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The Problem of Classifying Automorphic Representations of
Classical Groups

James Arthur

In this article we shall give an elementary introduction to an important problem
in representation theory. The problem is to relate the automorphic representations
of classical groups to those of the general linear group. Thanks to the work of a
number of people over the past twenty-five years, the automorphic representation
theory of GL(n) is in pretty good shape. The theory for GL(n) now includes
a good understanding of the analytic properties of Rankin-Selberg L-functions,
the classification of the discrete spectrum, and cyclic base change. One would
like to establish similar things for classical groups. The goal would be an explicit
comparison between the automorphic spectra of classical groups and GL(n) through
the appropriate trace formulas. There are still obstacles to be overcome. However
with the progress of recent years, there is also reason to be optimistic.

We shall not discuss the techniques here. Nor will we consider the possible
applications. Our modest aim is to introduce the problem itself, in a form that
might be accessible to a nonspecialist. In the process we shall review some of
the basic constructions and conjectures of Langlands that underlie the theory of
automorphic representations.

1. We shall begin with a few of the basic concepts from the theory for the
general linear group. For the present, then, we take G = GL(n). The adéles of Q
form a locally compact ring

A=RxQ2xQ3xQ5x:---

in which Q embeds diagonally as a discrete subring. Consequently G(A) is a locally
compact group which contains G(Q) as a discrete subgroup. One can form the
Hilbert space L?(G(Q)\G(A)) of functions which are square integrable with respect
to the right G(A)-invariant measure. The primary object of study is the regular
representation

(R(y)f)(z) = f(zy), [eL*(GQ\G(A)), =z,yeG(A),
on the Hilbert space.
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The unitary representation R is highly reducible. For this discussion we shall
define an automorphic representation informally as an irreducible unitary repre-
sentation m of G(A) which occurs in the decomposition of R. This notion would
be precise certainly if 7 occurred as a discrete summand of R. However, the irre-
ducible constituents of R depend on several continuous parameters and one wants
to include all of these. The proper definition [14] in fact includes irreducible repre-
sentations of G(A) which come from the analytic continuation of these parameters,
but there is no need to consider such objects here. It is known [5] that any such =
has a decomposition

T=TRQR M QM3 Q75 Q- -

as a restricted tensor product, with each 7, being an irreducible unitary represen-
tation of the group G(Q,).

Anyone seeing these definitions for the first time could well ask why auto-
morphic representations are interesting. To get a feeling for the situation, we fix a
prime p and recall the construction of the unramified representations of G(Q,)—the
simplest family of irreducible representations {7} of this group.

The representations in the family are determined by elements u = (uy,...,uy)
in C™. Such an element defines a character of the Borel subgroup

bll *
B(Qp) ={b= CG(Qy)
0 bnn
Of GL(’IL, QP) by

xu(b) = |b11|;1+(n—1)/2 ,b22';2+(n—3)/2 o lbnnmn_(n_l)/?.

Let w; . be the corresponding induced representation of G(Q,). It acts on a space
of functions f, : G(Qp) — C which satisfy

fp(bm) = Xu(b)fp(x)’ be B(Qp)> S G(Qp),

be right translation—
(mh. W) o) (@) = folwy), .y € G(Qy).
1

The vector 3(n —1,n —3,...,—(n — 1)) comes from the usual Jacobian factor,
and is included so that 71'; . Will be unitary if u is purely imaginary. If u is purely
imaginary, w;,ﬁ . 1s known to be irreducible as well as unitary. In general, nz',f . Can
have several irreducible constituents, but there is a canonical one—the irreducible
constituent 7, of 7}, which contains a G(Z,)-fixed vector. Thus, any u deter-
mines an irreducible representation 7, ,, of G(Qp). Since the p-adic absolute values
in the definition of x, are powers of p, it is clear that 7, , remains the same if u is
translated by a vector in (27i/logp)Z™. In fact if «’ is any other vector in C", it
is known that 7, . is equivalent to m, ., if and only if

27 n
(u’l, .. ,u;l) = (ua(1), c.. ,ucr(n)) (mod (logp) z ) '

for some permutation o in Sj.
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By definition, the unramified representations of G(Q,) are the ones in the
family {mp, : u € C"}. Set

p~ 0
t(Tpu) = - )
0 pUn

regarded as a semisimple conjugacy class in GL(n,C). This is a special case of a
general construction [13] of Langlands. In the present situation it gives a bijection
between the unramified representations of GL(n, Q,) and the semisimple conjugacy
classes in GL(n, C).

