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smooth variety.  This is sufficient for many, but not 
all applications.  For instance, it is still not known 
whether the dimension of the space of holomorphic 
q-forms is a birational invariant in characteristic p.  In 
recent years there has been renewed progress on the 
problem  by Hironaka, Villamayor and his collaborators, 
Wlodarczyck, Kawanoue-Matsuki, Teissier, and 
others.  A workshop at the Clay Institute brought many 
of those involved together for four days in September 
to discuss recent developments.  Participants were Dan 
Abramovich, Dale Cutkosky, Herwig Hauser, Heisuke 
Hironaka, János Kollár, Tie Luo, James McKernan, 
Orlando Villamayor, and Jaroslaw  Wlodarczyk.  A 
superset of this group met later at RIMS in Kyoto at a 
workshop organized by Shigefumi Mori.  

Second was the CMI workshop organized by Rahul 
Pandharipande and Davesh Maulik.  Workshops are 
intended to foster communication and hence the 
creation of new mathematical knowledge.  This one 
had a quick payoff: the solution of the Yau-Zaslow 
conjecture for rational curves on K3 surfaces (see 
“Noether-Lefschetz theory and the Yau-Zaslow con- 
jecture,”  A. Klemm, D. Maulik, R. Pandharipande, 
and E. Scheidegger;  arXiv:0807.2477).

Third was the CMI workshop “Stringy Reflections on 
the LHC.”  This meeting, organized by Cumrun Vafa, 
brought together leading string theorists and particle 
phenomenologists to discuss the potentially observable 
data that could emerge from the Large Hadron Collider  
in Geneva after it begins operation in 2009.

Fourth was the Clay Research Summer School, held 
in Zürich, Switzerland on the subject of Evolution 
Equations.  The month-long school was organized by 
David Ellwood, Igor Rodnianski, Gigliola Staffilani, 
and Jared Wunsch.  It was the first such school in 
analysis per se.  Especially noteworthy was the large 
number of participants, one hundred seventy-eight, 
and the fact that thirty-eight came with their own 
funding.  As with all Clay Summer Schools, a volume 
with written versions of the courses and the topical 
lectures will appear in the CMI-AMS proceeeding 
series.		
		  Sincerely,

James A. Carlson

Dear Friends of Mathematics,
I would like to single out four activities of the Clay 
Mathematics Institute this past year that are of special 
interest.  The first was a small workshop, organized on 
short notice, on the topic of resolution of singularities 
of algebraic varieties in characteristic p > 0.  The 
characteristic zero case was solved by Heisuke 
Hironaka in a monumental paper,  “Resolution of 
singularities of an algebraic variety over a field of 
characteristic zero I, II,”  Annals of Mathematics 
1964 (pp 109-203 and 205-326).  Without resolution 
of singularities, modern algebraic geometry would 
be a far different subject. Since Hironaka’s paper, 
resolution of singularities in characteristic zero has 
been better and better understood by a series of 
authors including Bierstone and Millman (1997), 
Encinas and Villamayor (1998) Encinas and Hauser 
(2002), Cutkosky (2004), Wlodarczyk (2005), and 
Kollár (2007).  A complete proof, suitable for an 
advanced graduate course, can now be given in a 
tenth of the space of the original.  Such is the progress 
of mathematics!

In characteristic p > 0, much less is known.  The case 
of curves is elementary (normalize) while the case 
of surfaces, due to Abhyankar (1956) is difficult.  
Abhyankar also proved resolution for threefolds in 
characteristic p > 5.  Cutkosky recently gave a short 
proof of this result; Cossart and Piltant have given a 
proof valid in all characteristics.

The major area of progress in the general case has 
been the work of de Jong (1996) and Abramovich-de 
Jong (1998), who proved a weaker result: a singular 
variety is the image under a dominant finite map of 
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The second  
Clay Research 
Conference, an 
event devoted to 
recent advances 
in mathematical 
research, was   held 
at MIT on May 
12 and 13 at the 
MIT media lab 
(Bartos Theatre). 
T h e  l e c t u r e s ,  
listed on the right, 
covered a wide 
range of fields: 

algebraic geometry, symplectic geometry,  dynamical 
systems, geometric analysis, and probability theory.  

Conference speakers were Kevin Costello 
(Northwestern University), Helmut Hofer (Courant 
Institute, NYU), János Kollár (Princeton University), 
Tom Mrowka (MIT), Assaf Naor (Courant Institute, 
NYU), Rahul Pandharipande (Princeton University), 
Scott Sheffield (Courant Institute, NYU), and Claire 
Voisin (CNRS, IHÉS, and Inst. Math. Jussieu).  
Abstracts of their talks are given below.  Videos of the 
talks are available on the Clay Mathematics Institute 
web site, at www.claymath.org/publications/videos.

On the afternoon of May 12, the Clay Research 
Awards were presented to Claire Voisin and to Cliff 
Taubes.  The citations read:

Cliff Taubes (Harvard University) for his proof of the 
Weinstein conjecture in dimension three.  

Claire Voisin (CNRS, IHÉS, and Inst. Math. Jussieu) 
for her disproof of the Kodaira conjecture. 

The Clay Research Award is presented annually 
to recognize major breakthroughs in mathematical 
research. Awardees receive the bronze sculpture 
“Figureight Knot Complement VII/CMI” by artist-
mathematician Helaman Ferguson.  They also receive 
flexible research support for a period of one year.

Clay Research Conference

Clay Research Awards 
Previous recipients of the award, in reverse chronological order are: 

2007 	 Alex Eskin (University of Chicago)
	 Christopher Hacon (University of Utah) and
	 James McKernan (UC Santa Barbara)
	 Michael Harris (Université de Paris VII) and
	 Richard Taylor (Harvard University)

2005 	 Manjul Bhargava (Princeton University)
	 Nils Dencker (Lund University, Sweden)

2004	 Ben Green (Cambridge University)
	 Gérard Laumon (Université de Paris-Sud, Orsay)
	 Bao-Châu Ngô (Université de Paris-Sud, Orsay)

2003	 Richard Hamilton (Columbia University)
	 Terence Tao (University of California, Los Angeles)

2002	 Oded Schramm (Theory Group, Microsoft Research)
	 Manindra Agrawal  (Indian Institute of Technology, 		
	 Kanpur)

2001	 Edward Witten (Institute for Advanced Study)
	 Stanislav Smirnov (Royal Institute of Technology, 		
	 Stockholm)

2000	 Alain Connes (College de France, IHES, Vanderbilt 		
	 University)
	 Laurent Lafforgue (Institut des Hautes Études 		
	 Scientifiques)

1999 	 Andrew Wiles (Princeton University)

The Clay Mathematics Institute presents the Clay Research Award 
annually to recognize major breakthroughs in mathematical 
research.  Awardees receive the bronze sculpture “Figureight Knot 
Complement vii/CMI” by Helaman Ferguson and are named Clay 
Research Scholars for a period of one year.  As such they receive 
substantial, flexible research support.  Awardees have used their 
research support to organize a conference or workshop, to bring in 
one or more collaborators, to travel to work with a collaborator, and
for other endeavors.
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Clay Research Conference

Helmut Hofer delivering his talk at the conference.

Abstracts of Talks
Kevin Costello (Northwestern University)
A Wilsonian point of view on renormalization of 
quantum field theories 

A conceptual proof of renormalizability of pure 
Yang-Mills theory in dimension four was given 
based on an approach to Wilson’s effective action 
and the Batalin-Vilkovisky formalism.

Helmut Hofer (Courant Institute, NYU)
A generalized Fredholm theory and some new ideas 
in nonlinear analysis and geometry

The usual notion of differentiability in 
infinite-dimensional Banach spaces is Fréchet  
differentiability. It can be viewed as a straight-
forward generalization of the finite-dimensional  
notion. The important feature of Fréchet 
differentiability is the validity of the chain rule.  
However, there are different generalizations, and 
a new one is sc-differentiability. This notion also 
has a chain rule. Sc-smoothness requires additional 
structure on the Banach spaces, so-called sc-
structure. 

The striking difference between “Fréchet-smooth” 
and “sc-smooth” can be seen when studying maps  
r : U 4  U , satisfying r o r = r, i.e., retractions, 
where U is an open subset of a Banach space. 
If r is Fréchet-smooth, then r(U ) is necessarily a 
submanifold of U. However, there are sc-smooth 
examples where r(U ) is finite-dimensional, but has 
locally varying dimension. There are also examples 
where a connected r(U ) has finite-dimensional as 
well as infinite-dimensional parts. If we consider 
pairs (O, E), where O is a subset of the sc-Banach 
space E and is also the image of an sc-smooth 
retraction, we obtain new local models for smooth 
spaces. We even can define the tangent of T(O, E) by 
(TO, TE), where TO = T r(T, U ). Noting that by the 
chain rule T r o Tr = Tr we see that TO is again an sc-
smooth retraction. As it turns out, the definition does 
not depend on r as long as O is the image of r. We 
also can define the sc-smooth maps between local 
sc-models.  Evidently, many constructions known 
from differential geometry can be carried over to 
a new “sc-retraction based differential geometry”. 
Manifolds become M-polyfolds and orbifolds 
become polyfolds. 

A nonlinear elliptic differential operator can usually 
be interpreted as a Fredholm section of a Banach 
space bundle and, given enough compactness, can be 
studied topologically.  Many interesting problems in 
geometry are related to elliptic problems that show 
a lack of compactness, like bubbling-off. However, 
these problems usually have fancy compactifications. 
Two such problems of interest are Gromov-Witten 
theory and the more general symplectic field theory. 
Due to serious compactness and transversality issues, 
it is difficult to study them in a classical Banach 
manifold set-up. However, it turns out that they are 
much more easily described in sc-retraction-based 
differential geometry. 

Finally, there is a generalization of the classical 
nonlinear Fredholm theory to the sc-world, which 
also has a built-in Sard-Smale-type perturbation and 
transversality theory. In its applications to symplectic 
field theory the solution spaces are the compactified 
moduli spaces. 

János Kollár (Princeton University)
Local Integrability of holomorphic functions

Question: Let ƒ(z1,…,zn) be a holomorphic function 
on an open set	            .  For which 
locally integrable?  It is not hard to see that there is a 
largest value s0 (depending on ƒ and p) such that |ƒ|-s 

is integrable in a neighborhood of p for s < s0 but not 
integrable for s > s0. Our aim is to study this “critical 
value” s0. Subtle properties of these critical values 
are connected with Mori’s program (especially the 
termination of flips), with the existence of Kähler-
Einstein metrics in the positive curvature case and 
many other topics.

LOCAL INTEGRABILITY OF HOLOMORPHIC FUNCTIONS

JÁNOS KOLLÁR

Question: Let f(z1, . . . , zn) be a holomorphic function on an open set U ⊂ Cn. For
which s ∈ R is |f |−s locally integrable?

It is not hard to see that there is a largest value s0 (depending on f and p) such that |f |−s
is integrable in a neighborhood of p for s < s0 but not integrable for s > s0. Our aim is to
study this “critical value” s0. Subtle properties of these critical values are connected with
Mori’s program (especially the termination of flips), with the existence of Kähler-Einstein
metrics in the positive curvature case and many other topics.
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Tom Mrowka (MIT)
Monopoles, closed Reeb orbits and spectral flow:
Taubes’ work on the Weinstein conjecture

We survey Cliff Taubes’ recent proof of the Weinstein 
conjecture in dimension three and related topics. 
Taubes shows how to construct periodic orbits of 
Reeb vector fields on contact three manifolds from 
special cycles in the Seiberg-Witten Monopole Floer 
homology. The proof follows ideas from Taubes’ 
work relating the Seiberg-Witten and Gromov 
invariants of four-manifolds but with a new twist. 
It hinges on new results describing the asymptotic 
behavior of spectral flow for Dirac type operators.

Assaf Naor (Courant Institute, NYU)
Probabilistic reasoning in quantitative geometry

Many problems of an asymptotic and quantitative 
nature in geometry have recently been solved using a 
variety of probabilistic tools. Apart from the classical 
use of the probabilistic method to prove existence 
results, it turns out thinking “probabilistically,” 
or interpreting certain geometric invariants in a 
probabilistic way, is a powerful way to bound a 
variety of geometric quantities. This talk is devoted 
to surveying the ways in which probabilistic 
reasoning plays a sometimes unexpected role in 
topics such as bi-Lipschitz and uniform embedding 
theory, extension problems for Lipschitz maps, 
metric Ramsey problems, harmonic analysis, and 
theoretical computer science. We will show how 
random partitions of metric spaces can be used to 
embed them in normed spaces, find large Euclidean 
subsets, extend Lipschitz functions, and bound the 
weak (1,1) norm of maximal functions. We will also 
discuss the role of random projections, and describe
the connections between the behavior of Markov 
chains in metric spaces and Lipschitz extension, 
lower bounds for bi-Lipschitz embeddings, and the 
computation of compression exponents for discrete 
groups.

Rahul Pandharipande (Princeton University)
Curve counting via stable pairs in the derived 
category

Let X be a projective 3-fold. We construct a moduli 
space of stable pairs in the derived category of X 
with a well-defined enumerative geometry. The 
enumerative invariants are conjectured to be 

equivalent to the Gromov-Witten theory of X. The 
geometry is a very natural place to study recent 
derived category wall-crossing formulae. Fibrations 
of K3 surfaces provide computable examples. 
Connections to work of Kawai-Yoshioka and the 
Yau-Zaslow formula for enumerating rational curves 
on K3 surfaces are made. 

This is joint work with R. Thomas. 

Scott Scheffield (Courant Institute, NYU) 
Quantum gravity and the Schramm-Loewner 
evolution

Many “quantum gravity” models in mathematical 
physics can be interpreted as probability measures 
on the space of metrics on a Riemannian manifold. 
We describe several recently derived connections 
between these random metrics and certain random 
fractal curves called “Schramm-Loewner evolutions” 
(SLE).

