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Ky for nonunital rings and Morita invariance

Daniel Quillen

The subject of this paper is a variant KoA of KoA for a nonunital ring A, which

has the advantage of being invariant with respect to the kind of Morita equivalences
considered in [Q].

To explain how KJA arises, let R be a unital ring containing A as ideal, for exam-
ple, the ring A obtained by adjoining an identity to A. Let £(R, A) be the category
of finite projective complexes U over R such that U /AU is acyclic, and let KoL(R, A)
be the associated Grothendieck group in which homotopy equivalent complexes are
identified and short exact sequences provide the usual relations. Our main result says
that this group is Morita invariant in the following sense.

Theorem 1) If A, A" are ideals in R such that A™ C A', A™ C A for some n, then
KoL(R,A) ~ KoL(R, A").

R Q

P S

2) Given a Morita context
linking the unital rings R and S, then KoL(R,QP) ~ KoL(S, PQ).
As a corollary one obtains the excision result
KoL(A, A) 3 KoL(R, A)

which shows that KoL(R, A) depends only on the nonunital ring A, and justifies using
the notation KJA for it.

To gain a better understanding of K}A we prove
KoL (R, A) & KoL(R, A)

where L'(R, A) is the full subcategory of L(R,A) consisting of 1-dimensional chain
complexes. An object of this subcategory is the same as a map f: P — Q in the
category P(R) of finitely generated projective R-modules, such that the induced map
f:P/AP - Q/AQ is an isomorphism. In terms of these maps K] A can be described

as Tollows.

Theorem KjA =~ KoL'(R, A) is the abelian group generated by elements [f], where
I is any map as above, subject to the relations:

D[P Q4lf P —Ql=[fof:PoP Qo]

2) [f:P'—)P]—{—[g:P»—}Q]:[gf:P'—%Q]

3) [f] =0 when f is an isomorphism.
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On the other hand, KyA can be identified with the relative group Ko(R — R/A)
consisting of classes of triples (P,Q,w) with P,Q in P(R) and w : P/JAP 5 Q/AQ.

There is a canonical homomorphism
K{A — KyA

induced by sending f : P — Q to the triple (P,Q, f), which is always surjective but
not an isomorphism in general. When A is a C*-algebra we prove this surjection is
an isomorphism, and deduce the following application (compare [A], §2.6).
Theorem Let Y be a closed subspace of a compact space X. Then the Grothendieck

group of complexes of vector bundles on X which are acyclic over Y is isomorphic to
the topological K -theory group K°(X,Y).

In proving Morita invariance of K, we need to enlarge the category of finite projec-
tive complexes to include all complexes homotopy equivalent to some finite projective
complex. In the first section we characterize such complexes as those whose identity
map is homotopic to a ‘nuclear’ map, and the second section contains a corresponding
A-nuclearity criterion for complexes homotopy equivalent to complexes in L(R,A).
We use this criterion in the next two sections to establish Morita equivalence up to
homotopy for the categories L(R, A) and LY(R,A), and Morita invariance of their
Grothendieck groups.

The fifth section is concerned with the reduction of KoL(R,A) to KoL*(R,A). By
Morita invariance it suffices to treat the case R = A, where we exploit the fact that a
complex in ,C(;l, A) can be easily compared to the contractible free complex obtained
by reducing modulo A and then tensoring with A.

The next two sections discuss situations where the canonical map KjA — KpA
s, or fails to be, an isomorphism. In the eighth section we examine KoL!(R, A) in
detail and derive the presentation of it we have mentioned. Finally, the last section is
devoted to a Whitehead type formula which decomposes the class in KjA of a complex
in L(R, A) into classes of 1-dimensional complexes.




§1. We fix a unital ring R and work with unitary left modules over R and R-linear
maps. Given modules M, N there is a canonical map of abelian groups

Hompg(M, R)® RN — Homg(M, N) (1)

sending A®n to the map (A.n)(m) = Alm)n.

