
TOWARDS A LOCAL TRACE FORMULA

By JAMES ARTHUR*

1. Suppose that G is a connected, reductive algebraic group over a
local field F. We assume that F is of characteristic 0. We can form the
Hilbert space L2(G(F)) of functions on G(F) which are square integrable
with respect to the Haar measure. The regular representation

(R(yl, y2)4)(x) = ((yi1xy2), E L2(, G(F)),, G(F),

is then a unitary representation of G(F) X G(F) on L2(G(F)). Kazhdan has
suggested that there should be a local trace formula attached to R which is
analogous to the global trace formula for automorphic forms. The purpose
of this note is to discuss how one might go about proving such an identity,
and to describe the ultimate form the identity is likely to take.

To see the analogy with automorphic forms more clearly, consider the
diagonal embedding of F into the ring

AF = FOF.

The group G(AF) ofAF-valued points in G is just G(F) X G(F). The group
G(F) embeds into G(AF) as the diagonal subgroup. Observe that we can
map L2(G(F)) isomorphically onto L2(G(F)\G(AF)) by sending any 4 E
L2(G(F)) to the function

(g, g2) ' (gllg2) (g, g2) E G(F)\G(AF).
In this way, the representation R becomes equivalent to the regular repre-
sentation of G(AF) on L2(G(F)\G(AF)).

As is well known, R may be interpreted as a representation of the con-
volution algebra
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Cc'(G(AF)) = CC'(G(F) X G(F)).

Consider a function in this algebra of the form

f(yl, Y2) = f(Y)f2(y2), Y, Y2 E G(F),

for functions fi and f2 in CC(G(F)). Then R(f) is an operator on L2(G(F))
which maps a function 0 to the function

(R(f)+k)(x)- | f(g)(R(g)W)(x)dg
G(AF)

| X fA(u)f2(Y)(Yu- lxy)dudy
= G(F) G(F)

( /fl(xu)f2(uy)du)0(y)dy.
G(F) G(F)

Thus, R(f) is an integral operator with kernel

(1.1) K(x, y) =I f(xu)f2(uy)du, x, y G(F).
G(F)

In the 1970's, Harish-Chandra studied the values of this kernel on the
diagonal. He introduced a certain truncation of the resulting function,
which he used in the case ofp-adic F to show that the restriction of R(f) to
the space of cusp forms has finite rank [3(b)]. Harish-Chandra's trunca-
tion remains somewhat mysterious, and it is not clear what role it might
play in the local trace formula.

Implicit in Kazhdan's suggestion is that one should play off (1.1) with
the formula for K(x, y) given by Eisenstein integrals. The identity obtained
by equating these two formulas for K(x, x) could then be taken as the start-
ing point. The function K(x, x) will not be integrable unless G(F) is com-
pact. However, one can always multiply each expression for K(x, x) by the
characteristic function of a large compact set. This is the most naive form
of truncation, but, perhaps surprisingly, it appears that it will be possible
to compute the resulting integrals. One obtains the weighted orbital inte-
grals and weighted characters which are the local terms in the global trace
formula [l(h)]. It has always seemed strange that these local objects should
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have occurred only in a global context. It now appears that they do have a
genuine local interpretation, as objects which arise naturally from a prob-
lem in local harmonic analysis.

2. As an example, consider the case that G is anisotropic over F.
Then G(F) is a compact group. The function K(x, x) is of course smooth,
and is therefore integrable. Changing variables, and applying the Weyl
integration formula, we obtain

K(x, x)dx = (f,(xu)f2(ux)dudx
G(F) G(F) (F)

fl((u)f2(x- ux)dudx
JG(F) CG(F)

= X(F(cF, S G(ID(F) y)lfl(xi-'rxl)f2(x-lx-l'yxlx)dxldy)dx,G(F) (G(F)) G(F)

where (G(F)) stands for the set of regular conjugacy classes in G(F), dy is
the measure on (G(F)) induced from appropriate Haar measures on maxi-
mal tori of G(F), and D(y) is the Weyl discriminant. Thus

D('y) = det(l - Ad(y))g/g,
where g is the Lie algebra of G, and gA is the Lie algebra of the centralizer
of y in G. Since G(F) is compact, we can take the integral over x inside the
integrals over x1 and y. Changing variables from x to x2 = xlx, we obtain

K(x, x)dx = JG(7F , )
G(F) J (G(F))

where

JG(y,f) = D(y)I fl(x -lyxl)dxl f2(x 1'yx2)dx2.
G(F) G(F)

We have expressed the integral of K(x, x) in terms of products of orbital
integrals.
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On the other hand, the integral of K(x, x) equals the trace of R(f).
This operator decomposes into a direct sum over the irreducible constitu-
ents of R. As motivation for the noncompact case, let us describe the de-
composition formally in terms of the function K(x, x).

