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Introduction

This paper is the second of three articles designed to stabilize the trace formula. The

goal is to stabilize the global trace formula for a general connected group, subject to a

condition on the fundamental lemma that has been established in some special cases. In

the first article [I], we laid out the foundations of the process. We also stated a series of

local and global theorems, which together amount to a stabilization of each of the terms in

the trace formula. In this paper, we shall take a significant step towards the proof of the

theorems. We shall reduce the proof of Global Theorem 1 of [I, §7] to the special case of

unipotent elements. This reduction will play a key role in the proof of all of the theorems,

which will be carried out in the last of the three articles.

We refer the reader to the introduction of [I] for a general discussion of the problem of

stabilization. We begin the discussion here by recalling that the theorems stated in [I] apply

to the four kinds of terms that occur in the global trace formula. Let G be a connected

reductive group over a number field F . The trace formula for G is the identity obtained

from two different expansions of a certain linear form I(f). The geometric expansion

(1) I(f) =
∑

M

|WM
0 ||W

G
0 |

−1
∑

δ

aM (γ)IM(γ, f)

is a linear combination of distributions parametrized by conjugacy classes γ in Levi sub-

groups M . The spectral expansion

(2) I(f) =
∑

M∈L

|WM
0 ||W

G
0 |

−1

∫
aM (π)IM(π, f)dπ

is a linear combination of distributions parametrized by representations π of Levi subgroups

M . The local theorems stated in [I, §6] apply to the distributions IM (γ, f) and IM (π, f).

The global theorems stated in [I, §7] apply to the coefficients aM (γ) and aM (π).

The objects of study in this paper will be the geometric coefficients aM (γ). We are

interested in the general case, in which γ is not required to be semisimple. We should note
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in this connection that unipotent classes over the global field F lead directly to convergence

problems that have never been solved. One avoids them by working with the subgroup

GV = G(FV ) =
∏

v∈V

G(Fv)

of G(A), where V is a finite set of valuations of F outside of which G is unramified. In

particular, the test function f in (1) and (2) is defined on GV , and the elements γ in (1)

represent conjugacy classes in MV . The geometric coefficients can be studied in terms of

the linear form

(3) Iorb(f) =
∑

γ

aG(γ)fG(γ), f ∈ C∞
c (GV ),

that represents the purely “orbital” part of the trace formula. The sum is taken over the

conjugacy classes in GV , while fG(γ) denotes Harish-Chandra’s invariant orbital integral

|D(γ)|
1
2

∫

Gγ,V \GV

f(x−1γx)dx.

The problem of stabilizing the geometric coefficients amounts to decomposing Iorb(f)

in terms of endoscopic groups. Let Eell(G, V ) denote the set of elliptic endoscopic data

for G that are unramified outside of V . We assume for the introduction that the derived

group of G is simply connected. The problem is then to establish a decomposition

(4) Iell(f) =
∑

G′inEell(G,V )

ι(G,G′)Ŝ′(f ′),

for stable distributions S′ = SG′ on the endoscopic groups G′
V . For any G′, f ′ denotes the

transfer

f ′(δ′) =
∑

γ

∆(δ′, γ)fG(γ)

of f that is defined by the absolute transfer factor ∆(δ′, γ) of Langlands and Shelstad.

Langlands’s monograph [L2] included a solution of this problem in the special case that f

is supported on the strongly regular set in GV . Kottwitz later established a simple formula
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for the coefficients ι(G,G′) [K2], and extended Langlands’s results to singular semisimple

elements γ [K3]. The purpose of this paper is to solve the problem in the more general

case that f vanishes on an invariant neighbourhood of the center of GV . This represents

a stabilization of the coefficients aG(γ) for elements γ whose semisimple parts are not

central.

The existence of a decomposition (4) is a simple reformulation of Global Theorem 1′,

which was stated in [I, §7] as a series of identities for the coefficients aG(γ). For most of

the paper, we shall work directly with the coefficients. We shall in fact work exclusively

with the more fundamental “elliptic” coefficients aG
ell(γ̇S), in terms of which the coefficients

aG(γ) are defined [I, (2.8)]. The subscript S here denotes a large finite set of valuations

containing V , while γ̇S stands for a conjugacy class in GS that intersects the product of

γ with a compact subgroup of GV
S =

∏
v∈S−V

Gv. The class γ̇S is of course allowed to have

a unipotent part; our use of the term “elliptic” refers to the semisimple part of γ̇S, or

rather, elements in G(F ) that project onto the semisimple part of γ̇S. Global Theorem 1

applies to the coefficients aG
ell(γ̇S), and is parallel to Global Theorem 1′. In [I, Proposition

10.3] it was shown that Global Theorem 1 implies Global Theorem 1′. It would therefore

be enough to prove Global Theorem 1 in order to stabilize the coefficients in (1), and to

establish a decomposition (4).

Global Theorem 1 was stated in terms of two other families of elliptic coefficients

aG,E
ell (γ̇S) and bGell(δ̇S). These are to be regarded as “endoscopic” and “stable” variants

of the original elliptic coefficients aG
ell(γ̇S). The assertions of Global Theorem 1 are that

aG,E
ell (γ̇S) equals aG

ell(γ̇S), and that bGell(δ̇S) vanishes unless δ̇S lies in the “stable” subset

∆ell(G,S) of its domain ∆E
ell(G,S). Our goal is to reduce these assertions to the case that

the elements γ̇S and δ̇S are unipotent. We shall do so by establishing descent formulas for

the three families of coefficients.

The elements γ̇S and δ̇S that index the elliptic coefficients are actually more general

than just conjugacy classes. This is because the theory of endoscopy for real groups,
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implicit in the work of Shelstad, does not transfer unipotent classes to unipotent classes.

It applies rather to the larger space of invariant distributions that are supported on the

unipotent variety. Since the two supplementary families aG,E
ell (γ̇S) and bGell(δ̇S) are defined

by relations of endoscopic transfer, the elements γ̇S and δ̇S have to be taken to be invariant

distributions on GS . They belong to the bases Γ(GS) and ∆E(GS) of distributions fixed

as in [I, §1 and §5]. The coefficients aG
ell(γ̇S) and aG,E

ell (γ̇S) are actually supported on a

respective pair of discrete subsets

Γell(G,S) ⊂ ΓE
ell(G,S)

of Γ(GS), which are defined by global conditions. The coefficient bGell(δ̇S) is defined only

when G is quasisplit. It is supported on a discrete subset ∆E(G,S) of ∆E(GS), which is

also defined by global conditions.

The elements γ̇S and δ̇S do have Jordan decompositions, even though they are more

general than conjugacy classes. This is implicit in the conditions imposed on the choice of

bases Γ(GS) and ∆E(GS) in [I]. Any element in Γ(GS) can be written as a formal product

γ̇S = cSα̇S,

where cS is a semisimple conjugacy class in GS . The unipotent part α̇S ∈ Γunip(GcS
) is an

invariant distribution on the connected centralizer of (a representative of) cS in GS that

is supported on the unipotent set. Similar decompositions are valid for the elements in

the endoscopic basis ∆E(GS). For example, any element in the “stable” subset ∆(GS) of

∆E(GS) can be written as a formal product

δ̇S = dSβ̇S ,

where dS is a semisimple stable conjugacy class in a quasisplit inner form G∗
S of GS . The

unipotent part β̇S ∈ ∆unip(G∗
dS

) is a stable distribution on the connected centralizer of (a

suitable representative of) dS in G∗
S that is supported on the unipotent set.
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We shall review these notions in §1. We shall then describe a descent formula

aG
ell(γ̇S) =

∑

c

iG(S, c)aGc

ell (α̇)

for the original elliptic coefficients in terms of the Jordan decomposition cSα̇S of γ̇S . The

sum is over semisimple conjugacy classes c in G(F ) that project onto cS , while for any

such c, α̇ is the image of α̇S in Γunip(Gc,S). This formula follows immediately from the

definition [I, (2.6)] of the coefficients. Our aim is to establish similar descent formulas for

the coefficients aG,E
ell (γ̇S) and bGell(δ̇S). We shall state the formulas in Theorem 1.1. This

theorem applies under the condition we have imposed for the introduction that the derived

group be simply connected. However, we shall see in §2 that the condition can be relaxed.

Theorem 1.1 is the main result of the paper. It implies the reductions of Global Theorems

1 and 1′ and the special case of the stabilization of the distribution Iorb(f).

We shall prove Theorem 1.1 in the remaining sections 3 to 6. The basic argument will

be carried out in §6. The problem is to compare the expansion that goes into the definition

[I, (7.3)] of aG,E
ell (γ̇S) with the appropriate linear combination of expansions that define the

coefficients aGc,E
ell (α̇) of descent. Near the end of §6, we shall find that the two expressions

match. We will then be able to establish the required formulas for aG,E
ell (γ̇S) and βG

ell(δ̇S)

by standard means.

Sections 3 and 4 contain some preparations for the discussion in §6. The essential

ingredient is the descent theorem [LS2] of Langlands and Shelstad for local transfer factors.

In §3, we shall investigate a descent mapping for endoscopic data that was a starting point

for the local results in [LS2]. Proposition 3.1 gives some properties of the mapping that

are particular to the global setting at hand. The main result of Langlands and Shelstad is

Theorem 1.6.A of [LS2]. It asserts that for any semisimple element cS of GS , the quotient of

an absolute transfer factor for GS by the corresponding transfer factor for GcS
approaches

a limit at cS . In §4, we shall establish some simple properties of this limit (Lemma 4.1). We

shall also observe that the Langlands-Shelstad descent theorem applies to the generalized

transfer factors that relate elements γ̇S and δ̇′S (Lemma 4.2).
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The global descent mapping of §3 is not surjective, in contrast to its local counterpart.

The points that lie in the complement of its image appear capable of causing trouble. The

purpose of §5 is to show that they do not. We shall establish a simple relationship among

the transfer factors of descent, which is nontrivial for points outside the image (Lemma

5.1). We shall use this result in §6 to show that the contributions from the extraneous

terms cancel. The remaining terms will be attached to points in the image of the mapping,

and will be seen to correspond with a parallel set of terms attached to points in the domain

of the mapping. This observation comes near the end of §6, but is really the logical heart

of the argument. It allows us to deduce that two complicated expressions are equal, and

leads readily to a conclusion of the proof.
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§1. Statement of a theorem.

The basic objects of study in this paper will be the “elliptic” coefficients associated

with the geometric side of the global trace formula. We are referring to the coefficients

aG
ell(γ̇S) obtained from [I, (2.6)], together with their endoscopic and stable counterparts

aG,E
ell (γ̇S) and bGell(δ̇S) introduced in §7 of [I]. We shall recall a few of the definitions in a

moment. For the most part, however, we are going to take the various constructions from

[I] for granted. We shall follow the notational conventions of [I], often without comment.

For example, the notation γ̇S and δ̇S , while more complicated than necessary, is meant to

draw attention to the global role of these objects.

Let F be a fixed global field of characteristic 0. As in [I, §4], we take G to be a

global K-group over F . Then G is a disjoint union
∐
α
Gα of connected reductive algebraic

groups over F , together with some extra structure that includes a compatible family

ψαβ: Gβ → Gα of inner twists. The disconnected K-group G is a convenient device for

treating trace formulas for several connected groups at the same time. We shall often use

implicit extensions to G of notions that apply to connected groups, when the meaning is

clear. For example, in this paper Z will denote a central induced torus in G over F . In

other words, Z is an induced torus over F , together with a compatible family of central

embeddings Z ⊂ Gα over F . We fix Z, and also a character ζ on Z(A)/Z(F ).

Suppose that S is a finite set of valuations of F that contains the set Vram(G, ζ) of

ramified places for (G, ζ), and that γ̇S belongs to the set

Γ(GS , ζS) =
∐

α

Γ(GS,αS
, ζS)

defined in [I, §1 and §4]. (The elements in Γ(GS,αS
, ζS) can be regarded as generalizations

of the conjugacy classes in the group GS,αS
= GS,αS

(FS). They are elements in some fixed

basis of the space of GS,αS
-invariant, ζS-equivariant distributions on GS,αS

.) We assume

that γ̇S is admissible in the sense of [I, §1]. Roughly speaking, this means that for most

nonarchimedean places v in S, the local component γ̇v is bounded, in the sense that the
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projection of its support onto the quotient

Gv = (G/Z)v = Gv/Zv = Gv(Fv)/Z(Fv)

intersects a compact subgroup. We can then form the coefficient aG
ell(γ̇S) = aGα

ell (γ̇S), where

α indexes the component of G that supports γ̇S [I, (2.6)]. Recall that aG
ell(γ̇S) depends on

a choice of open, hyperspecial maximal compact subgroup KS =
∏

v 6∈S

Kv of GS(AS), and

vanishes unless γ̇S belongs to the subset

Γell(G,S, ζ) =
∐

α

Γell(Gα, S, ζ)

of Γ(GS , ζS) [I, §2].

The endoscopic and stable analogues of aG
ell(γ̇S) depend on a choice of quasisplit inner

twist

ψ =
∐

α

ψα : G→ G∗

of G. They are related by an expression

(1.1) aG,E
ell (γ̇S) =

∑

G′

∑

δ̇′
S

ι(G,G′)bG̃
′

ell (δ̇
′
S)∆G(δ̇′S , γ̇S) + ε(G)

∑

δ̇S

bGell(δ̇S)∆G(δ̇S , γ̇S),

where γ̇S is an admissible element in the set ΓE
ell(G,S, ζ) ⊃ Γell(G,S, ζ), and G′, δ̇′S , and

δ̇S are summed over sets E0
ell(G,S), ∆ell(G̃

′, S, ζ̃ ′) and ∆E
ell(G,S, ζ) [I, (7.3)]. We recall

here that ι(G,G′) = ι(Gα, G
′) is the constant from [L2] and [K2, §8], and that ∆G(δ̇′S , γ̇S)

is the extended transfer factor of [I, §5]. Moreover,

ε(G) =

{
1, if G is quasisplit,
0, otherwise,

and

E0
ell(G,S) =

{
Eell(G,S)− {G∗}, if G is quasisplit,
Eell(G,S), otherwise,

where G is said to be quasisplit if it has a connected component that is quasisplit. The

coefficients bGell(δ̇S) exist only if ε(G) = 1. They are defined inductively in this case by the

further requirements that

(1.2) aG,E
ell (γ̇S) = aG

ell(γ̇S), γ̇S ∈ ΓE
ell(G,S, ζ),
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and

(1.3) bG
∗

ell (δ̇∗S) = bGell(δ̇S), δ̇S ∈ ∆ell(G,S, ζ).

(See [I, (7.4)].)

We recall that ∆E
ell(G,S, ζ) is a subset of the general endoscopic basis ∆E(GS , ζS). The

latter is a purely local object, whose definition requires the Langlands-Shelstad transfer

conjecture [I, §5]. The former is a global object, which is defined in terms of ∆E(GS , ζS)

and the subset Γell(G,S, ζ) of Γ(GS , ζS) [I, §7]. It supports the coefficient bGell, and contains

the subset

∆ell(G,S, ζ) = ∆E
ell(G,S, ζ) ∩∆(GS , ζS)

of stable basis elements. Similarly, ΓE
ell(G,S, ζ) is a subset of Γ(GS , ζS). It is a global

object that supports the coefficient aG,E
ell , and contains the set Γell(GS , ζS). It would be

quite possible to get by with just the local sets Γ(GS , ζS), ∆E(GS , ζS) and ∆(GS , ζS). We

use the global subsets, at the risk of overloading the notation, in order to emphasize the

global nature of the coefficients.

One of our long-term goals is to establish Global Theorem 1, stated in [I, §7]. This

theorem asserts that aG,E
ell (γ̇S) equals aG

ell(γ̇S) in general, and that bGell vanishes on the

complement of ∆ell(G,S, ζ) in ∆E
ell(G,S, ζ), if G is quasisplit. An obvious implication of

the theorem is that aG,E
ell and bGell are supported on the respective sets Γell(G,S, ζ) and

∆ell(G,S, ζ). This perhaps makes the notation seem more natural. If the second assertion

of the theorem is valid, the definition (1.1) simplifies to

(1.1∗) aG,E
ell (γ̇S) =

∑

G′

∑

δ̇′
S

ι(G,G′)bG̃
′

ell (δ̇
′
S)∆G(δ̇′S , γS),

where G′ is summed over the full set Eell(G,S), and δ̇′S is summed over ∆ell(G̃
′, S, ζ̃ ′). We

shall use this streamlined form of (1.1) in future induction arguments.

One reason for reviewing these definitions is to point out that the coefficients can

actually be defined for a connected component Gα of G. Suppose that γ̇S belongs to
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the subset ΓE
ell(Gα, S, ζ) of ΓE

ell(G,S, ζ). There is nothing to say about the coefficient

aG
ell(γ̇S), since it is defined a priori in terms of Gα. For the endoscopic coefficient, we set

aGα,E
ell (γ̇S) = aG,E

ell (γ̇S). Then aGα,E
ell (γ̇S) depends only on the connected group Gα and the

inner twist ψα: Gα → G∗ (rather than the larger K-group G of which Gα is a component).

This follows from the definition (1.2) if ε(G) = 1, and from the fact that ∆G(δ̇′S , γ̇S)

depends only on Gα [I, Corollary 4.4] in case ε(G) = 0. As for the stable coefficients,

the relation (1.3) provides a definition of bG
∗

(δ̇∗S) for the connected quasisplit group G∗

and the element δ̇∗S in ∆ell(G
∗, S, ζ). It is only this case that we shall need. We shall

generally treat the coefficients as objects attached to the K-group G, but we shall rely on

the remarks above to state the descent formulas.

Our aim is to establish formulas of descent for the coefficients. The starting point

will be the descent formula [I, (2.4)] for the original coefficients aG(S, γ̇) of [I, §2], which

we are going to transform into a corresponding formula for the coefficients aG
ell(γ̇S). This

requires a preliminary word about the Jordan decomposition for elements in Γ(GS , ζS).

For the moment, we can take S to be any finite set of valuations. Suppose that γ̇S

belongs to Γ(GS , ζS). The semisimple part of γ̇S is defined as a semisimple conjugacy class

cS ∈ Γss(GS) in (one of the components of) the quotient

GS = (G/Z)S = GS/ZS =
∐

α

(Gα,S/ZS).

If cS is contained in the component Gα,S/ZS = Gα,S, we write

GcS,+ =
∏

v∈S

Gcv,+

for the centralizer of cS in the component Gα, and we write GcS
for the connected com-

ponent of 1 in this group. Similarly, we write GcS
for the preimage of GcS

in Gα. We

shall frequently take the liberty of letting GcS
stand also for the group GcS,S = GcS

(FS)

of points with values in FS . The unipotent part α̇S of γ̇S is defined to be an element in the

subset Γunip(GcS
, ζS) of distributions in the basis Γ(GcS

, ζS) with semisimple part equal
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to 1. By assumption, the elements in the basis Γ(GS , ζS) are constructed in a canonical

way from their semisimple and unipotent components. We write

γ̇S = cSα̇S,

and refer to this formal product as the Jordan decomposition of γ̇S. (See [I, §1].) As in

the usual case of conjugacy classes, the distribution α̇S is determined by γ̇S only up to the

action of the finite group

GcS,+(FS)/GcS
(FS) =

∏

v∈S

(
Gcv,+(Fv)/Gcv

(Fv)
)

on Γunip(GcS
, ζS).

Suppose now that S contains Vram(G, ζ), and that γ̇S is an admissible element in

Γell(G,S, ζ). The general descent formula for aG
ell(γ̇S) is stated in terms of the Jordan

decomposition γ̇S = cSα̇S . It takes the form

(1.4) aG
ell(γ̇S) =

∑

c

∑

α̇

iG(S, c)
∣∣Gc,+(F )/Gc(F )

∣∣−1
aGc

ell (α̇),

where c is summed over those elements in the set Γss(G) of semisimple conjugacy classes in

G(F ) whose image in Γss(GS) equals cS , and α̇ is summed over the orbit of

Gc,+(FS)/Gc(FS) in Γunip(Gc,S, ζS) determined by α̇S. The symbol G stands for the

quotient G/Z as above, while Gc denotes the preimage of Gc in G. The symbol iG(S, c) is

defined as in [I, (2.4)]. It equals 1 if c is an F -elliptic element in G whose GS(AS)-conjugacy

class meets the maximal compact subgroup K
S

= KSZ(AS)/Z(AS), and equals 0 other-

wise. If iG(S, c) is nonzero, as we may assume, we choose an element gS ∈ G(AS) that

conjugates c to K
S
, and use it to form the subgroup

(1.5) KS
c = (gS)−1KSgS ∩Gc(A

S)

of Gc(A
S). Since cS is admissible, Proposition 7.1 of [K3] applies to the components Kc,v

of KS
c , for places v 6∈ S. It tells us that Kc,v is a hyperspecial maximal compact subgroup
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of Gc(Fv) whose conjugacy class is independent of the choice of gS. The coefficient aGc

ell

in (1.4) is defined relative to KS
c . The argument α̇ in aGc

ell (α̇) is to be understood as the

element in Γ(Gc,S , ζS) with Jordan decomposition 1 · α̇.

We leave the reader to derive (1.4) from [I, (2.4) and (2.6)]. The main point is to note

that the quotient
∣∣Gc,+(F )/Gc(F )

∣∣ ∣∣Gc,+(F )/Gc(F )
∣∣−1

equals the order of the stabilizer

Z(F, c̃) = {z ∈ Z(F ) : zc̃ = c̃}

in Z(F ) of any conjugacy class c̃ ∈ Γss(G) in the preimage of c.