Claire Voisin (CNRS, IHÉS and Inst. Math. Jussieu) 
Hodge structures, cohomology algebras and the 
Kodaira problemn

We show that there exist, starting from complex 
dimension 4, compact Kähler manifolds whose 
cohomology algebra is not that of a projective 
complex manifold. In particular their complex 
structure does not deform to that of a projective 
manifold, while Kodaira proved that compact Kähler 
surfaces deform to projective ones. The argument 
uses the notion of Hodge structure on a cohomology 
algebra, and exhibits algebraic obstructions for 
the existence of such Hodge structure admitting a 
rational polarization. We will also explain further 
applications of this notion, e.g. the fact that 
cohomology algebras of compact Kähler manifolds 
are strongly restricted amongst cohomology algebras 
of compact symplectic manifolds satisfying the hard 
Lefschetz property.
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Cliff Taubes receiving the 2008 Clay Research Award that was presented by 
Landon and Lavinia Clay and President James Carlson.

The Weinstein Conjecture

Classical mechanics, as formulated by Hamilton,
takes place in the context of a configuration space
of positions and momenta. Mathematically, this is
a manifold M with a symplectic structure and a
distinguished function H, the Hamiltonian. The
symplectic structure is given by a closed 2-form ω
such that ωn(x) = 0, for all x in M , where M is
of dimension 2n. Such a manifold carries a natural
vector field XH defined by the condition

ω(XH , Y ) = dH(Y )

for all Y . This, the Hamitonian vectorfield, defines
a flow φt(x) on the manifold. If x = (q, p) give the
position and momentum of a particle, its trajectory
as time evolves is given by φt(x) for varying t. The
flow itself is defined by Hamilton’s equations,

ṗ =
∂H

∂q
, q̇ = −∂H

∂p

where q and q are Darboux coordinates, giving con-
jugate positions and momenta.

The flow just defined determines a dynamical sys-
tem. A fundamental problem is whether or not
there exist closed orbits for such a system. For ex-
ample, we hope that the orbit of the earth is both
closed and quite stable. Orbits, of course, lie on
the level sets of H, which is commonly taken to be
the total energy.

In the late 1970s Rabinowitz and Weinstein proved
that for H : R2n −→ R which has either star-
shaped or convex level sets, the corresponding Hamil-
tonian flow has a periodic orbit on the level sets. In
searching for a common generalization, Weinstein
observed that a contact structure could be seen as
the engine which makes the arguments work.

A contact manifold is an odd-dimensional manifold
with a one-form A such that A∧dAn is everywhere
nonzero. The kernel of A is a maximally noninte-
grable field of hyperplanes in the tangent bundle;
the Reeb vector field generates the kernel of dA
and pairs to one with A. For a motivating exam-
ple, consider the unit sphere in Cn, where A is the a
standard form which annihilates the maximal com-
plex subspace of the tangent space. If Z is a coor-
dinate vector for Cn, then A =

√
−1(∂̄−∂)log||Z||2

is such a form. In this case the Reeb vector field
is the field tangent to the circles in the fibration
S2n−1 −→ CPn from the sphere to the associated
complex projective space.

The Weinstein conjecture, stated some thirty years
ago, asks whether the Reeb vector field for a con-
tact manifold always has a a closed orbit. By
contrast, there exist arbitrary vector fields on the
three-sphere not annihilated by dA with no closed
orbits. These are the counterexamples to the Seifert
Conjecture of Schweitzer, Harrison and Kuperberg.

Hofer proved the Weinstein Conjecture in many
special cases in dimension three, for example, the
three-sphere and contact structures on any three-
dimensional reducible manifold. Taubes’ solution
to the general conjecture in dimension three is based
on a novel application of the Seiberg-Witten equa-
tions to the problem. The orbits come from special
cycles in the Seiberg-Witten Monopole Floer Ho-
mology.The Weinstein Conjecture
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Claire Voisin receiving the 2008 Clay Research Award that was presented by 
Landon and Lavinia Clay and President James Carlson.

The Kodaira Conjecture

Geometric structures on a topological manifold of-
ten impose restrictions on what kind of manifolds
can arise. For example, a symplectic manifold must
have nonzero second Betti number, since the sym-
plectic form ω is non-trivial in cohomology. In-
deed, if the manifold has dimension 2n, then ωn has
nonzero integral. Yet more restrictive is the notion
of a Kähler manifold – a symplectic manifold for
which the form ω has type (1, 1) in a compatible
complex structure. In that case many topological
conditions are satisfied: the odd Betti numbers are
even, the cohomology ring is formal, and there are
numerous restrictions on the fundamental group.
Kähler manifolds abound: any projective algebraic
manifold, that is, any submanifold of complex pro-
jective space defined by homogeneous polynomial
equations, is a Kähler manifold. In complex dimen-
sion one, the converse is true: any Kähler manifold
(a Riemann surface) is complex projective. In com-
plex dimension two, the converse is false, but just
barely: every complex Kähler manifold is the de-
formation of a projective algebraic manifold. This
fact was proved by Kodaira, using his classification
theorem for complex surfaces.

The question then arises: is every compact Kähler
manifold deformable to projective algebraic one?
Although never explicitly stated by Kodaira, this
question has become known as the Kodaira Con-
jecture. Alas, the proof in dimension two gives no
clue about what happens in higher dimension. The
crux of the problem, however, is to show that on
the given complex manifoldM , can one deform the
complex structure so as to obtain a positive (1, 1)
class in the rational cohomology. That is, one must
show that the Hodge structure is polarizable. The
fundamental theorem here is due to Kodaira: from
a closed, rational, positive, (1, 1) form, one may
construct an imbedding of the underlying manifold
into projective space.

There have been various attempts to prove or dis-
prove the conjecture. Since any deformation of M
has the same diffeomorphism type as M , a dis-
proof requires a topological invariant defined for
Kähler manifolds that distinguishes the projective
algebraic ones from those that are not.

The starting point for Voisin’s counterexample is
the construction of a complex torus T which is
not projective algebraic because of the existence

of a “wild” endomorphism Φ. This is an endo-
morphishm whose eigenvalues are non-real and dis-
tinct, and such that the Galois group of the field
generated by the eigenvalues is as large as possi-
ble. An example is given by the companion matrix
of the polynomial x4 − x + 1. The second exte-
rior product of a weight one Hodge structure with
a wild endomorphism carries no nonzero rational
(1, 1) classes, so long as the space of elements of
type (1, 0) has dimension strictly greater than one.
Therefore the complex manifold T is not projective
algebraic, though it can, of course, be deformed to
an algebraic torus. The actual counterexample is
a suitable blowup of T × T . Consider the subvari-
eties T × {0}, {0} × T , the graph of the diagonal,
and the graph of Φ. Blow up the points of in-
tersection of the diagonals of the identity and of
Φ and also the intersection of T × {0} with the
graph of Φ. Then blow up the proper transforms
of the subvarieties to obtain a Kähler manifold V
with H2(V ) ∼= Λ2H1(T ). Any deformation of a
blowup of a complex torus is obtained first by de-
forming the torus and then deforming the blowup.
From this one sees that the wild endomorphism is
preserved. Therefore the Hodge structure H2(V )
contains no rational (1, 1) classes, and so V , and
indeed any Kähler manifold with the same coho-
mology ring as V , is not projective algebraic. The
same kind of construction yields a disproof of the
Kodaira conjecure in dimension four or greater.
Voisin also gives simply connected counterexam-
ples in dimension six and greater.
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the construction of a complex torus T which is
not projective algebraic because of the existence

of a “wild” endomorphism Φ. This is an endo-
morphishm whose eigenvalues are non-real and dis-
tinct, and such that the Galois group of the field
generated by the eigenvalues is as large as possi-
ble. An example is given by the companion matrix
of the polynomial x4 − x + 1. The second exte-
rior product of a weight one Hodge structure with
a wild endomorphism carries no nonzero rational
(1, 1) classes, so long as the space of elements of
type (1, 0) has dimension strictly greater than one.
Therefore the complex manifold T is not projective
algebraic, though it can, of course, be deformed to
an algebraic torus. The actual counterexample is
a suitable blowup of T × T . Consider the subvari-
eties T × {0}, {0} × T , the graph of the diagonal,
and the graph of Φ. Blow up the points of in-
tersection of the diagonals of the identity and of
Φ and also the intersection of T × {0} with the
graph of Φ. Then blow up the proper transforms
of the subvarieties to obtain a Kähler manifold V
with H2(V ) ∼= Λ2H1(T ). Any deformation of a
blowup of a complex torus is obtained first by de-
forming the torus and then deforming the blowup.
From this one sees that the wild endomorphism is
preserved. Therefore the Hodge structure H2(V )
contains no rational (1, 1) classes, and so V , and
indeed any Kähler manifold with the same coho-
mology ring as V , is not projective algebraic. The
same kind of construction yields a disproof of the
Kodaira conjecure in dimension four or greater.
Voisin also gives simply connected counterexam-
ples in dimension six and greater.

The Kodaira Conjecture

Geometric structures on a topological manifold of-
ten impose restrictions on what kind of manifolds
can arise. For example, a symplectic manifold must
have nonzero second Betti number, since the sym-
plectic form ω is non-trivial in cohomology. In-
deed, if the manifold has dimension 2n, then ωn has
nonzero integral. Yet more restrictive is the notion
of a Kähler manifold – a symplectic manifold for
which the form ω has type (1, 1) in a compatible
complex structure. In that case many topological
conditions are satisfied: the odd Betti numbers are
even, the cohomology ring is formal, and there are
numerous restrictions on the fundamental group.
Kähler manifolds abound: any projective algebraic
manifold, that is, any submanifold of complex pro-
jective space defined by homogeneous polynomial
equations, is a Kähler manifold. In complex dimen-
sion one, the converse is true: any Kähler manifold
(a Riemann surface) is complex projective. In com-
plex dimension two, the converse is false, but just
barely: every complex Kähler manifold is the de-
formation of a projective algebraic manifold. This
fact was proved by Kodaira, using his classification
theorem for complex surfaces.

The question then arises: is every compact Kähler
manifold deformable to projective algebraic one?
Although never explicitly stated by Kodaira, this
question has become known as the Kodaira Con-
jecture. Alas, the proof in dimension two gives no
clue about what happens in higher dimension. The
crux of the problem, however, is to show that on
the given complex manifoldM , can one deform the
complex structure so as to obtain a positive (1, 1)
class in the rational cohomology. That is, one must
show that the Hodge structure is polarizable. The
fundamental theorem here is due to Kodaira: from
a closed, rational, positive, (1, 1) form, one may
construct an imbedding of the underlying manifold
into projective space.

There have been various attempts to prove or dis-
prove the conjecture. Since any deformation of M
has the same diffeomorphism type as M , a dis-
proof requires a topological invariant defined for
Kähler manifolds that distinguishes the projective
algebraic ones from those that are not.

The starting point for Voisin’s counterexample is
the construction of a complex torus T which is
not projective algebraic because of the existence

of a “wild” endomorphism Φ. This is an endo-
morphishm whose eigenvalues are non-real and dis-
tinct, and such that the Galois group of the field
generated by the eigenvalues is as large as possi-
ble. An example is given by the companion matrix
of the polynomial x4 − x + 1. The second exte-
rior product of a weight one Hodge structure with
a wild endomorphism carries no nonzero rational
(1, 1) classes, so long as the space of elements of
type (1, 0) has dimension strictly greater than one.
Therefore the complex manifold T is not projective
algebraic, though it can, of course, be deformed to
an algebraic torus. The actual counterexample is
a suitable blowup of T × T . Consider the subvari-
eties T × {0}, {0} × T , the graph of the diagonal,
and the graph of Φ. Blow up the points of in-
tersection of the diagonals of the identity and of
Φ and also the intersection of T × {0} with the
graph of Φ. Then blow up the proper transforms
of the subvarieties to obtain a Kähler manifold V
with H2(V ) ∼= Λ2H1(T ). Any deformation of a
blowup of a complex torus is obtained first by de-
forming the torus and then deforming the blowup.
From this one sees that the wild endomorphism is
preserved. Therefore the Hodge structure H2(V )
contains no rational (1, 1) classes, and so V , and
indeed any Kähler manifold with the same coho-
mology ring as V , is not projective algebraic. The
same kind of construction yields a disproof of the
Kodaira conjecure in dimension four or greater.
Voisin also gives simply connected counterexam-
ples in dimension six and greater.
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The   activities   of CMI researchers and  
research programs are sketched below.  Researchers 
and programs are selected by the Scientific Advisory 
Board (see inside back cover).

Clay Research Fellows
Spyros Alexakis received his Ph.D. from Princeton 
University under the supervision of Charles 
Fefferman in 2005. He is currently on leave from his 
position as Assistant Professor at the University of 
Toronto.  He began his two-year appointment in July 
2009 while a visiting researcher at MIT.  

Adrian Ioana, a native of Romania, received his 
B.S. from Unversity of Bucharest and his Ph.D. in 
2007 at UCLA under the direction of Professor Sorin 
Popa. He began his three-year appointment while a 
post-doc at Caltech.

Xinyi Yuan received his PhD in 2008 from Columbia 
University under the direction of Shou-Wu Zhang.  
His three-year appointment began at the Institute for 
Advanced Study where he is a visitor in the School 
of Mathematics.  

Alexakis, Ioana, and Yuan joined CMI’s current group 
of research fellows Mohammed Abouzaid (MIT), 
Artur Avila (IMPA Brazil),  Maria Chudnovsky 
(Columbia University), Soren Galatius (Stanford 
University), Bo’az Klartag (Princeton University), 
Ciprian Manolescu (Columbia University), Davesh 
Maulik (Columbia University), Maryam Mirzakhani 
(Princeton University), Sophie Morel (Institute 
for Advanced Study), Samuel Payne (Stanford 
University), and David Speyer (MIT) and
Teruyoshi Yoshida (Harvard University) 

Irine Peng
Jonathan (Jay) Pottharst
Yanir Rubinstein
Travis Schedler
David Smyth
Robert Waelder
Micah Warren
Chenyang Xu
Karen Yeats
David Zywina

Mark Braverman
Dawei Chen
Michael Eichmair
Inessa Epstein
David Fithian
Qëndrim Gashi
Marketa Havlíčková
Kai-Wen Lan
Manish Patnaik
Ron Peled

Liftoff Fellows

CMI appointed twenty Liftoff Fellows for the 
summer of 2008.  Clay Liftoff Fellows are recent 
Ph.D. recipients who receive one month of summer 
salary and travel funds before their first academic 
position.  See www.claymath.org/liftoff

Research Scholars
Dipendra Prasad (TIFR, Mumai). September 24, 
2007–June 13, 2008 at University of California, San 
Diego.

