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§1. INTRODUCTION

In the paper [3], we gave a conjectural description of the discrete
spectrum attached to the automorphic forms on a general reductive
group. The main qualitative feature of this description was a Jordan
decomposition into semisimple and unipotent constituents. This is in
keeping with the dual nature of conjugacy classes and characters, and
in fact, with a general parallelism between geometric objects and spec-
tral objects that is observed in many mathematical contexts. Such
a decomposition for automorphic representations would of course be
parallel to the Jordan decomposition for rational conjugacy classes.
It would also be analogous to the Jordan decomposition that is an
essential part of the representation theory of finite algebraic groups.
The decomposition should actually apply uniformly to the automor-

phic representations in certain families. The families or "packets" are
indexed by certain parameters which are the source of the decomposi-
tion. The quantitative side of the conjectures in [3] is a formula for the
multiplicity with which a representation in any packet occurs in the
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discrete spectrum. It is a generalization of the formula for tempered
representations which is implicit in the examples in [15]. In terms of
the Jordan decomposition, tempered automorphic representations are
semisimple. The multiplicity formula for nontempered automorphic
representations contains some new signs. These are constructed out
of the root numbers of certain L-functions, attached to the semisimple
part of the given automorphic representation.

In this paper, we shall try to give some motivation for the con-
jectures. Some version of the conjectures, at least for many classical
groups, ought to follow from the stable trace formula. This is cer-
tainly so in the few cases where the stable trace formula has been
established [15], [22]. In general, one would need to combine the
theory of endoscopy with the ordinary (or twisted) trace formula to
obtain a stable trace formula. There are still a number of problems to
be solved, but one can guess what the final answer will be. The pur-
pose of this paper is to show that it is compatible with the conjectures
of [3].

For purposes of introduction, let G be a connected, simply con-
nected group over a number field F. We shall be interested in the
spectral side of the trace formula. The essential ingredient we shall
study is a certain distribution

Idisc, (f) , f E C (G(A)),
which is discrete in the parameters which describe the representations
of G(A). It is given by an explicit formula (3.1), one term of which
involves the trace of f on the discrete spectrum. When the stable
trace formula has been established, the payoff will be an identity

(1.1) Idisct(f) = (G, H)SIdsc(fH)
H

in which H ranges over elliptic endoscopic groups, t(G, H) is a certain
constant, and f -+ SIdic(fH) is a pullback to G of a stable distribu-
tion on H(A). (Recall that the endoscopic groups are a natural family
of quasi-split groups attached to G. Recall too that a stable distri-
bution is a special case of an invariant distribution, which arises as a
natural consequence of the difference between rational conjugacy and
geometric conjugacy. We refer the reader to [3, §3] for a brief discus-
sion of these notions and of the Langlands-Shelstad transfer mapping
fH.) As a distribution on G!(A), SI',H (fH) is not generally stable.~3 & U13~111JUC~IVl V~l U\~j) Id'is
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However, the trace of f on the discrete spectrum is also usually not
stable. Endoscopic groups were actually invented by Langlands with
the aim of measuring this lack of stability.
The endoscopic groups on the right hand side of (1.1) should all

contribute to the multiplicity formula for representations in the dis-
crete spectrum. However, the trace of f on the discrete spectrum is
only one of several terms in the explicit formula for Idisc,t(f). The
other terms are the surviving remnants of Eisenstein series, and are
parametrized by (conjugacy classes of) proper Levi subgroups of G.
Each such term is a linear combination of distributions, which are ob-
tained by taking the trace of a product of two operators, one being the
action of f on the induced discrete spectrum, and the other being an
intertwining operator that comes from Eisenstein series. These addi-
tional terms have one important function. They account for that part
of the discrete spectrum of a given H which under functoriality maps
into the continuous spectrum of G. However, the additional terms
also contribute irrelevant information, which complicates the study
of (1.1). The attempt to separate the extraneous information from
the contribution of the discrete spectrum leads to combinatorial diffi-
culties. The main point of this paper is to solve these combinatorial
problems.
The results are given in §5-§8. In §5 we expand Idisc,t(f) into a

linear combination of irreducible characters. This hinges on the con-
jectures of [3]. However, we have only the modest goal of showing that
the conjectures are compatible with (1.1), so we are free to assume
them. Each coefficient in the expansion contains a certain quotient of
L-functions, which comes from the global intertwining operators. If
the irreducible character is tempered, this quotient should equal the
parity of the pole of the L-function at s = 1. If the irreducible charac-
ter is nontempered, however, it will have a unipotent part. When the
corresponding unipotent element is not even, the quotient must also
be expressed in terms of the order of the L-function at the center of
the critical strip. The exact relation is given by Proposition 5.1, which
we prove in §6. Together with Lemma 7.1, it provides the justifica-
tion for the sign characters which appear in the general multiplicity
formula.

In §7 we establish a parallel expansion of the right hand side of (1.1)
into irreducible characters. This requires various properties from en-
doscopy, some known and others which are expected to hold, which
we discuss in §2 and §3. The endoscopic groups H consist of the
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quasi-split form of G, together with groups of smaller dimension. By
reasons of induction, then, the stable distributions SIdHj are uniquely
determined by (1.1). However, we must derive the expansion in §7
without reference to the left hand side of (1.1). The coefficients in the
expansion have to be given as certain undetermined constants, which
can be regarded as "stable multiplicities", and which only later are
tied precisely to the sign characters discussed above. For a parameter
which contributes to the tempered discrete spectrum, the correspond-
ing coefficient will be familiar from [15, §6,7] and [12, §12]. It is then
just equal to 1, divided by the order of a certain finite group.
Our aim is to show that with the assumption of the conjectures of

[3], the left and right hand sides of (1.1) are equal. We would thus
like to establish a term by term identification of the two parallel ex-
pansions. However, this is not immediately obvious. What remains to
be proved at the end of §7 is a sort of analogue for Weyl groups of the
endoscopy identity (1.1). The expansion of Idisc,,(f) contains certain
constants i(x), which are defined if x is any connected component of
a complex reductive group. The expansion for the right hand side
of (1.1) is identical, except that i(x) is replaced by another constant
e(x). In the first case, i(x) is given by a finite sum over elements
in the Weyl set of x. It is the analogue for Weyl groups of the left
hand side of (1.1). The second constant e(x) is the analogue of the
right hand side of (1.1), and is given as a finite sum over the isolated
conjugacy classes in x. In §8 we prove that i(x) equals e(x) for every
component x. This establishes the term by term identification of the
expansions of each side of (1.1).
At the end of §8 the reader might be wondering whether the paper

has provided the global motivation claimed in the title. It is true that
the identity (1.1) is weaker than the conjectural multiplicity formula
(and the local conjectures on which it is based). However, the identity
can still provide significant information about the discrete spectrum,
for either G or its endoscopic groups. This is especially so if for
one of the groups, the conjectures are known to hold. The group
GL(n) is such an example, thanks to recent work of Moeglin and
Waldspurger [21]. The twisted version of (1.1), applied to GL(n),
will relate the discrete spectrum of many classical groups to that of
GL(n). In particular, it should yield some version of the multiplicity
formula for the quasi-split orthogonal and symplectic groups. We shall
finish the paper in §9 with an informal discussion of these questions.
Throughout the paper we shall adopt the following notational con-
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ventions. Suppose that E is a set on which a group r acts. We shall
denote the set of orbits of r on S by either Orb(r, S) or S/r. In
general, if A and B are subsets of a group r, we shall write

Cent(A,B) = {b E B: b-lab = a, for allaEA}

for the pointwise centralizer of A in B, and

Norm(A,B) = {b E B: b-Ab = A}

for the normalizer of A in B. Next, suppose that C is a finite union of
connected components in a (nonconnected) algebraic group. Then C+
denotes the algebraic group generated by C, and Co is the connected
component of 1 in C+. If s is any element in C, we set

C, = Cent(s,C°).
Then C8 is also an algebraic group, with identity component

C = (C = Cent(s,C0).

(This differs from the notation of [2] and some other papers, in which
the symbol C, was reserved for the identity component of the central-
izer.) We shall also write

Z(C) = Cent(C,C°).
This group is the intersection of Co with the center of C+, and is
contained in Z(C°). Finally, if X is any topological space, 7ro(X)
denotes the set of connected components of X.

§2. ENDOSCOPIC DATA

Suppose that G is a connected component of a reductive algebraic
group over a number field F. Then G+ stands for the group generated
by G, and GO is the connected component of 1 in G+. We shall assume
that G(F) is not empty. As in [3, §6], we shall also assume that G is
an inner twist of a component in a quasi-split group. More precisely,
we assume that there is a map

r : G -- G*,



6 JAMES ARTHUR

where G* is a component such that (G*)° is quasi-split, and such that
G*(F) contains an element which preserves some F-splitting of (G*)O
under conjugation. It is required that rv extend to an isomorphism of
G+ with (G*)+ such that for any a E Gal(F/F), the map

ra(r/-1): G* -. G*

is an inner automorphism by an element in (G*)°.
The standard situation is when G+ = G°. By allowing G to be

a more general component, we are providing for applications of the
twisted trace formula [5]. Associated to the connected component
G° we have the L-group

LGO = G WF.

It is a semidirect product of a complex connected group G° with the
Weil group WF of F. (As in [3], we follow the notation of Kottwitz
[12], so that G° stands for the identity coset of the L-group. The
symbol LGO can then be reserved for the full L-group of GO.) We
have not assumed that G+ is a semidirect product of Go with a finite
cyclic group, but this does not seem to be a serious concern. In
particular, it is reasonable to define the L-group LG+ of G+ simply as
a semidirect product of LGO by the cyclic group 7ro(G+) of connected
components in G+. The action of ro(G+) on G° is dual to its action
by outer autmorphisms on G°. The action of 7ro(G+) on WF could
be defined by some map of 7ro(G+) into H1 (WF, Z(G°)). However,
for simplicity we shall assume that ro(G+) and WF (as subgroups of
LG+) commute. Associated to the component G we have an "L-coset"

LG = G WF,
in which G is a coset of G° in a group G+ such that

LG+ = G+ X WF .

Notice that
Z(G) = Cent(G, G)

is in general a proper subgroup of the center

Z(G°) = Cent(Go,G°)
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of G0. We must always be careful to distinguish between these two
groups. The Galois group r = rF of F over F acts on both Z(G)
and Z(G°). The subgroups of F-invariant elements are given by

Z(G)r = Cent(LG,O)
and

z(Go)r = Cent(LGO,G).
These too are not generally equal. Observe that

A== (Z(G)r)°
is the maximal r-invariant torus in the center of G+. It is of course
not the dual group of the maximal split torus AG in the center of G+.
It is associated, rather, to the dual of the real vector space

aG = Hom(X*(G)F,R) .

(X*(G)F denotes the module of F-rational characters on G+.) More
precisely,

X*(G)F - X,(A)
so that the complex dual space a* c = X*(G)F 0 C is the Lie algebra
of A0. We shall write

KG = (A0eo) = Z(G)rn(z(GO)r)
for the group of fixed points of G in Ado. It is a closed subgroup of
Ado whose identity component equals AG.
The theory of endoscopy for nonconnected groups is the subject of

work in progress by Kottwitz and Shelstad. As in [3, §6], we shall
guess at the ultimate form of some of this theory by extrapolating from
the connected case. Thus, an endoscopic datum (H, 7H,s, ) should
consist of a connected quasi-split group H over F, an extension

I - H - 7-' WF - 1,

a semisimple coset s in G/Z(G°), and an L-embedding of 7 into
LGO. The definition is similar to the one given in [3, §3,§6] except
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that s is now a coset of Z(G°) instead of a single element in G. It is
required that

((H) = Cent(s,G°)° ,

the connected centralizer in oG of any element in the coset s, and that

(2.1) s=(h)s-1= a(wh)(h), h eH,

where wh is the image of h in WF and a(.) represents a locally
trivial element in H (WF, Z(G)). In other words, a(-) belongs to
ker1 (WF, Z(G°)), the kernel of the map

H1(WF,Z(G0)) - H 1(WF,Z(GO)),
v

in which v runs over the valuations of F. It is further required that the
two extensions 1- and LH define the same map of WF into Out(H),
the group of outer automorphisms of H.

Recall that an endoscopic datum is said to be elliptic if the set ((7/)s
is not contained in any proper parabolic subset of LG. Equivalently,
the datum is elliptic if and only if the group

(Z(H)r)/r(z(WHr) n z(G)r
is finite, or again, if and only if ((AH) equals Ad. Finally, two elliptic
endoscopic data (H, , s,$) and (H', C', s', ') are equivalent if there
exist dual isomorphisms a : H - H' and /3: 7'-iX, together with
an element g E G° such that

g(/3(h'))g-1 = '(h'), h' E 1,

and
gsg-1 = s'.

Suppose that (H,', s, g) is an elliptic endoscopic datum. We shall
write Aut(H) for the group of elements g in G° such that gsg-1 = s,
and g~(H)g-l =-('). Then Aut(H) is a reductive subgroup of G°.
Notice that g(H)Z(G°)r is a closed subgroup of Aut(H). We shall
need to know later that it is of finite index. Equivalently, we must
establish
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LEMMA 2.1. The identity component of Aut(H) equals

(/)(Z(°6)r) ° = (fH)A(Ao)
Let sl be a fixed element in the coset s, and write

Cs = {g E G : slgsjlg E Z(G°)} = {g E G: gsg-1 = s}
and

Cs = {g E G : slgsg-1 = 1}.
Then

9 sl9gslg-1
is an injective map from Cs/Cs onto a closed subgroup Z(s) of Z(G°).
LEMMA 2.2. The subgroup

Z'(s) = {slzsz-1: z E Z(G0)}
is of finite index in Z(s).
PROOF: Suppose that g belongs to Cs. We can write g = glz, where
gl belongs to the derived subgroup Gder ofG and z belongs to Z(G°).
Then

sgs-19-1 s 9-1 -r1 -1i -1sgs- g-x = siglsl g-1 ·szsl z
In particular, both gl, and z belong to Cs. But the element
s1gl1g1 lies in Gder. The lemma follows from the fact that Gder
has finite center. -
PROOF OF LEMMA 2.1: According to the first condition in its defi-
nition, Aut(H) is contained in Cs. Let Aut'(H) be the subgroup of
elements g E Aut(H) such that slgsllg-1 belongs to Z'(s). The last
lemma tells us that Aut'(H) is of finite index in Aut(H).