We shall be mainly concerned with the special case of (1.4) in which the derived (multi-

ple) group Gder =
∐
α
Gα,der is simply connected, in the sense that it equals

Gsc =
∐
α
Gα,sc, and Z equals {1}. The first condition implies that Gc,+ = Gc, for any

c ∈ Γss(G). The second condition is that G = G. The descent formula in this case reduces

to

(1.6) aG
ell(γ̇S) =

∑

c

iG(S, c)aGc

ell (α̇),

where c is summed over the elements in Γss(G) whose image in Γss(GS) equals cS , and α̇

is the image of α̇S in Γunip(Gc,S). This special case in fact follows immediately from the

corresponding special cases of [I, (2.4) and (2.6)].

One could also define a Jordan decomposition for elements in ∆E(GS , ζS), by using

constructions from the paper [A5]. For example, the semisimple part of any element

δ̇S ∈ ∆E(GS, ζS) would be a semisimple stable conjugacy class dS ∈ ∆ss(G
∗

S) in the group

G
∗

S = G∗
S/ZS , together with some extra structure. (The inner twist ψ: G→ G∗ of course

allows us to identity Z with a central subgroup of G∗.) In the present paper, we shall be

concerned with the case in which G is quasisplit, and δ̇S belongs to the subset ∆(GS , ζS)

of ∆E(GS , ζS). Assume that this is so. The extra structure for dS is then trivial. We
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choose a representative of the class dS (which we continue to denote by dS) such that the

connected centralizer G∗
dS

is quasisplit [K1, Lemma 3.3]. The unipotent part of δ̇S can

then be defined as an element β̇S in the subset ∆unip(G∗
dS
, ζS) of elements in ∆(G∗

dS
, ζS)

with semisimple part equal to 1. This gives a Jordan decomposition of any element δ̇S in

∆(GS , ζS), which we again denote by a formal product

δ̇S = dSβ̇S .

In this case, β̇S is determined only up to the action of the finite group

(G
∗

dS,+/G
∗

dS
)(FS) =

∏

v∈S

(G
∗

dv ,+/G
∗

dv
)(Fv)

on ∆unip(G∗
dS
, ζS).

The descent formula for bGell(δ̇S) will be stated in terms of an element d in the set

∆ss(G
∗
) of semisimple stable conjugacy classes in G

∗
(F ), whose image in ∆ss(G

∗

S) equals

dS . If d exists, it is uniquely determined by dS. Assuming that it does exist, we define

iG
∗

(S, d) to be 1 if d is F -elliptic and bounded at each place v 6∈ S, and to be 0 otherwise.

We then define a coefficient

(1.7) jG
∗

(S, d) = iG
∗

(S, d)τ(G
∗
)τ(G

∗

d)
−1,

where G∗
d stands for a quasisplit connected centralizer of an appropriate representative of

the class d, and τ(·) denotes the absolute Tamagawa number. The absolute Tamagawa

number equals the relative Tamagawa number τ1(·) of [K2, §5], by virtue of the proof [K4]

of Weil’s conjecture and the proof [C] of the Hasse principle.

We are now ready to state the main result of the paper. It concerns the special case

to which (1.5) applies. It also relies on an induction hypothesis, which we shall describe

after stating the theorem.

Theorem 1.1. Assume that Gder is simply connected and that Z = 1.

14



(a) Suppose that γ̇S is an admissible element in ΓE
ell(G,S) with Jordan decomposition

γ̇S = cSα̇S. Then

(1.8) aG,E
ell (γ̇S) =

∑

c

iG(S, c)aGc,E
ell (α̇),

with c and α̇ being as in (1.5). That is, c is summed over the elements in Γss(G) that map

to cS, and α̇ is the image of α̇S in Γunip(Gc,S).

(b) Suppose that G is quasisplit, and that δ̇S is an admissible element in ∆ell(G,S)

with Jordan decomposition δ̇S = dSβ̇S . Then

(1.9) bGell(δ̇S) =
∑

d

jG∗(S, d)b
G∗d
ell (β̇),

where d is summed over the set of elements in ∆ss(G
∗) whose image is ∆ss(G

∗
S) equals dS

(a set of order 0 to 1), and β̇ is the image of β̇S in ∆unip(G∗
d,S). Moreover, bGell vanishes

on the complement of ∆ell(G,S) in the set of admissible elements in ∆E
ell(G,S) whose

semisimple part is not central in G∗
S.

Theorem 1.1 reduces the study of the global coefficients to the study of their values

at unipotent elements. It is an important step towards the proof of the general theorems

stated in [I, §6-7]. In particular, it will provide the main reduction in the proof of Global

Theorem 1 [I, §7]. As we have noted, the latter asserts that aG,E
ell (γ̇S) equals aG

ell(γ̇S)

in general, and that bGell is supported on the subset ∆ell(G,S, ζ) of ∆E
ell(G,S, ζ). We

shall assume inductively that these two assertions hold for various supplementary groups

attached to G. More precisely, we assume that Global Theorem 1 holds if G is replaced by

any group H over F such that either dim(Hder) < dim(Gder), or ε(G) = 0 and H = G∗.

In particular, we assume that the streamlined form of the definition (1.1∗) is valid for any

such H.

We shall carry the induction hypothesis throughout the rest of the paper. In the next

section, we shall establish some consequences of Theorem 1.1, including its application to

the proof of Global Theorem 1 for G. In the remaining sections 3 to 6, we shall prove
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Theorem 1.1. We shall appeal to the induction hypothesis several times, but we shall

always apply it to groups H obtained from G by operations that are consistent with our

condition [I, Assumption 5.2] on the fundamental lemma. (See [I, Lemma 5.3].) The

resolution of the induction argument will have to wait until the next paper, in which we

shall complete the proof of the theorems stated in [I, §6-7] for K-groups G that satisfy

Assumption 5.2 of [I].

Before we proceed with the main part of the paper, we need to say something about

the values taken by the global coefficients at unipotent elements. Consider a connected

group H over F , with central character data (Z, ζ). In practice, we would take H to be

one of the groups Gc or G∗
d obtained from G as above. We write Dunip(HS , ζS), as in [I,

§1], for the space of distributions on HS spanned by the basis Γunip(HS, ζS). For example,

in the special case that Z is trivial, the corresponding space Γunip(HS) consists of the

invariant distributions on HS that are supported on the unipotent variety. It is generally

larger than the space spanned by the unipotent orbital integrals on HS . Our use of the

larger space is necessitated by questions of endoscopic transfer. Now the commutator

quotient

Hab
S = HS/Hder,S =

∏

v∈V

(
H(Fv)/Hder(Fv)

)

acts by conjugation on the space Dunip(Hder,S). We define a linear map from Dunip(Hder,S)

to Dunip(HS, ζS) by sending any D ∈ Dunip(Hder,S) to the linear form

f −→
∑

a∈Hab
S

(aD)(fder), f ∈ H(GS , ζS),

where fder denotes the restriction of f to Hder,S. The map is not generally injective.

It is also not generally surjective, since there can be distributions in Dunip(HS, ζS) with

derivatives in the direction of the center of HS∞ . We shall write Dunip,der(HS, ζS) for the

image of Dunip(Hder,S) in Dunip(HS, ζS).

There are two points to this definition. The first is that there is a canonical isomor-

phism between Dunip,der(HS, ζS) and the corresponding space Dunip,der(HS) with trivial
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central character data. It is defined by sending an element D ∈ Dunip,der(HS) to the linear

form

f −→ D(fc), f ∈ H(HS, ζS),

where fc is any function in C∞
c (HS) that equals f on an invariant neighbourhood of 1.

We assume implicitly that the basis Γunip(HS , ζS) has been chosen so that the subset

Γunip,der(HS, ζS) = Γunip(HS, ζS) ∩ Dunip,der(HS, ζS)

is a basis of Dunip,der(HS, ζS), and is in bijection with the corresponding basis

Γunip,der(HS) of Dunip,der(HS) under the isomorphism. Similar remarks apply to the sub-

space SDunip,der(HS, ζS) of stable distributions in Dunip,der(HS, ζS). It is clear that the

isomorphism maps SDunip,der(HS) onto SDunip,der(HS, ζS). We assume implicitly that the

set

∆unip,der(HS, ζS) = ∆unip(HS, ζS) ∩ SDunip,der(HS, ζS)

is a basis of SDunip,der(HS, ζS), and is in bijection with the corresponding basis

∆unip,der(HS) of SDunip,der(HS) under the isomorphism.

The second point is that the unipotent global coefficients aH
ell and aH,E

ell are supported

on the subset Γunip,der(HS, ζS) of Γunip(HS, ζS). Similarly, if H is quasisplit, the unipotent

coefficient bHell is supported on the subset ∆unip,der(HS , ζS) of ∆unip(HS, ζS). To see this,

one first recalls from [I, §2] that aH
disc is actually supported on the subset of elements in

Γunip,ell(HS, ζS) that come from the unipotent orbital integrals. One can then establish the

assertions for aH,E
ell and bHell from the definitions (1.1) and (1.2), and the adjoint relations

[I, (5.4), (5.5)]. We shall be most concerned with the case of the stable coefficients bH
ell.

There are actually two such coefficients, one defined on ∆unip,der(HS , ζS), and the other

on ∆unip,der(HS). We have just noted that there is a canonical bijection between the

two domains. At the end of §2, we shall verify that the corresponding values of the two

coefficients are equal.
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§2. Extensions and ramifications

For the rest of the paper, we fix a large finite set of valuations S ⊃ Vram(G, ζ) of

F . We shall begin the proof of Theorem 1.1 in the next section, at which point we will

adopt the proposed restrictions on G and Z. In the meantime, we take G, Z, and ζ to be

arbitrary. The main purpose of this section is to extend Theorem 1.1 to the general case.

The arguments, which are largely formal, are based on some of the simpler constructions

of [I].

We shall first show that Theorem 1.1 implies a major reduction in the proof of Global

Theorem 1 of [I, §7].

Proposition 2.1. Assume that Theorem 1.1 has been proved for some z-extension G̃ of G.

(a) Suppose that γ̇S is an admissible element in ΓE
ell(G,S, ζ) whose semisimple part is

not central in GS. Then

aG,E
ell (γ̇S) = aG

ell(γ̇S).

(b) Suppose that G is quasisplit, and that δ̇S is an admissible element in ∆E
ell(G,S, ζ)

whose semisimple part is not central in G
∗

S. Then bGell(δ̇S) vanishes unless δ̇S lies in the

subset ∆ell(G,S, ζ) of ∆E
ell(G,S, ζ).

Proof. Let G̃ be the given z-extension. Then G̃ is a central extension of G by an

induced torus C̃ over F such that G̃der is simply connected. We write Z̃ for the preimage

of Z in G̃, and ζ̃ for the pullback of ζ to Z̃(A)/Z̃(F ). We have of course to choose S so

that G̃ and ζ̃ are unramified for each v outside of S.

Recall [K1, Lemma 1.1 (3)] that

GS = G(FS) ∼= G̃(FS)/C̃(FS) = G̃S/C̃S .

We can therefore identity functions (or distributions) on GS with functions (or distri-

butions) on G̃S that are invariant under translations by C̃S . In particular, there is a

canonical isomorphism ḟS →
˜̇
fS from the space Hadm(G,S, ζ) of functions with admissible
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support in the ζ−1
S -equivariant Hecke algebra on GS [I, §1] onto the corresponding space

Hadm(G̃, S, ζ̃) of functions on G̃S . We can assume that the bases Γ(G̃S , ζ̃S), ∆E(G̃S , ζ̃S),

etc., for G̃ are the images of the corresponding bases Γ(GS , ζS), ∆E(ΓS , ζS), etc., for G,

under the canonical maps γ̇S → ˜̇γS, δ̇S →
˜̇
δS, etc., of distributions. We shall show that

the proposition holds for (G, ζ) if it holds for (G̃, ζ̃).

We first check that the original coefficients satisfy

(2.1) aG
ell(γ̇S) = aG̃

ell(˜̇γS),

for any admissible element γ̇S in Γ(GS , ζS). This identity is plausible enough. However,

it has to be verified indirectly, since the construction of the coefficients goes back to the

indirect definitions in [A3]. We shall apply an induction argument to the expansion

J(ḟS) =
∑

M∈L

|WM
0 ||W

G
0 |

−1
∑

γ̇S∈Γ(M,S,ζ)

aM
ell(γ̇S)JM (γ̇S, ḟS)

that was derived for any ḟS ∈ Hadm(G,S, ζ) in the course of proving Proposition 2.2 of

[I]. (The expansion is the special case of [I, (2.10)] in which V = S.) The linear form

J(ḟS) = JG(ḟS) was constructed from the distribution [I, (2.1)] on G(A)1. It follows easily

from the construction [A1, §8], [A2, §2] of this original distribution in terms of a truncated

kernel, together with the simple definitions at the beginning of §2 of [I], that

JG(ḟS) = J G̃(
˜̇
fS).

Consider the terms in the expansions of these two linear forms. The terms that depend on

ḟS are weighted orbital integrals. They are constructed in such a way that

JG
M (γ̇S, ḟS) = J G̃

M̃
(˜̇γS ,

˜̇
fS), γ̇S ∈ Γ(MS, ζS).

As for the coefficients, we assume inductively that (2.1) holds if G is replaced by any Levi

subgroup M 6= G. This implies that the terms with M 6= G in the expansions for JG(ḟS)
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and J G̃(
˜̇
fS) match. The terms with M = G then also match. By varying ḟS, we conclude

that the identity (2.1) is valid.

If G′ belongs to Eell(G,S), there is a canonical central extension G̃′ of G′ by C̃ that is

determined by G̃. Since G̃der is simply connected, there is also an L-embedding LG̃′ → LG̃

[L1], which we can assume is unramified outside of S. (See the remark following Lemma 7.1

of [I].) Recall that G′ represents an endoscopic datum (G′,G′, s′, ξ′) for G. The composition

of L-embeddings

G′
ξ′

−→ LG −→ LG̃

maps G′ into the image of LG̃′ in LG̃, thereby providing an L-embedding ξ̃′: G′ → LG̃′.

The pair (G̃′, ξ̃′) serves as the auxiliary datum for G′. On the other hand, G̃′ can be

identified with an endoscopic datum for G̃, and it is easy to see that the correspondence

G′ → G̃′ is a bijection from Eell(G,S) to Eell(G̃, S). Moreover, there is an identity

ḟ ′
S = (

˜̇
fS)′, ḟS ∈ Hadm(G,S, ζ),

between the two transfer maps. (See [LS1, §4.2].) For the convenience of the reader, we

check that G′ and G̃′ also satisfy the identity

(2.2) ι(G,G′) = ι(G̃, G̃′).

Recall [K2, Theorem 8.3.1 and (5.1.1)] that

ι(G,G′) =
∣∣OutG(G′)

∣∣−1∣∣Z(Ĝ′)Γ/Z(Ĝ)Γ
∣∣−1∣∣ker1

(
F,Z(Ĝ′)

)∣∣∣∣ker1
(
F,Z(Ĝ)

)∣∣−1
,

where ker1(F, ·) denotes the subset of locally trivial elements in H1(F, ·). (We are using

the identity
∣∣Z(Ĝ′)Γ/Z(Ĝ)Γ

∣∣ =
∣∣π0

(
Z(Ĝ′)Γ

)∣∣∣∣π0

(
Z(Ĝ)Γ

)∣∣−1
,

which follows from the fact that G′ is elliptic.) The centers Z(Ĝ), Z(
̂̃
G), Z(Ĝ′), and Z(

̂̃
G′)

are related by the two short exact sequences

1 −→ Z(Ĝ) −→ Z(
̂̃
G) −→

̂̃
C −→ 1

∩
↓

∩
↓ ‖

1 −→ Z(Ĝ′) −→ Z(
̂̃
G′) −→

̂̃
C −→ 1.
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Corollary 2.3 of [K2] then provides two long exact sequences, which include the two exact

sequences

X∗(
̂̃
C

Γ

) −→ π0

(
Z(Ĝ)Γ

)
−→ π0

(
Z(

̂̃
G)Γ

)
−→ π0(

̂̃
C

Γ

) = 1

‖
y

y ‖

X∗(
̂̃
C

Γ

) −→ π0

(
Z(Ĝ′)Γ

)
−→ π0

(
Z(

̂̃
G′)Γ

)
−→ π0(

̂̃
C

Γ

) = 1.

It follows that the map

Z(Ĝ′)Γ/Z(Ĝ)Γ = π0

(
Z(Ĝ′)Γ

)
/π0

(
Z(Ĝ)Γ

)
−→ π0

(
Z(

̂̃
G′)Γ

)
/π0

(
Z(

̂̃
G)Γ

)
= Z(

̂̃
G′)Γ/Z(

̂̃
G)Γ

is an isomorphism. Moreover, the H1 terms of the long exact sequences of [K2, Corollary

2.3], applied both locally and globally as in the proof of [K2, Lemma 4.3.2 (a)], tell us that

the maps

ker1
(
F,Z(Ĝ)

)
−→ker1

(
F,Z(

̂̃
G)

)

and

ker1
(
F,Z(Ĝ′)

)
−→ker

(
F,Z(

̂̃
G′)

)

are isomorphisms. Finally, it is easy to check that the group

OutG(G′) = AutG(G′)/Ĝ

maps isomorphically onto the corresponding group Out
G̃

(G̃′) for G̃ and G̃′. The formula

(2.2) follows.

We can now extend the identity (2.1) to the associated endoscopic and stable coeffi-

cients. It is perhaps simplest to make use of the linear form

Iell(ḟS) =
∑

γ̇S

aG
ell(γ̇S)ḟS,G(γ̇S), ḟS ∈ Hadm(G,S, ζ),

together with associated linear forms IEell(ḟS) and SG
ell(ḟS) defined in [I, §7]. It follows from
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the definition [I, (7.5)] and the remarks above that

IEell(ḟS)− ε(G)SG
ell(ḟS)

=
∑

G′∈E0
ell

(G,S)

ι(G,G′)ŜG̃′

ell (ḟ
′
S)

=
∑

G̃′∈E0
ell

(G̃,S)

ι(G̃, G̃′)ŜG̃′

ell (
˜̇
f ′

S)

=IEell(
˜̇
fS)− ε(G̃)SG̃

ell(
˜̇
fS).

The original identity (2.1) implies that Iell(ḟS) = Iell(
˜̇
fS). This in turn implies that

IEell(ḟS) = Iell(ḟS) = Iell(
˜̇
fS) = IEell(

˜̇
fS),

in the case that ε(G) = 1. We conclude that IEell(ḟS) = IEell(
˜̇
fS) in general, and that

SG
ell(ḟS) = SG̃

ell(
˜̇
fS) in case ε(G) = 1. The general induction hypothesis we took on at the

end of §1 allows us to apply the expansions for the distributions IEell and SG
ell in [I, Lemma

7.2]. It follows easily from these expansions that

(2.3) aG,E
ell (γ̇S) = aG̃,E

ell (˜̇γS),

and in the case ε(G) = 1, that

(2.4) bGell(δ̇S) = bG̃ell(
˜̇
δS),

for admissible elements γ̇S ∈ ΓE
ell(G,S, ζ) and δ̇S ∈ ∆E

ell(G,S, ζ). In particular, if the two

assertions of the proposition are valid for the elements ˜̇γS and ˜̇δS, they are also valid for

γ̇S and δ̇S . The proposition thus holds for (G, ζ) if it is valid for (G̃, ζ̃).

We have reduced the proposition to the case that G = G̃. It remains to show that if

it holds for a given G, with (Z, ζ) trivial, then it holds for arbitrary (Z, ζ). This will again

be a straightforward consequence of formal constructions from [I].

As in [I, §2], we have a natural projection ḟ1
S → ḟ ζ

S from Hadm(G,S) onto

Hadm(G,S, ζ). The linear form Iell on Hadm(G,S, ζ) is related to the corresponding linear
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form on Hadm(G,S) (in which (Z, ζ) is taken to be trivial) by the formula

(2.5) Iell(ḟS) =

∫

ZS,o\Z1
S

Iell(ḟ
1
S,z)ζ(z)dz, ḟS ∈ Hadm(G,S, ζ),

where ḟ1
S is any function in Hadm(G,S) such that ḟ ζ

S equals ḟS , and ḟ1
S,z is the translate

of ḟ1
S by z. In particular, the integrand is invariant under translation of z by elements in

the image of the discrete group

ZS,o = Z(F ) ∩ ZSZ(oS)

in Z1
S . We shall show that the linear forms IEell and SG

ell satisfy similar formulas.

We have first to note that the projection ḟ1
S → ḟ ζ

S commutes with endoscopic transfer.

Suppose that G′ ∈ E(G) is an endoscopic datum. If ḟ1
S belongs to H(G,S), the transfer

(ḟ1
S)′ lies in SI(G̃′, S, η̃′), where η̃′ is the automorphic character on C̃ ′ attached to G̃′ [I,

§4]. A variant of the projection above then maps (ḟ1
S)′ to a function in SI(G̃′, S, ζ̃ ′), for

the automorphic character ζ̃ ′ = η̃′ζ̃ on the image Z̃ ′ of Z̃ in G̃′. We claim that the image

of (ḟ1
S)′ in SI(G̃′, S, ζ̃ ′) coincides with the transfer (ḟ ζ

S)′ of ḟ ζ
S. To check this, it suffices to

compare the values of the two functions in SI(G̃′, S, ζ̃ ′) at any point σ̃′
S in ∆G-reg(G̃

′
S , ζ̃

′
S).

It follows from the original definition of transfer [I, (4.9)], together with the formula [LS1,

Lemma 4.4A] that provides the extension of the automorphic character η̃′ from C̃ ′ to Z̃ ′,

that

(f1
S,z)

′ = (f ′
S)′z η̃

′(z), z ∈ Z1
S.

We need only integrate the product of each of these functions with ζ(z). The claim follows.

