Topic: Γ-graded vector spaces and algebras

Background: You have already encountered these when Γ is a group (more generally a monoid, a semi group even). A Γ-graded algebra is an algebra B equipped with a splitting into subspaces $B = \bigoplus B_s$ indexed by Γ such that $B_s B_t \subset B_{st}$. Example: If A is a Γ algebra, the cross product $B = \Gamma \times A = \bigoplus s A = \bigoplus As$ is a Γ-graded algebra.

Example: The algebra $A = P_{\Gamma, F}$ is defined by generators $p(s)$ for $s \in \Gamma$ subject to the relations $p(s) = 0$ for $s \not\in F$, $p(s) = \sum_{t} p(t)p(t^{-1}s)$. These are homogeneous (both generators + relations) if $p(s)$ is assigned the degree s, so A should be a Γ-graded algebra with the Γ-grading specified in this way. One way to show this would be to define the Γ-grading on the free algebra with the generators $p(s)$ - this uses the tensor product operation on Γ-graded vector spaces defined by

$$(V \otimes W)_s = \bigoplus_t V_t \otimes W_{t^{-1}s}.$$

Then you check that any element in the ideal generated by the relations is a sum of homogeneous elements lying in this ideal. Hence the ideal is a Γ-graded subspace of the free algebra, and
b. the quotient A inherits a $Γ$-grading making it a $Γ$-graded alg.

Here is a clearer way to show that A is a $Γ$-graded algebra. The tensor product algebra $CΓ ⊗ A$ is a $Γ$-graded algebra with $(CΓ ⊗ A)_s = s ⊗ A$. Using the generators and relations defining A one has a unique $γ$-homomorphism

$$Δ : A → CΓ ⊗ A \quad Δp(s) = s ⊗ p(s)$$

Let A_s be the subspace of A spanned by monomials $p(s_1)p(s_2)\cdots p(s_n)$ in the generators of total degree s_1, s_2, \ldots, s_n equal to s. Clearly $Δ(a_s) = s ⊗ a_s$ for any $a_s ∈ A_s$.

Also $A = \sum_{s ∈ Γ} A_s$. This must be a direct sum since if we have $\sum q_s = 0$ with $q_s ∈ A_s$, then applying $Δ$ yields $\sum s ⊗ q_s = 0$ in $CΓ ⊗ A$, which is possible only if $q_s = 0$ for all s. Thus we have a $Γ$-grading on A making A a $Γ$-graded algebra.

Problem: A Morita context is a ring equipped with a grading $A = \bigoplus_{s ∈ Γ} A_s$ such that if we write an element a of A as a 2×2 matrix:

$$a = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} ∈ \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = A$$

the multiplication in A is given by matrix multiplication.
that is

\[
\begin{pmatrix}
a_{11}' & a_{12}' \\
a_{21}' & a_{22}'
\end{pmatrix}
\begin{pmatrix}
a_{11}'' & a_{12}'' \\
a_{21}'' & a_{22}''
\end{pmatrix}
=
\begin{pmatrix}
a_{11}' a_{11}'' + a_{12}' a_{21}'' & a_{11}' a_{12}'' + a_{12}' a_{22}'' \\
a_{21}' a_{11}'' + a_{22}' a_{21}'' & a_{21}' a_{12}'' + a_{22}' a_{22}''
\end{pmatrix}
\]

Here we have a grading indexed by the set \(\Gamma \) of ordered pairs \((i,j)\) with \(i, j = 1 \) or \(2 \). The product \(A_{ij} A_{ik} \) is zero when \(j \neq k \) and contained in \(A_{il} \) when \(j = k \). Thus \(\Gamma \) is the set of arrows in the groupoid having objects in \{1, 2\} and with exactly one map from one object to another.

The analog of \(C \Gamma \) in this situation is the path algebra of the groupoid, which is \(M_2(C) \).

Our aim now is to find a generalization of these two types of \(C \Gamma \) discussed above.

The coalgebra \(C \Gamma \). If \(\Gamma \) is any set, then \(C \Gamma \) equipped with the co-product

\[
\Delta: C \Gamma \rightarrow C \Gamma \otimes C \Gamma \quad \Delta = \sigma \otimes \sigma
\]

is a coassociative, commutative, and counital coalgebra. The counit is \(\eta: C \Gamma \rightarrow C \), \(\eta \circ \Delta = 1 \).