If (a, Vo) is an irreducible representation of G(F), let HS(Vo) be the
Hilbert space of Hilbert-Schmidt operators on V,. (This of course is just a
finite dimensional matrix algebra in the present case, since G(F) is com-
pact.) The L2-direct sum

HS(V,),
a

taken over the set of equivalence classes of a, and relative to the inner
product

(@S, S ) = E(So, S$)deg(a) = tr(So(S;)*)deg(a),
\ a / a a

is a Hilbert space which supports a unitary representation

(S,-S ®(a(y2)S0a(y)-), Y Y2 E G(F),
a a

of G(F) X G(F). The map

(2.1) )S, - E tr(a(x)So)deg(a), x e G(F),
a a

is then an isometric isomorphism from ®O HS(Va) onto L2(G(F)) which
intertwines the two representations of G(F) X G(F). For each a, let 63,
be an orthonormal basis of HS(Vo). By pulling back the operator R(f) to
(o HS(Vo), we obtain a second formula

I E tr(a(x)a(f2)Su(fi))tr(a(y)S)deg(a)
o SeB3,

for the kernel K(x, y). We are writing fi here for the function x - fl(xl 1).
In particular, tr(a(fl)) equals tr(a(fl)), where o stands for the contragra-
dient of a. Sincef is smooth, the terms in the series are rapidly decreasing.
We obtain
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) K(x, x)dx = G() tr((x)a(f2)Su(fi))tr(a(x)S)dx deg(a)
G(F) SC(B G(F)

= -E tr(a(f2)Sa(fj)S*)
a SE(B,

= E tr(a(fl))tr(a(f2))

=
r JG(r,f),7r=(a,o)

where

JG(ir,f) = tr(r(fi))tr(a(f2)).

We have expressed the integral of K(x, x) in a second way, in terms of
products of characters.

The local trace formula for compact groups is then the identity

(2.2) i JG(,Y,f)dy = E JG(7r,f)
(G(F)) 7 =(a,)

which is thus a simple consequence of the Weyl integration formula and
the Peter-Weyl theorem.

3. Now, suppose that G is a general reductive group. Again there are
two parallel formulas for K(x, x). One is a geometric expansion in terms of
regular semisimple conjugacy classes of G(F). The other is a spectral ex-
pansion in terms of irreducible tempered representations of G(F). We
shall describe each of these in turn.

The geometric expansion is again a consequence of the Weyl integra-
tion formula. Rather than writing this simply in terms of conjugacy classes
in G(F), we prefer to keep track of the elliptic conjugacy classes in Levi
subgroups of G. Let MO be a fixed minimal Levi subgroup of G over F, and
let £ stand for the (finite) set of Levi subgroups of G which contain Mo.
For any M E £, we have the split component AM of the center of M, and
the (restricted) Weyl group WoM of (M, AMO). We shall write M(F)en for the
set of elements in M(F) whose centralizer in G is a torus which is F-aniso-
tropic modulo AM. Then (M(F)ei,) will denote the set of M(F)-conjugacy
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classes in M(F)ei. Any strongly G-regular element in G(F) is G(F)-conju-
gate to a class in one of the sets (M(F)ei). This class is unique modulo
conjugation by the Weyl group WG of G. Applying the Weyl integration
formula to the right hand side of the identity

K(x, x) = Fif(u)f2(x- ux)du
G(F)

obtained from (1.1), we arrive at the expression

(3.1) EWVlWo IW0l- \ D(y7)
MeL ((M(F),4t)

.|! f1(x'l xl)f2(x-1x lyxl1)dxldy
AM(F)\G(F)

for K(x, x). As before, D(-y) is the Weyl discriminant, and dy stands for the
measure on (M(F)eii) induced from Haar measures on maximal tori of
M(F). This is the geometric expansion of K(x, x).

The spectral expansion is a consequence of Harish-Chandra's Plan-
cherel formula [3(a)], [3(b)]. Suppose that M E £. Let M(F)1 be the kernel
of the usual homomorphism HM from M(F) to

aM = Hom(X(M), R).

We shall write II2(M(F)') for the set of equivalence classes of irreducible
square integrable representations of M(F)1. Observe that a representation
a e IH2(M(F)1) may be identified with an orbit

ax(m) = ao(m)e(H(m)), X e ia*, m e M(F),

of irreducible representations of M(F) under the action of iam. If P is a
fixed parabolic subgroup with Levi component M, we can then form the
induced representation 9p(au) of G(F). For each such a, we fix a suitable
orthonormal basis (Boof the space of Hilbert-Schmidt operators acting on
the underlying space of Sp(ao). The Plancherel formula provides an ana-
logue of the map (2.1). This in turn leads to a second formula
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(3.2) fWo\ |oIjg-1 S E tr(9p(ax, x)Jp(ax, f2)
ME. UEaI2(M(F)1) Se(Bo ia /iav

* Sp(ax, fi)) * tr(gp(ax, x)S)m(ax)dX

for the kernel K(x, x). Here

m(ax) = do,/(ax)

is the Plancherel density, given by the product of the formal degree of a

with Harish-Chandra's .a-function, while

aM = Hom(HM(M(F)), 2irZ).

