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Preface

This article is an introduction to the monograph [ECR], the purpose of
which was to classify the automorphic representations of a family of classical
groups. The groups are quasisplit, special orthogonal and symplectic groups
G. Their representations are classified in terms of those of general linear
groups GLpNq. The monograph is based on the stabilization of the trace
formula for G, established for any connected group in [A1]. It also depends
on the stabilization of the twisted trace formula for GLpNq, which represents
work in progress by Moeglin and Waldspurger [W5]–[W7], [MW2]. Until
it has been completed, the classification will remain conditional.

There are already two short surveys [A4], [A5] of some of the main
results of [ECR]. This article is somewhat different. I have tried to write
it as a longer report that might be suitable for the broader readership of
Current Developments in Mathematics. The monograph [ECR] is long, and
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2 JAMES ARTHUR

often quite complex. It draws on techniques from many diverse sides of the
subject, which would be hard to present in any detail here. Moreover, what
has been included in this report might still be difficult in places. I hope,
however, that I have given enough motivation to offer some perspective on
the modern theory of automorphic forms, as well as the actual contents of
[ECR].

For the most part, we confine ourselves to the orthogonal and symplectic
groups G whose representations we classify. We recall these groups in §1,
and their relations with Langlands’ principle of functoriality. In §2, we
discuss the automorphic Langlands group LF . Its existence is far from
known, but its expected properties offer much guidance. In §3, we describe
how Langlands parameters and their generalizations, which in their global
form would be defined on the hypothetical group LF , suggest how to relate
representations of G with those of general linear groups GLpNq. This simple
exercise in linear algebra also provides an entry into the theory of endoscopy,
which underlies the statements (and proofs) of our theorems.

The representation theory of GLpNq is relatively simple, and quite well
understood now, thanks to the work of a number of mathematicians over the
past forty years. We shall review some of it in §4, taking the opportunity
also to review the theory of arithmetic and automorphic L-functions. We
shall use the automorphic representations of GLpNq in §5 as a foundation
for ad hoc global parameters for G that do not depend on the hypothetical
group LF . The construction requires two “seed” theorems (Theorems 5.1
and 5.2), which we state but (like everything else) do not prove.

In §6, we review the theory of endoscopy, whose spectral roots we en-
countered in §3. We use it to state a critical local result (Theorem 6.1),
which is the starting point for the local classification. We will then be in a
position to state the main theorems (Theorems 7.1, 7.2 and 7.3) in §7. In the
final §8, we will add some supplementary comments on how the theorems
relate to the two fundamental cases of functoriality discussed in §1. These
observations do not appear in [ECR].

We follow the discussion from [ECR] closely in some places, and reorder
it in others. We are also including supplementary background material from
the theory of automorphic forms and the Langlands program. We have not
tried to cross-reference statements here with those of [ECR], but a reader
will have no difficulty seeing how they correspond. This report takes us
through Sections 1.1–2.1 (and the beginning of §2.2) of [ECR], the part of
the monograph given to the statements of the main theorems. Most of the
rest of the monograph, specifically Sections 2.3–8.2 (and the remaining part
of §2.2), is devoted to the proofs. The argument is long and complex, but it
has a certain unity. It comes with several layers of induction, of which we
will see hints in §5. We will add nothing further to this, except to note that
the heart of the argument is an endoscopic comparison of trace formulas.
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1. Classical groups and functoriality

The groups we consider will be attached to the four infinite families of
complex simple Lie algebras. These are represented by the following four
infinite families of Coxeter-Dynkin diagrams, for which I am indebted to
W. Casselman.

Type An

Type Bn

Type Cn

Type Dn

For corresponding complex groups, we could take the special linear groups
SLpn ` 1,Cq, the odd orthogonal groups SOp2n ` 1,Cq, the symplectic
groups Spp2n,Cq and the even orthogonal groups SOp2n,Cq. The family
An will be our starting point. Since the theory here is simplest for general
linear groups, we will take the reductive groups GLpN,Cq, N “ n ` 1, as
the complex representatives for this family.

We actually want to take these groups over a number field F (such as
the rational numbers Q) or one of its completions (such as the real number
field R or a p-adic field Qp). We therefore take F to be any local or global
field of characteristic 0.

We recall the fundamental theorem of Chevalley, which implies that any
of these complex groups has a canonical F -structure. In other words, for
each of the diagrams, there is a canonical classical group that is defined over
F . It is the split group attached to the given diagram (and centre). Our
interest is actually in quasisplit groups. They represent a broader class of
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groups, obtained by twisting any given split group by a Galois action on the
diagram. The symmetry group of a diagram is the group of bijections of the
set of vertices that preserve all of the edges and arrows. It is isomorphic to
Z{2Z in type An, trivial in types Bn and Cn, and equal1 to Z{2Z in type
Dn. A quasisplit group is determined by a homomorphism from the Galois
group

ΓF “ ΓF {F “ GalpF {F q

of an algebraic closure F over F to the symmetry group of the diagram.
The monograph [ECR] does not treat nonsplit, quasisplit groups of type
An. (These are unitary groups, for which we refer the reader to [Mok].)
Since a quasisplit group of type Bn or Cn is split, we have only to consider
type Dn. In this case, a quasisplit group is determined by a quotient of ΓF
of order 1 or 2, or in other words, a Galois extension E{F of degree 1 or 2.

One of the remarkable discoveries of Langlands has been the fundamental
role played by a certain dual group. We take G to be the group over F
we are working with, either a general linear group GLpNq or a quasisplit

special orthogonal or symplectic group. The dual group pG is a complex
classical group, which is attached to the dual diagram obtained by reversing
the directions of any arrows in the diagram of G. Chevalley’s theorem is
based on an identification of the symmetry group of the diagram with the
group of outer automorphisms of the split group (or rather, a group of F -
automorphisms that represent those outer automorphisms). This transfers

to a dual Galois action of ΓF by complex analytic automorphisms of pG,
which factors through the quotient

ΓE{F “ GalpE{F q

of ΓF . Langlands built this action into the dual group by forming the
semidirect product

LG “ pG¸ ΓF

that is now known as the L-group.
The L-group is actually a more concrete object than might be suggested

by the large Galois factor. For many purposes, one can replace ΓF by any
quotient ΓE{F through which the Galois action factors, and in particular, by
the minimal such quotient above. If G is split, for example, one can often

take E “ F and LG “ pG. Equipped with this minimal form LG “ LGE{F
of the L-group, our four families of groups are then as follows.

Type An: G “ GLpNq is split, and pG “ GLpN,Cq “ LG, where N “ n`1.

Type Bn: G “ SOp2n` 1q is split, and pG “ Spp2n,Cq “ LG.

Type Cn: G “ Spp2nq is split, and pG “ SOp2n` 1,Cq “ LG.

1 If n “ 4, this group is actually isomorphic to S3, but we agree to consider only the
standard symmetries that interchange the two right hand vertices in the diagram.
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Type Dn: G “ SOp2nq is quasisplit, and pG “ SOp2n,Cq;
LG “ SOp2n,Cq ¸ ΓE{F , where degpE{F q P t1, 2u.

To keep the scope of the article within bounds, we will generally confine our
discussion to groups from this list. Unless otherwise stated, groups G, G1,
etc. will be assumed to be taken from our four families of quasisplit classical
groups, or possibly to be direct products of such groups. In fact, we will
often restrict G to be of type Bn, Cn or Dn, and explicitly write GLpNq for
any one of our groups of type An.

We are interested in the representation theory of G. If F is local, our
concern will be the set ΠpGq of equivalence classes of irreducible represen-
tations of GpF q, together with its subsets

ΠtemppGq Ă ΠunitpGq Ă ΠpGq

of representations that are respectively tempered and unitary. (A tempered
representation can be described informally as an irreducible representation
π such that the tensor product

π b π_, π_pxq “ tπpxq´1, x P GpF q,

occurs in the decomposition of the regular representation
`

Rpy1, y2qφ
˘

pxq “ φpy´1
1 xy2q, x, y1, y2 P GpF q, φ P L

2
`

GpF q
˘

,

of GpF qˆGpF q on the Hilbert space L2
`

GpF q
˘

. It is automatically unitary.)
If F is global, we are interested in the set ΠpGq of automorphic representa-
tions of G. These are irreducible representations of the adelic group GpAq,
which are of a very special sort.

We recall that the adeles A “ AF of F form a locally compact ring, in
which F embeds as a discrete subring. The adelic group is then a restricted
direct product

(1.1) GpAq “
„
ź

v

GpFvq,

taken over the valuations v on F . For any v, Fv is the locally compact field
obtained by completing F with respect to v. It is modeled on the standard
case of the completion Fv “ R of F “ Q with respect to the usual absolute
value | ¨ |v “ | ¨ |. We recall that the complementary valuations for F “ Q
are the nonnegative functions

|u|p “

#

p´r, if u “
a

b
pr, for a, b, r P Z, pa, pq “ pb, pq “ 1,

0, if u “ 0,

on Q, parametrized by prime numbers p. In general, the restricted direct
product is the group of elements

x “
ź

v

xv, xv P GpFvq,
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in the direct product such that for almost all valuations v, xv lies in the
maximal compact subgroup Gpovq of points in GpFvq with values in the
compact subring

ov “ tuv P Fv : |uv|v ď 1u

of integers in Fv. It becomes a locally compact group under the appropri-
ate direct limit topology. The group GpF q embeds in GpFvq (as a dense
subgroup). The diagonal embedding of GpF q into GpAq exists (because an
element in GpF q is integral at almost all valuations v), and is easily seen to
have discrete image.

Since GpF q is discrete in GpAq, the quotient GpF qzGpAq is a reasonable
object. It comes with a right invariant measure, which is determined up to
a positive multiplicative constant. One can therefore form the associated
space L2

`

GpF qzGpAq
˘

of square-integrable functions. It is a Hilbert space,
equipped with the unitary representation

`

Rpyqφ
˘

pxq “ φpxyq, x, y P GpAq, φ P L2
`

GpF qzGpAq
˘

,

of GpAq by right translation. An automorphic representation is an irre-
ducible representation of GpAq that occurs in the spectral decomposition of
R.

The description of an automorphic representation just given is more of an
informal characterization than a definition. It can be made precise, but it is
also more restrictive than the formal definition2 in [L3]. The representation
R has a subrepresentation Rdisc that decomposes discretely3 into a direct
sum of irreducible representations (like the 1-dimensional representations

x ÝÑ e2πinx, x P R, n P Z,

from the theory of Fourier series), and a complementary subrepresentation
Rcont that decomposes continuously into a direct integral of irreducible rep-
resentations (like the 1-dimensional representations

x ÝÑ eλx, x P R, λ P iR,

from the theory of Fourier transforms). The point is that an automorphic
representation can occur in either the discrete or the continuous spectrum.
In another sense, however, the analogy with classical Fourier analysis is mis-
leading. This is because an automorphic representation π of GpAq has much
more structure than these familiar 1-dimensional representations. According

2This refers to the definition on p. 203 of [L3] that was shown in Proposition 2 of [L3] to
be equivalent to the formal definition of an automorphic representation in [BJ].
3 To be correct, we should really be speaking of the relative discrete spectrum. That
is, Rdisc is the representation of GpAq on the invariant subspace L2

disc

`

GpF qzGpAq
˘

of

L2
`

GpF qzGpAq
˘

that decomposes discretely modulo the centre Z “ ZpGq of G. This
distinction is only relevant to the reductive group GLpNq, in which ZpF qzZpAq is non-
compact.
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to [F], any such π can be written as a restricted tensor product

(1.2) π “
„
â

v

πv, πv P ΠunitpGvq,

of irreducible unitary representations πv for the local groups Gv over Fv. It
is one thing to be able to put together an irreducible representation π of
GpAq explicitly as a product of this sort. We would require some knowledge
of the sets ΠunitpGvq, an interesting problem to be sure, and one that has
not been solved in general, but nothing further. It is quite another matter
to determine which such products are automorphic. This new constraint
imposes profound relations among the different constituents πv of π.

In fact, it is pretty clear that we will never be able to write down all
automorphic representations explicitly. Langlands’ point of view was more
subtle. He discovered unexpected reciprocity laws among the automorphic
representations for different groups. Thus, although an explicit construction
of all automorphic representations will not be available, there will still be
hidden ties that bind different automorphic representations. Langlands for-
mulated them as a fundamental principle [L1], which later became known
as functoriality. It pertains to any analytic homomorphism ρ between two
L-groups LG1 and LG, taken as groups over the full Galois group ΓF , that
commutes with the two projections onto ΓF . (A homomorphism with these
properties is called an L-homomorphism.)

Principle 1.1 (Langlands Functoriality). Suppose that G and G1 are
general quasisplit groups over a number field F . Then any L-homomorphism

ρ : LG1 ÝÑ LG

between their L-groups determines a natural correspondence

π1 ÝÑ π

of their automorphic representations, which is compatible with their local
decompositions (1.1), and depends only on the orbit of ρ under the action of
pG by conjugation on LG.

By correspondence we mean a relation rather than a function, and for
this assertion, automorphic representations are to be understood in the in-
clusive sense of the precise definition in [L3], which we have not given, rather
than the restrictive characterization we have given. Langlands also stated a
local form of the principle of functoriality, which applies to any local field F
of characteristic 0. The compatibility assertion for global F above is that if

π1 ÝÑ π,

then

π1v ÝÑ πv,

for any completion Fv of F . In other words, if π1 and π are automorphic
representations of G1 and G that correspond under global functoriality for ρ,
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then their local components π1v and πv correspond under local functoriality
for the completion

ρv : LG1v ÝÑ
LGv

of ρ.
This is the informal version of functoriality stated by Langlands in his

original paper [L1]. It leaves unspecified the nature of the correspondence.
Nevertheless, it still gives a sense of the depth of what was a completely
new phenomenon. Whatever might be the internal relations among the
constituents πv of the automorphic representation π of G, they will be re-
flections of the corresponding internal relations among the constituents π1v
of the automorphic representation π1 of G1. This will become clearer when
we describe more precise versions of functoriality in the final section of the
paper.

The principle of functoriality is one of the great problems of mathe-
matics. It has been established in a significant number of cases. However,
these pale in comparison with the cases that remain unknown. Langlands
has introduced some striking ideas for attacking the general case through a
completely new application of the trace formula. (See [FLN], [L6] and [A3,
Afterword]. It is not known, however, how far these ideas will ultimately
take us. Even if they work in principle, there will still be many years of
effort required by many mathematicians before they can be fully realized.

One of the goals of the monograph [ECR] was to establish the principle
of functoriality in two basic cases. We shall describe them in turn.

The first case arises from the natural embedding of a complex classical
group into a complex general linear group. Suppose that G belongs to one
of our families Bn, Cn or Dn. There is then a canonical embedding of the

dual group pG into a general linear group GLpN,Cq, for N equal to 2n, 2n`1
and 2n respectively. If G is split over F , this extends trivially to a canonical
embedding

LG “ pGˆ ΓF ÝÑ L
`

GLpNq
˘

“ GLpN,Cq ˆ ΓF

of the full L-group of G to that of GLpNq. In the special case of type
Cn, we also obtain a nonstandard embedding of LG into L

`

GLpNq
˘

for any
quadratic extension E{F , by mapping the quotient ΓE{F “ ΓF {ΓE isomor-
phically into the central subgroup t˘1u of the image of Op2n ` 1,Cq in
GLpN,Cq. If G is not split over F , it is of type Dn. The associated qua-

dratic quotient ΓE{F then acts on pG “ SOp2n,Cq through the nonidentity
connected component of the complex group Op2n,Cq. This leads again to a
canonical embedding

LG “ pG¸ ΓF ÝÑ L
`

GLpNq
˘

“ GLpN,Cq ˆ ΓF

of L-groups. We will discuss the various L-embeddings for this basic case of
functoriality from a different perspective in Section 3.
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In the second case, G is above. This time, however, we take a product

G1 “ G11 ˆG
1
2

of smaller such groups. We require that the dual group

pG1 “ pG11 ˆ
pG12

come with a natural embedding into pG. This means that

pG1 “ Spp2m,Cq ˆ Spp2n´ 2m,Cq Ă Spp2n,Cq “ pG,

pG1 “ SOp2m,Cq ˆ SOp2n` 1´ 2m,Cq Ă SOp2n` 1,Cq “ pG,

and
pG1 “ SOp2m,Cq ˆ SOp2n´ 2m,Cq Ă SOp2n,Cq “ pG,

for integers 0 ď m ď n, where G is of type Bn, Cn and Dn respectively.
If G is of type Bn, G1 is split, and the embedding of LG1 into LG extends
trivially to an L-embedding of LG1 into LG. If G is of type Cn, G and G12
are split, but G11 can be a quasisplit group defined by a quadratic extension
E1 of F . In this case, we obtain an L-embedding

LG1 “ p pG11 ˆ
pG12q ¸ ΓF ÝÑ LG “ pGˆ ΓF

from the nonstandard embedding of the second factor LG12 attached to the
quadratic extension E1{F . Finally, if G is of type Dn, it is the quasisplit

group defined by an extension E “ F p
?
dq of degree 1 or 2. We can then

take G11 and G12 to be quasisplit groups of types Dm and Dn´m defined by
any quadratic extensions E1 “ F p

?
d1q and E2 “ F p

?
d2q such that d1d2

equals d. It is then easy to see that there is a canonical embedding

LG1 “ p pG11 ˆ
pG12q ¸ ΓF ÝÑ LG “ pG¸ ΓF

of L-groups.
We thus obtain two basic cases of the principle of functoriality by taking

the L-homomorphism ρ of Principle 1.1 to be any one of the L-embeddings
we have just described. The first is at the heart of the classification of
representations of G (both local and global) in terms of those of GLpNq.
The second provides the foundation for an understanding of the precise
functorial correspondence from G to GLpNq.

2. The automorphic Langlands group LF

About ten years after formulating the principle of functoriality [L1],
Langlands introduced something just as surprising [L4]. It is a hypothet-
ical group that would be universal, in the sense that it could be used to
characterize the automorphic representations of any group (connected and
reductive, but not necessarily belonging to one of our four families) over a
number field F . The existence of the Langlands group is closely related to
the principle of functoriality, even somewhat deeper, but its hypothetical
properties are still very useful for guidance and motivation.
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In the earlier paper [L1], Langlands had already predicted a major role
for a smaller group, the variant of the absolute Galois group ΓF introduced
by Weil. The Weil group WF is a locally compact group that is defined if F
is either local or global. It comes with a continuous homomorphism

φ : WF ÝÑ ΓF ,

with dense image and connected kernel, under which the preimage of any
subgroup ΓE of ΓF of finite index equals the Weil group WE of the associated
finite field extension E of F . For each such E, WF is equipped also with a
topological isomorphism

rE : CE ÝÑ W ab
E

where W ab
E “WE{W

c
E is the abelianization of WE , and

CE “

#

E˚, the multiplicative group of E, if E is local,

A˚E{E˚, the idèle class group of E, if E is global.

