September 5, 1995

I want to reduce Morita invariance to the simplest steps. Consider $M(A)$, $A = A^2$ a Roos category, and let Q be a generator which is firm. Put $S = \text{Hom}_A(Q, Q)$. Then we have a functor

$$\text{mod}(S) \rightarrow M(A)$$

$$N \mapsto Q \otimes_S N$$

Roos' theorem should tell us that there an idempotent ideal J in S such that this functor induces an equivalence

$$M(S, J) \sim M(A)$$

One has the Morita context:

$$\begin{pmatrix}
A & Q \\
\text{Hom}_A(Q, A) & S
\end{pmatrix}$$

So it should be clear that S

$$J = \text{Im} \left\{ \text{Hom}_A(Q, A) \otimes_A A \rightarrow \text{Hom}_A(Q, Q) \right\}$$

In fact I might as well dispense with S and consider the triple $(Q, \text{Hom}_A(Q, A) \otimes_A A, \psi)$ where ψ:

$$\begin{array}{c}
Q \otimes_A \text{Hom}_A(Q, A) \otimes_A A \\
\text{Hom}_A(Q, A) \otimes_A A \rightarrow A
\end{array}$$

This triple is the "maximum" one containing the Q given at the outset. More precisely, given $(Q, P, Q \otimes_A P \rightarrow A)$, one has

$$\begin{array}{c}
P \rightarrow \text{Hom}_A(Q, A) \\
\psi^1
\end{array}$$

\begin{array}{c}
P \otimes_A A \\
\text{Hom}_A(Q, A) \otimes_A A
\end{array}$$
where a map $P \to \text{Hom}_A(A, A)$ inducing ψ from ψ.

Let's fix

$(Q, P, Q \otimes_P A)$ and put $B = P \otimes_A Q$,

$C = \text{Hom}_A(A, A) \otimes_A A \otimes_A Q = \text{Hom}_A(A, A) \otimes_A Q$. We have Morita equivalences

$$M(B) = M(A) = M(C)$$

$P \otimes_A M \leftrightarrow M \rightarrow \text{Hom}_A(A, A) \otimes_A M$

$N \rightarrow Q \otimes_B N \rightarrow \text{Hom}_A(A, A) \otimes_B N$

The last functor is base extension with $B \to C$.

The relevant Morita contexts here are contained in

$$
\begin{pmatrix}
A & Q & Q \\
P & B & B \\
\text{Hom}_A(A, A) & C & C
\end{pmatrix}
$$

I want to understand $\begin{pmatrix} B & B \\ C & C \end{pmatrix}$ better.

We have a canonical map ψ

$$\psi : P \otimes_A Q \rightarrow \text{Hom}_A(A, A) \otimes_A Q$$

which is a ring homomorphism on one hand, and a right C-module map on the other.

Let's consider a ring C and a right C-module map $\psi : B \to C$. Define a product on B by

$b_1 \cdot b_2 = b_1 \psi(b_2)$

Then

$(b_1 \cdot b_2) \cdot b_3 = (b_1 \cdot b_2) \psi(b_3) = (b_1 \psi(b_2)) \psi(b_3) = b_1 (\psi(b_2) \psi(b_3))$. Thus B is a ring. Also $\psi(b_1 \cdot b_2) = \psi(b_1 \psi(b_2)) = \psi(b_1) \psi(b_2)$ so
f is a ring homomorphism.

An example of such a $f: B \to C$ is the inclusion of a right ideal in C.

September 6, 1995

Start with a firm and a generator Q for $M(A)$. Take $P = \text{Hom}_A(Q, A) \otimes_A A$, let $B = P \otimes_A Q$.

Then the triple $(Q, P, Q \otimes P \to A)$ has the property that P is the 'dual' of Q. Under the Morita equivalence $M(A) \cong M(B)$ associated to this triple equivalence $M(A) \cong M(B)$, one has $Q \mapsto P \otimes_A Q$, $P \mapsto P \otimes_A Q$, hence the triple goes into $(B, B, B \otimes B \to B)$. It should follow that B as right module should be dual to B as left module, i.e. $B \cong \text{Hom}_B(B, B) \otimes B$.

Let's check this. Consider more generally an arbitrary completely firm Morita context (A, Q, P, B). I claim there is a canonical isomorphism

$$\text{Hom}_A(Q, A) \otimes_A Q \cong \text{Hom}_B(B, B) \otimes_B B$$

In other words the dual of AQ under the Morita equivalence is the dual of BB. Pf. One has a comm. diagram

$$
\begin{array}{c}
\text{Hom}_A(Q, A) \otimes_B Q \otimes B \otimes A \\
\downarrow \\
\text{Hom}_A(Q, A) \otimes_B Q \\
\downarrow \\
\text{Hom}_A(Q, A) \otimes_A Q
\end{array}
\xrightarrow{\sim}
\begin{array}{c}
\text{Hom}_A(Q, A) \otimes_B Q \\
\downarrow \\
\text{Hom}_A(Q, A) \otimes_A Q
\end{array}
$$

\begin{align*}
\lambda \otimes p \otimes g &\mapsto \lambda \otimes p \otimes g \otimes g \\
\downarrow \\
(\lambda \otimes p) \otimes g \otimes g &\mapsto (\lambda \otimes p) \otimes g \\
\downarrow \\
\chi \otimes g \otimes g &\mapsto (\chi \otimes g) \otimes g
\end{align*}
On the other hand we have

$$\text{Hom}_A(Q,Q) = \text{Hom}_B(B,B)$$

by Morita equivalence, i.e. induced by
the functors $P \circ A \rightarrow Q \circ B$. Thus

$$\text{Hom}_A(Q,A) \otimes_A Q \cong \text{Hom}_A(Q,Q) \otimes_B P \circ A = \text{Hom}_B(B,B) \otimes_B B$$

September 8, 1995

For a Hopf category $M(A)$, a firm. For each "coordination" (Q, P, ψ) we have a ring $P \circ A Q$, hence an abelian group $((P \circ A Q)_{ab})$. Can we take an appropriate inductive limit of these abelian groups?

To fix the ideas consider $M(k) = \text{mod}(k)$ where k is a unital ring. Among all coordinations are those $(V, k, V \otimes_k U \rightarrow k)$, where $V \in P(k)$, $U = \text{Hom}(V, k) \in P(k^{op})$ and the pairing is the evident pairing. For such a triple $U \otimes_k V = \text{End}_k(V)$ and $(U \otimes_k V)^* = \text{Aut}_k(V)$. (I should have pointed out above that $(P \circ A Q)_{ab}$ is $\text{GL}(P \circ A Q) = \{ \text{invertible elts in } 1 + P \circ A Q \}$.

Given triples (V, U, ψ), (V', U', ψ') there is an obvious way of a homomorphism $U \otimes_k V \rightarrow U' \otimes_k V'$ arises, namely from a pair of maps $V \rightarrow V'$, $U \rightarrow U'$ such that ψ is the restriction of ψ'.

Assume now that these triples are both $f_{\text{proj-reflexive}}$, i.e. $V \in P(k)$, U = dual of V, $\psi = \text{canonical pairing}$. Then a map $(V, U, \psi) \rightarrow (V', U', \psi')$ arises when

$$(V, U, \psi) = (V, U, \psi) \oplus (V', U', \psi')$$

i.e. when we are given a retract situation $V \rightarrow V'$.
The converse seems likely, namely a map \((V, V^*, \langle \cdot, \cdot \rangle) \rightarrow (V^*_1, V^*_1, \langle \cdot, \cdot \rangle)\) assuming the triples are f-proj reflexive. Proof.

Let \(a: V \rightarrow V^*_1\) and \(b: V^* \rightarrow V^*_1\) be compatible with the pairings: \(\langle v, \lambda \rangle = \langle a(v), b(\lambda) \rangle\) for all \(v \in V\), \(\lambda \in V^*\). Then \(\langle v, \lambda \rangle = \langle b \circ a(v), \lambda \rangle \Rightarrow b \circ a = 1_V\), so \(V\) is a retract of \(V^*_1\).
Let B be an idempotent ring, let $f: P \to B$ be a surjection of left B-modules, where P is firm. Then we get a coordinate system on $M(B)$ given by the triple:

\[
(P, B^{(2)}, P \otimes B^{(2)} \to B) \quad \text{with} \quad p \otimes b \otimes b' \mapsto f(p)b'b,
\]

Let $A = B^{(2)} \otimes_P B$ be the corresponding ring. Since P is a firm B module we have $A \to P$. To keep things simple, suppose B firm. Let's calculate the product in $A = P$. By def. if $a_1 = b_1 \otimes p_1$, $a_2 = b_2 \otimes p_2$ in $A = B \otimes_B P$, then

\[
a_1 a_2 = b_1 \otimes f(p_1)b_2 p_2 \mapsto \frac{b_1 f(p_1)b_2 p_2}{f(b_1p)}
\]

Thus if we use $A \to P$ to identify A and P we have the product in A:

\[
a_1 a_2 = f(a_1) a_2
\]

and $f(a_1 a_2) = f(f(a_1) a_2) = f(a_1)f(a_2)$. So $f: A \to B$ is a surjective homomorphism. Let $K = \text{ker}(f)$. Then K is an ideal in A such that $KA = 0$ and A is a $B=AK$ module.

This time start with a ring B, a B-module A and a B-module map $f: A \to B$. Define

\[
a_1 a_2 = f(a_1) a_2
\]

This is an associate product:

\[
(a_1 a_2) a_3 = f(f(a_1) a_2) a_3
\]

\[
a_1 (a_2 a_3) = f(a_1) f(a_2) a_3
\]
and \(f(a_1 \cdot a_2) = f(f(a_1) \cdot a_2) = f(a_1) \cdot f(a_2) \)
so \(f: A \to B \) is a homomorphism. I have encountered this situation before; it generalizes the inclusion of a left ideal.

When \(f \) is surjective we have \(A/K = B \) where \(K = \ker(f) \) is an ideal in \(A \) such that \(KA = 0 \).

Let's start now with \(A \) a ring, \(K \) an ideal such that \(KA = 0 \), and put \(B = A/K \).

\[
\frac{A}{K} \otimes_{A/K} \frac{A}{K} = \frac{A}{K} \otimes_A \frac{A}{K} \cong \frac{A}{KA} + AK
\]

Thus \(B \) finitely \(\mathbb{Z} \) is an \(\mathbb{Z} \).

