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Introduction

This paper is the last of three articles designed to stabilize the trace formula. Our
goal is to stabilize the global trace formula for a general connected group, subject to a
condition on the fundamental lemma that has been established in some special cases. In
the first article [I], we laid out the foundations of the process. We also stated a series of
local and global theorems, which together amount to a stabilization of each of the terms
in the trace formula. In the second paper [II], we established a key reduction in the proof
of one of the global theorems. In this paper, we shall complete the proof of the theorems.
We shall combine the global reduction of [II] with the expansions that were established in
§10 of [I].

We refer the reader to the introduction of [I] for a general discussion of the problem of
stabilization. The introduction of [II] contains further discussion of the trace formula, with
emphasis on the “elliptic” coefficients agl(ﬁs). These objects are basic ingredients of the
geometric side of the trace formula. However, it is really the dual “discrete” coefficients
a§.,.(7) that are the ultimate objects of study. These coefficients are basic ingredients of
the spectral side of the trace formula. Any relationship among them can be regarded, at
least in theory, as a reciprocity law for the arithmetic data that is encoded in automorphic
representations.

G

The relationships among the coefficients ag . (7) are given by Global Theorem 2.
This theorem was stated in [I, §7], together with a companion, Global Theorem 2’, which
more closely describes the relevant coefficients in the trace formula. The proof of Global
Theorem 2 is indirect. It will be a consequence of a parallel set of theorems for all the

other terms in the trace formula, together with the trace formula itself.

Let G be a connected reductive group over a number field F. For simplicity, we can
assume for the introduction that the derived group Gge, is simply connected. Let V be a

finite set of valuations of F' that contains the set of places at which G ramifies. The trace
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formula is the identity obtained from two different expansions of a certain linear form
I(f), feH(G, V),

on the Hecke algebra of G(Fy ). The geometric expansion

(1) I(f) =Y WM wg =t > a™ () Iu(v, f)

M YET(M,V)
is a linear combination of distributions parametrized by conjugacy classes v in Levi sub-

groups M (Fy ). The spectral expansion

= M G-1 aM T T T
2) 10 = S W /H oy i )

is a continuous linear combination of distributions parametrized by representations 7w of
Levi subgroups M (Fy). (We have written (2) slightly incorrectly, in order to emphasize
its symmetry with (1). The right hand side of (2) really represents an integral over { M} x
II(M, V') that is known at present only to converge conditionally.) Local Theorems 1’ and
2" were stated in [I, §6], and apply to the distributions Ins(7, f) and Ips(m, f). Global
Theorems 1’ and 2/, stated in [I, §7], apply to the coefficients a™ (y) and a™ (7).

Each of the theorems consists of two parts (a) and (b). Parts (b) are particular to
the case that G is quasisplit, and apply to “stable” analogues of the various terms in the
trace formula. Our use of the word “stable” here (and in [I] and [II]) is actually slightly
premature. It anticipates the assertions (b), which say essentially that the “stable” variants
of the terms do indeed give rise to stable distributions. It is these assertions, together with
the corresponding pair of expansions obtained from (1) and (2), that yield a stable trace
formula. Parts (a) of the theorems apply to “endoscopic” analogues of the terms in the
trace formula. They assert that the endoscopic terms, a priori linear combinations of
stable terms attached to endoscopic groups, actually reduce to the original terms. These
assertions may be combined with the corresponding endoscopic expansions obtained from
(1) and (2). They yield a decomposition of the original trace formula into stable trace

formulas for the endoscopic groups of G.



Various reductions in the proofs of the theorems were carried out in [I] and [II] (and
other papers) by methods that are not directly related to the trace formula. The rest
of the argument requires a direct comparison of trace formulas. We are assuming at
this point that G satisfies the condition [I, Assumption 5.2] on the fundamental lemma.
For the assertions (a), we shall compare the expansions (1) and (2) with the endoscopic
expansions established in [I, §10]. The aim is to show that (1) and (2) are equal to their
endoscopic counterparts for any function f. For the assertions (b), we shall study the
“stable” expansions established in [I, §10]. The aim here is to show that the expansions
both vanish for any function f whose stable orbital integrals vanish. The assertions (a)
and (b) of Global Theorem 2 will be established in §9, at the very end of the process. They
will be a consequence of a term by term cancellation of the complementary components in
the relevant trace formulas.

Many of the techniques of this paper are extensions of those in Chapter 2 of [AC]. In
particular, Sections 2-5 here correspond quite closely to Sections 2.13-2.16 of [AC]|. As in

[AC], we shall establish the theorems by a double induction argument, based on integers
dder == dim(Gder)

and

Tder = dlm(AM N Gder)7

for a fixed Levi subgroup M of G. In §1, we shall summarize what remains to be proved
of the theorems. We shall then state formally the induction hypotheses on which the
argument rests.

In §2, we shall apply the induction hypotheses to the endoscopic and stable expansions
of [I, §10]. This will allow us to remove a number of inessential terms from the comparison.
Among the most difficult of the remaining terms will be the distributions that originate
with weighted orbital integrals. We shall begin their study in §3. In particular, we shall

apply the technique of cancellation of singularities, introduced in the special case of divi-
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sion algebras by Langlands in 1984, in two lectures at the Institute for Advanced Study.
The technique allows us to transfer the terms in question from the geometric side to the
spectral side, by means of an application of the trace formula for M. The cancellation
of singularities comes in showing that for suitable v € V and f, € H(G(Fv)), a certain

difference of functions

Yo — I]%{[('Yv:fv) - IM(%MfU): Yo € FG-reg(M(Fv)):

can be expressed as an invariant orbital integral on M (F,). In §4, we shall make use
of another technique, which comes from the Paley-Wiener theorem for real groups. We
shall apply a weak estimate for the growth of spectral terms under the action on f of an
archimedean multiplier a. This serves as a substitute for the lack of absolute convergence
of the spectral side of the trace formula. In particular, it allows us to isolate terms that
are discrete in the spectral variable. The results of §4 do come with certain restrictions
on f. However, we will be able to remove the most serious of these restrictions in §5 by a
standard comparison of distributions on a lattice.

The second half of the paper begins in §6 with a digression. In this section, we
shall extend our results to the local trace formula. The aim is to complete the process
initiated in [A10] of stabilizing the local trace formula. In particular, we shall see how
such a stabilization is a natural consequence of the theorems we are trying to prove.
The local trace formula has also to be applied in its own right. We shall use it to es-
tablish an unprepossessing identity (Lemma 6.5) that will be critical for our proof of
Local Theorem 1. Local Theorem 1 actually implies all of the local theorems, according to
reductions from other papers. We shall prove it in §7 and §8. Following a familiar line of
argument, we can represent the local group to which the theorem applies as a completion
of a global group. We will then make use of the global arguments of §2-5. By choosing
appropriate functions in the given expansions, we will be able to establish assertion (a)

of Local Theorem 1 in §7, and to reduce assertion (b) to a property of weak approxima-
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tion. We will prove the approximation property in §8, while at the same time taking the
opportunity to fill a minor gap at the end of the argument in [AC, §2.17].

We shall establish the global theorems in §9. With the proof of Local Theorem 1 in
hand, we will see that the expansions of §2-5 reduce immediately to two pairs of simple
identities. The first pair leads directly to a proof of Global Theorem 1 on the coefficients
a% (4s). The second pair of identities applies to the dual coefficients a§ (7). It leads
directly to a proof of Global Theorem 2.

In the last section, we shall summarize some of the conclusions of the paper. In
particular, we shall review in more precise terms the stablization process for both the
global and local trace formulas. The reader might find it useful to read this section before

going on with the main part of the paper.



g1. The induction hypotheses

Our goal is to prove the general theorems stated in [I, §6,7]. This will yield both a
stable trace formula, and a decomposition of the ordinary trace formula into stable trace
formulas for endoscopic groups. Various reductions of the proof have been carried out in
other papers, by methods that are generally independent of the trace formula. The rest of
the proof will have to be established by an induction argument that depends intrinsically
on the trace formula. In this section, we shall recall what remains to be proved. We shall
then state the formal induction hypotheses that will be in force throughout the paper.

We shall follow the notation of the papers [I] and [II]. We will recall a few of the basic
ideas in a moment. For the most part, however, we shall have to assume that the reader
is familiar with the various definitions and constructions of these papers.

Throughout the present paper, F' will be a local or global field of characteristic 0. The

theorems apply to a K-group G over F' that satisfies Assumption 5.2 of [I]. In particular,
G=]]Gs. B € mo(G),
B

is a disjoint union of connected reductive groups over F', equipped with some extra struc-
ture [A10, §2], [I, §4]. The disconnected K-group G is a convenient device for treating
trace formulas of several connected groups at the same time. Any connected group G is
a component of an (essentially) unique K-group G [I, §4], and most of the basic objects
that can be attached to G; extend to G in an obvious manner.

The study of endoscopy for G depends on a quasisplit inner twist ¢: G — G* [A10,

§1,2]. Recall that 1 is a compatible family of inner twists
¢ﬁ1 Gﬁ —>G*, ﬁGﬂ‘o(G),

from the components of G to a connected quasisplit group G* over F. Unless otherwise

stated, ¢ will be assumed to be fixed. We also assume implicitly that if M is a given Levi
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sub(K-)group of G, then ¢ restricts to an inner twist from M to a Levi subgroup M* of
G*.

It is convenient to fix central data (Z,() for G. We define the center of G to be
a diagonalizable group Z(G) over F, together with a compatible family of embeddings
Z(G) C G that identify Z(G) with the center Z(Gg) of any component Gg. The first
object Z is an induced torus over F' that is contained in Z(G). The second object (
is a character on either Z(F') or Z(A)/Z(F'), according to whether F' is local or global.
The pair (Z, () obviously determines a corresponding pair of central data (Z*,(*) for the
connected group G*.

Central data are needed for the application of induction arguments to endoscopic
groups. Suppose that G’ € &) (G) represents an elliptic endoscopic datum (G', G’ s, &’)
for G over F' [I, §4]. We assume implicitly that G’ has been equipped with the auxiliary
data (G, €’) required for transfer [A7, §2]. Then G/ — G’ is a central extension of G’ by
an induced torus C’ over F, while &: ¢/ — LG’ is an L-embedding. The preimage Z’
of Z in G’ is an induced central torus over F. The constructions of [LS, (4.4)] provide a
character 7' on either Z'(F) on Z'(A)/Z'(F), according to whether F is local or global.
We write ¢’ for the product of 7’ with the pullback of ¢ from Z to Z’. The pair (Z’ N )
then serves as central data for the connected quasisplit group G’. (The notation from [I]
and [II] we are using here is slightly at odds with that of [A7] and [A10].)

The trace formula applies to the case of a global field, and to a finite set of valuations
V of F that contains Viam(G, (). We recall that Viam(G, () denotes the set of places at
which G, Z or ( are ramified. As a global K-group, G comes with a local product structure.

This provides a product

Gv=1J]G =]] (HGU,5U> =[[Gvs
5o By

veEV v

of local K-groups G, over F,,, and a corresponding product

Gv(Ev) = [T Go(#) = TT (T G (B2)) = TT Grpe (F1)
Bo Bv

veV v
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of sets of F,-valued points. Following the practice in [I] and [II], we shall generally avoid
using separate notation for the latter. In other words, G, will be allowed to stand for
both a local K-group, and its set of F,- valued points. The central data (Z, () for G yield

central data

(Zv,(v) = (H&Ikﬁ—ﬂzmwmm)
Bv

for Gy, with respect to which we can form the ¢, L_equivariant Hecke space

H(Gv,¢v) = H H(Gv,gyCv,py )-
Bv

The terms in the trace formula are linear forms in a function f in H(Gy, (v ), which depend

only on the restriction of f to the subset
GZ = {.’E e Gy : Hg(al) S Clz}
of Gy . They can therefore be regarded as linear forms on the Hecke space

H(G,V,Q) =H(GT.¢v) = [[H(GT 5, . Cvisy )
Bv

We recall that some of the terms depend also on a choice of hyperspecial maximal compact

subgroup

V:HKU

vgV

of the restricted direct product
= 1] G-
vV

In the introduction, we referred to Local Theorems 1’ and 2’ and Global Theorems
1" and 2’. These are the four theorems stated in [I, §6,7] that are directly related to the
four kinds of terms in the trace formula. We shall investigate them by comparing the trace

formula with the endoscopic and stable expansions in [I, §10]. In the end, however, it will
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not be these theorems that we prove directly. We shall focus instead on the complementary
theorems, stated also in [I, §6,7]. The complementary theorems imply the four theorems
in question, but they are in some sense more elementary.

Local Theorems 1 and 2 were stated in [I, §6], in parallel with Local Theorems 1’ and
2'. They apply to the more elementary situation of a local field. However, as we noted
in [I, Propositions 6.1 and 6.3], they can each be shown to imply their less elementary
counterparts. In the paper [A11], it will be established that Local Theorem 1 implies
Local Theorem 1’. In the paper [A12], it will be shown that Local Theorem 2 implies
Local Theorem 2’, and also that Local Theorem 1 implies Local Theorem 2. A proof of
Local Theorem 1 would therefore suffice to establish all the theorems stated in [I, §6].
Since it represents the fundamental local result, we ought to recall the formal statement

of this theorem from [I, §6].

Local Theorem 1. Suppose that F' s local, and that M is a Levi subgroup of G.
(a) If G is arbitrary,

I]é\}(")/, f) = IM(")/, f), Y e 1—‘G—reg,ell(ﬂfv C)a f € H(G7 C)

(b) Suppose that G is quasisplit, and that 0’ belongs to the set AG_regﬁu(M’, E’), for some

M’ € Eq(M). Then the linear form
f— SE(M" 5 f), f € H(G,Q),

vanishes unless M' = M*, in which case it is stable.

The notation here is, naturally, that of [I]. For example, I'G-yeg enn(M, () stands for
the subset of elements in I'(M, () of strongly G-regular, elliptic support in M (F'), while
['(M, ¢) itself is a fixed basis of the space D(M, () of distributions on M (F') introduced in [,
§1]. Similarly, AG_regﬁu(Mj’, Z’) stands for the subset of elements in A(M’, Z’) of strongly

G-regular, elliptic support in M’ (F'), while A(M ! ,E’ ) is a fixed basis of the subspace
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SD(M ! E ") of stable distributions in D(M ! E ). We recall that G is defined to be quasisplit
if it has a connected component G that is quasisplit. In this case, the Levi sub(K-)group
M is also quasisplit, and there is a bijection § — ¢* from A(M, () onto A(M*,(*). The
linear forms I, (v, f) and S§(M',d, f) are defined in [I, §6], by a construction that relies
on the solution [Sh] [W] of the Langlands-Shelstad transfer conjecture. For p-adic F', this
in turn depends on the Lie algebra variant of the fundamental lemma that is part of [,
Assumption 5.2]. If G is quasisplit (which is the only circumstance in which S, (M, &, f)

is defined), the notation
S]?/[(&f) :S]?/[<M*75*7f)7 66 AG—reg,ell<M7<)7

of [A10] and [I] is useful in treating the case that M’ = M*.

If M = G, there is nothing to prove. The assertions of the theorem in this case follow
immediately from the definitions in [I, §6]. In the case of archimedean F', we shall prove
the general theorem in [A13], by purely local means. We can therefore concentrate on the
case that F'is p-adic and M # G. We shall prove Local Theorem 1 under these conditions
in §8. (One can also apply the global methods of this paper to the case of archimedean F,
as in [AC]. However, some of the local results of [A13] would still be required in order to
extend the cancellation of singularities in §3 to this case.)

Global Theorems 1 and 2 were stated in [I, §7], in parallel with Global Theorems
1" and 2’. They apply to the basic building blocks from which the global coefficients in
the trace formula are constructed. According to Corollary 10.4 of [I], Global Theorem
1 implies Global Theorem 1’, while by Corollary 10.8 of [I], Global Theorem 2 implies
Global Theorem 2’. It would therefore be sufficient to establish the more fundamental pair

of global theorems. We recall their formal statements, in terms of the objects constructed

in [I, §7].

Global Theorem 1. Suppose that F' is global, and that S is a large finite set of valuations

that contains Viam(G, ().
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(a) If G is arbitrary,

G,E/- a /-
ag (¥s) = agy(¥s),

for any admissible element vs in T5,(G, S, ¢).

(b) If G is quasisplit, bS5, (ds) vanishes for any admissible element ds in the complement of

Aan(G, S,¢) in A4 (G, S, Q).

Global Theorem 2. Suppose that F' is global, and that t > 0.

(a) If G is arbitrary,

G.E . a -
adisc(ﬂ-> = adisc(’n>7

for any element 7 in Hf’diSC(G, ().
(b) If G is quasisplit, bgl(@ vanishes for any ¢ in the complement of D4 qisc (G, () in
q)f,disc(Gv C)

The notation g, dg, 7 and ¢ from [I] was meant to emphasize the essential global
role of the objects in question. The first two elements are attached to Gg, while the last
two are attached to G(A). The objects they index in each case are basic constituents of

the global coefficients for Gy, for any V with
Viam (G, () C V C S,

that actually occur in the relevant trace formulas. The domains 'S, (G, S, ¢), It qisc (G, €),
etc., were defined in [I, §2,3,7], while the objects they parametrize were constructed in [I,
§7]. The notion of an admissible element in Global Theorem 1 is taken from [I, §1]. We
shall establish Global Theorems 1 and 2 in §9, as the last step in our induction argument.

We come now to the formal induction hypotheses. The argument will be one of double

induction on a pair of integers dqe, and 74er, with

(1.1) 0 < rger < dger-
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These integers are to remain fixed until we complete the argument at the end of §9. The

hypotheses will be stated in terms of these integers, the derived multiple group

Gder = H Gﬁ,dem
B

and the split component

Arnca., = Am N Ger

of the Levi subgroup of G4, corresponding to M.
Local Theorem 1 applies to a local field F', a local K-group G over F' that satisfies
Assumption 5.2(2) of [1], and a Levi subgroup M of G. We assume inductively that this

theorem holds if

(1.2) dim(Gyer) < dder, (F local),
and also if
(1.3) dim(Gyer) = dger, and dim(Ap; N Gaer) < Tder, (F local).

We are taking for granted the proof of the theorem for archimedean F' [A13]. We have
therefore to carry the hypotheses only for p-adic F', in which case G is just a connected
reductive group. Global Theorems 1 and 2 apply to a global field F', and a global K-group

G over F that satisfies Assumption 5.2(1) of [I]. We assume that these theorems hold if
(1.4) dim(Ger) < dder, (F global).
In both the local and global cases, we also assume that if G is not quasisplit, and

(1.5) dim(Gyer) = dder, (F local or global),

the relevant theorems hold for the quasisplit inner K-form of G. We have thus taken
on four induction hypotheses, which are represented by the four conditions (1.2)—(1.5).
The induction hypotheses imply that the remaining theorems also hold. According to the
results cited above, any of the theorems stated in [I, §6,7] is actually valid under any of

the relevant conditions (1.2)—(1.5).
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§2. Application to endoscopic and stable expansions

We now begin the induction argument that will culminate in §9 with the proof of the
global theorems. We have fixed the integers dger and r4er in (1.1). In this section, we shall
apply the induction hypotheses (1.2)—(1.5) to the terms in the main expansions of [I, §10].
The conclusions we reach will then be refined over the ensuing three sections. For all of
this discussion, F' will be global.

We fix the global field F. We also fix a global K-group G over F' that satisfies

Assumption 5.2(1) of [I], such that
dim(Gder) = dder-

Given G, we choose a corresponding pair of central data (Z,(). We then fix a finite set V'
of valuations of F' that contains Viam (G, ). As we apply the induction hypotheses over the
next few sections, we shall establish a series of identities that occur in pairs (a) and (b),
and approximate what is required for the main theorems. The identities (b) apply to the
case that G is quasisplit, and often to functions f € H(Gy, (y) such that f& = 0. We call
such functions unstable, and we write H""5(Gy, (y) for the subspace of unstable functions
in H(Gvy,(y). It is clear that H"™ (G, (v) can be defined by imposing a condition at any
of the places v in V. It is the subspace of H(Gv, (y) spanned by functions f = [] f, such
v

that for some v € V, f, belongs to the local subspace

H™ (G, Co) = {fo € H(Gv,Co) : & =0}

of unstable functions.

Our first step will be to apply the global descent theorem of [II], in the form taken
by [II, Proposition 2.1] and its corollaries. Since the induction hypotheses (1.4) and (1.5)
include the conditions imposed after the statement of Theorem 1.1 of [II], these results are
valid for G. Let f be a fixed function in H(Gy,{y). Given f, we take S to be a large

finite set of valuations of F' containing V. To be precise, we require that S be such that
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the product of the support of f with the hyperspecial maximal compact subgroup KV of
GV (AV) is an S-admissible subset of G(A), in the sense of [I, §1]. In [I, §8], we defined the

linear form

La(f,S) = Lan(fs), fs=fxuf.
We also defined endoscopic and stable analogues 1§,(f, S) and S§|(f,S) of Iu(f,S). The
role of the results in [II] will be to reduce the study of these objects to that of distributions
supported on unipotent classes.

Let us use the subscript unip to denote the unipotent variant of any object with
the subscript ell. Thus, I'yip(G,V, () denotes the subset of classes in I'ej (G, V, () whose
semisimple parts are trivial. Applying this convention to the “elliptic” objects of [I, §§],
we obtain linear forms

(2.1) Lip(£,8) = > aSupla, 8) fa(@),

aerunip (Gavvc)

with coeflicients

Smp(a S) Z CLgl(Oé X k)rG<k)7 Q€ FuHiP(G7 V7 C)
kekY . (G,S)

unip

We also obtain endoscopic and stable analogues ump( f,S) and SS. (f,S) of Lunip(f,9).

unip

These are defined inductively by the usual formula
EaplfS)= > uG.G)SG () +e(G)SGu(f, 9),
Gregl, (G,S)
with the requirement that Ifmp(f ,S) = Lunip(f, S) in case G is quasisplit. The natural

variant of [I, Lemma 7.2] provides expansions

(22) (9= D alip(8)fe(a)
ozEl_‘imp(G,V,C)

and

(23) unlp(f7 )_ Z ump(ﬁ S)fG(ﬁ)7

BEAE

unip

(G,V,Q)
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with coeflicients

s (@, S) = > afif(ax k)ra(k), o €TE, (G,V,0),
keicuvnfp(e S)
and
bhip(3,9) = > bG(B x Ora(0), B e AL (G V,Q).
e (G,S)

(See [I, (8.4)—(8.9)].)

The global descent theorem of [II] allows us to restrict our study of the “elliptic”
coefficients to the special case in which the arguments have semisimple part that is central.
Recall that the center of G is a diagonalizable group Z(G) over F', together with a family of
embeddings Z(G) C Gg. Let us write Z(G)y,, for the subgroup of elements z in Z(G, F)
such that for every v ¢ V, the element z, is bounded in Z(G, F,), which is to say that its
image in G, lies in the compact subgroup K,. The group Z(G)y,, then acts discontinuously

on Gy . Its quotient

Z(G)v,o = Z(G)v,eZv/Zy

in turn acts discontinuously on Gy = Gy /Zy . If 2 belongs to Z(G)v.,, and f,(z) = f(z2),

we set

Iz,unip(f7 S) = Iunip<f27 S)7

z ump(f? ) = I5n1p<f27 S)7

and

zunlp(f7 ) qup(fZ7 )

Lemma 2.1. (a) In general, we have

Ieﬁl(f? S) _Iell<f7 S) = Z (Ifump(f’ S) _Iz,unip(f7 S))
ZGZ(E)VJ
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(b) If G is quasisplit and f is unstable, we have

ell(f7 ): Z Sz unlp(f7S)'

ZGZ(G)VYU

Proof. Consider the expression in (a). It follows from the expansions [I, (8.5), (8.8)]

that

558 = La(f.9) = Y. (a55(1.9) — a§i(v,9)) fa (7).

’Yerfu(G:VaC)

The coefficients can in turn be expanded as

R G,E
ell (77 S) - a’gl(77 S) = Z (aell (7 X k) - a’gl<’7 X ]C))Tg(k?),
kek ) (@,S)
by [I, (8.4), (8.6)]. Proposition 2.1(a) of [II] asserts that agl’g(”y x k) equals a§(y x k),
whenever the semisimple part of v X k is not central in G. It follows that if the semisimple
G,E

part of 7 is not central in G, a_j;” (7, S) equals a&(v,S). If the semisimple part of 7 is

central in GG, v has a Jordan decomposition that can be written

v = za, zEZ(@)V,O, aeT¢ (G, V., ().

unip

The trivial case of the general descent formula [II, Corollary 2.2(a)] then implies that

agi®(7,S) — a§i(7, S) = aSi (a, ) — aGnip(ar, S).

The formula (a) follows.

To deal with (b), we write

ell(f? ) Z ell<5 S)fG( )7

SEAE, (G, V.C)

and

DH(6,8) = > bG8 x Ora(0),

teLy#(G,S)
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according to [I, (8.9), (8.7)]. Since f is unstable, f&(8) vanishes on the subset Ay (G, V,¢)
of A%,(G,V, (). On the other hand, if § lies in the complement of Ag(G,V, (), and the
semisimple part of § is not central in G, Proposition 2.1(b) of [II] implies that b$,(6, S) = 0.

If the semisimple part of ¢ is central in G, § has a Jordan decomposition

d =z, 2 € Z(Qv,e, a € A8 (G, V().

unip
The simplest case of the descent formula [II, Corollary 2.2(b)] then implies that
bgl(’y? S) = bl?nip(av S)

The formula (b) follows. O

We have relied on our global induction hypotheses in making use of the descent formu-
las of [II]. The next stage of the argument depends on both the local and global induction

hypotheses. We are going to study the expressions

Lae(f) = > WMWY a9 Iu(r, f),

MeLo ~yET'(M,V,()

E.n= > wdwert S aMEIS (L),

MeLo YETE (M, V()

and

SCH =S wwEt Yy Y M) SG L8 ),

MGL:O Mlegell(M’V) 6’EA(A’Z',V7’€T’)

that comprise the three geometric expansions in [I, §2,10]. However, we shall first study the
complementary terms in the corresponding trace formulas. These include constituents of
the three spectral expansions from [I, §3,10]. We shall show how to eliminate all the terms
in the spectral expansions except for the discrete parts It gisc(f), If’ aisc(f) and Sgdisc( f)-
As in [I, §3], the nonnegative real numbers ¢ that parametrize these distributions are

obtained from the imaginary parts of archimedean infinitesimal characters.
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Proposition 2.2(a). (a) In general, we have

(24) I5.(f) = Lae(£) =D (I aise(f) = Traise(£)) = Y (I unip(£:9) = L nip (£, 9))-

t z

(b) If G is quasisplit and f is unstable, we have

(25) par Z StGdlsc Z Sz unlp

The sums overt in (a) and (b) satisfy the global multiplier estimate [I, (3.3)], and in
particular, converge absolutely.
Proof. We begin with the assertion (a). By the geometric expansions [I, Proposition

2.2 and Theorem 10.1(a)], we can write

Loar(F) = Toax (f) = (I°(f) = I(f)) = (L& (f) = Lo (),

in the notation of [I]. Now
IEo(f) = Lan(H) = > (a9°(1) —a®(7) fa(),
~ETE(G,V,()

by the definition [I, (2.11)] and the formula [I, Lemma 7.2(a)]. If we apply the global

induction hypothesis (1.4) to the terms in the expansions [I, (2.8), (10.10)], we see that

G,S(

a “(y) = aSE (v, 8) — aG (7, 9).

v) —a

It follows from [I, (8.5), (8.8)] that

I (f) = Low(f) = L5y (£, 8) — Leu(f. ).

