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1. Spaces, distances, continuity and convergence

1.1. Spaces, paths and distances.
What do we mean by a space X which has a notion of distance between points? For

example, if you know the lengths of paths between two points, you could call distance the
least length you must travel if you start from point p and you end up at point q.

Physically the shortest path is the path of a light-ray, unless there is an obstacle in between.1

In general, shortest paths need not look like straight lines. For example, suppose our world
was a disc. If we use the usual Euclidean distance, then the shortest paths are straight
lines:

But if instead distances near the centre 0 of the disc were much longer than we imagined
with Euclidean eyes, short paths would try to avoid passing through 0:

The picture on the right is what your world may look like inside 3-space if you take into
account lengths (notice, it is still just a disc): so near 0 there is a mountain, and it is more
convenient to walk around the mountain when going from p to q.

1.2. Density functions.
How would we measure distances in this disc world? One approach, is to consider a tiny

Euclidean-straight line segment ∆x in the disc with end-points x, x+ small error.

Then we compare the actual length `(∆x) with the usual Euclidean length ‖∆x‖:

`(∆x) ≈ f(x) ‖∆x‖,

1Shortest paths need not exist, for example take the plane with the usual Euclidean length, but remove
the point 0. Then two opposite points x,−x cannot be joined by a shortest path since the straight line
through 0 is not a legitimate path as 0 does not actually belong to the space! Also, shortest paths, when
they exist, need not be unique. For example on the sphere (the surface of the Earth) there are infinitely
many great arcs joining the North Pole to the South Pole all of minimal length.
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for some value f(x) (which is rigorously defined as the value that the ratio `(∆x)/‖∆x‖
approaches as we shrink ∆x to the point x). The function

f : Disc → R

is called density function and it depends on the point x.
In the above example of the mountain at 0, a small Euclidean path near 0 has a very

large length (since we actually walk over a mountain!) so f(0) is very large.

1.3. Hyperbolic geometry.
There is a non-Euclidean geometry, called hyperbolic geometry, in which the universe is

a unit disc D = {z ∈ C : |z| < 1}. The circular boundary ∂D = {z ∈ C : |z| = 1}
of the disc does not belong to D, indeed those boundary points should be thought of as
being “at infinity”. The shortest paths are arcs, which belong to Euclidean circles2 that are
perpendicular to ∂D.

You can check that all the axioms of Euclidean geometry are satisfied (with “line” meaning
an arc as above), except for the parallel axiom. That axiom says that given a line and a
point outside it, there is exactly one line through that point which does not intersect the
given line.3 This fails here because we can draw many such parallel lines:

The density function for the hyperbolic disc D is defined as:

f(z) =
2

1− |z|2
.

Notice that near the boundary |z| = 1, the ratio f(z) between hyperbolic lengths and
Euclidean lengths blows up. Indeed, a path from 0 to a boundary point z ∈ ∂D has infinite
hyperbolic length: so the intuition that the points at ∂D lie at infinity is correct.

Remark 1 (Curvature). The numerator 2 in f(z) is artificial: you could have used any
positive constant. The reason for having 2, is that you want another quantity, called cur-
vature, to be −1 in this case. The idea of curvature, is that it measures how much two
light-rays move apart when shot out from an observer:

2Including circles of infinite radius, which give rise to diameters: these are also shortest paths.
3Two lines which do not intersect are called parallel lines.
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On the sphere S2 the curvature is positive: light-rays move towards each other. On the
hyperbolic disc D the curvature is negative: light-rays move apart. On the Euclidean plane
R2 the curvature is zero.

1.4. How the choice of distance affects the geometry. Introduction to tilings.
Later, we will study topological properties of spaces: properties which do not depend on

exactly how we measure distances as long as a vague notion of “closeness” is preserved.
Example. The Euclidean plane R2 can be identified with the hyperbolic disc

D by rescaling z ∈ D to z
1−|z| ∈ C = R2. This preserves a vague notion of

‘‘closeness’’, but it does not preserve the distance function.

Once we take into account the different distance functions on the Euclidean plane R2 and
on the hyperbolic “plane” D, the two spaces have quite different geometrical properties.
For example, in the Exercises you will see that the tilings they admit are rather different.

A tiling (or tessellation) of the plane by polygons is a covering of the plane by polygons,
so that every point of the plane lies in some polygon, and the polygons do not overlap
except possibly along their boundaries (that is, along edges or vertices).

Example.

(1) The tiling of the plane by unit squares:

(2) By decomposing the squares into triangles, the above turns into a tiling

by isosceles triangles:

(3) Tiling of the hyperbolic plane D using one hyperbolic square:
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Assuming that a regular polygon can tile the plane, you obtain the tiling

from one polygon by repeatedly reflecting the given polygon in the edges

you built so far inductively. To understand what reflection means in the

hyperbolic world, first think about how you reflect a point in a line in

Euclidean geometry (using only ruler and compass), then the same procedure

will work4 for hyperbolic geometry since you never use the parallel axiom.

(4) Tiling of the hyperbolic plane D using one regular pentagon:

Can you see how the construction works?

(5) Tiling of the hyperbolic plane D by using one regular hexagon:

4In the hyperbolic world, you will of course use a “hyperbolic compass” which traces out hyperbolic
circles. As an exercise, try showing that hyperbolic circles are in fact Euclidean circles except that the
hyperbolic centre is usually not the same as the Euclidean centre. Start the exercise by first checking what
hyperbolic circles are when the hyperbolic centre is 0 (Hint. the density function has a symmetry). Then
use the symmetry maps from the Exercises to find all hyperbolic circles.
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Can you see how the construction works?

In the Exercises you will show that the Euclidean plane can be tiled by a regular n-sided
polygon (with fixed side length) if and only if n = 3, 4, 6 (so regular triangles, squares or
hexagons). Whereas the hyperbolic “plane” D can be tiled for any n, provided that one
chooses the regular polygon to be of the correct size.5

Usually, we care about tilings using tiles from a certain finite collection of possible poly-
gons of given sizes. In the above example: by a particular square, or a particular triangle.
One can also allow more general shapes than polygons, such as any set in the plane bounded
by a closed curve with no self-intersections (so topologically it looks like a deformed disc).

For example:

This tiling is obtained from the tiling by squares after deforming the tiles. In this case
we use two types of tiles. Since drawing these squiggly edges is tiring, it is often more
convenient to put markings on the edges, which tell you how the tiles must fit together:

5A curious fact about hyperbolic geometry, which you will notice from those pictures, is that the sum of
the interior angles of a triangle, or more generally of a regular n-gon, is not fixed: it depends on the size.
For example, the area of a hyperbolic triangle is in fact π − (sum of interior angles). For example, small
hyperbolic triangles almost look like Euclidean triangles, so the angles almost sum up to π.
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Above, we use labels 1, 2 which are required to always be glued onto 1, 2 respectively. You
can also use arrows to prescribe in which direction you want them to be glued.

The key property you want from your markings is that: for any tiling by squiggly tiles
there is a unique tiling using marked tiles, and vice-versa from a tiling by marked tiles you
can reconstruct uniquely a tiling by the squiggly tiles.

Markings can also come in the form of artistic decorations on top of the tile types, and
the matching condition is that the decorations fit together nicely.

Examples.

(1) M. C. Escher’s Circle Limit III (1959) is a tiling of the hyperbolic plane:

Exercise. Can you find the underlying tiling by regular hyperbolic hexagons?

(2) A Penrose tiling using Penrose rhombi with decorations:
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Regarding the general definition of tiling. One needs some care in saying exactly what
a tiling is, because we want to avoid bad tiles (e.g. a tile made up of disconnected pieces,
or a tile having holes, or tiles that have parts which become infinitesimally thin), we want
to avoid tiles that are too large (e.g. unbounded tiles, like infinite strips), and nasty things
can happen if we allow infinitely many tile types (e.g. you usually do not want there to
be infinitely many tiles covering a finite region, for example this can happen if you use the
collection of tile types given by squares of any side length).

Exercise 2. Consider the infinite collection of tile types consisting of discs of any positive
radius. Can you tile the whole plane using only copies of tiles taken from this collection?

1.5. Distance function.
Let’s try to make the notion of distance more abstract. Given a set X, we want a function

d, called distance, which eats two points p, q ∈ X and spits out a number

d(p, q) = d(q, p) ≥ 0 for p, q ∈ X.

We want two basic properties:

• zero distance ⇒ p = q, and vice-versa: d(p, p) = 0;
• d(p, q) ≤ d(p, x) + d(x, q) for any p, x, q ∈ X (the triangle inequality).
Example: d(Boston,Oxford) ≤ d(Boston,The Moon) + d(The Moon,Oxford).

When we say (metric) space we will mean a set X together with a choice of distance d.
Examples.

(1) The real line R, with the usual Euclidean distance d(p, q) = |p− q|.
(2) The plane R2 = R× R, with the usual Euclidean distance

d(p, q) = ‖p− q‖2 =
√

|p1 − q1|2 + |p2 − q2|2

where p = (p1, p2) are the (x, y) coordinates of p.
(3) R2 with d(p, q) = ‖p− q‖1 = |p1 − q1|+ |p2 − q2|,
(4) R2 with d(p, q) = ‖p− q‖∞ = max{|p1 − q1|, |p2 − q2|}.
(5) Any set X with d(p, q) = 1 unless p = q (in which case d(p, p) = 0).
(6) X = Wadham College, d(p, q) = the least length of a piece of string that

you can have in Wadham College joining the points p, q (going through the

windows or staircases as necessary).

(7) In a set X where you know how to measure lengths of curves, and assuming

that any two points can be connected by some curve, you can define a distance

function

d(p, q) = min{` ∈ R : all curves from p to q have length at least `}.
(8) Hyperbolic geometry: the disc D = {z ∈ C : |z| < 1}. Then it turns

out6 that

d(0, z) = log
1 + |z|
1− |z|

.

You can obtain a formula for d(z1, z2) for general points z1, z2, by using

the above formula and using the symmetries of the hyperbolic disc

{z 7→ az + b

bz + a
: a, b ∈ C, |a|2 + |b|2 6= 0}

mentioned in the Exercises. These symmetries preserve hyperbolic distances

and they preserve angles.

6You could try to prove this by approximating any curve by a polygonal curve, then using the density
function to obtain a sum of lengths of straight-line segments which approximates the length of the curve, and
finally taking a “limit” as the polygonal approximation becomes better and better. However, pedagogically
this is not so reasonable. That limit process is called integration, and calculus develops tools to calculate
these limits very easily using integrals. So you should try out this calculation once you know about integrals.
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(9) If X,Y are spaces, with distance functions dX , dY , the product set of

all pairs (x, y),

X × Y = {(x, y) : x ∈ X, y ∈ Y },

has an natural distance function: the sum of the distances:

d((x, y), (x′, y′)) = dX(x, x′) + dY (y, y
′).

(10) The Hausdorff distance is a notion of distance between certain subsets

of Rn, which you will look at more closely in the Exercises. Let’s consider

R2, and the set X = {closed bounded subsets S ⊂ R2}. ‘‘Closed’’ means

the subset contains its ‘‘boundary points’’. For example the square [0, 1]×
[0, 1] ⊂ R2 is closed, whereas (0, 1]×(0, 1] is not since it does not contain

the boundary point (0, 0). ‘‘Bounded’’ means that the subset is contained

in some sufficiently large disc (of finite radius). For example, what

would you like the distance to be, between the following two squares?

Ask yourself: should it be 1, 2, 3 or
√
10? how do you define the distance

without violating one of the distance axioms?7

The answer, that works well, is to define:

d(S1, S2) = min

{
δ ≥ 0 :

every point s1 ∈ S1 has d(s1, s2) ≤ δ for some s2 ∈ S2,
and every point s2 ∈ S1 has d(s1, s2) ≤ δ for some s1 ∈ S1

}
where the distance d(s1, s2) between points s1, s2 refers to the Euclidean

distance. In the example of the two squares, check that d(S1, S2) = 2.

