Harmonic Analysis and
Group Representations

James Arthur

armonic analysis can be interpreted

broadly as a general principle that re-

lates geometric objects and spectral

objects. The two kinds of objects are

sometimes related by explicit formu-
las, and sometimes simply by parallel theories.
This principle runs throughout much of mathe-
matics. The rather impressionistic table at the top
of the opposite page provides illustrations from
different areas.

The table gives me a pretext to say a word about
the Langlands program. In very general terms, the
Langlands program can be viewed as a series of far-
reaching but quite precise conjectures, which de-
scribe relationships among two kinds of spectral
objects—motives and automorphic representa-
tions—at the end of the table. Wiles’s spectacular
work on the Shimura-Taniyama-Weil conjecture,
which established the proof of Fermat’s Last The-
orem, can be regarded as confirmation of such a
relationship in the case of elliptic curves. In gen-
eral, the arithmetic information wrapped up in
motives comes from solutions of polynomial equa-
tions with rational coefficients. It would not seem
to be amenable to any sort of classification. The
analytic information from automorphic represen-
tations, on the other hand, is backed up by the rigid
structure of Lie theory. The Langlands program rep-
resents a profound organizing scheme for funda-
mental arithmetic data in terms of highly struc-
tured analytic data.

I am going to devote most of this article to a
short introduction to the work of Harish-
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Chandra. I have been motivated by the following

three considerations.

(i) Harish-Chandra’s monumental contributions
to representation theory are the analytic foun-
dation of the Langlands program. For many
people, they are the most serious obstacle to
being able to work on the many problems that
arise from Langlands’s conjectures.

(ii) The view of harmonic analysis introduced
above, at least insofar as it pertains to group
representations, was a cornerstone of Harish-
Chandra’s philosophy.

(iii) It is more than fifteen years since the death
of Harish-Chandra. As the creation of one of
the great mathematicians of our time, his work
deserves to be much better known.

I shall spend most of the article discussing Har-
ish-Chandra’s ultimate solution of what he long re-
garded as the central problem of representation
theory, the Plancherel formula for real groups. I
shall then return briefly to the Langlands program,
where I shall try to give a sense of the role played
by Harish-Chandra’s work.

Representations
A representation of a group G is a homomorphism

R: G — GL(V),

where V = Vx is a complex vector space that one
often takes to be a Hilbert space. We take for
granted the notions of irreducible, unitary, direct
sum, and equivalence, all applied to representations
of a fixed group G. Representations of a finite
group G were studied by Frobenius, as a tool for
investigating G. More recently, it was the repre-
sentations themselves that became the primary
objects of study. From this point of view, there are
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always two general problems to consider, for any
given G.

1. Classify the setI1(G) of equivalence classes of
irreducible unitary representations of G.
If R is some natural unitary representation of
G, decompose R explicitly into irreducible rep-
resentations; that is, find a G -equivariant iso-
morphism Vg = V5, where Vi = Vis a space
built explicitly out of irreducible representa-
tions, as a direct sum

@ n'lTv'lTl nTrE{O,l,Z,...,OO},
mell(G)

2.

or possibly in some more general fashion.

Example 1. G =R/Z, Vg = L*(R/Z), and

(ROIF)X) = fix+y),  y€G, feVr.

This is the regular representation that underlies
classical Fourier analysis. The set I1(G) is param-
etrized by Z as follows:

T ell(G) «= Vg =C,

)y = e 2Ty vy e Ve nez.
The space
V =1%2) = {c=(cn): Slenl? < o}

supports a representation
n _ p2miny
(R(y)c)n e Cn,
of G that is a direct sum of all irreducible repre-
sentations, each occurring with multiplicity one.

The Fourier coefficients

f— fn= J f(x)e 2T dx,,
R/Z
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then provide an isomorphism from V to V that

makes R equivalent to R. Moreover, this isomor-
phism satisfies the Plancherel formula

2 22
x)|cdx = .
LW FX)] %|fn|
Example 2. G =R, Vg = L?(R), and

(ROIF)0 = flx+y),

In this case I1(G) is parametrized by R:

yeG,fevVg.

melllG) «= Vg =C,

)y = e Wy, VveVr AeR.

Here we define V = L2(R) and

(RONP) ) = ™ ¢p(a),

Then V is a “continuous direct sum”, or direct in-
tegral of irreducible representations. The Fourier
transform

$peV,AeR.

f— Q) = | foe™ax,  feczm,

R
extends to an isomorphism from V to V that sat-
isfies the relevant Plancherel formula

2 (02
J]le(x)l A — JRIf(A)\ da.

