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The purpose of this note is described in the title. It is an elementary introduction
to some of the basic ideas of stability and endoscopy. We shall not discuss the
techniques of the theory, which among other things entail a sophisticated use of
Galois cohomology. Our aim is rather to persuade a reader that the theory was
created in response to some very natural problems in harmonic analysis. The article
is intended for people who are starting (or even just thinking of starting) to learn
the subject.

Langlands was actually lead to the theory of endoscopy by questions in algebraic
geometry, particularly Shimura varieties [17, §1]. However, he quickly realized
that the questions had remarkable implications for harmonic analysis. It is in this
context that we will discuss the basic ideas.

We begin with a simple form of the trace formula. Suppose that G is a reductive
algebraic group defined over a number field F . The adèles A of F are a locally
compact ring in which F embeds as a discrete subring, and the group of F -rational
points G(F ) embeds as a discrete subgroup of the locally compact group G(A)
of adèlic points. We shall be concerned with the case that G is anisotropic, or
equivalently, that the quotient space G(F )\G(A) is compact. It is then known that
the regular representation

(

R(y)φ
)

(x) = φ(xy), φ ∈ L2
(

G(F )\G(A)
)

, x, y ∈ G(A),

of G(A) on the Hilbert space L2
(

G(F )\G(A)
)

(with the right G(A)-invariant mea-
sure on G(F )\G(A)) decomposes discretely. More precisely, we can write

R =
⊕

π

mππ(f),

a direct sum over π in the set Π
(

G(A)
)

of irreducible representations of G
(

(A)
)

,
with finite multiplicities mπ ∈ N ∪ {0}. (If G is not anisotropic, there is a sub-
representation Rdisc of R which decomposes in this way, at least modulo the split
component of the center of G.)

Selberg’s original formula gives the trace of the convolution operator

R(f) =
⊕

π

mππ(f)
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obtained by integrating R against a test function f in C∞
c

(

G(A)
)

. (See [21], [2],
[8].) On the one hand, the trace of R(f) is a discrete sum

(1) Idisc(f) =
∑

π∈Π(G(A))

mπtr
(

π(f)
)

of irreducible characters. The trace formula asserts that the trace of R(f) can also
be written as a linear combination

(2) Iell(f) =
∑

γ∈Γ(G(F ))

aG(γ)IG(γ, f)

of orbital integrals

IG(γ, f) =

∫

Gγ(A)\G(A)

f(x−1γx)dx

of f . Here, Γ
(

G(F )
)

stands for the set of conjugacy classes in G(F ), Gγ(·) denotes
the centralizer of γ in G(·), and the coefficients are given by

aG(γ) = vol
(

Gγ(F )\Gγ(A)
)

.

The trace formula for compact quotient is thus the identity of the two expansions
Iell(f) and Idisc(f). (The general trace formula ([1], [2]) is considerably more
complicated. If G is not anisotropic, Iell(f) and Idisc(f) are merely the simplest
of a number of such expansions on each side, parametrized by conjugacy classes of
Levi subgroups of G.)

We should recall that C∞
c

(

G(A)
)

is the vector space spanned by complex-valued
functions

f = f∞ · ffin =
∏

v∈∞

fv ·
∏

v finite

fv,

in which the Archimedean component f∞ lies in the usual space of smooth functions
of compact support. The nonArchimedean component ffin is required to be a
locally constant function of compact support on the group G(Afin) of finite adèlic
points. This second condition implies in particular that for almost all v, fv is the
characteristic function of a hyperspecial maximal compact subgroup of G(Fv) [26,
§1.10, §3.1, §3.10].

If f equals
∏

v
fv, the global orbital integral is automatically a product

(3) IG(γ, f) =
∏

v

IG(γ, fv)

of local orbital integrals

IG(γ, fv) = |DG(γ)|
1

2

v

∫

Gγ(Fv)\G(Fv)

fv(x
−1
v γxv)dxv .

(The Weyl discriminant

DG(γ) = det
(

1 − Ad(γ)
)

g/gγ
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is inserted only for general convenience. It does not appear globally because of the
product formula on F ∗.) On the spectral side, any irreducible representation is a
restricted tensor product

π =
⊗

v

πv , πv ∈ Π
(

G(Fv)
)

,

of irreducible representations of the local groups [3], and

tr
(

π(f)
)

=
∏

v

tr
(

πv(fv)
)

.

