
ENDOSCOPIC L-FUNCTIONS AND A COMBINATORIAL IDENTITY

James Arthur*

1. Introduction. In this paper we shall prove a combinatorial identity for certain

functions attached to reductive algebraic groups over number fields. The functions are

built out of logarithmic derivatives of L-functions, and occur as terms on the spectral side

of the trace formula. The identity is suggested by the problem of stabilizing the trace

formula.

We shall say nothing about the general problem, since we will be dealing with only

a small part of it here. For a given group G (which for the introduction we assume is

semisimple and simply connected), together with a Levi subgroup M , we shall define a

function rG
M (cλ) of a complex variable λ. The symbol c represents a family {cv : v 6∈ V }

of semisimple conjugacy classes from the local L-groups LMv. The function rG
M (cλ) is

constructed in a familiar way from the quotients

rQ|P (cλ) = L(0, cλ, ρQ|P )L(1, cλ, ρQ|P )−1 , Q, P ∈ P(M),

of unramified L-functions

L(s, c, ρQ|P ) =
∏

a

L(s, c, ρa)

that are part of the theory of Eisenstein series. We assume initially that c is automorphic,

in the sense that it comes from an automorphic representation of M . As is well known,

the quotients rQ|P (cλ) will then have meromorphic continuation for λ in a complex vector
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space a
∗
M,C. This property is required for the definition of rG

M (cλ), and implies that rG
M (cλ)

is also a meromorphic function of λ.

In the present context, the stabilization problem is to relate rG
M (cλ) with “stable”

functions sG′

M ′(c′λ) attached to endoscopic groups of G. Here M ′ is a fixed endoscopic

group for M , c′ = {c′v : v 6∈ V } is an automorphic family of conjugacy classes attached

to M ′, and c is now assumed to be the image of c′ under a fixed embedding LM ′ ↪→ LM .

The functoriality principle asserts that c is an automorphic family for M . This would

immediately imply the meromorphic continuation of the functions rQ|P (cλ), on which the

definition of rG
M (cλ) depends. However, even such a relatively accessible case of funtoriality

is far from known. We shall instead prove directly that the basic endoscopic L-functions

L(s, c, ρa) have meromorphic continuation in s ∈ C (Proposition 1). We will then be able

to define rG
M (cλ) without knowing that c is automorphic. Once we have defined rG

M (cλ), we

shall construct functions sG′

M ′(c′λ) by an inductive procedure that is typical of the general

stabilization of terms in the trace formula.

The meromorphic continuation of endoscopic L-functions is related to results of

Shahidi in [13] and [14], which were a part of his proof of some important properties

of local L-functions and ε-factors [14, Theorems 3.5, 7.9 and 8.1]. We shall apply similar

inductive arguments, but we will avoid case by case considerations by using the global form

of a set EM ′(G) introduced in [6] and [7]. The elements in EM ′(G) are endoscopic groups

G′ for G which contain M ′ as a Levi subgroup. They determine a simple decomposition of

the endoscopic L-functions (Lemma 4), of which the required meromorphic continuation

will be a straightforward consequence. The set EM ′(G), and Lemma 4 in particular, will

also be the basis of our stabilization of rG
M (cλ). The construction, which includes our

combinatorial identity, will be the content of Theorem 5.

I have profited from many enlightening conversations with Shahidi on L-functions and

intertwining operators. In particular, I would like to thank him for pointing out an error

in my original manuscript.

2



2. Endoscopic L-functions. Let G be a connected, reductive algebraic group over

a number field F . For reasons of induction it is also convenient to introduce a central

torus Z in G over F , together with a character ζ on Z(F )\Z(A). We assume that Z is

induced, in the sense that it is a finite product of tori of the form ResE/F

(
GL(1)

)
. We

also fix a finite set of valuations V of F such that the local components Gv, Zv and ζv are

all unramified at any v not in V .

We consider families

c = {cv : v 6∈ V },

where each cv is a semisimple conjugacy class in the local L-group LGv of Gv, whose image

in the local Weil group WFv
is a Frobenius element. Let C(GV , ζV ) be the set of families

c that satisfy the following two conditions. First of all, each cv must be compatible with

ζv. In other words, the image of cv under the projection LGv → LZv gives the unramified

Langlands parameter of ζv. Secondly, we require that for any Ĝ-invariant polynomial A

on LG, c satisfies an estimate
∣∣A(cv)

∣∣ ≤ qrA
v , v 6∈ V,

for some rA > 0. As usual, qv stands for the order of the residue class field of Fv. Suppose

that c belongs to C(GV , ζV ), and that ρ is a finite dimensional representation of LG. Then

the Euler product

(1) L(s, c, ρ) =
∏

v 6∈V

det
(
1 − ρ(cv)q

−s
v

)−1
, s ∈ C,

converges to an analytic function of s in some right half plane.