1.6. Topology and balls.
Without a notion of distance on a space, you cannot tell whether two points are close or

far away. There is a very weak notion of distance, much weaker than the above, called a
topology on a space. To define a topology on a set X, for each point p you need to choose a
collection of “neighbourhoods”: subsets surrounding the point p. For neighbourhoods U, V
of p, you imagine that the points in U are “closer” to p than the points in V if

U ⊂ V.

But since you haven’t assigned a numerical measurement to U, V , this is just a vague
notion of “closeness”, and it is difficult to work with. However, for a metric space, there is
an obvious choice of neighbourhoods around p: the (open) ball of radius r > 0 ∈ R around
p consisting of the points q within distance r of p,

Br(p) = {q ∈ X : d(q, p) < r}.

7If you have trouble, try first asking: if you have a tiny small disc S1 representing our spaceship, that
has almost reached the surface of an enormous disc S2 representing the Death-star, then do you want these
to be considered close or not? How close? If Darth Vader is on the opposite side of the Death Star, does he
feel like he’s close or far away from our puny spaceship?
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Examples.

(1) For R with the usual distance, Br(p) = (p−r, p+r) is an open interval.

(2) For R2 with the usual distance,

Br(0) = {(x, y) ∈ R2 :
√

|x− 0|2 + |y − 0|2| < r}

is the usual ball x2 + y2 < r2 around zero.

1.7. Open sets, topology, and neighbourhoods.
A subset U ⊂ X is called an open subset if it is a union of balls (possibly using different

radii and different centres). Notice that the whole set X is open (the union of all possible
balls), and by convention the empty set ∅ is open (a union over nothing).

The topology of X is, by definition, the collection of all possible open sets.8

A neighbourhood of p is any open subset containing p (so it is a union of balls, one of
which must contain p).

So general neighbourhoods can look very complicated indeed, since you are allowed to take
unions over infinitely many balls if you want.

Exercise 3. Show that any open set of R, with the usual distance, is a countable union of
disjoint open intervals (an interval is open if it does not contain its end-points).

The key observation:

Observation 4. Any neighbourhood of p contains some ball Br(p) centred at p.

Proof. The neighbourhood U =
⋃

Bri(pi) is some union of balls. Since p ∈ U , we have
p ∈ Bri(pi) for some index i. But now in general, if p ∈ BR(q) then Br(p) ⊂ BR(q) for
small enough r > 0.

8More precisely, a collection C of subsets of a set X is a topology if they satisfy: ∅ ∈ C, X ∈ C, any
union of any Si ∈ C is also in X, any finite intersection of any Si ∈ X is also in X. These subsets S ∈ C of
X are called open sets.
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Indeed, take r = R− d(p, q) > 0: then for y ∈ Br(p), using the triangle inequality,

d(y, q) ≤ d(y, p) + d(p, q) < r + d(p, q) = R,

so y ∈ BR(q). Hence Br(p) ⊂ BR(q). �

1.8. Subspaces.
A subset S ⊂ X of a metric space (X, d) is also a metric space: just use the same distance

function! In that case, you call S a subspace of X.
Notice that the balls in S may not look like those in X because points may be missing:
Example. Take X = R with the usual distance. Then S = [0,∞) is a subspace.

What is the open ball in S with centre 0 and radius 1?

B1(0) = {q ∈ S : dS(q, 0) < 1} = {q ∈ [0,∞) : d(q, 0) < 1} = [0, 1).

whereas in X = R we have B1(0) = (−1, 1). It just so happens that the space

S no longer contains the negative real numbers that R used to contain. On the

other hand, for any point p ∈ (0,∞), for small enough radii r the ball Br(p)
in S will be the same as that in R, since S will not be missing any points.

When small enough balls in S around p ∈ S are the same as balls in X, then p is called an
interior point.9 In the example, the interior (the set of interior points) is Int [0,∞) = (0,∞).

If a point p in X (which may or may not belong to S) is a boundary point of S if any ball
around p contains points both from S and from X \S. The subspace of boundary points is
denoted ∂S.

Examples.

(1) 0, 1 are the boundary points of the intervals (0, 1), [0, 1), (0, 1], [0, 1].
The interior is always (0, 1).

(2) For R with the usual distance, ∂Q = R and IntQ = ∅.
(3) The boundary ∂S depends on X: for example, the disc

D = {z ∈ C : |z| ≤ 1} ⊂ C = R2

has ∂D = S1, IntD = D (the disc without the points satisfying |z| =
1). But viewing D inside R3 (taking zero as the third coordinate) we

get ∂D = D, IntD = ∅. Another mind-twister: viewing S as a subspace

of S itself one always gets ∂S = ∅, IntS = S.

Exercise 5. Show that the interior IntS of a subspace S ⊂ X is always an open set. Deduce
that S ⊂ X is open if and only if S = IntS.

1.9. Closed sets.
A subset C ⊂ X is called closed if it is the complement X \ S of an open set S.
Examples.

(1) ∅, X are open sets, therefore their complements X \∅ = X and X \X =
∅ are closed sets. So ∅, X are both open and closed.

(2) [0, 1] ⊂ R is closed since [0, 1] = R \ ((−∞, 0) ∪ (1,∞)) and (−∞, 0) ∪ (1,∞)
is open.

Exercise 6. Show that S is closed if and only if ∂S ⊂ S. Show that IntS = S \ ∂S.

Remark. For any subset S ⊂ X you always have

(IntS = S \ ∂S) ⊂ S ⊂ ( S ∪ ∂S = S).

The interior is the largest open set contained in S, and the closure S = S ∪ ∂S is the
smallest closed set containing S.

9Precise definition: p ∈ S is an interior point if there exists some r > 0 such that the ball Br(p) in X is
contained inside S.
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1.10. Maps between spaces.
Given two spaces X,Y , a map f : X → Y eats a point x ∈ X and spits out a point

y = f(x) ∈ Y . When Y = R we often call f a function.
Examples.

(1) The familiar functions f : R → R such as straight lines f(x) = mx + c
and the standard parabola f(x) = x2.

(2) You cannot10 take X = R when the function is not defined everywhere on

R, for example the positive square root function is

f : [0,∞) → R, f(x) =
√
x.

(3) You also do not allow f to spit out more than one value, so

f : [−1, 1] → R, f(x) =
√

1− x2

only traces out the upper half of the unit circle.

(4) The standard ellipse with parameters a, b ∈ R,
f : R → R2, f(t) = (a cos t, b sin t).

Notice that the (x, y) coordinates of the image points f(t) trace out the

set of solutions of the equation

x2

a2
+

y2

b2
= 1.

For a = b = 1 you get the unit circle. Notice that f is not injective

(one-to-one) since f(t + 2π) = f(t), but we could make it injective by

taking X = [0, 2π) instead of R.

1.11. Test maps out of X and into X.
You can study a space X by considering the functions f : X → R out of X.
Physically, X may be the surface of the Earth and f is a measurement such as tempera-

ture, altitude, pressure, etc.
You can also study a space X by considering maps into X. Such as paths

R → X or [0, 1] → X;

or loops
S1 = {z ∈ C : |z| = 1} → X;

or discs
D = {z ∈ C : |z| ≤ 1} → X,

or higher dimensional discs

Dn = {x ∈ Rn : ‖x‖ ≤ 1} → X.

In each case, the space T = R, [0, 1], S1,D,Dn, . . . is a test space you use, and the test
maps into X from T , or out of X into T , will give you various information about the
geometry and the topology of X.

Physically, f : R → X may be the motion of a particle in the universe X, so f(t) ∈ X is
the position at time t ∈ R.

Examples.

(1) The previous example of an ellipse describes the motion of a planet around

the Sun, and the parameters a, b of the ellipse depend on the planet.

10In physics one often uses sentences such as “the function
√
x” or “the mass m”. The mathematician

always checks where these things exist: so x ∈ [0,∞) and m ∈ (0,∞). There’s a joke: if you ask a
mathematician to get in the car, the first thing the mathematician does is to check whether the car actually
exists.
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(2) Take X to be the dodecahedron, the regular polyhedron with twelve pentagonal

faces. Let P be a regular pentagon in the plane. Then you can define

twelve maps f1, . . . , f12 : P → X which map the pentagon to the various faces

of X.

(3) Take X to be a torus T 2: the surface of an American doughnut.

A triangulation of X is an identification f : P → X of X with a polyhedron

made up of triangular faces. This means that we are ‘‘dividing’’ X into

curved triangles, so that any edge belongs to exactly two curved triangles,

and at any vertex the curved triangular faces fit together around the vertex

in a cycle. For example, we can take P to be a cube, then puncture through

it a small parallelepiped hole, and finally we divide the square/rectangular

faces into triangles:

In the last picture above, we show that you can draw a triangulation directly

on the picture of the torus: just draw a tiling by curved triangles.

(4) Most spaces X can be built up by gluing together discs. Consider, for

example, the n-dimensional sphere. This is the boundary of the unit ball

in Rn+1:

Sn = ∂Dn+1 = {x ∈ Rn+1 : ‖x‖ = 1}

(for example, S1 = ∂D2). It can be built up from two maps:

f0 : D0 = {point} → Sn fn : Dn → Sn,

where f0 maps the point to the South Pole (0, . . . , 0, 1) of Sn, and fn wraps

around the sphere by sending the boundary ∂Dn of the disc to the South

Pole (‘‘collapse the boundary to a point’’). More explicitly, for example,

in the case n = 2: think of the disc D2 as a family of circular paths

[0, 1] → D, s 7→ te2πis

of radius 0 ≤ t ≤ 1. For t = 0 you get a point, and you send that to

the North Pole; for t > 0 you send these circles to the horizontal latitude

circles of the sphere S2 (parallel to the equator). For example, for

t = 1/2 send the circle to the equator. As you approach t = 1 you send

the circles to the small horizontal latitude circles around the South Pole.

Finally for t = 1 you send the entire circle ∂D to the South Pole.
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(5) In general, a cellular decomposition of a space X involves producing a

collection of such maps fn from n-dimensional discs (with possibly several

maps in the same dimension n), such that fn maps the boundary ∂Dn into

the n−1 dimensional space you have built so far (so you build X inductively

by dimensions). You also want each map fn to be injective on the interior

IntDn (but it need not be injective on ∂Dn, see the example above).

For example, the torus T 2 is obtained by gluing a disc f2 : D2 → T 2

onto a figure 8 loop (which consists of one 0-cell f0 : D0 → T 2 and two

1-cells f1 : D1 → T 2 and f̃1 : D1 → T 2).

In the above picture, we first show how the torus arises from a square

by gluing together opposite parallel sides (the arrows tell us in which

direction to glue). Then we show on the square where the cells f0, f1, f̃1, f2
are. For example, the 4 vertices of the square all get glued together

to give one point in T 2 which is our zero cell f0.
(6) This is the beginning of modern geometry. For example, consider the Euler

characteristic χ, which you may have encountered for regular polyhedra

as being defined as V −E+F, where V,E, F is the number of vertices,

edges, faces in the polyhedron. This number turns out always to equal

2 because all regular polyhedra can be deformed11 into the sphere S2, which

has χ(S2) = 2. Indeed, any triangulation of S2 will give χ(S2) = 2.
In general, for any space X, χ(X) is the alternating sum of the number

11If you have a balloon in the shape of a regular polyhedron, and you keep blowing it up, then it will
deform into a sphere.
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of cells in each dimension. So for the sphere: one 0-cell, zero 1-cells,

one 2-cell, gives: χ = 1−0+1 = 2. For the torus, above: one 0-cell,

two 1-cells, one 2-cell, gives: χ = 1−2+1 = 0. An important theorem

is to show that χ is an invariant: no matter how you express X in terms

of a cellular decomposition, χ(X) will be the same integer.

Exercise 7. By drawing a triangulation, show that a doughnut with g holes instead of 1
hole, will have χ = 2− 2g.

1.12. Continuous maps.
So far when defining maps f : X → Y we only used that X,Y were sets. We have not

yet used that X,Y have a notion of distance. So which maps are good and which are bad?
If a map takes two points which are very close in X and tears them apart, spitting out

two points which are very distant in Y , then of course the map f is bad. For a good map
we expect that “close points map to close points”:

Example. Let P be a regular pentagon in the plane, and X a dodecahedron.