Now suppose that 7 is an automorphic representation of GL(n, A). It is known
that the local components 7, of 7 are unramified for almost all p. In other words,

7 determines a family
t(m) = {t(mp) : p & S}

of semisimple conjugacy classes in GL(n,C). Here S = S, is a finite set of com-
pletions of Q which includes the Archimedean place R. Returning to the original
question, automorphic representations are interesting because the corresponding
families ¢(m) are believed to carry fundamental arithmetic information. What is
important is not the fact that almost all , are unramified—this would be true of
any irreducible representation of G(A) with some weak continuity hypothesis—but
that 7 is automorphic. It is only then that the semisimple conjugacy classes {t(mp)}
will be related one to another in a way that is governed by fundamental arithmetic
phenomena.

In order to package the data t(m) conveniently, one defines the local L-function

L(s,mp) = det(I — t(ﬂ’p)p_s)-l, seC, pes,

as the reciprocal (evaluated at p~*) of the characteristic polynomial of the conjugacy
class t(mp). One can then define a global L-function

Ls(s,m) = ] L(s, mp)
pgs
as an Euler product which converges in some right half plane. It is known that
Ls(s,n) has analytic continuation as a meromorphic function of s € C, and satisfies
a functional equation [9]. The basic proof is a generalization of the one used by Tate
for GL(1). It exploits the embedding of GL(n) into the space of (n X n)-matrices.
The proof entails defining local L-functions L(s, ) for every p (including p = R).
If one forms the product

L(s,m) =[] L(s,mp)

over all p, the functional equation takes the form
L(s,m) =¢€(s,m)L(1 — s,7),
where 7 is the contragredient representation of w, and the e-factor is a simple
function of the form
e(s,m)=a.(p")°, ar,€C, r,€elZ.

For an elementary example, take G = GL(1). Then G(A) = A* is the group of
ideles, while G(Q)\G(A) = Q*\A* is the quotient group of idéle classes. We shall
consider an automorphic representation 7 = @), 7, with Sy = {R,2}. Then if p ¢
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S, mp is determined by an unramified character on the group B(Q,) = Q; = G(Q,).
Any such prime is of course odd. Set

Hm)) = pt = 1, fp=1 (mod 4),
PP -1, ifp=3 (mod 4).

In other words,

1, ifp=1 (mod 4),

ﬂp(xp) = |-’13P|p = {(_l)v(zp), ifp=3 (mod 4)’

where v(z,) € Z is the valuation of a point z, € Q. It is then easy to define
characters mg and 72 on R* and Qj respectively so that 7 = @), 7, is trivial on the
subgroup Q* of A*, and is hence an automorphic representation of GL(1). Observe
that the definition of 7, for p ¢ S matches the splitting law of the prime p in the
Gaussian integers Z [\/—_ﬂ, p is of the form

p=(a+ V1) (a-V=T0) =a®+ 8%, abez,

if and only if p is congruent to 1 modulo 4. This is no co-incidence. The Kronecker-
Weber theorem can be read as the construction of an automorphic representation for
any cyclic extension of Q in terms of how rational primes behave in the extension.
The Artin reciprocity law gives a similar construction in the more general case that
Q is replaced by an arbitrary number field F'. It can be regarded as a classification of
abelian extensions of F' in terms of automorphic representations of GL(1) (relative
to F).

This is a good point to recall Langlands’ nonabelian generalization of the Artin
reciprocity law. Suppose that

¢ : Gal(Q/Q) — GL(n,C)

is an n-dimensional representation of the Galois group of an algebraic closure of Q
which is continuous, that is, which factors through a finite quotient Gal(E/Q) of
Gal(Q/Q). Then ¢ is unramified outside a finite set S = S, of primes. For any
prime p ¢ S, there is a Frobenius conjugacy class Fr, in Gal(E/Q), and hence a
conjugacy class ¢(Fr,) in GL(n,C). Langlands conjectured that for any ¢ there is
an automorphic representation 7 of GL(n) such that

H(mp) = 6(Fry), P& SxNSs.

This conjecture is very difficult, and has been established in only a limited number
of cases [15, 16, 4]. It is known, however, that there is at most one = with this
property [10].