Ex: If \(\Gamma \) is a point, then \(C \Gamma = C \) with \(\Delta(1) = 1 \otimes 1 \in C \otimes C \).

By a point of a coalgebra \(C \Gamma \) we mean a coalgebra morphism \(\phi: C \rightarrow C \Gamma \), equivalently an element \(\phi \in C \) satisfying \(\Delta \phi = \phi \otimes \phi \). If \(C \) has counit \(\eta: C \rightarrow C \), then the point \(\phi \) will be called unital action of \(\phi \) respects counits: \(\eta \circ \phi = \text{id} \).
equivalently, \(f(1) = 1 \). Note that the identity and zero are the only coaly morphisms from \(C \) to \(C \). Thus a point \(\phi \) is unital iff it is zero.

Calculation of the points of \(C \Gamma \). Let \(\delta = \sum \lambda_s \delta_s \) in \(C \Gamma \) satisfy \(\Delta(\delta) = \delta \otimes \delta \), that is

\[
\sum \lambda_s \delta_s \delta_s = \sum \lambda_s \lambda_t \delta_s \delta_t.
\]

Then \(\lambda_s \lambda_t = 0 \) for \(s \neq t \) and \(\lambda_s^2 = \lambda_s \). Thus either all \(\lambda_s = 0 \) and we have the zero point, or there is exactly one \(\lambda_s = 1 \) and the rest are zero.

Therefore

\[
\text{Points } (C \Gamma) = \Gamma \circ \{0, \delta\}
\]

\[
\text{Unital Points } (C \Gamma) = \Gamma
\]

Clearly one has functions \(C \rightarrow \text{Points}(C) \) from coalgebras to sets with basepoint, and \(C \rightarrow \text{Unital Points}(C) \) from counital coalgebras to sets. In the unital case one can recover \(\Gamma \) from \(C \Gamma \) as \(\Gamma = \text{Unital Points}(C \Gamma) \). Moreover one has an equivalence between the category of sets and the category of counital coalgebras which are set-like, that is, spanned by the points.

In the nonunital case one gets an equivalence of categories between sets with basepoint and set-like coalgebras as follows. Note first that there is a 1-1 correspondence (essentially) between sets and sets with basepoint given by \(\Gamma \rightarrow \Gamma_+ = \Gamma \circ \{0, \delta\} \). However there are more morphisms in the category of sets with basepoint. A map \(\Gamma_+ \rightarrow \Gamma_+ \)
Amounts to a partially defined map from Γ to Γ', that is, a map from a subset of Γ, the domain $D(f)$, to Γ'.

Next observe that the coalgebra $C\Gamma$ can be expressed

$$C\Gamma = C\Gamma_+/C\Gamma_0$$

showing that $\Gamma_+ \mapsto C\Gamma$ is a well-defined functor from sets with basepoint to set-like coalgebras. This functor has the quasi-inverse $C \mapsto \text{Points}(C)$, yielding the desired equivalence of categories.

Since $C\Gamma \otimes C\Gamma' = C[\Gamma \times \Gamma']$, one has

$$\text{Points}(C\Gamma \otimes C\Gamma') = (\Gamma \times \Gamma')_+ = \Gamma_+ \wedge \Gamma'_+.$$

In other words, the tensor product operation in set-like coalgebras corresponds to the smash product in sets with basepoint.

Perhaps you should be more careful, namely, check that $C\Gamma \otimes C\Gamma' \rightarrow C[\Gamma \times \Gamma']$, $s \otimes t \mapsto (s,t)$ is an isomorphism of coalgebras. The tensor product coalgebra has coproduct

$$\Delta: C\Gamma \otimes C\Gamma' \rightarrow C\Gamma \otimes C\Gamma' \otimes C\Gamma \otimes C\Gamma'$$

s \otimes t \quad s \otimes t \otimes s \otimes t

which corresponds dually to $(a \otimes b)(a' \otimes b') = aa' \otimes bb'$ for algebra tensor product. (x) under $C\Gamma \otimes C\Gamma' \rightarrow C[\Gamma \times \Gamma']$

becomes $C[\Gamma \times \Gamma'] \rightarrow C[\Gamma \times \Gamma'] \otimes C[\Gamma \times \Gamma']$

$(s,t) \mapsto (s,t) \otimes (s,t)$

so it's clear.
Continue to identify sets and pointed sets via \(\Gamma \rightarrow \Gamma_+ = \Gamma \cup \{0\} \). Recall the equivalence of categories between pointed sets and set-like coalgebras given by \(\Gamma_+ \rightarrow C\Gamma \), \(C \rightarrow \) points of \(C \).

