from
Z(B), %(G), and % (G) respectively.

THEOREM 5. Denote the map f — [ of €(G) onto €(G) by Ff. Then
F*, the transpose of F , is a topological isomorphism from €'(G) onto €'(G).

PROOF. The theorem follows directly from the fact that # is a topological
isomorphism. O
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It is of interest to obtain a slightly different characterization of the space
%} (@). Define the space ¥ (G) as in §7. For a; in %4 (G) define the function
1

4::G—=C
as in §7. Then

d1(z) = Z / (a1 (o, A)q)fz iz Py (@, %19 ”O‘A(x)q)h,iz) -B(o,A) dA.
1 —C0

d1(z) is in #(G) by Theorem 3'(b).
For a; in ¥ (G) define

(Sa1)(o,A) = La1(0,A) + No(A)"tas(o’, —A) N, (A)].

Then by (7.3)
8'1 (0" A) = (Sal)(o7 A)

Therefore, by Theorem 3’'(b) and Lemma 10, the map
a; — Say, a1 Gx(é),

is a continuous transformation from . (G) into % (G). If a; is in & (G), Sa; =
a;. Therefore S is a continuous projection from % (G) onto % (G). Since % (G)
is the kernel of the continuous map S —1 on 5’1(@), %(G’) is a closed subspace
of A(G).

Let #/(G) be the space of distributions on .4 (G). We can regard the map
S as going from 4 (G) to either F(G) or F(G). In either case let $* be its
transpose. Then if T is in either %/(G) or €/(G), S*T is a distribution in
F(G), and

(S*T)(a1) =T(Say), a1 € A(G).

THEOREM 6. S* is a canonical isomorphism from % (G) onto the closed
subspace _
TG ={TeH(&): ST=T}
of H(G).

PROOF. Clearly S* is a one-to-one map of #/(G) into F/(G). Now suppose
that T is in S(G). We can define a new distribution Ty in &/(G) as the
restriction of T to the closed subspace & (G) of A (G). If a; is in A(G),

(S*T1)(a1) = T1(SG1) = T(Sal) = (S*T)(al) = Ta.l.
Therefore the map .
5*: &/(G) ~ A(G)
is surjective. Our theorem is proved. 0O
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