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1. Background

This article is an attempt to refine a property of automorphic representations
from the monograph [A3]. It concerns the local and global representations of an
even, quasisplit, special orthogonal group

(1.1) G = SO(N), N = 2n,

over a field F of characteristic 0. The methods of [A3] are by comparison with
representations of the group GL(N). This eventually leads to results on the rep-
resentations of the full orthogonal group O(N). But it is the connected subgroup
G = SO(N) of O(N) that is the ultimate object of interest.

In [A3, §8.4], we were able to characterize certain representations of G from
the results obtained earlier for O(N). The representations are those associated to
Langlands parameters φ ∈ Φbdd(G). In the case of local F , Theorem 8.4.1 of [A3]
provides an endoscopic classification of the representations of G(F ). For global F ,
however, the associated automorphic representations are governed by a larger class
of parameters ψ ∈ Ψ(G). An understanding of their local components requires
supplementary endoscopic character relations for the localizations ψv ∈ Ψ(Gv) of
ψ. In this article, we shall establish conditional analogues for ψv of the results
for φv in [A3, §8.4]. The conditions we impose are local, and include properties
established for p-adic F by Moeglin. Such properties seem to be of considerable
interest in their own right, as we will try to indicate with a few supplementary
remarks in §3. In §4, we will use the conditions to formulate a conjecture on the
contribution of a global parameter ψ to the automorphic discrete spectrum of G.
We will then sketch a proof of the local results in §5.

Until further notice, the field F will be local. We then have the local Langlands
group

LF =

{
WF , if F is archimedean,

WF × SU(2), if F is p-adic,

where WF is the local Weil group of F . Let us recall the basic objects from [A3]
that we will be working with here.
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We write Ψ̃(G) as in [A3] for the set of equivalence classes of L-homomorphisms

ψ : LF × SU(2) −→ LG

with bounded image. We are taking the L-group LG here to be the semidirect
product

LG = Ĝo ΓE/F = SO(N,C) o Gal(E/F ),

where E/F is an extension of degree 2 if G is not split (but of course still quasisplit),

and degree 1 if G is split. The equivalence relation that gives the classes in Ψ̃(G)
is defined by the action of the disconnected group O(N,C) by conjugation on its

identity component Ĝ = SO(N,C). Notice that the domain of ψ has two copies of
the special unitary group SU(2) if F is p-adic, and one copy if F is archimedean.
In each case, the condition of bounded image is relevant only to the restriction of
ψ to WF .

The more familiar notation Ψ(G) is reserved for the set of L-homomorphisms
of the same sort, but taken up to the finer equivalence relation defined by conjugacy

of the connected group Ĝ = SO(N,C) on itself. This set obviously comes with a
surjective mapping

Ψ(G) −→ Ψ̃(G).

We write Ψ(ψ) for the fibre in Ψ(G) of any element ψ ∈ Ψ̃(G). It is an orbit in
Ψ(G) under the group

Õ(G) = O(N,C)/SO(N,C) = Z/2Z,

of order

m(ψ) = |Ψ(ψ)| ∈ {1, 2}.
Following [A3], we write

(1.2) Ψ̃(G) = Ψ̃′(G)
∐

Ψ(G̃)

where

Ψ̃′(G) = {ψ ∈ Ψ̃(G) : m(ψ) = 2}
and

Ψ(G̃) = {ψ ∈ Ψ̃(G) : m(ψ) = 1}.

The nontrivial element in Õ(G) can be identified with the F -automorphism of

G that stabilizes an underlying F -stable splitting. The group Õ(G) therefore acts
on the set Πunit(G) of equivalence classes of irreducible unitary representations of

G(F ). We can thus form the set Π̃unit(G) of Õ(G)-orbits in Πunit(G). Following
the convention above, we write Π(π) for the fibre in Πunit(G) of any element π ∈
Π̃unit(G). Similarly, we write Π = Π(Π̃) for the preimage in Πunit(G) of any subset

Π̃ of Π̃unit(G). More generally, suppose that Π̃ is a set over Π̃unit(G), by which

we mean a set equipped with a mapping into Π̃unit(G). We again write Π for the

correspondence set over Πunit(G). It equals the fibre product of Π̃ and Πunit(G)

over Π̃unit(G).
The main local result of [A3], as it applies to the group G here, is the construc-

tion of a canonical finite set Π̃ψ over Π̃unit(G) for any ψ ∈ Ψ̃(G) [A3, Theorem
2.2.1]. It was defined uniquely by the endoscopic transfer of twisted characters
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from GL(N) to G, and the endoscopic transfer of ordinary characters from G to its

endoscopic groups G′. For any given ψ ∈ Ψ̃(G), we can form the finite set

(1.3) Πψ = (Π̃ψ) ×Π̃unit(G)

(
Πunit(G)

)
,

over Πunit(G), according to the definition above. The set Πψ of course also has a

projection onto Π̃ψ. What we would like here is to construct a section

(1.4) Π̃ψ −→ Πψ

that is compatible with endoscopic transfer for G. In fact, we would like a section

that is canonical up to the action of Õ(G) on Πψ, which is to say a canonical

Õ(G)-orbit of sections.

If ψ belongs to the subset Ψ(G̃) of Ψ̃(G), we can ask whether the elements in

Π̃ψ are trivial as Õ(G)-orbits. This property is not known, but it could perhaps be

established if we impose a further condition on ψ. It implies that Π̃ψ is equal to Πψ,
and that the section (1.4) exists and is trivial. For this reason, we shall generally

restrict our study to parameters in the complement Ψ̃′(G) of Ψ(G̃) in Ψ̃(G).

If ψ belongs to Ψ̃′(G), Theorem 2.1 asserts the existence of a compatible section.
After stating it in §2, we will describe the minor, local component of its proof, but
leave the main, global argument for the final §5. However, the constructions of the
theorem are not canonical. In §3, we introduce the notion of a coherent parameter

in Ψ̃(G), motivated by the work [M] of Moeglin. In the case ψ ∈ Ψ(G̃), this is the

condition that might lead to the property above on the elements in Π̃ψ (Conjecture

3.1). If ψ is a coherent parameter in Ψ̃′(G), Proposition 3.2 asserts that there is at

most one compatible section up to the action of Õ(G). Theorem 2.1 and Proposition

3.2 together thus imply that for any coherent ψ ∈ Ψ̃′(G), there is a unique Õ(G)-
orbit of sections (1.4) that is compatible with endoscopy. We note that while this

Õ(G)-orbit will be of order 2, it will not come with a canonical Õ(G)-isomorphism

onto the original Õ(G)-orbit Ψ(ψ) of order 2. The main point, however, is that we
do obtain a canonical section (1.4), if we are prepared to impose a condition on
ψ that is not known to hold in general. Such a section is of obvious interest for
the representation theory of G. It will also be important for the classification of
representations of certain inner twists of our quasisplit group G. (See [A3, §9.4].)

In §4, the field F is global. There we will state Conjecture 4.1, a global counter-
part of Theorem 2.1. It gives a refined decomposition of a part of the automorphic
discrete spectrum of G. More precisely, it provides a decomposition of the invariant
subspace

L2
disc,ψ

(
G(F )\G(A)

)
of the discrete spectrum attached to a global parameter ψ ∈ Ψ̃′2(G). The parameter
is assumed to be locally coherent at a predetermined set of places V , while the
decomposition is as a module over the global Hecke algebra HV (G) of functions on
G(A) that are locally symmetric at places outside of V . We shall say a few words
about how one might begin a proof of the conjecture, following that of its generic
counterpart [A3, Theorem 8.4.2]. These will be used in §5 to introduce the global
proof of Theorem 2.1. Our proof of Theorem 2.1 is a little different from that of its
generic counterpart [A3, Theorem 8.4.1]. It is actually a little simpler, and could
perhaps be used as a guide to the earlier proof. However, there are enough common
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threads between the two proofs that we can allow the discussion of §5 to be quite
brief.

I observe in summary that the rest of the article is composed of two noticeably
distinct parts. Sections 4 and 5 are somewhat technical. As we have noted, they
contain discussion of proofs based on arguments that appear in greater detail in
§8.4 of [A3]. Sections 2 and 3 are more elementary. Section 3 contains our central
themes, and is somewhat speculative.

I do not know whether the notion of coherence in §3 is universal, or even correct.
It does seem to bear some relevance to more general groups G. After introducing
the parameters ψ ∈ Ψ(G) in [A1], I conjectured the existence of canonical packets
Πψ under the mistaken assumption that the mapping from Πψ to the group of
characters on the associated finite group Sψ would be injective. For general real
groups, the packets were later constructed in a canonical way in [ABV] in terms

of the geometry on the dual group Ĝ. For orthogonal and symplectic groups over
any local field F , the packets were constructed [A3] in terms of twisted characters
for general linear groups. At the end of §3, we shall describe how a variant of the
notion of coherence might be used to characterize packets Πψ for general G and F .

2. Statement of the local theorem

We should recall the local results [A3] we are trying to refine. We continue to
take F to be a local field, and G to be an even, quasisplit, special orthogonal group

(1.1) over F . Since the group Õ(G) of order 2 acts on G(F ), it acts on the Hecke

algebra H(G) of functions on G(F ). We write H̃(G) for the subalgebra of Õ(G)-

symmetric functions in H(G). If π ∈ Π̃unit(G) is an Õ(G)-orbit of representations
π∗ in Πunit(G), of order

m(π) = |Φ(π)| = 1, 2,

the distributional character

fG(π) = fG(π∗) = tr
(
π∗(f)

)
, f ∈ H̃(G), π∗ ∈ Π(π),

on H̃(G) is independent of the representative π∗ in Πunit(G).
The endoscopic construction of representations in [A3] is founded on the char-

acter identity

(2.1) f ′(ψ′) =
∑
π∈Π̃ψ

〈sψx, π〉fG(π), ψ ∈ Ψ̃(G), f ∈ H̃(G),

of Theorem 2.2.1. On the right hand side, x is the image in the 2-group

Sψ = Sψ/S
0
ψZ(Ĝ)Γ

of a given semisimple element s in the centralizer

Sψ = Cent
(
im(ψ), Ĝ

)
of ψ

(
LF ×SU(2)

)
in Ĝ, while sψ is the image in Sψ of the value of ψ at the central

element

1×
(
−1 0
0 −1

)
in LF × SU(2). The coefficient in the sum is the value at (sψx, π) of a pairing

(2.2) 〈 ·, · 〉 : Sψ × Π̃ψ −→ {±1},
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which is a linear character in the first variable. The left hand side of (2.1) depends
on a pair

(G′, ψ′), ψ′ ∈ Ψ̃(G′),

which is determined in the natural way from the given pair (ψ, s). The function f ′ =

fG
′

is the Langlands-Shelstad transfer of f to a function on the endoscopic group
G′(F ). Finally, the linear form f ′(ψ′) is the value of f ′ at the stable distribution
on G′(F ) attached to the parameter ψ′ by the prescription of Theorem 2.2.1(a) of
[A3].