Automorphic representations are interesting because the components πv are be-
lieved to carry fundamental arithmetic information. The data which parametrize
the local sets Π

(

G(Fv)
)

are very interesting in themselves, but what is especially
important is the global information that implicitly relates the local data for the
different components of any π with m(π) positive. One hopes to study such infor-
mation through the trace formula.

A major goal is to prove precise reciprocity laws relating m(π) and m(π′), for
representations π and π′ of different groups G and G′. The most general pairs
(G, G′) for which such reciprocity laws should exist are given by Langlands’ functo-
riality conjecture [14], [19]. The general functoriality conjecture is extremely deep,
and will undoubtedly need more than just the trace formula for its ultimate resolu-
tion. However, there are a significant number of cases for which the trace formula
seems ideally suited. It is for these cases that the theory of endoscopy has been
designed.

Any discussion of these matters has to begin with the basic case solved by Jacquet
and Langlands in 1968 [6, §17]. (See also [4], [8].) In this case, G is the multiplicative
group of a quaternion algebra over F (which is actually only anisotropic modulo
the center), and G′ equals GL(2). The idea is quite simple. The characteristic
polynomial for G′ and its analogue for G determine a canonical bijection from
Γ
(

G(F )
)

to a subset of Γ
(

G′(F )
)

. Indeed, the center of G′(F ) is bijective with F ∗,
while the conjugacy classes of noncentral elements in G′(F ) lie in disjoint subsets
parametrized naturally by certain quadratic extensions of F . The characteristic
polynomial gives an identical parametrization for a subset of the conjugacy classes
in G′(F ) = GL(2, F ). Thus, there is a canonical injection from the set of terms
on the geometric side of the trace formula for G to a subset of the terms for G′.
Jacquet and Langlands define a correspondence

f =
∏

v

fv −→ f ′ =
∏

v

f ′
v

from C∞
c

(

G(A)
)

to C∞
c

(

G′(A)
)

such that

IG(γ, f) = IG′(γ′, f ′)

if γ′ is the image of γ, and such that IG′(γ′, f ′) = 0 if γ′ is not the image of any γ.
It is known that

aG(γ) = vol
(

Gγ(F )\Gγ(A)
)

= vol
(

G′
γ′(F )\G′(A)

)

= aG′

(γ′),
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and also that the supplementary parabolic terms in the trace formula of G′ vanish
for the function f ′. The geometric sides of the two trace formulas are therefore
equal.

Once the two geometric sides have been cancelled, one can easily imagine being
able to exploit the resulting equality of spectral sides. The correspondence of func-
tions fv → f ′

v is defined locally. Moreover, at all places outside a finite set S, G(Fv)
is isomorphic with GL(2, Fv) = G′(Fv). At these places, f ′

v can simply be taken
to be fv . One can then fix the function fS =

∏

v∈S

fv , and regard the difference of

the two spectral sides as a linear form in the function fS =
∏

v 6∈S

fv. In particular,

if π = πSπS ∈ Π
(

G(A)
)

is a representation with m(π) 6= 0, there will have to be a
term for G′ = GL(2) to match the functional

fS −→ m(π)tr
(

πS(fS)
)

tr
(

πS(fS)
)

.

Combining this argument with the theorem of strong multiplicity one for GL(2) (a
general form of which is [7, Theorem 4.4]), one obtains a correspondence π → π′

such that πv = π′
v for every v 6∈ S, and such that m(π) equals m(π′).

The indirectness of the basic argument is part of its charm. The multiplicities
m(π) and m(π′) on the two groups are defined quite abstractly, in terms of the traces
of two operators. They cannot be compared directly. The trace formulas convert
information wrapped up in the multiplicities into concrete linear combinations of
orbital integrals. However, these geometric terms become too complicated as f
varies (with increasing support, for example) to be of great use for any isolated
group. What really drives the argument is local harmonic analysis. It establishes
that the geometric terms for G and G′, complicated though each may be in isolation,
match each other and cancel.