These two examples were the starting point for
a general theory of representations of locally com-
pact abelian groups, which was established in the
earlier part of the twentieth century. Attention
then turned to the study of general nonabelian lo-
cally compact groups. Representations of non-
abelian groups have the following new features.
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(i) Representations 1t € II(G) are typically infinite
dimensional.

(ii) Decompositions of general representations R
typically have both a discrete part (like Fourier
series) and a continuous part (like Fourier
transforms).

Photograph by Herman Landshoff, courtesy of the Institute for Advanced Study.
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Problem of the
Plancherel Formula

Against the prevailing
opinion of the time, Har-
ish-Chandra realized early
in his career that a rich
theory would require the
study of a more restricted
class of mnonabelian
groups. From the very be-
ginning, he confined his
attention to the class of
semisimple Lie groups, or
slightly more generally, re-
ductive Lie groups. These
include the general linear
groups GL(n,R), the spe-
cial orthogonal groups
SO(p, q;R), the symplec-
| tic groups Sp(2n,R), and
the unitary groups
U(p,q;C). For the pur-
poses of the present arti-
cle, the reader can in fact
take G to be one of these
familiar matrix groups.

Harish-Chandra’s long-term goal became that of
finding an explicit Plancherel formula for any such
G. As in the two examples above, one takes
Vg = L2(G), with respect to a fixed Haar measure
on G. One can then take R to be the 2-sided reg-
ular representation

Harish-Chandra.

(RO, y2F ) ) = FOrr txy2),
y1,Y2 €G, f € Vg,

of G X G on V. The regular representation is spe-
cial among arbitrary representations in that it al-
ready comes with a candidate for an isomorphism
with a direct integral. This is provided by the gen-
eral Fourier transform

f — fao =Jf(X)1T(X)dx,
G

f € C2(G), m e TI(G),

which is defined on a dense subspace CZ°(G) of
L%(G), and takes values in the vector space of fam-
ilies of operators on the spaces {Vr}.

The problem of the Plancherel formula is to
compute the measure drr on II(G) such that the
norm
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IF113 = j F0012 dx
G
equals the dual norm
IFI2 = j Ifaol2 dr,
I(G)

for any function f € CZ(G). In the second inte-
grand, [|f(77)|[2 denotes the Hilbert-Schmidt norm
of the operator f(77). The norm ||f||> then defines
a Hilbert space V, on which G x G acts pointwise
by left and right translation on the spaces of
Hilbert-Schmidt operators on {V;}. The problem
was known to be well posed. A general theorem of
L. Segal from 1950, together with Harish-Chandra’s
proof in 1953 that G is of “type I”, ensures that
the Plancherel measure drr exists and is unique.
The point is to calculate dmr explicitly. This in-
cludes the problem of giving a parametrization of
I1(G), at least up to a set of Plancherel measure
Zero.

The first person to consider the problem and
to make significant progress was I. M. Gelfand. He
established Plancherel formulas for a number of
matrix groups, and laid foundations for much of
the later work in representation theory and auto-
morphic forms. However, some of the most severe
difficulties arose in groups that he did not consider.
Harish-Chandra worked in the category of general
semisimple (or reductive) groups. His eventual
proof of the Plancherel formula for these groups
was the culmination of twenty-five years of work.
It includes many beautiful papers, and many ideas
and constructions that are of great importance in
their own right. I shall describe, in briefest terms,
a few of the main points of Harish-Chandra’s over-
all strategy, as it applies to the example
G = GL(n,R).

Geometric Objects

In Harish-Chandra’s theory of the Plancherel for-
mula, the geometric objects are parametrized by the
regular, semisimple conjugacy classes in G. In the
example G = GL(n,R) we are considering, these
conjugacy classes are the ones that lie in the open
dense subset

the eigenvalues y; € (C}

Greg = {3’ €6 of y are distinct

of G. They are classified by the characteristic poly-
nomial as a disjoint union of orbits

U (TP,reg/WP) y
P
where P ranges over certain partitions
{P =(1,...,1,2,...,2): 11 +2r =n}
e — ——
n r
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of n. For a given P,

O tl’l-H’z

where t; belongs to R* if 1 < k < rq, and is of the
form

P cos O py sin Oy
—prsSin Oy pg cos Ok

ifr1 +1 <k < rq +r2, while Tp reg stands for the in-
tersection of Tp with Greg. The group

WP = Srl X Sl’z X (Z/ZZ)VZ,

in which Sy denotes the symmetric group
on k letters, acts in the obvious way by
permutation of the elements {ty: 1 <k <r  +r}
and by sign changes in the coordinates
{01 + 1<k<rn + m}.