(The subgroup aM c aj* is a lattice ifF is ap-adic field, and is trivial ifF is
Archimedean.) This is the spectral expansion of K(x, x).

The question becomes how one might integrate (3.1) and (3.2) over x
in AG(F)\G(F). It can be shown that the terms in (3.1) and (3.2) corre-

sponding to M = G are both integrable. However, none of the other terms
turn out to be integrable. This can be seen most clearly in (3.1). For sup-
pose that for some proper M,

[,,,,, (,,,,, t,,,,,, \D(')lfl(X-l'yxl)f2(x-olx lyxlx)dxldydx
AG(F)\G(F) (M(F),,t) Am(F)\G(F)

converged (as a triple integral). Taking the integral over x inside the other
integrals, and making a change of variables, we would obtain

ID(y)l\ fjl(xi-"yx)dxlt 'f2(x2-'X2)dx2.
(M(F),,#) AM(F)\G(F) AG(F)\G(F)

Since the integrand in x2 is left-invariant under AM(F), and AG(F)\AM(F)
has infinite volume, we reach a contradiction. It will therefore be necessary
to truncate (3.1) and (3.2) in some fashion before the integration can be
attempted.

4. LetK be a fixed maximal compact subgroup of G(F). We assume
that K is in good position relative to Mo, and that K corresponds to a spe-
cial vertex if F is p-adic. Then
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G(F) = KAMo(F)K.

Let T be a point in aM0 which is highly regular, in the sense that the
infimum

d(T) = inf I c(T)|,

taken over the roots ca of (G, AMO), is large. We then define u(x, T) to be the
characteristic function of the set of points

x = k1hk2, k, k2 E K, h EAG(F)\AM,(F),
in AG(F)\G(F) such that HM,(h) lies in the convex hull

Hc(sT: s E WO }/aG).

(For each M, there is a canonical decomposition aM = am O aG, so
in particular, aG can be regarded as a subspace of aM0. We are writing
Hcx(S/aG) here for the convex hull of the projection onto aM/aGc of a subset
S of QM0.) The function u(x, T) is AG(F)-invariant. It can be regarded as
the characteristic function of a large compact subset of AG(F)\G(F).

The product of u(x, T) with each of the expressions (3.1) and (3.2) is
integrable over Ac(F)\G(F). The problem is to make sense of the inte-
grals. There are several questions here, but we can see that the essential
computational step would be as follows. For fixed elements y E (M(F)e,,)
and a E II2(M(F)'), find asymptotic formulas (as d(T) becomes large) for
the integrals

(4.1) f|(xl IyXl)f2(x-x l'yxx)U(x, T)dxldx,
~ AG(F)\G(F) AM(F)\G(F)

and

(4.2) tr(5p(ax, x)S)tr(9p(ax,, x)S')u(x, T)dx.
AG(F)\G(F)

In (4.2), S and S' are K-finite Hilbert-Schmidt operators on the space of
gp(ao), and X and X' are points in ia* whose projections onto ia; are equal.airllL311 UNWIV3 1VGIU 1
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5. We shall look at (4.1) and (4.2) separately. The discussion will be
slightly simpler if we do not have to deal with lattices in the spaces aM. Let
us therefore assume until further notice that the field F is Archimedean.
The maps HM are then surjective, and the subgroups aM are trivial.

Consider first the expression (4.1). The integrals over x and xl are
both over compact sets, so we may interchange their order. The expression
becomes

fl(Xlyxl)f2(xx-1xl yxix)u(x, T)dxdxl
JAM(F\F A(F)\G(F)AG(F)\G(F)

I- \Gfli(xi-l'yxl)f2(x2 lyx2)u(xI, X2, T)dx2dXl

AM(F)\G(F) AM(F)\G(F)

where

U(XI, X2, T) = Ju(x-lax2, T)da.
AG(F)\AM(F)

Since the centralizer of y in G(F) is compact modulo AM(F), the integrals
over xl and x2 in the last expression may be taken over compact sets. In
particular, T may be taken to be highly regular in a sense which is uniform
in xl and x2.

The next lemma is the main point. Let 6((M) be the (finite) set of
parabolic subgroups P = MNp of G with Levi component M. For any such
P, and any point

x = nmk, neNp(F), meM(F), k EK,

in G(F), we set

Hp(x) = HM(m),

as usual. We also write Tp for the projection onto aM of any Weyl translate

sT, s E WO,
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such that sT lies in the positive chamber of some minimal parabolic sub-
group Po E (P(Mo), with Po C P.