We recall also that there is an Artin L-function attached to ¢ which is com-
pletely parallel to the construction of an automorphic L-function. It is defined by
an Euler product

L(s,4) = [ L(s, ¢p)
P
which converges in a right half plane, with local factors given by

L(s,¢p) = det(I — d)(Frp)p—s)—l
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if p does not belong to Ss. The function L(s, ) has analytic continuation and
satisfies a functional equation

L(S’ ¢) = 6(3’ ¢)L(1 - S, (Ig)y
with an e-factor of the form
6(3’¢) = a¢(pr¢)s’ ap € Ca Ty € Z.

Langlands’ conjectural reciprocity law, which is actually a special case of his functo-
riality principle, was formulated for all places p. It asserts that L(s,7,) = L(s, ¢p)
for all p, or in global form, that

L(s,m) = L(s, ).
In other words, every Artin L-function is an automorphic L-function.

2. Suppose now that G belongs to one of the other three families SO(2n +1),
Sp(2n) and SO(2n) of classical groups. We shall assume that G is quasi-split. Then
G will actually be split if it is of the form SO(2n + 1) or Sp(2n). In the remaining
case, G could be a nonsplit form of SO(2n) which splits over a quadratic extension
E of Q. (We exclude the exceptional quasi-split forms of SO(8).)

With suitable modifications, the constructions of §1 all carry over to G. (They
were introduced by Langlands for any reductive group over any global field F [13].)
In particular, an automorphic representation of G(A) has a decomposition 7 =
&, Tp, in which m, is an unramified representation of G(Qp) for all p outside
a finite set S = S;. Each such 7, is a constituent of a representation induced
from an unramified quasi-character of a Borel subgroup B(Qp) of G(Q,). The
reader unfamiliar with these things could try at this point to construct a semisimple
conjugacy class t(mp), in analogy with GL(n). He/she will discover that such a
conjugacy class exists, but that it occurs naturally in a complex group which is
dual to G. If G is split, one can take the dual group G given by the table

G G
SO(2n+1) | Sp(2n,C)
Sp(2n) | SO(2n+1,C)
SO(2n) SO(2n,C)

If G is not split, one must take a semi-direct product
G x Gal(E/Q),
in which Gal(E/Q) acts on G= S0(2n, C) by conjugation through the isomorphism
Gal(E/Q) ~ O(2n,C)/SO(2n, C).
The two cases are combined in Langlands’ original construction of the L-group
G = G » Gal(@/Q),

where Gal(Q/Q) acts trivially on G in case G is split, and acts on G through its

quotient Gal(E/Q) if G is not split. In the case of the general linear group, one

obviously takes (GL(n)) to be the direct product of GL(n,C) with Gal(Q/Q).
Thus, to any automorphic representation 7 of G(A) there is associated a family

t(m) = {t(mp) : p ¢ Sr}
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of semisimple conjugacy classes in the complex reductive group “G. We have to
remind ourselves that the situation is more concrete than the final notation suggests;
if G is split, for example, one can always replace L@ by the complex connected group
G. As with GL(n), the numerical data which determine these conjugacy classes are
believed to carry fundamental arithmetic information. In fact, the data obtained
in this way ought to be a subset of the data obtained from general linear groups.
This is the essence of the problem we shall presently discuss, and is also a special
case of Langlands’ functoriality principle. (For an introduction to the functoriality
principle, see [1].)

If the automorphic representations of classical groups are to be understood in
terms of GL(n), why study them at all? There are compelling reasons to do so.
Suppose for example that G = Sp(2n). One can form the Siegel moduli space

S(N) =T (N)\H,

where H is the Siegel upper half space of genus n, and T'(N) is the congruence
subgroup
{v€Sp(2n,Z): y =1 (mod N)}

of Sp(2n,R). Then S(N) is a complex algebraic variety. The L?-cohomology of
S(N), Hp, (S(N)), is a very interesting object which is directly related to certain
automorphic representations 7 of Sp(2n,A). For such 7, the conjugacy classes
t(mp) are governed by the eigenvalues of Hecke operators acting on the cohomology.
(See [3] for an introduction to these and related questions.) In this way one studies
quite different properties of 7 than one could get from the corresponding object on
a general linear group.