TFAE: (1) A product \(\mu: C\Gamma \otimes C\Gamma \rightarrow C\Gamma \) which respects the coalgebra structures.

(2) A binary operation \(\Gamma_+ \times \Gamma_+ \rightarrow \Gamma_+ \) such that 0 is absorbing: \(0 \times \gamma = 0 = \gamma \times 0 \).

(3) A pointed set map \(\Gamma_+ \wedge \Gamma_+ \rightarrow \Gamma_+ \)

Proof. \(\Gamma_+ \) is the subset of points in \(C\Gamma \). Because \(\mu \) is a coalgebra map it restricts to a binary operation on \(\Gamma_+ \). In effect given points \(\eta, \eta' \) in \(C \), then

\[
\eta \otimes \eta' \mapsto \mu(\eta \otimes \eta')
\]

\(C\Gamma \otimes C\Gamma \xrightarrow{\mu} C\Gamma \)

\[
\Delta \downarrow \quad \Delta
\]

\[
(C\Gamma \otimes C\Gamma) \otimes (C\Gamma \otimes C\Gamma) \xrightarrow{\mu \otimes \mu} C\Gamma \otimes C\Gamma
\]

\[
\eta \otimes \eta \mapsto \mu(\eta \otimes \eta) \otimes \mu(\eta \otimes \eta)
\]

Thus (1) yields (2). Next the absorbing property of 0 means that the \(\mu \) operation on \(\Gamma_+ \) descends to the smash product \(\Gamma_+ \times \Gamma_+ / (\Gamma_+ \triangleright \Gamma_+) = \Gamma_+ \wedge \Gamma_+ \), so (2) yields (3). Finally \(\Gamma_+ \wedge \Gamma_+ = (\Gamma \times \Gamma)_+ = \Gamma \) Points of \(C\Gamma \otimes C\Gamma = C[\Gamma \times \Gamma] \), so that a pointed set map \(\Gamma_+ \wedge \Gamma_+ \rightarrow \Gamma_+ \) is equivalent to a coalg map \(C\Gamma \otimes C\Gamma \rightarrow C\Gamma \).
Next associativity

TFAE: (1) \(\mu : C\Gamma \otimes C\Gamma \to C\Gamma \) is associative
(2) the induced product \(\Gamma_+ \times \Gamma_+ \to \Gamma_+ \) is associative
(3) the map \(\overline{\mu} : \Gamma_+ \wedge \Gamma_+ \to \Gamma_+ \) satisifies
\[\overline{\mu}(\overline{\mu} \wedge 1) = \overline{\mu}(1 \wedge \overline{\mu}) \]
from \(\Gamma_+ \wedge \Gamma_+ \to \Gamma_+ \)

Proof. (1) \(\Rightarrow \) (2) because you are restricting the product in \(C\Gamma \) to the subset \(\Gamma_+ \). (2) \(\Rightarrow \) (3) because the product on \(\Gamma_+ \times \Gamma_+ \) descends to \(\Gamma_+ \wedge \Gamma_+ \). In other words, the two maps \(\Gamma_+ \times \Gamma_+ \times \Gamma_+ \to \Gamma_+ \) giving associativity descend to \(\overline{\mu}(\overline{\mu} \wedge 1) \) and \(\overline{\mu}(1 \wedge \overline{\mu}) \). Finally (3) \(\Rightarrow \) (1) by the equivalence between coalgebras \(C\Gamma \) and ftd sets \(\Gamma_+ \).

At this point one has described bialgebras with set-like coalgebra structure in terms of

semi groups \(\Gamma_+ = \Gamma \cup \{0\} \) with absorbing basepoint 0. Note that any subset of a
ring closed under product and containing zero yields
such a \(\Gamma_+ \), and that \(C\Gamma \) is the largest ring
generated by \(\Gamma_+ \). \(C\Gamma \) is an obvious generalization
of the group ring of a group.