The complement of Greg in G has Haar measure
0. By calculating a Jacobian determinant, Harish-
Chandra decomposed the restriction of the Haar
measure to Greg into measures on the coordinates
defined by conjugacy classes. The resulting formula
is

Jf(x)dx =
G

%IWPI’1 J (ID(y)I J f(X’lyX)dX)dy,

TP,reg TP \G

for any f € C2°(G). Here dy is a Haar measure on
Tp, and Tp\G represents the right cosets of Tp in
G, a set that can be identified with the conjugacy
class of any y € Tp reg. The function

[T i-yp)?

l<i<j<n

D(y) =

is the discriminant of the characteristic polynomial
of y. This generalizes the integration formula
proved by Weyl in his elegant classification of the
irreducible representations of compact Lie groups.
We can regard it as a starting point for Harish-Chan-
dra’s study of the much more difficult case of
noncompact groups.

Motivated by the integration formula, Harish-
Chandra introduced a distribution

foty) = IDWIE | fotynax,

Tr\G
fecG),

for any element y in Tp reg. This distribution is now
known as Harish-Chandra’s orbital integral, and is
at the heart of much of his work. Harish-Chandra
needed to prove many deep theorems about orbital
integrals. The questions concern the extension of
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these linear forms to the Schwartz space C(G) on
G (which he later defined), and their behavior as
y approaches the singular set in Tp. What is per-
haps surprising at first glance is that the problems
are not always amenable to direct attack. Harish-
Chandra often established concrete inequalities
by deep and remarkably indirect methods, that
fully exploited the duality between the geometric
objects f(y) and their corresponding spectral ana-
logues.

Spectral Objects

The spectral objects for Harish-Chandra were the
characters of representations 7t in I1(G). Here, he
was immediately faced with the problem that the
space Vi is generally infinite dimensional, in which
case the sum determining the trace of the unitary
operators 17(x) on Vr can diverge. His answer was
to prove that the average (1) of these operators
against a function f € CZ°(G) is in fact of trace
class. He then defined the character of 1t to be the
distribution

fo(m) = w(fm),  feCO.

However, this was by no means sufficient for the
purposes he had in mind.

Differential equations play a central role in Har-
ish-Chandra’s analysis of both characters and or-
bital integrals. Let Z be the algebra of differential
operators on G that commute with both left and
right translation. One of Harish-Chandra’s earliest
theorems, for which he won the AMS Cole Prize in
1954, was to describe the structure of Z as an al-
gebra over C. Let tp = C" be the complexification
of the Lie algebra of the Cartan subgroup Tp of
G = GL(n,R). By definition there is then a canoni-
cal isomorphism 0 from the symmetric algebra
S(tp) to the algebra of invariant differential oper-
ators on Tp.

The following theorem combines several results
of Harish-Chandra on differential equations, in-
cluding the basic structure theorem.

Theorem. There is an isomorphism z — hp(z), from
Z onto the subalgebra of elements in S(tp) that are
invariant under the symmetric group Sy, such that

W) h6y) = 3(hr@)fcy), ¥ € Treg.
Moreover,
(i) (zf)(m) = (hp(2), An)fc(m), ™ eIG),

for some linear functional A on tp = C" that is
unique up to the action of Sy,.

The equation (i) can be interpreted in terms of
the traditional technique of separation of vari-
ables. The relevant differential operators are of
course the elements in Z, while the variables of sep-
aration are defined by the coordinates of conjugacy
classes in Greg. The equation (ii) is a variant of
Schur’s lemma, which says that any operator
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commuting with the action of a finite group under
an irreducible representation is a scalar. The func-
tional A;; comes from the characterization of ho-
momorphisms Z — C that is given by the isomor-
phism z — hp(z).