To attach an L-function to an automorphic representation 7 of G(A), one has
first to embed G in a general linear group. Suppose that

Ly g — GL(V)

is a complex analytic, finite dimensional representation of “G. This determines
local L-factors

L(s,mp, br) = det (1 — LT(t(ﬂ'p))p—s)_—l , pé S,

for almost all p. One would like to be able to define L-factors for all p, and to show
that the Euler product

L(s,, Lr) = H L(s,mp, Lr)
p

has analytic continuation and functional equation. The case of G = GL(n) and ‘7
the standard n-dimensional representation of GL(n,C) was discussed in §1. Despite
considerable progress [8], however, the general case is still far from solved.

Finally, we recall that the Langlands reciprocity conjecture applies equally well
to L-homomorphisms

¢c : GalQ/Q) — "G

attached to G. (An L-homomorphism is one which is compatible with projections
of the domain and co-domain onto Gal(Q/Q).) For each ¢g there should exist
an automorphic representation mg of G(A) with the property that for any Ir :
L@ — GL(V), the Artin L-function L(s, Lro¢g) equals the automorphic L-function
L(s,mg, ).
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This completes our discussion of some of the general properties of automorphic
representations. We can now formulate the problem we set out to describe.
Observe that for our classical group G there is a canonical embedding

rg : G = GL(N, C),
with N equal to either 2n or 2n + 1. This can be extended to an L-embedding
Lrg: 1G = G % Gal(Q/Q) — GL(N,C) x Gal(Q/Q) = £ (GL(N)).

By composing with rg, we obtain a map ¢g — ¢,

Gal(Q/Q)

LC e L(GL(n))

between L-homomorphisms into the two L-groups. We shall identify ¢ with its pro-
jection onto GL(N, C), that is, with an N-dimensional representation of Gal(Q/Q).
As such it is self-contragredient. Conversely suppose that ¢ is an arbitrary self-
contragredient N-dimensional representation of Gal(Q/Q). We assume also that ¢
is irreducible. Then ¢ factors through an orthogonal or a symplectic group. More
precisely, there is a unique G, and an L-homomorphism ¢ for G, such that ¢ is
equivalent to Lrg o ¢g. (This is an easy consequence of the self-contragredience of
¢—see for example §3 below.)

The problem is to show that there is a similar mapping 7¢ — 7 between
automorphic representations. The mapping should reduce to ¢g — ¢ for the au-
tomorphic representations attached (by Langlands’ conjectural reciprocity law) to
L-homomorphisms. As in this special case, the general mapping will be defined in
terms of the families ¢(7) of conjugacy classes.

Problem.

(i) If mg is an automorphic representation of the classical group G, show that
there is an automorphic representation m of GL(N, A) such that

Lrg (t(rgp)) = t(mp)

for almost all p.

(ii) Conversely, suppose that m is a self-contragredient automorphic representa-
tion of GL(N,A). If 7 is cuspidal, show that 7 is the image of an automor-
phic representation mg of G(A), for a unique G as above.

The problem is analogous to the base change problem, solved originally for
GL(2) by Langlands [15]. That a similar question could be posed for the outer

automorphism

tz7!, € GL(N),

of GL(N) was I believe first noticed by Jacquet. However, there are some new
phenomena here. The most obvious is the possibility of lifting representations from
more than one G to a given GL(N). If N = 2n is even, G could be either S0(2n,C)
or Sp(2n,C); that is, G could be either SO(2n) or SO(2n + 1). It was pointed out
by Shalika that one ought to be able to separate these two cases by looking at the
symmetric square and alternating square L-functions.

r—I=
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Let S? (respectively A?) be the finite dimensional representation
g: X —'gXg, g€ GL(2n,C),

of GL(2n, C) on the space of symmetric (resp. skew-symmetric) (2n X 2n)-matrices.
Consider a self-contragredient irreducible Galois representation

¢ : Gal(Q/Q) — GL(2n,C).

Then ¢ factors through O(2n,C) (resp. Sp(2n,C)) if and only if the representation
520 ¢ (resp. A? 0 ¢) of Gal(Q/Q) contains the trivial representation. This is the
case if and only if the Artin L-function L(s, S? o ¢) (resp. L(s, A% o ¢)) has a pole
at s = 1. This suggests the following supplement to the problem.

(ili) Suppose that m is a self-contragredient cuspidal automorphic representation
of GL(2n). Show that m is the image of an automorphic representation m¢ of
SO(2n) (respectively SO(2n + 1)) if and only if the automorphic L-function
L(s,m,5?%) (resp. L(s,m,A?)) has a pole at s = 1.