Next discuss \(\Gamma \)-graded vector spaces and algebras.

Prop. Equivalence between \(\Gamma \)-comodule \(V \) for the
c coalgebra \(C\Gamma \), where \(\Gamma \) is a set, and a grading
of \(V = \bigoplus_{\sigma \in \Gamma} V_\sigma \) with respect
to \(\Gamma_+ \). The comodule \(V \) is coriental \(\Leftrightarrow V_0 = 0 \),
so that \(V \) is graded with \(\Gamma \).
Proof. Given the co-product \(\Delta_V \) which is co-associative:

\[
\begin{align*}
V \xrightarrow{\Delta_V} C \otimes V & \xrightarrow{\Delta \otimes 1} C \otimes C \otimes V \\
& \xrightarrow{1 \otimes \Delta_V} C \otimes C \otimes C \otimes V
\end{align*}
\]

\(\Delta_V \) has the form \(\Delta_V \sigma = \sum_{s \in \Gamma} s \otimes e_s(\sigma) \) where the \(e_s \in \text{End}(V) \) satisfy the finiteness condition \(V \oslash e_s(\sigma) = 0 \) for all \(s \). Then equality of \((\Delta \otimes 1) \Delta_V \sigma = \sum_{s} s \otimes s \otimes e_s(\sigma) \) and \((1 \otimes \Delta_V) \Delta_V \sigma = \sum_{s \neq t} s \otimes t \otimes e_se_t(\sigma) \) for all \(\sigma \) is equivalent to \(e_s e_t = 0 \) for \(s \neq t \) and \(e_s^2 = e_s \). The \(e_s \) are annihilating projections on \(V \) such that \(\sum e_s \) is defined by the finiteness condition and it is a projection. Then we have the splitting

\[
V = \bigoplus_{s \in \Gamma} e_s V \oplus (1 - \sum e_s) V
\]

which yields the grading with \(V_s = e_s V \), \(V_0 = (1 - \sum e_s) V \).

Also \(\sum e_s = (\eta \otimes 1) \Delta_V \), so that \(\Delta_V \) is counital coproduct \(\Leftrightarrow \sum e_s = 1 \).

Next let \(C \Gamma \) be the bialgebra arising from a semi-group \(\Gamma \) with absorbing basepoint \(0 \). Define a \(\Gamma \) graded algebra \(A \) to be an algebra equipped with a \(\Gamma \)-grading

\[
A = \bigoplus_{s \in \Gamma} A_s \quad \text{s.t.} \quad A_s A_t \subseteq A_{st} \quad \text{if} \quad st \in \Gamma \\
= 0 \quad \text{if} \quad st = 0.
\]

The \(\Gamma \)-grading is equivalent to a comodule structure on \(A \) for the coalgebra \(C \Gamma \), i.e. a coproduct.
\[\Delta : A \longrightarrow C \otimes A, \quad \Delta a = \sum_{s \in I} s \otimes a_s, \quad \sum s = 1 \]

In other words \(\Delta(a_s) = s \otimes a_s \) for \(a_s \in A_s \).

The compatibility condition between grading and product can be expressed as saying that \(\Delta \) is an algebra homomorphism.

In effect, \(\Delta(a_s a_t) = (s \otimes a_s)(t \otimes a_t) = st \otimes a_{st} \) which implies that \(a_{st} \in A_{st} \) for \(st \neq 0 \), and \(a_{st} = 0 \) if \(st = 0 \) (since \(\Delta \) is injective because of the counit \(\eta \)).
Review the multiplier algebra $\text{Mult}(A)$ for an algebra A. A multiplier on A is defined to be a pair of operators on A

$$\mu = (a \mapsto \mu a, \ a \mapsto a\mu)$$

satisfying

$$\mu(a_1 a_2) = (\mu a_1) a_2$$

$$a_1 (\mu a_2) = (a_1 \mu) a_2$$

$$(a_1 a_2) \mu = a_1 (a_2 \mu)$$

The product $\mu \nu$ of two multipliers is defined by

$$\nu \mu a = \mu(\nu a) \quad a(\nu \mu) = (a \nu) \mu$$

and it makes $\text{Mult}(A)$ into a subalgebra:

$$\text{Mult}(A) = \left\{ \mu \in \text{Hom}_{\text{op}}(A, A) \times \text{Hom}(A, A)^{\text{op}} \left| (\alpha_1 \mu) a_2 = a_1 (\mu a_2) \right\} \right\}$$

left multipliers \right\} \text{ right multipliers}$$

More generally if $(X, Y, \langle y, x \rangle)$ is a dual pair over A, one can define its multiplier algebra to be

$$\text{Mult} (X, Y, \langle y, x \rangle) = \left\{ \mu \in \text{Hom}_{\text{op}}(X, X) \times \text{Hom}(Y, Y)^{\text{op}} \left| \langle y, \mu x \rangle = \langle y, \mu x \rangle \right\} \right\}$$

