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Jean-Pierre Serre

The Swiss mathematician Armand Borel died
August 11, 2003, in Princeton from a rapidly evolv-
ing cancer. Few foreign mathematicians had as
many connections with France. He was a student
of Leray, he took part in the Cartan seminar, and
he published more than twenty papers in collabo-
ration with our colleagues Lichnerowicz and Tits,
as well as with me. He was a member of Bourbaki
for more than twenty years, and he became a for-
eign member of the Académie des Sciences in 1981.
French mathematicians feel that it is one of their
own who has died.

He was born in La Chaux-de-Fonds in 1923 and
was an undergraduate at Eidgenössische Technis-
che Hochschule of Zürich (the “Poly”). There he met
H. Hopf, who gave him a taste for topology, and
E. Stiefel, who introduced him to Lie groups and

their root systems. He spent the year 1949–50 in
Paris, with a grant from the CNRS1. A good choice
(for us, as well as for him), Paris being the very spot
where what Americans have called “French Topol-
ogy” was being created, with the courses from
Leray at the Collège de France and the Cartan sem-
inar at the École Normale Supérieure. Borel was an
active participant in the Cartan seminar while
closely following Leray’s courses. He managed to
understand the famous “spectral sequence”, not an
easy task, and he explained it to me so well that I
have not stopped using it since. He began to apply
it to Lie groups, and to the determination of their
cohomology with integer coefficients. That work
would make a thesis, defended at the Sorbonne
(with Leray as president) in 1952, and published im-
mediately in the Annals of Mathematics. Meanwhile
Borel returned to Switzerland. He did not stay long.
He went for two years (1952–54) to the Institute for
Advanced Study in Princeton and spent the year
1954–55 in Chicago, where he benefited from the
presence of André Weil by learning algebraic geom-
etry and number theory. He returned to Switzer-
land, this time to Zürich, and in 1957 the Institute
for Advanced Study offered him a position as per-
manent professor, a post he occupied until his
death (he became a professor emeritus in 1993).

Jean-Pierre Serre is professor emeritus of the Collège de
France. His email address is serre@noos.fr. This part of
the article is a translation of the presentation made by him
to the Académie des Sciences in Paris on September 30,
2003 (© Académie des Sciences and printed with permis-
sion). Anthony W. Knapp assisted with the translation.

Citations within this article.
Borel’s Collected Papers are [Œ], and his 17
books are referred to as [1] through [17]. These
are all listed in a sidebar on page 501. An item
like [Œ 23] is Borel paper number 23 in [Œ]. Ci-
tations of work by people other than Borel are
by letter combinations such as [Che], and the de-
tails appear at the end of the article.
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again, Borel’s extensive knowledge of the literature
played a role. Inspired by a recent paper of V. P.
Platonov, he had written a note proving the analog
for simple groups over algebraically closed fields
of a classical result of V. V. Morozov: a maximal
proper subalgebra of a semisimple complex Lie al-
gebra either is semisimple or contains a maximal
nilpotent subalgebra. Borel sent a copy of the man-
uscript of this note to a mutual friend of ours,
who showed it to me. I observed that the argument
of Borel’s proof could be adapted to a considerably
more general setting and provided results over ar-
bitrary fields, for instance the following fact, which
turned out to be of great importance in finite group
theory: if G is a reductive k-group (k being any field)
and U is a split25 unipotent subgroup, then there
exists a parabolic k-subgroup P of G whose unipo-
tent radical contains U such that every k-auto-
morphism of G preserving U also preserves P ;
then, in particular, P contains the normalizer of U.
(Much earlier, I had conjectured this fact and given
a case-by-case proof “in most cases”, but the new
approach, using Borel’s argument, gave a uniform
and much simpler proof.)

I mention en passant the complements [Œ 94]
to “Groupes réductifs”, containing results con-
cerning, among other things, the closure of Bruhat
cells in topological reductive groups and the fun-
damental group of real algebraic simple groups.