Senior Scholars
Senior Scholars John Lott and Gang Tian at Institut 
Henri Poincaré.  May 1–June 30.

Senior Scholar Rob Lazarsfeld at PCMI/IAS.  July 
6–26.

Senior Scholar Henri Gillet at the Fields Institute 
Program on Arithmetic Geometry, Hyperbolic 
Geometry and Related Topics. September 
1–November 30.

Senior Scholar Fedor Bogomolov at the Centro di 
Ricerca Matematica Program on Groups in Algebraic 
Geometry.  September 1–November 30.

Senior Scholar Richard Schoen at the Mittag-Leffler 
Institute Program on Geometry, Analysis  and 
General Relativity.  September 1–December 15.

Senior Scholar Werner Mueller at the MSRI 
Program on Analysis of Singular Spaces.  September 
10–October 21.

Senior Scholar Gunther Uhlmann at the MSRI 
Program on Analysis of Singular Spaces.  September 
16–December 15.

Reseach Fellow Adrian Ioana
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Research Programs organized and supported
by CMI

January 3–12. Cycles, Motives, and Shimura 
Varieties at TIFR, Mumbai, India.

January 31–Feb 3. Shrinking Target Properties at 
Brandeis University.

March 8. Symposium for Undergraduates in the 
Mathematical Sciences at Brown University, 
Providence, Rhode Island.

March 16–19. Algebraic Statistics, Machine 
Learning, and Lattice Spin Models at Banbury 
Conference Center, Cold Spring Harbor Laboratory.

March 16–21. Recent Progress on the Moduli Space 
of Curves at Banff International Research Station, 
Canada.

March 20–23. CMI Workshop on K3s: Modular 
Forms, Moduli, and String Theory.

March 25–29. Conference on Algebraic Cycles II at 
Ohio State University, Columbus, Ohio.

March 28–30. CMI Workshop: Automorphic Forms 
in Moduli Problems of Schottky and Brill-Noether 
Type.

April 5–13. Additive Combinatorics, Number 
Theory, and Harmonic Analysis at the Fields 
Institute, Toronto, Canada.

May 8. “The Music of the Primes,” Clay Public 
Lecture by Marcus du Sautoy at MIT.

May 11–18. Workshop on Global Riemannian 
Geometry, National Autonomous University of 
Mexico, Cuernavaca (IMATE-UNAM Cuernavaca), 
Mexico.

May 12–13. Clay Research Conference at MIT.

May 18–23. HIRZ80 at Emmy Noether Research 
Institute for Mathematics at Bar Ilan University, 
Ramat Gan, Israel.

Research Fellow Xinyi Yaun

Marcus du Sautoy discussed the mystery of prime numbers, the history 
behind the Riemann hypothesis and the ongoing quest to solve it in his 
May 2008 Clay Public Lecture at MIT.  A video recording of his talk may 
be viewed at www.claymath.org/public_lectures/dusautoy.php. 
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Program Allocation 

Estimated number of persons supported by CMI in 
selected scientific programs for calendar year 2008:

Research Fellows, Research Awardees,
Senior Scholars, Research Scholars, 
Book Fellows, Liftoff Fellows	                       30

Summer School participants and faculty           134

PROMYS/Ross, participants and
faculty                                                              28

CMI Workshops			                       76

Participants attending Conferences and
Joint Programs				        > 1000
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Summary of 2008 Research Activities

May 19–25. Lie Theory and Geometry: The 
Mathematical Legacy of Bertram Kostant at PIMS in 
Vancouver, BC.

June 2–13. Conference on Motives, Quantum Field 
Theory and Pseudodifferential Operators at Boston 
University.

June 9–13. A Celebration of Raoul Bott’s Legacy in 
Mathematics at CRM, Montreal.

June 15–28. School and Workshop on Aspects of 
Moduli Theory at the De Giorgi Center, Scuola Normale 
Superior di Pisa.

June 16–20. Analysis and Topology in Interaction at the 
Il Pallazone in Cortona, Italy.

June 22–28. Symmetries in Mathematics and Physics 
at the Palazzone della Scuola Normale Superiore, 
Cortona, Italy.

June 23–July 18. CMI Summer School: Evolution 
Equations at the ETH, Eidgenossische Technische 
Hochschule, Swiss Federal Institute of Technology, 
Zurich, Switzerland.

June 28–July 2. Conference on Modular Forms and 
Arithmetic in honor of Ken Ribet’s 60th birthday at 
MSRI, Berkeley, CA.

July 14–26. Algebraic Geometry, D-modules, Foliations 
and their Interactions, Buenos Aires, Argentina.

July 16–18. 60 Miles: A conference in Honor of Miles 
Reid’s 60th Birthday, LMS, London.

August 4–15. CMI Workshop: The Foundations of 
Algebraic Geometry: Grothendieck’s EGA Unbound.

October 13–16. CMI Workshop: Stringy Reflections on 
LHC.

October 14. “A Tribute to Euler,” Clay Public Lecture 
by William Dunham at Harvard University.

CMI Summer School Scientific Committee members Jared Wunsch,  Gigliola Staffilani  and 
Igor Rodnianski, (and David Ellwood, not depicted).  

0

1

2

3

4

5

2008200720062005200420032002200120001999

IRS Qualifying Charitable Expenses of CMI Since Inception
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Interview with Research Fellow 
Maryam Mirzakhani

What first drew you to mathematics?  What are some 
of your earliest memories of mathematics?

As a kid, I dreamt of becoming a writer. My most 
exciting pastime was reading novels; in fact, I 
would read anything I could find. I never thought 
I would pursue mathematics before my last year 
in high school. I grew up in a family with three 
siblings. My parents were always very supportive 
and encouraging. It was important for them that we 
have meaningful and satisfying professions, but they 
didn’t care as much about success and achievement. 
In many ways, it was a great environment for me, 
though these were hard times during the Iran-Iraq 
war. My older brother was the person who got me 
interested in science in general. He used to tell 
me what he learned in school. My first memory of 
mathematics is probably the time that he told me 
about the problem of adding numbers from 1 to 100. 
I think he had read in a popular science journal how 
Gauss solved this problem. The solution was quite 
fascinating for me. That was the first time I enjoyed a 
beautiful solution, though I couldn’t find it myself.

Could you talk about your mathematical education? 
What experiences and people were especially 
influential?  

I was very lucky in many ways. The war ended when 
I finished elementary school; I couldn’t have had the 
great opportunities that I had if I had been born ten 
years earlier.  I went to a great high school in Tehran, 
Farzanegan, and had very good teachers. I met my 
friend Roya Beheshti the first week after entering 
middle school. It is invaluable to have a friend who 
shares your interests, and helps you stay motivated. 
Our school was close to a street full of bookstores in 
Tehran. I remember how walking along this crowded 
street, and going to the bookstores, was so exciting 
for us. We couldn’t skim through the books like 
people usually do here in a bookstore, so we would 
end up buying a lot of random books. 

Also, our school principal was a strong-willed 
woman who was willing to go a long way to provide 
us with the same opportunities as the boys’ school. 
Later, I got involved in Math Olympiads that made 
me think about harder problems. As a teenager, I 
enjoyed the challenge. But most importantly, I met 
many inspiring mathematicians and friends at Sharif 
University. The more I spent time on mathematics, 
the more excited I became.

At Sharif  University, we had problem-solving sessions 
and informal reading groups with my classmates. 
The friendship and support of all the people I met 
there and later at Harvard helped me a lot in many 
different ways. I am grateful to all of them.

Did you have a mentor?  Who helped you develop 
your interest in mathematics, and how?

Many people have had a great influence on my math 
education, from my family and teachers in high 
school to professors at Sharif University, and later 
at Harvard.

You were educated in Iran.  Could you comment 
on the differences between mathematical education 
there and in the US?

It is hard for me to comment on this question since 
my experience here in the U.S. is limited to a few 
universities, and I know very little about the high 
school education here.

Maryam Mirzakhani, a native of Iran, is currently  
a professor of mathematics at Stanford.  She 
completed her Ph.D. at Harvard in 2004 under the 
direction of Curtis T. McMullen. In her thesis she 
showed how to compute the Weil-Petersson volume 
of the moduli space of bordered Riemann surfaces. 
Her research interests include Teichmüller theory, 
hyperbolic geometry, ergodic theory, and symplectic 
geometry.
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In particular, I am interested in understanding 
hyperbolic surfaces. Sometimes properties of a 
fixed hyperbolic surface can be better understood 

by studying the moduli 
space that parametrizes 
all hyperbolic structures 
on a given topological 
surface.

These moduli spaces 
have rich geometries themselves, and arise in natural 
and important ways in differential, hyperbolic, and 
algebraic geometry. There are also connections with 
theoretical physics, topology, and combinatorics. 
I find it fascinating that you can look at the same 
problem from different perspectives, and approach it 
using different methods.

What research problems and areas are you likely to 
explore in the future?

It’s hard to predict. But I would prefer to follow the 
problems I start with wherever they lead me.

Could you comment on collaboration versus solo 
work as a research style? Are certain kinds of 
problems better suited to collaboration?

I find collaboration quite exciting. I am grateful to 
my collaborators for all I have learned from them. 
But in some ways I would prefer to do both; I usually 
have some problems to think about on my own. 

What do you find most rewarding or 
productive?

Of course, the most rewarding part 
is the “Aha” moment, the excitement 
of discovery and enjoyment of 
understanding something new, the 

feeling of being on top of a hill, and having a clear 
view. But most of the time, doing mathematics for 
me is like being on a long hike with no trail and no 
end in sight!

I find discussing mathematics with colleagues of 
different backgrounds one of the most productive 
ways of making progress.

However, I should say that the education system in 
Iran is not the way people might imagine here.  As a 
graduate student at Harvard, I had to explain quite a 
few times that I was allowed to attend a 
university as a woman in Iran. While it 
is true that boys and girls go to separate 
schools up to high school, this does not 
prevent them from participating say in 
the Olympiads or the summer camps.

But there are many differences: in Iran you choose 
your major before going to college, and there is a 
national entrance exam for universities. Also, at 
least in my class in college, we were more focused 
on problem solving rather than taking advanced 
courses.

What attracted you to the particular problems you 
have studied?

When I entered Harvard, my background was  
mostly combinatorics and algebra. I had always 
enjoyed complex analysis, but I didn’t know much 
about it. In retrospect, I see that I was completely 
clueless. I needed to learn many subjects which 
most undergraduate students from good universities 
here know. I started attending the informal seminar 
organized by Curt McMullen. Well, most of the 
time I couldn’t understand a word of what the 
speaker was saying. But I could appreciate some 
of the comments by Curt. I was fascinated by how 
he could make things simple, and elegant. So I 
started asking him questions regularly, and thinking  
about problems  that 
came out of these 
illuminating    discussions. 
His encouragement was 
invaluable. Working 
with Curt had a great 
influence on me, though 
now I wish I had learned more from him!  By the 
time I graduated I had a long list of raw ideas that I 
wanted to explore.

Can you describe your research in accessible terms? 
Does it have applications to other areas?

Most problems I work on are related to geometric 
structures on surfaces and their deformations.  

... the education system in Iran is not the way 
people might imagine here.  As a graduate 
student at Harvard, I had to explain quite 
a few times that I was allowed to attend a 
university as a woman in Iran.

Most problems I work on are related to 
geometric structures on surfaces and their 
deformations.  In particular, I am interested 
in understanding hyperbolic surfaces.
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How has the Clay Fellowship made a difference for you?

It was a great opportunity for me; I spent most of 
my time at Princeton which was a great experience.  
The Clay Fellowship gave me the freedom to think 
about harder problems, travel freely, and talk to 
other mathematicians. I am a slow thinker, and have 
to spend a lot of time before I can clean up my ideas 
and make progress. So I really appreciate that I didn’t 
have to write up my work in a rush.

What advice would you give to young people 
starting out in math (i.e., high school students and 
young researchers)?

I am really not in a position to give advice; I usually 
use the career advice on Terry Tao’s web page for 
myself! Also, everyone has a different style, and 
something that works for one person might not be so 
great for others. 

What advice would you give lay persons who would 
like to know more about mathematics—what it is, 
what its role in our society has been and so on?   
What should they read? How should they proceed?

This is a difficult question.  I don’t think that everyone 
should become a mathematician, but I do believe that 
many students don’t give mathematics a real chance. 
I did poorly in math for a couple of years in middle 
school; I was just not interested in thinking about it. 
I can see that without being excited mathematics can 
look pointless and cold. The beauty of  mathematics 
only shows itself to more patient followers.

Please tell us about things you enjoy when not doing 
mathematics.

Mostly, I spend time with my family and husband. 
But for myself, I prefer solo activities; I enjoy 
reading and exercising in my free time.

Recent Research Articles 

“Ergodic Theory of the Earthquake Flow.” Int Math 
Res Notices (2008) Vol. 2008.

“Ergodic Theory of the Space of Measured 
Laminations,” with Elon Lindenstrauss.  Int Math 
Res Notices (2008) Vol. 2008.
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Riemann Surface and Geodestics. Pencil sketch by Jim Carlson.
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A Tribute to Euler by William Dunham

Koehler Professor of Mathematics,
Muhlenberg College

Visiting Professor of Mathematics,  
Harvard University
 
With acclaim normally reserved for matinee 
idols, Leonhard Euler has recently been basking 
in the mathematical limelight.  The cause of 
this spike in publicity was his tercentenary.  
Euler was born in Switzerland in 1707, and 
thus 2007 provided the perfect 
opportunity for mathematicians 
to celebrate his life and work. 
Discussions, conferences, and 
special events were held in 
his honor.  The Mathematical 
Association of America published 
not one, not two, but five books 
about his remarkable career.  And, 
in October of 2008 (“tercentenary 
plus one”), Euler was the subject  
of my Clay Public Lecture at 
Harvard University.     His story,  in 
both its personal and scholarly 
dimensions, is one of the great tales 
from the history of mathematics. 