A fundamental conjecture of Langlands [10] asserts that if c comes from an automor-

phic representation, L(s, c, ρ) can be continued to a meromorphic function of s in the entire

complex plane. To be more precise, we recall that the local components of c determine

unramified irreducible representations πv(c) = π(cv) of G(Fv), and hence an unramified

representation πV (c) =
⊗

v 6∈V

πv(c) of the subgroup G(AV ) of points in G(A) that are 1
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at each v in V . Let CV
aut(G, ζ) be the set of c for which there exists an irreducible rep-

resentation πV of G(FV ) =
∏

v∈V

G(Fv) such that the representation πV ⊗ πV (c) of G(A)

is automorphic [11]. The Langlands conjecture asserts that if c belongs to CV
aut(G, ζ),

L(s, c, ρ) has meromorphic continuation. The conjecture actually asserts more, namely

that one can add Euler factors at the places v ∈ V so that the completed L-function

satisfies a suitable functional equation. Our concern in this paper, however, is with the

unramified L-functions.

Let M be a Levi subgroup of G, and let M̂ ⊂ Ĝ be a dual Levi subgroup of Ĝ

[7, §1]. Then there is a bijection P → P̂ , from the set P(M) of parabolic subgroups of

G over F with Levi component M , to the set P(M̂) of Γ = Gal(F/F )-stable parabolic

subgroups of Ĝ with Levi component M̂ . If P and Q lie in P(M), let ρQ|P be the adjoint

representation of LM on the Lie algebra of the intersection of the unipotent radicals of

P̂ and Q̂. Suppose that c ∈ CV
aut(M, ζ). It then follows from results of Shahidi that

L(s, c, ρQ|P ) has meromorphic continuation in s. We shall show that this property holds

for families c ∈ C(MV , ζV ) that come from automorphic representations of endoscopic

groups for M .

Let M ′ stand for an elliptic endoscopic datum (M ′,M′, s′M , ξ′M) for M over F [12,

(1.2)], that is unramified outside of V . Recall that M′ is a split extension of WF by

M̂ ′ that need not be L-isomorphic to LM ′. To take care of this problem, one has to

fix a central extension M̃ ′ of M ′ by an induced torus C̃ ′ over F , and an L-embedding

ξ̃′: M′ → LM̃ ′. (See [12, (4.4)] and [5, §2].) If WF → M′ is any section, the composition

WF −→ M′ ξ̃′

−→ LM̃ ′ −→ LC̃ ′

is then a global Langlands parameter that is dual to a character η̃′ on C̃ ′(F )\C̃ ′(A). We can

assume that M̃ ′ and η̃′ are also unramified outside of V . The preimage Z̃ ′ of Z in M̃ ′ is also

a central induced torus. It is easy to see that the construction above (applied to M = M/Z

in place of M) provides a canonical extension of η̃′ to a character on Z̃ ′(F )\Z̃ ′(A). The
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product of η̃′ with the pullback of ζ to Z̃ ′(A) is then another character ζ̃ ′ in Z̃ ′(F )\Z̃ ′(A),

that is unramified outside of V .

Suppose that c′ belongs to C
(
(M̃ ′)V , (ζ̃ ′)V

)
. If v 6∈ V , the projection of c′v onto LC̃ ′

v

is the conjugacy class that corresponds to the Langlands parameter of the unramified rep-

resentation η̃′v. Therefore c′v equals ξ̃′v(c
′
v), for a semisimple conjugacy class c

′
v in M′

v. Let

cv = ξ′M,v(c
′
v) be the image of c

′
v in LMv. The family c = {cv : v 6∈ V } then belongs to

C(MV , ζV ). We thus obtain a map c′ → c from C
(
(M̃ ′)V , (ζ̃ ′)V

)
to C(MV , ζV ). Lang-

lands’ functoriality principle [10] implies that the subset CV
aut(M̃

′, ζ̃ ′) of C
(
(M̃ ′)V , (ζ̃ ′)V

)

is mapped into the subset CV
aut(M, ζ) of C(MV , ζV ). However, this is far from known. We

shall nevertheless prove that if c is the image of a family c′ in CV
aut(M̃

′, ζ̃ ′), the L-functions

L(s, c, ρQ|P ) all have meromorphic continuation.

We shall first construct a subset CV
+

(M, ζ) of C(MV , ζV ) that contains the images of

the sets CV
aut(M̃

′, ζ̃ ′). If ψα: M →Mα is an inner twist over F that is unramified outside of

V , let (Zα, ζα) be the image of (Z, ζ), and let ψ∗
α: LMα → LM be an L-isomorphism that

is dual to ψα. Then ψ∗
α maps CV

aut(Mα, ζα) onto a subset of C(MV , ζV ). The set CV
+

(M, ζ)

will contain these images, as well as the endoscopic contributions. We assume inductively

that for any elliptic endoscopic datum M ′ for M as above, that is proper in the sense

that it is not equal to a quasisplit inner form of M , the set CV
+

(M̃ ′, ζ̃ ′) has been defined.