Let g be an element in Aut'(H). Then we can write

9 = 911 , 1 E Cs, z1 E (G°).
Suppose also that h is an element in g(H). The second condition in
the definition of Aut(H) implies that ghg-1 equals hllh, for some
element hi E (H). We can write this as

hzih-lzl1 = (hgih-1)-lhg .
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Both hi and g, commute with sl. It follows easily from (2.1) that
hglh-1 also commutes with sl. Therefore hzlh-'z-1 commutes with
s1, and belongs to the subgroup Z(G) of Z(G°). Now

hzlh-lz1 = a(Zl)z11 ,

where a is the projection of h onto F = Gal(F/F). The action of F
on Z(G°) factors through a finite quotient Gal(E/F), and this action
preserves the subgroup Z(G). We obtain a homomorphism

g -+ a(Z1i)Z1

from Aut'(H) to the finite group H' (Gal(E/F), Z(G)). Suppose that
g lies in the kernel of this map. Then

a(zi)z71 = a(z)z-1, a E r,

for some element z E Z(G). In other words, there is a decomposition
Z1 = zz2, for elements z in Z(G) and z4 in Z(G°)r. We can therefore
write g = gz4, where the element gj = g z lies in the centralizer C,.
In other words, g belongs to the subgroup C8Z(G°)r.

It remains only to observe that ~(H) is the identity component of
C,. We obtain an embedded chain

(H)Z(G°)r C CCZ(G°)r C Aut'(H) C Aut(H)
of normal subgroups of finite index. Therefore ~(H)Z(G°)r is of fi-
nite index in Aut(H), and the two groups have the same identity
component. O

Let (H, 7, s,5) be a fixed endoscopic datum. One is interested in
the L-homomorphisms of WF into LG whose image is contained in
~(H). (Recall that an L-homomorphism between two extensions of
WF is a homomorphism which commutes with the projection onto
WF.) One might like to be able to identify such objects with L-
homomorphisms of WF into the L-group LH of H. However, this is
not always possible. The L-group is a semidirect product H x WF
relative to an L-action of WF on H [20, 1.4]. (The action of WF of
course factors through the quotient F of WF.) But the two extensions
1t and LH of WF by H need not be isomorphic. In other words, there
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might not be an L-embedding of LH into LG which co-incides with
the image of C. Fortunately the problem is not serious. In the case
that G = Go, the question can be resolved by taking a z-extension of
G, as has been explained in [20, (4.4)]. In the general case, Shelstad
has pointed out that it is necessary to work directly with extensions
of the endoscopic groups H. Suppose, then, that

(2.2) 1 ) Z1 ) H1 ' H 1

is a central extension of quasi-split groups over F. We shall review
the question of whether there exists an L-embedding

1 - , LH1

which extends the canonical embedding H <- H1 of dual groups.
Consider first the kernel KF of the projection WF -- F, a con-

nected group. It would be no trouble to construct an embedding for
the preimage 7t' of KF in W7. For it follows easily from (2.1) that
(7'1') equals the subgroup ~(H) x KF of LGO. In other words, there

is a splitting 0: KF --* I such that

(2.3) hO(k)h-1 = 0(whkWh ), h E X1, k E KF,

where wh is the image of h in WF. Now by assumption, the map of
WF into Out(H) defined by 71 is the same as the L-action

h - w(h), hE H, w EWF,
used to define LH. It follows that 0 can be extended to a section from
WF to 7H such that

O(w)h0(w)- = w(h), h E H, wE WF.

Keep in mind that it is only the restriction of 0 to KF which is a ho-
momorphism. However, 0 is uniquely determined up to multiplication
by elements in the center Z(H) of H. Therefore

O(wli)(w2) = b(1,W2)8(w1,W2) , Wl,W2 E WF,

where b(wl, w2) is a 2-cocycle from WF to Z(H). By (2.3), b(wl, w2)
depends only on the images of wl and w2 in rF. We shall write /
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for the image of b in H2(WF, Z(1i)), relative to the embedding of
Z(H) into Z(H1). Then / is the inflation of a class in H2 (F, Z(H1))
which is independent of 8. Suppose that 3 is trivial. That is,

/3(wl,W2) = Z(WI)Wl (Z(W2))Z(WlW2)1 Wl,W2 E WF,

for a function z : WF -* Z(H1) which is uniquely determined up to
a 1-cocycle. Every element in 7 can be represented uniquely in the
form

hO(w) , hE H, wE WF,

and the map

(2.4) (1 (hO(w)) = hz(w) X w

is then an L-embedding of 7H into LH1. Conversely, if an embedding
1 exists, the function z(w) in (2.4) will split the class /.
Assume that the embedding ~1 exists. Suppose also that the central

subgroup Z1 of Hi is connected. Then we can form the L-group
LZ! = Z, X WF, and there is a canonical projection LH1 - LZ1l We
also have an exact sequence

1 Z(H) -Z(H1) Z1 , 1

of complex abelian groups. Let zl(w) be the projection of z(w) onto
Z1. Then zl is a 1-cocycle from WF to Z1. In fact, if we agree not to

distinguish between a cocycle and its corresponding cohomology class,
zl is just the preimage of the class b E H2(WF, Z(H)) determined by
the long exact sequence

-- H1(WF,Z(Hi1)) - H1(WF,Z1)
- H2(WF,Z())- H2(WF, Z(H,)) -

It is uniquely determined modulo the image of H'(WF, Z(Hi)) in

H1(WF, Z). The map

alI(w) = zi(w) X w, wE WF,

is an L-homomorphism of WF to LZ1.
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Suppose that LF -- WF is some extension of WF. Suppose also
that b : LF - LG is an L-homomorphism whose image is contained in
~(KH). That is, V = o ObH, for some L-homomorphism H:b LF -- I.
Then /1== 1 o0 H is an L-homomorphism of LF into LH1. Set

tH(t) = 7(t)9(wt), t E LF,

where wt is the image of t in WF and y(t) belongs to H. Then

61(lH(t)) = 7(t)z(wt) x w , t E LF.

It follows that the composition of )1 with the projection LH1 -- LZ1
equals a1 (or rather, the pullback of al to LF.) Conversely, any L-
homomorphism 1i : LF -+ LH1 whose projection to LZ1 equals al
is easily seen to be of the form C1 o AH. We can summarize these
remarks in a commutative diagram

LF

al

/SW'01/ ^H \^

LZ1 - LH1 ' -t LG

In conclusion, we want to associate pairs (H1, 1i) to endoscopic data,
where H1 is a central extension (2.2) and C1 is an L-embedding (2.4).
We shall call such a pair a splitting for the endoscopic datum. We shall
say that (H1, 1) is a distinguished splitting if, in addition, the map
H1(A) -- H(A) between adele groups is surjective, and the central
subgroup Z1 is an induced torus. That is, Z1 is a product of tori of the
form ResE/F(Gm). In particular, Z1 is connected, as we assumed in
the discussion above. Any endoscopic datum has a distinguished split-
ting. For example, the cocycle b(wl,w2) E Z(H) that we described
above often splits. In this case, we can simply take (H1,, 1) = (H, Id).
In general, we can always take H1 to be a z-extension of H [11, §1],
the existence of which is established in [17, pp. 721-722]. The first
condition follows from [11, Lemma 1.1(3)], while the second is part
of the definition of a z-extension. It is also part of the definition that
the derived group of H1 is simply connected. This in turn implies



14 JAMES ARTHUR

that Z(H1) is a complex torus. It follows from [17, Lemma 4] that
the class f E H2(WF, Z(H)) is trivial. The embedding ~1 therefore
exists, and (Hi,g1) becomes a distinguished splitting. In general, if
(H1, 1) is any distinguished splitting, one needs to know that the
canonical map

ker' (F, Z(H)) - ker' (F, Z(H1))
is an isomorphism. (As before, ker1 (F, Z(H)) denotes the kernel of
the map

H' (F, Z(H)) - H1 (Fv, Z(H)).)
V

This follows from the proof of [12, Lemma 4.3.2(a)]. We will also
use the injectivity of the map

H1(F,Z(HI)) , H1(F,Z(HI1)),
which is a consequence of the long exact sequence of cohomology, and
the fact the group H°(F, 21) = 7ro(Zr) is trivial.

§3. THE DISCRETE PART OF THE TRACE FORMULA

We are going to study a piece of the trace formula. It consists of
those distributions on the spectral side of the trace formula which
are discrete with respect to the natural measure on the relevant auto-
morphic representations. This part of the formula contains the actual
trace on the discrete spectrum. It is thus the payload, the part which
will eventually be used to compare automorphic representations on
different groups. Of course, there are serious problems relating to the
other terms in the trace formula which will have to be overcome first.
Our intention in this paper is simply to see what can be learned once
these other problems have been solved.

Let A be the adele ring of F. We should first identify our space of
test functions on G(A), the set of A-valued points in G. Consider the
diagonalizable group Z(G) = Cent(G, GO). We shall fix a closed sub-
group X of the group Z(G, A) of adele points such that X n Z(G, F)
is closed, and such that XZ(G, F)\Z(G, A) is compact. Let X be a
character on X which is trivial on X n Z(G, F). Then Co (G(AP), X)
will denote the space of smooth functions f on G(A), of compact
support modulo X, such that

f(zx) = x(z)-lf(z), X, z E G(A).
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Let t be an arbitrary but fixed nonnegative real number. The cor-
responding discrete part of the trace formula is the distribution

Idisc,t(f) , f E Cc (G(A), X) ,
on Co (G(A), X) which is given by the expression

(3.1) Z i[ro(G'+)l' IWG(aM)I-1
{M} wEWG(aM),.r

Idet(w - 1)aG -ltr(M(w,O)pp,t(O,f)).M

(See [2, §4], [4, §II.9].) We shall describe very briefly the terms in
this expression. The outer sum is over the finite set of Go (F)-orbits of
Levi components M of F-rational parabolic subgroups P of G°. The
inner sum is over the regular elements

WG(aM)reg = {W E WG(aM): det(w- 1)aG ¢ 0}
in the Weyl set

WG(aM) = Norm(AM,G)/M
of (G,M). As in earlier papers, we regard the Weyl elements as
operators on the real vector space

aM = Hom(X(M)F,R)
which leave invariant the kernel aG of the projection of aM onto aG.
For each M there is canonical isomorphism from

AM,O = AMQ(R)° , MQ = ResF/Q(M),
onto aM. If AGM denotes the preimage of aG in AM,OO we can
extend X uniquely to a character XM on XM = A, oX which is
trivial on A,0 Let LdSt(M(F)\M(A),x1) be the subspace of
L2 (M(F)\M(A), XM) which decomposes under M(A\) as a direct sum
of irreducible representions whose Archimedean infinitesimal charac-
ter has norm t. Then

pp,t(O): f -, PP,(O, f) = f(x)pp,t(O, x)dxJ\G(A\)
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stands for the corresponding representation induced from P(A) to the
group G(A)+ generated by G(A). It acts on a Hilbert space 7Hp,t of
XM -equivariant functions on G(A)+. Finally,

M(w,0O): Hpt - 'Hp,, wW (aM)reg,
is the global intertwining operator which comes from the theory of
Eisenstein series. For a given conductor, Idisc,t(f) is a finite linear
combination of irreducible characters on G(A)+.
There are some minor discrepancies between (3.1) and the origi-

nal definition [2, (4.3)]. In (3.1) we have summed over the orbits
{M} instead of all Levi components which contain a given minimal
one. This is why IWG(aM)1-1 appears instead of the normalizing
constant IWOMIIWoGl-1 from [2]. The operator pp,t(O, f) here comes
from a representation of G(A)+ induced from a subgroup of the con-
nected component Go(A). It is a direct sum of [ro(G+)I copies of
the corresponding operator from [2], which comes essentially from
the induced representation of GO(A). Hence the constant Iro(G+)K-1
in (3.1). The difference between taking a X-equivariant function on
G(A), as we have done here, and a function defined on the subset
G(A)1 of G(A), as in [2], is purely formal. In [2], there was also
the additional assumption that f was K-finite, but this was only for
dealing with other terms in the trace formula.
The program for comparing trace formulas on different groups, as it

is presently conceived, falls into the general framework of stabilizing
the trace formula. The basic references for this problem are [18],
[12], and [13]. The problem was solved completely for G = SL(2) in
[15]. A general solution would include: a transfer map from functions
for G to functions for endoscopic data, a stable distribution analogous
to Idisc,t for any quasi-split group, and an identity relating Idisc,t to
the corresponding stable distributions for endoscopic data. We shall
discuss the transfer first, and then describe the expected properties
of the other objects in the form of a hypothesis.
Suppose that (H,H,7s, ,) is an elliptic endoscopic datum for G.

Assume also that we have fixed a distinguished splitting (Hi, 1) for
the endoscopic datum. As we recall from §1, 1i determines an L-
homomorphism 1 : WF - LZ1. Let

(1: Z1(F)\Z1(A)( - C*
be the character associated to ac by the Langlands correspondence
for tori. Now, in the special case that G = G°, the results [20]
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of Langlands and Shelstad imply the existence of a canonical map
f fHi from functions f E Cc (G(A) to functions fHi(7H,) on
suitable stable conjugacy classes in H(A), with the property that

fHl(zl')H ) = (C(Zl)-lfH1(7H) , Z1 e Z1(A).

(See also [12], [13] and [3].) The map must be constructed as a
tensor product of the local maps fV -- fH", fv E Cc (G(Fv)), which
are defined explicitly in [20]. Langlands and Shelstad expect that
fHi is the set of stable orbital integrals on H (A) of a function g in
C, (Hi(A),(1). We shall assume that this is so. In fact, we shall
assume that the transfer map

f f/ , fECe (G(A)),
has been defined, and has this property, for general G.
We should actually modify the transfer mapping so that its domain

is the space CC (G(A, X) considered earlier. Lemma 4.4A of [20]
suggests how the functions

f(x) = f(x) z (G,), xZ(GG(),X f ECe°(G(A)),
should behave under the transfer map. In general, there will be a
norm mapping z - z' from Z(G, F)\Z(G, A) into Z(H, F)\Z(H, A).
We also have the exact sequence

1 - Z1 ) Z(H1) - Z(H) -, 1

We can then expect a formula

(3.2) (fz)H "(H,) = Cl(Zl)fHl(zlHi),
where C( is an extension to Z(Hi,F)\Z(Hi, A) of the character on
Z1(F)\Z1(A), and z1 is any point in Z(H1, A) whose image in Z(H, A)
equals z'. Recall that X is a character on the closed subgroup X of
Z(G, A). We shall assume that

x(z) = (z'), z EX,
where X' is a character on the image X' of X in Z(H, A). To define the
transfer mapping for functions in Ce°(G(A), X), we simply multiply
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each side of (3.2) by X(z), and integrate over z in X n Z(G,F)\X.
Let X1 be the preimage of X' in Z(H1, A), and set

Xi(Zi) = (l(Zl)X'(z'),
for any point z1 E X1 with image z' in X'. Then Xi is a character
on X1, and the triple (HI,X, X) satisfies the conditions we imposed
on (G,X, X). In this context our assumption is that for any function
f E C~ (G(A), X) there is a function g E CC (Hi (A), Xi) whose stable
orbital integrals are given by f H,. The function g is of course not
uniquely determined by f. However, if SI is any stable distribution
on C{(Hi(A), X1), SI(g) will be uniquely determined by f. We shall
therefore write

SI(fH) = SI(g).
The ultimate goal is to give an expansion of Idisc,t as a linear com-

bination of stable distributions on the equivalence classes of elliptic
endoscopic data {H} for G. The coefficients will be certain constants
t(G,H), which in the case G = G° were introduced by Langlands
[18]. (Following the usual convention of metonymy, we shall often
write H in place of a full endoscopic datum (H, , s,I).) Kottwitz
has established a simple formula for these constants [12, Theorem
8.3.1], again when G = G0. Let

T (G°) = r(G°)r(G°)-1
be the relative Tamagawa number of G° [12, §5]. (T(G°) denotes the
ordinary Tamagawa number of Go, and Go is the simply connected
cover of the derived group of G°. Thus according to Weil's conjecture,
which has been established by Kottwitz [14] for groups without Es
factors, Ti(G°) simply equals T(G0).) Kottwitz' formula is then

t(G, H) = ri(G°)r (H)-17ro (Aut(H)) I-1
In the general case, the constants have not yet been defined. We shall
have to get by with a makeshift definition that reduces to Kottwitz'
formula when G = G°.

