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INTRODUCTION 

The well-known Poisson summation formula applies to a lattice F in R and 
a function f ? Cr(R) .  It can be written 

where / is the Fourier transform of f ,  while 

and 
l- a (A) = 

1 ,  i f w ,  
0 ,  otherwise. 

Notice the general structure of the terms. The functions f(y) and /(A) are 
independent of r , while the coefficients a'(y) and $(A) are independent of 
f .  The Poisson summation formula has a number of applications. They all 
involve playing some of the terms off against the others. 
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The Poisson summation formula has a generalization to a discrete subgroup 
of a general locally compact (unimodular) group with compact quotient. It is 
the Selberg trace formula. For example, suppose that G/Q is a semisimple 
algebraic group which is anisotropic. Then G(Q) is a discrete subgroup of the 
locally compact group 

such that G(Q)\G(A) is compact. The Selberg trace formula is 

where (G(Q)) is the set of conjugacy classes in G(Q) , n ( G )  is a set of (equiv- 
alence classes of) irreducible unitary representations of G(A) , and 

Again, the terms have the same general structure. The functions I J y  , f )  and 
IG(7i, f )  are invariant distributions on G(A) which do not really depend on the 
discrete subgroup G(Q) . The coefficients aG (y) and aG (7i) depend strongly 
on G(Q) , but are independent of f . The Selberg trace formula also has many 
applications. Again, one obtains information about one set of terms from a 
knowledge of the others. 

If G/Q is not anisotropic, the quotient G(Q)\G(A) is no longer compact, 
and the situation changes rather drastically. The terms in (2) diverge (in several 
senses) and are in general not defined. There are natural ways to truncate the 
integrals that diverge, however, and one ends up with a trace formula that 
appears quite complicated. In this paper and the next one [ I  ( f ) ] ,  we shall show 
that the general structure of the trace formula is rather simple. We shall establish 
an identity of the general form 

in which M ranges over a finite set of rational Levi subgroups of G . The terms 
corresponding to M # G represent contributions from the boundary. They are 
what is left of the original integrals that had to be truncated. The functions 
aM(y) and aM(7i) depend only on the group M and not its embedding in 
G .  They are global in nature, in that they depend on the rational structure 
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of M . The functions I,,,(y , f )  and I&, f )  are invariant linear forms in 
f .  They are local objects which are essentially independent of the discrete 
subgroup G ( Q )  of G ( A )  . The applications of the general trace formula are 
only beginning. If they follow the pattern of G L ( 2 )  , one will be able to deduce 
information about the discrete spectrum, which is a priori wrapped up in the 
definition of the function aG(71}, from the other terms in the trace formula. 

We shall leave the global theory of (3)  and the proof of the formula itself 
for the next paper [ l ( f ) ] .  In this paper, we shall study the functions I J y ,  f )  
and I&, f )  . These are interesting objects in their own right. If M = G ,  
I,,,(y , f )  is just the orbital integral over y and I,,,(n, f )  is the character of n  . 
For general M they are more complicated, but they retain many of the essential 
properties of the special case. 

It is best to take G to be a connected reductive group over a number field 
F . If S is a finite set of valuations of F , one can define 

I M ( ~ j f ) )  7  M ( F s ) j  

and 
I . , [n l f ) j  = f lun i t (M(Fs ) ) ,  

as invariant linear forms on the Hecke algebra of G(Fs )  . It is important to 
express them in terms of the local groups G ( F )  . In '$9, we shall prove splitting 
formulas for I,,,(y , f )  and I&, f )  in terms of the corresponding objects on 
the groups G ( F )  , v S . A related question concerns the case that the data 
y and n  come from a proper Levi subgroup M l  of M . In '$8 we shall prove 
descent formulas for I d y ,  f )  and I,,,(n, f )  in terms of the corresponding 
objects for M l  . Both sets of results will be proved from Proposition 7.1, which 
gives a general descent property for ( G ,  M)-families. This in turn is closely 
related to a similar property for convex polytopes, which we will leave for the 
appendix. 

It is perhaps helpful to think of the distributions I d y ,  f )  and I&, f )  
themselves in terms of convex polytopes. Indeed, the chambers of the restricted 
Weyl group are dual to a certain convex polytope f l o e  The groups M are 
parametrized by subspaces which intersect faces of Tio orthogonally. If we 
project onto such a subspace, we obtain another convex polytope &. 
The geometry of Ti,,, then governs the descent and splitting properties of the 
corresponding distributions. 

The invariant distributions I,,,(y , f )  are obtained from the weighted orbital 
integrals J d y ,  f )  studied in [ l ( d ) ] .  In '$2 we shall list the various properties 
that I J y  , f )  inherits from J J y ,  f )  . They all generalize well-known prop- 
erties of ordinary orbital integrals. For example, the value of I J y ,  f )  at a 
general point y M ( F s )  can be approximated by its values at G-regular points 
in M ( F s ) .  If S consists of one Archimedean valuation, I,,,(y, f )  satisfies a 
differential equation in y . It also has a simple formula for the jump across 
the singular hyperplane of a real root. If S consists of one discrete valuation, 
I,,, ( 7 ,  f )  satisfies a germ expansion in y . 
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The distributions I,,,(n , f )  are the values at X = 0 (and n unitary) of a 
more general family of invariant distributions 

which we introduce in 53. These are defined in terms of the weighted characters 

studied in [1 (e)]. It will follow from the definition that I&, X ,  f )  is trivial 
if n is tempered (Lemma 3.1). However, for general n , the distribution is 
more interesting. It turns out to be closely related to the residues (in TT, ) of 
J (n , f )  . There are hints of this in Lemmas 3.2 and 3.3, but a full explanation Mi 
will have to await another paper. 

It happens that the distributions Î {y} and I&, X) are not independent 
of each other. This is fortunate because it enhances the possibility of playing 
them off against each other in the trace formula. If y is restricted to a maximal 
torus T(Fs) in M(Fs) ,  the weighted orbital integral J,,,(y, f )  is compactly 
supported in y . However, it turns out that IJy  , f )  is not compactly supported 
in y . The distributions I&, X ,  f )  may be viewed as the obstruction to this. 
In 54 we shall study various objects which arise naturally when one tries to 
analyze the asymptotic behavior of I,,,(}', f )  . We shall define new invariant 
distributions I,,, (y , f )  and I,,, (n , X , f )  by improving the support properties 
at the expense of properties of smoothness. In particular, we shall show that 
'I^{y, f )  is compactly supported if y lies in T(Fs) (Lemma 4.4.). We shall 
also define certain maps O,,, and 'OM that provide expansions for I,,, and 'I,,, 
in terms of each other. These maps are in fact determined by the asymptotic 
behavior of I,,,(y , f )  . This sets the stage for Proposition 5.4. The result is an 
important formula for I & ,  X , f )  as a contour integral involving ' 0,,, (f) . It 
follows that the distributions ' I,,, (n , X , f )  and I (n , X , f )  may be determined, 
at least in principle, from the asymptotic behavior of I,,, (7, f )  . 

In 56 we shall give a simple example of how Proposition 5.4 can be applied 
in practice. It is not known in general that an invariant distribution annihilates 
functions whose orbital integrals vanish. In Theorem 6.1 we shall show that 
this property holds for I,,,(n, X)  provided that it holds for I Jy )  . (We will 
establish the property for I,,,(y) in the next paper [1 (f)].) 

We have already mentioned the descent and splitting formulas that are proved 
in 557-9. To illustrate the descent formulas, we shall end the paper by discussing 
the example of GL(n) . We shall show that our invariant distributions often 
vanish on functions associated with base change or the comparison with central 
simple algebras. These vanishing formulas (Propositions 10.2 and 10.3) will 
in fact be required for base change. Together with global vanishing results in 
[ l(f) ,  '$81, they are the starting point for a comparison of the full trace formula 
of GL(n) with the twisted trace formula over a cyclic extension. 
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Let G be a connected component of a reductive algebraic group over a field 
F . We assume that G(F)  # 0. We write G+ for the group generated by G , 
and Go for the identity component of G+ . A simple example to keep in mind 
is the component 

when O* is the permutation 

Then (G*)^ is the semidirect product of / copies of GL(n) with the cyclic 
group of order 1 generated by 6" . A more general example is that in which G 
is an inner twist of G* . By this we mean that there is a morphism 

which extends to an isomorphism q from G^ to ( G * )  , such that for every 
T <= Gal(F/F) , w ' n T  equals a conjugation by an element in G^ . If G is 
of this form it is essentially the connected component obtained from a central 
simple algebra by cyclic base change. 

We assume that F is a local or a global field of characteristic 0 .  In this 
paper, S always stands for a finite set of valuations of F with the closure 
property [l(e), $11. This simply means that if S contains no Archimedean 
valuations, it consists entirely of valuations which divide a fixed rational prime 
p . We fix a maximal compact subgroup 

of G + ( F ~ ) ,  such that the group 

is special for every non-Archimedean valuation v e S . Clearly, 

is a maximal compact subgroup of G' (F~) .  Having fixed K ,  we can form 
the Hecke space Z ( G ( F s ) ) .  It consists of the smooth, compactly supported 
functions on G(Fs) which are left and right K-finite. 

The Hecke space seems to be the correct space of test functions to use in 
the trace formula. We are interested in the continuous linear functionals or 
"distributions" on Z(G(Fs) )  which make up the individual terms in the trace 
formula. In the papers [ l(d)]  and [l(e)], we studied the local properties of 
two such families of distributions. The present article is a natural successor 
to [1 (d)] and [1 (e)] and in a sense unites these previous two papers. We shall 
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attach invariant distributions to each of the distributions in the two families. 
By studying the parallel behavior of these, we shall find that the two families 
are really quite closely related. 

We shall routinely adopt the notation of [ l(d)]  and [l(e)], especially that of 
1 of each paper. In particular, the letter M is always understood to be a 
Levi subset of G which is in good relative position with respect to K . More 
precisely, we require that each K be admissible relative to M' in the sense 
of 5 1 of [1 (a)]. Recall that 2 ( M )  denotes the collection of Levi subsets of G 
which contain M , and F ( M )  denotes the set of parabolic subsets 

which contain M . Recall also that we have the real vector space 

which we assume has been assigned a suitable Euclidean metric. This provides 
a Euclidean metric by restriction on any subspace of aM . 

In $1 1 of [l(e)] we defined the Paley-Wiener space Y(G(Fs) )  of functions 
on 

"temp(G(FS)) x aG ,s 

(Recall that a G S  is the subgroup H ~ ( G ( F ~ ) )  of aG .) There is a continuous 
map 

^: f + fG, f ? ̂ (G(Fs)) J 

with 

from X(G(Fs) )  to Y(G(Fs))  . More generally, consider the function 

where for any P ? 9 ( M )  , fp is the function 

in X(M(Fs) )  , and 4(%) is the representation in lltemp(G(Fs)) induced 
from 7t,. Then f + fM is a continuous linear map from %'{G(Fs)) to 
J-"(M(Fs)). 

It is actually necessary to work with the larger spaces 

and 
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introduced also in 5 1 1 of [ l  (e)]. (Recall that denotes a finite subset of n ( K )  , 
and <c(G(Fs))p is the space of functions f on G(Fs) such that for any 
b C 3 a G s )  , the function 

/(^I = f(x)b(HG(x)) 

belongs to G~?'(G(F~))~. Similarly, <c(G(Fs))r is the space of functions <f) on 
IIkmp(G(Fs)) x aG ,s such that for every b , the function 

belongs to .^(G(FS))?). For there is an important map <f)^ which sends 
X(G(Fs) )  to a space of functions on 

Hemp(M('~)) am 
which is not contained in ^y{M(Fs)). However, 4>̂  can be defined on 
qC(G(Fs) )  , and it does map this space into <(M(FS))  [1 (e), Corollary 12.21. 
Moreover, it follows directly from the definition that f + fÃ extends to a con- 
tinuous map from q c ( G ( F s ) )  into &(M(Fs)) . In particular, 

y: f ^ fG 9 f ' qc(G(Fs) )  1 

maps qc(G(Fs) )  continuously into <(G(FS)) . 

Proposition 1.1. Suppose that G either equals G or is an inner twist of the 
component G* in (1.1). Then 

^: f + fG 1 f ' <c(G(Fs)) 9 

is an open, surjective map from <(G(FS))  onto w ( F s ) ) .  

Proof. It is enough to establish the result with the spaces q G ( F s ) )  and 
Xc(G(Fs))  replaced by X(G(Fs))  and .^(G(Fs)) . Indeed, the topologies 
on the larger spaces are defined so that the openness assertion extends immedi- 
ately. One extends the surjectivity to the larger spaces by a partition of unity 
argument on aG ,s . It is also clear that the valuations in S may be treated 
separately. We shall therefore assume that S consists of one valuation, {v} , 
and that F is a local field. Then Fs = F = F . 

Suppose first that F is non-Archimedean. The surjectivity of the map 
^{G(F)) -+ J^(G(F)) follows directly from the trace Paley-Wiener theorem of 
Bernstein, Deligne and Kazhdan [3], and its extension to nonconnected groups 
by Rogawski [8]. It holds without restriction on G . The openness is trivial 
since X ( G ( F ) )  and J^(G(F))  are topological direct limits of finite dimen- 
sional spaces. 

Suppose next that F is Archimedean. In the case that G = GO, the sur- 
jectivity has been proved by Clozel and Delorme ([5(a)], [5(b)]). In [5(b)], the 
authors note that the theorem can be claimed only for connected Lie groups. 
However, the results of Knapp and Zuckerman, which were the reason for the 
restriction, are known to hold in general [9]. The openness assertion can also 
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be extracted from the work of Clozel and Delorme. For implicit in their proof 
of surjectivity is the construction of a continuous section 

(See the appendix to [l(f)].) If G is an inner twist of G* , the trace Paley- 
Wiener theorem can be proved in the same way as for connected groups. For 
the special case of base change for GL(n) , see [2, Lemma 1.7.11. The more 
general case follows the same way. Again, the openness of the map is implicit 
in the proof of its surjectivity. 

