Review. You are making a calculation carefully so as to handle the left-right choices. You start with a representation of Γ on H with op. $h_i > 0$ such that $(h_s = s h_1 s^{-1})_{s \in \Gamma}$ is a partition of unity: $\Sigma h_s = 1$.

Put $V_s = h_s^{1/2} H = sV_1$. Canonical maps

$$
\begin{align*}
\mathcal{H} & \xrightarrow{\chi} \bigoplus_{s \in \Gamma} V_s^2 \\
\xi & \mapsto (s \mapsto h_s^{1/2} \xi) \\
(s \mapsto \eta_s) & \mapsto \sum_s h_s^{1/2} \eta_s
\end{align*}
$$

This much could be done for an arb. partition of unity on a Hilbert space. Now bring in the group actions of Γ on $\bigoplus V_s$. Here there is this system of simplicity which is simply transitive under Γ. So you get an isom.

$$
\begin{align*}
\bigoplus_{s \in \Gamma} V_s^2 & \xrightarrow{\theta} \bigoplus_{s \in \Gamma} V_s \\
(s \mapsto \xi_s) & \mapsto (s \mapsto s \xi_s)
\end{align*}
$$

What is t on $(s \mapsto \eta_s)$, it should be $(ts \mapsto t \eta_s)$ equiv. replacing s by $t^{-1}s$: $s \mapsto t^{-1}s \eta_s$.

$$
\begin{align*}
\bigoplus_{s \in \Gamma} V_s & \xrightarrow{\theta} \bigoplus_{s \in \Gamma} V_s \\
(s \mapsto \xi_s) & \mapsto (s \mapsto s \xi_t^{-1}s)
\end{align*}
$$
\[H \xrightarrow{\alpha} \bigoplus_s V_s \xrightarrow{\Theta^{-1}} \bigoplus_s V_1 \]

\[\xi \xrightarrow{\Theta} (\alpha' \xi) = h_1^{1/2} \xi \xrightarrow{\Theta' \xi} \Theta(\alpha' \xi) = h_1^{1/2} h_s^{1/2} \xi = h_1^{1/2} s^{-1} \xi \]

So replace \(\alpha \) by \(\alpha' = \Theta^{-1} \alpha \)

\[h_1^{1/2} s^{-1} \xi \]

Formulas: On \(\bigoplus_s V_1 \) the action of \(t \in \Gamma \) is

\[(t \eta)_s = \eta t^{-1} s \]

where \(\eta : \Gamma \rightarrow V_1 \)

Check \((t_1 t_2 \eta)_s = (t_2 \eta) t_1^{-1} s = \eta t_2^{-1} t_1^{-1} s = \eta (t_2 t_1)^{-1} s = (t_1 t_2 \eta)_s \)

\[H \xrightarrow{\alpha'} \bigoplus_s V_1 \]

\[\alpha'(\xi) = h_1^{1/2} s^{-1} \xi \]

Check \((t \alpha' \xi)_s = (\alpha' \xi) t^{-1} s = h_1^{1/2} s^{-1} t \xi \)

\[(\alpha' \eta, \xi) = (\eta, \alpha' \xi) = \sum_s (\eta_s, h_1^{1/2} s^{-1} \xi) \]

\[= \sum_s (sh_1^{1/2} \eta_s, \xi) \]

\[\alpha' \eta = \sum_s h_1^{1/2} s \eta_s \]

Check \(\alpha' \alpha' \xi = \sum_s h_1^{1/2} h_1^{1/2} s^{-1} \xi = \sum_s h_s^2 \xi = \xi \)
\[x'^* (t \eta) = \sum_s \text{sh}^{\frac{1}{2}} (t \eta)_s = \sum_s \text{sh}^{\frac{1}{2}} \eta t^{-s} = \sum_t \text{sh}^{\frac{1}{2}} \eta_t s \]

What remains is to do the descent. I am not being clear, but I mean to do the GNS \[t \text{sh}^{\frac{1}{2}} \eta \]

business: H with \(\Gamma \) action and equivariant partition of unity can be reconstructed from \(\chi \) and the function \(s \mapsto \text{sh}^{\frac{1}{2}} s \) from \(\Gamma \) to \(L (V) \).

Why: \(p = \alpha' \alpha'^* : \bigoplus_{s \in \Gamma} V_s \) is a projection \(\Gamma \)-equivariant whose image is \(H \).

Look at \(\bigoplus_{s \in \Gamma} V_s = L^2 (\Gamma, V) \) \(\eta = (\eta_s \mapsto \eta_s) \)

where \((t \eta)_s = \eta t^{-s} \). OKAY can you write this as \(V \otimes \mathbb{C}[\Gamma] \)? Let left = right straight.

Stick to the Hill. Space picture. The key situation is a rep \(H \) of \(\Gamma \) such that there exists a closed subspace \(j : V \hookrightarrow H \) such that \(H = \bigoplus_{s \in \Gamma} s j V \).

Thus \(H \) is completion of \(C[\Gamma] \otimes V = \bigoplus_{s \in \Gamma} s j V \). Description elements of \(H \) as functions equiv. to functions on \(\Gamma \) to \(V \) as follows:\[\sum_s s j \eta_s \in \bigoplus_{s \in \Gamma} s j V \]

If you describe elements of \(H \) as \(\sum_{s \in \Gamma} s j \eta_s \), what is action of \(t \in \Gamma \): \(t (\sum_{s \in \Gamma} s j \eta_s) = \sum_{s \in \Gamma} ts j \eta_s = \sum_{s \in \Gamma} s j \eta_t^{-s} \)

so you get \((t \eta)_s = \eta t^{-s}\) action of \(t \in \Gamma \) on \(L^2 (\Gamma, V) \).

Note that you are using the left regular representation consistent with \(\Gamma \) left acting on \(C[\Gamma] \otimes V \).

Next to understand projection...
Return to replacing V by $h_{1/2}V$

\[H \xrightarrow{\alpha} \bigoplus_{s \in I} s V \]

\[\xi \xrightarrow{\tau} h_{1/2} \xi \]

\[\frac{h_1^2 H}{h_1^2} = s \frac{h_1^2 H}{h_1^2} = s V \]

\[H \xrightarrow{\alpha} \bigoplus_{s \in I} s V \]

\[\xi \xrightarrow{\tau} \sum_{s} h_{1/2}^s \xi = \sum_{s} s h_{1/2}^s \xi \]

\[\lambda^{\prime}(\xi) = \sum_{s \in I} s \left(h_{1/2}^s \xi \right) \in \bigoplus_{s \in I} s V \]

At the moment you have Γ acting on H, $h_1 > 0$,

\[h = s h_1 s^{-1}, \quad \sum h_s = 1, \quad V = V = h_1 H \]

\[H \xrightarrow{\alpha} \bigoplus_{s \in I} s V \xrightarrow{\alpha^*} H \]

\[h_{1/2}^s \xi = s h_{1/2}^s \xi \]

\[\left(\sum_{s} s \eta_s \right) \left(\sum_{s} s h_{1/2}^s \xi \right) = \sum_{s} \left(s \eta_s h_{1/2}^s \xi \right) \]

\[\left(t \eta \right) = \eta t^{-1} \xi \]

\[t \sum_{s} s \eta_s = \sum_{s} ts \eta_s = \sum_{s} \eta_{t^{-1} s} \]

\[t \sum_{s} s \eta_s = \sum_{s} ts \eta_s = \sum_{s} \eta_{t^{-1} s} \]
So now you have the Γ-module picture pretty clear. Next find the data needed to reconstruct H from V. Recall $V = h_1^2 H = h_1 H$.

The point is any projector $p = p^* = p^2$ on $\bigoplus_{s \in \Gamma} s V$ commuting with Γ determines $H = \text{Im}(p)$ which is a unitary repn. of Γ and an operator h_1 which is $H \xrightarrow{p} \bigoplus_{s \in \Gamma} s V \xrightarrow{h_1} V \xrightarrow{(a)} \bigoplus_{s \in \Gamma} s V \xrightarrow{x^*} H$.

$h_i = x_i i^* x_i \geq 0$, should satisfy $\sum_{s} s h_i s^{-1} = 1$ on H since $\sum_{s} s x_i x_i^* s^{-1} = 1$ on $\bigoplus_{s \in \Gamma} s V$. It might not be true that $H \xrightarrow{h_1} V$ is surjective.

Problem. You have $p = p^* = p^2$ on $\bigoplus_{s \in \Gamma} s V$.

p commutes with left Γ multiplication

$p = x x^* : \bigoplus_{s \in \Gamma} s V \rightarrow \bigoplus_{s \in \Gamma} s V$

p commutes with left mult by Γ

You know that $\sum_{s} s g s = x 1$ on $\bigoplus_{s \in \Gamma} s V$.

So that? What is an equivalent map from $\bigoplus_{s \in \Gamma} s V$ to itself? Same as a linear map $V \rightarrow \bigoplus_{s \in \Gamma} s V$.

\[
\text{Hom}_\Gamma (C[\Gamma] \otimes V, C[\Gamma] \otimes V) = \text{Hom}(V, C[\Gamma] \otimes V)
\]

\[
c[\Gamma] \otimes V = \bigoplus_s sV \quad \text{typical element is } \Sigma s \eta_s \quad \text{with } \eta : \Gamma \to V. \quad t \sum s \eta_s = \sum t s \eta_s = \sum s \eta_t \cdot s.
\]

You want to understand how an element of \(C[\Gamma] \otimes V\) looks. It amounts to a linear map \(V \to C[\Gamma] \otimes V\), thus it has the form of a function on \(\Gamma\) with values in \(\text{Hom}(V, V)\), call this function \(s \mapsto t_s\). No.

You want to understand operators

\[
T = \bigoplus_s sV \longrightarrow \bigoplus_t tW
\]

which can \(\Gamma\)-module maps. Assume \(\dim(V) < \infty\).

\(T\) is equivalent to a linear map \(V \longrightarrow \bigoplus_t tW\)

\[
\sum t \eta_t : v \mapsto \sum t \eta_t v \in \bigoplus_t tW
\]

Then \(s v \mapsto \sum s t \eta_t v = \sum s t s_t v\).

Maybe you should look at \(T : \bigoplus_s sV \longrightarrow \bigoplus tW\)

does focus on \(t \rotateleft{ss'} T \rotateleft{ss'} : sV \longrightarrow tW\).

\[
\begin{array}{cc}
V & \xrightarrow{s} sV \\
\bigoplus_s sV & \xrightarrow{T} \bigoplus_t tW
\end{array}
\]

These given \(V \longrightarrow \bigoplus_t tW\) \(\sum t \eta_t \quad s \in \text{Hom}(V, W)\)

Conclude that \(\text{Hom}_\Gamma (\bigoplus_s sV, \bigoplus_t tW) = \text{Hom}(V, \bigoplus_t tW)\)

\[
\left\{ s \in \bigoplus t \eta_t \mid s \in \text{Hom}(V, W) \right\}
\]

\(T(sV) = s \otimes \sum t \eta_t v \quad T\).
So what is going on?

\[sV = \frac{h_s}{3} \vec{H} = \frac{h_s}{3} \vec{H} \]

\[\sum_{s} h_{\frac{1}{2}}^s \sum_{t} \eta_t \]

\[\sum_{s} h_{\frac{1}{2}}^s \sum_{t} th_{\frac{1}{2}}^t \eta_t = \sum_{s} s h_{\frac{1}{2}}^s \sum_{t} th_{\frac{1}{2}}^t \eta_t \]

\[\text{Try again.} \]

\[H \xrightarrow{\alpha} \bigoplus sV \xrightarrow{\alpha^*} H \]

\[\frac{h_{\frac{1}{2}}^s}{3} = s h_{\frac{1}{2}}^s \eta^s \]

\[\alpha(\xi) = \sum_{s} h_{\frac{1}{2}}^s \xi^s \]

\[\alpha(\xi, \sum_{t} \eta_t) = \sum_{s} h_{\frac{1}{2}}^s \xi^s \quad \left(\text{Try again.} \right) \]

\[\alpha^*(\xi, \sum_{s} h_{\frac{1}{2}}^s \eta^s) = \sum_{t} h_{\frac{1}{2}}^t \sum_{s} h_{\frac{1}{2}}^s \eta^s \]
\(V = h_{1/2}^1 H \quad \Rightarrow \quad s V = h_{1/2}^s H \)

\[\| A \|_2 = \sum_s (h_s \| \xi \|)^2 = \| \xi \|_2^2 \]

\[H \xrightarrow{\alpha} \bigoplus_s s V \xrightarrow{\alpha^*} H \]

\[j_1 s^{-1} = s \downarrow \Gamma_s = s \xi \]

\[\alpha^* (\sum_s \eta_s) = \sum_s s h_{1/2}^s \eta_s \]

\[\alpha^* \xi_1 = h_{1/2}^{1/2} \eta_1 \]

Remaining point: \(p = \alpha \alpha^* \) is a projector on \(\bigoplus_s s V \)

which is \(\Gamma \)-graded. This should mean \(p \) is a projector in \(\Gamma \)-graded algebra.

\[\bigoplus_s s V \xrightarrow{\alpha \alpha^*} \bigoplus \xi t V \]

\[j_1 \alpha \alpha^* \xi_1 s = j_1 t^{-1} \alpha \alpha^* \xi_1 = j_1 t^{-1} \alpha \xi_1 t^{-1} \alpha \]

So here you have \(V \xrightarrow{\alpha \xi_1 = h_{1/2}^{1/2}} H \) and \(H \xrightarrow{j_1} V \)

\[j_1 p s = h_{1/2}^1 t^{-1} h_{1/2}^s \] group elt. compressed to \(V \)

Summary: From \(H, \Gamma, h_1 \), you get \(V = h_{1/2}^{1/2} H \) and \(p = (p t) \)

\(p t = h_{1/2}^1 t^{-1} h_{1/2}^{1/2} \in \mathcal{L}(V) \). Conversely GNS allows you to reverse this.
Review: \(H, \Gamma, h_6 = s h_1 s^{-1} \varphi, \Sigma h_s = 1 \).

\[
V = h_1^{1/2} H
\]

\(s \cdot V = h_1^{1/2} H \)

\(\alpha(\xi) = \bigoplus_s h_5^{1/2} \xi \cdot \bigoplus_s V \)

\((a^*(\bigoplus_s q_s), \xi) = (\bigoplus_s q_s, \bigoplus_s h_5^{1/2} \xi) = \sum_s (q_s, h_1^{1/2} s^{-1} \xi) = \sum_s (h_1^{1/2} q_s, s \xi) \)

\(a^*(\bigoplus_s q_s) = \sum_s h_1^{1/2} q_s = \sum_s h_5^{1/2} s q_s \)

\(t(\bigoplus_s q_s) = \bigoplus_s q_s \cdot h_5^{-1} \)

\[
H \xrightarrow{\alpha} \bigoplus_s s V \xrightarrow{a^*} H
\]

\(j_s \xi = \frac{1}{j_s} \xi, j_s = \sigma_s \quad \forall s \)

\(j_s \alpha(\xi) = h_1^{1/2} \xi \quad j_s (\bigoplus_s q_s) = j_s \alpha(\bigoplus_s q_s) = h_1^{1/2} j_s (\bigoplus_s q_s) = h_1^{1/2} \bigoplus_s q_s \)

\[
\alpha^* \xi = h_1^{1/2} \xi
\]

Check

\(\alpha^* \alpha = \alpha^* (\sum_s j_s) \alpha = \sum_s (\alpha^* j_s \alpha) s^{-1} = \text{id}_H \)

\(\alpha^*: \bigoplus_t s V \rightarrow \bigoplus_t s V \)

\(j_s \alpha^* \xi = j_s \alpha \xi^{-1} \quad \alpha^* \xi_1 = h_1^{1/2} \xi_1 \)

is the compression of the group element \(s^{-1} t \) to an operator in \(V \).