If we are given an equivalence class {H} of elliptic endoscopic data,
we shall usually assume implicitly that H is a representative of the
class such that / is the identity. That is, /H is an embedded subgroup
of LGO. Then Z(H)r is a subgroup of G° whose identity component
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equals AG. The subgroup KG = (A&0)G of G° also has AG as its
identity component, so that KG n Z(H)r is a subgroup of finite index
in KG. For general G we shall simply define

(3.3) (G, H) = 1 (G°)r (H)-l1 to (Aut(H)) I-1G/KGnZ(n)r 11.
The fourth factor in the product on the right, which of course equals
1 when G = G°, is suggested by the calculations in §7.
We can now state the hypothesis. Part of it applies to any (G, X, X)

as above, and part applies to triples (G1,X1, X1) with the restriction
that G1 is a connected quasi-split group over F.

HYPOTHESIS 3.1. For any (G1, X1, X1) there is a stable distribution
SId,t on C°e (G1(A), Xi) with the property that for any (G, X, X),
the distribution

(3.4) EdiSc,t(f) = E (GH)Sid'Ct(f 1)

equals Idisc,t(f). Here f stands for any function in C° (G(A), X) and
H is summed over the equivalence classes of elliptic endoscopic data
for G. 5

Remarks. 1. It is understood that we have fixed a distinguished
splitting (H1, ~1) for each H. The distribution SIf st(fH) should
then depend only on H and not on the splitting.

2. The stable distributions Sldist are uniquely determined by the
condition that Edisc,t(f) equals Idisc,t(f). For suppose that they have
been defined inductively for any group whose semisimple part has
dimension less than that of G1. Setting G = G1, one simply defines

SIsc,t(f) = Idisc,t(f)- E L(G, H)Sdi"U(fHi)
In this case, the hypothesis becomes the assertion that the right hand
side is a stable distribution in f. This of course is highly nontrivial.
It is likely to be resolved only by proving a similar assertion for all
the other terms in the trace formula. There is a discussion of this
question in the paper [19].
We shall need a slightly different formula for t(G, H) in §7. For H

as above, set

z(H)r = Z(H)rz (GGO)/Z(GO) HZ(H)r/z(H)r n Z(G)r
Since H represents an elliptic endoscopic datum, Z(H)r is a finite
(abelian) group.
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LEMMA 3.2. The constant i(G, H) equals

(3.5) Iker1 (F, Z(G°))--lIro0(G)l-'
Iker' (F, Z(H)) IIZ(H)r -1 IAut(H)/HZ(G0)r-1

PROOF: The main point is the formula

Ti(GO) = 7ro(Z(Go)r) Ilker'(F, Z(G0))I-1
of Sansuc and Kottwitz for the relative Tamagawa number [12,
(5.1.1)]. From this, it will be a routine matter to derive the ex-
pression (3.5) from (3.3). For Lemma 2.1 tells us that

I|ro(Aut(H)) -1 = IAut(H)/HZ(GO)rl-1 IHZ(G0)r/HA~o -1

Keeping in mind that AGo is the identity component of Z(G°)r, we
deduce that

HZ(G )/HAo l-
= IZ(G°)r/z(G°)r n (HAo)l-'
= o(Z(GO)r)-Gl(Z(GO )r n (HAoo))/AGo .

Moreover,

IZ(G)r n(HAoo))/Ao I
= In Z(G0°)/H n Ao I
= Iz(H) n z(G)r/z(H)r n KG\

= IrO(Z(ft)r n Z(G)r)llro(Z(Hi)r n KG)I-1
= 17o(Z(fH)r) | Z(fi)rl-l 7ro(KG)- IK11G/Z(fH)r n KG

The lemma follows from the formula above for T1 (G0) and its analogue
for T1(H). °

§4. THE CONJECTURAL MULTIPLICITY FORMULA

Our goal is to provide some motivation for the conjectures on non-
tempered automorphic representations stated in [1] and [3]. The
main global ingredient of the conjectures is a multiplicity formula for
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automorphic representations in the discrete spectrum. It is a general-
ization of similar formula for tempered automorphic representations
which was implicit in the examples of [15] and was stated explicitly
in [12]. We shall recall the various objects from [3, §8] needed to
state the formula.
The automorphic representations which occur in the spectral de-

composition should be attached to maps

(4.1) : LF x SL(2,C) LGO.

such that the projection onto G° of the image LF is bounded. Here
LF is hypothetical Langlands group, which we shall assume is an
extension of the Weyl group WF by a compact connected group. The
maps themselves are subject to certain conditions. For example, b
should be globally relevant, in the sense that its image must not lie
in a parabolic subgroup of LGO unless the corresponding parabolic
subgroup of Go is defined over F. Another condition is designed
to insure that b parametrizes representations of G°(A) which lift to
G(A)+. Let

So = S (G)
be the set of elements s E G such that each point

s(t')S-1l(t')-1 , t' E LF X SL(2, C),
belongs to Z(G°), and such that the class of the 1-cocycle

t - s(t)s-l1(t)-' , tE LF,

lies in the subgroup kerl(LF, Z(G°)) of H1 (LF, Z(G)). The condi-
tion on 0 is that S, be nonempty. Recall also that two parameters
01 and 1b2 are equivalent if there is an element g E oG such that

(4.2) /2(t,u) = g-11(t, u)ga(t), (t, u) E LF x SL(2, C),
where a(t) is a 1-cocycle of LF in Z(G°) whose class in H1 (LF, Z(G°))
lies in kerl (LF, Z(GO)).

Let 2(G) denote the set of equivalence classes of maps (4.1) which
satisfy the required conditions [3, §8]. Let 1o(G) denote the subset
of (equivalence classes of) maps 1 E @(G) such that the set

S, = SO(G) = SO(G)/Z(G°)
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is finite. In [4] we called these maps elliptic. They should parametrize
automorphic representations which occur in the discrete spectrum. It
will be convenient to define two other subsets of 1(G). Let us say
that b is weakly elliptic if the group Sp(G°) (obtained by replacing G
with the identity component GO) has finite center. We shall say that
/ is discrete if it satisfies the weaker condition that the group

3+ = S+/Z(G°)

generated by S, has finite center. (Keep in mind thatS, S,
S,(G°), S,(G°), etc., are complex reductive Lie groups which are
generally not connected.) Let o(G) and T'disc(G) denote the set of
(equivalence classes of) maps b E @(G) which are weakly elliptic and
discrete, respectively. Then we have embeddings

'Io(G) C V(G) C idisc(G) c T(G).
Let X be a fixed character on a subgroup X of Z(G, A) which satis-

fies the conditions of §3. We may as well assume that X is contained in
Z°(G, A), the adele group of the identity component of Z(G). There
is a canonical map from LGO onto the L-group LZO(G) of Z°(G).
The composition of any parameter b E [(G) with the map gives a
parameter in A (Z°(G)), and therefore a dual character

(: Z°(G,F)\Z°(G,A) -, C* .

We shall write I(G, X), To(G, X), etc., for the set of parameters 4I in
9(G), Io(G), etc., such that the character (, coincides with X on X.
Suppose that p E I(G, X). As in [3, §8], we can form the finite set

S, = So(G) = So/SZ(G°).
It is a coset of

SO(G°) = S,(G°)/SZ(G°)
in the finite group

S,(G+) = S,(G+)/S+ Z(G°)
Now the local conjectures in [3, §6] assert that there is a set II, of
representations attached to 4. The elements in HI, should in fact
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belong to Nunit (G(A), X), the set of equivalence classes of irreducible
unitary representations of G(A)+ whose restrictions to G°(A) remain
irreducible, and whose central character on X coincides with X. There
should also be a canonical pairing

< x,7r >, x E S+, 7r E nI,,
such that the functions x -+< x, r > are characters of nonzero finite
dimensional representations of SI. Finally, the conjectures assert the
existence of stable distributions

(4.3) f f~ (+), 61E I(G1,X1),
on Cc (G1(A),Xi), for each (G1,X1,X1) with G1 connected and
quasi-split.

Let us recall how the distributions (4.3) are supposed to behave with
respect to endoscopic data. Suppose that s is a semisimple element
in S3. Take H to be the connected centralizer in G° of any point in
s, and set

u = Hix(LF SL(2,C))
There is obviously an injection H -H and a surjection H -- WF.
We are assuming that the kernel of the map LF WF is connected,
and it follows that b maps both the kernel and SL(2, C) into H.
Therefore

1 - H - HK WF 1

is a short exact sequence. We can identify H, equipped with the
canonical L-action ofWF induced by K, with the dual of a well defined
quasi-split group H over F. If g is the inclusion of H into LGO, then
(H, ', s,5) is an endoscopic datum for G. It has the property that b
equals g o OH for some L-homomorphism 4'H of LF x SL(2, C) into
7'. Now, let (H1, 1) be any distinguished splitting for the endoscopic
datum. We can construct the character X1 on a closed subgroup X1
of Z(H1,A) as in §2, and from our remarks in §2, we see that the
parameter

b1 = (1-o'H

belongs to 1(H1, X1). According to our assumptions on the transfer
map f -, fHI, the distribution

f - fH,/ i), f ECO (G(A) x)
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makes sense. It should satisfy the formula

(4.4) fH1(1) = < S, 7r> fG(7),
7rE{n,}

where s is the image of s in So,, so, is the element

*(1(o1 -1))
in Sp(G0), and

fG(7r) = tr(J f(z)7r(x)dx)
x\G(A)

As in [3], {(II} denotes the set of orbits in Il, under 7ro(G+)*, the
dual of the finite component group, which acts in the obvious way on
Unit (G(A), X)- Recall that the element so was introduced in [3, §4]
to describe the signs which occurred on the right hand side of (4.4).
The objects we have just described, namely the packets HIl, the

pairings < x, r >, the stable distributions (4.3), and the formula
(4.4), are all consequences of the local conjectures [3, Conjectures
6.1 and 6.2]. The adelic versions described here are simply restricted
tensor products of the local versions in [3]. We shall assume their
existence in what follows.
We should also recall the sign character

E·: S+ ' {±1}

which occurs in the conjectural multiplicity formula. Set

LI = LF X SL(2, C),
and consider the representation

r,(s,t') = Ad(sik(t')) , s E S,' ELt ,

of S+ x LF on the Lie algebra g of G. Let

To = Tk = (Ak0C k k)
k k
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be the decomposition of rT in which Ak, Pk and Vk are irreducible
(finite dimensional) representations of S L,LF and SL(2, C) respec-
tively. The global L-function L(s, Pk) will be defined as a product of
local L-functions. We shall assume it has analytic continuation and
satisfies the functional equation

L(s, Pk) = e(s, Pk)L(1 - , lk)
where E(s, Pk) is a finite product of local root numbers. It follows from
the functional equation that if /k is equivalent to its contragredient
Ik, then (-, pk) = ±1. Let us write g for the direct sum of those
irreducible constituents Tk such that (i) Pk - pk, (ii) e(, /1k) = -1,
and (iii) dim vk is even. The sign character is then given by

(4.5) E(x) = e+(x) = n det(k(s)) , x E S,
k

where the product is taken over those k such that Tk is contained in
, and s is any element in S which projects onto x. In other words,

(4.5') (x) = det(s, EndL())

We could actually have replaced the first condition in the definition
of g by the stronger assertion (i') rk k. Indeed vk is always equal
to its contragredient, and

det(Ak(s)) = detAk(s)-1
Therefore, the contribution to (4.5) of the distinct pairs (rk, Tk) equals
1. It should also be noted that the condition (iii) above is not really
necessary. For suppose that rk satisfies (i') and (ii), but that dim(vk)
is odd. Then vk corresponds to the principal unipotent in an odd
orthogonal group. Since pk is self-contragredient, its image must be
contained in either the orthogonal or the symplectic group. We shall
assume the generalization of the theorem of Fr6hlich and Queyrot [6]
which, in view of the sign e(,pk) = -1, implies that pk is actually
symplectic. Finally, since the representation rk is self contragredient
and preserves the Killing form, it must be orthogonal. For this to
be so, the third representation in the tensor product must actually
be symplectic. Therefore det Ak(s) = 1, and Tk contributes nothing
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to (4.5). This explains the apparent discrepancy between the present
definition (4.5) and the earlier one [3, (8.4)].