As a youth, Euler showed such signs of genius that 
he was mentored by Johann Bernoulli, who was 
then on the faculty at the University of Basel.  Euler 
would later recall his sessions with the illustrious 
Bernoulli as an exciting, if daunting, experience.  
For his part, Johann recognized the special talent 
of his young student.  Indeed, Bernoulli—a person 
not naturally self-effacing—would later write these 
laudatory words to Euler: “I present higher analysis 
as it was in its childhood, but you are bringing it to 
man’s estate.” 

When he was 15, Euler graduated from the University 
of Basel, and by the age of 20 he had won a prize 
from the Paris Academy.  In those days, the Academy 
would challenge the mathematicians of Europe with 
specific, and often quite difficult, problems.  In 
this instance, the problem required a mathematical 
analysis of the placement of masts on a sailing 
ship.  Euler’s submission received what amounted 
to a second prize, an achievement all the more 

remarkable because of his Swiss— i.e., landlocked— 
upbringing.  (He would win the Academy’s first prize 
a dozen times over the course of his career.)

On the heels of this success, Euler applied for a 
faculty position at his alma mater.  To his dismay,  
the job went to Benedict Staehelin, an individual  
who thereby earned the distinction of being perhaps 
the worst hiring choice in history.  But Euler’s 
fortunes improved with an offer from the St. 
Petersburg Academy in Russia.  His appointment 
came through the influence of Daniel Bernoulli, son of 

Johann, who had himself secured 
a position at St. Petersburg a few 
years before. 

And so Euler bade farewell to 
Switzerland and moved to St. 
Petersburg in 1727.  He stayed 
until 1741 when he accepted a 
call to the rival Berlin Academy.  
There he worked under Frederick 
the Great until friction between 
them proved too much.  Euler 
returned to St. Petersburg in 
1766, where he remained until 
his death in 1783. 

It was during his first Russian 
stint that he married Katharina Gsell, and the Eulers 
would eventually have 13 children.  However, child 
mortality took a dreadful toll in those days, and only 
five of their children would survive to adolescence.  
The accompanying sorrow defies comprehension.
 
Meanwhile, Euler faced a physical challenge of his 
own.  By his early 30s, he had lost vision in his right 
eye.  A modern diagnosis, insofar as such a thing 
is possible, attributes this to an ocular infection 
that was untreatable at the time.  Visual limitations 
aside, Euler continued his research unabated and 
maintained his productivity up to the year 1771, 
when he lost sight in his other eye.  This was due to 
a cataract.  Such a malady, easily corrected today, 
was a most serious matter back then. Euler’s doctors 
tried eye surgery to save his vision (and no one wants 
to contemplate the horrors of eye surgery in the 18th 
century), but the procedure was unsuccessful.  By 
1771, Euler was essentially blind. 
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Leonhard Euler (1707—1783)
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It is tempting to conclude that this marked the end 
of his career, but Euler would not be stopped.  He 
instructed his assistants to read aloud the newly 
arrived books and journals, and he in turn dictated 
his ideas to a tableful of scribes working furiously 
to keep up.  It is said that Euler could create 
mathematics faster than most people can write it, 
and he daily put his assistants to the test.  A case in 
point: in 1775, when he was blind, he produced a 
paper a week!  Like Beethoven, who wrote music 
that he never heard, Euler created mathematics that 
he never saw.  This triumph in the face of adversity 
makes Euler’s the most inspirational story in the 
history of mathematics.

Such a biography, although compelling, might be 
forgotten had the results he produced been of minor 
interest.  But nothing could be further from the truth.  
If one measures a mathematician’s impact along the 
three “axes” of quantity, diversity, and significance, 
then Euler is pretty much off the charts on all three.  
Let me address each in turn. 

In terms of quantity, Euler has no peer. Indeed, a 
major challenge for those who sought to publish his 
collected works was the “simple” task of locating 
them all.  This was complicated by the fact that 
Euler published 228 papers after he died, making 
the deceased Euler one of history’s most prolific 
mathematicians. 

In any case, by the dawn of the 20th century, the 
scholar Gustav Eneström had identified a total of 866 
books and papers that Euler produced over his long 
career.  Eneström briefly described each of these in 
a catalogue that itself ran to 388 pages.  With this 
massive document as its guide, the Swiss Academy 
of Sciences began publishing Euler’s collected works 
—his Opera Omnia—in 1911, when the first hefty 
volume appeared.  Thereafter, the books kept coming 
and coming … and coming.  At the moment, there are 
75 volumes in print, totaling over 25,000 pages, but 
the project is not yet complete.  By the time all of the 
papers and letters and notebooks are in print, Euler will 
have kept his publishers busy for more than a century.  
There is nothing else like this in all of mathematics. 

In terms of its diversity, Euler’s work covers a 
range of subject matter that can only be described as 

“universal.”  Consider the following dichotomies:

Pure/Applied:  Euler, of course, made innumerable 
contributions to pure mathematics, but he was also 
the leading applied mathematician of his day.  In fact, 
a good half of those 75 volumes of the Opera Omnia 
treat subjects like mechanics, acoustics, and optics 
—subjects that are today classified under physics or 
applied math.
 
Continuous/Discrete: Euler was as comfortable 
working in the continuous realm (e.g., calculus and 
differential equations) as he was working in the 
discrete one (e.g., number theory and combinatorics).  
Such breadth has become a rarity in our age of 
specialization.

Advanced/Elementary:  Euler certainly contributed 
to the advanced mathematics of his time, but he was 
also successful writing about elementary topics.  For 
instance, in 1738 he published his Rechenkunst, an 
arithmetic text for the schools, and his best-selling 
work of all was Letters to a German Princess of 1768, 
a survey of popular science written for the layperson.

Old/New:  Euler made some remarkable discoveries 
in the venerable subject of plane geometry, 
discoveries that would have been accessible to old 
Euclid himself.  Yet Euler also worked in fields so 
new that he was making them up as he went along.

But quantity and diversity do not fully account 
for Euler’s mathematical reputation.  There is one 
additional dimension of excellence that is surely 
the greatest of all: the significance of his work.  It is 
remarkable how many seminal ideas in our discipline 
can be traced back to him.  Consider, for instance:

The concept of function.  It was Euler who 
elevated the “function” into its starring role in 
analysis.  Prior to that, people had applied calculus 
to the “curve,” a quasi-precise idea rooted in, and  
limited by, geometrical understanding.  In his classic 
1748 text, Introductio in Analysin Infinitorum, Euler 
emphasized functions and introduced the special 
types—polynomial, exponential, logarithmic, trigo- 
nometric, and inverse trigonometric—that still 
occupy center stage in analysis.
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A Tribute to Euler by William Dunham

Euler Identity from his 1748 classic Introductio 
in Analysin Infinitorum

The Euler Identity.   It was Euler who gave us the 
formula eix = cos x + i  sin  x.  Those who encounter 
this for the first time are apt to regard it as a typo, 
so peculiar is its fusion of the exponential and the 
trigonometric, the real and complex. It was from 
this that Euler deduced such strange consequences  

as            	 ,  about which the Harvard mathe- 

matician Benjamin Peirce is reported to have said, 
“Gentlemen, we have not the slightest idea of what 
this equation means, but we may be certain that it 
means something very important.”

The Euler Polyhedral Formula. In a 1752 study 
of polyhedra, Euler observed that V + F = E + 2, 
where V is the number of vertices, F is the number of 
faces, and E is the number of edges of a solid figure.  
Because of the utter simplicity of this relationship, 
Euler confessed that, “I find it surprising that these 
general results in solid geometry have not previously 
been noticed by anyone, so far as I am aware. ”  Of 
course, no previous mathematician had had Euler’s 
penetrating insight.

The Basel Problem. In the late 17th century, 
Jakob Bernoulli had challenged the mathematical 
community to find the exact sum of the infinite  

series		  .  This remained an open question

for a generation until Euler, then a young and still 
relatively unknown mathematician, stunned the 
world by finding the sum to be  π2/6.  As much as 
anything, this discovery made Euler famous.

The Euclid-Euler Theorem.  Four volumes of the 
Opera Omnia address the theory of numbers, and 
Euler made untold contributions to this ancient 
and challenging field.  One of these harks back 

to Book IX of the Elements, where Euclid had 
demonstrated that a whole number will be perfect 
(i.e., the sum of its proper divisors) if it is of the form  
N = 2k-1 (2k – 1), where the rightmost factor is prime.  
There matters stood for two millennia until Euler 
proved that this sufficient condition is also necessary 
for an even number to be perfect. Taken together, 
these results characterize even perfect numbers in 
the so-called “Euclid-Euler theorem,” surely one of 
the most illustrious hyphenations in the history of 
mathematics.  (By the way, Euler suggested that the 
matter of odd perfect numbers was likely to be “most 
difficult”—an indisputably accurate assessment.)

The Euler Product-Sum Formula.  In 1737, Euler 

proved that			         ,  where the  
 
product on the right is taken over all the primes.  
Of course, he was here equating a divergent 
series (the harmonic) with a divergent product, 
so one might dismiss it as so much drivel.  
But Euler saw how to exploit his formula to

establish the divergence of	         .

This non-trivial theorem, which employed 
techniques of analysis to attack questions of number 
theory, prompted the 20th century mathematician 
André Weil to comment, “One may well regard 
these investigations as marking the birth of analytic 
number theory.”

Such spectacular results notwithstanding, we have 
barely scratched the surface.  Consider this partial list 
of other Eulerian “hits”: The Bridges of Königsberg 
(1736); the original partitioning theorem for whole 
numbers (1740); the Euler line of a triangle (1767); 
the first textbook on the calculus of variations 
(1744); the analysis of Greco-Latin squares (1782); 
the landmark study of continued fractions (1744); 
the gamma function (1729); and the influential 
mechanics text of 1736 that cast Newton’s physics 
in the language of Leibniz’s calculus. 



2008 17

F
e
a
t
u
r
e
 
a
r
t
i
c
l
e
s

Other pertinent texts (in English):

Emil Fellmann, Leonhard Euler, (trans., E. and W. 
Gautschi), Birkhauser, 2007.  
Andreas and Alice Heyne, Leonhard Euler: A 
Man to be Reckoned With, Birkhauser, 2007. [This 
is the “Euler Comic Book” I mentioned in the 
lecture.  It’s actually pretty good!]

Euler in translation:  Leonhard Euler, Introduction 
to Analysis of the Infinite (2 vols.), (trans. John 
Blanton), Springer-Verlag, 1988.

Leonhard Euler, Foundations of Differential Calculus, 
(trans. John Blanton) Springer-Verlag, 2000.

Leonhard Euler, Elements of Algebra, (trans. John 
Hewlett), Springer-Verlag, 1840 (reprint).

Surveys:

Edward Sandifer, The Early Mathematics of 
Leonhard Euler, MAA, 2007.

Edward Sandifer, How Euler Did It, MAA, 2007.

William Dunham, Euler: The Master of Us All, 
MAA, 1999.

William Dunham (ed.), The Genius of Euler, MAA, 
2007.

Euler product-sum formula from his 1748 classic 
Introductio in Analysin Infinitorum

And, as if these achievements were not enough, there 
are some downright quirky results scattered among 
his papers.  For instance, he sought four different 
whole numbers, the sum of any pair of which is 
a perfect square.  (If you think this is easy, try it.)  
Euler came up with this fearsome foursome:  18530, 
38114, 45986, and 65570. 

From all of this, it should be clear why I chose to 
focus my Clay Public Lecture on Euler and his 
triumphs (those interested can find a video of the 
talk at www.claymath.org/video). It should be 
equally clear why the mathematical community so 
enthusiastically celebrated Euler’s 300th birthday. 
 For, if anyone stands as the mathematical counterpart 
of Shakespeare or Rembrandt or Bach, it is the 
incomparable master, Leonhard Euler. 

The Mathematical Association of America named William Dunham 
as the recipient of the 2008 Beckenbach Book Prize for Euler: The 
Master of Us All, MAA, 1999.  

“Mathematician William Dunham has written a superb book about the 
life and amazing achievements of one of the greatest mathematicians 
of all time.  Unlike earlier writings about Euler, Professor Dunham 
gives crystal clear accounts of how Euler ingeniously proved  his most 
significant results, and how later experts have stood on Euler’s broad 
shoulders.  Such a book has long been overdue.  It will not need to be 
done again for a long long time.” —Martin Gardner

“William Dunham has done it again!  In Euler: The Master of Us 
All, he has produced a masterful portrait of one of the most fertile 
mathematicians of all time.  With Dunham’s beautiful clarity and wit, 
we can follow with amazement Euler’s strokes of genius which laid 
the groundwork for most of the mathematics we have today.”  
—Ron Graham, Chief Scientist, AT&T 

Euler the Master of Us All  is available through the MAA at the 
following website: www.maa.org. 
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In October 2008, Marcus du Sautoy 
presented a landmark series for the BBC on the 
history of mathematics. Called The Story of Math, 
the four one-hour programs took viewers from the 
pyramids of Cairo to the deserts of Arizona, from the 
backwaters of Kerela to the suburbs of St. Petersburg, 
in pursuit of where and how mathematics evolved 
over the last seven millennia. 

Program One covers the mathematics of the ancient 
world: Egypt, Babylon, and Greece, including how 
the Egyptians used early ideas of the calculus to 
calculate the volumes of pyramids. Program Two 
takes viewers on a journey through the mathematics 
of the east from China through to India where we 
discover that the Kerelean school of mathematicians 
already knew Leibniz’s infinite series for pi some 
centuries before its discovery in the West. Program 
Three presents the mathematics of Europe from 
Descartes, via Euler through to Riemann. Program 
Four encompasses the mathematics of the modern 
era, from Hilbert and Cantor through to Perelman’s 
proof of the Poincaré Conjecture. 