LEMMA 5.1. Assume that M * G. Then there is a subset S(xl, X2, T)
of AG(F)\AM(F) with the following properties.

(i) vol(S(xl, X2, T)) < C(xl, x2)e-d(T),
for a locally boundedfunction C(xl, x2) and a positive constant e.

(ii) If a lies in the complement of S(xl, x2, T), then u(xilax2, T)
equals 1 if and only if HM(a) lies in

(5.1) Hcx({Tp + Hp(x) - Hp(x2): P E (P(M)}/aG).

This lemma is a generalization of [l(g), Lemma 3]. In the p-adic case
treated in [l(g)], S(xl, x2, T) is actually empty for d(T) large.

The lemma allows us to relate the weight factor u(x\, X2, T) to the
volume of a convex hull. Let vM(xl, x2, T) be the volume in aM/aG of the set
(5.1). Since HM defines a proper map of AM(F) onto aM, we can choose
the Haar measures on these groups so that u(x,, x2, T) is asymptotic to
VM(xl, x2, T). The original expression (4.1) will then equal the integral

(5.2) fi(xl1 )f2(x2 XVM(X, X2, T)dx2dxl,
AAM(F)\G(F) AM(F)\G(F)

modulo a function of T which is O(e-'d(T)). The function VM(XI, x2, T) is,
incidentally, a polynomial in T. Its constant term equals

VM(X, X2) = (- l)dim(AM/AG)VM(, X2),

where

(5.3) VM(XI, X2) = vol(Hc({Hp(xl) - Hp(x2): P (P(M)}/aG)).

6. Now consider the second expression (4.2). It is convenient to write

tr((p(ax, klxk2)S) = E(x, ks, X)(k.k2), ki, k2 e K,

in Harish-Chandra's notation for Eisenstein integrals. (See [3(a), Section
7] or [l(c), Section 1.3-1.4].) Here, is is a (K n M(F))-spherical function
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from M(F) to a K-finite space VK of functions onK X K, and E(x, ks, X) is
the Eisenstein integral with values in VK. Then (4.2) becomes an integral

(6.1) (E(x, Os, X), E(x, s',, X'))u(x, T)dx
AG(F)\G(F)

of inner products in VK.
In the special case of K-bi-invariant functions on GL(n, F) (and with

F a p-adic field), Waldspurger has found an exact formula for (6.1) in
[5(a)]. It is valid whenever d(T) is large, and is given in terms of Harish-
Chandra's c-functions. Remarkably, it is the exact analogue of Langlands'
formula ([4], [l(d)]) for the inner product of truncated cuspidal Eisenstein
series. It is likely that Waldspurger's techniques will carry over to the gen-
eral case of (6.1), yielding an asymptotic formula analogous to the asymp-
totic formula [l(d)] for arbitrary Eisenstein series. Alternatively, recent
ideas of Casselman on inner products of distributions apply to (6.1), and
will perhaps lead to a slick proof of the same inner product formula. In any
case, the result will be an expression

(6.2) E E (c(s, X)ls5, c(s', X')is,)e(X-S'X')(TP)p,(sX - S'X')-1
PI s,s'eW(aMQMI)

a reader familiar with Eisenstein series will recognize. The outer sum is
over parabolic subgroups PI = M1Np, which contain a fixed minimal para-
bolic subgroup Po, which is in turn contained in the original group P =

MNp. The inner sum is over the set of isomorphisms from aM onto aM,
which are the restrictions of elements in WG. The function c(s, X) is of
course Harish-Chandra's c-function. Finally,

Op,(sX - s'X') = vol(a, /Z(A,))-1 H (sX - s'X')(aV),
aeAp,

where Ap, is the set of simple roots of (P1, AMI). In the case of Archimedean
F that we are considering, the relation between (6.2) and (4.2) will be
asymptotic. The difference between the two expressions should be
bounded by

p(X, X')IISll IS' le-ed(T)
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where p(X, X') is a locally bounded function on ia* X ia*, and e is a posi-
tive constant.

7. The source of the trace formula is to be the identity between the
geometric and spectral expansions (3.1) and (3.2). We are proposing to
truncate these expressions simply by multiplying them by the characteris-
tic function u(x, T). The resulting integrals over x in AG(F)\G(F) will of
course be equal. We would like to obtain explicit formulas for the integrals
by substituting the expressions (5.2) and (6.2).