Harish-Chandra also used the separation of
variables technique to study the distribution on
Greg Obtained by restricting the character of any
7. It is easy to see that many of the differential
operators a(hT(z) on a given Tp are actually
elliptic. This allowed him to apply the well known
theorem that eigendistributions of elliptic opera-
tors are actually real analytic functions. In this
way, he was able to prove that

fe(mm) = f(X)Ox(x)dx,

G fe Cgo(Greg),

for a real analytic function ®5 on Greg. The sepa-
ration of variables that is part of his argument then
implies that for any Tp, the function

Orly) = IDY)2OR(Y), Y € Threg,

satisfies the differential equations

3(hp(2)0n(y) = (hp(2)Am)@r(y), zE€Z.

Thus, ®(y) is a simultaneous eigenfunction of a
large family of invariant differential operators on
the abelian group Tp. From this, it is not hard to
deduce, at least in the case that the coordinates of
A in C" are distinct, that the restriction of ®(y)
to any connected component of Tp reg has a sim-
ple formula of the form

Orly) = D cselSAH),
sES,

y =exp H,

for complex coefficients {cs}.

We can see that the differential equations give
detailed information about characters. To be able
to apply this information to the study of the
Plancherel formula, however, Harish-Chandra re-
quired the following fundamental theorem.

Theorem. The character of any representation
€ II(G) is actually a function on G. In other
words, O extends to a locally integrable function
on G such that

fotm) = [fwontdx, G,
G

The proof of this theorem required many new
ideas, which Harish-Chandra developed over the
course of nine years. Atiyah and Schmid later gave
a different proof of the theorem, by combining
some of Harish-Chandra’s techniques with meth-
ods from geometry.

The theorem provides a more concrete formula
for the character of 1. It follows from the original
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integration formula, and the invariance of @
under conjugation by G, that

fom =S |wp|—1j feon(y)dy,
P

Tp,reg

f € CZ(G).
This is a particularly vivid illustration of the du-
ality between the geometric objects f(y) and the
spectral objects f(77). The formula becomes more
explicit if we substitute the expansion above for
& (y). The resulting expression reduces the study
of characters to the determination of the linear
functionals A and the families of coefficients

{cst.

Plancherel Formula and Discrete Series

We can now state Harish-Chandra’s Plancherel for-
mula (for the group G = GL,(R)) as follows.

Theorem (Plancherel formula). For each character
c in the dual group

Tp = (RXZ/2Z)" x (Z X R)"?,
there is an irreducible representation 1t of G such

that

2 _ -1 7 2
JGIf(X)I dx —% Wp| Jﬁ 1Pt 13me) de,
fece@),

for an explicit real analytic function m(c) on Tp.
Remarks.

1. The Plancherel density m(c) actually vanishes if
the image of ¢ in (Z x R)"? has any Z-component
equal to zero. For any such c, the representation
1Tc is not well defined by the formula, and can be
taken to be 0.

2. The linear function Ax attached to 1T = 11( iS
equal to the differential of c.

3. Harish-Chandra actually stated the theorem in
the form of a Fourier inversion formula

1) =S (wpl ! j fo(mem(c)dc,
P ?P
f e Cl(G).

To recover the Plancherel formula one needs only
replace f by the function

(F * F)) = j FOFG-Ty) dy
G

in the inversion formula. Note the duality with the
earlier integration formula, which can be written
in the form
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[ roodx =3 wplt [

P pT
f e Cl(G).

fey) D)2 dy,
eg

This short introduction does not begin to con-
vey a sense of the difficulties Harish-Chandra en-
countered, and was able to overcome. The most fa-
mous is the construction of the discrete series, the
family of representations 1 € II(G) to which the
Plancherel measure drr attaches positive mass.
We ought to say something about these objects,
since they are really at the heart of the Plancherel
formula.

It might be helpful first to recall Weyl’s classi-
fication of representations of compact groups, as
it applies to the special case of the unitary group
G = U(n,C). By elementary linear algebra, any uni-
tary matrix can be diagonalized, so there is only
the one Cartan subgroup

D lyil = 1}

Y1 0

0 Yn
in G to consider. We can otherwise use notation
similar to that of GL(n,R). Weyl’s classification is
provided by a canonical bijection 1 < A between
the irreducible representations 7t € I1(G) and the
subset of points A =(Aq,...,A,) in Z" such that
A;i > Aj;1 for each i. This bijection is determined
uniquely by a simple formula Weyl established for
the value of the character

On(y) = tr(m(y)),

atany element y € Treg. (Since U(n, C) is compact,
1T is in fact finite dimensional.) The Weyl charac-
ter formula is the identity

Only) = (D(y)%)_l< > Sign(S)yS”‘")),

SESH

where for any A € Z", y? denotes the product
ylAl e y,)q‘". (The denominator D(y)2 is the canon-
ical square root [](yi —y;) of the discriminant.