The reaction to the programs has been fantastic. Over 
half a million people viewed the first program. It was 
the seventh most downloaded program on i-player, 
beaten by two episodes of Eastenders and Little Britain 
in the USA. The Program received a four-star review 
from the Times—despite the reviewer saying he didn’t 
understand a word: “where was du Sautoy when the 
dumbing-down debate was had.”

The series is partly funded by the Open University 
and there is an accompanying course for those 
interested in discovering more (www.openuniversity.
co.uk/storyofmaths). The series forms part of Marcus 
du Sautoy’s work as a Senior Media Fellow for the 
EPSRC. Combining stunning graphics with colorful 
locations, The Story of Math hopes to bring alive the 
intellectual journey that has taken mathematicians 
from fractions to fractals, from the circle to the 
hypersphere.

The Open University and the BBC have been in 
partnership for more than 30 years, providing 
educational programming to a mass audience. In 
recent times this partnership has evolved from late- 
night programming for delivering courses to peak- 
time programs with a broad appeal to encourage 
wider participation in learning.  

Du Sautoy describes his experience hosting the series 
with enthusiasm, “I didn’t really know a lot about the 
history of my subject. I always believed that what 
matters most is the mathematics. If you know the 
theorems and the proofs, is it really important who 
created them or in what circumstances? Certainly the 
way we are taught mathematics both in school and 
at university reinforces this a-historical message. So 
you might think that with such a mentality, I wouldn’t 
be the ideal candidate to present a landmark series 
on the history of math for the BBC.”

“But in some ways I think that it’s worked in my favor. 
The series has become a real journey of discovery 
for me. Uncovering quite how much the ancient 

The BBC Series The Story of Math
by Marcus du Sautoy

Marcus du Sautoy is the Simonyi Professor for the 
Public Understanding of Science and Professor of 
Mathematics at the University of Oxford and a Fellow 
of New College.  He is author of the best-selling 
popular mathematics book The Music of the Primes 
published in 2003 and translated into 10 languages.  It 
has won two major prizes in Italy and Germany for 
the best popular science book of the year.  His book 
Symmetry was released in March 2008.

In May of 2008 Marcus du Sautoy discussed the 
mystery of prime numbers, the history behind the 
Riemann hypothesis and the ongoing quest to solve it 
in his Clay Public Lecture at MIT.  A video recording 
of his talk may be viewed at www.claymath.org/
public_lectures/dusautoy.php.

Marcus du Sautoy outside the modern library in Alexandria talking about Euclid.
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Egyptians and Babylonians knew about mathematics 
before the ancient Greeks has been a revelation for 
someone brought up on the myth that it all started with 
Pythagoras.  I was amazed to discover quite how much 
the Indian mathematicians of the medieval period knew 
about infinite series and pre-calculus. And visiting the 
places where Descartes, Fermat, Euler, and Cantor 
grew up brought these characters alive for me in a way 
that I hope will come over on the screen.”

“The programs pick up on this 
intellectual journey and mirror it 
with a real physical journey. The 
hope was to make something that 
looked like a cross between Michael 
Palin meets the Ascent of Man. The 
programs open with the story of the 
mathematics of ancient Eygpt and 
Babylon. Cairo and the pyramids 
provide an exotic location for the 
former.  But unfortunately health 
and safety at the BBC stopped us 
from braving war-torn Iraq for the 
sake of mathematics. So Damascus, 
an outpost of the Babylonian empire, 
became our backdrop to talk about 
the mathematics hidden inside the 
clay tablets that have survived.”

“The second program took us to the 
East and an exploration of Chinese 
and Indian mathematics. One 
of the highlights for me was the 
pilgrimage to Gwalior to see a tiny 
little temple hanging off the side of 
a mountain fort.  Big enough to fit the presenter and 
a cameraman inside, we scoured the inscriptions on 
the walls for the first known example of the number 
zero, one of the greatest and revolutionary inventions 
made in India.” 

“The mathematics of India found its way to Europe 
via the spice routes through central Asia. Again 
health and safety denied us a trip to Iran to recreate 
the adventures of Omar Khayam (the British sailors 
had not long before been released from captivity). So 
Morocco became our central Asian backdrop where 
we found some fantastic horses to ride across the Atlas 
mountains in my reincarnation of the great Persian 
poet and mathematician. (My director informed me 
afterwards that he had decided to leave that reckless 
afternoon out of the health and safety report.)”

“Programs Three and Four took us to the colder 
climes of Europe and then on to the US to a town 
called Descartes; Fermat’s home town Beaumont-
de-Lomagne for Fermat Day; St Petersburg for the 
mighty Euler and the elusive Perelman; Göttingen 
for Gauss, Riemann, and Hilbert; the Nervenklinik 
in Halle for the unsettled Cantor; the Paris café 
where Bourbaki began (now a fast food burger 
joint); and the Arizona desert to look for Julia 

Robinson’s childhood haunts. But 
if I had to pick out one location that 
excited me more than any other, 
it has to be our one day trip from 
St. Petersburg to the gray city of 
Kaliningrad. This is the modern 
name for Königsberg, the home of 
the seven bridges that some see as 
the beginning of modern topology. 
The city was bombed heavily 
during the second world war and 
today only three of the original 
bridges are left standing. Two of 
the others have been rebuilt—they 
now take a huge dual carriageway 
through the center of the town.”

“Despite the ugly nature of this 
modern city, I felt I was in a 
mathematical Disneyland. To be 
able to make the journey over the 
bridges to see if there is a path filled 
me with a childish excitement that 
my crew just couldn’t understand. 
Of course with just the five existing 

bridges it is in fact possible to make the journey 
today, unlike the seven bridges that the inhabitants 
of Königsberg were faced with.” 

“My crew was only too pleased to leave behind the 
grim skyline of Kaliningrad but for me it was one of 
the days out of the months of filming that I will always 
treasure. For me it encapsulated what this whole 
series is about—bringing alive the stories behind the 
amazing intellectual journey that mathematicians 
have made over the last seven millennia.” 

The Story of Math is an Open University/BBC co-production 
that aired on BBC FOUR in October, 2008.  The series was 
produced by BBC Executive Producer David Okuefuna, BBC 
Series Producer Kim Duke, and Open University Executive 
Producer Catherine McCarthy.  Academic Advisors from  
The Open University were Professors Robin Wilson, Jeremy 
Gray and Dr. June Barrow-Green.

The film crew for program One at the pyramids in Egypt.

Horse riding in the Atlas Mountains of Morocco discuss- 
ing Omar Khayyam’s contributions to mathematics.

A DVD of all four episodes is now available at 
www.ouw.co.uk/products/XM004_DVD01.shtm.
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by Robert Kotiuga, Associate Professor of 
Electrical and Computer Engineering, Boston 
University 

The background for the conference, its rationale, as 
well as abstracts and titles of talks are archived on the 
conference website: www.crm.math.ca/Bott08.  The 
conference was cosponsored at the level of $13,000 
by the Clay Mathematics Institute, and was awarded 
a $25,000 grant from the NSF (USA). Currently, an 
extended conference proceedings is being planned. 

“A Celebration of Raoul Bott’s Legacy in 
Mathematics”  was a forward-looking mathematical 
conference that was not organized around a 
mathematical topic, but a mathematical personality. 
Most of the speakers were either students or 
coauthors of Raoul Bott, or feel that their work clearly 

A Celebration of Raoul Bott’s Legacy in Mathematics 
June 9–13, 2008, Centre de Recherche Mathématiques, Montreal

reflects the influence Bott had on them. Minimal 
effort was given to a systematic covering of the 
topics covered in Bott’s collected works published 
over a decade ago. Rather, Bott’s colleagues from 
six consecutive decades were given a free hand 
to rework and understand past work in terms of 
current developments.  The abstracts posted on the 
website summarize the mathematical aspects of the 
conference and document where the organizational 
approach leads.  One talk out of the mathematical 
mainstream was the talk by Jim Lambek, who 
reminisced about Raoul Bott as an engineering  
student at McGill University in the 1940s.  Numerous 
other anecdotes about Bott were given in the first 
panel session entitled “Raoul Bott as Teacher, 
Mentor, and Colleague,” and in the banquet speeches. 



2008 21

In addition to being a profound and influential 
researcher, it is well known that Bott was a 
wonderful lecturer.  This has been documented in 
many places, and the conference produced some 
posthumous testimony of this.  At the end of the 
second panel session, “Examining Raoul Bott’s 
Legacy in Mathematics,” the conference organizer 
emphasized that the conference was not organized 
around a mathematical topic but a mathematician, 
and asked the younger attendees what they thought 
of the concept.  A student who identified himself as a 
graduate student working in an unrelated field made 
what was considered a remarkable comment.  He said 
he learned more in his area of expertise than he did 
at other mathematics conferences because speakers 
at this conference seemed to make an extraordinary 
effort to communicate their ideas in the simplest, 
and most visual terms possible.  What was more 
remarkable was that the instant  consensus in the 
room was that this was a manifestation of  all of the 
speakers being influenced by Bott’s lecturing style and 
his insistence on understanding deep mathematical 
concepts in the simplest terms possible. 

Another unique aspect of the conference was the 
visual memory of Bott—from the “picture gallery” 
on the website, to pictures of him from six distinct 
decades on the conference poster, to the screening 
of Vanessa Scott’s film—A Peek into the Book.  The 
unique combination of forward-looking mathematics 
and intimate connection to the Bott family would 
not have been possible without the effort of Bott’s 
daughter, Candace Bott, who spoke at the banquet, 
introduced her niece’s film, and was indispensable 
in helping with all visual aspects of the conference.  
In addition to producing an extended conference 
proceedings, popular demand initiated an attempt to 
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distribute Vanessa Scott’s film more widely.   The 
rough cut documentary portrait, as it was screened 
in its unfinished state, is now available upon written 
request to the Clay Institute.

Organized by Robert Kotiuga

Scientific Advisory Committee:

Sir Michael Atiyah
Octavian Cornea  	  
David Ellwood   	
Jacques Hurtubise 	
Francois Lalonde 	

Speakers :

Michael Atiyah
Paul Baum 
James Bernhard 
Ralph Cohen 
Octav Cornea 
Marco Gualtieri 
James Heitsch 
Nancy Hingston 
Morris Hirsch 
John Hubbard
Lisa Jeffrey 
Nitya Kitchloo 

Panelists:

Michael Atiyah  
Paul Baum 
Nancy Hingston 
Jacques Hurtubise 

Banquet Speakers:

Michael Atiyah 
Candace Bott 
Stephen Smale 

David Mumford
Graeme Segal  	
Stephen Smale
Jim Stasheff 		
Edward Witten

Joseph Kohn
Robert Kotiuga 
Peter D. Lax
John Morgan 
Stephen Smale 
András Szenes
Constantin Teleman 
Susan Tolman 
Loring Tu 
Cumrun Vafa 
Jonathan Weitsman 
Edward Witten 

Nitya Kitchloo 
James Stasheff 
Susan Tolman 
Loring Tu

Conference speakers Cumrun Vafa, Marco Gualtieri, and Loring Tu.			               Banquet speakers Candace Bott and John Hubbard.      

P
hotos courtesy of Loring Tu
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CMI Supported Conferences

Although this is not the place to summarize the 
individual talks, it is worth commenting on the 
unanticipated outcomes of the conference. The  masterful 
presentations of Michael Atiyah were not surprising, in 
light of his lifetime of outstanding achievements and 
collaborations.  So it was with many of the other talks; 
the distinguished speakers lived up to their reputations. 
The speakers who talked about localization and 
singularity theory clearly built on the last two decades 
of Bott’s research. The talks by Vafa and Witten dwelled 
on a stream of dualities that quantum field theory has 
been offering mathematics in recent decades, and the 
tantalizing new connections to number theory. Many 
other talks rounded out the conference in other ways. 
However, there were several unexpected developments 
where a big picture seemed to evolve magically out of 
smaller parts, and it is useful to focus on one that was 
not obvious before the conference.  Loosely speaking, it 
pertains to Chas-Sullivan string topology and its relation 

to Floer homology via Morse theory.  Here, on one 
hand, the work of Hingston and Goresky recast string 
topology in terms of Morse theory as applied to loop 
spaces by Bott in the 1950s. On the other hand, the 
work of Kitchloo and Cohen build on Morse theory 
in the context of quantum topology, and refine the 
use of Morse theory in low dimensional topology. In 
the talks given by these speakers, as well as those of 
Cornea and Teleman, one could sense where manifold 
topology was headed in the next few years, and while 
many of the new results would be unknown to Bott, 
the connection to his mathematical perspective and 
legacy is inescapable!

Finally, the organizer would like to express his 
gratitude to all involved.  What a wonderful bunch of 
people to work with!  The close connections to Raoul 
Bott clearly had something to do with making this a 
wonderful event.

CMI had the privilege of cosponsoring HIrz80, a 
Conference on Algebraic Geometry, held at Bar 
Ilan University, Israel, on the occasion of Professor 
Fritz Hirzebruch’s eightieth birthday.  Organized 
by Professor Mina Teicher of Bar Ilan with funding 
from the Israel Science Foundation (ISF), the six-day 
conference brought together forty mathematicians 
from Israel, the US, England, Canada, Italy, Germany, 
France, Russia, and Korea.  Professor Hirzebruch 
is well known to us for his many contributions to 
mathematics, including his Riemann-Roch theorem, 
proved in 1954. This result is one of the great leaps 
forward that made algebraic geometry in dimension 
greater than two possible.  Nonetheless, his influence 
was much wider than his own work in mathematics.  
He played a major role in the rebuilding of German 
mathematics after the war, including the founding and 
operation of the Max Planck Institute in Bonn, the 
Arbeitstagung, and mentoring many mathematicians 
just starting their careers. 