Combining this with Lemma 2.1, we see that

IS () = Toar(F) = (IE(H) = 1(£)) = D (28 wnip(F) = Lerumin (1))

z
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The second step is to apply the spectral expansions for I¢(f) and I(f). It follows

from Propositions 3.1 and 10.5 of [I] that

IE(N) = 1) =>_ (IE(f) = L)),

where the sums over ¢ satisfy the global multiplier estimate [I, (3.3)]. We have to show
that the summands reduce to the corresponding summands in (2.4).
By Proposition 3.3 and Theorem 10.6 of [I], we can write IS (f) — I;(f) as the sum of

a distribution
IEunit(f) - It,unit(f)

defined in [I, §3,7], and an expression

S wAwE [ (@@ ) - @) (. ).

piczo 115 (MV,0)
Consider the terms in the expansion. The indices M are by definition proper Levi sub-
groups of G. For any such M, the global induction hypothesis (1.4) implies that a™-¢(7)
equals a™ (7). Local Theorem 2’ would also tell us that the distributions I§,(r, f) and
Iy (m, f) are equal. At this point, we do not know that the theorem holds for arbitrary
7. In the case at hand, however, m belongs to I .. (M, V,(), and therefore has unitary
central character. In this case, the identity follows from the study of these distributions
in terms of their geometric counterparts [A12], and the local induction hypothesis (1.2).
(For special cases of this argument, the reader can consult the proof of Lemma 5.2 of [A2]
and the discussion at the end of §10 of [AC].) The terms in the expansion therefore vanish.
The remaining distribution has its own expansion

i) = (D = [ (a%¥(m) = () fa(m)dr.
¢ (G,V,C)

according to [I, (3.16) and Lemma 7.3(a)]. Applying the global induction hypothesis (1.4)

to the terms in the expansions [I, (3.12), (10.21)], we deduce that

G,E G G,E G
a’ (7T> —a (’/T) = adisc(ﬂ-> - adisc(ﬂ-)‘
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It follows from [I, (8.13), (8.16)] that

IEunlt(f) - It,unit(f) = Itg,disc(f) - It,disc(f)~

This gives the reduction we wanted. Summing over ¢, we conclude that

IE(f) = I(f) =D (I gise(f) = Traise(£)),

t

and that the identity of (a) is valid.
The argument in (b) is similar. Assume that G is quasisplit, and that f is unstable.

The geometric expansion [I, Theorem 10.1(b)] asserts that

SC(f) = S%(f) — SSu(f),

in the notation of [I]. Now, S%, (f) has a simple expansion
San(H) =" D O)EO),
SEAE(G,V,0)
according to [I, Lemma 7.2(b)]. Since f is unstable, the function f§ vanishes on the subset

A(G,V,¢) of A2(G,V,(). Tt follows from [I, Proposition 10.3(b) and (8.9)] that

SE = S BG0,8)FEG) = SG(f.9).

SEAE(G,V,()

Combining this with Lemma 2.1, we see that

G — E
Spar ( z unlp

The second step again is to apply the appropriate spectral expansion. It follows from

[I, Proposition 10.5] that
=Y SE()
t
where the sums over t satisfy the global multiplier estimate [I, (3.3)]. For a given ¢,

Theorem 10.6 of [I] expresses S&(f) as the sum of a distribution S&

t,unit

defined in [I, §7],
and an expansion in terms of distributions
SG(M', ¢, f), Me L0 M eEn(M,V), ¢ €d, (M, V,().
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Local Theorem 2" would tell us that the distribution S, (M’, ¢’) vanishes if M’ # M,
and is stable if M’ = M. Since f is unstable, S§;(M’, ¢/, f) ought then to vanish for any
M’. Given that the element ¢’ € @t(ﬁ "V, E’ ) at hand has unitary central character, this
again follows from the study of the distributions in terms of their geometric counterparts
[A12], and the local induction hypothesis (1.2), even though we have not yet established
the theorem in general. The terms in the expansion therefore vanish. The remaining

distribution has its own expansion

56 () = / b (6) £E () do,
5 (G,V,0)

provided by [I, Lemma 7.3(b)]. We can then deduce that

Stc,;unit(f) = Z bdGlsc<¢)fC€¥(¢) = SEdisc(f)?
¢€<I>f’umt(G,V,C)

from [I, Proposition 10.7(b) and (8.17)], and the fact that f is unstable. Summing over ¢,

we conclude that
SG(f) = Z It,disc(f)-
t
The identity in (b) follows. O

We shall now study the expressions on the left hand sides of (2.4) and (2.5). If M

M.E(

belongs to £°, the global induction hypothesis (1.4) implies that the coefficients a v)

and a™(v) are equal. We can therefore write the left hand side of (2.4) as

I () = Lae(f) = D WIIWET > aM()(I5 (v f) = In (7. ).

Meco VGF(M7V7C)

There are splitting formulas for 1§, (v, f) and I/ (7, f) that decompose these distributions
into individual contributions at each place v in V' [A10, (4.6), (6.2)], [A11]. The decom-
positions are entirely parallel. It follows from the induction hypothesis (1.2) that any of
the cross terms in the two expansions cancel. To describe the remaining terms, we may as

well assume that f =[] f,. In particular,
v

f:fvaa fv:wa:
wWHV
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for any v. The left hand side of (2.4) then reduces to

26) S WMWETSS ST M5 (er £o) = Tar(res £)) F1s (07,

MeLo vEV yET(M,V,C)
where v = 7,7 is the decomposition of v relative to the product Gy = G, GY,. Similarly,
there are splitting formulas [A10, (6.3), (6.3")], [A11] for the distributions S, (M’,d’, f)
that occur in the expansion of left hand side Sgr( f) of (2.5). Applying the local induction

hypothesis (1.2), one sees that SG, (f) equals

par

(2.7) YoWRTIWETt Y u(M M)

ME[:O Mlegell(M’V)
DY MOS8 L))M(()).
VeV sreA(M7, V()
for any function f = IIf, such that f& = 0, and for the decomposition &’ = ¢’ (6')? of &'
We have not yet used the induction hypothesis (1.3) that depends on the integer rqe;.

In order to apply it, we have to fix a Levi subgroup M € L such that
dim(AM N Gder) = Tder-

Since rqer is positive, M actually lies in the subset £° of proper Levi subgroups. The pair
(G, M) will remain fixed until the end of §5.

If v belongs to V, M determines an element M, in the set £2 C L, of (equivalence
classes of) proper Levi subgroups of GG, that contain a fixed minimal Levi subgroup of G,,.
The real vector space

ar, = Hom(X(M)r,,R)

then maps onto the corresponding space aj; for M. As usual,we write a]\GJ”U for the kernel
in aps, of the projection of aps, onto ag,. We shall also write Vg, (G, M) for the set of

p-adic valuations v in V' such that

dim(afﬁ) = dim(a$)).
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This condition implies that the canonical map from afﬁ to ajc\i, is an isomorphism.

If v is any place in V', we shall say that a function f, € H(G,,(,) is M -cuspidal if
fv.r, = 0 for any element L, € £, that does not contain a G,-conjugate of M,. Let
Hr (Gy, Cv) denote the subspace of H(Gvy, (y) spanned by functions f = [] f, such that

fv is M-cuspidal at two places v in V. In the case that G is quasisplit, we also set
Har (Gv, Cv) = Hu(Gv, ¢v) NHY™ (G, Cv).

We write W (M) for the Weyl group of (G, M) [A10, §1]. As in the case of connected

reductive groups, W (M) is a finite group that acts on L.

Lemma 2.3. (a) If G is arbitrary, IS, (f) — Ipar(f) equals

par

(2.8) W=ty > a5 (s o) = I (v, £)) £ (3)s

VEViin (G,M) vyeT'(M,V ()

for any function f =[] fo in Hp(Gv, Cv).

(b) If G is quasisplit, SS._(f) equals

par

(2.9) w@n=t Y oM, M)
M/ €En (M, V)

> S WM SG (ML 8, £)(F)M ((8)Y),

Ue‘/fin(G7M) 6'EA(M/7V7/E/)

for any function f =] f, in HY*(Gv, (v ).

Proof. To establish (a), we write the expression (2.6) as

W@y Y aFIE (e fo) = I (s £2)) FE()s

veV vel(L,V,C)

where L is summed over a set of representatives of WOG—orbits in £°. This is possible
because the factors on the right depend only on the W -orbit of L, and the stabilizer of

L in W& equals WEW (L). If L does not contain a conjugate of M, our condition on f
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implies that f7(y") = 0 for any v. The corresponding summand therefore vanishes. If L

does contain a conjugate of M, but is not actually equal to such a conjugate, we have
dim(AL N Gder) < dim(AM N Gder) = Tder-

In this case, the induction hypothesis (1.3) implies that I¢(v,, f,) equals I1.(v,, fo), for
any v. The corresponding summand again vanishes. This leaves only the element L that
represents the orbit of M. The earlier expression (2.6) for I, (f) — Ipar(f) therefore

par

reduces to

WD S @) IS s fo) = Tnt (s ) Fir ().

vEV yeT (M, V()

This is the same as the given expression (2.8), except that v is summed over V instead of
the subset Vg, (G, M) of V.

Suppose that v belongs to the complement of Vg, (G, M) in V. If v is archimedean,
I§; (Vo fo) equals Ins (s, fu), by [A13] and [A11]. If v is p-adic, the map from aij to a§;
has a nontrivial kernel. In this case, the descent formulas [A10, (4.5), (7.2)] (and their
analogues [A11] for singular elements) provide an expansion

I (s fo) = I (v o) = D dS, (M, L) (L7 (s fo.n,) = I (s fur,)),
Ly€Ly(My)

in which the coefficients d]\GJD(M , L) vanish unless L, is a proper Levi subgroup of G,.
But if L, is proper, our local induction hypothesis (1.2) tells us that I ij’g(%, fu.,) equals
iz 1%42 (Yo, fo.r,). The summand for v in the expression above therefore vanishes in either
case. We conclude that I5,.(f) — Ipar(f) equals (2.8), as required.

The proof of (b) is similar. We first write the expression (2.7) as
YW@t > WL L)Yy Y ST £ () ((8)),
L L/Ggeu(L,V) veV 6'€A(Z',V,Z/')
where L is summed over a set of representatives of W§*-orbits in £°. If L does not contain

a conjugate of M,

’

(P (E)Y) = (DX ((0)) =0, vev,
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so the corresponding summand vanishes. If L strictly contains a conjugate of M, our
induction hypothesis (1.3) implies that the distribution S¢(L’, ¢!, f,) vanishes if L' # L,

and is stable if L' = L. Since the function f is unstable, the product
SE(LL, 8y, f) (£ ((8)°), vev,

vanishes for any L’, v and ¢’. The corresponding summand again vanishes. The earlier

expression (2.7) for S& _(f) therefore reduces to

par
wanit Y M)y > b STHM, 8, f) M (()).
M’ €€ (M,V) veV 5’€A(Z\A/Z’,V,Z’)
This is the same as the required expression (2.9), except that v is summed over V instead

of the subset Vi, (G, M). But if v belongs to the complement of Vg, (G, M) in V, the

condition that f be unstable again allows us to deduce that the products
S5 (M1, 8, £) (S ((6)°)
all vanish. If v is archimedean, this follows from [A13] and [All]. If v is p-adic, it is

a simple consequence of the descent formulas [A10, (7.3), (7.3")] (and their analogues

[A11] for singular elements), and the local induction hypothesis (1.2). The summand

G

corresponding to v therefore vanishes. We conclude that S5,

(f) equals (2.9), as required.
O

We remark that if M’ and v are as in (2.9), the local endoscopic datum M for M, need
not be elliptic. However, in this case, [A10, Lemma 7.1(b’)] (together with our induction
hypotheses) implies that

Sar(My, 8, fu) = 0.
It follows that v could actually be summed over the subset
Viin (G, M') = {v € Vi (G, M) : apy =ap, }
= {v € Vin : dim(a]\GJz) = dim(a§;)}

of Van (G, M) in (2.9).
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§3. Cancellation of p-adic singularities

To proceed further, we require more information about the linear forms in f, that
occur in (2.8) and (2.9). We shall extend the method of cancellation of singularities that
was applied to the general linear group in [AC, §2.14]. In this paper, we need consider only
the p-adic form of the theory, since the problems for archimedean places will be treated by
local means in [A13] and [A11].

As in the last section, GG is a fixed K-group over the global field F, with a fixed Levi
subgroup M. Suppose that v belongs to the set Vi, of p-adic valuations in V. Then G,
is a connected reductive group over the field F,. We are going to define two subspaces of
the Hecke algebra H(G,, ().

Let H(G,,¢,)% be the subspace of functions in H(G,,(,) whose strongly regular
orbital integrals vanish near the center of G. Equivalently, H(G,, ()% is the null space in

H(G,, (y) of the family of orbital integrals

fv B— fv,G(Zvav)v fv € H<G07Cv)7

in which z, ranges over the center
Z(év> = Z(G, Fv)/Z(Fv)

of G, = Gy/Z,, and «, ranges over Iupnip(Gy,(,). For the latter description, we could
equally well have replaced I'ynip(Gy, () by the abstract set Rynip(Gy, () introduced in
[A11]. This set is a second basis of the space of distributions spanned by the unipotent
orbital integrals that has the advantage of behaving well under induction. More pre-
cisely, Runip(Gy, () is the disjoint union of the set Ryupnipe1(Gyv, (y) of elliptic elements in

Runip(Go, (), together with the subset

Runip,par(GIMCU) = {,Ova Py € Runip,ell(Lvy Cv)y Lv g Gv}

of parabolic elements, induced from elliptic elements for proper parabolic subgroups of

Gy. (See [A11].) We have reserved the symbol H(G.,, (,)? to denote the larger subspace
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annihilated by just the parabolic elements. That is, H(G.,, ,)° is the subspace of functions
fo in H(G,, () such that

fv,G(zvav) — 07 2y € Z(@v>: Qy € Runip,par(Gv: Cv)

Suppose now that v lies in our subset Vi, (G, M) of valuations v in Vg, such that affv
maps isomorphically onto a$;. We are going to define a map from H (G, (,)° to another
space, which represents an obstruction to the assertion of Local Theorem 1(a). In the case
that G, is quasisplit, we shall construct some further maps, one of which is defined on the
space

Huns(Gv’ Q;)O — Huns(Gv’ Q}) N H(Gv, Cy)O’

and represents an obstruction to the stability assertion of Local Theorem 1(b). The maps
will take values in the function spaces Z,.(M,, (,) and SZ,.(M,, (,) introduced in earlier
papers. (See for example [Al, §1].) We recall that Z,.(M,,(,) and SZ,.(M,,(,) are
modest generalizations of the spaces Z(M,,(,) and SZ(M,,(,), necessitated by the fact
that weighted characters have singularities in the complex domain. They are given by
invariant and stable orbital integrals of functions in a space Hue(M,, (). By definition,
Hae(M,, ¢,) is the space of uniformly smooth, ¢ !-equivariant functions f, on M, such

that for any X, in the group

an o = an, r, = Hy, (M),

the restriction of f, to the preimage of X, in M, has compact support. By uniformly
smooth, we mean that the function f, is bi-invariant under an open compact subgroup
of Gy. An element in Z,.(M,,(,) can be identified with a function on either of the sets
I'(M,, ) or R(M,,(,) (by means of orbital integrals) or with a function on the product of
II(M,, () with aps/az ., (by means of characters). Similarly, an element in SZ,.(M,, ()
can be identified with a function on A(M,, ,) (by means of stable orbital integrals) or with

a function on the product of ®(M,, (,) with ans,/az, (by means of “stable characters”).

28



We emphasize that the sets R(M,,(,), A(My,(,) and ®(M,, (,) are all abstract bases of
one sort or another. In particular, the general theory is not sufficiently refined to be able
to identify the elements in ®(M,, (,) with stable characters in the usual sense.

The maps will actually take values in the appropriate subspace of cuspidal functions.

We recall that a function in Z,.(M,, (,) is cuspidal if it vanishes on any induced element

’)/U:qujwvv pv GF(R07CU)7

in I'(M,,(,), where R, is a proper Levi subgroup of M,. Similarly, a function in

SZoc(M,, () is cuspidal if it vanishes on any properly induced element
5y = oM, oy € A(Ry, (),

in A(My, G)-

Proposition 3.1. (a) There is a map
EM - H(Gva)O - Iac(Mv:Cv)7
which takes values in the subspace of cuspidal functions, such that

(3'1) 5M(fvv'yv) :ijd(fyvva)_IM('wav),

for any f, € H(G,, ()0 and v, € T(M,, ().

(b) If G, is quasisplit, there is a map

M =M HYS(G,,6)° —— STae(M,y, ),
which takes values in the subspace of cuspidal functions, such that
(3:2) ¥ (fo, 00) = S5;(80, o),

for any f, € H"S(G,, ()° and 8, € A(M,, ().
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(0') If Gy, is quasisplit and M’ belongs to E%,(M), there is a map

M H(Gyy )" — STae(M,,C)),
which takes values in the subspace of cuspidal functions, such that
(3:2) M (£0,8,) = S5 (M}, 8, £.),

for any f, € H(Gy,()° and &, € A(M,, ().

Proof. The main point will be to establish that the assertions of the lemma hold
locally around a singular point. To begin the proof of (a), we fix a function f, € H(G.,, (,)°.
Consider a semisimple conjugacy class ¢, € I'ys(M,) in M,, = M, /Z,. We shall show that
the right hand side of (3.1) represents an invariant orbital integral of some function, for
those strongly G-regular elements v, € I'Gyeg(My, (y) in some neighbourhood of ¢,. To
do so, we shall use the results in [A11] on the comparison of germs of weighted orbital
integrals.

According to the germ expansions for I{,(v,, fo) and Ins(Ve, f») in [A11], the right
hand side of (3.1) equals

(3.3) > S (98 o po)IE (pus fo) = 8 (Vs o)L (P fo))

LeL(M) pyERa, (Lu,Cv)

for any element 7, € I'g-reg(My, () that is near ¢,. Here, d, € Ag5(M,) is the stable
conjugacy class of ¢,, and Ry, (L, (,) denotes the set of elements in the basis R(L,, (,)
whose semisimple part maps to the image of d, in Ass(fv). One might expect to be able
to sum p, over only the subset R., (L,,(,) of elements in Ry, (L,,(,) whose semisimple
part maps to ¢,. Indeed, g% (7., p,) vanishes by definition, unless p, lies in R.,(Ly,C,).
Local Theorem 1 implies that the germs gi;g and gl are equal [A11], so we would ex-
pect gff(%, pv) also to have this property. For the moment, we have to leave open the

possibility that gff represent a larger family of germs, but we shall soon rule this out.
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We shall show that the summand with any L # M in (3.3) vanishes. If L is distinct
from @G, the first local induction hypothesis (1.2) tells us that the distributions I ]%4’5(%)
and Il (v,) are equal. It follows from [A11] that the germs gff('yv, pv) and g¥ (ve, pu)
are also equal. In particular, the corresponding inner sum in (3.3) can be taken over the
subset R., (Ly,(y) of Ry, (Ly, ). If L is also distinct from M, the second local induction
hypothesis (1.3) implies that I§ (p,, f,) equals I1,(py, fo)- It follows that the summands in
(3.3) with L distinct from M and G all vanish. Consider next the summand with L = G.

Then

IE(pos £) = I6(pos fo) = fo.c(po)-

Suppose first that ¢, is not central in G,,. The descent formulas in [A11] provide parallel
expansions for gfj‘s(”yv, po) and g§; (74, py) in terms of germs attached to the centralizer of
¢y in Gy. The induction hypothesis (1.2) again implies that the germs are equal. In the

remaining case that ¢, is central in GG,,, we have

Rdv (G’U)C’U> = RCU(G’U)C’U) = {Cvav Dy € Runip(Gva)}-

If o, belongs to the subset Rypip eli(Gv, Cy) 0f Runip(Gy, (y), the germs g]\ng('yv, CyQly) and
957 (7w, cocry) are equal. This is a simple consequence [A11] of the results of [A10, §10]. If a,
belongs to the complement Rnip par(Gu; Cv) 0f Runip,el (Gv, Cu) it Runip (G, Cv), fo,c(coaw)
equals 0, since f, belongs to H(G,, (,)°. In either case, the term in (3.3) corresponding to
Pu = Cy0y, vanishes. This takes care of the summand with L = G.
We have shown that (3.3) reduces to the summand with L = M. We obtain
B4 I L) = I f) = D> g6 (v po) (T30 (Pos o) = Tna (pos £0)))
pvERc, (My,Cy)

for elements v, € I'G-reg(My, () that are close to ¢,. Since 93 (vy, py) is an ordinary
Shalika germ, the right hand side of (3.4) represents an invariant orbital integral in 7,. We
conclude that there exists a function eps(f,) in Z(M,, (,) such that (3.1) holds locally for

any strongly G-regular element 7, in some neighbourhood of c¢,.

31



To establish the full assertion (a), we have to let ¢, vary. The obvious technique to
use is a partition of unity. However, something more is required, since we have to show
that a function of noncompact support is uniformly smooth. We shall use constructions of
[A1] and [A12] to represent e/(f,) in terms of some auxiliary functions in Z,.(My, (y).

Suppose that v, is any element in I'g-req (My, (). Then we can write
IM(%;,fv) = CIM('Yvafv) - Z I]%J(%M 66L<fv))7
LELO(M)
in the notation of [A1l, Lemma 4.8]. One of the purposes of the paper [A12] is to establish

endoscopic and stable versions of formulas such as this. The endoscopic form is

I (v fo) = I (o fo) = D i (e “05(10)),
LeLo(M)

where I ]‘a(%) and CQE are endoscopic analogues of, respectively, the supplementary linear

form “Ip;(7,) and the map 0y from H,.(Gy, (y) t0 Zoe(Ly, (y). Therefore, the difference

I](a(’ylh fv) - IM(7v7 fv)

can be expressed as
(CI]fJ(%M fo) = I (o, fv)) - Z (f]%/[’g ('71)7 CQ%(fv)) - T]%J ('71)7 CQL(JCU))>'
LeLO(M)

Suppose that L € L°(M). Since L is distinct from G, the induction hypothesis (1.2) tells
us that ffj‘s(%) =1 L (vy). If L is also distinct from M, it follows from the induction
hypothesis (1.3) and the results of [A12] that 0% (f,) = “01(f,). Therefore the summands

with L # M in the last expression all vanish. We obtain

I]%(Vﬂ?f’()) — Ine (Yo, fo) = “ent(fosT0) — (Cei/j(fv,’)’v) - CeM(fv:’)/v)):

where

ent(For o) =I5 (Vo, fo) = It (Yo, fo)-
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We can of course restrict the variable v, to the strongly G-regular elements in some neigh-
bourhood of ¢,. Since the left hand side of the last formula represents a function in
Z(M,,(,) in such a neighbourhood, and since ‘39‘;4( fu,Yw) and “Opr(fy, v0) represent func-
tions in Z,.(My, () for all ~,, “epr(fy,v») must represent a function in Z(M,, (,), for all
strongly G-regular elements -, near ¢,. The advantage of the auxiliary function “eps (fy, Vo)
is that it has bounded support in ,. This follows from [A1, Lemma 4.4] and its endoscopic
analogue in [A12]. We can therefore use a finite partition of unity to construct a function
cepm(fy) in Z(M,,y,) whose value at any strongly G-regular element -y, equals e (fy, Vo)-

Having defined ‘e (f,), we set

em(fo) = “enr(fo) = (0% (fo) = “Onr(fo)).

Then ep(f,) is a function in Z,.(M,,(,) such that (3.1) holds for every =, in
I G-reg(My, ¢y). To show that (3.1) is valid for elements that are not strongly G-regular,

we consider the ordinary Shalika germ expansion

ev(fovo) = D g (e po)En (for o)
Puv ERC-U (MU,Q-U)

of enr(fv), for v, € I'Goreg(My, () near c¢,. The left hand side of this expression equals
the left hand side of (3.4) by construction, so the two right hand sides must be equal. It

follows from the linear independence of the germs

a1 (Vo Po)s pv € Re,(My, ),
that
5M(fvvpv) = I]%(pva fv) - IM(ﬂm fv)v Pv € Rcu (Mvv Cv)
This is equivalent to the identity
8,1\4(](17 ’)/’U> = I&(VU? f’U) - IM(’Y’U? f’U)) ’)/’U E FCU (M’U) C’U)?
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since I, (M,, () and R, (M., (,) represent bases of the same space. But the set I'(M,, ;)
is by definition a disjoint union of subsets I'. (M,,(,). We conclude that (3.1) holds in
general.

The last step in the proof of (a) is to show that the function e,,(f,) is cuspidal.
Consider an element

’)/U:pzjyvv pv GF(RQHCU)?

induced from a proper Levi subgroup R, of M,. Applying the descent formulas [A10,

(4.5), (7.2)] (or rather their generalizations [A11] to singular elements), we see that

gM(fvylyv) — I]‘\SJ(VIM fv) - IM('YU, fv)

= Y AR (M L)(I5 % (po, fuor,) = I (o fo.r))-
L,eL(M,)

The coefficient d%v(M , Ly) is defined in [A10, §4], and actually equals the corresponding
coefficient dg: (M,, L,) in this case, since v belongs to Vi, (G, M). In any case, since R, is
proper in M,,, the coefficient vanishes unless L, is a proper Levi subgroup of G,. But if L,
is proper, the induction hypothesis (1.2) tells us that fgz’g(pv, fv.L,) equals IAJJ;‘{Z (Pvs fo.L,)-
The summand corresponding to L, vanishes, so that e/ (fy,v») = 0. Therefore e/(f,) is
a cuspidal function in Z,.(M,, ().

The proofs of (b) and (b") proceed along similar lines. Assume that G, is quasi-
split, and that f, belongs to H(G,,(,)°. We fix an endoscopic datum M’ in E(M),
and a semisimple stable conjugacy class d,, in Ag(M)) = Ass(ﬁg). We shall study
S (M!, 6!, fo), for strongly G-regular elements &/, € AG_reg(M;, a}) that are close to d.,.
In the special case that M’ = M*, we assume that f, belongs to the subspace H"™(G,, (,)°
of H(G,,(,)?, and we write d, = d/, and &, = &/. In general, we take d, to be the image
of d! in A.s(M,).