Given \(H, \Gamma, h_1 = \sum h_s = 1 \) get \(V = h_1^{1/2} H \)

and \(H \xrightarrow{\alpha = h_1^{1/2}} V \xrightarrow{\alpha^* \xi_1 = h_1^{1/2}} H \).
Summary: Given $H, \Gamma, h_1, \sum h_s = 1$, you get
\[V = h_1^{1/2} H \] and maps
\[H \xrightarrow{\rho \times \alpha} V \xrightarrow{\alpha^* \rho} H \]
such that $P_s = \rho_s \times \alpha^* \nu_1 = h_1^{1/2} s h_1^{1/2} \in L(V)$ has a complete positivity property.

\[P_s P_t = h_1^{1/2} s h_1^{1/2} P_t = h_1^{1/2} s h_1^{1/2} s h_1^{1/2} = P_t \]

\[\sum_s P_s P_{s^{-1}} \]

Go backwards. Suppose given V a Hilbert space and a family of operators $P_s \in L(V)$ satisfying $P_s^* = P_s^{-1}$.

Then you define a
\[p = \bigoplus_{s \in \Gamma} s P_s \]

\[V = \bigoplus_{s \in \Gamma} s P_s \]

\[p = \sum_s P_s \sum_t t \overline{f}_t \overline{f} = \sum_s \sum_t \overline{f}_t \overline{f} \overline{f}_s^{-1} P_s \sum_t t \overline{f}_t \overline{f} \overline{f}_s^{-1} \]

\[= \sum_{s, t} s \overline{f}_t \left(\overline{g}_1 s^{-1} P_s \overline{f}_1 \right) \overline{f} t^{-1} \]

So you need to know something.

You have to get the data of the Morita equivariant control
\[(H, \Gamma, h_1) \longrightarrow (V, P_s) \]

Conversely given V, P_s
\[\int P_u = \sum_{s, t} P_s P_{s^{-1}} P_t. \]

\[P_{s^{-1}} = P_{\alpha^* \rho} \]
You construct \(p \) on \(\bigoplus sV \), \(p = \lambda \) for some \(\lambda \).

\[
p^{1} = \sum_{s} s \gamma_{s} p^{1} = \sum_{s} s \gamma_{s} \frac{1}{e_{s}^{1} \times e_{s}^{1} \alpha^{s} \lambda^{s}}
\]

\[
p^{1} = \sum_{s} \frac{s \gamma_{s} p^{1}}{e_{s}^{1} \times e_{s}^{1} \alpha^{s} \lambda^{s}}
\]

Again:

\[
H \xrightarrow{\alpha} \bigoplus sV \xrightarrow{\alpha^{*}} H \xrightarrow{\alpha} \bigoplus sV
\]

\[
d_{s} p_{s} t = f_{1} s^{-1} \alpha^{*} t \gamma_{s} = (f_{1} \alpha) s^{-1} t \alpha^{*} \gamma_{s}
\]

\[
p_{s} t = \sum_{s} s \gamma_{s} p_{s} t = \sum_{s} s \gamma_{s} (f_{1} \alpha) s^{-1} t \alpha^{*} \gamma_{s}
\]

The problem? What should happen?

Given \(V, \Gamma \) you get \(\bigoplus sV \) unitary rep. of \(\Gamma \)

\[
t(\bigoplus s \eta_{s}) = \bigoplus s \eta_{s} \gamma_{s}
\]

This is forced because you want \(\Gamma \) to left act and \(\alpha \) to yield a \(\Gamma \)-grading. Next you can consider any projector \(p \) on \(\bigoplus sV \) commuting with \(\Gamma \).

The image of \(p \) will give an \(H \) with \(\bigoplus sV \) unitary \(\Gamma \)-action. Moreover, you have

\[
\text{Hom}_{\Gamma}(\bigoplus sV, \bigoplus sV) = \text{Hom}(V, \bigoplus sV)
\]

Hence an \(T : V \rightarrow \bigoplus sV \) it extends to a \(\Gamma \)-map \(\bigoplus sV \rightarrow \bigoplus sV \)

\[
d_{s} T_{s} t = f_{1} (s^{-1} t) T_{s} t
\]

\[
T = \sum_{s, t} d_{s} T_{s} t f_{s, t}
\]
Something should be very simple

Let \(T_s = f_s T_1 : V \rightarrow \bigoplus_s V \rightarrow \bigoplus_s V \rightarrow V \rightarrow \bigoplus_s V \rightarrow \bigoplus_s V \rightarrow V \)

\[= f_s T_1 \]

Then,

\[T t = \bigoplus_s f_s T_1 T t = \bigoplus_s f_s T_1 T t \]

What's going on? It should be simple to describe. You want to describe \(T : \bigoplus_s V \rightarrow \bigoplus_s V \) commuting with \(\Gamma \). For \(dim V < \infty \) you know \(\Gamma \)-linear \(T \) is equiv to \(T_1 : V \rightarrow \bigoplus_s V \). So \(T \) splits into components. \(T = \sum_s T_s \). \(T_s \) unique \(\Gamma \)-linear ops \(\rightarrow T s = f_s T_1 \)

Here the problem. Starting point (algebraic version)

is a \(\Gamma \)-module \(M \) containing a subspace \(V \) such that the canon. map \(\bigoplus_s V \rightarrow M \) is an isom. Equivalently, the vector space \(M \) is given a grading \(M = \bigoplus_m M \) indexed by the set \(\Gamma \) which is compatible with the left \(\Gamma \)-action on \(M \). \(t M = \bigoplus_m t M \).

Now consider operators \(\Gamma \)-linear on such a "free" \(\Gamma \)-module. A \(\Gamma \)-linear operator \(T : M = \bigoplus \rightarrow M = \bigoplus \rightarrow M \) is the same as a linear map \(V \rightarrow M = \bigoplus \rightarrow M \). So it splits \(T = \sum_s T_s \), where \(T_s V \subset s \). Say \(T \) is homogenaus of degree \(t \). When \(TV \subset t V \).

Let \(U \) be homogenaus of degree \(u \). \(U \) is \(\Gamma \)-linear and \(UV \subset u V \). Then \(T(U(V)) \subset T(u V) = u TV \subset u t V \). So the degree of \(TU \) is backwards: \(ut \).
$\text{Hom}_R(C[R]\otimes V, C[R]\otimes V) = \text{Hom}(V, C[R]\otimes V)$
$q : V \rightarrow C[R]\otimes V \quad q = \bigoplus_{s \in L(V)} \sum s \otimes q_s \otimes \psi_s \in L(V)$

Let $\hat{q} : C[R]\otimes V \rightarrow C[R]\otimes V$ be the R linear extension

$\hat{q}(t \otimes \eta_t) = \sum t \otimes q_s \otimes \psi_s \otimes \eta_t = \sum t \otimes q_s \otimes \psi_s \otimes \eta_t$

Thus if $q = \bigoplus_{s \in L(V)} q_s \in \bigoplus_{s \in L(V)} C[R]\otimes V$

then $\hat{q}(\bigoplus_{t \in T} t \otimes \eta_t) = \bigoplus_{t \in T} \sum t \otimes q_s \otimes \psi_s \otimes \eta_t = \bigoplus_{t \in T} \sum t \otimes q_s \otimes \psi_s \otimes \eta_t$

Note wrong order

Another notation maybe better for the analysis.

$C[R]\otimes V = \{ \eta : R \rightarrow V \mid \text{finite support} \}$

left action of R is $(t \eta)(s) = \eta(ts)$

End$(C[R]\otimes V) = C[R] \otimes \text{End}(V)$ at least to dim $V < \infty$

$(\sum_s s \otimes q_s)(\sum_t t \otimes \eta_t) = \sum_{s,t} ts \otimes q_s \otimes \eta_t$

composition is $(\sum_s s \otimes q_s)(\sum_t t \otimes \psi_t) = \sum_{s,t} ts \otimes q_s \otimes \psi_t = \sum_{s,t} t \otimes q_s \otimes \psi_t$
Let $\rho : \text{End}_F(C\Gamma \otimes V) \to \text{End}_F(C\Gamma \otimes V)$, assume $\rho^2 = \rho$.

Then $\rho = \sum s \otimes p_s \in C[\Gamma] \otimes L(V)$, assume $\rho^2 = \rho$.

$p^2 = \sum_{s,t} ts \otimes p_s p_t = \sum_{s \in \Gamma} u_0 \otimes \sum_{t \in S} p_s p_t$

So a Γ-projection in $C[\Gamma] \otimes V$ is the same as a function $s \mapsto p_s \in L(V)$ satisfying

$p_u = \sum_{ts = u} p_s p_t$

So back to the Hilb. space notation

\[H, \Gamma, h_1, h_5 = sh_5^{-1} \quad V = \frac{h_{1/2}}{h_1} \leftarrow H \]

\[H \xrightarrow{\alpha^*} \bigoplus S V \xrightarrow{\alpha} H \]

\[(\alpha^* \alpha)(s) = \sum_s h_{1/2} h_{5/2} \frac{s_5}{s} = \sum_s h_6 \frac{s}{s} \frac{s}{s} = s .\]

This since $\alpha^* \alpha = \text{id}_H$, $\rho = \alpha^* \alpha$ is a projector commuting with Γ so it should have the form $\sum_{s \in S} s \otimes p_s \otimes \sum_{t \in \Gamma} u_0 \otimes \sum_{s \in S} p_s p_t$

\[(\sum_{s \in S} s \otimes p_s)(1 \otimes u) = \sum_{s \in S} s \otimes p_s u\]

\[p(1 \otimes u) = \alpha^* \alpha(1 \otimes u) = \alpha h_1^{1/2} u = \bigoplus_s h_5^{1/2} h_6^{1/2} u \]

\[= \sum_s h_5^{1/2} s^{-1} h_6^{1/2} u\]

\[p_s = h_5^{1/2} s^{-1} h_6^{1/2} . \text{ Check this} \]

\[\sum_{ts = u} p_s p_t = \sum_{ts = u} h_{1/2} (s \otimes h_5^{-1} h_6^{1/2} t^{-1} h_1^{1/2} = \sum h_{1/2} u^{-1} h_6 h_{1/2}^{1/2} u = p_u \]
You seem to be missing the good notation for a cross product. Once this is straightened out things should go smoothly.

Method: use inverses. \(H \) a Hilbert space with \(\Gamma \) action. \(\mathcal{V} \) subspace \(s \mathcal{V} \) are orthogonal and sum dense in \(H \). Then \(\bigoplus \mathcal{sV} \sim H \). However, you want to assign \(\deg(sV) = s^{-1} \). So you write \(s^{-1}_V \) to mean \(s^{-1} \)?

What was the point yesterday? Homogeneous components of an operator on a \(\mathbb{F} \)-graded space. Consider

\[
\mathcal{C}[[s]] \otimes \mathcal{V} = \bigoplus_{s \in \mathcal{F}} s \mathcal{V}
\]

\(\Gamma \) action \(t(s \mathcal{V}) = ts \mathcal{V} \)

\(\Gamma \) grading \((\mathcal{C}[[s]] \otimes \mathcal{V}) = s \mathcal{V} \)

\[
\text{Hom}_\mathbb{F}(\mathcal{R} \otimes \mathcal{V}, \mathcal{R} \otimes \mathcal{V}) = \text{Hom}(\mathcal{V}, \mathcal{R} \otimes \mathcal{V})
\]

Start with a "free" \(\Gamma \) representation module \(M = \mathcal{R} \otimes \mathcal{V} = \bigoplus_{s \in \mathcal{F}} s \mathcal{V} \). An operator \(\phi \) in \(M \) commuting with \(\Gamma \)-action is the same as a linear map \(\phi: \mathcal{V} \to M \) via \(\phi(t \mathcal{v}) = t \phi(\mathcal{v}) \).

Among the \(\phi \in \text{Hom}(\mathcal{V}, \mathcal{R} \otimes \mathcal{V}) \) are those of the form

\[
\sum \phi_t \otimes \phi_t \in \mathcal{R} \otimes \text{Hom}(\mathcal{V}, \mathcal{V})
\]

Where the sum is finite.
One has
\[
\left(\sum_t t \otimes \phi_t \right) \left(\sum_s s \otimes \psi_s \right) = \sum_{t,s} t s \otimes \psi_t \phi_s
\]
and the composition of \(\Delta \) of operators assoc. to \(\psi, \phi \) is given by the same formula.
\[
\left(\sum_t t \otimes \phi_t \right) \left(\sum_s s \otimes \phi_s \right) = \sum_{t,s} t s \otimes \psi_t \phi_s
\]

You want to focus on the grading, what grading?

Given a graded vector space \(M = R \otimes V \) has a natural grading indexed by the set \(\Gamma \), namely \(M = \bigoplus_{s \in \Gamma} M_s \) where \(M_s = s \otimes V \) of \(R \otimes V \).