Suppose \(A \) is h-unital. One has the context

\[
\begin{pmatrix} A & B \\ A & B \end{pmatrix} = \begin{pmatrix} A & A/K \\ A/K & A/K \end{pmatrix}
\]
diagram linking \(A \) and \(B \). Recall that \(B \) is h-unital \(\iff \) \(\quad \quad \quad \quad \begin{array}{c} P \otimes_A A \otimes_B Q \xrightarrow{\text{fin}} B \\ A \end{array} \)

This \(B \) is h-unital \(\iff \) \(A \otimes_A A \otimes_A B \xrightarrow{\text{fin}} B \)

\[\iff \quad \quad \quad \quad \begin{array}{c} A \otimes_A A/K \xrightarrow{\text{fin}} A/K \end{array} \]

But one has \(A \) a map of \(A \)'

\[
A \otimes_A A \otimes_A A \otimes_A (A/K) \xrightarrow{\text{fin}} A \otimes_A A/K \xrightarrow{\text{fin}} K \quad K \quad A \quad A/K
\]

so we obtain

Claim: \(A \) is h-unital, \(K \subseteq A \) an ideal s.t. \(KA = 0 \).
Then \(B = A/K \) is h-unital \(\iff \) \(A \otimes_A K \xrightarrow{\text{fin}} K \) (i.e. \(K \) is an h-unital \(A \)-module).
Consider the map on K_A induced by $A \rightarrow A/K = B$. Note that $K^2 \subseteq KA = 0$, so B is a square zero extension of B by the B-bimodule K where the right multiplication is zero. We have then a group extension

$$1 \rightarrow M(K) \rightarrow GL(A) \rightarrow GL(B) \rightarrow 1$$

with abelian kernel. If $1 + \beta \in GL(B)$ (β a matrix over B) and $K \in M(K)$, then

$$(1 + \beta)(1 + K)(1 + \beta)^{-1} = (1 + \beta)(1 + \beta)^{-1} + (1 + \beta)K(1 + \beta)^{-1} = 1 + (1 + \beta)K$$

Thus the action of $GL(B)$ on $M(K)$ defined by this group extension is given by left multiplication $(1 + \beta), K \mapsto (1 + \beta)K$.

I would like to understand when

$$K_1A = GL(A)_{ab} \rightarrow K_1B = GL(B)_{ab}$$

is an isomorphism. Conjecturally this happens if A and B are firm. Recall that assuming A is firm, then $B = A/K$ is firm $\Rightarrow AK = K$.

Now we have an exact sequence

$$M(K)/[GL(A), M(K)] \rightarrow GL(A)_{ab} \rightarrow GL(B)_{ab} \rightarrow 0$$

so it would be nice to show that $AK = K$ implies $M(K) = [GL(A), M(K)] = \{ \alpha K \mid 1 + \alpha \in GL(A), K \in M(K) \}$.

I think we can take $(1 + \alpha)$ in $E(A)$. Thus

$$[e_{ij}, ke_{jk}] = ak e_{ik}$$

Here $j \neq i, h$. Thus the subgroup $[E(A), M(K)]$ contains $AK e_{ih}$ for all i, h, so contains $M(AK)$. In fact $[E(A), M(K)] = AN(AK)$.
Claim: A idempotent, \(K \subset A \) ideal st. \(KA = 0 \), \(B = A/K \). If \(AK = K \), then \(K_1(A) \cong K_1(B) \).

Recall that starting with \(B \) idempotent and choosing a surjection \(P \rightarrow B \) of \(B \)-modules with \(P \) firm flat, we obtain a ring \(A \cong P \) which is left flat such that \(A/K \rightarrow B \). From the preceding we know \(B \) firm \(\iff \) \(AK = K \rightarrow K_1(A) \cong K_1(B) \).

On the other hand I think I've shown that for two left flat Morita equivalent rings \(A, A' \) one has a canonical iso \(K_1(A) \cong K_1(A') \). So it might be true that \(K_1(B) \rightarrow K_1(B') \) when \(B, B' \) are firm.

Let \(C = (A \oplus B) = (A) \oplus (A \oplus B) = (Q) \oplus (P \oplus B) \) be a completely-firm \(M \)-context. Then

\[
\begin{align*}
A \text{ is } A\text{-flat } & \iff P \otimes_A A = P \text{ is } B\text{-flat } \iff (A) \text{ is } C\text{-flat} \\
B \text{ is } B\text{-flat } & \iff Q \otimes_B B = Q \text{ is } A\text{-flat } \iff (Q) \text{ is } C\text{-flat} \\
(A \oplus B) \text{ is } A\text{-flat } & \iff (P \oplus B) \text{ is } B\text{-flat } \iff C \text{ is } C\text{-flat}
\end{align*}
\]

(the third is obtained by combining the first two).

\(C \text{ is } C\text{-flat } \iff A \text{ is } A\text{-flat and } B \text{ is } B\text{-flat}. \)
Recall equivalence between the data:
1) ring B, and B-module surjection $A \to B$.
2) ring A and ideal $K \subseteq A$ such that $KA = 0$.

Claim: 3) If A is a firm ring, then B is firm ring $\Leftrightarrow AK = K$.
4) If B is firm ring, then A is firm ring $\Leftrightarrow A$ is firm B-module.

Pf. 3): $B \otimes_B B = A/K \otimes_A A/K = A \otimes_A A/\text{Im}(KA + A \otimes_A K) \xrightarrow{\sim} A/KA + AK = A/AK$ is iso $B \otimes_A AK = K$.

4) One has exact sequence
$$K \otimes_A A \to A \otimes_A A \to B \otimes_B A \to 0$$

Thus $A \otimes_A A \to B \otimes_B A$ (Proving 4).

When A, B both firm, then we have the completely firm M context.
$$\begin{pmatrix} A & B \\ A & B \end{pmatrix} = \begin{pmatrix} A \\ A \end{pmatrix} \otimes_A (A \otimes B) = \begin{pmatrix} B \\ B \end{pmatrix} \otimes_B (A \otimes B)$$

In this case this amounts to four cases:
$$A \otimes_A A \to A \quad A \otimes_B A \to B \quad B \otimes_B A \to B \quad B \otimes_B B \to B$$

Now let's look at h-unitality. One has
$$P \otimes_A A \otimes_A P = A \otimes_A A \otimes_A B$$
$$Q \otimes_B B \otimes_B P = B \otimes_B B \otimes_B A$$
Thus we get from our \(h \)-universal criterion:

5) If \(A \) is \(h \)-universal, then \(B \) is \(h \)-universal \(\iff \) \(A \overset{L}{\partial} B \to B \) quas.

6) If \(B \) is \(h \)-universal, then \(A \) is \(h \)-universal \(\iff \) \(B \overset{L}{\partial} A \to A \) quas.

From the maps of \(A \)'s:

\[
\begin{array}{ccc}
A \overset{L}{\partial} K & \longrightarrow & A \overset{L}{\partial} A \\
\downarrow & & \downarrow \\
K & \longrightarrow & A \\
\end{array}
\]

\[
\begin{array}{ccc}
B \overset{L}{\partial} K & \longrightarrow & B \overset{L}{\partial} A \\
\downarrow & & \downarrow \\
K & \longrightarrow & A \\
\end{array}
\]

we get:

5') If \(A \) is \(h \)-universal, then \(B \) is \(h \)-universal \(\iff \) \(A \overset{L}{\partial} K \to K \) quas.

6') If \(B \) is \(h \)-universal, then \(A \) is \(h \)-universal \(\iff \) \(B \overset{L}{\partial} K \to K \) quas.

In the situation \(A/K = B \), \(KA = 0 \), both \(A \), \(B \) \(h \)-universal, I want to show that \(K \cdot A \to K \cdot B \).

There is a group exact

\[
1 \to M(K) \to GL(A) \to GL(B) \to 1
\]

and Hochschild-Serre spectral sequence

\[
E^{2}_{pq} = H_{p}(GL(B), H_{q}(M(K))) \Rightarrow H_{*}(GL(A))
\]

so it's enough to have

\[
H_{*}(GL(B), H_{q}(M(K))) = 0 \quad q > 0.
\]
I think Juslin proves this with $\beta^{(n)}$ in place of $M(K)$ when he shows that
\[H_x(GL(n) \times B^{(n)}) \to H_x(GL(n)) \]
for B h-unital. In any case from
\[H_x(GL(B), B^{(n)}) = 0 \]
one can deduce that
\[H_x(GL(B), K^{(n)}) = 0 \]
for any B-module K such that $B \otimes_B K \to K$ is a quasi-H-module by using a pseudo-free resolution of K.

Another point that gives some confidence in these ideas is the fact that the semi-direct product $C = B \ltimes K$, where right multiplication by B in K is trivial, is h-unital if B is h-unital and K is h-unital over B. In effect $Z \otimes_B B$ is a retract of $Z \otimes_C C$, so C h-unital \Rightarrow B h-unital. The rest is clear from (6') above.

At some point I have to learn Juslin's methods, probably based on Vezzosi's model, and also the new ideas involving stable K-theory $\&$ THH.

Formulas:

\[F \to BGL(A) \to BGL(A^+) \]

P A-bimodules, A unital

$K^S_x(A, P) = H_x(F, M(P))$

\[K^S_x(A) \xrightarrow{P} K^S_x(A^+) \]

P A-bimodules, A unital

\[K^S_x(A) \xrightarrow{\delta} H^*_x(ML) \]

\[K^S_x(R) \xrightarrow{\delta} H^*_x(R) \]

δ h-unital

\[H^*_x(R) = THH(R) \]

Thm. (D. & McCarthy. Annals '94) $K^S(R) = THH(R)$

Thm. (S. Wald. J.P.A. '92) $THH(R) = H^ML(R)$
Suppose \((A, Q)\) such that \(A\) is unital, \(P_A, AQ\) are finite \(\text{proj} A\)-modules, \(B = P \otimes_A Q\).

A perfect pairing \(Q \otimes_A P \rightarrow A\) is equivalent to a map \(P \rightarrow Q^* = \text{Hom}_A(Q, A)\) of \(\text{proj} A\)-modules. This can be factored \(P \rightarrow P_1 \rightarrow Q^*\) where the injection is a direct injection of \(\text{proj}\) right modules. For example, one can take \(P_1 = P \otimes Q^*\), \(f = p_2 \circ f\). Put \(Q_1 = P_1^* = \text{Hom}_A(P_1, A)\). Then we have direct injections \(P \rightarrow P_1\), \(Q \rightarrow Q_1\), such that \(f\) is the restriction of the canonical perfect pairing \(Q \otimes P_1 \rightarrow A\).