The last joint paper by Borel and me is a Comptes
Rendus note [Œ 97] that in personal discussions we
nicknamed “Nonreductive groups”. Indeed, we had
discovered that many of our results on reductive
groups could, after suitable reformulation, be gen-
eralized to arbitrary connected algebraic groups.
Examples are the conjugacy by elements rational
over the ground field, of maximal split tori, of
maximal split unipotent subgroups, and of mini-
mal pseudoparabolic subgroups,26 or the existence
of a BN-pair (hence of a Bruhat decomposition).
Complete proofs of those results never got pub-
lished, but both Borel and I, independently, lectured
about them (he at Yale University, and I at the Col-
lège de France).

James Arthur

My topic is Armand Borel and the theory of au-
tomorphic forms. Borel’s most important contri-
butions to the area are undoubtedly those estab-
lished in collaboration with Harish-Chandra [Œ 54,
58]. They include the construction and properties
of approximate fundamental domains, the proof of
finite volume of arithmetic quotients, and the char-
acterization in terms of algebraic groups of those
arithmetic subgroups that give compact quotients.
These results created the opportunity for working
in the context of general algebraic groups. They laid
the foundations of the modern theory of auto-
morphic forms that has flourished for the past
forty years.

The classical theory of modular forms concerns
holomorphic functions on the upper half plane H
that transform in a certain way under the action
of a discrete subgroup Γ of SL(2,R). The multi-
plicative group SL(2,R) consists of the 2× 2 real
matrices of determinant 1, and each element
γ =

(
a b
c d

)
of SL(2,R) acts on H by the linear 

fractional transformation z → az+b
cz+d . For example,

one can take Γ to be the subgroup SL(2,Z) of 
integral matrices or, more generally, the congruence
subgroup

Γ (N) =
{
γ ∈ SL(2,Z) : γ ≡ I mod N

}
attached to a positive integer N. The theory began
as a branch of complex analysis. However, with the
work of E. Hecke, it acquired a distinctive number
theoretic character. Hecke introduced a commut-
ing family of linear operators on any space of au-
tomorphic forms for Γ (N), one for each prime not
dividing N, with interesting arithmetic properties.
We now know that eigenvalues of the Hecke oper-
ators govern how prime numbers p split in certain
nonabelian Galois extensions of the field Q of ra-
tional numbers [Sh], [D]. Results of this nature are
known as reciprocity laws and are in some sense
the ultimate goal of algebraic number theory. They
can be interpreted as a classification for the num-
ber fields in question. The Langlands program con-
cerns the generalization of the theory of modular
forms from the group of 2× 2 matrices of deter-
minant 1 to an arbitrary reductive group G . It is
believed to provide reciprocity laws for all finite al-
gebraic extensions of Q.

Let us use the results of Borel and Harish-
Chandra as a pretext for making a very brief ex-
cursion into the general theory of automorphic
forms. In so doing, we can follow a path illuminated
by Borel himself. The expository articles and mono-
graphs of Borel encouraged a whole generation of

25A unipotent group over a field k is said to be split if it
has a composition series over k, all quotients of which are
additive groups.
26Pseudoparabolic subgroups are a substitute for para-
bolic subgroups that one must use when dealing with
nonreductive groups over nonperfect fields.
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mathematicians to pursue the study of automor-
phic forms for general algebraic groups. Together
with the mathematical conferences he organized,
they have had extraordinary influence.

The general theory entails two reformulations
of the classical theory of modular forms. The first
is in terms of the unitary representation theory of
the group SL(2,R).

The action of SL(2,R) on H is transitive. Since
the stabilizer of the point i =

√
−1 is the special or-

thogonal group

KR = SO(2,R) =
{
kθ =

(
cosθ sinθ

− sinθ cosθ

)}
,

one can identify H with the space of cosets
SL(2,R)/KR. The space of orbits in H under a dis-
crete group Γ ⊂ SL(2,R) becomes the space of dou-
ble cosets Γ\SL(2,R)/KR . A modular form of weight
2k is a holomorphic function f on H such that27

f (γz) = (cz + d)2kf (z)

whenever γ =
(
a b
c d

)
is in Γ. A modular form of

weight 2, for instance, amounts to a holomorphic
1-form f (z)dz on the Riemann surface Γ\H, since
d(γz) = (cz + d)−2dz . For a given f, the function F
on SL(2,R) defined by F (g) = (ci + d)2kf (z) when
g =

(
a b
c d

)
and z = gi is easily seen to satisfy

F (γgkθ) = F (g)e−2kiθ,

for γ ∈ Γ . The requirement that f be holomorphic
translates to the condition that F be an eigen-
function of a canonical biinvariant differential op-
erator ∆ on SL(2,R) of degree 2, with eigenvalue
a simple function of k . The theory of modular
forms of any weight becomes part of the follow-
ing more general problem:

Decompose the unitary representation 
of SL(2,R) by right translation on
L2
(
Γ\SL(2,R)

)
into irreducible repre-

sentations.