If q is any vector in the Hilbert space L2(GO(F)\GO(Af), X-1), set

(R(y)q)(x) = /(-lxy), x E G°(F)\G°(A),
for any points y E G(A)+ and 6E G+(F) such that (-ly belongs
to G°(A). This gives an extension of the regular representation to
G(A)+. For any representation r E HIunit (G(A), X), let mo(7r) be the
multiplicity with which r occurs as a discrete summand of R. Now,
suppose that ir belongs to a packet 114,, b E [(G, X). Then we have
the nonnegative integer

(4.6) m,(7r) = IS|l1 E ,(x) < X,7 >
zES+.

given explicitly in terms of the pairing. The multiplicity formula
amounts to the global component of our conjecture, and will be stated
formally as a hypothesis.
HYPOTHESIS 4.1. For any representation r E HIunit(G(A),X), we
have the multiplicity formula

(4.7) mo(r) = E mg,(r). °
,Ero(G,x)

Before discussing the conjectures, we shall collect a few simple ob-
servations for our later use. Let t be a fixed map in T7(G). (We shall
sometimes not distinguish between a map and its equivalence class.)
Let Cp denote the centralizer in G° of the image of b. Then COZ(G°)
is a subgroup of Sp,(G°). The quotient

C, = Cz(G°)/Z(G°)
is a subgroup of S9(G°). Now, the image of the cocycle

t -- sk(t)s-1l(t-1) t E LF, s E Si(G°),
in H1(LF,Z(G0)) gives a map from Sp(G°) into ker (LF,Z(G°))
whose kernel is easily seen to equal CZ(G°). We therefore obtain a
continuous injection

SO(G°)/COZ(GO) r S3(GO)/C0 c- ker (LFiZ( 0)).
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According to Lemma 11.2.2 of [12], or rather its extension
to the hypothetical group LF, kerl(LF,Z(G°)) is isomorphic to
kerl (F, Z(G0)). In particular, ker' (LF, Z((G)) is a finite discrete
group. Therefore, the connected component S, of S, maps to the
identity element in ker (LF, Z(G0)). We obtain an identity

(4.8) S0 = C

of connected components. In particular, if we set

C, = CZ(G°)/CZ(G°) = C ,

we can write the injection above as

(4.9) S,(G°)/C -, kerl(LF,Z(G)).
Suppose that s is a semisimple element in S,. According to our

conventions, S,,s denotes the centralizer of s in S,, and So, is the
connected component of 1 in Sa,8. We can also take the centralizer
C1,, of s in C,, and its identity component C,. In §7 we shall use
the identities S,,s = C,, and , = C,0. These of course follow
immediately from (4.8). We shall also have occasion to consider some
slightly different centralizers. Keeping in mind that s is a coset in
G/Z(G°), we write S,,s for the centralizer in S, of any element in
the coset s. Then

So'Z(G°)/Z(G°)
is a subgroup of Sg,,, which by Lemma 2.2 is of finite index. In
particular, we have an equality

(4.10) Ss, = S,,Z(G°)/Z(G°)
of identity components. Similarly, if Cs,8 denotes the centralizer in
Co of any element in the coset s, we have

(4.11) ',s = C,, =C ,,Z(= ()/Z(GG°)
§5. THE EXPANSION OF Idisc,t(f)

We have now stated two global hypotheses. As we have already
noted, Hypothesis 3.1 should be a consequence of a stable trace for-
mula. Once this is established, one could try to combine the formulas
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(3.1) and (3.4) to deduce something approaching the multiplicity for-
mula in Hypothesis 4.1. Our aims in this paper are more modest.
We shall simply show that the two hypotheses are compatible. We
are actually going to establish that Hypothesis 4.1, together with the
local assumptions of §3, §4 and [3, §7], implies Hypothesis 3.1. More
precisely, we shall show that the formula for Idisc,t(f) obtained by
combining Hypothesis 4.1 with (3.1) equals the formula for Edi8c,t(f)
provided by the definition (3.4). In the process we shall gain some
insight into the role of the sign characters ,.

In this section we shall derive a formula for Idisc,t from Hypothesis
4.1. By combining (4.7) with (3.1) we will obtain an expansion for

Idisct(f), If E Cc (G(A), X) ,

as a linear combination of irreducible characters. In doing this we
will need to apply a local conjecture from [3, §7] for the values of
normalized intertwining operators.

According to (3.1), Idisc,t(f) equals the sum over {M} and over
w E WG(aM)reg, of the product of

lro(G+)-ll WG(aM)l-1|det(w - 1)aG |-

with

(5.1) tr(M(w, 0)pP,(O,f))
Our first task is to expand (5.1) into a linear combination of irre-
ducible characters.

For any M, and w E WG(aM), we can form the component Mw =
M * w. It satisfies the same conditions as G. Now, recall that Pp,t(0)
is the representation of G(A)+ obtained by parabolic induction from
the action of M(A) on

(5.2) Ldisct (M(F)\M(A),XM1)
This representation of M(A) has a canonical extension to the group
M,(A)+ generated by the coset Mw(A) = M(A)w. In particular,
the space (5.2) can be decomposed into a direct sum of subspaces
corresponding to irreducible representations a,, of Mu(A)+. There is
a similar decomposition

?iP,t = dHP w)
ffw
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of the induced space into subspaces which are invariant under the
operator

(5.3) M(w,O)pp,(0,f) .

If the restriction of a, to M(A) is reducible, one sees easily that
the trace of the operator (5.3) on 1Hp(a,) vanishes. Therefore, in
computing the full trace (5.1), we need only consider representations
aw which belong to the space we have denoted by IIunit (Mw(A), XM1).

According to Hypothesis 4.1 (applied to Mw rather than G), the
multiplicity with which a representation a, E unit (Mw(A), XM1) oc-
curs in (5.2) equals

E ^met(aw) ,
0we o(Mw,XM,t)

where mw (aw) is the nonnegative integer defined by (4.6). We have
written To(Mw, XM, t) to denote the set of parameters in To(Mw, XM)
whose Archimedean infinitesimal character has absolute value t. Any
pair oiw and aw, with mw (aw) O, determines a subspace of (5.2),
and also a subspace of the induced space ip,t. The restriction of
(5.3) to this latter subspace can be expressed in terms of the operators
studied in [3, §7]. It equals an expression

(5.4) mow(aw)r(bw)(Rp(aw, bw)IZp(a, f)) ,

whose constituents we shall describe in a moment. The trace (5.1)
becomes the sum over Ow E 'o(Mw,XM,t) and aw E H1, of the
trace of the expression (5.4).
Given M and P, it is convenient to fix a dual parabolic subgroup

LP = PXI WF in LGO with Levi component LM = M > WF. The
choice of P and LP determines an embedding of the L-group LM into
LG°. It also allows us to identify WG(aM) with the dual Weyl set

WG(aM) = Norm(AM, G)/M.
Returning to (5.4), we note that Ip(a) stands for the induced repre-
sentation of G(A)+ obtained from the restriction a of aw to M(A).
The operator

Rp(a,,w ,) = Rp(affwvw,v)
V
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is a tensor product of local normalized intertwining operators defined
in [3, (7.4)]. When this operator is evaluated at a smooth vector
in 'p,t, almost all the terms in the product reduce to 1. Finally,
the scalar r(,,) in (5.4) is obtained from an infinite product of local
normalizing functions of the form [3, (7.2)]. It equals

lim (L(O, p,, o,\,X)E(O,)-l PP, w o {,,A,)~-1) ,

where b,,A is the twist of the global parameter

q'k:t)WO t, )) tE LF,

by the vector A in

aM, = X(M)F®C - X,(AM)®C,
and pP,w is the contragredient of the adjoint representation of LM on

W1npW/w-1nUp nnW .

Here nf stands for the Lie algebra of the unipotent radical of LP.
Applying the anticipated functional equation

L(0, pP,w o° w,kA) = E(0, Pp,w o w,,A)L(1 PP,w o ,A),
we write

(5.5) r(Vw) = lim (L(1, pp,,,, o0 OP,>)L(l , op w,)~1)0\-.0

(See [16, Appendix 2].)
Having described the terms in (5.4), we go back to the expression

we have obtained for (5.1). Recall [3, §7] that

Rp((aw,Ow) = ((Mw)Rp(aw, w),
for any character ( in

7ro(M+)*= Hom(M+/M, C*).
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This allows us to write (5.1) as the sum over ,w E '0o(M,, XM, t) and
over the orbits {a,} E {lI,.} of Iro(M+)* in II,, of the expression

ml .(aw)r(w)tr(Rp(aow, w)p(a f)) .
where

m.(ar) = E mw (C(w)C(M ).
CEro(M+)*

Applying Fourier inversion on 7ro(M+) to the formula (4.6) (with G
replaced by Mw), while taking into account the property (i) of the
local Conjecture 6.1 in [3], we obtain

m(a) = ISwI-1 e,(u) < U, (T >.
uES,pw

Therefore (5.1) equals

xi xi is i- E
;w {ow} uESp,.

Ew,(u) r(w) < u,o'w> tr(Rp(crw, w)Zp(, f))f
Suppose that b,,, belongs to I0o(Mw, XM, t). Let Vb denote the com-

position of i,, with our embedding LM C LGO. We claim that b
is well defined (as an equivalence class of parameters) in '(G, X, t).
Recalling (§4) the definition of equivalent parameters, we note that it
is enough to show that the map

(5.6) ker1(F, Z(G)) - ker' (F, Z(M))
is an isomorphism. By the obvious transitivity property, we can in
fact assume thatM is minimal, and hence a torus. Then Z(M)/Z(G°)
is a maximal torus in an adjoint group, on which the Galois action is
dual to a direct sum of permutation representations. The bijectivity
of (5.6) then follows from the exact sequence

7ro((Z(M)/Z(G))r ) -- H1(F, Z(G°))
- H1(F,Z(M/)) -- H1(F,Z(M)Z(G)),

and its analogues for the completions of F. (See the proof of Lemma
4.3.2(a) of [12].) This proves the claim.
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Thus, 0, maps to an element / in i(G, X, t), to which we can asso-
ciate the objects S$,= S,.(G), HIT = 1,(G) and e0 = , for G. The
next step is to apply a conjectural formula [3, §7] for the trace of the
normalized intertwining operators in terms of the pairing on S,x II.
As it is stated in [3], the formula applies to the local intertwining
operators and pairings, but the product over all valuations gives a
formula for the global objects. In fact, certain constants in the local
formula (namely, c(ax, nw), Aw(IF) and c(rx, nG), in the notation of
[3, §7]) have the property that their products over all valuations equal
1. The global formula is therefore simpler. If bM denotes the param-
eter ,,w, but regarded as an element in I(M) rather than i(M,),
then the orbits {fa } above will be in bijective correspondence with
the representations a E Hp1M which extend to Mw(Ab)+. It follows
from Conjecture 7.1 of [3] (and also the two remarks made after the
conjecture), that

E < u,aw, > tr(Rp(aw,, w)Zp(a, f))

equals
w < x,7 > fGc() ,

where xu stands for the image in SO of the point u E Sq,.
We have now obtained an expansion

E 1«IS.l-1 5 Ewo (u)r(t&W) <<X,T > fG(7r),
w} E1o(Mw,XM,t) uESp, ' rEII

for the trace (5.1). We shall substitute this into our formula for
Idisc,t(f)- Observe that

S < U, > fG(r) = lwo(G+)l S < xU, > fG(7)
trEIp 7rE{nJ1,}

Therefore, Idisc,t(f) equals the triple sum over {M}, w E WG(aM)reg
and ,6 E T'o(MW, XM, t) of the product of

IWc(aM)I-ldet(w - 1)aG -

with

(5.7) ISW1J-1 e, (u)r(w) S < x,,7r >fG(r).
uESp, arE{nSl}
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We propose to interchange the sum over the parameters with the
sums over M and w. The outer sum will then have to be over all
parameters 1 E I(G, X, t). For any p there will be an M, unique up
to conjugacy, such that pb is the composition of a parameter mM E
To(M) with the embedding LM C LGO. The condition that OM
also belong to 0o(Mw), for a given w E WG(aM)reg, is that the set
SM(Mw,) be nonempty. There is another way to state this. Recall
that we have identified WG(aM) with the dual Weyl set WG(aM).
Then SM (Mw) is nonempty if and only if w belongs to the subset
WV = W1(G) of elements in W0(aM) which, modulo the isomorphic
groups (5.6), centralize the image of 4p. It will be convenient for us
to regard this subset Wp as the full Weyl set associated to Sp =

S,/Z(G°). It acts on the maximal torus

T = Afz(GO)/z(Go)
of the connected component

S = Sz(G)/Z(G ).
For any w E Wp, we shall write det(w - 1) for the determinant of
(w - 1), acting on the Lie algebra of TV. One sees easily that

Idet(w-1) = Idet(w- 1)GO = Idet(w- 1)aG lldet(w- 1) ~o1 .

Now it is well known that Idet(w - 1) o I equals the order of the kernel
of w, acting on the dual torus

(Z( )r) /(Z(Gf) )
(See [23, 11.1.7].) The action of w on this torus is of course inde-
pendent of w, and the kernel is just the finite group of components
in

KG = Z(G)r n (Z(G0)r).
Therefore

Idet(w- 1).aG-1 = Idet(w- l)l-17o(KG)l-' .
-M

In particular, w belongs to WG(aM)reg if and only if it lies in the set

Wb,reg = {W E Wo : det(w - 1) 6 0}
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of regular elements in W,. When this is so, the associated parameter
in o0(M,) in fact belongs to To(Mw, XM, t). We shall denote it by
iw, as above.

Actually, 0hw is not uniquely determined by t, and w. We must
decide how many parameters in To(Mw, XM, t) lie in the equivalence
class of /. Keeping in mind the isomorphism (5.6), we see that two
parameters u, map to the same b if and only if they are conjugate by
an element in WG(aM). Moreover, two such conjugates are equivalent
in 'o (Mw, XM, t) if and only if they differ by an element in W4(G°).
The number of 0hw associated to / is therefore

] G(aM)l[W((G0)[- 1 = IWG(aM)llIW,-1
Thus, our interchange of summation expresses Idisc,t(f) as the sum
over 6E Ti(G, X, t) and w E WP,,reg of the product of

Iwo(KG)I-lWO-'l Idet(w - 1)-1
with (5.7).

Suppose that b E @(G). As in the case of a local parameter, we
can define the finite set

PA4 = PA(G) = Norm(T,3,S)/TV
= Norm(A,$S,)/AMZ(G°).

Let S$be the subgroup of elements in PA(G°) which act trivially
on Tp,. This group acts freely by translation on N^P, and the set of
orbits can be identified canonically with WV,. One sees easily from
the isomorphism (5.6) that

SO, = SM. W = S, .W, w W,
for M as above. We also have the Weyl group

W, = Norm(Tp,,S})/T,
= Norm(AM, S})/AMZ(G°)

of the connected component S,. This too acts freely on A/J, and
the set of orbits can be identified canonically with S,. We obtain a
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commutative diagram
1 1

I I

1 ~ S~ Sc ,S R ~i 1
it
I I
1 1

as in the local case [3, (7.1)]. The dotted arrows stand for splittings
of short exact sequences determined by a fixed Borel subgroup of
S,0 containing Tp. Similarly, one obtains a commutative diagram of
groups if one replaces JAp, S,,, WV, and R, by the respective finite
groups fig, S+, W and R+ they generate. We shall write u -+ xu
and u -+ wu for the projections of Af+ onto S+ and W+. Notice
that if x is any element in S,, and A/(x) is the corresponding orbit of
W, in A0, the second projection maps Ar(x) bijectively onto a subset
W(x) of W,. We shall set

W(x)reg = W(x) n WO,reg
and

j^(Z)reg = {( E ^(x) : wu E W(X)reg}
We apply these observations to our formula for Idisc,t(f). According

to the horizontal exact sequence for Af, in the diagram, the double
sum over w E W,,reg and u E S$, = S$w can be combined into a

simple sum over the regular elements in ',.We shall write

(5.8) e (u) = +,(u)
for any point u E A/, whose projection onto W, equals w. We also
set

(5.9) r,(w) = r(w)
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Then eM and r, extend to well defined characters on l+ and W,
respectively. The simple sum in its turn can be decomposed by the
corresponding vertical exact sequence into a double sum over x E S$
and u E V(x)reg. Observe that

IWllS,,,= IWllS1 = I1t1
= IsiIWSIl
= ISllW(x)l

It follows that Idisc,t(f) equals the sum over i in '(G, X,t) of the
product of

70(G) I-1'IS -1
with

Eiw()K-1 E
xESp UEn(Z)reg

ej(u)r0(wu)Idet(wu- 1)1-1 < x, r > fc(r)
7re{nH}

Any element w E WI operates on T-V. It preserves the set ES
of roots of (S?,,T ). We shall simply write e(w) for the usual sign
attached to this permuation, namely the number (-1) raised to the
power

1(-E+) n (wE+)l,
where S+ is the set of positive roots in E, relative to some order.