In this way, we embed \(B = P \otimes_A Q\) into the "matrix" ring \(P_1 \otimes A Q_1 = \text{Hom}_A(Q_1, Q)\).

\[
\begin{array}{ccc}
P \otimes_A Q & \rightarrow & P_1 \otimes_A Q \\
\downarrow & & \downarrow \\
P \otimes_A Q_1 & \rightarrow & P_1 \otimes_A Q_1
\end{array}
\]

\(P \otimes A P^*\)

The square is part of a \(\otimes\) commutative diagram.

Consider \(A\) a field. \(P_1 \otimes_A Q_1\) is a matrix algebra, \(P \otimes_A Q\) is a right ideal which can be roughly viewed as made of "rows" \(p \otimes Q\), while \(P_1 \otimes A\) is a left ideal made of "columns". Their intersection \(P \otimes A\) is a subring which has zero multiplication when \(\langle a, p \rangle = 0\). This
situation is ruled out in the case of a M equivalence.

(In fact the situation $A = P \otimes A \subset P\otimes A, Q = B$
 satisfies $B = B^2 = BAB$ (assuming $P, Q \neq 0$)
 and $ABA = A$; but not $A = A^2$ where $\langle q, p \rangle = 0$.)

Next I would like to extend the field situation
in a geometric direction, i.e. take P, Q to
 correspond to vector bundles over X and $A = C(X)$.
Then $\psi: Q \otimes_A P \rightarrow A$ is onto
iff $f: P \rightarrow Q^*$ is nonzero at each $x \in X$.
(Actually since A is commutative, the fact that ψ is
an A-bimodule map implies that ψ descends to a
pairing $Q \otimes_A P \rightarrow A$:
$\psi((p, q), p') = \psi(q, p') = \psi(p, q, p')$,
$\psi(q, p) = \psi(q, p) a_i = \psi(q, p a_i) = \psi(q, a_i p).$

Suppose $P = A^{k}$, $Q = A^{l}$, let p_i, q_j be
bases for P, Q. Then $\psi: Q \otimes_A P \rightarrow A$
 is given by a $k \times l$ matrix over A:
$b_{ij} = \psi(q_j, p_i)$. We can identify $B = P \otimes_A Q$
with $k \times l$ matrices $B = \sum_{i,j} p_i \otimes q_j b_{ij}$. Then

$$\left(\sum_{i,j} p_i \otimes q_j b_{ij}\right) \left(\sum_{i',j'} p_{i'} \otimes q_{j'} b_{i'j'}\right)$$

$$= \sum_{i, j, i', j'} p_i \otimes a^{i}_{j} b_{ij} a^{i'}_{j'} b_{i'j'}$$

Thus $B = \text{M}_{kl}(A)$ with product
$\alpha^1 \cdot \alpha^2 = \alpha^1 \beta \alpha^2$.

September 22, 1995

I want to prove Morita invariance for cyclic homology of b-unital rings. The key idea is to make use of ring homomorphisms which are Morita equivalences.

Let A be a b-unital ring. $HC_*(A)$ is defined to be the homology of the Connes–Tsygan bicomplex of A, equivalently the homology of the pre-cyclic module $\mathbb{M}_1 \to A^{\otimes n+1}$. The mixed complex module $\mathbb{M}_1 \to A^{\otimes n+1}$. The mixed complex behind $HC_*(A)$ is the cone on $1 - 2 : (A^{\otimes n+1}, b) \to (A^{\otimes *}, b)$:

\[
\begin{align*}
& b' \\
& A \otimes A^2 \xrightarrow{1 \cdot \lambda} A^2 \\
& b' \quad -b' \\
& A \xrightarrow{1 \cdot \lambda} A
\end{align*}
\]

The Hochschild homology corresponding to this cyclic homology is the homology of this mixed complex, which can also be described as $(\Omega \tilde{A}, b)$. Thus $HH_*(\tilde{A})$ is what I called the reduced Hochschild homology $\tilde{HH}_*(\tilde{A})$.

Now $\tilde{A}^{\otimes *}$ can be calculated as follows. Start with the standard A-bimodule resolution of \tilde{A}:

\[
\cdots \xrightarrow{b'} \tilde{A} \otimes A^2 \otimes \tilde{A} \xrightarrow{b'} \tilde{A} \otimes A \otimes \tilde{A} \xrightarrow{b'} \tilde{A} \otimes \tilde{A}
\]

I will assume from now on that A is flat over the groundring (default groundring is \mathbb{Z}). Then the above complex is a flat A-bimodule res. of \tilde{A}. Now $M \otimes_A \tilde{A}$ is a flat A-bimodule res. of \tilde{A}. Now M as A-bimodule

\[M \otimes_A \tilde{A} = (M \otimes A^{\otimes *}, b') = (M \otimes A^{\otimes *}, b)
\]

so that $M \otimes_A$ is given by the complex

\[M \otimes_A \tilde{A} \otimes (\tilde{A} \otimes A^{\otimes *}, b') = (M \otimes A^{\otimes *}, b)
\]

In particular $A \otimes_A = (A^{\otimes *}, b)$, which does not give the reduced Hochschild homology $\tilde{HH}_*(\tilde{A})$ in general.
However for h-unital rings

the b' complex is acyclic, so the Hochschild homology $\text{HH}_*(A)$ belonging to $\text{HC}_*(A)$ is

the homology of $A\otimes_A^L$. In fact there's a Δ:

$$(A^{\otimes_{n+1}}, b) \rightarrow (\tilde{\Delta} A, b) \rightarrow (\tilde{\Delta} A, b)[1]$$

showing that $\text{HH}_*(A\otimes_A^L) \rightarrow \text{HH}_*(A) \iff A$ is unital

If $\varphi: A \rightarrow B$ is a homomorphism of rings, then φ induces a map of mixed complexes $\tilde{\Delta} A \rightarrow \tilde{\Delta} B$, and formally one has that $\text{HH}_*(A) \rightarrow \text{HH}_*(B)$

$\iff \text{HC}_*(A) \rightarrow \text{HC}_*(B)$. For h-unital rings we have

$\text{HH}_*(A) = \text{HC}_*(A\otimes_A^L)$ and so we have $A\otimes_A^L B \rightarrow B\otimes_B^L B$ is a quasi $\iff \text{HC}_*(A) \rightarrow \text{HC}_*(B)$. This is what I want to use to prove Morita invariance for HC_* of h-unital rings.

Let $\varphi: A \rightarrow B$ be a homomorphism between h-unital (hence prime) rings which is a Morita equivalence. The corresponding Morita context is

$$(A \otimes_A^L B) = \begin{pmatrix} A & A\otimes_A B \\ B\otimes_A^L A & B \end{pmatrix}$$

Notice that there are homomorphisms

$$M_2 A \rightarrow (A \otimes_A^L B) \rightarrow M_2 B$$

The idea now is to use say the latter map of Morita contexts to produce

$A\otimes_A^L \rightarrow B\otimes_B^L$ from our proof of

Minv. of HH.
More precisely we have

\[
A_\text{\textz}^B_A \leftarrow \mathcal{Z} \mathcal{B}_\text{\textz} A \mathcal{B}_\text{\textz} A = \mathcal{Z} \mathcal{A}_\text{\textz} A \mathcal{B}_\text{\textz} A = \mathcal{B}_\text{\textz} A \mathcal{B}_\text{\textz} A \leftarrow A \mathcal{B}_\text{\textz} B \quad \text{and so we can conclude that } \mu_x : \text{HH}_x(A) \cong \text{HH}_x(B)
\]

hence \(\text{HC}_x(A) \rightarrow \text{HC}_x(B) \). This proves

\[\text{If } \mu : A \rightarrow B \text{ is a homomorphism of } \text{h}-\text{unital rings which is also a Morita equivalence, then } \mu_x \text{ reduces } \text{HH}_x \text{ and } \text{HC}_x.\]

The next step will be to try to handle a Morita equivalence with context \(C = (A, Q) \) by means of the evident homomorphism \(A \leftarrow C \leftarrow B \). The problem is that \(C \) need not be \(\text{h}-\text{unital} \) even if \(A, B \) are.

Recall that if \(A \) is \(\text{h}-\text{unital} \), then

1) \(B \) \(\text{h}-\text{unital} \) \(\iff \) \(\mathcal{Z} \mathcal{B}_\text{\textz} A \mathcal{B}_\text{\textz} A \mathcal{B}_\text{\textz} Q \rightarrow B \)

2) \(C \) \(\text{h}-\text{unital} \) \(\iff \) \((\mathcal{A} \mathcal{B}_\text{\textz} A \mathcal{B}_\text{\textz} A (A, Q)) \rightarrow C \)

\[\leftarrow (\mathcal{B}_\text{\textz} A \mathcal{B}_\text{\textz} A \mathcal{B}_\text{\textz} A (A, Q)) \rightarrow \left(\begin{array}{c} A \\ Q \end{array} \right) \]

Here are cases where \(C \) is \(\text{h}-\text{unital} \)

1) \(A \) \(\text{h}-\text{unital} \), \(B \) left + right flat (equiv \(\mathcal{B}_\text{\textz} A \mathcal{B}_\text{\textz} A \) flat)

2) \(A \) left + right flat (hence \(\text{h}-\text{unital} \)) and \(B \) \(\text{h}-\text{unital} \) \(\text{Note } 1) \) \(\text{and } 1) \) are symmetric.

2) \(A, Q \) \(A \)-flat (this \(\Rightarrow \) \(P, Q \) \(B \)-flat and \(C \) is \(C \)-flat i.e. we have a completely left-flat situation)
The next discussion is perhaps of no real

interest. I am interested in

situations where \(P \odot_A Q \Rightarrow B \), \(Q \odot_B P \Rightarrow A \), so that

the simpler proof works:

\[
A \odot_A Q \Rightarrow Q \odot_B P \Rightarrow A \\
B \odot_B Q \Rightarrow Q \odot_B P \Rightarrow B
\]

The question is whether this situation occurs for \((A, C)\)

and \((B, C)\) in the cases 1), 2) above.

Consider 2) the completely left flat situation. Then

\(C = (A) \odot_A (A, Q) \) is left \(C \)-flat, so \((A), (B)\) are \(C \)-flat.

Then \(C = (A) \odot_A (A, Q) \) and from \(C = C \odot_C C \)

we get \(A = (A, Q) \odot_C (A) \). Thus the short proof

(probably the one used by Block + Steghen) works for \(A \subset C \)

and also for \(B \subset C \) by symmetry.

Next take 1) \(A \)-unital, \(B \subset C \)-flat \(\Leftrightarrow B \)-left-right-flat.