The triplet pWF , φ, trEuq, which one usually denotes simply by WF , is sub-
ject to four natural conditions [T, §1.1, (W1)–(W4)]. With these conditions,
WF is defined and uniquely determined up to an isomorphism, which itself
is uniquely determined up to conjugation by an element in the kernel of φ.
(See [T].)

If F “ C, for example, WF equals the multiplicative group C˚. If F “ R,
WF is a nontrivial central extension

1 ÝÑ WC ÝÑ WR ÝÑ Z{2Z ÝÑ 1

of WC. It can be identified with the explicit group generated by C˚ and a
symbol σR with σ2

R “ ´1, subject to the conjugation relation

σRzσR “ z, z P C˚.

If F is a local field that is nonarchimedean (which is to say that it is not
equal to C or R), WF is an extension

1 ÝÑ IF ÝÑ WF ÝÑ xFroby ÝÑ 1

of an infinite cyclic group by a compact subgroup IF (the inertia group)
of ΓF . The element Frob represents the Frobenius automorphism in the
absolute Galois group

Galpk{kq – ΓF {IF

of the residue field k of F , a compact, totally disconnected group, in which
the cyclic group generated by Frob is dense. In this case, WF is still a
reasonably explicit object. If F is global, WF is more complicated. But
as in the local case, the computations with WF that arise in representation
theory can often be made quite explicit.

The global Weil group has some extra structure. It comes with embed-
dings of the local Weil groups WFv , which are determined up to conjugacy,
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and are compatible with the associated embeddings of Galois groups. In
other words, for every valuation v on F , we have a commutative diagram

(2.1) WFv� _

��

// ΓFv� _

��

WF
// ΓF

in which the vertical embeddings are determined up to conjugacy in WF and
ΓF .

Suppose that G is one of our groups over F . Since

WF {WE – ΓF {ΓE ,

for any finite extension E of F , the Weil group acts on pG. We can therefore
take the Weil form

LG “ pG¸WF

of the L-group. This seems more cumbersome than the Galois form, es-
pecially if we take the minimal Galois form with ΓF replaced by the finite
group ΓE{F . However, it is ultimately the best version of the L-group to
work with. We can still talk about L-homomorphisms in this context, and
we are free to formulate the principle of functoriality as in §1. We shall use
the Weil form of the L-group in the rest of this section, as well as in the
next.

Langlands conjectured the existence of a natural mapping φÑ Πφ, from
L-homomorphisms

φ : WF ÝÑ LG,

taken up to conjugacy of LG by its subgroup pG, to packets Πφ of irreducible
representations. The proposed sets Πφ later become known as L-packets,
since they were conjectured to consist of representations with the same L-
functions and ε-factors. For local F , they should be finite subsets of ΠpGq.
For global F , they should be compatible with the localizations φ Ñ φv
defined by the embeddings (2.1). More precisely, the global L-packet of a
global parameter φ would simply be defined as the set

(2.2) Πφ “

!

π “
„
â

v

πv : πv P Πφv , πv unramified4 for almost all v
)

of irreducible representations of GpAq. The conjectural part of this global
definition can be taken as an assertion that the global L-functions attached
to representations π P Πφ have analytic continuation and functional equa-
tion. This conjecture, local and global, became known as the Langlands
correspondence. Notice that WF can be regarded as the Weil form of the
L-group LG1, for the trivial group G1 “ t1u over F . The Langlands corre-
spondence can therefore be regarded as a very special case of principle of

4 We will leave this notion undefined for the present, and return to it in §4.
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functoriality. It is an illustration of the depth of functoriality, as a conjec-
ture that governs the very foundations of the subject in spite of its seemingly
innocuous statement.

If F equals C or R, Langlands established a correspondence φ Ñ Πφ

for any G over F . Part of the problem was of course to formulate the defi-
nitions, which necessarily go to the roots of Harish-Chandra’s monumental
contributions to harmonic analysis on real groups. Langlands then showed

that ΠpGq is a disjoint union of the packets Πφ, taken over the ( pG-orbits) of
L-homomorphisms φ. His results can be regarded as a classification of the
representations of a real group.

If F is local nonarchimedean, much less is known, in part because there
is no p-adic analogue of Harish-Chandra’s classification of the discrete se-
ries. It was also clear from early examples that the L-packets Πφ would
not exhaust the representations in ΠpGq. If F is global, the problem not
surprisingly is much deeper. In particular, it is known that the automor-
phic representations π P ΠpGq that happen to lie in some Weil packet Πφ

are really quite sparse. It was with this understanding that Langlands was
led to introduce a larger group that would replace WF in his conjectural
correspondence.

Assume that F is global. In Langlands’ original article [L4], the univer-
sal automorphic Galois group was to be an object in the category of complex,
reductive pro-algebraic groups. It was formulated as an extension of the ab-
solute Galois group ΓF by a connected, complex, reductive pro-algebraic
group. Kottwitz [K] later pointed out that the group would be simpler if
it were taken in the category of locally compact topological groups, like the
Weil group itself. In this formulation, the global Langlands group LF should
be an extension of WF by a connected, compact group. It would thus take
its place in a sequence

LF ÝÑ WF ÝÑ ΓF

of three locally compact groups, all having fundamental ties to the arithmetic
of F . The group LF should also have a local analogue LFv , for any valuation
v on F , that embeds into an extension

(2.3) LFv� _

��

// WFv� _

��

// ΓFv� _

��

LF // WF
// ΓF

of the commutative diagram (2.1). In particular, LF should be equipped
with a canonical embedding of LFv , which as in the cases of WF and ΓF , is
determined only up to conjugacy.
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Suppose that F is local. The local Langlands group LF is known. It is
defined as

(2.4) LF “

#

WF , if F is archimedean,

WF ˆ SUp2q, if F is nonarchimedean.

Given G over F , we write ΦpGq for the set of L-homomorphisms

(2.5) φ : LF ÝÑ LG,

taken up to pG-conjugacy. The conjectural Langlands correspondence for G
again takes the form of a mapping

φ ÝÑ Πφ, φ P ΦpGq,

from ΦpGq to finite subsets Πφ of ΠpGq. However, this time it should have
the property

ΠpGq “
ž

φPΦpGq

Πφ

of exhaustion. In particular, the extra unitary factor SUp2q in the definition
(2.4) would be what is needed to obtain a full classification in case F is p-
adic. It is equivalent to the supplementary data that had been used earlier
to construct the Weil-Deligne group. (See [T], [L4].)

Suppose again that F is global. The global Langlands group LF is far
from known. It would be much larger than WF , for the reason that “most”
automorphic representations contain information that cannot be reduced to
something as simple as the Weil group. In the article [A2], we described a
conjectural construction of LF . It is given by an extension

(2.6) 1 ÝÑ KF ÝÑ LF ÝÑ WF ÝÑ 1

of WF by an infinite product KF of compact, connected, simply connected
groups. The factors of KF are parametrized by certain very basic automor-
phic representations of G (which we called primitive in [A2]), as G ranges
over all simply connected, quasisplit groups. The group LF would then be
somewhat self-referential, in that it is supposed to classify automorphic rep-
resentations, and yet at the same time, is built out of certain automorphic
representations. This does not make its existence any easier to establish.
One requires the principle of functoriality for all groups G, and more, to
define the primitive automorphic representations at the core of LF .

In any case, the global Langlands group is supposed to be character-
ized in terms of automorphic representations of general linear groups. It
was predicated by Langlands on the assumption that for any N , there is a
bijective correspondence between irreducible N -dimensional representations
of LF , and cuspidal automorphic representations of the group GLpNq. We
recall that the cuspidal automorphic representations are the fundamental
building blocks for general automorphic representations, and always occur
in the discrete spectrum. (See [BJ, p. 191–197] and [L3, Proposition 2].)
More generally, given one of our groupsG over F , and assuming the existence
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of the global group LF , we define the associated set of L-homomorphisms
ΦpGq as in the local case (2.5). The elements φ P ΦpGq would again pa-
rametrize global L-packets Πφ, defined in terms of their local components
by (2.2). As in the special case of a Weil parameter, we could state the
conjectural part of this global definition by saying that global L-functions
attached to representations π P Πφ should have analytic continuation and
functional equation.

In terms of representation theory, the real global conjecture concerns au-
tomorphic representations in a packet Πφ. It is convenient to write ΦbddpGq
(in both the local and global cases) for the subset of parameters in ΦpGq
whose image in LG projects onto a bounded (that is, relatively compact)

subset of pG. If G “ GLpNq, for example, elements in ΦbddpGq project
to N -dimensional representations of LF that are unitary. With F being
global, there will be no automorphic representations π in the packet Πφ of
any global parameter in the complement of ΦbddpGq. This is only because
we have taken the restricted definition of automorphic representations, as
elements π P ΠpGq that occur in the automorphic spectral decomposition,
rather than including the supplementary representations obtained by ana-
lytic continuation into the complex domain, as in [L3]. By the same token,
if F is local, there will be no tempered representations π in the packet of a
local parameter φ taken from the complement of ΦbddpGq.

If F is global, the packets Πφ of parameters φ P ΦbddpGq should contain
many automorphic representations π. However, they will still not exhaust
the set ΠpGq of all automorphic representations. The situation here is like
that of a nonarchimedean local field F , where we had to define local pa-
rameters on the product WF ˆ SUp2q rather than just WF . The final step
for the global field F is likewise to add a factor SUp2q, and form a product
LF ˆ SUp2q. The localization of this group at v, which will be needed to
construct the local components of representations attached to the resulting
global parameters, will be a new product LFv ˆ SUp2q. In particular, if Fv
is nonarchimedean, we will be dealing with a local product

WFv ˆ SUp2q ˆ SUp2q

with two factors SUp2q.
If F is local or global, we write ΨpGq for the set of L-homomorphisms

ψ : LF ˆ SUp2q ÝÑ
LG,

taken up to pG-conjugacy, but with the property that the restriction of ψ to
LF lies in the subset ΦbddpGq of ΦpGq. If F is global, the diagram (2.3)
gives a localization mapping5

ψ ÝÑ ψv

5 We are assuming in this heuristic discussion that the generalized Ramanujan conjecture
is valid for GLpNq. Since this is not known, one must make a minor adjustment in practice.
See the discussion of [ECR, (1.3.10)] and of (4.12) in §4 here.
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from ΨpGq to ΨpGvq. If F is local, we conjecture that there is again a natural
mapping ψ Ñ Πψ, this time from parameters ψ P ΨpGq to finite subsets Πψ

of ΠunitpGq. If F is global, we will then be able to attach a global packet

(2.7) Πψ “

!

π “
„
â

v

πv : πv P Ππv , πv unramified for almost all v
)

of irreducible unitary representations of GpAq to parameters ψ P ΨpGq.
Many of the representations in these packets should be automorphic. More-
over, they ought now to exhaust the set of all automorphic representations.

The set ΨpGq, defined for F local or global, is where the process ends.
It contains ΦbddpGq, as the set of parameters on LF ˆ SUp2q that vanish
on the second factor. The set ΦbddpGq in turn contains the set ΦW

bddpGq of
bounded parameters on WF , as the parameters on LF that are pullbacks
from WF . We obtain embeddings

ΦbddpGq� r

%%

ΦW
bddpGq

+ �

88

� s

%%

ΨpGq

ΨW
bddpGq

, �

::

where ΦW
bddpGq is the subset of parameters in ΨpGq whose restrictions to LF

lie in the subset ΦW
bddpGq. The global family ΨpGq appears to be the right

set of parameters for classifying automorphic representations of G. Its local-
izations are then forced on us if we want to describe the local constituents
of automorphic representations.

There is still something more to say. We would of course like to know how
to construct the local packets Πψ. We would also like to characterize which
representations in a global packet Πψ are actually automorphic. The answers
to these questions are closely related to a certain finite group attached to ψ.

For any ψ P ΨpGq, with F being either local or global, we have the
centralizer

(2.8) Sψ “ Cent
`

impψq, pG
˘

of the image of ψ in pG, a complex, reductive subgroup of pG. We also have
its finite group

(2.9) Sψ “ Sψ{S
0
ψ “ Sψ{S

0
ψZp

pGqΓF

of connected components, or rather, connected components in the quotient

(2.10) Sψ “ Sψ{Zp pGq
ΓF

of Sψ by the group of elements in the centre Zp pGq of pG that are invariant

under the action of the Galois group ΓF . (The group Zp pGqΓF equals Zp pGq
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unless G is a nonsplit group SOp2q, and in particular, of type Dn with
n “ 1.)

With our standing agreement that G belongs to one of the families An–
Dn, the quotient Sψ is an abelian 2-group. If F is local, the representations
in the local packet Πψ are closely tied to the group of (linear) characters on
Sψ. If F is global, the group Sψ is contained in the centralizer Sψv of any
localization ψv. It follows that there is a canonical mapping from Sψ into
Sψv . The representations in a global packet Πψ that are automorphic are
then tied to characters on the product

Sψ,A “
ź

v

Sψv

whose restrictions to the diagonal image of Sψ equal a certain character εψ
on Sψ that is defined explicitly in terms of arithmetic invariants attached to
ψ. The case that εψ is nontrivial will obviously be interesting, as also will be
the case that the mapping from Sψ to Sψ,A is not injective. But if neither of
these exceptional conditions hold for ψ, we see a particularly clear analogy
between the local groups GpFvq and global quotient GpF qzGpAq introduced
in §1 and the “miniature models” Sψv and SψzSψ,A we have just defined.

3. Self-dual, finite dimensional representations

The last section contained a good deal of information, some of which is
perhaps difficult to absorb at the early stages of our presentation. Moreover,
it seems to have been built on the shaky foundation of a hypothetical group
LF . Some such discussion, however, is a necessary part of the exposition. It
helps us to see what we should be looking for.

We are trying to classify representations of groups G of type Bn, Cn and
Dn in terms of those of general linear groups GLpNq. If representations are
indeed attached to parameters on a group LF ˆSUp2q, it makes sense to try
to compare parameters for G with those of GLpNq. We shall do so in this
section. The calculation will be an elementary exercise in linear algebra,
which follows the discussion of §1.2 of [ECR].

We are assuming that F is a local or global field of characteristic 0.
Suppose that ΛF is any locally compact group over WF with connected
kernel. We are of course thinking of the case that ΛF equals the product
LF ˆ SUp2q (which is hypothetical if F is global), but the arguments will
be the same for any ΛF . We have already noted the obvious fact that
an L-homomorphism from ΛF to the L-group of GLpNq projects onto the
dual group GLpN,Cq of GLpNq, and can therefore be identified with an
N -dimensional (continuous, complex) representation

r : ΛF ÝÑ GLpN,Cq

of ΛF .
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We say that r is self-dual if it is equivalent to its contragredient repre-
sentation

r_pλq “ trpλq´1, λ P ΛF ,

where x Ñ tx is the usual transpose mapping. In other words, the equiva-
lence class of r is invariant under the usual automorphism

θpxq “ x_ “ tx´1, x P GLpNq,

of GLpNq. This condition depends only on the inner class of θ. It remains
the same if θ is replaced by any conjugate

θgpxq “ g´1θpxqg, g P GLpNq.

We shall analyze the self-dual representations r in terms of orthogonal and
symplectic subgroups of GLpN,Cq.

We decompose a given representation r into a direct sum

(3.1) r “ `1r1 ‘ ¨ ¨ ¨ ‘ `rrr,

for inequivalent representations

rk : ΛF ÝÑ GLpNk,Cq, 1 ď k ď r,

and multiplicities `k with

N “ `1N1 ` ¨ ¨ ¨ ` `rNr.

The representation is self-dual if and only if there is an involution k Ñ k_

on the indices such that for any k, r_k is equivalent to rk_ and `k “ `k_ .
We say that r is elliptic if it satisfies the further constraint that for each k,
k_ “ k and `k “ 1. We shall concentrate on this case.

Assume that r is elliptic. Then

(3.2) r “ r1 ‘ ¨ ¨ ¨ ‘ rr,

for distinct, irreducible, self-dual representations ri of ΛF of degree Ni. If i
is any index, we can write

r_i pλq “ AiripλqA
´1
i , λ P ΛF ,

for a fixed element Ai P GLpNi,Cq. Applying the automorphism θ to each
side of this equation, we see that

ripλq “ A_i r
_
i pλqpA

_
i q
´1 “ pA_i AiqripλqpA

_
i Aiq

´1.

Since ri is irreducible, the product A_i Ai is a scalar matrix. We can therefore
write

tAi “ ciAi, ci P C˚.
If we take the transpose of each side of this equation, we see further that
c2
i “ 1. Thus, ci equals `1 or ´1, and the nonsingular matrix Ai is either

symmetric or skew-symmetric. The mapping

xi ÝÑ pA´1
i q

txiAi, xi P GLpNiq,
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represents the adjoint relative to the bilinear form defined by Ai. Therefore
ripλq belongs to the corresponding orthogonal group OpAi,Cq or symplectic
group SppAi,Cq, according to whether ci equals `1 or ´1.

Let us write IO and IS for the set of indices i such that ci equals `1 and
´1 respectively. We then write

rεpλq “
à

iPIε

ripλq, λ P ΛF ,

Aε “
à

iPIε

Ai,

and

Nε “
ÿ

iPIε

Ni,

for a symbol ε that can be either O or S. Thus AO is a symmetric matrix in
GLpNO,Cq, AS is a skew-symmetric matrix in GLpNS ,Cq, and rO and rS
are representations of ΛF that take values in the respective groups OpAO,Cq
and SppAS ,Cq. We have established a canonical decomposition

r “ rO ‘ rS

of the self-dual representation r into orthogonal and symplectic components.
It is only the equivalence class of r that is relevant. We can therefore

replace rpλq with its conjugate by any matrix B P GLpN,Cq. This has the
effect of replacing the matrix

A “ AO ‘AS

in GLpN,Cq by tBAB. In particular, we can take AO to be any sym-
metric matrix in GLpNO,Cq and AS to be any skew-symmetric matrix in
GLpNS ,Cq. We can therefore put the orthogonal and symplectic groups
that contain the images of rO and rS into some standard form.