PROPOSITION 5.1. We have

ro(wU) = e(w)(x) (U)

for any element u E Af.
This proposition is the motivation for the introduction of the char-

acters eF, into the multiplicity formula of Hypothesis 4.1. We shall
prove it in the next section. In the meantime, we can combine it with
our formula for Idisc,t(f).
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PROPOSITION 5.2. The distribution Idisc,/(f) equals the product of
Ilo(KG)|-l with

(5.10) E E IS I- E(X)i(X) < x, r > fG( ),
E.I(G,x,t) rE.{n+} aEST

where

(5.11) i(x) = IW(x)l-' E e(w)ldet(w- 1)1-1 .

wE W(X),eg
§6. THE SIGN CHARACTERS ES

AND ro,
In this section we shall pause to study the characters e, and r,.

Our goal is to prove Proposition 5.1. Recall that e, =E, is the
one-dimensional character (4.5) on S$= SG(G+) which comes into
the conjectural multiplicity formula. The function re is the one di-
mensional character ((5.5), (5.9)) on WT = W,(G+) defined by the
global normalizing factors. We have seen thatS, and W+ are both
quotients of the finite group Af,. We can therefore identify e and re
with characters on K'+. Proposition 5.1 can be regarded as a formula
for the quotient of these two characters.
We shall begin by expressing r, in terms of the orders of certain

L-functions at s = 1. Let EM denote the set of roots of (GO°, A).
For each a E EM there is a representation pa of LM on the root
space g. Having already fixed the dual parabolic subgroups P and
LP = PWF, we shall write Ep C EM for the set of roots of (P, A).
Fix an element w E W, and set

EP,w = {a Ep : w E (-Ep)}
Then there is a decomposition

PP,w = $ P-&
&EtP,w

for the representation of LM which occurs in (5.5). Notice that the
Killing form provides an isomorphism between p-a and the contra-
gredient pa. The formula (5.5) becomes

(6.1) r4(w) = limn ][ L(1-A(a),p&o)o)L(l+A()(),pa&o)-1
rEt.p,w
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since
L(1,pa& o0,,) = L(1 + (&), pao ) .

We are going to show that rp(w) equals the character

(6.2) (lord.=1(L(sp&ook))

We claim that for every root a E Ep,,, there is also a root ai E
Ep,w such that

Pa&o° 'p4,I oP 1 .

To this end, observe that

Pa O ~ pwa o ad(w) o - pw o .

The first of these isomorphisms is given by the intertwining map

Ad(w): . - g ,

and the second follows from the fact that the image of w E Wq, under
the adjoint representation commutes with the image of LF x SL(2, C).
Now, consider the orbit

O,(a) = (w&a: j Z}

of a under the cyclic group generated by w. The representations

(p 0o: P E Ow(a))
are all equivalent, and are also equivalent to the contragredients

({ o : -P E Ow(a)}.
But after a moment's thought, we see that the intersections of O(w(&)
with Sp,W and (-Ep,w) contain an equal number of roots. The claim
follows. In particular, the terms in the product in (6.1) can be grouped
in such a way that pa appears in the numerator as well as the denom-
inator. This leads directly to the formula (6.2) for re(w).

Recall that

(pa o+0)(t) = p (i(t, (Iti ¾))) t ELFn Itl-
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Now there is a decomposition

(pao0 ) = (Yj Vj),
jEJ(&)

where each pj is an irreducible unitary representation of LF and vj
is an irreducible representation of SL(2, C). Therefore, (6.2) can be
written as a product

(6.3) TI IT (-1)ord=(L(s,1j®v,))
&ES:p, jEJ(&)

where L(s, pj x vj) stands for the L-function of the representation

t -, j(t)vj (' It tl ) , tE LF,

of LF. From the discussion above we see that the contragredient acts
as an involution pj ® Vj -+ ij ® Vj on the constituents of pp,,. It is,
moreover, an easy consequence of the unitarity of yj that

L(s, j ® vj) = L(s, j ® vj),
so that

ord8=1 (L(s, pj ® vj)) = ord8=1 (L(s, ij 0® i))
In particular, the contribution to (6.3) of a distinct pair of contragre-
dient constituents cancels. The product (6.3) need only be taken over
those constituents with

j 0 Vj Vj .

Since any finite dimensional representation of SL(2, C) is self contra-
gredient, the condition is just pj Jij.
The question then is to determine the sign

(6.4) (_l)ord.=1 L(s,p®v)



40 JAMES ARTHUR

for any irreducible representation ®0 v of LF x SL(2, C) such that p
is unitary, and i - p. Set m = deg(p) and n = deg(v). Then v maps
the matrix

( It \t ) t E LF,

to the diagonal matrix

diag(|tl2(n-1), Itl(n-3), ..., t- (n-1))
in GL(n, C). Therefore

L(s, p v) = L(s + (n- 2i + ), )
i=1

We must therefore describe the order of zero or pole of L(s, p) at any
real half-integer.

Hypothesis 4.1 includes the global Langlands correspondence for
GL(m), which asserts that

L(s, p) = L(s, r)
for some unitary, cuspidal automorphic representation wr of GL(m, A).
(See [3, §2].) Then L(s, p) can have a real pole only if p is the trivial
one dimensional representation, in which case there is a simple pole at
s = 0 and s = 1 [7, Corollary 13.8]. Results of Jacquet and Shalika
[8, Theorem (1.3)], [9, Theorem 5.3] imply further that the only
possible zero of L(s, p) at a real half integer is at s = 1, the center of
the critical strip. The poles of L(s, p) will contribute to (6.4) if n is
odd. However, if p is trivial and n is of odd dimension greater than 1,
the poles at 0 and 1 will both contribute, and their effect will cancel.
The zeros of L(s,/p) will contribute to (6.4) if n is even. From the
functional equation

L(s,p) = E(s,p)L(1 - s,1) ,

we see that L(s, p) has a zero at s = 2 of even or odd order, according
to whether e( ,p) equals +1 or -1.
We have established
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LEMMA 6.1. If n = deg(v) is even, the sign (6.4) equals e(, p). If
n is odd, (6.4) equals 1 unless # ®0 v is the trivial representation of
LF x SL(2, C), in which case (6.4) equals (-1). 0

If we substitute the formula of Lemma 6.1 into the product (6.3),
we obtain a new expression for rp(w). To describe this in a convenient
way, we shall define a character e1/M which is closely related to the
original characters e'c and em. Let m denote the Lie algebra of M,
and let Adg/m denote the adjoint representation of LM on g/hM. The
group

4, = Norm(T t,,S) = Norm(AM, S)/Z(G°)
also acts by the adjoint action on g/ml, and it commutes with the
composite representation Adg/m o im of LV = LF X SL(2, C). Now,
we have a decomposition

Adg/,,_mo = (& (9j®vj)
&E.M jEJ(&)

into irreducible representations of L'. Let us write (g/im), for the
direct sum of those irreducible constituents pj 0 vj such that (i) Jj -
pj, (ii) e(½,pj) = -1, and (iii) deg(vj) is even. Then (g/im) is an
invariant subspace of both L' and NI. Define

(6.5) E,/M(u) = det(,i EndL E((_g/n))) , u A+,

where i is any element in N+ whose projection onto A/'+f = N,/T,
equals u. Observe that

_(g/m) = © ge,
&EEm

where
By = L n (g/'m),/.

The subgroup S, ofN" leaves invariant each of the subspaces g
of (g/fm)4. Since the actions of SI on g, and g are contra-

gredient, G/M is trivial on S1, and descends to a character on the
quotient

Ar+/ V W+.JZT+/ cl
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Of course the main reason for defining eGIM is the formula

(6.6) E£(u) = G1M(U)M(), U E

which follows easily from (4.5'), (6.5) and the corresponding formula
for e.
To express r,in terms of eIM, let EM,+ be the set of roots a E

SM such that the dimension of EndL' (g ) is odd. It follows from
properties of the determinant that

eGIM(w) = (-1)I , w E W .

This is just the contribution from the even dimensional representa-
tions vj to the expression for r,(w) given by (6.3) and Lemma 6.1.
The contribution from the odd dimensional representations vj is sim-
ply the usual sign character e(w) attached to the group S. Thus

rg(w) = e(w)/GIM(W), w EW .

The required formula

rT(u) = E(Wu)Ew(U)EM(u)-1, u E ,
of Proposition 5.1 then follows directly from (6.6). 0

The formula (6.6) can be regarded as motivation for the definition
of e6. The introduction of this character might have seemed odd at
first. However, we now have a direct connection between eG and the
more familiar function rV obtained from the normalizing factors of
global intertwining operators.

§7. THE EXPANSION OF Edisc,t(f)
We turn now to the distribution Edisc,t. It was defined in Hypoth-

esis 3.1 as the sum

(7.1) GH)Sdit(f) f E CC (G(f), X),H
,

over equivalence classes of elliptic endoscopic data. We shall convert
this into an expression which is parallel to the expansion (5.10) for
Idisc,t (f).
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Hypothesis 3.1 can be regarded as a general existence assertion.
There should be a stable distribution on any quasi-split group with
the property that (7.1) equals Idisc,t(f) for any component G at all.
Our ultimate goal is to show that this assertion is compatible with
the formula (5.10) for Idisc,t(f). Since the stable distributions are
uniquely determined by the property, the problem is simply to show
that they exist. For a given quasi-split group G1, and a suitable
character X1 on a subgroup X1 of Z(G,A), we shall try to construct
the associated stable distribution SI in terms of the parametersSldisc,t in terms of the parameters

1 E I(G1, Xi, t). Our local assumptions in §4 attach a stable distri-
bution

_i ,^ f01' fi E CC (G (^A), X),
on G1(A) to each parameter t1 E TI(G1, Xi). Let us therefore set

(7.2) SId ,t)= E (Sf),
l E. (Gl ,Xl,t)

where
SIG (fl) = a(G, l)f (),

for constants a(G1, 4il) to be determined. We shall assume that the
constants vanish unlessi1 belongs to 1(G1, Xi, t), a countable subset
of iI(G1, Xl,t). We shall attempt to define them so that the formula
obtained by equating (7.1) with the right hand side of (5.10) is uni-
versally valid.
We fix a representative (H, H, s, ), for each equivalence class of

endoscopic data for G, such that X is a subgroup of LGO and ~ is
the inclusion mapping. We also fix a distinguished splitting (Hi, 1)
of (H, H, s, C). The character X1 is then defined on a subgroup X1 of
Z(H1, A) as in §3. We begin with the formula

(7.3) Edisc,t(f) = (G, H) E SI II (fH )
H 1,E((Hl ,x ,t)

obtained by applying the definition (7.2) to the groups H1 in (7.1).
Our immediate goal is to convert the double sum over H and /1 to a

single sum over the orbits of G° on a certain set. In the process, we
will need to apply the formula (3.5) for the coefficients L(G, H).
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Recall that @T(G) denotes the set of maps
': LF x SL(2, C) LGO

satisfying certain conditions, and taken modulo the equivalence re-
lation (4.2). Let us write I(G) for the same set of parameters, but
without the equivalence relation, and let I(G)/G° denote the set of
G°-orbits in 2(G). (We can also write 'disc(G), '(G, X, t), etc., for
the obvious subsets of QI(G).) We shall describe the order of the cover-
ing projection T(G)/G° - 1(G). According to the definition (4.2),
the group ker (F, Z(G°)) acts transitively on the fibres of the projec-
tion. The isotropy subgroup is just the image of S,(G°)/Cp under
the injection (4.9). But the finite group S,(G°) is bijective with the
set Sp. Therefore, the order of each fibre in the projection equals

(7.4) Iker1(FZ(G0))I ISgO-1 IC0.
We shall apply this remark to the quasi-split groups H1 which occur

in (7.3). We can replace the sum overl 'i E'1O(Hl, X1, t) by the sum
over 'Q(H, Al,t)/Hl1, provided that we divide by

Iker1(F.Z(H/1)) ISOl -1 ICl1,1
the analogue for Hi of the integer (7.4). Since (Hi, i) is assumed
to be a distinguished splitting, kerl(F, Z(Hi1)) equals kerl(F, Z(H)).
Combining this with the formula (3.5) for t(G,H), we are able to
write Edisc,t()a o as the sum over H and over i E o(H1 IXi, t)/H1 of

(7.5) Iker (F, Z(G0))I-1I17I0(G)-11Z(H)'1FIS1
xlCl IIAut(H)/HZ(Go)rI-1SI (aH).

Keep in mind that H really stands for the equivalence class of an
endoscopic datum (H, H, s, ). Now, suppose that we are given a

parameter 41 E ;F(H1, XI). Then 41 factors to an L-homomorphism
from WF into ', which may then be composed with the embedding
· : t - LGO. In this way we obtain a parameter 'k E I(G,X).
It follows from the property (2.1) of endoscopic data that the coset
s E G/Z(G°) lies in the set

S = S/Z(G°) = SO(G)/Z(G°).



UNIPOTENT AUTOMORPHIC REPRESENTATIONS 45

Conversely, suppose that we are given a parameter b E I(G, X) and a
coset s . Sg consisting of semisimple elements. Then we can define an
endoscopic datum (H, X, s, ~) as in §4. Recall that H is the quasi-split
group whose dual group is

H = Cent(s,G0)0,
equipped with the L-action induced by

'H = Htb(LF x SL(2, C)),

and g is the inclusion of -' into LGO. The parameter , then factors
through 'H. For any distinguished splitting (H1, g1) of the endoscopic
datum, we obtain the character X1 :X1 -: C* as in §3, and ib then
yields a parameter il E IQ(H1, X1).
We have just established a correspondence between the pairs

(H,l1) and (,,s). We want the datum H to be elliptic and the
parameter ¢1 to be weakly elliptic. We ought to describe these con-
ditions in terms of (t, s). Since b1lfactors through H7, and H1 equals
l(H[)Z(Hl), we have

Co Z(H1)/Z(H1) = Cent(Image(p), H)Z(H)/Z(H).
In other words,

(7.6) C, Z(H,)/Z(Hl) (Co nH)Z(H)/Z(H).
In particular, there is an isomorphism

ClZ(Hl)/Z(Hl) v (C n H)°Z(H)/IZ(H)
of the two identity components. Notice that (C4, n H)) equals CO,s,
the connected centralizer in C, of any element in the coset s. Conse-
quently

CLZ(Hl)/Z(Hl)C°,sZ/c(I/Z(tH) C0,/, nz(Hf).
Thus, t1 is weakly elliptic if and only if the center of C ,,/Ci,, fn
Z(H)r is finite. Now C, n Z(H1)r is a central subgroup of CO,,
which contains Aft = (Z(H)r)0. Therefore, the conditions that p1
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be weakly elliptic and H be elliptic, taken together, are equivalent to
the condition that C',, has finite center modulo AG = (Z()r)°. We
can describe this more simply in terms of the set

S3,fin = {s E SO : IZ(S,8)I < oo}.