An operator \(T \) on \(M \) is said to be homogeneous of degree \(t \in \Gamma \) when \(TM_s \subseteq M_t s \) \(\forall s \). If \(T_i \) has deg \(t_i \) for \(i = 1, 2 \), then \(T_1 T_2 M_s \subseteq T_1 M_{t_1 s} \subseteq M_{t_1 t_2 s} \) so \(T_1 T_2 \) has deg \(t_1 t_2 \).

The general framework should be comodules over the coalgebra \(C[\Gamma] \), \(\Delta s = s \otimes s \) for a grading over the set \(\Gamma \). Perhaps a tensor product defined for comodules over a Hopf alg.

\[
M \otimes N = \bigoplus_{s,t} M_s \otimes N_t = \bigoplus_{s,t} \left(\bigoplus M_s N_t \right)
\]

This tensor product is appropriate for \(R_s M_t \subseteq M_{s t} \), \(R_s R_t = R_{s t} \), \(W_s R_t \subseteq W_{s t} \) for a \(\Gamma \)-graded alg \(R \).

Keep things simple. \(\Gamma \) set, then you have notion of \(\Gamma \)-graded space \(M = \bigoplus_{s \in \Gamma} M_s \), same as a \(\bigoplus \) of comodule for \(C[\Gamma], \Delta s = s \otimes s \)
If \(\Gamma \) is a group, you have notion of \(\Gamma \)-graded v.s. \(M = \bigoplus_{s \in \Gamma} M_s \). Given two \(\Gamma \)-graded v.s. \(M = \bigoplus_{s \in \Gamma} M_s \), \(N = \bigoplus_{s \in \Gamma} N_s \), then \(M \otimes N = \bigoplus_{s,t \in \Gamma} M_s \otimes N_t \) is \(\Gamma \times \Gamma \)-graded. Now if \(\Gamma \) is a group you can push forward \(\Gamma \times \Gamma \rightarrow \Gamma \) to get a \(\Gamma \)-graded v.s.

\[
M \otimes N = \bigoplus_{s,t \in \Gamma} (M_s \otimes N_t)
\]

This is a kind of convolution type tensor product:

\[
(M \otimes N)_s = \bigoplus_{s,t} M_s \otimes N_t = \bigoplus_{s,t \in s \otimes t} M_s \otimes N_t
\]

So \(\Gamma \)-graded vector spaces form \(\otimes \)-category allowing one to define \(\Gamma \)-graded algebras \(R \) and \(\Gamma \)-graded \(R \)-modules:

\[
R_s \otimes R_t < R_{st}, \quad R_s M_t < M_{st}
\]

also left modules. Note that \(\Gamma \)-graded vector spaces are the same as comodules for the comm. coalg. \(\mathcal{O}(\mathbb{Z}) \), \(\Delta s = s \otimes s \).

You feel that the important question concerns the behavior of operators on a \(\Gamma \)-graded module. Specifically look at the group ring \(R = \bigoplus_{s \in \Gamma} \mathbb{C}s \) which is both a \(\Gamma \)-graded left (resp. right) \(R \)-module.

\[
R_s R_t < R_{st}, \quad R_t R_s < R_{ts}
\]

and these two actions of \(\Gamma \) commute.

Look at things as follows. Let \(M = \bigoplus_{s \in \Gamma} M_s \) be \(\Gamma \)-graded, let \(\Gamma \) act on \(M_s \), \(t : M \rightarrow M \) \(tM_s < M_t \). Then \(t : M_1 \rightarrow M_5 \) so \(M = \bigoplus_{s \in \Gamma} s M_s \).
Back to grading. Starting point is a \(\Gamma \)-module \(M \) equipped with a subspace \(V \) whose translates \(sV \) for \(s \in \Gamma \) are independent from \(M \):

\[
\bigoplus_{s \in \Gamma} sV \xrightarrow{\sim} M, \quad C[\Gamma] \otimes V \xrightarrow{\sim} M.
\]

In this way \(M \) acquires a grading indexed by the set \(\Gamma \). Alt: A comodule with \(C[\Gamma] \), \(\Delta s = s \otimes s \)

Maybe a better starting point would be to consider a graded \(\Gamma \)-module \(X \) with respect to a set \(\Gamma \). Given \(M = \bigoplus_{x \in X} M_x \), \(N = \bigoplus_{y \in Y} N_y \), you have

a tensor product \(\bigoplus_{x \in X, y \in Y} M_x \otimes N_y \). Also given \(f : X \to Y \), \(M = \bigoplus_{x \in X} M_x \)

get \(f_!(M) = \bigoplus_{y \in Y} \left(\bigoplus_{x \in f^{-1}(y)} M_x \right) \) pushforward of the system \(M_x \) under \(f : X \to Y \).

Then given \(M = \bigoplus_{s \in \Gamma} M_s \), \(N = \bigoplus_{t \in \Gamma} N_t \), you can form \(M \otimes N = \bigoplus_{s \in \Gamma, t \in \Gamma} M_s \otimes N_t \) and push forward with \((st)^{-1} \cdot s \)

\((st)^{-1} \cdot s \) to get a \(\Gamma \)-graded \(\bigoplus_{s \in \Gamma} M_s \otimes N_t \)

This construction should correspond to \(\otimes \) of comodules under the Hopf algebra \(C[\Gamma] \).

Look at the group ring \(C[\Gamma] = \bigoplus_{s \in \Gamma} \mathbb{C} s \)
two actions of \(\Gamma \): \(t \cdot s = ts \) \(st^{-1} \) which commute.

How do you clarify things. Start with operators on a graded vector space. Fix look at \(\mathbb{Z} \) grading. \(V = \bigoplus_{n \in \mathbb{Z}} V_n \). The operators on a graded vector space should be a graded ring,
at least under appropriate finiteness. What about use the obvious grading: \(C[\Gamma] = \bigoplus_{\sigma \in \Gamma} C_\sigma \). Put \(\mathcal{R} = C[\Gamma], \quad \mathcal{R}_\sigma = C_\sigma \).

Start again with a Hilbert space rep'n \(H \) of \(\Gamma \) and a closed \(V \subset H \) such that \(\bigoplus_{\sigma \in \Gamma} H_\sigma = \bigoplus_{\sigma \in \Gamma} sV \). Consider \(\Gamma \)-invariant operator \(T \) on \(H \).

\[
\text{Hom}_{\mathcal{R}}(\mathcal{R} \otimes V, \mathcal{R} \otimes V) = \text{Hom}(V, \mathcal{R} \otimes V) \\
\cup \\
\mathcal{R} \otimes \text{Hom}(V, V).
\]

Point is that with this way \((r \otimes \varphi)(r' \otimes \psi) = (r' r \otimes \psi \varphi)\). So as a ring one has \(\mathcal{R} \otimes \text{End}(V) \). \(\text{Hom}_{\mathcal{R}}(\mathcal{R}, \mathcal{R}) = \mathcal{R} \otimes \text{End}(V) \). For \(\mathcal{R} = C[\Gamma] \) and \(r \) is sum of \(\sigma \) in \(\Gamma \) and \(s \) homogeneous of \(r \).

Maybe you want simply to use the ring \(\mathcal{R} \otimes \text{End}(V) \)?

Let's begin again with \(\bigoplus_{\sigma \in \Gamma} V_\sigma \subset H \)

What's important? Start again with Answer:
- a grading on an algebra \(A \). This means a splitting \(A = \bigoplus A_\mu \) of \(A \) as vector space such that \(A_\mu A_\nu \subset A_{\mu \nu} \) for some \(\mu \times \nu = \mu \nu \). Then the set of indices has some sort of product, which should be sorted out. There's a problem with \(A_1 = 0 \), which should be sorted out.

Monita contexts.
Question: Is there a way to interpret a Morita context as a graded algebra? A Morita context \((A, \mathcal{B})\) is a ring with a splitting into 4 abelian subgroups such that 8 of the possible 16 products are zero. Perhaps you have a grading not a category with two objects and id\(\mathcal{C}\) for arrows.

Question: What is a unital Morita context?

This should be exactly the case of a unital ring \(R\) equipped with idempotent \(e : R = (eRe, eRe^t)\)

Claim: \(R = (e + e^t)R(e + e^t)\)

To start with the notion of grading, i.e., vector space equipped with a splitting indexed by a set \(S : V = \bigoplus_{s \in S} V_s\).

To define graded algebra what you need is to assign to an ordered pair of elements of \(S\) a third element \(s \ast s'\), partially defined operation \(s \ast s' \rightarrow S\), want

\[
A_s A_{s'} \subseteq \begin{cases} A_{s \ast s'}, & \text{if defined} \\ 0, & \text{otherwise} \end{cases}
\]

Let skip this & focus on \(S = \text{group } \Gamma\) graded algebra \(A\) is one with \(s\)-f.p.

\[
A = \bigoplus_{s \in \Gamma} A_s \quad A_s A_t \subseteq A_{s \ast t}
\]

have notion of graded left module right

\[
M_t A_s \subseteq N_{ts}
\]

bimodule \(\Gamma\)-graded is ok.

\[
\begin{align*}
A M_t & \subseteq M_{ts} \\
M_t B_s & \subseteq M_{ts}
\end{align*}
\]
Suppose $V = \bigoplus_{s \in \Gamma} V_s$ is Γ-graded.

To get past the obstruction,

Let Γ be a group. Notion of Γ-graded vector space $V = \bigoplus_{s \in \Gamma} V_s$, tensor product of these:

$$(V \otimes W)_s = \bigoplus_{t+u=s} V_t \otimes W_u,$$

Γ-graded algebra: $A = \bigoplus_{s \in \Gamma} A_s$, $A_s \cdot A_t \subseteq A_{st}$, left and right Γ-graded modules over a Γ-graded alg.

Question: Given a Γ-graded vector space V, is there a natural Γ-graded alg of endomorphisms? More generally you want $\text{Hom}(V, V)$ Γ-graded v.s.

Universal:

$$\text{Hom}_{\text{mod}}(U, \text{Hom}(V, W)) = \text{Hom}_{\Gamma}(U \otimes V, W)$$

It looks as if there are two Hom's correspond. to choose $U \otimes V$ and $V \otimes U$.

Take $U = Cu$ $\text{deg}(u) = u$. Then degree a part of $\text{Hom}(V, W)$, denoted $\text{Hom}^u(V, W)$, should be

$$\text{Hom}_{\Gamma}((Cu \otimes V, W)) = Cu \otimes \bigoplus_{s} V_s = \bigoplus_{s} uV_s$$

$$\sum_{u} V = \sum_{u} \otimes V = \bigoplus_{s} V_s \otimes u^{-1}$$

$$(\sum_{u} \otimes V)_s = \bigoplus_{s=ut} \sum_{u} \otimes V_t$$
Review: \(\Gamma \) group, consider \(\Gamma \)-graded vector space.

\[V = \bigoplus_{s \in \Gamma} V_s \]

Tensor prod.

\[(V \otimes W)_s = \bigoplus_{t \in \Gamma} V_t \otimes W_t \]

They are the same as comodules over \(\mathbb{C}[\Gamma] \), \(A_s = s A_s \).

So you have a tensor category.

Definition of \(\Gamma \)-graded alg and \(\Gamma \)-graded left and right modules. \(A = \bigoplus A_s \), \(M = \bigoplus M_s \), \(A_s M_t \subseteq M_{st} \) resp \(N_s A_t \subseteq N_{st} \).

You have this tensor product operation on \(\mathbb{C} \)-modules, assoc. but not commutative. Question about internal \(\text{Hom} \):

\[\text{Hom}_\mathbb{C}(U, \text{Hom}(V, W)) = \text{Hom}(U \otimes V, W) \]

Take \(U = \sum u \mathbb{C} \), \(\sum u \mathbb{C} \) = \{ \mathbb{C} \} \text{ if } s \neq u \text{,} \mathbb{C} \text{ if } s = u \).

Assume \(\text{Hom}(V, W) \) satisfies formula above get

\[\text{Hom}_\mathbb{C}(V, W)_u = \text{Hom}(\sum u \mathbb{C}, \text{Hom}(V, W)) = \text{Hom}(\sum u \mathbb{C} \otimes V, W) \]

\[(\sum u \mathbb{C} \otimes V)_s = \bigoplus_{t \in \Gamma} (\sum u \mathbb{C})_t \otimes V_{st} \]

\[= \bigoplus_{u \neq t} V_{st} = V_{u^{-1}s} \]

\[\therefore \text{Hom}_\mathbb{C}(V, W)_u = \bigoplus_{s \in \Gamma} \text{Hom}(V_{u^{-1}s}, W_s) \]
Click to there a way to compose homogeneous operators:

\[V^\text{deg a} \xrightarrow{\Sigma^a} W^\text{deg b} \xrightarrow{\Sigma^b} X \]

\[\Sigma^a \longrightarrow \text{Hom}(V^a, W) \]

\[\Sigma^b \longrightarrow \text{Hom}(W^b, X) \]

i.e., \[\Sigma^a \otimes V \rightarrow W, \quad \Sigma^b \otimes W \rightarrow X \]

\[\Sigma^b \otimes \Sigma^a \otimes V \rightarrow \Sigma^b \otimes W \rightarrow X \]

\[(\Sigma^b \otimes \Sigma^a)^s = \bigoplus_{b_tu} (\Sigma^b \otimes \Sigma^a)^s = \begin{cases} \Sigma & s = ba \\ 0 & s \neq ba \end{cases} \]

\[\{ t(u) | tu = s \} \]

\[(\Sigma^b \otimes \Sigma^a)^s = \bigoplus_{\{ t(u) | tu = s \} \epsilon(tu)} (\Sigma^b)^t \otimes (\Sigma^a)^u = \begin{cases} \Sigma & t = b \text{ and } u = a \\ 0 & \text{not} \end{cases} \]

\[\{ \Sigma & \text{if } ba = s = \Sigma \]

\[0 & \text{otherwise} \]

Alternative: Given \[V^a \rightarrow W^b \rightarrow X \]

and \[W^b \rightarrow X \]

\[V^a \rightarrow W^b \rightarrow X \]

and \[(ba)^s \]

Alternative: Here use \[\text{Hom}^b(\nu, W) \] defined by

\[\text{Hom}^b(\nu, \text{Hom}(V, W)) = \text{Hom}^b(\nu \otimes U, W) \]
\[\text{Hom}'(V, W)_a = \text{Hom}(V \otimes \Sigma^a, W) \text{ where} \]

\[(V \otimes \Sigma^a)_s = \bigoplus_{t \in u_s} V \otimes \Sigma^a_t = V_{s^{-1}} \]

\[V \otimes \Sigma^a \rightarrow W \quad W \otimes \Sigma^b \rightarrow X \]

\[V \otimes \Sigma^a \otimes \Sigma^b \rightarrow W \otimes \Sigma^b \rightarrow X \]

\[\sum_{ab} \]

\[V_{s^{-1}} \rightarrow W_s \quad W_{t^{-1}} \rightarrow X_t \]

\[V_{s^{-1}} \rightarrow W_{t^{-1}} \rightarrow X_t \]

\[t(ab)^{-1} \]

I'm confused. If \(V \) is \(\Gamma \)-graded, then there are apparently two \(\Gamma \)-graded algebras, \(\text{Hom}(V, V) \) and \(\text{Hom}'(V, V) \). Degree 0 elements of the former are maps \(V_{a^t} \rightarrow V_s \) vs. and of the latter are map \(V_{s^{-1}} \rightarrow V_s \) vs.