We shall state a second supplement to the problem that concerns automorphic
e-factors. Suppose that

¢ : Gal(Q/Q) — GL(N,C)

is an irreducible Galois representation. If we apply the functional equation of the
Artin L-function L(s, @) twice, we obtain

e(s,0)e(1 —s,0) = 1.

Assume that ¢ is self-contragredient. Setting s = %, we see that

€ (%,cﬁ) = =+1.

The self-contragredience of ¢ means that it factors through an orthogonal or a
symplectic group. If ¢ factors through Sp(N,C), € (%,(f)) can be either 1 or —1;
the actual value of this sign has interesting number theoretic implications [6]. If ¢
factors through O(N, C), however, ¢ (%, ¢) is known to equal 1 [7]. One would like
to establish the automorphic version of this property.

(iv) Suppose that m is a self-contragredient cuspidal automorphic representation
of GL(N). If 7 is the image of an automorphic representation ©¢ of a group
G with G = SO(N,C), show that € (5,7) = 1.

3. It is known that an automorphic representation 7 of GL(N) is uniquely
determined by the family ¢(m) of conjugacy classes. In other words, the map

™ — t(m),

from the automorphic representations of GL(N) to families of semisimple conjugacy
classes in GL(N,C), is injective. (The objects in the range are to be regarded
as equivalence classes, two families being equivalent if they are equal at almost
all p.) This is a theorem of Jacquet-Shalika [10], which is an extension of the
earlier result for cuspidal automorphic representations. (Keep in mind that we
have adopted a restrictive definition of automorphic representation. What we are
calling an automorphic representation really includes an extra condition, that of
being globally tempered; it is only with this condition that the injectivity is valid.)
The corresponding assertion for a classical group G is generally false. If

tc={tcp,:p¢ S}
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is a family of semisimple conjugacy classes in G, the set of automorphic represen-
tations mg of G(A) such that ¢(7g) = tg could be an infinite packet. In particular,
the mapping mg — 7 of our problem could have large fibres. An important part of
the problem is to determine these fibres. There is a precise conjectural description
of the preimage of any m, based on the theory of endoscopy [12] and its extension to
nontempered representations [2]. We shall not repeat it here. It suffices to say that
the description is motivated by the case that 7 is attached to a self-contragredient
Galois representation. We shall conclude this article with a few remarks on the
structure of such Galois representations.
Consider an L-homomorphism

¢ : Gal(@/Q) — £ (GL(N)).

We have agreed not to distinguish between such an object and the corresponding
N-dimensional Galois representation. Thus, ¢ has a decomposition

¢=£1¢1@"'®€r¢r
into irreducible Galois representations
¢: : Gal(@/Q) — ©(GL(N),

which occur with multiplicities ¢;. Suppose that ¢ is self-contragredient. Then
there is a permutation ¢ — 7 of period 2 on the set of indices such that ¢; = ¢, and
L =4

We are going to confine our attention to a special case. We assume that for
every i, £; = 1 and ¢; = ¢;. In particular, the irreducible representation

g — ¢i(0) ="¢i(0) ", o € Gal(Q/Q),
is equivalent to ¢;. It follows that for each ¢, there is a matrix A; € GL(N;, C) such
that
tpi(0) ! = Aipi(0)ATY, o € Gal(Q/Q).
Applying this equation twice, we see that *A7 ' A; is an intertwining operator for
the representation ¢;. It follows from Schur’s lemma that *A; = cA; for some
¢ € C*. Applying this last identity twice, we find that ¢ = 1, so that A; is either
skew-symmetric or symmetric. Therefore ¢, is either of symplectic or orthogonal
type. More precisely, if we replace ¢; by a suitable GL(N;, C)-conjugate, we can
assume that either
Image(¢;) C Sp(N;, C) C GL(N;,C)
or
Image(¢;) C O(N;,C) C GL(N;, C).