One could easily {/\frjite the Weyl character formula
less elegantly in the framework of the previous
section, as a formula for the function
1 (y)=|D(y)|20x(y) on any connected compo-
nent of Treg.)

Harish-Chandra’s construction of the discrete
series is a grand generalization of Weyl’s theo-
rem, in both its final statement and its methods
of proof. In particular, Harish-Chandra constructed
the characters of discrete series representations ex-
plicitly, starting from the considerations of the
previous section. In the classification he eventu-
ally achieved, Harish-Chandra proved that a group
G has a discrete series if and only if it has a Car-
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tan subgroup T that is compact. Moreover, he spec-
ified the representations in the discrete series
uniquely by a simple expression for their charac-
ters on Treg that is a striking generalization of the
Weyl character formula.

The group GL(n,R) does not have a discrete se-
ries. The representations that appear in its
Plancherel formula are all constructed from dis-
crete series of SL(2,R) and characters of R*. (For
a given partition P, there are r; copies of SL(2,R)
to consider; the representations 11 are defined by
“parabolic induction” from representations of the
subgroup of block diagonal matrices in GL(n,R)
of type P.) The example of GL(n, R) is therefore rel-
atively simple. Groups that have discrete series,
such as Sp(2n,R) and U(p, g;C), are much more
difficult. What is remarkable is that the final state-
ment of the general Plancherel formula, suitably
interpreted, is completely parallel to that of
GL(n,R).

After he established the Plancherel formula for
real groups, Harish-Chandra worked almost ex-
clusively on the representation theory of p-adic
groups. This subject is extremely important for the
analytic side of the Langlands program, but it has
amore arithmetic flavor. Harish-Chandra was able
to establish a version of the Plancherel formula for
p-adic groups. However, it is less explicit than his
formula for real groups, for the reason that he did
not classify the discrete series. The problem of dis-
crete series for general G is still wide open, in
fact, as is much of the theory for p-adic groups.!

Nature of the Langlands Program

The analytic side of the Langlands program is con-
cerned with automorphic forms. The language of
the general theory of automorphic forms, as op-
posed to classical modular forms, is that of the rep-
resentation theory of reductive groups. It is a lan-
guage created largely by Harish-Chandra.
Harish-Chandra’s influence on the theory of au-
tomorphic forms is pervasive. It is not so much in
the actual statement of his Plancherel formula,
but rather in the enormously powerful methods
and constructions (including the discrete series)
that he created in order to establish the Plancherel
formula.

The object of interest for automorphic forms is
the regular representation Rr of G on the Hilbert
space Vg, = L2(T'\G), whereT'is a congruence sub-
group of G(Z). (We assume that the real reductive

1The Langlands conjectures include a classification of
discrete series for p-adic groups. A report on the recent
proof of this classification for the group G = GL(n),which
in the p-adic case does have a discrete series, is given by
Rogawski in this issue of the Notices. A separate classifi-
cation for G = GL(n), based on quite different algebraic
criteria, has been known for some time from results of
Bushnell and Kutzko. It is an open problem to compare
the two classifications directly.
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group G = G(R) has been equipped with structure
necessary to define G(Z).) As above, one seeks in-
formation about the decomposition of Ry into ir-
reducible representations. In this case, however,
there is some interesting extra structure. The space
L%(T\G) comes with a family of semisimple oper-
ators {Tp,}, the Hecke operators, which are pa-
rametrized by a cofinite set {p : p & Pr} of prime
numbers, and a supplementary set of indices
{i: 1 <i<np} that depends on p and has order
bounded by the rank of G. These operators com-
mute with Rr, and also with each other. If t € II(G)
is a representation that occurs discretely in Rr
with multiplicity m(rr), the Hecke operators then
provide a family

{Tpi(m): p EPr,1=<ix< Ny}

of mutually commuting (m(n) X m(n)) -matrices.
It is the eigenvalues of these matrices that are
thought to carry the fundamental arithmetic in-
formation.