Maybe what's useful to remember is that there are two ways to shift indexing - left \& right translation. This gives two types of homogeneous operators namely

\[V_{a^{-t} s} \rightarrow V_s \text{ vs. comp. } V_{b^{-t} s} \rightarrow X_s \]

\[V_{a^{-t} s} \rightarrow V_s \text{ vs. comp. } V_{b^{-t} s} \rightarrow X_s \]

\[\text{deg}(a) \quad \text{deg}(b) \]

\[\text{deg}(b) \quad \text{deg}(a) \]

\[\text{deg}(b) \quad \text{deg}(a) \]

\[\text{deg}(b) \quad \text{deg}(a) \]
You should now go back to a free Γ-module $M = \bigoplus s V$. You need to describe σ-Γ-invariant projections on M.

Start with a Γ-module M, whether left or right is irrelevant via $sm = ms^{-1}$. Assume given a subspace V of M such that $\bigoplus s M \rightarrow M$ is an isomorphism. This means that M is the free Γ-module gen. by the v.s. V.

Yesterday what did you learn? You looked at the tensor category of Γ-modules ($= \Gamma$-graded modules)

\[(V \otimes W)_s = \bigoplus_{t \in \Gamma} V_t \otimes W_{s^{-1}t} \quad \text{for left and right} \quad \text{translations}, \]

yielding notions of homogeneous maps of degree a: \[V_{a^{-1}s} \rightarrow W_s \quad V_{sa^{-1}} \rightarrow W_s \]

Next go back to a free Γ-module $M = \bigoplus s V$, the same via $sm = ms^{-1}$, so there are two obvious ways to grade a free Γ-module. First define the free Γ-module gen by v.s. V to be $C[\Gamma] \otimes V$.

Let M be a free Γ-module, more precisely $M \cong C[\Gamma] \otimes V$, so if subspace V of M such that $M = \bigoplus s V$. Here you use left action, but give $\sigma \in \Gamma$ and $M = \bigoplus V s^{-a}$ for the right. What's the point? The point is that there are two gradings you didn't say this right.
Let M be a Γ module. You can view Γ as operating on the left or on the right via $sm = ms^{-1}$.

Let M be free, i.e. a subspace V s.t. $\bigoplus_{s \in \Gamma} V_s = M$. Equivalently, $\bigoplus_{s \in \Gamma} V_s = M$. Thus, you have two Γ-gradings of M which are related by inverse since $sV = Vs^{-1}$.

You are looking at idempotent operators s on a free Γ-module, which commute with the Γ-action.

Recall. Equivalence between left + right Γ-modules via $sm = ms^{-1}$.

Notion of free Γ-module generated by V: $M = \bigoplus_{s \in \Gamma} V_s$. Up to isomorphism, this gives a Γ-module with subspace V s.t. $\bigoplus_{s \in \Gamma} V_s \cong M$.

This gives a Γ-grading with $M = sV$, making M a Γ-graded vector space.

Have $\Gamma M_s = M_{s^2}$, so M is a left Γ-graded module.

Summary:

Γ-modules = Γ-graded vector spaces

$$V = \bigoplus_{s \in \Gamma} V_s$$

form a cat with Γ-morphisms = linear maps preserving grading.

Tensor product $$(V \otimes W)_s = \bigoplus_{t \in \Gamma} V_t \otimes W_s$$

forms a cat in general when Γ-commutative.

Tensoring with Ca (αF) leads to shift or susp. ops.
Then to two kinds of maps of degree a:

\[V_a \to W, \forall s \text{ or } V_{sa^{-1}} \to W, \forall s. \]

Question: What is the degree of a composition of homog. maps?

Left shift:

\[
\begin{array}{ccc}
V_{b^{-1}a^{-1}s} & \xrightarrow{\beta} & W_{a^{-1}s} \\
\downarrow & & \downarrow \alpha \\
V_{(ab)^{-1}s} & \xrightarrow{} & X_s \\
\end{array}
\]

\[
\text{so } \quad \text{Hom}(W, X)_a \times \text{Hom}(V, W)_b \to \text{Hom}(V, X)_{ab}
\]

\[
\begin{array}{ccc}
\alpha & \times & \beta \\
\end{array}
\]

Right shift

\[
\begin{array}{ccc}
V_{sa^{-1}(ba)^{-1}} & \xrightarrow{\beta} & W_{sa^{-1}} \\
\downarrow & & \downarrow \alpha \\
V_{(ab)^{-1}s} & \xrightarrow{} & X
\end{array}
\]

\[
\text{Hom}(W, X)_a \times \text{Hom}(V, W)_b \to \text{Hom}(V, X)_{ba}
\]

\[
\begin{array}{ccc}
\alpha & \times & \beta \\
\end{array}
\]

Rewrite = Kasparov composition

\[
\text{Hom}(V, W)_b \times \text{Hom}(W, X)_a \to \text{Hom}(V, X)_{ba}
\]

You are interested ultimately in \textbf{left} or \textbf{right} idempotent operators on a free Γ-module. \textbf{Left} or \textbf{right} does for the Γ-action does not make any difference, nor does the order of composition matter.

\[
\text{free } \Gamma\text{-module: } M = C[\Gamma] \otimes V
\]

\[
\text{Hom}(C[\Gamma] \otimes V, C[\Gamma] \otimes V) = \text{Hom}(V, C[\Gamma] \otimes V)
\]

\[
\cong C[\Gamma] \otimes V \otimes V^*
\]
Look at the group ring \(C[\Gamma] \)

First consider a free \(\Gamma \)-module?

Assume you understand \(\Gamma \)-graded, i.e. \(\hat{\Gamma} \)-modules. Now consider a vector space \(V \) equipped with \(\Gamma \)-action.

The idea is to replace the?

Generalization. The shifting \(V_{\alpha} \)'s generalizes to
\[
V = \bigoplus_{\alpha \in \Delta} V_{\alpha}
\]
where \(\Delta \) is a \(\Gamma \)-torsor.

So far you have looked at vector spaces with \(\Gamma \)-grading. Next look at \(\Gamma \)-modules and compatibility.

Start with splitting
\[
V = \bigoplus_{k \in K} V_k
\]
giving \(\Gamma \)-set \(K \), say \(\Gamma \) operates on \(V \) permuting the \(V_k \)'s. \(\Gamma \) acts on the set \(K \). \(K \) is a \(\Gamma \)-set so can be split into orbits, each orbit is described by a representation of stabilizers.

Mackey's imprimitivity theory. Interesting case for you is where \(K \) is a \(\Gamma \)-torsor.

Free module: where \(K = \Gamma \), i.e. \(K \) is a \(\Gamma \)-torsor with basepoint chosen.

Consider a free \(\Gamma \)-module \(M = \bigoplus_{s \in \Gamma} sV \). Then
\(M \) has a \(\Gamma \)-grading with \(M_s = sV \) such that
\(tM_s \subset M_{ts} \), whence \(M \) is a graded \(C[\Gamma] \)-module.
You are interested in operators on the Γ-module $M = C[\Gamma] \otimes V$, which commute with Γ-action:

$$\text{Hom}_\Gamma (C[\Gamma] \otimes V, C[\Gamma] \otimes V) = \text{Hom}_\Gamma (V, C[\Gamma] \otimes V)$$

given $\Theta : V \to C[\Gamma] \otimes V$ one has

$$\Theta (v) = \sum s \otimes \Theta_s v$$

for unique $\Theta_s \in \text{End}(V)$. Assume $\{s | \Theta_s \neq 0\}$ finite.

$$\Theta = \sum s \Theta_s \in C[\Gamma] \otimes \text{End}(V).$$

Important is how Θ extends uniquely to a Γ-module endo $\tilde{\Theta}$ of $C[\Gamma] \otimes V$, namely

$$\tilde{\Theta}(t \otimes v) = t \Theta (v) = \sum ts \Theta_s v$$

so $\sum ts \Theta_s \in C[\Gamma] \otimes \text{End}(V)$ becomes the op

$$t \mapsto t \sum s \Theta_s v$$

You still haven't focussed properly. You persist using left Γ-action. Since left and right Γ-actions are equivalent this should be okay, but the Γ-grading should be changed.

So let M be the free Γ-module gen by V

and right it using standard cross product notation

$$M = \bigoplus M_s$$

where $M_s = \otimes V_s$

Start at the beginning with the Hilbert space situation.
Begin with a Hilbert space H, with group Γ acting by unitary operators on a closed subspace $V \subset H$ such that $\sum_{s \in \Gamma} sV$ dense in H.

Assume h_s is positive operator on H such that $h_sH = V$, let $h_s = s h_s^{-1}$, and assume $\sum_{s \in \Gamma} h_s = 1$ (sum of pos. ops. makes sense).

Let

$$H \xrightarrow{\alpha} \bigoplus_{s \in \Gamma} sV \xrightarrow{\alpha^*} H$$

$$\alpha(\xi) = \bigoplus_{s \in \Gamma} h_s^{1/2} \xi$$

makes sense because $h_s^{1/2} \xi \in s h_s^{-1}H \subset sV$

and $\|\alpha(\xi)\|^2 = \sum_s \|h_s^{1/2} \xi\|^2 = \sum_s (\xi, h_s \xi) = \|\xi\|^2$

So α is an isometry $\implies \alpha^*$ orth proj onto H.

If $\sum_{s \in \Gamma} s \eta_s \in \bigoplus_{s \in \Gamma} sV$, then $(\alpha^* \bigoplus_{s \in \Gamma} s \eta_s, \xi) =$

$$(\bigoplus_{s \in \Gamma} s \eta_s, \bigoplus_{s \in \Gamma} h_s^{1/2} \xi) = \sum_s (s \eta_s, s h_s^{1/2} \xi) = \sum_s (s h_s^{1/2} \eta_s, \xi)$$

$$\therefore \quad \alpha^* \left(\bigoplus_{s \in \Gamma} s \eta_s \right) = \sum_s s h_s^{1/2} \eta_s$$
Again: H Hilbert space, Γ group acting on H by isometries, $h_s > 0$ on H, $h_s = s h_s^{-1}$ for $s \in \Gamma$. Assume $\sum_{s \in \Gamma} h_s = 1$ on H (well-defined since $h_s > 0$).

Put $V = \overline{h_{1/2} H}$, closed subspace of H. $s V = \overline{s h_{1/2} H} = h_{1/2} s H$.

Define

$$H \xrightarrow{\alpha} \bigoplus_{s \in \Gamma} s V$$

$$\alpha(\xi) = \bigoplus_{s \in \Gamma} h_s \xi$$

$$\|\alpha(\xi)\|^2 = \sum_{s \in \Gamma} \|h_s \xi\|^2 = \sum_{s \in \Gamma} (h_s \xi, h_s \xi)$$

α isometry, $\alpha^* =$ projection onto H.

Calc. $2 \sum_{s \in \Gamma} h_s \xi_s = \sum_{s \in \Gamma} h_{1/2} s h_s \xi_s = \sum_{s \in \Gamma} s h_{1/2} \xi_s$.

So you have

$$\begin{array}{c}
\text{id} \\
H \xrightarrow{\alpha} \bigoplus_{s \in \Gamma} s V \xrightarrow{\alpha^*} H
\end{array}$$

Action of Γ on $\bigoplus_{s \in \Gamma} s V$:

$$\alpha(t \xi) = \sum_{s \in \Gamma} h_s t \xi_s$$

$$t \alpha(\xi) = \sum_{s \in \Gamma} h_s \xi_s$$

The notation $\bigoplus_{s \in \Gamma} s \xi_s$ is not so good. You mean the function $$(s \xi_s)_{s \in \Gamma}$$ such that

Start again, but find good notation. H, Γ, h_s as above.

$V = \overline{h_{1/2} H}$, $s V = \overline{h_{1/2} s H} \subset H$. Embedding φ takes s to the function $s_1 \mapsto h_{1/2} \xi_s \in s V$. $\varphi(s) = \varphi(s_1)$. φ takes s_1 to $h_{1/2} \xi_s \in s V$. $\forall s_1 \in s V$. $s \mapsto \varphi(s_1)$. $
\]$
What is \(\bigoplus_{s \in \Gamma} sV \)?

It's the set functions \(\phi \) from \(\Gamma \) to \(V \) such that \(\forall s \in \Gamma, \quad \phi(s) \in sV \), with \(L^2 \) norm. \(\sum_{s \in \Gamma} ||\phi(s)||^2 \)

If you put \(s^* \phi(s) = \eta_s \), then you get \(\{ \eta: \Gamma \to V \} \) with \(L^2 \) norm.

\[
H \xrightarrow{\alpha} L^2(\Gamma; V) \xrightarrow{\alpha^*} H
\]

\[
\xi \mapsto \alpha(\xi)_s = s^{-1} h^{1/2}_s \xi (\xi) \mapsto \sum_s h^{1/2}_s \phi(s)
\]

\[
(\alpha(\xi), \phi) = \sum_s (h^{1/2}_s \xi, \phi(s)) = \sum_s (\xi, s h^{1/2}_s \phi(s))
\]

\(\alpha \) is \(\Gamma \)-equivariant.