Let $\mu = X = \text{Mult}(A)$ be the special case with the A^{op}-module A, the A module, $Y = A$ and the pairing $\langle y, x \rangle = yx$.

Let A be an ideal in the algebra R. Then each $r \in R$ yields a multiplier

$$\mu_r = (a \mapsto ra, \ a \mapsto ar)$$

whence one has \text{alg homomorphisms } \mu : R \rightarrow \text{Mult}(A). \text{ Restricting}
to A (in other words, taking $R=A$)

one gets a canonical algebra map

$$A \xrightarrow{\phi} \text{Mult}(A),$$

with the following properties:

1) $\ker \phi = \{ a \in A \mid Aa = aA = 0 \}.$

2) $\mu \phi a = \phi \mu a$ and $\phi a \mu = \phi \mu a.$

hence $A/\ker \phi = \phi A$ is an ideal in $\text{Mult}(A)$.

Check 2). $(\mu \phi a) a' = \mu(\phi a) = \mu(\phi a') = (\mu a) a' = \phi \mu a a' = (\mu a') \phi a = (\mu a') a = a'(\mu a) = a' \phi \mu a \mu a = \phi \mu a$, and similarly for the other order.

Next look at semi-direct products for algebras which are analogous to such products for groups, where to form $Q \times K$ one needs a homomorphism from Q to $\text{Aut}(K)$. For algebras the analogy is an alg map $R \xrightarrow{\phi} \text{Mult}(A)$ and the product on $R \times A$ is defined by $(r+a)(r'+a') = rr' + (\phi r a' + a \phi r') + aa'$.

There is a slight problem with associativity as follows. It's enough to consider $R = \text{Mult}(A)$. There are 8 associativities to check: a_1, a_2, a_3; three involving one μ: $\mu a_1 a_2, a_1 \mu a_2, a_2 \mu$ μ OK by defn. of multiplier; three involving one a: $\mu a a, \mu a a, \mu a a \mu$, where the first and third are μa, defn. of product of multipliers; one involving three multipliers which is $\mu a a$.

So there is a problem with $(\mu a) a = \mu(a a')$, and
There are two ways to proceed. If $A = A^2$, then
is assumed, then OK because
\[
(\mu(a_1 a_2)\nu) = (\mu(a_1) a_2)\nu = (\mu a_1)(a_2 \nu) \\
\mu(a_1 a_2)\nu = \mu(a_1(\nu a_2)) = (\mu a_1)(\nu a_2)
\]
Thus no problem with $\text{Mult}(A) \times A$ when $A = A^2$.

On the other hand, applying ϕ takes μ, a, ν into μ, ϕ_0, ν which satisfies associativity as $\text{Mult}(A)$ is a ring.

Recall that if \(e^2 = e \) in a ring \(B \), then one has a Morita context:

\[
\begin{pmatrix}
eBe & eB \\
eBe & B
\end{pmatrix} \leq M_{2B}
\]

which is associated to the dual pair over \(B \) given by \(eB, Be \) and the pairing \(\langle b_1 e, e b_2 \rangle = b_1 e b_2 \). (Note: \(eB \otimes B e = eBe \)).

This Morita context yields a Morita equivalence between the unital ring \(eBe \) and the ideal \(BeB \) which is idempotent. One has a canonical surjective ring morphism \(Be \otimes eB \rightarrow BeB \) whose kernel is killed by \(B \) (hence by \(BeB \)) on both left and right.