The most powerful tool available at present for
the study of Rr (and the Hecke operators) is the
trace formula. The trace formula plays the role here
of the Plancherel formula, and is the analogue of
the Poisson summation formula for the discrete
subgroup Z of R. It is an explicit but quite com-
plicated formula for the trace of the restriction of
the operator

Ri(f) = | _fooRidx,  f € C2(G)
and more generally, the composition of Rr(f) with
several Hecke operators, to the subspace of L2(T\G)
that decomposes discretely. The formula is really
an identity of two expansions. One is a sum of
terms parametrized by rational conjugacy classes,
while the other is a sum of terms parametrized by
automorphic representations. The trace formula is
thus a clear justification of the last line of our
original table. It is also a typical (if elaborate) ex-
ample of the kind of explicit formula that relates
geometric and spectral objects on other lines of the
table.

I mention the trace formula mainly to point out
its dependence on the work of Harish-Chandra. The
geometric side is composed of orbital integrals, to-
gether with some more general objects. The spec-
tral side includes the required trace, as well as
some supplementary distributions. All of these
terms rely in one way or another on the work of
Harish-Chandra, for both their construction and
their analysis in future applications of the trace for-
mula.

I shall say no more about the trace formula. It
is also not possible in the dwindling allotment of
space to give any kind of introduction to the Lang-
lands program. I shall instead comment briefly on
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one specific example of the influence of Harish-
Chandra’s work—that of the discrete series.

Assume that G does have a compact Cartan
subgroup. The Hecke operators {Tp (1)} associ-
ated to discrete series representations 7t of G are
expected to be related to arithmetic objects at-
tached to algebraic varieties. In many cases, it is
known how to construct algebraic varieties for
which this is so. Let K be a maximal compact sub-
group of G, and assume that G is such that the
space of double cosets

Sr = I'\G/K

has a complex structure.?2 This is the case, for ex-
ample, if G equals Sp(2n,R) or U(p, g;C). Then St
is the set of complex points of an algebraic vari-
ety. Moreover, it is known that this variety can be
defined in a canonical way over some number field
F (equipped with an embedding F c C). If
G = SL(2,R), Sris just a quotient of the upper half
plane, and as I' varies, the varieties in this case de-
termine the modular elliptic curves of the Shimura-
Taniyama-Weil conjecture. The varieties in gen-
eral were introduced and investigated extensively
by Shimura. Their serious study was later taken up
by Deligne, Langlands, Kottwitz, and others.

It is a key problem to describe the cohomology
H*(ST) of the space St, and more generally, vari-
ous arithmetic objects associated with this coho-
mology. The discrete series representations 7t are
at the heart of the problem. There is a well defined
procedure, based on differential forms, for pass-
ing from the subspace of L2(I'\G) defined by 7 (of
multiplicity m(7r)) to a subspace, possibly 0, of
H*(St). Different 1t correspond to orthogonal sub-
spaces of H*(Sr), and as 7T ranges over all repre-
sentations in the discrete series, these subspaces
span the part of the cohomology of H*(Sr) that is
primitive and is concentrated in the middle di-
mension. Moreover, the Hodge structure on this
part of the cohomology can be read off from the
parametrization of discrete series. Finally, there has
been much progress on the deeper problem of es-
tablishing reciprocity laws between the eigenval-
ues of the Hecke operators Ty (1) and arithmetic
data attached to the corresponding subspaces of
H*(Sr). These are serious results, due to Lang-
lands and others, that I have not stated precisely,
or even quite correctly.3 The point is that the re-
sults provide answers to fundamental questions,

2By replacing T with a subgroup of finite index, if neces-
sary, one also assumes that I has no nontrivial elements
of finite order.

3The axioms for a Shimura variety are somewhat more
complicated than I have indicated. They require a slightly
modified discussion, which applies to groups with non-
compact center. Moreover, if St is itself noncompact,
H*(ST) should really be replaced by the corresponding
L2-cohomology.
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which could not have been broached without Har-
ish-Chandra’s classification of discrete series.

The discussion raises further questions. What
about the rest of the cohomology of Sr? What
about the representations 1 € II(G) in the com-
plement of the discrete series? Harish-Chandra’s
Plancherel formula included a classification of the
representations that lie in the natural support of
the Plancherel measure (up to some questions of
reducibility of induced representations, which were
later resolved by Knapp and Zuckerman). Such
representations are said to be tempered, because
their characters are actually tempered distribu-
tions on G —they extend to continuous linear forms
on the Schwartz space of G. Tempered represen-
tations that lie in the complement of the discrete
series are certainly interesting for automorphic
forms, but they do not contribute to the coho-
mology of St. Nontempered representations, on the
other hand, have long been known to play an im-
portant role in cohomology. Can one classify the
nontempered representations 7t € II(G) that occur
discretely in L2(T\G)?