On the geometric side there is an immediate question of uniformity.
The asymptotic approximation (5.2) of (4.1) is only valid for fixed 'y. How-
ever, y is to be integrated over all regular elements in (3.1). I have not

investigated whether there is an estimate which will take care of the ele-
ments y in (3.1) which approach the singular set. If this is not possible, we

may require a second kind of truncation, the sole purpose of which is to
handle such questions of uniformity. This was the case for the global trace
formula.

On the spectral side, we must compute the contribution of (6.2)
to (3.2). This entails changing (6.2) by replacing S and S' with
Sp(ax, f2)Sp(ax, fl) and S, respectively. We would then take the limit as X'

approached X, and finally integrate the product of the resulting expression
with m(au) over X E ia*. The combinatorics of this procedure are similar to
the case of Eisenstein series [l(f)], and have been carried out by Wald-

spurger [5(a)], at least in a special case. Again, I do not know whether
there will be a serious problem in general concerning the uniformity in X of
the asymptotic approximation (6.2). However, the analogous problem has
been solved for Eisenstein series [l(e)], where it is presumably more diffi-
cult.

The end result would be an explicit trace formula which we can now

describe. On the geometric side will be the distributions

(7.1) JM(, f)

= ID(y)\ \iAM(F)F A (fl(x 'yxl)f2(x2-1yX2)VM(XI, x2)dxldx2,
- AM(F)\G(F) AM(F)\G(F)

where y belongs to M(F),ei and VM(XI, x2) is the volume (5.3). The terms on

the spectral side require a little more description.
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Consider the subgroup

G(AF) = {(yi, y2) E G(F) X G(F): HG(yl) = HG(y2)}

of G(AF) = G(F) X G(F). We shall write II(G) for the set of (equivalence
classes of) representations of this subgroup obtained by restricting irreduc-
ible constituents irl 0 ?r2 of the induced representations

sp(a-x 0 ax) = -p(O--x) () p(ax), M E £, a E 12(M(F)1), X E ia*,

of G(AF). (This notation is motivated by (5.3), which leads us to identify P
with the parabolic subgroup P X P of G X G, instead of P X P.) Associ-
ated to these induced representations, we have normalized intertwining
operators

R(w, O-x ax) = R(w, a-x) R(w, ax), w e W(QM, aM),

from gp(a-x0 ax) to 9p(W(&-x)® w(ax)). These are independent of how w
is represented in the normalizer of M(F). It is really not II(G) that we
want, however, but the subset Idisc(G) of such representations in which
w(ax) = ax for some element w in

W(aM)reg = { E W(aM, aM): det(w - 1 )G O}.

Now, in analogy with automorphic forms, we write

Idisc(f) = Id (f)

for the expression obtained by taking the sum over M E £, w E W(aM)reg,
a E 112(M(F)1), and X E ia /ia*, of the product of

IWO1 |IWO 1|- det(w - 1)aGl- Eo(W)

with

(7.2) tr(R(w, a-(x+,,) ()Oax+,)Sp(a_(x+,) 0ax+,,, f))d1i.
ia*
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Here E,,(w) is a certain sign character which is peculiar to the local setting,
and is defined in terms of the zeros of the Plancherel density. Observe that
the factor (7.2) depends only on the restrictionf off to G(AF)Y. This fac-
tor actually vanishes unless w(ax) = a\, a condition which can be satisfied
for only finitely many X. (In the present case of Archimedean F, the condi-
tion can be satisfied for at most one X. We have written the formula as sum
over X so that the p-adic analogue will be more transparent.) We can there-
fore write

(7.3) WI/isc(f=) S adc( 7r)tr7r(f ),
7rEIIdj,(G)

a linear combination of irreducible characters in Hdisc(G). The complex
numbers

adi(Tr), M E £, T 6 disc(M),

can be defined in this way for all Levi subgroups, and will appear as coeffi-
cients on the spectral side.

Suppose that M E £. We shall write Htmp(M(AF)') for the set of
equivalence classes of irreducible tempered representations of M(AF)'.
Each representation r E IIep(M(AF)1) can be identified with an orbit

7 = ri.-x 7r2,x, X C ia*,

of irreducible representations of M(AF) = M(F) X M(F) under the
action of ia*. For any such xr, and any P e 6((M), we can form the induced

representations

Jp(irx, f) = Jp(*I,-X, fl) 0 P(7T2.X, f2), X E iaM.