We define CV
+

(M, ζ) to be the union, over all such M ′, of the images in C(MV , ζV ) of the

sets CV
+

(M̃ ′, ζ̃ ′), together with the union, over all Mα as above, of the images of the sets

CV
aut(Mα, ζα). Note that CV

+
(M, ζ) contains the image of CV

aut(M̃
′, ζ̃ ′) for each M ′. The

functoriality principle implies that CV
+

(M, ζ) actually equals CV
aut(M, ζ), at least when M

is quasisplit, but we are of course not free to assume this.

Following standard notation, we write
(
Z(M̂)Γ

)0
for the identity component of the

group of Γ = Gal(F/F )-invariant elements in the center of M̂ . Then
(
Z(M̂)Γ

)0
is a

complex torus in Ĝ, that plays the role of the split component of the center of a rational

group. Suppose that a is a nontrivial (continuous) character on
(
Z(M̂)Γ

)0
. We write ρa
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for the representation of LM on the root space ĝa of a on the Lie algebra of Ĝ. For any

c ∈ C(MV , ζV ),

LG(s, c, a) = L(s, c, ρa), s ∈ C,

is an analytic function of s in some right half plane, which of course equals 1 unless a is

actually a root of
(
Ĝ,

(
Z(M̂)Γ

)0)
. If Σ(P̂ ) denotes the set of roots attached to a parabolic

subgroup P ∈ P(M), we have the product formula

L(s, c, ρQ|P ) =
∏

a∈Σ(P̂ )∩Σ(Q̂)

LG(s, c, a), P,Q ∈ P(M).

Using the theory of Eisenstein series, Shahidi has shown that if c belongs to the subset

CV
aut(M, ζ), the functions LG(s, c, a) have meromorphic continuation [13, §4] [14, Proposi-

tion 4.1]. The functions L(s, c, ρQ|P ) therefore also have meromorphic continuation in this

case. We shall establish the same properties for any c in the set CV
+ (M, ζ).

Proposition 1. For any character a on
(
Z(M̂)Γ

)0
, and any element c ∈ CV

+
(M, ζ), the

function

s −→ LG(s, c, a)

has meromorphic continuation to the complex plane.

3. Proof of meromorphic continuation. Suppose that M ′ represents an elliptic

endoscopic datum (M ′,M′, s′M , ξ′M) for M , in which M′ is actually an L-subgroup of LM ,

and ξ′M is the identity embedding of M′ into LM . The key to Proposition 1, and to our

later combinatorial identity as well, will be the set EM ′(G) of endoscopic data that was

introduced for local fields in [6, §4] and [7, §3]. For our global field F , we define EM ′(G) the

same way. Then EM ′(G) is the set of endoscopic data (G′,G′, s′, ξ′) for G over F , taken

modulo translation of s′ by Z(Ĝ)Γ, in which s′ lies in s′MZ(M̂)Γ, Ĝ′ is the connected

centralizer of s′ in Ĝ, G′ equals M′Ĝ′, and ξ′ is the identity embedding of G′ into LG.
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For each G′ in EM ′(G), we fix an embedding M ′ ⊂ G′ for which M̂ ′ ⊂ Ĝ′ is a dual Levi

subgroup. The central extension M̃ ′ of M ′ in §2 determines a central extension G̃′ of G′

by C̃ ′ that contains M̃ ′ as a Levi subgroup. We define coefficients

ιM ′(G,G′) =
∣∣Z(M̂ ′)Γ/Z(M̂)Γ

∣∣∣∣Z(Ĝ′)Γ/Z(Ĝ)Γ
∣∣−1

, G′ ∈ EM ′(G),

just as in the local case.

We have simply copied the definition for local fields in [7, §3]. However, there is one

point to be verified in the global case. We need to show that EM ′(G) is bijective with

Z(M̂)Γ/Z(Ĝ)Γ. To do so, we must verify that any point s′ in s′MZ(M̂)Γ actually does

define a datum G′ in EM ′(G). The point to check is that Int(s) ◦ ξ′ equals a⊗ ξ′, where a

is a locally trivial 1 cocycle of WF in Z(Ĝ). Since M ′ is a global endoscopic datum, the

restriction of Int(s) ◦ ξ′ to M′ equals aM ⊗ ξ′, where aM is a locally trivial 1 cocycle of

WF in Z(M̂). The existence of a is an immediate consequence of the following lemma, in

which ker1
(
F,Z(Ĝ)

)
denotes the subgroup of locally trivial elements in H1

(
F,Z(Ĝ)

)
.

Lemma 2. The map

ker1
(
F,Z(Ĝ)

)
−→ ker1

(
F,Z(M̂)

)

is an isomorphism.