For by (4.11) we have

s,° = C,8Z(G°)/Z(G°) C°sl/C,, , n Z(G°)
= C.,/c4 n z(G)r.

Thus, the correspondence is between elliptic pairs (H, 1) and pairs
(b, s) such that s belongs to 9Sfin.
The foregoing discussion will enable us to interchange the order

of summation in the original double sum over H and t1. Keep in
mind that (H, H, s,,) stands for a representative of an equivalence
class of endoscopic data for which KH is a subgroup of LGO and ( is
the inclusion mapping. The equivalence classes themselves can be
identified with the G°-orbits of such data. The stabilizer in 0G of
(H, 7, s, Id) is the group Aut(H) which appears in the expression
(7.5). The group Aut(H) in turn acts on the set of parameters i E
I(G, X, t) such that s belongs to S,fin. The stabilizer in Aut(H) of
a given 0 is simply the group

Cs = { ECe : csc-1 = s}

of elements in C, which fix the coset s. On the other hand, we can

identify the orbits {1 } E I(H1, X1, t)/Hl with the H-orbits of {/}.
This is easily seen from the injectivity of the map

H1(r, Z(H-)) H (F, Z(H1)),

noted in §2, and the fact that H1 = Z(Hi)1(H). We can actually
take HZ(G°)r-orbits of {b}, since Z(G°)r centralizes the image of
b. But the group HZ(OG)r has finite index in Aut(H), by Lemma
2.1, and the stabilizer of i in HZ(G°)r is the subgroup

C+, n (HZ(G°)r)



UNIPOTENT AUTOMORPHIC REPRESENTATIONS 47

of finite index in C-,. Therefore, we can replace the original double
sum over H and t1 by the sum over the G°-orbits in the set

{(I),s): E %l(G, X, t), s E S,fin},
if we multiply the summand (7.5) by

(7.7) IAut(H)/HZ(G)l | C/C' n (HZ(G ))-

The stabilizer in G° of a given parameter ,b E 1(G, X, t) is the group
C,. We can therefore replace the sum over G°-orbits in{(I, s)} by a
double sum over bE F(G, x, t)/G° and over the set Orb(Cp,S,fin)
of orbits of Cp in Sfin. Obviously, SP,fin has the same set of orbits
under C1 as under the group

Cp = CpZ(G°)/Z(G°).
The stabilizer of s in Cp equals

C,$ =,CsZ(G°)/Z(G0) = Cent(s, C).

However, we would prefer to take the orbits in S,,fin under the con-
nected component

Co= C Z(G°)/Z(G°).
The C,-orbit of s is bijective with C4/C+, while the C,-orbit is in
bijective correspondence with the quotient of C, by the group

Cs = Cent(s, C+).
Therefore, we can indeed take the second sum over Cs-orbits, pro-
vided that we multiply the summand by

or what is the same thing,

(7.8) \cJ C\|-1
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Finally, we can take the first sum over .E W(G,X,t) instead of
(G, X, t)/G°, if we multiply the summand by the integer (7.4). We

have shown that Edi8c,t(f) equals the sum over t E '(G,X,t) and
s E Orb(C',, S,,fin) of the expression obtained by multiplying (7.4),
(7.5), (7.7) and (7.8) together. We can write this last expression as
the product of

(7.9) + '"0+1 1(7.9) IC,s/Cns n (HZ(G0) IL-kC 1) IC+ IZ() I1
and

(7.10) Iro(,G)l-1 IS,1-1 Is I sI'l(fHI).
The term (7.9) can be simplified. We begin by writing

co,, (C, n H)Z(H)/(C, n H)°Z(H)
(Co n H)I(C,, n H)°Z(H)r
(C, n H)Z(G°)/((C n H)Oz(H)' · Z(G°)).

The first isomorphism follows from (7.6), while the second is trivial
and the third is a consequence of the fact that

(C, n H) n Z(G°) = Z(G)r n Z(H)r c Z(H))r
We also observe that

C/C,, n (HZ(G°)) = C,/(C, n H)Z(G
= C,+Z(G°)/(C, n H)Z(G0).

This allows us to write

, /,+Sn (HZ(GO)r)l-1 Ico, I-
= IC,sZ(G°)/(C, n H)Z(H)rz(G0)-,

for the first two factors in the product (7.9). Let us divide both groups
in the quotient on the right by Z(G°). The numerator becomes

C,z(GO)/Z(Go) = C=O'sI
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and the denominator may be written

(c, n H)°Z(H)rZ(o°)/Z(o0)
= ((C4, nH)OZ(GO)/Z(GO))(Z(f)rZ(GO)/Z(GO))
= (c, Z(o)/Z(G° ))))Z(H)r
= ,S2(//)r,

by (4.11). Therefore, (7.9) equals

C+--/C1-+ff ^, /CL H I

= ICf,/C K(IC/)rn Z(H)(fK)r -
(//)r-1.0=I0C0s/ I8-'KK,8 n Z(H)IL,.

We noted in §4 that C,,s = S,,a. In particular

100,J/00,s-1 =-13I-s/ 8|-1 = i ro(3,,)l-1.
The term (7.9) can by consequence by written as

Iro(3,s)l-' s1,, n Z(H)rl-1.
We have now established that Edic,i(f) equals the product of

Iro(KG)1-1 with

E I I1 E Io(Ss)lI-
OE*(GXt) 0sEOrb(S, ,S,,nfn)

ISO,1I-o,0,nz()rl sI,(f).

By assumption,

SI,/'(fH1) = r(H1,l). f'(1).
Part of our local assumption in §4 is that f H1 (1) depends only on
the image x = s of s in the set

S= S, Z()=Sw/Z() = / = o(S).
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More precisely, formula (4.4) asserts that

fH (1) = E < x, r > fG(Tr)
.rE{n,}

where < *,- > is the global pairing on S, x II+. We can therefore
write Edisc,t(f) as the product of I|ro(nG)-l1 with

(7.11) E E IS0-1 E ( E
I 7r.E{Hl}l xEro(S,) sEOrb(ST,xffi)

ro( s)|-1r(0, s)) < 8+x,x > fG(7r),
where

Xfin = x n S,fin
and

T(, s) = IsVl IS, n Z(H)r -l(Hi i).
The similarity with the formula in Proposition 5.2 appears promising.
We must try to define the constants a(H1, b1) so that the two formulas
for Idisc,t(f) always match.

Suppose that G1 is an arbitrary connected quasi-split group over
F, and that '1i E T(G1). Then we shall set

(7.12) a(G1, 1) I=|S, I-1e((, )u(S1)
where Fe, = ,G is the sign character (4.5) and a(3S,) is a constant,
to be determined, which depends only on the isomorphism class of
the complex, connected reductive group

S,-= (Sl/Z(G1))°.
We also ask that this latter constant have the property that

(7.13) a(S1) = a(Si/Zi)iZl -1,

for any complex connected group S1, and any subgroup Z1 of the
center of S1. In particular, o(S1) is going to have to vanish if S1 has
infinite center. This implies that a(G1, i1) = 0 unless z/1 E I'(G1),
as we would expect.
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We of course want to set G1 = H1. Then

S, = C-l- Co1Z(Hi)/Z(Hi)
= (C1 n H)°Z(H)/Z(H)
= CoZ(H)/Z(H),

by the formula (7.6). Since

,, n Z(H) = C, n Z(H)rZ(G),
we obtain

C z(HZ)/Z(H) co H G H G

It follows from the property (7.13) that

a( ) = a(~,,()° s n Z(G))r(l.)

Therefore,

a(IH, il) = IS| -1Ke(5)| nZ)r/2()rl( ,

so that
(,S) =, (1) s).

LEMMA 7.1. For H1 and x E S as in (7.11), we have, I(S0), ,()= E )S.).

PROOF: As in §4, let

T = (Ak Pk0 Vk)
k
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be the decomposition of the representation

TV, : Sx xL SL(2, C) - GL(g)
into irreducible constituents. If I denotes the set of indices k in the
direct sum, let I' denote the subset of k such that (i) pk - pk, (ii)
e(, pk) =-1, and (iii) dim(vk) is even. Then

x E S, 45() =JI det(Ak(s)),
kEI'

where s is any element in Sp which projects onto x. Notice that the
element sv, lies in both S, and SL(2, C). If k belongs to I', we obtain

Ak(S=) = Vk(S) = -1,

since dim Vk is even. It follows that

(so) = H det(Ak(so)) = J (-_)dim(Ak)
kEPI kEI'

Now H1 is a central extension of the endoscopic group H attached
to s. The Lie algebra of H equals the centralizer of Ad(s) in g, and
the Lie algebra of H1 can be identified with the direct sum of this
algebra and a central ideal. For each k, let A) be the space of s-fixed
vectors for Ak. This of course is just the intersection of the underlying
space of Ak with the Lie algebra of H. Recalling the relation between
b and li, and applying the formula for eG(gs,) to H1, we obtain

E, (S1)= (-l)dim(\)k
kEl'

Finally, we observe that the number

EC(x) = I det(Ak(s))
kEI'

equals the product of all the eigenvalues, counting multiplicities, of
the operators

{Ak(s): k E I'}.
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Now the contragradient Ak - Ak defines an involution on the rep-
resentations Ak with k E I'. In particular, if f is an eigenvalue, not
equal to ±1, then ~-1 is also an eigenvalue with the same multiplicity.
Therefore,

(x) = (l)m(-1),
where m(-1) is the total multiplicity of the eigenvalue (-1). By the
same token,

Z(dim(Ak) - dim(Ak)) - m(-1)
kEl'

is an even integer. Consequently,

EG()E 1() = (1 -1) = eG(X).
We obtain

e(Sx) (X)eG(xe) )= £G(X)E()-1 = ( )
as required. O
The lemma allows us to write

r(1),s) = G )a()o )

Substituting this into (7.11), and setting

(7.14) e(x) = I7ro(S,) I-1 (S ),
sEOrb(S 0,xain)

we see that Edisc,t(f) equals the product of 17ro(CG)-l 1 with

K Z IS1-'1 E £^(sx)e(x) < Sx, r> fG(r).
E*I.(G,x,t) rE{In,} xE 7ro(So)

The point s,, E S,(G°) belongs to the center of S (G+). Conse-
quently, for any point s in the component x, the group Sg, equals
S . It follows that e(x) equals e(spx). Substituting this into the

formula above, and changing variables in the sum over x E 7ro(S,),
we see that Edisc,t(f) equals the product of I[o(rcG)K-1 with

(7.15) E IS 1-1 E G(x)e(x) < x, > G(T7).
0.*(G',X,t) "rE n } x-.ro(Sp)
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We have now reached the stage in §7 at which we concluded §5.
Taking the two sections together, we see that Hypotheses 3.1 and
4.1 yield two parallel expansions for Idic,t(f) and Edic,t(f) into ir-
reducible characters. Our goal is to show that these two expansions
are in fact the same. The expansions are given by (5.10) and (7.15).
They differ only in the coefficients i(x) and e(x), which are defined for
any component x E ro0(S,) by (5.11) and (7.14). We must then show
that the coefficients are equal. Recall that e(x) depends on a constant
a(Sl), which is to be defined for any complex, connected reductive
group S1 and which satisfies (7.13). We must show that a(S1) can be
defined for each S1 in such a way that i(x) and e(x) are equal for any
x. This is a property of Weyl groups which we shall establish in the
next section.

§8. A COMBINATORIAL FORMULA FOR WEYL GROUPS

Suppose that S is a union of connected components in an arbitrary
complex, reductive algebraic group. Then S+ is the reductive group
generated by S, and SO is the connected component of 1 in S+. Recall
also that we are writing Ss for the centralizer in So of any element
s E S. This group is of course not always connected. As a slight
generalization of (5.11), we set

(8.1) i(S) = IW°V-1 E e(w)ldet(w- 1)1-1,
WEWreg

where
W° = W(S°) = Norm(T,SO)/T

is the Weyl group of SO relative to a fixed maximal torus T, and
Wreg = W(S)reg is the set of elements w in the Weyl set

W = W(S) = Norm(T,S)/T
such that det(w - 1) 0. The determinant can be taken on the real
vector space aT = Hom(X(T), R). As in §5, e(w) = ±1 is the parity
of the number of positive roots of (S°, T) which are mapped by w to
negative roots.
As in §7, we shall write Orb(S°, E) instead of E/So for the set of

orbits under conjugation by So on an invariant subset E of S. This
will prevent any confusion of orbits with cosets. The main example is
when E equals the subset

Sfin = {s E S: IZ(S,°) < o} ,
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in which case the set Orb(S°,Sfin) is finite.
Our object is to prove

THEOREM 8.1. There are unique constants o(S1), defined for each
connected and semisimple complex group S1, such that for any S the
number

(8.2) e(S) = ro(S-)I (S0)
sEOrb(S° ,Sfin )

equals i(S). The constants have the further property that

(8.3) o(S1) = o(S1/Z)IZ1-1
for any central subgroup Z1 of S1.
Remarks. 1. It is obviously enough to prove the theorem when S is
just one connected component. We shall assume this in what follows.
2. Let us agree to write a(S1) = 0 if S1 is any complex, connected
algebraic group which is not semisimple. In particular, this constant
vanishes if S1 is a reductive group with infinite center. The equation
(8.2) can then be written

e(S) = Iro(SS)-1a(S0)
sEOrb(S° ,S)

3. Theorem 8.1 is what remains to be proved of the comparison of
Idisc,t(f) and Edi8c,t(f) that we began in §5 and §7. It is interesting to
observe that Theorem 8.1 is actually a miniature replica of the origi-
nal problem. It is a formal analogue for Weyl groups of the problem
of comparing Idisc,t(f) and Edisc,t(f), and indeed of many of the com-
parison problems, both local and global, that arise from endoscopy.
I do not know whether it is part of a larger theory of endoscopy for
Weyl groups, or whether results of this nature are already implicit in
the representation theory of Weyl groups and finite Chevalley groups.
We shall begin the proof of Theorem 8.1 by taking note of the

uniqueness of the constants a(S1). For a given semisimple S1, as-
sume inductively that a(S[) has been defined for any S1 of dimension
smaller than S1. Then a(S1) is determined by the formula,

a(Si)lZ(Si)I = i(S) - ro(Si,)L-(So,8)
sEOrb( S ,S,1-Z(Si))
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which follows from the required equality of e(Si) with i(Si). In other
words, the special case of (8.2) that S = So = S1 provides a definition
of the constant a(S1).