Langlands realized about 1970 that there would be a serious obstruction to ex-
tending the argument to other groups. The characteristic polynomial is behind the
transfer of conjugacy classes from G to G′, and the coefficients of the characteristic
polynomial do have analogues for general G. For example, one can take any set of
generators for the algebra of G-invariant polynomials on G. These objects can cer-
tainly be used to transfer conjugacy classes in G to classes in suitably related groups
G′. However, invariant polynomials measure only geometric conjugacy classes, that
is, conjugacy classes in a group of points over an algebraically closed field. For
most G other than a general linear group, there exist nonconjugate elements in
G(F ) which are conjugate over an algebraic closure G(F ). A similar phenomenon
holds for the local groups G(Fv). For example, in the case of G = SL(2) and

Fv = R, the elements

(

cos θ sin θ
− sin θ cos θ

)

and

(

cos θ − sin θ
sin θ cos θ

)

are conjugate over

G(C), but not over G(R). This phenomenon clearly complicates the problem of
transferring conjugacy classes.

We are really thinking only of semisimple conjugacy classes here, since we do not
want to deal with subtleties of geometric invariant theory. In fact, to focus on the
essential problem, it is best to consider only elements γ that are strongly regular,
which is to say that Gγ is a torus. The strongly regular elements form an open
dense subset in any of the local groups G(Fv). Langlands called two strongly regular
elements in G(Fv) stably conjugate if they were conjugate over G(F v). Stable
conjugacy is then an equivalence relation that is weaker than conjugacy. Any
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stable conjugacy class is a finite union of ordinary conjugacy classes. Now, we are
accustomed to thinking of conjugacy classes as being dual to irreducible characters.
In the present context, one can argue plausibly that the strongly regular conjugacy
classes in G(Fv) are the dual analogues of irreducible tempered characters on G(Fv).
The relation of stable conjugacy ought then to determine a parallel relation on the
set of tempered characters. Langlands quickly realized that in the case Fv = R,
there was already a good candidate for such a relation in the work of Harish-
Chandra.

One of Harish-Chandra’s great achievements was the classification of the dis-
crete series for real groups [5], [22]. Discrete series are of course the basic building
blocks of arbitrary tempered representations. We recall that Harish-Chandra’s
classification consists of a parametrization and character formula that are remark-
ably similar to those established by Weyl in the special case of compact groups.
However, there were two new aspects to Harish-Chandra’s generalization. First
of all, G(R) can have several conjugacy classes of maximal tori; the basic char-
acter formula applies only to a maximal torus T (R) that is compact. Secondly,
the real Weyl group WR(G, T ) induced by elements of G(R) is generally smaller
than the complex Weyl group WC(G, T ) induced by elements in G(C). For ex-
ample, if G = Sp(2n), then WC(G, T ) is isomorphic to a semi-direct product
(Z/2Z)n o Sn, while WR(G, T ) corresponds to the subgroup Sn. The discrete se-
ries are parametrized by WR(G, T )-orbits of regular characters on T (R), and not
the WC(G, T )-orbits that determine the finite dimensional representations of Weyl.
In particular, the discrete series occur naturally in finite packets, each of which is
bijective with the set WR(G, T )\WC(G, T ) of cosets. Thinking of the L-functions
he had defined earlier [14], Langlands called the relationship defined by this packet
structure L-equivalence, and he used it as the foundation for a classification of all
the irreducible representations of G(R) [15]. (Knapp and Zuckerman [10] later de-
termined the precise structure of the packets for representations outside the discrete
series.) Shelstad then completed the theory for real groups [23], [24], [25], by show-
ing among other things that the relationship of L-equivalence on the irreducible
tempered characters was indeed dual, in a very precise sense, to the relationship of
stable conjugacy on the strongly regular conjugacy classes.

Returning to the trace formula, we could formulate the first question that might
come to mind as follows. Is the distribution

f −→ Iell(f), f ∈ C∞
c

(

G(A)
)

,

defined by the geometric side stable? In other words, does it depend only on the
stable orbital integrals

(4) SG(σv , fv) =
∑

γv∈σv

IG(γv , fv)

of the constituents fv of f? The elements σv stand for strongly regular stable
conjugacy classes in G(Fv), and γv is summed over the conjugacy classes in a
stable conjugacy class. At first glance, the answer might seem to be yes. Stable
conjugacy can be defined for rational elements γ ∈ G(F ), and the volume aG(γ)
ought to depend only on the stable class of γ. This would allow us to group the
terms in Iell(f) as sums

∑

γ∈σ

IG(γ, f)
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of global orbital integrals, over the rational conjugacy classes γ in a rational stable
class σ. (There will be some elements γ here that are not strongly regular, but
this is really a side issue. Our assumption that G is anisotropic insures that the
elements γ are at least semisimple.) If we look more closely, however, we find that
the answer to the question is no. We have asked that the distribution be stable
in each function fv. In particular, if σS =

∏

v∈S

σv is any finite product of local

(strongly regular) stable conjugacy classes, with a rational representative σ, then
each ordinary conjugacy class γS =

∏

v∈S

γv in σS would also have to have a rational

representative γ. There are simply not enough rational conjugacy classes in general
for this to happen. Contrary to our first impression, then, the distribution Iell(f)
is not generally stable in f .