We now generalize this construction to any element \(h \) of \(B \). Consider the dual pair over \(B \) given by the right ideal \(hB \), the left ideal \(Bh \), and the pairing \(b_1 h * h b_2 = b_1 h b_2 \) which is well-defined since \(b_1 h = 0 \) or \(h b_2 = 0 \), \(\Rightarrow b_1 h b_2 = 0 \). This yields the Morita context

\[
\begin{pmatrix}
hB @ B h & hB \\
hB @ B h & B
\end{pmatrix}
\]

where the product in the ring \(hB @ B h \) is

\[
(hb_1 @ b_2 h) \ast (hb_3 @ b_4 h) = hb_1 @ b_2 h b_3 b_4 h
\]

Define the *-product on \(hBh \) by

\[
hb h * h b' h = h b b' h
\]
Then the canonical map \(h_b \otimes b_2 h \mapsto h_b b_2 h \) from \(hB \otimes B h \) to \(hB h \) respects \(\times \) product, showing that \(\times \) product on \(hB h \) is associative.

Similarly,

\[
(h_b \otimes b_2 h) \times h_b = h_b b_2 h_b \\
\quad b_0 h \times (h_b \otimes b_2 h) = b_0 h b_2 h.
\]

The actions of \(hB \otimes B h \) on \(hB \) and \(B h \) respectively descend to actions of \(hB h \) given by \(\times \) product:

\[
h_b h \times h_b = h_b h_b h_b \\
b_0 h \times h_b h = b_0 h b h
\]

(These statements are not accurate unless \(B = B^2 \), which is the case when \(B h B = B \). Thus it would have been better to proceed as follows.)

Consider the \(M_2 \)-graded abelian group \((hB h, hB, B, B)\) and define the \(\times \) product on it, using the formulas which hold when \(h^2 \).

More precisely, there are 8 products associated to this Morita context, 4 of which lead to expressions containing \(h^2 \); these give the \(\times \) products

\[
h_b h \times h_b' h = h_b h b h' h \\
h_b h \times h_b' = h_b h b h'
\]

\[
b_0 h \times h_b' h = b_0 h b h' \\
b_0 h \times h_b h' = b_0 h b h'
\]
Here's a way to understand better the Macauley context \((hB, hB)\). This context is essentially determined by the dual pair over \(B\) given by the \(B\)-module \(hB\), the \(B\) module \(X = Bh\), and the pairing \(bh \times hb = b'h'b\). So \((hB, Bh, \langle b'h'b \rangle = b'h'b)\) is a quotient of the dual pair \((B, B, \langle b'h'b \rangle = b'h'b)\). You have eliminated from the latter Macauley context the obvious degeneracies arising from the annihilators \(hB\) and \(B_h\).

Relation of \((hBh, hB)\) to \((jBj, jB)\)

where the latter Mac. context is supposed to correspond to quadruples \((V, W, j:W \rightarrow V \rightarrow V\langle j \rangle W)\). Now

\[Bi = B/\{ b \mid bj = 0 \}, \text{ but } bi = 0 \Leftrightarrow bj = 0 \text{ when } j \text{ is surjective; so } Bi = B/B_h. \text{ Similarly } jB = B/\{ b \mid jb = 0 \} \text{ and } jb = 0 \Leftrightarrow gb = 0 \text{ when } s \text{ is injective; so } jB = B/B_h. \]

Conclude that the dual pairs

\[
\begin{cases}
(B, B, \langle b'h'b \rangle = b'h'b) \\
(B_hB, B/B_h \text{ same}) \\
(jB, Bc, \langle b'c, gb \rangle = b'h'b)
\end{cases}
\]

are essentially equivalent.
Let's consider the Morita context (here $h \in B$)

\[
\begin{pmatrix}
A & Y \\
X & B
\end{pmatrix} =
\begin{pmatrix}
hB & hB \\
Bh & B
\end{pmatrix}
\]

the product is the \ast-product, i.e. as if $h^2 = h$.

Then this context is strictly idempotent assuming $BhB = B$.

$B = BhB \subseteq BB$, $XY = Bh \ast hB = BhB = B$

$YX = hBBh = hB0h = A$, $A^2 = hBhBh = hBh = A$

$YB = hB^2 = hB = Y$, $AY = XY = YB = Y$

$BX = B^2h = Bh = X$, $XA = XYX = BX = X$.