It is generally most convenient to choose the standard form for these
groups so that the subgroup of diagonal matrices is a maximal torus. For
our standard orthogonal group in GLpNq, we therefore take

OpNq “ OpJq,

where

J “ JpNq “

¨

˚

˝

0 1

. .
.

1 0

˛

‹

‚

is the second diagonal in GLpNq. It is a group with two connected compo-
nents, whose identity component is the special orthogonal group

SOpNq “ tx P OpNq : detpxq “ 1u.
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As the standard symplectic group in GLpNq, defined for N even, we can
take

SppNq “ Spp rJq,

where

rJ “ rJpNq “

¨

˚

˚

˚

˝

0 1
´1

. .
.

p´1qN`1 0

˛

‹

‹

‹

‚

for any N . Notice that SppNq is the group of fixed points of the automor-
phism

rθpNq “ Intp rJq ˝ θ : x ÝÑ rJθpxq rJ´1,

while OpNq is the group of fixed points of the automorphism

IntprIq ˝ rθpNq

in the inner class of rθpNq (and θ), where

rI “ rIpNq “ J rJ´1 “

¨

˚

˚

˚

˝

1 0
´1

. . .

0 p´1qN`1

˛

‹

‹

‹

‚

.

It is customary to treat rθpNq as the standard automorphism in the inner
class of θ, since it stabilizes the standard splitting [K, (1.3)] of GLpNq.

Returning to our discussion, we can arrange that A equals

JpNOq ‘ rJpNSq. In the interest of symmetry, we actually take A to be
the matrix

JO,S “ JpNO, NSq “

¨

˝

0 rJpN 1Sq
JpNOq

rJpN 1Sq 0

˛

‚ , NS “ 2N 1S ,

obtained from the obvious embedding of JpNOq ‘ rJpNSq into GLpN,Cq.
The associated representation r from the given equivalence class then maps
ΛF to the corresponding subgroup of GLpN,Cq, namely the subgroup

OpNO,Cq ˆ SppNS ,Cq

defined by the embedding

px, yq ÝÑ

¨

˝

y11 0 y12

0 x 0
y21 0 y22

˛

‚ ,

where yij are the four pN 1S ˆ N 1Sq-block components of the matrix y P
SppNS ,Cq.
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The subrepresentations rO and rS of r can be analyzed separately. The
symplectic factor rS is the simpler of the two. Its image is contained in the
connected complex group

pGS “ SppNS ,Cq.

This in turn is the dual group of the split special orthogonal group

GS “ SOpNS ` 1q.

We need say nothing more in this case.
The orthogonal factor rO is complicated by the fact that its image is

contained in the disconnected group OpNO,Cq. Its projection

ΛF ÝÑ OpNO,Cq{SOpNO,Cq “ Z{2Z

onto the corresponding group of connected components is a character η of
ΛF of order 1 or 2. Since the kernels of the mappings ΛF Ñ WF and
WF Ñ ΓF are connected, η can be identified with a character on the Galois
group ΓF of order 1 or 2. This determines a field extension E of F of degree
1 or 2.

Suppose first that NO is odd. In this case, the matrix p´Iq in OpNOq

belongs to the nonidentity component, and the orthogonal group is a direct
product

OpNO,Cq “ SOpNO,Cq ˆ Z{2Z.
We write

SOpNO,Cq “ pGO,

where GO is the split group SppNO ´ 1q over F . We then use η to identify
the direct product

LGO,E{F “ pGO ˆ ΓE{F

with a subgroup of OpNO,Cq, namely SOpNO,Cq or OpNO,Cq, according
to whether η has order 1 or 2. We thus have an embedding of a restricted
form LGO,E{F of the L-group of GO into GLpNO,Cq.

Assume next that NO is even. In this case, the nonidentity component
in OpNOq acts by an outer automorphism on SOpNOq. We write

SOpNO,Cq “ pGO,

where GO is now the corresponding quasisplit orthogonal group SOpNO, ηq
over F defined by η. In other words, GO is the split group SOpNOq if η is
trivial, and the nonsplit group obtained by twisting SOpNOq over E by the
given outer automorphism if η is nontrivial. Let rωpNOq be the permutation
matrix in GLpNOq that interchanges the middle two co-ordinates, and leaves
the other co-ordinates invariant. We take this element as a representative
of the nonidentity component of OpNO,Cq. We then use η to identify the
semidirect product

LGO,E{F “ pG¸ ΓE{F
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with a subgroup of OpNO,Cq, namely SOpNO,Cq or OpNO,Cq as before. We
again obtain an embedding of a restricted (in this case minimal) L-group of
GO into GLpNO,Cq.

We have shown that the elliptic self-dual representation r factors through
the embedded subgroup

LGE{F “
LpGO ˆGSqE{F

of GLpN,Cq attached to the quasisplit group

G “ GO ˆGS

over F . The group G is called a twisted endoscopic group for GLpNq. It is
determined by r, and in fact, by the decomposition N “ NO `NS and the
character η “ ηG attached to r. The same is true of the L-embedding

ξ “ ξO,S,η : LG “ pG¸ ΓF ãÝÑ L
`

GLpNq
˘

“ GLpN,Cq ˆ ΓF ,

obtained by inflating the embedding above to the full L-groups. A third
object we can associate to the decomposition N “ NO `NS , and hence to
r, is the product

s “ sO,S “ J´1
O,S ¸ θ.

It is a semisimple element in the coset

(3.3)
p

rGpNq “ GLpN,Cq ¸ θ

of θ in the semidirect product
p

rGpNq` of GLpN,Cq with the group θ` of

order 2 generated by θ. The complex group pG “ pGO ˆ pGS is then the
connected centralizer of s in the subgroup

GLpN,Cq “ GLpN,Cq ¸ 1.

The triplet pG, s, ξq is called a twisted endoscopic datum for GLpNq.
The triplet pG, s, ξq belongs to a special class, called elliptic twisted endo-

scopic data. This is a consequence of our condition that the original self-dual
representation is elliptic. A general (nonelliptic) twisted endoscopic datum
for GLpNq is again a triplet pG, s, ξq, where G is a quasisplit group over F ,
s is a semisimple element in GLpN,Cq ¸ θ whose connected centralizer in

GLpN,Cq equals pG, and ξ is an L-embedding of LG into LGLpNq. We re-

quire that ξ equal the identity on pG, and that the projection onto GLpN,Cq
of the image of ξ lie in the full centralizer of s. The twisted endoscopic group

G (or datum) is said to be elliptic if its subgroup Zp pGqΓF is finite.
We have been following a special case of the general terminology of

[KS, p. 16]. The notion of isomorphism between general endoscopic data is
defined in [KS, p. 18]. In the case at hand, it is given by an element g in
the dual group GLpN,Cq whose action by conjugation is compatible (in a
natural sense we do not spell out, but which is easy to imagine) with the two

twisted endoscopic data. We write rAutN pGq for the group of isomorphisms
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of the twisted endoscopic datum G to itself. The main role for this group is
in its image

rOutN pGq “ rAutN pGq{rIntN pGq

in the group of outer automorphisms of the group G over F . (Following
standard practice, we often let the twisted endoscopic group G represent a
full datum pG, s, ξq, or even an isomorphism class of data.) If G represents

one of the elliptic data above, rOutN pGq is trivial if the integer NO is odd or

zero. In the remaining case that NO is even and positive, rOutN pGq is a group
of order 2, the nontrivial element being the outer automorphism induced by
the nontrivial component of OpNO,Cq, which we have represented by the
permutation matrix rωpNOq above.

We write6

rEpNq “ E
`

rGpNq
˘

for the set of isomorphism classes of twisted endoscopic data for GLpNq,
and

rEellpNq “ Eell

`

rGpNq
˘

for the subset of classes that are elliptic. The data pG, s, ξq, attached to
equivalence classes of elliptic, self-dual representations r as above, form a

set of representative of rEellpNq. The set rEellpNq is thus parametrized by
triplets pNO, NS , ηq, where NO ` NS “ N is a decomposition of N into
nonnegative integers with NS even, and η “ ηG is a character of ΓF of order
1 or 2 such that η “ 1 if NO “ 0 and η ‰ 1 if NO “ 2. (The last constraint
is required in order that the datum be elliptic.)

Our general goal is to describe the representations of a quasisplit, special
orthogonal or symplectic group in terms of those of general linear groups.
The twisted endoscopic groups G are obviously relevant to the problem.
Indeed, they are just the groups we want to study. But they are also part
of the broader theory of endoscopy, which can therefore be brought to bear
on the task. Since the general arguments are often inductive, the case that
pG is either purely orthogonal or purely symplectic will have a special role.
Accordingly, we write

rEsimpNq “ Esim

`

rGpNq
˘

for the subset of elements in rEellpNq that are simple, in the sense that one
of the integers NO or NS vanishes. We then have a chain of sets

(3.4) rEsimpNq Ă rEellpNq Ă rEpNq,
which are all finite if F is local, and all infinite if F is global.

The objects we have been discussing concern the L-embeddings for the
first case of functoriality at the end of §1. We have provided some motivation
for them. We have also used them as a way to introduce the theory of

6 It is understood that rGpNq “ GLpNq ¸ θ is the nonidentity component of the reduc-

tive, nonconnected group rGpNq` “ GLpNq ¸ θ` over F , and that the complex variety
p

rGpNq “ GLpN,Cq ¸ θ above is the associated “dual set”.
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twisted endoscopy for GLpNq. We shall now consider the L-embeddings of
the second case of functoriality from the end of §1.

To this end, we note that in addition to the twisted endoscopic data
for GLpNq, one has also to work with ordinary (untwisted) endoscopic
data. These are attached to our quasisplit, special orthogonal or sym-

plectic groups, which is to say, the groups G P rEsimpNq. An endoscopic
datum for G is similar to what we have described for GLpNq above. It is a
triplet pG1, s1, ξ1q, where G1 is a (connected) quasisplit group over F , s1 is a

semisimple element in pG of which pG1 is the connected centralizer, and ξ1 is
an L-embedding of LG1 into LG. We again require that ξ1 equal the identity

on pG1, and that its image lie in the centralizer of s1 in LG. (See [LS, (1.2)],
a special case of the general definition in [KS], which we have specialized
further to the case at hand.) There is again the notion of isomorphism of
endoscopic data, which allows us to form the associated finite group

OutGpG
1q “ AutGpG

1q{IntGpG
1q

of any given G1. (We again often let the endoscopic group G1 stand for an
endoscopic datum pG1, s1, ξ1q, or an isomorphism class of data.) We write
EpGq for the set of isomorphism classes of endoscopic data G1 for G, and

EellpGq for the subset of data that are elliptic, in the sense that Zp pG1qΓF

is finite. We write EsimpGq for the subset of data G1 P EellpGq such that

Zp pG1qΓF equals the minimal group Zp pGqΓF . It consists of the simple group
G alone. We then have a second chain of sets

(3.5) EsimpGq Ă EellpGq Ă EpGq,
which is parallel to (3.4). Similar definitions apply to groups G that repre-

sent more general data in rEpNq.
The explicit description of elements G1 P EellpGq is similar to our analysis

of the set rEellpNq above. If G P rEsimpNq is of type Bn, we have

pG1 “ SppN 11,Cq ˆ SppN 12,Cq Ă SppN,Cq “ pG,

for a decomposition N “ N 11 ` N 12 of N “ 2n into even integers with 0 ď
N 11 ď N 12. If G is of type Cn, we have

pG1 “ SOpN 11,Cq ˆ SOpN 12 ` 1,Cq Ă SOpN,Cq “ pG,

for a decomposition N ´ 1 “ N 11`N
1
2 of N ´ 1 “ 2n into nonnegative, even

integers. If G is of type Dn, we have

pG1 “ SOpN 11,Cq ˆ SOpN 12,Cq Ă SOpN,Cq “ pG,

for a decomposition N “ N 11 ` N 12 of N “ 2n into even integers with
0 ď N 11 ď N 12. It is clear that the products are all connected centraliz-

ers of diagonal matrices s1 P pG1 with entries ˘1. The reader will also be able
to construct all endoscopic groups G1 “ G11 ˆ G12 with these dual groups,
referring as needed to the end of §1, from quasisplit twists of the even or-
thogonal factors G1i. The endoscopic groups G1 determine the endoscopic
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data pG1, s1, ξ1q, unlike what was the case for twisted endoscopic data for
GLpNq. (See the end of [ECR, §1.3] for more remarks.)

We have completed our brief examination of elliptic, self-dual represen-
tations r. We are regarding these objects as parameters for GLpNq, in the
spirit of §2. We have seen that any such parameter factors into a product of
two parameters for two different quasisplit classical groups. These products

are governed by twisted endoscopic data G P rEellpNq. They can be refined

further according to ordinary endoscopic data G1 P rEellpGq. Thus, while the
parameters will not be available in the global case of ultimate concern (for
lack of a global Langlands group LF ), the endoscopic data that control many
of their properties will be. Before we can examine the ramifications of this,
however, we have first to formulate a makeshift substitute for global parame-
ters attached to our quasisplit special orthogonal and symplectic groups. We
shall do so in §5, after a discussion in §4 of the automorphic representations
of GLpNq that will serve as the global parameters for this group.

We have considered only the self-dual representations r that are elliptic,
since it is these objects that pertain directly to our global theorems. We
might ask what happens if r is not elliptic. With a little reflection, one sees
that any such r factors through subgroups of GLpN,Cq attached to several

data G P rEellpNq, in contrast to what we have seen in the elliptic case. It also

factors through subgroups attached to data G P rEpNq in the complement of
rEellpNq. These matters are best formulated in terms of the centralizers

rSrpNq “ Sr
`

rGpNq
˘

“ Cent
`

imprq,
p

rGpNq
˘

and

Sr “ SrpGq “ Cent
`

imprq, pG
˘

of the images of r. Their analysis is closely tied to an elementary but
important bijective correspondence (5.11) we will describe later.

4. The case of GLpNq

In §2, we introduced the kind of parameters that ought to characterize
representations of a given group G. In §3, we examined how the parameters
for an orthogonal or symplectic group G are related to those for a general
linear group GLpNq. This was in support of our goal, to classify representa-
tions of G in terms of those of GLpNq. What makes the goal worthwhile is
the fact that much of the representation theory of GLpNq is well understood
and relatively simple. In this section, we shall review what we need of the
theory, following [ECR, §1.3] and [A5, §1].

Assume for the time being that F is global. If the global Langlands group
LF existed, its corresponding set Ψ

`

GLpNq
˘

of global parameters would
be identified with the set of equivalence classes of unitary, N -dimensional
representations of the locally compact group LFˆSUp2q. Following notation
from [ECR], we could then write Ψsim

`

GLpNq
˘

for the associated subset of
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irreducible representations. It would correspond to the set of pairs pµ, νq,
where µ is an irreducible unitary representation of LF of dimension m,
and ν is the irreducible representation of SUp2q of dimension n, for some
decomposition N “ mn into a product of positive integers.

We do not, of course, have the group LF at our disposal. However,
its irreducible N -dimensional representations are supposed to correspond to
something we do have, cuspidal automorphic representations of GLpNq. We
shall therefore take ΨsimpNq “ Ψsim

`

GLpNq
˘

to be the set of pairs pµ, νq as
above, with µ now being a unitary, cuspidal automorphic representation of
GLpmq instead of an irreducible, unitary m-dimensional representation of
the hypothetical group LF .

Theorem 4.1 (Moeglin-Waldspurger [MW1]). There is a canonical bi-
jection

ψ ÝÑ πψ, ψ P ΨsimpNq,

from ΨsimpNq onto the set of irreducible unitary representations of
GLpN,Aq that occur in the automorphic, relative discrete spectrum
L2

disc

`

GLpN,F qzGLpN,Aq
˘

of GLpNq. Moreover, for any ψ, πψ occurs in
the relative discrete spectrum with multiplicity one.

More generally, we let ΨpNq “ Ψ
`

GLpNq
˘

denote the set of formal,
unordered sums

(4.1) ψ “ ψ1 ‘ ¨ ¨ ¨‘ ψr, ψi P ΨsimpNiq,

for some partition
N “ N1 ` ¨ ¨ ¨ `Nr

of N . It would correspond to the set

ψ1 ‘ ¨ ¨ ¨ ‘ ψr

of N -dimensional direct sums of irreducible unitary representations ψi of
the hypothetical group LF ˆSUp2q, or in other words, the set of all unitary,
N -dimensional representations of LF ˆ SUp2q.

Corollary 4.2. There is a canonical bijection

ψ ÝÑ πψ, ψ P ΨpNq,

from ΨpNq onto the set of irreducible constituents of the full automorphic
spectrum L2

`

GLpN,F qzGLpN,Aq
˘

of GLpNq.

The irreducible constituents of the automorphic spectrum are just the
automorphic representations, according to the informal definition from §1
we are working with. The corollary tells us that there is a natural bijection
from ΨpNq onto the set of automorphic representations of GLpNq. This is a
consequence of Langlands’ theory of Eisenstein series [L2], which provides an
explicit construction of the automorphic continuous spectrum of any group
in terms of (relative) discrete spectra for smaller groups.

If ψ “ pµ, νq belongs to ΨsimpNq, Moeglin and Waldspurger construct
the representation πψ as a global Langlands quotient. It is by definition the
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unique irreducible quotient of the representation of GLpn,Aq obtained by
parabolic induction from the nonunitary representation

x ÝÑ µpx1q|detx1|
n´1
2 b µpx2q|detx2|

n´3
2 b ¨ ¨ ¨ b µpxnq|detxn|

´
pn´1q

2

of the standard Levi subgroup

MP pAq “
 

x “ px1, . . . , xnq : xi P GLpm,Aq
(

.

More generally, if ψ is a general element in ΨpNq of the form above, πψ is
the irreducible representation of GLpN,Aq obtained by parabolic induction
from the unitary representation

πψ1px1q b ¨ ¨ ¨ b πψrpxrq

of the standard Levi subgroup

MP pAq “
 

x “ px1, . . . , xrq : xi P GLpNi,Aq
(

.

In both cases, Eisenstein series provide functions that represent intertwining
operators from the representations πψ to the associated constituents of the
automorphic spectrum.