For the rest of this paper and also the next one [I (f)], we shall assume that 
G satisfies the conditions of Proposition 1.1. That is, G equals GO or G is an 
inner twist of the component G* in (1.1). This is only because of the limitations 
of Proposition 1.1. We shall, in fact, write the papers as if they applied to 
general G . In the next paper, there will be one argument in Galois cohomology 
that relies on the special nature of G [ i f f ) ,  Theorem 5.11. However, it seems 
likely that both this argument and Proposition 1.1 could soon be strengthened 
to include all G .  The results of our two papers would then apply without 
restriction. 

Suppose that 6 is a continuous linear map from qc(G(Fs) )  to another 
topological vector space T . We shall say that 6 is supported on characters 
if it vanishes on the kernel of 7. That is, if 6(f} = 0 for every function 
f <= q G ( F s ) )  such that fG = 0 .  If 6 has this property, there is a unique 
continuous map 

6: <(G(Fs)) 4 

such that 
6 ( f G )  = 6 ( f )  1 f <= ^,(G(F,)). 

This is an immediate consequence of Proposition 1.1. Consider the special case 
that T = C .  Then 6 is supported on characters if and only if it lies in the 
image of the transpose map 

The function 6 is then just equal to the inverse image of 6 under 7'. As 
in [l(e)], we shall often refer to elements in the dual spaces < ( G ( F ~ ) )  and 
<;(G(F,)) as distributions on G ( G ( F s ) )  and <c(G(Fs)) . 

Any map 
e :  %(G(F,)) -+Y 

which is supported on characters is also invariant. That is, 

in the notation of 56 of [l(e)]. Conversely, it is likely that every map which is 
invariant is supported on characters. However, we shall not try to prove this. 
We shall be content simply to show that those invariant maps and distributions 
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which arise from the trace formula are supported on characters. The proof 
will be based on a long induction and will not be completed until the next 
paper [ l(f) ,  Corollary 5.31, where we will use a global argument introduced by 
Kazhdan. The proof does not require that we keep track of which maps are 
invariant. However, we shall do so, in order to motivate our constructions. 
In fact, the reader might find it easier to proceed as if it were known that all 
invariant maps were supported on characters. 

2. THE INVARIANT DISTRIBUTIONS IM (7) 

We shall introduce one of the two families of invariant distributions which 
occur in the trace formula. These distributions are parametrized by elements in 
M(Fs) and are obtained from weighted orbital integrals. They were defined in 
1 0  of [l(a)] in the special case that G = Go and the element in M(Fs) was 
G-regular. The definitions of [1 (a)] relied on various hypotheses from local 
harmonic analysis. 

Suppose that y is an element in M(Fs) . In '$6 of [ l(d)]  we defined the 
weighted orbital integral 

J ^ Y . f ) I  f ? c c W ( G ( ~ S ) ) .  

It is a distribution which depends only on the restriction of f to 

G(F , )  = {X E GIF,): HG(x) = z ) .  
for Z = HG(y) . The restriction of any function in C ( G ( F s ) )  to this set 
coincides with that of a function in ^(G(Fs)) . Consequently, J d y )  may be 
regarded as a distribution on q c ( G ( F s ) ) .  Arguing as in the proof of Lemma 
6.2 of [l(e)], we can transform the formula 

established in Lemma 8.1 of [1 (a)], into 

A similar formula, 

holds for the map ^: q c ( G ( F s ) )  + ̂ M .̂ 
(See [1 (e), (12.2)].) This suggests that we define an invariant distribution 

inductively by setting 
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However, we cannot say that IJy) is supported on characters, so we do not 
know that &(y)  is defined. We must proceed as follows. Let ^y(M) denote 
the set of elements L ? a?(M) with L # G . Assume inductively that for every 
L ? T 0 ( M )  (and for every 5 ) that the distributions are defined and are 
supported on characters. We then define 

(2.1) ^ ~ r . f ) = J Ã £ ~ Y 1 f )  y %(Y.^(f) ) .  
L ^ ( M )  

The invariance of IM(y) follows easily from the two formulas above. (See 
[1 (a), Proposition 4.11.) We shall carry this induction assumption throughout 
the rest of this paper and also for much of the next one. The argument will be 
completed only by Corollary 5.3 of [I (f)], in which we shall show that I:(]') is 
also supported on characters. Only then will / i / (y )  be defined and will we be 
able to write 

Lâ‚¬^( 

In the paper [ l  (d)] we investigated the local behavior of J M ( y ,  f )  as a func- 
tion of y . It is easy to see that I J y ,  f )  has similar properties. They can all 
be established inductively from the corresponding properties of J J y ,  f )  . For 
example, if y is a general element in M(Fs) , J J y ,  f )  is given in [ 1 (d), (6.5)] 
by a limit 

The functions r;(y, a )  here are defined in '$5 of [ l(d)]  in terms of a certain 
(G , M)-family, and the limit is taken over a in AM ,reg(Fs) , the set of points in 
AM(Fs) whose centralizer in G(Fs) equals M(Fs) . Assume inductively that 

L 
~ , " ' l ? , g ) = l i m  a- I r ^ { y , a ) ~ n a y . ~ ) .  

L e P i  (M) 

for any Ml T o ( M )  and g 4 ( M 1  (Fs)) . A similar formula then holds 
if 1 3 s  replaced by . It follows from the definition (2.1) that I J y ,  f )  
equals 

Applying the definition again, we see that 

with a ? AMreg(FS).  More generally, suppose that L l  a? (M) .  The in- 

duced space y L 1  c Ll(Fs) was defined in '$6 of [l(d)]. It is a finite union of 
~ y ( ~ ~ ) - o r b i t s .  In Corollary 6.3 of [1 (d)] we found that 
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with a <= AM . The formula 

with a ? AMreg(Fs), follows inductively from this. In particular, the limit on 
the right exists. 

Suppose that a ? M(Fs) is a semisimple element such that G is contained 
in M . Then 

JM(y f )  0 ,  y e a M a ( F s ) ,  

in the notation of Lemma 2.2 of [l(d)]. Recall that this means that J J y ,  f )  
coincides with the orbital integral of a smooth function of compact support on 
M(Fs) for y near a in a M ( F S ) .  It follows inductively from (2.1) that the 
same property, namely 

holds for the invariant distributions. 
The distribution IM(y) depends only on the M0(FS)-orbit of y since the 

same is true of JM(y) . More generally suppose that y belongs to M ~ ( F ~ ) G ~ ( F )  . 
Then y l M y  is another Levi subset of G .  If f belongs to Z ( G ( F s ) ) ,  the 
function 

f Y ( x )  = ~ ( Y x Y - ' )  

belongs to the Hecke space with respect to the maximal compact subgroup 
y 1  ~y . We have the formula 

(See the remark following the proof of Lemma 8. 
(2.1) that 

(2.4) I , - ~ ~ ( Y - ' Y Y  . fY) = 'M(Y 

Suppose that y belongs to 

M'(F,)G'(F) n K .  

Then it is not hard to show that 

1 of [1 (d)].) It follows from 

f ) .  

since IM(y) is invariant. 
Consider the case that S consists of one non-Archimedean valuation v and 

that F = F = Fs . Let a be a semisimple element in M ( F )  . In Proposition 
9.1 of [1 (d)] we established a germ expansion 
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(See [1 (d), $91 for an explanation of the notation.) It follows inductively from 
(2.1) that 

Consider finally the case that F = F = Fs is an Archimedean local field. 
Suppose that T is a "maximal torus" of G over F , in the sense of 5 1 of [ l  (d)]. 
If z belongs to the center of the associated universal enveloping algebra, we 
have the differential equation 

for y in the open set T ( F )  of G-regular elements in T(F)  [ l(d),  Propo- 
sition 1 1.11. Using the definition (2.1) inductively again, we convert this to a 
differential equation 

for the invariant distributions. The behavior of I M ( y ,  f )  as y approaches 
the singular set is also identical with that of JM(y, f )  . In particular, the jump 
around a semiregular point of noncompact type can be computed for any deriva- 
tive of J M ( y ,  f )  . It is given by a formula 

(2.7) r-o l im(a(u) rL(~ ,  f )  - a ( u ) 7 f , ( ~ - r  /I) = S-o limI3 (",)rM, (as, f ) )  

which is the analogue of Proposition 13.1 of [1 (d)]. Similarly, Proposition 13.2 
of [1 (d)] becomes 

These results follow once again inductively from the definition (2.1). 
We conclude the paragraph with a lemma which will be needed for global 

applications. 

Lemma 2.1. Suppose that v is an unramified finite valuation and that f is a 
function in ^ ( G ( F ) )  which is bi-invariant under K . Then 

Proof. Suppose that L To (M)  . Then 

in the notation of [l(e), $7). Here n is a representation in 17,e?p(L(Fv)) , X is 
a point in a L V  whose projection onto a p  equals 2 ,  and Qo is any element in 

9 ( L )  . Since f is bi-invariant under Kv , the operator 4 (nA , fz )  vanishes 
unless n is unramified. Suppose then that n is unramified. Let 6 be a vector 
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in the space on which YQ0(nL) acts which is fixed by Kv . By the condition 
(Rn) in [1 (e), Theorem 2.11, the normalized intertwining operators 

RQ&' Q ^^(L)j 

take values at 4 which are independent of A .  Recalling the definitions in [1 (e)], 
we see that 

It thus follows that the function cjL( f )  vanishes. The lemma is then an imme- 
diate consequence of the definition (2.1). 

3. THE INVARIANT DISTRIBUTIONS zM (n, X) 

Next we shall define the other family of invariant distributions which occur 
in the trace formula. These distributions are parametrized by pairs 

They are related to the weighted characters 

J,& 1 XI f )  1 f 2 ( G ( F s ) )  J 

studied in [1 (e)]. 
In $7 of [l(e)] we observed that J M ( n ,  X ,  f )  was dependent only on the 

restriction of f to G ( F ~ )  for Z = hG(X) . Thus, as with the weighted 
orbital integrals, the weighted characters may be regarded as distributions on 
q c ( G ( F s ) ) .  It follows from Lemma 6.2 of [1 (e)] that 

for any f qC(G(Fs))  and h ~ ( G ' ( F ~ ) ' ) .  Since a similar formula holds 
for the map 4M , we shall define an invariant distribution 

inductively by setting 

Included in the definition is the induction assumption that for any L S n ( M )  
and any pair ( n ,  X) the distribution ~,.{s, X) is supported on characters. 
Observe that this induction hypothesis is our second. Before we are done, we 
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shall be forced to take on several more of the same kind. All but one of these 
will be resolved presently. We shall show in $6 that our induction hypotheses 
are all contained in the one of $2. But as we have already remarked, we shall 
carry the hypothesis of $2 into the next paper. 

Lemma 3.1. Suppose that n is tempered. Then 

Proof. If M = G , we have I G ( n ,  X , f )  = f G ( n ,  X )  , by definition, even if n 
is not tempered. If M # G , the definitions also imply that 

J M { ~ , X J )  = ~ J ~ . v . x )  = c ( n , x , ^ , Ã £ ( f ) )  

as long as n is tempered. The lemma follows inductively from (3.1). 

At first glance, one might guess that the lemma holds for arbitrary n . How- 
ever, this is decidedly not the case. If n is not tempered and if M # G the 
difference 

J ^ l X J f )  - 4 ^ f J , X )  
is no longer 0 .  For J&, X ,  f )  is defined directly as an integral over {n,} , 
whereas ( p M (  f ,  n , X )  is defined by analytic continuation from such integrals 
taken over tempered representations. One finds that the difference depends in 
a complicated way on the residues discussed in 58 of [ 1  (e)]. We shall say more 
about this in another paper. 

On the other hand I&, X ,  f )  does not assume too many values. Set 

and consider this expression as a function of p . 
Lemma 3.2. (a) As a function of p ,  IM,^{n ,  X ,  f )  is locally constant on the 

complement of a finite set of hyperplanes of the form w) = N ,  for N e H 
and a a root of ( G ,  A M ) .  

(b) For each P e 9 ( M )  , let cp be a small point in the chamber (a*^ , and 
set 

up = vol(a; n B) V O ~ ( B ) - ~ ,  

where B is a ball in a,, centered at the origin. Then 

Proof. The definition (3.1) may be rewritten 

' I am indebted to the referee for pointing out that the numbers wp , P ? 3 s ( M ) ,  need not 
be equal. 
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where 
-fi (XI J M , p ( n > X > f )  =JM(np>x'fV . 

The first assertion (a) of the lemma will follow inductively from this if we can 
establish the corresponding statement for JM ( n ,  X ,  f )  . We may assume that 
f belongs to 2 ( G ( F s ) ) .  Then if ,u a*, is in general position, we have 

The required assertion then follows from the properties of the function 
JM(nA,  f )  . (See $6 of [ 1  (e)].) This proves (a). 

Assume inductively that (b) holds if G is replaced by any element L e 
s2'ro(M) . Then 

If we apply the assertion (a) to L ,  we see that this may be written as 

Â ¥ " p % , p + e p ( ~ . x . ~ ) )  
P â ‚ ¬ P (  

But it is an immediate consequence of the definition [ 1 (e), $71 of JM ( n  , X , f )  
that 

JM,p(nJx j f )=  E Â¥"PJM,p+e ( n , X , f ) .  
P â ‚ ¬ P (  

The second part (b) of the lemma follows from (3.  I*). 

Remark. The reader might want to keep a special case in mind. Suppose that 
F = R ,  n is tempered, and M = AM (so in particular, G is a connected 
Chevalley group). Then from the reducibility properties of the representations 
J ^ , ( n ) ,  one can see that the singular hyperplanes are all of the form 

Therefore, ZM ( n  , X ,  f )  is constant on the affine Weyl chambers of a*, . 
Lemma 3.3. Suppose that n e II(M(Fs)) is unitary. Then the function 

is constant for fi  in a neighborhood of the origin. 