We shall apply the stable germ expansion of [A1l]. According to this expansion,
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S (M, 6., f,) equals the sum of

v YU

(35) Z hG (lenéin )ff,G(o-v)

Ou EAZU (GvaCU)

(3.6) >y > LM/<L,L’>hL (6, 00)SE (L, 00, fo),s

LelO(M) L'e&,, (L) ol €Ay (Z/ Z//)
v v vIdU

for any element 9§, € AG_reg(]Tﬂ), E;) that is close to d!. Here A‘sv (G, ) denotes the set
of elements in A® (G, (,) whose semisimple part maps to the image of d,, in A,,(G,), and

Ag (L, ") is a similarly defined subset of A(L’, (). The functions

6, — h§ (M, 6!, 0,)

v ’U?

in (3.5) are the “stable” germs of [A11]. If M’ = M* and §, = J;, and if o, belongs to the

subset Ay, (G, () of Agu (Gy, (y), we generally write

h§y (05, 00) = h§ (M), 8, 0,).

v ’07

The germs hL (65, 0) in (3.6) follow this notation.
Consider the sum in (3.5). Suppose first that d, is not central in G,,. The descent

formula of [A11] then asserts that h§, (M, 8, 0,) = 0, unless M’ = M* and o, lies in the

subset Ag, (G, () of A (Gy, (). However this last condition implies that

vc(00) = f(00) =0,

since f, is unstable. Therefore (3.5) vanishes in this case. In the remaining case that d, is

central in G,,, we have

Agv (GU, Q)) - {dvﬁv : v € Aﬁnlp(GU’Cv)}'
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If 3, belongs to the subset Ainip,ell(G?H () of elliptic elements in Ainip(Gv, Cv), we apply
the results on cuspidal functions in [A10, §10]. It is a simple consequence [A11] of these re-
sults that hJ\GJ(M’ o7, dyBy) = 0, unless M’ = M* and S, lies in the subset Aupnip enn(Gy, Cov)

v v

of A

unip,ell

(Gy,(y). But the last condition implies that

£ a(duBy) = fE(dufBy) = 0,

again because f, is unstable. On the other hand, if (3, belongs to the complement
Aﬁnip,par(G’l”C’U) of Ainip,ell<GU7cv)7 iG(dvﬂv) = 0, by virtue of the fact that f, lies
in H(G,,¢,)°. The sum (3.5) therefore vanishes in this case as well.

We have shown that S, (M, !, f,) equals the expansion (3.6). Turning our attention
to (3.6), we consider an outer summand in this expression corresponding to any L # M.
If L' is an endoscopic datum for L that is distinct from L*, S¢(L! 0", f,) = 0, by the
induction assumption (1.3). This takes care of all the elements in the inner sum over

Env (L), provided that M’ # M*. If M’ = M*, the set £y (L) also contains L*. In this

case, however, the induction hypothesis (1.3) implies that the distributions
Si (o, fo) = SE(LY, 03, fo), 0, =0} =0

are stable. Since f, is unstable, the distributions vanish at f,. It follows that the terms

in (3.6) with L # M vanish. We conclude that

(3.7) SuOML 8 fo) = > g, (6,008 (M), 0l o),
TLEAy (M,,C))

for all §] € AG_reg(M ’.C!) that are close to d/,. Since h%:(é;, o,) is a stabilized Shalika
germ, the right hand side of (3.7) represents a stable orbital integral in 6,. We conclude
that there is a function eM'(f,) in ST(M’,, ) such that (3.2) or (3.2) holds (according
to whether M’ equals M* or not) for every strongly G-regular element ¢/ that is close to

di.
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To establish the full assertions (3.2) and (3.2'), we have to let d, vary. We again use
the constructions of [A12]. Given M’ € E(M) and ), € AG_reg(]Tf;, ¢, we can express

SG (M5!, f,) as

vy v

SGOML L f)— S S SE (8, nu(Lh, ),

LeLO(M) L' €€y (L)

where ¢S, (M!,68!) and °nr (L) are “stable” analogues of “Ip/(7y,) and @y, respectively.
Suppose that L € L°(M) is distinct from M. It follows from the induction hypothesis (1.3)
and [A12] that “nz (L), f,) = 0 for any L' € £(L) distinct from L*, and that °nr (L}, fy)
depends only on f&. But if L* lies in &y (L), M’ has to equal M*, and f& = 0 by
assumption. The term corresponding L therefore vanishes. We obtain

S5 (M0, fu) = €™ (£0,0) = “mu (M, £2,6,),
where

M (f0.0,) = S5 (M}, 5, f).

We have already shown that S$;(M!, 68!, f,) represents a function in ST (M, () for &,
near d,. Since nar (M., f,,6.) represents a function in SZ,c(M’,, () for all 8, we see that
ceM'(f, 6!) represents a function in ST(M’, () for &), near d,. As in (a), the auxiliary
function €™’ (f,,d!) has bounded support in &/, [A12]. We can therefore use a finite
partition of unity to construct a function ™’ (f,) in ST(M’, () whose value at any
strongly G-regular element &/, equals e’ (f,,d").

Having defined <™’ (f,), we set

M (f,) = M (f,) = nar(M], f,).

Then ™' (f,) is a function in SZ,.(M’,, () such that the relevant identity (3.2) or (3.2')
holds for every 4§/ in AG_reg(]Tf ’C"). To show that the identity holds for elements that
are not strongly G-regular, we compare (3.7) with the Shalika germ expansion of e /( fv)

around any d.. It follows from the linear independence of the germs
hit (85, 00), o, € Mg, (M, (),
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that the required identity is valid for elements in Ay (M L,a}) It is therefore valid in
general.

The final point to check is that the function e™’ (fv) is cuspidal. Consider an element

5 = (o) M, ol € AR, ),

v

induced from a proper Levi subgroup R. of M. We can represent R! as an element in
Eean(Ry), for a proper Levi subgroup R, of M, that is uniquely determined up to conjugacy.
We shall use the extension [A11] to singular elements of the relevant descent formula [A10,
(7.3), (7.3")], with the elements Fy, G1, My, and Ry of [A10, §7] taken to be F,, G,, M,,
and R,, respectively. Suppose first that M’ = M*. Then R, = R,, and d,, = 9], is induced
from the element o, = o} in A(R,,(,). The descent formula in this case is
S§i(0u, fo) = > ef (M, Ly)SE (80, £10).
L,eL(Ry)

The coefficient e (M, L,) vanishes by definition [A10, (6.1)], unless L, is a proper Levi
subgroup of G,. But if L, is proper, our induction hypothesis (1.2) implies that S sz (Sy)
is stable, and since f, is assumed to be unstable in this case, §}]§: (84, fEv) = 0. The sum
therefore vanishes. In the other case that M’ # M*, the descent formula is simply the
identity

S (M., 6!, f,) =0.

(The hypotheses in [A10, §7] on which this identity rests are included in the induction

hypothesis (1.2) and (1.3).) We have shown in both cases that

eM'(fo,8,) = SG (M), 8, f,) = 0.

v v

Therefore M’ (f,) is a cuspidal function in SZ,.(M’,, (). This completes the proof of the

proposition. [l
Corollary 3.2. The mappings of the proposition satisfy formulas

(3.8) em(fo) = enr(fo) = (“05,(f) = “One(f0))
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and

(3.9) M (f,) = M (f,) = nar(M), f,),

in the notation of the proof. As above, f, is any function in H(G,,(,)? that is unstable in

the case that M' = M*. O

We now return to the discussion of §2. Recall that V is a finite set of valuations of F'
that contains Viam (G, ). Let H(Gy, ¢y )Y denote the subspace of H(Gyv, () spanned by

functions of the form

(3.10) =11 # fo € H(Gy, C)°.

veV

For any such function, we can obviously write
f=1r veV, freHGY, ),

with the superscript as usual being used to denote an object associated to V — {v}. If G

is quasisplit, we set
H™ (Gv,¢v)° = H™(Gy, ¢v) NH(Gy, (v)°.

Then H"(Gy,, (v)? is spanned by functions of the form (3.10) such that f& = 0 for some
.
We extend the maps of Lemma 3.1 to functions on Gy so that they are parallel to the

expansions (2.8) and (2.9). Thus
enm: H(Gy,¢v)? — Zae(My, Cv)

is a map such that

(3.11) ev(f) = > em(fo ) fir(y),

Ue‘/fin(GaM)
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for any element v = [[~, in I'(M,V,(), and any function f € H(Gy,(y)? of the form
(3.10). If G is quasisplit,

M =M MGy, (v)® — STac(My, )
is defined by
(3.12) eM(f )= > eM(f.00) MY,
VEViin(G, M)
for § = [[8, in A(M,V,¢) and for f € H"(Gy,Cy)? of the form (3.10). (This is well

defined, since if f, does not belong to H"(G,, )%, (fY)M = 0, and the corresponding

summand vanishes.) Finally, if G is quasisplit and M’ € £,(M),
M H(Gy ) — STae(My, &)
is defined by
(3.12") M) = > M fn o) M),
vEViin (G, M)

for & = J[&, in A(M',V,{') and f € H(Gy,(y)° as in (3.10). The co-domains
Zoe(My, CVQ)), SZac(My, Cy) and SIM(M’V, E’V) are natural variants of the spaces discussed
for v at the beginning of this section. For example, Z,.(My,(y) is defined by orbital in-
tegrals in terms of the space Hy.(My, (y) of uniformly smooth, C;l—equivariant functions

on My, whose restrictions to each set
M ={me My : Hy(m)= X}, X € ayy,

have compact support.

In §2, we also defined the space H(Gv, (y) of functions in H(Gy, (y) that are M-
cuspidal at two places. Let Hu(Gv,¢v)? and HYP(Gy, Cy)? denote the intersections of
Hr (Gy, Cv) with H(Gy, ¢v)Y and H™(Gy, ()° respectively. The following result is a

corollary of Lemma 2.3 and Lemma 3.1.
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Corollary 3.3. (a) If G is arbitrary, we have
(3.13) I8 () = Tpar(f) = W (M) T T (enr (),

for any function f in Hy (Gv, Cv)°.

(b) If G is quasisplit, we have

(3.14) SChH =Wt ST o, M)ST (M (),
M'eEn(M,V)

for any function f in HYS(Gy, (v)°.
Proof. To establish (a), we combine the expansion (2.8) of Lemma 2.3 with the

definition (3.1) and (3.11) of ep/(f). We obtain

Loe(f) = Lo (f) = WD Y a™(em(f,7)-

vET (M, V()
We are assuming that f is M-cuspidal at two places. It then follows from Corollary 3.2
that the function ep/(f) in Z,(M,V, () is actually cuspidal at two places. This means
that the geometric side of the trace formula for M, formulated as in [I, Proposition 2.2],

simplifies at the function ep7(f) [A2, Theorem 7.1(b)]. We obtain
M) = > aem(f.).
~ET(M,V,C)

The identity (3.13) follows.
To deal with (b), we begin with the stable expansion (2.9) of Lemma 2.3. Combining
this with the definitions (3.2), (3.2"), (3.12) and (3.12), we obtain

s =wont S )y Y (@) (1,8,

M'eEey(M,V) 5’€A(A7[’,V,Z/)

Corollary 3.2 implies that the function e’ (f) in SZgc (M’ Vv ¢ /) is cuspidal at two places.

This means that the geometric side of the stable trace formula for M simplifies at the
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function eM /( f). There is no direct reference to such a simplified formula, but it is easily

derived from the general stable expansion in [I, Theorem 10.1(b)]. Indeed, we can write

SM (M (£)) — SM (M'(£))

= > W Y B E)SE (M),

Rre(ch’yo §EA(R, V()
by [I, (10.5)]. From the local induction hypothesis (1.2) and the splitting formula for
§§f / (6", eM ( f)), we deduce that this expression equals zero. Combining the global in-
duction hypothesis (1.4) with the expansion [I, Lemma 7.2(b)] for §£Z[]; (5M/(f)), we then

obtained the simplified expansion

SMEM ()= S M) (1,9,

S'EA(M,V,C")

The identity (3.14) follows. O
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4. Separation by infinitesimal character

Proposition 2.2 and Corollary 3.3 are the main results so far. Together, they provide
a pair of identities (a) and (b) that will be objects of study for the rest of the paper. We
shall now apply the theory of archimedean multipliers, following the argument in [AC,

§2.15]. We are going to replace the function

f= @ fﬂ? fﬁ EH<GV,,3V7<V75V)7

Bem(G)

by its transform f, = @ fs.. under a multiplier « € C°(hZ)We. We will then study the
resulting identities in tirms of the function a(r). Our goal is to show that each side of
the identity in question vanishes, by the comparison of a distribution that is discrete in
v with one that is continuous. This is a crucial step that goes back to the comparison of
distributions in [L3, §11] by Langlands.

We are following notation at the beginning of [I, §3]. In particular, b is a split Cartan
subalgebra of a split form of the real group Gy g, _, for any component 3 € m(G), and
W is the corresponding Weyl group. Any element « in the space £(h)We of compactly

supported, W.-invariant distributions on h determines an endomorphism

f=B 1t — fo=P o0
B B

of H(Gv,(yv). We shall take a to be in the subspace C°(h%)W= of £(h)W=. Asin [I, §3],
hZ denotes the subspace of points in h whose projection onto ag lies in az (relative to the
canonical embedding az C ag). Then a(v) is a W-invariant Paley-Wiener function on
the complex dual space b /ag; 7 ¢, where af; ; is the annihilator of az in ag;. We recall that
it is the Wo-orbits in b/ aa zZ.c that parametrize archimedean infinitesimal characters v,

of elements 7 in the set

H(G‘Z/: CV) = H H(GXZ/,BV ) CV,ﬁv)
Bv
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of irreducible representations of (components of) GZ. We recall also that there is a natural
subset by of ht/iag; 7, which embeds into bt /ag 5 ¢, and whose W-orbits contain the
infinitesimal characters of all unitary representations. (See [A2, p. 536] and [A7, p. 558].)

It will sometimes be convenient to index “discrete” distributions in the trace formula
by an archimedean infinitesimal character v, rather than the norm ¢ = ||[Im(v)||. For this
purpose, v stands for an element in the set b /W, of W-orbits in h). We recall that
| - || is the restriction to by of the Hermitian norm on hg/ag 5 o that is dual to a fixed,
Wao-invariant Euclidean inner product on hZ. We shall use a double subscript (v, disc)
to denote the contribution of v to any object that has been indexed by (¢,disc). For
example, if ¢t = ||Im(v)||, I, gisc(G, V, ¢) denotes the set of representations in I1; qisc(G, V, ()
whose archimedean infinitesimal character equals v. It is empty unless the projection of
v onto a7 ¢ coincides with the differential of the archimedean infinitesimal character of ¢.

Moreover,

Il/,diSC(f) = Z adGisc<7r)fG<7T)

ﬂ-enu,disc(G7V7<)

and

It,disc(f) - Z IV,diSC(f)'
{v:[[Im(v)[|=t}

Following [I, §3], and earlier papers [A2], [AC] and [A7], we write

bo(r) =b5(r,0) = {v € b : [Re(w)|| <7}

and
bo(r, T) = {v€by(r): |m)| > T},
for any nonnegative numbers r and T'.

Lemma 4.1. For any function f € H(Gyv,(v), we can choose r so that for every a €

C(hZ)Wee | the distributions I, gisc(fa), Ilidisc<fa) and S . .(fo) vanish if v does not

v,disc

belong to b (r)/W.
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Proof. As « varies, the functions f, are uniformly K..-finite, where Ko, = [[ Ko g,
B
is a union of maximal compact subgroups. It follows from Harish-Chandra’s Plancherel

formula that the tempered characters

foz,G(ﬂ-)v S Htemp<GV7 CV)?

are supported on representations m whose archimedean infinitesimal characters have
bounded real part. The same property for the larger family of unitary characters is then
easy to establish from the Langlands classification. In particular, we can find an r such
that the function I, gisc(fo) of v is supported on b} (r)/Ws. The corresponding assertions

for the functions / f disc(fa) and SE

v disc(fa) then follow from their inductive definitions in

terms of I, gisc(fa), and standard properties of archimedean transfer factors. O

We now recall the spaces Hp (Gyv, Cyv)? and HY(Gy, ¢v)?, defined near the end of
the last section. Let us write Hs (Gy, ¢v)°? and Har (Gy, ¢y )% for the subspaces spanned
by functions f = [ f, in Har (Gv, ¢v)? and HYP (Gy, (v )Y respectively, such that for some

v € Van, fo belongs to the space H(G,, ()% defined at the beginning of the last section.

Proposition 4.2. (a) If G is arbitrary,

(4.1) I;idisc(f) - Iu,disc(f) =0,

for any v and any f € Hu(Gv, ().
(b) If G is quasisplit,

(4.2) S e f) =0,

for any v and any f € HY*(Gyv,Cy) .
Proof. The proposition is a general analogue of the results in [AC, §2.15] for GL(n).
(See also [A7, Lemmas 8.1 and 9.1].) To prove it, we shall combine the global multiplier

estimate [I, (3.3)] with Proposition 2.2 and Corollary 3.3. This will allow us to express the
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left hand sides of (4.1) and (4.2) each as the value of a certain limit. We shall then show
that the two limits vanish.

To deal with (a), we fix the function f in Ha(Gy,¢v)?.  Suppose that
a € 0 (h%)We= is a multiplier. The function f, certainly lies in H(Gy, (y). It therefore
satisfies the identity (2.4) of Proposition 2.2. In fact, f, belongs to H (G, ()%, since
the conditions that define this subspace of H(Gy, (y) are not affected by multipliers. We
can therefore apply Corollary 3.3(a) to the value taken at f, by the linear form on the left

hand side of (2.4). Moreover, the sum

Z( Zunlp(fOM )_ Zunip(fOHS))

obtained from the right hand side of (2.4) is equal to zero, since the functions f, . ¢ vanish

on I't . (G,V,(). The identity reduces to

unip
|W(M)|_1fM 5M fa Z IfdlSC fa It,diSC(fa))-
t

For the linear form on the left hand side, we note that since W, contains the corresponding
Weyl group attached to M, « determines a multiplier for My . It acts on the spaces
H(My,Cv) and Hae(My,Cy), and as explained on p. 530 of [A2], also on Z,.(My,Cy).
The various definitions tell us that the function e,/ (f.) equals epr(f)q. Since this function

is cuspidal at some place, we can expand the linear form on the left hand side as

f Z t,disc EM ) )

by the simple version [A2, Lemma 7.1(a)] of the spectral expansion. The distribution
It]\{hsc depends (through ¢) on a Euclidean norm on the analogue h*>Z for M of the space
h% = h&Z. We assume that this is the restriction of the Euclidean norm we fixed on h?%.

We have obtained an identity

‘ IZ t,disc gM Z Itgdlsc fOt It,diSC<fa))
t
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between two absolutely convergent sums over t. The right hand sum satisfies the global
multiplier estimate [I, (3.3)]. It happens the left hand sum also satisfies this stronger
estimate, but the justification requires further comment.

The spectral expansion for functions in the standard Hecke algebra does satisfy the
required estimate. This follows from Proposition 3.1 of [I], which is in turn a direct
consequence of the proof of Lemma 6.3 of [A2]. However, the function e,/(f) belongs
to Zye(My, Cy) rather than Z(My,(y). Moreover, the multiplier « is supported on the
space hZ = h&Z rather than the subspace h*-Z attached to M. With only these general
conditions on ep/(f) and «, the estimate of [A2, Lemma 6.3] would actually fail. The
estimate was carried out for the special case of what were called moderate functions. In
the present context, the moderate functions form a space that lies between Z(My, (y)
and Z,.(My,Cy). They are defined as on p. 531 of [A2] by a mild support condition,
and a similarly mild growth condition. We shall prove that ;(f) is a moderate function
in Z,.(My,Cy), in order to show that the left hand side of the identity does satisfy the
desired estimate.

To establish that e, (f) is moderate, it will be enough to verify that for v € Vg, (G, M)
and f, € H(G,,()?, the function e57(f,) satisfies the local form of the two conditions on
p. 531 of [A2]. The fact that ep/(f,) is cuspidal means that the support condition is

vacuous. To check the growth condition, we recall that

en(fo) = “ear(fo) = (05 (F) = “One(fo));

by Corollary 3.2 As we saw in the proof of Proposition 3.1, the function ‘e, (f,) actually
belongs to Z(M,,(,). It is therefore compactly supported on I'(M,,(,). The functions
05,(f,) and 0y (f,) belong to the larger space Z,.(M,,(,). However, according to the
assertion in [A1l, Lemma 5.2] for “0)/(f,), and its analogue [A12] for ¢05,(f,), the two
functions have a property of rapid decrease. More precisely, as functions on the product

of Iiemp(My, Cy) with apsy/az., “Oa(fy) and CQ}@(fv) are both rapidly decreasing in
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the second variable. Therefore ,/(f,) has the same property. The required condition of
moderate growth pertains to ep/(f,) as a function on I'(M,, ,). However, since /(o)
is cuspidal, the condition is an obvious consequence of what we have just established.
Therefore €, ( f,) satisfies both conditions. It follows from (3.11) that e,(f) is a moderate
function in Z,.(My, (v). Once we know that ep/(f) is moderate, the relevant part of the
proof of Lemma 6.3 of [A2] tells us that the spectral expansion of ™ (EM( f)a) satisfies
the global multiplier estimate. But the spectral expansion of ™ (5 m(f )a) is just the sum
on the left hand side of the identity we have been considering. Therefore, the left hand
side does satisfy the global multiplier estimate.

We have established an identity
Z (Itg,disc(fa) - It,disc(fa) - |W(M)|_1I%isc (€M<f)a)) = O,
t>0

in which the sum over t satisfies the global multiplier estimate [I, (3.3)]. The estimate

itself depends on the choice of a positive number T'. Before applying it, we recall that

Ittfdisc(foé) - It,diSC(f) = Z (Lidisc(fa) - IV,diSC(f>)7

v
where v is summed over orbits v € h} /W, with ||[Im(v)| = ¢. In fact, by Lemma 4.1, we
can restrict v to the orbits in h¥(r)/W, for some r > 0 that is independent of ¢ and «.
We can therefore express the sum

(43) Z (Lidisc(fa) - IV,diSC<fOé))7

v

taken over the orbits v € b (r) /W with || Im(v)|| < T, as a difference between
(44) |W(M)|_1 Z I%isc (EM(f>oz)
t<T

and the expression obtained from the left hand side of the last identity by restricting

the sum to those ¢t with t > T. It is to the last expression that we apply the global
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multiplier estimate. The resulting conclusion is that we may choose r, together with
positive constants C' and k, with the property that for any N > 0, a € C{(h?)V=~ and

T, the difference between (4.3) and (4.4) has absolute value that is bounded by

Ce"™N  sup |a(v)|.
vehr (r,T)

(See [I, (3.3)].) We note that for any given 7', the sums in (4.3) and (4.4) can be taken
over finite sets that are independent of a.

Let v1 € b (r)/Wx be a fixed infinitesimal character. According to [AC, Lemma
2.15.2], we can find a function a; € C°(h%)"W= such that &; maps b’ (r) to the unit
interval, and such that the inverse image of 1 under @, is simply the set of points in the
Weo-orbit of 1. We fix ay, and then choose Ny > 0 such that «; belongs to C3f (hZ)Wee.,
Assuming that r and k£ have been chosen as above, we can find a positive number T such

that

@1 (V)] < e7H,

for all points v in the set b} (r,T"). This is possible because @ is rapidly decreasing on the
vertical strips. For each positive integer m, let «,, be the convolution of ay with itself m

times. Then v, belongs to Coy (h7)We, and

Taking o = a, in the estimate above, we see that (4.3) equals the sum of (4.4) and an

expression whose absolute value is bounded by

Ce_kNlm.

It follows that the difference between (4.3) and (4.4) approaches zero as m approaches

infinity.
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Suppose that v is any point in § (r)/W. Then
Il‘idlsc(fam) - IIJ,diSC(fam)

= > (el — afe(m) fa.a(m)

mellf (G,V,0)

v,disc

_Z adlSC a’dlSC( ))fG( ) ( )
= (al( )) (Igdlsc(f) - IV,diSC(f))'

This equals I¢

oy disc(f)—Luy disc(f) if v = v1, and otherwise approaches zero as m approaches

infinity. Since there are only finitely many nonzero terms in (4.3), we conclude that the

value of (4.3) at & = a,, approaches the difference

Iu1 dlsc<f) - IVlydiSC<f)

as m approaches infinity. This difference therefore approaches the corresponding limit

(4.5) lim (WD Phe(en ()

m— o0
t<T

of (4.4). We have reduced the proof of (a) to showing that the limit (4.5) is zero.

To deal with (b), we assume that G is quasisplit, and that f belongs to H3(Gy/, ¢y )%
We shall retrace the steps in the argument for (a) above, making modifications as necessary.
If « € C®(h?)W= is a multiplier, the function f, remains unstable. This follows from
Shelstad’s characterization of stability at the archimedean places in terms of tempered L-
packets [Sh]. (This point is not essential to the argument, since we could have insisted at
the outset that f be unstable at some finite place.) In particular, f, satisfies the identity
(2.5) of Proposition 2.2. The function f, actually belongs to H4*(Gy, ¢y )%, since the
conditions that define this subspace of H"(Gy, () are not changed by multipliers. We
can therefore apply Corollary 3.3(b) to the value at f, of linear form on the left hand side

of (2.5). Moreover, the sum

Z Sz ump
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obtained from the right hand side of (2.5) is equal to 0. The identity becomes
|W(M)|_1 Z (M M>SM Zst dlSC
M'€€en(M,V)
For the linear forms on the left hand side, we recall that for any M’, there is a multiplier
o for M’ - such that

a'(V) =a(v), v ebt/ag zc

Here

v — V' =v+dij,

is the affine linear embedding of h into the corresponding space (6’ )& D b¢ attached to

M'. We also write
t=|Im(v)|| — t' = [Im(v)|| = t + || Tm(dnL, )|

for the associated change of norms. (See [A7, p. 561] and [I, §7].) The action of o’ on
IGC(M Vs E’V) is uniquely determined by the given condition, even though o’ itself is not.)
The correspondence o — o' is compatible with the archimedean transfer map, from which
it follows that ™ (f,) = eM' (). We can therefore expand the linear forms on the left

hand side as
S =2 S (M (D).
by [I, Proposition 10.5].
We have obtained an identity
MY Y uMMOSY(EM () = Y Stise(fa),
t M'€Een(M,V) t

between two absolutely convergent sums over t. The right hand sum satisfies the global
multiplier estimate [I, (3.3)]. We would like to show that the left sum over ¢ satisfies this

stronger estimate, and also that the linear forms §lf§4 " can be replaced by their “discrete”

analogues.
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The stronger estimate would follow from the proof of [I, Proposition 10.5] and [A2,
Lemma 6.3], if it could be shown that for any M’, the function e’ (f) in SIQC(M’V, Z’V)
was moderate. This amounts to showing that e /( f) satisfies the analogues of the weak
support and growth conditions on p. 531 of [A2]. As in (a), it is enough to verify that for
any v € Van(G, M), the function e™'(f,) satisfies the relevant form of these conditions.
The fact that e’ (fv) is cuspidal means that the support condition is vacuous. The growth

condition is a consequence of the identity

e (fo) = ™ (fu) = “nar (M}, f.)

of Corollary 3.2. For as we saw in the proof of Proposition 3.1, the function ¢e™ /( fv)
belongs to ST (M - ¢ '), and therefore has compact support on A(M - ¢ '). By the analogue
[A11] of [A1l, Lemma 5.2], the function °nys (M., f,) is rapidly decreasing (in the sense
of [A2, Lemma 5.2]). It follows easily that °nys(M,, f,) satisfies the relevant growth
condition, at least on the elliptic elements on which ™ /( fv) is supported. The same
condition therefore holds for the original function e’ (f,). Recalling the definitions (3.12)
and (3.12'), we conclude that eM’(f) is a moderate function in SIM(M’V, EQ/) Therefore
the sum
> S (M (Har)

does satisfy the global multiplier estitmate.