Let ḟS be any function in Hadm(G,S, ζ), and let ḟ1
S be some function in Hadm(G,S)

such that ḟ ζ
S equals ḟ1

S . If z belongs to Z1
S, the expression

IEell(ḟ
1
S,z)− ε(G)SG

ell(ḟ
1
S,z)

equals
∑

G′∈E0
ell

(G,S)

ι(G,G′)ŜG̃′

ell

(
(ḟ1

S)′z
)
η̃(z),
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since (ḟ1
S,z)

′ equals (ḟ1
S)′z η̃

′(z). We assume inductively that for each G′ ∈ E0
ell(G,S), the

integrand in ∫

ZS,o\Z1
S

ŜG̃′

ell

(
(ḟ1

S)′z
)
ζ̃ ′(z)dz

is invariant under translation of z by ZS,o, and that the integral itself equals the value

taken by the linear form ŜG̃′

ell on SI(G̃′, S, ζ̃ ′) at the image of (ḟ1
S)′. We have just observed

that the image of (ḟ1
S)′ in SI(G̃′, S, ζ̃ ′) is equal to the function (ḟ ζ

S)′ = ḟ ′
S. Our induction

hypothesis therefore asserts that the last integral equals ŜG̃′

ell (ḟ
′
S). It follows that the

integral ∫

ZS,o\Z1
S

(
IEell(ḟ

1
S,z)− ε(G)SG

ell(ḟ
1
S,z)

)
ζ(z)dz

=

∫

ZS,o\Z1
S

( ∑

G′∈E0
ell

(G,S)

ι(G,G′)ŜG̃′

ell

(
(ḟ1

S)′z
))
ζ̃ ′(z)dz

is well defined, and equal to

∑

G′∈E0
ell

(G,S)

ι(G,G′)ŜG̃′

ell (ḟ
′
S),

an expression that in turn equals

IEell(ḟS)− ε(G)SG
ell(ḟS).

We combine this formula with the original formula (2.5) for Iell(ḟS). We deduce in the

usual way that

(2.6) IEell(ḟS) =

∫

ZS,o\Z1
S

IEell(ḟ
1
S,z)ζ(z)dz,

and in the case that ε(G) = 1, that

(2.7) SG
ell(ḟS) =

∫

ZS,o\Z1
S

SG
ell(ḟ

1
S,z)ζ(z)dz.

We shall now prove the assertions of the proposition by establishing the corresponding

assertions for the linear forms Iell(ḟS), IEell(ḟS) and SG
ell(ḟS). Let ḟS be a function in
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Hadm(G,S, ζ) such that ḟS,G(γ̇S) vanishes for any γ̇S in Γ(GS , ζS) whose semisimple part

is not central. If G is quasisplit, we assume also that ḟG∗

S = 0. We can choose the

associated function ḟ1
S so that the functions ḟ1

S,z on the right hand sides of the identities

(2.5), (2.6) and (2.7) have similar properties. We are assuming that the proposition holds

for G, with (Z, ζ) trivial. This implies that for each z ∈ Z1
S, IG,E

ell (ḟ1
S,z) = IG

ell(ḟ
1
S,z) and

SG
ell(ḟS) = 0. We conclude from the expansions in [I, Lemma 7.2] that the two assertions of

the proposition are valid for admissible elements γ̇S ∈ ΓE
ell(G,S, ζ) and δ̇S ∈ ∆E

ell(G,S, ζ)

whose semisimple parts are not central. In other words, the proposition holds for arbitrary

G and ζ. �

The proof of the proposition can be used to extend the descent formulas of Theorem

1.1 to the general case.

Corollary 2.2. Assume that Theorem 1.1 has been proved for some z-extension G̃ of G.

(a) Let γ̇S be an admissible element in ΓE
ell(G,S, ζ) with Jordan decomposition

γ̇S = cSα̇S. Then

(2.8) aG,E
ell (γ̇S) =

∑

c

∑

α̇

iG(S, c)
∣∣Gc,+(F )/Gc(F )

∣∣−1
aGc,E
ell (α̇),

for c and α̇ summed as in (1.4).

(b) Suppose that G is quasisplit, and that δ̇S is an admissible element in ∆ell(G,S, ζ)

with Jordan decomposition δ̇S = dSβ̇S . Then

(2.9) bGell(δ̇S) =
∑

d

∑

β̇

jG
∗

(S, d)
∣∣(G∗

d,+/G
∗

d)(F )
∣∣−1

b
G∗d
ell (β̇),

where d is summed over the elements in ∆ss(G
∗
) whose image in ∆ss(G

∗

S) equals dS (a

set of order 0 or 1), and β̇ is summed over the orbit of (G
∗

d,+/G
∗

d)(F ) in ∆unip(Gd,S , ζS)

determined by β̇S.

Proof. The proofs of (a) and (b) are similar. The formulas follow from the special

cases given by Theorem 1.1, together with the identities established in the proof of the
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proposition. We shall prove only (b), since we will have no need of (a), and since (2.8)

will in any case be a consequence of Global Theorem 1 (together with (1.4)). We assume

therefore that G is quasisplit.

Let G̃ be the given z-extension of G. The first step is to check that (2.9) holds for G

and ζ, if it is valid for G̃ and ζ̃. By (2.4), the left hand side of the identity (2.9) equals

the left hand side of the corresponding identity for (G̃, ζ̃). To compare the expansions

of the two right hand sides, we note that G̃ = G. In particular, the outer sums in the

two expansions can be taken over the same set. If d belongs to this set, G̃∗
d is a central

extension of G∗
d by Z̃, so that G̃∗

d = G
∗

d and G̃∗
d,+ = G

∗

d,+, by definition. Moreover, there is

a canonical bijection β̇ →
˜̇
β between the sets that index the two inner sums, which satisfies

bGd

ell (β̇) = bG̃d

ell (
˜̇
β),

by (2.4). It follows that there is a term by term identification of (2.9) with the right hand

side of the corresponding identity for (G̃, ζ̃). This proves that (2.9) holds for G and ζ if it

is valid for G̃ and ζ̃.

We have reduced the proof of (b) to the case that G̃ = G. The second step is to show

that if Gder is simply connected, and if (2.9) holds for (Z, ζ) trivial, then (2.9) also holds

for arbitrary (Z, ζ). This will follow from a comparison of expansions of the two sides of

(2.7).

Let ḟS be a fixed function in Hadm(G,S, ζ) such that the associated function ḟE
S,G is

supported on the subset ∆(GS , ζS) of ∆E(GS , ζS). The expansion of [I, Lemma 7.2] for

the left hand side of (2.7) becomes

(2.10)
∑

δ̇S∈∆ell(G,S,ζ)

bGell(δ̇S)ḟG
S (δ̇S).

Similarly, we obtain an expansion

∫

ZS,o\Z1
S

∑

δ̇1
S
∈∆ell(G,S)

bGell(δ̇
1
S)ḟ1,G

S (zδ̇1S)ζ(z)dz
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for the right hand side of (2.7). The coefficients bGell(δ̇
1
S) in this second expansion pertain to

the case that (Z, ζ) is trivial. We are assuming that they satisfy the formula (2.9), which

in this case reduces to (1.9). The second expansion becomes

(2.11)

∫

ZS,o\Z1
S

∑

d1

∑

β̇1

jG∗(S, d1)b
G∗

d1

ell (β̇1)ḟ1,G∗

S (zd1
S β̇

1)ζ(z)dz,

where d1 is summed over the classes in ∆ss(G
∗) that are bounded at each v 6∈ S, d1

S is the

image of d1 in ∆ss(G
∗
S), and β̇1 is summed over ∆unip(G∗

d1,S). The functions ḟS and ḟ1
S

are related by ∫

Z1
S

ḟ1
S(zx)ζ(z)dz = ḟS(x), x ∈ G1

S .

Our task is to compare the coefficients of ḟG
S and ḟ1,G∗

S in the two expansions.

There is a surjective map d1 → d, from the classes in ∆ss(G
∗) that are bounded away

from S, onto those classes in ∆ss(G
∗
) that are bounded away from S. The group ZS,o acts

transitively on the fibres of this map, and the stabilizer of d1 in ZS,o is isomorphic to the

group (G
∗

d,+/G
∗

d)(F ) under the map

g −→ z = g−1d1g(d1)−1, g ∈ (G
∗

d,+/G
∗

d)(F ).

We claim that

jG∗(S, d1) = jG
∗

(S, d).

We can assume that d1 is F -elliptic in G∗, since jG∗(S, d1) would otherwise vanish. This

implies that X∗(G∗)Γ = X∗(G∗
d1)Γ. Now the identity [K2, (5.2.3)] for Tamagawa numbers

is actually valid for any central extension of a group by Z. Applying it to the pairs (G∗, G
∗
)

and (G∗
d1 , G

∗

d), we see that

τ(G∗)τ(G∗
d1)−1 = τ(G

∗
)τ(G

∗

d)
−1.

The claim follows from the definition (1.7). As for the elements β̇1 in (2.11), we recall from

the remarks at the end of §1 that b
G∗d1

ell (β̇1) is supported on the subset ∆unip,der(G
∗
d1,S) of
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∆unip(G∗
d1,S). We can therefore apply the canonical bijection β̇1 → β̇ from ∆unip,der(G

∗
d1,S)

to the corresponding subset ∆unip,der(G
∗
d,S , ζS) of ∆unip(G∗

d,S , ζS). We assume inductively

that if d1 is not central in G, then

(2.12) b
G∗

d1

ell (β̇1) = b
G∗d
ell (β̇).

In fact, by (2.4) it is enough to assume that the analogue of (2.12) holds for some z-

extension of the group G∗
d1 = G∗

d. This takes care of the second coefficient in (2.11), and

leaves us in a position to change the sum over (d1, β̇1) to a sum over (d, β̇).

Suppose for a moment that ḟS vanishes on an invariant neighbourhood of the center

of GS . The function ḟ1,G∗

S (zd1
S β̇

1) in (2.11) then vanishes if d1 is central in G. It follows

from the discussion above that we can write (2.11) in the form

(2.13)
∑

d

∑

β̇

jG
∗

(S, d)
∣∣(G∗

d,+/G
∗

d)(F )
∣∣−1

b
G∗d
ell (β̇)ḟG∗

S (dsβ̇).

We have established that the expressions (2.10) and (2.13) are equal. Since we can vary

ḟS, subject of course to the given constraints, we deduce that the coefficients of ḟG
S and

ḟG∗

S in the two expansions are equal. Comparing these coefficients, we conclude that the

descent formula (2.9) is valid for any δ̇S whose semisimple part is not central.

We now remove the condition that ḟS vanish on an invariant neighbourhood of the

center. We still have expansions for the two sides of (2.7). Given what we have just proved,

we see that the terms with noncentral semisimple parts cancel from the two expansions.

Comparing the coefficients in the remaining terms, we conclude that (2.9) holds if the

semisimple part of δ̇S is central, and hence in general. We also deduce that

(2.14) bG
∗

ell (β̇1) = bG
∗

ell (β̇),

for any β̇ in the subset ∆unip,der(G
∗
S , ζS) of ∆unip(G∗

S , ζS) on which bG
∗

ell is supported. This

completes the induction argument, and our reduction to the case of trivial (Z, ζ). �
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As we recalled during the proof of the last corollary, there is a canonical bijection

between the sets ∆unip,der(G
∗
S) and ∆unip,der(G

∗
S, ζS). In the special case that ζ is the trivial

automorphic character on Z, we can identify ∆unip,der(G
∗
S , ζS) with the set ∆unip,der(G

∗

S)

attached to the group G
∗

= G∗/Z. We therefore actually have a pair of bijections

∆unip,der(G
∗
S , ζS)

∼
←− ∆unip,der(G

∗
S)

∼
−→ ∆unip,der(G

∗

S).

In particular, we can identify the two sets ∆unip,der(G
∗
S , ζS) and ∆unip,der(G

∗

S).

Corollary 2.3. Assume that G is quasisplit, and that Theorem 1.1 has been established

for some z-extension of G. Then

bG
∗

ell (β̇) = bG
∗

ell (β̇1) = bG
∗

ell (β̇), β̇ ∈ ∆unip,der(G
∗
S , ζS),

where β̇1 is the preimage of β̇ in ∆unip,der(G
∗
S).

Proof. The formula (2.4) reduces the problem immediately to the case that G∗
der is

simply connected. We can therefore apply (2.14). This gives the first half of the required

identity. The second half follows from (2.4) and the special case of (2.14) in which ζ is

trivial. �

There are similar identities for the values of the coefficients aG
ell and aG,E

ell at unipotent

elements. They can be established from (2.5) and (2.6), in the same way that (2.14) was

defined from (2.7) in the proof of Corollary 2.2.
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§3. The mapping X (G)→ Y(G)

We have reduced the general problem of global descent to the special case treated in

Theorem 1.1. The proof of Theorem 1.1 will take up the rest of the paper. We assume

from now on that Gder is simply connected, and that (Z, ζ) is trivial.

In this section, we shall investigate a descent mapping for endoscopic data. The

mapping is a global analogue of the local mapping in [LS2, §1.4], which was a starting

point for the Langlands-Shelstad descent theorem for transfer factors. As in the local case,

the mapping depends only on the quasisplit inner form G∗ of G attached to the underlying

inner twist ψ: G→ G∗.

The domain of the mapping will be the set X (G) of equivalent classes of pairs (G′, d′),

where G′ is an elliptic endoscopic datum for G over F , and d′ is a semisimple, elliptic

element in G′(F ). Two such pairs (G′, d′) and (G
′
, d

′
) are defined to be equivalent if there

is an isomorphism G
′
→ G′ of endoscopic data for G [LS1, (1.2)] that carries d

′
to an

element in G′(F ) that is stably conjugate to d′. (The notation G
′
here is unrelated to the

earlier notation G = G/Z. Since Z is trivial in this section, there should be no danger

of confusion.) The codomain of the mapping will be the set Y(G) of equivalence classes

of pairs (d,G′
d), where d is a semisimple elliptic element in G∗(F ), and G′

d is an elliptic

endoscopic datum over F for the centralizer G∗
d. Two such pairs (d,G′

d) and (d,G′
d
) will

be called equivalent if there is an inner automorphism of G∗ that maps d to d, and maps

G′
d

to an endoscopic datum for G∗
d that is isomorphic [LS1, (1.2)] to G′

d. Observe that if α

is such an inner automorphism, ατ(α)−1 is an inner automorphism of G∗
d for each τ in the

Galois group Γ = Gal(F/F ), since G∗
d = G∗

d,+. Therefore α: G∗
d
→ G∗

d is an inner twist,

which serves to identify the isomorphism classes of endoscopic data for G∗
d

and G∗
d.

Before we describe the mapping, we shall define some simple invariants attached to

points in X (G) and Y(G). Consider an element y ∈ Y(G). If (d,G′
d) and (d,G′

d
) both

represent y, and Ĝ∗
d and Ĝ∗

d
are dual groups for G∗

d and G∗
d
, there is a canonical Γ-

isomorphism from Z(Ĝ∗
d) onto Z(Ĝ∗

d
). We may as well introduce an abstract group Ẑy,
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equipped with a Γ-action, together with a canonical isomorphism Ẑy → Z(Ĝ∗
d) for each

(d,G′
d) in the class y. Recall [LS1, (1.2)] that the global endoscopic datum G′

d for G∗
d comes

with a locally trivial 1-cocycle a′d from Γ to Z(Ĝ∗
d). The preimage of a′d in Ẑy maps to a

canonical element ay in the group ker1(F, Ẑy) of locally trivial classes in H1(F, Ẑy). Now

there is a canonical Γ-embedding of Z(Ĝ) into Ẑy. The image of the map X (G)→ Y(G) will

turn out to be the set of y such that ay belongs to the image of ker1
(
F,Z(Ĝ)

)
in ker1(F, Ẑy).

Let Ky be the subgroup of elements in
(
Ẑy/Z(Ĝ)

)Γ
whose image in H1

(
Γ, Z(Ĝ)

)
is locally

trivial. Once we have defined the map, we will construct a transitive action of Ky on the

fibre of any y in the range. We note in passing that the order

oy =
∣∣OutG∗

d
(G′

d)
∣∣

of the group of outer automorphisms of the endoscopic datum G′
d depends only on the

class y. We also note that if (G′, d′) represents a point x in X (G), the number

cx =
∣∣(G′

d′,+/G
′
d′)(F )

∣∣

of rational components in G′
d′,+ depends only on x, as does the order

ox =
∣∣OutG(G′, d′)

∣∣

of the stabilizer in OutG(G′) of the stable conjugacy class of d′ in G′.

To define the mapping from X (G) to Y(G), we have to attach some noncanonical

auxiliary data to a given point x in X (G). First, we fix a representative (G′, d′) of the

class x with the property that the connected centralizer G′
d′ is quasisplit. This is possible

[K1, Theorem 3.3], since we can always replace d′ by a stable conjugate in G′(F ). We also

assume that the full endoscopic datum (G′,G′, s′, ξ′) represented by G′ is such that G′ is

an L-subgroup of LG, and ξ′ is the identity embedding of G′ into LG. Next, we choose an

admissible embedding ρ′: T ′ → T [LS1, (1.3)], of a maximal torus T ′ in G′ over F that

contains d′ into a maximal torus T in G∗ over F , with the property that if d is the image
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of d′ in G∗(F ), the centralizer G∗
d is also quasisplit. Again this is possible, since we can

always replace T by a stable conjugate in G∗. Note that T can then be identified with a

maximal torus in G∗
d. Finally, we choose an admissible L-embedding ηd:

LT → LG∗
d. By

this, we mean an L-homomorphism from the L-group LT = T̂ oWF of T into the L-group

of G∗
d, such that the restriction of ηd to T̂ belongs to the canonical Ĝ∗

d-conjugacy class of

embeddings of T̂ into Ĝ∗
d [LS1, (2.6)]. The existence of ηd follows from [L1, Lemma 4].

Having fixed auxiliary data (G′, d′), ρ′ and ηd, we construct a pair (d,G′
d) by following

[LS2, (1.4)]. The element d is just the image of d′, as above. The symbol G′
d represents an

elliptic endoscopic datum (G′
d,G

′
d, s

′
d, ξ

′
d) forG∗

d whose components we have to describe. We

define the first component to be a fixed quasisplit group G′
d, equipped with an isomorphism

G′
d → G′

d′ over F . Having fixed G′
d, we write T ′

d for the preimage of T ′ in G′
d. The third

component is a semisimple element in Ĝ∗
d. It is defined by

s′d = ηd(s
′
T ) = ηd

(
ρ̂′(s′)

)
,

where s′T ∈ T̂ is the image of the point s′ ∈ Z(Ĝ′) under the map ρ̂′: T̂ ′ → T̂ that is

dual to ρ′. (See [LS1, (3.1)]. We have identified Z(Ĝ′) with the canonical subgroup of T̂ ′

determined by any admissible embedding of T̂ ′ into Ĝ′.) For the second component, we

set

G′d = Ĝ′
d · ηd(

LT ),

where Ĝ′
d is the connected centralizer of s′d in Ĝ∗

d. The last component ξ′d of the endo-

scopic datum we define simply to be the identity embedding of G ′d into LG∗
d. To see that

(G′
d,G

′
d, s

′
d, ξ

′
d) is an endoscopic datum for G∗

d, we observe that the map ηd ◦ ρ̂′ provides

a Γ-isomorphism from the dual T̂ ′
d = T̂ ′ of the maximal torus T ′

d of G′
d to the maximal

torus ηd(T̂ ) of Ĝ∗
d, which maps the coroots of (G′

d, T
′
d) onto the roots of

(
Ĝ′

d, ηd(T̂ )
)
. This

isomorphism identifies Ĝ′
d with a dual group of G′

d. By assumption [LS, (1.2)],

Int(s′) ◦ ξ′ = a′ ⊗ ξ′,
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where a′ is a locally trivial 1-cocycle from Γ to Z(Ĝ). It follows that

Int(s′d) ◦ ξ
′
d = a′d ⊗ ξ

′
d,

where a′d is the locally trivial 1-cocyle from Γ to Z(Ĝ∗
d) that is the composition of a′

with the canonical embedding of Z(Ĝ) in Z(Ĝ∗
d). Therefore (G′

d,G
′
d, s

′
d, ξ

′
d) is indeed an

endoscopic datum for G∗
d.

Observe that the group Z(Ĝ′
d)

Γ/Z(Ĝ∗
d)

Γ is a quotient of Z(Ĝ′
d′)

Γ/Z(Ĝ)Γ. Since G′ is

elliptic for G, and d′ is an elliptic element in G′(F ), this group is finite. Therefore G′
d is

an elliptic endoscopic datum for G∗
d. In particular, (d,G′

d) represents a point y ∈ Y(G).

We shall write ρ′d: T
′
d → T for the composition of the underlying isomorphism T ′

d → T ′

with ρ′. The construction is such that ρ′d is an admissible embedding of T ′
d into G∗

d.

Suppose that κ belongs to the group Ky, where y is the image of (d,G′
d) in Y(G) as

above. We shall define a second pair (Gκ, dκ) in terms of the data (G′, d′), ρ′ and ηd. To

do so, we have also to fix an admissible L-embedding η: LT → LG such that s′ = η(s′T ).

The existence of η follows from the definition of s′T and [L1, Lemma 4]. The symbol Gκ

represents an endoscopic datum (Gκ,Gκ, sκ, ξκ) for G, which we shall describe. Let κT be

the element in T̂ given by

κT = η−1
d (κd),

where κd is a fixed preimage of κ in Z(Ĝ∗
d). (Since the restriction of ηd to T̂ is canonically

defined up to Ĝ∗
d-conjugacy, κT is actually independent of ηd.) We define

sκ = s′η(κT ) = η(s′TκT ),

and

Gκ = Ĝκη(LT ),

where Ĝκ is the connected centralizer of sκ in Ĝ. We take ξκ to be the identity embedding

of Gκ into LG, and we take Gκ to be any quasisplit group over F for which Ĝκ is a dual
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group. This gives an endoscopic datum for G. We still have to construct a semisimple,

elliptic element dκ ∈ Gκ(F ). Since η(LT ) is contained in Gκ, one sees easily from [LS1,

Lemma 1.3.A] that the maximal torus T ⊂ G∗ transfers to Gκ. In other words, there is a

maximal torus T κ ⊂ Gκ over F , and an admissible embedding ρκ of T κ into G∗ that takes

Tκ to T . We define dκ to be the preimage of d in T κ(F ). We can assume that ρκ has

been chosen so that the centralizer Gκ
dκ is quasisplit. We can also arrange that the point

sκ
T in T̂ associated to ρκ and sκ equals s′TκT , or equivalently, that η has the property that

η(sκ
T ) = sκ.