The left hand side of (2.1) is thus determined by the given objects ψ, s and
f . It is to be regarded as a definition of the objects on the right. In other words,

it determines the packet Π̃ψ over Π̃unit(G) attached to ψ, and the mapping of Π̃ψ

into the group of characters on the 2-group Sψ.
Our description of (2.1) is perhaps too dense for a first time reader. The

discussion of §4 of the survey [A4] might be of some help, but in any case, the
details are not so important at this stage. Our main observation here is just that

the test function f in (2.1) is restricted to the symmetric Hecke subalgebra H̃(G)
of H(G). The reason is that the stable distribution on G(F ) attached to ψ in
[A3, Theorem 2.1.1(a)] (whose analogue ψ′ for G′ appears on the left hand side of

(2.1)) is defined only up to the action of Õ(G). This essential constraint reflects
the fact that the distribution is obtained by transfer of a twisted character on the

group GL(N,F ). It is why we have to take ψ to be an element in the set Ψ̃(G) of

Õ(G)-orbits in Ψ(G), rather than just a parameter in Ψ(G).
The problem is to refine (2.1) to an identity for functions f ∈ H(G), and ideally,

parameters ψ ∈ Ψ(G). This would give a packet of representations in Πunit(G), in

place of Õ(G)-orbits of representations from the set Π̃unit(G). The problem was

essentially solved for the subset of generic parameters φ in Ψ̃(G) in Theorem 8.4.1
of [A3].

Recall [A3] that Φ̃bdd(G) denotes the subset of parameters in Ψ̃(G) that are

trivial on the supplementary factor SU(2). An element in Φ̃bdd(G) is therefore a
Langlands parameter

φ : LF −→ LG

with bounded image, taken up to conjugacy in Ĝ by the group O(N,C). We write

Φ̃′bdd(G), Φbdd(G̃), Φbdd(G), etc., for the subsets of parameters in the associated

sets Ψ̃′(G), Ψ(G̃), Ψ(G), etc., that are trivial on the factor SU(2). We can also

write Φ̃(G) for the set of all Langlands parameters (that is, without the boundedness

condition), taken again up to conjugacy by O(N,C). Recall that any ψ ∈ Ψ̃(G)
restricts to a parameter

(2.3) φψ(w) = ψ

(
w,

(
|w| 12 0

0 |w|− 1
2

))
, w ∈ LF ,

in Φ̃(G), where |w| is the pullback to LF of the absolute value on WF , and where
the domain of ψ is understood to have been extended analytically from LF ×SU(2)

to LF × SL(2,C). The mapping ψ → φψ is then an injection from Ψ̃(G) to Φ̃(G).
It gives the second embedding in the chain

(2.4) Φ̃bdd(G) ⊂ Ψ̃(G) ⊂ Φ̃(G).
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We have qualified the reference to [A3, Theorem 8.4.1] above with the adjec-
tive “essentially” because it still contains an internal (Z/2Z)-symmetry. (See the
remarks in the middle of §8.3 and the end of §8.4 of [A3].) The preimage Ψ(ψ) in

Ψ(G) of any parameter ψ ∈ Ψ̃′(G) is a set of order 2, which we continue to call

somewhat superfluously an Õ(G)-torsor. The (Z/2Z)-symmetry can be resolved

only if we replace Ψ(ψ) by another Õ(G)-torsor T (ψ), which is constructed from
representations rather than parameters. We shall first review the definition of T (ψ)
in case φ = ψ is generic, and then introduce its extension for arbitrary ψ.

Suppose that φ belongs to Φ̃sim(G), the intersection of Φ̃bdd(G) with the subset

Ψ̃sim(G) =
{
ψ ∈ Ψ̃(G) : Sψ = Sψ/Z(Ĝ)Γ = {1}

}
of simple parameters in Ψ̃(G). Since its degree is even, φ automatically belongs

to the subset Φ̃′bdd(G) of Φ̃bdd(G). According to the local Langlands classification

established in [A3, §6.7], φ corresponds to an Õ(G)-orbit πφ ∈ Π̃(G) of irreducible
representations in Πtemp(G). By Corollary 6.7.3 of [A3], the order m(πφ) of this
orbit equals the order m(φ) = 2 of the orbit of φ in Φbdd(G). We define T (φ) in

this case to be the Õ(G)-torsor πφ. Consider next a general element

φ = φ1 ⊕ · · · ⊕ φr, φi ∈ Φ̃sim(Gi), Gi ∈ Esim(Ni), Ni = 2ni,

in Φ̃′2(G). In this case, we take

T (φ) = {t = t1 × · · · × tr : ti ∈ T (φi)}/ ∼

to be a set of equivalence classes in the product over i of the sets T (φi). The
equivalence relation is defined by writing t′ ∼ t if the subset of indices i such that

t′i 6= ti is even. Finally, if the parameter φ lies in the complement of Φ̃′2(G) in

Φ̃′bdd(G), it has a natural decomposition that was denoted by

φ = φ∗ ⊕ φ−, φ∗ ∈ Φ̃(G∗), φ− ∈ Φ̃2(G−),

in [A3, §8.3]. In this last case, the Õ(G)-torsor is defined

T (φ) = {t = t∗ × t− ∈ T (φ∗)× T (φ−)}/ ∼

as in [A3, (8.3.10)], in terms of the components φ∗ and φ− of φ.

We noted the correspondence (G′, φ′) → (φ, s) (with a parameter ψ ∈ Ψ̃(G)

in place of φ ∈ Φ̃(G)) in our description of (2.1) above. It anchors the spectral
theory of endoscopy, and follows immediately from general definitions. To be in
step with the general theory, φ should really be an element in Φ(G) rather than

Φ̃(G). Since T (φ) is meant to serve as a substitute for the preimage of φ in Φ(G),
it is not surprising that the definitions above lead to an immediate extension

(G′, φ′, t′) −→ (φ, s, t), t ∈ T (φ), t′ ∈ T (φ′),

of the correspondence. In this form, it is a surjective mapping, on whose fibres the
finite abelian group OutG(G′) acts transitively. (See the remarks at the beginning
of §8.4 of [A3].)

This extended correspondence gives some perspective on the definition of the
torsor T (φ). Suppose that G′ = G′1 ×G′2 is a proper, elliptic endoscopic group for
G. Then there is a surjective mapping

Õ(G′) = Õ(G′1)× Õ(G′2) = (Z/2Z)× (Z/2Z) −→ Õ(G) = (Z/2Z)
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of automorphism groups. Suppose also that φ is an element in Φ̃′(G) that factors
through G′. In other words, G′ and φ are the first components of triplets (G′, φ′, t′)

and (φ, s, t) that correspond as above. We then have parallel Õ(G′)-torsors

Φ(G′, φ) −→ Φ(φ)

and

T (G′, φ) −→ T (φ),

where Φ(φ) and T (φ) are the parallel Õ(G)-torsors we are working with, and
Φ(G′, φ) and T (G′, φ) are their preimages in the sets

Φ(G′) =
∐

φ′∈Φ̃(G′)

Φ(φ′)

and

T (G′) =
∐

φ′∈Φ̃(G′)

T (φ′).

This motivates1 the equivalence relation in the definition of Φ(φ) above.
It is an easy matter to extend these definitions to general parameters ψ. Recall

that we have an injective mapping ψ → φψ. Since it is also injective as a mapping

from Ψ(G) to Φ(G), it takes the subset Ψ̃′(G) of Ψ̃(G) into the subset Φ̃′(G) of

Φ̃(G). Now the definition of the Õ(G)-torsor

T (φ), φ ∈ Φ̃′bdd(G),

we have just recalled extends directly to parameters in the larger set Φ̃′(G). We
can therefore define

(2.5) T (ψ) = T (φψ), ψ ∈ Ψ̃′(G).

This attaches an Õ(G)-torsor to any ψ ∈ Ψ̃′(G). It is also easy to see that the
bijective correspondence

(G′, ψ′) −→ (ψ, s), ψ ∈ Ψ̃(G), s ∈ Sψ,

extends to a surjective mapping

(2.6) (G′, ψ′, t′) −→ (ψ, s, t), t ∈ T (ψ), t′ ∈ T (ψ′).

Theorem 2.1. Suppose that F is local, and that ψ lies in Ψ̃′(G). Then there

is an Õ(G)-equivariant bijection

t −→ ψt, t ∈ T (ψ),

from T (ψ) onto a pair of stable linear forms

f −→ fG(ψt), f ∈ H(G), t ∈ T (ψ),

on H(G), and a mapping

(π, t) −→ πt, π ∈ Π̃ψ, t ∈ T (ψ),

from Π̃ψ × T (ψ) to Πψ, such that

(2.7) fG(ψ) = fG(ψt), f ∈ H̃(G), t ∈ T (ψ),

1 I thank the referee for implicitly suggesting that I include a remark of this nature.
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and

(2.8) fG(π) = fG(πt), f ∈ H̃(G), t ∈ T (ψ),

and such for any s ∈ Sψ,ss with image x in Sψ, the identity

(2.9) f ′(ψ′t′) =
∑
π∈Π̃ψ

〈sψx, π〉fG(πt), f ∈ H(G), t ∈ T (ψ),

is valid for an endoscopic preimage (G′, ψ′, t′) of (ψ, s, t).

Remarks. 1. This is essentially a transcription of the statement of Theorem
8.4.1 of [A3] from φ to ψ. Notice however that the word bijection in the fifth line
of the earlier statement has now been weakened simply to mapping. The reason is

that we need to allow here for the possibility of elements π ∈ Π̃ψ whose preimage
in Πψ contains only one element. We shall return briefly to this point in §3.

2. Assume that the theorem has been proved. It then extends by analytic
continuation to the standard representations attached to parameters ψ in the larger
set

(Ψ̃+)′(G) = {ψ ∈ Ψ̃+(G) : mψ = 2},
defined without the boundedness condition on ψ. In particular, the theorem is valid

for the packet Π̃ψ attached to any parameter in the subset

(Ψ̃+
unit)

′(G) = (Ψ̃+)′(G) ∩ Ψ̃+
unit(G)

of (Ψ̃+)′(G). We recall that the right hand two sets in the chain

Ψ̃(G) ⊂ Ψ̃+
unit(G) ⊂ Ψ̃+(G)

were defined in [A3, §1.5]. They are needed for the localizations of global param-
eters, to account for our lack of a proof for the generalized Ramanujan conjecture
for GL(N).