For any ¢, the general spectral expansion [I, (10.18)] for 35? / (€M /( f )a/) is easily seen
to simplify. Guided by the proof of [A2, Theorem 7.1(a)], one applies the splitting formula

in [A12] to the terms
S\%/{/ (¢,:5M/(f>o/), E/ c (£M/>0, ¢/ e Ht/(i’, Vv, E/),
in this expansion. Since eM /( f)ar is actually cuspidal at two places, the local induction

hypothesis (1.2) implies immediately that these terms all vanish. It follows from [I, (10.18)]

that
S (M (Far) = S i (6™ (Far)-
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Recall that Lemma 7.3(b) of [I] provides an expansion for St, it (EM (f )ar), as well as an
expansion for the more elementary linear form St, disc (eM (f )ar). One can compare the
coefficients of the two expansions by means of the formula (10.22) of Proposition 10.7(b)
of [I]. If we combine this formula with the global induction hypothesis (1.4), and the fact

that M /( f)a is cuspidal at some place, we find that
St]}/{unit (‘C:M (f)O/) = St]}/,[disc (gM (f)a’)'

The right hand side here represents a simple version of the stable spectral expansion of
the original linear form §f§4 / (5M /( f )a/). This is the second point we wanted to check.

We have established that

Z (St dlSC |W(M)|_1 Z ( )St’ dlSC( M/<f)04’)> = 07

t>0 M’'€€Een(M,V)
where the sum over ¢ satisfies the global multiplier estimate [I, (3.3)]. The rest of the

argument is entirely similar to the discussion above for (a). By Lemma 4.1, we can write

tdlsc fOé § Su dlSC

where v is summed over the orbits in a set h*(r)/Wo with ||Im(v)|| = ¢. We fix an orbit
v1 € b5 (r)/Wos, and then choose a corresponding function a; € Cg (h7)"V= as above.

Following the discussion of (a), we deduce that the linear form

Sul dlSC(f)

may be represented by the limit

@e)  gm (WD Y M8 (M (D)),

tST M/egell(Mvv)
for some ¢ > 0. This reduces the proof of (b) to showing that the limit (4.6) is zero.

To deal with the limits (4.5) and (4.6), we first write
ZS]Vc[hsc gM Z Il/ disc gM )
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and

S e (Fan) =3 M e (€ (Fa,)

v

where v is summed in each case over the infinitesimal characters for My with ||Im(v)|| = ¢.

Lemma 4.3. (a) If v is any infinitesimal character for My, there is a Schwartz function

A — EMyV(fv)‘)v )‘eiafw,Z/iaE,Z7
such that for any a € C°(hZ)Wee
M (ear(f)a) = / eat (fL V@ + N,

O, z/10G z
(b) Suppose that G is quasisplit. Then for any infinitesimal character v for My and any

M'" € Eqn(M,V), there is a Schwartz function

A— 6y/(f7A)7 )\EiﬂM’Z/iaE’Z,
such that for any o € C°(hZ)Wee,
S el (Pr) = [ M (N + A,

a?\/f,z/iaz:,z
Proof. Consider part (a). Any element ¢ in Z,.(My,(y) can be regarded as a
function on the product of II(My, (y) with ap;/az. For example, if ¢ is the image of a

function h € Hae(My, (v ), the value of ¢ is defined by an integral
o X)= [ hm)e.(m)dm, (m, X) € U(My ) X any /az,
M/ Zv
over a compact set, in which ©, is the character of 7, and
MY ={meée My : Hy(m)+az =X}.

Now the given element o € C°(hZ)We is to be regarded as a multiplier for My. It

transforms any function ¢ in Z,.(My,(y) to the function

bo(m, X) = / 6(m, X — YV)an (x, Y)dY,

aAG/I’Z/aZ
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where a%z is the subspace of elements in a,; whose image in ag lies in az, and

ot (7, Y) = / (vs + N Vg, Y € aSi?.

iy, /0%

This follows easily from the fact that iaj, , /z’aa » is isomorphic to the dual group of
asz/az. (See [A2, (6.1)].) We are most interested in the case that 7 is unitary, and the
element X € ayps/ayz is trivial. Then M‘)f equals the set we have denoted by M‘g . In
order to match earlier notation, we generally reserve the symbol 7 for the restriction of the
representation to this subset of My Then 7 may be identified with an orbit {mx} of ia}, ,
in ITynit(My,Cy), or if one prefers, the representation in that orbit whose infinitesimal
character has minimal norm. We shall usually suppress the element X = 0 from the

notation in this case, and write

¢(m) = ¢(mr, 0).

We use these remarks to express the value of f%ise at ep(f)a. We obtain a sum
L aisc(em(f)a) = Y adie(men(falm),

7Tel_-[l/,disc(‘1\47‘/7C)
which can be taken over a finite set that is independent of «, and in which
w(Palm) = [ eulfom ~Y)ay(m V)dy.
u]\G/['Z/uz

It would be enough to show that for any 7 in II, 4isc(M, V, (), the function
X — en(f,m, X), X € afj?/az,
is rapidly decreasing. For assertion (a) would then follow, with

emp(fiA) = Z aé\/ilsc(w) /G ; €M(f,7T,X)e>‘(X)dX,
ﬂ-enu,disc(M,V,C) aM /aZ
from an interchange of integrals in the last formula. As in the special case proved in

[AC, Lemma 2.15.3], we shall combine the cuspidal property of the map e,; with the fact
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that 7 is unitary. (The proof of [AC, Lemma 2.15.3] is a little hard to decipher, because
of an unfortunate typographical error in the assertion of an earlier result [AC, Corollary
2.14.2]. The symbol II'* (M (Fs)) in the second sentence of that assertion should actually
be II;

femp (M (Fs)) The earlier result was meant to serve as the special case of [AC, Lemma

2.15.3] in which 7 is tempered.)
We can assume that f is a product of [] f,, as in (3.10). It is then not hard to see

from the definition (3.11) that ey, (f, 7, X) equals

Z /a fM T XV)gM(fUﬂTU?Xv)dXV,

VEViin (G, M)~ %, v/azy

where 7 = 7¥ ® 7, and aM’V is the set of vectors Xy = Xy, ® X, in

apmv = @ ar,w

weV

whose projection onto ap; equals X. For any v,

weVw

is a smooth function of compact support on the quotient of ays vy« by azyw. The growth
of epr(f, 7, X) is therefore reflected entirely in the growth of the functions e/ (fy, 7y, Xo)-

It would be enough to show that for any v € Vg, (G, M) and 7, € (Mo, (y),
Xv — 6M(fm Ty, Xv)

is a rapidly decreasing function on the quotient of the lattice ans ., by az .

To exploit the fact that ep/(f,) is a cuspidal function, we expand &/ (fy,, Ty, Xy) in
terms of the basis T'(M,) of nontempered virtual characters discussed in [All], among
other places. (The notation here differs slightly from that of the earlier papers [A5] and
[A7], where the elements in T'(M,) were taken to be tempered. For example, if G is an
inner form of GL(n), T'(M,) now represents the basis of standard characters used in the
proof of [AC, Lemma 2.15.3].) We obtain a finite linear combination

M(fv,ﬂ-v,Xv) — Z 5<7Tv77_v)5M<fv7TvaXv)7

Ty GT(MU’gv)
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where T'(M,, (,) denotes the subset of elements in T'(M,) with Z,-central character equal
to (y. Recall that T(M,,(,) contains the subset Ty (M,, () of elliptic elements. If 7,
belongs to the complement of Ty (M, () in T'(M,,(,), T, is properly induced. In this
case

5M(fvaTv7Xv) = 07

since €7 (f,) is cuspidal. We can therefore expand e ( fy, Ty, X,) as a finite linear combi-

nation

EM(fvyﬂ-v,Xv> - Z 6(7TU77-U>8M(f’U7T’U7X’U>7
TveTell(M'uagv)

for complex numbers §(m,, 7,). The original representation 7, for M, is unitary, and in par-
ticular, has unitary central character. We can therefore restrict the last sum to the set of el-
ements in T (M, (,) with unitary central character. But the set of elements in Toy (M, ()
with unitary central character is precisely the subset Tiemp,e11(My, () of tempered elements.

It is therefore sufficient to prove that for any element 7, in Tiemp,enn(My, Cy), the function
Xv E— 5M(f’077_1)7X’U>7 Xv S aM,v/aZ,v:

is rapidly decreasing.
For the case of tempered 7,, we have only to refer back to our proof that e,/(f,) is

moderate. Indeed, we can write

em(fu, To, Xo) = “enr(fo, Ty Xo) — (Cgi/l(fv,TU:Xv) - COM(fv:Tva)),

by Corollary 3.2. As we observed in the proof of Proposition 3.1, “c/(f,) belongs to

Z(M,, (). In particular, the function
Xv B— CéM(fvaTva)a Xv c aM,v/aZ,va

is actually of compact support. Moreover, [Al, Lemma 5.2] and its endoscopic analogue

[A12] imply that the function

Xy, — Cei/j(fv,Tv,Xv) - CQM(fv:Tva): Xy € aM7”/aZ’v’
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is rapidly decreasing. It follows that the original function e/ (f,, 7, Xy) is rapidly de-
creasing in X,, as required. This completes the proof of assertion (a). Observe that
the argument depends in an essential way on the original representations being unitary.
For it would otherwise be necessary to contend with nonunitary twists of elements 7, in

Tiemp,ell (My, Cv), and since

EM(fmTv,)\,Xv) = eA(XU)EM(fmTv:Xv)a A€ a?wyz:

the functions in question could then have exponential growth.

For the second half (b) of the lemma, we fix the endoscopic datum M’ € E (M, V).
We can regard any element in S7 (M Vv E’V) as a function on the product of @(M Vv E ) with
ar,/az,. Since M " is elliptic, there is a canonical isomorphism X’ — X from a~,/ a, onto
the space aps/az. We can therefore take the second variable of a function in SZ( N’V, ¢ v)

to lie in aps/ay. If a%’/z denotes the subspace of elements in a 7 whose projection onto

’

ag lies in az, X’ — X restricts to an isomorphism from a%/Z/aE, onto asz/az. This is

’

dual to an isomorphism A — A" from ia}, ,/iag , onto ia;};,’g, / ic%,i with the property
that (v + X)) =v + X\

The role of 11, qisc(M, V, () in the proof of (a) is taken by the set (ID,,gdiSC(M’, V, E’)
attached to M’. The elements in this set belong to <I>(]T4/ Vv E’V), and have unitary central
character. When they occur as the first component of a point in the domain of a function
in SIM(M Vv E’V), we suppress the second component from the notation if it is equal to

zero. Then

SM e (M (Far) = 3 b ()™ (F)ar ().

(Z)/Eq)u’,disc(ﬂlﬂvfz//)

One verifies that the distributions on the right can be expanded as

(P = [, ST (o, Y)Y,

v /az

o8



where

a(@.v) = |

. .
7’aM,Z/7‘aG,Z

&'+ N)e N dx = / a(v + Ne 2dn,

* s %
zaM’Z/zaG’Z

It would be enough to show that for any ¢’ in @,,Qdisc(ﬂ "V, Z’ ), the function
X_)EM/(f7¢,7X/)7 XGG%Z/az,
is rapidly decreasing. For assertion (b) would then follow, with

HUN= X L) [ YRy,
~ o~ ay, % /az
PER,s qise (M7, V(")
from an interchange of integrals.
We can assume that f equals a product [] fu, as in (3.10). We write ¢’ = ) ¢,, for
elements ¢! € @(M Vv E’V) with unitary central characters, and then apply the definitions
(3.12) and (3.12') of eM'(f,). We see without difficulty that it would suffice to prove that

for any v € Van (G, M), the function
X, — M (fo. b, X,), Xy € tr/az,,

is rapidly decreasing. The function f, € H(G,, (,)° is of course fixed. In the special case
that M’ = M*, we can assume that it lies in the subspace = H"™(G,, (,)° of H(G., ()0,
since there can be at most one nonzero term on the right hand side of (3.12).

By construction [A7], [A12], the set ®(M,, (") of abstract stable characters is a union
of the subset ‘Peu(ﬂ ? (") of elliptic elements with the subset of elements induced from

proper Levi subgroups of M Lo If 5;, is properly induced,
M (fur 80, X1) =0,

since eM(f,) is cuspidal. We may therefore assume that ¢/, is elliptic. But the set of

elements in CIJQH(M ;,Eﬁ,) with unitary central character is the subset @tempien(ﬁ ;,Eﬁ,)
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of tempered elements. It is therefore sufficient to prove that for any element ¢! €

Piemp,enn (M), C’), the function
Xy — gM (fv7¢2)7X1/;)7 X, € ClM’v/ClZ’v,

is rapidly decreasing.

For the case of tempered ¢!, we write
M (fur 0y X3) = M (fur 81y X0) = “mas (M, o, 81, X7),

by Corollary 3.2. We can then argue as in the earlier proof that ™ /( fv) is moderate.
Since €M’ (f,) belongs to ST(M',, (), as we observed in the proof of Proposition 3.1, the
function

Xv — C€M (flngbi;:X'{;)? Xv S aM,’U/aZ,’Uv

actually has compact support. Moreover, the stable analogue [A12] of [Al, Lemma 5.2]

implies that the function

X’U — CnM(Mqlnfv7¢{UvX1,;)7 X € aM,’U/aZ,’Uv

is rapidly decreasing. Therefore the original function ¢ /( fu,@l, X)) is also rapidly de-
creasing, as required. This completes the proof of the remaining assertion (b) of the lemma.

0

With Lemma 4.3 in hand, we can now finish the proof of Proposition 4.2. We have to
show that the limits (4.5) and (4.6) are both zero. According to the lemma, we can write
the first limit (4.5) as

i (wan Y |

N * N *
wM,z/wG,z

enr (f, N am (v + )\)d)\),

where v is summed over the infinitesimal characters for My with ||[Im(v)|| < T. The sum

may be taken over a finite subset of b (r), which is independent of m, and which represents
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a set of Weyl orbits in b7, (r)/ia}, ;. Moreover, the integral converges absolutely uniformly
in m. If A\ + v lies outside the W,-orbit of 11, we see that

lim (Gn(r+ X)) = lim (@1(v+2)™) =0,

m—00 m—00

since 0 < a(v + A) < 1. We conclude that the limit (4.5) vanishes. The treatment of the

second limit (4.6) is identical. By the lemma, it equals

G (WOnY S anan) [

e (F, Nam(v + N)dr),

v M'€E(M,V) ialy, z/19G 2

where v is summed over the set of infinitesimal characters of My with |[Im(v)| < T.
Using the same arguments, we deduce that this limit also vanishes. We have shown that
the required limits vanish, and therefore that the identities (4.1) and (4.2) hold, with

v = v1. The proof of the proposition is complete. 0
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5. Elimination of restrictions on f

The next step will be to remove the local restrictions on f. We shall show that the
identities of Proposition 4.2 remain valid without the constraints on the p-adic unipotent
orbital integrals. This section can be regarded as a general (untwisted) analogue of the
special case in [AC, §16] of inner forms of GL(n). As in the earlier special case, we shall
relax the constraints one p-adic place at a time.

Let v € Vi, be a fixed p-adic valuation. We have at our disposal three sets I1(G,),
T(G,), and ®¢(G,,), consisting of virtual characters that are respectively irreducible, stan-
dard and endoscopic. The sets represent three different bases of the complex vector space

of virtual characters on the connected p-adic group G,. Likewise, we have three subsets

Htemp (Gv) P Ttemp (Gv ) and @5

temp (Gw), which represent three separate bases of the space

of tempered virtual characters on G,. It will be best to work with the latter two pairs of
bases, since they behave well under induction. We shall of course also restrict ourselves to
the subbases of elements that have central character on Z, equal to (,.

We shall consider a fixed connected component 2, in either of the two sets
Tiemp (G, Cp) OF Piemp(Gy, (y). Then Q, is a quotient of a compact torus under the action
of some finite group. As such, it acquires a measure dw from the Haar measure on the
torus. Given €, we write (2, ¢ for the complexified connected component in the associated
set T(Gy, () or (G, ¢,). The next lemma will be stated in terms of a space H(Q,),
which we define to be the subspace of functions f, € H(G,,(,) such that the associated

function f, ¢(7,) or f’G(gbv) (on either Tiemp (G, Cy) OF i3S

temp

(G4, (y)) is supported on
Q,. At the beginning of §3, we defined two subspaces of H(G,, (,) by imposing constraints

on the unipotent orbital integrals. These provide corresponding subspaces
H(Q,)? = H(Q) NH(GY, ¢)°

and

H(Qv>00 = H(Qv) N H(Gm Cv)oo
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of H(2,). We shall say that Q, is elliptic or parabolic according to whether the functions
in H(2,) are cuspidal or not. Then €, is parabolic if and only if it is induced from an
elliptic component €7, (in either Tiemp,ei1(Ly, Cy) OF q)femp,en(Lv’ (v)) attached to a proper

Levi subgroup L, of G, over F,,.

Lemma 5.1. (a) Suppose that S, is a parabolic component in Tiemp(Gy, (), and that fv
is a function in H(GY,, () such that the identity (4.1) holds for any function f = f*f,,
with f, € H(Q,)°°. Then (4.1) also holds for any f = ff,, with f, € H().

(b) Suppose that G is quasisplit, that €, is a parabolic component in @tgemp(Gv, Cv), and
that f¥ € H(GY,,(y) is such that the identity (4.2) holds for any function f = f*f,, with
fo € H(Q,)0. Then (4.2) holds for any f = f°f,, with f, € H().

Proof. The basic idea is quite simple, and is familiar from the special cases in [AC]
and [AT7]. To treat the general case here, we have to deal with the usual minor technical
complications. In particular, we need to account for the split component of the center of
G, or rather, its quotient by the split component of Z,. As in the last section, we shall
work with the vector spaces ag, and az,, and the canonical lattices that they contain.

Suppose that X, is a point in the quotient

aG,v/aZ,v = Hg,(Gy)/Hz,(Zy)

of these lattices. Let H(G:Xv,(,) be the subspace of functions in H(G,,,) that are sup-

ported on the subset
GUX” = {:)3 €Gy: Hg,(x)+az, = XU}
of GG,. We can then define the intersections
H(Qu, Xo) = H(Q) NH(GT, G)

and

H(Qy, X)) = H(Q,)% NH(Q,, X,).
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Any function in H(2,) is obviously a finite sum of functions in the various spaces
H(Qy, Xy). It is therefore enough to establish the assertions (a) and (b) for functions

fo in H(Qy, X,), for a fixed element X,,.

To deal with (a), we consider the pairs of elements
1= (Zvv av)7 Zy € Z(@v)7 Qy € Runip<va C’U)?

that parametrize Shalika germs near the center of G,,. Any such ¢ gives rise to the linear

form

Jz(fv) = f’U,G(zva’U)7 fv € H<va Cv)7

on H(G,, (,). Having fixed 2, and X, we let 1(£2,, X, ) be a fixed maximal set of pairs {i}
for which the restrictions to H(2,, X,) of the linear forms {J;} are linearly independent.

By the trivial (abelian) case of the Howe conjecture, I(€),, X,) is a finite set. (The set

is actually empty unless Z(G,) intersects the group @UXv = GXv/Z,.) The subspace
H(Qy, X)) of H(Q,, X,) equals the intersection

{fo € H(Qy, X,) + Ji(fo) =0, i € [(Qy, X,)}
of the kernels of linear forms in this finite set. We fix functions
{f] e H(Q, Xy) : j€T(,X,)}

with the property that

for any 7 and j in I(€,, X,). The map
fo— 1= fo =Y i) fy

is then a projection from H(£2,, X,) onto H(Q,, X,)%.
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Consider the distribution on the left hand side of (4.1). It has an expansion

I () = Loaise(£) = > (afl(m) — afe(m)) fa(m),

Tellf 1. (G,V.()

v,disc
for any function f € H(Gvy,(y). We take f = fVf,, and then consider the distribution as
a linear form in f,. As such, it has a further expansion associated to the basis T'(G,, (,)-

To see this explicitly, we write

fv,G(ﬂ-v) — Z 5(anTv)fv,G<Tv)7

T €T (Gov,Cv)
for coefficients §(m,, 7,) attached to any representation m, € II(G,,(,). We assume that
f» belongs to the subspace H(GXv,(,) of H(G,,(,). Following our general conventions,
we write az,m z, for the annihilator in ag, of the subspace az, C ag,. Then f, has an
equivariance property

fv,G(Tv,)\U) — eAU(XU)fU,G<TU)7 )‘U S iazv'v,Zu’

with respect to the action of iag; , on T(Gy, (). Let T(G.,, ¢,) denote the space of orbits

of iag, » in T(Gy,(y). The expansion becomes

(5.1) Iidisc(f) — Iyaisc(f) = Z (7o) fo,c(To),

To €T (Gy,Co)
where the coefficient

Oé(TU) = au,disc(fv7 TU)

equals

3 ((@GEm) — e f2) X Slmarn ).

T Ay eiagv Za
Since

a(Ty,) = e_’\”(X”)a(Tv),

the summand in (5.1) does indeed depend only on the image of 7, in T(G,,(,). Observe

also that while the last sum is over representations 7 € II¢ ;. (G, V, () for the subset G‘Z,

v,disc
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of Gy, the factors in a given summand depend on a choice of a representative ¥ ® 7, of
7 in it (Gv, Cv). However, the product of these factors depends only on 7. Finally, we
note that for fixed f¥, the sum over 7, in (5.1) can be taken over a finite set that depends
only on the support of f, ¢ (as a function on T(G,, (y)).

Suppose that fV is as in (a), and that f, belongs to H(Q,, X,). We shall write Q,

and €, ¢ for the spaces of orbits of a6, 7z, in §, and Q, ¢ respectively. By assumption,

the linear form

Z a(w)fv,G(w>

wEﬁv,c

on the right hand side of (5.1) vanishes if f, lies in the subspace H(Q,, X,)% of H(Q,, X,).

Therefore

Y. aw)fiEw) =0.

wEﬁv,c

It follows from the definition of f° that
Y. aWfuew) = Y ddi(f),
WEQ, ¢ i€I(Qy,Xy)

where

0= 3 a@)fiaw).

wEﬁU,C

The function a(w) on the left hand side of this identity is supported on finitely many
elements in Q, c. To deal with the right hand side, we recall that the Fourier transform of
any p-adic orbital integral, as a distribution on Tiemp (G, (y), is @ smooth function. This
is a special case of [A6, Theorem 4.1]. (See Remark 4(c) on p. 185 of [A6], as well as
Corollary 9.1 of that paper.) Therefore

() :/_ Ai() fo.co(w)dw, fo € H(u, X0,

v

where each A;(w) is a smooth function on 2, such that

Ai(W)\ ) = e_AU(XU)Ai(w)y )\v < Z'ClvaZU.

v
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Setting
Aw) =) a'4;(w),

we conclude that

— Q
w€Ey C v

(5.2) > aw)fuew) = / A(W) fo.c(w)dw, fo € H(Qy, X,).

We shall complete the proof of (a) by showing that the discrete distribution on the left
hand side of (5.2) can be compatible with the continuous distribution on the right hand
side only if both sides equal zero. This is a p-adic variant of the comparison we applied to
archimedean multipliers in the last section. The arguments are essentially those of [AC,
p. 191] and [A7, p. 567].

By assumption, the component (2, is parabolic. It is therefore induced from an elliptic

component

Qr, C Ttemp,ell(L’U? (o)

attached to a proper Levi subgroup L, of G, over F,,. We can then identify {2, with the set
of orbits Qp, /W (Qyr,), where W (Qr,) is the stabilizer of €, in the Weyl group W (L,)
of (Gy, Ar,). Now the real vector space iay . acts transitively on the elliptic component
Qr,. Let iAj be the stabilizer in taj , of any point wo in Qr,. Then 7Aj is a lattice in

iay 5 . For any choice of base point wg, we can identify €7, with the compact torus
Za,u = ZCLLWZU /ZAU'

The smoothness condition for the function A(w) in (5.2) pertains of course to the co-
ordinates defined by the torus, and as we noted earlier, the measure dw is induced from a
Haar measure on the torus.

It is a simple consequence of the trace Paley-Wiener theorem [BDK] that the image
of H(Q,, X,) under the map

fv _)fv,G(w)v (UGQU:
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is the iag; , -equivariant Paley-Wiener space on €2,. In other words, the image can be
identified with the space of W (Qyr, )-invariant functions ¢, on Qr,, which coincide with

finite Fourier series on the torus ia}, and which satisfy the condition
Pu(wi,) = ¢v(w>e>\u(xu)7 welp,, A € ia&u,ZU'
We can obviously identify each side of (5.2) with a linear form in ¢,. We obtain

(5.3) Yo W@, )W) a(w), (W) :/_ W(Qr,)| 7 Alw) o (w)dw,
weQr, ¢ 2Ly

where Qp, ¢ and Qp, are the quotients of Q¢ and Qf,, by iag, z,, and W(Qr,,w) is
the stabilizer of w in W(Qg,). This identity holds for any function ¢, that lies in the
iag, 7 -equivariant Paley-Wiener space on €p,, and is symmetric under W (Qr,). But
as equivariant functions on Q¢ and €1, respectively, both a(w) and A(w) are also
symmetric under W(Qg, ). It follows that (5.3) actually holds for any ¢, in the full
equivariant Paley-Wiener space on €1, .

To exploit (5.3), we identify Q  with ia) by choosing a base point wy. Then ¢,
ranges over the space of finite, iag, z,-equivariant Fourier series on the torus iay. We
shall consider the Fourier transform of each side of (5.3) as a distribution on the dual
group

A, = Hom(A},Z).

Let AXv C A, be the preimage of X, under the canonical map from A, to ag, /a z.v- Then
AXv is an affine sublattice of A,, on which the kernel A? of the map acts simply transitively.
The image of the space of test functions ¢, under Fourier transform is the space of functions
of finite support on AXv. The Fourier transform of the distribution a(w) on the left hand
side of (5.3) is a finite linear combination of (nonunitary) exponential functions on A:Xv
(relative to the action of A?). The Fourier transform of the distribution A(w) on the right

hand side of (5.3) is a rapidly decreasing function on AXv. The resulting two distributions
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on AXv are incompatible. They can be equal only if they are both simultaneously equal
to zero. It follows that the left hand side of (5.3) vanishes, and hence, that the left hand
side of (5.2) also vanishes.