Thus, the initial observations of Langlands about stable conjugacy had immedi-
ate implications for two of the pillars of representation theory: Harish-Chandra’s
classification of discrete series and Selberg’s trace formula. In the first case, there
was the problem of constructing a relation on the irreducible tempered represen-
tations dual to stable conjugacy. In the case of the trace formula, the problem
could be formulated as follows. Express Iell(f) as the sum of a canonical stable

distribution SG
ell(f) and an explicit error term. The first group to be investigated

was SL(2). Labesse and Langlands [13] solved the problem for the anisotropic in-
ner forms of this group (as well as for SL(2) itself), and showed that the solution
had remarkable implications for the spectral decomposition. In the general case,
Langlands [18] was also able to solve the problem, under the assumption of two
conjectures in local harmonic analysis.

Let us describe the main features of Langlands’ general solution. The stable part
was constructed first, and the error term was then expressed explicitly in terms of
the stable parts SG′

ell of trace formulas for groups G′ of dimension smaller than G.

The groups G′, together with the quasi-split inner form G∗ of G, are now known as
the elliptic endoscopic groups for G. They are a family of quasi-split groups whose
dual groups ([15, §2], [11, §1]) are of the form

Ĝ′ = Ĝs = Cent(Ĝ, s)0.

The elements s range over semisimple points in the dual group Ĝ of G, and are
taken up to translation by the center of Ĝ and up to conjugation by Ĝ. (See [16],
[11, §7] and [20, §1.2].) Suppose for example that G is an inner form of a split

adjoint group. Then Ĝ is simply connected, and the centralizer of s in Ĝ is already
connected. The elliptic endoscopic groups in this case are the ones for which Ĝ′

is contained in no proper Levi subgroup of Ĝ. Thus, if G is an orthogonal group
SO(2n + 1), Ĝ equals Sp(2n, C), and s can be taken from among the elements





Ir 0 0
0 −I2n−2r 0
0 0 Ir



 , 0 ≤ r ≤
[n

2

]

.

The corresponding group Ĝ′ = Ĝs is Sp(2r, C)× Sp(2n− 2r, C), and G′ is the split
group SO(2r + 1) × SO(2n − 2r + 1). If G is more general, it is necessary to work
with the full L-group

LG = Ĝ o Gal(F/F ).
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In this case there are further groups G′ which are constructed by letting Gal(F/F )

act by outer automorphisms on Ĝ′ = Ĝs through the nonconnected components of

the centralizer of s in Ĝ.
Langlands’ stabilization of Iell(f) was based on a hypothetical transfer

(5) f =
∏

v

fv −→ f ′ =
∏

v

f ′
v

of functions on G(A) to functions on any endoscopic group G′(A). Later refinement
has given a very precise form to the conjecture. In [20], Langlands and Shelstad
constructed local transfer factors, that are explicit complex valued functions

∆G(σ′
v , γv)

of a stable conjugacy class σ′
v in G′(Fv) and a strongly regular conjugacy class γv

in G(Fv). They vanish unless σ′
v maps (in a natural sense) to the stable conjugacy

class of γv . The transfer factors then assume the role of the kernel in a transform

(6) fv −→ f ′
v(σ

′
v) =

∑

γv

∆G(σ′
v , γv)IG(γv , fv), fv ∈ C∞

c

(

G(Fv)
)

.

The conjecture is that for any fv ∈ C∞
c

(

G(Fv)
)

, there is a function

f ′
v ∈ C∞

c

(

G′(Fv)
)

whose stable orbital integrals are given by the values of the
transform. That is,

(7) f ′
v(σ

′
v) = SG′(σ′

v , f ′
v),

for any σ′
v . There is also a supplementary conjecture, known as the fundamental

lemma, which applies to the unramified places v of G and G′. The assertion is that
if fv is the characteristic function of a hyperspecial maximal compact subgroup of
G(Fv), then f ′

v can be taken to be the characteristic function of a hyperspecial max-
imal compact subgroup of G′(A). Together, the two conjectures imply that there
is a transfer correspondence from functions f =

∏

v
fv in C∞

c

(

G(A)
)

to functions

f ′ =
∏

v
f ′

v in C∞
c

(

G′(A)
)

. (Actually, there is a general problem of embedding LG′

into LG, which sometimes necessitates replacing G′ by a certain central extension
G̃′. We shall ignore this complication.)