Let f : P → X be a map which sends each point of P to a randomly chosen point

in one of the twelve pentagonal faces of X.12

Then f is a bad map: two points which are very close in P may end up far apart

in two different faces of X.

So how do we decide precisely when a map is good? After all,

f : R → R, f(x) = 107x

is a very good map (it’s a straight line!), but the two close points p = 0, q = 1/10 map to
f(p) = 0 and f(q) = one million, which seem very far apart.

This issue arises because there is no precise notion of ‘big’ and ‘small’. What we really
want is that f(p), f(q) are “close” in Y whenever we impose that p, q are “very close” in
X. So in the above example: if we want f(0) = 0, f(x) = 107x to be within distance
1/100 = 10−2, it is enough if we require that 0, x are within distance 10−9. We do not
actually care about making the optimal requirement: we could also require that 0, x are
within 10−10000. As long as there is some requirement that works, we’re happy.

So good map means: f(x) is close to f(p), if x is very close to p. Mathematically:

12More precisely, for each p ∈ P we randomly assign a number n(p) ∈ {1, . . . , 12} and we define f(p) =
fn(p)(p) using the twelve maps f1, . . . , f12 mentioned in a previous example.
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Definition 8. A map f : X → Y is continuous if for any ball BR(f(p)) in Y we can find
a radius r > 0 such that the image in Y of the ball Br(p) in X fits inside BR(f(p)):

f(Br(p)) ⊂ BR(f(p))

Remarks 9. If we want to show that a map is continuous, notice that: R is given to us,
and we must find an r which works. In general, r will depend on R and on the points
p, f(p). However r is not allowed to depend on x, f(x) for x 6= p.

Examples.

(1) A constant map f : X → Y , f(x) = z (for some fixed choice of point z ∈
Y ) is always continuous. For any R we can take r = 1. Indeed:

f(Br(p)) = {z} ⊂ BR(z) = BR(f(p)).

(2) The identity map f : X → X, f(x) = x is continuous. Indeed for r = R:

f(Br(p)) = Br(p) ⊂ BR(p) = BR(f(p))

(3) Linear functions f : R → R, f(x) = mx + c are continuous. Take r =
R/m:

f(Br(p)) = Bmr(mp+ c) ⊂ BR(mp+ c) = BR(f(p)).

For example, f(x) = 107x is continuous since linear.

(4) f : R → R, f(x) = x2+1, then f(x)−f(p) = x2−p2 = (x−p)(x+p). We want:

|x − p| < r implies |x − p| · |x + p| < R. Exercise: what r do you pick?

Careful: r must not depend on x. As you can see, already this simple

example can become messy.13

(5) If X is a staircase in Wadham College (using as distance between two points,

the least length of a piece of string connecting the points), and Y is

the surface of the Earth underneath Wadham College, then the projection

map f : X → Y , which projects a point of the staircase vertically onto

the surface of the Earth, is continuous.

13Hint. How big can |x+ p| be? Here is a trick. First, find r1 such that if |x− p| < r1 then |x+ p| < m
(for example take m = 1). Then, as in the previous example, r2 = R/m ensures that: if |x − p| < r2 then
|x− p| ·m < R. Finally, take r = min{r1, r2}.
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(6) The operation of rescaling gk : R → R, g(x) = kx by some k 6= 0 ∈ R is

continuous. Indeed, take r = R/k:

gk(Br(a)) = kBr(a) = Bkr(ka) ⊂ BR(ka).

(7) The operation of addition g+ : R×R → R, g+(a1, a2) = a1+a2 is continuous.

Take r = R/2 then

g+(Br(a1), Br(a2)) = Br(a1) +Br(a2) ⊂ BR(a1 + a2),

where the inclusion follows by the triangle inequality:

|x1 + x2 − (a1 + a2)| ≤ |x1 − a1|+ |x2 − a2| < r + r = R.

(8) The operation of multiplication g× : R × R → R, g×(a1, a2) = a1 · a2 is

continuous (Exercise).

(9) f : R → R, f(x) = 1 for x 6= 0, and f(0) = 0. Then f is not continuous

near p = 0. Indeed: f(0) = 0, so B1/2(f(0)) = (−1
2 ,

1
2) but f(Br(0)) will

never fit inside (−1
2 ,

1
2) since 1 ∈ f(Br(0)) for any r > 0.

(10) Intuitively speaking, a function f : R → R is continuous if you can

draw its graph without lifting the pen off the paper (there are no ‘‘jumps’’).

However, when f is not defined on all of R, then this intuition may be

deceptive: for example, f(x) = 1
x is a continuous function f : R\0 → R

(you cannot pick p = 0 since it does not belong to the domain of definition).

(11) The map f : (0, 1) → S1, x 7→ e2πix is continuous: given a ball in S1 around

f(p) we can fit f(tiny interval around p) inside it.

Theorem 10 (See Exercises). A map f : X → Y is continuous if and only if the preimage
f−1(BR(f(p))) of any ball around f(p) is a neighbourhood of p in X.

Lemma 11. If f : X → Y , g : Y → Z are continuous, then the composition g ◦ f : X →
Y → Z is continuous.

Proof. Since g is continuous, the preimage via g of any ball around g(f(p)) in Z is a
neighbourhood of f(p) in Y . By the above Observation, this neighbourhood contains a ball
around f(p). Since f is continuous, the preimage via f of this new ball is a neighbourhood
of p in X. Which again by the observation contains a ball Br(p). Thus g ◦ f(Br(p)) ⊂
BR(g ◦ f(p)). �

Example. When you have two maps, f : X → Y , g : X → Z, you sometimes

want to consider both maps simultaneously. In that case, you consider

h : X → Y × Z, h(x) = (f(x), g(x)),

In the exercises you will show the following:

• If f, g are continuous then so is h;
• Using the maps gk, g+, g×, h above, you can view kf, f+g, f ·g as compositions

of continuous functions, so they are continuous by the above Lemma;
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• Inductively this shows that taking sums/differences, products, and rescalings

of finitely many continuous functions gives a continuous function;

• In particular any polynomial

f : R → R, f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

is continuous.

This abstract approach avoids the messy argument involved in finding r in terms

of R and p (see the example f(x) = x2+1 above). Mathematicians should always

aim to find an elegant route, if the normal route is messy.

Warning. One often says “map” to mean “continuous map”, to save ink. In
the rare situations where one really does need to use a discontinuous map, one typically
emphasizes that it is not continuous.

1.13. An introduction to Limits via examples.
Write x → p as an abbreviation for the sentence “the point x approaches the point p”

(inside a space X), meaning that the distances d(x, p) are approaching zero as we vary x in
some family of points. Often we say “x converges to p”.

Examples.

(1) x = 1
n → 0 in R as n grows to infinity (abbreviated: n → ∞).

(2) As x → 3, f(x) = x2 + 1 → f(3) = 32 + 1 = 10. It is a general feature of

continuous maps that f(x) → f(p) as x → p.
(3) f : R → R, f(x) = 1 for x 6= 0, and f(0) = 0 (recall this f is not

continuous). As x → 0, f(x) = 1 → 1 which does not equal f(0) = 0.
(4) An archer shoots an arrow towards a target. Assume that no air resistance

exists. . . and that no gravity exists!

The physicist says, ‘‘let’s take as unit of length the distance between

the archer and the target, then the arrow will travel distance 1’’. A

philosopher says, ‘‘I’m not sure the arrow will ever hit the target, because

the arrow must first travel half the distance, 1/2, then it will travel

half of the remaining distance, 1/4, then half of what remains thereafter,

1/8, and so on. So at each stage, the arrow has half of the remaining

distance left to travel, so it never reaches the target’’. The physicist

scratches his head in perplexity, so the philosopher removes the target

and yells at the archer ‘‘Shoot! You can’t possibly hit me!’’. After

the inevitable accident, the mathematician explains to the philospher in

hospital: ‘‘actually the infinite sum 1
2 + 1

4 + 1
8 + · · · + 1

2n + · · · makes

sense: consider the values you get when you take the partial sums:

1

2
,
3

4
,
7

8
,
15

16
,
31

32
, . . .

At the n-th stage you get 1− 1
2n and this converges to 1 as n → ∞. So

the infinite sum equals 1. That’s why you got hit by the arrow’’.

(5) Not all infinite sums make sense. For example 1+1+1+1+· · · does not

converge to a number (infinity is not a number). Another example: 1−
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1 + 1− 1 + 1− 1 + · · · does not converge since you cannot decide whether

the limit should be 1 or 0.

Exercise 12. Find a sequence of real numbers x1, x2, x3, . . . such that: given any real
number r you can rearrange the sequence: xi1 , xi2 , xi3 , . . . (so each xj appears exactly once),
so that the infinite sum converges to r:

xi1 + xi2 + xi3 + · · · → r.

1.14. Continuity in terms of limits.

Theorem 13. f : X → Y is continuous if and only if f(xn) → f(p) for any sequence
xn → p.

Remark 14. We clarify the definition of xn → p. It means that the sequence xn is even-
tually inside any ball around p for large enough n. Precisely: for any r > 0, there is some
N ∈ N so that xn ∈ Br(p) for all n ≥ N . Usually N depends on r. Similarly f(xn) → f(p)
means: for any R > 0, we can find N ∈ N so that f(xn) ∈ BR(f(p)) for all n ≥ N .

Proof of the Theorem. Let’s now prove the direction “⇒” of the Lemma. If we want f(xn)
to be within distance R from f(p), then we know (by continuity) that for some r we just
need to ensure that xn is within distance r from p, and this holds for n ≥ N for some large
N since xn → p.

Now we prove the direction “⇐”. Suppose f is not continuous, by contradiction. Then
for some R > 0, no matter how small we pick r > 0, the following inclusion fails:

f(Br(p)) ⊂ BR(f(p)).

So there is a bad point xr ∈ Br(p) with f(xr) /∈ BR(f(p)). As we let r vary in a family
which decreases to zero (for example, take the sequence r = 1/n), then by construction
xr → p. So, by assumption, f(xr) → f(p). But f(xr) /∈ BR(f(p)) so it cannot get close to
p! Contradiction. �

2. When do we want to think of two spaces as being the same?

2.1. Various notions of equality.
There are several options for what it means for two spaces X,Y to be the same:

(1) Equality: if they are equal X = Y . But this is already too harsh for sets: for
example, do we really want to think of {A,B,C} and {a, b, c} as different?

(2) Bijection: if there is a bijection14 f : X → Y . For example, above, send A,B,C to
a, b, c respectively. This is a good notion for sets, but for spaces it ignores distances.

(3) Continuous bijection: if there is a continuous bijection f : X → Y . But then
we would be identifying some spaces which should be thought of as different. For
example: [0, 2π) → S1, x 7→ eix is a continuous bijection, but we don’t want to think
of an interval as being the same as a circle. Another bad example: [0, 1] ∪ (2, 3] →
[0, 2] defined on the first interval by x 7→ x and on the second interval by x 7→ x−1.
This is a continuous bijection.

(4) Homeomorphism: if there is a continuous bijection f : X → Y such that the
inverse f−1 : Y → X is also continuous. This is called a homeomorphism. The
previous two examples will fail, because the inverse functions S1 → [0, 2π) and
[0, 2] → [0, 1] ∪ (2, 3] are not continuous near 1. This notion is good if you allow
your space to be continuously deformed in a way that you can also continuously

14A map f : X → Y is a bijection if it is injective (one-to-one: no two points in X map to the same
point in Y ) and surjective (onto: each point of Y is the image of some point from X). Exercise: Show that
f : X → Y is a bijection if and only if there are two maps f : X → Y , g : Y → X such that the composites
f ◦ g and g ◦ f are the identity maps. The map g is called the inverse of f , and is written f−1.
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undo the deformation. However, notice that distances do not need to be preserved.
For example, D with the hyperbolic distance and D with the Euclidean distance are
homeomorphic via the identity map D → D, z 7→ z.