Then \(C = C \odot_C C \Rightarrow A = (A, Q) \odot_C (A) \), \(B = (B) \odot_C (B) \).

But also

\[
(A, Q) \odot_A (A, Q) = (A \odot_A A, A \odot_A Q) = (A, Q) \\
B = (B) \odot_B (B) = (B, B, B) = (B, B)
\]

finally

\[
C \odot_B C \Rightarrow C \odot_B B \Rightarrow B
\]

so in case 1) the short proof works for both \(A \subset C \)

and \(B \subset C \). Same for 1) by symmetry.

At this point I understand somewhat when

\(C \) is \(h \)-unital, and I should be able to prove
Morita invariance of $\mathcal{H}C$ for h-unital rings

Let's proceed by considering a Hoop category M and all its coordinate systems. Suppose to fix the ideas that $M = M(D)$ with D some idempotent ring. Then we can choose a new coordinate system $(D, V, W_D, V \otimes W \to D)$ where V, W are flat firm over D. Then $A = W \otimes_D V$ is both left and right flat.

Now let B_1, B_2 be rings module to D, hence to A. Then we get an isomorphism $\mathcal{H}C(B_1) \cong \mathcal{H}C(B_2)$ from the homomorphisms:

$$B_1 \cong (A \ast B_1) \cong A \cong (A \ast B_2) \cong B_2$$

This is OK because A both left and right flat, B_i h-unital $\Rightarrow (A \ast B_i)$ is h-unital.

Next check the independence of the choice of A.

Diagram of inclusions:

\[\begin{array}{ccc}
B_1 & \to & (A \ast B_1) \\
\uparrow & & \downarrow \\
A' & \to & (A' \ast B_1)
\end{array} \]

\[\begin{array}{ccc}
A & \to & (A \ast B_2) \\
\downarrow & & \downarrow \\
A' & \to & (A' \ast B_2)
\end{array} \]

\[\begin{array}{ccc}
B_1 & \to & (A' \ast B_1) \\
\uparrow & & \downarrow \\
A' & \to & (A' \ast B_2)
\end{array} \]
This shows the isom $HC(B_1) \cong HC(B_2)$ is independent of the choice of A.

Here's another way to see that B_1, B_2 h-unital. Let A be left $+$ right flat, e.g., A unital. Then we know given a $\text{M} \in (P \otimes B)$ that

$$B \text{ left unital } \Rightarrow P \otimes_A Q = P \otimes_A A \otimes_A Q \cong B.$$

Consider

$$\left(\begin{array}{c}
A \\
P_1 \\
P_2
\end{array} \right) \otimes_A (A, Q_1, Q_2) = \left(\begin{array}{c}
\begin{array}{c}
A \\
Q_1 \\
Q_2
\end{array} \\
P_1 \\
P_2
\end{array} \right)$$

Then $B_1 \text{ left unital } \Rightarrow P_1 \otimes_A Q_1 \cong P_1 \otimes_A Q_1$

$B_2 \text{ left unital } \Rightarrow P_2 \otimes_A Q_2 \cong P_2 \otimes_A Q_2$

$\left(\begin{array}{c}
B_1 \\
P_1 \otimes_A Q_1 \\
P_2 \otimes_A Q_2
\end{array} \right) \text{ left unital } \Rightarrow P_i \otimes_A Q_j = P_i \otimes_A Q_j \forall i, j$

So you get a non-h-unital example (as before) by arranging $\text{Tor}_i(P_i, Q_j) = 0$ for $i = j$ and $\neq 0$ for some $i \neq j$.

It seems there is a natural category structure on coordinate systems given by homomorphisms of the corresponding rings which induce the M-equivalence.
If \(A \) is a monoidal ring, its multipliers ring \(\text{Mult}(A) \) consists of pairs \(x = (x^a, x^b) \) of operators on \(A \) which we write \(a \mapsto ax^a \) and \(a \mapsto x^a a \) satisfying

\[
(\alpha_1, \alpha_2) x^a = \alpha_1 (\alpha_2 x^a) \\
(\alpha_1 x^a) \alpha_2 = \alpha_1 (x^a \alpha_2) \\
x^b (\alpha_1, \alpha_2) = (x^a \alpha_1) \alpha_2
\]

The first condition says \(x^a \in \text{End}_A(A) \), the third that \(x^b \in \text{End}_A(A) \), and the second says that \(x^a \) and \(x^b \) are adjoint with respect to the pairing \(\mu : A \otimes A \rightarrow A \). This obviously generalizes to a triple \((Q, P, \psi)\), namely let \(\text{Mult}(Q, P, \psi) \) be the set of pairs \((x^a, x^b) \in \text{End}_A(Q) \times \text{End}_A(P)\) such that \(\langle x^a q, p \rangle = \langle q, x^b p \rangle \), i.e.

\[
Q \otimes P \xrightarrow{x^a \otimes 1 \otimes x^b} Q \otimes P \xrightarrow{\psi} A
\]

has composition zero, equivalently

\[
P \xrightarrow{x^a} \text{Hom}_A(Q, A) \\
\xrightarrow{x^b} \text{Hom}_A(Q, A)
\]

commutes. \(M = \text{Mult}(Q, P, \psi) \) is clearly a subring of \(\text{End}_A(Q) \times \text{End}_A(P) \).

Assume the triple \((Q, P, \psi)\) such that \(Q, P \) are firm and \(\psi \) is surjective. Then I claim...
that
\[M(Q, P, \psi) \cong \text{Mult}(\rho_A) \]

because \(\text{End}_A(Q) = \text{End}_B(B) \), \(\text{End}_{A^e}(P) = \text{End}_{B^e}(B) \)

and adjointness condition is preserved under the

Morita equivalence. Here I use that

\[Q \otimes P \xrightarrow{x^2-10y^6} Q \otimes P \xrightarrow{\psi} A \]

\[\text{B} \otimes \text{B} \xrightarrow{x^2-10y^6} \text{B} \otimes \text{B} \xrightarrow{\mu} \text{B} \]

go into each other via \(P \otimes_A Q \) and \(Q \otimes_B P \).

(Strictly speaking \(Q \otimes B \otimes P = A^{(2)} \), but then one can follow with \(A^{(1)} \rightarrow A \). Note that because \(Q, P \) are finitely-

generated \(A \)-modules \(Q \otimes P \rightarrow A \) lifts uniquely to \(A^{(1)} \).)

We can use this to compute multiplier rings.

For example let \(A \) be a field and let \(Q, P \) be finite dimensional. If the pairing \(Q \otimes P

\rightarrow A \) is non-degenerate then \(B = \text{Mult}(B) \) because \(P \cong \text{Hom}_A(Q, A) \otimes \) so \(x^2 = (x^2) \).

In general one has
\[0 \rightarrow P_0 \rightarrow P \rightarrow P/P_0 \rightarrow 0 \]

\[0 \rightarrow Q_0 \rightarrow Q \rightarrow Q/Q_0 \rightarrow 0 \]

where \(P_0 = Q^\perp, \ Q_0 = P^\perp \) for the pairing

\[P \rightarrow Q^* \]

\[\downarrow \]

\[P/P_0 \rightarrow (Q/Q_0)^* \]

so the multiplier ring is a fibre product consisting of
pairs $\psi(x^k, x^l)$ with x^k an endo of Q_0, respecting Q_0, and x^l an endo of P respecting P_0 such that on \(P/P_0 = (Q/Q_0)^\times \), we have $x^l = (x^k)^\ast$.

If Q, P are infinite dimensional and the pairing is non-degenerate so that $P \subset Q^\ast$ and $Q \hookrightarrow P^\ast$, then the multiplier ring is the ring of endomorphisms of P having transposes defined on Q. This might be equivalent to some sort of continuity for the weak topology on P coming from Q.

Another comment: If A is a ring such that $A = A^2$, then any left multiplier $x^l \in \text{Han}_L(A, A)$ commutes with any right multiplier $y^r \in \text{Han}_R(A, A)$:

$$(x^l(a_1 a_2)) y^r = (x^l a_1 a_2) y^r = x^l a_1 (a_2 y^r) = x^l (a_1 a_2 y^r) = x^l (a_1 y a_2 y^r)$$

In diagrams:

$$\begin{array}{ccc}
A \otimes A & \longrightarrow & A \\
\downarrow x \otimes 1 & & \downarrow x^l \\
A \otimes A & \longrightarrow & A
\end{array}$$

Thus A is a bimodule over $M = \text{Mult}(A)$ when $A = A^2$.

(Also it seems when A has trivial left annihilator and right annihilator in general.)

Also you have $A \longrightarrow M$ satisfying $x \mu(xa) = \mu(xa)$, $\mu(aya) = \mu(aya)$ so that $\mu(A)$ is an ideal in M. Thus $\mu(aya) = (x^a y a)$, so if it is injective (same as trivial left and right annihilator) we see A is a bimodule over M. To this step that you need either $A = A^2$ or μ injective.
Here's an exercise I found difficult. Let F, G be adjoint functors, $\alpha : FG \to 1$, $\beta : 1 \to GF$ the adjunction maps. One knows that F is fully faithful \iff β is an isom. In effect there is a commutative triangle
\[
\text{Hom}(F(X), F(X')) = \text{Hom}(X, GF(X'))
\]
\[
\text{Hom}(X, X')
\]
\[
f
\]
\[
(\beta_{X'})_*
\]
\[
\text{etc.}
\]

The exercise is to give a proof at least of \Rightarrow using properties of α, β and avoiding Yoneda's lemma. (I wanted this for bimodule arguments in connection with Morita equivalence.)