Given the two local conjectures, Langlands’ stabilization of Iell(f) takes the form
of an endoscopic expansion

(8) Iell(f) =
∑

G′

ι(G, G′)SG′

ell(f
′),

with explicit coefficients ι(G, G′). The distributions on the right are to be regarded
as stable trace formulas for the elliptic endoscopic groups G′. They are linear
combinations

(9) SG′

ell(f
′) =

∑

σ′

bG′

(σ′)SG′(σ′, f ′)
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over stable conjugacy classes σ′ in G′(F ), with explicitly defined coefficients bG′

(σ′),
of global stable orbital integrals

(10) SG′(σ′, f ′) =
∏

v

SG′(σ′, f ′
v).

In terms of the original problem, the summand with G′ equal to the quasi-split inner
form G∗ of G (that is, with s = 1) is to be regarded as the stable part of Iell(f),
while the rest of the expansion constitutes the error term. Langlands actually dealt
only with the strongly regular terms in the original trace formula. To be able to
ignore the remaining singular terms, one would have to restrict f by, for example,
taking fv to be supported on the strongly regular set in G(Fv) at some v. Kottwitz
[12] was later able to deal with singular terms in Iell(f).

In the original basic case that G is the multiplicative group of a quaternion
algebra, the right hand side of (8) has only one term, which corresponds to the
quasi-split inner form G′ = G∗ = GL(2) of G. The identity then leads to the
correspondence π → π′ of automorphic representations. It is harder to interpret
the general case. The original trace formula does tell us that Iell(f) equals the
spectral expansion Idisc(f) defined by the trace of R(f). The identity (8) suggests
that Idisc(f) is the sum of a stable part and an error term given precisely in terms
of smaller endoscopic groups. That is,

(11) Idisc(f) =
∑

G′

ι(G, G′)SG′

disc(f
′).

This by itself does not provide a general correspondence of automorphic represen-
tations from G to any of the groups G′, but it is nonetheless a striking conclusion.
Very little is known about the multiplicities m(π), especially regarding their stabil-
ity properties. The identity (11) would give a precise obstruction to the distribution

f −→ Idisc(f) = tr
(

R(f)
)

, f ∈ C∞
c

(

G(A)
)

,

being stable, in terms of spectral information on smaller groups. A general distri-
bution on C∞

c

(

G(A)
)

could fail to be stable independently at each v in any given
finite set S. The general obstruction would have to be measured by many terms,
parametrized by products

G′
S =

∏

v∈S

G′
v

of local endoscopic groups. The products G′
S which are the diagonal image of global

endoscopic groups G′ are sparse in the set of all products.
We shall conclude with a word on the role of the general trace formula. The

formula (8), for anisotropic G, does not immediately imply (11). The problem is
that there is no direct formula like (9) (taken in conjunction with (10) and (4))

to define the terms SG′

disc(f
′). These terms must instead be defined by induction

on the dimension of G′. However, this really requires an analogue of (11) for the
quasi-split form G∗ of G. The inductive definition would take the form

SG∗

disc(f) = IG∗

disc(f) −
∑

G′ 6=G∗

ι(G∗, G′)SG′

disc(f
′), f ∈ C∞

c

(

G∗(A)
)

,
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and the conclusion to be drawn from (8) (or rather its analogue for G∗) is simply
that SG∗

disc(f) is stable. But G∗ is quasi-split, not anisotropic, so have strayed

from our original assumption on G. We begin to see that it is rather unnatural
to restrict G to being anisotropic, even if we only want to study a simple version
of the trace formula. It would be better to keep G arbitrary, and to restrict f so
that the geometric side reduces to the form (2). The spectral part Idisc(f) would

still have more terms than just the characters m(π)tr
(

π(f)
)

. (See [1, (4.3) and
Theorem 7.1].) However the extra terms are very interesting, and are in any case
part of the story. In fact, there are compelling reasons to want to stabilize the full
trace formula, with functions f that are unrestricted, even though there are many
more terms on each side, and more problems to be solved.
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