(5) Isometry: homeomorphisms f : X → Y which preserve lengths, so dY (f(x), f(x
′)) =

dX(x, x′). These are called isometries. They arise often in geometry and physics,
and are sometimes called symmetries. This notion is good when working for exam-
ple with tilings. This is quite a rigid property: there are often very few isometries.
For example, we mentioned in Section 1.5 the symmetries of the hyperbolic disc D.

Examples.

(1) In R with the usual distance, the isometries have the form

f(x) = x+ constant or f(x) = −x+ constant.

(2) Any strictly increasing (or strictly decreasing) continuous function f :
R → R is a homeomorphism. For example f(x) = x3 is a homeomorphism

(but not an isometry).

(3) In R2 with the usual distance, all the isometries are obtained by composing

a translation15 with a rotation or a reflection. So, identifying R2 =
C and writing z for the complex conjugate, the isometries of R2 are:

z 7→ eiαz + c or z 7→ eiαz + c (for constants α ∈ R, c ∈ C)

2.2. Homeomorphisms.
For our purposes, the notion of isometry is too strong. We want to allow continuous

deformations (like stretching a rubber band). So we will study homeomorphisms f : X → Y ,
namely bijections f such that f, f−1 are both continuous.

Examples.

(1) [0, 1] → [0, 2], x 7→ 2x is a homeomorphism;

(2) [0, 1] → [0, 1], x 7→ x2 is a homeomorphism, and its inverse is the homeomorphism

x 7→
√
x;

(3) Every polygon (including the inside) is homeomorphic to a disc.16 The

picture to have in mind is like that of blowing up a balloon: you can

stretch and pull, you can even make corners, as long as you don’t tear.

(4) A sphere is homeomorphic to a tetrahedron (and to any regular polyhedron).

Just stretch the tetrahedron outwards, towards a big sphere that contains

the tetrahedron, like blowing up a balloon.

(5) If you take a surface S, make a cut, then continuously deform, and later

glue the cut up exactly as it was before, then the result is homeomorphic17

to S. For example, the following knotted doughtnut is homeomorphic to

the usual doughnut:

15adding constants to the x, y coordinates: f(x, y) = (x+ a, y + b).
16This uses the following ideas. First notice that the map [0, a] → [0, 1], x 7→ x/a is a homeomorphism

(for a > 0 fixed). Similarly in R2 the map (x, y) → 1
a
(x, y) is a homeomorphism from the line segment

joining (0, 0) and a · (x0, y0) to the line segment joining (0, 0) and (x0, y0). To build the homeomorphism
from the polygon to the disc, along each ray you use such a stretching map. The value of a will depend on
the angle that the ray makes with the positive real axis, but a will depend continuously on the angle, so
that’s not a problem.

17check this: pick any point p on S, draw a little disc around it, and follow how the disc changes under
the transformation – at the end, you should get another deformed disc.
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Indeed, the ‘‘knotting’’ of the surface is a property of the ambient in

which we view S (here S ⊂ R3): it is not something intrinsic about S.
That’s why homeomorphisms do not detect it. More existentially, as an

ant living in this doughnut universe, you wouldn’t know that someone has

messed with your universe since you are not aware that there is more space

‘‘outside’’ of your universe.

Exercise 15. In that last example, can you prove that you cannot knot the doughnut above
without making a cut (that is, you cannot knot it by just using a continuous deformation)?18

3. Using continuous maps to understand the topology

3.1. Homeomorphic spaces cannot be distinguished using continuous functions.

Lemma 16. If f : X → Y is a homeomorphism, then the continuous maps into X and out
of X are the “same” as those for Y .

Proof. Any map In : T → X from a test space T into X gives rise to a map into Y by
composition:

f ◦ In : T → X → Y.

Similarly, any map Out : X → T from X into a test space T gives rise to a map from Y by
composition:

Out ◦ f−1 : Y → X → T.

So, phrasing the claim more precisely, we are saying that there are natural bijections between
the spaces of continuous maps from/to a test space T :

C(T,X) → C(T, Y ), In 7→ f ◦ In, C(X,T ) → C(Y, T ),Out 7→ Out ◦ f−1.

You can easily check that these are bijections.19 �

Example. For f : [0, 1] → [0, 2π], f(x) = 2πx, the map Out : [0, 2π] → T = S1,

Out(x) = eix corresponds to the map Out◦f : [0, 1] → T = S1, Out(f(x)) = Out(2πx) =
e2πix. Physicists like their angles to go from 0 to 2π, but mathematicians like

to think of the circle as [0, 1] with endpoints identified. The above shows that

it won’t matter what you prefer: you will detect the ‘‘same’’ continuous maps.

3.2. Connected spaces.
Let’s study the simplest case of maps out of a space X: consider maps into the test space

Z (with the usual Euclidean distance).
A space X is called connected if any continuous integer-valued function

f : X → Z

18Hint. Look up “trefoil knot” in Wikipedia.
19Hint. Guess what the inverse maps are supposed to be, then prove that they are the inverse maps by

showing that certain compositions are the identity map. More hints. C(T,X) → C(T, Y ) → C(T,X), In 7→
f ◦ In 7→ f−1 ◦ (f ◦ In) = In, which is the identity map.
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is always constant.20 Intuitively, this is saying that locally constant functions must actually
be globally constant.

Examples.

(1) The unit interval [0, 1] is connected. The key idea to prove this, is that

two integers can only be very close if they are equal!21

(2) A circle is connected. Proof: Given f : S1 → Z, remove a tiny interval

around 1 from S1. Call that X ′. Notice X ′ is homeomorphic to an interval.

So the restriction f |X′ : X ′ → Z to X ′ must be constant since the interval

is connected. So f is constant everywhere on S1 except possibly near

1. Similarly, if you removed a tiny interval around −1 you would deduce

that f is constant everywhere except possibly near −1. Combining, we

deduce that f is constant.

(3) The disjoint union of two circles is disconnected: the function which

takes value 0 on the first circle and 1 on the second circle is continuous.

(4) If you join two circles at one point, you obtain a ‘‘figure eight’’. This

is connected. Proof. Given f : (figure 8) → Z, the restriction of f
to each of the two circles must be constant since the circle is connected.

The two constants you get must agree since f needs to take the same value

at the point where the circles are joined.

(5) If you remove the joining point in the figure eight, you obtain a disconnected

space (it’s a disjoint union of two open intervals).

3.3. Path-connected spaces.
Let’s consider a simple case of maps into X: consider maps from the test space [0, 1]

(with the usual Euclidean distance).
A space X is called path-connected if for any two given points p, q there is a continuous

map

f : [0, 1] → X, f(0) = p, f(1) = q.

Intuitively, f is a continuous path joining p to q.

Lemma 17. If a space is path-connected, then it must be connected.

Proof. Suppose by contradiction that there is some path-connected space X which is not
connected. So there is a non-constant continuous function g : X → Z. Now consider a
continuous path f : [0, 1] → X joining two points p = f(0), q = f(1) for which g(p) 6= g(q).
Then the composite g ◦ f : [0, 1] → X → Z is continuous and non-constant, contradicting
that [0, 1] is connected. �

Examples.

(1) The above examples of connected spaces are also path-connected.

(2) Can you think of a connected space which is not path-connected? (Exercise)

3.4. Fillability of maps, and simply connected spaces.
Notice that the 0-dimensional sphere consists of two points:

S0 = {±1} = {x ∈ R1 : |x| = 1} ⊂ D1 = {x ∈ R : |x| ≤ 1} = [−1, 1].

20You could also replace Z by two points {0, 1} in the definition: can you see why?
21Proof: given f : [0, 1] → Z, if x′ is sufficiently close to x then by continuity f(x′) is arbitrarily close

to f(x). But f(x), f(x′) are integers, so if they are within distance 1/2 then they are equal. Now we use a
trick: consider the set S = {s ∈ [0, 1] : f(x) = f(0) for all x ∈ [0, s]}. We know that small enough s > 0 are
in S by continuity of f near x = 0. Check that S is an interval. Finally check that the boundary of S must
be 0 and 1 (Hint. if instead of 1 you had the boundary point x > 0, then use continuity at x to deduce that
S contains a small interval around x contradicting that x 6= 1 is a boundary point).
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So if f : S0 → X sends f(−1) = p and f(+1) = q, then asking whether there is a path
F : [−1, 1] → X joining p to q is the same as asking whether there is a filling F : D1 → X
which restricts to f on the boundary S0 = ∂D1. So a space is path-connected if and only if
every map f : S0 → X can be filled by a continuous map F : D1 → X with F |S0 = f .

Similarly, whenever you have a continuous map

f : S1 → X,

you can ask whether there is a continuous map F : D = D2 → X which restricts to f along
the boundary S1 = ∂D. In symbols:

F : D → X, F |S1 = f

Geometrically, you are asking whether there is a disc inX which fills in the circle f(S1) ⊂ X.

Notice we do not require f or F to be injective. For example, a constant loop f = p ∈ X
is always fillable by the constant disc F = p.

One can view the disc D = {z ∈ C : |z| ≤ 1} as a family of circles of shrinking radii:

[0, 1] → D, s 7→ te2πis

is a circular subset of D of radius t, with 0 ≤ t ≤ 1, and centre 0. At time t = 0 this is just
a point (a circle of zero radius).

Fillability is therefore asking whether the loop f(S1) ⊂ X can be continuously deformed
(through loops) to a point.

The family (Ft)0≤t≤1 of loops is given by

Ft : S
1 → X, Ft(e

2πis) = F (te2πis)

and these loops contract down to the point F (0) ∈ X obtained for t = 0. Notice F1 = f is
the original loop we wanted to fill.

A space is called simply connected if it is connected and the above filling property always
holds (that is, any loop can be continuously deformed to a point).

Example.

(1) [0, 1] is simply connected: take

Ft(s) = t · f(s).

Notice F1 = f and F0 = the point 0. The same works for the discs D,Dn

and for R,Rn.

(2) Any convex subset22 of S ⊂ Rn, is simply connected: take

Ft(z) = tf(z) + (1− t)y

22S ⊂ Rn is convex if the straight line segment (tp+(1− t)q)0≤t≤1 joining any two points p, q ∈ S always
lies entirely in S.
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where y is a fixed chosen point of S. Again notice F1 = f and F0 = the

point y.
(3) It turns out that S1 is not simply connected (we will prove this when

we study winding numbers). However, the 2-sphere S2 and more generally

Sn = ∂Dn+1 for n ≥ 2 are simply connected.

Sketch Proof that S2 is simply connected: if you can find a point p ∈
S2 which is not on the loop, then you can fill the loop. Indeed, S2\
p is homeomorphic to R2 (Exercise), and we know that loops in R2 can be

filled! However, as you will see in the Exercises, there are (continuous!)

loops which pass through every point of S2. The trick around this involves

three ideas:

(a) if two loops are very close23 then you can continuously deform one

into the other;24

(b) continuous functions can be approximated arbitrarily well by polynomials,

similarly continuous loops f : S1 → S2 can be approximated arbitrarily

well by a polygonal path g : S1 → S2;

(c) thus we can deform any loop f into a polygonal loop g, and since polygonal

loops obviously don’t pass through every point of S2, we can fill g,
meaning we can further deform g into a point.

(4) The annulus A = {z ∈ C : 1 ≤ |z| ≤ 2} is not simply connected. Here is

a trick to prove this using the previous example. Notice that the unit

circle S1 = {z ∈ C : |z| = 1} is a subset of A. So there is an inclusion

of the circle into the annulus:

In : S1 → A, z 7→ z.

There is also a map from the annulus into the circle, by ‘‘squashing’’

the width of the annulus so that it becomes a circle:

Out : A → S1, z 7→ z

|z|
.

They key property that we will use about the In-and-Out maps, is that their

composite is the identity map on the circle:

Out ◦ In = Id : S1 → A → S1, z 7→ z 7→ z

|z|
= z.

Now suppose that f : S1 → S1 is any loop inside the circle. We can produce

a loop in the annulus by composition:

In ◦ f : S1 → A.

Suppose by contradiction that A is simply connected. Therefore the loop

In ◦ f can be filled. So there is a filling map

F : D → A with F |S1 = In ◦ f.