We also have the standard unnormalized intertwining operators

JP'lp(ax) = Jp'lp(ilf-X) 0JP'Ip(TX2,), P' e (P(M),

from SP(Trx) to Ep,(7rx), each of which can be written as a product of a ra-
tional function

rp, p(rx) = rTp'IPjTril -)rp' P(ir2.x)
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with a normalized intertwining operator

Rp,'p(rx) = Rp'1p(rl,-_x) O RPIP(7r2.x)

[l(j), Theorem 2.1]. It is easy to show that the limit

,JM(Wx, P) = lim E (Jp',p(7rx)-JpIp(7rx+V))Op,(V)-1v-O P'(P(M)

exists [l(b), Lemma 6.2]. In general, the function

JM(irx, f) = tr(jM(7rx, P)p(rxx, f))

will have singularities in X. However, it can be shown that if ir belongs to

ldisc(M), then JM(?r, f) is a Schwartz function X E ia*. The distributions

(7.4) iM(7r, ) = JM(WX, f)dX, rT e disc(M),

will be the remaining terms on the spectral side.
The local trace formula will be the identity of distributions

(7.5) 2E |Wo |WoG-1(_-)dim(AM/AG) JM(7, f)d-y
M6E J (M(F),e/)

and

(7.6) E IwMIIWol-I(-- 1)dimAM/ E asc(Ta')ji(T, f).
Mef 7reIdic,(M)

We have described it for the function f = f, X f2. However, the distribu-
tions JM(^, f) and jM(7r, f) make sense for any function f in Cc(G(AF)),
and the identity would hold in this generality. Of course there are still some
analytic questions to be answered, so the identity must remain conjectural
for the present. (Incidentally, the notation in (7.6) is slightly at odds with
that used in connection with automorphic forms. In the papers [l(h)-l(k)]
we defined JM(JrX, f) in terms of the normalized intertwining operators
RpIp(rX) instead of the unnormalized operators Jp'lp(7rx) used here. More-
over, we denoted the corresponding integral (7.4) simply by JM(7r, f).)
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8. A distribution I on G(AF) is said to be invariant if it is left un-
changed under conjugation. That is,

I(fg) = I(f) f e CC(G(A,)), g e G(A,),
where

fg(gl) = f(gglg 1), g, gl E G(AF).

The distributions JM(^Y) and jM(r), defined by (7.1) and (7.4), are not in-
variant if M : G. Following the methods of the global trace formula
[l(h)], [l(i)], we shall sketch how the local identity we have just described
could be converted into an invariant local trace formula.

It is best to restrict our attention to the Hecke algebra 3C(G(AF)) of
functions in Cc°(G(AF)) which are left and right finite under the maximal
compact subgroup K X K. The results of Clozel and Delorme [2] allow one
to characterize the topological vector space J(G(AF)1) of functions on

nltemp(G(AF)l) of the form

fc(r) = tr(7r(f1)), 7r E ntemp(G(AF)l), f e JC(G(AF)).

Suppose that 0 is a continuous linear map from 3C(G(AF)) to a topological
vector space V. We can assume that 0(f) depends only on f. Then 0 is said
to be supported on characters if 0(f) depends only on the function fA.
When 0 has this property, there is a unique continuous map

0: 9(G(AF)) '

such that O(f~) = 0(f) for all f.
Suppose that M e £. Given a representation 7r e IIemp(M(AF)1), we

can form the limit

(RM(rX, P) = lim E Rpp(7rx)- Rp Ip(x+)Op(V)-1.
v-0 P'E((M)

Then for any f E 3C(G(AF)), we define mM(f) to be the function on

Itemp(M(AF)l) whose value at ir equals

Om(, ) = | tr((RM(lrx, P)S(,, f))dX.
iâ
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us, 4M is a transform from functions on G(AF) to functions on

ntemp(M(AF)'). Indeed, one can show that 4M is a continuous linear map-
ping from JC(G(AF)) into J(M(AF)1). (See [l(j), Theorem 12.1].)

Consider first an element y E M(F)eii. It is not hard to show that the
variance of OM under conjugation is the same as that of the distribution
JM(Y, f). The extent to which these objects differ can therefore be mea-

sured by invariant distributions. For each -y E M(F)ee, one can define an
invariant distribution

IM(^Y, f) = IM(', f), f e C(G(AF)),

which is supported on characters, and which satisfies the inductive for-
mula

(8.1) JM(Yf)= E i L(f))-
LE£(M)

Here £(M) denotes the set of Levi subgroups which contain M. (See [l(h),
Section 2].)

Next suppose that ir is a representation in HdiSC(M). The variance of
4M under conjugation also matches that of jM(T, f). It follows without
difficulty that there is an invariant distribution

iM(W, f)= iG(r),f), fG(AF),

which is supported on characters, and satisfies the inductive formula

(8.2) jM(r, f)= E [O4(r,OL(f)).
Le£(M)

This distribution can also be defined directly. The limit

(8.3) rM(7rx, P) = lim E rplp(7rx)-lrplp(x+,)^Op,()-1-O0 P'EP(M)

provides a rational function of X whose poles do not meet ia*. It is then an

easy consequence of [l(b), Corollary 6.5] that

(8.4) iM(T, f) = i rM(x, P)tr(Sp(rx, f))dX.
iM
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The following proposition gives the final invariant local trace formula.
As in the global case, it is a formal consequence of the definitions (8.1) and
(8.2).