We have established that
Z a(w)fU,G<w) = 07 fv S H(QU7XU)7
It follows from (5.1) that

I gse(f) = Tnaise(f) = ). 7o) fo.a(r) =0,
TET(Guv,Cv)
for any function f = fvf, with f, € H(,, X,). The same formula therefore holds for any
such function with f, € H(€,). This completes the proof of part (a) of Lemma 4.1.
We need only add a few remarks in the case of part (b), since the proof is essentially
the same. In this case, G is quasisplit, and €2, is a parabolic connected component in

®f p (G, Co). Here, we take I(y, X,) to be a maximal set of pairs

i = (2v, Bo), 20 € Z(Gy), By € AL (Gos G,

such that the endoscopic orbital integrals

Jl(fv) = fin(Zvﬁv)a fv € H(Qva Cv)7

on H(,, X,) are linearly independent. We then define a projection
fo— 1= fo = Jilf)fi,

from H(Q,, X,) onto H(£2,, X,)%, as in (a).
The distribution on the left hand side of (4.2) has an expansion

SSdiSC(f) = Z bgsc(¢>fg(¢)

pe® . (G, V,0)

v,disc
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Assume that f = fVf,, where f, belongs to H(G:Xv,(,). We can then consider the distri-

bution as a linear form in f,. We see that

(54) SSdisc(f) = Z 5(¢U) ;iG((ZSv)?

¢'u egs(Gu ’C'U)
where the set Eg(Gv, ) = ®¢(G%, (,) equals the space of orbits of iag, 7, in (G, Co),
and the coefficient

ﬁ(qbv) = ﬁu,disc(fv7 ¢v)

is defined as a double sum
S bGe(@) 155 (4"
¢ A

over elements ¢ € ® . (G,V,() and A, € iag, 7, such that ¢ has a representative

v,disc

¢’ @ ¢y a, in (G, (). Suppose that fU is as in (b), and that f, belongs to H (£, ().

00

v

Combining (5.4) with the projection f, — we obtain an identity

Yo Bwiffaw) = Y bIi(f),
weQy ¢ i€1(Qy,X,)

where

b= Y Bw)(fie)(w).

w€Ey.C

Since the endoscopic orbital integrals J;(f,) are finite linear combinations of invariant

orbital integrals, their Fourier transforms are also given by smooth functions. Therefore

Ji(fo) :/_ Bi(w) f& g(w)dw, fo € H(Qy, X,),

v

where each B;(w) is a smooth function on 2, such that
Bi(wy,) = e X0 Bi(w).
It follows that

(5.5) S B@)fE glw) = /ﬁ B(w) £ 6 (w)dw, fo € (. X),

WGQU,C
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where
B(w) = ZﬁiBi(w).

The rest of the proof of (b) is the same as that of (a). We identify €2, with a set of

orbits Q2 /W (€y,), for an elliptic component

QL'U - (pfernp,ell(va Q))

attached to a proper Levi subgroup L, C G,. For any base point wy € {21, , we identify

Qp, in turn with a compact torus
Cw ok -
mna, = ZCLLWZU/ZAU.

The proof of (b) is then established by transforming (5.5) into an identity between distri-

butions on a corresponding affine lattice A:Xv. O

Corollary 5.2(a). (a) The identity (4.1) of Proposition 4.2(a) holds for any function f
in Har(Gy, Cy).
(b) If G is quasisplit, the identity (4.2) of Proposition 4.2(b) holds for any function f in
Hir* (Gos Go)-

Proof. Proposition 4.2(a) applies to any function in H;(Gy, ¢)%°. We have to show
00 ;

that it remains valid for functions in the larger space Hy/ (Gvy,v). Now Hy (Gy, v )™ is

spanned by functions f = [] f, that satisfy the following conditions.
veV

(i) For each place v € Vi (G, M), f, belongs to H(G.,, (,)°.

(ii) At some place v € Vgn, f, belongs to H(G,, ¢,)".

(iii) At two places v € V', f, is M-cuspidal.

The larger space H(Gy, Cv) is spanned by functions f = IIf, that satisfy only condition
(iii). Notice that if f, is M-cuspidal, the restriction of the function f, ¢ to any connected
component of Tiemp(Gy, (y) is also M-cuspidal. We can therefore span H(Gy,(v) by

functions that satisfy (iii), and the following support condition.
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(sq) For each place v € Vj,, there is a connected component €2, of Tiemp (G, Cv) such that

fv belongs to H(Q,).

We consider a function f = [] f, that satisfies (iii) and (s,), for fixed components
Q, in the sets Tiemp(Gv,Cv). To e;tablish part (a) of the corollary, it is enough to show
that any such f satisfies the identity (4.1). We are free to enlarge the set V' if we choose.
In particular, the left hand side of (4.1) remains unchanged if V is replaced by a larger
set V1 =V U{u}, and f is replaced by a function f; = fu,,. The local component u,,
here stands for the unit in an unramified Hecke algebra at vy. It lies in H(€2,,, (y, ), where

(v, is an unramified character on Z,,,, and (1, is the parabolic component of unramified

representations in Tiemp (G, , (v, ). We may therefore assume that the set
Voar = Vpar(f) = {v € Vin : Q, is parabolic}

is nonempty.

Suppose that f satisfies the extra constraint that f, belongs to H (G, ()%, for each
v € Vpar. Then f satisfies the condition (ii). If v lies in the complement of Vj,, in Vian, €,
is elliptic, and H(G,, (,) equals H(Q,,(,)° by definition. Therefore f satisfies condition
(i) as well as (ii) and (iii). In other words, f belongs to Hs(Gyv, ()%, and consequently
satisfies the identity (4.1). To remove the extra constraints, we apply Lemma 5.1(a) to
each of the places v € V,,5,. We thereby deduce that the identity remains in force without
the requirement that f, lie in H(Q,, (). This establishes that (4.1) holds for any f that
satisfies (iii) and (s,), which in turn yields the required assertion of part (a).

The same argument applies to part (b), except that H2*(Gy/, ¢v)°° and HYS (G, Cv)
play the roles of Hps(Gy, ¢y )% and Har (Gy, Cv). The space HYS(Gy, ¢y )% is spanned by
functions f = [[ f, that satisfy conditions (i)—(iii), and also the following supplementary

veV
condition.

(iv) At some place v € V, f& = 0.

The larger space H}}*(Gy, () is spanned by functions f = IIf, that satisfy only conditions
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(iii) and (iv). Observe that if f, is either M-cuspidal or unstable, the restriction of the

function f;f ¢ to any connected component of @‘,?emp(Gv, (v) has the same property. We can

therefore span HY}°(Gv, Cv) by functions that satisfy (iii), (iv), and the following support

condition.

(sp) For each place v € Vin, there is a connected component 2, of ®¢, (G, (,) such that
fv belongs to H (2, ().

We can then derive the assertion of part (b) as above. U
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6. Local trace formulas

Our concern has been the global trace formula, and the stabilization of its various
terms. However, there will come a point in the next section when we have to apply the
local trace formula. In the present section, we shall lay the groundwork for this. In
particular, we shall take up the study begun in [A10, §9] of how to stabilize the local trace
formula.

For the next three sections, F' will be a local field. We take G to be a reductive
K-group over F', which for the moment is arbitrary. In this context, Z stands for a central
induced torus in G over F, and ( is a character on Z(F'). Before we discuss stabilization,
we have first to reformulate the invariant local trace formula of [A5] so that it is compatible
with the canonically normalized weighted characters of [A8]. As might be expected from
the global constructions in [I, §2-3], the result will be a little simpler than the formula of
[A5, §4] that depends on a noncanonical choice of normalizing factors.

We temporarily adopt notation from [A10, §8-9], in which V' = {v1,v2} is reduced to
the role of an index set of order two. Then Fy = F x F, Gy = G(Fy) = G(F) x G(F),
and (y = ¢ x (7', while

f:f1><727 szC(GaC):C(G(F)vg)v

is a function in the Schwartz space C(Gv, (v). The geometric side of the local trace formula

will be the linear form
©1) I = Y WSt | In(y, fi,
MeLl FG—reg,ell(M’V7§)

defined [A10, (9.2)] in terms of the invariant distributions I/ (7, f) in [A10, §4]. We have
written I'g-reg c11(M, V, {) for the subset of strongly G-regular, elliptic elements in the basis
I'(M,¢) =T(M(F),(), identified with its diagonal image

{(’777) HRAS 1—‘G-reg,ell(]\47 C)}
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in I'(My,Cv). (The set I'goreg,en(M,V,() is bijective with the family I'g-reg c1(M) of
strongly G-regular, elliptic conjugacy classes in M (F) = M (F)/Z(F) used to state [A10,

(9.2)].) The spectral side will be a distribution

(62 Lisl$)= [ @ ol

that is essentially discrete. Here we are following notation of [A5, §3] (with obvious mod-

ifications for the character {). We have written Ty;sc(G, V, () for the diagonal image

{(T, ™) T€ TdiSC(G,C)}

in Tiemp(Gv, Cv) of the subset Tyise(G, ¢) of Tiemp(G,¢) = Themp (G(F),C) defined as on
p. 96 of [A5]. As on the geometric side, we do not generally distinguish between the
element 7 attached to G(F') and the corresponding pair (7,7") associated to Gy . Thus,
i%(7) is the function [A5, (3.2)] on Tyisc(G,¢), and dr is a measure on Tyis(G, ) defined

as in [A5, (3.5)] (with iag, , playing the role of iag), while

fo(r) = (f)e(T)(f2)a(r") = fra(T) f2.a(7).

Proposition 6.1. I(f) = Isisc(f).

Proof. We can afford to be brief, since the proof is similar to that of [A5, Theorem
4.2]. The discussion of [A5, §4] applies only to a function in the Hecke space, but it extends
easily to the Schwartz space by the arguments of [A6, §5]. We note in passing that while
the formula of [A5, §4] is close to the assertion of this proposition, the invariant local trace
formula established in the paper [A6, §5] is of a rather different nature. The latter was
designed to prove the qualitative theorems in [A6, §4] for distributions on G(F'), rather
than for the comparison of distributions on different groups.

The starting point is the noninvariant trace formula, which consists of two different

expansions of a noninvariant linear form J(f). As formulated in [A5, Proposition 4.1], the
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expansions are

63)  J()= 3 (WHWE|L(~1)dm(An/Ae) / Tat(y, )y
MeL FG—rcg,cll(M7V7C)

and

(6.4) = > (W[ (—1)dimiAn/Ae) / M (7) T (7, f)dr.
MG[, Tdisc(M,V7§)

The point here is that the distribution J/ (7, f), defined for example as in [A5, §4], actually

equals a canonically normalized weighted character. To put it another way,

I (7, f) = dp (7, f) = dar(f1 X fo, 7 x 1Y),

where

¢um 2 C(Gy,Cy) — I(My,(v)

is the mapping of [A8, §3] and [A10, §4]. This property is not hard to establish from
the definitions just cited. Since we have already proved the analogous global property
n [I, §3], we shall leave the details to the reader. (The property is closely related to
the analyticity assertions of [A4, Lemma 12.1] and [A8, Proposition 2.3]. Unnormalized
weighted characters are generally only meromorphic.)

Following the usual recipe, we define invariant linear forms
" ¢(Ly,¢y) — C, LecL,
inductively by setting

J(F) =D WG|~ (=) A AT (b (£).
Lel
It follows by induction from (6.3) and the definition

LeL(M)
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that I¢(f) is equal to the expansion (6.1) for I(f). On the other hand, if we define

invariant linear forms

III\I4<T) : C(LV7CV) - C? Le ['7

inductively by setting
T, )= Ty(reu(f),

LeL(M)
then

fien=10" tiza

It follows by induction from (6.4) that I¢(f) is also equal to the expansion (6.2) for Igisc(f)-

We have shown that I(f) equals Igisc(f), as required. O

The proposition asserts that the expansions on the right hand sides of (6.1) and (6.2)
are equal. This is the invariant local trace formula we were seeking. It differs from the
earlier formula in [A5, Theorem 4.2] as follows. On the geometric side, the invariant
distributions Ip;(7, f) in (6.1) are defined in terms of the weighted characters of [A§],
while their counterparts in [A5, (4.10)] use the weighted characters on p. 101 of [A5]. On
the spectral side, the distribution Iqisc(f) in (6.2) is essentially discrete in the variable 7,
while its counterpart [A5, (4.11)] contains continuous terms that arise from normalizing
factors for intertwining operators.

We turn now to the question of stabilizing the terms in (6.1) and (6.2). Suppose that
G’ is an endoscopic datum for G. Following the convention in [A10, §9], we shall identify

G’ with the diagonal endoscopic datum
=G xG

for Gy = GxG. We recall that if G’ represents the datum (G’,G’, ', ¢’), then G’ represents
the adjoint datum (G’,G’, (s')7*,&’). Recall that the Langlands-Shelstad transfer factor

attached to (G, G') depends on a choice of auxiliary data G’ — G’ and &: G’ — LG’ for
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G’. We would like to choose compatible auxiliary data for G’. Since G’ equals G’ as a

quasisplit group, we can set G’ = G’. The choice of L-embedding

E/: G/:g/_>Lé/: Lé/
is then dictated by the following lemma, which was suggested to me by Kottwitz.

Lemma 6.2. Given 5’, we can choose f’ so that the relative transfer factor for (G,G") is
the inverse of the relative transfer factor for (G,G").

Proof. This is Lemma 8.1 of [A10], which was stated essentially without proof.
However, there is one point that ought to be verified in detail. In fact, the description of ?’
given on p. 258 of [A10] is not correct, since the map ?’ defined there is not an embedding
of the required type. (Its restriction to the subgroup G = 5’ is not the identity embedding
of this group into é\/’ el .) We need to see how the choice of ?’ is forced on us by the
transfer factor for (G, G").

We may assume that the group G/ = [l equals G’ [LS, (4.4)]. Then ¢ is simply
an L-isomorphism, which we use to identify G’ with *G’. We can then treat ¢’ as an L-
embedding of ZG’ into “G. With this assumption, the relative transfer factor for (G, G’) is
defined as a product of four terms [LS, (3.2)—(3.5)]. The relative transfer factor for (G, G")
is defined by a similar product, except that the element s’ in the factors Ay and A; [LS,
(3.2), (3.4)] has to be replaced by its inverse (s’) 1. If {x,} are the y-data for G’ on which
the other two factors Ay and Ay [LS, (3.3), (3.5)] depend, we are free to take {x,'} to
be the y-data for G’. It is then clear from the definitions [LS, (3.2)-(3.4)] that the three
factors Ay, A and A; for G’ are all inverses of the corresponding factors A, A and A,

for G’. The remaining factor
ZQ = ZQ((S’,’}/), 0 e AG—reg<G/)7 v E Freg<G),

for G’ is absolute, in the sense that it can be defined without reference to a base point.

It is also the only factor that depends on the choice of £’. We are now treating £ as an
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L-automorphism of “G’. The choice of £ is therefore equivalent to that of an L-embedding

5/ — é-/ o (?)—1 . LG/ _ LG,

which coincides with £ on G’. We can assume that the restriction of & to the Weil group

W of F preserves a I-splitting of G’. Then £’ is of the form
(g x w) =2 (W)€ (g x w), g €C, weWs,

where 2 is a 1-cocycle from W to the center Z(G') of G'. We have to show that 2’ can
be chosen so that Ay(d’,7) equals the inverse of the corresponding factor A (8, ) for G'.
This is the point that is not immediately obvious from the definitions.

The assertion is not in itself hard to verify, but it does require a recapitulation of the
various objects [LS, (2.5), (2.6), (3.5)] that go into the construction of Ay (d’,v). The y-data
are attached to the maximal torus 7' in G* (the underlying quasisplit inner form of G) that
is the image of the centralizer of (a representative of) ¢’ under a fixed admissible embedding.
Their role is to provide two L-embeddings &r: T — G’ and &7: T — EG. The factor
A, is defined in terms of these embeddings by the local Langlands correspondence on T'(F').
To conserve notation, we assume that the restrictions of £/, ¢ and &7 to the relevant dual
groups are simply the trivial injections of embedded subgroups Tcd@ , G'cGandT C G.
The factor is then defined by

Az(d",7) = (a,9),

where § is the image of ¢’ in T'(F'), and a is the 1-cocycle from Wg to T defined by
¢ o & = alr.

Our task is to choose &' so that the corresponding cocycle @ for G’ maps to the image of
a~lin HY(Wg,T).

The value of the L-embedding &7 at an element w € Wy is given by a product



Here r: Wg — T is the 1-chain defined in [LS, (2.5)] in terms of the y-data {x.} and a

fixed gauge on the roots of (G, T), while
n(w) = n(wr(o)) x w
is the element in “G defined in [LS, (2.1)] in terms of a fixed I p-splitting
(T,B,{X.: a€ A(B,T)})

for (G,T). We recall that o is the image of w in the Galois group I'p = Gal(F/F), while
wr(o) is the element in the Weyl group Q of (G, T) defined by the action of I'z on T, and
n(wr (o)) is a representative of wy (o) in the normalizer N of T in G. The value at w of

the second embedding &/ is given by a corresponding product
r(w) =1’ (w)n' (w).
In this product, n’(w) is defined in terms of a fixed splitting
(T,B',{Xs: e AB,T))})

for (G',T) such that B’ = G' N B [LS, (3.1)]. The two clements n(w) and ¢ (n'(w)) in LG

have the same action by conjugation on T. Their quotient



We must compare this with the corresponding decomposition for @(w). Now a(w) is defined
by replacing & with & = 2’¢’, for a l-cocycle 2’ € Z' (W, Z(@’)) to be chosen, and by
replacing the x-data {x.} by {x5'}. This has the effect of replacing b(w) by 2’ (w)b(w),

and c(w) by c¢(w) ™1, as one sees easily from the construction in [LS, (2.5)]. It follows that

It would be enough to show that the 1-cocycle b(w)? in Z'(Wg, T\) maps into the image
of H! (WF,Z(G’)) in H' (W, T). For we could then take z/(w) to be any element in
Z1 (WF,Z(@’)) whose image in H'(Wg,T) equals that of b(w)~2. This would in turn
yield a formula

Ay(8',7)A%(6,7) = (aa,d) = (Z'b*,8) =1

that gives the desired relation between the two factors.
The map 0: w — wr (o) X w is a homomorphism from W to the group *Q = Q x Wp.

The map w — n(w) is the composition of this homomorphism with a function
v: wXw— n(w) X w

from € to the group ‘N = N x Wg, where Wr acts on N by means of the fixed I'p-

splitting of (@, f) To define n(w), Langlands and Shelstad first set
n(we) = n(a) = exp(X,) exp(—X_4) exp(Xa),

for any simple root «, and for the root vectors X, and X_, given by the splitting. Following

[Sp|, they then define

n(w) =n(ay) - -n(ay),

for an arbitrary element w €  with reduced decomposition w = wy, - - -wq, into simple

n

reflections. There are of course similar maps 6’: Wr — Q' and v/: £QY — LN’ for G.
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We therefore have a diagram

0/

with vertical arrows obtained from the L-embedding ¢: *G’ — FG. The square is not

generally commutative. However, the obstruction
BO') = € (VO))r(€0)) 0 e,

does belong to T. Since

b(w) = (0 (w)), w € Wr,

it would obviously be enough to arrange things so that for any 6’ € L/, 3(6')? lies in
Z(@".

The map v depends on our fixed splitting (f , B, {X.}) for (@, T ). We shall expand
the set {X,} into a complete family of root vectors {Xz}, where 3 runs over the set

®(G,T) of all roots of (G,T). We claim that this can be done in such a way that if
v =05, B.ye®G.1), e’
then
Ad(v(0))Xs = Ad(u) X,

for some element u € T with u2 = 1. Tt is clearly enough to show that the condition holds
if 8 = v, and X3 = X, is any associated root vector. In the special case that 3 = ~
is simple, the condition follows (with w = 1) from [Sp, Proposition 11.2.11]. If g = ~ is

arbitrary, we choose w € Q so that a = w3 is simple. Then (w™!w)a = a, and

v(w w) X, = X,.
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Since Lemma 2.1.A of [LS] implies that

v(0)v(w) = uv(w)r(w hw),
for some element u € T with u2 = 1, the condition holds in this case as well. The claim
follows. Having chosen the family {X 3}, we take

(T,B' . {Xg: BeAB,T))}), B' =G NB,
to be the splitting for (@’ ,f) To ensure that this is a I'p-splitting, we might have to
replace £ by an L-embedding whose restriction to Wy differs from that of & by some
T -conjugate. Such a change serves only to multiply a by a 1-coboundary from Wy to T ,

and therefore has no effect on the image of a in H'(Wp, T ).

We can now complete the argument. Suppose that @’ is an element in “€)’. Then

B0 (0) = &' (n),
where 6 = ¢/(0') and n/ = v/(#’). Assume first that ' belongs to the subgroup Wg of Q.
Let v be a simple root of (@’, f), and set 3 = 6~'v. Then Ad(&’(n’))Xg equals X, since
n’ preserves the splitting for (@’ T ) and &’ is a homomorphism. Therefore
X, =Ad(¢(n) X =Ad(B(0'))Ad(v(0)) X = Ad(B(0")u) X,
for an element u € T with u? = 1. Tt follows that 7(6(9’ )2) equals 1 for any simple root
~ of (G',T). We conclude that 3(6')2 belongs to Z(G'), as required. Assume now that ¢’
belongs to the subgroup Q' of £Q’. Then ¢'(n') = n' = n/(#’), and v(0) = v(§') = n(¢’),
since ¢ restricts to the trivial embedding of G’. Consider the special case that ' = wg,

for a simple root ( of (@’,f) In this case, we choose w €  so that o = wf is a simple

root for (G,T). It then follows from [LS, Lemma 2.1.A] and the definitions above that

n'(0") = n(3) = exp(Xp) exp(—X_3) exp(Xp)
— Int(w)Int (n(w)) " (exp(Xa) exp(—X o) exp X,)
= Int(u) (n(w) ~'n(a)n(w))
= Tnt(u)Int (0 )n(w  waw) = (ut)w(un') " n(6),
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for elements u,u’ € T of square 1. Therefore B(0") equals the product wu'w(uu’)~!, an
element whose square is also equal to 1. Finally, if #’ is an arbitrary element in €, we write
¢’ as a product wpg, ---wg, of simple reflections in €2'. It then follows from [LS, Lemma
2.1.A], and what we have just proved, that
n'(0") = n'(wg,) - -’ (wg,)

— un(ws, Jusn(ws,) - un(ws, )

= unws,) - -nlws,) = uln(6),
where u1,...,u,, u and ¢’ are all elements in T of square 1. Therefore 3(6’) equals uu/,
an element whose square is again equal to 1. We have now only to recall that %€ is
a semidirect product of the two subgroups Q' and Wr. We conclude that 3(6’)? lies in
Z (@’ ) for any element ¢’ in Q. This is what we set out to prove. As explained above,
the embedding

-2

g (w) = p(0'(w)) "€ (w), w € W,

provides a factor A (¢, ) that is the inverse of Ay (4, 7). O
We return to the setting of Proposition 6.1, in which f € C(Gy,(y) is a function of
the form f; x f,. Lemma 6.2 applies directly to the transfer
/ el el -G’
fF— 1 =r"v=rn xf
of f to an endoscopic group Gf, = G’ x G’. According to the discussion on p. 269 of [A10],

which is based on the assertion of Lemma 6.2, f’ is equal to the product
fi Xf_ﬁ:ff x f5".
In particular, f’ is a function in SZ( N’V,Z’V), where ZQ/ = (' x (Z’)—l. The transfer

mappings were used in [A10, §9] to construct supplementary linear forms I€(f) and SY(f)

from I(f). They are defined by the familiar formula

()= > UGG)S(f)+e@G)SE(f),

G'e€9,(Q)
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in which the linear forms S = S¢ on ST ( ~'V,Z'V) are determined inductively by the

further requirement that I¢(f) = I(f) in case G is quasisplit. We recall that
UG, @) = |Oute (G)| 1 Z(G)"/Z(G")|

and that £(G) equals 1 or 0, according to whether or not G is quasisplit. One of the main

results of [A10] was Theorem 9.1. This theorem provides geometric expansions

65) I = S (WHWE| T (—1)dmAn/Ae) / £, (v, f)dn
MeL FG—rcg,cll(M7V7<)
and
(6.6) = > WIWE T (- tmtAn AN T (M, M)
MeLl M’ €€ (M)

[ s s,
AG’ reg ell(M V{)

in case that G is quasisplit, that are reminiscent of the global geometric expansions of [I,
Proposition 10.1].

In [A10, §10], we also stabilized a special case of the spectral side, in which the function
f1 was cuspidal. (The results were used in the cancellation of p-adic singularities in §3.)
The formal aspects of the process work in general, being no different from the construction

above. For any function f = f; x f,, we set

Igisc(f) = Z L(G7 G/)gélisc(f/) + g(G)SgscOC)?

G'e€Y,(G)

qQr _ G
for linear forms Sj;,. = S§iec

on ST (é’v, E /) that are defined inductively by the condition

that 1§, (f) = Laisc(f) in case G is quasisplit. The linear form S§__ is defined as usual

disc

only when G is quasisplit. It follows inductively from Proposition 6.1 and the two sets of

definitions that
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in general, and that

(6.8) SE(f) = Sgse(f),

in case G is quasisplit.

The linear forms I§,_ (f) and S§

disc

(f) have expansions that are parallel to (6.2). To
state them, we have first to define the relevant coefficients by local analogues of the global
definitions [I, (7.7), (7.8)]. If 7 belongs to Tiemp(Gv, (v ), we set
6.9) %) =YD UGG (@) Aa(o &) L s 0)2(0.7),

G/ ¢/
with G’, ¢/ and ¢ summed over the sets £3,(G), @temp(é@, E’V) and ®%, (Gv,(v), re-

spectively, and with coefficients s ((b’ ) defined inductively by the requirement that
(6.10) i9E (1) =i%(7),

in the case that G is quasisplit. It is understood that i%(7) is defined to be 0 for any
in the complement of Tyisc(G,V, () in Tiemp(Gv, (v). Like the original coefficients i%(1),
both i%¢(7) and s (¢) are supported on sets that are discrete modulo the diagonal action
of iag; ;. Following the general prescription in [I, §7], we can define iag, ,-discrete subsets
T (G, V,C) D Tuise(G, V, () and @4, (G, V,() of Tiemp(Gv,¢v) and @5, (G, (), re-
spectively, which contain the support of the respective coefficients i€ () and s%(¢). The

sums over ¢’ and ¢ in (6.9) may then be restricted to the subsets

q)disc(é/7 Vv El) d1sc(G/ V C ) N q)temp( ,V7 E,V)

and <.

disc

(G,V,() of Cbtemp(é’v,a/) and @femp(Gv,Cv) respectively. We note that the

Haar measure on iaf, , determines natural measures d7, d¢’, and d¢ on the respective

spaces TS (G, V, (), Daisc (G',V, ') and & (G, V, Q).

Proposition 6.3. (a) If G is arbitrary,

(0.11) Bl = [ e
T5..(G,V.0)
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(b) If G is quasisplit,

(6.12) SS.(f) = / s9(6) fE(6)dob.

cI)giSC(G’V7C)

Proof. The assertions of the proposition have the same form as those of Lemmas 7.2

and Lemma 7.3 of [I]. The proofs are similar. O

Corollary 6.4. (a) Assume that Local Theorem 1(a) holds for G and its Levi sub-

groups. Then
i9E (1) =i%(7), T e TS (G, V().