Having defined the constants a(S1) we shall next establish the prop-
erty (8.3). The argument is similar to part of the discussion of §7. Sup-
pose that S is an arbitrary component, and that Z is a finite subgroup
of Z(S°) which is invariant under conjugation by S. Then S = S/Z is
a connected component of the reductive group S+ = S+/Z, of which
the identity component S° equals S°/Z.
LEMMA 8.2. (i) i(S) = i(S).
(ii) e(S) =e().
(iii) If SO = S, then a(S) = a(S)ZI-1.
PROOF: The property (i) follows easily from the definition (8.1). We
shall establish the other two properties together. To this end we
shall assume inductively that (ii) holds for any connected group of
dimension smaller than S.

If the group
Z(S) = Cent(S,Z(S5))

is infinite, the quantities e(S), e(S), a(S0) and a(S°) all vanish, and
there is nothing to prove. We can therefore assume that Z(S) is finite.
This implies that the group Z(S+) n S is also finite. Let s be a coset
in Sfin = Sfin/Z which does not lie in Z(S+) n S. Then

Ss = Cent(S,S0)
is a proper subgroup of O°. Since

so= soz/z= S= /SonZ

for any element s in the coset g, our induction assumption implies
that

a(s) = a(s)lSo n ZI.
Let Ss be the normalizer in So of the coset s. The set of orbits in
Orb(S°, S) which meet s can be identified with Orb(S, 4), a set of
cardinality

\z\\9/5s\-1.
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Observe that

Z kto(S.)l-'(S°)
sEOrb(S ,8)

= IZllS /S.l-l IS/S°l- a(8°)ls°n zi-'
= I(s,/Z)/(SOz/z)l-'(o)
= Iro(&,)l-'a1(S°) .

Summing over all such s, we obtain

e(S) - a(S0°)Z(S+) n S = e(3) - a(S°)lZ(S+)nSl.
If Z(S+) nS is empty, it follows immediately that e(S) equals e(S).

Suppose that Z(S+) n S is not empty. Then S acts on the group So
by inner automorphisms, and we have

e(S) = e(S°) = i(S°) = i(S)
from the definitions. (The equality of e(S°) and i(S°) was part of the
definition of a(S°).) Similarly e(S) = i(S). The property (i) then
implies that e(S) equals e(S) in this case as well. This is the required
property (ii). Suppose that S = S°. Then Z(S+) n S equals Z(S), a

group which of course is not empty. The property (iii) follows from
the fact that IZ(S)I = IZ(S)IIZI. °

The property (iii) of the lemma is the required condition (8.3) We
still have the main part of the proof of the theorem, which is to show
that e(S) equals i(S). This of course is a problem only if S is not
equal to S°.
As a warm-up, let us verify the equality of e(S) and i(S) in the

special case that SO = T is a torus. Then W consists of one element
w, the adjoint operation of S on T. We can assume that this element
is regular. Recall [23, 11.1.7] that

Idet(w-1)1 = ITwI,
where TW denotes the kernel of w in T. Since e(w) = 1, we obtain

i(S) = ITw"-1.
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On the other hand,
Tw = Cent(s,T°) = S,

for any element s E S. The regularity of w means that s belongs to
Sfin, and that SO = {1}. Therefore a(S°) equals 1. But the T-orbit
of s equals the product of s with {t-lw(t) : t E T}, a subtorus of
T. This subtorus has the same dimension as T, and must therefore
equal T. In other words, the orbit of s equals S, so there is only one
summand on the right hand side of (8.2). We obtain

e(S) = ,ro(Ss)L-1 = ITWl-1 = i(S),
as required.
Now suppose that S is arbitrary. We shall use Lemma 8.2 to effect

a simplification. First, observe that i(S) and e(S) depend only on SO
and the set of automorphisms of So induced from conjugation by S.
We may therefore assume that S+ is the semidirect product of S° with
7ro(S+). Now, let SO, be the simply-connected covering of the derived
group of S°, and let Se = Z(S°)° be the connected component of
the center of SO. Then

c0 - 0 x0S=- sc cent

is a finite covering group of S°. In particular, So equals SO/Z, where
Z is the finite central subgroup of S°. It is then readily verified that
S = S/Z, where S = Ssc x Scent is a component which normalizes Z
and such that the identity components (S (Ssc)° and (Scent)0 equal
the respective groups S°, S°c and Scent above. Applying Lemma 8.2
and the calculaion above for tori, we obtain

e(S) - i(S) = e(Ssc x Scent) - i(Ssc X Scent)
= e(Ssc)e(Scent) - i(Ssc)i(Scent)
= (e(Ssc) - i(Ssc))i(Scent).

(We have also used the fact, easily verified from the definitions, that
e and i are multiplicative on products.)

It is therefore enough to show that e(S) equals i(S) in the special
case that S° is semisimple and simply connected. We shall assume
this from now on. If s is any semisimple element in S, the group

Ss = Cent(s, S)
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is then connected, by [24, Theorem 8.1]. In this case, it is part of
our definition that e(S.) equals i(S8). If t is a semisimple element in
So, the connectedness of St implies that the set

St = Cent(t,S)
is either connected or empty. We can assume inductively that if
dim(St) < dim(S), then e(St) equals i(St).
LEMMA 8.3. The required equality of e(S) and i(S) is equivalent to
the formula

(8.4) E i(S) = E i(S) .
s Orb(So ,S) tEOrb(S ,S )

PROOF: If s E S and t E SO are elements that commute, we write

Ss,t = Cent({s,t}, S).
It is obvious that

7To((Ss)t) = 7ro(S,,) = 7To((S),))
The left hand side of (8.4) then equals

E i(S8)
sEOrb(S°,S)

-= e(S,)
sEOrb(So ,S)

E= E lrto(s,it)-l'(So,t)
sEOrb(S°,S) tEOrb(S,,S.)

E Iro(Ss,,,)-1(S° , ,)
{(s,t)ESx S :st=ts}/SO

E E 1o(s,t)'os,)l(S,)
tEOrb(S°,S°) sEOrb(St,St)

= E e(St)
tEOrb(S°,SO)

This last expression would just be the right hand side of (8.4) if e(St)
were replaced by i(St). But if t does not belong to Z(S), dim(St) is
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smaller than dim(S), and e(St) equals i(St) by our induction assump-
tion. It t belongs to Z(S), St is just S itself. Therefore, the equality
of e(S) and i(S) is indeed equivalent to the identity (8.4). [1

It remains for us to establish the formula (8.4), in which S is a
component such that So is semisimple and simply connected. We
shall deal with each side separately. According to [24, Theorem
7.5], any semisimple element in S normalizes some pair (T1, B1) of
groups, where T1 is a maximal torus in SO and B1 is a Borel subgroup
of So which contains T1. Let B be a fixed Borel subgroup of So which
contains our fixed maximal torus T. Then any semisimple orbit of So
in S contains an element which normalizes T and B. The normalizer
of T and B in S can be written TWB, where WB is a fixed semisimple
element in S which preserves some splitting of B. Let S' and T' denote
the centralizers of WB in So and T. Since S° is simply connected, S'
is a connected reductive group which contains T' as a maximal torus.
In particular, we can form the usual sign character a' on the Weyl
group W' of (S', T').
LEMMA 8.4. The left hand side of (8.4) equals the number

(8.5) A(W',E') = IW'-1 E e'()
-Wreg

PROOF: Let N' denote the normalizer of T' in S'. Then

W = N'/T'= TN'/T.

We claim that

(8.6) Norm(T', S) = TN'.

To see this, we shall consider the (open) chambers in the real vector
spaces

aT, = Hom(X(T'),R) C aT = Hom(X(T),R)
determined by the roots of S' and S°. The fact that WB preserves
a splitting in (B, T) implies that the simple roots of (B n S', T') are
just the orbits under powers of ad(wB) of the simple roots of (B, T).
The corresponding positive chambers are therefore related by a+,
aT naT. By an argument of symmetry, any chamber in aT, becomes
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the intersection of aT, with a uniquely determined chamber in aT.
Suppose that n is an element in Norm(T', SO). Then n also normalizes
T, since T is the centralizer of T' in S°. The chamber Ad(n)(aT)
contains an open subset of aT,, and therefore a chamber

Ad(n')(a+,) , n' E N',

in aT,. The map Ad(n')-lAd(n) will then send the chambers aT, and
a+ to themselves. This justifies the claim (8.6).
We have agreed that any semisimple orbit of SO in S intersects

TWB. Suppose that two elements sl and s in TWB are S°-conjugate.
Since T' is a maximal torus of both Ss and Ss,, s1 and s are conjugate
by an element in the group (8.6). From this it follows that there is a
canonical bijection from Orb(TN', TWB) to the semisimple elements
in Orb(S°, S). It is of course only semisimple orbits which are relevant
to (8.4). We can therefore write the left hand side of (8.4) as

E i(S8)
sEOrb(SO ,S)

=E i(S8)
sEOrb(TN',TwB)

- IVW(s)l-1 5 es(w)Jdet(w - 1)1-1
sEOrb(TN',TwB) wEW(Ss)reg

where es stands for the sign character on the Weyl group W(Ss) of
Ss.

If s belongs to TWB, Ss need not be a subgroup of S'. However,
the elements in W(Ss) normalize T', and are induced from the group
(8.6). Therefore

W(Ss) = Cent(s,N')/T' ' TCent(s,N')/T.
In particular, W(S$) is a subgroup of W'. Thus, the simple reflections
in W(S,) are also reflections in W', and since es and e' both take the
value (-1) on any such reflection, we see that E. equals the restriction
of e' to W(S,). We can substitute this into the expression above.
Our characterization of W(Ss) also suggests that we should change
the sum over Orb(TN', TWB) to a sum over the smaller set

TB = Orb(T,TwB) = {t-lWBtwU1: t E T} \ TWB.
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The expression for the left hand side of (8.4) becomes

JW '-1 E'(w)ldet(w- 1)-1
sETB wEW(S.),eg

The group W' operates on TB. It is easy to check that

W(Ss)reg = {W E Wreg : W(S) = } .

The last expression can therefore be written

\W'\-1 E E'(w)ldet(w- 1)-1
{(s,w)ETB X W's:w(s)=s}

Now T' is a finite covering of the torus

{t-lWBtWBl: t E T}\T,
and Idet(w - 1)1 equals the number of fixed points of w in either torus.
In particular, this number equals the order of the fixed point set TB
of w in TB. We can therefore write our expression as

Iw'I-1 EE '()
"EW'6W, sE.T

Iw-1 E (W)
wEW'reg

= A(W',e) . [

LEMMA 8.5. The right hand side of (8.4) equals the number

(8.7) A(W,e) = IW°1-1 l e(w)
WE Wreg

PROOF: Since any semisimple conjugacy class in So meets T, we have
a bijection from Orb(W°,T) to the set of semisimple elements in
Orb(So, SO). The right hand side of (8.4) can then be written

E i(St)
tEOrb(S ,S°)

= E IW(St)l1 E Et(w)ldet(w- 1)1-
tEOrb(W°,T) wEW(St),,g
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where et stands for the sign character on the Weyl set W(St).
We need only consider elements t E T such that St is not empty. For

any such t, T is a maximal torus in the connected group (St)° = St,
and W(St) is a subset of W = W(S). We claim that et is the restric-
tion of e to W(St). The group W(St) is generated by reflections which
lie in W(S°). Since this group acts simply transitively on W(St), it
suffices to check that e and et coincide on one element in W(St). Let
s be a semisimple element in St. Then there is a conjugate

S1 = gsg-1, gE S°,
of s which lies in TWB. We can in fact choose g so that tz= gtg-1
lies in the maximal torus T' of S. It then follows that tl equals
wi(t) for some wl E W°, and that t is fixed by the element wl' WBWl
in W(S). In other words, wl1WBwl belongs to W(St). Since this
element normalizes the Borel subgroups wl'Bwl and wl'Bw1 n St
of So and St, we have

E(WliWBWl) = Et(wlWBwl) = 1.

This establishes the claim.
Since W(St) is the centralizer of t in W°, the right hand side of

(8.4) becomes

IWl-lE E 6(w)ldet(w - 1)1-1.
tET wEW(St),eg

The set W = W(S) operates on T, and

W(St)reg = {W E Wreg w(t) = t .

The last expression can then be written

IW°1-1 eE(w)ldet(w - 1)|-1
{(t,w)ETx Weg:w(t)=t}

= IWI-1 E E (w)lTWl-1
wEW,,g tET"

= IW 1-1 E (w)
sEWreg

= A(W, ) ,

since Idet(w - 1)1 equals the order of the fixed point set Tw of w in
T. The lemma is proved. O
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LEMMA 8.6. A(W',') = A(W,E).
PROOF: The numbers A(W',e') and A(W, £) depend only on the
Weyl set W. They are independent of the isogeny class of the un-
derlying component S. We shall assume inductively that the required
formula holds if S is replaced by a component of strictly smaller di-
mension.
We have the fixed Borel subgroups B and B' of So and S', so

we can speak of standard parabolic subgroups. Suppose that A is a
standard torus in T'. In other words, A is the split component of a
parabolic subgroup P' of S' which contains B'. Let M' be the Levi
component of P' which contains T'. Then A equals AM' = Z(M')°,
the connected component of the center of M'. Write

WA = W(M'/A)
for the Weyl group of M'/A, acting on T'/A. We can also take the
centralizerM of A in S. Then M° is the Levi component of a standard
parabolic subgroup of S°. Write

WA = W(M/A),
for the Weyl set of the component M, acting on T/A. The element
WB obviously embeds into WA, and WA is just the centralizer of WB
in WA = W(M°/A). If A is nontrivial, our induction hypothesis tells
us that

(8.8) A(WAEA) = A(WAEA),
where e' and EA are the sign characters on WA and WA.