The pair (Gκ, dκ) is already equipped with the requisite auxiliary data ρκ and ηd.

What is its image in Y(G)? Since d = ρκ(dκ), the construction above assigns a pair

(d,Gκ
d) to (Gκ, dκ), where

sκ
d = ηd(s

κ
T ) = ηd(s

′
TκT ) = s′dκd.

Therefore, the connected centralizers Ĝκ
d and Ĝ′

d of sκ
d and s′d in Ĝ∗

d coincide. It follows

that Gκ
d = G′d and ξκ

d = ξ′d, so that Gκ
d represents the endoscopic datum (Gκ

d ,G
′
d, s

′
dκd, ξ

′
d).

It follows that Gκ
d and G′

d are isomorphic as endoscopic data for G∗
d. We have shown that

(G′, d′) and (Gκ, dκ) map to the same point y in Y(G).

Proposition 3.1. (i) The correspondence

(G′, d′) −→ (d,G′
d)

provides a well defined mapping from X (G) onto the set of y in Y(G) such that ay lies in

the image of ker1
(
F,Z(Ĝ)

)
in ker1(F, Ẑy).

(ii) The correspondence

(G′, d′) −→ (Gκ, dκ), κ ∈ Ky,

provides a well defined transitive action x→ xκ of Ky on the fibre of y in X (G).

(iii) If y ∈ Y(G) is the image of x ∈ X (G), let Ky,x be the stabilizer of x in Ky. Then

|Ky,x| = oyo
−1
x c−1

x .
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Proof. We shall prove each of the assertions in turn. For the assertion (i), the main

point is to show that the map is well defined. This is perhaps already clear to the reader,

but for the benefit of the author, at least, we shall check the conditions in detail. We have

then to show that the equivalence class y of (d,G′
d) in Y(G) is independent of the auxiliary

data (G′, d′), ρ′ and ηd attached to x.

Suppose that (G
′
, d

′
), ρ′: T

′
→ T , and ηd:

LT → LG∗
d

is a second family of auxiliary

data for x, with d = ρ′(d
′
). The construction then yields a second pair (d,G

′

d). We have

to show that (d,G
′

d) is equivalent to (d,G′
d). By assumption, there is an isomorphism of

endoscopic data from G
′

to G′ that maps d
′

to a stable conjugate of d′. We are free to

replace d
′
, T

′
and ρ′ by stably conjugate data for G

′
, without affecting the image (d

′
, G

′

d).

We can in fact do so in such a way that the isomorphism from G
′

to G′ actually maps

d
′

to d′. (This last point requires a standard application of Steinberg’s theorem, which

shows that the maximal torus T
′

in G
′

d transfers to the quasisplit group G′
d′ .) We may

therefore assume that (G
′
, d

′
) = (G′, d′). Next, observe that d and d are G∗(F )-conjugate,

since they both belong to the image of the G∗(F )-conjugacy class of d′ under the map

AG′/G∗ defined in [LS1, p. 225]. It follows from the fact that G∗
der is simply connected

that d is stably conjugate to d. Replacing d, T , and ρ′ by stably conjugate data for G∗,

we see (again using Steinberg’s theorem) that we may also assume that d = d. It remains

to check that the endoscopic data G′
d and G

′

d for G∗
d, determined by the different auxiliary

data, are isomorphic.

It is consequence of the definitions in [LS1, (1.3)] that the admissible embedding

ρ′: T
′
→ T is a composition of three isomorphisms

T
′ α
−→ T ′ ρ′

−→ T
β
−→ T ,

where α is any fixed element in Int
(
G′(F )

)
that maps T

′
to T ′, and β is some element in

Int
(
G∗(F )

)
(depending on the choice of α) that maps T to T . Since T

′
and T ′ are both

contained in G′
d′ , we can arrange that α belongs to Int(G′

d′). Then β maps d to itself. This
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means that β lies in Int(G∗
d), since G∗

der is simply connected. Write α̂, ρ̂′ and β̂ for the

corresponding dual isomorphisms. Then ηdβ̂ is an embedding of T̂ into Ĝ∗
d that belongs to

the same Ĝ∗
d-conjugacy class of embeddings as the restriction of ηd to T̂ . In other words,

there is an element gd ∈ Ĝ
∗
d, unique up to right translations by ηd(T̂ ), such that ηdβ̂ equals

the restriction of Int(gd)ηd to T̂ . We claim that Int(gd) define an isomorphism between

the endoscopic data G′
d and G

′

d.

Observe that

s′d = ηd(s
′
T
) = (ηdρ̂

′)(s′) = (ηdβ̂ρ̂
′α̂)(s′) = (ηdβ̂ρ̂

′)(s′),

since s′ lies in Z(Ĝ′). It follows that

s′d = (ηdβ̂)(s′T ) = (ηdβ̂η
−1
d )(s′d) = Int(gd)(s

′
d).

The second point to check is that Int(gd) intertwines the L-actions of WF on Ĝ′
d and Ĝ′

d.

This entails showing that g−1
d ηd(τT )gd belongs to Ĝ′

dηd(τT ), for any element τ ∈WF with

images τT and τT in LT and LT . To this end, we fix a general point t ∈ T̂ , and set

td = ηd(t). Then

Int
(
g−1

d ηd(τT )gd

)
(td) = Int

(
g−1

d ηd(τT )
)((

Int(gd)ηd

)
(t)

)

=
(
Int(g−1

d )Int
(
ηd(τT )

))(
ηd

(
β̂(t)

))
= Int(gd)

−1
(
ηd

(
τ
(
β̂(t)

)))

=
(
ηdβ̂

−1τ(β̂)
)(
τ(t)

)
=

(
ηdβ̂

−1τ(β̂)η−1
d

)(
ηd

(
τ(t)

))

=
(
ηdβ̂

−1τ(β̂)η−1
d

)(
Int

(
ηd(τT )

)
(td)

)
.

Since both ρ′ and ρ′ = βρ′α are defined over F , the dual maps ρ̂′ and β̂ρ̂′α̂ commute with

the relevant actions of Γ. Therefore

β̂−1τ(β̂) = ρ̂′α̂τ(α̂)−1(ρ̂′)−1.

The isomorphism α̂τ(α̂)−1 of T̂ ′ is dual to an element in the Weyl group of (G′
d′ , T

′). The

isomorphism

ηdβ̂
−1τ(β̂)η−1

d = ηdρ̂′α̂τ(α̂)−1(ρ̂′)−1η−1
d
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of the torus ηd(T̂ ) = (ηdρ̂)(T̂
′) is the corresponding dual element in the Weyl group of

Ĝ′
d′ = Ĝ′

d. Combining this with the first identity, we see that

Int
(
g−1

d ηd(τT )gd

)
(td) = Int

(
g(τ)ηd(τT )

)
(td),

for some element g(τ) in Ĝ′
d. Since td represents a general point in η(T̂ ), we conclude

that g−1
d ηd(τT )gd lies in Ĝ′

dηd(τT ), as required. We have shown that Int(gd) defines an

isomorphism between G′
d and G

′

d. The pairs (d,G′
d) and (d,G

′

d) thus represent the same

element in Y(G), and the map X (G)→ Y(G) is well defined.

It is clear from the original definition that the map sends X (G) into the set of y

in Y(G) such that ay belongs to the image of ker1
(
F,Z(Ĝ)

)
in ker1(F, Ẑy). Conversely,

suppose that y is an element in this set. Choose a representative (d,G′
d) of y such that

G∗
d is quasisplit, and such that if G′

d represents the endoscopic datum (G′
d,G

′
d, s

′
d, ξ

′
d), then

G′d is an L-subgroup of LG′
d, and ξ′d is the identity embedding of G′d into LGd. We also

assume that

Int(s′d) ◦ ξ
′
d = a′ ◦ ξ′d,

where a′ is a locally trivial 1-cocycle of Γ that takes values in the subgroup Z(Ĝ) of Z(Ĝd).

We shall construct a pair (G′, d′) that maps to (d,G′
d). Let ρ′d: T

′
d → T be an admissible

embedding of a maximal torus T ′
d of G′

d over F to a maximal torus T in G∗
d. Then T is

also a maximal torus in G, for which we fix an admissible L-embedding η: LT → LG. To

obtain the pair (G′, d′), we need only reverse the construction in the original definition.

Set

s′ = η(s′d,T ) = η
(
ρ̂′d(s

′
d)

)
,

and if Ĝ′ is the connected centralizer of s′ in Ĝ, let ξ′ be the identity embedding of

G′ = Ĝ′η(LT ) into LG. Then

Int(s′) ◦ ξ′ = a′ ⊗ ξ′.

Let G′ be any fixed quasisplit group over F for which Ĝ′ is a dual group. Since η(LT )

is contained in G′, the maximal torus T ⊂ G∗ transfers to G′. We can find a maximal
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torus T ′ of G′ over F , an element d′ ∈ T ′(F ) such that G′
d′ is quasisplit, and an admissible

embedding ρ′: T ′ → T that takes d′ to d. Then (G′,G′, s′, ξ′) is an elliptic endoscopic

datum for G, and the corresponding pair (G′, d′) represents a point x ∈ X (G) that maps

to y. We have characterized the image of the map, and completed the proof of (i).

We turn next to (ii). We have to show that the correspondence (G′, d′) → (Gκ, dκ)

gives a well defined action of Ky on the fibre of y. Recalling the definition of the correspon-

dence, we observe immediately that the image xκ of (Gκ, dκ) in X (G) is independent of

the actual choice of the quasisplit group Gκ and the admissible embedding ρκ. It remains

to check that it is also independent of the auxiliary data (G′, d′), ρ′ and η attached to the

fixed point x in the fibre of y. Let (G
′
, d

′
), ρ′: T

′
→ T , and η: LT → LG be a second

set of such data for x. Arguing as at the beginning of the proof of (i), we see that it is

enough to treat the case in which the pair (G
′
, d

′
) equals (G′, d′), and the point d = ρ′(d

′
)

equals d = ρ′(d′). Following the proof of (i) further, we deal with this special case by

writing ρ′ = βρ′α, for automorphisms α ∈ Int(G′
d′) and β ∈ Int(G∗

d). There is then an

element g ∈ Ĝ, unique up to right translation by η(T̂ ), such that ηβ̂ equals the restriction

of Int(g)η to T̂ . The embeddings η and η are assumed to be such that η(s′
T
) and η(s′T )

both equal the point s′. Therefore

s′ = η(s′
T
) = (η ρ̂′)(s′) = (ηβ̂ρ̂′α̂)(s′) = (ηβ̂ρ̂′)(s′)

= (ηβ̂)(s′T ) = (ηβ̂η−1)(s′) = Int(g)(s′),

so that Int(g) centralizes s′. The two sets of auxiliary data assign two elements sκ and sκ

in Ĝ′ to any x in Ky. They are related by

sκ = s′η(κT ) = s′(ηβ̂)(κT ) = s′
(
Int(g)η

)
(κT )

= Int(g)
(
s′η(κT )

)
= Int(g)(sκ),

since κT = β̂(κT ). The second point is to compare the L-actions of WF on the two groups

Ĝκ and Ĝκ. Arguing again as in the proof of (i), we deduce that for any τ ∈WF , g−1η(τT )g

lies in Ĝκη(τT ). Therefore, Int(g) represents an isomorphism between the two endoscopic
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data Gκ and G
κ

for G. It follow easily from the definitions that this isomorphism takes

dκ to a stable conjugate of d
κ

in G
κ
. The pairs (Gκ, dκ) and (G

κ
, d

κ
) therefore represent

the same element xκ in X (G).

We have constructed a well defined action of Ky on the fibre of y in X (G). It remains

to show that the action is transitive. We equip our fixed point x in the fibre with a

complete set of auxiliary data (G′, d′), ρ′, η and ηd. Let x be any other point in the fibre,

equipped with a corresponding set of auxiliary data (G
′
, d

′
), ρ′: T

′
→ T , η: LT → LG,

and ηd:
LT → LĜd. We must show that x = xκ, for some κ in Ky.

By assumption, the pairs (d,G′
d) and (d,G

′

d) attached to the two sets of data are

equivalent. In particular, d is stably conjugate to d. Replacing d, T , and ρ′ by stably

conjugate data for G∗, we may assume that d = d. There is also an isomorphism between

the endoscopic data G
′

d and G′
d for G∗

d. Redefining ρ′, if necessary, we can assume that the

admissible embeddings ρ′d and ρ′d are compatible with respect to this isomorphism, and in

particular, that T = T . The isomorphism includes an element gd in Ĝ∗
d such that

g−1
d s′dgd = s′dκd,

for some element κd in Z(Ĝ∗
d), and such that

g−1
d Ĝ′

dηd(
LT )gd = Ĝ′

dηd(
LT ).

Replacing ηd by its Int(g−1
d ) conjugate, we can assume that gd = 1, and that ηd = ηd.

We are also free to take η = η. The points s′d and s′d are obtained from the semisimple

elements s′ and s′ attached to G
′
and G′. It follows without difficulty that κd maps to an

element κ in Ky. From this, we deduce that

s′ = η(s′T ) = η
(
η−1

d (s′d)
)

= η
(
η−1

d (s′dκd)
)

= η(s′TκT ) = s′η(κT ) = sκ.

We are assuming that the groups G
′
and G′ attached to G

′
and G′ are L-subgroups of LG,

and that ξ
′
and ξ′ are the trivial embeddings. Consequently,

G
′
= Ĝ′η(LT ) = Ĝκη(LT ) = Gκ.
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We have established that (G
′
, d

′
) equals (Gκ, dκ), for an element κ ∈ Ky. Therefore x = xκ,

and so the actions of Ky on the fibre is transitive. This completes the proof of (ii).

The final assertion (iii) is an identity among four constants attached to a point

x ∈ X (G), and its image y ∈ Y(G). Fix auxiliary data (G′, d′), ρ′: T ′ → T , η: LT → LG,

and ηd:
LT → LGd for x, as above, and form the corresponding representative (d,G′

d) of

y. We may as well assume that the maximal torus T ′ in the quasisplit group G′
d′
∼= G′

d

is maximally split. Let W be the Weyl group of (G∗, T ). The embedding η allows us to

identity W with the Weyl group of
(
Ĝ, η(T̂ )

)
, and the action of Γ on either T or T̂ provides

an action of Γ on W . We shall express each of the four constants in terms of various groups

of Γ-invariant cosets in W .

Let Wd, W
′ and W ′

d be the Weyl groups of (G∗
d, T ), (G′, T ′), and (G′

d, T
′
d), respectively.

The embeddings ηd, ηρ̂′ and ηdρ̂
′
d allow us to identify these three groups with the respective

Weyl groups of
(
Ĝ∗

d, ηd(T̂ )
)
,
(
Ĝ′, η(T̂ )

)
and

(
Ĝ′

d, ηd(T̂ )
)
. It follows that each of the three

groups is identified, in one way or another, with a subgroup of W . We have also to

introduce two other subgroups

W̃ ′ =
{
w ∈W : ws′w−1 ∈ s′Z(Ĝ)

}

and

˜̃
W ′ =

{
w ∈ W : ws′w−1 ∈ s′(ηη−1

d )
(
Z(Ĝd)

)}

of W . We shall be interested in the chain

W ′
d ⊂ (W ′ ∩Wd) ⊂ (W̃ ′ ∩Wd) ⊂ (

˜̃
W ′ ∩Wd)

of Γ-stable subgroups of Wd. We note that the largest of these subgroups can also be

written as

˜̃
W ′ ∩Wd =

{
w ∈Wd : ws′dw

−1 ∈ s′dZ(Ĝd)
}
.

The constant cx is the number of F -rational points in the quotient G′
d′,+/G

′
d′ . Any

coset in this quotient has a representative that normalizes T ′. We identify this representa-

tive with an element in the intersection W ′ ∩Wd that is uniquely determined modulo the

40



Weyl group W ′
d of G′

d′
∼= G′

d. Conversely, any coset in W ′ ∩Wd/W
′
d determines a coset

in G′
d′,+/G

′
d′ . We thus obtain an isomorphism from W ′ ∩Wd/W

′
d to G′

d′,+/G
′
d′ , which is

clearly compatible with the two actions of Γ. Therefore

cx =
∣∣(W ′ ∩Wd/W

′
d)

Γ
∣∣.

The constant oy equals the number of outer automorphisms of the endoscopic datum

G′
d of G∗

d. Any such automorphism can be represented by a coset gd in Ĝ∗
d/Ĝ

′
d such that

gds
′
dg

−1
d belongs to s′dZ(Ĝ∗

d), and such that gdG
′
dg

−1
d = G′d. By choosing a representative

of gd in Ĝ∗
d that normalizes ηd(T̂ ), we obtain an element w in the Weyl group Wd that

is uniquely determined modulo W ′
d. The first condition of gd asserts that the image of w

in Wd/W
′
d is contained in

˜̃
W ′ ∩Wd/W

′
d. The second condition asserts that it belongs to

the subset (
˜̃
W ′ ∩Wd/W

′
d)

Γ of Γ-invariant elements. On the other hand, any element in

this subset can be identified with a class gd that satisfies the two conditions. We obtain a

homomorphism

(˜̃
W ′ ∩Wd/W

′
d)

Γ −→ OutG∗
d
(G′

d),

which from the discussion above is surjective. Since any outer automorphism is completely

determined by its action on a maximal torus, the homomorphism is also injective. It follows

that

oy =
∣∣(˜̃
W ′ ∩Wd/W

′
d

)Γ∣∣.

The constant ox equals the order of the group OutG∗(G
′, d′) of outer automorphisms

of the endoscopic datum G′ of G that map the stable conjugacy class of d′ to itself.

Consider an element in this group. We can represent such an element by an F -rational

automorphism φ: G′ → G′ that maps d′ to a stable conjugate. Having chosen φ, we select

an element α in Int
(
G′(F )

)
such that αφ maps d′ to itself, and such that for any τ ∈ Γ,

ατ(α)−1 belongs to Int
(
G′

d′(F )
)
. The torus (αφ)(T ′) centralizes d′, and hence is contained

in G′
d′ . Replacing α by the left translate by an element in Int

(
G′

d′(F )
)

if necessary, we

41



can in fact assume that (αφ)(T ′) = T ′. The composition w = ρ′αφ(ρ′)−1 then stabilizes

the pair (T, d), and therefore belongs to Wd. According to our conventions, W also acts

on η(T̂ ). Since it represents an automorphism of the endoscopic datum G′, the element

w maps s′ to a point in s′Z(Ĝ). Therefore, w belongs to the subgroup W̃ ′ ∩Wd of Wd.

Moreover, if τ belongs to the Galois group Γ, we see that

wτ(w)−1 = ρ′αφ(ρ′)−1τ(ρ′)τ(φ)−1τ(α)−1τ(ρ′)−1

= ρ′ατ(α)−1(ρ′)−1,

since ρ and φ are F -rational maps. Therefore wτ(w)−1 belongs to W ′
d, the subgroup of

elements in Wd induced by G′
d′ . In other words, the projection of w onto W̃ ′ ∩Wd/W

′
d

belongs to the subgroup (W̃ ′ ∩Wd/W
′
d)

Γ of Γ-invariant cosets. We have shown how to

associate a coset in (W̃ ′ ∩Wd/W
′
d)

Γ to any element in OutG∗(G
′, d′). On the other hand,

any coset in (W̃ ′ ∩Wd/W
′
d)

Γ clearly determines a unique element in OutG∗(G
′, d′). We

obtain a homomorphism

(W̃ ′ ∩Wd/W
′
d)

Γ −→ OutG∗(G
′, d′),

which from the discussion above is surjective. The kernel of this homomorphism is the

subgroup of cosets induced from the Weyl group W ′ of Ĝ′, which is just (W ′ ∩Wd/W
′
d)

Γ.

We conclude that

ox =
∣∣(W̃ ′ ∩Wd/W

′
d)

Γ
∣∣∣∣(W ′ ∩Wd/W

′
d)

Γ
∣∣−1

.

We evaluate the last constant |Ky,x| by almost identical means. Suppose that κ belongs

to the stabilizer Ky,x. The pairs (Gκ, dκ) and (G′, d′) are then equivalent. We can find

an F -rational isomorphism ψ: Gκ → G′, which represents an isomorphism of endoscopic

data, such that ψ(dκ) is stably conjugate to d′. We choose an element β in Int
(
G′(F )

)

such that βψ maps dκ to d′, and such that βτ(β)−1 belongs to Int
(
G′

d′(F )
)
, for each τ ∈ Γ.

The torus (βψ)(T κ) centralizes d′, and is therefore contained in G′
d′ . Translating β by an

element in Int
(
G′

d′(F )
)

if necessary, we can assume that (βψ)(T κ) = T ′. The composition
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w = ρ′βψ(ρκ)−1 then stabilizes the pair (T, d), and therefore belongs to Wd. The action

of w on η(T̂ ) maps s′ to an element in sκZ(Ĝ) = s′η(κT )Z(Ĝ). Therefore, w belongs to

the subgroup
˜̃
W ′ ∩Wd of Wd. We also obtain

wτ(w)−1 = ρ′βτ(β)−1(ρ′)−1, τ ∈ T,

as above, so that wτ(w)−1 lies in W ′
d. Therefore, the projection of w onto

˜̃
W ′ ∩Wd/W

′
d

lies in (
˜̃
W ′ ∩Wd/W

′
d)

Γ. We have shown how to associate a coset in (
˜̃
W ′ ∩Wd/W

′
d)

Γ to the

element κ in Ky,x. On the other hand, suppose that w is any coset (
˜̃
W ′ ∩Wd/W

′
d)

Γ. Then

ws′w−1 belongs to s′η(κT )Z(Ĝ), for a unique element κ in Ky. Moreover, w determines

an isomorphism from Gκ to G′ that takes dκ to a stable conjugate of d′. It follows that κ

belongs to the subgroup Ky,x of Ky. The correspondence w → x gives us a homomorphism

(˜̃
W ′ ∩Wd/W

′
d

)Γ
−→ Ky,x,

which from the discussion above is surjective. The kernel of this homomorphism is the

subgroup of cosets w such that ws′w−1 belongs to s′Z(Ĝ). The kernel is therefore equal

to (W̃ ′ ∩Wd/W
′
d)

Γ. We conclude that

|Ky,x| =
∣∣(˜̃
W ′ ∩Wd/W

′
d

)Γ∣∣∣∣(W̃ ′ ∩Wd/W
′
d

)Γ∣∣−1
.