That the problem is in fact more general is due
to a variant of Schur’s lemma. Namely, as an op-
erator that commutes with SL(2,R), ∆ acts as a
scalar on the space of any irreducible representa-
tion. To recover the modular forms of weight 2k,
one would collect the irreducible subspaces of
L2
(
Γ\SL(2,R)

)
with the appropriate ∆-eigenvalue,

and from each of these, extract the smaller subspace
on which the restriction to KR of the corresponding
SL(2,R)-representation equals the character
kθ → e−2kiθ .

This is all explained clearly in Borel’s survey ar-
ticle [Œ 75] in the proceedings of the 1965 AMS con-
ference at Boulder [3]. The Boulder conference was

organized jointly by Borel and G. D. Mostow. It
was a systematic attempt to make the emerging the-
ory of automorphic forms accessible to a wider au-
dience. Borel himself wrote four articles [Œ 73, 74,
75, 76] for the proceedings, each elucidating a dif-
ferent aspect of the theory.

The second reformulation is in terms of adeles.
Though harder to justify at first, the language of
adeles ultimately streamlines many fundamental
operations on automorphic forms. The relevant
Boulder articles are [T] and [K]. These were not
written by Borel, but were undoubtedly commis-
sioned by him as part of a vision for presenting a
coherent background from the theory of algebraic
groups.

The adele ring

A = R×Afin = R×
( ∼∏
p prime

Qp

)

of Q is a locally compact ring that contains the real
field R, as well as completions Qp of Q with respect
to the p-adic absolute values

|x|p = p−r , x = pr (ab−1), (a,p) = (b,p) = 1,

on Q. One constructs Qp by a process identical to
the completion R of Q with respect to the usual ab-
solute value. In fact, one has an enhanced form of
the triangle inequality,

|x1 + x2|p ≤max
{
|x1|p, |x2|p

}
, x1, x2 ∈ Q,

which has the effect of giving the compact “unit
ball” Zp =

{
xp ∈ Qp : |xp|p ≤ 1

}
the structure of

a subring of Qp. The complementary factor Afin
of R in A is defined as the “restricted” direct 
product

∼∏
p

Qp =
{
x = (xp) : xp ∈ Qp,

xp ∈ Zp for almost all p
}
,

which becomes a locally compact (totally discon-
nected) ring under the appropriate direct limit
topology. The diagonal image of Q in A is a discrete
subring. This implies that the group SL(2,Q) of ra-
tional matrices embeds into the locally compact
group SL(2,A) of unimodular adelic matrices as a
discrete subgroup. The theory of automorphic
forms on Γ\SL(2,R), for any congruence subgroup
Γ = Γ (N) , becomes part of the following more gen-
eral problem:

Decompose the unitary representation 
of SL(2,A) by right translation on
L2
(
SL(2,Q)\SL(2,A)

)
into irreducible

representations.

The reason that the last problem is more gen-
eral than the previous one is provided by the the-
orem of strong approximation, which applies to the

27There is also a mild growth condition that need not
concern us here.
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simply connected28 group SL(2). The theorem as-
serts that if K is any open compact subgroup of
SL(2,Afin) , then

SL(2,A) = SL(2,Q) · (K · SL(2,R)).

This implies that if Γ = SL(2,R)∩ SL(2,Q)K , then
there is a unitary isomorphism

L2
(
SL(2,Q)\SL(2,A)/K

) ∼−→ L2
(
Γ\SL(2,R)

)
that commutes with right translation by SL(2,R).
For example, if we take K to be the group

K(N) =
{
x = (xp) : xp ∈ SL(2,Zp),

xp ≡ I mod (M2(NZp))
}
,

then Γ equals Γ (N). To recover the decomposition

of L2
(
Γ (N)\SL(2,R)

)
,  one would collect the 

irreducible subspaces of L2
(
SL(2,Q)\SL(2,A)

)
,

and from each of these, extract the smaller sub-
space for which the restriction to K of the corre-
sponding SL(2,A)-representation is trivial.