Now we can use the Out-map to produce a filling in the circle:

Out ◦ F : D → S1.

Let’s check this really is a filling of f:

Out ◦ F |S1 = Out ◦ In ◦ f = Id ◦ f = f.

23Two loops f : S1 → S2, g : S1 → S2 are close if ‖f(e2πis)− g(e2πis)‖ is small for all s ∈ [0, 1].
24Indeed just move the point f(e2πis) to the nearby point g(e2πis) by following the shortest arc that

connects them.
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Thus, if A really was simply connected, then the In-and-Out trick would

show that every loop in S1 can be filled. But the previous example says

that this is not true. So A is not simply connected.

(5) The torus T 2 = S1×S1 = {(z1, z2) ∈ C×C : |z1| = 1, |z2| = 1} (the surface of

an American doughnut25) is not simply connected. You can prove this again

by the In-and-Out trick, using In : S1 → T 2, z 7→ (z, 1) and Out : T 2 →
S1, (z1, z2) 7→ z1. You can use this trick also to find explicit examples

of non-contractible loops: any latitude circle a and any longitude circle

b cannot be shrunk to a point.

Exercise. How about the loop aba−1b−1 (meaning: latitude circle, followed

by longitude circle, then go along the latitude circle in reverse, and

the longitude circle in reverse.) Can you show that this is fillable?26

3.5. Fillability of higher-dimensional spheres, Brower’s fixed point theorem.
More generally, for

f : Sn = ∂Dn+1 → X

you can ask if there is a filling F : Dn+1 → X, that is a continuous map which restricts to
f along the boundary. Geometrically, you are asking if you can deform the sphere f(Sn)
through spheres Ft(S

n) down to a point.

Exercise 18. Show that you can view the disc Dn+1 as a family of spheres of varying radius
0 ≤ t ≤ 1 (for t = 0 you a sphere of zero radius, which is just a point). Deduce that asking
whether f : Sn → X has filling F : Dn+1 → X is the same as asking whether you can
continuously deform the sphere f down to a point.

Example.

(1) As usual, for [0, 1], D, Dn, R, Rn and in general any convex subset of

Rn, you can always fill. Use the usual formula Ft(z) = tf(z) + (1− t)y,
for any fixed chosen point y in the space, where z is the varying point

in Sn.

(2) It turns out that any map f : Sn → S1 for n ≥ 2 can be filled by some

F : Dn+1 → S1. It also turns out that any map f : Sn → T 2 for n ≥ 2
can be filled by some F : Dn+1 → T 2.

(3) It turns out that there are maps Sn → Sn, such as the identity map, which

cannot be filled by any F : Dn+1 → Sn.

Exercise 19 (Brower’s Fixed Point Theorem). Brower’s theorem states that any continuous
map c : Dn+1 → Dn+1 must have a fixed point, that is a point x for which c(x) = x.

Any n ≥ 0 works, but it helps to draw pictures in the plane (so n = 1). Prove the theorem
as follows. Suppose by contradiction that the theorem is false. Deduce that you can then
define a map Out : Dn+1 → Sn by letting Out(x) ∈ Sn be the point where the straight ray
from c(x) through x intersects the boundary Sn = ∂Dn+1. Check that Out is the identity
map on Sn ⊂ Dn+1. Finally, define an obvious inclusion In : Sn → Dn+1. Use the In-and-
Out trick, and the previous examples, to deduce that any map Sn → Sn can then be filled
by F : Dn+1 → Sn. But as mentioned in the above examples, this is false for the identity
map Sn → Sn. Contradiction. So Brower’s theorem must be true.

25Recall we showed that T 2 can be obtained from a square by gluing together opposite sides. The two
sides are intervals [0, 1] and gluing their ends gives rise to a circle S1, that is where the two S1 factors in
T 2 = S1 × S1 come from. More geometrically, pretend that the Earth was a doughnut: then the circles of
latitude are the circles S1 × constant, and the circles of longitude are constant × S1 (in the square which
glues to become the torus, these are respectively the horizontal and the vertical line segments inside the
square). Any point on the Earth is specified uniquely by a latitude and a longitude coordinate (in the square
which gets glued, any point is uniquely specified by the (x, y) coordinates modulo Z× Z).

26Hint. We discussed an interesting disc f2 : D → T 2 in the a cellular decomposition of the torus.
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3.6. Applications of fillability: telling spaces apart, interactions of strings.
One reason for caring about fillings is that it allows you to tell spaces apart.
Example. The 2-sphere S2 and the torus T 2 are not homeomorphic, because we

saw that loops f : S1 → S2 are fillable (by discs) but there are loops f :
S1 → T 2 which are not. But homeomorphic spaces have the ‘‘same’’ continuous

maps. So S2, T 2 cannot be homeomorphic.

Asking whether circles and spheres can be filled with dics and balls is the beginning of
Homotopy Theory.

One can also ask about more complicated fillings. For example, remove a small disc
around a point of the torus. The surface you obtain, S = T 2 \D, has boundary S1. So you
can ask whether a loop f : S1 → X in a space X can be filled by a map F : S → X, with
F |S = f . Thinking about such more general fillings is the beginning of Homology Theory
and of Cobordism Theory.

If you think of the universe as being made up of strings (that is, loops S1 → X), you may
ask whether two strings f0tf1 : S

1tS1 → X can be filled by a cylinder F : [0, 1]×S1 → X
(so F (0, z) = f0(z) and F (1, z) = f1(z)). This is physically relevant: it answers whether f0
can evolve in time to become f1. You think of z 7→ F (t, z) as the loop at time t in your
evolution cylinder.

More generally, you may consider surfaces S (possibly with doughnut holes) which have n
incoming circles and m outgoing circles. So you ask whether strings f1, . . . , fn, g1, . . . , gm
are fillable by F : S → X. This is physically relevant: you are asking whether the strings
f1, . . . , fn can evolve and interact so as to turn into the strings g1, . . . , gm.

These ideas arise in String Topology and in Topological Quantum Field Theory.

4. Winding numbers

4.1. The angle functions α±
n . In the plane R2, for points27 p 6= 0, one can define the

angle between the positive x-axis and the line segment joining 0 to p.

However, it is less clear how you define α(p(t)) for a moving point p(t). The problem is
that there does not exist a well-defined continuous angle function

α : R2 \ 0 → R.
Example. Consider a point moving around the circle p(t) = (cos 2πt, sin 2πt) for

0 ≤ t ≤ 1. How do you define α(p(t))? The natural choice is α(p(t)) = 2πt. Now

27For p = 0 we cannot define an angle.
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p(0) = p(1) = (1, 0) ∈ R2, so α should take the same value at p(0) and at p(1).
But α(p(0)) = 0 and α(p(1)) = 2π. So α(p(t)) is badly defined.

There are several options to deal with this problem:

(1) Multivalued functions: the angle α : R2 \ 0 → R is not a function, rather we
assign multiple values. For example α(1, 0) is 2πZ, any integer multiple of 2π. So
the values of α are subsets of R, not points in R.

(2) Discontinuous functions: you make a choice, say α(positive x-axis R+) = 0.
Then α : R2 \ 0 → [0, 2π) will not be continuous near R+ since the angle there
jumps by 2π.

(3) Cut the domain: we remove enough of R2 to ensure that α becomes continuous.
For example, this works if we remove the positive x-axis

R+ = {(x, 0) ∈ R2 : x ≥ 0}.
and we define

α+
0 : R2 \ R+ → (0, 2π) ⊂ R.

We could also have cut the plane along R− = {(x, 0) ∈ R2 : x ≤ 0} to obtain

α−
0 : R2 \ R− → (−π, π) ⊂ R.

Notice that α±
0 are both continuous.

Notice that we can also shift those angle functions by multiples of 2π:

α+
n : R2 \ R+ → R, α+

n = α+
0 + 2nπ

α−
n : R2 \ R− → R, α−

n = α−
0 + 2nπ.

4.2. Defining a continuous angle function αp for a path p.

Observation 20. For any continuous path p : [a, b] → R2 \ 0 we can define a continuous
angle function αp : [a, b] → R by patching together the functions α±

n as required by continuity.
The only freedom of choice is the initial value αp(a), and shifting αp(a) by 2nπ causes the
same shift by 2nπ in the final value αp(b). So the difference αp(b)− αp(a) does not depend
on choices.

Examples.

(1) Consider the loop p : [0, 1] → R2\0, p(t) = (cos(2πt), sin(2πt)). We can pick

the initial angle value at p(0) = (1, 0) to be zero,

αp(0) = 0 = α−
0 (1, 0) = (α−

0 ◦ p)(0).

Notice we are forced to use α−
0 since the other α±

n are either not defined

at p(0) or do not equal zero at p(0). So we are forced to define

αp(t) = (α−
0 ◦ p)(t) for small t ≥ 0.

We can use this same α−
0 as we increase t until we approach t = 1/2: at

that point p(1/2) = (−1, 0) has reached the boundary R− of the domain of

definition of α−
0 . On R−, α−

0 is not defined. Also we cannot use α−
0 for
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t > 1/2 since α−
0 jumps from π to −π when we cross R−. So we cannot

use α−
0 ◦ p for t ≥ 1/2. However, for t < 1/2 close to 1/2, we have

α−
0 (p(t)) = α+

0 (p(t)) (both values are close to π),

so we can ‘‘patch them together’’: take αp = α+
0 ◦p for t close to 1/2,

so we stop using α−
0 and instead we use α+

0 . We can keep using α+
0 until

we approach t = 1 (when p reaches the boundary of the domain of α+
0 ). For

t < 1 close to 1 we ‘‘patch’’ with α−
1 since α+

0 (p(t)) = α−
1 (p(t)) (both close

to 2π). Thus we take αp = α−
1 ◦ p for t ≤ 1 close to 1. The value of

αp at the endpoint is therefore αp(1) = α−
1 (1, 0) = 2π.

(2) If we had chosen instead αp(0) = 2nπ, then we would have used α−
n , α

+
n , α

−
n+1

instead of α−
0 , α

+
0 , α

−
1 . So the endpoint would also be shifted by 2nπ since

αp(1) = α−
n+1(1, 0) = 2π + 2nπ. But the difference does not change:

αp(1)− αp(0) = 2π = Total angle p has rotated by.

(3) For the path that goes around zero k times: p : [0, k] → R2 \ 0, p(t) =
(cos(2πt), sin(2πt)), we would use α−

0 , α
+
0 , α

−
1 , α

−
1 , α

+
1 , α

−
2 , . . . , α

−
k−1, α

+
k−1, α

−
k , so

αp(k)− αp(0) = 2kπ = Total angle p has rotated by.

4.3. Definition of the winding number of a loop.

In general, for a continuous path p : [a, b] → R2 \0, such that p(a) = p(b) (so p is a loop),
the winding number of p is the integer

W (p) =
αp(b)− αp(a)

2π
∈ Z

Notice in the examples that W (p) is just the total number of full rotations of p around the
origin (counted with signs depending on whether we go around anti-clockwise or clockwise).
It also seems that W (p) does not change if we “deform” p without crossing 0: but what
does deforming mean exactly?

4.4. What precisely is a continuous deformation? Intuitively, imagine you have a
small piece of string f , and you throw it to a friend in the class-room. At time t = 0, you
are holding your string in your hand, that’s position F0 = f . At time 0 < t < 1 it is flying
through the air, that’s position Ft. Finally at time t = 1 the string is lying in the hand
of your friend, that’s position F1. The string may have wiggled, stretched and contracted
(but not ripped) during it’s journey F , which you can think of as a movie F = (Ft)0≤t≤1

depending on the time variable t.
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Let’s turn this into precise mathematics. A continuous deformation of a loop f : S1 → X
is a continuous map

F : [0, 1]× S1 → X

satisfying F (0, e2πis) = f(e2πis). Geometrically, you have a family of loops

Ft : S
1 → X, e2πis 7→ Ft(e

2πis) = F (t, e2πis).

At time t = 0 you have the original loop F0 = f , and at time t = 1 you have the new
deformed loop F1.