Assuming F fully faithful we know that
\[
\alpha, F \circ \beta : FG \to F \text{ has the form } F \xi \text{ where } \xi : GF \to I \text{ is unique. Since }
\]
\[
\begin{array}{ccc}
F & \xrightarrow{\beta} & FGF \\
\downarrow & & \downarrow \alpha F \\
F & \xrightarrow{\alpha F} & F
\end{array}
\]
is the identity, we have $({\xi F}_{F})F_{\beta} = 1_F$, so $F(\beta F) = 1_F$ and then $\beta F = 1$. Next by naturality of β

\[
\begin{array}{ccc}
GF & \xrightarrow{\beta} & I \\
\downarrow & & \downarrow \beta \\
GFGF & \xrightarrow{\xi F \beta} & GF
\end{array}
\]

commutes. On the other hand $GF \xi = G \times F$ and we know that $G \beta G_{\xi} : GFG \to G$ is 1_G, so
\[
\beta F = (GF \xi)(\beta GF) = 1GF, \text{ showing that } \beta F = 1_{GF}.
\]

above square
Higgins thesis on Lie-adgiers.
A dialgebra D is a bimodule with two assoc. operations $d_1 \cdot d_2$ and $d_1 \times d_2$ satisfying
\[
d_1 \cdot (d_2 \cdot d_3 - d_2 \times d_3) = 0 \\
(d_1 \cdot d_2 - d_1 \times d_2) \times d_3 = 0 \\
d_1 \times (d_2 \cdot d_3) = (d_1 \times d_2) \cdot d_3
\]

Example. Let A be an assoc. algebra, M an A-bimodule, and $f: M \to A$ a bimodule map.
Then $m_1 \cdot m_2 = m_1 f(m_2)$, $m_1 \times m_2 = f(m_1) m_2$
are associative operations on M (recall the former makes sense when $f: M \to A$ is only a right A-module map, and the latter requires only that f be a left A-module map). Then
\[
m_1 \cdot (m_2 \cdot m_3 - m_2 \times m_3) = m_1 \frac{f(m_2 f(m_3) - f(m_2)m_3)}{f(m_1) f(m_3) - f(m_1) f(m_3)} = 0 \\
(m_1 \cdot m_2 - m_1 \times m_2) \times m_3 = f(m_1 + m_2) - f(m_1)m_2)m_3 = 0 \\
m_1 \times (m_2 \cdot m_3) = (m_1 \times m_2) \cdot m_3 = f(m_1)(m_2 f(m_3) - f(m_1)m_3) = 0
\]
so M is a dialgebra.
Let (D_3, \cdot, \times) be a dialgebra, let
\[
N = \text{Im} \{ D \otimes D \to D \}
\]
Then $D \cdot N = N \times D = 0$.
$N \cdot N \subseteq D \cdot N = 0$ and $N \times N < N \times D = 0$. In particular
Also \(d_1 \cdot d_2 \equiv d_1 \otimes d_2 \) modulo the

subspace \(N \). Thus

\[
\begin{align*}
D \times N + N &= D \times N + N = N \\
N \times D + N &= N \times D + N = N
\end{align*}
\]

so \(N \) is an ideal for both \(\cdot \) and \(\ast \)

of square zero. \(\ast \) On \(D/N \), \(\cdot \ast \ast \ast \)

\(D/N \) is an assoc. algebra regarded as a dialgebra

in a trivial way. \(N \) is a \(D/N \)-bimodule

with left action given by \(\ast \) and right action

by \(\cdot \); these commute by the third axiom.

\(\square \)

So \(D \) is a dialgebra extension

\[
\begin{tikzcd}
0 \rar & N \lar & D \lar & D/N \lar & 0
\end{tikzcd}
\]

of the associative algebra \(D/N \) by the \(D/N \)-bimodul

of \(N \). Presumably there is some sort of analogue

of Hochschild cohomology connected with these

extensions.

\(D \) is a unital dialgebra where \(1 \in D \) such

that \(d \cdot 1 = 1 \otimes d = d \otimes 1 \). In this case \(D/N \)

is unital and \(N \) is a unital \(D/N \)-bimodule.

Let's split \(\ast \) linearly (possible if \(D/N \) proj.

as \(k \)-module). Then \(\cdot \ast \) are given by appropriate

2-cycles in \(A = D/N \) for the two \(A \)-bimodule structures

in \(N \) having zero on one side. It looks like the

Hochschild cohomology \(H^*(\tilde{A}, N) \) vanishes in degrees > 0

and is \(\tilde{A} \otimes N \) in degree 0 when the right multiplication

of \(A \) on \(N \) is zero. In effect

\[
H^*(\tilde{A}, N) = H^* \{ \text{Hom} \; \tilde{A} \otimes \tilde{A}^\ast \otimes \tilde{A}, N \} \]
\[H^* \left(\Lambda^0 \Lambda^0 \otimes, N \right) \cong 0 \]

because the right mult. of \(\Lambda \otimes N \) factors through \(\Lambda / \Lambda = k \), and because

\[\Lambda \otimes \Lambda \to \Lambda \otimes \Lambda \to \Lambda \]

should be a proj. resolution of \(k \).

If so, then we can assume \(D = N_0 \times D / N \)

for the \(\times \) product, arbitrariness is a
derivation \(D / N \to N_0 \), which should be linear.
Then the \(\times \) product should be given by a
2-cocycle \(A^{\times 2} \to \Omega \Lambda A \), which should be a
coboundary.

A Leibniz algebra \(L \) is a \(k \)-module equipped
with bilinear operation \(l \cdot l' \) satisfying

\[
(l \cdot m) \cdot n = (l \cdot n) \cdot m + l \cdot (m \cdot n).
\]

In other words right mult by any \(a \in L \) is a
derivation of \((L, \cdot) \). Thus we have a map

\[L \to \text{Der}(L, \cdot) \quad m \mapsto a \cdot m \]

such that \(R(m \cdot n) = R_n R_m - R_n R_m \), so \(R \) is
a homomorphism of Leibniz algebras (maybe \(-R \) ?).

Note that \(l \cdot (m \cdot n) = 0 \); alt: \(R(a \cdot m) = -[R_n, R_m] = 0 \).

Let \(K = \text{Im} \left(L \otimes L \to L \otimes L \right) = \text{span} \left\{ m \cdot n \mid m, n \in L \right\} \)

\(\otimes L' \to L \otimes L' \otimes L' \).

(\text{char } k \neq 2). Then \(L \cdot K = 0 \) and \(K \cdot L \subseteq L \)
because right mult. \(-R(l) \) is a derivation of \(L \) hence
preserves \(K \). Thus we have an extension.
of Leibniz algebras, where $K/K = 0$ and L/K is a Lie algebra (since modulo K we have $d.K = 0$, which is the antisymmetry condition). Right multiplication makes K a Lie module over L/K.

A functor from dialgebras to Leibniz algebras. Given $(D, \circ, *)$ a dialgebra, then $(D, d.d' - d.x.d)$ is a Leibniz algebra.

If $M \rightarrow A$, $m.m' = m.f(m')$, $m.x.m' = f(m).m'$, then the assoc. Liebniz alg is M with operation $m \circ m' \rightarrow m.f(m') - f(m).m$.

Important example: $M = A \oplus A$, $f(a, b) = b$. Then we get the Leibniz algebra

$$(a, b) \circ (a', b') = (a, b) b' - b'(a, b) = ([a, b], [b, b'])$$

denoted $L \oplus A$ by Higgins. His universal enveloping algebra $U_L(A)$ is left-adjoint to this. Apparently there is a more interesting universal enveloping dialgebra of a Leibniz algebra.
Let \((D, \cdot, \ast)\) be a dialgebra: \(\cdot, \ast \) associative +
\[
\begin{aligned}
d_1 \cdot (d_2 \cdot d_3 - d_2 \ast d_3) &= 0 \\
(d_1 \cdot d_2 - d_1 \ast d_2) \ast d_3 &= 0 \\
d_1 \ast (d_2 \cdot d_3) &= (d_1 \ast d_2) \cdot d_3
\end{aligned}
\]

Example: Let \(A\) be an associative alg, \(M\) an \(A\)-bimodule, \(f: M \rightarrow A\) an \(A\)-bimodule map. Then \(m_1 \ast m_2 = m_1 f(m_2), m_1 \ast m_2 = f(m_1)m_2\) makes \(M\) into a dialgebra.

Conversely, given a dialgebra \(D\), let \(N\) be the image of \(D \otimes D \rightarrow D, d \otimes d' \mapsto d \cdot d' - d \ast d'\). Then \(A = D/N\) is an associative algebra with product \(\cdot\) and \(\ast\). \(D\) is an \(A\)-bimodule induced by \(\cdot\) and \(\ast\). \(D\) is an \(A\)-bimodule induced by \(\ast\) with left \(A\)-mult (resp. right \(A\)-mult) induced by \(\cdot\) (resp. \(\ast\)). The canonical surjection \(f: D \rightarrow A\) is an \(A\)-bimodule map such that \(d_1 \cdot d_2 = d_1 f(d_2), d_1 \ast d_2 = f(d_1)d_2\).

Check this: The first and second identity above give \(D \cdot N = N \ast D = 0\). Now
\[
\begin{aligned}
d \ast n &= d \ast n - d \cdot n \in N \Rightarrow D \cdot N \subset N \\
n \cdot d &= n \ast d - n \ast d \in N \Rightarrow N \cdot D \subset N
\end{aligned}
\]
so both \(\cdot\), \(\ast\) on \(D\) descend to \(A = D/N\) making \(A\) an assoc. algebra. Next \(D \cdot N = 0 \Rightarrow \ast\) on \(D\) descends to a right mult. \(D \otimes A \rightarrow D\) making \(D\) a right module over \(A\), since \(\cdot\) is associative. \(N \otimes D \rightarrow A\otimes 0 \rightarrow D\) making \(D\) a right module over \(A\), since \(\cdot\) is associative. The third identity above implies \(D\) is left \(A\)-module. The third identity above implies \(D\) is left \(A\)-module. Similarly \(\ast\) descends to \(A \otimes D \rightarrow D\) making \(D\) a right \(A\)-module. The third identity above implies \(D\) is left \(A\)-module. Finally, I should have said that the left \(A\)-module structure is defined by
\[
f(d_1)d_2 = d_1 \ast d_2, d_1 f(d_2) = d_1 \ast d_2.
\]
Suppose now that \(M \xrightarrow{f} A \) is given as above, with \(f \) surjective, and assume that \(A \) is unital and that \(M \) is a unitary \(A \)-bimodule. Choose \(\xi \in M \) such that \(f(\xi) = 1 \in A \).

Let \(N = \text{span of } m_1m_2 - m_1f(m_2), m_1 = f(m_1)m_2 - f(m_2)m_1 \).

Then \(N \subseteq \ker(f) \) and conversely, given \(n \in \ker(f) \) we have
\[
\xi \ast n - \xi \circ n = f(\xi)n - \xi f(n) = 1n = n.
\]

This shows that the dialgebra \(M \) determines \(A \).

So start with a unital dialgebra \(D \). This means we are given \(1_D \) such that \(1_D \ast d = d \ast 1_D = d, \forall d \).

We've seen that if \(N = \text{span of } d_1, d_2, \text{ then } A = D/N \text{ is an assoc. algebra.} \)

\(D \) is an \(A \)-bimodule, \(f: D \rightarrow A \) is an \(A \)-bimodule map such that \(d_1 \times d_2 = f(d_1)d_2, d_1d_2 = d_1, f(d_2) \).