How does \(\Gamma \) act on \(L^2(\Gamma; V) \). It has to be \(t \alpha(\phi)(s) = \phi(t^{-1}s) \)

\[
(t \alpha(\xi))(s) = \alpha(\xi)(t^{-1}s) = h^{1/2}_s \xi t^{-1} \xi = \alpha(t^{-1} \xi)(s)
\]

\[
\alpha^*(t \phi) = \sum_s s h^{1/2}_s (t \phi)(s) = \sum_s s h^{1/2}_s \phi(t^{-1}s)
\]

\[
= \sum_s ts h^{1/2}_s \phi(s) = t \alpha^* \phi
\]

Now do \(\alpha^* \) which is an operator on \(L^2(\Gamma; V) \) commuting with \(\Gamma \) action. \((\theta \phi)(s) = \phi(t^{-1}s) \). Example:

Let \(\Theta: \Gamma \to L(V) \). Let \(\Theta_s \in L(V) \) Can you make \(\Theta \) act on \(\phi: \Gamma \to V \) so as to commute with \(\Theta \) \(\Gamma \) action on \(\phi \).
Go over this: \(\Theta: \Gamma \rightarrow V \), \((\Theta \varphi)(s) = \varphi(\Theta s)\)

\(\Theta: \Gamma \rightarrow \mathcal{L}(V) \). Consider \(\Theta(s) \varphi(t) \). Out of these products you want to construct a \((\Theta \times \varphi): \Gamma \rightarrow V\).

\(L_u \varphi \) you have \(\varphi \in L^2(\Gamma, V) \) and \(\Gamma \)-action \((u \varphi)(s) = \varphi(u^{-1} s) \). Let \(T \) be an operator on \(L^2(\Gamma, V) \) commuting with this \(\Gamma \)-action. Example: \((R_v \varphi)(s) = \varphi(sv)\). Then \((L_u R_v \varphi)(s) = (R_v \varphi)(u^{-1} s) = \varphi(u^{-1} sv) \)

\((R_v L_u \varphi)(s) = (L_u \varphi)(sv) = \varphi(u^{-1} sv) \).

Another example is \(\Theta \in \mathcal{L}(V) \) where \((\Theta \varphi)(s) = \Theta \varphi(s) \). \((L_u \Theta \varphi)(s) = (\Theta \varphi)(u^{-1} s) = \Theta \varphi(u^{-1} s) = \Theta L_u \varphi\) but \(\Theta \) also commutes with \(R_v \).

\[(\Theta R_v \varphi)(s) = \Theta (R_v \varphi)(s) = \Theta \varphi(sv) \]
\[(R_v \Theta \varphi)(s) = (\Theta \varphi)(sv) = \Theta \varphi(sv) \).

Put these together.

\[\sum \Theta_v R_v\] finite sum, i.e. \(\Theta_v \neq 0 \) in finite set.

So apparently the

Recall. \(H, \Gamma, h_1 \geq 0 \), \(h_s = sh_1 s^{-1} \), \(\sum h_s = 1 \) on \(H \).

\[V = \frac{1}{h_1^{1/2}} H \]

\[s V = \frac{1}{h_s^{1/2}} H \]

\[H \rightarrow \bigoplus_{s \in \Gamma} s V \]

\[\sum \frac{1}{h_s^{1/2}} V = L^2(\Gamma, V) \]

\((\xi \varphi)(s) = h_1^{1/2} s^{-1} \xi \)

\[||\xi \varphi||^2 = \sum_s \frac{1}{h_s^{1/2}} ||\xi||^2 = ||\xi||^2 \]

\((\xi, s h_1 s^{-1} \xi) = (\xi, h_s \xi) \)
\[\alpha^* \varphi = \sum_s h^{1/2} \varphi(s) \]

\[(L_t \varphi)(s) = (\alpha^* \varphi)(t^{-1} s) = h^{1/2} s^{-1/2} \alpha(t^{-1} s) \]

\[(R_u \varphi)(s) = \varphi(s u) \]

\[(L_t L_u \varphi)(s) = (L_u \varphi)(t^{-1} s) = \varphi(u^{-1} t^{-1} s) \]

\[(R_t (R_u \varphi))(s) = (R_u \varphi)(s t) = \varphi(s t u) = (R_t R_u \varphi)(s) \]

\[[L_t, R_u] = 0 \quad \Theta \in L(V) \quad (\Theta \varphi)(s) = \Theta \varphi(s) \]

\[[L_t, \Theta] = [R_u, \Theta] = 0 \]

So you get operators \(\Theta R_u \) on \(L^2(\Gamma, V) \) commuting with left action:

\[L(V) \otimes \mathbb{C}[\Gamma] \rightarrow L^2(\Gamma, V) \]

\[\Theta \otimes s \rightarrow \Theta R_s \]

This notation is clearly what Joachim uses.

Now where are we? You have this projection \(\alpha^* \) on \(L^2(\Gamma, V) \), and you want to get it in the image of the map above. This should involve the overlap condition:

\[h_s h_t^{1/2} = 0 \quad \text{for} \quad s^{-1} t \notin \mathcal{F} \]

\[H \xrightarrow{\alpha} L^2(\Gamma, V) \xrightarrow{\alpha^*} H \]

\[\xi \rightarrow (\alpha^* \xi)(s) = h^{1/2} s^{-1/2} \]

\[(\alpha^* \varphi)(s) = h^{1/2} s^{-1} \sum_t t h^{1/2} f(t) = \sum_t (h^{1/2} s^{-1} t h^{1/2}) f(t) \]

\[= 0 \quad \text{for} \quad s^{-1} t \notin \mathcal{F} \]

\[(\alpha^* \varphi)(u^{-1} s) = \sum_t h^{1/2} s^{-1} u t h^{1/2} f(t) \]

\[(\alpha^* \varphi)(s) = \sum_t h^{1/2} s^{-1} t h^{1/2} f(t) \]
So far we have reached the formula

$$(\alpha x^*) f(t) = \frac{h_{1/2}^2 s^{-1}}{t} \sum \mathcal{O} h_{1/2} f(t)$$

$$= \sum \left(h_{1/2} s^{-1} h_{1/2} \right) f(t) = \sum \left(h_{1/2} \ast u h_{1/2} \right) f(stu)$$

So something is not clear.

Alternative. Maybe use a different embedding.

$$H \xrightarrow{\alpha} L^2(\mathbb{R}_+ V)$$

$$\xi \xrightarrow{} (\alpha \xi)(s) = h_{1/2} s^{\xi}$$

$$(R_t (\alpha \xi))(s) = (\alpha \xi)(st) = h_{1/2} s^{\xi}$$

$$(\alpha(t \xi))(s) = h_{1/2} s^{\xi}$$

$$R_t \alpha = \alpha t$$

$$(R_t R_{tu} \varphi)(s) = (R_{stu} \varphi)(st) = \varphi(stu) = (R_{stu} \varphi)(s)$$

$$(R_t (\alpha \xi))(s) = (\alpha \xi)(st) = h_{1/2} s^{\xi} = \alpha(t \xi)(s)$$

$$(R_t R_{tu} (\alpha \xi))(s) = R_{stu} (\alpha \xi)(st) = (\alpha \xi)(stu) = R_{stu} \alpha$$

should write $$R_t (\alpha) = \alpha t$$. Then $$(R_t (\alpha \xi))(s) = h_{1/2} s^{\xi}$$

$$(R_t (\alpha(\xi)))(s) = (\alpha(\xi))(st) = h_{1/2} s^{\xi} = \alpha(t \xi)(s)$$

$$(R_{tu} (\alpha_\xi))(s) = R_{tu} (\alpha(t \xi)) = \alpha(st \xi) = R_{stu} (\alpha(\xi))$$

$$(R_u (R_t \varphi))(s) = \varphi(stu) = \varphi(satu) = (R_{stu} \varphi)(s)$$
Analyze the situation. You have a notation H for the situation. On the H side you have Γ acting and $h_1 > 0$ such that $\sum h_5 = 1$ on H. What about the V side? Try for something intrinsic, i.e. like the subspaces \mathbb{R}^V, the translates of V under Γ. Take the free case where the translates are orthogonal.

You think indexing by s^{-1} might help.

$$\ell^2(\Gamma, V) \overset{\beta}{\to} H \quad (f: \Gamma \to V) \mapsto \sum_{s} h_5 f(s)$$

$$\mathbb{R}^V \quad (\beta^* s, f) = \mathbb{R} (\beta^* s, \sum_{s} h_1^{1/2} s^{-1/2} f(s))$$

$$= \sum_{s} (\beta^* s, f(s)) = (\beta^* s, f(s)) + \ldots$$

$$(\beta^* s) = h_1^{1/2} s^{-1/2}$$

$$\therefore \quad (\beta^* s) = h_1^{1/2} s^{-1/2}$$

$$\sum_{s} (\beta^* s) = \sum_{s} h_1^{1/2} s^{-1/2} f(s)$$

$$= s^{-1/2} \sum_{s} s^{1/2} h_1^{1/2} f(s)$$

$$= (s \mapsto \sum_{t} h_1^{1/2} s^{-1/2} h_1^{1/2} f(t))$$

So if you take $\varepsilon = -1$, then you have something in convolution form, namely

$$(pf)(s) = \sum_{t} \left(h_1^{1/2} s t^{-1} h_1^{1/2} \right) f(t)$$
In progress made. Given H, Γ, h_i, etc.

\[\begin{align*}
H & \xrightarrow{\alpha} \bigoplus S \nu \xrightarrow{\beta} H \\
\xi & \longmapsto (s \mapsto h_i^{1/2} s \xi) \\
\sum \left(s \mapsto h_i^{1/2} s \xi \right) & \xrightarrow{f} \sum s^{-1} h_i^{1/2} f(s)
\end{align*} \]

Composite \(\xi \longmapsto \sum s^{-1} h_i^{1/2} f(s) = \xi \).

\[\alpha(t \xi) = (s \mapsto h_i^{1/2} s t \xi) \]

Two actions of Γ on $L^2(\Gamma, \nu)$:

- Left action \((tf)(s) = f(t^{-1} s) \)
- Right action \((tf)(s) = f(st) \)

Use right action $\Sigma = 1$ \((\alpha(t \xi)) \xi) \)

Then \(\alpha(t \xi) = h_i^{1/2} s^{-1} \xi \\
(t(\alpha \xi))(s) = (\alpha \xi)(t^{-1} s) = h_i^{1/2} (t \xi)^{-1} \)

Left action \(t \beta f = \sum s h_i^{1/2} f(s) \)

- Right action \(t \beta f = \sum s h_i^{1/2} f(t^{-1} s) = \beta(tf) \)

\[(\alpha \beta f) = \alpha \left(\sum \frac{1}{t} h_i^{1/2} f(t) \right) = h_i^{1/2} s^{-1} \sum \frac{1}{t} h_i^{1/2} f(t) \]
Confused again.

\[
H \xrightarrow{\beta} L^2(\Gamma, V) \xrightarrow{\alpha} H \\
\alpha \beta \xi = \sum_s s^{\xi} h_1^{1/2} s^{-\xi} \xi = \sum_s s^{\xi} h_1^{1/2} s^{-\xi} \xi = \xi.
\]

\[
\alpha \beta \xi = \sum_s s^{\xi} h_1^{1/2} s^{-\xi} \xi = \sum_s s^{\xi} h_1^{1/2} s^{-\xi} \xi = \xi.
\]

\[
\alpha \beta \xi = (s \mapsto h_1^{1/2} s^{-\xi} \xi) = R_\xi \alpha \xi = R_\xi (s \mapsto h_1^{1/2} s^{-\xi} \xi)
\]

\[
\alpha \beta \xi = \sum_s s^{\xi} h_1^{1/2} \xi (f(st))(s) = \sum_s s^{\xi} h_1^{1/2} f(st) = \sum_s s^{\xi} h_1^{1/2} f(s) = R_\xi f(st)
\]

Conclusion: Let \(\Gamma \) act on \(L^2(\Gamma, V) \) via \((tf)(s) = f(st)\) i.e. \(R_\xi \)

\[
\text{Assembly map.} \quad H, \Gamma, h, h > 0, \quad V = h_1^{1/2} H
\]

\[
L^2(\Gamma, V) \xrightarrow{\beta} H \\
\beta f = \sum_{s \in \Gamma} s^{\xi} h_1^{1/2} f(s)
\]

\[
(\beta f, \xi) = \sum_s \langle f(s), h_1^{1/2} s^{-\xi} \xi \rangle
\]

\[
(\beta^* \xi)(s) = h_1^{1/2} s^{-\xi} \xi
\]

\[
\beta^* \xi = \sum_{s \in \Gamma} s^{\xi} h_1^{1/2} h_1^{1/2} s^{-\xi} \xi = \xi
\]
$t \beta(t) = \sum_s t s^{\epsilon} h_1^{\epsilon} f(s) = \sum_s t s^{\epsilon} h_1^{\epsilon} f(s)$

$= \sum_s t (t^{-\epsilon} h_1^{\epsilon} f(t^{-\epsilon})) = \beta_{t f}(s)$

$\beta_{t f}(s) = \sum_s t^{-\epsilon} s^{\epsilon} h_1^{\epsilon} f(s)$

$\beta_{t f}(s) = \sum_s t^{-\epsilon} s^{\epsilon} h_1^{\epsilon} f(s) = \sum_s \left(\frac{1}{t^{\epsilon}} \right) h_1^{\epsilon} f(ut) = \beta_{R_t f}(s)$

You want to take $\epsilon = -1$ to get convolution form.