4.5. The winding number does not change if you deform the loop.

Given a loop f : S1 → R2 \ 0 we produce a corresponding path:

pf : [0, 1] → R2 \ 0, pf (s) = f(e2πis)

and we define W (f) = W (pf ). Since mathematicians often think of S1 as [0, 1] with
endpoints 0, 1 identified, one sometimes blurs the distinction between f and pf .

The last picture above, on winding numbers, suggests that W (f) does not change when
we continuously deform f , meaning W (Ft) is constant in t ∈ [0, 1].

Theorem 21. The winding number does not change under continuous deformations of the
loop (provided we do not cross 0).

Proof. Notice that W (p) = W ( p
‖p‖) since the angle function αp = αp/‖p‖ does not care

about the length ‖p‖ of p (the distance of p from 0). So we can always assume that
p : [0, 1] → {(x, y) ∈ R2 : x2 + y2 = 1} = S1 lands inside the circle.

We now prove the claim in four steps:

(1) We will show that W (f) depends continuously on the continuous loop f ∈ C(S1, S1)
(recall C(S1, S1) denotes the set of continuous maps S1 → S1).

(2) A continuous deformation of f is a continuous map F : [0, 1]× S1 → S1.
(3) Thus we can produce a continuous integer-valued function:

w : [0, 1]
F•−→ C(S1, S1)

W−→ Z, w(t) = W (Ft).

This is continuous since it’s a composition of continuous maps.
(4) Since [0, 1] is connected, w : [0, 1] → Z is constant, so we deduce the required result:

W (f) = W (F0) = W (F1).

The only difficulty is to explain the first step: in what metric space do loops live in?
Define the distance function on the set C(S1, S1) by taking the maximum of the Euclidean
distances between the two given loops f, g : S1 → S1 evaluated at each point of S1:

d(f, g) = max
e2πis∈S1

dS1(f(e2πis), g(e2πis)).

Exercise: check that this satisfies the requirements in the definition of a distance function.
In the construction of αpf , we can stipulate that we only use α±

n when f(e2πis) is at least

a distance 1/10 away from (±1, 0) (a boundary point of the domain of α±
n ). So once we get

within 1/10 distance, we switch to the other relevant angle function (which has the opposite
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domain boundary R∓). So f never gets within 1/10 of the domain boundary of the angle
function we are using.

If g is a loop close to f , say d(f, g) < 1/99, then in fact we can use the same angle
functions as those we used for f at each time s. This is possible because g cannot get closer
than distance 1

10 −
1
99 from the boundary point ±1 of the domain of α±

n unless f gets within
1/10 from it (which is not allowed by construction).

Thus, at any time s, we are using the same α±
n :

αpf (s) = (α±
n ◦ pf )(s) αpg(s) = (α±

n ◦ pg)(s).

If f, g are close, say d(f, g) < 1/99, then pf , pg are close and hence, since α±
n is continuous,

also αpf (s), αpg(s) are close.
If we replace 1/99 by a very small number, then we can make |αpf (s)−αpg(s)| arbitrarily

small (for each s). Thus, taking s = 1 and s = 0,

|αpf (1)− αpgm (1)| → 0 |αpf (0)− αpgm (0)| → 0

for any sequence of loops gm approaching f . Hence:

W (f)−W (gm) =
1

2π

(
αpf (1)− αpgm (1)

)
+

1

2π

(
αpf (0)− αpgm (0)

)
→ 0.

Since W (gm) → W (f) whenever gm → f , we deduce by Theorem 13 that the winding
number W : C(S1, S1) → R is continuous. �

4.6. The circle is not simply connected.

Corollary 22. S1 is not simply connected.

Proof. Suppose S1 is simply connected, by contradiction. Then any loop f can be contin-
uously deformed to a point, so W (f) = W (point) = 0. But we showed above that the loop
f : S1 → S1, f(e2πis) = e2πis has W (p) = 1 6= 0. Contradiction. �

4.7. The fundamental theorem of algebra.

Theorem 23. Any non-constant complex polynomial

F (z) = zn + an−1z
n−1 + · · ·+ a2z

2 + a1z + a0 (a0, a1, . . . , an−1 ∈ C)

has at least one root, that is a solution z = z1 of the equation F (z) = 0.

Remark 24. From this we can deduce that the polynomial F factorizes completely as F (z) =
(z − z1)(z − z2) · · · (z − zn), so there are exactly n roots z1, . . . , zn (some of which may be
repeated). Indeed Euclidean division by z − z1 gives F (z) = (z − z1) · G(z) + r(z), where
r(z) is the remainder polynomial. The remainder always has degree strictly less than what
we divide by, which in our case is z− z1. So r(z) has degree 0, so it is a constant. But this
constant is zero since plugging in z = z1 gives: 0 = F (z1) = (z1 − z1)G(z1) + r(z1) = r(z1).
Thus F (z) = (z− z1)G(z). Since G has lower degree than F , we can factorize it completely
by induction on the degree of the polynomial.

Proof of the Theorem. Suppose by contradiction that F is never zero. Then from F we can
produce loops:

Ft : S
1 → C \ 0, Ft(e

2πis) = F (t · e2πis).

where the positive real number t > 0 is the radius of the circle t · e2πis. Notice that Ft lands
in R2 \ 0 because we assumed that F is never zero.
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The picture above shows what Ft may look like for general t. The small circles show what
Ft looks like for very small t. For t = 0, F0 is just a constant: the point F (0).

Since the winding number does not change under continuous deformations, W (Ft) is
constant in t. Thus

W (Ft) = W (F0) = W (point) = 0.

But now consider a large radius t = R. Then

F (Re2πis) = Rnen2πis + an−1R
n−1e(n−1)2πis + · · ·+ a1Re2πis + a0

= Rnen2πis
(
1 + 1

Ran−1e
(n−1)2πis + · · ·+ 1

Rn−1a1e
2πis + 1

Rna0
)
.

Notice the aj are constants, and the ei·real have length 1, so for large R the round bracket
1 + · · · is approximately equal to 1. Indeed, for large R we can assume the bracket is
within distance 1/100 from 1. Therefore FR is a small deformation of the loop S1 → C \ 0,
e2πis 7→ Rnen2πis, which (dividing by the length Rn) has the same winding number as our
favourite loop S1 7→ S1, z 7→ zn, which goes around zero n times (so W = n).

Thus they have the same winding number. So

W (Ft) = W (FR) = W (S1 → S1, z 7→ zn) = n.

But above we got W (Ft) = 0, so n = 0, so F is a constant polynomial. Contradiction. �

4.8. Winding number around a point.

There is nothing special about the point 0 when we worked with loops f : S1 → C \ 0.
We could pick any point z ∈ C not on the loop, so f : S1 → C\z, then since we can identify

C \ z → C \ 0, w 7→ w − z,

we know how to calculate the winding number of f around z, denoted byW (f ; z). Explicitly:

W (f ; z) = W (f − z; 0)
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By deformation invariance, the integer W (f ; z) does not change if we continuously deform
f without crossing z. Similarly, W (f ; z) does not change if we continuously move z without
crossing f , you will prove this in the Exercises.28

4.9. How does W (f ; z) change when z crosses the loop?
In the picture above, notice that W (f ; z) can only jump by +1 or −1 when z crosses the

loop once.29 If we can prove this (and find a recipe to decide the sign ±) then this gives
an easy way to calculate winding numbers: just start from a point z near infinity (there
W (f ; z) = 0) then move z towards any other point and add the contributions ±1 as you
cross the loop.

In the picture, we find out how W changes as z crosses the path f . Call these starting
positions z0, F0, and suppose the final position of z after crossing f is z1. Let Ft be a
deformation from F0 = f to F1 = f#g (a copy of f attached to an extra loop g going
around z1 once). Let zt be the motion of the point from z0 to z1, ensuring that zt never lies
on the loop Ft. Thus, by invariance30 of W we deduce that W (f ; z0) equals:

W (F0; z0) = W (Ft; zt) = W (F1; z1) = W (f#g; z1) = W (f ; z1) +W (g; z1) = W (f ; z1) + 1.

where we used the obvious additivity of winding numbers (see also the Exercises on con-
catenations of loops), and we used that W (g; z1) = +1 since the loop g goes once around
z1 anti-clockwise. Thus

W (f ; z1)−W (f ; z0) = −1,

so the winding number changes by −1 if “we” (the point z) cross a loop that passes in
front of us in the anticlockwise sense. Similarly, if the arrow on f had been pointing in

28Hint. You can view this as being the same as fixing z but deforming f : W (f ; zt) = W (f − zt; 0).
29In the picture, when z crosses a vertex, that is a self-intersection point of the loop, then W (f ; z) jumps

by ±2. But that is because z is actually crossing the loop twice. The two small arcs of the image loop
in C \ 0 which intersect actually correspond to two completely different arcs on the domain of the map f .
Indeed, there are two different points e2πis1 , e2πis2 giving rise to the self-intersection f(e2πis1) = f(e2πis2).

30If you are uncomfortable with moving both simultaneously, you could do the deformations in stages,
at each stage either moving Ft or moving zt. However, moving both simultaneously is legitimate since
W (Ft; zt) = W (Ft − zt; 0) and Ft − zt is never zero.
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the opposite direction then also the arrow on the loop g would be opposite, so the winding
number changes by +1 if we cross a loop that passes in front of us in the clockwise sense.

Exercise 25. Given a point z not lying on the loop f : S1 → C, show that you can quickly
determine W (f ; z) by drawing a ray31 from z towards infinity, and appropriately counting
by ±1 the intersections of the ray with the loop.

4.10. The exponential map, and lifts of loops.

Our goal, in the next Section, will be to show that a loop in R2 \ 0 can be shrunk to a
point if and only if the winding number is zero. In one direction, the proof is easy: if a loop
p : S1 → R2 \ 0 can be continuously shrunk to a point then W (p) = W (point) = 0. The
proof of the converse is tricky. We will prove it by our usual In-and-Out trick, where the
“Out” map will be the following exponential map.

Define the “exponential map”

E : R → S1, E(s) = e2πis = point on the circle forming the angle 2πs with R+.

Think of R as a spiralling staircase, and E as the vertical projection to the ground floor S1.

Then, for any path p : [a, b] → S1, αp : [a, b] → R satisfies

E ◦ αp

2π = p : [a, b] → S1

by construction.32 For this reason, p̃ =
αp

2π is often called a lift of p to R.
When p : [a, b] → S1 is a loop (p(a) = p(b)), the winding number is

W (p) = p̃(b)− p̃(a).

If you think of R as a staircase, then the winding number tells you how many floors you
have gone up along the lifted path.

4.11. A loop can be shrunk to a point if and only if it has winding number zero.
We first consider loops S1 → S1:

Theorem 26. If a loop p : S1 → S1 has zero winding number, then it can be shrunk down
to a point (there is a continuous deformation P : [0, 1]× S1 → S1).

Proof. W (p) = p̃(b) − p̃(a) for any choice of lift p̃ =
αp

2π . Thus W (p) = 0 if and only if the
lift p̃ : [a, b] → R is also a loop: p̃(b) = p̃(a). But R is simply connected, so there is a filling

P̃ : D → R of p̃, thus E ◦ P̃ : D → S1 is a filling of E ◦ p̃ = p as required. �
Corollary 27. A loop f : S1 → R2 \ 0 can be shrunk down to a point if and only if
W (f) = 0.

Proof. You will show in the Exercises that any loop S1 → R2 \ 0 can be continuously
deformed to a loop S1 → S1. The deformed loop in S1 still has W = 0, so by the Theorem
above it can be shrunk down to a point (in fact within S1). �

31We did not take this approach in the notes, because this does not always work. Even in the simplest
case, when f is a polygonal path, there are problems if the ray intersects the path at a vertex.

32Proof that E ◦ αp

2π
= p: Given p(s) = e2πis, the angle function αp(s) = 2πs + n2π for some integer n,

hence E ◦ αp(s)

2π
= e2πis+n2πi = e2πis = p(s).
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4.12. The fundamental group and universal covers.