PROPOSITION 8.1. The identity of the noninvariant expressions (7.5)
and (7.6) implies that the invariant expressions

(8.5) MI WOll|WO| (-1)d"im(AM/A) i IM(y, f)d( ,

M.£ ,S (M(F),11)

and

(8.6) E IWMiWo l-l1(_l)dim(AM/AG) adis (r)iM(7, f)
ME 7rEtIdic( M)

are also equal.
Proof. Write J(f) for the two equal quantities (7.5) and (7.6). We

shall set I(f) = IG(f) equal to the expression (8.5). Substituting (8.1) into
(7.5), and then applying the definition of It, we obtain

J(f) = E E W WOIWgll( 1)dim(AM/AG) IMTY, (f))d7
Me£ Le£(M) (M(F),11)

= E IW IWoGI-'(-1 )diam(AL/AG)L(4L(f)).
Le£

Similarly, if i(f) = iG(f) denotes the expression (8.6), we can write

J(f)= IE WOl IWol-'(-l )d(AL/AG)i(OL(f)),
Le£

for (7.6). We are trying to show that IG equals iG. We may assume induc-

tively that

L(OL(f )) = i('L(f )),

for any L C G. The corresponding terms in the two expansions of J(f)
therefore cancel. All that remains is the required equality of the two distri-
butions
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iG((G(f)) = IG(fl) = IG(f)

and

itG(G(f)) = iG(f ) = G(f ).

9. There are two special cases of our putative local trace formula
which have already been established. Before discussing these, we shall first
say a word about p-adic groups. From Section 5 through Section 8, we
were assuming thatF was Archimedean. Now, take F to be a p-adic field.
Then HM(AM(F)) is only a lattice in aM. The volume VM(xl, x2, T) in (5.2)
must be replaced by the number of lattice points in a convex hull. There
will be an analogous change in the asymptotic formula (6.2) for (4.2).
However, these difficulties are not serious, and may be handled by the
methods of [l(g), Sections 4-5]. We can expect that the changes caused by
replacing aM by a lattice will run parallel on the geometric and spectral
sides. The discrepancies should cancel, leaving intact the identity of (7.5)
and (7.6). The invariant identity of (8.5) and (8.6) would continue to hold,
and the definitions (7.1), (7.4), (8.1) and (8.2) would remain the same,
except with the domain of integration in (7.4) changed to ia* /iaM.

The first special case comes from the noninvariant identity of (7.5)
with (7.6). Take G to be the general linear group GL(n), and F to be a
p-adic field. Choose f2 to be supported on G(F)eii. Then the terms with
M * G in (7.5) vanish, and the expression reduces to an average

(9.1)

i( Fi(ID(y)\ f Mxfyxxl)dxl - f2(X2-YXx2)dX2)dy
of products of elliptic orbital integral. The spectral expression (7) \G(also
of products of elliptic orbital integrals. The spectral expression (7.6) also
simplifies. Suppose that T e Ildisc(M) is the restriction of i* ® r2 to
M(AF)1. Applying a general splitting property [l(h), Corollary 7.4] to the
operators SM(rx, P), and using the fact that f2 is supported on the elliptic
set, we can show that

jAM(7r, f) = l,fM(7rl,x)tr(RM(7r2,X, P)qP(7r2,X, f2))dX,
ia*/iaM
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where

fI.M(lX) = tr(P(rI.-_x,fl)).

We are in the case of GL(n), in which induced tempered representations
are all irreducible. Therefore, xrl equals r2, and is induced from a discrete
series. Applying a general descent property [l(h), Corollary 7.2] to the op-
erator (RM(r2.x, P), we conclude that jM(w, f) vanishes unless 1rl is actually
a discrete series. Now, specialize f2 to a K-bi-invariant function on G(F).
Then fl.M(rl.x) will vanish unless 7rl is unramified. In other words, M
equals Mo, and the restriction of 7rl = r2 to Mo(F)1 is the trivial represen-
tation r. Since

IWMl W -1-I(-1)dim(AM/AG) (-)"n!)-

the expression (7.6) becomes

(9.2) (-l)"-(n!)-1 | fl.Mo(Tx)tr((RMo(Tx, PO)PO(rTX, f2))dX.
ia/ iav

The identity of (9.1) with (9.2) is due to Waldspurger, and is the main
result of [5(a)]. In another paper [5(b)], Waldspurger uses this identity in a
remarkable way to establish some cases of Rogawski's conjecture on Sha-
lika germs for p-adic orbital integrals.