Proof. First consider the function JM ( n ,  X ,  f )  . As in the proof of the last 
lemma, we can assume that f belongs to 2 ( G ( F s ) ) ,  so that 
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where <_/'<Â¥ (n, , Po) is constructed from the normalized intertwining operators 

In particular, JM(ni, f )  is regular at any point A where the intertwining oper- 
ators are all regular. But by Theorem 2.1 of [1 (e)], the operators R p I p  (ni) are 
unitary whenever ni is unitary. It follows that J (n , f )  is regular if the real 

M .* 
part of A is near 0 .  By changing the contour in the integral above, we see that 
JM ( n  , X ,  f )  is constant for ,u near 0 .  The lemma then follows inductively 
from the formula (3.1 * ). 

For future reference, we state a variant of the last lemma. Its proof is similar. 

Lemma 3.4. Suppose that n E n(M(Fs))  is unitary and that L E s2'{M) . Then 

is analytic for the real part of A near 0 .  

It is sometimes appropriate to take a standard representation p E Â£(M(Fs) 
[1 (e), $51 instead of the irreducible n . We noted in $7 of [ 1 (e)] that the dis- 
tributions JM (p  , X ,  f )  could be defined in the same way as JM (n , X ,  f )  . We 
then showed [ 1 (e), Proposition 7.11 that for any n E n(M(Fs)) , JM (n , X , f )  
had an expansion 

with P , L ,  and p summed over 9 ( M ) ,  s2'(M), and {Â£(M(Fs)) respec- 
tively. (The notation here follows [1 (e)]. In particular, rh (n i ,  pi) is a mero- 
morphic function obtained from the ratios of the normalizing factors for TT, and 
pi . As in Proposition 5.1 of [1 (e)], we write {L(M(Fs))} and {H(M(Fs))} for 
the set of orbits of the finite group 

Es = T-[ H O ~ ( M + ( F ~ ) / M ~ ( F ~ ) ,  c*) 
ves 

in Â£(M(Fs) and n(M(Fn))  respectively.) Arguing as in the proof of Lemma 
3.2(b), we obtain a similar expansion 

in terms of the invariant distributions defined by the analogue of (3.1). 

In this section we shall study some supplementary maps and distributions. 
These do not appear in the trace formula, but they will be needed to relate the 
two families of distributions we have already described. 



THE INVARIANT TRACE FORMULA. I. LOCAL THEORY 339 

The function X  + O M  ( f ,  n ,  X )  does not have compact support. Our first 
task will be to define a different map ' O M ,  with the property that for any 
f Z ( G ( F s ) )  1 

x 4  c d M ( f > n > ~ )  

does have compact support. However, the latter function turns out not to be 
smooth in X .  In order to describe it properly, we must first introduce some 
larger function spaces. 

Suppose that <& is a finite set of hyperplanes in Euclidean space a . The com- 
plement of <I> in a is a union of a finite set 'S' of open connected components. 
If ( c ,  X )  , c  'S' , X  a ,  is any given pair, we set 

where By is a small ball in a centered at X  . This function vanishes for any 
X  outside the closure of c  . Notice also that Eceg a ( c  , X )  = 1 . As a function 
of X  , a ( c ,  X )  is locally constant on the strata of a defined by intersections 
of planes in 3>.  Suppose that <I>' is a subset of 3>.  Then any element c  in 
the corresponding set 'S" of components is a union of elements in 'S' together 
with a set of measure 0 .  It is obvious that 

We take a to be aG . For a given set @ ,  we define Z 0 ( G ( F S ) )  to be the 
space of functions f  on G(Fs)  such that 

where each function /. belongs to Z ( G ( F s ) )  . Similarly, let J '@(G(F~))  be 
the space of functions 

of the form 
4 . X )  = y a ( c , x ) O c ( n > x ) .  

c?^ 

with <  ̂ e Y ( G ( F S ) )  . In the manner of $ 1  1 of [ l ( e ) ] ,  we assign topologies to 
the two spaces. For example, we take Z@(G(F~))  to be a topological direct 
limit 

lim * +  lim ^ ' { G ( F ~ ) ) ~ .  
l - N  

Here ~ ( G ( F ~ ) ) ~  denotes the space of functions f  such that each /. be- 
longs to the space q ( G ( F s ) ) l -  defined in Â 1 1 of [ 1  ( e ) ] .  The topology on 
~?$(G(F~) ) , -  is defined by the seminorms 
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with D a differential operator on G ( F s n s ) .  (We write Sw for the set of 
Archimedean valuations of F .) Now, the collection of all @ is a partially 
ordered set. Define 

F(G(F,)) = lim + ~ ( G ( F , ) ) ,  
0 

and 
F(G(F,)) = 1% Y ( G ( F , ) ) .  

* 
We point out that if S contains no Archimedean valuations, a G S  is just a 

lattice in an , and the spaces F ( G ( F S ) )  and F(G(F,)) equal ^{G(Fs))  and 
3 (G (F,)) respectively. In general, however, they are proper extensions. 

We of course also have spaces F(L(F,)) and J^L(F,)) for each L 

sS"(M).  In a similar fashion, we can define extensions e C ( L ( F s ) )  and 
J ( L ( F ) )  of the spaces S f ( L ( F , ) )  and <(L(F , ) ) .  

Lemma 4.1. For L sS"(M),  suppose that S y  is one of the spaces Sy0(L(FS) ) ,  

%'(L(F,)), or ~ ( L ( F , ) ) ,  and J' is the corresponding space ^{L(F,)), 

^{HF,)), or x C ( L ( F s ) ) .  Then g -t gL .  g e 2 ,  is a continuous, open, 
surjective map from %' onto 3. 

Proof. As in Proposition 1.1, the lemma follows easily from its analogue for 
%' = Sy(G(F,)) and J' = 3 ( G ( F s ) )  . 

In fj 12 of [1 (e)] we defined a map 

for each (i e a;.  We then established that & ,  maps q c ( G ( F s ) )  contin- 
uously to J ' (M(F, ) )  [1 (e), Theorem 12.11. The values of the function are 
defined by 

The value depends only on fhG(x) , so it follows that & ,p can be defined for 

any f ^(G(F,))  . The map sends ^ ' , c ( ~ ( ~ s ) )  continuously to X(M(F,)).  
This applies in particular to <?'>M , which is the case that (i = 0 .  It follows easily 

that the distributions ZM ( 7 1 ,  X )  and I ( y )  can be defined on ~ , ( G ( F , ) )  . 
The most familiar set of hyperplanes in aM is the collection 

The associated components are just the usual chambers {a> P e S f t (M)}  . We 
shall write 

u p ( X )  = @ ( a + ,  X )  , P P ( M ) ,  

so that u p ( 0 )  is the number up referred to in 53. For each P (̂M), let 
v p  be a point in the associated chamber (a*)' in a*, whose distance from the 
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walls is very large. The function c j M  , ^  ( f ,  TI  , X )  is then independent of vp . 
We define 

' ^ i , ( f . T I , ~ i =  y @ p ( X ) i ^ . , ( f . T I . X ) .  
P ^ y ( M )  

for f  e ^(G(F,))  , TI  6 17,w(M(Fs)) and X  e aM ,, . We have already 

agreed that i p M Ã  maps ~ ( G ( F , ) )  continuously to J ^ ( M ( F S ) )  . It fol- 
lows easily from the definitions that f  Ã‘ ' c j M (  f )  is a continuous map from ..- 
^ Â ¥ _ ( G ( ^ )  to J ; - ( M ( F S ) )  a 

The reason for introducing ' c j  is that it maps functions of compact support 
to functions of compact support:'- 

Lemma 4.2. ' c j M  maps .^(G(F,)) continuously to J^{M(F,)) . 

Proof. We must show that there is a positive integer N ,  depending only on 
the support of f  E ^{G(F,)) ,  such that ' c j M (  f ,  T I ,  X )  is supported on the 
ball in aM ,, of radius N  . Looking back at the definition of ' O M  , we see that 
it is sufficient to show that for any P E 9 ( M ) ,  and for X  in the closure of 

+ 
a p  1"1 aM ,, , c j M  ( f ,  T I ,  X )  is supported on the ball of radius N  . Consider 
the decomposition (4.2) for f .  We can of course assume that the functions on 
the right-hand side of this formula are each supported on a set which depends 
only on the support of f .  We may therefore assume that f  itself belongs to 
2 ( G ( F s ) )  . Then 

We need only show that as a function of X  E a ; ,  (4.3) is supported on 
a ball which depends only on the support of f .  The proof of this fact is 
straightforward and is similar to an argument used in the derivation of Theorem 
12.1 of [ 1  ( e ) ] .  For we have 

in the notation of [ l ( e ) ] .  There is a standard estimate for the function 
" ^ > ( T I , ,  f )  . (See [ l ( e ) ,  (12.7)].) Combined with the rationality properties of 
Ŝ t, and the classical Paley-Wiener theorem, it yields the required assertion. 0 

The map ' c j M  behaves the same way under conjugation as c j M .  

Lemma 4.3. If f  q C ( G ( F s ) )  and h e 2 ( G 0 ( ~ , ) ' ) ,  

Proof. According to [ 1 (e), ( 1  2.2)], 
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for each P E 9 ( M )  . Therefore 

Fix Q E y(M) , and set L = MQ . If P E 9 ( M )  , the point + certainly 

belongs to the chamber (ahp)+ and is far from the walls. In particular, +zvp 
depends only on the set L n P in y L ( ~ )  . Any R E & ( M )  is of this form, 
and by (4. I), 

Lemma 4.3 follows. 

By Lemma 4.3, " + ^ ( f )  and + ^ ( f )  have the same formal behavior un- 
der commutation. We can therefore copy the construction of the distributions 
IM ( y )  and IM ( n  , X )  , but with 'g5,,,, playing the role of +M . We obtain invari- 
ant distributions 

I M ( Y ) :  Y E M ( F s ) }  
and 

{ c ~ M ( n j  A'): ( a .  XI e n ( M ( F s ) )  x a M j S }  

on E(G(F~))  such that 

and 

for any f .  Included in the definition are our third and fourth induction as- 
C L  

sumptions, namely, that for any L E q ( M )  , the distributions I M ( y )  and 
C L  I M ( n ,  X )  are supported on characters. The significance of ' I M ( ~ )  is in the 
next lemma. 

Lemma 4.4. Suppose that T is a " maximal torus" of M over Fs ( in the 
sense of 1 of [1 ( d ) ]  ). Then for any f E F ( G ( F ~ ) ) ,  the function 

has compact support. 

Proof. It follows from [1 (d), Lemma 2.1 and definition (6.5)] that the function 

has compact support. Assume inductively that the lemma holds if G is replaced 
by any L q ( M )  . By Lemma 4.2, the function "+,( f )  belongs to ~ { L ( F ~ ) )  . 
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Lemma 4.1 then tells us that it is the image of a function on ^'{L(F~)). Ap- 
plying the induction assumption, we obtain the compact support of 

The lemma then follows from (4.4). 

The distribution 'zM(n, X) is to be regarded as a companion of IM(n ,  X) . 
The two have some rather similar properties. For example, if n ll(M(Fs)), 
X e a,,,. and f ^(G(F,)) are fixed, the function 

satisfies the analogue of Lemma 3.2. It is locally constant on the complement 
of a finite set of hyperplanes defined by roots, and it satisfies the mean value 

Moreover, when n is tempered and X is in general position, there is an open 
set on which (4.6) vanishes. However, for ' w e  open set is an infinite 
chamber which depends on X . 

Lemma 4.5. Suppose that n is tempered, f E(G(F~)), and M # G . Then 

and 

Proof. Assertion (a) is just Lemma 3.1. We have included it here only for the 
sake of comparison. 

For assertion (b), we begin by observing that 

Therefore, the given expression, 

is equal to the difference between 'OM( f ,  n , X) and 
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c -L Since IM , "  depends only on the element R = PC\ L in P ( M )  , we can argue 
as in the proof of Lemma 4.3. The last expression becomes 

We can assume inductively that the summand corresponding to any L # M 
vanishes. But the summand corresponding to L = M is just equal to 
c f > M (  f ,  n ,  X )  . It follows that the original expression vanishes. 

Corollary 4.6. Suppose that n ,  f ,  and M are as in the lemma and that X  
belongs to a chamber a', P e ̂ ( M )  . Then 

If we try to compare &( f )  and c4M(  f )  directly, we are lead to define 

We define them inductively by 

for any f  ~ ( G ( F , ) )  . Once again, the definition includes induction assump- 
tions, our fifth and sixth, that for any L e a M )  , the maps 8& and are 
supported on characters. 

Lemma 4.7. Suppose that n n m ( M  (F,)) and f  ^(G(F,))  . Then 

P â ‚ ¬ P (  

and 

Proof. 

<w 
that 

According to the definition, O M  ( f  , n , X )  equals the difference between 
, n , X )  and ELeSfM) %(&( f )  , n , X )  . By induction, we can assume 

for any L % ( M ) .  The summand on the right is independent of uR as long 
as the point remains highly regular in ( a n )  . It follows from (4.1) that 
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We must subtract the sum over L E q ( M )  of this expression from the function 

Since 

^ M  ,Up  ( f  I n , X )  = J M , v p ( n ~ X ~ f ) J  

the result is just 

The equality of this expression with O M (  f ,  n , X )  is the required formula (4.9). 
The second formula (4.10) follows by a similar inductive argument from 

(4.5) and (4.8). 

Lemma 4.8. Suppose that f E ~ . ( G ( F ~ ) ) ,  y E M ( F s ) ,  n E Tl (M(Fs) ) ,  and 
X E aM , s .  Then the following formulas are valid. 

Remark. We should keep in mind what will eventually be proved, namely that 
the distributions and maps above are all supported on characters. Once we 
know this, we will be able to change the right-hand side of each formula to a 
single sum over L E .^(M) . 
Proof. We assume inductively that each formula holds when G is replaced by 
a proper Levi subset. The formulas for G are then easily established from the 
definitions. We shall prove only (4.11). 