Suppose that π is an irreducible representation of GLpN,Aq. We assume
implicitly that π is admissible [F, p. 182], a broad condition that is always
valid if π is automorphic. The condition includes a property of weak con-
tinuity, which in view of the direct limit topology on the restricted direct
product (1.1), implies that π is unramified for almost all valuations v of
F . We alluded to unramified representations in our heuristic description of
the general global packets (2.2) and (2.7). For the group G “ GLpNq, an
irreducible representation πv of GpFvq is unramified by definition if Fv is
nonarchimedean, and the restriction of πv to the open compact subgroup
Gpovq of GpFvq contains the trivial, 1-dimensional representation. Unrami-
fied representations have a very simple classification. A well known integral
transform, introduced into p-adic harmonic analysis by Satake, leads to a
canonical bijection

(4.2) πv ÝÑ cpπvq,

from the set of irreducible unramified representations πv of GLpN,Fvq onto
the set of semisimple conjugacy classes cv in the dual group GLpN,Cq of
GLpNq. The given global representation π thus gives rise to a family of
conjugacy classes

(4.3) cSpπq “
 

cvpπq “ cpπvq : v R S
(

,

parametrized by a cofinite set of valuations of F . In order to remove its
dependence on S, some finite set that contains the archimedean valuations,
we write cpπq for the equivalence class of cSpπq with respect to the relation

defined by setting cS „ pc1qS
1

if cv “ c1v for almost all v.
We call cpπq (or any of its representatives cSpπq within the equivalence

class) a Hecke eigenfamily. It represents a set of simultaneous eigenvalues
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for the action of the factors of the restricted tensor product

HS
unpNq “

„
â

vRS

Hv,unpNq

of local unramified Hecke algebras

Hv,unpNq “ C8c
`

GLpN, ovqzGLpN,Fvq{GLpN, ovq
˘

under convolution, relative to the hyperspecial maximal compact subgroup

GLpN, oSq “
ź

vRS

GLpN, ovq

of GLpN,ASq, on the space of GLpN, oSq-invariant vectors of πS . Our in-
terest of course is the case that π is automorphic.

Suppose that ψ is an element (4.1) in the set ΨpNq. We then obtain a
Hecke eigenfamily

(4.4) cSpψq “ cSpπψq “
 

cvpψq “ cpπψ,vq : v R S
(

,

with equivalence class cpψq “ cpπψq, from the irreducible representation πψ
of GLpN,Aq. It is to be regarded as a concrete datum, which is attached to
the formal object ψ through the automorphic representation πψ. According
to the remarks following the statement of Corollary 4.2, cpψiq will be given
explicitly in terms of Hecke eigenfamilies cpµiq, represented by sets

cSpµiq “
 

cvpµiq : v R S
(

, 1 ď i ď r,

which we extract from the cuspidal components µi of constituents ψi of ψ.
More precisely, if ψ “ pµ, νq belongs to ΨsimpNq then

(4.5) cvpψq “ cvpµq b cvpνq “ cvpµqq
n´1
2

v ‘ ¨ ¨ ¨ ‘ cvpµqq
´n´1

2
v , v R S,

while if ψ is a general element (4.1) in ΨpNq, we have

(4.6) cvpψq “ cvpψ1q ‘ ¨ ¨ ¨ ‘ cvpψrq, v R S.

These elements are to be regarded as diagonal matrices in GLpN,Cq, which
of course represent semisimple conjugacy classes.

We write

(4.7) CpNq “
 

cpψq : ψ P ΨpNq
(

for the set of Hecke eigenfamilies attached to elements in ΨpNq.

Theorem 4.3 (Jacquet-Shalika [JS]). The mapping

ψ ÝÑ cpψq, ψ P ΨpNq,

is a bijection from ΨpNq to CpNq.

As we noted in [A5, §1], which we have been following closely here,
Theorem 4.3 predates Theorem 1.1. As stated in [JS], it applied to a class
of automorphic representations Langlands introduced in [L4], and called
isobaric. At the time, it was not known whether this class included the
constituents of the automorphic (relative) discrete spectrum. Theorem 4.1
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implies that such constituents are distinct and isobaric. It therefore yields
the interpretation we have stated above for the original theorem of Jacquet
and Shalika.

Theorem 4.3 is a striking result. It implies that any information that
might be contained in a constituent πψ of the automorphic spectrum of
GLpNq will be captured in the corresponding Hecke eigenfamily cpψq. Since
cpψq appears to contain less information, and since it is just a concrete set
of complex parameters, the assertion is indeed remarkable. It is the more
so for our expressed goal of classifying automorphic representations of the
other groups G in terms of those of GLpNq, and thus in terms of Hecke
eigenfamilies cpψq.

Before turning to the other groups, we shall discuss the local theory
for GLpNq. The local Langlands correspondence is known in this case. In
order to review it, we shall first say something about local L-functions and
ε-factors.

Assume now that F is local. There are two kinds of local L-functions,
arithmetic and representation theoretic. The former are attached to finite
dimensional representations of the local Langlands group LF , the latter to
irreducible representations of general linear groups over F .

Suppose that
φ : LF ÝÑ GLpN,Cq

is an N -dimensional (semisimple, continuous) representation of LF . The
associated arithmetic L-function Lps, φq is a meromorphic function of s P C.
One can also form the local arithmetic ε-factor εps, φ, ψF q, a monomial of the
form ab´s, which depends on a nontrivial additive character ψF of F . The
definition of the coefficient a for nonarchimedean F is by far the most subtle
part of the process. It was constructed canonically by Deligne, following
ideas of Artin and Langlands, by a global argument. If F is archimedean,
we refer the reader to the definition in [T, §3]. If F is nonarchimedean, one
extends φ analytically to a representation to the product of WF with the
complexification SLp2,Cq of the compact unitary subgroup SUp2q of LF .
This gives a representation

µφpwq “ φ

˜

w,

˜

|w|
1
2 0

0 |w|´
1
2

¸¸

, w PWF ,

of WF , in which |w| is the absolute value on WF , and a nilpotent matrix

Nφ “ log

ˆ

φ

ˆ

1,

ˆ

1 1
0 1

˙˙˙

.

The pair Vφ “ pµφ, Nφq provides representation of what is known as the
Weil-Deligne group, from which one can define an L-function

Lps, φq “ ZpVφ, q
´s
F q

and ε-factor
εps, φ, ψF q “ εpVφ, q

´s
F q,
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with qF being the order of the residue field of F , following notation in [T,
§4]. Of particular interest are the tensor product L-function

Lps, φ1 ˆ φ2q “ Lps, φ1 b φ2q

and ε-factor

εps, φ1 ˆ φ2, ψF q “ εps, φ1 b φ2, ψF q

attached to any pair of representations φ1 and φ2 of LF .
Representation theoretic L-functions Lps, π, rq and ε-factors εps, π, r, ψF q

ought to be attached naturally to irreducible representations π of GpF q and
finite dimensional representations r of LG, for any reductive group G over
F . For general G, this can be done in only relatively simple cases. How-
ever, if G is a product GLpN1q ˆGLpN2q of general linear groups, there is
a broader theory [JPS]. It applies to any representation π “ π1 b π2, with
r being the standard representation

rpg1, g2q : X ÝÑ g1X
tg2, g P GLpNi,Cq,

of
pG “ GLpN1,Cq ˆGLpN2,Cq

on the space of complex pN1ˆN2q-matrices X. The theory yields functions

Lps, π1 ˆ π2q “ Lps, π, rq

and

εps, π1 ˆ π2, ψF q “ εps, π, r, ψF q

known as Rankin-Selberg products.
We write ΦpNq “ Φ

`

GLpNq
˘

, ΦbddpNq “ Φbdd

`

GLpNq
˘

and ΨpNq “

Ψ
`

GLpNq
˘

for the specialization to GLpNq of the local parameter sets

from §2, and ΠpNq “ Π
`

GLpNq
˘

, ΠtemppNq “ Πtemp

`

GLpNq
˘

and

ΠunitpNq “ Πunit

`

GLpNq
˘

for the associated sets of irreducible representa-
tions of GLpN,F q. The local Langlands correspondence applies to the first
of these. It is characterized essentially by its compatibility with Rankin-
Selberg products.

Theorem 4.4 (Langlands [L5], Harris-Taylor [HT], Henniart [H], Scholze
[Sch]). There is a canonical bijective correspondence

φ ÝÑ πφ

from ΦpNq to ΠpNq such that

(4.8) Lps, πφ1 ˆ πφ2q “ Lps, φ1 ˆ φ2q

and

(4.9) εps, πφ1 ˆ πφ2 , ψF q “ εps, φ1 ˆ φ2, ψF q,

for any pair of local parameters φ1 P ΦpN1q and φ2 P ΦpN2q.
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The correspondence also satisfies other natural conditions. These include

compatibility with the automorphism rθpNq of GLpNq, with tensor products
by 1-dimensional representations, and with the one-dimensional correspon-
dence given by class field theory (as it relates to determinants and central
characters). If we append these three supplementary conditions to its com-
patibility (4.8) and (4.9) with Rankin-Selberg products, the correspondence
becomes unique. It is in this sense that it is canonical.

The local correspondence has other properties as well. It restricts to
a bijection from the subset ΦbddpNq of ΦpNq to the subset ΠtemppNq of
ΠpNq. It restricts further to a bijection from the subset Φsim,bddpNq of irre-
ducible representations in ΦbddpNq to the subset Π2,temppNq of irreducible
representations of GLpN,F q that occur in the relative discrete spectrum
of L2

`

GLpN,F q
˘

. In the case that F is nonarchimedean, it also takes the
subset of representations φ in Φsim,temppNq that are trivial on the factor
SUp2q of LF onto the subset of representations in Πsim,temppNq that are
supercuspidal.

The local Langlands correspondence also bears on the local set ΨpNq.
For any ψ P ΨpNq, we write

φψpwq “ ψ

˜

w,

˜

|w|
1
2 0

0 |w|´
1
2

¸¸

, w P LF ,

where |w| is now the pullback to LF of the absolute value on WF . We obtain
a mapping

(4.10) ψ ÝÑ φψ, ψ P ΨpNq,

from ΨpNq to ΦpNq, which is in fact injective, as one sees easily from the
fact that restriction of ψ to LF lies in ΦbddpNq. The representation

πψ “ πφψ , ψ P ΨpNq,

defined by the local correspondence is called a Speh representation. It is
known to be unitary. We thus have an injective mapping

(4.11) ψ ÝÑ πψ

from ΨpNq to ΠunitpNq. This is the local analogue of the global bijection of
Corollary 4.1.2. In contrast to the global setting, however, it does not have
a natural interpretation in terms of local harmonic analysis. It is also not
surjective.

Suppose that ψ is a general local parameter in ΨpNq. The centralizer
Sψ defined (2.8) in §2 is the group of invertible intertwining operators of the
N -dimensional representation given by ψ. It is a product of complex general
linear groups, embedded diagonally in GLpN,Cq, and is therefore connected.
The associated group of connected components Sψ is consequently trivial.
Our heuristic discussion at the end of §2 suggests that the packet Πψ ought
then to consist of only the one representation πψ. This in fact matches the
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formal definition we will discuss in §6. It is one more indication that the
representation theory of GLpNq is simpler than that of other groups.

Suppose again that F is global. If ψ “ pµ, νq belongs to the global
set ΨsimpNq, any local constituent πψ,v of the automorphic representation
of Theorem 4.1 equals the Speh representation πψv attached to the local

parameter7 ψv “ µvbν. This is not hard to establish from the definitions of
πψ and πψv as Langlands quotients. The generalized Ramanujan conjecture
asserts that as a local constituent of µ, µv is a tempered representation of
GLpm,Fvq, or equivalently, that it is a unitary m-dimensional representation
of LFv . Since we do not know that this conjecture is valid, however, we
can assume only that the local parameter ψv lies in the set Ψ`v pNq of N -
dimensional, not necessarily unitary representations of LFv ˆ SUp2q. More
generally, suppose that

ψ “ ψ1 ‘ ¨ ¨ ¨‘ ψr, ψk P ΨsimpNkq,

is a general element in ΨpNq. As in the case above that ψ is simple, one
sees that

πψ,v “ πψv ,

for the local parameter

ψv “ ψ1,v ‘ ¨ ¨ ¨ ‘ ψr,v

in Ψ`v pNq. We thus obtain a natural localization mapping

(4.12) ψ ÝÑ ψv, ψ P ΨpNq,

from ΨpNq to Ψ`v pNq. We also see that the global packet Πψ, defined
heuristically (2.7) in terms of LF , should consist of the one representation

πψ “
„
â

v

πψv .

Once again, the representation theory of GLpNq seems to be about as simple
as it can be.

As we noted in §2, global packets should have implications for global
L-functions. Arithmetic global L-functions and ε-factors are attached to N -
dimensional representations φ of WF (or more generally, of the hypothetical
group LF ). They are defined as products

Lps, φq “
ź

v

Lps, φvq

and

εps, φq “
ź

v

εps, φv, ψFvq

7 We are writing µv for both the local constituent of the cuspidal automorphic represen-
tation µ of GLpmq, and the m-dimensional representation of LFv to which it corresponds.
This is natural if we consider that µ should really represent an irreducible, m-dimensional
representation of the global group LF .
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of their local analogues, where ψF is a nontrivial additive character on the
quotient A{F . Automorphic (representation theoretic) versions are attached
to admissible representations π of GpAq and finite dimensional representa-
tions r of LG, for any reductive group G over F . They are again defined as
products

(4.13) Lps, π, rq “
ź

v

Lps, πv, rvq

and

(4.14) εps, π, rq “
ź

v

εps, πv, rv, ψFvq

of their localizations. The products of ε-factors can be taken over a finite
set. The products of L-functions converge for the real part of s in some
right half plane.8 They should have analytic continuation9 to meromorphic
functions of s, which satisfy the functional equations

Lps, φq “ εps, φqLp1´ s, φ_q

and

(4.15) Lps, π, rq “ εps, π, rqLp1´ s, π, r_q,

where φ_ and r_ denote the contragredients of the finite dimensional rep-
resentations φ and r. The two kinds of objects should ultimately be related
by identities

(4.16) Lps, π, rq “ Lps, r ˝ φq

and

(4.17) εps, π, rq “ εps, r ˝ φq,

for any representation π in the global packet of φ. However, these “reci-
procity laws” are still far away in general, and as in the local case, one
needs to study the arithmetic and automorphic objects independently.

The correspondence ψ Ñ φψ of (4.10) will be completely general. As in
the local case discussed for GLpNq above, it will map general parameters ψ
on LF ˆSUp2q injectively to parameters on the group LF . One then defines
arithmetic L-functions and ε-factors for any ψ and r by

Lps, r ˝ ψq “ Lps, r ˝ φψq

and
εps, r ˝ ψq “ Lps, r ˝ φψq.

They should be equal to representation theoretic functions Lps, πψ, rq and
εps, πψ, rq respectively, for any representation πψ in the global packet Πφψ .

A reader unfamiliar with these notions might be overwhelmed now with
the details of what has taken the world of number theory many years to

8 In the representation theoretic case, one must impose a property of weak growth on π,
which always holds if π is automorphic.
9 In the representation theoretic case, π should now be automorphic.
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absorb, while at the same time, an expert might be quite tired of my repe-
tition. At the risk of exhausting the patience of both parties, let me say a
word on the concrete roots of global L-functions.

An irreducible admissible representation π of GpAq still has unramified
local constituents πv at almost all v. Moreover, the Satake transform (4.2)
remains valid. It is a bijection from the set of unramified representations
πv of GpFvq onto the set of semisimple conjugacy classes cpπvq in the dual
group whose image in the factor WFv of LGv is a Frobenius element. The
given global representation π then gives rise to a family

cSpπq “
 

cvpπq “ cpπvq : v R S
(

of semisimple conjugacy classes in LG, and a corresponding equivalence class
cpπq that is independent of S. For any unramified representation rv of LGv,
the local L-function of πv and rv is defined

Lps, πv, rvq “ det
`

1´ rv
`

cpπvq
˘

q´sv
˘´1

, qv “ qFv ,

in terms of the characteristic polynomial of the conjugacy class rv
`

cpπvq
˘

. If

r is allowed to range over representations of LG that are unramified outside
S (a set we can allow to vary), the partial global L-functions

LSps, π, rq “
ź

vRS

Lps, πv, rvq

give an elegant way to package the concrete data from cpπq. If π is au-
tomorphic, each associated partial L-function is supposed to have analytic
continuation to a meromorphic function of s, which satisfies a functional
equation that is now quite complex. The object is then to define supple-
mentary factors Lps, πv, rvq (which should be relatively straightforward) for
v P S, and εps, πv, rv, ψvq (which are deep if v P S, but equal to 1 if v R S)
so that the products (4.13) and (4.14) satisfy the simple functional equation
(4.15). The Langlands-Shahidi method [Sha] has been the most success-
ful technique for studying these questions, but as in the local situation, it
applies only to relatively simple cases.

Global Rankin-Selberg products are well understood, thanks again
to [JPS]. They apply to the representation r of the group
G “ GLpN1q ˆGLpN2q on the space of pN1 ˆ N2q-matrices. Suppose that
ψ1 P ΨpN1q and ψ2 P ΨpN2q are elements in the sets we have introduced
as substitutes for general global parameters. The corresponding representa-
tions

πi “ πψi “ πφψi , i “ 1, 2,

of GLpNi,Aq are automorphic, according to Corollary 4.2. We write

(4.18) Lps, ψ1 ˆ ψ2q “ Lps, π1 ˆ π2q

and

(4.19) εps, ψ1 ˆ ψ2q “ εps, π1 ˆ π2q
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for the associated global L-functions and ε-factors (4.13) and (4.14). It fol-
lows from [JPS] that they have analytic continuation and functional equa-
tion (4.15). The definitions (4.18) and (4.19) are suggestive. They look
like examples of the fundamental reciprocity laws between arithmetic and
automorphic L-functions. But because we have had to define the global
sets ΨpNq in terms of cuspidal automorphic representations instead of rep-
resentations of the Langlands group LF , they remain just definitions. How-
ever, in a formal sense, they confirm the expectation that global L-functions
attached to representations in global packets (2.2) and (2.7) should have
analytic continuation and functional equation. They also represent formal
global versions of the compatibility conditions (4.8) and (4.9) that charac-
terize the local Langlands correspondence.

5. Global parameters for G

In the last section we introduced a set of global “parameters” ΨpNq
for GLpNq. It is our substitute for the actual set of parameters, which
would consist of unitary representations of the hypothetical global group
LF ˆ SUp2q. We also saw how to describe the automorphic representation
theory of GLpNq in terms of ΨpNq. In this section, we turn to our classical
groups G. Motivated by the heuristic discussion of §3, we will try to identify
the subset ΨpGq of ΨpNq that will serve as a set of global parameters for

G. Among other things, we will have to attach a subgroup Sψ of pG to
any ψ P ΨpGq, since its group of connected components governs global
multiplicities. We follow the discussion in [ECR, §1.4].