Proof. By the obvious transitivity property, we can assume that G is quasisplit and

that M is a minimal Levi subgroup. Then M̂ is a torus, and Z(M̂)/Z(Ĝ) is a maximal

torus in the adjoint group Ĝ/Z(Ĝ). The action of Γ in Z(M̂)/Z(Ĝ) is dual to a direct sum

of permutation representations. The required bijectivity of the given map then follows

from the exact sequence

π0

((
Z(M̂)/Z(Ĝ)

)Γ)
→ H1

(
F,Z(Ĝ)

)
→ H1

(
F,Z(M̂)

)
→ H1

(
F,Z(M̂)/Z(Ĝ)

)
,

and its analogues for the completions of F . (See the proof of [9, Lemma 4.3.2(a)].) �
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Corollary 3. The set EM ′(G) is bijective with Z(M̂)Γ/Z(Ĝ)Γ. �

Suppose that a is a nontrivial character on
(
Z(M̂)Γ

)0
, as above. Observe that the

kernel

Za =
{
z ∈

(
Z(M̂)Γ

)0
: a(z) = 1

}

acts by translation on Z(M̂)Γ/Z(Ĝ)Γ, and therefore also on EM ′(G). We write EM ′(G)/Za

for the set of orbits. We also note that
(
Z(M̂)Γ

)0
equals

(
Z(M̂ ′)Γ

)0
, since M ′ is elliptic.

But
(
Z(M̂ ′)Γ

)0
is a subgroup of

(
Z(

̂̃
M ′)Γ

)0
, and for any G′ ∈ EM ′(G), this injection

determines an isomorphism

(2)
(
Z(M̂ ′)Γ

)0
/
(
Z(M̂ ′)Γ

)0
∩ Z(Ĝ′)Γ

∼
−→

(
Z(

̂̃
M ′)Γ

)0
/
(
Z(

̂̃
M ′)Γ

)0
∩ Z(

̂̃
G′)Γ.

If a is trivial on
(
Z(M̂ ′)Γ

)0
∩ Z(Ĝ′)Γ, let a′ = aG′

be the unique character on
(
Z(

̂̃
M ′)Γ

)0

that is trivial on
(
Z(

̂̃
M ′)Γ

)0
∩ Z(

̂̃
G′)Γ. Otherwise, we take a′ to be any character on

(
Z(

̂̃
M ′)Γ

)0
whose restriction to

(
Z(M̂ ′)Γ

)0
equals a. The character a thus determines a

family of L-functions

L
G̃′

(s, c′, a′), c′ ∈ C
(
(M̃ ′)V , (ζ̃ ′)V

)
,

for each G′ ∈ EM ′(G). In the case that a′ is not uniquely determined by a, a′ is not a root

of
(̂̃
G′,

(
Z(

̂̃
M ′)Γ

)0)
, and L

G̃′
(s, c′, a′) is equal to 1. The L-function is therefore uniquely

determined by a.

Lemma 4. Suppose that c′ is an element in C
(
(M̃ ′)V , (ζ̃ ′)V

)
with image c in

C(MV , ζV ). Then

(3) LG(s, c, a) =
∏

G′∈EM′ (G)/Za

L
G̃′

(s, c′, a′).

Proof. We can assume that a is a root of
(
Ĝ,

(
Z(M̂)Γ

)0)
, since both sides of (3)

would otherwise be equal to 1. If G′ corresponds to the element s′ in s′MZ(M̂)Γ/Z(Ĝ)Γ,

Ad(s′) stabilizes the root space ĝa in the Lie algebra of Ĝ. The root space of a′ in the
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Lie algebra of
̂̃
G′ can be identified with the root space ĝ

′
a of a in the Lie algebra of Ĝ′.

This is in turn just the (+1)-eigenspace of Ad(s′) in ĝa. If s′ is replaced by a Za-translate,

this eigenspace remains the same. In particular, the factor L
G̃′

(s, c′, a′) on the right hand

side of (3) does depend only on the Za-orbit of G′, since this factor is determined by the

adjoint representation of M′ on ĝ
′
a.

Let

ĝa =
⊕

i

ĝa,i

be the decomposition of ĝa into distinct eigenspaces under the action of Ad(s′M ). We can

identify s′MZ(M̂)Γ/Z(Ĝ)Γ with s′M
(
Z(M̂)Γ

)0
/
(
Z(M̂)Γ

)0
∩ Z(Ĝ)Γ, by [7, Lemma 1.2]. If

s′ = s′M t is any point in this set, we have

Ad(s′)Xi = λia(t)Xi, Xi ∈ ĝa,i,

where λi is the eigenvalue of Ad(s′M ) in ĝa,i. Since a defines a nontrivial character on

the complex torus
(
Z(M̂)Γ

)0
, there is a point s′i in s′M

(
Z(M̂)Γ

)0
that acts as the identity

on ĝa,i. If G′ ∈ EM ′(G) is the endoscopic datum corresponding to the image of s′i in

s′MZ(M̂)Γ/Z(Ĝ)Γ, the root space ĝ
′
a equals ĝa,i. It is clear that s′i is uniquely determined

up to translation by Za, and that the distinct eigenspaces ĝa,i determine distinct Za-orbits

in EM ′(G). Moreover, if G′ ∈ EM ′(G) does not correspond to the Za-orbit of some s′i, ĝ
′
a

equals {0}. It follows that

(4) ĝa =
⊕

i

ĝa,i =
⊕

G′∈EM′ (G)/Za

ĝ
′
a.