(b) Assume that G is quasisplit, and that Local Theorem 1(b) holds for G and its Levi
subgroups. Then the coefficient s (¢) vanishes on the complement of ®qisc(G,V, () in
(I)gisc(Gv Va C)

Proof. Consider part (a). We first combine the assertion of Local Theorem 1(a) with

the splitting formulas [A10, (4.6), (6.2)] for the product f = f; X f,. We obtain

IJ%/[(’)/vf) :IM(77 f)a Y El—‘G—reg,ell(ﬂfv V, C)a

in the usual way. It follows from the expansions (6.1) and (6.5) that I€(f) = I(f).

Therefore
L () = I5(f) = I(f) = Laise(f)-

The identity between the coefficients i%:¢ (1) and i“(7) then follows from a comparison of

the expansions (6.2) and (6.11) for Igs.(f) and I

Gisc(f). The proof of (b) is similar. [
Remarks. 1. Part (a) of Corollary 6.4 is equivalent to the assertion that I .(f) =
Lisc(f). Part (b) is equivalent to the assertion that the distribution SY(f) is stable. This
second assertion is of course required to complete the inductive definition of I§__(f).

2. If F is archimedean, Corollary 6.4 could be established directly from Langlands’s

parametrization of tempered representations [L2], the character identities of Shelstad [Sh],

and local analogues of the results in [A3].
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We now return to the induction hypothesis of §1, with fixed integers dger and 7qer.
Since our intention is to apply the local trace formula to the proof of Local Theorem 1,
and since the archimedean case is treated in [A13], we take F' to be a p-adic field. The K-
group G is then just a connected reductive group over F'. We assume that (G, F') satisfies
Assumption 5.2(2) of [I], and that dim(Gaer) = dder- Given G, we fix a Levi subgroup M
with dim(Ap NGger) = Tder- For simplicity, we shall assume that Gge, is simply connected,
and that the central induced torus Z in G is trivial. If G’ is any endoscopic group for G,
we can then take the central extension G’ to be G itself.

We recall that A%, (M) denotes the set of isomorphism classes of pairs (M’, ),

reg,ell

where M’ is an elliptic endoscopic datum for M, and ¢’ belongs to the set Agoreg,en(M’) of

G-regular, elliptic stable conjugacy classes in M'(F). Then Af, (M) can be identified

reg,ell

with the quotient of
{(M/7 5/) : M/ € Sell(M)7 6/ € AG—reg,ell<1\4/)}7

under the action of the finite group Outa (M') on Agoregen(M’). If 6 is the image in
A‘é_regven(M) of a pair (M’, "), we shall write § and §~! for the images of the respective
pairs (M',8’) and (M, (8")~"). We recall also that Ag-reg,en(M) can be identified with a

subset of A%

G-reg.en(M). It will be convenient to set

Aé—reg,ell(M ) if G is not quasisplit,

Ag,o M —
G—reg,ell( ) {Aé—reg,ell(M> — AG-reg,ell (M), if G is quasisplit.

If G is quasisplit and § is the image in AE,_ (M) of (M',¢"), Lemma 3.1 of [A10]

reg,ell

tells us that the linear form
e(fe,0) = SG (M, 8, £.), fr € H(G),

depends only on 6. Local Theorem 1(b) asserts that this linear form vanishes if § lies in

A‘é’_oreg o1 (M). The local trace formula allows a modest step in this direction.

Lemma 6.5. Suppose that G is quasisplit, and that

(6.13) &(fur 8) = (0) ££ 14(6), § € AGS gen(M), fo € H(G),
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for a smooth function £(0) on the complement Aé{)reg,ell(M) of AG-reg,ett(M). Then
(6.14) e(8) +e(67 ) =o.

Proof. The lemma will be a simple consequence of the local trace formula, in the
form of a local analogue of Lemma 2.3(b). Let HY*(G,V) be the subspace of H(G,V)
spanned by functions f = f; x f, such that both f; and f, are M-cuspidal, and such
that either f& = 0 or f& = 0. If f belongs to this space, the expression (6.6) simplifies.

Arguing as in the proof of Lemma 2.3(b), we see that SE(f) equals

W (M)~ (—1)timAa/Ae) Ny (M, M)
M’'eEn (M)

N v M 5 AMSF v ’
/A oy MO (ST PO () + SEOT. 8 T 11 ()
G-reg,ell

If § is the image of (M’,d’) in Aé—reg,ell(M)7 the last integrand equals

n(8") " (e(f1,6) ot (B) + £(Fa ) £ 11(5)).

According to the definitions [A7, §1,3],

WM, M")n(8")~" = |Outar (M) 7Y Z(M") /2(M)T |~ (T)F /Z2(M")") ™

= [Outar (M) (6) 7",
where T" = Mg, ,and
n(0) = (T /Z(M)").
Setting

ear = |W(M)|~H(— 1)t /A,

and noting that Out s (M’) acts freely on Ag-reg.en(M’), we see that SE(f) equals

e | n(0) ™ (1, 01T 0 B) + (72, D) 00 (6)) 5
Aé—rcg,cll(M)
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Suppose that, in addition to the conditions above, both f; and f5 are unstable. Then

fEM and ng are both supported on the subset A% (M) of AL (M). Our

G-reg,ell G-reg,ell

expression for SE(f) reduces to

(6.15) ear /A L ) 0) + (D)) £ 01 (0 o 0s ()

Since SE(f) equals S

T (f), this in turn equals the expansion

(6.16) L g

(G,V)

disc
for S§_.(f) given by (6.12).

It is not hard to show that the equality between (6.15) and (6.16) forces each expression
to vanish. The argument is similar to that of §5, except simpler, since the linear forms in
(6.15) and (6.16) are tempered. We shall give a brief sketch. Let fs be fixed, and consider

(6.15) and (6.16) as linear forms on the space of functions

¢1 - fiG(¢1>, ¢1 S (pfcsemp(G)v fl € HHMHS(G)

The distribution corresponding to (6.15) can be identified with a smooth function on the
image of the space

%0 (M) = (M) — Piemp,en(M)

temp,ell temp,ell

(G). We note that ®:° (M) is a disjoint union of compact tori, of dimension

; E
in ¢ temp,ell

temp

equal to that of Ap;. The distribution attached to (6.16), on the other hand, is supported on

&

temp

a finite union of iag,-orbits in ® (G). The two distributions are incompatible. Applying
the usual comparison argument, we see without difficulty that each distribution equals zero.
Therefore, the expressions (6.15) and (6.16) both vanish.

We have established that (6.15) vanishes for any function f = f; x fo, with f; €
HLP(G). The Weyl group W (M) of (G, Ar) operates freely on Aé’_oreg’eu(M), the domain

of integration in (6.15), and the integrand in (6.15) is invariant under this action. If « is
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£,0

any W (M )-invariant function on the Paley-Wiener space on Ay

Crreg.onl(M), we can choose

f so that the function
_£ —
f]‘\g([(é) = flg,M(5)f2,M(5>

equals a(d). It follows that the coefficients of f§,(5) in (6.15) vanish. In particular,
e(6) +e(8) = 0.

The last step will be to show that £(8) equals (6~ !). To this end, we consider the
opposition involution 6y of G. By definition, 6y is the unique automorphism of G that
preserves a given F-splitting, and maps any strongly regular element = to a conjugate of
x~ 1. It follows easily from the definition that 6, commutes with any automorphism of G
that preserves the splitting. Since G is quasisplit, this implies that 6y is defined over F'.

We reserve the symbol 6 for the G(F')-conjugate
0:Int(wM)090, W N GG(F),

of 6y that maps M to itself, and restricts to the opposition involution of M. Then 6 is also
an involution of G that is defined over F'.

As in the discussion preceding [A10, Lemma 3.1], 6 determines an involution ¢’ on the

&

G—reg,eu(M ). From the symmetry condition

set of pairs (M’,d’), and an involution # on A

of [A10, Lemma 3.1], we obtain
e(0f.,08) = S5 (60'M',0'6' 6 f.) = S5 (M, &', f.) = ([, 0),
for any f. € H(G), where 0f. = f. o6~!. Since
(0£)5,(09) = ££1 (),
by similar considerations, we see that

e(8) = £(09), §¢ Ag’geg’en(M).
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Now the dual of 6 restricts to the opposition involution of M , which restricts in turn
to the opposition involution of M. Tt follows from the definitions that ¢’ (M’,0") equals
(M’,(6")~1), and therefore that 5 = (5)~*. We conclude that

e(0) =e((06)™ ") =e(0(67 1)) =e(67M).

The formula (6.1) follows. O

&

G_regyen(M ) can be represented in slightly

For later use, we recall that elements in A

different form. Suppose that § € Aé_re&eu(M) is the image of a pair (M’,d"). Suppose
also that 7" — T™ is an admissible embedding [LS, (1.3)] of the torus 7" = Mj, into the
quasisplit inner form M* of M, and that §* € T*(F) is the corresponding image of ¢§’.
The stable conjugacy class of 6* in M*(F') (which we can also denote by §*) then depends
only on 4. The endoscopic datum M’ also gives a second piece of information. It provides

an element s}, in T’ , which can be pulled back under the dual mapping T* — T’ to an

element £* in the group
K(M;.) = K(T*) = mo((T*)"/2(M)F), I' = Gal(F/F).
We have thus a correspondence
(M',§) — (6%, K*).

If M§ g en(F) denotes the set of G-regular, elliptic elements in M*(F), we write

Dé—reg,ell<M ) for the quotient of the set
{(5*7/%*) D 6" < Mg—reg,eH(F)? K < ]C(Mg*)}

defined by stable conjugacy in M*(F). The correspondence (M’ §") — (0*,k*) then
determines a canonical bijection

0 — d’ o€ A‘Ev’—rieg,ell(F1)7
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from AZ, M) onto DE,. M).

reg,ell( reg,ell(

The bijection § — d was part of the proof of [A7, Lemma 2.2] and [A10, Lemma 2.3].
We shall use it in §7 in conjunction with a fixed elliptic torus 7' C M over F. Any such
T can be mapped to a maximal torus T C M™* over F' by the inverse of an admissible
isomorphism i: T* — T [K2, §9]. Since i is unique up to stable conjugacy, we can thereby
identify any stable conjugacy class in M., oi(£) that intersects T*(F) with an orbit in
TG-reg (F') under the rational Weyl group Wg(M,T) of (M,T). The quotient of the set

{(t,r) : t € Tareg(F), k€ K(T)}

by Wg(M,T) represents in this way a subset of Dé—reg,eu(M)- If ¢ belongs to Tg-reg (),

let F(t) be the set of elements in Aé_re&eu(M) whose image in Dé—reg,ell(M) can be
represented by a pair of the form (¢, ). There is then a canonical bijection
d — k(9), d € F(t),

from F(t) onto K(T). One observes that an element § € F(t) belongs to the subset

AG-reg,el(M) of Aé_ M) if and only if x(5) = 1. Moreover, for any such &, ¢ is the

reg,ell(
element in F(t) with x(§) = x(6) ™!, and 5! is the element in F(¢~!) with x(6~!) = x(6).
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87. Local Theorem 1

We have reached the critical stage of our extended induction argument. We recall
that the induction hypotheses were stated formally at the end of §1, in terms of two fixed
positive integers dger and r4er. In the next two sections, we shall prove Local Theorem 1.
This will take care of the part of the induction argument that depends on 74.,. We shall
establish Global Theorems 1 and 2 in §9, thereby completing the induction argument.

The setting will be that of the latter part of §6. Then G is a connected reductive group
over the p-adic local field F that satisfies Assumption 5.2(2) of [I], with dim(Gger) = dger-
Furthermore, M is a fixed Levi subgroup of G with dim(Ap; N Gger) = Tder- SiNCe Tder
is positive, M is proper in G. We have finished our discussion of the local trace formula.
We can therefore allow f to stand for a function on G(F), as in the statement of Local
Theorem 1, rather than on G(F') x G(F') (as in the last section). Our goal is to prove
Local Theorem 1 for G.

The discussion will be simpler if we do not have to deal with central data.

Lemma 7.1. Assume that Local Theorem 1 is valid under the restriction that Gger 18
simply connected and Z = 1. Then it is also valid without this restriction.

Proof. The proof is similar to that of Proposition 2.1 of [II]. It is actually simpler,
since we are working in a local context, with elements whose centralizers are connected.
We shall therefore be brief.

The first step is to reduce Local Theorem 1 to the case that G4, is simply connected.
Given G and M, let G be a z-extension of G [K1, §1], and let M be the preimage of M
in G. Then G is a central extension of G by an induced torus C over F such that éder
is simply connected, and M is a Levi subgroup of G. The pair (é, M ) then satisfies the
conditions we imposed on (G, M) above. We write Z for the preimage of Z in é, and Z
for the pullback of ¢ to A (F'). We have to check that if Local Theorem 1 holds for é, M ,
Z and E, then it is also valid for G, M, Z and (.
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Recall [K1, §1] that G(F) = G(F)/C(F). We can therefore identify functions (or
distributions) on G(F) with functions (or distributions) on G(F) that are invariant under
translation by C (F). In particular, there is a canonical isomorphism f — ffrom H(G, ()
onto H(G,¢). We can also assume that the fixed bases FG_reg@u(]f\Z, 0), Aé_re&eu(f\z, 0),
etc., of g—equivariant distributions for G are the images of the corresponding bases

I Gereg,enn(M, C), Aé_re&eu(M, (), etc., for M under the canonical maps v — 7, § — g,

etc., of distributions. It follows from the definitions that

IM(’% f) = IM(%a .f)a Y € 1—‘G—reg,ell(]\47 C)? f € H(G7 g)

The endoscopic and stable analogues of these distributions satisfy similar formulas. As in

the proof of [II, Proposition 2.1], we obtain identities
I (v, ) = 1%, f)
and also
Sy (M8, f) = S]%(J\Af’,g’,f% M’ € Eqi(M), &' € Agoregen(M', (),

in the case that G is quasisplit. (The last identity is really a tautology, since we can take
§ =4 .) It follows from these formulas that the assertions of Local Theorem 1 are valid
for G, M, Z, and ( if they hold for é, M, Z and Z

The second step is to reduce Local Theorem 1 to the case that Z is trivial. Given G,

M, Z and (, we define a projection

fo fe = / ¢()f.dz, f e M),
Z(F)

from H(G) onto H(G,(), where f,(x) = f(zz) for any x € G(F). We have to compare
linear forms on H(G) at a given function f with the values of corresponding linear forms

on H(G,() at f¢.
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Suppose that 7 belongs to the fixed basis I' g-reg e11 (M, () of (-equivariant distributions
on M(F) [I, §1], and that v € I'greg,en(M) is a conjugacy class that maps to .. We can
then compare the orbital integral on H(G, ¢) at y¢ with the orbital integral on H(G) at .

The relation is

F50r0) = (1) / foc()C(2)dz, feH(@),

Z(F)
where (7/7¢) is the ratio of the given invariant measure on v with the signed measure that
comes with 7¢. A similar relation holds for weighted orbital integrals, and the associated

invariant distributions. It follows directly from the definitions that

(7.1 I £ = 007 [ Tl 126020
Z(F)
If we combine this with the discussion at the end of [I, §4] and the definitions in [I, §6], we
see that
(7.2 0o )= Gha™ [ I £6E)

In the case that G is quasisplit, we also obtain

(7.3) SG (M, 8, £) = (8 /6) /Z L SEO00 £

for M € En(M) and 52 € AG—reg,ell(Mly E’), and for an element §’ € AG_regﬁu(M’, 7') that
maps to ;. The ratio (6'/d¢) is defined in the obvious way [I, (1.6)]. The general assertions
of Local Theorem 1 apply to the distributions on the left hand sides of (7.1)—(7.3). The
corresponding assertions for the case that Z is trivial apply to the distributions on the right
hand sides. It follows from these formulas that Local Theorem 1 hold for arbitrary (Z, ()
if it is valid in the case that Z is trivial. This gives the second reduction, and completes

the proof of the lemma. O

We have reduced the proof of Local Theorem 1 for G, M, Z and ( to the case that

Gyer is simply connected and Z is trivial. We assume from now on that these conditions
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hold. In particular, the role of the general basis I' g-reg e11 (M, () can be taken simply by the
family I'Goreg,en(M) of strongly G-regular, elliptic conjugacy classes in M (F'). Moreover,
if M’ belongs to Eu (M), we can replace the basis AG—reg,ell(M ! E’ ) by the corresponding
family Ag-regen(M’) of stable conjugacy classes in M’(F'). This is because the derived
group of M is also simply connected, so there exists an admissible embedding M’ — LM
of L-groups [L4]. Elliptic conjugacy classes of course meet elliptic maximal tori. It will be
convenient to let T denote an arbitrary, but fixed elliptic maximal torus in M. We will
then work with those classes that have representatives in 7Tg-reg (F).

The proof of Local Theorem 1 will be global. We shall use all the global information
we accumulated over the first half of the paper. The local objects F', G, M and T have
been fixed. They are assumed implicitly to have been equipped with a quasisplit inner
twist

v (G,M) — (G*, M),

by which we mean an M*-inner class of isomorphisms from (G, M) to a quasisplit pair
(G*, M*). We are also going to fix a suitable finite Galois extension E of F, over which
G, M and T split. Given E, we propose to choose global objects corresponding to the
components of the local datum (F,E,G, M, T,1). We shall denote these by the same
symbols, but augmented as in [A7, §7-9] by a dot on top. Thus, (F,E,G,M,T,v) stands
for the following set of objects: a finite Galois extension F' C E of number fields, a trio of
connected reductive groups
TcMcG
over F that split over E, with M being a Levi subgroup in G and T an elliptic maximal

torus in M, and a quasisplit inner twist

If v is any valuation of F' that lies in the set Vin(G, M), and for which E, is a field,

the completion (Fv, EU, Gv, MU,TU,¢U) is a local datum of the kind we started with. In
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particular, it makes sense to speak of an isomorphism from (F, E,G,M,T,) to such a
completion. Any such isomorphism would of course map the Galois group I' = Gal(E/F)

isomorphically onto the decomposition group I, = Gal(E,/F,) of I = Gal(E/F).
P Yy P group

Lemma 7.2. We can choose E and (F, E,G,M,T, ¢); together with isomorphisms
(7.4) u: (F,E,G,M,T,¢) — (Fu, By, Gu, Mu, Tu, ), uev,

for a finite set U of p-adic valuations {u} of ' such that E, is a field, with the following
properties.
(i) (G, F) satisfies Assumption 5.2(1) of [I].

(i) If G is quasisplit over F, G is quasisplit over F.

(iii) For any valuation v € U, G, is quasisplit over F,,.

(i) U] = 3.

(v) There is a place v &€ U such that E, is a field.

Proof. The lemma is a simple exercise in the approximation of local data by global
data. A less elaborate version, with some details omitted, was given in [A7, pp. 576-577].
In the discussion here, we shall make use of [I, Lemma 5.3], which asserts that the global
form (1) and the local form (2) of Assumption 5.2 of [I] both remain valid under inner
twists of the group, and under finite extensions of the ground field.

The local pair (G, F') satisfies Assumption 5.2(2) of [I]. This implies that (G*, F') is
isomorphic to a completion (G:,Fu), for a quasisplit global pair (G*,F ) that satisfies
Assumption 5.2(1). Let E be a finite Galois extension of F' such that G* splits over £, and
such that T splits over the completion of E defined by the valuation u of F. Replacing
F by the fixed field of a decomposition group in Gal(E/F) over u, we can assume that
E = E, is a field. Then FE is a finite Galois extension of F over which G* and T split.

Moreover, the associated Galois groups satisfy

Gal(E/F) = Gal(E,/F,) = Gal(E/F).
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It follows easily that there is a Levi subgroup M* of G* over F, and an isomorphism

of: (FE,G*\M*) — (F, E,, G, M),

u

The local field £ D F will be the required extension. However, we shall still have to modify
the global fields E D F' in order to accommodate the extra conditions.

Since M™ is quasisplit over F', the torus T' C M transfers to M*. More precisely, we
can find a maximal torus T* C M™ over F, together with an isomorphism i: T* — T over
F that is admissible in the sense of [K3, §9], which is to say that i is M-conjugate to the
restriction of ="' to T*. Let M}(T) be the set of elements in M} = M*(F,) that are
M-conjugate to ¢ (T*(F)). The set of strongly G-regular points in M (T) is open in
M{f, and intersects any open neighbourhood of 1 in M{j in a nonempty open set. Since
the closure of M*(F) in M; contains an open neighbourhood of 1 [KR, Lemma 1(a)],
M*(F) intersects the set of strongly G-regular points in M; (T)). Let T* be the centralizer
in M* of any point in this intersection. Then T™ is a maximal torus in M* over F that
is M;-conjugate to ¢* (T™*). Replacing ¢ with an M*-conjugate, we can assume that ¢*
takes T* to T*.

The torus T* need not split over E. However, it does split over the completion E,.
We can therefore find a finite Galois extension E’ of F over which T splits, and which
embeds in E,. Replacing E’ by the composite E'E, if necessary, we can also assume that
E’ contains E. If «/ is the valuation in E’, obtained from an embedding of E’ into E,,
the decomposition group for E’/F at u’ is a subgroup of Gal(E’/F) that is isomorphic to
Gal(E/F). Let F' C E’ be the fixed field of this subgroup. The associated valuation v/ on
F’ has the property that Eq,u is a field such that Eq,u / ley is isomorphic to E/F. Replacing
FCE by F' c E,if necessary, we can assume that T does split over E.

We have constructed quasisplit global objects, and an isomorphism

(7.5) o (F E,G*,M*, T*) — (Fy, Ey, G5, M, T).

u
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It is easy to modify the construction so that there are several such isomorphisms. Let F"/
be a large finite extension of F in which u splits completely, and let E” be a composite
of E with F”. If " is any valuation on F" over u, E", is a field such that E”,/F", is
isomorphic to E/F. Replacing F' C E by F"/E", if necessary, we can assume that there
are isomorphisms (7.5) for each u in an arbitrarily large finite set U™ of p-adic valuations
on F.
The local inner twist
v (G,M) — (G*, M)

determines an element ag in the image of H'(F, M* N G*,) in H'(F,G:,). Recall that
there is a canonical bijection from H*(F, G%,) onto the finite abelian group m(Z (Gye)* )*
[K3, Theorem 1.2]. Let ng be the order of the image of a in m (Z(@SC)F)*. We take U
to be any proper subset of U™, with |U| > 3, such that ng divides |U|. The element

P ¢i(ec)

uelU

then lies in the kernel of the composition of maps

P H (B G a) = P mo(2(Gi)"™)” — mo(2(G)")

uelU uelU
According to [K3, Theorem 2.2, Corollary 2.5], we can build a global inner form of G* from
the local inner forms of {G* : u € U} associated to the classes {¢%(aq)}. More precisely,
taking [A10, Lemma 2.1] and [I, Lemma 4.1] into consideration, we see that we can find a
global inner twist

Vi (G M) — (G*, M),

where G is a reductive group over F with Levi subgroup M, together with isomorphisms

¢u: (FvaGaM)—)<Fu7Eu7GuvMu>v UEU7

such that each map ¢}, o1 is M;‘—conjugate to wu 0 ¢, It is clear that G is quasisplit over

F if G is quasisplit over F, and that G, is quasisplit over F), in general, for each v gU.
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The last point is to transfer the maximal torus T of M* to a maximal torus 7" of M.

For each v € U, the map

iy =y oio(¢pf) 7t T — M,

v v

is admissible, and in particular, is defined over F,. We may as well also fix admissible
maps i,: 1 I M, for the valuations v in the complement of U, subject to the natural
conditions [K2, (9.2.1)] at the unramified places. Since M, is quasisplit for each such v,

this is possible. We seek an admissible global embedding
jiTF — M

over F' that is M,-conjugate to i, for each v. There is a general obstruction to the
existence of such an embedding, which is defined in [K2, §9] as an element in the dual of
the finite abelian group K(7*). The group K(T™*), taken relative to M*, is defined to be

the subgroup of elements in Wo((f*/Z(]/\Z*))F) whose image in H* (F, Z(M\*)) is locally

trivial. If v belongs to U™, it follows from the fact that E, is a field that

K(T*) = mo (T /(M) ) = K(T7).

v

The local group IC(T;k )* acts simply transitively on the set of M,-conjugacy classes of
admissible embeddings 7,,. We are certainly free to modify ¢,, at any v outside U. Replacing
i, by its image under the appropriate element in IC(TJ)*, for some v in the complement
of U in U™, we can assume that the global obstruction vanishes. We then obtain a global
embedding j that maps T* to a maximal torus 7 in M. The torus T over F' provides
the last component of the global datum (F JE,G,M,T, zp) Replacing ¢, by some M,-
conjugate, for each u € U, we can assume that ¢, maps T to T.,. These maps become the

required isomorphisms (7.4). O

We fix the various objects provided by the lemma. We also fix a place ug € U, and use

the isomorphism ¢,,, to identify the local datum (F, E, G, M, T, ) with the completion of
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(F’, E,G,M,T, @D) at ug. Let V be a finite set of valuations that contains U, and also all
the ramified places for E, G and T If f is a given function in H(G), we choose a function
f=117%

veV

in H(G,) such that f,, = f. Since |U| > 3, we can fix two other places u; and uy in
U. We assume that if v equals u; or us, the function fv is supported on the open subset
of elements in G, that are stably conjugate to points in TG_reg(Fv). Then f belongs to
the space ‘H M(GV), which was introduced in the context of global K-groups in §2. The
connected group G is a component of an (essentially) unique global K-group [I, §4], and
we can regard f as a function on the K-group that is supported on Gy . The various
global results of §2-5 therefore makes sense for f. We shall apply them to our study of
the relevant linear forms in f.

As always, we have to separate the discussion into the two parts (a) and (b). Recall
that we are trying to prove Local Theorem 1 for (G, M). The assertion (a) of the theorem
is trivial if G is quasisplit, while assertion (b) applies only to this case. We may as well
then treat (a) and (b) as two disjoint cases, corresponding respectively to whether G is
not, or is, quasisplit over F. This corresponds in turn to whether G is not, or is, quasisplit
over F.

To deal with (a), we shall apply the formula (2.4) of Proposition 2.2(a). We first recall

that our function f € My (Gy ) satisfies an identity

Ilidisc(f) - IV,diSC(f) = 07 Ve ZUZ/WOM

by Corollary 5.2(a). This implies that the term

Z (Lfdisc(f) - It,disc(f)) = Z (Ilidisc(f) - IV,diSC<f))

v

on the right hand side of (2.4) vanishes. We also note that f vanishes on an invariant

neighbourhood of the center of Gy, since the corresponding property holds for ful and
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fu,- Therefore the other term

Z (If,unip(f’ S) - It,unip(fa S))

z

on the right hand side of (2.4) vanishes as well. It follows that the left hand side

Ilfar(f) - Ipar(f)

of (2.4) equals zero. Applying the expansion (2.8) of Lemma 2.3(a) for this linear form,
we see that
(7.6) SN AU G fo) — Ly G £0) 4 () = 0.

vEVhin (G,M) YT (M,V)
The left hand side of (7.6) can be identified with the expansion [I, (2.11)] of the linear form
I é\fb(ﬁ), for some function h € H(My). Since M is a proper Levi subgroup, our induction

hypotheses imply that

() = 1ty = 3 (A8 ().
M'€E(M,V)

Given the expansion for §é‘fg(h’ ) in [I, Lemma 7.2(b)], together with the induction hypoth-
esis (1.4) that the function b’ (§) is supported on the subset A(M’, V) of A (M, V), we
can then rewrite the left hand side of (7.6) as an expansion in terms of M’ and §'. We
conclude that
(7.7) Yoo MMy Y Yo M ey (o, )M ((E)) =0,

M’ E€Een(M,V) vEViin (G, M) §'€A(M’,V)

where

et (for0h) = D AW A) (15, G, fo) = Typ (o, £0).