The proof of Theorem 2.1 is similar to that of its generic analogue [A3, Theorem
8.4.1]. It is largely global. In common with many of the local results from [A3],

the proof rests on the stabilization of the trace formula, for a group Ġ over a global
field Ḟ such that (Ġu, Ḟu) = (G,F ) for some valuation u of Ḟ . The general idea

is to deduce local results at the completion Ġu = G from an a priori knowledge
that they hold at some other completions Ġv. What distinguishes the argument
here (and in [A3, Theorem 8.4.1]) from those in the earlier parts of [A3] is that we
require no further reference to the twisted trace formula for GL(N). This leaves us

free to work with a test function in the global Hecke algebra H(Ġ) that need not
be everywhere locally symmetric, and thereby exploit the full trace formula. We
shall sketch the main global argument of the proof in §5.

In the last part of this section, we shall describe how to establish Theorem 2.1

for some special parameters ψ ∈ Ψ̃(G). This represents the local part of the general
proof of the theorem, and as such, will be considerably simpler than the global part.
In fact, it is more or less implicit in the results of [A3, §7.1, §8.4]. We will apply
the local information so obtained to the global arguments of §5, specifically to a
certain completion (Ġu1

, ψ̇u1
) of a global pair (Ġ, ψ̇).

Assume for the rest of this section that the local field F is nonarchimedean. We
then have an involution on Ψ̃(G), which sends any ψ ∈ Ψ̃(G) to the dual parameter

(2.10) ψ̂(w, u1, u2) = ψ(w, u2, u1), w ∈WF , u1, u2 ∈ SU(2),
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in Ψ̃(G). In particular, if φ lies in the subset Φ̃bdd(G) of Ψ̃(G), ψ = φ̂ is a parameter

in Ψ̃(G) whose restriction to LF is trivial on the subgroup SU(2) of LF . It is then

clear that ψ belongs to the subset Ψ̃′(G) of Ψ̃(G) if and only if φ lies in the subset

Φ̃′bdd(G) of Φ̃bdd(G).

Lemma 2.2. The assertions of Theorem 2.1 are valid for any parameter in

Ψ̃′(G) of the form

ψ = φ̂, φ ∈ Φ′bdd(G).

Proof. The lemma is a consequence of three theorems, the special case [A3,
Theorem 8.4.1] of Theorem 2.1 for the generic parameter φ, the compatibility of du-
ality with endoscopic transfer ([Hi], [A5]) and the endoscopic identity [A3, (2.2.6)]

for parameters ψ ∈ Ψ̃(G). I will be content just to add a couple of brief comments
to this.

The point is that there is another duality operator D = DG, which acts on the
Grothendieck group of the category of G(F )-modules of finite length. Aubert [Au]
has shown that it satisfies an identity

D[π] = β(π) [π̂], π ∈ Π(G),

where π → π̂ is an involution on Π(G), and β(π) is a certain sign. This is the
operator that commutes with the endoscopic transfer of characters, again up to a
sign, and also with twisted endoscopic transfer from GL(N). One then obtains a
relation between D and the involution (2.10) on parameters, from the corresponding
relation for GL(N) (known originally as the Zelevinsky conjecture). To establish
the lemma, one applies DG to each side of the analogue [A3, (8.4.3)] for φ of the
identity (2.9). This gives the formula (2.9) itself, up to a multiplicative sign on each
of the irreducible characters that parametrize the summands on the right hand side
of (2.9). One can then use the original, unrefined formula [A3, (2.6)] to resolve
these signs. (We refer the reader to [A3, §7.1] for further discussion of some of
these points.) �

3. The problem of uniqueness

Theorem 2.1 looks very similar to the earlier result [A3, Theorem 8.4.1] for
generic parameters, but it has a serious drawback. Without further information,
we cannot say that the mappings t→ ψt and (π, t)→ πt of the theorem are unique.
The problem becomes untenable when we try to consider the global implications of
the theorem in §4. For example, some local uniqueness assertion will be essential
for the necessary refinement of the stable multiplicity formula [A3, Theorem 4.1.2].

If φ = ψ belongs to the subset Φ̃bdd(G) of Ψ̃(G), the mappings of the theorem
are determined by the given conditions. This is an easily verified fact, which we left
to the reader in [A3]. (See Remark 2 following the statement of Theorem 8.4.1 of
[A3].) Under what conditions on a general parameter ψ are the mappings unique?

The group G remains an even, quasisplit, special orthogonal group (1.1) over
the local field F . Suppose first that ψ lies in the subset

Ψ̃′2(G) = {ψ ∈ Ψ̃(G) : |Sψ| <∞, m(ψ) = 2}

of square integrable parameters in Ψ̃′(G). Then

ψ = ψ1 ⊕ · · · ⊕ ψr, ψi ∈ Ψ̃sim(Gi), Gi ∈ Ẽsim(Ni),
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where Ni = 2ni and Gi is a quasisplit special orthogonal group SO(Ni). Let us say
that ψ is coherent if it satisfies the following two conditions.

(i) If ψ− ∈ Ψ̃′2(G−) is any subparameter of ψ, whereG− = SO(N−) = SO(2n−)
is an even special orthogonal subgroup of G, the elements in the corresponding

packet Π̃ψ− occur with multiplicity 1. In other words, Π̃ψ− is a subset of Π̃unit(G−),

as opposed to a set over Π̃unit(G−) with nontrivial fibres.

(ii) If ψi ∈ Ψ̃sim(Gi) is a simple constituent of ψ, there is exactly one Õ(Gi)-
orbit of sections

πi −→ πi,∗, πi ∈ Π̃ψi ,

from Π̃ψi to Πψi such that the distribution

f −→
∑

πi∈Π̃ψi

fi,G(πi,∗), fi ∈ H(Gi),

on Gi(F ) is stable. In other words, the mappings of Theorem 2.1 for the pair
(Gi, ψi) are unique.

If ψ is a general element in the set Ψ̃′(G), there is a Levi subgroup M of G and

a square integrable parameter ψM ∈ Ψ̃2(M,ψ) for M that maps to ψ. The group
M is a product of a general linear factors with a special orthogonal subgroup

G− = SO(N−) = SO(2n−).

In this case, we shall say that ψ is coherent if the subparameter ψ− ∈ Ψ̃′2(G−) of
ψM is coherent.

We shall see that the mappings of Theorem 2.1 are unique if ψ is coherent.
Before doing so, however, we shall first discuss a simpler property, having to do

only with the symmetric Hecke algebra H̃(G). The definition of coherent extends

to parameters ψ in the complement Ψ(G̃) of Ψ̃′(G) in Ψ̃(G), where we understand
the condition (ii) above to be vacuous if the rank Ni of ψi is odd. The following

conjecture is an analogue for coherent parameters ψ ∈ Ψ̃2(G) of Corollaries 6.6.6
and 6.7.3 of [A3] for generic parameters φ.

Conjecture 3.1. If ψ ∈ Ψ̃2(G) is coherent and π belongs to Π̃ψ, then

m(π) = m(ψ).

I have stated the conjecture simply as a point of discussion, rather than for any
pressing need. While it seems plausible, it would not be amenable to the methods
used for generic parameters φ in [A3, §8.4]. These rely on orthogonality relations,
which to this point have not been of use for the nongeneric parameters ψ. On
the other hand, one could perhaps deduce Conjecture 3.1 from twisted endoscopy
for the outer automorphism of the group G. The multiplicity 1 condition (i) of
coherence would no doubt have to be part of the argument. �

We now consider the uniqueness of the mappings of Theorem 2.1. The theorem

was formulated for parameters in the subset Ψ̃′(G) of Ψ̃(G), following [A3, §8.4],
since this is the main case. However, it remains valid as stated if ψ belongs to

the complementary set Ψ(G̃). This is the case that the orbit Ψ(ψ) has order 1. A
formal application to ψ of the earlier definition (2.5) yields a set T (ψ) that is also
of order 1, together with a trivial endoscopic mapping (2.6). The proof we sketch
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in §5 of Theorem 2.1 is then easily adapted to parameters ψ ∈ Ψ(G̃). We may

as well therefore state the uniqueness property for the subset Ψ̃coh(G) of coherent

parameters in the full set Ψ̃(G).

Proposition 3.2. Suppose that ψ ∈ Ψ̃coh(G) is a coherent parameter. Then
the mappings t → ψt and π → πt of Theorem 2.1 (and their analogues for the

complementary set Ψ(G̃)) are unique.

Proof. The main point will be to characterize the stable distributions t→ ψt.
We assume inductively that we have done this if ψ is replaced by any proper subpa-

rameter ψ− ∈ Ψ̃′2(G−). This takes care of the case that ψ lies in the complement of

Ψ̃′2(G) in Ψ̃(G). For ψ is then the image of a parameter in a set Ψ̃2(M,ψ), as above,
for a proper Levi subgroup M of G. In other words, ψ factors through a proper
Levi subgroup LM of LG, and ψt is the image of the stable linear form attached by

our induction hypothesis to M . We can therefore assume that ψ belongs to Ψ̃′2(G).
If ψ is simple, the assertion of the proposition (which of course includes the

existence of ψt) is just the condition (ii) from the definition of coherence above.
We can therefore assume that ψ is not simple. This means that there is an element
s ∈ Sψ that is not central in LG. Given t ∈ T (ψ), let (G′, ψ′, t′) be the preimage
of the triplet (ψ, s, t), according to the understanding of §2. Then ψ′ = ψ′1 × ψ′2 is
a parameter for the proper, elliptic, endoscopic group G′ = G′1 ×G′2 for G. By our
induction hypothesis, the stable linear form

ψ′t′ = ψ′1,t′1 × ψ
′
2,t′2

on H(G′) is uniquely determined. This characterizes the left hand side of (2.9).
In all cases, we can then deduce the required uniqueness assertions from (2.9).

By condition (i) above for coherence, the set Π̃ψ that indexes the summands on the

right hand side of (2.9) is a subset of Π̃unit(G). The restrictions fG(π) to H̃(G) of
the associated linear forms fG(πt) are therefore linearly independent. The linear
forms themselves are given by a section

Π̃ψ
∼−→ Πψt = {πt : π ∈ Π̃ψ} ⊂ Πψ,

so they are defined on the larger space H(G), where they obviously remain linearly
independent. Since their coefficients 〈sψx, π〉 are nonzero, the left hand side of (2.9)
determines the packet Πψt , and also the corresponding characters 〈·, π〉 = 〈·, πt〉 on

Ŝψ (again by the condition (i) above). These in turn characterize the remaining
stable distribution

fG(ψt) =
∑
π∈Π̃ψ

〈sψ, π〉 fG(πt), f ∈ H(G),

as required. �

Proposition 3.2 places Theorem 2.1 on the same plane as its predecessor [A3,
Theorem 8.4.1] for generic parameters φ. However, it requires that ψ be coherent.
This is surely a strong condition, but as far as I can see, it is the best we can do. I

would guess that any ψ ∈ Ψ̃(G) is coherent, but I don’t really have much evidence.
Let us review the examples.