Now, map such that \(f(d_1d_2) = f(d_1)f(d_2), f(d_1d_2) = f(d_1)d_2, f(d_1) = f(d_1d_2) = f(d_1f(d_2)), \) which implies that \(A \) is unital with \(f(1_D) = 1_A \).

Clearly \(D \) is a unital bimodule over \(A \). In fact, clearly \(D \) is not uniquely determined; it can be any \(\xi \in D \) such that \(f(\xi) = 1_A \).

The conclusion of the above discussion is that a unital dialgebra \(D \) is equivalent to a quadruple \((A, M, f, \xi) \), where \(A \) is a unital assoc. alg, \(f: M \rightarrow A \) an \(A \)-bimodule map, and \(\xi \in M \) satisfies \(f(\xi) = 1_A \).

Let's now work out the Lie analogue. Again, start with a Lie algebra \(g \) and a \(g \)-module map \(f: M \rightarrow g \). Then define \(m \circ m' = f(m)m' - f(m')m \). This gives an opposite Lie algebra, i.e. where \(L_m \) is a derivation.
of \((M, \ast)\) for each \(m \in M\). Check
\[
m_1 \cdot m_2 = f(m_1) m_2 - f(m_2) m_1
\]
\[
f(m_1 \cdot m_2) = \left[f(m_1), f(m_2) \right]
\]
\[
m_1 \cdot (m_2 \cdot m_3) = f(m_1) \left(f(m_2) m_3 - f(m_3) m_2 \right) - f(m_2) f(m_3) m_1
\]
\[
(m_1 m_2) \cdot m_3 = \left[f(m_1), f(m_2) \right] m_3 - f(m_2) \left(f(m_1) m_3 - f(m_3) m_1 \right)
\]
\[
m_1 \cdot (m_2 m_3) = \frac{f(m_1)(f(m_2) m_3 - f(m_3) m_2)}{f(m_2) m_3 - f(m_3) m_2} - \left[f(m_1), f(m_2) \right] m_3
\]

Conversely given a Lie algebra \(J\):
\[
l : (m, n) = (l, m) \ast n + m \ast (l, n)
\]
we have a map \(J \rightarrow \text{Der}(J, \ast)\), \(l \rightarrow L^l = l \cdot\cdot\cdot\)
which is a homomorphism \(L : m = \left[L, L_m \right]\). Let \(N = \text{span of} \\{m \ast m \mid m \in J\}\). Then \(L_{m, m} = \left[L_m, L_m \right] = 0 \Rightarrow \left[L_m, L_m \right] = 0 \Rightarrow \left[L, L_m \right] = 0 \Rightarrow \)
descends to \(J/N \rightarrow \text{Der}(J, \ast)\), making \(J\) a Lie module over \(J/N\). I should have noted earlier that \(N : J = 0\), \(J : N \supset N\), so that \(J/N\) is a quotient algebra of \(J\) and that \(J/N\) is a Lie algebra of \(J\). Moreover \(f : J/N \rightarrow \mathfrak{g}\) is a \(g\)-module map. But \(j \cdot k = f(j) k - f(k) j\) ?

Start again with a Lie module map \(M \rightarrow \mathfrak{g}\)
and define \(m \ast m' = f(m) m'\). Then
\[
m_1 \cdot (m_2 \cdot m_3) = f(m_1) (f(m_2) m_3 - f(m_3) m_2)
\]
\[
(m_1 m_2) \cdot m_3 = \left[f(m_1), f(m_2) \right] m_3 - f(m_2) \left(f(m_1) m_3 - f(m_3) m_1 \right)
\]
\[
m_1 \cdot (m_2 m_3) = \frac{f(m_1)(f(m_2) m_3 - f(m_3) m_2)}{f(m_2) m_3 - f(m_3) m_2} - \left[f(m_1), f(m_2) \right] m_3
\]
\[
\left[m_1, m_2 \ast m_3 \right] = (m_1, m_2) \ast m_3 + m_3 \ast (m_1, m_2)
\]

Leibniz alg.
Let \(J \) be a Lie algebra:

\[
j(k, l) = (j, k) \cdot l + k \cdot (j, l)
\]

i.e.

\[
J \xrightarrow{f} \text{Der}(J)
\]

\[
f_j = f^j.
\]

and also \(L \cdot J = \left\langle L \right\rangle \cdot J \). Let \(N = \text{span of } f_j \). Then \(J \cdot N \subseteq N \), \(N \cdot J = 0 \Rightarrow \)

\[
L \otimes L \xrightarrow{\otimes} L, \quad j \cdot k \mapsto j \cdot k \text{ descends to } L \otimes N \otimes L \rightarrow L.
\]

\(L \otimes L \rightarrow L, \quad j \cdot k \mapsto f(j)k \). So we learn that any Lie algebra \(J \)

gives from a triple \((g, M, f : M \rightarrow g)\) where \(f \)

is surjective. Then can I conclude that \(g \) is determined by \((M, \cdot)\)?

Look at the above analogy. Given \(M \rightarrow A \)

and \(A \)-bimodule maps, we want to know when

\[
M \otimes_A M \xrightarrow{f \cdot f} M \rightarrow A \rightarrow 0
\]

is exact. Better: Start with \(M \rightarrow A \), then divide \(M \) by span of \(\left\{ f(m) \cdot m' - m \cdot f(m') \right\} \) to get an associative algebra extension \(B \otimes A \rightarrow A \rightarrow 0 \) such that

\[
B \cdot K = K, B = 0.
\]

The natural condition for sort of extension not to exist is for \(A \) to be firm: \(A \otimes A \twoheadrightarrow A \),

i.e.

\[
\text{H}_1(A) = \text{H}_2(A) = 0.
\]

The analogue of this in the Lie case would be \(H_2(j) = \text{H}_2(g) = 0 \). Consider \(M \rightarrow g \) and divide \(M \) by the span of \(m \cdot m = f(m) \cdot m \). Then we should have a Lie algebra extension

\[
0 \rightarrow \mathfrak{h} \rightarrow \mathfrak{h} \rightarrow g \rightarrow 0
\]
such that \(k \) is a trivial \(q \)-module,

i.e. \(k \) is a central extension of \(q \). So we want \(H_{2}(\mathfrak{g}) = 0 \), possibly also \(H_{1}(\mathfrak{g}) = 0 \), to recover \(q \) from the Leibniz algebra \(M \).

Next consider homology. If \((D, \cdot, *)\) is a dialgebra

then the analogue of \(\text{HH}_{0} \) for \(D \) is

\[
D/\text{span} \{ d \cdot d' - d' \cdot d \}.
\]

As \(m \cdot m' - m' \cdot m = m \cdot f(m') - f(m') \cdot m \), it is clear that, when \(\partial \) arises from \(M \to A \), one has \(D/[D, D] \cdot * = M/[A, M] \).

The following assertions seem correct.

1) A dialgebra \(D \) is equivalent to a triple \((A, M, f)\), where \(A \) is an \(\text{assoc. alg.} \), \(M \) an \(A \)-bi-module, and \(f: M \to A \) is an \(A \)-bi-module map, such that \(f \) is surjective and the kernel of \(f \) is spanned by \(m \cdot f(m') - f(m') \cdot m \), \(\forall m, m' \in M \).

2) A unital dialgebra (without a specific choice of \(1 \)) \(D \) is equivalent to a triple \((A, M, f)\) where \(A \) is unital, \(M \) is \(A \)-bi-module over \(A \), and \(f \) is surjective.

2) A Lie algebra \(\mathfrak{g} \) is equivalent to a triple \((g, J, f)\), where \(g \) is a Lie alg., \(J \) a \(g \)-module, \(f: J \to g \) \((g, J, f)\), where \(g \) is a Lie alg., \(J \) a \(g \)-module, \(f: J \to g \) is surjective and the kernel of \(f \) is spanned by \(f(\xi) - f(\eta) \), \(\forall \xi, \eta \in J \).

The above should be equivalences of categories.

Let's assume this and try to calculate free objects.

Let \(V \) be a \(k \)-module and look for the free non-unital dialgebra generated by \(V \):

\[
\xymatrix{ M \ar[r]^{f} & A \ar[d] \ar@{-->}[l]_V \ar[r] & \bar{T}(V) \\
 T(V) \oplus \bar{T}(V) \ar[r] & \bar{T}(V) }
\]
I don't understand the initial case.

Next the free Leib algebra.

\[\begin{array}{c}
\text{free } U(V) \text{ module} \\
generated \text{ by } V
\end{array} \quad \xrightarrow{f} \quad L(V) \]

\[U(L(V)) \otimes V \xrightarrow{f} L(V) \]

\[f(V) \] is the free Leib algebra generated by \(V \)

Next there is a functor \(\text{DiAlg} \to \text{Leib} \) which takes \(M \xrightarrow{f} A \) to \(\text{of} = (A, [,]) \) and \(J = M \).

Considered as \(g \)-module via \(a \cdot m = [a, m] \). This functor has an left adjoint - the universal dialg generated by a Leib algebra. It takes \(J \xrightarrow{f} \text{of} \)

to \(A = U(g) \) and \(M = (U(g) \otimes J \otimes U(g)) \),

Here \(g \) acts on \(U(g) \otimes J \otimes U(g) \) via

\[g(X)(\alpha \otimes f \otimes \beta) = -\alpha X \otimes f \otimes \beta + \alpha \otimes Xf \otimes \beta + \alpha g \otimes X \beta. \]

Put another way \(g \) acts internally on the \(U(g) \) bimodule \(U(g) \otimes U(g) \), and we couple this to the action on \(J \).

\(M \) is the universal \(g \)-module generated by the \(g \)-module \(J \). As is a vector space, it should be true that \(M \cong U(g) \otimes J \).

Higgins' \(\text{A}_{\text{Leib}} : \text{Leib} \to \text{A}_{\text{Alg}} \).

Given \(B \) assoc alg, consider the dialgebra \(B \otimes B \xrightarrow{\mu} B \).