It follows from the definitions (2.1) and (4.4) that 
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By (4.7) the first of these sums equals 

Applying (4.1 1) inductively to each L, q ( M )  , we obtain 
c -L y ~ M ( r l ( ^ ' ~ 4 L l ( f ) ) ) = ~ ( r ~ 4 L l ( f ) ) .  

~â‚¬9 (M) 

Formula (4.1 1) then follows for G . 

5. A CONTOUR INTEGRAL 

Formulas (4.1 1) and (4.12) can be taken as motivation for the introduction 
of the maps OM and O M  . The two formulas describe the asymptotic behavior 
of IM(y) . Their value lies in the fact that they consist entirely of invariant 
distributions. Of course it is the compact support (Lemma 4.4) of ZM (7) that 
is essential here. We point out that this property has come at the expense of 
properties of smoothness. The original distribution IM(y,  f )  is not smooth in 
y , but its singularities are not too bad. For example, if F = R, (2.7) provides 
a simple formula for its jumps across singular hyperplanes. The singularities 
of f )  are more complicated. The same sort of thing is true of ^cjM, 
'ZM(n, M )  , and 'OM . Each of these objects has better support properties than 
the original one but has worse properties of smoothness. 

The distributions {Z,,{n, X)} and {'Z.,(n, X)} and the maps {On} and 
{'O;} are closely related. It turns out that all of these objects can be computed 
from each other. By (4.15), either of the two sets of maps can be computed 
from the other one. By Lemma 4.7, the maps can in turn be computed from 
either of the families of distributions. The other family of distributions could 
then be obtained from (4.13) and (4.14). To complete the picture, we need to 
establish a formula for z M ( n ,  X) in terms of the map O M  . In this section we 
shall show how to write Z M ( n ,  X) as a sum of contour integrals of a certain 
meromorphic function. This meromorphic function is derived from O M  in 
the same way that the weighted character 

wj = J M ( % - f )  

can be obtained from the map </)M. We shall review this latter construction 
first. 

Suppose that n e I I m ( M ( F S ) ) ,  and let F be a finite subset of H(K)  . For 
the moment, take f to be a function in J^'(G(Fs))r. The original definition 
of &(f)  was given in 57 of [l(e)]. Recall that 

where 
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in the notation of [1 (e)]. As a function of A, 4>M( f ,  nL) is meromorphic. It 
has finitely many poles, which lie along hypersurfaces of the form 

qv,a(A)-c=O,  c e c ,  

where a is a root of ( G ,  AM) and v is a valuation of F .  (As in [1 (e)], 
-A(@") qv ,a (A) equals A(av) if v is Archimedean, and equals qv if v is a discrete 

valuation with residue field of order q ) In fact, there is a finite product 

which depends only on R and F ,  such that the function 

- belongs to the rapidly decreasing Paley-Wiener space on a*,+ia*, ,?. (If aM ,? - 
aM , the definition of the Paley-Wiener space is standard. Otherwise aM ,s is a 
lattice and ia*, ,s is compact. In this case, the definition is similar, except that 
we impose no growth condition in the imaginary direction.) More generally, 
4>M( f ,  nL) is meromorphic in n . In other words, if .A is a Levi subset of M 
over Fs , and 

in the notation of 56 of [1 (e)], the resulting function of A extends to a mero- 
morphic function on a^,,Ly . From the Fourier inversion formula on aM ,s we 
obtain 

Now, suppose that f belongs to the larger space ~^ ' (G(F~)) , - .  Then f has 
compact support, and we can still define 

and 
W '  ̂=^  ̂- f )  = t r ( S M ^ '  Po)Ypo(nL 1 f ) )  - 

Again, OM ( f ,  %) is meromorphic in n . In particular, it is a meromorphic 
function of A .  There is a function qnp(A) of the form above such that 

A ^ ,r(A)4M(f J 

belongs to the slowly increasing Paley-Wiener space on a*, + ia; ,s . 
Lemma 5.1. The function 

is rapidly decreasing on aM ,s , and we have 
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Proof. By definition [1 (e)], 

where hG(X) = Z is the projection of X onto a n ,  and 

As in (4.2), we can write f (x) as a finite sum 

y 4 c .  f f ~ W ) / , W .  
ce^ 

where each function /, belongs to A?(G(Fs)) . Then 

^ ( f , n , X )  = y , a ( c , ~ ) ^ ( f , , 7 i , ~ ) .  
câ‚  

Since each function (f)& n , X) is rapidly decreasing in X , the same is true 
of o>M( f ,  n , X) . To prove the second assertion of the lemma, note that 

since f has compact support. Consequently 

The required formula (5.1) then follows from the Fourier inversion formula on 
iak,S/ ia>,S.  

We continue to assume that f ~ ( G ( F ~ ) )  . Copying the formula (5.1), we 
shall define 

(5.2) 'eM(f,  xi) = / ceu{f, n ,  x ) e m  d x .  
a,w S 

For the absolute convergence of the integral, we require a lemma. 

Lemma 5.2. The function 

e M ( f 9 n . x ) ,  ~ e a ~ , ~ ~  

is rapidly decreasing on a ,s . 
Proof. Definition (4.8) is 

According to Lemma 4.2, each function f )  belongs to ^[L(F~)) . Lemma 
5.2 then follows inductively from Lemmas 4.1 and 5.1. 

For future reference, we record a corollary. It is proved exactly the same 
way. 
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Corollary 5.3. Suppose that S n Sm # 0 ( s o  that a M S  = a ^ ) ,  and that A 
is an invariant differential operator on aM . Then ~ ~ 6 ~ (  f ,  n,X} is a rapidly 
decreasing (piecewise smooth) function of X e aM . 

We can now take up the study of the function (5.2). Suppose that f belongs 
to Ãˆ~(G(F,) ) , -  It follows inductively from (5.3) and ( 5 . 1 )  that 

This formula in turn tells us that ' 6  ( f ,  n,) has properties which are similar to 
those of g5M ( f ,  %) . In particular, %M ( / ,  n,) is analytic in n , and therefore 
also in A .  Moreover, there is a function qnp(A)  of the form above such that 

belongs to the slowly increasing Paley-Wiener space on a L  + i a k s .  Observe 
that the functions g5M ( f ,  n,) and eM ( f  , nA)  can be analytically continued in 
n . They may therefore both be defined, as meromorphic functions of A ,  if n 
is replaced by a standard representation p Â £ ( M ( F s ) )  

Let us now take n to be any representation in n ( M ( F s ) ) .  Motivated by 
Lemma 6.1 of [ 1  ( e ) ] ,  we define 

(5.4) 
L 

M ( f  J " A )  = E r M ( n r  i '#L( f  P A )  

Lâ‚¬.?( P â ‚ ¬ { X ( M ( F S )  

and 

(The functions r L ( % , p A ) ,  we recall, were defined in $ 5  of [ l ( e ) ]  and were 
shown to be rational functions of { q , ( A ) ) }  .) Then we have 

Once more, g5,, ( f  , n,) and " O M  ( f  ,7i ,)  are meromorphic in A . Again, there is 
a function qn ,p (A)  of the form above whose product with either of them belongs 
to the slowly increasing Paley-Wiener space on a; + i a L S .  

Proposition 5.4. Suppose that n E Tl (M(Fs) )  and f E ? ( G ( F ~ ) ) .  Then 

where X lies in the complement of a finite set of hyperplanes and is a test 
function in Ccm (aM ,s) which approaches the Dirac measure at the origin. 

Remarks. ( 1 )  The function /? belongs to the rapidly decreasing Paley-Wiener 
space on a; + i a L S ,  so the existence of the integrals over S~ + i a L S  follows 
from the remarks above. 
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(2) If none of the poles of 'OM( f ,  %) meet i a L S ,  the right-hand side of 
the formula simplifies to 

(3) Suppose that S consists of one discrete valuation. Then aM ,s is a lattice 
in aM , and /? may be taken to be the Dirac measure. It can be removed from 
the formula. The formula in this case holds for all values of X . 
Proof. We shall actually show that 

for any X e aM ,^ and ft e cCm (aM . It follows easily from (4.5) and Lemma 
4.2 that 'rM (n , X ,  f )  is a piecewise smooth function of X , whose singularities 
lie along a finite set of hyperplanes. The required formula of the lemma would 
then hold for X in the complement of these hyperplanes. 

We shall first derive an analogue of (5.7) for J M ( n ,  X ,  f )  . Since f has 
compact support, the function 

exists. It in fact equals the function <^M(f ,  xi) introduced above. This is 
just the definition if n is tempered, and the general case follows from analytic 
continuation, Proposition 6.1 of [1 (e)], and formula (5.4). Consequently 

Combined with the Fourier inversion formula in ia*, ,s , these facts lead without 
difficulty to the formula 

We shall prove (5.7). According to (4.5), the left-hand side of (5.7) equals 
the difference between the left-hand side of (5.8) and 
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Assume inductively that (5.7) holds for L .  Then the last expression can be 
written as 

Since cq5L(  f )  belongs to J^ (L(F~) )  , the function 

c -L c e + ^( <W)-^+:)> * 
~ L , C  

is entire. We can therefore translate the contour of integration by any vector in 
a , .  The expression may consequently be written as 

In particular, the sum over L  can be taken inside the integral over A .  Thus, 
the left-hand side of (5.7) equals 

By (5.6), this is just the required right-hand side of (5.7). The proposition is 
proved. 

Let /?, be a function in Ccm(aM which is symmetric about the origin, and 
set 

/W=& , w ~ ,  (&- I  y ) ,  & > o ,  Y e a M t s .  

It is not hard to show from our definitions that 

for any X  aM ,s . It follows from (5.8) that 

for any X  . In particular, we can determine ' z M ( n ,  X ,  f )  from ' O M  for all 
values of X . 

The distributions Z M ( y )  do not have compact support in y . This circum- 
stance is behind the existence of the distributions Z M ( n ,  X )  . It is also the 
reason we have defined the supplementary distributions and the maps 6., and 
e M  . The implication is that these objects could all be computed from an ade- 
quate knowledge of the asymptotic behavior of Z M ( y )  . This will be the role of 
the integral formula in Proposition 5.4. The formula is actually more suited to 
comparing distributions on different groups than to evaluating them on a single 
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group. The same is of course true of the trace formula itself. However, we can 
give one illustration here of how the integral formula may be applied. We shall 
show that ' I M  (y) , IM ( n  . X )  , ' I M  (n,X) , O M  , and ' O M  are all supported on 
characters, provided that the same is true of I M ( y ) .  In other words, we shall 
show that induction hypotheses of $53 and 4 may be subsumed in those of $2. 

Theorem 6.1. Fix a Levi subset M and a function f e ~ , ( G ( F ~ ) )  such that 
fG = 0 .  Assume that I L ( 6 ,  f )  = 0 for each L E 9 ( M )  and 6 e L ( F s ) .  Then 

and 

In particular, the induction hypotheses of $53 and 4 are all implied by original 
induction assumption of $2. 

Proof. If M = G , the definitions imply that 

and 

O M ( f )  = O M ( f )  = fG = 0. 

We may therefore assume that M # G . We may also take f to be a function 
in X ( G ( F s ) )  . For if Z equals either h G ( X )  or HG(y)  , the restriction of any 

given function in ^',-[G(F~)) to the set G(F~) '  coincides with that of some 
function in X ( G ( F s ) )  . 

Assume inductively that the theorem has been proved if M is replaced by 
any L e 9 ( M )  with L # M . By (4.12) we have 

Our latest induction assumption then implies that ' O L ( f )  = 0 if L # M .  
Combining this with the hypothesis of the theorem, we obtain 

Since f belongs to Z ( G ( F S ) ) ,  Lemma 4.4 tells us that the left-hand side has 
bounded support as a function of y in the space of  orbits in M(Fs)  . 
The same is therefore true of the right-hand side. For a given X e a M S  , the 
right-hand side is the orbital integral in 
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of a function defined on M ( F ~ ) ~ .  The tempered characters of this function 
are Just 

' O M ( /  t. X I  n  e ' t emp(M(Fs ) ) .  
Therefore, this last expression is compactly supported in X a M  ,s . It follows 
that 

" M ( f  = f ,  c e M ( f . n . x ) e  w^ 
is an entire function of A a;,^ 

Take a representation n ll temp(M(Fs)) and a point p e ahs in general 
position. Apply Proposition 5.4 to the representation nu . We obtain 

Remember that p is allowed to be any test function which approaches the Dirac 
measure at the origin. But A Ã‘ /? (A  - p) is the Fourier-Laplace transform of 
a function X Ã‘ e-p(x)  B(X} which also approaches the Dirac measure at the 
origin. We may therefore replace / ? (A  - p) by /?(A)  . We obtain 

Now, the integrand on the right is entire in A .  It follows that the integral over 
p + i a ^ f S  can be deformed to any other translate of i a L S .  The outcome is 
that the function 

e  p x c ~  M 1.71 u , x . / ) = ~ z ~ , , ( T , x , ~ )  
is independent of p . At least this is true for almost all p and X . But by the 
formulas in $4, the value of this function at any p and X can be expressed 
in terms of its values at nearby points in general position. It follows that the 
function is independent of p without exception. Deforming p to each of the 
points v p  , P {̂M) , we obtain 

It thus follows from Lemma 4.5 that 

Set p = 0 ,  and combine the last formula with that of Lemma 4.7. The result 
is 

c e M ( f , n , ~ )  = c z M ( ~ , ~ , f )  = c ~ M , O ( n , x , f )  = o j  
for any n e q e ( M ( F s ) )  and X e, a M  ,s . Therefore, the function e M  ( f )  
vanishes. The assertions of the theorem can now be easily proved. The required 
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formula (a) follows immediately from (6.1). Formula (b) follows from (4.15) 
and the fact that the functions 'Or( f )  , L q M ) ,  all vanish. To establish 
(c), fix an arbitrary representation n in Yl{M(Fs)) and consider the function 
'OM( f ,  xi). The vanishing of 'OM( f )  means that the function is zero if n 
is tempered. By analytic continuation from the tempered case, it follows that 
'OM( f ,  pl) = 0 for any standard representation p e Â£(M(Fs) . A similar 
formula is of course valid if M is replaced by any element L e 2 ( M )  . Con- 
sequently, the expansion (5.5) implies that ' OM (f , xi) = 0 in general. Apply 
Proposition 5.4. The formula 

' z M ( n , x , f )  = 0 ,  X â ‚ ¬ a M ,  

follows. But with what has already been proved, the formula (4.14) simplifies 
to 

z M ( n j x , f )  = ' z M ( n > ~ > f ) .  