Let's describe the Morita equivalence associated to this Morita context. We use the reduced module picture, i.e. $M_n(A)$ is the category of A-modules V such that $AV = V$ and $V = 0$. You know that the functor of the equivalence from $M_n(B)$ to $M_n(A)$ is given by

\[
W \mapsto \text{Im} \left\{ Y \otimes W \rightarrow \text{Hom}_B(X, W) \right\}
\]

\[
y \otimes \omega \mapsto (x \mapsto (xy) \omega)
\]

(This should be true quite generally, certainly for a strictly idempotent Morita context.)

The map \otimes factors

\[
hB \otimes W \rightarrow hW \hookrightarrow \text{Hom}_B(Bh, W)
\]

\[
hb \otimes \omega \mapsto hb\omega, \quad hw \mapsto (b'h \mapsto b'h \ast hw')
\]

The second map is injective, since $b'hw' = 0$ for all $b' \in B$ implies $hw' \in B^W$ which is zero assuming W reduced.

The first map is surjective as $hBW = hW$ since $BW = W$ for W reduced.
Thus the functor giving the equivalence $M_n(B) \rightarrow M_n(A)$ is $W \mapsto hW$. As a check note that $A(hW) = hBhW = hBhBW = hBW = hW$; also $A(hw) = 0 \iff hBhw = 0 \Rightarrow Bhw = BhBW = 0 \Rightarrow hw \in B W = 0$.

Next look at the inverse functor from $M_n(A)$ to $M_n(B)$ which sends V to $W = \text{Im} \{ BhA \rightarrow \text{Hom}_A (hB, V) \}$. Thus

\[
\begin{array}{ccc}
BhA & \rightarrow & W \\
\downarrow \text{B conil free} & & \downarrow \text{B conil free as} \\
\text{Hom}_A (hB, V) & \rightarrow & \text{Hom}_A (hB, V)
\end{array}
\]

as $B = B^2$.

Thus W is A-reduced.

Now assume B satisfies $B = 0$ and $B = 0$. Then hB is A-reduced, and Bh is A-reduced.

Also since $B(\text{hB}) = Bh$ and $Bh \in B B = 0$, one sees that $A = hBh$ is A-reduced, and similarly A is A^op-reduced.
July 18, 2001

Motivation: At the conference nearly one month ago Joachim told me that he could extend the Morita equivalences, which arise in the assembly maps for a group Γ (finite support condition), to the case of the groupoid M_n ($\text{Ob} = \{1, \ldots, n\}$, $\text{Ar} = \text{Ob} \times \text{Ob}$). On one side one has the algebra A, universally generated by the components of a projection on an M_n graded algebra. On the other side one has the algebra B, which is a sort of cross product with the non-commutative n-simplex.

In order to reconstruct Joachim’s result it seems worthwhile to look more generally at assembly for a groupoid Γ. Geometrically assembly for a group involves constructing a K class starting from a principal bundle for the group. So you want to understand principal bundles (or torsors) for a groupoid.

Let’s approach this problem from Groth’s topos viewpoint, which gives an elegant category picture of classifying toposi for groupoids (without homotopies, partitions of unity, etc.).

Let C be a small category, let C-sets be the category $\text{Fun}(C, \text{sets})$ of covariant functors L and C^{op}-sets the category of contravariant functors R. Because we use left functional notation: $$(fg)(x) = f(g(x))$$
it is convenient to write a chain
of composable arrows in \(C \) with the arrows
pointed to the left, so that the composition
of
\[
2 \xleftarrow{f} 1 \xrightarrow{g} 3 \xrightarrow{h} X.
\]
We write \(\text{Ob} \) for the set of objects, and \(\text{Ar} \)
for the set of arrows:
\[
\text{Ar} = \bigsqcup_{X, Y \in \text{Ob}} \text{Ar}(X, Y), \quad \text{Ar}(X, Y) = \text{Hom}_C(Y, X)
\]
composition:
\[
\text{Ar}(X, Z) \times \text{Ar}(Y, Z) \rightarrow \text{Ar}(X, Z),
\]
\[
\left(X \xleftarrow{f} Y, \quad Y \xrightarrow{g} Z \right) \mapsto \left(X \xleftarrow{f \circ g} Z \right)
\]
A \(C \)-set \(L \) is a set over \(\text{Ob} \):
\[
L = \bigsqcup_{X \in \text{Ob}} L(X)
\]
with a left action by \(\text{Ar} \):
\[
\text{Ar} \times \text{Ob} \rightarrow L, \quad \text{source} \rightarrow \text{Ob}
\]
\[
\bigsqcup_{(Y, X) \in \text{Ob}} \text{Ar}(Y, X) \times L(X) \rightarrow \bigsqcup_{Y \in \text{Ob}} L(Y), \quad \text{satisfying appropriate identity and associativity conditions. Similar}
\]
a \(C \)-set \(R \) is a set over \(\text{Ob} \) with right action by \(\text{Ar} \):
\[
R \times \text{Ob} \rightarrow R
\]
With this notation understood, we can
define the "tensor product" \(R \times _ L \) to be the set
\[
R \times _ L = \text{Coker} \left\{ R \times \text{Ob} \rightarrow R \times \text{Ob} \text{Ar} \times \text{Ob} \text{L} \right\}
\]
\[
\left(f, _ , _ L \right) \left(f_\lambda, f, _ \right)
\]
In other words a map $R \times \epsilon L \rightarrow S$ is the same as a family of maps