The range of talks at the conference was broad, 
e.g., Faltings on p-adic period domains, Lubotzky 

A Conference in Algebraic Geometry Honoring F. Hirzebruch 80th  

Birthday, May 18–23, 2008,  ENI, Bar Ilan University, Israel

on counting arithmetic groups and surfaces, and 
Griffiths on singularity and enumerative properties 
of families of Calabi-Yau varieties. Please see  
http://u.cs.biu.ac.il/~eni/Hirz80.html for a full list 
of titles and abstracts.  The hospitality, meals, and 
excursions (Sea of Galilee and the Old City in 
Jerusalem) were beautifully organized by Professor 
Teicher with the help of  Miryam Shabtay.  Despite 
the very full lecture schedule, there was ample 
time between talks and in the evening to discuss 
mathematics.  This is one of the joys of a good 
conference, and was notably so at Hirz80. 

A Celebration of Raoul Bott’s Legacy in Mathematics, continued
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K3s: Modular Forms, Moduli,  
and String Theory
March 20 - 23, 2008 

by Rahul Pandharipande (Princeton University) 
and Davesh Maulik (CMI)

The main goal of this workshop was to bring together 
mathematicians from various areas related to the 
study of K3 surfaces and their moduli. Research 
over the last twelve months had produced results 
and conjectures in the form of identities involving 
modular forms, hypergeometric series, and K3 
moduli on the one hand, and the geometry of classical 
Noether-Lefschetz loci in the moduli of K3s on the 
other. A narrower goal was to make progress on a 
circle of rather concrete conjectures arising from this 
interaction.

The workshop consisted of fourteen research 
talks centered on the geometry of K3 surfaces. 
The group of participants included a successful 
mix of string theorists, complex geometers, and 
arithmetic geometers. Although the differences in 
language and backgrounds covered were large, the 
workshop fostered productive dialogue. The narrow 
goal of making progress on concrete conjectures 
was also met. Organizers R. Pandharipande 
and D. Maulik, together with A. Klemm and E. 
Scheidegger, succeeded to prove the Yau-Zaslow 
conjecture about rational curves on K3 surfaces 
for all (not necessarily primitive) curve classes 
using a combination of techniques motivated by 
the workshop.  (See “Noether-Lefschetz theory and 
the Yau-Zaslow conjecture,” A. Klemm, D. Maulik, 
R. Pandharipande, and E. Scheidegger; arXiv: 
0807.2477v1 [math.AG].)

The organization and infrastructure of the CMI 
were instrumental in the progress made at the 
workshop.  Through the effort of its staff, the focus 
of the participants was entirely mathematical; 
moreover, the environment was extremely conducive 
for collaboration.

A list of abstracts for all the talks and other 
information can be found at:

www.claymath.org/workshops. 
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Organizers: David Ellwood, Rahul Pandharipande, 
and Davesh Maulik

Participants: 
Kai Behrend  (University of British Columbia)
Jim Bryan  (University of British Columbia)
Ron Donagi  (University of Pennsylvania)
Lothar Gottsche  (ICTP)
Joe Harris  (Harvard University)
Brendan Hassett  (Rice University)
Albrecht Klemm  (University of Wisconsin)
Conan Leung  (The Institute of Mathematical Sciences)
Eduard Looijenga  (Utrecht University)
Davesh Maulik  (CMI)
Alina Marian  (Institute of Advanced Study)
Greg Moore  (Rutgers University)
Rahul Pandharipande  (Princeton University)
Tony Pantev  (University of Pennsylvania)
Emanuel Scheidegger  (University of Eastern Piedmont)
Domingo Toledo  (University of Utah)
Yuri Tschinkel  (New York University)
Wei Zhang  (Columbia University)
Aleksey Zinger  (State University of New York)

CMI Workshops
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Automorphic Forms in Moduli 
Problems of Schottky and  
Brill-Noether Type
March 28-30, 2008

by Emma Previato, Professor of Mathematics, 
Boston University 

This workshop addressed the dual nature of certain 
special functions, in their dependence on moduli 
as automorphic forms, and their dependence on 
a Fourier-Mukai dual variable, which describes 
a moduli space of bundles, theta functions being 
the prime example. A distinctive feature of the 
workshop was that of bringing together experts of the 
analytic and of the algebraic techniques, to discuss 
open problems in these two somewhat separate 
areas, rooted in classical (nineteenth-century) 
mathematics and bearing on cutting-edge issues 
such as renormalization for superstring amplitudes 
in mathematics physics.

The authors of the foundational “Theta constants, 
Riemann surfaces and the modular group” (American 
Mathematical Society, 2001), H.M. Farkas and I. 
Kra, were both present. Farkas and Kopeliovich 
talked about  recent work on Thomae’s formulas for 
non-hyperelliptic curves, generalizing the classical 
expression for the Weierstrass points of the curve in 
terms of thetanulls: Thomae’s formulas are crucial 
in the study of the KZB (Knizhnik–Zamolodchikov–
Bernard) connection. Kra led the “open questions” 
session, proposing the theme of a stratification 
of Teichmüller spaces by hyperbolic geodesics.  
Prymian theta functions and varieties also figured 
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R.C. Gunning, I. Dolgachev, and L. Takhtajan had 
accepted invitations but were unable to attend.
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by Dean Baskin (Stanford), Jacques Smulevici 
(Cambridge), and Vedran Sohinger (MIT)

The Clay Mathematics Institute 2008 
Summer School took place in the wonderful 
setting provided by the Eidgenössische Technische 
Hochschule Zürich and focused on recent progress in 
the theory of evolution equations.  These equations 
lie at the heart of many areas of mathematical 
physics, arising not only in situations with a manifest 
time evolution but also in the high energy or semi-
classical limits of elliptic problems.

The study of evolution equations has a long history 
but its rich and varied landscape make it an ever 
renewed field with many interesting open questions 
and conjectures waiting to be solved.

The program was built around three foundational 
courses:

•   Microlocal Analysis, Spectral and Scattering 
Theory by Jared Wunsch and Rafe Mazzeo

•   The Theory of the Nonlinear Schrödinger 
Equation by Gigliola Staffilani and Pierre Raphaël

•   Wave Equation and Evolution Problems in 
General Relativity by Igor Rodnianski and Mihalis 
Dafermos

These courses were supplemented by several mini-
courses: 

•   Derivation of Effective Evolution Equations 
from Microscopic Quantum Dynamics by Benjamin 
Schlein

•   Nonlinear Schrödinger Equations at Critical 
Regularity by Monica Visan

•   Wave Maps With and Without Symmetries by 
Michael Struwe

•   Quantum N-body Scattering, Diffraction of 
Waves, and Symmetric Spaces by András Vasy

One of the fundamental bricks of evolution 
equations is the homogeneous scalar wave equation 
on Minkowski spacetime	      = 0. Generalizations 
include inhomogeneous terms, non flat-geometries, 
non-linearity, higher dimensions, and so forth. 
For the scalar homogeneous wave equation in 
Minkowski space, one may easily obtain an explicit 
representation of the solution using either spherical 
means or in terms of a Fourier decomposition.  

It was therefore natural that one of the foundational 
courses addressed in particular a generalization of 
Fourier analysis using microlocal tools and their 
applications to evolution equations and scattering 
theory. Jared Wunsch began with an axiomatic 
treatment of pseudodifferential operators and 
wavefront sets, which generalize differential 
operators and singular sets, respectively.  As an 
example of their applications, he provided a proof 
of the Duistermaat-Hörmander propagation of 
singularities theorem for operators of real principal 
type.  He then constructed the solution operator for 
the wave equation and the wave trace via a geometric 
optics construction.  This construction provided a 
motivation for an axiomatic treatment of the calculus 
of Fourier integral operators, and the construction of 
the wave operator within this calculus.

Clay mathematics institute 2008 summer school on Evo-

lution equations

The school took place in the wonderful setting provided by the Eidgenössische Technische
Hochschule Zürich and focused on recent progress in the theory of evolution equations.
These equations lie at the heart of many areas of mathematical physics, arising not only in
situations with a manifest time evolution but also in the high energy or semi-classical limits
of elliptic problems.
The program was built around three foundation courses:

1. Microlocal Analysis, Spectral and Scattering Theory by JaredWunsch and Rafe Mazzeo,

2. The Theory of the Nonlinear Schrödinger Equation by Gigliola Staffilani and Pierre
Raphaël,

3. Wave Equation and Evolution Problems in General Relativity by Igor Rodnianski,
Mihalis Dafermos,

which were supplemented by several mini-courses:

• Derivation of Effective Evolution Equations from Microscopic Quantum Dynamics by
Benjamin Schlein,

• Nonlinear Schrödinger Equations at Critical Regularity by Monica Visan,

• Wave maps with and without symmetries by Michael Struwe,

• Quantum N-body scattering, Diffraction of Waves, and Symmetric Spaces by András
Vasy.

One of the fundamental bricks of evolution equations is the homogeneous scalar wave equa-
tion on Minkowski spacetime φ = 0. Generalizations include inhomogeneous terms, non
flat-geometries, non-linearity, higher dimensions, etc. For the scalar homogeneous wave
equation in Minkowski space, one may easily obtain an explicit representation of the solu-
tion either using spherical means or in terms of a Fourier decomposition.
It was therefore natural that one of the foundational courses addressed in particular

a generalization of Fourier analysis using microlocal tools and its applications to evolu-
tion equations and scattering theory. Jared Wunsch began with an axiomatic treatment of
pseudodifferential operators and wavefront sets, which generalize differential operators and
singular sets, respectively. As an example of their applications, he provided a proof of the
Duistermaat-Hörmander propagation of singularities theorem for operators of real principal
type. He then constructed the solution operator for the wave equation and the wave trace via
a geometric optics construction. This construction provided a motivation for an axiomatic
treatment of the calculus of Fourier integral operators, and the construction of the wave
operator within this calculus.
Rafe Mazzeo continued the microlocal lectures with a discussion of scattering theory,

both time-independent and time-dependent. The former is broadly a study of the continuous
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Mihalis Dafermos continued the course with an 
analysis of the wave equation on different black hole 
spacetimes. His lectures introduced the geometry of 
one of the simplest family of explicit solutions of 
the Einstein equations, the so-called Schwarzschild 
family. This one-parameter family of solutions 
lives as a subfamily of a two-parameter family 
known as the Kerr family. Both cases are models of 
black hole spacetimes. Black hole spacetimes are 
characterized by the presence of an event horizon, 
a global geometric property. One may try to use a 
compatible current with a timelike Killing vector 
field in order to obtain decay for the wave equation 
on Schwarzschild.  In contrast with Minkowski 
space, this Killing field becomes null on the event 
horizon and so the weights in the energy estimates 
degenerate on the horizon. To bypass this difficulty, 
one needs to capture the celebrated red-shift effect 
with the introduction of a new vector field. To prove 

Views of Zürich (above) and the ETH Chemistry building, where courses took place.   

Rafe Mazzeo continued the microlocal lectures 
with a discussion of scattering theory, both time-
independent and time-dependent.  The former is 
broadly a study of the continuous spectrum of the 
Laplacian on noncompact spaces, i.e. the study of 
solutions of (- ∆ - l2) u = 0.  Taking the Fourier 
transform in l changes the problem into time-
dependent scattering, i.e. into the study of the 
asymptotic behavior of wave evolution. 

Building on the constructions in the foundational 
course, András Vasy’s lectures outlined the 
construction of the resolvent (- ∆ + V - l) -1 for 
N-body potentials V via a geometric resolution.  He 
then illustrated the geometric similarity between this 
construction and the construction of the resolvent  
(- ∆ - l) -1 on symmetric spaces of noncompact 
type.

Another foundational course was devoted to the 
study of hyperbolic wave motion and its applications 
to general relativity. Igor Rodnianski started with 
a derivation of wave motions from the equations 
of different theories of physics such as electro-
magnetism, acoustics, and general relativity.  The 
representations of the solution of the wave equation 
in Minkowski spacetime easily provide quantitative 
estimates, e.g.,  L∞ to L∞ estimates and energy estimates. 
However, they rely on many features of the Minkowski 
space and the linear property of the equation. 

The method of compatible currents was thus 
introduced to study more complex systems of 
hyperbolic equations arising, such as the Euler-
Lagrange equations of given Lagrangian. For instance, 
for the scalar wave equation on a Lorentzian manifold 
      = 0, one can contract the energy-momentum 
tensor Tmv (  ) arising from Noether’s theorem 
with any timelike vector field Xµ. The resulting 
vector field Jµ = Tmv X

v enjoys several remarkable 
properties. First, Jµ and its divergence only depend 
on the 1-jet of    .  Moreover, the integral of Jµ nm over 
a spacelike hypersurface with normal  nm controls 
              If we choose Xµ to a be Killing vector, 
Stokes’s theorem gives us a conservation law and 
other choices of vector fields give us different energy 
estimates.  These methods were applied to obtain 
global existence results for several non-linear wave 
equations such as the Yang-Mills equations.

spectrum of the Laplacian on noncompact spaces, i.e. the study of solutions of (−∆−λ2)u =
0. Taking the Fourier transform in λ changes the problem into time-dependent scattering,
i.e. into the study of the asymptotic behavior of wave evolution.
Building on the constructions in the foundational course, András Vasy’s lectures outlined

the construction of the resolvent (−∆+ V − λ)−1 for N -body potentials V via a geometric
resolution. He then illustrated the geometric similarity between this construction and the
construction of the resolvent (−∆− λ)−1 on symmetric spaces of noncompact type.
Another foundational course was devoted to the study of hyperbolic wave motion and its

applications to General Relativity. Igor Rodnianski started with a derivation of wave mo-
tions from the equations of different theories of physics such as electromagnetism, acoustics
or general relativity. The representations of the solution of the wave equation in Minkowski
spacetime easily provide quantitative estimates, e.g. L∞ to L∞ estimates and energy esti-
mates. However, they rely on many features of the Minkowski space and the linear property
of the equation.
The method of compatible currents was thus introduced to study more complex systems

of hyperbolic equations arising as the Euler-Lagrange equations of given Lagrangian. For
instance, for the scalar wave equation on a Lorentzian manifold gφ = 0, one can contract
the energy-momentum tensor Tµν(φ) arising from Noether’s theorem with any timelike vector
field Xµ. The resulting vector field Jµ = TµνX

ν enjoys several remarkable properties. First,
Jµ and its divergence only depend on the 1-jet of φ. Moreover, the integral of Jµnµ over a
spacelike hypersurface with normal nµ controls ∇φ in L2. If we choose Xµ to a be Killing
vector, Stokes’s theorem gives us a conservation law and other choices of vector fields give
us different energy estimates. These methods were applied to obtain global existence results
for several non-linear wave equations such as the Yang-Mills equations.
Mihalis Dafermos continued the course with an analysis of the wave equation on different

black hole spacetimes. His lectures introduced the geometry of one of the simplest family
of explicit solutions of the Einstein equations, the so-called Schwarzschild family. This one-
parameter family of solutions lives as a subfamily of a two-parameter family known as the
Kerr family. Both cases are models of black hole spacetimes. Black holes spacetimes are
characterized by the presence of an event horizon, a global geometric property. One may
try to use a compatible current with a timelike Killing vector field in order to obtain decay
for the wave equation on Schwarzschild. In contrast with Minkowski space, this Killing field
becomes null on the event horizon and so the weights in the energy estimates degenerate
on the horizon. To bypass this difficulty, one needs to capture the celebrated red-shift effect
with the introduction of a new vector field. To prove decay, it is also necessary to understand
the geometry of the so-called photonsphere where trapped null geodesics accumulate. Due to
the more complex geometry of the Kerr solution, controlling trapping here requires delicate
analysis. Mihalis Dafermos presented the recent results concerning boundedness and decay
for Kerr spacetimes sufficiently close to Schwarzchild.
In his series of lectures, Michael Struwe presented the study of the wave map problem.