We have now only to compare the four formulas we have obtained for the four con-

stants. We see immediately that

|Ky,x| = oyo
−1
x c−1

x .

This gives the final assertion (iii) of Proposition 3.1. �
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§4. Descent and global transfer factors

The mapping X (G)→ Y(G) is useful for describing the behaviour of transfer factors

under descent. In this section we shall discuss some implications of the main theorem

of [LS2] for the global transfer factors in (1.1). Since we will be applying the results to

the proof of Theorem 1.1, we need only consider elements in Y(G) that map to a fixed

semisimple stable conjugacy class in G(F ). In fact for the next two sections, we can fix a

point y ∈ Y(G), together with a representative (d,G′
d) such that G∗

d is quasisplit. For the

time being, we assume that y lies in the image of the map X (G) → Y(G). In particular,

we can fix a point x in X (G) that maps to y, together with a representative (G′, d′) such

that G′
d′ is quasisplit.

We are assuming that Gder is simply connected, and that Z = {1}. To study the

transfer factors for G′, we recall from §2 that we can set G̃′ = G′, with ξ̃′ then being a

fixed L-isomorphism of G′ with the L-group LG′. The derived group of G∗
d need not be

simply connected. To study the transfer factors for G′
d, we have to fix a suitable central

extension G̃′
d → G′

d over F , together with an L-embedding ξ̃′d: G
′
d →

LG̃′
d. We may as

well assume that G̃′
d is obtained from a fixed z-extension G̃∗

d of G∗
d, as in [LS1, (4.4)].

Let S be a finite set of valuations outside of which G and G′ are unramified, and such

that d is S-admissible [I, §1] and bounded away from S. It follows from [K3, Lemma 7.1]

that the centralizers G∗
d and G′

d′ are also unramified outside of S. Since the endoscopic

group G′
d for G∗

d is isomorphic to G′
d′ , it too is unramified outside of S. We can assume

that the same is true of the extension G̃′
d and the L-embedding ξ̃′d [1, Lemma 7.1].

Assume that

cS =
∏

v∈S

cv

is a semisimple element in G(FS) such that each of the local components dv of d is an

image of cv, relative to the fixed inner twist ψ: G → G∗. In particular, we can choose
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elements g∗v ∈ G
∗
sc(F v) such that Int(g∗v)ψ(cv) = dv. For each v, the isomorphism

ψcv
= Int(g∗v)ψ : Gcv

→ G∗
dv

is then an inner twist, whose inner class is independent of g∗v . It allows us to identify G′
dv

with a local endoscopic datum for Gcv
. We assume that (d,G′

d) is such that G′
dv

is relevant

to Gcv
. The main result of [LS2] relates the local relative transfer factors attached to the

pairs (Gv, G
′
v) and (Gcv

, G′
dv

).

Before we recall the descent formula from [LS2], we shall thicken cS to an adelic

element cA ∈ G(A). We have fixed an open maximal compact subgroup KS =
∏

v 6∈S

Kv

of GS(AS) such that each Kv ⊂ Gv is hyperspecial. For every v 6∈ S, we can choose a

semisimple element cv ∈ Kv for which dv is an image. This follows from [T, (3.2)], the

S-admissibility of d, and the fact that any two hyperspecial maximal compact subgroups

of Gv(Fv) are conjugate under Gv,ad(Fv). By the last statement of Proposition 7.1 of [K3],

the conjugacy class of cv in Gv(Fv) is unique. We set

cA = cS ·
∏

v 6∈S

cv.

We have introduced cA in order to make use of a general construction in [K3, §6] (which

extends the special case of [L2, Chapter 7]). Applied to cA, the construction yields a

character obs(cA) on the group K(G∗
d, G

∗) ∼= Ky of element in
(
Z(Ĝ∗

d)/Z(Ĝ)
)Γ

whose image

in H1
(
Γ, Z(Ĝ)

)
is locally trivial. According to [K3, Theorem 6.6], obs(cA) is trivial if and

only if cA is G(A)-conjugate to the diagonal image of an element in G(F ), or equivalently,

if and only if cS has a representative in G(F ) whose conjugacy class in GS(AS) meets KS.

We now describe the descent formula from [LS2]. For each v ∈ S, choose maximal tori

T ′
v and T

′

v in G′
d′v

that are images of Fv-rational maximal tori Tcv
and T cv

in Gcv
. We can

identify T ′
v and T

′

v with maximal tori in G′
dv

, and we write T̃ ′
v and T̃ ′

v for their preimages

in G̃′
dv

. As usual, we write T ′
S , TcS

, T̃ ′
S , etc., for the relevant products over v ∈ S. Choose

strongly G-regular elements σ′
S ∈ T

′
S and σ′

S ∈ T
′

S that are images of points ρS ∈ TcS
and
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ρS ∈ T cS
, together with preimages σ̃′

S ∈ T̃
′
S and σ̃′

S ∈ T̃
′
S . We can then form the relative

(local) transfer factors

∆(σ′
S, ρS;σ′

S, ρS) =
∏

v∈S

∆(σ′
v, ρv;σ

′
v, ρv)

for (GS , G
′
S), and corresponding objects

∆cS
(σ̃′

S, ρS; σ̃′S , ρS) =
∏

v∈S

∆cv
(σ̃′

v, ρv; σ̃
′
v, ρv)

for (GcS
, G′

cS
). The results of [LS2] apply to the quotient

Θ(σ̃′
S , ρS; σ̃′

S , ρS) = ∆(σ′
S, ρS;σ′S , ρS)∆cS

(σ̃′
S, ρS; σ̃′

S, ρS)−1.

Let d̃′ be a fixed preimage of d′ in G̃′(F ) that is bounded at each place v 6∈ S. One of the

easier results of [LS2] is that Θ(σ̃′
S , ρS; σ̃′

S , ρS) extends to a smooth function of (σ̃′, ρS) and

(σ̃′
S , ρS) in a neighbourhood of (d̃S, cS). The main result of [LS2] asserts that the limit of

Θ(σ̃′
S , ρS; σ̃′

S , ρS), as (σ̃′
S, ρS) and (σ̃′

S , ρS) both approach (d̃′S , cS), is independent of the

various tori.

We can also form the absolute (global) transfer factor

∆(σ′
S, ρS) = ∆(σ′

S , ρS;σ′
S , ρS)∆(σ′

S , ρS)

for (GS , G
′
S), defined as in [I, §4]. Here σ′

S is assumed to come from a rational element

σ′ ∈ T
′
(F ), in which T

′
⊂ G′ is a maximal torus over F , while ρS comes from an element

ρ ∈ G(A) of which σ′ is an adelic image. The factor on the right is the canonical preassigned

value

∆(σ′
S , ρS) = d(σ′, ρ)−1

∏

v 6∈S

∆Kv
(σ′

v, ρv)−1,

described in [I, §4]. Since each G′
d′v

is relevant to Gcv
, we can arrange that T

′
is contained in

G′
d′ and that each point ρ′v lies in Gcv

, as before. (See the discussion preceding [I, Lemma
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4.3].) Now the group GcS
, unlike GS , does not generally have an F -rational structure. In

this case, we just set

∆cS
(σ̃′

S, ρS) = ∆cS
(σ̃′

S, ρS; σ̃′
S, ρS)∆cS

(σ̃′
S , ρS),

where ∆cS
(σ̃′

S , ρS) is some arbitrary preassigned value taken at the fixed base point

(σ̃′
S , ρS). We then form an absolute quotient

Θ(σ̃′
S , ρS) = ∆(σ′

S, ρS)∆cS
(σ̃′

S, ρS)−1.

The earlier relative quotient has the transitivity property

Θ(σ̃′
S , ρS; σ̃′S , ρS) = Θ(σ̃′

S , ρS; σ̃′S , ρS)Θ(σ̃′
S , ρS; σ̃′

S , ρS).

The point (σ̃S , ρS) has now been fixed, but we are free to let (σ̃′
S, ρS) approach (d̃′S, cS).

We see that Θ(σ̃′
S , ρS) extends to a smooth function of (σ̃′

S, ρS) in a neighbourhood of

(d̃′S, cS) in (T̃ ′
S, TS), whose value

(4.1) Θ(x, cA) = lim
(σ̃′

S
,ρS)→(d̃′

S
,cS)

Θ(σ̃′
S , ρS)

at (d̃′S, cS) is independent of T ′
S and TS . (The language is slightly careless, since the

domain of Θ(σ̃′
S , ρS) is a proper subset of T̃ ′

S × TcS
. To be more precise, we have first to

take σ̃′
S to be in a neighbourhood of d̃′S in T̃ ′

S , and then let ρS range over a corresponding

neighbourhood of cS in TcS
in such a way that {σ′

S} is a smoothly varying family of images

of {ρS}. The assertion is that the resulting function of σ̃′
S is smooth.)

Consider the special case that cA is the diagonal image of an element c in G(F ). In

this case, we choose an inner twist

ψc = Int(g∗)ψ : Gc−→G
∗
d, g∗ ∈ G∗

sc(F ),

that maps c to d, and we set ψcv
= ψc, for each v ∈ S. If v 6∈ S, Gcv

is unramified,

and Kcv
= Kv ∩ Gcv

(Fv) is a hyperspecial maximal compact subgroup of Gcv
(Fv) [K3,
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Proposition 7.1]. We can therefore take the canonical preassigned value

∆c(σ̃
′
S , ρS) = ∆cS

(σ̃′
S , ρS) = dcS

(σ′, ρ)−1
∏

v 6∈S

∆Kcv
(σ̃′

v, ρv)
−1

in the absolute transfer factor

∆c(σ̃
′
S, ρS) = ∆cS

(σ̃′
S , ρS).

With this preassigned value, we set

Θ(x, c) = Θ(x, cA).

Lemma 4.1. (i) The action of Ky on the fibre of y satisfies

Θ(xκ, cA) = 〈obs(cA), κ〉−1Θ(x, cA), κ ∈ Ky.

(ii) Suppose that obs(cA) = 1. Then Θ(x, c) = 1, for any element c ∈ G(F ) that is

G(A)-conjugate to cA.

Proof. We can certainly arrange that the representative (G′, d′) of x maps directly

to the representative (d′, G′
d) of y, as in the preamble to Proposition 3.1. In particular, we

fix an admissible embedding ρ′: T ′ → T , of a maximal torus T ′ ⊂ G′ over F to a maximal

torus T ⊂ G∗ over F , as well as dual admissible L-embeddings η′d:
LT → LG∗

d and

η: LT → LG, which satisfy the conditions of §3. We can then represent the action Ky on

the fibre of y by the correspondence (G′, d′)→ (Gκ, dκ).

We can assume that the rational tori T ′ and T transfer locally to each of the groups

Gv. For each v, T is then a local image at v of a fixed maximal torus Tcv
⊂ Gcv

, which is

defined over Fv. The limit (4.1) is independent of the original maximal tori. In particular,

we can evaluate it by taking σ′
S and ρS to be in the tori T ′

S = T ′(FS) and TcS
=

∏
v
Tcv

(Fv)

we have just fixed. The point is that it is easier to study the quotient

Θ(σ̃′
S, ρS) = ∆(σ′

S , ρS)∆cS
(σ̃′

S, ρS)−1
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when σ′
S lies in a torus that is defined over F .

The notation suggests that the limit (4.1) is independent of S. To verify this, we

observe that if S is augmented by an unramified place v, the quotient Θ(σ̃′
S , ρS) is changed

by a factor

ΘKv
(σ̃′

v, ρv) = ∆Kv
(σ′

v, ρv)∆Kcv
(σ̃′

v, ρv)
−1.

Since

lim
(σ̃v,ρv)→(d̃v ,cv)

ΘKv
(σ̃′

v, ρv) = 1,

by [H, Lemma 8.1], the limit (4.1) is indeed independent of S. We are therefore free to

enlarge the finite set S in our computation of the limit.

With the preliminary remarks out of the way, let us consider the numerator ∆(σ′
S , ρS)

of the quotient Θ(σ̃′
S , ρS). We shall examine the factors in the product

∆(σ′
S, ρS) = ∆(σ′

S , ρS;σ′
S , ρS) · d(σ′, ρ)−1 ·

∏

v 6∈S

∆Kv
(σ′

v, ρv)
−1.

The factors in the infinite product on the right are almost all equal to 1 [LS1, Corollary

6.4.B]. Enlarging S, if necessary, we can assume that the infinite product itself is equal to

1. The relative factor on the left is a product

∆(σ′
S, ρS;σ′S , ρS) =

∏

ι

∆ι(σ
′
S, ρS;σ′S , ρS)

of four terms, in which ι ranges over indices I, II, 1 and 2, as in [LS1, (3.7)]. If ι equals

one of the three indices I, II or 2, the corresponding term is by definition a quotient

∆ι(σ
′
S , ρS;σ′

S , ρS) = ∆ι(σ
′
S, ρS)∆ι(σ

′
S , ρS)−1

of absolute factors, whose denominator ∆ι(σ
′
S, ρS) depends only on the rational element

σ′ ∈ T
′
(F ). Enlarging S if necessary, we deduce from Lemma 6.4.A of [LS1] that

∆ι(σ
′
S , ρS;σ′

S, ρS) = ∆ι(σ
′
S, ρS), ι = I, II, 2.
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The fourth term ∆1(σ
′
S , ρS;σ′

S , ρS) is a product over v ∈ S of the local relative factors

defined in [LS1, (3.4)]. However, the term itself is really a global object. It is subject to

the argument on pp. 267–268 of [LS1]. The argument was presented for the case that σ ′
S

comes from an element in T ′(F ), but it holds more generally, so long as the torus T ′ is

defined over F . We obtain

∆1(σ
′
S, ρS;σ′

S, ρS) = d(σ′
S , ρS)−1d(σ′

S , ρS),

where d(σ′
S , ρS) is defined as a global Tate-Nakayama pairing on the torus Tsc by an obvious

extension of the construction on p. 267 of [LS1]. The factor d(σ′
S , ρS) is defined the same

way. However, the arguments σ′
S and ρS in this case come from the adelic points σ′ and ρ.

If S is sufficiently large, d(σ′
S , ρS) equals d(σ′, ρ), and therefore cancels the middle factor

from the original product. We conclude that

(4.2) ∆(σ′
S, ρS) = ∆I(σ

′
S, ρS)∆II(σ

′
S , ρS)∆2(σ

′
S, ρS)d(σ′

S, ρS)−1.

A similar discussion applies to the denominator ∆cS
(σ̃′

S, ρS) of Θ(σ̃′
S , ρS), even though

GcS
does not have to come from a group that is defined over F . This is because the points

σ̃′
S and σ̃′

S lie in maximal tori in G̃′
d that are each defined over F . We deduce that

∆cS
(σ̃′

S, ρS) has a product decomposition that is completely parallel to (4.2), except for a

multiplicative constant CS that depends on the preassigned value ∆cS
(σ′

S , ρS). It follows

that

Θ(σ̃′
S , ρS) = CSΘI(σ̃

′
S , ρS)ΘII(σ̃

′
S, ρS)Θ2(σ̃

′
S, ρS)d(σ′

S, ρS)−1dcS
(σ̃′

S, ρS),

where

Θι(σ̃
′
S, ρS) = ∆ι(σ

′
S, ρS)∆cS,ι(σ̃

′
S, ρS)−1, ι = I, II, 2.

If cS has a rational representative c, and ψcS
= ψc as above, the constant CS equals 1.

We shall show that for ι = I, II or 2, we can assume that the formula

(4.3) lim
(σ̃′

S
,ρS)→(d̃′

S
,cS)

Θι(σ̃
′
S , ρS) = 1
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holds. The three functions to be considered in (4.3) are each independent of the point ρS.

They do depend on choices of a-data {aα,S} and χ-data {χα,S}, but we can assume that

these objects have been chosen relative to the global field F , as in [LS1, (2.6.5)]. The first

function depends only on the admissible embedding ρ′: T ′ → T of rational tori, rather

than the point σ̃′
S . The relevant part of the proof of [LS1, Theorem 6.4.A] tells us that

∆I(σ
′
S, ρS) = ∆cS,I(σ̃

′
S, ρS) = 1,

so long as S is sufficiently large. Therefore (4.3) holds if ι = I. For the second function,

we observe as on p. 504 of [LS2] that

ΘII(σ̃
′
S, ρS) =

∏

α

χα,S

(α(σ∗
S)− 1

aα,S

)
,

where σ∗
S = ρ′(σ′

S) is the image of σ̃′
S in TS , and α runs over the Γ-orbits of roots of

(G∗, T ) that are not roots of G∗
d and are not coroots of Ĝ′ (relative to the embedding

η: LT → LG). For each α, χα is a character on A∗
Fα
/F ∗

α, for a finite Galois extension

Fα ⊃ F such that the quotient
(
α(d)− 1

)
a−1

α belongs to F ∗
α. Enlarging S if necessary, we

obtain

lim
σ̃′

S
→d̃′

S

χα

(α(σ∗
S)− 1

aα,S

)
= χα

(α(dS)− 1

aα,S

)
= χα

(α(d)− 1

aα

)
= 1.

Therefore (4.3) also holds if ι = II. The third function equals

Θ2(σ̃
′
S , ρS) = 〈aχ, σ

∗
S〉〈ad,χ, σ̃

∗
S〉

−1,

where aχ ∈ H1(WF , T̂ ) is the element constructed from the χ-data and the embedding

LG′ ∼
−→G′ ↪→ LG, as in [LS1, (3.5)], and ad,χ is the corresponding element for G∗

d. (We

have written σ̃∗
S for the image of σ̃′

S in the z-extension G̃∗
d of G∗

d used to construct G′
d.)

Since 〈aχ, ·〉 stands for a character on T (A)/T (F ), we obtain

lim
σ̃′

S
→d̃′

S

〈aχ, σ
∗
S〉 = 〈aχ, dS〉 = 〈aχ, d〉 = 1,
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so long as S is sufficiently large. A similar formula holds for the limit of 〈ad,χ, σ̃
∗
S〉. We

conclude therefore that (4.3) is valid for ι = 2.

We have shown that if S is sufficiently large, (4.3) is valid for each of the three indices

ι = I, II, 2. It follows that the limit (4.1) equals

(4.4) Θ(x, cA) = CS lim
(σ̃′

S
,ρS)→(d̃′

S
,cS)

d(σ′
S, ρS)−1dcS

(σ̃′
S, ρS).

We shall use this formula to establish the two assertions of the lemma.

For the first assertion, we fix an element κ ∈ Ky. Then xκ is the point in the fibre of

y that is represented by the pair (Gκ, dκ) constructed in §3. Recall that Gκ comes with

a maximal torus T κ that contains dκ, together with an admissible embedding ρκ of T κ

into G∗
d that takes (T κ, dκ) to (T, d). Suppose that σ′

S ∈ T
′
S is a given point, with image

σ∗
S in TS , as above. We then take σκ

S to be the preimage of σ∗
S in Tκ

S . Since dcS
(σ̃κ

S , ρS)

depends on κ only through the endoscopic datum Gκ
d for G∗

d, and since (d,G′
d) and (d,Gκ

d)

represent the same point y in Y(G), we see that

dcS
(σ̃κ

S, ρS) = dcS
(σ̃′

S , ρS).

To compare the factors d(σκ
S, ρS) and d(σ′

S, ρS), we recall that the factor d(σ′
S, ρS) is

defined by a global Tate-Nakayama pairing on Tsc. It equals 〈µT , s
′
T 〉, where as in [LS1,

(6.3)], µT = µT (σ∗
S, ρS) is a class in H1

(
Γ, Tsc(A)/Tsc(F )

)
attached to σ∗

S = ρ′(σ′
S) and

ρS, and s′T is the image of s′T in the group π0(T̂
Γ
ad) = π0

((
T̂ /Z(Ĝ)

)Γ)
. We have written

A here for the ring of adeles of F . Since σ∗
S also equals ρκ(σκ

S), d(σκ
S, ρS) equals 〈µT , s

κ
T 〉.

But according to the definitions in §3, sκ
T equals s′Tκ. It follows from (4.4) that

(4.5) Θ(xκ, cA)Θ(x, cA)−1 = lim
(σ̃′

S
,ρS)→(d̃′

S
,cS)

〈µT (σ∗
S, ρS), κ〉−1.

The precise definition of µT (σ∗
S, ρS) is a minor extension of that on p. 267 of [LS1].

To describe it, we write AS for the subring of adeles in A that are supported at the places

of F over S. Let hS be a point in G∗
sc(AS) such that

hSψ(ρS)h−1
S = σ∗

S.
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Then µT (σ∗
S, ρS) is defined to be the image in H1

(
Γ, Tsc(A)/Tsc(F )

)
of the 1-chain

vS(τ) = hSu(τ)τ(hS)−1, τ ∈ Γ,

from Γ to Tsc(AS), for any points in u(τ) in G∗
sc(F ) such that ψτ(ψ)−1 equals Int

(
u(τ)

)
.