A module map f : M — N will be called nuclear when it lies in the image of
(1). This is equivalent to f factoring through a finitely generated free module. The
identity map 13 is nuclear iff M is a finitely generated projective module, and in this
case (1) is an isomorphism for all N.

We next extend these ideas to complexes of R-modules: [ = @D, U,., n€Z, with
differential d of degree —1. All complexes will be assumed bounded unless stated
otherwise.

Let U,V be complexes over R, and let Hompg(U,V) be the mapping complex, , ——n__

where Hompg(U, V), is the abelian group of graded module maps of degree n and the diffoent
d, fl=d- f—(=1)¥If.d. There is a canonical map of complexes of abelian groups | £

HomR(U, R) ®RV - HomR(U, V) (2)

sending A@v to (Aw)(u) = (—1)FF\(w)v. We call f € Hompg(U, V) nuclear when
it lies in the image of (2), equivalently, when each component f,, : U, — V. is a
nuclear map of modules.

By a finite projective (resp. finite free) complex we mean a bounded complex of
finitely generated projective (resp. free) modules. Clearly the identity map 1y is
nuclear iff U is a finite projective complex, and in this case (2) is an isomorphism for
all V.

This nuclearity criterion will now be extended to describe complexes which are
(chain) homotopy equivalent to finite projective complexes. We recall that U is said
to be dominated by V when U is a homotopy retract of V', i.e. there exist maps
1: U=V, 7:V = U of complexes, such that Jt is homotopic to 1y.

Proposition 1.1 The following are equivalent:

1) U is homotopy equivalent to finite projective complex.
2) For any V the map (2) is a homotopy equivalence.

3) lu is homotopic to a nuclear map.
4)

U is dominated by a finite free (resp. finite projective) complez.

Proof. The implications 1) => 2) and 2) = 3) are easy.

3) = 4). Assuming 3) there is a homotopy operator & € Hompg(U,U); such that
J =1—dh — hd is nuclear. In each degree f factors through a finite free module
which we can take to be zero when f is zero in that degree. Thus there is a finite free
graded module T and graded module maps 1: U — T, j:T — U such that f = Je.
Since 1dj - idj = id(1 — dh — hd)dj = 0, T becomes a. complex with the differential 7dj.
Also ' = i(1—dh) : U = T, §/ = (1 —hd)j : T — U are maps of complexes, since
1dj - 1(1 — dh) = id(1 — dh — hd)(1 — dh) = (1 — dh) - d and similarly for j/. Finally




J" = (1= hd)(1 —dh — hd)(1 — dh) =1 —2dh — 2hd + hdhd + dhdh = 1 — dh/ — h'd
where A’ = 2h — hdh. Thus U is dominated by the finite free complex 7T'.
4) = 1). See [R1], p. 106. O

§2. Let A be an ideal in R. We now study finite projective complexes over R

which are acyclic modulo A, and also complexes which are homotopy equivalent to
them.

Lemma 2.1 Let U a complez over R whose identity map is homotopic to a map f
such that f(U) C AQ. Then for any ideal A' containing A" for some n the inclusion

A'U C U is a homotopy equivalence.

Proof. Let h be a homotopy operator such that f=1-1[d,h]. Then f(A"U) C
AU R(AMU) C AU for all n € N, and hence f,h provide a homotopy inverse
for the inclusion A"M'U ¢ AU for all n. Consequently A”U C U is a homotopy
equivalence for all n. In particular 1y is homotopic to a map with image contained in
A™U, and hence in A'U when A™ C A’. By the same arguments with A’ in place of
A, we conclude that AU c U is a homotopy equivalence. O

Proposition 2.2 Let U be a finite projective complex over R. The following are
equivalent:

1) U/AU s acyclic.

2) UJAU s a contractible complex over R/A.

3) 1y is homotopic to a map with image contained in AU .

4) The map AQRU — U, a®u — au is a homotopy equivalence.