This gives a functor \(\text{Alg} \to \text{DiAlg} \) and we look for the lift adjoint

\[B \otimes B \xrightarrow{\mu} B \]

\[\xrightarrow{(x, y) \mapsto f} \]

\[M \xrightarrow{f} A \]

Thus the universal \(B \) seems to be \(T_\mu (M) = A \oplus M \oplus M \otimes A \).
Now take $M \rightarrow A$ to be
\[(U(g) \otimes T \otimes U(g))_q^g \rightarrow U(g)\] and we get $T_q(U(g) \otimes T)$ which is approx $U(g) \otimes T(J)$.
This agrees with Higgins’ PBW theorem saying that $q_0 U_q \otimes J = S(g) \otimes T(J)$.
October 15, 1975

Moore invariance of K_1 for form rings, a direct approach. Consider $A, P, Q,$
$\phi: Q \otimes P \rightarrow A$ arbitrary A-bimodule map, and
$B = P \otimes Q$ the associated ring. I propose to
define a map $GL(B) \rightarrow K_1[A]$. Suppose given
$1-b \in GL(B)$. We can choose
$p_i = (p_{ji}) \in P^s, \quad q_j = (q_{ij}) \in Q^s, \quad 1 \leq i \leq n, 1 \leq j \leq s$
such that $b = p_i q_i = (p_{ji} q_{ik})$ using summation
convention. Let $p = (p_1 \cdots p_n) \in M_{s \times n}(P)$, $q = (q_1 \cdots q_n) \in M_{n \times s}(Q)$:

$$
\begin{pmatrix}
M_{s \times n}(A) \\
M_{n \times s}(Q)
\end{pmatrix}
\begin{pmatrix}
M_{s \times n}(P) \\
M_{n \times s}(B)
\end{pmatrix}
$$

Because $1-b = 1-pq$ is invertible, we know
that $1-bp \in GL_{n \times n}(A)$. Our task is to show
that the class $[1-qp] \in K_1[A]$ is independent of
the choice of p, q.

By replacing B by $M_{s \times B}$, P by $P^s = M_{s^2}(P)$,
Q by $Q^s = M_{s^2}(Q)$, we should be able to reduce
to $s = 1$. To $b = p_i q_i = (p_1 \cdots p_n)(q_1 \cdots q_n)$.

Suppose now that we have two choices:

$b = p_i' q_i' = p_j' q_j' \quad 1 \leq i \leq k, 1 \leq j \leq l$

Consider $p = (p', p'')$, $q = (q', -q'')$. Then $pq = 0$.
\[1 - \delta p = \begin{pmatrix} 1 - \delta \rho' & -\delta \rho'' \\ \delta \rho' & 1 + \delta \rho'' \end{pmatrix} \]

Claim: this is congruent mod \(E(A) \) to
\[
\begin{pmatrix} 1 - \delta \rho' & 0 \\ 0 & (1 - \delta \rho'')^{-1} \end{pmatrix}
\]

In effect,
\[
\begin{pmatrix} 1 & 0 \\ 0 & (1 - \delta \rho'')^{-1} \end{pmatrix} \begin{pmatrix} 1 - \delta \rho' & -\delta \rho'' \\ \delta \rho' & 1 + \delta \rho'' \end{pmatrix} = \begin{pmatrix} 1 - \delta \rho' & -\delta \rho'' \\ 0 & * \end{pmatrix}
\]

where \(* \) is
\[
= 1 + \delta \rho'' + \delta \rho' (1 - \delta \rho'')^{-1} \delta \rho'' = 1 + \delta \rho' \left(1 + \left((1 - \delta \rho'')^{-1} \delta \rho'' \right) \right)
\]

\[
= 1 + \delta \rho' (1 - \rho'' \delta')^{-1} \rho'' = 1 + \delta \rho' \left((1 - \rho'' \delta')^{-1} \rho'' \right)
\]

\[
= (1 - \delta \rho')^{-1}
\]

Now we are reduced to showing that \(\rho \rho = 0 \)

\[\implies 1 - \delta p \in E(A), \text{ because then it follows} \]

\[\begin{pmatrix} 1 - \delta \rho' & 0 \\ 0 & (1 - \delta \rho'')^{-1} \end{pmatrix} = \begin{pmatrix} 1 - \delta \rho' & -\delta \rho'' \\ 0 & (1 - \delta \rho'')^{-1} \end{pmatrix} \]

is zero in \(K \cdot A \).

So we have to understand the $\mathbf{\text{condition}}$ of the

\[\sum_{i=1}^{n} p_i \otimes q_i = 0 \text{ in a tensor product } P \otimes_A Q. \] \(\text{(Here is where we will use the fact that } B = P \otimes_A Q \text{ and not just } PQ. \) \) One way this condition arises is when \(q = (q_i) \) can be factored \(q = a \rho' (g_i = a_{ij} q_j) \) such that \(p a = 0. \)
For then \(p \otimes q = p \otimes q' = p a \otimes q' = 0. \)

(With indices \(p_i \otimes q_i = p_i \otimes q_j' = p_i q_j' \otimes q_j = 0. \))

It seems that the converse, i.e. \(p \otimes q = 0 \Rightarrow \exists \ q = a q' \) such that \(pa = 0 \), is not true. But we have

Lemma: If \(p \otimes q = 0 \) in \(\tilde{A} \otimes A Q \), then \(\exists \ p', \ q', \ a, \ a' \) such that

\[(p \ p')(a') = 0, \quad (q') = (a) q'. \]

In other words, if we enlarge \(p \) to \((p \ p') \) and \(q \) to \((q') \), then we get the desired factorization. In the above \(a, a' \) are matrices over \(\tilde{A} \), but when \(Q = A Q \) we can further factor \(q' = a'' q'' \) with \(a'' \) a matrix over \(A \) and so assume \(a, a' \) are over \(A \).

Proof. We can suppose \(P \) is finitely generated. Let \(p' \) be a finite set of generators. Consider the exact sequence

\[0 \rightarrow K \rightarrow T \oplus T' \xrightarrow{f} P \rightarrow 0 \]

where \(T, T' \) are free \(\tilde{A} \)-modules with bases \(x, x' \), and \(f(x) = p, \ f(x') = p' \). We have an exact sequence

\[K \otimes_A Q \rightarrow T \otimes_A Q \oplus T' \otimes_A Q \rightarrow P \otimes_A Q \rightarrow 0\]

so \(\exists \ k \in K, \ g \in Q \) such that

\[k \otimes q' \mapsto x \otimes g\]
We have \(k = xa + xa' \) for unique \(a, a' \) since \((x x') \) is a basis for \(\mathbb{T} \oplus \mathbb{T}' \). Then

\[
x \otimes q = (xa + xa') \otimes q' = x \otimes aq' + xa' \otimes q'
\]

where \(q = aq' \), \(a'q' = 0 \). Also \(k = xa + xa' \rightarrow 0 \) in \(P \) implies that \(pa + p'a' = 0 \). \(\ldots \) \((p, p')(\langle a \rangle) = 0 \)

and \(\langle b \rangle = \langle a' \rangle q' \).

Here's the problem you ran into when you don't allow the extra elements \(p' \). Suppose \(p \in P \), \(q \in Q \) such that \(p \otimes q = 0 \) in \(P \otimes A \). Consider the exact sequence

\[
0 \longrightarrow A/\alpha \longrightarrow P \longrightarrow P/pA \longrightarrow 0
\]

where \(\alpha = \{ p \in A \mid \alpha(p) = 0 \} \). Then

\[
\text{Tor}_i^A(P, Q) \longrightarrow \text{Tor}_i^A(P/pA, Q) \longrightarrow A/\alpha \otimes Q \longrightarrow P \otimes Q
\]

is not exact.

I went \(q \in \alpha \otimes Q \), for then \(q = aq' \) with \(pa = 0 \).
So if I take \(P \) projective, \(P/pA \) not right flat, then I can find \(Q \) such that \(\text{Tor}_i^A(P/pA, Q) \otimes \neq Q/\alpha \otimes Q = 0 \), and I get a counterexample.
So back now to \(p \circ g = 0 \) and the problem of showing that \(1 - gp \in E(A) \).

Use the lemma to get \((p, p')(\alpha') = 0 \), \((g') = (\alpha')g' \).

Consider

\[
1 - (\alpha')(p, p') = \begin{pmatrix}
1 - gp & -gp' \\
0 & 1
\end{pmatrix}
\]

This is equivalent to \(1 - gp \) modulo \(E(A) \).

Next

\[
1 - (\alpha')(p, p') = 1 - (\alpha')(g'(p, p')) = 1 - (\alpha')(g'p, gp')
\]

\[= 1 - \alpha' \alpha' \quad \text{where} \ \alpha' \alpha = 0.
\]

But Vaserstein's identity tells us that
\[
\begin{pmatrix}
1 - \alpha' & 0 \\
0 & 1 - (\alpha' \alpha')
\end{pmatrix}
\]
is in \(E(A) \) in general, so we conclude that
\(1 - \alpha' \alpha' \) and \(1 - gp \) are in \(E(A) \) as desired.

I forgot to give the simpler example, namely if \(pa = 0 \), \(g = ag' \), then

\[
1 - gp = 1 - a(g'p) \quad \text{where} \ a' \alpha = 0
\]

so \((1 - gp, 0) \) is a product of elementaries.

At this point I should know that given \(1 - b = 1 - pq \in GL(P(G_\alpha)) \), that \([1 - gp] \in K_\alpha A\) depends only on \(1 - b\) and not on the choice of \(p, g \).
Basic forms of the Vaserstein identity:

\[
\begin{pmatrix} 1 & -g \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix}
\]

Thus,

\[
\begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \circ & 1 \end{pmatrix}
\]
October 19, 1995

Attempt to define HH intrinsically for a Ross category M.

The first idea is to pick $P \in M$, $Q \in M$ and a surjection $f: Q \otimes P \rightarrow A$, where P and Q are flat. Suppose I choose a coordinate system $M \cong M(A)$, A a field. Then P becomes a field flat A-module, Q becomes a field flat A-module, and $f: Q \otimes P \rightarrow A$ is an A-bimodule surjection. In general, if $M \rightarrow A$ is an A-bimodule map, one gets a presheaf of abelian groups $[M \otimes A]^*$. In fact before this one has a presimplicial A-bimodule with augmentation to A:

\[
\begin{array}{ccc}
M \otimes M \otimes M & \xrightarrow{\Delta} & M \otimes A \times M \\
A & & A \\
\end{array}
\]

(this is $T_A(M[1]) = R_A(M \rightarrow A)$ which is a DG algebra after making it a complex)

In the case of $Q \otimes P \rightarrow A$ we get the augmented complex

\[
\begin{array}{ccc}
Q \otimes B \otimes B \otimes P & \rightarrow & Q \otimes B \otimes P \\
Q & \rightarrow & Q \otimes P \\
& & A \\
\end{array}
\]

where $B = P \otimes A Q$, and the presheaf object

\[
\left[(Q \otimes P) \otimes A \right]^* = [P \otimes A Q \otimes A]^* = [B \otimes A]^*
\]

which gives the Hochschild homology

\[
H_*(\tilde{B}, B) = H_*(B \otimes_B L)
\]

of \tilde{B} with coefficients equal to the bimodule B.