Given that the decomposition of
L2
(
SL(2,Q)\SL(2,A)

)
includes the classical 

theory of modular forms, we can see reasons why
the adelic formulation is preferable. It treats the
theory simultaneously for all weights and all con-
gruence subgroups. It is based on a discrete group
SL(2,Q) of rational matrices rather than a group
Γ (N) of integral matrices. Most significantly, per-
haps, it clearly displays the supplementary struc-
ture given by right translation under the group

SL(2,Afin). The unitary representation theory of the
p-adic groups SL(2,Qp) thus plays an essential
role in the theory of modular forms. This is the
source of the operators discovered by Hecke. 
Eigenvalues of Hecke operators are easily seen to
parametrize irreducible representations of the
group SL(2,Qp) that are unramified in the sense
that their restrictions to the maximal compact 
subgroup SL(2,Zp) contain the trivial representa-
tion. It turns out that in fact any irreducible 
representation of SL(2,Qp) that occurs in the 
decomposition of L2

(
SL(2,Q)\SL(2,A)

)
carries

fundamental arithmetic information.
It is now straightforward to set up higher-

dimensional analogs of the theory of modular
forms. One replaces29 the group SL(2) by an arbi-
trary connected reductive algebraic group G de-
fined over Q. As in the special case of SL(2), G(Q)
embeds as a discrete subgroup of the locally com-
pact group G(A). The Langlands program has to do
with the irreducible constituents (known as auto-
morphic representations) of the unitary represen-
tation of G(A) by right translation on
L2
(
G(Q)\G(A)

)
. A series of conjectures of Lang-

lands, dating from the mid-1960s through the
1970s, characterizes the internal structure of au-
tomorphic representations. The conjectures provide
a precise description of the arithmetic data in au-
tomorphic representations, together with a for-
mulation of deep and unexpected relationships
among these data as G varies (known as the “prin-
ciple of functoriality”).

28“Simply connected” in this instance means that SL(2,C)
is simply connected as a topological space.

Figure 1. Standard fundamental domain for the
action of SL(2,Z) on the upper half plane,
together with a more tractable approximate
fundamental domain. The standard
fundamental domain, darkly shaded, is the
semi-infinite region bounded by the unit circle
and the vertical lines at x = ±1/2 . The
approximate fundamental domain St
generalized by Borel and Harish-Chandra is the
total shaded region.

“Armand Borel Math Camp” at the AMS Summer
Institute on automorphic forms, representations, and

L-functions at Corvallis, Oregon, 1977. Front: Nick
Howe. Back row, left to right: Roger Howe, Armand

Borel, Robert Langlands, Bill Casselman, Marie-France
Vigneras, Kenneth Ribet. Borel has the special

designation “Coach” on his T-shirt and Casselman has
the designation “Assistant Coach”.
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29Even in the classical case, one has to replace SL(2) by
the slightly larger group GL(2) to obtain all the opera-
tors defined by Hecke.
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General automorphic representations are thus
firmly grounded in the theory of algebraic groups.
It seems safe to say that the many contributions
of Borel to algebraic groups described by Springer
and Tits in this article are all likely to have some
role to play in the theory of automorphic forms.
Borel did much to make the Langlands program
more accessible. For example, his Bourbaki talk
[Œ 103] in 1976 was one of the first comprehen-
sive lectures on the Langlands conjectures to a
general mathematical audience.

In 1977 Borel and W. Casselman organized the
AMS conference in Corvallis on automorphic forms
and L-functions, as a successor to the Boulder con-
ference. It was a meticulously planned effort to pre-
sent the increasingly formidable background ma-
terial needed for the Langlands program. The
Corvallis proceedings [10] are considerably more
challenging than those of Boulder. However, they
remain the best comprehensive introduction to
the field. They also show evidence of Borel’s firm
hand. Speakers were not left to their own devices.
On the contrary, they were given specific advice on
exactly what aspect of the subject they were being
asked to present. Conference participants actually
had to share facilities with a somewhat unsympa-
thetic football camp, led by Coach Craig Fertig of
the Oregon State University Beavers. At the end of
the four weeks, survivors were rewarded with or-
ange T-shirts, bearing the inscription ARMAND
BOREL MATH CAMP. Borel himself sported30 a
T-shirt with the further designation COACH.