This definition is quite similar to the construction of the element obs(cA) in [K3, §6]. In

the case of obs(cA), the role of the torus

Tsc = G∗
sc ∩ T = G∗

der ∩ T

is played by the preimage

G∗
sc,d = G∗

sc ∩G
∗
d = G∗

der ∩G
∗
d

of G∗
d in G∗

sc, while the role of (σ∗
S , ρS) is played by (d, cA). The construction in [K3] then

exhibits obs(cA) as a class in H1
(
Γ, G∗

sc,d(A)/Z∗
sc,d(F )

)
, where Z∗

sc,d denotes the center

of G∗
sc,d. It is the pairing of this cohomology set with π0

((
Z(Ĝ∗

d)/Z(Ĝ)
)Γ)

, provided by

[K3, Theorem 2.2], that defines obs(cA) as a character on Ky. Now the 1-chain vS(τ)

above is a cocycle modulo translation by the center of G∗
sc. It projects to a class in

H1
(
Γ, Tsc(A)/Z∗

sc,d(F )
)
, which can be mapped in turn to a class in

H1
(
Γ, G∗

sc,d(A)/Z∗
sc,d(F )

)
. The pairing of the latter class with κ is equal to the pair-

ing that occurs on the right hand side of (4.5), which is between the original class µT and

the image of κ in π0(T̂
Γ
ad). (This follows from the functoriality assertion in [K3, Theorem

2.2], and the remark at the top of p. 370 of [K3].) A review of the definition in [K3, §6] of

obs(cA) then leads directly to the conclusion that

lim
(σ̃′

S
,ρS)→(d̃′

S
,cS)

〈µT (σ∗
S, ρS), κ〉−1 = 〈obs(cA), κ〉−1,

so long as S is sufficiently large. The assertion (i) of the lemma follows from (4.5).

For the assertion (ii), we assume that obs(cA) = 1. Then there is an element c ∈ G(F )

that is G(F )-conjugate to cA. We fix an inner twist ψc = Int(g∗)ψ from Gc to G∗
d, as in
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the preamble to the lemma. The constant CS is then equal to 1. It follows from (4.4) that

Θ(c, x) = lim
(
d(σ′

S, ρS)−1dc(σ̃
′
S, ρS)

)

= lim
(
〈µT , s

′
T 〉

−1〈µc,T , s
′
d,T 〉

)
.

The class µT = µT (σ∗
S, ρS) was defined in terms of the elements hS and u(τ) above. The

class µc,T = µc,T (σ̃∗
S , ρS) is defined in exactly the same way, except that the role of G and

ψ has to be played by Gc and ψc. In particular, µc,T takes values in the preimage of T

in G∗
d,sc, rather than its preimage Tsc in G∗

sc. Now, according to the definitions in §3, s′d,T

and s′T represent the same point in T̂ . Moreover, s′d,T equals the image of s′T under the

map from T̂ /Z(Ĝ) to T̂ /Z(Ĝ∗
d). Therefore

〈µc,T , s
′
d,T 〉 = 〈µc,T , s

′
T 〉,

where µc,T is the image of µc,T in H1
(
Γ, Tsc(A)/Tsc(F )

)
under the map from G∗

d,sc to

G∗
sc. Set hS,c = hS(g∗)−1, where hS is the element used above to construct µT . It is an

immediate consequence of the definitions that

hS,cψc(ρS)h−1
S,c = σ∗

S ,

and that

ψcτ(ψc)
−1 = Int

(
g∗u(τ)τ(g∗)−1

)
, τ ∈ Γ.

It follows that µc,T = µT , from which we conclude that Θ(c, x) = 1. This completes the

proof of the remaining assertion of the lemma. �

The descent theorem of Langlands and Shelstad will be a major part of our proof

of Theorem 1.1. We shall actually use a minor variant of the theorem, which applies to

the extended transfer factors ∆G(δ̇′S , γ̇S) in the definition (1.1). Assume (d,G′
d), (G′, d′)

and cS are as at the beginning of the section. We fix an element γ̇S in ΓE
ell(G,S), with

Jordan decomposition γ̇S = cSα̇S, as in assertion (a) of Theorem 1.1. We also fix an

element δ̇′S in ∆ell(G
′, S), with Jordan decomposition δ̇′S = d′Sβ̇

′
S , where d′S is the image
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of d′ in G′(FS). Since G̃′ = G′, we can form the extended transfer factor ∆G(δ̇′S , γ̇S). The

element β̇′
S belongs a priori to the basis ∆unip(G′

d′
S
). Suppose that it actually lies in the

subset ∆unip,der(G
′
d′

S

) of this basis. As we noted before stating Corollary 2.3, there is a

canonical bijection from ∆unip,der(G
′
d′

S

) onto the corresponding subset ∆unip,der(G̃
′
d′

S
, η̃′S)

of ∆unip(G̃′
d′

S
, η̃′S). Identifying β̇′

S with its image in ∆unip,der(G̃
′
d′

S
, η̃′S), we can also form

the extended transfer factor ∆G,cS
(β̇′

S , α̇S) for GcS
.

Lemma 4.2. Assume that β̇′
S lies in the subset ∆unip,der(G

′
d′

S

) of ∆unip(G′
d′

S

). Then

(4.6) ∆G(δ̇′S , γ̇S) = Θ(x, cA)∆G,cS
(β̇′

S , α̇S)

Proof. We can write

Θ(x, cA) =
∏

v∈S

Θ(x, cv),

where

Θ(x, cv) = lim
(σ̃′v,ρv)→(d̃′v ,cv)

Θ(σ̃′
v, ρv)

is a limit of the v-component

Θ(σ̃′
v, ρv) = ∆(σ′

v, ρv)∆cv
(σ̃′

v, ρv)
−1

of Θ(σ̃′
S , ρS). This is of course because the descent theorem of [LS2] applies to each v. The

theorem asserts that the quotient Θ(σ̃′
v, ρv) extends to a smooth function of (σ̃′

v, ρv) in a

neighbourhood of (d̃′v, cv), and that the limit Θ(x, cv) is independent of the choice of the

tori T̃ ′
v and Tv that are the domains of σ̃′

v and ρv.

The local components γ̇v = cvα̇v and
˜̇
δ′v = d̃′vβ̇

′
v are of course not assumed to be

semisimple. However, we can approximate them by the strongly G-regular elements ρv

and σ′
v. If v is a p-adic place, the function Θ(σ̃′

v, ρv) is actually constant for (σ̃′
v, ρv) in a

neighbourhood of (d̃′v, cv). It is then not hard to establish from Harish-Chandra’s theory

of descent for smooth functions [LS2, (1.5)] that

(4.7) ∆G(δ̇′v, γ̇v) = Θ(x, cv)∆G,cv
(
˜̇
δ′v, γ̇v).
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If v is archimedean, Θ(σ̃′
v, ρv) need not be constant near (d̃′v, cv). However, the dependence

on (σ̃′
v, ρv) is quite mild. Of the four terms in [LS1, (3.2)-(3.5)] that make up the product

∆(σ′
v, ρv), it is only the factors ∆II(σ

′
v, ρv) and ∆2(σ

′
v, ρv) that are not locally constant.

An examination of the definitions in [LS1, (3.3), (3.5)] reveals that the product

∆II(σ
′
v, ρv)∆2(σ

′
v, ρv)

depends only on the image of σ′
v inG′

v/G
′
der,v. Since the corresponding terms in ∆cv

(σ̃′
v, ρv)

have a similar property, the quotient Θ(σ̃′
v, ρv) then depends only on the image of σ̃′

v in

G̃′
d′v
/G̃′

d′v,der. We are assuming that β̇′
v lies in the image of ∆unip(G̃′

d′v,der) in ∆unip(G̃′
d′v
, η̃′v).

This condition can therefore be used in conjunction with Harish-Chandra descent to show

that (4.7) holds in the archimedean case as well. (See the forthcoming paper [A5].)

Taking the product of the terms in (4.7) over v ∈ S, we obtain

∆G(δ̇′S , γ̇S) = Θ(x, cA)∆G,cS
(d̃′S β̇

′
S , cSα̇S).

To remove the arguments d̃′S and cS from the factor on the right, we appeal to Lemma

3.5.A of [LS2]. This result implies that

∆G,cS
(d̃′S β̇

′
S , cSα̇S) = η̃′S(d̃′S)∆G,cS

(β̇′, α̇S),

where η̃′S =
∏

v∈S

η̃′v is a character on the center of G̃∗
dS

that restricts to the earlier character

on C̃ ′
S . We recall here that G̃∗

d is the fixed z-extension of G∗
d used to construct the extension

G̃′
d of G′

d. We also recall that for any v, η̃′v is the restriction to the center of G̃∗
dv

of the

character

λv(σ̃
′
v) = ∆cv,2(σ̃

′
v, ρv), σ̃′

v ∈ T̃
′
v,

where T̃ ′
v is a maximal torus in G̃′

dv
over Fv, and ∆cv,2 is the component in [LS1, (3.5)] of

the transfer factor for (G′
dv
, Gcv

). The point of [LS2, Lemma 3.5.A] was to show that η̃′v

is independent of the choice of T̃ ′
v. It remains for us to check that η̃′S(d̃′S) equals 1.
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The factor ∆cv,2 is defined in terms of the local embedding ξ̃′dv
: LG̃′

dv
→ LG̃∗

dv
, and

the admissible embeddings LT̃ ′
v →

LG̃′
dv

and LT̃ ′
v →

LG̃∗
dv

determined by local χ-data

[LS1, (2.5)]. Since η̃′v is independent of T̃ ′
v, we can take T̃ ′

v to be the localization of a

maximal torus T̃ ′ in G̃′
d over F . We can also arrange that the admissible embeddings are

localizations of global embeddings LT̃ ′ → LG̃′
d and LT̃ ′ → LG̃d, as in [LS1, (2.6.5)]. Since

ξ̃′dv
is the localization of the global embedding ξ̃′d, λv is the local component of a character

λ on T̃ ′(F )\T̃ ′(A). It follows that

η̃′S(d̃′S) = λS(d̃′S) = λ(d̃′)
( ∏

v 6∈S

λv(d̃′v)
−1

)
=

∏

v 6∈S

η̃′v(d̃′v)
−1.

We have assumed that G̃∗
d, G̃

′
d and ξ̃′d are unramified at any v not in S. For any such v,

we now take T̃ ′
v to be an unramified torus, equipped with unramified local χ-data. The

corresponding character λv on T̃ ′
v is then unramified. We also assumed earlier in this

section that d̃′ was bounded at any v 6∈ S. In other words, d̃′v lies in a compact subgroup

of the unramified torus T̃ ′
v. It follows that

η̃′v(d̃
′
v) = λv(d̃

′
v) = 1, v 6∈ S.

Therefore η̃′S(d̃′S) = 1, as required. �
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5. Transfer factors for Gc

In this section, we shall establish another property of global transfer factors. This

result pertains strictly to the transfer factors for groups Gc obtained from G by global

descent. Our concern will be the global endoscopic data G′
d for Gc that do not come from

endoscopic data for G. We shall establish a key formula for any such G′
d, which will be

used in §6 in the form of a vanishing property.

We fix y ∈ Y(G) and (d,G′
d) as in §4, but we relax the condition that y lie in the image

of the map X (G) → Y(G). We continue to assume that d transfers locally to G. Rather

than deal with a finite set S of valuations, however, we simply fix a semisimple element cA

in G(A) of which d is an adelic image. We assume that obs(cA) = 1. Then we can find a

rational element c ∈ G(F ) that is G(A)-conjugate to cA. Given c, we define an inner twist

ψc: Gc → G∗
d, as in the last section. We assume that G′

d belongs to Eell(Gc). Then G′
d

represents an elliptic endoscopic datum for G∗
d that is locally relevant to each of the groups

Gcv
. We shall consider the canonically normalized adelic transfer factors ∆c(σ̃

′, ρc), for

strongly G-regular elements σ̃′ ∈ G̃′
d(A) and ρc ∈ Gc(A) such that the projection σ′ of σ̃′

onto G′
d(A) is an adelic image of ρc.

The conjugacy class of c in G(F ) is not uniquely determined by cA. Are the transfer

factors ∆c(·, ·) independent of c? The question will be of considerable interest to us when

we turn to the proof of Theorem 1.1 in the next section. For we shall encounter some

extraneous terms that will be impossible to suppress unless the transfer factors do actually

vary with c. But the isomorphism class of the group Gc(A) is independent of c. What

mechanism could cause the corresponding transfer factors to vary?

To examine the question, we first recall how to classify the set of rational conjugacy

classes c ∈ Γss(G) that map to the G(A)-conjugacy class of cA. Fix one such class c1, and

set G1 = Gc1
. If c is another such class, we can find an element g ∈ G(F ) such that

c1 = Int(g)c.
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Since Gder is simply connected, the cocycle

τ −→ gτ(g)−1, τ ∈ Γ,

takes values in G1. Since c and c1 both lie in the G(A)-conjugacy class of cA, the image

λc of this cocycle in H1(F,G1) lies in the subset ker1(F,G1) of locally trivial classes. The

map c→ λc is then a bijection from the set of rational conjugacy classes c ∈ Γss(G) in the

G(A)-conjugacy class of cA, onto the set

(5.1) ker
(
ker1(F,G1)−→ker1(F,G)

)
.

On the other hand, there is a canonical bijection λ → 〈λ, ·〉 from the set (5.1) onto the

dual of the finite abelian group

(5.2) coker
(
ker1(F,Z(Ĝ)

)
−→ker1

(
F,Z(Ĝ1)

)
.

This follows from the commutative diagram

ker1(F,G1) −→ ker1(F,G)
↓ ↓

ker1
(
F,Z(Ĝ1)

)∗
−→ ker1

(
F,Z(Ĝ)

)∗
,

as in [K3, p. 394], where the vertical arrows are the bijections defined in [K2, §4].

For any c, there is an isomorphism ρ1 → ρc from G1(A) onto Gc(A), which is uniquely

determined up to conjugacy in G1(A). Moreover, the inner twist ψc allows us to identity

the dual group Ĝc with Ĝd. In particular, we can identity the groups ker1
(
F,Z(Ĝ1)

)

and ker1
(
F,Z(Ĝd)

)
. Recall that the endoscopic datum G′

d for G∗
d determines a class a′d

in ker1
(
F,Z(Ĝd)

)
. We shall sometimes identity this class with its image in the quotient

(5.2). According to Proposition 3.1, the point y represented by (d,G′
d) lies in the image of

the mapping X (G)→ Y(G) if and only if the image of a′d in (5.2) is trivial.

Lemma 5.1. The absolute adelic transfer factors for (Gc, G
′
d) and (G1, G

′
d) are related by

(5.3) ∆c(σ̃
′
c, ρc) = 〈λc, a

′
d〉∆c1

(σ̃′, ρ1).
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Proof. We have assumed that the endoscopic datum G′
d is locally relevant to Gc.

It is therefore locally relevant to G1 (since Gc and G1 are isomorphic over any of the

completions Fv). As we noted in [I, §4], this implies that there is a maximal torus T ′ in G′
d

over F that transfers locally to G1. We fix such a T ′, as well as an admissible embedding

of T ′ into a maximal torus T in G∗
d over F . We also fix an adelic torus T1,A(A) in G1(A)

which transfers to T ′(A). By this we mean the centralizer of some strongly regular element

in G1(A) that has an adelic image in T ′(A). Then T1,A(A) is a restricted direct product of

groups T1,v(Fv), where T1,v is a maximal torus in G1 over Fv that transfers to T ′ over Fv.

We can regard T1,A as a group scheme over the ring A, which is embedded as a

subgroup scheme in the product G1,A = G1 ×F A. As in the last section, we shall work

with the ring of adeles A of the algebraic closure F of F . The Galois group Γ = Gal(F/F )

acts on A, as well as on the group T1,A(A) of points in T1,A with values in A. We note that

T1,A(A) is a restricted direct product of groups

T1,v(Av) =
∏

w|v

T1,v(Fw),

where w runs over the valuations of F that lie above the valuation v of F . The action of

Γ on T1,A(A) is then given by the corresponding product of actions of Γ on each of the

groups T1,v(A). (The arguments that follow will actually depend only on the ring AE of

adeles of some large finite Galois extension E of F . The reader is free to replace A by AE ,

and Γ by the quotient ΓE = Gal(E/F ).)

The lemma pertains to a fixed rational conjugacy class c ∈ Γss(G) that is conju-

gate to c1 over G(A). The corresponding class λc is the image in (5.1) of the cocycle

gτ(g)−1, where g is a fixed element in G(F ) such that c1 = Int(g)c. From a general result

[S, Corollary 5.4] for adjoint groups, it is known that ker1(F,G1,ad) is trivial. The image

of λc in ker1(F,G1,ad) therefore splits. Replacing g by a left translate by some element

in G1(F ), if necessary, we can then assume that the cocycle takes values in the center

of G1(F ). The group G1(F ) is of course contained in G1(A), and the center of G1(F ) is
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contained in the subgroup T1,A(A) of G1(A). The cocycle therefore takes values in T1,A(A),

and maps to a class in H1
(
Γ, T1,A(A)

)
. We claim that this class lies in the subset

(5.4) ker
(
H1

(
Γ, T1,A(A)

)
→ H1

(
Γ, G1(A)

))

of H1
(
Γ, T1,A(A)

)
. To see this, we write

H1
(
Γ, T1,A(A)

)
=

⊕

v

H1
(
Γ, T1,v(Av)

)
∼=

⊕

v

H1(Γv, T1,v)

and

H1
(
Γ, G1(A)

)
=

⊕

v

H1
(
Γ, G1(Av)

)
∼=

⊕

v

H1(Γv, G1),

by Shapiro’s lemma. (The summands on the right of course depend on a choice of embed-

ding of F into F v, for each v.) Since the original class λc is locally trivial, the class in

H1
(
Γ, T1,A(A)

)
projects to the subset

ker
(
H1(Fv, T1,v)→ H1(Fv, G1)

)

of H1(F, T1,v), for each v. The claim follows.

Let T1,A,sc be the preimage of T1,A in the scheme G1,sc ×F A. The set (5.4) is then

the image of a surjective map, whose domain is the set

ker
(
H1

(
Γ, T1,A,sc(A)

)
−→H1

(
Γ, G1,sc(A)

)
.

This follows from the fact that G1,sc(A) maps surjectively to G1(A)/T1,A(A). (See the

remark near the bottom of p. 381 of [K3].) We can therefore find an element ksc in

G1,sc(A) such that the cocycle

k−1
sc τ(ksc), τ ∈ Γ,

takes values in T1,A,sc(A), and maps to the same class in (5.4) as the cocycle gτ(g)−1. Let

k be the image of ksc in G1(A). Then there is an element t in T1,A(A) such that

k−1τ(k) = gτ(g)−1tτ(t)−1 = (tg)τ(tg)−1,
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for any τ . It follows that the point

x = g−1t−1k−1

in G(A) is Γ-invariant. In other words, x belongs to G(A). Since the point gx = t−1k−1

belongs to G1(A), Int(x) maps c1 to c. The map Int(x) is a representative of the canonical

class of isomorphisms from G1(A) to Gc(A).

We have to compare transfer factors. Recall that σ̃′ is a G-regular point in G̃′
d(A)

whose projection σ′ onto G′
d(A) is an adelic image of a point ρ1 in G1(A). Then σ′ is also

the image of the point ρc = Int(x)ρ1. To compare the canonical transfer factors ∆c(σ̃
′, ρc)

and ∆c1
(σ̃′, ρ1), we need to introduce base points. Let σ′ be a fixed G-regular element

in T ′(F ), with preimage σ̃′ in G̃′
d(F ), and with image σ∗ in T (F ) under the admissible

embedding T ′ → T . We have assumed that σ′ is an adelic image of some point in T1,A(A).

Rather than fix such a point, however, we shall introduce another adelic torus in G1(A).

The group

T 1,A = Int(ksc)T1,A = Int(k)T1,A

is a subscheme of G1,A. Since k−1τ(k) belongs to T1,A(A), for every τ ∈ Γ, T 1,A is actually

defined over A. We fix a point ρ1 in T 1,A such that σ′ is an adelic image of ρ1. Then σ′

is also an adelic image of the point ρc = Int(x)ρ1 in Gc(A). The pairs (σ̃′, ρ1) and (σ̃′, ρc)

will serve as base points for the two transfer factors.

The relative transfer factors are symmetric under the isomorphism Int(x) from G1(A)

to Gc(A). It follows from the definitions in [I, §4] that

∆c(σ̃
′, ρc) = ∆c(σ̃

′, ρc; σ̃
′, ρc)d(σ

′, ρc)
−1

= ∆c1
(σ̃, ρ1; σ̃

′, ρ1)d(σ
′, ρc)

−1

= ∆c1
(σ̃, ρ1)d(σ

′, ρ1)d(σ
′, ρc)

−1.

Furthermore,

d(σ′, ρ1)d(σ
′, ρc)

−1 =
〈
µT (σ∗, ρ1)µT (σ∗, ρc)

−1, s′d,T

〉
.
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As in §4, s′d ∈ Ĝ
∗
d is the semisimple element attached to the endoscopic datum G′

d, and s′d,T

is the image of s′d,T in the group π0(T̂
Γ
ad) = π0

(
(T̂ /Z(Ĝ∗

d))
Γ
)
. The underlying K-group G

plays only a peripheral role in this section, so we shall write Tsc for the preimage of T in

G∗
d,sc (rather than in G∗

sc as before). We have reduced the problem to a comparison of two

classes µT (σ∗, ρ1) and µT (σ∗, ρc) in H1
(
Γ, Tsc(A)/Tsc(F )

)
.