Suppose first that the local field F is arbitrary. If φ = ψ belongs to the

subset Φ̃bdd(G) of generic parameters in Ψ̃(G), it is coherent. This follows from
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the classification established in Chapter 6 of [A3], especially the assertion of [A3,
Theorem 1.5.1(b)]. If the (general linear) rank N = 2n of G equals 2 or 4, it is also

easy to see that any ψ ∈ Ψ̃(G) is coherent, but these are pretty trivial examples.
Suppose next that F is p-adic. Any parameter of the form

ψ = φ̂, φ ∈ Φ̃bdd(G),

is coherent. This follows from the fact that φ is coherent, as one can see from the
brief discussion of this case in the proof of Lemma 2.2. Consider a general parameter

ψ ∈ Ψ̃(G). Moeglin [M] has established the condition (i) for coherence, namely that

the elements in the packet Π̃ψ have multiplicity 1. This is a major result, which
applies to parameters for any quasisplit orthogonal or symplectic group. It was the
motivation for our definition of coherence. The condition (ii) of the definition is
still just a guess. It could be implicit in the work of Moeglin, and is perhaps not
too difficult to verify one way or the other. An affirmative answer would tell us
that any p-adic parameter for G is coherent.

Suppose finally that F is archimedean. We recall that Adams, Barbasch and
Vogan have attached endoscopic packets to parameters for any reductive group over
F [ABV]. This follows the special cases of general parameters for F = C [BV]
and cohomological parameters for F = R [AJ]. The constructions do not include
twisted endoscopy, which if it were known even for GL(N), would confirm that
these archimedean packets are the same as the ones defined for orthogonal and
symplectic groups in [A3]. The problem is presumably accessible, at least in the
cases [BV] and [AJ]. In any event, a check of the constructions in [BV] and [AJ]
reveals that for our even orthogonal group G, all parameters ψ ∈ Ψ(G) for F = C
and all cohomological parameters ψ ∈ Ψ̃(G) for F = R, are coherent (or at least
will be once it has been verified that the constructions satisfy twisted endoscopy for

GL(N)). However, the conditions (i) and (ii) for the general parameter ψ ∈ Ψ̃(G)
for R in [ABV] appear to be deeper.

This concludes our discussion of coherent parameters ψ ∈ Ψ̃(G) for the even
orthogonal group (1.1). There is something more we could say. The notion of
coherence seems to bear some relevance to parameters for more general groups. We
shall finish the section with some philosophical remarks in this direction.

In what follows, we could take G to be an arbitrary quasisplit group over the
local field F . To keep the discussion a little more concrete, we assume until further
notice that G is one of the groups treated in [A3], namely a quasisplit, special
orthogonal or symplectic group over F . We put aside the question of how an outer
automorphism might act, and consider just the usual sets of parameters Φbdd(G),

Φ(G) and Ψ(G), taken up to the equivalence relation defined by Ĝ-conjugacy. They
come with a chain of embeddings

(3.1) Φbdd(G) ⊂ Ψ(G) ⊂ Φ(G),

as in (2.4). The main reason for introducing the supplementary set Ψ(G) is global,
as we have noted. It provides the local framework for describing the multiplicities
of automorphic representations attached to a given global family c = {cv} of Hecke
eigenvalues. There is also ample local reason to consider local parameters ψ ∈
Ψ(G), if only because their corresponding packets Πψ should give interesting new
unitary representations of G(F ). Let us, however, try to motivate these objects
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for a different local reason, related purely to the theory of ordinary (untwisted)
endoscopy.

The set Φbdd(G) of bounded Langlands parameters serves two simultaneous
ends. It leads to a classification of the set Πtemp(G) of irreducible tempered rep-
resentations of G(F ), and at the same time, a collection of endoscopic reciprocity
laws among the characters of these representations. Indeed, the two roles coalesce
in the analogue

(3.2) f ′(φ′) =
∑
π∈Πφ

〈x, π〉fG(π), f ∈ H(G), φ ∈ Φbdd(G), x ∈ Sφ,

of (2.1). The set Φ(G) of general Langlands parameters can also play both roles.
In this case, however, the roles have to be separated. The L-packets Πφ and the
associated pairings 〈·, ·〉 on Sφ × Πφ provide a classification of the set Π(G) of all
irreducible representations of G(F ), but they do not satisfy (3.2). On the other
hand, we obtain endoscopic relations

(3.3) f ′(φ′) =
∑
ρ∈Pφ

〈x, ρ〉fG(ρ)

simply by replacing Πφ by the corresponding packet of standard representations

Pφ = {ρ ∈ P (G) : πρ ∈ Πφ},
equipped with the induced pairing

〈x, ρ〉 = 〈x, πρ〉, x ∈ Sφ,
where πρ is the Langlands quotient of ρ. The problem now is that the representa-
tions in Pφ are no longer irreducible. But we can adjust this if we replace Pφ with
the packet

Π+
φ = {[π+] ⊂ [ρ] : ρ ∈ Pφ}

of irreducible constituents of the standard representations ρ ∈ Pφ, repeated accord-
ing to multiplicity. Then Π+

φ is a set over Π(G), with the induced pairing

〈x, π+〉 = 〈x, ρ〉, x ∈ Sφ, [π+] ⊂ [ρ], ρ ∈ Pφ,
such that

(3.4) f ′(φ′) =
∑

π+∈Π+
φ

〈x, π+〉fG(π+), f ∈ H(G), φ ∈ Φ(G), x ∈ Sφ.

Using the Langlands classification established2 for representations Π(G) in
[A3], we have attached a packet Π+

φ over Π(G) to any φ ∈ Φ(G), which satis-

fies the endoscopic relation (3.4). This looks familiar. It has the same general
structure as the packet Πψ of a parameter ψ ∈ Ψ(G). However, the packets Π+

φ will

be considerably more complicated. The multiplicities of fibres in Π+
φ over Π(G) are

determined by the generalized Kazhdan-Lusztig algorithm. They are very complex,
largely because they can be arbitrarily large. It is within this context that we can
consider the parameters ψ.

For any parameter in a subset of Φ(G), namely the injective image

{φψ : ψ ∈ Ψ(G)}

2 If G = SO(2n) as earlier, we assume we have “broken” the (Z/2Z)-symmetries arbitrarily, by

fixing a bijection between the Õ(G)-torsors Φ(φ) and T (φ) attached to any φ ∈ Φ̃sim(G). (See

the end of §8.4 of [A3].)
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of Ψ(G), we have another packet3 Πψ that is simpler than Π+
φψ

. Like Π+
φψ

, it

contains the representations from the original packet Πφψ [A3, Proposition 7.4.1].
But it contains fewer supplementary representations π, and it fibres over the subset
Πunit(G) of Π(G). It also satisfies richer endoscopic relations

(3.5) f ′(ψ′) =
∑
π∈Πψ

〈sψx, π〉fG(π), f ∈ H(G), ψ ∈ Ψ(G), x ∈ Sψ,

where 〈·, π〉 is a character on an extension Sψ of Sφψ , which is the image of the
original character on Sφψ in case π lies in the subset Πφψ of Πψ. The theorem of
Moeglin, which we hope is also true in the archimedean case, asserts that for p-adic
F , Πψ is a subset of Πunit(G). In other words, the multiplicity of any fibre in Πψ

over Πunit(G) equals 1. This seems to be a fundamental defining property for the
packet Πψ. It makes the endoscopic identity (3.5) look much closer to its classical
antecedent (3.3) for tempered parameters φ ∈ Φbdd(G) than its more complicated
but formally similar analogue (3.4) for general parameters φ ∈ Φ(G). The packets
Πψ thus achieve a delicate balance between relatively simple endoscopic character
relations (3.5) and a role in the (as yet unfinished) classification of Πunit(G).

For the rest of the section, we allow G to range over all connected, quasisplit
groups over the fixed local field F . Could some variant of coherence be used to
characterize the general packets Πψ?

The parameter sets Ψbdd(G), Ψ(G) and Φ(G) are defined, and satisfy (3.1).
For any ψ ∈ Ψ(G), we have the centralizer Sψ. Its finite quotient Sψ maps onto the
corresponding group Sφψ attached to the image of ψ in Ψ(G). We also have the set

Ψsim(G) = {ψ ∈ Ψ(G) : Sψ = Sψ/Z(Ĝ)Γ = 1}
of simple parameters. We will not assume the full Langlands classification for
Πtemp(G). We suppose only that for each G, and each φ in the subset

Φsim(G) = Ψsim(G) ∩ Φbdd(G) = Ψsim(G) ∩ Φ(G)

of Ψsim(G), we have been given a representation πφ ∈ Πtemp(G) such that the
distribution

f −→ fG(πφ), f ∈ H(G),

is stable, with the further understanding that these representations collectively
satisfy natural relations with respect to central twists. If ψ lies in the larger family
Ψsim(G), it is then not hard to attach a natural Langlands quotient πφψ ∈ Π(G) to
the parameter φψ ∈ Φ(G). We set πψ = πφψ .

Assumption 3.3. For the given assignment

(G,φ) −→ πφ, φ ∈ Φsim(G),

of representations in Πtemp(G), there is a unique assignment

(G,ψ) −→ nψ, ψ ∈ Ψsim(G)

of functions

nψ : Π(G) −→ {0, 1}
of finite support that satisfies the following conditions.

(i) nψ(πψ) = 1.

3 We are assuming Theorem 2.1 here in case G = SO(2n).
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(ii) The distribution

f −→ fG(ψ) =
∑

π∈Π(G)

nψ(π)fG(π), f ∈ H(G),

on G(F ) is stable.
(iii) If n∗ψ is another function that satisfies (i) and (ii), then

nψ(π) ≤ n∗ψ(π), π ∈ Π(G).