Yy €T (M)

for any element 0/, in A(M!). (We cannot actually claim that the function
'3/ - Z (154<'71)7 fv) - IM(’?U? fv))f}&(’yv)? 7 € FG—reg(MV)7
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belongs to 7 (MV), since f is not required to lie in H°(Gy ). However, the conditions at
up and wug allow us to truncate the function near the singular set without changing the
value of the left hand side of (7.6). Alternatively, one can simply note that the proof of [I,
Lemma 7.2] is formal, and does not require that the underlying function lie in the Hecke
space.)

For the second case (b), in which G is quasisplit, we have to impose the extra condition
that f, be unstable for some v. The function f then lies in H“M}“S(G.V). In this case, we
apply the formula (2.5) of Proposition 2.2(b). It follows from Corollary 5.2(b) that the

term
Z St dlSC Z Su dlSC

on the right hand side of (2.5) vanishes. Since f vanishes on an invariant neighbourhood

of the center of Gy, the other term

Z Sz unlp

on the right hand side of (2.5) also vanishes. Therefore the left hand side
G
S par(f )

of (2.5) equals zero. Applying the expansion (2.9) of Lemma 2.3(b) for this linear form,

we see that
(7.8) >y > S MM (fo, S (M ((8)Y) =0,
M'€E(M,V) VEVin (G, M) 8'€A(M",V)
where
M (£, 8,) = 5§ (11,8, £.).
The formulas (7.7) and (7.8), corresponding to the two cases (a) and (b), are almost

identical. We shall analyze them together. Suppose that in addition to the conditions we

have already imposed, the function f is admissible in the sense of [I, §1]. The summands
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in (7.7) and (7.8) are then supported on classes ¢’ that are admissible. This means that
we can take S = V' in the expansion [I, (10.11)] for pM’ (8). Tt is then a consequence of the
definitions that the right hand side of [I, (10.11)] vanishes. Therefore, the global coefficient
M "(8") in (7.7) and (7.8) reduces to the more elementary “elliptic” coefficient bé‘ﬁ/((i’ ). We
shall apply the global descent formula [II, Corollary 2.2(b)] to this latter coefficient.

We can assume that the summands in (7.7) and (7.8) corresponding to a given
5" € A(M',V) are nonzero. It follows from the conditions on f,, and f,,, and the global
descent formula for bé\ﬁ/((;’ ), that &' belongs to the subset AG—reg,ell,V(M ") of elements in
A(M’,V) that lie in AG_reg,eu(M’), and are V-admissible. (Recall that AG_regyen(M')
denotes the set of strongly G-regular, elliptic stable conjugacy classes in M’ (F ), and can
be identified with a subset of A(M’, V).) Since ¢’ is strongly regular, the global descent

formula is very simple. We obtain
b (8) = 5™ (V.9bdn (1) = T(M)r (1)~ (1) = w(M),

where T” is the centralizer of ¢’ in M’. It follows from the formula [K2, Theorem 8.3.1] for

(M, M’) that
(M, M’)bé‘f{'(é’) = T(M)T(M’)_l|OutM(M’)|_17(M’) = T(M)|OutM(M’)|_1.

The Tamagawa number 7(M) is nonzero, and is of course independent of M’ and &'

Moreover, the group Out M(M ") acts freely on the set of pairs
{(M/, (5/) : M’ - Sell(M), 5/ c AG—reg,ell(M/)}

that are relevant to M. We write A‘é_re&eu(M ) for the quotient. We also write

Aé—reg,ell,V(M) for the subset of orbits in A%

G—reg,ell(M) for which M’ lies in 5611(M, V)

and ¢’ lies in AG_reg76117v(M’). The summands in (7.7) and (7.8) then depend only on the
image & of (M’,¥') in Aé—reg,ell,V(M)‘ In order to combine the two cases (a) and (b), we
set Y e Sy .1

e(fv,Sv) _ {EM(fv,dv), if G is not quasisplit,

6M/(fv, 5!), if G is quasisplit.
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The equations (7.7) and (7.8) can then be written together in the form

(7.9) > Yo elfnd)fyfn) =0

. P . ] ..
5€AG—reg,ell,V (M) ’UE‘/ﬁn(G’M)

To see how to separate the terms in (7.9), we should view the indices 0 in terms of
the global form of the set Dg_regyeu(M) defined in §6. Let Dg_regyeu(M) be the quotient

of the set of M-relevant pairs in
{(5*7/%*) : 5* < Mg—reg,eH(F)? R < ]C(Mg*)}

that is defined by stable conjugacy in M *(F) The group T = M g* here is of course a
maximal torus in M* over F, and the global group K(M L) = K(T*) is defined in [K3,
(4.6)]. As in the local case, there is a correspondence (M’,8") — (6*, &*) that yields a well

defined bijective mapping § — d from A% (M) onto D (M). This mapping

G-reg,ell G-reg,ell
underlies some of the basic constructions of [L5]; it is also a special case of either [K3,
Lemma 9.7] or [II, Proposition 3.1]. Now, suppose that T C M is the elliptic torus

provided by Lemma 7.2. The quotient of the set
{(t, /‘L) cte TG—reg,ell(F>a K € ]C(T)}

by the rational Weyl group Wy (M, T) then represents a subset of Dg_regien(M ). We note

that if v is any valuation such that E, is a field, the definition [K3, (4.6)] reduces to

K(T) = mo(TC /2(M)") = 7o (T ) 2(M)') = K(T,).

Following notation at the end of §6, we set F(f) equal to the fibre in Aé_regien(M ) of a
given point f in Tg-yeq (F), and we write § — #(9) for the canonical bijection from F(£) onto
K(T). Our immediate concern will be the case that f lies in the subset T-reg.v (E) of V-
admissible elements in Tg-reg (F). The fibre F(#) will then be contained in Ag—reg,ell,V(M ).

We are going to isolate the contribution to (7.9) of those elements & in F(£).
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The sum over § in (7.9) can be restricted to a finite set that depends only on the
support of f. (See for example [A2, §3].) Having once chosen a bound for the support of
f, which we take to be an admissible subset of Gy, we can shrink any of the functions f,
without enlarging this finite set or affecting the admissibility of f. We note that by [A10,
Lemma 3.1], the summand in (7.9) depends only on the W (M )-orbit of 4, relative to the
free action of the Weyl group W(M) of (G‘,AM) on AG—reg,eu,v(M)- We can therefore
regard (7.9) as a sum over a finite set of W (M)-orbits in Ag-reg.cn,v(M). Let  be a fixed
point in TG—reg,V(F ). If v belongs to V', we shall write iUG for the stable conjugacy class of
i in G,. Having fixed ¢, we consider the distribution

fo— FEu000) = > Dyl0u ) fyni (), fo € H(G,),

Yo €D (M,)
on G, associated to an arbitrary element § in Aé—reg,ell,V(M ). The support of this distri-
bution equals iUG if wd lies in F (i) for some w € W (M), and is otherwise disjoint from tf
Now suppose that v equals one of our two places u; and us in U. In this case, we assume
that the function f}, is supported on a small neighbourhood of th If § indexes a nonzero

summand in (7.9), one of the terms

Qi’M((;uz')?

must be nonzero, from which it follows that the W (M )-orbit of 6 meets F(£). The identity

(7.9) therefore reduces to
(7.10) YooY elfu b i) =0
SEF (i) vEVin(G,T)

We have replaced the set Vi, (G, M) in (7.9) by the subset

Vin(G, T) = {v € Viin : dim(a$") = dim(a$)}

of places at which T, is M, -elliptic, since the induction hypothesis (1.2) and the appropriate

descent formula imply that e( fo, 6U) vanishes if v lies in the complement of this subset.
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We have imposed strict support constraints on the functions f},, when v equals u; or

us. However, we are still free to specify the values taken by the functions

Yo = o 1), v € {us, us},

on the M,-conjugacy classes in the M,-stable conjugacy class t.f}./[ . To see how to do this
in a way that exploits the conditions of Lemma 7.2, we recall an elementary property of

M

v )

the local transfer factors. If 4, and 4 are M,-conjugacy classes in M, and ) belongs to
F(t), we have

Ay (Bu, ) = (v (37, ), f) Ay (00, 37),
where f, is the image of the element & = x(8) in K(T},), and inv(49,4,) is the element in

the set

that measures the difference between 49 and 4,. Therefore
FE 5 B0) = B G, 3800 (D2 (v (38,0 i) F o G) ).
Yo
We recall that
E(T,) = Im(HY (F), Tie,w) — HY(F,,T0)),

where T here stands for the preimage of 7' in the simply connected cover of Mge,. Since
v in p-adic, £(T},) equals the set D(T},) [L4, p. 702] that, together with with the base point
49, parametrizes the Mv—conjugacy classes in if,w . We note that it is immaterial whether
the groups £(T},) and K(T,) are defined relative to M, or G,,. To put it another way, the
set of M,-conjugacy classes {¥»} in Lifjw is bijective with the set of G-conjugacy classes in

th It follows that the linear forms

;Yv - .U,M(;yv% fv € H(Gv)7

form a basis of the space of invariant distributions on G, that are supported on tUG We

are assuming that v equals uq or up. Therefore K(T') is isomorphic to K(T},), and § — £,
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is a bijection from F(i) onto K(T,). Since K(T},) is dual to £(T},), we conclude that the
linear forms

5_%5M@% 5 e Ft), f, e H(G,),

are also a basis of the space of invariant distributions on G, that are supported on tUG
Let & be a fixed element in F(f), and set ¢ = &,,. Suppose that the original function
f = fu, in H(G) is such that

fir(o) =0,

For each u in {uy,us}, we fix fu so that

TN 1, iféd=¢
(6 =4 b )
u, M (%) { 0, otherwise,

for any & € F (). This is possible by the discussion above. If v lies in the complement

of {ug,u1,us} in V, we take f, to be a function such that ffM(dv) = 1. The functions

ful and fuz are assumed to satisfy the earlier conditions, and f = 1] fv is required to be
veV

admissible. If G is quasisplit, we can also assume that quO = f9 =0,if k(6) = 1, and that

qul = ffz =0, if k(&) # 1. This is possible because for any u € U, the linear forms
fu — ff’M((su% 56 f(t), R(é) 7é 1,

on H““S(Gv) are linearly independent. The function f is then unstable. In all cases, f has
the appropriate constraints, and therefore satisfies (7.10). The complement in V of any v
of course contains one of the places uy or us. It follows that the terms in (7.10) with 646
all vanish. If § = 0, the terms with v # ug also vanish, while the term with v = ug equals
a nonzero multiple of e(f, o). The identity (7.10) therefore implies that (f,o) = 0.

We have reached the conclusion that ¢(f, o) vanishes for any function f € H(G) such
that f¢,(0) = 0, and such that f = 0, in case G is quasisplit and (&) = 1. This relation
applies to the point o = &,,,, for any ¢ in the fibre F(#), any element f in TG—reg,V(F), and

any V that is large relative to the support of f. The set V' at this point actually plays no
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role. For if { is any element in T, G_reg(F’ ), we can always choose the finite set V' such that
t lies in Tg-reg,v (). The relation therefore holds, with the conditions on f, for any ¢ in
F(t). Reformulated in terms of the next lemma, it will be the main step in our proof of

Local Theorem 1.

Lemma 7.3. (i) There is a smooth function £(0) on the set Aé’o (M) defined in §6

~reg,ell
such that
(7.11) e(f,8) = () £5,(6), fEH(G), §€ALL,, (M),
(1) If G is quasisplit and 0 lies in AG-reg,enn(M), the distribution
6 — &(f,9), feH(G),

1s stable.
Proof. Since the original elliptic torus 7' C M was arbitrary, it would be enough to
treat points ¢ in F(¢), for elements t € Tg-reg(F'). Let & be a fixed element in K(7"). For

any given t, we then take 0 to be the point in F(t) with x(0) = k.

£,0

Greg.en(M). We first consider the special case that ¢ = tugs

Suppose that ¢ lies in A
for a rational element ¢ € Tig-req(F). Then § equals duy, for the element & € F(£) such that
K(8)u, equals k. The conditions on d rule out the case that G is quasisplit and x(d) = 1.

The relation e(f, d,,) = 0 is then valid for any function f € H(G) with f£;(84,) = 0. This

relation in turn implies that there is a complex number £(d,, ) such that

e(f, 8uy) = €(8up ) f51 (Bus )

for any f € H(G) at all. Now the functions £(f,d) and f§,(§) vary smoothly with ¢.
Moreover, T(F) is dense in T(F) = T(F,,), since F, is a field for some v # ug [KR,
Lemma 1(b)]. It follows that

=(f,6) = £(0) 3 )
in general, for a function £(9) that varies smoothly with ¢. This gives the assertion (i).
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For the assertion (ii), we assume that G is quasisplit and £ = 1. The element ¢ then
lies in Ag-reg.en(M). Let f € H(G) be a function with f& = 0. If ¢ is of the form #,,, J is
of the form 4,,,, for the element § € F(f) with x(0) = 1. In this case, we have established
that e(f,6) = 0. Since T'(F) is dense in T'(F), the equation £(f,5) = 0 then holds in

general. The assertion (ii) follows. O

We have established the local identity (7.11) for G by representing G as a completion

Guo of the global group G. A similar identity can be established for the other completions
G’U? (S Vﬁn(G.yM)7
of G, by embedding any G, in its own (possibly different) global group. We obtain

e(fu,b0) = £(6,) % . (6,), fo e H(Gy), 6, € AEL (M),

v,M G-reg,ell

for a smooth function £(4,) on Aé_oreg en(M ).

Corollary 7.4. Suppose that G is not quasisplit. Suppose also that t belongs to TG_reg(F),

and that § is an element in F(). Then

(7.12) > e(by) =0.

uelU

Proof. If u belongs to U, G, is not quasisplit. In this case, ¢ lies in AG_reg ell(M )
by definition, and the function &(,,) is defined. If v is a valuation outside of U, G, is

quasisplit. In this case
5(fv75 )_EM fv75/ ZA 7;71) ’Yv:fv)_ (;}/v?fz))) :07

again by definition. The identity (7.10) becomes
S (X e0n) 5 0) =
GEF(f) wueU
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This formula holds for any large finite set V' O U, and any admissible function f in H(GV).
We can clearly choose f so that

e [ 1, ife =4,

(@) = {0, if ¢ # 4,
for any ¢ € F(f). The formula (7.12) follows. O

We are now in a position to prove part (a) of Local Theorem 1. This corresponds to
the case that G is not quasisplit. The assertion is that if v belongs to I'g-reg,enn(M), the

distribution

I]%J(’va)_IM(’va)v fGH(G),

vanishes. Recall that

em(f,8)= > AQG NI F) - In(r. f)),

’yeFG—rcg,cll (M)

for any pair (M’,§’) that represents a point § in A% (M). The last formula can

reg,ell
be inverted by the adjoint relations [A7, Lemma 2.2] for transfer factors. It is therefore

enough to prove that for any such 9, the distribution

5M(f75,> :6(f75)7 fEH(G),

vanishes.

Since G is not quasisplit, we will be able to apply the last corollary. Suppose that x
belongs to (T). Then & equals iy, for a unique element £ in K(T"). For each u € U,
we choose a point £, in TG_reg(Fu), and we let §, be the element in F (t,) such that
k(ty) equals f,. The group T(F) is dense in T(Fy). This follows from [KR, Lemma
1(b)], and the condition (v) of Lemma 7.2 that E, is a field for some v ¢ U. We can
therefore approximate the points {f,} simultaneously by an element # in TG_re&eu(F’), and
the points {d,} simultaneously by the element § € F(f) such that s(d) equals k. We

now apply Corollary 7.4 to 4. Since the functions £(d,) are smooth, the identity (7.12)
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of Corollary 7.4 extends to the general family of points {5u} The points were of course

chosen independently of each other, so (7.12) implies that each of the functions
e(fin) = €(dy), u € U,

is constant. Furthermore, from [A10, Lemma 3.1] and the existence of the isomorphisms
(7.4), we see that for any u € U, €(k,) equals (k). The formula (7.12) then yields
e(r) = UI7" ) elfu) =0.
uelU
We conclude that

e(9) =e(k) =0, t € TGoreg(F),

for the element § = d,, in F(t) with x(8) = k. But the objects t, x, and T’ were completely

arbitrary. It follows that
£(£,0) = e(8) f3:(8) =0, FeH(G),

for any element 0 in the set Aé’—oreg,ell<M ) = Aé_re&eu(M ). This completes the proof of
part (a) of Local Theorem 1.
It remains to establish part (b) of Local Theorem 1. We are now in the case that G

is quasisplit. There are actually two assertions. One is that if § belongs to Ag-yeg,en1(M),

the distribution

f— S5 1), feHG),

is stable. This has already been proved. Since

S (8, f) = M (f.0) = e(f,0),

the assertion is just part (ii) of Lemma 7.3. The other assertion is that if 6 belongs to
the complement Aé’_oreg (M) of Agereg,en(M), and is represented by a pair (M',0"), the

distribution
SG(M', o, f) =M (f,8') = (£.0), f € H(G),

113



vanishes. This is more difficult. It requires a property of weak approximation on 7', whose
proof we postpone until the next section. In the remaining part of this section, we shall
formulate an analogue of Corollary 7.4, which will be used in conjunction with Lemma 6.5
to establish the approximation property.

Suppose that V is a finite set of valuations of F' that contains U, and outside of which
G, T and F are unramified. We assume also that V contains the finite set Vfund(G) of
Assumption 5.2(1) of [I], outside of which the generalized fundamental is assumed to hold.
Given V', we write S (E , V') for the set of valuations v € V' that split completely in E. and

W (E, V) for the complement of S(F, V) in the set of all valuations of F.

Corollary 7.5. Suppose that G is quasisplit. Suppose also that t is a point in TG_reg(F)
such that t, is bounded for every v in the complement of V in W(E, V), and that 5 is an

element in F(£) with k(8) # 1. Then e(6,) is defined for any v in Van(G,T), and
(7.13) > g(dy) =0.
’UGVﬁn(G,T)

Proof. If v belongs to Vi, (G, T), the map

Gy G

is an isomorphism. It follows easily that the canonical map
K(T) = 70(T"/2(G)") — K(T,)) = mo (T /2(G)T),

which we are denoting by /& — £, is injective. Set & = #(d). Then i, # 1. Since
fin = K(dy), the point &, lies in Aé’-oreg,eu(Mv% and the function &(4,) is defined.

The required identity (7.13) would follow directly from (7.10), were it not for the fact
that V' has been chosen here independently of 5. Given 8, we choose a finite set V+ of
valuations containing V', such that § is V*t-admissible. We can then apply (7.10) to V.

Isolating the element 6 € F(i) by an admissible function f € H(Gy+), as in the proof of
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Corollary 7.4, we see that

Z £(6,) = 0.

veVI (G, T)

fin

To establish (7.13), it would be enough to show that £(4,) = 0 for every v in the complement
of V in Vih (G, T).

We first observe that Vi (G, T) is contained in W(E, V). Indeed, if v belongs to the

complement S (E , V) of W(E V), T, is a split torus over F,. The group
K(T,) =m0 (TT+/2(G)™) = 70(T/2(G))

is then trivial, and £, = 1. In particular, v cannot lie in Vﬁtl(G, T)

Suppose that v lies in the complement of V in Vﬁz(G., T) Then v belongs to the
complement of V' in W(E , V), so the element £, in T, is bounded. This implies that by is
bounded, as is the element &/, attached to any pair (M’, ') that represents 6. Let f, be
the characteristic function of a hyperspecial maximal compact subgroup of G,. We shall

apply the identity

€<fv7 51}) = 6(51)) U7M(5v)'

According to Assumption 5.2(1) of [I], the standard fundamental lemma is valid for G,.

It asserts that the factor

£ . . .M, y

U’M(511> - fv (51))
on the right hand side of the identity equals hf,w "(8), where h,, is the characteristic function
of a hyperspecial maximal compact subgroup of M{, As a bounded, G-regular stable
conjugacy class in M/, 5; intersects the support of h; It follows that the stable orbital
integral th '(8!) is nonzero. The factor ff M(év) is therefore nonzero. The generalized
fundamental lemma is valid for (G, M,), again by Assumption 5.2(1) of [I]. It can be
applied to the term

5(fv75v> = 5M (fm(s:;) = S]%(Mqlﬂ(sf:)? fv)
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on the left hand side of the identity. The generalized fundamental lemma was actually
formulated [I, Conjecture 5.1] in terms of the weighted orbital integrals Jy; (-, f,). However,
one sees easily from the unramified local analogue of [A9, Theorem 5] (which is actually
a consequence of this theorem) that it is equivalent to the special case of Local Theorem
1(b) in which G is unramified, and f is a unit in the Hecke algebra. In other words, the
generalized fundamental lemma implies that SI%(M{}, 54,, fy) vanishes. The factor e(f,, d,)

is therefore equal to zero. Putting the two pieces of information together, we conclude

that £(d,) = 0, as required. This completes the proof of the corollary. O
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8. Weak approximation

In this section, we shall finish the proof of Local Theorem 1. We fix local data F,
G, M, T and v as at the beginning of the last section. We can then make use of the
Galois extension £ O F and global datum (F,E,G,M,T, w) provided by Lemma 7.2.
We also fix the place ug € U as before, and use the isomorphism ¢,,, in (7.4) to identify
(F,E,G, M, T,v) with the completion of (F, E,G, M, T, 1) at u.

We assume that G is quasisplit over the local field F'. The group G is then quasisplit
over the global field F. We can also assume that the inner twists ¢ and v are each equal
to 1. To complete the proof of Local Theorem 1, we have to show that if § belongs to

Aé’—oreg,eu(M ), and is represented by a pair (M’,d’), the linear form

S5 (M8, f) =M (£,6") =e(f.9), f € H(G),
vanishes. This is equivalent to showing that the function

£(9), 5e NP

-reg,ell

(M),

of Lemma 7.3 vanishes. We shall establish the result as a general property of any family of
such functions that satisfy the global identity (7.13) of Corollary 7.5, and the local identity
(6.14) of Lemma 6.5.

Suppose that V is a finite set of valuations of F' that contains U. As usual, we assume

that G, T and E are unramified outside of V. We also assume that

(8.1) T(A) = T(F)T(Fyv)RY,

where

B =] R

vEV

is the maximal compact subgroup of T(AY). As at the end of §7, we write S(E,V) for
the set of valuations v ¢ V that split completely in E, and W(E, V) for the complement

of S(F, V) in the set of all valuations.
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Lemma 8.1. Suppose that for each v € V, e,(L,) is a smooth function on TG_reg(F’v) that

depends only on the isomorphism class of (Fv, E,, Gy, MU,TU). Assume that

(8.2) > ey(ty) =0,

veV

for any element t € Tg-reg(F) such that for each w in the complement of V in W(E, V),

the point t,, is bounded. Assume also that the function e = e, satisfies the formula
(8.3) e(t) +e(t™ 1) =0, t € TGoreg(F).

Then e vanishes identically on T —yeg(F').

Proof. Before we can exploit the identities (8.2) and (8.3), we have first to make
some simple remarks relating to Langlands duality for tori. This discussion will be quite
general. It applies to the case that T is any torus over F', F is any finite Galois extension
of F' that splits T', and V is any finite set of valuations of F' that satisfies (8.1), and outside
of which F is unramified.

Suppose that W is any set of valuations of F' that contains V. Then

B= I R
veW -V

is a maximal compact subgroup of
T(AY) = {tv € T(A): t,=1forany ve VU ‘W}.
We shall write TV,W for the closure in

Ty = [[ 7 = [] T(#)

veV veV
of the subgroup
(8.4) Tv N T(F)R%T(AW)
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For example, we could take W to be the set of all valuations of F. In this case, the group

(8.4) is already closed. It is equal to the discrete subgroup

I'y =Ty NT(F)RY
of Tyy. We can of course also take W to be the set W(E , V), in which case we shall write

TV,E = TV,W(E,V)'

Observe that under the stated conditions of the lemma, the identity (8.2) is valid for any
strongly G-regular element ¢ = [T t,in Tv, ;- This is because for any w # V, an element
ty € T, w 1s bounded if and only ig ftv lies in Rw.

The global Weil group W, acts on the dual torus T = 5’ We shall consider subgroups
of the continuous cohomology group H'(Wj, f) If W is any set of valuations of F', we
write HY (W, T)w for the kernel of the map

HY (W, T) — @ H'(W;, . T).
vgW

The quotient
H (W, Y = HY (W, T)/H (W, T)w

then maps injectively into the direct sum over v ¢ W of the groups H I(WFU7T)~ If W is
the empty set, for example, H' (W, f)w is the group H* (W, f) ¢t of locally trivial classes
in HY(Wp, f) According to the Langlands correspondence for tori [L1], the associated
quotient Hl(WF,f)“ is dual to T(A)/T(F). Let us write H}(-,-) for the subgroup of
classes in a given cohomology group that are unramified at each place outside of V. Then
HY, (W, T) is dual to the group

T(A)/T(F)RV = Tv/Tv N T(F)RV = Tv/FV

More generally, suppose that W is any set of valuations that contains V. We claim that

the closed subgroup
HY (W, Ty = Hy (W, T)w [ HY (W, T
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of H%,(WF,?)“ is the annihilator of the closed subgroup TV7W /T'v of Ty /T'y. Indeed,
the elements in H%,(WF,f)% correspond to continuous characters on T'(A)/T(F) that
are trivial on RY,T'(AY), from which it follows that H,(Wp, T)% annihilates Ty /Ty

Conversely, since the embedding
T — T(A)/T(F)
is dual to the restriction
H' (W, T)" — H (W, ,T),

any element in H‘l,(WF,f)“ that annihilates Ty /I'y belongs to H‘l,(WF,f)%. The
claim follows. We conclude that the group Hy, (W, f)f,f/ is dual to the quotient Ty / TV7W.
If W =V, the assertion is a special case of [KR, Lemma 1(a)]. We shall be concerned with
the case that W equals the set W (E, V).