In the Exercises, you will show that the space of loops S1 → S1 modulo continuous
deformations forms a group. The group operation is just concatenation of loops (“first go
around one loop, then go around the other”). This group is called the fundamental group
π1(S

1) and in the Exercises you will show that π1(S
1) can be identified with the group Z

(with addition). The identification is given by the winding number:

W : π1(S
1) → Z.

More generally, you can define the fundamental group π1(X) for any space X.
The map E : R → S1 is called the universal cover of S1. In general, a universal cover of

X is a simply connected space Y together with a continuous map E : Y → X such that for
any point p ∈ X there is a sufficiently small ball Br(p) such that the preimage E−1(Br(p))
is a disjoint union of balls in Y , and each such ball maps homeomorphically to Br(p) via E.
Intuitively, you should think of this union of balls as a “stack of pancakes” over the plate
Br(p):

Example: how to build the universal cover of the plane with a hole
Suppose you have a space X and you want to start building a universal cover Y . In the

pictures, we will think of the simple case of X = C \ 0, the plane with a hole where 0 used
to be.

The first key property, is that Y should locally look like X. So let’s start building Y
piece by piece as follows. Start with a point p ∈ X, near p. We need to have a copy of p
in Y . So start with Ypreliminary = p̃ (just a point, and we put a twiddle so we don’t confuse
Y with X). Now the spaces X,Y should be the same near p, so we might as well define a
small ball Br(p̃) around p̃ in Y to be the same (with the same distance function) as a small
ball Br(p) around p in X. So now, Ypreliminary = Br(p̃) has become larger.

Now start walking away from p in X towards the boundary ∂Br(p) of the ball: there, you
find another ball Br′(q) overlapping with Br(p). Therefore, upstairs in Ypreliminary, we also
want a copy Br′(q̃) of that ball with centre q̃ lying over q via E, and overlapping with Br(p̃)
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just like Br(p) ∩ Br′(q) overlap in X. Continue inductively: pick a small ball Br′(q) ⊂ X,
make Ypreliminary bigger by gluing a copy of this ball onto what we built so far. So

Ypreliminary = Br(p̃) ∪Br′(q̃)

(with the same overlap as downstairs, in X, between the balls Br(p), Br′(q)).
Keep building. So aren’t we just building a copy of X? Yes, because we have not yet

imposed the second key property of a universal cover Y . We want Y to be simply connected
(loops are contractible). As long as the Ypreliminary we built so far is simply connected, the
Ypreliminary is an exact copy (homeomorphic) to a subspace of X. So far, we can therefore
define our covering map E : Ypreliminary → X as being the “identity” which identifies these
two exact copies.

Example. If the space X is already simply-connected (such as D,R, S2, and

also Dn,Rn, Sn for n ≥ 2), then you really are just building X again so Y =
X. In other words, simply connected spaces are universal covers of themselves

via the identity map, so it’s not so interesting (only one pancake per plate!).

But now, consider our example of X = C \ 0 (which we know is not simply connected).
If we pick discs Br(p), Br2(q2), . . . , Brn(qn) going around a circle about 0, then there is the
dangerous loop in C \ 0 which we know cannot be shrunk to a point.

We do not want that loop to exist in Y since we want Y to be simply connected. So in
Y , you declare that those discs in the picture, Br(p) and Brn(qn) which overlap in X give
rise to discs Br(p̃) and Brn(p̃n) in Ypreliminary which do not overlap.

It is easiest to visualize what Ypreliminary looks like if you think of it as a spiralling staircase
(with stairs of infinite width). So think: X = ground floor, Y = Wadham staircase, and
the map E : Y → X is the vertical projection.

More abstractly, you don’t actually need to think of your staircase Y as existing inside a
bigger universe (Wadham College). To define a space you just need to specify a set and you
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need to specify a distance function. You do not need to think of the points of Y as being
part of a larger space that you are more familiar with.

In the Exercises you will construct the universal cover of a torus T 2 = S1 × S1 and of a
figure “8” loop.

Exercise 28. In the above construction, how do we define distances in Y ? Locally we know
that Y is the same as X, but how do we define distances between “far-away” points?

4.13. Riemann surfaces: how these ideas arise in Analysis.

Recall that the complex number w = reiy lies at distance r from 0 and forms an angle y
with the real-axis:

For z = x+iy, ez = exeiy = ex(cos y+i sin y). By definition, we want the complex logarithm
to be an “inverse” to the complex exponential function, so we want

Log(ez) = z.

We will now use this condition, to guess how Log(z) needs to be defined in general.
Since |ez| = ex and the real logarithm33 satisfies log ex = x, and since α(ez) = y is the

angle between ez and the R+ axis, we deduce that we want:

Log(ez) = x+ iy = log |ez|+ iα(ez).

Therefore, we define:

Log z = log |z|+ iα(z),

where α(z) is only defined up to adding integer multiples of 2π since ez+2πi = ez.
Riemann’s idea, is that one should not think of Log z as being defined on C \ 0 as a

multi-valued “function”. Instead, one should build a new surface, called Riemann surface,
and use that as domain of definition for a (single-valued) function. For Log z this is the
infinite spiral staircase above:

Log : (infinite spiral staircase) → C.

Exercise 29. Define Log on the spiral staircase using the angle functions α±
n .

Thus, the angle functions α±
n that we defined before, are also part of the construction

of a well-defined complex logarithm. Physicists usually just think of Log as a “multi-
valued function” (since it is only defined up to adding integer multiples of 2πi); whereas a
mathematician instead says: “if you’re not happy with the universe, because Log can’t be
defined on C, then just change your universe!”.

The functions considered by Riemann were analytic functions: that is, complex-valued
functions which locally around a point p ∈ C can be expressed as a power series in z − p,
that is a convergent infinite sum involving powers of z− p (think of it as a “polynomial” of
infinite degree in z − p).

Examples.

(1) Complex polynomials are analytic functions.

(2) The exponential is analytic. For example ez = 1+z+ z2

2! +
z3

3! + · · · is the

power series around p = 0, and that series is correct for any z ∈ C.

33our logarithms are always in base e, so natural logarithms: log(e) = 1.
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(3) The complex logarithm is analytic. For example

Log(z) = Log(1 + (z − 1)) = (z − 1)− (z − 1)2

2
+

(z − 1)3

3
− (z − 1)4

4
+ · · ·

is the power series around p = 1, but the series is only correct for z ∈
B1(1) (that is: |z−1| < 1). On each ball Br(p) which does not contain

0 (so r < |p|) one can find a series for Log(z) in powers of z − p.

When you try to find the largest possible domain of definition of an analytic function, you
therefore patch together balls (thus gluing together different locally defined series expansions
of the same function). This process of extending the domain of definition by gluing together
series is called analytic continuation. The famous problem called the Riemann hypothesis,
for example, is about finding the zeros of the analytic continuation of a certain function,
called the Riemann zeta function.

4.14. The Jordan curve theorem.

By closed curve in a space X we will mean a continuous map f : S1 → X. We call it a
simple closed curve if it does not cross itself, meaning: f is injective.

Theorem 30. A simple closed curve f : S1 → R2 in the plane divides the plane into
two connected components.34 More precisely, R2 \ f(S1) = A ∪ B where A,B are disjoint
connected components, B contains the points at infinity and is called the “outside” of the
curve, and A is called the “inside” of the curve.

Proof for polygonal paths. Define

A = {z ∈ R2 \ f(S1) : W (f ; z) is odd}
B = {z ∈ R2 \ f(S1) : W (f ; z) is even}.

Note that A,B are disjoint and R2 \ f(S1) = A ∪B. So what is left to prove? We need to
show that A,B are connected. For general continuous f , this requires more machinery than
we have learnt so far. But we can prove this for polygonal paths f (that is, when f traces
out a polygon). In this case, we will show that A,B are path-connected (hence connected).

Note that no path can connect a point x ∈ A with a point y ∈ B without crossing f
because otherwise W (f ;x) = W (f ; y) but the parity of these integers is different.

Suppose x, y ∈ B (the following argument will work also for A, since we will only use
that W (f ;x),W (f ; y) have the same parity). Draw the straight line segment joining x to
y. If this segment does not intersect f , then we are done: we have path-connected x to y.
So suppose now that the segment does intersect f , and call p the first point of intersection
and q the last point of intersection.

34A connected component S ⊂ X means a maximal connected subset. Maximal means that there is no
larger connected subset S′ ⊂ X containing S.
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We will now explicitly build a path connecting x to y and avoiding f .
Imagine the game Tron (like in the movie) where you are driving a blue car and your

enemy f is driving a red car. You start from x and you race along the segment in the
direction of y. Just before crashing into your enemy’s path at p you make a sharp turn
in the same direction as your enemy. You follow closely your enemy’s path (staying just a
little distance away from it), until your enemy passes through q. At that stage you stop.

In the left picture, your blue car has reached the segment on the side of y, so you can
now race along the segment towards y and we are done. In the picture on the right, we
ended up at the wrong side of the segment: we cannot race towards y without crashing into
our enemy’s path f . But this situation cannot happen: since we would only intersect the
enemy’s path once, we would have built a path from x to y intersecting f only once, so
the winding numbers W (f ;x),W (f ; y) would have different parities. But we assumed that
they had the same parity. �

Exercise 31. Would the proof have been easier or harder, if instead of following the red car
until q, you instead alternate between following the red car and following the line segment?
(that is: you follow the red car between p and the next point where the red car intersects the
line segment, then repeat: follow the segment until you almost crash into the red car, then
follow the red car until you again come back to the segment, etc.)

Exercise 32 (Jordan-Brower separation theorem). For any injective continuous map f :
Sn → Rn+1, the complement Rn+1\f(Sn) of the image consists of two connected components
(the “inside” and the “outside”). Using the Tron game, prove this theorem for n = 2, when
f is “polygonal”: so f(S2) is a polyhedron in R3.

4.15. Non-polygonal paths, and Lie groups.
What can go wrong in the above proof, when f is not a polygonal path? Here are some

pictures of what we may be worried about:

We may be worried that f wiggles like sin(1/t) for t close to zero. But in that case, ask
yourself: what happens eventually with f? Does this wiggly path get arbitrarily close to y?
If yes, then by continuity it would intersect y, but we assumed that y does lie on the path
f . If it does not get arbitrarily close to y, then there is a problem in making f continuous
(since sin(1/t) is not continuous at t = 0).

So suppose instead it wiggles like t · sin(1/t), which is continuous even near t = 0. This
is not an issue in the proof: if our enemy’s red car can wiggle like that, then our blue car
is also allowed to wiggle like that! But we need some care not to crash into the red car at
the end of the wiggles at t = 0, which can be achieved by a last minute swerve towards y.

So, in many situations, the above proof still works with minor modifications. What we
are scared of, is whether there is enough space around the red car’s path to say “follow
closely your enemy’s path”. This was clear in the case of a polygonal path, but what if the
enemy’s path f involved a “dense” bunch of lines, like in the third picture above?

Continuous maps in general can cause such phenomena. The simplest example of this is
a line of irrational slope inside the torus. More precisely, think of the torus T 2 = S1 × S1

as arising from a square, with opposite parallel sides identified. Consider the usual lattice
Z2 inside R2, this gives the vertices of our favourite tiling of the plane by squares. You can
also build the torus by identifying all these squares via all translations of the form

x 7→ x+ n, y 7→ y +m (for integers n,m ∈ Z).
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This determines35 a natural map E : R2 → T 2. So any straight line in R2 gives, via E, a
curve in T 2.

When does the curve close? Precisely when the slope of that line is rational. It turns out
(try to prove it) that for an irrational slope you get a (non-closed) curve R → T 2 in the
torus which inside the square (before identifying sides) looks like infinitely many parallel
segments that get arbitrarily close to each other everywhere.

These ideas arise in the theory of Lie groups.36 A Lie group is a group where there is a
notion of “closeness” of the elements (a topology) and the group operations of multiplication
and inversion are continuous. You also want the space to locally look like a disc Dn.

Examples.

(1) R is a Lie group with addition as group operation, and switching sign

is inversion. Also R locally looks like an interval D1.