For the second special case, we take F to be either real or p-adic. We
allow G to be any connected group, except we assume for simplicity that
the split component AG is trivial. Take fi to be a pseudo-coefficient of a
discrete series representation 7r1 e II2(G(F)). That is, if 7rl is any irreduc-
ible tempered representation of G(F), tr(Tr' (fl)) equals 1 or 0, according to
whether -r' is equivalent to 7r1 or not. Then the expression (8.6) equals
tr(ur(f2)). By the splitting and descent formulas [l(h), Proposition 9.1 and
Corollary 8.3], the expression (8.5) equals

E wl| W0GK1(-l)dim(AMAG) | IM(½' f,)I(c-y, f2)d|y.Me£ 1 (M(F),11)

The function f2 is supposed to belong to the Hecke algebra on G(F). How-
ever, it is clear by density that this simpler form of the invariant trace for-
mula holds for any f2 e Cc(G(F)). Fix a group M and an element y',
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M(F)ei, and let f2 approach the Dirac delta measure on G(F) at yl. Then
tr(7rl(f2)) approaches Ow,(yl), the value of the character of 7r1 at yl. By the
Weyl integration formula, the function

ID('Y)/12I(y, f2) = ID(y)l I f2(X2lyx2)dx2, Y E (M(F)e1l),
AM(F)\G(F)

approaches the Dirac measure on (M(F)ei) at the conjugacy class of 7y in
M(F). Taking into account the different Wo-orbits of 7y which occur in
(8.5), we obtain

(9.3) IM(1, fl) =(-- l)dim(AM) ID(y)l) 1/20(yl)

For real F, this is essentially Theorem 6.4 of [l(k)].
Suppose that f is actually a matrix coefficient of 7rl. If rl is not super-

cuspidal, this presents the technical problem of extending the distributions
IM(') to the Schwartz space. Leaving this question aside, we see that the
function 4L(fi) will vanish for any L * G. This implies that

IM(I,,fi) = D(-yl)1/2 fI(x l'lxl)vM(xl)dxl
AM(F)\G(F)

where VM(xl) = VM(xl, 1). The formula (9.3) becomes

(9.4) fi(xll1X)lxl)v M(Xl)dxl = (-)dim(AM)Ol, 71)
AM(F)\G(F)

In this form the identity is the main result of [l(a)], when F is real, and of
[l(g)], when F is p-adic and 7r1 is supercuspidal. (The author of these pa-
pers seems to have had some trouble distinguishing between a representa-
tion and its contragradient. In [l(a)], 0,(h) should be replaced by 0,(h),
while ,(7y) should be replaced by 0(,y) in [l(g)].) IfF isp-adic and 7l is
special, the formulas (9.3) and (9.4) have not been established. The local
trace formula would be a natural way to prove them.

10. We shall conclude with some brief general remarks. As in the
global case, the local trace formula should be a special case of a local
twisted trace formula. For this, we would allow G to be any connected
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component of a (nonconnected) reductive group over F. Let Go be the iden-
tity component of the group generated by G. We would then define

(R(yl, y2))(x) = (y I-xy2), x E GO(F), Yi, Y2 E G(F),

for any function 4 E L2(G0(F)). This provides a canonical extension of the
regular representation of G°(AF) to the group generated by G(AF). In this
setting, the definitions (7.1), (7.4), (8.1) and (8.2), the identity between
(7.5) and (7.6), and the identity between (8.5) and (8.6), should all remain
valid.

As we mentioned in Section 1, there are strong similarities between
the local and global trace formulas. The reader can compare the invariant
local formula with the invariant global formula (3) in the introduction of
[l(h)]. The local formula is actually less complicated. One reason for this is
that the geometric terms are parametrized only by semisimple elements. In
the global formula, there are also terms on the geometric side parame-
trized by unipotent classes in the discrete subgroup. These account for the
coefficients aM(y) = aM(S, y) in [l(h), (3)]. The spectral analogue of a

semisimple class is a tempered representation. The only spectral terms in
the local formula come from tempered representations. In the global for-
mula there are also terms coming from nontempered representations in the
discrete spectrum. These are responsible for the extra local terms IM(r, f)
which occur on the spectral side of the global formula.

Nevertheless, the basic local ingredients of the global formula are the
invariant distributions IM(^, f). In the global setting, f stands for a func-
tion on an adele group, whereas in the definition (8.1), f is a function on

the product of G(F) with itself. However, the splitting formula [l(h), Prop-
osition 9.1] can be applied in both situations. In each case, it allows one to
write the distributions on the product of groups in terms of similar distri-
butions on a single group G(F). Now, there are believed to be relations
between the values these distributions assume on different groups (that is,
on groups related by endoscopy). Such identities would in turn provide a
stable (global) trace formula, and would lead to reciprocity laws between

automorphic forms on different groups. A natural question, which was

perhaps behind Kazhdan's original suggestion, is whether one can use the
local trace formula to establish these identities.
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