$\begin{cases}
\epsilon = +1 & t \beta(t) = \beta_{h_t f} \\
\epsilon = -1 & t \beta(t) = \beta_{R_t f}
\end{cases}$

$\beta_{T^s f}(s) = h_1^{\epsilon} s^{-\epsilon} \sum_t s^{\epsilon} h_1^{\epsilon} f(t)$

$= \sum_t s^{\epsilon} h_1^{\epsilon} s^{-\epsilon} h_1^{\epsilon} f(t)$

$= \sum_t \left(h_1^{\epsilon} s t^{-\epsilon} h_1^{\epsilon} f(t) \right)$

$\begin{align*}
\alpha: H & \to \ell^2(\Gamma, V) \\
\alpha x f &= \sum_s s^{-\epsilon} h_1^{\epsilon} f(s)
\end{align*}$

$\begin{align*}
(\alpha x f)(s) &= h_1^{\epsilon} s^{-\epsilon} f(s) \\
(\alpha x f, \xi) &= \sum_s \left(s^{-\epsilon} h_1^{\epsilon} f(s), \xi \right)
\end{align*}$

$\begin{align*}
\alpha x \xi &= \sum_s s^{-\epsilon} h_1^{\epsilon} s^{-\epsilon} f(s) \xi = \sum_s h_1^{\epsilon} s^{-\epsilon} \xi \\
\alpha x \alpha x f &= \left(\alpha \left(\sum_t s^{-\epsilon} h_1^{\epsilon} f(t) \right) \right) = \sum_t h_1^{\epsilon} s t^{-\epsilon} h_1^{\epsilon} f(t)
\end{align*}$

$\begin{align*}
\alpha x \xi &= \xi \\
(\alpha x f)(s) &= h_1^{\epsilon} s^{-\epsilon} f(s) \\
(\alpha x f)(s) &= \sum_t h_1^{\epsilon} s t^{-\epsilon} h_1^{\epsilon} f(t)
\end{align*}$

If $\epsilon = 1$,

$\text{(tf)(s)} = (R_t f)(s) = f(st)$. Then $t \alpha x f = \sum_s s^{-\epsilon} h_1^{\epsilon} f(s)$

$= \sum_s s^{-\epsilon} h_1^{\epsilon} f(st^\epsilon t) = \sum_u u^{-\epsilon} h_1^{\epsilon} f(u t) = \alpha x R_t f$
\(x(t \xi)(s) = h^{\frac{1}{2}} h_t s t \xi = (\xi)(st) = (R_t \xi)(s) \)

\[x^* = R_{t^*} \]

\[x t^* = R_t x^* = R_t R_{t^*} \xi = R_{t + a} \xi. \]

so it all seems to work. One way to check this is to look at operators on \(C[\Gamma] \otimes \mathbb{V} \) which commute with \(R_t \) operators. This contains linear comb of operators \(\mathcal{L} \).

\((L_t \Theta f)(s) = \Theta f(st) \)

and really is the tensor product alg \(C[\Gamma] \otimes \text{End}(V) \).

What's left?

Go back over things. \(H, \Gamma, h_t > 0, \sum h_s = 1 \) on \(H \)

\(V = \mathbb{H}^2 \mathbb{H}, \quad x: H \to \ell^2(\Gamma, \mathbb{V}) \)

\[x^* = \text{id} \]

\[(\alpha x^* f)(t) = \sum_{s} \left(h^{\frac{1}{2}} s^{-\frac{1}{2}} h_t \right) f(t) \]

\[s^{\frac{1}{2}} \]

two possibilities: \(\varepsilon = 1 \)

\[h_t^2 s^{-\frac{1}{2}} h_t \quad \text{right invariant} \]

\[\varepsilon = -1 \]

\[h_t^{\frac{1}{2}} s^{-1} h_t^{\frac{1}{2}} \quad \text{left} \]

Check. \(\varepsilon = 1 \)

\((x(t \xi))(s) = h^{\frac{1}{2}} h_t s t \xi = (\xi)(st) = (R_t (\xi))(s) \)

\(\varepsilon = -1 \)

\((x(\xi))(s) = h^{\frac{1}{2}} s^{-1} h_t \xi = (\xi)(t^{-1} s) = (L_t (\xi))(s) \)

\(\varepsilon = 1 \)

\[(\alpha x^* f)(s) = \sum_{t} \left(h^{\frac{1}{2}} s t^{-1} h_t^{\frac{1}{2}} \right) f(t) \]

\[(st^{-1})^{-1} = t^{-1} s^{-1} \]

Supports. \(h_s h_t = s h_s t h_t t^{-1} = 0 \)

\[h_s^{-1} h_t = 0 \Rightarrow h^{\frac{1}{2}} s^{-1} h_t^{\frac{1}{2}} = 0 \]
So you learn a little, namely that the projectors are supported in a lift (resp. right) invariant tube depending on your choice of notation. Let's try to reach Cuntz's notation.

\[B = \bigoplus \mathcal{E} \times \Gamma \] is a C*-algebra (nonunital) whose reps on a Hilb. space \(H \) (satisfying \(BH = H \)) should be equivalent to a \(\Gamma \)-action

\[h_i \in \mathcal{F} \text{ s.t. } \sum h_i = 1 \]

and also \(h_i^* h_i = 0 \text{ for } s \in \mathcal{F} \). You get a projection in \(B \).

What is happening? Hill: reps of \(B \) should be the same as data \(H, \Gamma, h_i \) s.t. \(\sum h_i = 1 \), \(h_i^* h_i = 0 \text{ for } s \in \mathcal{F} \).

Question: What is \(pH \)? Look at a projection in a \(\Gamma \)-graded algebra \(B = \bigoplus_{s \in \Gamma} B_s \)

\[p = \sum_s p_s \text{, } p_s \in B_s \]

\[p^2 = \sum_{s,t} p_s p_t = \sum_a \sum_{s,t=a} p_s p_t \]

\[p_H = \sum_{s,t=a} p_s p_t = \sum_s p_s p_s \]

Amazing how what you don't understand looks to be \(B = \bigoplus \mathcal{E} \times \Gamma \). You believe that a \(\Gamma \)-Hilb. rep. of \(B \) is given by the data \(H, \Gamma, h_i \) such that \(h_i^* h_i = 0 \text{ for } s \in \mathcal{F} \) and \(\sum_s h_i^* h_i = 1 \).

Hence you know that \(\sum_s h_i^* h_i \text{ is idempotent. What is } p \text{ in } H \)?

First step. Let's try to eliminate \(V \). This should be easy because \(V \) can be any subspace between \(h_i^* H \) and \(H \).
Let H be a Hilbert space with unitary action of Γ and operator $h^{1/2} > 0$ such that $\sum_{s} s h_{s} s^{-1} = 1$ and $h^{1/2} s h^{1/2} = 0$ for $s \in F$. Let $p = \sum_{s \in F} h^{1/2} s h^{1/2}$.

Then
\[
p^{2} = \sum_{s, t} h^{1/2} s h^{1/2} h^{1/2} t h^{1/2} = \sum_{s, t} h^{1/2} (s h_{s}^{-1}) s h_{s} h^{1/2} t h^{1/2} = \sum_{s, t} h^{1/2} (s h_{s}^{-1}) s h_{s} h^{1/2} t h^{1/2} = \sum_{s} h^{1/2} (s h_{s}^{-1}) s h_{s} h^{1/2} t h^{1/2} = h^{1/2} \sum_{u} u h^{1/2} = p.
\]

p is an element of $E_{\sum_{s} s} \times \Gamma$, hence an operator on H. p should be the orthogonal projection onto $V = \frac{1}{h^{1/2}} H$.

\[
p H = h^{1/2} \sum_{u} u h^{1/2} H = h^{1/2} H = \frac{1}{h^{1/2}} H
\]

\[
p h^{1/2} = \sum_{s} h^{1/2} s h^{1/2}
\]

Given H, Γ, $h^{1/2} > 0$ and $h^{1/2} s h^{1/2} = 0$ for $s \in F$.

\[
\sum_{s \in F} h^{1/2} s h^{1/2} = 1
\]

Put $p_{s} = h^{1/2} s h^{1/2}$. Then
\[
\sum_{s \in F} h^{1/2} s h^{1/2} p_{t} = \sum_{s \in F} h^{1/2} s h_{s} h^{1/2} t h^{1/2} = \sum_{s} h^{1/2} s h_{s} t h^{1/2} = h^{1/2} u h^{1/2} = p_{u}
\]

You get a Γ-graded projection π with values in $h^{1/2} \mathbb{L}(H) h^{1/2}$.
Continue with trying to set up a Morita equivalence E generators h_s relations $h_s h_t = 0$ $s \neq t$ \[h_s = \sum_t h_t h_s = \sum_t h_s h_t \]

Γ action $s h_s s^{-1} = h_s$

Set up Morita equivalence for Hilb. representations.

$E_{\Sigma F} \times \Gamma$

$H, \Gamma, h_\Gamma \geq 0$, $\sum s h_s s^{-1} = 1$

Keep to simple situations. Go back to \mathbb{Z} case, you want to understand what happens when you change from $C_c(\mathbb{R})$ to Cuntz's $E_{\Sigma F}$. Recall $E_{\Sigma F} = C_c(\mathbb{R})$

Now you know that $C_c(\mathbb{R}) \times \mathbb{Z}$ is Morita equivalent to $C(\mathbb{R}/\mathbb{Z})$.

Recall $C_c(\mathbb{R}) \times \mathbb{Z} = C_c(\mathbb{R} \times \mathbb{Z}) = C_c(\mathbb{R} \times \mathbb{R} / \mathbb{Z})$

$\leftarrow C_c(\mathbb{R}) \otimes C_c(\mathbb{R}/\mathbb{Z})$. You want a noncommutative generalization. Other points:

$C(\mathbb{R}/\mathbb{Z})$ is unital, so that $C_c(\mathbb{R})$ is a finite proj. right (resp. left) module over the cross product $C_c(\mathbb{R}) \times \mathbb{Z}$.

It should be the image of a projection. You get a projection by choosing $k \in C_c(\mathbb{R})$ s.t. $\pi_k(k) = 1 \in C(\mathbb{R}/\mathbb{Z})$ then you have $P \otimes_A Q \Rightarrow P \uparrow$

A is a summand of $P \overset{Q}{\otimes} A$

so $Q \overset{P \otimes A}{\longrightarrow} P \otimes_A Q$

You see a problem looming in the noncomm. setting: the analog of A is not unital.
Something you've forgotten is when \(\mathbb{I} \) is a flat \(A \)-module. Let \(A \) be a left ideal in \(R \) itself. When is \(R/A \) a flat \(R \)-module? Special case:

When \(R/A \) is proj. \(R \)-module:

\[
0 \rightarrow A \rightarrow R \rightarrow R/A \rightarrow 0
\]

\(\exists x \in R \) such that \(Ax = 0 \), \(x \in A \)

so \((x-1)x = 0 \) \(\forall \) \(x \neq x^2 \). Put \(e = 1-x \).

Better:

\(\exists e \in A \) such that \(ee = e \quad \forall e \in A \). \(A = Re \Rightarrow Ae = A \)

Summary so far: A left ideal of \(R \) is \(R \)-injective, then \(R/A \) is \(R \)-projective \(\iff A = Re \) \(\exists e \) such that \(ee = e \).

All:

\(\exists e \in \mathbb{I} \) \(\Rightarrow A(1-e) = 0 \).

When is \(R/A \) \(R \)-flat?

when \(\forall q_1 \ldots q_n \exists a \in I \) \(\forall i q_i(1-a) = 0 \)

\(\forall q_1 \exists a \in I \) \(q_1(1-a) = 0 \)

Ind:\n
\(a_i(1-a') = 0 \quad i = 1, \ldots, n-1 \)

Choose \(a'' \) \(a_n(1-a')(1-a'') = 0 \)

then \(a_i(1-a) = 0 \)

\(a = a' + a'' - a' a'' \).

So what's next.
matrix criterion for flatness.

\[R \rightarrow R^n \rightarrow R^m \]

\[R \xrightarrow{a} R \xrightarrow{(x_j)} R^m \]

\[\alpha \in A \implies \exists (x_j) \quad a(x_j) = 0 \]

\[1 \equiv \sum x_j \bar{x}_j \mod A \]

\[\forall a \in A \quad \exists \ x_j \in R, \ ax_j = 0 \]

\[\exists y_j \in R, \ 1 - \sum x_j y_j \in A \]

\[\exists a', \ 1 - a' = \sum x_j y_j \]

\[\implies a(1 - a') = \sum ax_j y_j = 0 \]

So the condition: \(\forall a \exists a' \quad a(1 - a') = 0 \)

Local right identities is equivalent to \(R/A \)

left flat whenever \(A \) embedded in \(R \) as left ideal.

\[0 \rightarrow A \rightarrow R \xrightarrow{R/A} \rightarrow 0 \]

\[0 \rightarrow M \otimes_A A \rightarrow M \rightarrow M/MA \rightarrow 0 \]

\[M \text{ finite} \iff M = MA. \]
to construct a Module equivalence. \(E_F \times \Gamma \)

\[C = E_F \text{ gen. } h_s^{1/2}, \text{ s } \in \Gamma \Rightarrow h_s^{1/2}h_t^{1/2} = 0 \text{ for } s \neq t \]

and \(h_s = \sum_t h_t h_s = \sum_t h_s h_t \), which implies \(E_F \)

has local left + right identities. This implies that a module \(M \) over \(E_F \) is flat \(\Leftrightarrow E_M \) \(M = M \).

i.e. \(\sum h_s M = M \). From \(M = C \otimes \hat{C} \) you should get an action of \(\Gamma \) on \(M \)? Why?

Time to do this carefully. Suppose \(A \) nonunital with \(\Gamma \) action, \(B = A \times \Gamma = A \otimes C[\Gamma] \). Extension:

\[
\frac{B}{A \times \Gamma} \rightarrow \frac{A \times \Gamma}{C[\Gamma]}
\]

semi direct product type extension. flat \(B \)-modules \(= \) \(B \)-flat \(R \)-modules. \(\hat{B} \) has local identities, \(\Rightarrow f,R/B \) is \(R \) flat. OK

\(\Gamma \) module \(M \) is flat \(\Leftrightarrow BM = M \).

Wait: You know \(C = E_F \) has local identities, what about \(B = C \times \Gamma \) ? \(\Rightarrow \sum_s E_s \) finite, so \(\exists q \in (\mathbb{Z})^C \Rightarrow 0. \) Close

so \(a_{\Gamma} \otimes (1-c)E_s = 0 \). Close

so a \(B = C \times \Gamma \) module \(M \) is flat iff \(\sum_s h_s = 1 \) on \(M \)

To see calculation, start with a flat \(B \)-module \(H \), so you have \(H, \Gamma, h_1^{1/2} \), \(\sum h_s h_t = 0 \text{ s } \in F \\text{ and } \sum h_s h_t = 1 \text{ on } M \).

\[
\begin{array}{ccc}
H & \xrightarrow{\nabla} & C[\Gamma] \otimes H \\
\{f : \Gamma \rightarrow H\} & \xrightarrow{\beta(f)} & H \\
\text{fun. support} & & \text{fun. support}
\end{array}
\]

\[
(\beta(f))(s) = h_1^{1/2} f(s)\]

\[
\beta x = 1 \text{ on } H
\]
\[t \beta(t) = \sum_s s \beta(t) f(s) = \sum_s s h_{1/2} f(s) = \sum_s s h_{1/2} (\beta t f)(s) = \beta t f(s) \]

\[(\alpha \beta f)(s) = h_{1/2}^{-1} \sum_t t h_{1/2} f(t) = \sum_t (h_{1/2}^{-1} h_{1/2}) f(t) \]

for \(s \cdot t \notin F \)

What can you say? \(\alpha \beta \) is a projection on \(C[F] \otimes H \)
in fact on \(C[F] \otimes h_{1/2} H \).