This corresponds to a decomposition of the restriction of ρa to M′ into a direct sum

⊕

G′∈EM′ (G)

ρ′a

of subrepresentations. The decomposition of LG(s, c, a) into a finite product (3) follows

easily from this decomposition, and the multiplicative property of L-functions. �
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We can now prove Proposition 1. Suppose first that c is the image in CV
+

(M, ζ) of an

element cα ∈ CV
aut(Mα, ζα), for an inner twist ψα: M → Mα. We can always extend ψα

to an inner twist from G to a group Gα over F . Then ρα corresponds to a representation

ρaα
of LMα such that

LG(s, c, a) = LGα
(s, cα, aα).

We may therefore assume that Mα = M and ψα = 1, or in other words, that c belongs

to the subset CV
aut(M, ζ) of CV

+
(M, ζ). The meromorphic continuation of LG(s, c, a) in this

case is due to Shahidi. We shall give a case free proof based on the set EM∗(G), where M∗

is a quasisplit inner form of M .

We shall assume that the root space ĝa is non-empty, since LG(s, c, a) would otherwise

be equal to 1. Then a is a positive integral multiple of a unique reduced root a1 of
(
Ĝ,

(
Z(M̂)Γ

)0)
. Consider the set

{
ak = ka1 : 1 ≤ k ≤ m

}

of all roots that are positive integral multiples of a1. We shall prove Proposition 1, in the

special case that c belongs to CV
aut(M, ζ), by induction on the length m = m(G, a).

Choose a root ak with 1 ≤ k ≤ m. The kernel Zak
contains Za1

, and a1 maps the

quotient Zak
/Za1

isomorphically onto the group of k-th roots of 1 in C
∗. Let s′k be an

element in Zak
that maps to a primitive k-th root of 1. As an element in Z(M̂)Γ/Z(Ĝ)Γ,

s′k determines an endoscopic datum G′
k in EM∗(G). Consider Lemma 4, particularly the

decomposition (4) established during its proof, in the special case that M ′ = M∗ and

s′M = 1. We observe immediately that the Lie algebra ĝ
′
k of Ĝ′

k has the property that an

intersection

ĝ
′
k ∩ ĝa`

, 1 ≤ ` ≤ m,
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is equal to either ĝa`
or {0}, according to whether ` is an integral multiple of k or not. In

particular, ak is a reduced root of
(
Ĝ′

k,
(
Z(M̂)Γ

)0)
, and the length m(G̃′

k, ak) equals the

greatest integer in m/k. Moreover, if a = ak, we have

LG(s, c, a) = LG′

k
(s, c, ak).

If k > 1, the meromorphic continuation of LG(s, c, a) follows from our induction hypothesis.

To deal with the remaining case that a = a1, we recall that the product

φ(s) =

m∏

k=1

(
LG(ks, c, ak)LG(1 + ks, c, ak)

−1
)

is the unramified part of a constant term of any Eisenstein series attached to c. The ram-

ified components of constant terms have meromorphic continuation, by general properties

of local intertwining operators. Since Langlands’ theory of Eisenstein series includes the

memomorphic continuation of all constant terms, the function φ(s) has meromorphic con-

tinuation. Now we have already established the meromorphic continuation of the factors

with k > 1 in the product for φ(s). We conclude that the remaining factor

LG(s, c, a1)LG(1 + s, c, a1)
−1

also has meromorphic continuation. The meromorphic continuation of the function

LG(s, c, a) = LG(s, c, a1) follows.

We have established Proposition 1 if c belongs to the image of CV
aut(Mα, ζα), for an

inner twistMα ofM . For the remaining case of an endoscopic image, we have already made

all the necessary preparations. Suppose that c is the image of an element c′ ∈ CV (M̃ ′, ζ̃ ′),

for an elliptic endoscopic datum M ′ 6= M∗. We can assume by induction on the dimension

of the derived group of M that the proposition holds if (M, ζ) is replaced by (M̃ ′, ζ̃ ′). The

meromorphic continuation of LG(s, c, a) then follows from Lemma 4. �
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4. Stabilization of rG
M (cλ). We come now to our combinatorial identity. In prepa-

ration, we note that there is a canonical map from the real vector space

a
∗
M = X(M)F ⊗ R

onto the corresponding space a
∗
Z for Z. Let a

∗
M,Z be its kernel. The complexification

a
∗
M,Z ⊗ C can be identified with a subspace of the Lie algebra of Z(M̂)Γ, that has an

action

c = {cv} −→ cλ = {cv,λ = cvq
−λ
v = cv exp(−(log qv)λ)}, λ ∈ a

∗
M,Z ⊗ C,

on C(MV , ζV ). It is clear that

LG(s, cλ, a) = LG

(
s+ (da)(λ), c, a

)
,

where da is the linear form on a
∗
M ⊗ C associated to a given character a on

(
Z(M̂)Γ

)0
.