This gives the final assertion (c). 0 

7. A PROPERTY OF (G, M)-FAMILIES 

We would like to investigate the descent and splitting properties of our dis- 
tributions. We shall establish splitting formulas in $9. They reduce questions 
about the distributions to the case that S contains one valuation. The descent 
formulas, which we shall prove in $8, reduce such questions further to the case 
that the data which parametrize the distributions are elliptic. Both properties 
were studied in the earlier paper [1 (a), $5 10, 1 11 but under quite limited cir- 
cumstances. Only the distributions ZM(,y) were discussed there and only for y 
regular. Moreover, we need to generalize the formulas in another sense. For 
example, it is important to be able to rewrite the distributions in which M 
is given over a global field, in terms of distributions indexed by Levi sets de- 
fined over local fields. We must introduce new methods. In this paragraph, 
we shall discuss a general descent formula for (G,  M)-families. The formula, 
whose verification we will postpone until the appendix, will make the behavior 
of our distributions appear more transparent. In particular, it will provide a 
simple interpretation of the coefficients that appear in the expansions of the 
distributions. 

Suppose that 
cp(A), P e^{M), A e ia;, 

is a (G , ̂ -family ([l (a), $61, [ l  (d), Â 11). Then 

is a smooth function whose value at A = 0 we generally denote cM [l(a) ,  
Lemma 6.31. Recall that for each L e S ' ( M )  there is an associated 
(G , L)-family 

cQ(A), Q E 9 ( L ) ,  A e ia;, 
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and for every Q e F ( M )  there is an associated (MQ , M)-family 

For each of these we have the corresponding functions c,(A) and ci (A).  We 
shall find a formula for cL(A) in terms of the functions C:(A) . 

We shall actually study a family of functions derived from {cP(A)} which 
is larger than the collection {cL(A): L E W M ) }  . This comes from a class of 
subspaces of aM which was introduced in [7, $21. Suppose first that b is any 
vector subspace of aM which contains aG . Then 

where 
aG in 
of (G 
restric 
linear 

b a, and b G  stand for the respective orthogonal complements of b and 
aM and b . By a root /? of b , we mean the restriction to b of a root 

,AM).  For any such /? , let Â£(/? be the set of roots of (G,  AM) whose 
ition to b equals /? . We say that b is special if for every such /? , the 
function ,Y&(g)(maa) , in which ma stands for the multiplicity of a ,  

b vanishes on aM . Assume that this is the case. The roots partition b into a 
finite set of chambers, and to each of these corresponds a system of positive 
roots. We shall write 9 ( b )  for the collection of such systems of positive roots, 
and we shall write 

b ,  p e 9 ( b ) ,  

for the corresponding chambers in b . According to Lemma 2.2 of [7], every 
positive system p in 9 ( b )  has a uniquely determined subset A which has the 
usual properties of simple roots. Namely, A is linearly independent, and every 
element in p can be represented as a nonnegative integral combination of roots 
in A . Suppose that p 9 ( b ) .  Then there is a unique element Q e (̂M) 
such that the chamber b l  is contained in a; . The restriction to b of any root 
of (Q,  A M )  belongs to p . It follows easily that A is the restriction to b of 
a subset of the simple roots AQ . 

Many of the constructions for the space aM can be carried over to b . For 
example, if p E 9 ( b ) ,  one can define "co-roots" A; = {av: a E Ap} , and one 
can then set 

Ãˆp(A = ( v o l ( b G / ~ ( ~ ; ) ) ) '  n ̂av) , l& ib* . 
&A p 

One can also introduce the notion of an (aG,  b)-family of functions 

by copying the definition of a (G,  M)-family. For any such family, the number 

cb = lim cb (A) = lim cp (A) Ãˆ ( A )  ' 
2-0 2-0 

P E W )  
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is defined. Pursuing the analogy further, we let Wb) denote the finite collec- 
tion of subspaces of b of the form 

b , = { H  e b : /?, (H)  = . . . = /?/(H) = O}, 

for roots /?, , . . . , /?, of b . Any such b , is also a special subspace of aM . We 
write F ( b )  for the set of positive systems q E ^(b^, where b ,  = b ranges 
over the spaces in 2 ( b )  . For any (aG , b )-family, and elements b , e S ( b  ) 
and q E F ( b )  , there is associated an (aG,  b ,)-family and a ( b  , b)-family. 

Suppose that {cP(A): P e ^(M)} is a (G,  M)-family. If b is a special 
subspace of aM , we shall write M for the maximal element in 2 ( M )  such 
that a M  contains b . Then Mb is the Levi subset defined by the roots of 
(G,  AM) which vanish on b . Consider the associated (G,  Mb)-family 

{cQ(u): Q â ‚ ¬ P ( M b  e i s ' } .  

For any p e P ( b )  , there is a unique element Q e 9 ( M b )  such that b l  is 
contained in a;. Define c ( u )  = cQ(u) ,  for u restricted to the subspace ib* 
of iaLb . Then 

cp(u) ,  p e 9 ( b ) ,  u e ib*, 

is an (aG,  b)-family. 
Our main result will be an expansion for cb in terms of { c i :  Q E F ( M ) }  . 

The coefficients will be certain constants 

d i ( b . ~ ) .  L e S ' ( M ) .  

which we define as follows. For a given element L E W M ) ,  consider the 
natural map 

b L G 
a M @ a M - * a M .  

If the map is not an isomorphism, d i ( b  , L) is defined to be 0 .  If the map is an 
isomorphism, we set d i ( b  , L) equal to the volume in a: of the parallelogram 

L generated by orthonormal bases of a^ and aM . Notice that in this case, the 
L natural map from aM to b G  is also an isomorphism. If l- is any bounded 

L measurable subset of aM and is its image in b G  , then 

VO~(F) = d i p ,  L) voi(r) .  

In the special case that b = a M  , M, e S ( M )  , we shall write 

d " ~ ,  . L )  = d,,(b. L). 

Fix a small point Â£ in a^ , and consider an element L e 2 ( M )  with 

Assume that Â£ is in general position in a; . Then the affine space Â£ + b G  does 
G G b L G not intersect a. unless aM = aM @ a., , or equivalently, unless dM(b , L) # 0 .  
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In this case, the spaces c + b G  and aÂ intersect at one point. The point is 
nonsingular, and so belongs to a chamber a;, for a unique element Q = QL 
in 9 ( L )  . Thus, Â£ determines a section 

L-̂ Q, 

from the set 
{L e 9 ( M ) :  d:(b, L) # 0} 

into the fibers 9 ( L )  . 
Proposition 7.1. Suppose that 

is a (G , M)-family. Then for any v e ib* , we have 

The proof of this proposition requires a study of convex polytopes. In order 
not to interrupt the discussion, we shall postpone the proof until the appendix. 
In the rest of this section, we shall derive some simple consequences of the 
proposition. 

Most of the applications of the proposition concern only the case v = 0 ,  so 
we state this separately. 

Corollary 7.2. cb = d z ( b ,  LICE . 0 
Lâ‚¬-?( 

For certain natural (G,  M)-families, Corollary 7.2 provides a formula which 
is independent of the section L -+ QL . 
Corollary 7.3. Suppose that for any L e 9 ( M ) ,  the number 

L Q cM = cM,  Q e 9 ( L ) ,  

is independent of Q . Then 

Another special case of Corollary 7.2 pertains to products of (G , M)-families. 
Instead of (G,  M )  , we take the pair 

Then â . = aM @ aM , and 9 ( d )  consists of the set of pairs 

Take b to be the direct sum of aÃ with the space aM , embedded diagonally 
in a u  . It is a special subspace. In order to apply the proposition, we must fix 
a small point 

( H ,  - H ) ,  H e a M ,  
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in general position in the orthogonal complement of b . For any pair 3' = 
(Ll , L2) in S(&) , one checks that 

If this number is nonzero, we have 
G L , L i G G  

aM = aM = aLi 9 aL2 
and we can write 

For each i = 1 , 2 ,  Hi is a point in general position in a:, , and belongs to a 
chamber a;, , for a unique element Q, e ̂ {L^. Then (Ll , L2) -' (Q, , Q2) is 
the section determined by the point S . Suppose that {cP (A)} and {dp (A)} are 
two ((7, M)-families. Then 

c~(A)=cpl(Al)dp2(AJ,  9 ' e S f ( ^ " i . A e i a > ,  

is a (3', &)-family, where 

and 
A=( ,? , , , ? - ) ,  Al,A2eia, / .  

Its restriction to b is just 

the product ((7, M)-family. One checks that 

if 9' corresponds to the point ( P  , P) . Corollary 7.2 becomes 

Corollary 7.4. 
Qi  Q2 

( ~ d ) ~ =  E d%l>~2)cMdMJ 
LI ,Lzâ‚¬T(  

where (Q, , Q2) stands for the value of the section at (L, , L2) . 

Corollary 7.4 is reminiscent of earlier product formulas for ((7, M)-families, 
and in particular, Lemma 6.3 of [1 (a)]. It seems to be independent of this result, 
but it does imply Corollary 6.5 of [l(a)], which is a special case. Suppose that 
cp(A)} satisfies the condition of Corollary 7.3. The formula in Corollary 7.4 
contains a sum over pairs (L, , L 2 ) ,  with Li l 9 ' ( M ) ,  such that d i ( ~ ~ ,  L2) # 
0 .  We shall fix L = Ll  and use Corollary 7.3 with b = a L  to interpret the 
remaining sums over L 2 .  Take t to be the projection of (-2H) onto the 
orthogonal complement of a: in a: . Then 
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This intersects a" in the unique point H2. But for a given L 2 ,  Q2 is the 
unique element in 9 ( L 2 )  such that H2 belongs to a *  . Combining Corollaries 
7.3 and 7.4, we obtain 

LG.S'(M) 
This is Corollary 6.5 of [1 (a)]. 

We shall conclude this paragraph with some supplementary remarks on the 
Jacobians dz (b  , L) . Suppose that Ml  e 9 ( M )  is fixed and that b is a special 
subspace of a M  . Suppose that {cp(A)} is a ((7, M)-family that satisfies the 
condition of Corollary 7.3. We can apply Corollary 7.3 in two stages, first with 
MI as the base, and then with M itself. We obtain 

Let us agree to set d$ (MI , L) = 0 if L l  does not contain both Ml and L . 
Then 

On the other hand, the direct application of Corollary 7.3 gives 

We can choose {cP(A)} so as to compare the coefficients of these two expres- 
L 

sions. Fix an element L e 9 ( M )  with dim(a.,) = dim(bG) , and set 

where stands for the set of reduced roots of (G,  AM) , and 

e , if a vanishes on a,, 
c J 4  = 1 , otherwise. { 

Then {cp(A)} is a ((7, M)-family which satisfies the condition of Corollary 7.3. 
L' G 

It is easy to see that if L' is any element in 9 ( M )  with dim(aM) = dim(b ) , 
~ - 

then c$ vanishes unless L' = L .  It follows that L gives the only nonvanishing 
summand in the two expansions for cb . We obtain 

(7.1) d : (b ,~)= E d i ; ( ~ ~ , ~ ) d : ~ ( b . ~ ~ ) .  
L 1 â ‚  ) 

There is a variant of this formula which we shall need. Fix a special subspace 
b c aM . Proposition 7.1 and its corollaries have versions for arbitrary ( a G ,  b) -  
families. They are all established by the same arguments. In particular, if 
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{cp(A)} and {dp(A)} are (G,  M)-families which both satisfy the conditions 
of Corollary 7.3, the remarks following Corollary 7.4 can be adapted to the 
resulting (aG,  b) families. The result is 

(cd)> = E c:ldb1. 
biâ‚¬-s^ 

Apply Corollary 7.3 to the left-hand side of this. We obtain 

We can also apply Corollary 7.3 to the right-hand side. If b ,  is contained 

in a , we define d$ (b , M I )  exactly as we defined d z  ( b  . Ml ) , but with aG 

replaced by b . If b , is not contained in a M  , we simply set d'y(b, M I )  = 0 .  
Note that if G is replaced by Gl = Mbl , then b + a G  becomes a special 
subspace of aM , and one has 

Applied in this context, Corollary 7.3 is easily converted to the formula 

Therefore, the right-hand side equals 

Arguing as above, one can see without much trouble how to choose {cP(A)} and 
{dn (A)} so as to isolate any given pair of coefficients. Equating the coefficients, 
one obtains 

(7.2) d : (b ,~)= E d ~ ( b , ~ , ) d ~ ~ ( b , . ~ ) .  
biâ‚¬-S^ 

We want to establish descent formulas for our various distributions. For 
example, if Ml  2 ( M )  and y is a G-regular element in M(Fn) , then Lemma 
10.3 of [1 (a)] provides a formula for hl (y , f )  in terms of the distributions 
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/ Ã £ ( y  f,.) . This formula, however, does not apply to arbitrary elements in 
M(Fq)  . The correct generalization must be stated in terms of induced ( onjugacy - 
classes. For any y e M(Fs) , recall that yM' denotes the induced space in 
M,(Fs).  If y is such that M 1  = M , then yM' is just the M W - o r b i t  

of y .  In general, however, yM' is a finite union of  orbits {yi} in 
MI (Fs) . We shall prove a formula for 

in terms of the distributions fr) . 
We shall in fact establish a more general result. Suppose that b is a special 

subspace of aM . In $7 we defined the Levi set Mb e S ( M )  . If yl belongs 
to M (Fs) , we can define the distribution Jb (yl , f )  on Tc(G(Fs))  exactly as 
in the special case that b = aM . (See [l(d),  (2.1) and (6.5)].) We need only - 
replace the volume vM(x) in [1 (d), (2. l )]  by vJx) , the volume in b G  of the 
convex hull of 

{Hy(x): Q e P ( M b ) ,  a n n b  # @ I .  
Similarly, copying the definition of <̂ i, [l(e),Â§7] we can introduce a map 

Some effort was required in [ l  (d)] and [ l  (e)] to establish the existence and prop- 
erties of JM and OM . However, the identical arguments suffice for arbitrary b ; 
alternatively, one can deal with the general case directly from that of M = Mb 
by applying Proposition 7.1. At any rate, we shall take for granted the obvious 
analogues of results and constructions that have hitherto been discussed only 
in the case that b equals aM . In particular, we have an invariant distribution 
Zb ( y , )  on qc (G(Fs) )  . It is defined inductively by 

where 

Included in the definition is the induction assumption that for any b e q ( b )  , 
the distribution 1:' (y,) on %(GI (Fs)) is supported on characters. The next 
theorem will provide a formula which resolves this new induction hypothesis in 
terms of the original one. 