Proof. The hypothesis on U implies that U/ /AU is a finite projective complex over
R/A. Thus 1) = 2), because any right bounded acyclic complex of projective modules
1s contractible.

Assuming 2), let'h be an R/A-linear homotopy operator on U/AU such that
[d,h] =1. As U is projective in each degree, we can lift & to an R-linear homotopy
operator h on U. Then f =1~ [d,h] induces zero on U/AU ,so f(U) C AU, yielding
3). ‘

Next note that the multiplication map A®rU — AU is an isomorphism when U
is a complex of projective modules. Assuming 3), we know the inclusion AU U is a
homotopy equivalence by the preceding lemma, so 4) holds.

Finally 4) = 1) by the homology exact sequence arising from the short exact se-
quence AQrU — AU — U/AU. O

Define £(R, A) to be the category of finite projective complexes over R which are
acyclic modulo A, and hence satisfy all the conditions of the preceding proposition.

Proposition 2.3 Let A and A’ be two ideals in R which define the same adic topology,
e. A'DA™ and A D A™ for some n. Then L(R,A)=L(R,A).




This follows from the preceding lemma and proposition.

Although we are mainly concerned with complexes in L(R, A), it will be necessary
when we discuss Morita equivalence to consider more generally complexes homotopy
equivalent to complexes in L(R, A). We now derive a useful nuclearity criterion for
these complexes.

Let U(R, A) be the categpry of complexes over R which are h3m2‘§fy'equivalent ) )
to complexes in L(R, A). v&m@ am UVAM/,‘ o U, A e W% D-+
7 ’ of 4.2,

Theorem 2.4 A complez U over R isin U(R, A) iff 1y is homotopic to an A-nuclear
map [, by which we mean that f lies in the umage of the canonical map

HomR(U, A)@RU —¥ HomR(U, U)
sending A@u to (Au)(u') = (=1)MMI\(y/)y.

Proof. Assume 1y b6 homotopic to the A-nuclear map f. Then f is nuclear and s
f(U) C AU, so U is homotopy equivalent to a finite projective complex by 1.1, and
satisfies condition 3) of 2.2. Thus U is in U(R, A).

Conversely, assume U is in U (R, A), and consider the commutative square of canon-
ical maps

HOIIlR(U, R)@RA(X)RU — HomR(U, R)@RU
N3 N3
Hompg (U, A)®rU — Hompg(U,U)

The top arrow is a homotopy equivalence by 2.2, 4), and the right arrow is a homo-
topy equivalence by 1.1, 2). Consequently 1y is homotopic to a map f coming from

the upper left corner, hence contained in the image of the bottom arrow. Thus f is
A-nuclear. O

§3. We consider a Morita context

(5)

that is, a unital ring equipped with a splitting into four abelian subgroups such that
when the elements are written as 2 x 2 matrices the multiplication is consistent with
matrix multiplication. It follows that R and S are unital rings, P is an (S, R) bi-
module, and Q is a (R, S) bimodule. Also we have an R-bimodule map Q®sP — R,
q®p = qp and an S-bimodule map PRrQ — S, P®q + pq, satisfying the asso-

ciativity conditions (gp)g’ = ¢(pq), (pg)r" = p(gp’). Conversely this data gives an
equivalent description of a Morita context.

This Morita context determines a functor P ®pr— from R-modules to S -modules,
and a functor Q® s— in the opposite direction, together with natural transformations
QOsPOrM — M, P®RrQ®sN — N. These functors and natural transformations
extend to complexes over R and S in an evident way.



Let A be the ideal QP in R, and let B be the ideal PQ in §S. When A = R
and B = .S we have the classical Morita equivalence situation, where the categories of
modules over R and S are equivalent.

Recall that (R, A) is the category of complexes over R which are homotopy equiv-
alent to finite projective complexes acyclic modulo A, and define U(S, B) similarly.