Suppose that w is an arbitrary element in W'. The identity com-
ponent of the fixed point set (T')W is a torus in T', and equals a
W'-translate

w1i(A), wl E W',

of a standard torus A in T'. The elementwlwwl1 then lies in WAreg.
It is also clear that

EJ(W) = EA(1WWl 1) .
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Now the pair (A, wl) is not uniquely determined by w. The number
of such pairs actually equals

n(A)WAl ,

where n(A) is the number of chambers in Hom(X(A), R) cut out by
the hyperplanes orthogonal to the roots of the corresponding standard
parabolic subgroup. The elements in W' can be enumerated up to this
ambiguity, however, as conjugates

W1 WAW , WA E WA,reg W1 E W

We obtain

IWI-1 E E(w)
wuEW

= n(A)-1lWA-1 E eA(WA)
A WAEWA

-= i n(A)-1A(WA, A).
A

If W' is not equal to {1}, the sign character E' is nontrivial, and the
left hand side of the equation equals 0. Applying (8.8) to the right
hand side, we conclude that the expression

(8.9) A(W',e) + E n(A)- l(WAeA)
A.{1}

vanishes if W' : {1}.
Now suppose that w is an arbitrary element in W. The identity

component (Tw)° of the set of fixed points of w in T is a torus which
commutes with any representative in S of the Weyl element w. Copy-
ing an argument from the proof of Lemma 8.5, we see that

(TW)O = wl (A),
where wl belongs to W° and A is a torus in T'. In fact, we can
assume that the centralizer M° of A in S° is the Levi component of
a standard parabolic subgroup of S°. This implies that A is standard
torus in T'. The element wlwwT1 then lies in WA,reg, and

e(W) = -A(WlWW 1) .
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For a given w, how many such pairs (A, wl) are there? We can cer-
tainly replace w1 by a product

W'WMW1 , w E W', WM E W(M°),

in which w' maps A to another standard torus in T'. However, this
is the only possible ambiguity, so the number of pairs equals

n(A)IW(M°)I = n(A)IWAI.
We obtain

IW0-1 E e(w)
wEW

= Zn(A)-1'WA-1 E A(WA)
A WAEWA,reg

= Zn(A)1A(WA, A).
A

If W contains more than just the one element wB, the left hand side
of the equation equals 0. Therefore, the expression

(8.10) A(We)+ E n(A)-A(WAeA)
A${1}

vanishes if W Z {WB}.
The simple reflections in W' correspond to the orbits of simple roots

of (B,T) under powers of ad(wB). It follows that W' = {1} if and
only if W = {wB}. In this case, both (8.9) and (8.10) are trivially
equal to 1. We can therefore conclude that the expressions (8.9) and
(8.10) are equal. The equality of A(W', e') and A(W, e) then follows.

We have reached the end of the lemmas that make up the proof
of Theorem 8.1. We obtain the general inequality of i(S) with e(S)
immediately by combining Lemmas 8.3, 8.4, 8.5 and 8.6. The proof
of Theorem 8.1 is now complete. O
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§9. CONCLUDING REMARKS

Theorem 8.1 tells us that the coefficients i(x) and e(x) in (5.10) and
(7.15) are always equal. It follows that there is a term by term iden-
tification of the expansions for Idisc,t(f) and Edisc,t(f). We conclude
that Hypothesis 3.1 is a consequence of Hypothesis 4.1 (together with
the local assumptions of §3, §4 and [3, §7]). This was the task we
originally set for ourselves.
We have in fact shown that the contributions to Idisc,t(f) and

Edisc,i(f) of each parameter tp E I(G, X, t) are equal. Now there are
some parameters for which the representation theoretic hypotheses
are known. Consider the special case that G is a connected quasi-
split group. Suppose that b is the image of a parameter ob0 E6(Mo)
for a minimal Levi subgroup Mo of G. Since Mo is a maximal torus
in this case, o0 is trivial on SL(2, C), and is the parameter of a uni-
tary character on Mo(F)\Mo(A). We can take IIH to be the set of
irreducible constituents of the corresponding induced representation
of G(A). The parameter ho factors through the quotient WF of LF,
so there is no problem with the hypothetical Langlands group. In
particular, S, equals the centralizer in G of the image of WF, and
the quotient Sp is just the R-group R,. The pairing on S$x IIH is
then determined by the global normalized intertwining operators. In
fact, Conjecture 7.1 of [3], which we assumed in §5, is already known
in this case thanks to Keys and Shahidi [10, Theorem 5.1]. If H1
is associated to a point in a component x E SO, we could just define
the distribution f -+ fH1 (1) by

fH1(li) = < x,r > fG(r) .

wrEH,

Then with these interpretations, the notions that went into the discus-
sion in §5-§8 are all understood. The reader who dislikes arguments
based on unproven conjectures can regard the earlier discussion as
pertaining only to the parameters just described. It establishes that
the contribution of these parameters to

(9.1) Edisc,t(f) - Idisc,t(f)
vanishes.

This paper has concerned the conjectures in [3] on unipotent (and
more general) automorphic representations. The long term goal is to
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prove them, at least in part, with the help of endoscopy and the trace
formula. A first step towards the creation of a logical structure for
the argument is to verify the compatibility of the notions involved
and to analyze the reasons for it. This has been our emphasis, and
we continue with some informal comments on the proof envisaged.

In general, Hypothesis 3.1 asserts the vanishing of the distributions
(9.1). As we mentioned earlier, one should first try to deduce this from
the trace formula. One would then use (9.1) to establish some ver-
sion of the multiplicity formula (4.7). The formula could be assumed
inductively for any proper Levi-subgroup. This would permit the ap-
plication of the arguments in §5-§8 to any parameter /I E 1(G, X, t)
which is not the image of an elliptic parameter for an elliptic endo-
scopic datum. The contribution to (9.1) of all such parameters could
then be shown to vanish. The only remaining contribution to (9.1)
would come from parameters k such that Sas, is finite for some el-
ement s in SV, = Sp/Z(G°). It is from this that we would hope to
deduce some form of (4.7), again using arguments of Sections 5, 6
and 7. The sign characters EG would be forced on us at this stage,
essentially because of Proposition 5.1.
Of course, it would not be feasible to apply the arguments of §5-§8

in precisely the way they were presented here. The correspondence
from maps WF LG to automorphic representations is much deeper
than multiplicity formulas such as (4.7), and in any case, we would
certainly not want to assume the existence of the Langlands group LF.
We would instead have to replace the parameters 4 by the families
a = {a,: v ¢ S} of conjugacy classes in LG attached to automorphic
representations. (See [3, §1, §8].) For many G we can expect a bi-
jection from I(G) onto the set E(G) of such families. In these cases,
the idea would be to define the centralizer S, in terms of a. This
could probably be done by considering the set of endoscopic groups
H for which a lies in the image of the map E(H) ES(G). It is of
course necessary to determine S, in order to state the multiplicity for-
mula (4.7). By definition, a parameter 4 has a Jordan decomposition
(Oss, Ounip), where

o'.: LF - LG
and

nip : SL(2, C) -, So
We would describe the Jordan decomposition in terms of a by first
determining the family aos attached to ;5,, and then describing the
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group So, in terms of a,,. In the case of a general G, some un-
derstanding of the fibres of the map [(G) -- E(G) will probably be
needed.
We have not said much about the local side of the conjectures. This

includes the definition of the stable distributions fi -- fG (41), the
construction of the packets HII and the pairing < *, >, and the proof
of the local character identity (4.4). Once the stable distributions
have been defined, the packets and the pairing are determined by
(4.4) (together with the maps f -- f HI). The essential part of the
local conjecture is then the assertion that for a given 4, certain linear
combinations of the distributions

f , fHl('1), f Cc (G(A),X),
are actually characters, as opposed to more general invariant distri-
butions. Ideally, it would be best to deduce this locally. However,
the global Hypothesis 3.1 itself carries some local information. For
it ultimately implies some version of (4.7), and any such multiplicity
formula tells us that certain distributions are in fact characters. I do
not know how far this can be pushed. It is perhaps best to wait until
Hypothesis 3.1 has actually been established.
The case in which Hypothesis 3.1 will lead to the most complete

results is the example of outer twisting of GL(n). The hypotheses
of §4 (interpreted without reliance on the parameters 4 E I(G)) are
now known for GL(n). Moeglin and Waldspurger [21] have recently
characterized the residual discrete spectrum for GL(n) in terms of the
cuspidal spectrum, and it is clear how to interpret this in terms of the
Jordan decomposition [3, §2]. On the other hand, the twisted endo-
scopic groups for GL(n) include all of the quasi-split classical groups
of type B, C and D (up to isogeny). One should try to deduce the con-
jectural properties of the spectra of these classical groups from what
is known for GL(n). We will conclude with a very brief discussion of
this example.

Set Go = GL(n). If

Jn=."i onI0

then

On(g) = J-1(t-1)Jn , gE G°,
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is an outer automorphism of Go which leaves invariant the standard
Borel subgroup. Set

G = G° 0,.
If On denotes the same outer automorphism of G° = GL(n, C), then

G = G°X On

It is easy to describe the elliptic endoscopic data for G. For each
integer r, with 1 < r < n, set

-1
Sr = 1 4X On

0 1

regarded as a semisimple coset in G/Z(G°). Then

Cent(sr, G°) ) Sp(2r, C) x O(n - 2r, C)
Define

Hr = Cent(sr, 0)°0 Sp(2r, C) x SO(n - 2r, C).
Let Gr be any L-homomorphism

WF - Cent(sr,G )xWF C G xWF.

This determines an endoscopic datum (Hr,',Sr,r) whose equiva-
lence class depends only on the map

r: Gal(F/F) -, 7o(Cent(sr,,°))
Thus,

H _ SO(2r+ 1) x SO*(n-2r), n even,
r -~ SO(2r + 1) x Sp(n- 1 - 2r), n odd,
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where SO* stands for the quasi-split orthogonal group determined by
*. When n - 2r = 2 and * is trivial, Z(Hr)r is infinite, and the
endoscopic datum is not elliptic. If we rule out this exceptional case,
however, we obtain a set of representatives of elliptic endoscopic data.
Observe that 7r- can be identified with LHr in each case, so there is
no need to introduce the extensions that were denoted by H1 in §2.

Suppose that

: LF SL(2,C) - LGO
is a parameter in [(G°). We shall identify 0b with an n-dimensional
representation of the group LF x SL(2, C), which can then be decom-
posed into a direct sum

e
+ = ©^k

k=1

of irreducible representations. The centralizer in G° of the image of
b is the group of intertwining operators. That is,

So,(G°) = So IGL(mj, C).

The parameter b belongs to [(G) if and only if it is self-contragredient
as a representation of LF x SL(2, C). In other words, the contragre-
dient operation acts as a permutation of order two on the irreducible
constituents Ok. Suppose that this is the case. Then S, = Sp(G) is
isomorphic to a product of components of the form

GL(m, C) )X m

or

(GL(m, C) x GL(m, C)) x Tm ,
with

~m(1g,g2) = (9m(92), Om(gl)) , 9,g2 E GL(m,C).
We are especially interested in the parameters 4 E J(G) which are

the images of elliptic parameters Or E Io(Hr), for elliptic endoscopic
data Hr. Since AG - Z/2Z is finite, this means that there is an
element s E So such that SO,, is finite. The condition is equivalent to

(9.2) S1o - (C* 01)e,
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which is to say that the irreducible constituents /Ok of i are self-
contragredient and mutually inequivalent. Since

01(z) = Z-, E C*,

we see immediately from (9.2) that there is only an orbit of So in Sp.
Therefore, b factors through only the one endoscopic datum Hr.

Fix an elliptic endoscopic datum Hr, and let tr E To0(Hr) be a fixed
elliptic parameter. The image ? of Or in @(G) then satisfies (9.2).
For reasons of induction it is not necessary to consider a product of
two classical groups, so we may assume that r equals 0 or 2. Then
Hr is either an orthogonal group or a symplectic group. To study the
representations of Hr(A) attached to Or, it will be necessary to apply
Hypothesis 3.1 to both G and Hr.
A missing ingredient from the local conjectures was a canonical

definition of the stable distribution

(9.3) f.- fHr(r) f, r E Co(Hr(A)).
Such a definition will be provided, at least in some cases, by the
connection with G. The packet HI consists of one orbit {Trt,} C

II(G(A)+) under the group ro(G+)* = Z/2Z, and we can choose 7r,
so that

< ,r > = < , >= 1 , s E So.
It follows from (4.4) that

fHr(Or) = fG(TI,), f C (G(A)).
A similar formula holds for the corresponding stable distributions on
the local groups G(Fv). However, this formula may not determine
(9.3) completely. The problem is that the anticipated injection

(f.Hr f E C (G(A))}I {fHr: fr E C (H(A)) },
obtained by transfer of twisted orbital integrals, could be a strict
inclusion. This difficulty is tied up with the question of how many
local parameters

/4 = (0 ,, E (HIFv),
V
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lift to 4i. If Hr is symplectic or odd orthogonal, the only such param-
eter will be 0Ir itself. However, there can be a number of O' in the
even orthogonal case, and the formula then determines only a sum of
distributions (9.3).
Once the distribution (9.3) has been defined (for Hr and its en-

doscopic groups), the packet II^ and the pairing on Sr x II7^ will
be uniquely determined. Leaving aside the question of whether the
required local properties of these objects can be deduced from Hy-
pothesis 3.1, let us simply assume that the local assumptions of §3, §4
and [3, §7] hold for Hr. The next problem is to determine the stable
distribution

(9.4) SIH (fr) = a(Hr, r)frr (Vbr)
(See the notation of §7.) The distribution fHr(r) is a local object
which we are assuming is known, so it is the global constant a(Hr, 4Or)
which must be found. According to Hypothesis 3.1, we should take
the contribution of 4' to (9.1), and set it equal to 0. I have not
thought through the details, but it should just be a question of running
backwards over a couple of the more trivial arguments of §5 and §7.
The result will be a special case

(9.5) OT(Hr,7r) = ISrl--E Hi(Sgr)
of the general formula (7.12) we determined was compatible with Hy-
pothesis 4.1. Observe that the sign character e,, (Sgr) appears. It
originates, through [3, Conjecture 7.1] and Proposition 5.1, from
the normalizing factors for (nontempered) intertwining operators for
GL(n).
Having determined the stable distributions (9.4) (for Hr and its

endoscopic groups), we can apply Hypothesis 3.1 to Hr. The contri-
bution of Or to Edisc,t(fr) can be calculated as an easy special case
of the arguments in §7, or it can simply be read off from the formula
(7.15), (applied to Hr instead of G). It equals

E (is 11 eHr(x)< x, >)tr(7(fr))
7rE nI r XES<Or

On the other hand, the parameter tr, E Io(H,) is elliptic. Its contri-
bution to Idisc,t(fr) equals

mo(7r)tr(7r(fr))
7EEI,,r
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Identifying the coefficients in these two linear combinations of irre-
ducible characters, we obtain the multiplicity formula

mo(7) = ISir-I 1 Z Er(x)< x,r >
zESok

Notice that the only contribution to mo(7r) should come from the
parameter )r,. This suggests that the map Ti(H,) -, E(H,) is bijec-
tive, at least if Hr is not an even orthogonal group, the case we left
ambiguous.

This discussion has been very sketchy. We have simply tried to
indicate that since the spectrum of GL(n) can be understood in terms
of a Jordan decomposition, the same should be true for the spectrum
of its endoscopic groups. The arguments of §5-§8 will be essential for
this, in that they allow for the elimination of the irrelevant parameters
from the study of (9.1).
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