The space b is always contained in aMb . If the two spaces are the same, 
then Zb(yl, f )  is just equal to Z M b ( y , ,  f )  . However, this need not always be 
so. For example, Mb could be defined over a subfield Fl of F , and b could 
be the split component of M over Fl . This might well be a proper subspace 
of the split component a M  of Mb over F ,  in which case Ib (y,  , f )  would not 
be equal to IMb ( y , f )  . 
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b If y belongs to M ( F s )  , write y = y M b  for the induced class in Mb(Fs) , 
and set 

z b ( y b . f )  = z b ( y M b  . f ) .  

Theorem 8.1. Given y M ( F s )  , we have 

Proof. Both sides depend only on the values of f  on 

Since the restriction of f  to this subset coincides with that of some function 
in %'{G(Fs)), we can assume that f  itself belongs to %'{G(Fs)). We shall 
also assume for the moment that y E M(Fs)  is such that M = G, . Then y b  
equals y and Jb ( y  , f )  equals 

f ( x l y x ) v b ( x )  dx.  

Applying Corollary 7.2 to the ( ( 7 ,  M)-family 

This allows us to make a standard change of variables in the integral over 
G , ( F ~ ) \ G ~ ( F ~ )  [ 1 (d), (8.1 I)], and we find that Jb ( y , f )  equals 

Our distribution Zb ( y  , f )  equals the difference between (8.2) and the expres- 
sion 

We can assume inductively that the theorem holds for each of the distributions 
1"' ( y )  . Then (8.3) may be written 

Now ( f ) ^  is a function in <(MI (Fs))  . Its value at any representation 

" 1 'temp (MI (Fs ) )  equals 
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Here Qo is a fixed element in ^(GI)  , where GI = M , and n]' stands for 

the induced representation n,' ; the operator 4, (n]' , Qo) is obtained from 
the restriction to b of the (G , GI)-family 

^'Q(u? nil . Qo). Q e .3'(G1), u E ia;, , 

described in 56 of [1 (e) 1. It follows easily from Corollary 7.2 that 

(See also formula (7.8) of [l(a)].) Therefore (8.3) equals 

The section L -+ QL is defined in (8.4) with respect to some point el e a:, 
in general position, while in (8.2) it is defined with respect to a point c e a ^ .  
However, it turns out that the notation is consistent. For we need only consider 
elements M I  such that d$(b, M I )  # 0 .  This means that 

and so there is a natural isomorphism 

We take el to be the image of c . Then if L is any element in -?'(MI) with 

and tl + b ,  and t + b both intersect a, at the same point. Consequently 
for any given L ,  the parabolic QL in (8.4) is the same as that in (8.2). In 
particular, QL is independent of b ,  . Thus, the only part of the expression 
(8.4) which depends on b is the sum 

This can be simplified. If L # Ml , we can replace P0(b)  by 2 ( b )  , for 
the term corresponding to b ,  = aG vanishes. By (7.2), the sum is equal to 
dZ(b ,  L) . If L = M I  , 

G 
d c l ( b l .  L) = dM,(b l ,  M,)  = 0, 

since b ,  # aG , so in this case the summands are all zero. It follows that (8.4), 
which on the one hand equals the original expression (8.3), also equals 
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This is easily combined with (8.2). From the inductive definition of I:(;Â¥ we 
see that the difference between (8.2) and (8.3) equals 

Since (fQL)^ equals f L ,  this becomes 

Lâ‚¬L?( 

the required formula for Ib (y , f )  . 
Now, suppose that y is an arbitrary element in M(Fs) . As in (2.2* ), we 

can write 

where a approaches 1 through the regular points in AM(Fs) . The theorem 
will be established by arguing as in the derivation of (7.2). For the function 
r:' (y , a )  comes from a (G , M)-family 

which satisfies the condition of Corollary 7.3. (See [1 (d), Lemma 5.11.) More- 
over, we are assuming that a AM (Fs) is regular, so that M a  = G . Applying 
Corollary 7.3 and what we have just proved, we obtain 

L â ‚ ¬ Y (  MI â‚¬-YL( 

The last step follows from (7.2). But 

by (2.2). Taking the limits in a thus gives us 

Lâ‚¬L?( 

This completes the proof. 

We are of course interested in the special case that b = a M  , for some element 
Ml ES'(M). 
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Corollary 8.2. Given y M(Fs) ,  we have 

Corollary 8.3. Suppose that y M(Fs) is such that My = M 1  . Then 

There is a similar descent property of ZM(n, X ,  f )  . Once again, it is impor- 
tant to work in a slightly broader context. Suppose again that b is a special 
subspace of aM . If n l  17(Mb(Fs)) and Xl a M  , ^ ,  we can define the dis- 
tributions J Jn , ,  X I ,  f )  on qc(G(Fs) )  exactly the same way as in the special 
case that b = aM . (See [1 (e), $56, 71.) 

We can also define an invariant distribution Zb (n l  , Xl ) on q ( G ( F s ) )  in- 
ductively by 

Included in the definition is the induction assumption that 1:' ( 5 ,  XI)  is sup- 
ported on characters. This will be resolved in terms of our original induction 
hypothesis by the next theorem (together with Theorem 6.1). 

Suppose that n e Tl(M(Fs)) and X e aM ,s . We shall write 

for any f e q c ( G ( F s ) ) .  (Here hb(X) is the projection of X onto b . As 
in [l(e)], we shall often write n, when we really mean the induced represen- 

b tation ~ t ,  = ( n I ) '  .) The integral clearly depends only on the restriction of 
f to G(F:,) ,  Z = hG(X) . Since this is compactly supported, we can always 
replace f itself by a compactly supported function. It follows from standard 
estimates [1 (e), (1 2.7)] that the integral over A is absolutely convergent. Define 
an invariant distribution I (n , X) on q c ( G ( F s ) )  inductively by 

It then follows that 

with the integral converging absolutely. 

Theorem 8.4. Given n H(M(Fs)) and X e a M S  , we have 
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Proof. As above, we can assume that f actually belongs to X(G(Fs))  . It also 
happens that we can restrict n . For as in Lemma 3.2(b), we have 

where for each p , w = w(b: 0) , and e denotes a small regular point in the 
dual chamber ( b * )  . Suppose that L E 2 ( M )  is such that d 3 ,  L) # 0 .  
Then the canonical map 

* * 
b*/a> -  ̂aM/aL 

is an isomorphism. Each chamber in the second space is, up to a set of measure 
0 ,  a union of images of chambers (b *): . Moreover, for any small regular point 

I * e in aM , the number 

I . , (n ,X, f )  = Z M ( n e > X , f ) e  +[XI 

depends only on the chamber in a h  which contains e . Consequently 

It follows that if the theorem holds with n replaced by n , it then holds for 
n itself. We may therefore assume that n is in general position, as a point in 
some ah-orbit in n (M(FS)) .  

The general position of n implies that the function 

Jb (nA J f 1 = tr( '̂, (n; J QO)̂ ,, (n; J f 1) 
is analytic for A E ia*, . Recall that Qo is a fixed element in W b ) ,  and 
3Yb (ni  , Qo) is obtained from the restriction to b of a (G,  Mb)-family 

b 
?{v,7i,,Qo), Q â ‚ ¬ 9 ( M b  v i a k  

As in [1 (a), (7.8)] we have 

If we apply Corollary 7.2 to the (G,  M)-family 
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we find that Jb ( n  , X , f )  equals 

The argument used to prove Lemma 7.1 of [ l ( a ) ]  then allows us to write this 
last expression as 

It follows that J ( n  , X ,  f )  equals 

Our distribution Zb ( n  , X, f )  equals the difference between (8.6) and the ex- 
pression 

The proof is now identical to that of Theorem 8.1. Assuming inductively that 
Theorem 8.4 holds for the distributions 1;' ( n  , X )  , we are lead to an expansion 
of (8.7) into 

It follows that the difference between (8.6) and (8.7) equals 

Consider the special case that b = a M  for some element M l  e L?(M). 
Then the distribution ( n ,  X ,  f )  = Ib ( n ,  X ,  f )  equals 

an absolutely convergent integral. 

Corollary 8.5. Given n T l ( M ( F s ) )  and X e aM ,s , we have 

Suppose that b is a proper subspace of aM . Then d:(b , L) is nonzero 
only when L # G , in which case the distributions /L are all well defined. 
Strictly speaking, the two theorems are only valid for such b . However, until we 
complete the induction in the next paper [ l ( f ) ] ,  it will be understood that I( fG)  
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really means I(/) , for any given invariant distribution I on <(G(FS)) . With 
this temporary abuse of notation, the theorem and corollaries of this paragraph 
are all valid as stated. 

The splitting properties are essentially special cases of Theorems 8.1 and 8.4. 
However, they are important enough to discuss separately on their own. To 
state them, we take S to be the disjoint union of two sets Sl and 5,. We 
assume that both Sl and S2 have the closure property. Theorem 1 1.1 of [1 (a)] 
provides a splitting formula for IM(y) that applies to elements y 6 M(Fs) 
which are G-regular. We must generalize it to arbitrary elements in M(Fs) . 
Proposition 9.1. Suppose that 

7=Y1y2-  Yi6M(Fs,)j 

is any element in M(Fs) . Then for any function f 6 q c ( G ( F s ) )  of the form 

we have 

Proof. This is essentially a special case of Theorem 8.1. We say essentially 
because we must in fact replace (G , M )  by the pair (9, A) = (G x G , M x M )  , 
in which the products are regarded as varieties over the ring F x F . However, 
the definitions of $8 extend in a straightforward way to this setting. We take b 
to be the space aM , embedded diagonally in ad = aM CB aM . Notice that 

It follows without difficulty that 

b Obviously Mb = M x M = A ,  so that y h  = (7, y2) . As we noted in the 
discussion prior to Corollary 7.4, S ( A )  is the set of pairs 2' = (L, , L2) , 
Li E 9 ( M )  . Clearly 

-L 
^^Â f p )  = 1; (71 - fl ,L, f l ,L2).  

(As in the proof of Theorem 8.1, this really comes from the distribution 
Z;(Y. f o )  , so there is no intrinsic difficulty with the notation c,  even in 
the case L, = G where our induction hypothesis does not apply.) Since 

Theorem 8.1 gives the required formula for IM ( y  , f )  . 0 
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Remarks. ( 1 )  If we combine Proposition 9.1 with Corollary 8.2, we obtain the 
formula 

This was actually the splitting formula derived in Theorem 1 1.1 of [ 
special case of y regular. 

(2) According to the induction assumption of $2, the Fourier 
(7,) is defined if L ,  5 G . However, 

1 (a)] in the 

transform 

sc there are terms in the formula of the proposition with L = G . For these 
terms, it is understood that 

'Go',lfG) = I G ( ~ , . f ) .  

as we agreed at the end of $8. 

It is sometimes useful to combine the splitting and descent properties into 
one formula. Suppose that for each v S , M is a Levi subset of M which 
is defined over F . We can of course apply all our earlier definitions with F 
replaced by Fv . In particular, we have the real vector space a,,, , and the map 

HM;Â MV(FV)  ̂ a^. 

We should point out that even if Mv equals M , the spaces a,,, and a,,, need 
not be equal, for they are defined relative to the different fields F and F . Set 

= rives Mv and â , = eves a,,, . If we think of A? as a Levi subset of 
M defined over F , it will be clear how to extend our earlier definitions. For 
example, ^(A?) will denote the set of 

fi L, , Lv  Z ( M v )  
ves 

Given such an Z , we can define the distribution 

on ^(S ' (Fs)}  , and the map f - f2 from T c ( G ( F s ) )  to 4 ( Z ( F s ) )  . We 
also have a constant d % ~ ,  9). It is defined to be zero unless the natural 
map 

M 3 ' G  
aL@a^, ^aa 

is an isomorphism, in which case d 2 ~  ,Z )  is the volume in a: of the 
2 parallelogram generated by orthonormal bases of a$ and a-, . 