$$\phi_x : R(X) \times L(X) \rightarrow S \quad \forall X \in \text{Ob}$$

such that

$$R(Y) \times \epsilon \text{Ar}(y, x) \times L(X) \rightarrow R(X) \times L(X)$$

$$\downarrow \quad \downarrow \phi_x$$

$$R(Y) \times L(Y) \quad \phi_y \rightarrow S$$

commutes $\forall X, Y \in \text{Ob}$.

It is easy to establish the following bilinearity property

$$\text{Hom}_{\text{sets}}(R \times \epsilon L, S) = \text{Hom}_{\text{sets}}(R, \text{Hom}_{\text{sets}}(L, S))$$

$$= \text{Hom}_{\text{C-sets}}(L, \text{Hom}_{\text{sets}}(R, S))$$

from which it follows that $R \times \epsilon L$ respects arbitrary limits. If you take $R = h_x = \text{Hom}_{\epsilon}(\cdot, X)$, then

$$\text{Hom}_{\text{sets}}(h_x \times \epsilon L, S) = \text{Hom}_{\text{sets}}(L(X), S)$$

by Yoneda's lemma, whence

$$h_x \times \epsilon L = L(X), \quad \text{sim} \quad R \times \epsilon h^x = R(X)$$

Therefore

$$h_x \times \epsilon h^y = \text{Hom}_{\epsilon}(y, x) = \text{Ar}(X, Y)$$

and then using \(\lim_{x/R} h_x = R \) etc., yields the general $R \times \epsilon L$ by right continuity.
The category C-sets is a topos. In the Grothendieck theory it is natural to define a C-torsor over a space B to be a topos map from \mathcal{S}_B, sheaves of sets over B, to C-sets. Such a map is given by the inverse image functor $f^* : C$-sets $\rightarrow \mathcal{S}_B$ which is required to be right exact and left exact (respect finite proj. lim's).

Consider $B = \text{pt}$. A right continuous functor $F : C$-sets \rightarrow sets has the form (up to a canonical isomorphism) $F(L) = R \times_{C} L$, where R is the C^{op}-set $C^{\text{op}} \xrightarrow{\text{Yoneda}} C$-sets $\xrightarrow{F} \text{sets}$, i.e. $R(X) = F(\mathcal{X})$. When is F left exact? I think this happens iff C/R is filtering, equivalently R is pro-representable. Assuming this, it follows that $\text{Pro} C$ is the category of points in C-sets.

For a space B a right exact $F : C$-sets $\rightarrow \mathcal{S}_B$ should have the form $F(L) = R \times_{C} L$, where R is a C-sheaf over B, i.e. the functor $C^{\text{op}} \xrightarrow{\text{Yoneda}} C$-sets $\xrightarrow{F} \mathcal{S}_B$.

The left exactness of F should be equivalent to each stalk of R being pro-representable.

Next simplify to a groupoid Γ where pro-representable functors are representable. A Γ-torsor over B is a Γ^{op}-sheaf such that each...
stalk is representable.

Example: \(\Gamma = \mathbb{M}_2 \). A \(\Gamma \)-set is the same thing as an ordered pair \((F_1, F_2) \) together with an isomorphism between them. It is representable iff both sets are points. Clearly there is a unique torsor up to canonical isom.