Alternative notation:
\[\beta(t) = \sum s^{-1} h_{1/2} f(s) \]
\[t \beta(t) = \sum \frac{1}{s} h_{1/2} f(st) = \sum t s h_{1/2} f(st) = (\beta R_t f)(s) \]

\[(\alpha \beta f)(s) = h_{1/2}^{-1} \sum_t t h_{1/2} f(t) = \sum_t (h_{1/2}^{-1} h_{1/2}) f(t) \]

for \(st^{-1} \notin F \)

\[f(s) = g(s^{-1}) \]

\[(\alpha \beta f)(s) = \sum_t h_{1/2} (s^{-1} h_{1/2} f(t) = \sum_t h_{1/2} (st^{-1}) h_{1/2} f(t) \]

\[(\alpha f)(s) = \sum_s s h_{1/2} f(s) = \sum_s h_{1/2} s^{-1} h_{1/2} f(s) \]

\[h_{1/2} s^{-1} h_{1/2} \quad h_{1/2} (s t^{-1}) h_{1/2} \]

\[h_{1/2} s t^{-1} h_{1/2} \quad h_{1/2} (s^{-1} t) h_{1/2} \]

Still confused. Try to focus upon the problem. The idea is that a firm \(\beta = C \times F \)-module \(H \) seems to amount to a type of module, namely, a vector space \(V \) equipped with operators.
\[
p_s = h_{1/2} s h_{1/2} \quad \sum_s p_s p_s^{-1} t = \sum_s h_{1/2} s h_{1/2} t h_{1/2} = h_{1/2} t h_{1/2} = pt.
\]

So there's a certain ring \(R \) given by element \(p_s, s \in \Gamma \) subject to \(p_s = 0 \) \(s \notin F \) and \(\sum_s p_s p_s^{-1} = pt \), \(\forall t \). This ring \(R \) is clearly idempotent as each generator is quadratic expression of the others. So what next??

\[C = \mathbb{E}_F \text{ generators } h_s, s \in \Gamma, \text{ etc.}\]

\(C \) has local left and right ideals, so a \(C \)-module \(H \) from \(\text{iff } CH = H \). Let \(B = C \times \Gamma \), extn.

\[
C \times \Gamma \rightarrow \tilde{C} \times \Gamma \rightarrow \tilde{C} \tilde{\Gamma}
\]

but \(C \times \Gamma \) should have local units also. So form \(H \), \(B \)-module, should amount to a \(\Gamma \)-module \(H \) with \(h_{1/2} \times h_{1/2} = h_{1/2} h_{1/2} = 0 \) \(s \notin F \), \(\sum s h_s s^{-1} = 1 \).

Write this carefully sometime

Anyway you can form

\[
H \xrightarrow{\alpha} C[C \times \Gamma] \times H \xrightarrow{\beta} H
\]

\[
\alpha \left(\tau \right)(s) = h_{1/2} s^{-1} t \frac{3}{2}
\]

\[
\beta \alpha = \text{id}_H
\]

\[
\left(\alpha \beta \right) \left(t \right)(s) = \sum_s h_{1/2} s^{-1} t h_{1/2} f(s)
\]

So you end with the function \(p_s = h_{1/2} s h_{1/2} \)

\[
\sum_s p_s p_s^{-1} t = \sum_s h_{1/2} s h_{1/2} s^{-1} t h_{1/2} = pt
\]

and \(p_s = 0 \) for \(s \notin F \).

Let \(A = \text{F} \) be the alg with a \(\text{homom. } A \rightarrow B \)

Any \(B \)-mod restricts to an \(A \)-mod \(M \) which we replace by \(A \rightarrow A \tilde{M} = h_{1/2} M \)?
You want to go backwards. Let V be an A-module, i.e., equipped with operators $p_s \in \text{End} A$. Then an $\text{End} A$-action, you should have an idempotent operator commuting with Γ-action.

$$C[\Gamma] \otimes V = \{ f : \Gamma \to V \text{ fin. supp} \}$$

Suppose you have $k : \Gamma \to \text{End}(V)$ fin. supp.

$$(k_2 f)(s) = \sum_t k(s^{-1} t) f(t)$$

$$(k_1 k_2 f)(s) = \sum_t k(s^{-1} t) f(u^{-1} t) = \sum_t k(s^{-1} u t) f(t)$$

$$(k_2 k_1 f)(s) = \sum_t k(u^{-1} s^{-1} t) f(t)$$

$$C[\Gamma] \otimes \text{End}(V) \to \text{End}(C[\Gamma] \otimes V)$$

Composition $(k_1, k_2 f)(s) = \sum_t k_1(s^{-1} t)(k_2 f)(t)$

$$= \sum_t k_1(s^{-1} t) \sum_u k_2(u^{-1} t) f(u)$$

So $f \mapsto k_2 f$ is idempotent if $k_1 k_2 = k_2$.

$$\sum k_1(x) k_2(y) = (k_1 \ast k_2)(s^{-1} u)$$

So now given V with $p_s \in \text{End}(V)$, set Γ satis support + idemp. ends, then $$(p \ast f)(s) = \sum_t p(s^{-1} t) f(t)$$
Suppose \(H \) is a \(B = C \times \Gamma \), \(C = \mathbb{E}_\mathcal{F} \) modulo some \(\mathcal{F} \) module \(\mathcal{F} \). Which is then \(\mathcal{F} \)?

Then we get \(H \xrightarrow{\alpha} C[\Gamma] \otimes H \xrightarrow{\beta} H \) where \(\beta f = \sum s h_s f(s) \) and \(\{ f: \Gamma \to H \text{ finite supp.} \} \). \(\alpha f(s) = \sum \frac{h_s}{s} s^{-1} t h_t f(s) \) for \(t \leq s \).

So you go from \(H \) with operators \(s, h_s \), i.e. \(H \) as \(B \) module to \(H \) with operators \(p_s = h_s^{1/2} h_s^{1/2} \) satisfying \(\sum_s p_s p_s^{-t} = \sum_s h_s^{1/2} h_t s^{-1} t h_t^{1/2} = p_t \) for \(t \leq s \).

If \(p_s = 0 \) if \(s \notin \mathcal{F} \). If \(A = P_F \) is the universal ring, then get \(H \) as \(A \)-module.

i.e. have homomorphism \(A \to B \) with \(p_s \to h_s^{1/2} h_s^{1/2} \).

Next you go in opposite direction.)

Start with an \(A \)-module \(V \) and use \(p_s \) as above to use the \(p_s \) to define a projection on \(C[\Gamma] \otimes A \).

Find \(p^2 = p \) and \(\frac{1}{2} p \).

Recover the algebraic viewpoint, where you avoid \(h_s^{1/2} \). \(\sum \frac{h_s}{s} \) for \(s \notin \mathcal{F} \).

Write in terms of \(h_s, h_t \), set \(h_t h_s = 0 \) for \(s \notin \mathcal{F} \).

\(h_s h_s = 0 \) if \(s \notin \mathcal{F} \). \(h_t h_s = 0 \) for \(t \notin \mathcal{F} \). \(h_s = \sum_{t \in \mathcal{F}} h_t h_s \).

\(k = \sum_{t \in \mathcal{F}} h_t \) for \(t \notin \mathcal{F} \).

\((\alpha \beta f)(s) = k s^{-1} \).

\((\alpha \beta f)(s) = \sum \frac{h_s}{s} s^{-1} t h_t f(s) \) for \(t \leq s \).

\((\alpha \beta f)(s) = k s^{-1} f(s) \) for \(s \notin \mathcal{F} \).

\((\alpha \beta f)(s) = k s^{-1} f(s) \).
\[\beta \xi = \sum_{s} \frac{h_{s}}{s^{1}} s^{-1} \xi = \sum_{s} h_{s} = \xi \]

\[
(ax^{f})(s) = \sum_{t} k s^{-1} h_{s} f(t) \\
p_{s} = k s^{-1} h_{s}
\]

so for all \(s \) in \(F \), you have \(p_{s} k = p_{s} \), \(p_{s} = k h_{s} \)

\[p_{1} = \sum_{s} p_{s} p_{s-1} = \sum_{s} k s h_{s} k s^{-1} h_{s} = \sum_{s} k s h_{s} s^{-1} h_{s} = k h_{1} \]

se F

\[
\beta f = \sum_{s} k s h_{s} f(s) \\
(x_{f})(s) = h_{s} s^{-1} \xi
\]

\[
(ax^{f})(s) = \sum_{t} h_{1} s^{-1} t k f(t) \\
p_{s} = h_{s} k
\]

\[\sum_{s} p_{s} p_{s-1} = \sum_{s} h_{s} k h_{s} s^{-1} t k
\]

Check things carefully. Recall \(\beta f = \sum_{t} k s h_{s} f(t) \)

\[p_{s} > 0 \rightarrow s \in F \Rightarrow s \in F \]

\[\sum_{s} k s h_{s} t^{-1} \]

Suppose \(p_{s} = h_{s} k \)

\[k = \sum_{t \in F} \beta h_{s} t^{-1} \]

\[p_{s} = h_{s} \sum_{t \in F} \beta h_{s} t^{-1} = \sum_{t \in F} h_{s} \beta h_{s} t^{-1} \]

\[k = \sum_{s \in F} h_{s} \\
k h_{1} = \sum_{s \in F} h_{s} h_{1} t^{-1} \\
\]

\[h_{s} h_{1} \neq 0 \Rightarrow s^{-1} t \in F \]

\[k h_{1} = \sum_{s \in F} s h_{s} s^{-1} h_{1} \]
Let \(K \neq F \) consider \((\sum_{s \in K} s h_i)^2\)

\[
= \sum_{s \in K} s h_i t h_i = \sum_{s \in K} s h_i s^{-1} s t h_i = \sum_{s \in K} \sum_{t \in K} s h_i s^{-1} t h_i
\]

\[
= \sum_{t \in K} (\sum_{s \in K} s h_i) t h_i = \sum_{t \in K} k t h_i
\]

Start again. \(h_s^t h_t = 0 \) \(s^{-1} t \not\in K \) \(K = K^{-1} \) cont. 0.

\[
\sum_{s \in K} s h_i \sum_{t \in K} t h_i = \sum_{s \in K} \sum_{t \in K} s h_i t h_i = \sum_{s \in K} \sum_{t \in K} s h_i t h_i
\]

\[
= \sum_{s \in K} \sum_{t \in K} s h_i s^{-1} s t h_i = \sum_{s \in K} \sum_{s \in K} s h_i s^{-1} u h_i, \quad u \in F, i \neq 0 \Rightarrow s^{-1} u \in K
\]

\[
= \sum_{s \in K} s h_i s^{-1} u h_i, \quad (s, u) \in K \times KK
\]

\[
- \sum_{u \in KK} (\sum_{s \in K} s h_i) u h_i
\]

\[
= \sum_{u \in KK} k u h_i
\]

\(h_s^t h_t = 0 \) \(s^{-1} t \not\in F \) \(\not\Rightarrow t \in F \)

\[
\sum_{s \in F} s h_i \sum_{t \in F} t h_i = \sum_{(s, t) \in F \times F} s h_i s^{-1} s t h_i
\]
\[
\sum_{s \in F} \sum_{t \in F} \frac{yh_1}{sh_1} = \sum_{s \in F} \sum_{t \in F} \frac{sh_1}{th_1} = \sum_{s \in F} \sum_{t \in F} \frac{1}{t} \Rightarrow t \in F
\]

\[
= \sum_{s \in F} \sum_{u \in F} h_5 \cdot u h_1 = \sum_{u \in F} \sum_{s \in F} h_5 \cdot u h_1 = \sum_{u \in F} k \cdot u h_1
\]

\[
B \subseteq \Gamma, \quad h_5 = sh_1 s^{-1}, \quad h_5 h_t = 0 \quad s \neq t \notin F
\]

\[
h_1 = \sum_{s \in F} h_5 \cdot h_1 = \sum_{s \in F} h_5 h_1
\]

\[
k = \sum_{s \in F} h_5
\]

\[
k h_1 = 0
\]

\[
h_5 = \sum_{s \in F} h_5
\]

\[
k h_1 = 0
\]

\[
p_s = h_1 s k
\]

\[
\alpha f) = \sum_{s \in F} s k h_1 s^{-1} \Rightarrow \sum_{s \in F} h_5 = \Xi.
\]

\[
(\alpha f) = \sum_{s \in F} h_5
\]

\[
\beta_0 = \sum_{s \in F} h_5 k = \Xi
\]

\[
(\alpha f) = \sum_{s \in F} s k = f(t)
\]

\[
p_s = h_1 s k
\]

\[
\sum_{s \in F} p_s = \sum_{s \in F} h_1 s k h_1 s \cdot t h_1
\]

\[
\sum_{s \in F} p_s = h_1 t k = p_t
\]

\[
\Rightarrow s \neq t \in F
\]

You are confused. Go over things again. \(C = \sum_{s \in F} \frac{h_5}{s} \neq \frac{h_5}{s} \in \Gamma \) relations \(h_5 h_t = 0 \) for \(s \neq t \notin F \).

\[
\text{Equation: } \sum_{s \in F} h_5 t^{-1} = h_5 s \quad (h_5 = \sum_{s \in F} h_5 t^{-1})
\]

\[\beta = C \times \Gamma, \quad C \] has local identities \((1 - \sum_{t \in F} h_t) h_5 = 0 \)

\[\text{same should be true for } \beta \]

\[C = \sum_{s \in F} h_5 C \quad \beta = C \times \text{circ} = \sum_{s \in F} h_5 B
\]