The assignment φ → πφ is supposed to represent a part of the Langlands
correspondence, namely the cuspidal L-packets

(3.6) Πφ = {πφ}, φ ∈ Φsim(G),

of order 1. To my knowledge, there are no conjectural conditions in general that
would characterize it uniquely. In any case, with this interpretation we can regard
Assumption 3.3 as a conjecture. It would characterize the A-packets

(3.7) Πψ = {π ∈ Π(G) : nψ(π) = 1}, ψ ∈ Ψsim(G),

attached to parameters in the subset Ψsim(G) of Ψ(G). The function nψ is of
course uniquely determined by the condition (iii). I have not looked at any of the
known examples in this light, so I have no evidence for such a conjecture beyond
general aesthetic considerations. Should it prove false, we would still want to look
for a natural refinement that would characterize the packets (3.7) in terms of the
fundamental L-packets (3.6). We observe that Assumption 3.3 is closely related to
the second condition (ii) of the earlier definition of coherence.

It is possible that Assumption 3.3 (or some natural variant/extension) would
give a conjectural way to characterize general A-packets Πψ (and as a special case,
general L-packets Πφ). However, we will not try to characterize the signs

(3.8) 〈sψ, π〉, π ∈ Πψ,

in the general analogue of (3.5). (See [ABV] and [MW].) We shall instead confine
ourselves to the subset

Ψeven(G) = {ψ ∈ Ψ(G) : sψ = 1}
of parameters in Ψ(G) in which sψ (as a central element in Sψ) is trivial.

Proposition 3.4. Under Assumption 3.3, there is at most one assignment

(G,ψ) −→ (Πψ, 〈·, ·〉), ψ ∈ Ψeven(G),

where Πψ is a finite subset of Π(G), and 〈·, ·〉 is a mapping

π −→ 〈·, π〉, π ∈ Πψ,

from Πψ to the set Ŝψ of irreducible characters

x −→ 〈x, π〉, x ∈ Sψ,
on Sψ, that satisfies the following conditions.

(i) If ψ lies in the subset Ψsim(G) of Ψeven(G), Πψ equals the packet (3.7).
(ii) The distribution

f −→ fG(ψ) =
∑
π∈Πψ

fG(π), f ∈ H(G),

on G(F ) is stable.
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(iii) Suppose that s is a semisimple element in Sψ with image x in Sψ, and that
(G′, ψ′) is the preimage 4 of the pair (ψ, s). Then

f ′(ψ′) =
∑
π∈Πψ

〈x, π〉fG(π), f ∈ H(G).

Proof. We can extend the Ŝψ-valued function

ξψ : π −→ ξψ(π) = 〈·, π〉, π ∈ Πψ,

on Πψ to an Ŝψ ∪ {0}-valued function that vanishes on the complement of Πψ in
Π(G). Then

Πψ = {π ∈ Π(G) : ξψ(π) 6= 0}.
Suppose ξ∗ψ is another family of such functions, parametrized again by the pairs

(G,ψ). We fix (G,ψ), and assume inductively that ξ∗ψ′ = ξψ′ for every proper

endoscopic pair (G′, ψ′) for (G,ψ). If there are no proper pairs, Sψ is trivial, and
ψ lies in the subset Ψsim(G) of Ψeven(G). In this case, condition (i) above and
Assumption 3.3 tell us that ξ∗ψ = ξψ. We may therefore assume that ψ lies in the

complement of Ψsim(G).
Consider the condition (iii) above, where s is a nontrivial point in Sψ. It follows

from our induction hypothesis that the left hand side f ′(ψ′) of the identity in (iii)
is the same for the two families ξ∗ and ξ. The difference∑

π∈Π(G)

(
ξ∗ψ(π)− ξψ(π)

)
fG(π), f ∈ H(G),

of the two right hand sides, regarded as a linear combination of irreducible charac-
ters on Sψ, therefore vanishes for any s 6= 1. Given any representation π ∈ Π(G),
we can choose a function f ∈ H(G) such that

fG(π′) =

{
1, if π′ = π,

0, otherwise,

for any π′ in the union of the two packets Πψ and Π∗ψ. It follows that the two
functions

ξ∗ψ(π), ξψ(π) : Sψ −→ C

in Ŝψ ∪ {0} are equal at the image in Sψ of any s 6= 1. Since any element in Sψ
can be so represented if the identity component of S0

ψ of Sψ is nontrivial, we can
assume that ψ lies in the subset

Ψ2(G) =
{
ψ ∈ Ψ(G) : |Sψ| <∞

}
of Ψ(G). In this case, the difference ξ∗ψ(π)− ξψ(π) still vanishes on the complement
of 1 in Sψ. Comparing it with the character of the regular representation on Sψ,
we deduce that this difference must in fact vanish identically on Sψ.

We have established that ξ∗ψ = ξψ in all cases. This completes our induction
hypothesis, and gives the uniqueness assertion of the proposition. �

4 We are assuming for simplicity here that the L-group LG′ has an L-embedding into LG (which

has been fixed). Otherwise, (G′, ψ′) would have to be replaced by a pair (G̃′, ψ̃′), in which G̃′ is
a suitable extension of G′.
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Remarks. 1. The proof of Proposition 3.4 depends on the condition that Πψ

be a subset of Π(G) rather than just a set over Π(G). Given this essential require-
ment, the proposition can also be regarded as an implicit conjecture, that would
characterize the A-packets Πψ of parameters ψ in the subset Ψeven(G) of Ψ(G). As
such, it is again based on the generalization of a property of coherence, the first
condition (i) of the earlier definition. We do have some evidence, namely Moeglin’s
theorem [M] of multiplicity 1 for p-adic orthogonal and symplectic groups.

2. Notice that the subset Φbdd(G) of Φ(G) is contained in Ψeven(G). Proposi-
tion 3.4 therefore includes a construction of the L-packets Πφ attached to general
parameters φ ∈ Φbdd(G), given of course the basic objects of Assumption 3.3.

3. Assume that the assignment (G,φ) → πφ of Assumption 3.3 has been
provided, and that it leads to the local Langlands classification for G, according to
Remark 2. We should then be able to read off the functions nψ from the expansion of
fG(πψ) into standard characters. We would simply subtract the minimal number
of irreducible characters (with possible multiplicities) from the expansion so as
to transform it into a stable combination of standard characters. The implicit
condition of Assumption 3.3 is that the multiplicities should all be 1.

4. What about the signs (3.8)? Their presence for a general parameter ψ ∈
Ψ(G) means that the proof of Proposition 3.4 will fall short of a conjectural char-
acterization of the packet Πψ. However, one could consider a generalization of the
family of functions nψ of Assumption 3.3. Suppose for example that Sψ has order
2, and that sψ represents the nontrivial element. If (G′, ψ′) is the preimage of the
pair (ψ, sψ), the formula (3.5) becomes

f ′(ψ′) =
∑
π∈Πψ

〈sψsψ, π〉fG(π) =
∑
π∈Πψ

fG(π).

This expansion, which would be given to us inductively as in the proof, yields the
packet Πψ but not the pairing 〈 ·, · 〉. However, we would need the pairing to define
the associated stable distribution

fG(ψ) =
∑
π∈Πψ

〈sψ, π〉fG(π),

and in particular, to complete the induction argument. To rectify the problem, we
could postulate the existence of a unique function

nψ : Π(G) −→ {1, 0,−1},
which is supported on the subset Πψ of Π(G), and satisfies the three conditions of
Assumption 3.3 (with ψ now the given parameter in Π(G)). This is just a guess,
to be modified as required. But if it is correct in this case, it could no doubt be
formulated for any parameter ψ ∈ Ψ(G). It could then be used as in the proof of
the proposition to give a conjectural characterization of the general packet Πψ.

4. The global theorem

Our ultimate interest is in automorphic representations. In this section, we will
state a conjecture for automorphic discrete spectra that is both a global counterpart
of Theorem 2.1, and an extension of the earlier refinement [A3, Theorem 8.4.2]
for generic global parameters. In my original submission, I actually stated it as a
theorem, incautiously claiming that it could be established by a variant of the proof
of Theorem 8.4.2 of [A3]. I thank the referee for a well founded note of restraint.
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We return therefore to the earlier setting, in which G is an even, quasisplit,
special orthogonal group over F . In this section, the field F will be global. Suppose

that ψ ∈ Ψ̃(G) is an associated global parameter [A3, §1.4]. We can then write

(4.1) Idisc,ψ(f) =
∑

G′∈Eell(G)

ι(G,G′)Ŝ′disc,ψ(f ′), f ∈ H(G),

in the notation (3.3.15) that runs throughout [A3]. We recall, for example, that
the subscript ψ is defined [A3, (3.3.12) and (3.3.13)] as the restriction of a given
distribution to the subspace of its domain attached to ψ. The main point here is
that like its predecessor [A3, 8.4.4] for a generic parameter φ, the formula (4.1) does

not require that the test function f lie in the subspace H̃(G) of locally symmetric
functions in the Hecke algebra H(G) on G(A).

The global conjecture will be founded on the local objects of Theorem 2.1, which
will in turn have to be compatible at localizations of global data. This requires the
uniqueness property of Proposition 3.2, and hence an assumption of coherence at
some given set V ⊂ val(F ) of valuations of F . We will apply the stabilization (4.1)
to the subalgebra

HV (G) = H(GV )⊗ H̃(GV ) = H
(
G(AV )

)
⊗ H̃

(
G(AV )

)
of functions in H(G) that are locally symmetric outside of V . This is of course an
intermediate space

H̃(G) ⊂ HV (G) ⊂ H(G)

between the two algebras of functions on G(A) we worked with in [A3, §8.4]. We
will also work with the set

Ψ̃coh,V (G) = {ψ ∈ Ψ̃(G) : ψv ∈ Ψ̃coh(Gv), v ∈ V }

of global parameters in Ψ̃(G) whose localizations at places in V are coherent. In
other words, at any place v of F , either the test function fv will be symmetric or
the parameter will be coherent.

At a minor loss of generality, we shall formulate the conjecture to be compatible
with both Theorem 2.1 and [A3, Theorem 8.4.2]. That is, we shall restrict it to
square integrable global parameters in the subset

Ψ̃′2(G) = {ψ ∈ Ψ̃2(G) : m(ψ) = 2}

of Ψ̃2(G). To any ψ in this set, we can attach a global torsor T (ψ) under the

(global) automorphism group Õ(G) of order 2. The construction is similar to that
of the generic global definition from [A3, §8.3]. We shall describe it very briefly.