The action c → cλ leaves invariant the subset CV
+

(M, ζ) of C(MV , ζV ). It follows from

Proposition 1 that for any fixed s0 ∈ C, the functions

λ −→ LG(s0, cλ, a), λ ∈ a
∗
M,Z ⊗ C, c ∈ CV

+
(M, ζ),

are meromorphic.

Suppose that c lies in CV (M, ζ). The quotients

r(cλ, a) = LG(0, cλ, a)LG(1, cλ, a)
−1

are then meromorphic functions of λ, as are the quotients

rQ|P (cλ) = L(0, cλ, ρQ|P )LQ|P (1, cλ, a)
−1

=
∏

α∈Σ(P̂)∩Σ(Q̂)

r(cλ, a) , P,Q ∈ P(M).

12



Motivated by the local results of [6], we introduce a (G,M)-family of functions

rQ(Λ, cλ) = rQ|Q(cλ)−1rQ|Q(cλ+ 1
2
Λ), Q ∈ P(M),

of Λ ∈ ia∗M,Z . (As a function of Λ, rQ(Λ, cλ) takes values in the space of meromorphic

functions of λ.) The limit

rG
M (cλ) = lim

Λ→0

∑

Q∈P(M)

rQ(Λ, cλ)θQ(Λ)−1 ,

with the function

θQ(Λ) = vol
(
a

G
M/Z(∆∨

Q)
)−1 ∏

α∈∆Q

Λ(α∨)

defined as for example in [1, §2], is then defined as a meromorphic function of λ ∈ a
∗
M,Z⊗C.

(See [1, Lemma 6.2].) The functions rG
M (cλ) occur in the invariant global trace formula

obtained from the normalized weighted characters of [6]. They are the unramified spectral

terms, that take the place of the functions rG
M (πλ) [3, (4.5)] from the original invariant

trace formula. (See [8, §3].)

Given that they occur in the trace formula, it makes sense to stabilize the functions

rG
M (cλ). There are no invariant distributions here to be made into stable distributions.

The question is rather that of carrying out a construction that is forced on us by the

stabilization of more serious terms in the trace formula. We shall follow the prescription

in [6, §4] and [7, §3] for stabilizing weighted orbital integrals.

The construction consists of a definition and an identity to be proved. In the case of

weighted orbital integrals, the identity is quite deep, and was left as a conjecture. The

corresponding identity here is simpler, and will be the content of the next theorem. The

theorem applies to a fixed set V , and variable objects (G,M, ζ) and M ′ that are as above.

Thus, V is a finite set of valuations of F , G is a connected reductive group over F , M is a

Levi subgroup, ζ is an automorphic character on a central induced torus Z of G, and M ′

is an elliptic endoscopic datum for M , all of which are unramified at the places outside of

13



V . In order that it be more closely parallel to the case of weighted orbital integrals, the

definition part of the construction will be restricted to triplets (G,M, ζ) that are quasisplit

(which is to say that G, M and Z are quasisplit over F ), while the identity will apply to

any triplet. The distinction is just cosmetic in the present situation, since none of the

objects depend on a choice of inner form.

Theorem 5. For each quasisplit triplet (G,M, ζ) and each c ∈ CV
+

(M, ζ), there is a

meromorphic function

sG
M (cλ), λ ∈ a

∗
M,Z ⊗ C,

with the property that for any (G,M, ζ), any M ′, and any element c′ ∈ CV
+

(M̃ ′, ζ̃ ′) with

image c in CV
+

(M, ζ), the identity

(5) rG
M (cλ) =

∑

G′∈EM′(G)

ιM ′(G,G′)sG̃′

M̃ ′
(c′λ)

holds.

Proof. If (G,M, ζ) is quasisplit and c belongs to CV
+

(M, ζ), the function sG
M (cλ) is

uniquely determined by the required identity. We define it inductively by setting

sG
M (cλ) = rG

M (cλ) −
∑

G′∈E0
M

(G)

ιM (G,G′)sG′

M (cλ),

where E0
M (G) denotes the set of elements G′ ∈ EM (G) with G′ 6= G. Since the coefficient

ιM (G,G′) vanishes unless G′ is elliptic, the sum can be taken over a finite set.

Now suppose that (G,M, ζ) is any triplet, and that c is the image in CV
+

(M, ζ) of an

element c′ ∈ CV
+

(M̃ ′, ζ̃ ′). Our task is to show that rG
M (cλ) equals the endoscopic expression

rG,E
M (c′λ) =

∑

G′∈EM′ (G)

ιM ′(G,G′)sG̃′

M̃ ′
(c′λ).