Let us go back to the topic we left off earlier,
Borel’s work with Harish-Chandra. The action of
SL(2,Z) on H has a well-known fundamental do-
main, given by the darker shaded region in
Figure 1. This region is difficult to characterize in
terms of the transitive action of SL(2,R) on H . The
total shaded rectangular region St in the diagram
is more tractable, for there is a topological de-
composition SL(2,R) = P (R)KR = N(R)M(R)KR ,
where P, N, and M are the subgroups of matrices
in SL(2) that are respectively upper triangular,
upper triangular unipotent, and diagonal. The
group N(R) acts by horizontal translation on H ,
while M(R) acts by vertical dilation. We have already
noted that KR stabilizes the point i. We can there-
fore write

St =ωAt · i,
where ω is the compact subset 

{(
1 x
0 1

)
: |x| ≤ σ

}
of N(R) , and At is the one-dimensional cone{(

a 0
0 a−1

)
: a > 0, a2 ≥ t

}
.  The set St is an 

approximate fundamental domain for the action of
SL(2,Z) on H , in the sense that it contains a set
of representatives of the orbits, while there are

only finitely many γ ∈ SL(2,Z) such that St and γSt
intersect.

For a general group G , the results of Borel and
Harish-Chandra provide an approximate funda-
mental domain for the action of G(Q) by left trans-
lation on G(A). To describe it, I have to rely on a
few notions from the theory of algebraic groups.
Let me write P for a minimal parabolic subgroup
of G over Q, with unipotent radical N and Levi com-
ponent M . The adelic group M(A) can be written
as a direct product M(A)1AM (R)0, where AM is the
Q-split part of the center of M , AM (R)0 is the con-
nected component of 1 in AM (R) , and M(A)1 is a
canonical complement of AM (R)0 in M(A) that con-
tains M(Q) . The roots of (P,AM ) are characters
a−→aα on AM that determine a cone

At =
{
a ∈ AM (R)0 : aα ≥ t, for every α

}
in AM (R)0 for any t > 0. Suppose that KA = KRKfin
is a maximal compact subgroup of G(A). If Ω is a
compact subset of N(A)M(A)1, the product

St = ΩAtKA

is called a Siegel set in G(A), following special cases
introduced by C. L. Siegel. One of the principal re-
sults of [Œ 58] implies that for suitable choices of
KA , Ω, and t , the set St is an approximate funda-
mental domain for G(Q) in G(A).

The obstruction to G(Q)\G(A) being compact is
thus governed by the cone At in the group
AM (R)0 ∼= Rdim AM . It follows that G(Q)\G(A) is
compact if and only if AM is trivial, which is to say
that G has no proper parabolic subgroup over Q
and no Q-split central subgroup. This is essen-
tially the criterion of [Œ 58].31 Borel and Harish-
Chandra obtained other important results from
their characterization of approximate fundamen-
tal domains. For example, in the case of semisim-
ple G , they proved that the quotient G(Q)\G(A)
has finite volume with respect to the Haar measure
of dx on G(A). This is a consequence of a decom-
position formula for Haar measures
dx = a−2ρ dωdadk , where ω is in Ω, a is in At,
and k is in KA and where 2ρ denotes the sum of
the roots of (P,AM ).

The papers of Borel and Harish-Chandra were
actually written for arithmetic quotients Γ\G(R)
of real groups, as were the supplementary articles
[Œ 59, 61] of Borel. Prodded by A. Weil [W, p. 25],
Borel wrote two parallel papers [Œ 55, 60] that
formulated the results in adelic terms and estab-
lished many basic properties of adele groups.32 His

30See the photograph on the previous page.

31A similar result was established independently by Mostow
and Tamagawa [MT].
32In his 1963 Bourbaki lecture [G], R. Godement presented
an alternative argument, which he also formulated in
adelic terms.
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later lecture notes [Œ 79], written again in the
setting of real groups, immediately became a stan-
dard reference.