Corollary 9.2. Suppose that y = H V E s  yv is a point in w, and that 
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is the induced space in M(F& Then 

Proof. It is easy to see how to extend Theorem 8.1 in a formal way so that it 
includes Corollary 9.2 as well as Proposition 9.1 as special cases. Alternatively, 
the corollary follows by repeatedly applying Theorem 8.1 and Proposition 9.1 
directly. a 

Remarks. In the special case that y is regular, a similar formula was stated in 
[1 (a), Corollary 11.31. However, the proof there does not apply in the general- 
ity claimed. For in [l(a)] we failed to account for the fact that the space a M 
depends on the ground field over which M is taken. Theorem 12.1 of [1 (a)] is 
likewise affected, for it depends on Corollary 11.3 of [I (a)]. As established in 
[1 (a)], these results are only valid of G is an inner twist of a split group. We 
hasten to add, however, that Â§$I and 12 of [ l  (a)] have since been subsumed in 
other results, and are no longer needed. For example, Theorem 12.1 of [1 (a)] 
can be replaced by the assertion that o),,, maps qC(G(Fs) )  continuously to 
Y ( M ( F S ) ) .  This was established as Theorem 12.1 of [l(e)]. It can also be 
proved quite simply by applying Corollary 7.2 directly to the (G,  M)-family 
from which O M (  f ,  71,  X )  is defined. However, the proof in [1 (e)] has the ad- 
vantage of providing an obstruction, in terms of residues, for a function o),,, ( f )  
to lie in J^(M(Fs)).  

Corollary 9.3. For each v E S,  set M = M ,  and suppose that the distributions 

are supported on characters. Then the corresponding distributions 

for Fs are also supported on characters. In particular, the induction assumption 
of $2 is valid for (G/F , S) , provided that it holds for each (G/Fv , { v } )  . 

Proof. We need only consider the case that L = G . Fix y E M(Fs) . We must 
show that I i f W  annihilates the functions f E ̂ '{G(Fs)) such that fG = 0 .  
We leave the reader to check that any such function can be approximated by 
linear combinations of functions of the form 

in which f W G  = 0 for some valuation w in S . Corollary 9.2 tells us that 
I&) vanishes on this latter function. a 

The splitting formula for the dual distributions is similar. Let 
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be an arbitrary representation in I I (M(Fs) )  , and consider a point 

X = ( X 1 , X 2 ) ,  X i â ‚ ¬ a M , s  

For each f q c ( G ( F s ) )  , we shall write 

where each integral is taken over the direct sum of i a L s  and ~ a * , , ~  , modulo 
the diagonally embedded image of i a b  ,s . Both integrals converge absolutely, 
and we have 

Specializing Theorem 8.4, we obtain 

Proposition 9.4. Let n = nl  <9 n2 and X = ( X l  , X2)  be as above. Then for any 
function 

f = & & I  y;. ^ (G(Fs , ) )  1 

we have 

Remark. Proposition 9.4, and also the results Theorem 8.4 and Corollary 8.5 
of the last section, have obvious analogues if n is replaced by a standard rep- 
resentation p I ( M ( F s ) ) .  

10. THE EXAMPLE OF GL(n)  . LOCAL VANISHING PROPERTIES 

Let us look at an example. We shall show that for GL(n)  , the invariant 
distributions sometimes vanish. These vanishing results, which extend those 
of $14 of [l(a)], demonstrate how the descent formula of $8 can be usefully 
applied. They will also be needed in the study of base change for GL(n)  , 

The first lemma is a companion to Lemma 14.1 of [lfa)]. Together, the 
two results summarize the algebraic properties of GL(n)  that are behind the 
vanishing results. 

Lemma 10.1. Suppose that G = GL(n)  . Let L ,  L l  , and L2 be Levi subgroups 
of G over F ,  with L l  c L and L l  c L 2 ,  such that d^, ( L ,  L 2 )  # 0 .  Then the 
natural map 

X ( L ) F  @ X ( L 2 ) F  x ( L 1 ) F  

is surjective. 

Proof. Fix an isomorphism 
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is an arbitrary point in L l  , set 

Then {xi:  1 <: i < r} is a basis of X(L1),, . Once the isomorphism above is 
fixed, the group L S ' (L l )  corresponds canonically to a partition of the set 
{ I ,  . . . , r} into disjoint subsets Sl , . . . , S . The characters 

form a basis of X(L)F.  Similarly, L2 corresponds to a partition of { l  , . . . , r} 
into disjoint subsets TI , . . . , T . We must show that each x, belongs to 
X(L)F @ x(L,)p ' 

The nonvanishing of d,, (L ,  L2) is equivalent to the property that 

a; @a;, + a;, ' 

is a surjective, with 1-dimensional kernel { ( Z ,  - Z )  : Z a>} . The reader 
can check that this implies (a) that p + q = r + 1 , and (b) that no proper 
nonempty subset of { 1 , . . . , r} is a simultaneous union of sets S, or Tk . 
According to (a), one of the two partitions contains a set consisting of one 
element. To be definite, we can assume that S = {r}. Then the character 
xr belongs to X(L)F @ X(L2)F . The element r also belongs to a unique set 
Tk , and (b) implies that Tk contains more than one element. In other words, 
T, = Tk - {r} is not empty. We obtain two disjoint partitions Sl , . . . , Sp-l 
and Tl , . . . , T[. . . . , Tq of the set { 1 , . . . , r - 1 } , which also satisfy (a) and (b). 
Since the character xi belongs to X(L)F (SX{L2lF, the lemma follows 
by induction on r . 

For the rest of this section we shall assume that we have been given an inner 
twist 

q: G + G* = (GL(n) x . . . x GL(n)) x Q* , 

as in (1.2). We shall let E denote the smallest extension of F over which the 
image of the cocycle 

qaM-I,  CT 6 Gal(F/F) ,  

in G^/G' splits. Then E is a cyclic extension of F whose degree lp over F 
divides 1 .  This is just the setup for base change of a central simple algebra. 
One can show that 

where d is a divisor of n , and D is a division algebra of degree d 2  over F . 
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We shall write G' for the group GL(n) , embedded diagonally in (G*)' . We 
are going to show that our invariant distributions on G' vanish on certain data 
related to G , in a sense that depends only on the integer d and the field E .  
Suppose that L is a Levi subgroup of G' (defined over F). As in [l(a)], we 
write 

p ( L ) = ( n ,  , . . . ,  n r ) ,  n, > n 2 2 Â ¥ Â ¥ Â ¥ 2  
for the unique partition of n such that 

L '= GL(n,) x Â Â x GL(nr) .  

We shall say that L comes from G if d divides each of the integers ni . This 
means that there is a Levi subset M of G such that L = M' . In other words, L 
is embedded diagonally in (M*)' , where M *  is some product of components 
of the form (1.1) which is related to M by inner twisting. Suppose that L,  c L2 

are two other Levi subgroups of G' with d: ( M I ,  L2) # 0 .  Then if L2 comes 
from G , Lemma 14.1 of [1 (a)] asserts that L,  also comes from G . 

Recall that an element 8 G ( F )  is F-elliptic if it lies in a maximal torus of 
G' which is anisotropic over F ,  modulo AG . We shall write G'(F)~,, for the 
set of such elements. By the theory of elementary divisors every qonjugacy class 
in G'(F) is induced from an elliptic class. In other words, for any 8 e G'(F) 
there is a Levi subgroup L l  of G' , and an element T L l  ( F ) , ,  , such that 

8 belongs to the induced conjugacy class r G  . The pair (Ll , r )  is uniquely 
determined by 8 up to G'(F)-conjugacy. We shall say that 8 comes from G 
if the group L,  comes from G , and if for every character Â£, X(L,  )F , the 
element Â£, ( r )  belongs to NEIF(E*) , the image of the norm from E* . We shall 
write G ' ( F ) ~  for the set of such elements. We shall also write G ' ( F ) ~  simply 
for the set of elements 8 e G'(F) such that {(8) belongs to N ~ / ~ ( E * )  for 
any Â£ X(G)F. Then G'(F),, is a subset of G'{F~. Observe that if M' 
is a Levi subset of G' which comes from G , we can also define the subsets 
M\F)^ c M'[F~ of M'{F). 

Suppose now that F is a local field and that S = {v} , so that F = F = Q 
Let f '  be a fixed function in {̂G'{F)) such that 

(10.1) I ~ ! ( c > ~ ' )  = 0 

for any GI-regular element !, G'(F) which does not belong to G ' ( F ) ~  . 
Proposition 10.2. Suppose that M' is a Levi subgroup of G' which comesfiom 
G and that 8 belongs to M'(F)^. Then IM,(8 ,  f ') = 0 ,  unless 8 lies in 

M1(F)M. 

Remark. If M = G , the proposition is essentially a restatement of the defini- 
tion of f '  . It is of course the case M' # G' that is interesting. 

Proof. Assume that I.,, ( 8 ,  f ') # 0 .  Fix a pair 
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and a character ( E l  X (L , ) , .  We must show that L l  comes from M and that 
( ,  ( r )  belongs to ( E * )  . 

The situation is made to order for our descent formula. For Corollary 8.2 
immediately yields an expansion 

and hence the existence of some L2 6 sS^(L,) with 

The nonvanishing of d','(M', L2)  allows us to apply Lemma 10.1. We obtain 

Now the distribution T^{T, f '̂ } belongs to the closed linear span of 

{f? ( c  , f i )  } , where C ranges over the G-regular points in L2 ( F )  with & ( 7 )  = 

& ( C )  . But / ^ ( T ,  f i )  does not vanish, so there exists such a c with 

It follows from the definition of f ' that L2 comes from G and that & ( r )  
belongs to N ~ , ,  ( E * )  . Applying Lemma 14.1 of [ 1 (a)], we see that L l  also 
comes from G . This obviously implies that L l  comes from M , our first re- 
quired condition. Moreover, by assumption, the element < ( r )  = t ( S )  belongs to 
N ~ [ , ( E * )  . Therefore, the element tl (7 )  = t ( ~ ) & ( r )  also belongs to N ~ / , ( E * )  . 
This is the second required condition. 0 

There is a parallel vanishing property for the distributions 

I M i ( ' > y j f ' ) j  v e a [ ~ ' ( ~ ) ) ~ ~ ~ ~ ~ i , ~ '  

We shall only deal with the first half of it here. The other half will appear as 
Lemma 11.8.1 of [2]. 

Proposition 10.3. Suppose that M' is a Levi subgroup of G' which comes from 
G and that L l  is a Levi subgroup of M' . Then 

for any Y aM,  , v ,  and any induced representation 

M i  
71 = ? , A ,  2 6 n1  6 n ( L l  ( F ) )  , 

unless L l  comes from M . 

Proof. The proof is similar to that of the last proposition. It is enough to show 
that if L l  does not come from M ,  then the Fourier transform 
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vanishes, for every point Yl a L  ,v whose projection onto a M l V  equals Y.  
The descent formula, Corollary 8.5, yields 

The proposition then follows as above from [1 (a), Lemma 14.11. 0 

Remark. Obviously, a similar vanishing property holds if n and n, are re- 
placed by standard representations p 'L(M'(F)) and p, Â£(L (F) )  . 

The function f ' is intended to come from a function on G(F)  by a transfer 
of orbital integrals. To make this more plausible, we shall describe the set 
G ' ( F ) ~  in terms of the norm mapping from G(F)  to G ( F )  . This discussion 
is not really needed here but will be used in the article [2] (in combination with 
$1.2 of that paper). 

We shall first recall some elementary facts, for which F can be a general 
field. Any element 

y = ( y l ,  . . . , Y,) x" Q* 

in G* is (G*lO-conjugate to the point 

1 Consequently, y is (G*)'-conjugate to an element in G' , which is uniquely 
determined up to GI-conjugacy. We obtain a bijection from the (G*)'-orbits 
in G* onto the conjugacy classes in G' . A given orbit in G* meets G* (F) if 
and only if the corresponding conjugacy class in G' meets G'(F) . 

Suppose that y belongs to G(F)  . For any a G ~ ~ ( F / F ) ,  we have 
0 -1 

fiWO = f i0 (7)  = ( f ]  f ]  )(^(Y)). 
a - 1  By assumption, f ]  f ]  is an inner automorphism of (G*)'^. Since the central- 

izer of t](y) intersects G* , the points ~ ( y ) '  and ~ ( y )  are (G*)'-conjugate. 
Thus, Gal(F/F) preservec, the (G*)'-orbit of ~ ( y )  . Equivalently, Gal(F/F) 
preserves the GI-orbit of ( f ] ~ ) .  It follows from the theory of elementary di- 
visors that the GI-conjugacy class of f ] ( y )  has a representative in G'(F) . The 
same is therefore true of the (G*)'-orbit of r](y). In other words, there is an 
element c in ( G * )  such that the point y* = cn{y)c,-l belongs to G*(F) . 
One can, in fact, assume that y* is of the form 

Then the element 
1 -1 

y' = (y*)' = c,f](y) c, = (y', . > Y') 

belongs to G'(F) and is uniquely determined up to G1(F)-conjugacy. The 
correspondence y -  ̂y gives a map from GO(F)-orbits in G(F)  into G'(F)- 
conjugacy classes, which is easily seen to be injective. This is the norm from 
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G ( F )  to G ( F )  . The symbol y1 can denote either a conjugacy class or some 
element in the class. 

If y is as above, the function 

maps G onto G'., . But Y*  is of the form (10.2), and one sees immediately 
that G equsls G ,  . Therefore, qY is an isomorphism from G onto G,',, . 
It follows easily from the definitions that it is actually an inner twist. Now, 
suppose that a 6 G ( F )  is semisimple. Then the group G o ,  together with the 
inner twist, no: Go -+ G', , satisfies our original conditions on G (with 1 = 1 ). 
We shall denote the corresponding norm mapping from conjugacy classes { p }  
in G o ( F )  to conjugacy classes { c n o ( p ) c l }  in G;,(F) by p -' pa, . If 

one can take c = c c  , and one obtains 

We return to the case that F is a local field. 

Lemma 10.4. The image of the norm map is G ( F ) , .  . In other words, G' (F)^ ,  
is the union over all y 6 G ( F )  of the conjugacy classes y' . 