The main point is again the case that ψ lies in the subset Ψ̃sim(G) of simple

global parameters. Given ψ, one can define φψ as an element in a set Φ̃(G) of
generic global parameters. This gives the canonical element

(4.2) π = πψ =
⊗
v

πψ,v, πψ,v ∈ Π̃ψ,v,

in the global packet Π̃ψ, where πψ is the element in the subset Π̃φψ,v of Π̃ψ,v [A3,
Proposition 7.4.1] corresponding to the trivial character on the group Sφψ,v. Since

the parameter φψ is the image in Φ̃(G) of a global parameter

{φM,λ : φM ∈ Φ̃2(M), λ ∈ a∗M},
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for a Levi subgroup M of G, it does not generally lie in Φ̃2(G). Nevertheless, it
still has the property that

m(φψ) = m(ψ) = 2,

as in the local case from §2. One can use it to construct a canonical Õ(G)-orbit
T (ψ) of irreducible representations {π∗} of G(A) that map to the element π = πψ
in Π̃ψ. This is obtained from the M -analogue of the Õ(G)-orbit T (φ) attached

to any global parameter φ ∈ Φ̃2(G), which was defined prior to the statement of
Theorem 8.4.2 of [A3], and which governs the assertion (8.4.6) of the theorem.

Having constructed the Õ(G)-orbit T (ψ) for any ψ ∈ Ψ̃sim(G), we define it for

general elements ψ ∈ Ψ̃′2(G) as in the global generic case in [A3, §8.3], or for that
matter, the local generic case from §2 here.

Consider a localization ψv of some global parameter ψ ∈ Ψ̃′2(G). Then ψv
lies in the subset Ψ̃+

unit(Gv) of Ψ̃+(Gv). (See Remark 2 following the statement of
Theorem 2.1. It is at this point that we have to account for the possible failure
of the generalized Ramanujan conjecture.) Suppose that ψv lies in the subset

(Ψ̃+
unit)

′(Gv) of Ψ̃+
unit(Gv). Assume further that the assertions of Theorem 2.1 are

valid for ψv (and its subparameters), and that ψv is coherent. We can then define
an isomorphism

t −→ tv

between the torsors T (ψ) and T (ψv), following the definition for generic parameters

near the beginning of §8.4 of [A3]. In particular, suppose that ψ ∈ Ψ̃sim(G) is
simple. According to the definition above, an element t ∈ T (ψ) is represented by

an automorphic representation π∗ = πt attached to the Õ(G)-orbit π of (4.2) above.
We define tv to be the unique element in T (ψv) such that

πv,tv = πt,v,

where the representation on the left is defined by the second assertion of Theorem

2.1. We extend this construction to more general ψ ∈ Ψ̃′2(G) directly from the
definitions.

Suppose now that the local Theorem 2.1 holds for the completion Fv of F at
every v in the given set V ⊂ val(F ) of valuations. Let ψ be a global parameter

in Ψ̃′2(G), which also lies in the subset Ψ̃coh,V (G) of Ψ̃(G). The mappings t → tv
then allow us to globalize the two constructions of the local theorem. The first is

the global, Õ(G)-equivariant mapping

t −→ ψt = ψt,V , t ∈ T (ψ),

from T (ψ) to the space of stable linear forms on the global space HV (G), defined
by

ψt,V =

(⊗
v∈V

φv,tv

)
⊗

(⊗
w 6∈V

φw

)
.

The second is the Õ(G)-equivariant mapping

(π, t) −→ πt = πt,V , π ∈ Π̃ψ, t ∈ T (ψ),

from Π̃ψ × T (ψ) to the set

Πunit(GV )⊗ Π̃unit(G
V ),
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defined by

πt,V =

(⊗
v∈V

πv,tv

)
⊗

(⊗
w 6∈V

πw

)
.

The last mapping here gives a linear form

f −→ fG(πt,V ), f ∈ HV (G),

on HV (G).

Conjecture 4.1. Assume that F is global, and that ψ lies in the subset

Ψ̃′2,coh,V (G) = Ψ̃′2(G) ∩ Ψ̃coh,V (G)

of Ψ̃′2(G), for some set V ⊂ val(F ) of valuations of F . Then

(4.3) SGdisc,ψ(f) = |Sψ|−1
∑

t∈T (ψ)

εG(ψ)fG(ψt,V ), f ∈ HV (G),

and

(4.4) tr
(
RGdisc,ψ(f)

)
=

∑
π∈Π̃ψ(εψ)

∑
t∈T (ψ)

fG(πt,V ), f ∈ HV (G).

In (4.3), εG(ψ) is the value at sψ of the sign character εψ = εGψ on Sψ defined

following the statement of Theorem 1.5.2 of [A3]. In (4.3), RGdisc,ψ is the represen-

tation of G(A) on the ψ-component of the automorphic discrete spectrum of G [A3,

(3.4.5)], while Π̃ψ(εψ) is as in [A3, Theorem 1.5.2], the subset of representations π

in the global packet Π̃ψ such that the character 〈·, π〉 on Sψ equals εψ. Finally, we
are writing φt,V and πt,V in (4.3) and (4.4) with the implicit understanding that
Theorem 2.1 is valid for the valuations v ∈ V . Since the localizations φv at v ∈ V
are assumed to be coherent, these mappings are then canonical.

I do not know how to prove this conjecture. However, it might still be instruc-
tive to review the beginnings of the argument from the proof of Theorem 8.4.2 of
[A3]. This allows us at least to point out where the earlier proof fails in this setting.

The starting point is the stabilization (4.1) of the discrete part of the trace
formula for G. We suppose that Conjecture 4.1 is valid if N is replaced by any
even, positive integer N− < N . We can then apply the analogue of (4.2) for the
proper elliptic endoscopic data G′ ∈ Eell(G) that index the terms with G′ 6= G in
(4.1). Making the appropriate substitution, and recalling how we treated the terms
in [A3, (7.4.7)], for example, we see that the right hand side of (4.1) equals

(4.5) SGdisc,ψ(f) + |Sψ|−1
∑
x∈Sψ
x 6=1

∑
t∈T (ψ)

ε′(ψ′) f ′(ψ′t′,V ).

Following a standard convention from [A3], we write 0SGdisc,ψ(f) for the difference

between the two sides of the putative formula (4.3) for G. The right hand side of
(4.1) then equals

0SGdisc,ψ(f) + |Sψ|−1
∑
x∈Sψ

∑
t∈T (ψ)

ε′(ψ′) f(ψ′t′,V ).

Since ψ lies in the subset Ψ̃2(G) of Ψ̃(G), the left hand side of (4.1) reduces to
the trace of RGdisc,ψ(f). This follows from the usual arguments, in [A3, §7.4] for

example. We write 0rGdisc,ψ(f) for the difference between the two sides of the desired
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formula (4.4). If we combine the local endoscopic character expansion (2.9) with a
simplified variant of the elementary remarks at the end of [A3, §4.7], we see without
difficulty that the sum

|Sψ|−1
∑
x∈Sψ

∑
t∈T (ψ)

ε′(ψ′) f ′(ψ′t′,V )

above equals the right hand side∑
π∈Π̃ψ(εψ)

∑
t∈T (ψ)

fG(πt,V )

of (4.4). We conclude that

(4.6) 0rGdisc,ψ(f) = 0SGdisc,ψ(f), f ∈ HU (G).

The analogue of the identity (4.6) for the generic parameters φ of [A3, Theorem
8.4.4] was the first step (8.4.21) in the proof. Notice that the required assertions
(4.3) and (4.4) are equivalent to the vanishing of the right and left hand sides
respectively of the identity. It would therefore suffice to establish either one of
them. This would resolve the implicit induction hypothesis above, and complete
the proof of the proposition.

In the proof of [A3, Theorem 8.4.2], we deduced the vanishing of the two
linear forms together by playing one off against the other in (8.4.21). An essential
ingredient was Corollary 8.4.5. This is a local result that serves to characterize the
stable distributions in the span of the characters in a generic packet Πφv . Combined
with global arguments, it leads to the required stable multiplicity formula [A3,
(8.4.5)], or in other words, the vanishing of the generic analogue of the right hand
side of (4.6).

Theorem 8.4.2 of [A3] applies to generic global parameters ψ = φ such that
the mapping

Sψ −→ SψA =
∏
v

Sψv

is injective. (I am indebted to the referee for an implicit suggestion that the original
proof in [A3] requires a restriction of this sort.) We assume that the generic global

parameter ψ ∈ Ψ̃(G) here satisfies the same condition. However, we would require
more. This is because we do not have an analogue of Corollary 8.4.5 of [A3]. That
is, we cannot rule out the existence of nonstandard stable distributions in the span
of a local packet Πψv . Perhaps one could establish the conjecture in the special
case that ψ has local constraints, with localizations of the sort treated in Lemma
2.2 for example. For general ψ, I have no ideas. The problem does seem to raise
interesting questions concerning stable distributions. These could conceivably be
related to questions from §3, such as the condition (ii) for coherence, the conditions
of Assumption 3.3, or the questions from Remarks 3 and 4 following Proposition
3.4.

5. Proof of the local theorem

We complete the paper in this section by outlining a proof of Theorem 2.1.
The global argument we give is based on that of Theorem 8.4.1 of [A3]. It is in
fact slightly simpler, since we will be able to apply Lemma 2.2 at a suitable p-adic
completion, instead of the local results of Shelstad at the set of all archimedean



22 JAMES ARTHUR

places. We can offer little motivation here for the various steps, referring instead
to the relevant discussion from [A3].

We return to the local setting from the earlier parts of the paper. In particular,
we take (F,G, ψ) to be as in Theorem 2.1. Then G is an even, quasisplit, special

orthogonal group (1.1) over a local field F , and ψ is a parameter in the set Ψ̃′(G).
The essential case is still that of a parameter

(5.1) ψ = ψ1 ⊕ · · · ⊕ ψr, ψi ∈ Ψ̃sim(Gi), Gi = SO(Ni), Ni = 2ni,

in the subset Ψ̃′2(G) of Ψ̃′(G). With this assumption on ψ, we will attach a global

triplet (Ḟ , Ġ, ψ̇) to the given local triplet (F,G, ψ), as in Proposition 7.2.1 of [A3].

Then Ġ is an even, quasisplit, special orthogonal group over the global field Ḟ , and

ψ̇ is a parameter in Ψ̃′2(Ġ) of the corresponding form

(5.2) ψ̇ = ψ̇1 ⊕ · · · ⊕ ψ̇r, ψ̇i ∈ Ψ̃sim(Ġi), Ġi = SO(Ni), Ni = 2ni.