We shall actually prove a more general identity.
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Suppose that A is a finite set of continuous characters on
(
Z(M̂)Γ

)0
. Then

rQ(Λ, cλ, A) =
∏

a∈A∩Σ(Q̂)

r(cλ, a)
−1r(cλ+ 1

2
Λ, a), Q ∈ P(M),

is a (G,M)-family of functions of Λ ∈ ia∗M,Z , with values in the space of mermorphic

functions of λ. The limit

rG
M (cλ, A) = lim

Λ→0

∑

Q∈P(M)

rQ(Λ, cλ, A)θQ(Λ)−1

is then a meromorphic function of λ. If A′ = {a′ : a ∈ A}, we define generalizations

sG
M (cλ, A) and rG,E

M (c′λ, A) of sG
M (cλ) and rG,E

M (c′λ) inductively by setting

sG
M (cλ, A) = rG

M (cλ, A) −
∑

G′∈E0
M

(G)

ιM (G,G′)sG′

M (cλ, A)

for (G,M, ζ) quasisplit, and

rG,E
M (c′λ, A

′) =
∑

G′∈EM′ (G)

ιM ′(G,G′)sG̃′

M̃ ′
(c′λ, A

′)

in general. There is actually no distinction to be made between the quasisplit and the

general case. For if (G∗,M∗, ζ∗) is a quasisplit inner twist of (G,M, ζ), there is a bijec-

tion c → c∗ from CV
+

(M, ζ) onto CV
+

(M∗, ζ∗) such that rG
M (cλ, A) = rG∗

M∗(c∗λ, A). Since

rG,E
M (c′λ, A

′) = rG∗,E
M∗ (c′λ, A

′), we may as well then assume that (G,M, ζ) is quasisplit. We

shall show that rG,E
M (c′λ, A

′) equals rG
M (cλ, A) by induction on A.

The main step is the case that A is a set {a} of one element. In this case, the

function rG
M (cλ, A) = rG

M (cλ, a) vanishes, unless a is a root of
(
Ĝ,

(
Z(M̂)Γ

)0)
and spans

the kernel a
G
M of the natural map aM → aG. The same assertion follows inductively for the

functions sG̃′

M̃ ′

(c′λ, A
′) = sG̃′

M̃ ′

(c′λ, a
′), and hence also for rG,E

M (c′λ, A
′) = rG,E

M (c′λ, a
′). We can

therefore assume that M is a maximal Levi subgroup of G. But in this case, rG
M (cλ, a) is

a logarithmic derivative of the function r(cλ, a), (relative to the coordinate of 1
2λ defined

by the unit vector in a
G
M determined by a). On the other hand, Lemma 4 implies that
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r(cλ, a) is a product over G′ ∈ EM ′(G)/Za of the functions r(c′λ, a
′) attached to G̃′. Since

logarithmic derivatives transform products to sums, we obtain

rG
M (cλ, a) =

∑

G′∈EM′ (G)/Za

rG̃′

M̃ ′
(c′λ, a

′).

To deal with the other side of the required identity, we set

∗rG,E
M (c′λ, a

′) =
∑

G′∈EM′ (G)

ιM ′(G,G′) ∗sG̃′

M̃ ′
(c′λ, a

′),

where

∗sG̃′

M̃ ′
(c′λ, a

′) =
∣∣Za′/Za′ ∩ Z(

̂̃
G′)Γ

∣∣−1
rG̃′

M̃ ′
(c′λ, a

′).

It will be enough to show that ∗rG,E
M (c′λ, a

′) equals rG
M (cλ, a). Indeed, in the case that

M ′ = M , this would establish inductively that ∗sG
M (cλ, a) = sG

M (cλ, a). For arbitrary M ′,

we would then obtain

rG,E
M (c′λ, a

′) = ∗rG,E
M (c′λ, a

′) = rG
M (cλ, a) ,

which is the required identity (for A = {a}).

Consider the product of ιM ′(G,G′) and ∗sG̃′

M̃ ′

(c′λ, a
′) that occurs in the last sum.

We can assume that a is a root of
(
Ĝ′,

(
Z(M̂ ′)Γ

)0)
, or equivalently, that a′ is a root of

(̂̃
G′,

(
Z(

̂̃
M ′)Γ

)0)
, since the function ∗sG̃′

M̃ ′

(c′λ, a
′) would otherwise vanish. In particular, Za

contains
(
Z(M̂ ′)Γ

)0
∩ Z(Ĝ′)Γ, and Za′ contains

(
Z(

̂̃
M ′)Γ

)0
∩ Z(

̂̃
G′)Γ. It follows from the

isomorphism (2) that

Za′/Za′ ∩ Z(
̂̃
G′)Γ ∼= Za/Za ∩ Z(Ĝ′)Γ.