We assume in this section that the field F is global. The notation (4.1)
for a general element ψ P ΨpNq should not be confused with the similar way
we denoted an elliptic representation (3.2) of the abstract group ΛF . This
is because the simple factors ψi in (4.1) are not required to be distinct. In
future, we shall prefer the analogue of the notation (3.1). That is, we denote
a general element in ΨpNq as a formal, unordered direct sum

(5.1) ψ “ `1ψ1 ‘ ¨ ¨ ¨‘ `rψr,

for positive integers `k and distinct elements ψk “ pµk, νkq in ΨsimpNkq. The
ranks are positive integers Nk “ mknk such that

N “ `1N1 ` ¨ ¨ ¨ ` `rNr “ `1m1n1 ` ¨ ¨ ¨ ` `rmrnr.

We will also often denote the simple components ψk of ψ as formal tensor
products

ψk “ pµk, νkq “ µk b νk,

since they replace tensor products of irreducible representations of the two
groups LF and SUp2q.

We are looking to §3 for guidance. The essential objects there were
the representations of ΛF , an abstract group over WF , that were self-dual.



CLASSIFYING AUTOMORPHIC REPRESENTATIONS 35

The corresponding duality operator on ΨpNq is given by the outer automor-
phism θ: xÑ x_ of GLpNq. It transforms a general parameter (5.1) to its
contragredient

ψ_ “ `1ψ
_
1 ‘ ¨ ¨ ¨‘ `rψ

_
r

“ `1pµ
_
1 b ν1q‘ ¨ ¨ ¨‘ `rpµ

_
r b νrq,

since

ψ_k “ pµk b νkq
_ “ µ_k b ν_k “ µ_k b νk.

We are writing

µ_k pxq “ µkp
tx´1q – tµkpxq

´1, x P GLpmk,Aq,

for the contragredient of the cuspidal automorphic representation µk of
GLpmkq, and we have written ν_k “ νk, since any representation of SUp2q
is self-dual. The contragredient π_ψ of the associated automorphic repre-

sentation πψ of GLpNq then equals πψ_ , as follows from the various defini-
tions. Since the local correspondence of Theorem 4.4 commutes with dual-
ity, according to one of its supplementary conditions, the mapping ψ Ñ ψ_

is the analogue for ΨpNq of duality for N -dimensional representations of
LF ˆ SUp2q.

We write
rGpNq “ rGpNq0 ¸ rθpNq “ GLpNq ¸ θ

as in §3 for the nonidentity connected component of the semidirect product

rGpNq` “ rGpNq0 ¸ rθpNq` “ GLpNq ¸ θ`

of GLpNq with the group of order 2 generated by either of the automor-

phisms rθpNq or θ. We also write

(5.2) rΨpNq “ Ψ
`

rGpNq
˘

“ tψ P ΨpNq : ψ_ “ ψu

for the set of self-dual elements in ΨpNq. This subset is indeed associated

with the component rGpNq. It consists of the elements ψ P ΨpNq such

that the automorphic representation πψ – π_ψ of GLpNq “ rGpNq0 has an

extension to the group rGpN,Aq` generated by rGpN,Aq. We observe also
that there is pointwise action

c “ tcvu ÝÑ c_ “ tc_v u

of θ on the set of (equivalence classes of) Hecke eigenfamilies CpNq. The

mapping of Theorem 4.3 restricts to a bijection from rΨpNq onto the subset

rCpNq “ tc P CpNq : c_ “ cu

of self-dual elements in CpNq.
We are particularly interested in the subset

rΨsimpNq “ rΨpNq XΨsimpNq
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of rΨpNq. It consists of the simple parameters ψ “ µ b ν in rΨpNq. Among
these, we have the smaller subset

rΦsimpNq “ rΨcusppNq

of parameters that are generic, in the sense that ν is trivial. A simple generic
parameter is therefore a self-dual, cuspidal automorphic representation of
GLpNq.

The term simple was also applied in §1.2 to endoscopic data. It was

used to designate the subset rEsimpNq of elliptic twisted endoscopic data

G P rEellpNq that are not composite. An element in rEsimpNq is therefore
one of our quasisplit, special orthogonal or symplectic groups G over F , but
armed with some extra structure (namely, a choice of endoscopic embedding)

in case G “ Spp2nq and pG “ SOp2n ` 1,Cq. For any such G, we need to

introduce the subset rΨpGq of rΨpNq that will serve as global parameters for
G. Its construction will be based on the following fundamental case.

Theorem 5.1. Suppose that φ P rΦsimpNq is a simple generic global

parameter. Then there is a unique Gφ P rEellpNq, regarded as an isomorphism
class of twisted endoscopic data pGφ, sφ, ξφq for GLpNq, such that

cpφq “ ξφ
`

cpπq
˘

,

for some automorphic representation π of G. Moreover, Gφ is simple, and
π occurs in the automorphic discrete spectrum L2

disc

`

GpF qzGpAq
˘

.

The theorem asserts that among all twisted elliptic endoscopic data G P
rEellpNq, there is exactly one that contains the automorphic source for the
Hecke eigenfamily cpφq of φ. The result serves as a “seed theorem” for

our construction of rΨpGq. However, it has to be proved at the same time

as broader theorems that pertain to the set rΨpGq under construction. In
this process, Theorem 5.1 becomes an induction hypothesis in the general

treatment of parameters in rΨpGq. We shall assume it in what follows.

Suppose that ψ is a fixed element in rΨpNq. It is convenient to write Kψ

for the set t1, . . . , ru that indexes the simple constituents ψk of ψ. Since ψ
is self-dual, there is an involution k Ñ k_ on Kψ such that ψk_ “ ψ_k and
`k_ “ `k. The indexing set is then a disjoint union

Kψ “ Iψ > Jψ > J
_
ψ , J_ψ “ tj

_ : j P Jψu,

where Iψ is the set of fixed points of the involution, and Jψ is some comple-
mentary set of representatives of the orbits of order 2. With this notation,
we write

ψ “
´

ð

iPIψ

`iψi

¯

‘

´

ð

jPJψ

`jpψj ‘ ψj_q
¯

.

If i belongs to Iψ, we apply Theorem 5.1 to the simple generic factor µi P
rΦsimpmiq of ψi “ µi b νi. This gives an endoscopic datum pGµi , sµi , ξµiq in
rEsimpmiq, which we denote by Hi. If j belongs to Jψ, we set Hj “ GLpmjq.
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We thus obtain a connected, reductive group Hk over F for any index k in
either Iψ or Jψ, which is to say, in the set

tKψu – Iψ > Jψ

of orbits of the involution on Kψ. Let LHk be the Galois form of its L-group.
We can then form the fibre product

(5.3) Lψ “
ź

kPtKψu

p LHk ÝÑ ΓF q

of these groups over ΓF .
We will use the group Lψ as a substitute for the global Langlands group

LF in our study of automorphic representations attached to ψ. To make
matters slightly more transparent, we have formulated it in algebraic form,
as an extension of the pro-finite (and hence pro-algebraic) group ΓF by a
complex reductive group, rather than an extension of the locally compact
group WF by a compact topological group. For this reason we will work from
now on with the Galois forms of L-groups rather than their Weil forms.

If k “ i is any index in Iψ, we have the L-embedding

rµi “ ξµi : LHi ÝÑ
L
`

GLpmiq
˘

“ GLpmi,Cq ˆ ΓF

that comes with Hi as a (twisted) endoscopic datum for

rGpmiq “ GLpmiq ¸ rθpmiq.

If k “ j belongs to Jψ, we define an L-embedding

rµj : LHj ÝÑ
L
`

GLp2mjq
˘

“ GLp2mj ,Cq ˆ ΓF

by setting

rµjphj ˆ σq “
`

hj ‘ rθjphjq
˘

ˆ σ, hj P pHj “ GLpmj ,Cq, σ P ΓF ,

where
rθjphjq “ rθpmjqphjq “ rJpmjq ¨

th´1
j ¨ rJpmjq

´1.

We then define an L-embedding

rψ : Lψ ˆ SLp2,Cq ÝÑ L
`

GLpNq
˘

“ GLpN,Cq ˆ ΓF

as the direct sum

(5.4) rψ “
´

à

iPIψ

`iprµi b νiq
¯

‘

´

à

jPJψ

`jprµj b νjq
¯

.

Our use of SLp2,Cq here in place of SUp2q is purely notational, and is in
keeping with our construction of Lψ as a complex pro-algebraic group. We

are of course free to interpret the embedding rψ also as an N -dimensional
representation of LψˆSLp2,Cq. With either interpretation, we shall be pri-

marily interested in the equivalence class of rψ as a GLpN,Cq-conjugacy class
of homomorphisms from LψˆSLp2,Cq to eitherGLpN,Cq orGLpN,CqˆΓF .

We can now define the set of global parameters attached to any of our

classical groups. Suppose that G P rEsimpNq. We write rΨpGq for the set of
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elements ψ P rΨpNq such that rψ factors through LG. By this we mean that
there exists an L-homomorphism

rψG : Lψ ˆ SLp2,Cq ÝÑ LG

such that

(5.5) ξ ˝ rψG “ rψ,

where ξ is the L-embedding of LG into L
`

GLpNq
˘

that is part of the twisted

endoscopic datum represented by G. Since rψ and ξ are to be regarded as

GLpN,Cq-conjugacy classes of homomorphisms, rψG is determined up to the

stabilizer in GLpN,Cq of its image, a group that contains pG. The quotient

of this stabilizer by pG equals the group rOutN pGq of outer automorphisms

of pG described in §2. It is trivial unless G is of type Dn, the case of an even

orthogonal group in which rOutN pGq equals Z{2Z. This case complicates
our study of automorphic representations in a number of ways, all stemming

from the fact that there can be two pG-orbits of homomorphisms rψG in the

larger class of rψG. It is why we write rΨpGq in place of the more familiar
symbol ΨpGq.

More generally, suppose thatG belongs to the larger set rEellpNq of elliptic

data, or even the full set rEpNq of (twisted) endoscopic data for rGpNq. As a
group over F , G equals a direct product

G “
ź

α

Gα

of groups Gα that range over (quasisplit) special orthogonal and symplec-
tic groups and (split) general linear groups. We define the set of global
parameters for G as the product

rΨpGq “
ź

α

ΨαpGαq,

where ΨαpGαq equals rΨpGαq if Gα is special orthogonal or symplectic, and
equals ΨpGαq if Gα is a general linear group. It is not hard to see that

an element in rΨpGq can be identified with a pair pψ, rψGq, for a parameter

ψ P rΨpNq and an L-homomorphism

rψG : Lψ ˆ SLp2,Cq ÝÑ LG

that satisfies (5.5), and is defined as a pG-orbit only up to the action of
rOutN pGq. The projection

pψ, rψGq ÝÑ ψ

is not generally injective, in contrast to the injective embedding of rΨpGq into
rΨpNq for simple G that is an implicit part of our original definition. How-

ever, we still sometimes denote elements in the more general sets rΨpGq by
ψ when there is no danger of confusion. In the global situation at hand, one
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is usually concerned only with the case that G is elliptic, but the mapping
is still not injective if G is not simple.

Suppose that ψ belongs to the set rΨpGq we have just defined for any

endoscopic datum G P rEpNq. We can then define the group

Sψ “ SψpGq “ Cent
`

imp rψGq, pG
˘

we have been looking for as the centralizer of the image of rψG. It is a

reductive subgroup of pG, whose quotient

Sψ “ SψpGq “ Sψ{S
0
ψZp

pGqΓF

is a finite abelian 2-group. Notice that there is a canonical element

(5.6) sψ “ rψG

˜

1,

˜

´1 0
0 ´1

¸¸

in Sψ. Its image in Sψ plays a role in the classification of nontempered
automorphic representations of G. We can also assign a twisted centralizer

rSψpNq “ Sψ
`

rGpNq
˘

“ Cent
`

imp rψq, GLpN,Cq ¸ θ
˘

to ψ, as well as its untwisted analogue

rS0
ψpNq “ Sψ

`

rG0pNq
˘

“ Cent
`

imp rψq, GLpN,Cq
˘

.

Then rS0
ψpNq is a product of complex general linear groups, embedded diag-

onally in GLpN,Cq, as we noted in §4, and acts simply transitively by right

or left translation on rSψpNq. Since rSψpNq and rS0
ψpNq are both connected,

they do not complicate the automorphic representation theory of GLpNq.
Following §3, we write

rΨellpNq “ Ψell

`

rGpNq
˘

for the subset of parameters ψ P rΨpNq such that the indexing set Jψ is
empty, and such that `i “ 1 for each i P Iψ. These objects are analogous
to the self-dual representations r we called elliptic in §2. Using the group
Lψ ˆSLp2,Cq in place of ΛF , we can carry out the discussion of §3 without

change here. Among other things, it tells us that any ψ P rΨellpNq has a
unique source in one of the sets

rΨpGq, G P rEellpNq.

To be more precise, let rΨ2pGq be the preimage of rΨellpNq in rΨpGq, for any

G P rEellpNq. The mapping from rΨpGq to rΨpNq then takes rΨ2pGq injec-

tively10 onto a subset of rΨellpNq, which we identify with rΨ2pGq. Moreover,

10 so in particular, the mapping from rΨpGq to rΨpNq that we agreed above was not injective

if G lies in the complement of rEsimpNq in rEellpNq, is injective upon restriction to the subset
rΨ2pGq of rΨpGq.
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rΨellpNq is a disjoint union

rΨellpNq “
ž

GPrEellpNq

rΨ2pGq

of these subsets. We thus have parallel chains of parameter sets

rΨsimpNq Ă rΨellpNq Ă rΨpNq

and

(5.7) rΨsimpGq Ă rΨ2pGq Ă rΨpGq, G P rEellpNq,

where rΨsimpGq denotes the intersection of rΨsimpNq with rΨ2pGq. Observe

that rΨ2pGq is the subset of parameters ψ P rΨpGq such that the centralizer

Sψ is finite, while rΨsimpGq consists of those ψ such that Sψ equals the

minimal group Zp pGqΓF .
The group Lψ now seems quite promising. As we have just seen, it

leads to the kind of objects we would attach to parameters defined on the

product LF ˆ SUp2q. In particular, we now have L-homomorphisms rψ and
rψG from LψˆSLp2,Cq to groups L

`

GLpNq
˘

and LG, with the corresponding

centralizers rSψpNq and Sψ we will need. There is no denying that the
process is pretty crude, starting with the ad hoc definition (5.3) that requires
Theorem 5.1 as a long term induction hypothesis. It is also not appealing
that Lψ depends on the parameter ψ. Nevertheless, the group Lψ does in
the end serve our purpose. It is a kind of endoscopic hull of what would be
the image of the Langlands group LF under a parameter ψ.

Much of our discussion here has been taken directly from §1.4 of [ECR].
The reader can refer to this section of [ECR] for some further discussion,
having to do with the following natural questions:

(i) given ψ P rΨellpNq, determine the unique G P rEellpNq such that ψ

belongs to rΨ2pGq;

(ii) more generally, given any ψ P rΨpNq, determine all G P rEellpNq such

that ψ lies in the image of rΨpGq;

(iii) given G P rEsimpNq and ψ P rΨpGq, determine the centralizer Sψ “
SψpGq explicitly.

However, there is another point from [ECR, §1.4] that we do need to men-
tion here. It concerns a bijective correspondence, which is elementary, but
which is also in some sense the theoretical center of the theory of endoscopy.

In §3, we described endoscopic data G1 P EpGq for G. Since any such G1

is again a direct product

G1 “
ź

α1

G1α1

of groups of the kind we have studied, we can define the set of parameters

rΨpG1q “
ź

α1

ΨpG1α1q,
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as above. We can also form the centralizer group Sψ1 “ Sψ1pG
1q, for any ψ1

in this set.
Consider a pair

(5.8) pG1, ψ1q, G1 P EpGq, ψ1 P rΨpG1q.

We recall thatG1 really represents an isomorphism class of triplets pG1, s1, ξ1q,

where s1 is a semisimple element in pG1 and ξ1 is an L-embedding of LG1 into
LG. The parameter ψ1 “ ψG1 can be identified with a pair pψ, rψ1q, for a

parameter ψ P rΨpGq and an L-embedding

rψ1 “ rψG1 : Lψ ˆ SLp2,Cq ÝÑ LG1

such that

(5.9) ξ1 ˝ rψ1 “ rψG,

in the notation above, where rψ1 is defined as a pG1-orbit only up to the action
of the finite group

rOutN pG
1q “ OutGpG

1q ˆ rOutN pGq.

The pair pG1, ψ1q gives rise to a second pair

(5.10) pψ, sq, ψ P rΨpGq, s P EpSψq,
where EpSψq “ EpSψ,ssq denotes the set of semisimple conjugacy classes in

the complex reductive group Sψ “ Sψ{Zp pGq
ΓF . Indeed ψ “ ψG is attached

to ψ1 as above, while s is just the image ξ1ps1q of s1 in pG.
Conversely, suppose that it is a pair pψ, sq of the second sort (5.10)

that we are given. With this information, we set pG1 equal to the connected

centralizer of s in pG, and s1 equal (somewhat superfluously) to the preimage

of s in pG1. The product

G1 “ pG1 ¨ rψG
`

Lψ ˆ SLp2,Cq
˘

of pG1 with the image of rψG can be identified with an L-subgroup of LG,
for which the identity embedding ξ1 is an L-homomorphism. We define G1

to be a quasisplit group for which pG1, equipped with the L-action induced
by G1, is a dual group. The triplet pG1, s1, ξ1q represented by G1 is then an
endoscopic datum for G, as defined in §3. Since s lies in the centralizer of

the image of the L-embedding rψG attached to ψ, rψG factors through LG1.

We obtain an L-embedding rψ1 of LψˆSLp2,Cq into LG1 that satisfies (5.9),

and hence, an element ψ1 P rΨpG1q. The pair pψ, sq thus leads in the other
direction to a pair pG1, ψ1q of the first sort (5.8).

The bijective correspondence

(5.11) pG1, ψ1q ÝÑ pψ, sq

is a general phenomenon. It applies to arbitrary endoscopic data, twisted
or otherwise, and corresponding spectral parameters. In particular, it has

a natural variant in the case that pG,G1q is replaced by
`

rGpNq, G
˘

. It
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also applies without change if F is replaced by a local field. In all cases,
the correspondence transforms questions on the transfer of characters to
questions on the groups Sψ.

Finally, we will need to know how to localize global parameters for G.
For any v, we have the local parameter set ΨpGvq defined in §4. We write
Ψ`pGvq for the larger set of parameters on LFv ˆSUp2q, in which the image

in pG is not required to be bounded. To match our global convention, we

will also write rΨ`pGvq for the quotient of Ψ`pGvq by the group rOutN pGvq.