He focused in particular on the application of Strichartz estimates and geometric arguments
in physical space for the Cauchy problem. Using these methods, he provided a proof of
global existence for two symmetric cases, either when the target manifold is a surface of
revolution of dimension 2 satisfying appropriate conditions or when it is a smooth compact
Riemannian manifold without boundary and the initial data has radial symmetry.
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Benjamin Schlein proved in his minicourse that these non-linear dispersive equations,
such as the Hartree equation with bounded or Coulomb potentials, arise naturally from
microscopic quantum dynamics. The proofs involve in particular the study of the time
evolution of the marginal density associated with the wave function describing the quantum
system. He then presented the recent results concerning the evolution of Bose-Einstein
condensates and the derivation of the Gross-Pitaevskii equation.
The third foundational course was devoted to the Nonlinear Schrödinger Equation. In this

class, we introduced the Power-Nonlinearity Semilinear Schrödinger equation i · ut +
1
2
∆u =

λ·|u|p−1 ·u. In her lectures, Gigliola Staffilani studied the defocusing equation given by λ = 1.
We first observed the fundamental conservation laws of mass, energy, and momentum for
our equation. From the scaling heuristic, we defined the concepts of sub-critical, critical and
super-critical nonlinearities which led into the well-posedness theory for our equation. We
then proved local well-posedness of the H1-subcritical Nonlinear Schrödinger Equation, and,
in the case of the defocusing equation, we deduced that the well-posedness was global.
Continuing with our study of the Defocusing equation, we arrived at the concept of scat-

tering. Our approach to this problem was based on the notion of Morawetz Estimates. After
recapitulating the standard Morawetz Estimate, we turned to the Interaction Morawetz Es-
timate from which we derived scattering for the Cubic, Defocusing Nonlinear Schrödinger
Equation in R3. Having presented the global well-posedness and scattering in the H1-
subcritical case, we set out to learn the analogue of the result in the H1-critical case.
Pierre Raphaël’s class emphasized the Focusing equation, where λ = −1. The goal was

to describe the long-time behavior of solutions, and in particular, the singularity formation
in the space H1. In studying this problem, we also considered the related problem of Soliton
Stability. We began by proving H1-global well-posedness in the L2−subcritical case and
turned to the orbital stability of solitons. We used concentration compactness as a remedy
for the failure of compactness of Lq → H1. The main topic of the class was the L2−critical
equation. From the soliton characterization in this case, one can obtain the sharp constant
in the Gagliardo-Nirenberg Inequality. From this fact, we deduced global well-posedness for
the L2−critical problem as long as the mass of the initial data is less than that of the ground
state soliton.
At this point, we proved that this theorem was sharp by applying the mass-preserving

Pseudoconformal Transformation. In particular, this gave us a concrete example of a blow-
up solution and led to the first Liouville (Rigidity) Theorem of the class. We then turned
to the study of the blow-up phenomenon and which blow-up rates occur. We considered a
solution by writing it in terms of Modulational Parameters, which we substituted into the
equation to obtain the evolution equations for the parameters. For the remainder of the
course, we studied explicit blow-up regimes for solutions with “small super-critical data”.
During the conference, Monica Visan talked about the NLS in the case of Critical Reg-

ularity. She discussed global existence and scattering for the Mass-Critical and for the
Energy-Critical equation. In particular, we proved an extension of a result of Carlos Kenig
and Frank Merle, removing the assumption of radial initial data in dimension ≥ 5.
All lecturers included topics of interest to advanced students, but also took care to provide

concrete examples that were accessible to non-experts.
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We first observed the fundamental conservation laws of mass, energy, and momentum for
our equation. From the scaling heuristic, we defined the concepts of sub-critical, critical and
super-critical nonlinearities which led into the well-posedness theory for our equation. We
then proved local well-posedness of the H1-subcritical Nonlinear Schrödinger Equation, and,
in the case of the defocusing equation, we deduced that the well-posedness was global.
Continuing with our study of the Defocusing equation, we arrived at the concept of scat-

tering. Our approach to this problem was based on the notion of Morawetz Estimates. After
recapitulating the standard Morawetz Estimate, we turned to the Interaction Morawetz Es-
timate from which we derived scattering for the Cubic, Defocusing Nonlinear Schrödinger
Equation in R3. Having presented the global well-posedness and scattering in the H1-
subcritical case, we set out to learn the analogue of the result in the H1-critical case.
Pierre Raphaël’s class emphasized the Focusing equation, where λ = −1. The goal was

to describe the long-time behavior of solutions, and in particular, the singularity formation
in the space H1. In studying this problem, we also considered the related problem of Soliton
Stability. We began by proving H1-global well-posedness in the L2−subcritical case and
turned to the orbital stability of solitons. We used concentration compactness as a remedy
for the failure of compactness of Lq → H1. The main topic of the class was the L2−critical
equation. From the soliton characterization in this case, one can obtain the sharp constant
in the Gagliardo-Nirenberg Inequality. From this fact, we deduced global well-posedness for
the L2−critical problem as long as the mass of the initial data is less than that of the ground
state soliton.
At this point, we proved that this theorem was sharp by applying the mass-preserving

Pseudoconformal Transformation. In particular, this gave us a concrete example of a blow-
up solution and led to the first Liouville (Rigidity) Theorem of the class. We then turned
to the study of the blow-up phenomenon and which blow-up rates occur. We considered a
solution by writing it in terms of Modulational Parameters, which we substituted into the
equation to obtain the evolution equations for the parameters. For the remainder of the
course, we studied explicit blow-up regimes for solutions with “small super-critical data”.
During the conference, Monica Visan talked about the NLS in the case of Critical Reg-
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Energy-Critical equation. In particular, we proved an extension of a result of Carlos Kenig
and Frank Merle, removing the assumption of radial initial data in dimension ≥ 5.
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The Summer School barbecue held on the ETH Hönggerberg Campus.
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Evolution Equations at the Swiss Federal 
Institute of Technology, Zürich, Switzerland

in this case, one can obtain the sharp constant in the 
Gagliardo-Nirenberg inequality.  From this fact, we 
deduced global well-posedness for the L2-critical 
problem as long as the mass of the initial data is less 
than that of the ground state soliton.

At this point, we proved that this theorem was  
sharp by applying the mass-preserving Pseudo-
conformal transformation.  In particular, this gave 
us a concrete example of a blow-up solution and 
led to the first Liouville (Rigidity) Theorem of the 
class.  We then turned to the study of the blow-
up phenomenon and which blow-up rates occur. 
We considered a solution by writing it in terms of 
modulational parameters, which we substituted into 
the equation to obtain the evolution equations for 
the parameters.  For the remainder of the course, we 
studied explicit blow-up regimes for solutions with 
small super-critical data. 

During the conference, Monica Visan talked about  
the NLS in the case of critical regularity.  She 
discussed global existence and scattering for the 
mass-critical and for the energy-critical equations. 

In particular, we proved an extension of a result 
of Carlos Kenig and Frank Merle, removing the 
assumption of radial initial data in dimension  ≥ 5.

All lecturers included topics of interest to advanced 
students, but also took care to provide concrete 
examples that were accessible to non-experts.

ETH Summer School participants joined by organizers CMI Research Director David Ellwood and ETH Professor Gian Michele Graf (center, front row).

View  from Zürich’s Lindenhof across the Limmat river to the ETH  campus.
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 Selected Articles by Research Fellows

MARIA CHUDNOVSKY

“The Erodos Hajnal Conjecture for bull-free graphs,” with 
S. Safra. Journal of Combinatorial Theory, Ser., B, 98 
(2008) 1301-1310.

“Cycles in dense digraphs,” with P. Seymour and B. 
Sullivan. Combinatorica 28 (2008), 1-18.

CIPRIAN MANOLESCU

“On the Khovanov and knot Floer homologies of quasi-
alternating links,” with P. Ozsvath. Proceedings of the 14th 
Gokova Geometry-Topology Conference (2007), 60-81.

MARYAM MIRZAKHANI

“Ergodic theory of the earthquake flow.” Int Math Res 
Notices (2008) Vol. 2008.

“Ergodic theory of the space of measured laminations,” 
with Elon Lindenstrauss.  Int Math Res Notices (2008).

DAVID SPEYER

”Powers of Coxeter elements in infinite groups are reduced.” 
To appear in Proceedings of the AMS.

“Matching polytopes, toric geometry, and the non-negative 
part of the Grassmannian,” with Alex Postnikov and Lauren 
Williams.  To appear in Journal of Algebriac Combinatorics.

TERUYOSHI YOSHIDA

”Local class field theory via Lubin-Tate theory.”  To appear in 
Annales de la Faculté des Sciences de Toulouse, 17-2 (2008).
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SAMUEL PAYNE

“Analytification is the limit of all tropicalizations.” 
Submitted. arXiv:0805.4035.

“Positivity for toric vector bundles,” with M. Hering and M. 
Mustata. To appear in Ann. Inst. Fourier. arXiv:0805.1916.

ARTUR AVILA

“Hausdorff dimension and conformal measures of 
Feigenbaum Julia sets,” with M. Lyubich. Journal of the 
American Mathematical Society 21 (2008), 305-363.

“Absolute continuity of the integrated density of states for 
the almost Mathieu operator with non-critical coupling,” 
with D. Damanik. Inventiones Mathematicae 172 (2008), 
439-453.

BO’AZ KLARTAG

“On nearly radial marginals of high-dimensional probability 
measures.” Submitted.

“Economical toric spines via Cheeger’s Inequality,” with
N. Alon. Submitted.

SOREN GALATIUS

“Stable homology of automorphism groups of free groups.” 
Submitted to Ann. of Math.

“Universal moduli spaces of surfaces with flat connections 
and cobordism theory,” with R. Cohen and N. Kitchloo. 
Submitted to Adv. Math.

DAVESH MAULIK

“Noether-Lefschetz theory and the Yau-Zaslow conjecture,” 
with A. Klemm, R. Pandharipande, and E. Scheidegger. 
arxiv: 0802.2739.

“Gromov-Witten/Donaldson-Thomas theory correspondence 
for toric threefolds,” with A. Oblomkov, A. Okounkov, and 
R. Pandharipande. arxiv: 0809.3976.

SOPHIE MOREL

“Complexes pondérés sur les compactifications de Baily-
Borel: Le cas des variétés de Siegel.” J. Amer. Math. Soc. 
21  (2008), 23-61 ext.

“On the cohomology of certain non-compact Shimura 
varieties,” (with an appendix by R. Kottwitz). To appear in 
Annals of Mathematics Studies.

MODHAMMED ABOUZAID
“Morse homology, tropical geometry, and mirror symmetry 
for toric varieties.” To appear in Selecta Mathematica. 

“An open string analogue of Viterbo functoriality,” with 
P. Seidel. Preprint, arXiv:0712.3177.

SPYROS ALEXAKIS
“Renormalized area and properly embedded minimal 
surfaces in hyperbolic 3-manifolds,” with Rafe Mazzeo.

“A unique continuation theorem for the vacuum 
Einsein equations.” 

ADRIAN IOANA
“Cocycle superrigidity for profinite actions of property (T)
groups.”

“Relative property (T) for the subequivalence relations
induced by the action of SL(2, Z) on T2.

XINYI YUAN
“On volumes of arithmetic line bundles.” 

“Heights of CM points I: Gross-Zagier formula,” with 
Shou-wu Zhang and Wei Zhang. 

CIPRIAN MANOLESCU continued

“Combinatorial cobordism maps in hat Heegaard Floer 
theory,” with R. Lipshitz and J. Wang. Duke Mathematical 
Journal 145 (2008), 207-247.
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The Millennium Prize Problems; Editors: James Carlson,  
Arthur Jaffe, Andrew Wiles. CMI/AMS, 2006, 165 pp.,  
www.claymath.org/publications/Millennium_Problems. This 
volume gives the official description of each of the seven prob-
lems as well as the rules governing the prizes.  It also contains 
an essay by Jeremy Gray on the history of prize problems in 
mathematics. 

Floer Homology, Gauge Theory, and Low-Dimensional 
Topology;  Proceedings of the CMI 2004 Summer School 
at Rényi Institute of Mathematics, Budapest. Editors: David 
Ellwood, Peter Ozsváth, András  Stipsicz, Zoltán Szábo.  
CMI/AMS, 2006, 297 pp., www.claymath.org/publications/
Floer_Homology. This volume grew out of the summer 
school that took place in June of 2004 at the Alfréd 
Rényi Institute of Mathematics in Budapest, Hungary.  It provides a state-of-the-art 
introduction to current research, covering material from Heegaard Floer homology, 
contact geometry, smooth four-manifold topology, and symplectic four-manifolds.