Borel and Harish-Chandra were probably moti-
vated by the 1956 paper [Sel] of A. Selberg. Selberg
brought many new ideas to the study of the spec-
tral decomposition of L2

(
Γ\SL(2,R)

)
, including a

construction of the continuous spectrum by means
of Eisenstein se-
ries and a trace
formula for ana-
lyzing the dis-
crete spectrum.
A familiarity with
the results of
Siegel no doubt
gave Borel and
Harish-Chandra
encouragement
for working with
general groups.
Their papers
were followed in
the mid-1960s
by Langlands’s
manuscript on

general Eisenstein series (published only later in
1976 [L]). In the context of adele groups, Lang-
lands’s results give a complete description of the
continuous spectrum of L2

(
G(Q)\G(A)

)
. A starting

point was the work of Borel and Harish-Chandra
and, in particular, the properties of approximate
fundamental domains. In recent years Borel lectured
widely on the theory of Eisenstein series: in the
three-year Hong Kong program mentioned by
Bombieri, for example, and the 2002 summer school
in Park City. One of his ambitions, alas unrealized,
was to write an introductory volume on the gen-
eral theory of Eisenstein series.

In attempting to give a sense of both the scope
of the field and Borel’s substantial influence, I have
emphasized Borel’s foundational work with Harish-
Chandra and his leading role in making the sub-
ject more accessible. Borel made many other im-
portant contributions. These were often at the
interface of automorphic forms with geometry, es-
pecially as it pertains to the locally symmetric
spaces

XΓ = Γ\G(R)/KR .

Elements in the deRham cohomology group
H∗(XΓ ,C) are closely related to automorphic forms
for G , as we have already noted in the special case
of modular forms of weight 2. This topic was fully
explored in Borel’s monograph [Œ 115, 172] with
N. Wallach. Borel collaborated in the creation of two
very distinct compactifications of spaces XΓ: one
with W. Baily [Œ 63, 69], the other with J-P. Serre
[Œ 90, 98]. The Baily-Borel compactification be-
came the setting for the famous correspondence

between intersection cohomology (discovered by
Goresky and MacPherson in the 1970s) and L2-
cohomology (applied to square integrable
differential forms on XΓ), a relationship first con-
jectured by S. Zucker.33 The L2-cohomology of XΓ
is the appropriate analog of deRham cohomology
in case XΓ is noncompact. Its relations with auto-
morphic forms were investigated by Borel and Cas-
selman [Œ 126, 131]. In general, the cohomology
groups of spaces XΓ are very interesting objects,
which retain many of the deepest properties of
the corresponding automorphic representations.
They bear witness to the continuing vitality of
mathematics that originated with Borel.

Gopal Prasad

Borel first visited India in 1961, when he gave a
series of lectures on compact and noncompact
semisimple Lie groups and symmetric spaces at the
Tata Institute of Fundamental Research (TIFR) in
Bombay. His course introduced the theory of Lie
groups and geometry of symmetric spaces to the
first generation of mathematicians at TIFR, who in
turn trained the next generations in these areas.
Having joined TIFR in 1966, I belong to the second
generation, and so I owe a considerable debt to Ar-
mand Borel for my education in the theory of Lie
groups and even more directly in the theory of al-
gebraic and arithmetic groups, which I learned
from his excellent books and numerous papers on
these two topics.

Subsequently, Borel made many visits to TIFR
and other mathematical centers in India. He was
deeply interested in the development of mathe-
matical institutions in India and helped several of
them with his advice and frequent visits. For his
contributions to Indian mathematics, he was made
an honorary fellow of TIFR in 1990.

During his numerous trips to India, Armand
and his wife, Gaby, visited many sites of historical
and architectural interest and attended concerts of
Indian classical dance and music. He became fond
of many forms of Indian classical dances such as
Bharat-Natyam, Odissi, and Kathakkali. Even more
so, he came to love both Carnatic (south Indian) and
Hindustani (north Indian) classical music. He be-
came quite an expert on the subject and devel-
oped friendships with many musicians and dancers
from India. He invited several of them to perform
in the concert series he initiated and directed at the

Werner Mueller, Leslie Saper, and Borel
(left to right) at the Park City Summer

Institute, 2002.
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33The conjecture was later proved by L. Saper and M. Stern,
and E. Looijenga.

Gopal Prasad is professor of mathematics at the Univer-
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