We would like to show that for any G P rEsimpNq, the mapping (4.12) from

ΨpNq to Ψ`v pNq takes the subset rΨpGq of ΨpNq into the subset rΨ`pGvq of
Ψ`v pNq. This property is not elementary. It is a consequence of a second
“seed theorem”, which we state as a complement to Theorem 5.1, but which
like Theorem 5.1, has in the end to be proved at the same time as broader
theorems.

Theorem 5.2. Suppose that φ P rΦsimpNq is simple generic, as in The-
orem 5.1. Then the localization φv of φ at any v, a priori an element in

the subset rΦvpNq of local generic parameters in rΨ`v pNq, lies in the sub-

set rΦpGφ,vq of rΦvpNq attached to the localization Gφ,v of the global datum

Gφ P rEsimpNq of Theorem 5.1.

The theorem asserts that the N -dimensional representation φv of LFv ,
which is attached by the local Langlands correspondence to the cuspidal
automorphic representation of GLpNq given by φ, factors through the local
endoscopic embedding

ξφ,v : LGφ,v ÝÑ
L
`

GLpNqv
˘

.

It allows us to identify φv with a local L-homomorphism from LFv to LGφ,v.
Like its global companion Theorem 5.1, Theorem 5.2 is proved by a long
induction argument that includes the proof of broader theorems. Since we
will not be able to present the general argument here, we will just assume
both Theorems 5.1 and 5.2 in what follows.

We apply Theorem 5.2 to each of the orthogonal and symplectic factors
LHk in the fibre product (5.3). Putting them together, and applying only
the local correspondence of Theorem 4.4 in case Hk “ GLpmkq, we obtain
a conjugacy class of L-homomorphisms

(5.12) LFv

��

// ΓFv

��

Lψ // ΓF

It is determined up the action of the group

rOutpLψq “
ź

k

rOutmkpHkq,
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where rOutmkpHkq “ 1 in case Hk “ GLpmkq. This is the analogue of (2.3)
for our makeshift substitute Lψ for LF .

Suppose that ψ belongs to rΨpGq for some G P rEsimpNq, or indeed, for

any G in the general set rEpNq. It then follows from this discussion that

we can identify the localization of ψ, as an element in rΨ`v pNq, with an
L-homomorphism

ψv : LFv ˆ SUp2q ÝÑ
LGv.

This fits into a larger commutative diagram of L-homomorphisms

(5.13) LFv ˆ SUp2q

��

ψv
// LGv

��

// ΓFv

��

Lψ ˆ SLp2,Cq
rψG
// LG // ΓF

where the left hand vertical arrow is given by the mapping of LFv into Lψ
in (5.12), and the embedding of SUp2q into SLp2,Cq. In particular, we

obtain a localization mapping of the form (4.12) that takes rΨpGq into the

set rΨ`pGvq. Moreover, since ψv is essentially the restriction of the global

embedding rψG to the image of LFv ˆ SUp2q, the global centralizer Sψ is
contained in Sψv . From this, it follows that there is a canonical mapping

x ÝÑ xv, x P Sψ,
of Sψ into Sψv .

6. Transfer and the fundamental lemma

The field F will be local in this section unless stated otherwise. The
essential problem is to establish the local Langlands correspondence for a

special orthogonal or symplectic group G P rEsimpGq. It is closely related
to local functoriality, specifically the second of two cases described at the

end of §1, in which G1 P rEpGq is an endoscopic group for G. Within the
general principle of functoriality, this case is distinguished by being also a
part of the separate theory of endoscopy. As such, it should come with a
characterization of the image of the functorial correspondence

π1 ÝÑ π, π1 P ΠpG1q,

of Principle 1.1. The reason for this is that the functorial correspondence of
representations will be dual to a transfer of functions from GpF q to G1pF q.

The transfer of functions is based on harmonic analysis. Its domain
is a space of test functions on GpF q, such as the space C8c pGq of func-
tions on GpF q that are smooth (which means infinitely differentiable if F is
archimedean, and locally constant if F in nonarchimedean) and compactly
supported. Following [ECR], we will instead take the Hecke algebra HpGq,
a convolution algebra that equals C8c pGq if F is nonarchimedean, but that is
the proper subalgebra of functions f P C8c pGq that satisfy a supplementary
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finiteness condition under left and right translation of f by elements in a
fixed maximal compact subgroup of GpF q, if F is archimedean.

An element γ P GpF q is called strongly regular if its centralizer

Gγ “ Centpγ,Gq “ tx P G : x´1γx “ γu

is a (maximal) torus in G. For any such γ, we have the associated invariant
orbital integral

fGpγq “ |Dpγq|
1
2

ż

GγpF qzGpF q
fpx´1γxqdx

of any test function f P HpGq, where dx is a fixed, right invariant measure
on the coset space GγpF qzGpF q. We have normalized fGpγq by the Weyl
discriminant

Dpγq “ det
`

p1´Adpγqqg{gγ
˘

,

where g and gγ are the Lie algebras of G and Gγ . We regard fG as a function
on the set of strongly regular points γ, and write

(6.1) IpGq “ tfG : f P HpGqu

for the image of HpGq under this transform.
The functions in IpGq also have a spectral interpretation. Any repre-

sentation π P ΠpGq has a character, which can be identified with the linear
form

tr
`

πpfq
˘

“ tr
´

ż

GpF q
fpxqπpxqdx

¯

, f P HpGq,

on HpGq. We set

fGpπq “ tr
`

πpfq
˘

,

in analogy with the notation we have used for the dual orbital integrals.
It can then be shown that either of the two functions tfGpγqu or tfGpπqu
attached to f determines the other. We can therefore regard any element
fG in IpGq as a function of either γ or π. It is invariant, in the sense that
it depends only on the conjugacy class of γ or the equivalence class of π. It
also remains invariant if its preimage f P HpGq is replaced by any conjugate

fypxq “ fpyxy´1q, x, y P GpF q.

The theory of endoscopy is founded on the fact that conjugacy in GpF q is
finer than geometric conjugacy. Two strongly regular elements in GpF q are
said to be stably conjugate if they are conjugate as elements in the group
GpF q of geometric points in G. For the local field F , it is easy to show
that there are only finitely many GpF q-conjugacy classes γ in any (strongly
regular) stable conjugacy class δ. The corresponding sum

fGpδq “
ÿ

γ

fGpγq, f P HpGq,
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of orbital integrals is called the stable orbital integral of the given function
f at δ. We write

(6.2) SpGq “ tfG : f P HpGqu

for the space of functions of δ obtained in this way. As we shall see, L-packets
arise when we try to find a spectral interpretation for the functions fG in
SpGq analogous to the values fGpπq of functions fG in IpGq. In general, a
distribution on GpF q, or more correctly a continuous linear form on HpGq,
is said to be stable if its value at any f depends only on fG. If this is so, we
can identify S with the linear form

(6.3) pSpfGq “ Spfq, f P HpGq,

on SpGq. The spectral question above is then to attach stable distributions
to representations π.

Suppose that G1 is an endoscopic datum for G. Langlands and Shelstad
[LS] define a strongly regular element δ1 in G1pF q to be strongly G-regular
if its image in GpF q (under any admissible embedding [LS, (1.3)] of its
centralizer G1δ1 into G) is strongly regular for G. The space of strongly G-
regular elements remains open and dense in G1pF q, so functions in the space
SpG1q are determined by their values on strongly G-regular, stable conjugacy
classes in G1pF q. The point of the article [LS] was to introduce an explicit
function ∆pδ1, γq of a strongly G-regular stable conjugacy class δ1 in G1pF q
and a strongly regular conjugacy class γ inGpF q, which they called a transfer
factor for G and G1. By construction, this function vanishes unless γ belongs
to the stable conjugacy class of the image of δ1 in G1pF q. It therefore has
finite support in either of the variables when the complementary variable is
fixed. The role of ∆pδ1, γq is as the kernel function for the transfer mapping
that sends a function f P HpGq to the function

(6.4) f 1pδ1q “ fG
1

∆ pδ
1q “

ÿ

γ

∆pδ1, γqfGpγq

of δ1. Langlands and Shelstad conjectured that the function f 1pδ1q belongs
to the space SpG1q.

The Langlands-Shelstad transfer conjecture remained a fundamental
problem for twenty years. It had been established earlier for archimedean
F (and ad hoc transfer factors) by Shelstad [She1]. But for nonarchimdean
F , it was closely tied to the fundamental lemma. The fundamental lemma
is a related conjecture, posed originally by Langlands, which became precise
with the introduction of the transfer factors of [LS]. It applies to the case
that the quasisplit groups G and G1 are unramified, which means that they
are both split over an unramified extension of the nonarchimedean field F .
With this condition, GpF q has a hyperspecial maximal compact subgroup
KF , an important object determined uniquely up to the appropriate ana-
logue of stable conjugacy. The fundamental lemma asserts that if f is the
characteristic function of KF (a function in HpGq since KF Ă GpF q is open),
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then f 1 equals the image in SpG1q of the characteristic function of any hy-
perspecial maximal compact subgroup K 1

F of G1pF q. It thus represents a
more precise version of the transfer conjecture in a special case.

Kottwitz and Shelstad [KS] later extended the results of [LS] to twisted
endoscopic data. They had a number of new problems to deal with, but
for our setting here, we need include only a small modification of the
discussion above. To do so, we replace the group G by the component
rGpNq “ GLpNq ¸ rθpNq, and its endoscopic datum G1 by a twisted endo-

scopic datum G P rEpNq. Endoscopic transfer in this setting is again tied to
local functoriality, this time to the first of the two cases introduced at the
end of §1. From what we have just said, it is clear that this case is also
distinguished by being part of the separate theory of endoscopy.

One defines the Hecke module rHpNq “ H
`

rGpNq
˘

of functions rf on
rGpN,F q, and the notion of a strongly regular element rγ in rGpN,F q. One

then defines the twisted orbital integral rfN prγq of rf over the orbit of rγ under

the group rG0pN,F q “ GLpN,F q acting by conjugation on rGpN,F q. The
twisted transfer factor from [KS] is an explicit, but sophisticated function
r∆pδ, rγq of a strongly rGpNq-regular, stable conjugacy class δ in GpF q and

a strongly regular, twisted conjugacy class rγ in rGpN,F q. It serves as the

kernel function for the transfer mapping that sends a function rf P rHpNq to
the function

(6.5) rfGpδq “ rfG
r∆
pδq “

ÿ

rγ

r∆pδ, rγq rfN prγq

of δ. For reasons similar to those above, the sum can again be taken over
a finite set that depends only on δ. Folowing [LS], Kottwitz and Shelstad

conjectured that the function rfGpδq belongs to the space SpGq. The twisted

fundamental lemma asserts that ifG is unramified, and rf is the characteristic

function of the open subset GLpN, oF q ¸ rθpNq of rGpN,F q, rfG is the image
in SpGq of the characteristic function of a hyperspecial, maximal compact
subgroup KF of GpF q.

For archimedean F , Shelstad has recently completed a proof of the gen-
eral twisted transfer conjecture [She5], using the explicit specialization to
real groups of the twisted transfer factors of [KS]. This followed other re-
cent papers [She2]–[She4], in which she reformulated much of her earlier
work on ordinary (untwisted) endoscopy from the perspective of [LS].

For nonarchimedean F , the breakthrough was the geometric proof of the
fundamental lemma by Ngô [N]. He combined the local geometric ideas of
Goresky, Kottwitz and MacPherson [GKM] on affine Springer fibres with
an analogue of the global Hitchin fibration to establish the fundamental
lemma for a local field of positive characteristic. By earlier results on the
independence of characteristic [W2], this gave the fundamental lemma also
for the local field F of characteristic 0. The paper of Ngô treats the ordinary
(untwisted) fundamental lemma, and a variant to which Waldspurger had
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reduced the general (twisted) case [W3]. It therefore resolves the fundamen-
tal lemma in complete generality. As for the Kottwitz-Langlands-Shelstad
(KLS) transfer conjecture, Waldspurger had established some time ago that
the ordinary transfer conjecture would follow from the fundamental lemma
[W1]. His more recent papers [W3], [W4] extend this implication to the
general case. The general results of Waldspurger therefore yield the nonar-
chimedean LSK-conjecture in all cases.

We will use the transfer mapping from rGpNq to answer the question
posed above on a spectral interpretation for the functions in SpGq. We be-
gin with a local parameter ψ P ΨpNq for GLpNq. From the correspondence
(4.11) derived from Theorem 4.4, we obtain a irreducible unitary represen-

tation πψ P ΠunitpNq of GLpN,F q. Assume that ψ lies in the subset rΨpNq
of self-dual parameters. As we have noted, πψ then has an extension to the

group rGpN,F q`. However, the extension is determined a priori only up to

the sign character on the semidirect factor rθpNq` of rGpN,F q`. We need to
define it uniquely.

It is the theory of Whittaker models that provides a canonical extension
of πψ. This theory is well understood for general linear groups, and is
expected to carry over to tempered L-packets for general quasisplit groups.
In fact, for our group G, the conjectured properties (proposed by Shahidi
in [Sha]) were established in §8.3 of [ECR]. In general, one must fix a
Whittaker datum pB,χq, consisting of a rational Borel subgroup B of a given
quasisplit group over F , and a nondegenerate character χ on the unipotent

radical NBpF q of BpF q. (In the case of a twisted group, such as rGpNq, one

must take pB,χq to be stable under the relevant automorphism, rθpNq in the

case rGpNq.) A pB,χq-Whittaker vector for an irreducible representation
is then a nonzero vector in the underlying complex vector space, on which
NBpF q is χ-equivariant. If it exists for the given representation, a pB,χq-
Whittaker vector is known to be unique up to a complex multiple. (See the
brief introduction in [ECR, §2.5], for example.)

We will not review the theory of Whittaker models further, except to
note its role in the choice of transfer factors. In general, a transfer factor
is defined uniquely only up to a nonzero scalar multiple. But for our group
G (and indeed, for any quasisplit group over F ), Langlands and Shelstad
attach a canonical transfer factor to any F -splitting [LS, §1.3] of G. The
group GadpF q of F -points in the adjoint group of G acts simply transitively
on the set of F -splittings of G. The associated transfer factors are equal (for
all G1) if and only if their splittings lie in the same orbit under the image
`

GpF q
˘

ad
of GpF q in GadpF q. The finite quotient

(6.6) GadpF q{
`

GpF q
˘

ad

therefore acts simply transitively on the set of (families of) normalized trans-
fer factors. These normalizations are really geometric, in that they lead to
the simplest explicit formulas for the transfer of orbital integrals. Kottwitz
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and Shelstad, for their part, introduced a different normalization for the
transfer factors of G (and for any quasisplit group over F ). It was attached
to any Whittaker datum for G. The group GadpF q also acts simply tran-
sitively on the set of Whittaker data, and the quotient (6.6) again acts
simply transitively on the corresponding set of such normalizations. These
are spectral normalizations, in that they are expected to lead to the simplest
explicit formulas for the transfer of characters. We assume implicitly from
now on that the transfer factors for G have been assigned the Whittaker
normalization attached to a fixed Whittaker datum.

Similar remarks apply to twisted transfer factors, but there is no need

to discuss them explicitly. We simply fix a rθpNq-stable Whittaker datum
`

rBpNq, rχpNq
˘

for GLpNq, and work with the associated normalized twisted

transfer factors. If ψ “ φ lies in the subset rΦbddpNq of rΨpNq, the self-
dual representation πψ “ πφ of GLpN,F q is tempered, and therefore has a
`

rBpNq, rχpNq
˘

-Whittaker vector. We take rπφ to be the unique extension of

πφ to the group rGpN,F q` such that the operator rπφpNq “ rπφ
`

rθpNq
˘

maps
the Whittaker vector to itself. The definition carries over to our general

parameter ψ P rΨpNq, even though the nontempered Speh representation
πψ need not have a Whittaker vector. For we can work with the induced
representation ρψ of which πψ is the Langlands quotient. This representation
does have a Whittaker vector, which serves to define an extension rρψ of ρψ.
Its quotient then gives an extension rπψ of πψ. (See [ECR, §2.1].)

Given the extension rπψ of πψ, we define a linear form

(6.7) rfN pψq “ tr
`

rπψp rfq
˘

, rf P rHpNq,

on rHpNq. Does it transfer to G? More precisely, is it the image of a stable

linear form on HpGq that is dual to the transfer rf Ñ rfG of functions? We
would expect a necessary condition to be that as an L-homomorphism from
LF ˆSUp2q into L

`

GLpNq
˘

, ψ factors through the L-subgroup LG. In other
words, ψ should lie in the subset

rΨpGq “ ΨpGq{OutN pGq

of rΨpNq attached to our group G P rEsimpNq. Now the dual transfer of

functions takes rHpNq into the subspace rSpGq of functions in SpGq that are

invariant under the finite group rOutN pGq. It is convenient also to write
rHpGq for the subspace of functions in HpGq invariant under OutN pGq (with
the nontrivial element in OutN pGq, when it exists, identified as in §3 with an
actual F -automorphism of G). The question above should then be whether

(6.7) transfers to a stable linear form on the subspace rHpGq of HpGq. The
following theorem, which is a foundation for the local correspondence we
will state in the next section, gives an affirmative answer.

Theorem 6.1. Suppose that F is local, that G P rEellpNq, and that ψ

lies in the set rΨpGq attached to a fixed group G P rEellpNq. Then there is a
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unique stable linear form

(6.8) f ÝÑ fGpψq, f P rHpGq,

on rHpGq with the general property

(6.9) rfGpψq “ rfN pψq, rf P rHpNq,

together with the secondary property

(6.10) fGpψq “ fSpψSqf
OpψOq, rf P rHpGq,

in case

G “ GS ˆGO, Gε P rEsimpNεq,

ψ “ ψS ˆ ψO, ψε P rΨpGεq,

and

fG “ fS ˆ fO, f ε P rSpGεq, ε “ O,S,

are composite.

Remarks. 1. The primary case is for G P rEsimpNq simple. It has domi-
nated our past discussion, for the reason that many questions for composite
twisted endoscopic data are amenable to induction. When G is simple,

the mapping rf Ñ rfG takes rHpNq onto rSpGq [ECR, Corollary 2.2]. The
uniqueness of the linear form (6.8) then follows from the formula (6.9) in
this case.

2. If G P rEellpNq is composite, the uniqueness follows from the product
formula (6.10). In this case, the symbol ψ on the right hand side of (6.9)
is understood to be the image of the given composite parameter under the

(not necessarily injective) mapping from rΨpGq to rΨpNq. The problem here
is to establish the compatibility condition represented by the two sides of
(6.9).