Question: What's the meaning of \(\sum_{s \in F} h_5 s k = \sum_{s \in F} p_s ? \)
This is a projection \[\sum_{s, t} h_{s, t, \epsilon} k = \sum_{s, t} h_{s, t, \epsilon} k \]
\[= \sum_{s, t \neq u} h_{s, t, \epsilon} k = \sum_{s, u} h_{s, u} k = \sum_{u} h_{u} k \]

\[p = \sum_{s} h_{s} k \quad kp = p \]

\[p = \sum_{s} h_{s} k \]
\[\sum_{t \in F} s \in F \]
\[= \sum_{t \in F} \sum_{u \in F} h_{u} k \]
\[= \sum_{t \in F} \left(\sum_{s \in F} h_{s} s \right) \]
\[= \sum_{t \in F} \left(\sum_{s \in F} h_{s} s \right) \]

\[\sum_{t \in F} h_{t, \epsilon} = \sum_{t \in F} h_{s, t, \epsilon} = \sum_{t \in F} h_{s} = \sum_{t \in F} h_{t} \]

\[\text{So over the above. Recall } h_{s, t, \epsilon} = 0 \quad s \notin F \]
\[h_{s} h_{t, \epsilon} = 0 \implies s \notin F \]
\[h_{s} h_{t, \epsilon} \neq 0 \implies s \notin t \in F \]

\[h_{s} = \sum_{t \in F} h_{t, s} \]
\[h_{s} = \sum_{t \in F} h_{t, s} \]
\[f = \sum_{t \in F} h_{t} \]

\[H \xrightarrow{\alpha} C[G] \otimes H \xrightarrow{\beta} H \]
\[(f : \Gamma \rightarrow H) \xrightarrow{\text{fun. supp}} \beta f = \sum_{s} s h_{s, t} \]

\[\xi \mapsto (\xi')_{s} = h_{s, t, \epsilon} \]

\[\text{(\beta f)(s)} = \sum_{t} (h_{s, t, \epsilon} f(t) \]

\[\beta \xi = \sum_{s} s h_{s, t} \]

\[(\alpha f)(s) = \sum_{t} (h_{s, t, \epsilon} f(t) \]

\[\sum_{s} p_{s} p_{s, t} = \sum_{s} h_{s} h_{s, t, \epsilon} = h_{t, k} = p_{t} \]

\[p_{s} p_{s, t} \neq 0 \implies s \in F \text{ and } s', t \in F \]
You would like to show \(h_k = h_1 \)?

\[p = \sum_{s \in F} h_{sk} \quad p_{h_1} \]

\[h_k = \sum_{t \in F} h_t h_t = \sum_{s \in F} h_s h_s \]

\[\sum_{s \in F} h_s h_s = h_1 \]

\[\sum_{s \in F} h_{sk} = h_{sk} \]

\[= \sum_{s \in F} h_s \sum_{t \in F} h_t = \sum_{s \in F} \sum_{t \in F} h_s h_t = \sum_{s \in F} \sum_{t \in F} h_s h_t = \left(\sum_{u \in F} h_u \right)^2 \]

\[= \sum_{s \in F} \sum_{u \in F} h_s h_t = \left(\sum_{s \in F} h_s \right)^2 \]

\[= \sum_{s \in F} h_s \sum_{t \in F} h_t = \sum_{s \in F} h_s h_t = p \]

\[k p = \sum_{s \in F} k h_{sk} = \sum_{s \in F} h_{sk} = p \]

\[p_{h_1} = h_{sk} h_1 = h_{sh_1} \]

\[p = \sum_{s \in F} h_s h_t \]

Prove that \(k h_1 = h_1 \) implies \(h_{sk} h_1 = h_{sh_1} \)

Assumptions: \(h_s h_t = 0 \) for \(s \neq t \) if \(F \) and all \(h_s h_1 = 0 \) for \(s \neq F \).

\[\sum_{s \in F} h_{sk} = p \]

\[\sum_{s \in F} h_s h_t = \sum_{s \in F} h_s h_t k = \sum_{s \in F} h_s h_t k = \]
\[p^2 = \sum_{s, t} h_s t \sum_{u, e} h_u \quad \text{if } h_s t h_u \neq 0 \Rightarrow s e F, u e F, s t u e F \]

To use \(\sum_{s, t} h_s t h_{s t} \):

\[p^2 = \sum_{t e F} h_t k = p \]

\[p = \sum_{t} h_t \sum_{u e F} h_u \]

\[p = \sum_{s} h_s k = \sum_{s} h_s \sum_{t e F} h_t t^{-1} = \sum_{s e F} h_s \sum_{t e F} h_t t^{-1} \]

\[p = \sum_{s e F} h_s k = \sum_{s e F} \sum_{t e F} h_s h_t = \sum_{s e F} \sum_{t e F} h_s h_{s t} t^{-1} \]

\[= \sum_{t e F} \sum_{s e F} h_{s t} h_t t^{-1} = \sum_{t e F} \sum_{s e F} h_s h_t t^{-1} = \left(\sum_{s e F} h_s \right)^2 \]

\[p \sum_{t e F} h_t = \sum_{s e F} \sum_{t e F} h_s k h_t = \left(\sum_{s e F} h_s \right)^2 = p. \]

So you have an op \(\mathbf{g} = \sum_{s e F} h_s \) such that \(p = g^2 \)

\[3 \mathbf{g} = \mathbf{g}^2 \]

Roots of \(\lambda^3 - 1 = 0 \) are \(\lambda = 0, 1, -1 \)

If you use \(\mathbf{p} \) the projections to split the space into \(p = 0 \) and \(p = 1 \). Then you expect the choice of \(\mathbf{F} \) may be relevant.

Can you prove \(h_t k = h_t \)?

\[p g = p \]
\[p = \sum_{s} h_{sk} = \sum_{s} \sum_{t \in F} h_{sht} t^{-1} \]
\[= \sum_{t \in F} \sum_{s} h_{sht} t^{-1} = \sum_{t \in F} \sum_{s} h_{sht} = \left(\sum_{s} h_{s} \right)^2 \]
\[p = g^2 \]
\[p^2 = q^2 \to q^3 = p^2 = g^2 \]
Characteristic poly is \(\lambda^3 - \lambda^2 = \lambda^2 (\lambda - 1) \) which means a splitting of the module into \(q = 1 \) eigenspace and \(a = 0 \) eigenspace.

\[p = \sum_{s} k_{sh_{l}} = \sum_{s} \sum_{t \in F} h_{sht} = \sum_{t \in F} \sum_{s} h_{sht} = \left(\sum_{s} h_{sht} \right)^2 \]
\[= \sum_{t \in F} \sum_{s} h_{sht} \]
\[p = \sum_{s} k_{sh_{l}} \sum_{t \in F} h_{sht} = \sum_{s} \sum_{t \in F} k_{sh_{l}} h_{sht} \]

\[\sum_{s} \sum_{t \in F} k_{sh_{l}} h_{sht} = \sum_{t \in F} \sum_{s} k_{sh_{l}} h_{sht} = \sum_{t \in F} \sum_{s} k_{sh_{l}} h_{sht} \]
\[= \sum_{t \in F} \sum_{s} k_{sh_{l}} h_{sht} \]
\[p = \sum_{s \in \Gamma} k \sum_{t \in F} \left(h_{st} h_{t^{-1}} \right)^2 t h_{t^{-1}} = \sum_{t \in F} \sum_{s \in \Gamma} t h_{s} t^{-1} h_{t} = \sum_{t \in F} \sum_{s \in \Gamma} t h_{s} t^{-1} h_{t} = \left(\sum_{t \in F} t h_{t} \right)^2 = q^2 \]

\[p q^2 = \sum_{s \in \Gamma} k s h_{s} \sum_{t \in F} t h_{t} = \sum_{s \in \Gamma} \sum_{t \in F} k s h_{s} t h_{t} \]

\[\sum_{t \in F} \frac{h_{st} h_{t^{-1}} h_{u}}{s^{-1} u} = \sum_{s \in \Gamma} \sum_{t \in F} k h_{s} s h_{t} \]

\[= \sum_{u \in \Gamma} \sum_{s \in \Gamma} k h_{s} u h_{t} = \sum_{u \in \Gamma} k u h_{t} = p \]

\[p q^3 = q^2 = p \]

Let's go on to

\[H \xrightarrow{\alpha} \Omega \bigotimes H \xrightarrow{\beta} H \]

\[(s \mapsto f(s)) \]

\[(\alpha \beta f)(s) = h_{s} s^{-1} f(s) \]

\[(\alpha \beta f)(s) = h_{s} s^{-1} \sum_{t} k t f(s) = \sum_{t} \left(h_{s} s^{-1} k t f(s) \right) \]

\[p_{s} = h_{s} k \sum_{t} p_{t} p_{t} = \sum_{t} h_{s} k h_{s} s^{-1} k t = \sum_{s} h_{s} t k \]

\[p_{s} = h_{s} s \sum_{t \in F} h_{t} = \sum_{t \in F} h_{s} s t h_{t} \]

\[(x \xi)(s) = h_{s} s^{-1} \xi \]

\[\alpha t \xi = h_{t} \alpha \xi \]
Let's see if something can be done about Monte Carlo equivalence.

\[H, \Gamma, h^{1/2}, \quad \sum h_n = 1 \text{ on } H. \]
\[h_s h_t = \delta_{st} h_1 \]

\[h_s h_t = \delta_{st} h_1 \]

\[H \xrightarrow{C(\Gamma \otimes \Gamma)} H \xrightarrow{\beta} H \]

\[(\times \beta f)(s) = \sum \left(h_s^{-1} s^{-1} t h_t^{-1} \right) f(t) \]

From this data you get

\[\sum s h_s^{-1} f(s) = \sum s h_s^{-1} f(s) \]

\[\sum s h_s^{-1} f(s) = \sum s h_s^{-1} f(s) \]

\[\sum s h_s^{-1} f(s) = \sum s h_s^{-1} f(s) \]

So you find that \(H \) is your module over \(B = \mathbb{E} \sum_F \times \Gamma \). can be reconstructed from itself and the family \(\{ p_s \} \).

This seems too abstract.

So go back to \(\mathbb{Z} \) where you have a geometric picture and look at the for something noncommutative version of the \(\mathbb{Z} \)-tree.

Let's start again with \(\Gamma = \mathbb{Z} \) and \(F = \{ -1, 0, 1 \} \). The aim is to construct a "noncommutative" Monte Carlo.

Let us begin with Hilbert space representations. You have a Hilbert space \(H \) with a unitary operator \(u \) and a positive operator \(h_0 \) such that satisfying a "orthogonality condition": \(h_0 u_n h_0 = 0 \) for \(|n| > 1 \), and a generator condition:

\[\sum_{n \in \mathbb{Z}} u_{n} h_0 u_{n} H \text{ is dense in } H. \]

No you want \(\forall x \in H \) that \(\sum h_n x = \xi. \)

Partition of unity condition.
Recap. If \(H \) is a unitary \(\delta \)-in \(H \), \(h_n = u^n h_0 u^{-n} \geq 0 \)

an equivariant partition of 1: \(\sum h_n \Theta = 1 \) in the sense of positive hem. operators, orthogonality:

\[h_\frac{1}{2} u h_\frac{1}{2} = 0 \quad \text{for} \quad |n| > 2. \]

First idea is GNS. You should be able to reconstruct this data from a positive definite function on \(\mathbb{Z} \) with values in operators on the image \(h_\frac{1}{2} H \).

Let's see what you should know the formulas well. Basic map:

\[
\begin{align*}
H & \rightarrow L^2(\mathbb{Z}, V) \rightarrow H \\
\{f: \mathbb{Z} \rightarrow V\} & \rightarrow \sum_{n \in \mathbb{Z}} u^n h_0 \overline{f(n)} \\
(x f)(n) & = h_\frac{1}{2} u^{-n} x f(n) \quad \text{Then} \quad \beta = \alpha^*, \quad \beta \alpha = \text{id}_H \\
\alpha f & = \sum_{n \in \mathbb{Z}} u^n h_\frac{1}{2} f(n-k) = \sum_{n} u^{k+n} h_0 \frac{1}{2} f(n) = u^k (\beta f).
\end{align*}
\]

Then \(\alpha \beta \) is a projector on \(L^2(\mathbb{Z}, V) \) commuting with translation. Think of \(L^2(\mathbb{Z}, V) \) as \(L^2 \) functions on the circle \(S^1 = \mathbb{Z} \).

What is \(\alpha \beta \)? \((\alpha \beta f)(n) = \sum_{l \in \mathbb{Z}} h_\frac{1}{2} u^{-n} + h_\frac{1}{2} f(l) \)

and the functional calculus map only \(|k| \leq 1 \). So the \(\alpha \beta \) on \(L^2(\mathbb{Z}, V) \) is the convolution operator with kernel, corresponding to multiplication by the function

\[
\sum_{n \in \mathbb{Z}} (h_\frac{1}{2} u^{-n} + h_\frac{1}{2} u^n) f(n) \quad \text{the transform} \quad \sum e^{2\pi i n l} f(l)
\]
\((p+)(n) = \sum_{\ell \in \mathbb{Z}} p(n-\ell) f(\ell)\)

\(p(n) = h_{0,2}^{-n} h_{0,2}^{-\frac{1}{2}}\)

\[\sum (pf)(n) z^n = \sum_{n, \ell \in \mathbb{Z}} p(n-\ell) z^{n-\ell} f(\ell) z^\ell = \hat{p}(z) \hat{f}(z)\]

You want to understand exactly what arises. Keep close to condition \(F = \mathbb{S} \leq \mathbb{S} \). This should help the algebraic version. Yes, the algebraic version uses \(C[\mathbb{R}] \otimes V \), or \(C[\mathbb{R}] \otimes H \), instead of \(L^2 \).

Somewhere you have to pin down \(V \). Since

\[H \xrightarrow{\alpha} \mathbb{U} C[\mathbb{R}] \otimes V \xrightarrow{\beta} H\]

\[f \mapsto (\alpha \beta)(n) = h_{0,2}^{n/2} u^{-n/2}\]

\[f \mapsto \beta f = \sum_n u^n h_{0,2} f(n)\]

For \(\alpha \) to be defined you need \(h_{0,2}^{1/2} u^{-n/2} \) to be zero for almost all \(n \). For \(\beta \) to be onto you need \(H = \sum_{n \in \mathbb{Z}} u^n h_{0,2} H \).

\[\text{Look at } \alpha \beta \text{ to be only for } u \nmid n \text{ i.e. you take } f \text{ to have support at } k,\]

\[(\alpha \beta f)(n) = \sum_{\ell} (h_{0,2}^{1/2} u^{-n+\ell} h_{0,2}^{1/2}) \delta_{\ell-k} = h_{0,2}^{1/2} u^{-n+k} h_{0,2}^{1/2}\]

which is \(0 \) only for \(|n-k| \leq 1 \).

So now what happens? The kind of \(\hat{p}(z) = \sum (h_{0,2}^{1/2} u^{-n} h_{0,2}^{1/2}) z^n \) you are getting are Laurent polynomial projectors.