To deal with the coefficient ιM ′(G,G′), we recall that

Z(M̂ ′)Γ =
(
Z(M̂ ′)Γ

)0
Z(Ĝ′)Γ =

(
Z(M̂)Γ

)0
Z(Ĝ′)Γ ,
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by [7, Lemma 1.2] and the ellipticity of M ′. In particular, the canonical map

Z(Ĝ′)Γ/Z(Ĝ)Γ −→ Z(M̂ ′)Γ/Z(M̂)Γ

is surjective. It follows easily that

ιM ′(G,G′) =
∣∣Z(M̂ ′)Γ/Z(M̂)Γ

∣∣∣∣Z(Ĝ′)Γ/Z(Ĝ)Γ
∣∣−1

=
∣∣(Z(M̂)Γ

)0
∩ Z(Ĝ′)Γ/

(
Z(M̂)Γ

)0
∩ Z(Ĝ)Γ

∣∣−1
.

Since
(
Z(M̂)Γ

)0
∩ Z(Ĝ′)Γ is contained in Za, we obtain

ιM ′(G,G′) =
∣∣Za ∩ Z(Ĝ′)Γ/Za ∩ Z(Ĝ)Γ

∣∣−1
.

The product becomes

ιM ′(G,G′) ∗sG̃′

M̃ ′
(c′λ, a

′)

=
∣∣Za ∩ Z(Ĝ′)Γ/Za ∩ Z(Ĝ)Γ

∣∣−1∣∣Za/Za ∩ Z(Ĝ′)Γ
∣∣−1

rG̃′

M̃ ′
(c′λ, a

′)

=
∣∣Za/Za ∩ Z(Ĝ′)Γ

∣∣−1
rG̃′

M̃ ′
(c′λ, a

′).

We conclude that
∗rG,E

M (c′λ, a
′)

=
∑

G′∈EM′ (G)

∣∣Za/Za ∩ Z(Ĝ)Γ
∣∣−1

rG̃′

M̃ ′
(c′λ, a

′)

=
∑

G′∈EM′ (G)/Za

rG̃′

M̃ ′
(c′λ, a

′)

= rG
M (cλ, a),

since rG̃′

M̃ ′

(c′λ, a
′) depends only on the orbit of Za in EM ′(G), and since the stabilizer of G′

in Za is Za ∩Z(Ĝ)Γ. We have established the required identity in the case that A contains

one element.

Having established the case that |A| = 1, we now suppose that A is a disjoint union

of two nonempty proper subsets A1 and A2. We assume inductively that

rLi,E
M (c′λ, A

′
i) = rLi

M (cλ, Ai), Li ∈ L(M), i = 1, 2,
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where L(M) denotes the set of Levi subgroups of G that contain M . We shall use splitting

formulas to reduce the case of A to those of A1 and A2. Indeed

rQ(Λ, cλ, A) = rQ(Λ, cλ, A1)rQ(Λ, cλ, A2), Q ∈ P(M),

is a product of (G,M)-families. It follows from the splitting formula [2, Corollary 7.4] that

rG
M (cλ, A) =

∑

L1,L2∈L(M)

dG
M (L1, L2)r

L1

M (cλ, A1)r
L2

M (cλ, A2),

for certain coefficients dG
M (L1, L2). There is also a splitting formula for rG,E

M (cλ, A), that

can be established in exactly the same manner as Theorem 6.1 of [7]. One has to assume

inductively that the appropriate splitting formula holds for each of the terms sG̃′

M̃ ′

(c′λ, A
′),

G′ 6= G, in the definition of rG,E
M (c′λ, A

′). The proof of [7, Theorem 6.1] then leads directly

to the formula

rG,E
M (c′λ, A

′) =
∑

L1,L2∈L(M)

dG
M (L1, L2)r

L1,E
M (c′λ, A

′
1)r

L2,E
M (c′λ, A

′
2).

It follows from our induction assumption that rG,E
M (c′λ, A

′) equals rG
M (cλ, A). This is what

we wanted to show. To complete the proof of the proposition, we simply take A to be the

set of roots of
(
Ĝ,

(
Z(M̂)Γ

)0)
. We obtain

rG,E
M (c′λ) = rG,E

M (c′λ, A
′) = rG

M (cλ, A) = rG
M (cλ),

as required. �

Remarks. 1. As we have already noted, the construction in Theorem 5 is parallel to the

stabilization of weighted orbital integrals. In particular, the required identities in each case

are of similar form. Where they differ is in their degree of difficulty. That we could prove

an identity here with relative ease may be regarded as evidence for the deeper identity

that was stated as a conjecture in [6] and [7].
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2. There is an important special case of the stabilization problem for weighted orbital

integrals. It is the weighted analogue of the (conjectural) fundamental lemma. (See [8].)

This is in even closer analogy with the construction here. The formal similarity between

the two seems to suggest some role for the functions rG
M (cλ), or rather local (unramified)

forms of them, in the fundamental lemma.

3. Theorem 5 is reminiscent of another combinatorial identity. We are thinking of the

construction for Weyl groups in [4, Theorem 8.1], which is actually analogous to a twisted

form of Theorem 5. While Theorem 5 amounts to a stabilization of the unramified spectral

terms in the trace formula, the identity in [5] would be part of the stabilization of another

set of terms, the ones that occur discretely on the spectral side.
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