The class µT (σ∗, ρ1) is defined exactly as in [LS1, (6.3)]. Let h1 be an element in

G∗
d,sc(A) such that

σ∗ = h1ψ1(ρ1)h
−1
1 ,

where ψ1 = ψc1
is the inner twist from G1 to G∗

d. Then µT (σ∗, ρ1) is the class in

H1
(
Γ, Tsc(A)/Tsc(F )

)
that is represented by the cocyle obtained composing the function

v1(τ) = h1u1(τ)τ(h1)
−1, τ ∈ Γ,

with the projection of Tsc(A) onto Tsc(A)/Tsc(F ). Here u1(τ) = uc1
(τ) is any element

in G∗
d,sc(F ) such that ψ1τ(ψ1)

−1 equals Int
(
u1(τ)

)
. What is the corresponding function

vc(T ) associated to ρc?

To deal with this question, we let the map ψc = ψ1Int(g) serve as our inner twist from

Gc to G∗
d. Then

ψcτ(ψc) = ψ1Int(g)τ
(
ψ1Int(g)

)−1

= ψ1Int
(
gτ(g)−1

)
τ(ψ1)

−1 = ψ1τ(ψ1)
−1,

since gτ(g)−1 lies in the center of G1(F ). We can therefore take uc(τ) = u1(τ). We also

note that

ψc(ρc) = ψ1

(
Int(g)Int(x)ρ1

)
= ψ1

(
Int(gx)ρ1

)

= ψ1

(
Int(t−1k−1)ρ1

)
=

(
ψ1Int(k−1)

)(
Int(kt−1k−1)ρ1

)

=
(
ψ1Int(k−1)

)
(ρ1) = Int

(
ψ1,sc(k

−1
sc )

)
ψ1(ρ1),

since the point t
−1

= kt−1k−1 lies in T 1,A(A), and since

ψ1Int(k−1) = Int
(
ψ1,sc(k

−1
sc )

)
ψ1.
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We are writing ψ1,sc: G1,sc → G∗
d,sc, as usual, for the isomorphism of simply connected

groups attached to ψ1. It follows that

σ∗ = h1ψ1,sc(ksc) · ψc(ρc) ·
(
h1ψ1,sc(ksc)

)−1
.

Therefore
vc(τ) = h1ψ1,sc(ksc)u1(σ)τ

(
h1ψ1,sc(ksc)

)−1

= h1ψ1,sc(ksc)u1(σ)τ
(
ψ1,sc(k

−1
sc )

)
τ(h1)

−1.

Observe that

u1(τ)τ
(
ψ1,sc(k

−1
sc )

)
= u1(σ)(τψ1,sc)

(
τ(k−1

sc )
)

= u1(σ)
((

Int(u1(σ)
)−1

ψ1,sc

)(
τ(ksc)

−1
)

= ψ1,sc

(
τ(ksc)

−1
)
u1(σ).

We may therefore write

vc(τ) = wc(τ)v1(τ),

where

wc(τ) =
(
Int(h1)ψ1,sc

)(
kscτ(ksc)

−1
)
.

The cocycle kscτ(ksc)
−1 takes values in T 1,A,sc(A). Moreover, the restriction of Int(h1)ψ1,sc

to T 1,A,sc(A) is a Γ-isomorphism from T 1,A,sc(A) to Tsc(A). The function wc(τ) is therefore

a 1-cocycle of Γ with values in Tsc(A). It projects to a class νc in H1
(
Γ, Tsc(A)/Tsc(F )

)
.

We have shown that

µT (σ∗, ρ1)µT (σ∗, ρc)
−1 = ν−1

c .

It therefore follows that

∆c(σ̃
′, ρc) = ∆c1

(σ̃′, ρ1)〈νc, s
′
d,T 〉

−1.

To complete the proof of the lemma, we need only establish the identity

(5.5) 〈νc, s
′
d,T 〉 = 〈λc, a

′
d〉

−1.
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We claim that the image of νc under the canonical map from H1
(
Γ, Tsc(A)/Tsc(F )

)

to H1
(
Γ, T (A)/T (F )

)
is zero. The image of wc(τ) under the map from Tsc(A) to T (A) is

(5.6)
(
Int(h1)ψ1

)(
kτ(k)−1

)
.

But

kτ(k)−1 = Int(k)
(
k−1τ(k)

)−1
,

and by construction, the cocycle k−1τ(k) has the same image in H1
(
Γ, T1,A(A)

)
as the

cocycle gτ(g)−1. Since Int(k) is a Γ-isomorphism from T1,A(A) to T 1,A(A), and since

gτ(g)−1 takes values in the center of G1(F ), the cocycles kτ(k)−1 and
(
gτ(g)−1

)−1
have

the same image in H1
(
Γ, T 1,A(A)

)
. Therefore the cocycle (5.6) has the same image in

H1
(
Γ, T (A)

)
as the cocycle

(
Int(h1)ψ1

)(
gτ(g)−1

)−1
= ψ1

(
gτ(g)−1

)−1
.

We have used the fact here that ψ1

(
gτ(g)−1

)−1
takes values in the center of G∗

d(F ). The

center of G∗
d(F ) is of course contained in T (F ). It follows that the image of the cocycle

(5.6) in H1
(
Γ, T (A)/T (F )

)
is trivial. In other words, the image of νc is trivial, as claimed.

Recall that the dual group of Tsc is equal to the quotient

T̂ad = T̂ /Z(Ĝ∗
d) = T̂ /Z(Ĝ1)

of the dual group of T . In particular, the pairing 〈νc, s
′
d,T 〉 in (5.5) is given by the Tate-

Nakayama isomorphism from H1
(
Γ, Tsc(A)/Tsc(F )

)
to the dual of the finite abelian group

π0(T̂
Γ
ad). This isomorphism maps the subgroup

ker
(
H1

(
Γ, Tsc(A)/Tsc(F )

)
−→H1

(
Γ, T (A)/T (F )

))

onto the dual of the quotient group

coker
(
π0(T̂

Γ)−→π0(T̂
Γ
ad)

)
.
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This quotient group is in turn isomorphic to the image of π0(T̂
Γ
ad) in H1

(
Γ, Z(Ĝ1)

)
, under

the map that comes from the long exact sequence [K2, Corollary 2.3] of cohomology of

diagonalizable groups over C. Now the image of s′d,T in H1
(
Γ, Z(Ĝ)

)
is by definition equal

to a′d. It follows that the left hand side of (5.5) depends only on a′d.

We can view the situation in terms of the commutative diagram

H1
(
Γ, Tsc(A)

) α
−→ H1

(
Γ, Tsc(A)/Tsc(F )

)

β

y
yδ

H1
(
Γ, T (A)

) γ
−→ H1

(
Γ, T (A)/T (F )

)

and the corresponding dual diagram

π0(T̂
Γ
ad,A)

α∗
←− π0(T̂

Γ
ad)

β∗
x

xδ∗

π0(T̂
Γ
A

)
γ∗

←− π0(T̂
Γ),

both of which are suggested by the discussion on p. 638 of [K2]. We are writing TA here

for the projective limit

lim
←−

E,S

( ∏

v∈S

∏

w

T̂w

)

of complex tori, in which E ranges over finite Galois extensions of F , S ranges over finite

sets of valuations of F , and w is taken over the valuations of E above v. As an element

in H1
(
Γ, Z(Ĝ)

)
, a′d is not arbitrary. Since it lies in the image of π0(T̂

Γ
ad), it can identified

with an element in coker(δ∗). Moreover, it is locally trivial. It follows from the long exact

sequence attached to

1 −→ Z(Ĝ1,A) −→ T̂A −→ T̂ad,A −→ 1

by [K2, Corollary 2.3] that the image of a′d under α∗ lies in the image of β∗. We may

therefore identify a′d with an element in the group

(5.7) ker
(
coker(δ∗) −→ coker(β∗)

)
.
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Then

(5.8) 〈νc, s
′
d,T 〉 = λ∨c (a′d),

where λ∨c is the image of νc in the corresponding dual group

coker
(
ker(β) −→ ker(δ)

)
.

The element νc is actually the image in H1
(
Γ, Tsc(A)/Tsc(F )

)
of a class in H1

(
Γ, Tsc(A)

)
,

so λ∨c in fact belongs to the subgroup

(5.9) coker
(
ker(β) −→ ker(δ) ∩ im(α)

)
.

The pairing λ∨c (a′d) therefore depends only on the image of a′d in the corresponding quotient

of (5.7).

We have identified (5.7) with a subgroup of ker1
(
F,Z(Ĝ1)

)
. We have also mapped

ker1(F,G1) to the subgroup (5.9) of the dual group of (5.7). This map is defined by

representing the class λc ∈ ker1(F,G1) by a 1-cocycle with values in Z(G1). It follows easily

that the map is independent of the inner form G1 of G∗
d. In fact the entire construction

can be applied directly to an arbitrary connected reductive group H over F , which we

take to be quasisplit. Given H, we take T to be any maximal torus in H over F , with

preimage Tsc in Hsc. We can then identify the associated group (5.7) with a subgroup of

ker1
(
F,Z(Ĥ)

)
. We also obtain a canonical map λ→ λ∨ from ker1(F,H) to the subgroup

(5.9) of the dual group of (5.7). The problem is to show that

(5.10) λ∨(a) = 〈λ, a〉−1,

for any λ in ker1(F,H), and any element a in (5.7).

We need to look more closely at the pairing between ker1(F,H) and ker1
(
F,Z(Ĥ)

)

on the right hand side of (5.10). We follow the indirect definition of the pairing in [K2,

§4], which has two steps. The first step is to construct the pairing in the case that Hder
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is simply connected. The second is to reduce the definition for general H to this special

case. (See [K2, (4.4)].)

Working in the reverse order, we assume that H is arbitrary. Let H̃ → H be a z-

extension of H by Z̃. Then H̃der is simply connected, and we can take Hsc = H̃der = H̃sc.

The bijection from ker1(F,H) to the dual group ker1
(
F,Z(Ĥ)

)∗
is defined as a composition

of bijections

ker1(F,H)
∼
←− ker1(F, H̃)

∼
−→ ker1

(
F,Z(

̂̃
H)

)∗ ∼
−→ ker1

(
F,Z(Ĥ)

)∗
,

in which the middle bijection is assumed to have already been defined, and the outer two

bijections are given by [K2, Lemma 4.3.2]. We take T̃sc = Tsc and
̂̃
T ad = T̂ad. From the

exact sequence

1 −→ T̂ −→
̂̃
T −→

̂̃
Z −→ 1,

and the fact that
̂̃
Z is an induced complex torus, we see that the maps π0(T̂

Γ)→ π0(
̂̃
TΓ)

and π0(T̂
Γ
A

) → π0(
̂̃
TΓ

A
) are both surjective. The groups (5.7) attached to H and H̃, as

subquotients of π0(T̂
Γ
ad), are then both the same. From the exact sequence

1−→Z̃−→T̃−→T−→1,

and the fact that Z̃ is an induced torus over F , we see that the vertical arrows in the

diagram

H1
(
Γ, T̃ (F )

)
−→ H1

(
Γ, T̃ (A)

)
−→ H1

(
Γ, T̃ (A)/T̃ (F )

)

↓ ↓ ↓
H1

(
Γ, T (F )

)
−→ H1

(
Γ, T (A)

)
−→ H1

(
Γ, T (A)/T (F )

)

are injections. In particular, the groups (5.9) attached to H and H̃ are equal to the

same subquotient of H1
(
Γ, Tsc(A)/Tsc(F )

)
. Since the bijection λ̃→ λ from ker1(F, H̃) to

ker1(F,H) is compatible with the two maps into (5.9), we see that λ̃∨ = λ∨, and hence

that λ̃∨(a) = λ∨(a). We have shown that (5.10) holds for H if it is valid for H̃.
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The last step is to establish (5.10) in the case that Hder is simply connected. Un-

der this assumption on H, the group Hder = Hsc is a subgroup of H, and the quotient

D = H/Hsc is a torus that is defined over F . The bijection from ker1(F,H) to the dual

group ker1
(
F,Z(Ĥ)

)∗
is then defined as a composition of bijections

ker1(F,H)
∼
−→ ker1(F,D)

∼
−→ ker1(F, D̂)∗

∼
←− ker1

(
F,Z(Ĥ)

)∗
,

in which the map in the middle is defined by Tate-Nakayama duality for the torus D,

and the outer two bijections are given by [K2, Lemma 4.3.1]. Now Z(Ĥ) is equal to the

subgroup D̂ of Ĥ, and the bijection on the right is the identity map. The bijection on the

left requires more discussion.

The short exact sequence of tori

1 −→ Tsc −→ T −→ D −→ 1

provides columns for a commutative diagram

1 1 1
↓ ↓ ↓

1 −→ Tsc(F ) −→ Tsc(A) −→ Tsc(A)/Tsc(F ) −→ 1
↓ ↓ ↓

1 −→ T (F ) −→ T (A) −→ T (A)/T (F ) −→ 1
↓ ↓ ↓

1 −→ D(F ) −→ D(A) −→ D(A)/D(F ) −→ 1
↓ ↓ ↓
1 1 1

whose rows and columns are exact. The corresponding exact sequences of cohomology

yield a diagram that contains the original commutative square. More precisely, we obtain

a diagram
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↓ ↓ ↓ ↓

→ D(F )Γ → D(A)Γ →
(
D(A)/D(F )

)Γ
→ H1

(
Γ, D(F )

)

↓ ↓ ↓
→ H1

(
Γ, Tsc(F )

)
→ H1

(
Γ, Tsc(A)

) α
→ H1

(
Γ, Tsc(A)/Tsc(F )

)
→

↓ β

y
yδ

→ H1
(
Γ, T (F )

)
→ H1

(
Γ, T (A)

) γ
→ H1

(
Γ, T (A)/T (F )

)
→

↓ ↓ ↓
→ H1

(
Γ, D(F )

)
→ H1

(
Γ, D(A)

)
→ H1

(
Γ, D(A)/D(F )

)
→

↓ ↓ ↓

whose rows and columns are exact, and whose constituent squares are either commutative

or anticommutative [CE, Proposition III.4.1]. The bijection from ker1(F,H) to ker1(F,D)

under study takes values in the group H1
(
Γ, D(F )

)
in the lower left hand corner of the

diagram. Its value at a given λ ∈ ker1(F,H) is just the image inH1
(
Γ, D(F )

)
of the class in

H1
(
Γ, T (F )

)
obtained by representing λ by a 1-cocycle from Γ to Z(H). The corresponding

element λ∨ belongs to the subquotient (5.9) of H1
(
Γ, Tsc(A)/Tsc(F )

)
. Since it lies in the

kernel of δ, λ∨ pulls back to an element in
(
D(A)/D(F )

)Γ
, which we can then map to

the group H1
(
Γ, D(F )

)
in the upper right hand corner of the diagram. We can therefore

identify the map λ → λ∨ with a correspondence that goes from the group H1
(
Γ, D(F )

)

in the lower left hand corner of the diagram to the same group in the upper right hand

corner. Our task is to show that the correspondence maps λ to λ−1. It will be a simple

exercise in diagram closing.

Suppose that λ belongs to ker1
(
F,D(F )

)
. As we have noted, λ is the image of a class

in H1
(
Γ, T (F )

)
, which we can represent by a 1-cocycle µ(τ) from Γ to T (F ). We can of

course also regard µ(τ) as a 1-cocycle from Γ to the larger group T (A). Since λ is locally

trivial, the projection of µ(τ) onto the quotient D(A) of T (A) splits. We can therefore find

an element t ∈ T (A) such that the 1-cocycle µ(τ)
(
tτ(t−1)

)−1
takes values in the kernel

Tsc(A) of the projection T (A) → D(A). Let t, d and d be the images of t in T (A)/T (F ),
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D(A) and D(A)/D(F ) respectively, provided by the commutative diagram

T (A) −→ T (A)/T (F )
↓ ↓

D(A) −→ D(A)/D(F ).

The projection of µ(τ) onto D(A) equals dτ(d)−1. It follows that d is Γ-invariant. The

original class λ is just the image in H1
(
Γ, D(F )

)
of the element d ∈

(
D(A)/D(F )

)Γ
. On

the other hand, λ∨ is constructed from α(λsc), where λsc is the class in H1
(
Γ, Tsc(A)

)
of

the cocycle µ(τ)
(
tτ(t−1)

)−1
. By definition, λ∨ is the image in H1

(
Γ, D(F )

)
of any element

in
(
D(A)/D(F )

)Γ
in the preimage of α(λsc). We know that α(λsc) lies in the kernel of δ,

so it does have a preimage in
(
D(A)/D(F )

)Γ
. Therefore the projection of µ(τ)

(
tσ(t−1)

)−1

onto T (A)/T (F ) equals the cocycle

(
tτ(t

−1
)
)−1

= t
−1
τ(t

−1
)−1.

Since the projection of t onto D(A)/D(F ) equals d, the element d
−1
∈

(
D(A)/D(F )

)Γ
lies

in the preimage of α(λsc). It follows that λ∨ = λ−1.

We have established that

λ∨(a) = 〈λ−1, a〉 = 〈λ, a〉−1,

in the case that Hder is simply connected, and hence in general. The formula (5.10)

therefore holds for any H. Setting H = G∗
d, λ = λc and a = a′d, we see from (5.8) that

〈νc, s
′
d,T 〉 = λ∨c (a′d) = 〈λc, a

′
d〉

−1.

This is the required formula (5.5). The proof of Lemma 5.1 is complete. �

We remark in passing that the last part of the proof of the lemma can be applied to

any commutative diagram of Γ-modules whose rows and columns are short exact sequences.

The corresponding cohomology groups then yield a planar diagram of long exact sequences.

Given any group
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yd′′i−1,j
d′i,j−1

−→ Cij

d′ij
−→yd′′i,j

in the latter diagram, we can set

Zij = ker(d′ij) ∩ ker(d′′ij),

Bij = im(d′′i−1,jd
′
i−1,j−1) = im(d′i,j−1d

′′
i−1,j−1),

and

Hij = Zij/Bij .

For example, the group (5.9) is just the subquotient Hij attached to the group

H1
(
Γ, Tsc(A)/Tsc(F )

)
in our earlier diagram. In general, one sees that there is a canonical

isomorphism

Λij : Hij−→Hi−1,j+1,

for each (i, j). One also observes from the periodicity of the diagram that Hij = Hi−3,j+3,

so that (Λij)
3 can be regarded as an isomorphism of Hij with itself. Finally, as in the proof

of the last part of the lemma, one can show that that (Λij)
3 is in fact the automorphism

λ→ λ−1 (written in multiplicative notation) of Hij . I would imagine that such things are

known, but I do not have a reference.
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§6. Proof of the theorem

We are now ready to prove Theorem 1.1. We are going to have to convert an expression

obtained from the coefficient aG,E
ell (γ̇S) into a corresponding expression of descent. The

lemmas of §4 and §5 will each be applied at some point to a transfer factor in the expression.

We shall use the descent mapping of §3 to keep track of the combinatorics of the process.

We are assuming that Gder is simply connected, and that Z is trivial. In particular, the

centralizer in G of any semisimple element is connected. Moreover, we can take G̃′ = G′,

for any G′ ∈ E(G). Suppose that γ̇S is an admissible element in ΓE
ell(G,S) with Jordan

decomposition γ̇S = cSα̇S, as in statement (a) of Theorem 1.1. According to the definition

(1.1), the difference

(6.1) aG,E
ell (γ̇S)− ε(G)

∑

δ̇S∈∆E
ell

(G,S)

bGell(δ̇S)∆G(δ̇S , γS)

equals
∑

G′∈E0
ell

(G,S)

ι(G,G′)
∑

δ̇′
S
∈∆ell(G′,S)

bG
′

ell (δ̇
′
S)∆G(δ̇′S, γS).

We have to analyse this last expression.

The groups G′ in E0
ell(G,S) need not have the property that G′

der is simply connected.

However, we can assume inductively that any such G′ has a z-extension for which Theorem

1.1 holds. Therefore Corollary 2.2 holds for G′ itself. Suppose that δ̇′S is an element in

∆ell(G
′, S), with Jordan decomposition δ̇′S = d′S β̇

′
S , such that ∆G(δ̇′S , γ̇S) is nonzero. Then

δ̇′S is admissible for G′, and the coefficient bG
′

ell (δ̇
′
S) is defined. Applying the expansion (2.9)

of Corollary 2.2 to G′, we obtain

bG
′

ell (δ̇
′
S) =

∑

d′

∑

β̇′

jG′(S, d′)
∣∣(G′

d′,+/G
′
d′)(F )

∣∣−1
b
G′

d′

ell (β̇′),

where d′ is summed over the elements in ∆ss(G
′) whose image in ∆ss(G

′
S) equals d′S , and

β̇′ is summed over the (G′
d′,+/G

′
d′)(F )-orbit of β̇′

S in ∆unip(G′
d′

S
). According to our usual

convention, d′ represents both a stable semisimple conjugacy class, and a representative
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of the class with G′
d′ quasisplit. We substitute this formula into the expression above for

(6.1). Since d′S and β̇′
S are themselves to be summed, we can subsume these elements in a

general sum over d′ and β̇′. We then write

∆G(δ̇′S , γ̇S) = ∆G(d′Sβ̇
′
S , cSα̇S)

in the resulting expression, where d′S and β̇′
S are the images of d′ and β̇′ in ∆ss(G

′
S) and

∆unip(G′
d′,S) respectively. We also write

ι(G,G′)jG′(S, d′)

= τ(G)τ(G′)−1|OutG(G′)|−1iG
′

(S, d′)τ(G′)τ(G′
d′)

−1

= iG
′

(S, d′)τ(G)τ(G′
d′)

−1|OutG(G′)|−1,

by (1.7) and [K2, Theorem 8.3.1]. The Tamagawa number

τ(G) = τ(Gα) = τ(G∗), α ∈ π0(G),

here is well defined [K4]. Taking the definition of iG
′

(s, d′) in §1 into account, we see that

(6.1) equals

(6.2)
∑

G′

∑

d′

∑

β̇′

|OutG(G′)|−1τ(G)τ(G′
d′)

−1|(G′
d′,+/G

′
d′)(F )|−1b

G′
d′

ell (β̇′)∆G(d′Sβ̇
′
S , cSα̇S),

where G′ is summed over E0
ell(G,S), d′ is summed over classes in ∆ss(G

′) that are elliptic

and bounded at each v 6∈ S, and β̇′ is summed over all classes in ∆unip(G′
d′,S).