(2) The circle S1 is a Lie group. You multiply by eiaeib = ei(a+b) and invert

by (eia)−1 = e−ia. Also S1 locally looks like D1 (an interval).

(3) The torus T = S1×S1 is a Lie group. You multiply in each S1 factor,

and locally T 2 looks like a disc D2.

(4) Lines of rational slope in R2 modulo Z2 are Lie subgroups S1 → T 2 (circle

subgroups) whereas lines of irrational slope are a Lie subgroup R → T 2

which is ‘‘dense’’ in T 2 (it gets arbitrarily close to any point of T 2).

Exercise: Prove this using the grasshopper trick from the Exercises. Hint:

first consider the points en·ia ∈ S1 for n ∈ N, for a rational or irrational.

5. Classification of surfaces

5.1. What is a surface? We will conclude these notes with a taster of the theory of
surfaces, which is the beginning of Differential Geometry and Differential Topology.

A surface S is a (metric) space which locally looks like a disc D = {z ∈ C : |z| < 1}.
This means that around each point p ∈ S, you can find a continuous map f : D → S which
is a homeomorphism onto a neighbourhood of p.

In physics, you should think of f as a “frame of reference”:37 you have chosen certain
coordinates (x, y) near p. Namely, f(z) = f(x+ iy) ∈ S has local coordinates (x, y) in the
frame of reference f , where z = x+ iy ∈ D.

In physics it’s important that two observers, staring at the same phenomenon, both agree
when a phenomenon is varying continuously or not.

35Indeed, this is just the exponential map in each entry: E(x, y) = (e2πix, e2πiy) ∈ S1 × S1. In the
Exercises, you show that this is the universal cover of the torus.

36Pronounced “lee” (or “lii” in most other European languages).
37Reference frames are called local parametrizations, and their inverses f−1 : f(D) → D are called charts.
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The first observer, f1 : D → S, and the second observer, f2 : D → S, have each chosen local
coordinates. If a particle was moving in S in the shaded overlap of the two discs, then it
will have coordinates (x(t), y(t)) for the first observer, and coordinates (x̃(t), ỹ(t)) for the
second observer, say. Are we sure that x, y are continuous if and only if x̃, ỹ are continuous?

Let’s check. We have f1(x(t), y(t)) = f2(x̃(t), ỹ(t)), therefore

(x̃(t), ỹ(t)) = (f−1
2 ◦ f1)(x(t), y(t)).

Since f1, f2 are homeomorphisms onto their image, the map f−1
2 ◦ f1 is continuous (where

defined). So, indeed,38 x̃, ỹ are continuous in t if x, y are continuous in t.
Examples.

(1) R2 is a surface;

(2) The sphere S2 and the torus T 2 are surfaces. We saw that they are not

homeomorphic to each other;

(3) The open disc D is a surface, and so is any open convex subset of R2.

These are homeomorphic to each other.

(4) The disjoint union S1t· · ·tSn of several surfaces S1, . . . , Sn is again a

surface (but it is not connected).

(5) Given two surfaces S1, S2, remove a disc from each of the surfaces S1, S2,

and glue the two surfaces together along the circular boundaries of the

removed discs. This is called the connect sum S1#S2.

To keep things simple, we will from now on only consider connected surfaces and we will
assume that the surface is bounded. This means that the distance function is bounded.39

However, bad things can still happen:
Example. Start with a doughnut. Connect sum with another doughnut, whose

distance function we rescale by 1/2. Apply connect sum with another doughnut

with distance function rescaled by 1/22. Keep repeating using rescaling factors

1/2n. Eventually you get a bounded doughy surface with infinitely many holes!

To avoid this, we will assume the surface is compact, meaning: if fi : D → S is an infinite
collection of reference frames covering S = ∪fi(D) then you can pick a finite subcollection
fi1 , . . . , fin which also covers S, meaning: S = fi1(D) ∪ . . . ∪ fin(D).

Exercise 33. Show that a compact surface is always bounded.

5.2. Surfaces of genus g.
Compact connected surfaces come in two big families. The first family consists of the

sphere, the torus, and in general the surface of a doughnut with g holes:

Here g is called the genus of the surface. For this family, once you computed g, it determines
the surface up to homeomorphism.

There are many ways of computing g. One way, is to pick a triangulation of the surface
(or, more generally, pick a homeomorphism between the surface and a polyhedron), then

38If they had not been, we could have played the mathematician’s favourite card: defined it to be so.
In other words, we would have said that we only allow those frames of reference for which the transitions
f−1
2 ◦ f1 are continuous. For example, when you define smooth manifolds you need to play this trick.
39That is, there is a large number R such that d(p, q) ≤ R for all points p, q ∈ S.
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calculate the Euler characteristic χ(S) = V −E+F where V,E, F is the number of vertices,
edges, faces. Then in general:

Theorem 34. χ(S) = 2− 2g.

Observe that the above surfaces can all be obtained from the sphere S2 by attaching
handles. To “attach a handle” means

(1) remove two disjoint discs from S2;
(2) glue the cylinder [0, 1] × S1 onto the resulting surface by gluing the two boundary

circles of the cylinder onto the circular boundaries of the two removed discs of S2.

The genus g surface is obtained by attaching g handles to S2.
In the attachment procedure, we want the cylinder to stick out on the outside of the

surface. To ensure this, mark the boundaries of the removed discs with arrows pointing in
opposite directions (indicated by arrows in the picture below). The cylinder also has arrows
on the two bounding circles (the anticlockwise direction of 0×S1 and 1×S1). When gluing
the cylinder to the surface, these arrow directions must match along the gluing circles.

Another way to find g is related to the Jordan curve theorem. You ask the question: “how
many disjoint simple closed curves are required to disconnect the surface?”. Call N this
number.

Example. Consider the sphere. It turns out that a simple closed curve inside

S2 cannot pass through each point of S2. So pick a point p not belonging to

the loop, identify S2\p ∼= R2, and apply the Jordan curve theorem. We deduce

that every simple closed curve in S2 separates S2 into two connected components.

Thus N = 1 for the sphere.

In general, for a genus g surface, it turns out that:

Theorem 35. N = g + 1.

Corollary 36. A compact connected surface is homeomorphic to the sphere if and only if
any simple closed curve divides the surface into two connected components.

The above theorem/corollary (which we have not proved) allows you to detect whether a
surface is a sphere or not. The proof of the classification of surfaces is to start with a surface
S and to make a cut along a simple closed curve which does not disconnect the surface. The
cut then gets filled up with a pair of discs. You keep repeating this cutting/filling procedure
until it becomes impossible: any simple closed curve disconnects the surface. But by the
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Corollary that means you’ve now got a sphere! To reconstruct the original surface S you
now simply attach cylinders joining the pairs of filling discs (which you remove again!). This
cylinder plays the role of identifying the bounding circles of the filling discs which formed
the cut.

Knowing how to detect spheres is also important in higher dimensions, for example in the
classification of 3-dimensional manifolds (the 3-dimensional analogue of surfaces, except
now you use frames of reference f : D3 → X). The Poincaré Conjecture states that every
compact simply-connected 3-dimensional manifold is homeomorphic to the sphere S3. This
was only very recently proved by Grigori Perelman, in 2003, using foundational work by
Richard Hamilton. For this, Perelman was awarded the fields medal in 2006, which he
declined, and he was awarded a million dollar Millenium Prize by the Clay Mathematics
Institute in 2010, which again he declined.

5.3. Non-orientable surfaces.
The above family of surfaces are called orientable surfaces. What does orientable mean?

Consider a small disc D ⊂ S inside40 a surface S. You can orient the boundary of the disc
by drawing41 an arrow along the circle bounding D. Now suppose that you continuously
move your oriented disc D around the surface S until you eventually come back42 to D. If,
no matter how you move D, the orientation of the boundary of D has not switched, then S
is called orientable. Otherwise, S is called non-orientable.

An example of a space43 where the orientation can flip, is the Möbius strip M :

When you move a small disc D along the “equator” of the Möbius strip M until you
eventually get back to the starting disc, the boundary arrow will be reversed.

This proves that an orientable surface cannot contain a copy of the Möbius strip M , since
following the “Möbius rollercoaster” you can switch the orientation of a small disc.

Recall that the Möbius strip M is obtained by taking a strip, let’s say the rectangle
[0, 100] × [0, 2], and then gluing the short ends together in the “wrong way”: so (0, t) gets

40that is, an injective continuous map f : D → S, and identify D = f(D). You can find such discs by
considering a local frame of reference.

41More precisely, an injective map f : D → S already specifies an arrow, by following (via f) the anti-
clockwise direction of S1 = ∂D.

42that is, you consider a continuous family F : [0, 1] × D → S, with F (0, z) = F (1, z) = f(z) the initial
and final position of D.

43This is not a surface: near a point on the boundary of the strip the space does not look like D, it looks
like a half-disc {z ∈ D : ImaginaryPart(z) ≥ 0}. So M is actually called a surface with boundary.
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identified with (100, 2− t) (if you had identified it the “correct way” with (100, t) then you
would have obtained a cylinder). Unlike the cylinder whose boundary is two disjoint circles,
the boundary of the Möbius strip M is just one circle.44

The Klein bottle is a famous example of a non-orientable surface. It is obtained from a
square by gluing opposite parallel sides, just like the torus, except that two of those sides
are glued together in the “wrong way” (just like for the Möbius strip):

Exercise 37. Show that the Klein bottle is non-orientable, by showing how to move a small
disc around until you get back to the starting disc with reversed boundary orientation.

The natural question to ask, therefore, is: what surfaces do you get from the sphere by
“attaching Möbius strips”? Attaching M to a surface S means:

(1) remove a disc from S;
(2) attach M onto the resulting surface by gluing the boundary circle of M onto the

circular boundary of the disc you removed from S.

It is difficult to draw this attachment in R3 (try!), so we will just draw wiggly caps denoted
by M :

So, for any integer h ≥ 1, you can build a non-orientable surface from the sphere by
attaching h copies of M . This is the second family of surfaces, and again for this family,
once you computed h, it determines the surface up to homeomorphism.

Exercise 38. The Klein bottle is obtained from S2 by attaching h Möbius strips: do you
need h = 1 or h = 2 strips?

It is natural to ask whether you can create a third family of surfaces by attaching both
cylinders and Möbius strips to a sphere. We now show that you get nothing new.

Suppose we have a sphere with h ≥ 1 Möbius strips attached, and let’s now also attach
a cylinder. We can continuously deform the surface by moving one of the two boundary

44Indeed, first run along (s, 0) for 0 ≤ s ≤ 100, then you reach the two identified points (100, 0) ∼ (0, 2),
then run along (s, 2) for 0 ≤ s ≤ 100 until you reach the two identified points (100, 2) ∼ (0, 0), which was
the starting point!
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circles of the cylinder along one of the Möbius strips. As this boundary circle moves along
the Möbius rollercoaster, the arrow which orients the boundary circle will flip. So we end
up with a cylinder attached to the surface, however the attachment boundary circles on the
sphere now have arrows pointing in the same direction (recall that the two circles on the
sphere where cylinders get attached are supposed to have opposite arrow orientations). So
how is the cylinder actually attached after the rollercoaster ride?

Exercise 39. Check that one end of the cylinder is actually glued onto the sphere from the
inside of the sphere! Deduce that the cylinder, attached in this “wrong way”, corresponds
to having a Klein bottle attached to the sphere. Deduce that attaching cylinders to a sphere
with h ≥ 1 Möbius strips attached gives (up to homeomorphism) a sphere with some other
number h′ ≥ 1 of Möbius strips attached.

5.4. The classification of surfaces.

Theorem 40 (Classification of Surfaces).
Any compact connected surface is homeomorphic to precisely one of:

(1) a sphere;
(2) a sphere with g ≥ 1 cylinders attached;
(3) a sphere with h ≥ 1 Möbius strips attached.

A beautiful simple proof of this theorem, is explained in Zeeman’s notes, “An introduc-
tion to topology” (google it), which I highly recommend (beautifully written, beautifully
illustrated, and a pleasure to read).
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