The global triplet has the property that

(F,G, ψ) = (Ḟu, Ġu, ψ̇u),

for some fixed place u of Ḟ .
We can actually work with conditions that are simpler that the special re-

quirements of [A3, Proposition 7.2.1]. This is because we have already established
Theorem 2.1 for a large family of p-adic parameters in Lemma 2.2. It suffices here
to let V be a set consisting of one element, a fixed p-adic valuation v = u1 with
large residual characteristic p, rather than the large finite set of nonarchimedean
places in [A3, §7.2]. To recall the context, we write

ψi = µi ⊗ νi, Ni = mini, 1 ≤ i ≤ r,

for irreducible representations µi and νi of LF and SU(2) respectively. We then
apply Corollary 6.2.4 of [A3], supplemented by Remark 3 following its proof, as at
the beginning of [A3, §7.2]. We thereby construct primary global pairs

(Ḣi, µ̇i), Ḣi ∈
˙̃Esim(mi), µ̇i ∈ Φ̃sim(Ḣi),

over Ḟ from the given local pairs

(Hi, µi), Hi ∈ Ẽsim(mi), µi ∈ Φ̃sim(Hi),

over F . But instead of specifying µ̇i,v at a large finite set V of nonarchimedean
places, as a direct sum of distinct irreducible representations of the subgroup WF

of LF (of dimension 1 or 2), we simply take µi,v to be an irreducible representation
of WF (of dimension mi) at the one place v = u1 chosen here. Armed with the

global pairs (Ḣi, µ̇i), we set

ψ̇i = µ̇i ⊗ ν̇i, 1 ≤ i ≤ r,

where ν̇i is the irreducible representation of SL(2,C) of dimension ni. This leads

directly to the required global triplet (Ḟ , Ġ, ψ̇). Its corresponding localization

(F1, G1, ψ1) = (Ḟu1 , Ġu1 , ψ̇u1)

then has the property

ψ1 = φ̂1

of Lemma 2.2, for a local parameter φ1 ∈ Φ̃′2(G1).
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We set

U = {u, u1} = {u} ∪ V, V = {u1}.

The completions of ψ and ψ1 of ψ at the two places in U will have similar endoscopic
properties, to the extent that

(5.3) Sψ ∼= Sψ̇
∼= Sψ1

.

We shall consider the global stabilization (4.1) (with Ġ in place of G), for functions

ḟ in the space HU (Ġ).
We would like to substitute the analogue

(5.4) SĠ
disc,ψ̇

(ḟ) = |Sψ̇|
−1

∑
ṫ∈T (ψ̇)

εĠ(ψ̇)ḟ Ġ(ψ̇ṫ), f ∈ HU (Ġ),

of the identity (4.3) of Conjecture 4.1 for the summands on the right hand side
of (4.1). However, there are two difficulties. One is that the proof of Conjecture
4.1 presupposes the validity of the local theorem we are trying to prove here. The
other is that the localizations of the global parameter ψ̇ at the exceptional set U
were assumed to be coherent. The problem is of course at the primary valuation
u, since the localization at the other valuation u1 ∈ U satisfies the conditions of
Lemma 2.2. The parameters φ = φ̇u and φ̇ do have completely parallel structures
(5.1) and (5.2). This property allows us to relate the sets T (φ) and T (φ̇), which

we regard as torsors over the group Õ(G) ∼= Õ(Ġ). Following the definitions, and
the generic case treated at the beginning of the proof of Theorem 8.4.1 in §8.4 of

[A3], we define a canonical Õ(G)-isomorphism from T (ψ) to T (ψ̇). We can also

include the parameter φ1 = φ̇u1
, since it has exactly the same structure. We obtain

canonical Õ(G)-isomorphisms

t
∼−→ ṫ

∼−→ t1 = ṫu1
, t ∈ T (φ),

for the torsors T (φ), T (φ̇) and T (φ1). On the other hand, we cannot at this point
define the stable linear forms

ḟ −→ ḟ Ġ(ψ̇ṫ) = ḟ Ġ(ψ̇ṫ,U ), ḟ ∈ HU (Ġ), ṫ ∈ T (ψ̇),

on the right hand side of (5.4). We will do so eventually, but in the meantime, we
will have to treat (5.4) as something to be established independently of Conjecture
4.1, under the more specialized conditions here.

To this end, we assume inductively that (5.4) is valid if N is replaced by any
even positive integer N− < N . We make the same induction assumption locally for
Theorem 2.1, as we must in order that the linear forms in (5.4) (with N− < N)
be defined. We then apply the formula to the proper summands on the right hand
side of (4.1) (with ψ̇ and ḟ in place of ψ and f). As we have already seen, in the
expression (4.5) in the last section, the right hand side of (4.1) becomes

(5.5) SĠ
disc,ψ̇

(ḟ) + |Sψ̇|
−1
∑
x∈Sψ
x6=1

∑
t∈T (ψ)

ε′(ψ̇′)ḟ ′(ψ̇′ṫ′),

where (Ġ′, ψ̇′, ṫ′) is a preimage of (ψ̇, ẋ, ṫ), and ḟ is any function in HU (Ġ).
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The left hand side of (4.1) reduces to the trace of the relevant operatorRĠ
disc,ψ̇

(ḟ)

on the discrete spectrum. We write it for now simply in the form

(5.6)
∑

π̇∈Π̃unit(Ġ)

∑
π̇∗∈Π(π̇)

nψ̇(π̇∗)ḟĠ(π̇),

as in [A3, (8.4.8)]. Our analysis of this sum will be simpler than that of its earlier

counterpart. This is in part because the local packet Π̃ψ1
whose behaviour we

understand is simpler than the multiple archimedean packet used before. We are
also working with a function ḟ that is locally symmetric at the places v 6= u, u1, so
the analysis at these places is easy. Of course, it is also true that the local packet

Π̃ψ we are trying to understand is potentially more complicated than its tempered
analogue from [A3, §8.4].

We have to establish the assertions of Theorem 2.1 from the equality of (5.5)
and (5.6). We take our test function to be a product

ḟ = ḟU ḟ
U = f1 · f · ḟU , f1 ∈ H(G1), f ∈ H(G), ḟU ∈ H̃(ĠU ).

We then choose the locally symmetric function ḟU to isolate the element

π̇U =
⊗
w 6∈U

π̇w, π̇w ∈ Π̃φψ̇,w
.

in the packet of φU
ψ̇

such that the character 〈·, π̇w〉 equals 1 for each w 6∈ U . Here

we are using Proposition 7.4.1 of [A3] to treat this packet as a subset of the larger

packet Π̃U
ψ̇

. The pullback of the function ḟU
Ġ

from Π̃unit(Ġ
U ) to Π̃U

ψ̇
then equals 1

at π̇U , and vanishes on the complement of π̇U . The expression (5.5) becomes

(5.7) SĠ
disc,ψ̇

(ḟ) + |Sψ|−1
∑
x∈Sψ
x6=1

∑
t∈T (ψ)

ε′(ψ̇′)f ′1(ψ′1,t′1)f ′(ψ′t′),

as in the reduction of (8.4.7) to (8.4.9) in §8.4 of [A3].
The linear form in f1 ∈ H(G1) satisfies the analogue for G1 of the expansion

(2.9). We write it as

f ′1(ψ′1,t′1) =
∑

ξ1∈Ŝψ1

ξ1(sψ1
x1) f1,G1

(
π1,t1(ξ1)

)
,

where π1(ξ1) is the element in Π̃ψ1 such that 〈·, π1(ξ1)〉 equals the character ξ1, and
π1,t1(ξ1) = π1(ξ1)t1 is the representation in Πψ1 attached to the pair

(
π1(ξ1), t1

)
.

To deal with the other linear form f ′(ψ′t′), we will use notation from §7.1 and §7.4

of [A3]. Specifically, if f belongs to the symmetric subalgebra H̃(G) of H(G), we
write

f ′(ψ′) =
∑
σ∈Σ̃ψ

〈sψx, σ〉fG(σ) =
∑
ξ∈Ŝψ

ξ(sψx)fG
(
σ(ξ)

)
,

where σ(ξ) represents the linear form on H̃(G) attached to the character ξ ∈ Ŝψ.
The local results of [A3, §7.4] establish that

fG
(
σ(ξ)

)
=

∑
π∈Π̃ψ(ξ)

fG(π), f ∈ H̃(G),

where Π̃ψ(ξ) is the subset of elements π ∈ Π̃ψ such that 〈·, π〉 equals π. This
amounts to the assertion (2.2.6) of Theorem 2.2.1 of [A3]. Our task will be to
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establish the generalization of this local expansion to functions in the larger space
H(G).

The expression (5.7) equals (5.6). To deal with the latter, we must use the

localization G1 = Ġu1
of Ġ. For any character ξ ∈ Ŝψ, we write

ξ1 = εψ̇ξ
−1,

where we have identified the isomorphic centralizers (5.3). We then have the Õ(G1)-

orbit π1,ξ = π1(ξ1) in Π̃ψ1
, and the associated representation

π1,ξ,t = π1,t1(ξ1)

in Πψ1
attached to any t ∈ T (ψ). Now if the factors f and f1 of the function

ḟ chosen above are both symmetric, ḟ belongs to the subspace H̃(G) of HU (G).

Under this condition, (5.6) is just the contribution of ψ̇ to the global multiplicity
formula [A3, (1.5.5)]. We can therefore write it as

tr
(
Rdisc,ψ̇(ḟ)

)
= m(ψ̇)

∑
π̇∈Π̃ψ̇(εψ̇)

ḟĠ(π̇)

= 2
∑
ξ∈Ŝψ

f1,G1
(π1,ξ)fG

(
σ(ξ)

)
=
∑
ξ∈Ŝψ

∑
t∈T (ψ)

f1,G1
(π1,ξ,t)fG

(
σ(ξ)

)
,

given our choice of the factor ḟU , the fact that the character ξ1ξ on Sψ̇ = Sψ equals
εψ̇, the identity

m(ψ̇) = 2 = |T (ψ)|,
and the fact that the analogue for G1 of (2.8) is valid. We shall compare this last
double sum with the general expression (5.6), in which f and f1 are not required
to be symmetric. We first observe that if the coefficient nψ̇(π̇∗) of a given π̇∗ in

(5.6) is nonzero, ḟU
Ġ

(π̇U ) equals 1, and π1 = π̇∗,u1
is equal to one of the distinct

representations

π1,ξ,t, ξ ∈ Ŝψ, t ∈ T (ψ).