Proof. Suppose that 8 is an arbitrary element in G ' ( F )  . Then 8 T' , where 
r 6 L ,  (Flell for a Levi subgroup L l  of G I .  This means that 8 lies in the 
conjugacy class of iv , where v belongs to the Richardson orbit in G[ corre- 
sponding to the Levi subgroup L , ,  . Suppose that 8 equals the norm of an 
element y 6 G ( F )  with Jordan decomposition y = a u .  Then (10.3) yields 

1 1  
y = a u ,  , which is just the Jordan decomposition of y l .  We can therefore 

1 assume that T = a and v = u ,  . Now u', is conjugate in G; , (F)  to the 
element uo, . In other words, the inner twist 

maps u to the Richardson orbit in G' corresponding to L ,  It follows that 

,T is the image of a Levi subgroup of Go over F .  But any such subgroup 
will necessarily be of the form M I  , where M ,  is a Levi subset of G over F 
which contains a .  Moreover no:  M I  -  ̂L ,  is an inner twist with respect to 
which T is the norm of a .  Conversely, given 8 = t v  , suppose that L ,  comes 
from a Levi subset M I  of G and that T is the norm of an element a 6 M I  ( F )  . 
Working backwards, we see that 8 is the norm of an element y = au in G ( F )  . 

We have obtained a reduction of the proof. We have only to establish, for 
any L ,  = M{ which comes from G , and any elliptic element r 6 L ,  ( F )  , that 
T belongs to L ( F ) '  if and only if T -= a for some element a M I  ( F )  . We 
may assume that L ,  = G' and M I  = G . 
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One way is quite formal. Let Gab be the quotient of G  by the derived 
subgroup of G o .  Then Gab is a component which satisfies the same hypothesis 
as G  . Writing { G ( F ) }  in general for the set of GO(F)-orbits in G ( F )  , we 
embed the norm map { G ( F ) }  + { G ' ( F ) }  in a commutative diagram 

{ G ( F ) }  - { G ' ( F ) }  = { G L n ( F ) }  

1 1.t 

{Gab(')} + {'',,[')I = F*.  

The subset G ' ( F ) ~  of G'(F)  consists of those elements whose image in F* 
lies in the subgroup NEIF(E*)  . But 

- 1 
Gab(F)  := (E* x - . .  x E*)  xO1, 1, = / l E  , 

w 

1, 

where 0 ,  is an automorphism 

( Y ~ ~ . . . ~ Y ~ , ~ + ~ Y ~ ~ . . . . Y , , . ~ O ' ~ ) )  . Y , â ‚ ¬ E  

for a fixed generator a  of Gal (E /F)  . The lower horizontal arrow in the dia- 
gram can be identified with the map 

( Y ~ ~ " ' ~ , ' [ , ) ~ ~ ~ ~ ~ ~ / ~ ( Y ~ ) " ' ~ ~ / ~ ( Y / , ) ~  y j e E * '  

It follows that any element in G ' ( F )  which is a norm from G ( F )  lies in 
G ' ( F ~ .  

Conversely, suppose that T is an F-elliptic element (relative to G )  in 
G ' ( F ) ~  . Then T e T ' ( F )  , where T' is a maximal torus in G' over F  which 
is anisotropic modulo AG . Fix an isomorphism T ' ( F )  E F)* , where F, /F  is 
an extension of degree n . Then the restriction of the determinant to T ' ( F )  is 
identified with N p P .  The theory of simple algebras attaches a maximal torus 

T o  of Go to the algebra El  = E  mF Fl . In fact, there is a subgroup T+ of 
G+ over F  , such that 

where 0, is an automorphism 

( u  . . ,  U I ) + ( u 2  , . . . .  u l , a ( u l ) ) .  U , â ‚ ¬ E ' \  

Here a is the automorphism of El / F ,  determined by a generator of Gal(E/F)  . 
It follows that there is an element c l G  such that 

the restriction of the norm to T ( F )  , corresponds to the map 
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It is an exercise in local class field theory to show that the image of this map is 
the subgroup 

{Y '1 : NF,/F(Y) ' NE,F(E*)} 1 

of F* . (See Lemma 1.1.4 of [2].) It follows that T equals a , for some element 
a E G(F)  . This completes the proof of the lemma. a 

Let a be a finite dimensional Euclidean space. A convex polytope I I  in a 
is the convex hull of a finite set of points. Fix such a l7, and let i^(II) denote 
the finite set of closed faces of II . Then Â¥9'(X\ is a partially ordered set whose 
elements are convex polytopes in their own right. The maximal element is just 
I7, while the minimal elements form the subset (̂Fl) of faces which are just 
points. The faces in P ( I 7 )  are of course called the vertices of I7. Suppose 
that F is a face in y{H). The (open) dual cone a; is defined as follows. 
Choose a point XF in F which does not lie on any proper subface of F and 
form the cone generated by l7 - XF . Then a: is the relative interior of the 
corresponding dual cone. That is, a: is the intersection, over all points X in 
the complement of F in I I ,  of the half open spaces 

{ Y e a :  ( Y , X - X F ) < O } .  

Let aF  denote the subspace of a spanned by F - XF,  and let aF be the 
orthogonal complement of aF in a .  Then a; is an open convex cone in aF  
which is independent of XF . 

It is a basic fact that a is the disjoint union of the cones a:. Let us recall 
how this is proved. The dual cones consist of cosets of an  and are invariant 
under translation of l7. We may therefore assume that II contains the origin 
as an interior point. Let fi be the polar set of I7 [4, Q 6 ,  91. More precisely, 
fi is the intersection, over all points X E I I ,  of the closed half spaces 

{ Y e a :  ( Y , X ) <  l}. 

Then fi is another convex polytope, whose interior contains the origin. There 
is an incidence reversing bijection F H F between the proper faces of l7 and 
f i ,  and a; is just the cone generated by the relative interior of F . But any 
half line through the origin will intersect the relative interior of a unique proper 
face /-" . Therefore, a is indeed a disjoint union of the cones a; . 

Suppose that b is a vector subspace of a ,  and let I I  be the projection of l7 
onto b . Then l7, is also a convex polytope. We shall construct a section from 
l 7  into l7.  We must first fix a point S, in ab  , the orthogonal complement 
of b in a ,  which is in general position. Let Â¥9'(II S,)  denote the set of faces 
F Â¥9'(II for which the set 
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is not empty. Then (^; + b )  is a disjoint union over y{T\, 0 of the sets b t r F  . 
Define 

w =  u F .  
F â ‚ ¬ ^  .i) 

The general position of { implies that if F belongs to Y ( n ,  ;̂) and if F, 
F(n) is a face which is contained in F , then F, also belongs to F ( n ,  ̂;) . It 
follows that n(^;) is a subcomplex of II . 
Lemma A.I. The orthogonal projection of a onto b maps I I ( ^ ; )  bijectively onto 

=b. 
Proof. Let r\ be a point in nb . The fiber at r\ is the set 

We must show that H'1 intersects n(() at precisely one point. 
The faces of I I ( ^ ; )  are the elements in F(n, ;̂) . Observe that F ( H ,  ̂;) is 

the subset of faces F F(n) such that ;̂ belongs to (a: + b )  . On the other 
hand, is also a convex polytope, and its faces are of the form 

Many of these intersections will be empty. Moreover, if y is not in general 
position, different F will give the same intersection. However, let us define 
y(n) to be the set of elements F y{H) such that F' contains a point X; 
in the relative interior of F . Any such F will be minimal among those faces 
which have the same intersection with II" . Clearly F + F" is a bijection from 
ŷ H) onto the set of faces of nq . 

Suppose that F e ( I I )  and that F, y(YY) is some other face such that 
F' = F' . Then aF n a b  = aF' n a b  . Taking orthogonal complements, we obtain 
a, + b = a F  + b . However, F is minimal, so it is actually a face of F, . This 
means that a: is contained in the closure of a:. It follows easily that 

Thus, in studying the intersection of H(^;)  with 11'' , we need only consider 
those faces of I I ( ^ ; )  which belong to ^ ( H )  . 

Suppose again that F p(II). We shall find the dual cone a h  of F' . 
Set 

c , = { t ( x - x ' p ) :  00,  x ~ n }  

Then C; = C,  n ab . But C,  and ab are both polyhedral cones. As is well 
known, the dual cone of their intersection equals the sum of their dual cones. 
It follows that the closure of a:,, equals the sum of the closure of a^, with b . 
Taking the relative interior of these closed cones, we obtain 



380 JAMES ARTHUR 

We know that a is the disjoint union of the cones a:, . We can therefore 
express a as the disjoint union, over F e. y(n), of the cones a: + b . In 
particular, { lies in precisely one such cone. But Â£ is in general position, so we 
can assume that the cone in which it lies is open and corresponds to a vertex of 
IIq . We have thus shown that there is precisely one face of nq which meets 
n({) and that this face is a vertex. In other words, nq meets n({) in precisely 
one point, as required. 0 

Our purpose in discussing convex polytopes has of course been for their con- 
nection with ( G ,  M)-families. Let us consider a typical example. For each 
Q e Y ( M )  , let pQ l an  be the usual vector defined by the square root 
of the modular function. Let IIM denote the convex hull of the finite set 

G {pp:  P l 9 ( M ) } .  Then llM is a convex polytope which lies in a,, . There is 
an order preserving bijection Q + ll; from y{M) onto the set of faces of 
n,, . Moreover, the dual cone of is just the chamber a:. Thus, the face 

ll; and the chamber a: are of complementary dimensions, and they intersect 
orthogonally at the point pQ . Consider the ( G ,  M)-family given by 

('4.1) 
>-(PP) cp (A)=e  , P e 9 ( M ) , A e i a ~ .  

Then c,,(A) is just the integral of e -A (H)  over IIM . (See $6 of [l(a)].) More 
Q generally, suppose that Q l F ( M )  . Then lies in the affine space pQ + aM 

and inherits a Euclidean measure d H  from that on a;. We have 

( A 4  
Q 

CM (2) = Lt e->-(H) d ~ ,  A 

Q In particular, c: is just the volume in pQ + a,, of the face II; . 
Now, as in $7, suppose that b is a special subspace of a,, . Let llMb be 

the projection of VI,, onto b . We claim that the ( a G ,  b)-family associated to 
cp(A)} is also the one attached to the polytope llMb . If p is any element in 
9 ( b ) ,  let Q be the unique element in ^{MI such that b; is contained in 
an and define p to be the projection of pQ onto b . Then 

is the associated (aG,  b)-family. On the other hand, IIM ,, is the convex hull 
in b of the set 

{ P :  P l ̂ (b)} . 
For it is trivial that f l , ,  contains the convex hull. The converse is a minor 
extension of Lemma 3.1 of [1 (b) j and is proved the same way. Our claim, then, 
is justified. In particular, as in $6 of [l(a)],  we can write 

where d ~  is the Euclidean measure on b . 
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We shall want to apply Lemma A.I. As before, let < be a point in a; in 
general position and write F ( M ,  <) for the set of elements Q  e y(M) such 
that the set 

bi;,Q = (< + b )  n a; 
is not empty. Then 

is a decomposition of < + b into a polyhedral complex. The vertices correspond 
to the parabolics QL introduced in $7. The maximal cells correspond to the set 

We note that ^{M , <^) is just the set of P  e P ( M )  which are contained in one 
of the parabolics Q, . Of particular interest are the cells which are translates 
in < + b of the chambers b;  in b . Let us write % , ( M ,  <^) for the subset 
of elements P  e P ( M  ,<) such that the closure of a; intersects b in an 
open set. This intersection must necessarily be the closure of a chamber b G p )  
for a uniquely determined element p ( P )  in P ( b )  . We claim that the map 
P  -+ p ( P )  is a bijection from P ( M ,  <^) onto 9 ( b )  . For suppose that p is 
an arbitrary element in P ( b )  . Let Q  be the unique element in ^ ( M b )  such 
that a n  contains a; and let R  be the unique element in y M b ( ~ )  such that 
< belongs to a; . Then P  = Q ( R )  is the unique element in P e X t ( M ,  Â£, with 
p(P) = p . We point out that p i p ,  is just the projection of pp onto b . 

We will use Lemma A.l to study the function 

c b ( u ) ,  u e i b * .  

Observe that the maximal cells in the complex 

correspond to the parabolics Q, , where L  ranges over the elements in 9 ( M )  
with d z ( b .  L )  # 0 .  Let fig be the projection of I IQL onto b . Then Lemma 

M -  
A. 1 asserts that I I M  is the disjoint union of the sets II$ , together with a set 
of measure 0 .  It follows from (A.3) that 

Fix L  for the moment and let H  -+ k denote the orthogonal projection of 
L a onto b G  . We are assuming that dE(b , L )  # 0 ,  so that this map is an - 

isomorphism, and d ~  = d z ( b ,  L )  dH . Moreover, e u \ l i }  = e u ( H 1  , since u  
belongs to ib* . It follows that 
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Combining these formulas with (A.2), we obtain 

On the other hand, we have 

from our correspondence between T A M ,  Â£,' and P ( b )  . It thus follows that 

for any point v ib* and for {cp(A)} the ( G ,  M)-family given by (A.1). 
Our ultimate purpose has been to prove Proposition 7.1. We can at last do 

this. Suppose that {cp(A)} is an arbitrary ( G ,  M)-family. The expression 

y d 2  . LICE (A) 

equals 

Let rp ,.(A) denote the sum, over all elements L E ̂ {M) with d z ( b  , L) # 0 
and with QL 3 P , of the terms 

Then 

Set A equal to a point v in ib* , and for the moment take {cp(y}} to be the 
(G , M)-family defined by (A. I). Then we can combine (A.5) with (A.4). We 

The functions { ~ ~ , ~ ) ( v ) - }  and {rpt (v)}  are all rational in v . Furthermore, 
by Lemma A. I ,  the projection of the set 

onto b is injective. Therefore the exponential functions 



THE INVARIANT TRACE FORMULA. I. LOCAL THEORY 383 

are linearly independent over the field of rational functions. Setting the coeffi- 
cients equal to 0 ,  we find that 

{ e p p ) ( v ) - l ,  i f p ~ ~ ~ ~ , I M ~ C i ~  
r p  ( v )  = 0 ,  otherwise. 

Returning to the case that {cp(A)} is arbitrary, we substitute the formula for 

r~ ,t ( v )  into the right-hand side of (A.5). We obtain 

This completes the proof of Proposition 7.1. 
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