Recall that $HH_*(B) = HH_*(\tilde{B})/\mathbb{Z}$ where

\[
HH_*(\tilde{B}) = H_*(\tilde{B} \otimes_{\mathbb{Z}} L)
\]

and the exact sequence $0 \rightarrow B \rightarrow \tilde{B} \rightarrow \mathbb{Z} \rightarrow 0$.
of B-bimodules yield a Δ:

$$\mathcal{B} \longrightarrow \tilde{\mathcal{B}} \longrightarrow \mathcal{Z} \longrightarrow$$

hence a long exact sequence

$$H_*(\tilde{\mathcal{B}}, \mathcal{B}) \longrightarrow HH_*(\tilde{\mathcal{B}}) \longrightarrow H_*(\mathcal{Z}, \mathcal{B}) \longrightarrow$$

base homology $H_B^*(B)$

except for \mathcal{Z} in degree 0.

Thus one has

$$H_*(\tilde{\mathcal{B}}, \mathcal{B}) \longrightarrow HH_*(\tilde{\mathcal{B}}) \longrightarrow H_B^*(\mathcal{B}) \longrightarrow$$

which one can also see using the s.e.s. of complexes

$$0 \longrightarrow (\mathcal{B} \otimes (x+1), b) \longrightarrow \mathcal{C} \longrightarrow (\mathcal{B} \otimes (x+1), b') \longrightarrow 0.$$}

The point is that there is a canonical map

$$H_*(\tilde{\mathcal{B}}, \mathcal{B}) \longrightarrow HH_*(\tilde{\mathcal{B}})$$

which is an isomorphism \iff $H_B^*(\mathcal{B}) = 0$, i.e., B is h-unital.

When P_A, Q are flat, B is left and right flat, and conversely. In particular B is h-unital so we see that $[(Q \otimes P) \otimes A]^k$ gives the Hochschild homology.

It seems that we have proved

Profl. Given $Q_A, P_A, \varphi: Q \otimes P \to A$, then as usual $[(Q \otimes P) \otimes A]^k$ gives the Hochschild homology iff P_A is h-unital.
Intrinsic construction of HH and HC for a Poisson category M.

Let's choose a coordinate system $M = M(A)$ to do our calculations. Let $M \rightarrow A$ be an A-bimodule, where M is a form flat A-bimodule. Then we have a cyclic module $[M \otimes_A]^\otimes$ which we claim computes the Hochschild and cyclic homology of M. (The latter may be defined as $HH_*(B)$ and $HC_*(B)$ for any coordinate system $M = M(B)$ such that B is h-unital.)

The first case to consider is when $M = Q \otimes P$ where A, P are form flat over A. Then

$$[M \otimes_A]^\otimes = [(Q \otimes P) \otimes_A]^\otimes = [P \otimes Q]^\otimes = B^\otimes$$

is the cyclic module associated to the ring B. Now B is left and right flat in this case, in particular h-unital. Thus we know B^\otimes yields $HH_*(B)$ and $HC_*(B)$, which are the HH_* and HC_* associated to M as B is h-unital. (I recall it is not a complete triviality that $H_*(B^\otimes, B) = HH_*(B)$, but that this uses the h-unitality of B.)

Next case: A h-unital, M form flat A-bimodule. I propose to identify $H_*([M \otimes_A]^\otimes, b)$ with $H_*(A \otimes_A)$. Consider the DG alg:

$$\cdots \rightarrow M \otimes_A M \rightarrow M \rightarrow A$$
where the differential d is the unique degree -1 derivation on $T_A(M)$ which is zero on A and $f:M \rightarrow A$ on M.

Since M is a flat A-bimodule so is $T^n_A M$ for all $n \geq 1$. Indeed, M is a filtered inductive limit of fg free bimodules, $(\tilde{A} \otimes \tilde{A})^n$, so we restrict to seeing that $(\tilde{A} \otimes \tilde{A})^n \otimes (\tilde{A} \otimes \tilde{A}) = \tilde{A} \otimes \tilde{A} \otimes \tilde{A}$ is a flat A-bimodule, which results from A being flat over the ground ring Z.

Also, since M is a firm A-bimodule so is $T^n_A M$, $\forall n \geq 1$. This is clear since firm for a bimodule means firm on both sides.

Thus

$$\rightarrow M \otimes_A M \rightarrow M \rightarrow A \rightarrow 0$$

is a complex of firm flat A-bimodules with augmentation to A.

Next we show this is a resolution module and left A-modules. Look at the homology of this DG ring: $H_*(T_A M, d)$. Left and right multiplication by A on this homology factor through left + right mult by $H_0(T_A M, d) = 0$. Thus $H_*(T_A M, d)$ is killed by $\tilde{A} \otimes \tilde{A} \otimes \tilde{A}$. (More concretely given $a \in A$ choose $\xi \in M$ such that $d(\xi) = a$, then $h = \xi$ satisfies $[d, h] \alpha = d(\xi \alpha) + \xi d(\alpha) = a \alpha$, showing that $A \cdot H_*(T_A M) = 0$.

Now $A \cdot h$-unital $\iff A \otimes_A -$ kills complexes with nil-homology. Apply this functor to the complex

$$\rightarrow M \otimes_A M \rightarrow M \rightarrow \tilde{A}$$

because all modules are flat over A we know that
\[A \otimes_A T^\infty_A M = A \otimes_A T^\infty_A M = T^\infty_A M \]

On the other hand since \(T^\infty_A M \) has nil-homology, and \(A \) is \(h \)-unital we know this complex is acyclic.

At this point we have a flat bimodule resolution of \(A \)

\[\cdots \rightarrow M \otimes_A M \rightarrow M \rightarrow A \]

so applying \(- \otimes_A \) gives

\[([M \otimes_A]^\otimes A, b) \sim A \otimes_A A \]

Thus for \(A \) \(h \)-unital, \(M \) flat \(\text{bimod} \rightarrow A \), we have \(\text{HH}_k^* ([M \otimes_A]^\otimes A, b) \sim \text{HH}_k^* A \), a canonical isomorphism.

A remaining point is that given two such \(M \)'s, say \(M_1 \) and \(M_2 \), we can form either \(M_1 \otimes_A M_2 \) or \(M_1 \oplus M_2 \) and then get

\[([M_1 \otimes_A M_2]^\otimes A, b) \sim ([M_1 \oplus M_2]^\otimes A, b) \]

and thus get not only a canonical isomorphism of \(\text{HH}_k \), but also \(\text{HC}_k \), for the cyclic modules \([M_1 \otimes_A]^\otimes A\) and \([M_2 \otimes_A]^\otimes A\).

Then taking \(M_2 = Q \otimes P \), we identify these with \(\text{HH}_k^* (B), \text{HC}_k^* (B) \).

Finally we want to get beyond assuming \(A \) is \(h \)-unital. The point will be that if we have \(Q \otimes P \rightarrow A \) with \(Q \) flat over \(A \), then the transport of \(M \) to the \(\text{bimodule} \ P \otimes_A M \otimes_A Q \) over \(P \otimes_A Q = B \) is a flat \(\text{bimodule} \) over \(B \).
Consider the rings \(A \otimes B \), \(B \otimes B^\# \). Then

\[P \otimes Q \] is a left-\(B \otimes B^\# \), right-\(A \otimes A^\# \) bimodule, and

\[Q \otimes P \] is a left-\(A \otimes A^\# \), right-\(B \otimes B^\# \) bimodule.

Moreover, these rings are firm, and the bimodules are firm on both sides. Also,

\[
(P \otimes Q) \otimes_{A \otimes A^\#} (Q \otimes P) = (P \otimes Q) \otimes_{A^\#} (Q \otimes P) = B \otimes B
\]

\[
(Q \otimes P) \otimes_{B \otimes B^\#} (P \otimes Q) = (Q \otimes P) \otimes_{B^\#} (P \otimes Q) = A \otimes A
\]

Thus, we should have a completely firm Monta context:

\[
\begin{pmatrix}
A \otimes A^\# & Q \otimes P \\
P \otimes Q & B \otimes B^\#
\end{pmatrix}
\]

We can then conclude that

\[
M \longrightarrow (P \otimes Q) \otimes_{A \otimes A^\#} M = P \otimes_A M \otimes_A Q
\]

carries firm flat \(A \)-bimodules to firm flat \(B \)-bimodules.

I use here that firm \(A \)-bimodules, i.e., \(A \)-bimodules

\(M \) which are firm on either side, are the same

as \(\otimes \) \(A \otimes A^\# \)-modules which are firm

wrt the ideal \(A \otimes A^\# \), equivalently firm modules

for the ring \(A \otimes A^\# \). Check:

\[
(A \otimes A) \otimes_{A \otimes A^\#} M = A \otimes_A M \otimes_A A
\]

and

\[
A \otimes_A M \otimes_A A \longrightarrow M \implies M = AM A \subset AM, MA \subset M
\]

Also,

\[
A \otimes_A M \otimes_A A \longrightarrow A \otimes M \otimes_A A
\]

\(\text{since } AM = M \)

\(\Rightarrow \) \(A \otimes_A M \otimes_A A \longrightarrow M \) \(\text{is left and right firm.} \)
Theorem: Let A be an ideal in B and M a B-module. Then $A \otimes_B M \simto M \Rightarrow B \otimes_B M \simto M$.

Proof: The hypothesis implies $- \otimes_B M$ inverts A-nil-ideal, in particular $A \subset B \subset B$.

Application: If M is a trinodule over A, then $A \otimes_A M \otimes_A A \simto M \iff A \otimes_A M \simto M$ and $M \otimes_A A = M$.

Pf. (\Leftarrow) clear. (\Rightarrow): The hypothesis says that the $A \otimes A$ module M is flat over $A \otimes A$. The lemma says M is also flat with the ideal $A \otimes A$, i.e. $A \otimes A \otimes_A A \simto M$, but $M \otimes_A A \simto M$, so $A \otimes_A M \simto M$.

added

Directed proof for a (B,A)-trinodule P that $B \otimes_B P \otimes_A A \simto P \iff B \otimes_B P \simto P$ and $P \otimes_A A \simto P$.

\Leftarrow clear. \Rightarrow: $B^{(u)} \otimes_B P \otimes_A A^{(u)} \simto B \otimes_B P \otimes_A A \simto P$ and clear $B^{(u)} \otimes_B P \otimes_A A^{(u)}$ is flat on both sides.