In order to exploit the mapping of §3, it would be useful to frame our discussion in

terms of a suitable rational stable class d ∈ ∆ss(G
∗). We would ask that d be elliptic,

that it be bounded at each v 6∈ S, and that it be a local image of each component cv of

cS . Such a class of course might not exist. Suppose that it does not. If (G′, d′) indexes a

nonzero summand in (6.2), d′v will be an image of cv, for each v ∈ S, since the local transfer

factor ∆G(d′vβ̇
′
v, cvα̇v) is nonzero. For any such d′, we could take a maximal elliptic torus

in G′ over F that contains d′, together with an admissible embedding of this torus into
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G∗. The corresponding image d of d′ would then represent a stable class of the required

kind. Since we are assuming that d does not exist, there can be no pairs (G′, d′). In

other words, (6.2) vanishes, and so therefore does (6.1). The nonexistence of d also implies

that cS does not have a rational representative c which is elliptic, and is bounded at each

v 6∈ S. In particular, the right hand side of the formula (1.8) also vanishes. Therefore,

(1.8) is trivially valid. This also implies that the sum in (6.1) vanishes. It follows from

the inversion formulas [I, (5.5)] for the transfer factors that bG
ell(δ̇S) equals zero for any

δ̇S such that ∆G(δ̇S , γ̇S) 6= 0. The nonexistence of d also implies that the corresponding

right hand side of the formula (1.9) of part (b) of Theorem 1.1 vanishes. Therefore (1.9)

is trivially valid for δ̇S . We have shown that the assertions of Theorem 1.1 are trivial if d

does not exist.

We can therefore assume that there is an elliptic class d ∈ ∆ss(G
∗) that is bounded at

each v 6∈ S, and that is a local image of cv for each v ∈ S. Since G∗
der is simply connected,

stable conjugacy in G∗(F ) is just conjugacy over G∗(F ). It follows that the class d is

unique. We may as well also assume that d does not lie in the center of G∗, since the

assertions of Theorem 1.1 would otherwise be trivial.

Now any class d′ ∈ ∆ss(G
′) that indexes a nonzero summand in (6.2) is an image of

d over F . Conversely, every d′ ∈ ∆ss(G
′) that is an image of d over F will appear in the

sum (6.2), since any such class will automatically be elliptic, and will be bounded at each

v 6∈ S. We can therefore take the middle sum in (6.2) over all classes in ∆ss(G
′) that are

images of d. We are going to apply the discussion of §3 to the resulting double sum over

(G′, d′) in (6.2). Before doing so, however, let us first modify (6.2). We shall add to (6.2)

an expression

(6.3) ε(G)
∑

β̇∈∆unip(G∗
d,S

)

τ(G∗)τ(G∗
d)

−1b
G∗d
ell (β̇)∆G(dS β̇S , cSα̇S),

which vanishes if ε(G) = 0, but which represents a supplementary summand in (6.2) with

G′ = G∗ and d′ = d, in case ε(G) = 1. The effect of adding (6.3) to (6.2) is simply to
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change the sum over G′ in E0
ell(G,S) into a sum over the full set Eell(G,S).

We can now express the augmented form of (6.2) in terms of the mapping

X (G) → Y(G) of §3. Let us write Yd(G,S) for the subset of elements in Y(G) that

lie in the image of the map X (G)→ Y(G), and that can be represented by a pair (d,G′
d)

in which G′
d is unramified outside of S. Suppose that (G′, d′) is a pair that indexes a

double summand in the augmented form of (6.2). Then (G′, d′) maps to an element x in

X (G) whose image in Y(G) lies in Yd(G,S). Conversely, suppose that x is an element in

X (G) whose image y in Y(G) lies in the subset Yd(G,S). Then x comes from a pair (G′, d′)

that indexes a double summand. The group OutG(G′) acts transitively on the set of such

(G′, d′), and the stabilizer in OutG(G′) of (G′, d′) is equal to OutG(G′, d′), by definition.

We can therefore replace the double sum over (G′, d′) by a single sum over x, provided that

we replace the coefficient |OutG(G′)|−1 by |OutG(G′, d′)|−1. In the resulting expression,

we are free to write

|OutG(G′, d′)|−1|(G′
d′,+/G

′
d′)(F )|−1 = o

−1
x c−1

x = |Ky,x||oy|
−1,

according to Proposition 3.1 (iii). The augmented form of (6.2) can therefore be written

as

(6.4)
∑

y

∑

x

|Ky,x||oy|
−1τ(G)τ(G′

d′)
−1

( ∑

β̇′

b
G′

d′

ell (β̇′)∆G(d′S β̇
′
S , cSα̇S)

)
,

where y is summed over Yd(G,S), x is summed over the fibre of y in X (G), (G′, d′) denotes

a representative of x as in §3, and β̇′ is summed over the classes in ∆unip(G′
d′,S).

We have thus far shown that the sum of (6.1) and (6.3) equals (6.4). The next step

is to apply the Langlands-Shelstad descent theorem, or rather its variant Lemma 4.2,

to the transfer factor ∆G(d′β̇′, cSα̇S) in (6.4). We can assume that β̇′ is such that the

coefficient b
G′

d′

ell (β̇′) is nonzero. This implies that β̇′
S belongs to the subset ∆unip,der(G

′
d′

S

)

of ∆unip(G′
d′

S

), according to the discussion at the end of §1. It follows from Lemma 4.2

that

∆G(d′β̇′, cSα̇S) = Θ(x, cA)∆G,cS
(β̇′

S , α̇S),
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where cA ∈ G(A) is the adelic element attached to cS and KS in §4. We shall substitute

this into (6.4).

Most of the terms in (6.4) are independent of the point x in the fibre of y. We recall

from §3 that G′
d′ comes with a canonical isomorphism with G′

d. The quasisplit group G′
d is

of course part of the endoscopic datum taken from the pair (d,G′
d) that represents y. We

can remove the dependence of G′
d′ on x simply by summing β̇′ over the set ∆unip(G′

d,S)

instead of ∆unip(G′
d′,S). The expression (6.4) then takes the form

∑

y

|oy|τ(G)τ(G′
d)

−1
( ∑

x

|Ky,x|Θ(x, cA)
)( ∑

β̇′

b
G′d
ell (β̇′)∆G,cS

(β̇′
S , α̇S)

)
.

Recall from Proposition 3.1 (ii) that the group Ky acts transitively on the fibre of y. We

can therefore replace the sum over x with a sum over κ ∈ Ky, provided that we divide by

the order |Ky,x| of the stabilizer of any x in Ky. Combining this with Lemma 4.1 (i), we

see that

∑

x

|Ky,x|Θ(x, cA) =
∑

κ

Θ(xκ
y , cA) = Θ(xy, cA)

( ∑

κ

〈obs(cA), κ〉−1
)
,

where xy is any fixed point in the fibre of y. We conclude that (6.4) equals

(6.5)
∑

y

|oy|
−1τ(G)τ(G′

d)
−1Θ(xy, cA)

( ∑

κ

〈obs(cA), κ〉−1
)( ∑

β̇′

b
G′d
ell (β̇′)∆G,ċS

(β̇′
S , α̇S)

)
,

where y, κ and β̇′ are summed over Yd(G,S), Ky and ∆unip(G′
d,S) respectively. We have

established that the sum of (6.1) and (6.3) equals the expression (6.5).

Suppose first that obs(cA) 6= 1. Then the G(A)-conjugacy class of cA does not have

a rational representative. This of course implies that the right hand sides of both (1.4)

and (1.8) vanish. It also implies that the sum over κ in (6.5) vanishes, so that (6.5) is

itself equal to zero. In other words, the sum (6.1) and (6.3) equals zero. If ε(G) = 0,

aG,E
ell (γ̇S) equals zero, since it is the only term in the sum of (6.1) and (6.3). Therefore the

formula (1.8) of Theorem 1.1 is trivially valid. If ε(G) = 1, aG,E
ell (γ̇S) equals aG

ell(γ̇S) by
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definition, which in turn equals zero by virtue of (1.4). Therefore (1.8) is trivially valid in

this case as well. Thus, part (a) of Theorem 1.1 is trivial when obs(cA) 6= 1. Moreover,

the coefficients of ε(G) in (6.1) and (6.3) are equal if ε(G) = 1, since the sum of the two

expressions vanishes. We shall apply this later to the proof of part (b) of the theorem.

Assume now that obs(cA) = 1. Then (6.5) reduces to

∑

y

|oy|
−1τ(G)τ(G′

d)
−1Θ(xy, cA)|Ky|

(∑

β̇′

b
G′d
ell (β̇′)∆G,cS

(β̇′
S , α̇S)

)
,

with y and β̇′ summed as in (6.5). Since obs(cA) = 1, there is a rational conjugacy class

c ∈ Γss(G) in the G(A)-conjugacy class of cA. The associated inner twist ψc: Gc → G∗
d

allows us to identify the element G′
d ∈ Eell(G

∗
d) with an endoscopic datum for Gc, and to

define the canonical global transfer factor ∆G,c(β̇
′, α̇) for (Gc, G

′
d). The constant Θ(xy , cA)

depends on a normalization for the transfer factor ∆G,cS
(β̇′

S , α̇S). However, Lemma 4.1

(ii) tells us that

Θ(xy, cA)∆G,cS
(β̇′

S , α̇S) = ∆G,c(β̇
′, α̇),

where α̇ is the image of α̇S in Γunip(Gc,S). In particular, the transfer factor ∆G,c(β̇
′, α̇) is

independent of the choice of c. (This property is also an easy consequence of Lemma 5.1.)

The expression (6.5) therefore reduces to

∑

y

|oy|
−1τ(G)τ(G′

d)
−1|Ky|

( ∑

β̇′

b
G′d
ell (β̇′)∆G,c(β̇

′, α̇)
)
,

where c is any rational representative of the G(A)-conjugacy class cA. Now for any such

c, we have the coefficient ι(Gc, G
′
d) that occurs in the definition of aGc,E

ell (α̇). We shall

substitute the formula

ι(Gc, G
′
d) = τ(Gc)τ(G

′
d)

−1|OutGc
(G′

d)|
−1 = τ(Gc)τ(G

′
d)

−1|oy|
−1

for this coefficient [K2, Theorem 8.3.1] into the expression above. Let EG
ell(G

∗
d, S) be the

set of isomorphism classes of endoscopic data G′
d in Eell(G

∗
d, S) such that (d,G′

d) represents
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a point y in Yd(G,S). In particular, EG
ell(Gd, S) is bijective with Yd(G,S). We can then

write our expression for (6.5) in the form

(6.6) τ(G)τ(Gc)
−1|K(Gc, G)|

∑

G′
d

ι(Gc, G
′
d)

∑

β̇′

b
G′d
ell (β̇′)∆G,c(β̇

′, α̇),

where G′
d and β̇′ are summed over EG

ell(G
∗
d, S) and ∆unip(G′

d,S) respectively, and where

K(Gc, G) ∼= Ky stands for the subgroup of elements in
(
Z(Ĝc)/Z(Ĝ)

)Γ
whose image in

H1
(
F,Z(Ĝ)

)
is locally trivial.

We claim that the product

τ(G)τ(Gc)
−1|K(Gc, G)|

in (6.6) is equal to the number of rational classes c ∈ ∆ss(G) in the G(A)-conjugacy class

of cA. To see this, we need only follow the argument in [K3, §9]. In particular, we combine

the exact sequence

1−→π0

(
Z(Ĝ)Γ

)
−→π0

(
Z(Ĝc)

Γ
)
−→K(Gc, G)−→ker1

(
F,Z(Ĝ)

)
−→ker1

(
F,Z(Ĝc)

)

with the formula

τ(G) =
∣∣π0

(
Z(Ĝ)Γ

)∣∣∣∣ker1
(
F,

(
Z(Ĝ)

))∣∣−1

for the Tamagawa number [K2, (5.1.1)]. As on p. 395 of [K3], we deduce that the given

product equals the order of the finite abelian group

coker
(
ker1

(
F,Z(Ĝ)

)
−→ker1

(
F,Z(Ĝc)

))
.

Recalling the discussion at the beginning of §5, we note that this group is bijective with

the set

ker
(
ker1(F,Gc)→ ker1(F,G)

)
,

which can in turn be used to parametrize the set of classes c ∈ Γss(G) attached to cA. The

claim follows. The terms ι(Gc, G
′
d) and ∆G,c(β̇

′, α̇) in (6.6) are independent of the choice
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of c. It follows that (6.6) equals

(6.7)
∑

c

∑

G′
d

ι(Gc, G
′
d)

∑

β̇′

b
G′d
ell (β̇′)∆G,c(β̇

′, α̇),

where c is summed over the classes in Γss(G) that map to the G(A)-conjugacy class of cA,

G′
d and β̇′ are summed over EG

ell(G
∗
d, S) and ∆unip(G′

d,S) respectively, and α̇ is the image

of α̇S in Γunip(Gc,S).

We have established that the sum of (6.1) and (6.3) equals the expression (6.7). Ob-

serve that the summand indexed by c in (6.7) comes close to matching the definition of

aGc,E
ell (α̇) in §1. The main discrepancy is that the inner sum in (6.7) is over the subset

EG
ell(G

∗
d, S) of Eell(G

∗
d, S), while the definition of aGc,E

ell (α̇) requires a sum over the full set

Eell(G
∗
d, S). Can the two be reconciled? The supplementary contribution to (6.7) that

would come from an element G′
d in the complement of EG

ell(Gd, S), namely

∑

c

ι(Gc, G
′
d)

∑

β̇′∈∆unip(G′
d,S

)

b
G′d
ell (β̇′)∆G,c(β̇

′, α̇),

can be written as the sum over β̇′ of the product of

ι(G∗
d, G

′
d)b

G′d
ell (β̇′)

with

(6.8)
∑

c

∆G,c(β̇
′, α̇).

We shall use Lemma 5.1 to deal with this last sum.

Let c1 ∈ Γss(G) be a fixed rational class that maps to the adelic class of cA. Lemma

5.1 asserts that for any c, the canonical adelic transfer factor ∆c = ∆G,c for (Gc, G
′
d)

satisfies

∆c(σ̃
′, ρc) = 〈λc, a

′
d〉∆c1

(σ̃′, ρ1).

We are of course following the notation of §5. In particular, ρ1 is a strongly regular point

in Gc1
(A), and ρc is the image of ρ1 under the canonical inner class of automorphisms
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from Gc1
(A) to Gc(A). Since c is G(Fv)-conjugate to the component cv ∈ Kv of cA, for

each v 6∈ S, we can define the maximal compact subgroup KS
c =

∏
v 6∈S

Kc,v of Gc(A
S) as in

(1.5). It is the image of the corresponding group KS
c1

for Gc1
(AS) under an automorphism

from the canonical inner class. It follows that

∆Kc,v
(σ̃′

v, ρc,v) = ∆Kc1,v
(σ̃′

v, ρ1,v), v 6∈ S.

Since

∆c(σ̃
′
S, ρc,S) = ∆c(σ̃

′, ρc)
∏

v 6∈S

∆Kc,v(σ̃
′
v, ρv)

−1,

the assertion of Lemma 5.1 becomes

∆c(σ̃
′
S, ρc,S) = 〈λc, a

′
d〉∆c1

(σ̃′
S , ρ1,S).

Now the transfer factors in (6.8) are taken at elements that are unipotent (in the general

set of §1 and [I, §1]). However, unipotent elements can be approximated by strongly regular

conjugacy classes. Moreover, the unipotent element α̇ in (6.8) attached to c is the image

of the corresponding element α̇1 for c1 under the canonical class of isomorphisms from

Gc1
(A) to Gc(A). It follows from the construction [I, §5] of the extended transfer factors

that

∆G,c(β̇
′, α̇) = 〈λc, a

′
d〉∆G,c1

(β̇′, α̇1).

We are assuming that G′
d belongs to the complement of EG

ell(Gd, S). In other words,

the pair (d,G′
d) represents a point y ∈ Y(G) that does not lie in the image of the map

X (G) → Y(G). It follows from Proposition 3.1 (i) that the element a′d ∈ ker1
(
F,Z(Ĝ1)

)

maps to a nontrivial element in the group (5.2). Since the map c→ λc is a bijection from

the set of c to the dual of the group (5.2), we see that

∑

c

∆G,c(β̇
′, α̇) =

( ∑

c

〈λc, a
′
d〉

)
∆G,c1

(β̇′, α̇1) = 0.

Lemma 5.1 has thus served us in the form of a vanishing property for the sum (6.8).

81



Since (6.8) equals zero, the supplementary contributions to (6.7) vanish. The value of

(6.7) therefore remains unchanged if G′
d is summed over the entire set Eell(G

∗
d, S). To be

able to match this expanded sum with the definition of aGc,E
ell (α̇), we require only a couple

of elementary observations.

Recall that G̃′
d is a central extension of G′

d. The summand of β̇′ in (6.7) is supported on

∆unip,der(G
′
d,S), a subset of ∆unip(G′

d,S) we have agreed to identify with the corresponding

subset ∆unip,der(G̃
′
d,S , η̃

′
d,S) of ∆unip(G̃′

d,S , η̃
′
d,S). Indeed, it is only with this understanding

that the transfer factor in (6.7) is defined. Corollary 2.3 (b) asserts that b
G′d
ell (β̇′) equals

b
G̃′d
ell (β̇′). Moreover, the function

b
G̃′d
ell (δ̇′d,S)∆G,c(δ̇

′
d,S , α̇), δ̇′d,S ∈ ∆ell(G̃

′
d, S, η̃

′
d),

is supported on the subset ∆unip(G̃′
d,S , η̃

′
d,S) ∩ ∆ell(G̃

′
d, S, η̃

′
d) of ∆ell(G̃

′
d, S, η̃

′
d). We can

therefore write (6.7) in the form

∑

c

( ∑
ι(Gc, G

′
d)

∑
b
G̃′d
ell (δ̇′d,S)∆G,c(δ̇

′
d,S , α̇)

)
,

where two summations in the brackets are taken over G′
d ∈ Eell(G

∗
d, S) and

δ̇′d,S ∈ ∆ell(G̃
′
d, S, η̃

′
d). Observe that the entire expression inside the brackets equals the

right hand side of the streamlined form (1.1∗) of the definition of aGc,E
ell (α̇). This form of

the definition is applicable here because our induction hypothesis, coupled with the fact

that d is not central, implies that Global Theorem 1(b) is valid for G∗
d. It follows that

(6.7) equals the sum
∑

c

aGc,E
ell (α̇).

Now any c that occurs in this sum is F -elliptic in G, and is GS(AS)-conjugate to an element

in KS. In particular, the coefficient iG(S, c) that occurs in the putative formula (1.8) is

equal to 1. We can therefore write (6.7) as

(6.9)
∑

c

iG(S, c)aGc,E
ell (α̇),
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where c is now summed as in (1.8). This is just the right hand side of the required formula

(1.8) of Theorem 1.1. We have shown that it is equal to the sum of (6.1) and (6.3).

We shall now complete the proof of the theorem. Suppose that ε(G) = 0. Then the

sum of (6.1) and (6.3) reduces to the left hand side aG,E
ell (γ̇S) of (1.8). Since this also

equals the right hand (6.9) of (1.8), the formula (1.8) follows. Suppose that ε(G) = 1.

Then aG,E
ell (γ̇S) equals aG

ell(γ̇S), by the definition (1.2). If c occurs in the sum (6.9), the

dimension of Gc,der is smaller than that of Gder, since c does not lie in the center of G. It

follows from our induction hypothesis that the term aGc,E
ell (α̇) on the right hand side (6.9)

of (1.8) equals the corresponding term aGc

ell (α̇) on the right hand side of (1.4). The formula

(1.8) in this case then follows from (1.4). We have established part (a) of Theorem 1.1, in

the case obs(cA) = 1 we have been considering, and hence in general.

To establish part (b), we assume that ε(G) = 1. It is clear how to combine the identity

(1.8) we have just proved with the fact that the sum of (6.1) and (6.3) equals (6.9). We

find that the coefficients of ε(G) in (6.1) and (6.3) are equal when obs(cA) = 1, and hence

in general. Taking into account the properties of d, we see that we can replace the factor

τ(G∗)τ(G∗
d)

−1 in (6.3) by the left hand side jG∗(S, d) of (1.7). We conclude that the

expression

∑

δ̇S∈∆E
ell

(G,S)

bGell(δ̇S)∆G(δ̇S, γ̇S)

equals

∑

β̇∈∆unip(G∗
d,S

)

jG∗(S, d)b
G∗d
ell (β̇)∆G(dβ̇, γ̇S).

We have only to invert these expressions. Let us index the two variables of summation by

δ̇1,S and β̇1, instead of δ̇S and β̇. The symbol δ̇S is then free to denote a fixed element

in ∆E
ell(G,S) with semisimple part equal to the image ds of d. We multiply each of

the two expressions by the adjoint transfer factor ∆G(γ̇S, δ̇S), and then sum over γ̇S in

ΓE
ell(G,S, ζ). The adjoint relation [I, (5.5)] provides the desired inversion. We conclude
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that bGell(δ̇S) vanishes unless δ̇S has a Jordan decomposition of the form

δ̇S = dSβ̇S , β̇S ∈ ∆unip(G∗
dS

),

in which case

bGell(δ̇S) = jG(S, d)b
G∗d
ell (β̇),

where β̇ is the image of β̇S in ∆unip(G∗
d,S). This is assertion (b) of the theorem. We have

completed the proof of Theorem 1.1. �
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un corps de nombres, J. Reine Angew. Math. 327 (1981), 12–80.

[T] J. Tits, Reductive groups over local fields, in Automorphic Forms, Representations and

L-functions, Proc. Sympos. Pure Math. 33, Part 1, 1979, 29–69.

86