Lecture Notes on Motivic Cohomology; Authors: Carlo Mazza, Vladimir Voevodsky,  
Charles Weibel.  CMI/AMS, 2006, 210 pp., www.claymath.org/publications/Motivic_
Cohomology. This book provides an account of the triangulated theory of motives.  Its 
purpose is to introduce the reader to Motivic Cohomology, to develop its main properties, 
and finally to relate it to other known invariants of algebraic varieties and rings such as 
Milnor K-theory, étale cohomology and Chow groups.

Surveys in Noncommutative Geometry; Editors: Nigel Higson, John Roe. CMI/AMS, 2006, 
189 pp., www.claymath.org/publications/Noncommutative_Geometry.  In June of 2000, a summer 
school on Noncommutative Geometry, organized jointly by the American Mathematical Society 
and the Clay Mathematics Institute, was held at Mount Holyoke College in Massachusetts.  The 
meeting centered around several series of expository lectures that were intended to introduce 
key topics in noncommutative geometry to mathematicians unfamiliar with the subject. Those 
expository lectures have been edited and are reproduced in this volume.

Harmonic Analysis, the Trace Formula and Shimura Varieties; Proceedings of the 2003 CMI 
Summer School at Fields Institute, Toronto. Editors: James Arthur, David Ellwood, Robert 
Kottwitz. CMI/AMS, 2005, 689 pp., www.claymath.org/publications/Harmonic_Analysis.  
The subject of this volume is the trace formula and Shimura varieties.  These areas have 
been especially difficult to learn because of a lack of expository material. This volume aims 
to rectify that problem. It is based on the courses given at the 2003 Clay Mathematics 
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Proceedings of the Clay Mathematics Institute
2003 Summer School, The Fields Institute  
Toronto, Canada, June 2–27, 2003

The modern theory of automorphic forms, embodied in
what has come to be known as the Langlands program,
is an extraordinary unifying force in mathematics. It
proposes fundamental relations that tie arithmetic
information from number theory and algebraic geometry
with analytic information from harmonic analysis and
group representations. These “reciprocity laws”,
conjectured by Langlands, are still largely unproved.
However, their capacity to unite large areas of
mathematics insures that they will be a central area of
study for years to come.

The goal of this volume is to provide an entry point into
this exciting and challenging field. It is directed on the
one hand at graduate students and professional
mathematicians who would like to work in the area. The
longer articles in particular represent an attempt to
enable a reader to master some of the more difficult
techniques. On the other hand, the book will also be
useful to mathematicians who would like simply to
understand something of the subject. They will be able
to consult the expository portions of the various articles.

The volume is centered around the trace formula and
Shimura varieties. These areas are at the heart of the
subject, but they have been especially difficult to learn
because of a lack of expository material. The volume
aims to rectify the problem. It is based on the courses
given at the 2003 Clay Mathematics Institute Summer
School. However, many of the articles have been
expanded into comprehensive introductions, either to
the trace formula or the theory of Shimura varieties, or
to some aspect of the interplay and application of the
two areas.

Clay Mathematics Proceedings
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Analytic Number Theory: A Tribute to Gauss and Dirichlet; Editors: William Duke, Yuri Tschinkel. CMI/
AMS, 2007, 265 pp. www.claymath.org/publications/Gauss_Dirichlet. This volume contains the proceedings 
of the Gauss–Dirichlet Conference held in Göttingen from June 20–24 in 2005, commemorating the 150th  
anniversary of the death of Gauss and the 200th anniversary of Dirichlet’s birth. It begins with a definitive  
summary of the life and work of Dirichlet by J. Elstrodt and continues with thirteen papers by leading experts on research 
topics of current interest within number theory that were directly influenced by Gauss and Dirichlet.

Ricci Flow and the Poincaré Conjecture; Authors: John Morgan, Gang Tian.  CMI/AMS, 
2007, 521 pp., www.claymath.org/publications/ricciflow. This book presents a com-
plete and detailed proof of the Poincaré Conjecture.  This conjecture was formulated by Henri  
Poincaré in 1904 and has remained open until the recent work of Grigory Perelman. The argu-
ments given in the book are a detailed version of those that appear in Perelman’s three preprints.
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American Mathematical Society

Clay Mathematics Institute
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Ricci Flow and the    
  Poincaré Conjecture

JOHN MORGAN 
GANG TIAN

R
ic

c
i F

lo
w

 a
n

d
 th

e
 P

o
in

c
a

ré
 C

o
n

je
c

tu
re

      M
o

rg
a

n
 a

n
d

 T
ia

n



2008 31

GLOBAL 
THEORY OF 
MINIMAL 
SURFACES
Proceedings of the 
Clay Mathematics Institute 
2001 Summer School 
Mathematical Sciences Research Institute
Berkeley, California
June 25 – July 27, 2001

David Hoffman
Editor

Clay Mathematics Proceedings
Volume 2

American Mathematical Society
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G
lo

b
a

l T
h

e
o

ry o
f M

in
im

a
l S

u
rfa

c
e

s      H
o

ffm
a

n
, E

d
itor

2

AMS
CMI

During the Summer of 2001, MSRI
hosted the Clay Mathematics Institute
Summer School on the Global Theory of
Minimal Surfaces, during which 150
mathematicians—undergraduates, post-
doctoral students, young researchers,
and the world's experts—participated in
the most extensive meeting ever held on
the subject in its 250-year history. The
unusual nature of the meeting has made
it possible to assemble a volume of
expository lectures, together with some
specialized reports that give a
panoramic picture of a vital subject,
presented with care by the best people
in the field.

The subjects covered include minimal
and constant-mean-curvature
submanifolds, geometric measure theory
and the double-bubble conjecture,
Lagrangian geometry, numerical
simulation of geometric phenomena,
applications of mean curvature to
general relativity and Riemannian
geometry, the isoperimetric problem, the
geometry of fully nonlinear elliptic
equations, and applications to the
topology of three manifolds.

816 pages • 1 9/16" spine

www.ams.org

www.claymath.org
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Strings and Geometry; Proceedings of the 2002 CMI Summer 
School held at the Isaac Newton Institute for Mathematical 
Sciences, UK.  Editors: Michael Douglas, Jerome Gauntlett, 
Mark Gross.  CMI/AMS publication, 376 pp., paperback, 
ISBN 0-8218-3715-X. List: $69. AMS Members: $55. Order 
code: CMIP/3. To order, visit www.ams.org/bookstore.

Mirror Symmetry; Authors: Kentaro Hori, Sheldon Katz,  
Albrecht Klemm, Rahul Pandharipande, Richard Thomas, 
Ravi Vakil. Editors: Cumrun Vafa, Eric Zaslow. CMI/AMS, 
929 pp., hardcover, ISBN 0-8218-2955-6. List: $124. AMS 
Members: $99. Order code: CMIM/1. To order, visit www.
ams.org/bookstore.

Strings 2001; Authors: Atish Dabholkar, Sunil Mukhi, Spenta R. Wadia. Tata Institute of 
Fundamental Research. Editor: American Mathematical Society (AMS), 2002, 489 pp.,  
paperback, ISBN 0-8218-2981-5.  List $74. AMS Members: $59. Order code: CMIP/1.  
To order, visit www.ams.org/bookstore
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MIRROR SYMMETRY
Kentaro Hori, Sheldon Katz, Albrecht Klemm, 
Rahul Pandharipande, Richard Thomas, 
Cumrun Vafa, Ravi Vakil, Eric Zaslow

Mirror symmetry is a phenomenon arising in string theory in which two very
different manifolds give rise to equivalent physics. Such a correspondence
has significant mathematical consequences, the most familiar of which
involves the enumeration of holomorphic curves inside complex manifolds
by solving differential equations obtained from a “mirror” geometry. The
inclusion of D-brane states in the equivalence has led to further conjectures
involving calibrated submanifolds of the mirror pairs and new (conjectural)
invariants of complex manifolds: the Gopakumar Vafa invariants.

This book aims to give a single, cohesive treatment of mirror symmetry
from both the mathematical and physical viewpoint. Parts I and II develop
the necessary mathematical and physical background “from scratch,” and
are intended for readers trying to learn across disciplines. The treatment
is focussed, developing only the material most necessary for the task. In
Parts III and IV the physical and mathematical proofs of mirror symmetry
are given. From the physics side, this means demonstrating that two
different physical theories give isomorphic physics. Each physical theory
can be described geometrically,

and thus mirror symmetry gives rise to a “pairing” of geometries. The
proof involves applying R ↔ 1/R circle duality to the phases of the fields
in the gauged linear sigma model. The mathematics proof develops
Gromov-Witten theory in the algebraic setting, beginning with the moduli
spaces of curves and maps, and uses localization techniques to show
that certain hypergeometric functions encode the Gromov-Witten invari-
ants in genus zero, as is predicted by mirror symmetry. Part V is devoted
to advanced topics in mirror symmetry, including the role of D-branes in
the context of mirror symmetry, and some of their applications in physics
and mathematics. and mathematics; topological strings and large N
Chern-Simons theory; geometric engineering; mirror symmetry at higher
genus; Gopakumar-Vafa invariants; and Kontsevich's formulation of the
mirror phenomenon as an equivalence of categories.

This book grew out of an intense, month-long course on mirror symmetry
at Pine Manor College, sponsored by the Clay Mathematics Institute. The
several lecturers have tried to summarize this course in a coherent,
unified text.

Institute Summer School. Many of the articles have been expanded into comprehensive introductions, either to the trace 
formula or to the theory of Shimura varieties, or to some aspect of the interplay and application of the two areas.

Global Theory of Minimal Surfaces; Proceedings of the 2001 CMI Summer School 
at MSRI. Editor: David Hoffman. CMI/AMS, 2005, 800 pp., www.claymath.org/
publications/Minimal_Surfaces.  This book is the product of the 2001 CMI Summer 
School held at MSRI.  The subjects covered include minimal and constant-mean-curvature  
submanifolds, geometric measure theory and the double-bubble conjecture, Lagrangian  
geometry, numerical simulation of geometric phenomena, applications of mean curvature  
to general relativity and Riemannian geometry, the isoperimetric problem, the geometry  
of fully nonlinear elliptic equations, and applications to the topology of three-manifolds.

Video Cassettes
The CMI Millennium Meeting Collection; Authors: Michael Atiyah, Timothy Gowers, John 
Tate, François Tisseyre. Editors: Tom Apostol, Jean-Pierre Bourguignon, Michele Emmer, 
Hans-Christian Hege, Konrad Polthier. Springer VideoMATH, Clay Mathematics Institute, 
2002. Box set consists of four video cassettes: the CMI Millennium Meeting, a film by Fran-
çois Tisseyre; The Importance of Mathematics, a lecture by Timothy Gowers; The Millen-
nium Prize Problems, a lecture by Michael Atiyah; and The Millennium Prize Problems, a 
lecture by John Tate. VHS/NTSC or PAL. ISBN 3-540-92657-7. List: $119, EUR 104.95. To 
order, visit www.springer-ny.com (in the United States) or www.springer.de (in Europe).

These videos document the Paris meeting at the Collège de France where CMI announced 
the Millennium Prize Problems. The videos are for anyone who wants to learn more about 
these seven grand challenges in mathematics. 

Videos of the 2000 Millennium event are available online and in VHS format from
Springer-Verlag. To order the box set or individual tapes, visit  www.springer.com.

The AMS will provide a discount of 20% to students purchasing Clay publications.
To receive the discount, students should provide the reference code CLAY MATH.
Online Orders: enter “CLAY MATH” in the comments field for each Clay publication
ordered.  Phone Orders: give Customer Service the reference code and they will extend
a 20% discount on each Clay publication ordered.
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JULY

AUGUST  
 

    

SEPTEMBER

OCTOBER

NOVEMBER

Research Scholar Bryna Kra at Northwestern.  January 1–June 4

Research Scholar Fernando Rodrigez-Villegas at University Texas at Austin.  January 1–June 30

CMI Workshop on Geometry and Physics of the Landau Ginzburg Model.  January 12–16

Research Scholar Richard Schwartz at Caltech.  February 1–March 30

Clay Lectures in Mathematics at RIMS, Kyoto: Roman Bezrukavnikov, Dennis Gaitsgory,  
and Hiraku Nakajiima.  March 2–6

Conference on “IV International Symposium on Non-Linear Equations and Free Boundary 
Problems,” at Gran Hotel Dora, Buenos Aires. Argentina. March 17–20

Senior Scholar Calire Voisin at MSRI.  April 1–30

Conference on “Singularities at MIT.”  April 5

Conference on “Geometry and Physics: Atiyah80” at International Centre for Mathematical  
Sciences, Edinburgh.  April 20 –22

Senior Scholars Christopher Hacon and Rahul Pandharipande at MSRI.  April 9 – May 21

Clay Research Conference at MIT.  May 4–5

Conference on the Power of Analysis at Princeton, University.  May 5–8

CMI Workshop on Macdonald Polynomials and Geometry.  May 9–12

Conference on Geometry and Functional Analysis, at University of Tel-Aviv.  June

Conference on Topology of Algebraic Varieties at Jaca, Huesca, Spain.  June 22–26

Senior Scholars Benedict Gross and John Tate at IAS/PCMI. June 28 – July 13

Conference on Rennes Arithmetic Geometry Days (Journees de Geometrie Arithmetique de Rennes) 
at Rennes University.  July 6–10 

Conference on Dynamical Numbers: Interplay Between Dynamical Systems and Number Theory 
at Max-Planck-Institut fur Mathematik, Bonn.  July 20–24

Clay Lectures Australia (featuring Clay-Mahler lecturer Terry Tao).

Heisuke Hironaka, Soundararajan, Dinakar Ramakrishnan, Langlands program. 

Etienne Ghys public lecture at MIT.  October or November 

Senior Scholar Clifford Taubes at MSRI.  Program on Symplectic and Contact Geometry  
and Topology.  2009-2010 