We then see that we can write (5.6) in the form

(5.8)
∑
ξ∈Ŝψ

∑
t∈T (ψ)

f1,G1(π1,ξ,t)fG
(
σt(ξ)

)
,

where σt(ξ) is a uniquely determined, nonnegative integral linear combination of
representations in Πψ such that

fG
(
σt(ξ)

)
= fG

(
σ(ξ)

)
, t ∈ T (ψ),

if f ∈ H̃(G) is symmetric.
The section

σ(ξ) −→ σt(ξ), ξ ∈ Ŝψ, t ∈ T (ψ),

we have just introduced gives us the two definitions we need for the theorem. For
we can write

fG
(
σt(ξ)

)
=

∑
π∈Π̃ψ(ξ)

fG(πt), f ∈ H(G),
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where πt lies in the preimage of π in Πψ(ξ). This provides the required Õ(G)-

equivariant mapping (π, t)→ πt from Π̃ψ to Πψ. We define the other mapping by
setting

(5.9) fG(ψt) =
∑
π∈Π̃ψ

〈sψ, π〉fG(πt), t ∈ T (ψ), f ∈ H(G).

The required identities (2.7) and (2.8) then follow from these definitions. However,
we must still show that the right hand side of (5.9) is stable in f . We have also to
establish (2.9).

We note in passing that while σt(ξ) is characterized by (5.8), the associated
section π → πt is not uniquely determined at the orbits π with multiplicities greater

than 1 in Π̃ψ(ξ). This illustrates a minor discrepancy in the terminology used to
formulate the original Theorem 1.5.1 of [A3]. Strictly speaking, the local packet

Π̃ψ is neither a “multiset in” Π̃unit(G) nor a “set over” Π̃unit(G), but something
intermediate between the two. For there is nothing in its defining property [A3,

(2.2.6)] that distinguishes among elements in Π̃ψ with higher multiplicities over

Ŝψ. If we wanted to be completely precise, we would say that Π̃ψ is a “multiset

in Π̃unit(G) × Ŝψ”. This slightly arcane point does not arise if the sets Π̃ψ(ξ) are
multiplicity free, as expected. We shall continue to ignore it5, as we have up until
now.

We still have the two assertions of Theorem 2.1, the stability of fG(ψt) and

the validity of (2.9), to establish for our parameter ψ ∈ Ψ̃′2(G). We follow the
argument from [A3, §8.4], modified by the presence here of the point sψ ∈ Sψ and

the character εψ̇ ∈ Ŝψ. We will deduce what is needed from the identity of (5.8)

with (5.7).
The analogue for G1 of (2.9), established in Lemma 2.2, tells us that for any

x ∈ Sψ and t ∈ T (ψ), the linear forms

f1,G1
(ψ1,t1 , sψx) =

∑
ξ∈Ŝψ

〈sψx, π1,ξ,t〉 f1,G1
(π1,ξ,t)

and
f ′1,G1

(ψ1,t1 , x) = f ′1(ψ′1,t′1)

in f1 ∈ H(G1) are equal. As x and t vary, the linear forms in either of these two fam-
ilies are linearly independent. We can therefore choose f1 so that f1,G1(ψ1,t1 , sψx)
vanishes if x 6= 1, but so that its two values

f1,G1(ψ1,t1 , sψ) = f ′1,G1
(ψ1,t1 , 1) = fG1

1 (ψ1,t1), t ∈ T (ψ),

at x = 1 are arbitrary. We observe from the definitions π1,ξ,t = π1,t1(ξ1) and

ξ1 = εψ̇ξ
−1 = ε−1

ψ̇
ξ−1 that

f1,G1(ψ1,t1 , sψx) =
∑
ξ1

ξ1(sψx)f1,G1(π1,ξ,t),

for any x and t, since

〈sψx, π1,ξ,t〉 = 〈sψx, π1,t1(ξ1)〉 = ξ1(sψx).

5 This minor point of uniqueness is separate from the broader question of §3, treated specifically

in Proposition 3.2. The latter is a desired universal property governed only by the assertions of
Theorem 2.1, which is independent of the chosen global triplet (Ḟ , Ġ, Ḟ ), for example.
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It follows by inversion on Sψ and the properties of f1 that

f1,G1
(π1,ξ,t) = |Sψ|−1

∑
x

f1,G1
(ψ1,t1 , sψx)ξ1(sψx)−1

= |Sψ|−1f1,G1
(ψ1,t1 , sψ)ξ1(sψ)−1

= |Sψ|−1εψ̇(sψ̇)fG1
1 (ψ1,t1)ξ(sψ).

We will substitute the chosen function f1 into (5.7) and (5.8), and then examine
the resulting identity of linear forms in f ∈ H(G).

For the given function f1, the expression (5.7) reduces to SĠ
disc,ψ̇

(ḟ), since the

factors

f ′1(ψ′1,t′1) = f1,G1
(ψ1,t1 , sψx), x 6= 1,

in the proper summands all vanish. The expression (5.8) becomes∑
ξ∈Ŝψ

∑
t∈T (ψ)

f1,G1(π1,ξ,t)fG
(
σt(ξ)

)
=
∑
ξ,t

|Sψ|−1εψ̇(sψ̇)ξ(sψ)fG1 (ψ1,t1)fG
(
σt(ξ)

)
= |Sψ|−1εψ̇(sψ̇)

∑
t∈T (ψ)

fG1
1 (ψ1,t1)

∑
ξ∈Ŝψ

∑
π∈Π̃ψ(ξ)

ξ(sψ) fG(πt)

= |Sψ|−1ξψ̇(sψ̇)
∑
t

fG1
1 (ψ1,t1)

∑
π∈Π̃ψ

〈sψ, π〉fG(πt)

= |Sψ|−1εψ̇(sψ̇)
∑
t

fG1
1 (ψ1,t1)fG(ψt),

by (5.9). We have shown that

(5.10) SĠ
disc,ψ̇

(ḟ) = |Sψ|−1εψ̇(sψ̇)
∑

t∈T (ψ)

fG1
1 (ψ1,t1)fG(ψt),

for the variable function f ∈ H(G). Since we can choose f1 so that fG1
1 (ψ1,t1) is

arbitrary, we can arrange that the coefficients of fG(ψt) vary independently of t.
We conclude that for any t ∈ T (ψ), fG(ψt) is a stable linear form in f ∈ H(G), as
required.

The left hand side of (5.10) of course includes the fixed components ḟU and

f1 = ḟu1
of ḟ we have chosen. The summand on the right hand side can be written

fG1
1 (ψ1,t1)fG(ψt) = fG1

1 (ψ1,t1)fG(ψt)(ḟ
U )Ġ(ψUṫ ) = ḟ Ġ(ψ̇ṫ),

by the properties we have imposed on ḟU . The formula (5.10) therefore amounts
to a special case of the putative identity (5.4). We can treat it as a resolution

of our global induction hypothesis, for functions ḟ ∈ HU (Ġ) of the sort we have
been using. As a matter of fact, (5.10) is still valid without the condition on f1

under which it was derived. This follows as in the discussion of [A3, (8.4.17)],
namely from the stability of each side, and the fact that the subspace of functions
f1 ∈ H(G1) that satisfy the condition maps onto the stable space

S(G1) =
{
fG1

1 : f1 ∈ H(G1)
}
.

It is then not hard to see that (5.4) is valid for any function ḟ ∈ HU (Ġ).
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It remains to establish (2.9). We have agreed that (5.10) holds for any func-

tions f1 ∈ H(G1) and f ∈ H(G) (and the function ḟU ∈ H̃(ĠU ) fixed earlier).
Substituting it for the leading term in (5.7), we obtain an expression

|Sψ|−1
∑
x∈Sψ

∑
t∈T (ψ)

ε′(ψ̇′) f ′1(ψ1,t′1
) f ′(ψ′t′),

which is therefore equal to the sum∑
ξ∈Ŝψ

∑
t∈T (ψ)

f1,G1(π1,ξ,t) fG
(
σt(ξ)

)
we labeled (5.8) above. In the first expression, we can write

ε′(ψ̇′)f ′1(ψ′1,t′1) = ε′(ψ̇′)
∑

ξ1∈Ŝψ1

ξ1(sψx)f1,G1

(
π1,t1(ξ1)

)
= ε′(ψ̇′)

∑
ξ∈Ŝψ

εψ̇(sψ̇x)−1ξ(sψx)−1f1,G1(π1,t,ξ)

=
∑
ξ∈Ŝψ

ξ(sψx)−1f1,G1
(π1,ξ,t),

by the analogue of (2.9) for (G1, ψ1), and the sign Lemma 4.4.1 of [A3]. As ξ and
t vary, the linear forms f1,G1

(π1,t,ξ) in f1 ∈ H(G1) are linearly independent. We
fix t ∈ T (ψ) , and also a point x ∈ Sψ, and then choose f1 so that

f1,G1
(π1,ξ,u) =

{
ξ(sψx), if u = t,

0, if u 6= t,

for any ξ ∈ Ŝψ and u ∈ T (ψ). The two sums in our last expression for (5.7) are
over variable points in Sψ and T (ψ). The given substitution introduces a third sum

over Ŝψ. By inversion on the group Sψ, and with the understanding that (G′, ψ′, t′)
maps to the triplet (ψ, x, t) we have fixed, we see that this expression reduces to
the left hand side f ′(ψ′t′) of (2.9). On the other hand, our last expression for (5.8)
becomes ∑

ξ∈Ŝψ

ξ(sψx)fG
(
σt(ξ)

)
=
∑
π∈Π̃ψ

〈sψx, π〉 fG(πt),

the right hand side of (2.9). The formula (2.9) is therefore valid for (G,ψ).
We have completed the proof of Theorem 2.1 for local parameters in the subset

Ψ̃′2(G) of Ψ̃′(G). It remains to deal with parameters ψ in the complement of

Ψ̃′2(G) of Ψ̃′(G). In this case, ψ is the image of a square integrable parameter

ψM ∈ Ψ̃2(M,ψ) for a proper Levi subgroup M of G. It is then possible to define
the mappings t→ ψt and (π, t)→ πt directly from their analogues for M , with the
requirement that they be compatible with induction. This leads in turn to analogues
f ′G(ψt, sψs) and fG(ψt, u) of the two sides of the local intertwining relation [A3,
(2.4.7)]. The general identity (2.9) of Theorem 2.1 can then be established from
the following variant of the local intertwining relation.

Proposition 5.1. For the given group G of the form (1.1) over the local field

F , assume that ψ lies in the complement of Ψ̃′2(G) in Ψ̃′(G). Then

(5.11) f ′G(ψt, sψs) = fG(ψt, u), f ∈ H(G), t ∈ T (ψ),
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for u and s as in Theorem 2.4.1 of [A3].

This is the general analogue of Proposition 8.4.4 for generic parameters φ. We
leave the details to the reader.
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[M] C. Moeglin, Multiplicité 1 dans les paquets d’Arthur aux places p-adiques, in On Certain

L-functions, Clay Mathematics Proceedings, vol. 13, 2011, 233–274.
[MW] C. Moeglin and J.-L. Waldspurger, Sur le transfert des traces d’un groupe classique p-
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