The action of W on T factors through the quotient
Gal(E/F) = Wy p /W, = W/ W
The inflation map embeds the relative cohomology group
HYE/F,T) = H (Gal(E/F),T)

into H (W, T). We claim that H*(E/F,T) equals the subgroup

~ ~

H'(Wp, 1) = H' (We, D)y (v

of HY (W, T). To see this, we first note that H*(E/F,T) is the kernel of the map

~

(8.5) H W, T) — H' (W, T) = H' (W, 5, T),

and that H'(W, f)E is the kernel of the map

-~

(8.6) H'Wp,T) — @ H'(F.,T).
weS(E,V)
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Let S~(E,V) be the set of valuations of F that divide those valuations of F' that lie in

S(E,V). The composition of (8.5) with the map

H' W, 1) — D H'(Ew-T)
w~eS~(E,V)

is then equal to the composition of (8.6) with the map

P ‘' (F.T)— P HY(E~TD).

weS(E,V) w~eS~(E,V)

The last two maps are both injective. This is obvious in the case of the second map. For the
first map, it is a consequence of the analogue of the Tchebotarev density theorem for the
idele class group C', = Wge [Se, Theorem 2, p. I-23], and the fact that S~ (E,V)is aset of
valuations of E of positive density whose associated Frobenius elements map surjectively
onto any finite quotient of C,. We have shown that the two groups H'(E/F ,T) and
H 1(I/VF, T ) ;; represent the kernel of the same map. They are therefore equal, as claimed.
In particular, the elements in H 1(VVF, T ), are unramified outside of V, since the same is
true of the elements in H(E/F, f) We apply what we have just observed to the quotient
of each group by the subgroup of locally trivial classes. We conclude that H'(E/F, f)“
equals the group

= Hy (Wg, Ty

1 ~
HV(WF7T> W(E,V)"

ot
E
It then follows from the remarks of the previous paragraph that H'(E/F T )¢ can be
identified with the group of characters of Ty / 'y that are trivial on the closed subgroup
Tv,E'/FV In other words, H'(E/F,T)" is in duality with TV/Tv,E'

At this point, we return to conditions of the lemma. In particular, we assume that
T satisfies the conditions of the earlier Lemma 7.2. Following §7, we identify the Global
Galois group Gal(E/F) with the local Galois group Gal(E/F) = Gal(E,,/F,,) at the

fixed place ug € U. Since Euo is a field, the group H 1(E. / F, f)[t is trivial. Therefore

HY(E/F,T)=HYE/F,T) = H'(E/F,T)".
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For any place v € V', we set
T, =Ty N Ty 5 = T(E) N Ty

According to the local Langlands correspondence for tori, the group H 1(WFU,f) is dual
to T,,. Since H'(E/F, T) represents the annihilator of Tv, /T in the group of characters

on Ty / Ty, T v I 15 just the subgroup of T, annihilated by the image of the composition
HY(E/F,T) — H'(E,/F,,T) — H' (W}, ,T).

Consider the case that v belongs to the subset U of V. The restriction map of H*(E/F, f)
to H'(E,/F,,T) is then an isomorphism, which identifies H!(E/F,T) with the character
group of T, /T, wp- But H YE/F, f) has also been identified with the character group of

Tv/ TV’ ;- It follows that the canonical injection
(87) Tu/Tu,E — TV/TV,E‘

is actually an isomorphism.
We are now ready to apply the identity (8.2). Suppose that v belongs to V', and that

t, is an element in T

G—reg(FU)‘ We can then find a G-regular element fy in T, v,z whose

image in 7T}, equals £,. To see this, we have only to choose a place u € U distinct from v,
and then use the bijectivity of the map (8.7). Suppose that « is a point in Tv, /; such that
the product $, = at, is also strongly G-regular. The element $1 = atfy obviously remains
in Tv, ;» and has the same component as ty at each place w in V — {v}. Applying the

extension of the identity (8.2) to elements in Tv ;» We see that

eu($0) —eu(t) = D ew(Sw) = > ew(tu) =0.

weV weV

The function e, is therefore invariant under translation by Tv ;- In other words, it extends

to a function on TU/TU’E.
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The last step will be to apply the identity (8.3). Suppose that z is the trivial coset
T(F)p =T, ;inT(F)/T(F);=T,/T, ; Then (83) yiclds

e(z) = L(e(z) +e(z)) = L(e(z) +e(z)) =0.

To deal with the other cosets, we choose two places u; and us in U that are distinct from

ug. Then there are isomorphisms
(F,E,G,M,T) — (Fy,, By, Gu,, Mu;, Tu,), i=1,2,
of local data. By assumption, we have
e(z) = ey, (Tv,), xeT(F)/T(F)g,
where x — 1, denotes the isomorphism
T(F)/T(F)p — Tu./T,, & i=1,2.

Suppose that = and y are points in T(F)/T(F)j. For each v in the complement of

{ug,u1,us} in V, choose a point £, in T oL and set
iV = yu2 HtIH v g{UO,Ul,UQ}.

Letting the valuations u in (8.7) run over the set {ug,u;,us}, we see that £, belongs to
TV,E" Set

€0 = Zev(iv), v & {ug, ur,uz}.
It then follows from (8.3) and the extension of (8.2) to Tv, j; that

e(zy) —e(z) —e(y) +e0 = e(zy) +e(z™") +e(y™") +eo

= ey(ty) =0

Taking x = y = 1, we deduce that g = 1. Therefore

e(zy) = e(r) +e(y),



for any points « and y in T'(F')/T(F)g. In other words, e is a homomorphism from the
finite group T(F')/T(F)j to the additive group C. Any such homomorphism must be

trivial. It follows that the original function e on Tig-yeq (F') vanishes identically. [

We can now complete the proof of Local Theorem 1. Let s be any element in K(7")
with & # 1, and let £ be the element in K(T) such that k = #,,. Then & # 1. If v belongs
to the subset Van (G, T) of V, the element &, € K(T},) is also distinct from 1, as we saw at

the beginning of the proof of Corollary 7.5. In this case we set
ev(iv) — 5(51))7 t.v c TG—reg(Tv)7

where 8, is the element in F(f,) such that x(d,) = k,. If v lies in the complement of
Vin(G,T) in V, we simply set e, (£,) = 0. The relations (8.2) and (8.3) then follow from
Corollary 7.5 and Lemma 6.5, respectively. The last lemma asserts that e(¢) vanishes
identically on Tg-yeg (F). Therefore

e(6) =0, t € Tgreg(F),

where 0 is the element in F(t) with x(d) = k. But any element ¢ in Aé’—oreg,eu(M) can

be expressed in this form, for some choice of 7', x and ¢. In other words, £(d) vanishes

£,0

identically on the set A

G-reg.enl(M). This is what we needed to show in order to establish

the remaining assertion of Local Theorem 1.
We have shown that the assertions of Local Theorem 1 all are valid for G and M.

This completes the part of the induction argument that depends on the integer
Tder = dlIIl(AM N Gder)'

Letting r4er vary, we conclude that Local Theorem 1 holds for any Levi subgroup M of G.
The group G was fixed at the beginning of §7. The choice was subject only to Assumption
5.2(2) of [I], and the condition that dim(Gger) = dder. Therefore, as we noted in §1, all

the local theorems stated in [I, §6] hold for any G with dim(Gger) = dger, S0 long as the
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relevant half of Assumption 5.2 of [I] is valid. Of course, this last assertion depends on the
global induction assumption (1.4). To complete the induction argument, we must establish
the global theorems for K-groups G with dim(Gge;) = dger- We do so in §9.

The arguments that have lead to a proof of Local Theorem 1 generalize the techniques
of Chapter 2 of [AC]. In particular, the discussion in §7 and §8 here is loosely modeled on
[AC, §2.17]. The analogue in [AC]| of Local Theorem 1 is Theorem A(i), stated in [AC,
§2.5]. There is actually a minor gap at the end of the proof of this result. The misstatement
occurs near the top of p. 196 of [AC], with the sentence “But as long as k is large enough
...7. For one cannot generally approximate elements in a local group by rational elements
that are integral almost everywhere. The gap could be filled almost immediately with
the local trace formula (and its Galois-twisted analogue) for GL(n). We shall resolve the
problem instead by more elementary means. We shall establish a second lemma on weak
approximation that is in fact simpler than the last one.

We may as well apply the “dot” notation above to the setting of [AC, §2.17]. Then
E / F is a cyclic extension of number fields. There are actually two cases to consider. If
E = F, G is an inner form of the general linear group GL(n). If E #* F', the problem
falls into the general framework of twisted endoscopy. In this case, G is a component in a
nonconnected reductive group G+ over F with G° = Res BJE (GL(n)) In either case, M is
a proper “Levi subset” of G. Suppose that V' D Vram(G) is a finite set of valuations outside

of which G and E are unramified. The problem is to show that the smooth function

e(ﬁv) = 6M<’7V)7 ny € MG—reg,V7

in [AC, (2.17.6)] vanishes. The formula (8.2) has an analogue here. It is the partial

vanishing property
(8.8) e(yv) =0,

which applies to any 4 € M, G_reg(F’ ) such that 4,, is bounded for every w in the complement
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of V in the set W(E, V) defined as above. This property follows from [AC, (2.17.4), and
Lemmas 2.4.2 and 2.4.3], as on p. 194-195 of [AC].

Lemma 8.2. Suppose that e(§v) is any smooth function on M reg v that vanishes under
the conditions of (8.8). Then e(yyv) vanishes for any 4y in MG reg.v -

Proof. Suppose E = F. Then W(E, V) equals V, by definition. Since I'; acts
trivially on Z (M), M (F) is dense in My [KR, Lemma 1(b)]. The lemma then follows in
this case from (8.8).

We can therefore assume that E # F. If W is any set of valuations of F, let W~
denote the set of valuations of F that divide valuations in W. We also write G™ for the
general linear group of rank n over E, and M~ for the Levi subgroup of G~ corresponding
to M. There is then a bijection ¥ — 4~ from M(F) onto M~(E), and a compatible

bijection 4y — Ay~ from MG_re&V onto Mé_r _. It would be enough to show that the

eg,V

smooth function
eN(ﬁ/VN) = e(")/v>, Y€ MG—reg,V’

on M Gmrog v~ vanishes.
It follows from [KR, Lemma 1(b)] that M~(E) is dense in M. We may therefore
assume that 4y~ is the image of an element in Mé_reg(E), and in particular that 4y~ lies

in TG-N_reg(EV~), for a maximal torus 7~ in M~ over E. Set
W~ =W~(E,V)=W(®E, V).

Following the notation of the proof of the last lemma, we write TNN’WN for the closure in
TQN = T~(Fy~) of the set of points 4~ in 7~ (E) that are bounded at each valuation in
the complement of V'~ in W~. If 4~ is of this form, and is also G-regular, the preimage 0

of 4~ in M(F) satisfies (8.8). It follows that



for any G-regular point 4y~ in T;N w~- 1t would therefore be enough to show that TNN’WN
equals TQN. Replacing V™~ by a finite set V™~ that contains V~, if necessary, we can assume
that 7~ is unramified outside of V~. For if Yy~ is any point in T v that is bounded at
each place in W~ N (V" —V~), and 4~ is a point in 7~ (E) that is bounded at each place

in W~ — V7, and approximates ¥y ~, then 4~ is bounded at each place in the set
W~ —-vV>y=W~-V")u (WN NV — VN)),

and approximates the component vy~ of Yy~ in To...
We shall again use Langlands duality for tori. As in the proof of the last lemma, the

quotient T‘7~ / TNN’WN is dual to the group
Hyn (Wi, Ty = Hyn (W, T v /H (W, T) .

~

Recall that H},~ (W, T~)w~ is the kernel of the map

Hy (W, T7) — @ H'(Ew~,17),
w~ES™

~

where H{ . (W, %N) denotes the subgroup of elements in H* (W, T~) that are unramified
outside of V™~ and
S~ =S8~(E,V)=S(E,V~).

We have only to show that any class in H, . (W, % ~“)w~ is locally trivial. Now S~ repre-
sents a set of valuations on E of positive density. It follows from results on equidistribution
[Se, Theorem 2, p. 1-23] that any class in H{ N(WE,%N)W~ is the inflation of a class in
HY(E~/E, IA"N), for a Galois extension E~ O E that splits 7, and is unramified outside
of V~. But T~ is a maximal torus in a general linear group. We can therefore assume by
Shapiro’s lemma that Gal(E~/FE) acts trivially on the dual torus T~ Furthermore, any
conjugacy class in Gal(E~/E) is the Frobenius class of some valuation in S~. It follows
that any element in H'(E~/ E,% ~) that is locally trivial at each place in S~ is in fact
trivial. The group H{~ (Wp, %)W~ is therefore actually zero. We conclude that TNN’WN

equals T‘%, as required. 0]
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9. Global Theorems 1 and 2

We are now at the final stage of our induction argument. Our task is to prove Global
Theorems 1 and 2. This will take care of the part of the argument that depends on the
remaining integer dqe;.

We revert back to the setting of the first half of the paper, in which F' is a global
field. Then G is a global K-group over F' that satisfies Assumption 5.2 of [I], such that
dim(Gger) = dder- As usual, (Z, () represents a pair of central data for G. Let V be a
finite set of valuations of F' that contains Viam (G, (). The local results completed in §8
imply that Local Theorems 1’ and 2’ of [I, §6] are valid for functions f in H(Gy,(y). The
resulting simplification of the formulas established in §2-5 will lead directly to a proof of
the global theorems.

Recall the linear forms Ipa:(f), I5,.(f) and S, (f) introduced in §2. According to

Local Theorem 1’(a), we have
Le(f) = Tpar(f) = D IWTIWEH Y a™() (51 f) = I (7, ) = 0,
MeLo YET(M,V,()

for any f in H(Gvy,(y). If G is quasisplit, the two assertions of Local Theorem 1’(b) imply

that

SCh =S wwe Y wmy Y W) SE AT f)

MeLO Mlegell(M’V) 6/EA(M17V72//)
= > Wt Y e E)sEe et ) =0,
MELO 6*€A(M*7V7C*)

for any function f in H"™(Gy, (y). The left hand sides of the expressions (2.4) and (2.5)
in Proposition 2.2 thus vanish. It remains only to consider the corresponding right hand
sides.

We have already finished the part of the general induction argument that applies to
the integer rge;. The assertions of Corollary 5.2 therefore hold for any Levi subgroup M

of GG, and in particular, if M equals the minimal Levi subgroup My. In other words, the
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identity

(91) IIidiSC(f) - IV,diSC(f) =0

of Proposition 4.2(a) is valid for any f in the space H s, (Gv, (v) = H(Gy, (v ). Similarly,

if G is quasisplit, the identity

(92) SSdisc(f) =0

of Proposition 4.2(b) is valid for any f in the space H};*(Gv,(v) = H"(Gy,(v). In

particular, the terms

Iidisc(f) - It,disc(f) = Z ( Iidisc(f) - IV,diSC(f))? f S H(GV7 CV)?
{v: [Im(v)||=t}

and

St?disc(f) = Z Slfdisc(f)? f S HunS<GV7 CV)7

{v: Mmv|=t}
on the right hand sides of (2.4) and (2.5) both vanish. Having already observed that the
left hand sides of these formulas vanish, we conclude that the sum of the remaining terms

on each right hand side vanishes. In other words,

(93) Z (If,unip(f7 S) - IZ,UHip<f)) = 07 f S H(GV7 CV)7
and
(9.4) > 8%(f,8) =0, f € H™(Gy,¢v),

in the case that G is quasisplit.

We have two theorems to establish. The geometric Global Theorem 1 applies to
any finite set of valuations S O Viam(G,¢), and to elements ¥s € TI'§,(G,S,¢) and
os € AZ(G, S,¢) that are admissible in the sense of [I, §1]. According to [II, Proposi-

tion 2.1] (and the trivial case of [II, Corollary 2.2]), the global descent formulas of [II]
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reduce Global Theorem 1 to the case of unipotent elements. We can therefore assume that

G S C) and Ag <G7 57 C) of FE]I(G7 S7 4)

unip

g and g belong to the respective subsets ump(

and A%,(G, S, ¢). To deal with this case, we shall apply the formulas (9.3) and (9.4), with

V equal to S, and f = fg an admissible function in H(Gs,(s).

The formulas (2.1) and (2.2) provide expansions for the summands on the left hand

side of (9.3). We obtain

Z Z (a i (cus) — a§(és)) fs.q(zds)

2€Z(G)s,0 @s€TE ;. (G,5,0)

unip

- Z Z un1p aS’ - agmip(d/s? S))fS,z,G(d/S>
Z z,unip fS7 - zunip(fS,S)) :O,

G

unip

since the identities agl’g(ds) = a%% (ag, 5) and al (és) = a

anip (s, S) are trivial conse-

quences of the fact that V = S. But the linear forms

fs — fsc(zds), 2 € Z(G)s,0, cs €TC

unip

(G,5,¢),

on the subspace of admissible functions in H(G g, (g) are linearly independent. We conclude

that

ek )
8} (as) — gl(aS) =0,

for any element &g in I'€ . (G,S,¢). This completes the proof of part (a) of Global

unip (

Theorem 1 for g unipotent, and hence in general.

To deal with part (b) of Global Theorem 1, we take G to be quasisplit, and set

ASO (G S C) unlp(G S C) UHiP(G7 S? C)

unip

The formula (2.3) provides an expansion for the summands on the left hand side of (9.4).
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Taking fg to be unstable, we obtain

> > Vi) fEa=0s)

2€Z(G)s.0 BseAE? (G,5,0)

unip

- Z Z un1p(ﬁ57 )fg,z,G(BS)

Z BSEAS (G7S7C)

unip

:ZSzG fS7 :07

since fg . vanishes on Ayyuip(G, S, ). But the linear forms

fs — fEc(28s), 2 € Z(Q)s,e. Bs € ALY (G, S.0),

on the subspace of admissible functions in H"(Gg, (s) are linearly independent. We

conclude that
bgl(BS) = 07

for any element g in the complement AS

0 (G,S,¢) of Aumip(G, S,¢) in AE . (G, S, ().

unip unip

This completes the proof of part (b) of Global Theorem 1 for s unipotent, and hence in
general.

The spectral Global Theorem 2 concerns adelic elements 7 € Ht disc (G, ¢) and
b c ®f 4ise(G,¢). We shall apply the formulas (9.1) and (9.2), which pertain to func-
tions f € H(Gyv,Cy). Recall that for any f in H(Gv,(yv), f = fu" is a function in the
adelic Hecke algebra H(G, ¢) = H(G(A), (). Conversely, any f € H(G,¢) can be obtained
in this way from a function f € H(Gy, (v), for some finite set V' D Viam (G, ().

We combine (9.1) with the expansions in [I, (3.6)] and the first part of [I, Lemma
7.3(a)]. We obtain

ST (aSE(R) = aee (7)) fa(7)

7I-el_ltgcilsc(c;’c)

= Iifdisc(f> - It,disc(f)
= Lidisc(f) - It,disc(f)

- Z (Igdlsc(f) - Iu,disc(f)) =0,
{v: [|[Im(v)||=t}
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for f and f related as above. But the linear forms

f - fG(’/T>7 (S Ht dlSC(G7 C)v

on H(G, () are linearly independent. We conclude that
G,E
CLdlsc( ) - acclisc(ﬂ—) =0,

for any element 7 in II; gisc(G, (). This is the required assertion of part (a) of Global
Theorem 2.

To deal with part (b) of Global Theorem 2, we take G to be quasisplit, and we set

q)fc?lsc(G7 C) - t dlSC(G C) Cbt,diSC(Ga C)

We combine (9.2) with the first expansion in [I, Lemma 7.3(b)]. Assume that f belongs
to H™S(G,¢). Then f = fu, for some V and some f € H"™(Gy,(y). We obtain

Z dlsc<¢)fG(¢)

ped®? (G,Q)

t,disc

= Z dlsc<¢)fG(¢) 1€Gd1sc<f)

¢€q>tg disc (G’C)

St dlSC(f) = Z SEdisc(f) =0,
{v: [Tm(v)[[=t}

since fg vanishes on @y gisc(G, ¢). But the linear forms

f— &), 6 € P 3sc(G5 0,
on H"(@G, () are linearly independent. We conclude that

bisc(®) =0,

for any ¢ in the complement ®°°% (G, ¢) of D4 qisc (G, () in @fdlSC(G,C). This is the

t,disc

required assertion of part (b) of Global Theorem 2.

132



We have shown that the assertions of Global Theorems 1 and 2 are all valid for G. As
we recalled in §1, this implies that all the global theorems in [I, §7] hold for G. With the
proof of Global Theorems 1 and 2, we have completed the part of the induction argument
that depends on the remaining integer dg.,. We have thus finished the last step of an
inductive proof that began formally in §1, but which has really been implicit in definitions

and results from [I] and [II], and related papers.

133



§10. Concluding remarks

We have solved the problems posed in §1. That is, we have proved Local Theorem 1
and Global Theorems 1 and 2. This completes the proof of the local theorems stated in [,
§6] and the global theorems stated in [I, §7].

The results are valid for any K-group that satisfies Assumption 5.2 of [I]. We recall
once again that any connected reductive group (G; is a component of an essentially unique
K-group G. The theorems for GG, taken as a whole, represent a slight generalization of the
corresponding set of theorems for G;.

Recall that Assumption 5.2 of [I] is the assertion that various forms of the fundamental
lemma are valid. It has been established in a limited number of cases [I, §5]. For example,
it holds if G equals SL(p), for p prime. The assumption includes the standard form of the
fundamental lemma for both the group and its Lie algebra. I expect that the equivalence of
the two must be known, for almost all places v, but I have not checked it myself. Granting
this, Assumption 5.2 of [I] also holds if G is an inner K-form of GSp(4) or SO(5).

The theorems yield a stabilization of the trace formula. This amounts to the con-
struction of a stable trace formula, and a decomposition of the ordinary trace formula
into stable trace formulas for endoscopic groups. We shall conclude the paper with a brief
recapitulation of the process.

Suppose that F' is global, and that G is a K-group over F' with central data (Z, ().
Let f be a function in H(G,V, (), where V is a finite set of valuations of F' that contains

Viam (G, €). The ordinary trace formula is the identity given by two different expansions

(10.1) I =Y Wwg Y dMIu, f)
Mel y€ET(M,V,Q)
and

(10.2) I(f)=>_L(f)

=Y S WS [ (e i

t Meﬁ Ht(M7V7C)
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of a linear form I(f) on H(G,V, (). The stable trace formula applies to the case that G is
quasisplit. It is the identity given by two different expansions
(10.3) Sy =D Wt D BM(9)Sm(, f)

MeL dEA(M, V()
and

(10.4) S(f)=_8:(f)

t

=Y S WS [ M @)su(o.f)

t MeL @4 (M,V,0)
of a stable linear form S(f) = S¢(f) on H(G,V,¢). The theorems assert that the terms
in these two expansions are in fact stable, and that the more complicated expansions in [I]
reduce to the ones above. (See [I, Lemma 7.2(b), Lemma 7.3(b), (10.5) and (10.18)].) The
actual stabilization can be described in terms of the endoscopic trace formula, a priori, a
third trace formula. It is the identity given by two different expansions
(10.5) ) =Y Wtwg ™t Yy dME)IS (s f)

MeLl ~yel€(M,V,()
and

(10.6) 15(f) = SO IE()

=3 S WS [ @M i
t MeL 11§ (M, V,€)

of a third linear form I¢(f) on H(G,V, (). The theorems assert that there is a term by

term identification of these two expansions with the original ones.

The linear form I(f) is defined explicitly by either of the two expansions (10.1) and
(10.2). The other two linear forms are defined inductively in terms of I(f) by setting
(10.7) ()= > UGS () +e(G)S(f),

G'e€Y,(G,V)
and also I¢(f) = I(f) in case G is quasisplit. Since the terms in (10.3) and (10.4) are

stable, the linear form S(f) is indeed stable. Since the terms in (10.5) and (10.6) are equal
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to the corresponding terms in (10.1) and (10.2), respectively, I¢(f) equals I(f) in general.
The definition (10.7) therefore reduces to the identity

(10.8) I(fy="Y_ uGGS(f).

G'eE(G,V)

In particular, it represents a decomposition of the ordinary trace formula into stable trace
formulas for endoscopic groups.

The reason for stabilizing the trace formula is to establish relationships among the
spectral coefficients a%(7), b%(¢) and a®¢(r). These are of course the terms that concern
automorphic representations. The relationships among them are given by Global Theorem
2. The proof of this theorem is indirect, being a consequence of the relationships established
among the complementary terms, and of the trace formulas themselves. Having completed
the process, one might be inclined to ignore the stable trace formula, and the relationships
among the complementary terms. However, the general stable trace formula is likely to
have other applications. For example, its analogue for function fields will surely be needed
to extend the results of Lafforgue for GL(n).

The theorems also yield a stabilization of the local trace formula. Suppose that F' is
local, and that G is a local K-group over F with central data (Z,(). Let f = f1 x f, be
a function in H(G,V, (), where V = {vy,v2} as in §6. The ordinary local trace formula is

the identity given by two different expansions

(109)  I(f)= 3 [WHWE|~ (—1)timAr/Ae) / Tut(v, f)dy
MeL FG‘rcg,cll(M’V7C)

and

(10.10)  Lyse(f) = /T e i%(7) fe(r)dr

of a linear form I(f) = Igisc(f) on H(G, V, (). The stable local trace formula applies to the

case that GG is quasisplit. It is the identity given by two different expansions

(10.11) S(F)= 3 WL -y | n(5)" s (6, £)do
MeL AG—rcg,cll(M7v7<)

and
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(10.12) Sge(f) = / 56 ()19 (9)ds

disc(G’Vag)
of a stable linear form

S(f) = SG(f) = Sgsc(f) - Sdisc(f)

on H(G,V,(). The theorems assert that the terms in these two expansions are in fact
stable, and that the more complicated expressions (6.6) and (6.12) reduce to the ones
above. (See [A10, (9.8)].) The actual stabilization can again be described in terms of what
is a priori a third trace formula. The endoscopic local trace formula is the identity given

by two different expansions

(10.13) I°(f)=>_ \W({”\\Wﬂ—l(—l)dim(AM/AG)/ 15 (v, f)dy
MeL FG—rcg,cll(M7V7<)
and
(1014)  I5.(f) = / CE (1) fo(r)dr
ngiSC(G,V,C)

of a third linear form I¢(f) = I§

disc

(f) on H(G,V,(). The theorems assert that there is a
term by term identification of these two expansions with the original ones.

The linear form I(f) = Igisc(f) is defined by the right hand side of (10.9) or (10.10).
The other two linear forms are defined inductively in terms of I(f) by setting

(10.15) ()= Y uGG)S(f)+e(G)S(f),

G’GESH(G)
and also I¢(f) = I(f) in case G is quasisplit. Since the terms in (10.11) and (10.12) are
stable, the linear form S(f) is indeed stable. Since the terms in (10.13) and (10.14) are
equal to the corresponding terms in (10.9) and (10.10), respectively, I¢(f) equals I(f) in
general. The definition (10.15) therefore reduces to the identity

(10.16) I(fy= Y UGG (f).

G'eE(Q)
In particular, it represents a decomposition of the ordinary local trace formula into stable

local trace formulas for endoscopic groups.
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It is interesting to note that the stabilization of the local trace formula is almost
completely parallel to that of the global trace formula. This seems remarkable, especially
since the terms in the various local expansions stand for completely separate objects. The
stable local trace formula is not so deep as its global counterpart. It has no direct bearing
on automorphic representations, even though it was required at one point for the global
stabilization. However, one could imagine direct applications of the stable local trace

formula to questions in p-adic algebraic geometry.
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