3. Suppose that ψ lies in the set rΨpGq attached to some G in the

complement of rEellpNq in the full set rEpNq of twisted endoscopic data. The
assertions (6.8) and (6.9) of the theorem then follow easily by reduction to

the Levi component of a proper, rθpNq-stable parabolic subgroup of GLpNq.
4. The notation fGpψq in (6.8) is deliberate, even if perhaps also slightly

confusing. It reminds us that we are dealing with a linear form on rSpGq. In

particular, we can define fGpφq for any φ in the subset rΦbddpGq of rΨpGq, or

by analytic continuation, any φ in the larger set rΦpGq. It can be shown that
either of the two functions tfGpδqu or tfGpφqu attached to f determines

the other. We can therefore regard any element fG in rSpGq as a function
of either δ or φ. This is in answer to the question above on a spectral
interpretation of the function fG (or rather, the slightly weaker question

for the subspace rSpGq of SpGq). The local classification theorem, which we
state in the next section, expresses the stable character (6.8) of φ in terms of



50 JAMES ARTHUR

the characters of representations π in the L-packet of φ, in spectral analogy
with the conjugacy classes γ in a stable conjugacy class δ.

7. Statement of theorems

We will now state our theorems of classification. We fix a (quasisplit,

special) orthogonal or symplectic group G P rEsimpNq over the field F . Our
ultimate concern is the global classification of automorphic representations.
However, this necessarily relies on an understanding of local irreducible rep-
resentations. We therefore assume for the moment that F is local.

We would ideally like to attach a canonical L-packet Πφ of irreducible
representations π P ΠpGq of GpF q to any local Langlands parameter φ P
ΦpGq. As we shall explain presently, it would suffice to consider the case of
bounded parameters φ P ΦbddpGq, which leads to L-packets Πφ of tempered
representations π P ΠtemppGq. It also represents a special case of our other
family of parameters ψ P ΨpGq, which leads to packets Πψ of unitary repre-
sentations π P ΠunitpGq, and will be the setting for the theorem we actually
state. We do need to bear in mind that the packets Πψ are larger than the
L-packets Πφψ attached to the (unbounded) images φψ (4.10) of ψ in ΦpGq.
In particular, they are not in general a part of the local Langlands classi-
fication. Their role is rather to describe local constituents of automorphic
representations.

We actually have to settle for something a little weaker. As we discussed

at the end of the last section, the transfer mapping rf Ñ rfG from rHpNq to

SpGq is not generally surjective. Its image is the subspace rSpGq of rOutN pGq-

invariant functions in SpGq. We have therefore to work with the set rΨpGq

of rOutN pGq-orbits in ΨpGq. This fits into the sequence

rΦbddpGq Ă rΨpGq Ă rΦpGq

of families of orbits of parameters. The group rOutN pGq (of order 1 or 2) acts
by outer automorphisms also on GpF q, and hence on equivalence classes of
irreducible representations. We therefore have an associated sequence

rΠtemppGq Ă rΠunitpGq Ă rΠpGq

of families of orbits of representations. This qualification is only relevant to

the case that G is type Dn. If G is of type Bn or Cn, rOutN pGq is trivial,
and the sets are unchanged from before.

We have thus to attach packets rΠψ in rΠunitpGq to parameters ψ P rΨpGq.
We expect them to be multiplicity free. If F is nonarchimedean, this is a
deep theorem of Moeglin [M2]. If F is archimedean, however, it is unknown.
We have therefore to formulate the local theorem as an assertion for packets
with multiplicities.

If S is any set, a set over S, or an S-set, or even an S-packet will mean
simply a set S1 with a fibration

S1 ÝÑ S
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over S. Any function on S, such as the character fGpπq on rHpGq in case S

equals rΠpGq, will be identified with its pullback to a function on S1. The
order

m1 : S ÝÑ NY t0,8u
of the fibres in S1 represents a multiplicity function, which makes S into
what can be called a multiset on S. If S1 is multiplicity free, in that every
element in S has multiplicity at most 1, it is of course just a subset of S.

Theorem 7.1. Assume that F is local and that G P rEpNq.
(a) For any local parameter ψ P rΨpGq, there is a finite packet rΠψ over

rΠunitpGq, together with a mapping

(7.1) π ÝÑ x¨, πy, π P rΠψ,

from rΠψ to the group pSψ of irreducible characters on Sψ, with the following
property: if s is a semisimple element in the centralizer Sψ “ SψpGq and
pG1, ψ1q is the preimage of pψ, sq under the local version of the correspondence
(5.11) in §5, then

(7.2) f 1pψ1q “
ÿ

πPrΠψ

xsψx, πyfGpπq, f P rHpGq,

where x is the image of s in Sψ, and sψ is the image in Sψ of the element
(5.6).

(b) If ψ “ φ belongs to the subset rΦbddpGq of parameters in rΨpGq that

are trivial on the factor SUp2q, the elements in rΠφ are tempered and mul-

tiplicity free, and the corresponding mapping from rΠφ to pSφ is injective.

Moreover, every element in rΠtemppGq belongs to exactly one packet rΠφ. Fi-

nally, if F is nonarchimedean, the mapping from rΠφ to pSφ is bijective.

Remarks. 1. The premise of this theorem depends on Theorem 6.1.
To be precise, the left hand side of (7.2) is a product of linear forms (6.8)
postulated by the earlier theorem, taken over the factors of the endoscopic
group G1. Composed with the transfer mapping f Ñ f 1, it represents a

linear form on rHpGq. As such, it determines the packet rΠψ and the pairing
xx, πy from the expression on the right hand side of (7.2).

2. The finite subsets rΠφ of rΠtemppGq in (b) represent the tempered L-

packets. They are composed of rOutN pGq-orbits of tempered representations,

which are parametrized by characters in pSφ. Since the theorem posits a
disjoint union

(7.3) rΠtemppGq “
ž

rΦbddpGq

rΠφ,

it can be regarded as an endoscopic classification of the irreducible tempered
representations of GpF q. It amounts to the local Langlands correspondence
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for G if G is of type Bn or Cn, and something slightly weaker if G is of type
Dn.

3. Suppose that F is archimedean. Shelstad has established a general
classification

(7.4) ΠtemppGq “
ž

ΦbddpGq

Πφ

of ΠtemppGq for any real group G, in terms of L-packets Πφ that satisfy endo-
scopic character relations (7.2) (with sψ “ 1). In the papers [She1]–[She4],
she does not define the stable distributions on the left hand side of (7.2)

(in case G P rEsimpNq and ψ “ φ) in terms of twisted transfer from general
linear groups. However, this property (and more) is established in the recent
papers of Shelstad [She5] and Mezo [Me]. We depend on these results for
our proof of the theorem for nonarchimedean F (and for the proof of the
global theorems we will state presently). For general parameters ψ, Adams,
Barbasch and Vogan [ABV] have constructed packets Πψ that satisfy rela-
tions (7.2), again for any real group G. However, it is not presently known
whether the stable distributions they define for the left hand side of (7.2)
match those we obtain by twisted transfer from general linear groups (in our

case that G P rEsimpNq). The point is important for our purposes, because

the global results at which the local packets rΠψ are ultimately aimed are all
proved by comparison with the twisted trace formula for GLpNq.

4. Suppose that F is nonarchimedean. The structure of the general

packets rΠψ is better known than in the archimedean case, thanks to the work

of Moeglin. We have already mentioned her proof [M2] that the packets rΠψ

are multiplicity free. This is a consequence of a general algorithm [M1]

for computing the Langlands parameters of elements in rΠψ, assuming the

classification of the tempered representations rΠtemppGq provided by part (b)
of the theorem.

Suppose that ψ belongs to the larger set rΨ`pGq of local parameters for
G, defined without the condition that their restriction to LF be bounded.
Then ψ can be expressed rather simply as a composition

ψ “ ξM ˝ ψM,λ,

where ψM,λ is a twist of a parameter ψM P rΨpMq for a Levi subgroup M of

G and ξM the embedding of LM into LG attached to a parabolic subgroup
P P PpMq of G with Levi component M . The twisting element λ lies in the
open chamber defined by P in a certain real vector space

a˚M “ XpMqF b R.
It can be identified with either a homomorphism from LFˆSLp2,Cq into the

connected component of 1 in ZpxMqΓF , or a real quasicharacter on the group
MpF q. With the former interpretation, we observe that Sψ is contained in
xM , and hence that the mapping xÑ xM of SψM into Sψ is an isomorphism.
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With the latter interpretation, we define the packet of ψ as a corresponding
set (of orbits of) induced representations, which we denote hesitantly as

(7.5) rΠψ “
 

π “ IP pπM,λq : πM P rΠψM

(

.

It is bijective with rΠψM , and comes with a pairing

xx, πy “ xxM , πMy, x P Sψ, π P rΠψ,

with Sψ. The assertion (a) of Theorem 7.1 for the more general parameter

ψ, with the understanding that the elements in the packet rΠψ might now be
reducible, then follows from its analogue for ψM , and the standard character
formula for an induced representation.

Consider the case that the local parameter ψ “ φ in rΨ`pGq is trivial on

the factor SUp2q. Then φ belongs to the set rΦpGq of general (unbounded)
Langlands parameters. It has a decomposition φ “ ξM ˝ φM,λ, as above.
However, we shall denote the packet we introduced above differently, as

rPψ “
 

ρ “ IP pπM,λq : πM P rΠφM

(

.

(The P in rPψ is to be understood as an upper case ρ.) We reserve the

symbol rΠψ for the packet

(7.6) rΠψ “ tπ “ πρ : ρ P rPψu

of irreducible Langlands quotients of representations in rPψ. It comes with
the pairing

xx, πy “ xx, πρy “ xx, ρy “ xxM , πMy, x P Sψ, π P rΠψ,

with Sψ that it inherits from rPψ. However, it does not satisfy the endo-
scopic character relation (7.2), since the Langlands quotient πρ need not
be induced. Nonetheless, the original Langlands classification [L5] for real
groups (extended to p-adic groups in [BW]) tells us that

(7.7) rΠpGq “
ž

φPrΦpGq

rΠφ.

We therefore obtain an explicit classification of general representations π P
rΠpGq from the tempered case given by Theorem 7.1(b).

Incidentally, it would appear that the notation in (7.5) is in conflict with
that of (7.6). We hope that it will not be! For we shall consider only pa-

rameters ψ P rΨ`pGq that arise from the local components of automorphic

representations. That we have to take them in the larger set rΨ`pGq is a
necessary consequence of our not having at our disposal the generalized Ra-
manujan conjecture for GLpNq, as we have noted. But it is still a pretty
stringent restriction, which we conjecture implies that the induced repre-
sentations ρ “ IP pπM,λq are irreducible (and unitary) [ECR, Conjecture
8.3.1]. If this is so, each ρ equals its Langlands quotient πρ, and there is no
conflict with the notation (7.5).
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Suppose now that the field F is global. There will be two global theorems

for the group G P rEsimpNq over F . The first is the central result. It gives a
decomposition of the automorphic discrete spectrum of G in terms of global
parameters in the subset

rΨ2pGq “
 

ψ P rΨpGq : |Sψ| ă 8
(

of rΨpGq and the local objects of Theorem 7.1(a). It is best formulated in
terms of the global Hecke algebra HpGq of functions on GpAq, with respect
to a suitable maximal compact subgroup

K “
ź

v

Kv

of GpAq.
By definition, HpGq is the space of finite linear combinations of products

ź

v

fv, fv P HpGvq,

such that fv is the characteristic function of Kv for almost all v. We write
rHpGq for the locally symmetric subalgebra, in which each fv lies in the

subalgebra rHpGvq of HpGvq. For any function f in rHpGq, and any admissible
representation

π “
â

v

πv, πv P ΠpGvq,

the character fGpπq depends only on the rOutN pGvq-orbit of πv in rΠpGvq,

for any v. We will have to describe the discrete spectrum of G as an rHpGq-
module, since the local packets consist of rOutN pGvq-orbits πv in rΠunitpGvq.
Of course if G is of type Bn or Cn, the groups OutN pGvq are all trivial, and
rHpGq equals HpGq. We would then have a description as an HpGq-module,
or for that matter, a decomposition in terms of irreducible representations
π P ΠunitpGq.

We are assuming the seed Theorems 5.1 and 5.2. The first of these

was needed to define the global set rΨpGq itself. The second led us to a

localization mapping ψ Ñ ψv from rΨpGq to the local set rΨ`v pGq. The local
theorem we have just stated (together with the ensuing discussion) allows

us to attach a local packet rΠψv to ψ and v. We can thus attach a global
packet

(7.8) rΠψ “

!

π “
â

v

πv : πv P rΠψv , x¨, πvy “ 1 for almost all v
)

of (orbits of) representations of GpAq to any ψ P rΨpGq. Any element π in

the global packet rΠψ determines a character

(7.9) xx, πy “
ź

v

xxv, πvy, x P Sψ,
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on the global centralizer quotient Sψ. On the right hand side of (7.9), the
product can be taken over a finite set, while x Ñ xv is the mapping from
Sψ to Sψv we have discussed earlier.

Theorem 7.2. Assume that F is global and that G P rEsimpNq. Then

there is an rHpGq-module isomorphism

(7.10) L2
disc

`

GpF qzGpAq
˘

–
à

ψPrΨ2pGq

mψ

´

à

πPrΠψpεψq

π
¯

,

where mψ equals 1 or 2 and

εψ : Sψ ÝÑ t˘1u

is a linear character defined explicitly in terms of symplectic ε-factors, while
rΠψpεψq is the subset of representations π in the global packet rΠψ such that
the character x¨, πy on Sψ equals εψ.

The statement will not be complete until we define the integer mψ and
the character εψ. The first of these is quite elementary. The global param-
eter ψ comes with the L-embedding

rψG : Lψ ˆ SLp2,Cq ÝÑ LG,

determined as a pG-orbit up to the action of the group rOutN pGq. We de-

fine mψ for any ψ P rΨpGq to be the number of pG-orbits in the associ-

ated rOutN pGq-orbit. For an equivalent description, we write the parameter

ψ P rΨ2pGq as

ψ “ ψ1 ‘ ¨ ¨ ¨‘ ψr,

for distinct, self dual factors ψi P rΨsimpNiq. One checks that mψ equals 1

unless G is of type Dn (or in other words, N is even and pG “ SOpN,Cq),
and the rank Ni of each of the components ψi is also even, in which case
mψ equals 2. The integer mψ obviously bears on the question of the mul-
tiplicity with which a representation π occurs in the automorphic discrete
spectrum, but one also needs information about the localizations ψv. For a

full statement in the case that ψ “ φ lies in the subset rΦbddpGq of rΨpGq,
see [A4, §3(vii)].

The sign character εψ is more interesting. We first make an observation

on some general ε-factors. Suppose that ψ P rΨpNq is an arbitrary global
parameter, and that r is an arbitrary finite dimensional representation of
Lψ, subject only to the condition that its equivalence class is stable under
the group AutpLψq. Then r pulls back to a well defined representation rv of
LFv , for any v. We can therefore define the global L-function

Lps, rq “
ź

v

Lps, rvq

by an Euler product that converges for the real part of s large. We do
not know that it has analytic continuation and functional equation, since it
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really amounts to a rather general automorphic L-function, even though its
local factors are arithmetic L-functions defined as in [T]. But we can still
define the corresponding global ε-factor as a finite product

εps, r, ψF q “
ź

v

εps, rv, ψFvq.

Again, we cannot say that this function is independent of the nontrivial
additive character ψF on A{F . But if r is symplectic, by which we mean
that it takes values in the symplectic subgroup of the underlying general
linear group, the value of the local factor εps, rv, ψFvq at s “ 1

2 is known to
equal `1 or ´1, and to be independent of ψFv . We therefore have a global
sign

ε
`

1
2 , r

˘

“ ε
`

1
2 , r, ψF

˘

“ ˘1

in this case, which is independent of ψF .

We can define εψ if ψ is a general parameter in rΨpGq. We first define a
representation

τψ : Sψ ˆ Lψ ˆ SLp2,Cq ÝÑ GLppgq

on the Lie algebra of pg of pG by setting

τψps, g, hq “ AdG
`

s ¨ rψGpg, hq
˘

, s P Sψ, pg, hq P Lψ ˆ SLp2,Cq,

where AdG is the adjoint representation of LG. This representation is or-
thogonal, and hence self-dual, since it is invariant under the Killing form on
pg. Let

τψ “
à

α

τα “
à

α

pλα b µα b ναq

be its decomposition into irreducible representations λα, µα and να of the
respective groups Sψ, Lψ and SLp2,Cq. We then define

εψpxq “
ź

α

1
det

`

λαpsq
˘

, s P Sψ,

where x is the image of s in Sψ, and
ś1 denotes the product over those

indices α with µα symplectic and with

ε
`

1
2 , µα

˘

“ ´1.

The second global theorem is a supplement to the first. It gives a long
conjectured L-function criterion for whether a self-dual cuspidal automor-
phic representation of GLpNq is symplectic or orthogonal, in the sense that
it is a functorial image from a group G whose L-group is symplectic or or-
thogonal. It also gives an automorphic analogue of a well known property
[FQ], [D] of orthogonal (arithmetic) root numbers. The main point for us,
however, is that this theorem has a critical role in the proofs of all of the
theorems. It is an indispensable part of what governs the signs that arise in
the comparison of trace formulas.

To place the second global theorem in context, we observe a property
of certain Rankin-Selberg L-functions. The Rankin-Selberg representation
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of GLpN,Cq ˆ GLpN,Cq on the space of complex pN ˆ Nq-matrices is ir-
reducible, but its restriction to the diagonal image of GLpN,Cq is a direct
sum S2 ‘Λ2, where S2 (resp. Λ2) is the representation of GLpN,Cq on the
space of symmetric (resp. skew-symmetric) pN ˆNq-matrices. If π is a cus-
pidal automorphic representation of GLpNq, the diagonal Rankin-Selberg
functions then break into formal products

(7.11) Lps, π ˆ πq “ Lps, π, S2qLps, π,Λ2q

and

(7.12) εps, π ˆ πq “ εps, π, S2, ψF q εps, π,Λ
2, ψF q.

The two L-functions on the right hand side of (7.11) are among the cases
of the Langlands-Shahidi method treated in [Sha]. In both cases, the local
L-functions and ε-factors can be constructed, with the consequence that the
formal products (7.11) and (7.12) become actual products, for which the
resulting two global L-functions have analytic continuation with functional
equation (4.15).