To motivate the answers, let me go back to the
last line of the original table. A conjugacy class in
G(Q) has a Jordan decomposition into a semisim-
ple part and a unipotent part. (Recall that an ele-
ment x € GL(n, Q) is unipotent if some power of
the matrix x — I equals 0. The Jordan decomposi-
tion for GL(n,Q) is given by the elementary divi-
sor decomposition of linear algebra.) Since auto-
morphic representations are dual in some sense
to rational conjugacy classes, it is not unreason-
able to ask whether they too have some kind of Jor-
dan decomposition.

I can no longer avoid giving at least a provisional
definition of an automorphic representation. As-
sume for simplicity that G(C) is simply connected.
In general, one would like an object that combines
a representation 1t € I1(G) with any one of the
m(mr) families {Ap;i: p € Pr,1 <i<np} of si-
multaneous eigenvalues of the Hecke operators. (It
is these complex numbers, after all, that are sup-
posed to carry arithmetic information.) It turns out
that any such 7t and any such family, as well as
some (noncommutative) algebras of operators
{Ug : g € Pr} obtained from the ramified primes,
can be packaged neatly together in the form of a
representation of the adelic group G(A). Here A is
a certain locally compact ring that contains R, and
also the completions Q) of Q with respect to p-adic
absolute values. The rational field Q embeds di-
agonally as a discrete subring of A. Let us define
an automorphic representation restrictively as an
irreducible representation 1t of G(A) that occurs
discretely in the decomposition of L2 (G(Q)\G(A)) .
Any such 1T determines a representation 1 = 1Ty
in I[1(G) and a discrete subgroup I' C G such that
11 occurs discretely in L2(I'\G). It also determines
irreducible representations {m,} of the p-adic
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groups G(Qp), from which one can recover the
complex numbers {Ap;} and the algebras {Uj;} .4
An automorphic representation 7t is said to be
temperedif its components 1 and 17, are all tem-
pered. I did not give the definition of tempered rep-
resentations for p-adic groups, but it is the same
as for real groups.
For the unramified
primes p ¢ Pr,itis
equivalent to a cer-
tain set of bounds
on the absolute
values of the com-
plex numbers
{Ap,i}. The validity
of these bounds
for one particular
automorphic rep-
resentation of the
group G = SL(2) is
equivalent to a fa-
mous conjecture of
Ramanujan, which
was proved by
Deligne in 1973.
The conjectures
of Langlands in-
clude a general pa-
rametrization of
tempered auto- )
morphic represen- Robert Langlands
tations. In the early
1980s, I gave a conjectural characterization of au-
tomorphic representations that are nontempered.
Among other things, this characterization de-
scribes the failure of a representation 7t to be tem-
pered in terms of a certain unipotent conjugacy
class. It is not a conjugacy class in G(Q)—such ob-
jects are only dual to automorphic representa-
tions—but rather in the complex dual group G of
G. Here G is the identity component of the L-group
LG =G x Gal(Q/Q) that is at the center of Lang-
lands’s conjectures. In this way, one can construct
a conjectural Jordan decomposition for automor-
phic representations that is dual to the Jordan de-
composition for conjugacy classes in G(Q). The
conjectures for nontempered representations con-
tain some character identities for the local com-
ponents g and 17, of representations 1 of G(A).
They also include a global formula for the multi-
plicity of 7T in L2 (G(Q)\G(A)) that implies quali-
tative properties for the eigenvalues of Hecke op-
erators. The local conjectures for mz have been
established by Adams, Barbasch, and Vogan, by
very interesting methods from intersection

4The proper definition of automorphic representation
alsg includes representations that occur continuously in
L2 (G(Q)\G(A)), as well as analytic continuations of
such representations. If G(C) is not simply connected, Tt
actually determines several discrete subgroups of G.
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homology. The remaining assertions are open.
However, the contribution of nontempered repre-
sentations to cohomology is quite well understood.
The unipotent class that measures the failure of a
representation to be tempered turns out to be the
same as the unipotent class obtained from the ac-
tion of a Lefschetz hyperplane section on coho-
mology. One can in fact read off the Lefschetz
structure on H*(St), as well as the Hodge struc-
ture, from the parametrization of representations.
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