Separating the indices 7 into two disjoint sets I' and I? according to whether ¢; is
symplectic or orthogonal, we obtain a decomposition

¢=9" ®¢7%
where .
¢' = D ¢; : Gal(@/Q) — [ Sp(N;,C) C Sp(V', C)
jerI J
and

¢* = @D ¢ : Gal(@/Q) — [J Ok, C) C O(N?,C),
kel? k
in which N' =37, N; and N? = 3", Ni.
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The maps ¢' and ¢? can be analyzed separately. For the first one, we note

that Sp(N!,C) is connected and equals (G1), where G* = SO(N! + 1). There is
nothing more to say in this case. For the second case, observe that the map

Gal(Q/Q) — O(N?,C)/SO(N?,C) = Z/2Z

obtained from ¢* by projection, determines a quadratic character 7 of Gal(Q/Q).
Suppose first that N? is odd. Then O(N?2,C) is the direct product of SO(N?,C)
with Z/2Z. Setting G? = Sp(N? — 1), we use 7 to define an embedding of

L(G?*) =s0(N?,C) x Gal(Q/Q)

into
L(GL(N?)) = GL(N?,C) x Gal(Q/Q)

so that ¢? factors through L(G?). Next suppose that N? is even. Then O(N?,C)
is a semi-direct product of SO(N? C) with Z/2Z. Let G? be the quasi-split form
of SO(N?) obtained from 7 and the action of the nonidentity component of O(N?)
on SO(N?). Again there is an embedding of

L(G?) = SO(N?,C) x Gal(Q/Q)

into
F(GL(N?)) = GL(N?,C) x Gal(Q/Q)

such that ¢? factors through ©(G?).

We have shown that the original Galois representation factors through G, for
a unique classical group G = G' x G2. The groups obtained in this way (taken
together with the embeddings “G — £(GL(N))) are called the twisted endoscopic
groups for GL(N). (See [11]). They arise naturally from the twisted trace formula
for GL(NV), which of course is where one would begin the study of our problem. If
one is interested in the image and fibres of the maps 7 — =, one should really
state the problem in terms of these general endoscopic groups. However, for the
study of classical groups, the primitive case that G equals G or G? is obviously
what is important.

The conjectural description of the contribution of ¢ to the spectrum of G we
have alluded to (that is, the preimage in G of the automorphic representation 7 of
GL(N) attached to ¢) is given in terms of a group

Sy = 854(G) = Cent(Image(qS),@),

the centralizer in G of the image of ¢ [2, Conjecture 8.1]. For example, ¢ should
contribute to the discrete spectrum of G if and only if S,(G) is finite. It is clear
that for ¢ as above,

Ss(GL(N)) = (C)".
One also sees easily that

S4(G) = (z/2Z)", if each N; is even,
"\ (z/2Z)"!, if some N; is odd.

Thus, ¢ contributes to the continuous spectrum of GL(/V), but ought to contribute
to the discrete spectrum of G. This property actually characterizes the special
case we have been considering. If ¢; > 1 or ¢; # ¢; for some i, and if ¢ factors
through G, the group S,;(G) will be infinite. Then ¢ should contribute only to
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the continuous spectrum of G. In this more general situation, there could also be
several different G such that ¢ factors through LG.

What is apparent is that one will need some analogue of the group Sy(G) to
determine the fibres of the map mg — 7. It is no solution to use Sy(G) itself—the
Langlands reciprocity law is far from being established, and even if it were, it would
not be surjective. What we need instead is the construction of a group S, (G), for
any self-contragredient automorphic representation m of GL(NN), which reduces to
S4(G) in case m comes from ¢. Now we can write 7 formally as

T=bLm & - & L7y,

where each 7; is a (unitary) cuspidal automorphic representation of GL(N;). The
notation means that 7 is a representation induced from a parabolic subgroup with
Levi component

GL(N)% x --- x GL(N,.)%,

and embedded into L?(GL(N,Q)\ GL(N, A)) by an Eisenstein series. If we would
handle the cuspidal components 7;, we could copy the construction above; we would
be able to attach twisted endoscopic groups G = G! x G? to m, and to define the
groups S;(G). It is enough to treat the. case that m; is self-contragredient. One
would need to show that each such ; is attached to a ur}jque endoscopic group G;
for GL(N;), and that G; is primitive in the sense that G; equals either Sp(N;, C)
or SO(N;,C). This is essentially part (ii) of the problem stated above.

The remarks of this section have been concerned with setting up the definitions.
One needs to define the group S;(G) in order even to state what the image and
fibres of the maps mg — = should be. These groups are therefore at the heart
of things. The required properties of the cuspidal components 7; will have to be
established as part of the full solution of the problem. One can foresee an elaborate
inductive argument on the rank N of GL(N), which is based on the interplay of
the stabilized twisted trace formula of GL(N), and the stabilized trace formulas of
the endoscopic groups G.
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