Suppose that φ P rΦsimpNq is a simple generic parameter. For us, this
amounts to a cuspidal automorphic representation π “ πφ of GLpNq, which
is now self-dual. Theorem 5.1 asserts that φ belongs to the subset

rΦsimpGq “ rΦsimpNq X rΨpGq,

for a unique G P EsimpNq. We need to understand how G is related to
L-functions and ε-factors. It is known that the Rankin-Selberg L-function

Lps, φˆ φq “ Lps, π ˆ πq “ Lps, π ˆ π_q

has a pole of order 1 at s “ 1. It is also known that neither of the corre-
sponding factors Lps, φ, S2q and Lps, φ,Λ2q on the right hand side of (7.12)
has a zero at s “ 1. It follows that exactly one of them has a pole at s “ 1
(which will be of order 1). This motivates the assertion (a) of our second
global theorem.

Theorem 7.3. Assume that F is global.

(a) Suppose that G P rEsimpNq and that φ belongs to rΦsimpGq. Then pG is
orthogonal if and only if the symmetric square L-function Lps, φ, S2q has a

pole at s “ 1, while pG is symplectic if and only if the skew-symmetric square
L-function Lps, φ,Λ2q has a pole at s “ 1.

(b) Suppose that for i “ 1, 2, φi belongs to rΦsimpGiq, for simple en-

doscopic data Gi P rEsimpNiq. Then the associated Rankin-Selberg ε-factor
satisfies

ε
`

1
2 , φ1 ˆ φ2

˘

“ 1,

if pG1 and pG2 are either both orthogonal or both symplectic.

We have completed the formal statements of the three main theorems
of [ECR]. Representations of quasisplit special orthogonal and symplectic
groups G have been studied from other points of view. There is a rather
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complete theory for the special case of representations with Whittaker mod-
els [CKPS], [GRS]. Since Theorems 7.1 and 7.2 give a classification of local
and global representations, it is reasonable to ask which of these have Whit-
taker models. The answer is given in [ECR, §8.3], following a conjecture
in [Sha]. The θ-correspondence has been a different source of results. (See
[Ku], for example.) It would be very interesting to compare the relations it
has provided with the classification of Theorems 7.1 and 7.2. Considerably
more is known in the local case, thanks to the article [M3] and its predeces-
sors. For global F , we refer the reader to [Ji] for examples and a description
of some of the problems.

Some applications of the theorems were listed in [A4, §3]. There will
no doubt be others. Some will follow from the extension of the theorems to
orthogonal and symplectic groups that are not quasisplit. For a description
of a proposed classification of representations for such groups, which remains
conjectural, see [ECR, §9]. Other applications await an extension of the
theorems to different groups, such as the split group GSpp2nq of symplectic
similitudes, for example.

8. Implications for functoriality

It remains to add some observations on functoriality (Principle 1.1). We
consider the two cases

(8.1) pG,G1, ρq “
`

GLpNq, G, ξ
˘

, G P rEsimpNq,

and

(8.2) pG,G1, ρq “ pG,G1, ξ1q, G P rEsimpNq, G
1 P EellpGq,

discussed at the end of §1. What are the implications of the theorems we
have stated?

We first observe that in both cases, we have a mapping

(8.3) ψ1 ÝÑ ψ “ ρ ˝ ψ1 “ ρpψ1q, ψ1 P rΨpG1q,

from rΨpG1q to rΨpGq. This is obvious if F is local, and would be so in the
global case as well if our parameters were defined on the Langlands group
LF . As matters stand, we must appeal to the definitions of §5 for global F ,
which depend on the nontrivial Theorems 5.1 and 5.2. In any case, we do
have the mapping (8.3) for any F . As usual, we have particular interest in

its restriction to the subset rΦbddpG
1q of rΨpG1q.

Suppose for the moment that F is local. Local functoriality in the first
case (8.1) is given by Theorem 6.1 and the definition (6.7) of the linear
form on the right hand side of (6.9). In the second case, it is given by the
character identity (7.2) in Theorem 7.1(a) and the bijective correspondence
(5.11). Because these two cases have their origins in the theory of endoscopy,
we obtain an explicit description of the local functoriality correspondence.
It is given by the relation

(8.4) π1 ÝÑ π, π1 P rΠpG1q,
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where for a given π1, π ranges over the representations in the packet rΠφ of the

local parameter φ P rΦpGq such that φ “ ρpφ1q is the image of the parameter

φ1 P rΦpG1q with π1 P rΠφ1 . In other words, it is the correspondence

rΠφ1 ÝÑ
rΠφ,

in which φ1 ranges over the local parameters in rΦpG1q and φ1 Ñ φ is the

mapping from rΦpG1q to rΦpGq analogous to (8.3).
Functoriality is called a “principle” for a reason. It represents a phenom-

enon, which we can almost regard as a general law of nature, rather than a
precise conjecture. It is capable of taking different forms, which depend on
the context. This flexibility is built into its statement in §1, by postulating a
correspondence rather than a mapping, whose precise nature is left unspec-

ified. For example, in the local case above, we can consider packets rPφ of
induced representations ρ (sometimes known as standard representations) in

place of packets rΠφ of irreducible Langlands quotients π. Let rΠ`φ be the set

of irreducible constituents π of these representations, a packet that contains
rΠφ, and equals rΠφ if φ lies in the subset rΦbddpGq of rΦpGq. These larger

packets are no longer disjoint, in contrast to the L-packets rΠφ. This leads
to a more complicated version of local functoriality. We take it to be the
coarser relation

(8.5) π1 ÝÑ π, π1 P rΠpG1q,

where for a given π1, π ranges over the representations in packets rΠ`φ of

local parameters φ P rΦ`pGq such that φ “ ρpφ1q is the image as in (8.3) of a

parameter φ1 P rΦpG1q with π1 P rΠ`φ1 . We should also not be distracted by the

fact that rPφ and rΠφ consist of orbits of irreducible representations (unless
G “ GLpNq), rather than actual representations. This is a side issue, which
is not present if G is of type Bn or Cn, and is not particularly significant
for what we are discussing here.

Assume now that F is global. Global functoriality is harder to describe.
For among other things, the statement of Principle 1.1 is predicated on the
broader, formal definition [L3] of automorphic representations, which we
have not given. We can, however, formulate it without difficulty for the
subsets

rΠφ,aut Ă rΠφ, φ P rΦbddpGq,

of automorphic representations in the global packets attached to parameters

in rΦbddpGq. In this case, global functoriality is given by the correspondence

rΠφ1,aut ÝÑ
rΠφ,aut

in which φ1 ranges over global parameters in rΦbddpG
1q, and φ1 Ñ φ is the

mapping given by the restriction of (8.3) to the subset rΦbddpG
1q of rΨpG1q.

The correspondence follows from the definitions of §5, the multiplicity for-
mula of Theorem 7.2, and the reduction by Eisenstein series of the full
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automorphic spectrum to relatively discrete automorphic spectra for Levi
subgroups. This reduction also gives an explicit characterization of the sub-

set rΠφ,aut of rΠφ.

More generally, consider a global parameter φ in the larger set rΦpGq.
We can then form the global packet

rΠ`φ “
!

π “
„
â

v

πv : πv P rΠ`φv , πv unramified for almost all v
)

,

in analogy with (2.2). The global parameter φ can be represented as the

image of a “discrete” parameter φM P rΦ2pMq, for a Levi subgroup M of G,

under the dual embedding LM Ă LG. Let rΠ`φ,aut be the subset of irreducible

representations in rΠ`φ obtained from parabolic induction from representa-

tions in the subset rΠφM ,aut of rΠφM . It is then a consequence of the definitions

[L3, p. 203] that rΠ`φ,aut is the subset of representations in rΠ`φ that are auto-

morphic in the extended sense of [L3]. In this more general setting, global
functoriality is given by the correspondence

(8.6) rΠ`φ1,aut ÝÑ
rΠ`φ,aut,

where φ1 ranges over global parameters in the larger set rΦpG1q, and φ1 Ñ φ is

the mapping from rΦpG1q to rΦpGq analogous to (8.3). It is clearly compatible
with the local functoriality correspondence (8.5).

The global functoriality correspondence (8.6) treats many automorphic
representations (in the extended sense of [L3]), but it still represents a spe-

cial case. For example, it does not include the subset rΠψ,cusp of cuspidal

automorphic representations in a packet rΠψ, if ψ lies in the complement of
rΦbddpGq. This subset is a subtle object, which has been studied in depth by
Moeglin. Leaving aside the question of how to characterize it explicity, we

let rΨ`pGq be the global analogue of the local set defined after the statement
of Theorem 7.1. This will be the largest of our global sets of parameters,

a family that contains both rΨpGq and rΦpGq. As in the special case of the

subset rΦpGq, a parameter ψ in rΨ`pGq is the image of a discrete parameter

ψM P rΨ`2 pMq, for some M . We then write rΠ`ψ,ic “
rΠ`ψ,ind-cusp for the packet

of irreducible constituents of standard representations ρ obtained by para-

bolic induction from representations in the subset rΠψM ,cusp of rΠψM . It lies
in a chain

rΠ`ψ,ic Ă
rΠ`ψ,aut Ă

rΠ`ψ ,

for packets rΠ`ψ,aut and rΠ`ψ defined in the same way, but with rΠψM ,cusp re-

placed by the larger sets rΠψM ,aut and rΠψM . The packet rΠ`ψ , for example,

is also equal to the set of restricted tensor products of representations in

the local packets rΠ`ψv , as in the special case of the global packet rΠ`φ defined

above. As ψ varies, the global packets rΠ`ψ,ic are presumably disjoint, which
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would give a classification of the set rΠautpGq below as a disjoint union of
these packets.

General global functoriality ought then to be given by the generalization

(8.7) rΠ`ψ1,ic ÝÑ
rΠ`ψ,ic, ψ1 P rΨ`pG1q,

of (8.6). It would be compatible with a version of local functoriality that
generalizes both the coarser relations (8.5) above and (8.11) below. I have
not thought carefully about the implications of these constructions. Rather
than pursue them further here, let me describe a simpler variant of global
functoriality, which is easy to formulate.

We define

(8.8) CautpGq “
 

cpπq : π P ΠautpGq
(

,

where ΠautpGq is the set of representations

π “
„
â

v

πv

of GpAq that are automorphic in the sense of [L3]. Repeating what was

implicit above, we write rΠautpGq for the set of orbits of representations of
GpAq under the group

rOutN pGAq “
ź

v

rOutN pGvq

that have a representative in ΠautpGq, for any group G P rEsimpNq. If

G “ GLpNq, we take rΠautpGq to be simply the set of self-dual represen-
tations in ΠautpGq. In either case, we can then define a set

rCautpGq “
 

cpπq : π P rΠautpGq
(

.

It consists of rOutN pGAq-orbits of (equivalence classes of) families of semisim-

ple conjugacy classes with representatives in CautpGq if G P rEsimpNq, and
simply the subset of self-dual elements in CautpNq if G “ GLpNq. We then
have a mapping

(8.9) c1 „ tc1v : v R S1u ÝÑ c “ ρpc1q „ tρvpc
1
vq : v R Su

from rCautpG
1q to a larger set rCApGq, defined as above but without the condi-

tion of automorphy. We claim that this mapping takes rCautpG
1q to the subset

rCautpGq of rCApGq. In other words, the image ρpc1q of c1 can be represented
by an element c in CautpGq. This version of functoriality is less delicate than
the others. We leave the reader to check that it follows from the various
definitions and theorems above.

The mapping c1 Ñ c from rCautpG
1q to rCautpGq is obviously quite concrete,

like the sets of Hecke eigenfamilies that comprise its domain and codomain.
It also illustrates the term “functoriality”. For we can build a category
C from the groups we have been working with. Its objects are quasisplit

groups over F , primarily the groups G P rEsimpNq and the general linear
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groups GLpNq, but also direct products of such groups. The morphisms
hompG1, Gq between objects G1, G P obpCq are L-homorphisms

ρ : LG1 ÝÑ LG

given by (8.1) and (8.2), and whatever supplements are required for direct
products. We then have a mapping

F : G ÝÑ rCautpGq, G P obpCq,

from objects G P obpCq to sets. The version of functoriality we have just
formulated asserts that for any ρ P hompG1, Gq, the mapping

F pρq : c1 ÝÑ ρpc1q, c1 P rCautpG
1q,

given by (8.9) takes the set F pG1q “ rCautpG
1q to the set F pGq “ rCautpGq. In

other words, the mapping

F : obpCq ÝÑ obpStq

comes also with a mapping

F : hompG1, Gq ÝÑ hompF pG1q, F pGqq, G1, G P obpCq,

and is therefore a functor from C to the category St of sets.
In this section, we have abandoned our informal characterization of au-

tomorphic representations, which we adopted for expository reasons in §1,
for the broader definition in [L3]. We shall call the representations in this
smaller class globally tempered automorphic representations, since we de-
fined them in terms of global harmonic analysis. We have already agreed to
denote them by ΠpGq, for any one of our groups G over the global field F .
We thus have an embedding

ΠpGq Ă Π`pGq,

where Π`pGq “ ΠautpGq is the set of general automorphic representations.
This is parallel to the associated embedding

ΨpGq Ă Ψ`pGq

of global parameter sets. How would we formulate the principle of functori-
ality for globally tempered automorphic representations?

Given G, we have the associated sets rΠpGq Ă rΠ`pGq, which are parallel

to the global parameter sets rΨpGq Ă rΨ`pGq. For any ψ P ΨpGq, we also
have the subset

rΠψ,aut “ rΠψ X rΠpGq “ rΠψ X rΠ`pGq

of automorphic representations in the packet rΠψ. Functoriality for globally
tempered automorphic representations will then be the correspondence

(8.10) rΠψ1,aut ÝÑ
rΠψ,aut,

where ψ1 ranges over the global parameters in rΨpG1q, and ψ1 Ñ ψ is the

mapping (8.3) from rΨpG1q to rΨpGq.
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The local analogue of (8.10) will have to be a little different from (8.4)
and (8.5). Taking F now to be local, we assume for simplicity that Conjec-
ture 8.3.1 of [ECR] is valid (as we already have implicitly, in the notation
of (8.10)). This was the assertion we mentioned in §7 that the local packets

(7.5) and (7.6) are the same for the local parameters ψ P rΨ`pGq obtained
from (globally tempered) automorphic representations. The conjecture was
actually stated more generally for any ψ in the intermediate set

rΨpGq Ă rΨ`unitpGq Ă
rΨ`pGq,

defined in terms of unitary representations for GLpNq, following the state-
ment of Theorem 1.5.1 of [ECR]. Now as ψ varies over even the smallest

set rΨpGq, the associated packets rΠψ are not disjoint, in contrast to the

packets rΠφ attached to parameters φ P rΦpGq. This complicates the local
functoriality analogue of (8.10). We define it as the coarser relation

(8.11) π1 ÝÑ π, π1 P rΠpG1q,

where for a given π1, π ranges over the representations in packets rΠψ of local

parameters ψ P rΨ`unitpGq such that ψ “ ρpψ1q is the image (8.3) of a pa-

rameter ψ1 P rΨ`unitpG
1q with π1 P rΠψ1 . The (globally tempered) functoriality

correspondence (8.10) is then compatible with its local analogue (8.11).
There is one last point, which might be somewhat surprising. It is

conceivable that for global F , there could be elements ψ P rΨ2pGq such that

the set rΠψ,aut in (8.10) is empty. One sees easily that ψ cannot contribute to

the continuous automorphic spectrum of G [A5, §3], so rΠψ,aut is equal to the

set rΠψpεψq of Theorem 7.2. Whether it is empty or not therefore depends
on the sign character εψ. Examples of this phenomenon were found some
years ago by Cogdell and Piatetski-Shapiro [CP], by different methods. The

question for us here is whether there is a global parameter ψ1 P rΨpG1q with

image ψ “ ρpψ1q in rΨpGq such that the set rΠψ,aut is empty, but rΠψ1,aut is not.
If the answer is affirmative, there will be a globally tempered automorphic
representation π1 of G1 that is not in the domain of the global functoriality
correspondence for ρ.

This last section has been written quite quickly. I hope that the discus-
sion has not been too murky, and that it is essentially correct. It does seem
to raise some interesting questions, which bear further reflection.

References

[ECR] J. Arthur, The Endoscopic Classification of Representations: Orthogonal and
Symplectic Groups, Colloquium Publications, 61, 2013, American Mathemati-
cal Society.

[ABV] J. Adams, D. Barbasch, and D. Vogan, The Langlands Classification and Irre-
ducible Characters for Real Reductive Groups, Progr. Math. 104, Birkhauser,
Boston, 1992.

[A1] J. Arthur, A stable trace formula III. Proof of the main theorems, Annals of
Math. 158 (2003), 769–873.



64 JAMES ARTHUR

[A2] , A note on the automorphic Langlands group, Canad. Math. Bull. 45
(2002), 466–482.

[A3] , An introduction to the trace formula, in Harmonic Analysis, the Trace
Formula, and Shimura Varieties, Clay Mathematics Proceedings, vol. 4, 2005,
1–263.

[A4] , The Endoscopic Classification of Representations, in Automorphic
Representations and L-functions, Tata Institute of Fundamental Research,
2013, 1–22.

[A5] , Eigenfamilies, characters and multiplicities, preprint.
[BJ] A. Borel and H. Jacquet, Automorphic forms and automorphic representations,

in Automorphic Forms, Representations and L-functions, Proc. Symp. Pure
Math. vol. 33, Part 1, Amer. Math. Soc., 1979, 189–202.

[BW] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and
Representations of Reductive Groups, Ann. of Math. Studies 94, Princeton
Univ. Press, Princeton, N.J., 1980.

[CKPS] J. Cogdell, H. Kim, I. Piatetski-Shapiro, and F. Shahidi, Functoriality for the

classical groups, Publ. Math. Inst. Hautes Études Sci. 99 (2004), 163–233.
[CP] J. Cogdell and I. Piatetski-Shapiro, On base change for odd orthogonal groups,

J. Amer. Math. 8 (1995), 975–996.
[D] P. Deligne, Les constantes locales de l’équation fonctionnelle de la fonction L

d’Artin d’une représentation orthogonale, Invent. Math. 35 (1976), 299–316.
[F] D. Flath, Decomposition of representations into tensor products, in Automor-

phic Forms, Representations and L-functions, Proc. Sympos. Pure Math. vol.
33, Part 1, Amer. Math. Soc., 1979, 179–184.

[FLN] E. Frenkel, R. Langlands and B.C. Ngo, Formule des traces et functorialité: Le
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(2009), 103–174.
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