Theorem 3.1 The functors PQr—, Q@ g— map U(R, A), U(S, B) into each other,
and the canonical maps Q®sPQrU — U, POrQ®sV =V for U in U(R,A), V
in U(S, B) are homotopy equivalences. '

Proof. We first show that Q®sPQrU — U is a homotopy equivalence for I in
U(R, A). Consider the commutative diagram

Q®5P®RA — A@RA

+ v
Q¥®sP' — A

where the horizontal and vertical arrows given in the obvious way by multiplication in
the Morita context. To define the diagonal arrow, let a,a’ € A and choose representa-

tions a =Y g;p;, o' = > q;p}. From 4pi¢; ®p; = qi®@piq;p; we obtain
“(Z ;®p;) = (Z ¢ ®pi)a’
7 7

in ®sP. The first (resp. second) expression shows this element is independent of
the choice of representation of a (resp. a'). We thus get a well-defined map A x A —
@ ®sP, which extends to give the diagonal arrow.

Now apply the functor —® grU to this diagram. The vertical maps become ho-
motopy equivalences as ARQpU — U is a homotopy equivalence. Here we use the
equality aa’®u = a®a’u of the two possible multiplication maps from AQgrAR U
to A®RU, and similarly in the case of the left vertical arrow. It then follows formally
that the horizontal maps become homotopy equivalences. In effect, the diagonal ar-
row provides the required homotopy inverses. Thus we have homotopy equivalences
QOsPORU — A®gU — U, yielding the desired result.

Next we show that if U is in (R, A), then V = PQ U is in U(S, B). We consider

commutative diagram of canonical maps

HomR(U, R)@RQ®5P®RU —1—U—> HomR(U, R)@RU -i> HomR(U, U)
\J 3
Homs(v, P)®3Q®5V -y—> Homs(V, B)@SV —z-> HomS(V, V)

where the vertical maps arise from effect of the functor P® r—- The map y is induced
by sending A®¢q € Homs(V, P)@QQ to v = A(v)q in Homs(V, B), and w is induced
by the map Q®sP® gU — U, which we have just shown to be a homotopy equivalence.
Hence w is a homotopy equivalence, and z is a homotopy equivalence by 1.1, 2). Thus

the



ly 1s homotopic to a map coming from the upper left corner. It follows then that 1y
is homotopic to a map in the image of z, i.e. a B-nuclear map, so V' is in U(S, B) by
2.4.

By symmetry it follows that if V is in U(S,B), then Q®sV is in U(R,A), and
P®rQ®sV — V is a homotopy equivalence. O

Let HolU/(R, A) be the homotopy category having the same objects as U(R,A) and
homotopy classes of maps for its morphisms. It is a triangulated category where the
distinguished triangles arise from short exact sequences of complexes which are split

exact in each degree. Theorem 3.1 yields immediately the following Morita equivalence
for the homotopy categories.

Corollary 3.2 The functon;P@R—, Q® s~ givew inverse equivalences of triangulated
categories between HolU(R, A) and Hol(S, B).

§4. The Grothendieck group KolU(R, A) is defined to be the abelian group gener-
ated by elements [U] for each object U in U(R, A) subject to the relations:
a) [U] = [U'] + [U"] when there is a short exact sequence U’ — U — U” which is
locally split, i.e. split exact in each degree.
b) [U] = [U'] when U and U’ are homotopy equivalent.

We define KoL(R, A) similarly. Note that any short exact sequence in L(R, A) is
locally split.

Proposition 4.1 On has an isomorphism KoL(R,A) = KoU(R,A) induced by the
inclusion of L(R, A) in U(R, A).

Proof. Given U in U(R,A) we can choose a T in L(R, A) which is homotopy
equivalent to U. The element [T'] € KoL(R, A) is clearly independent of the choice of
T', so we have a well-defined map ¢ : U [T] from objects of U(R, A) to KoL(R, A).

The map ¢ clearly equalizes homotopy equivalent complexes, and we now check
that it is additive for a locally split short exact sequence U’ — U — U”. We can
assume U = U’ @ U" with differential &’ + d" + 0, where 6 : U” — U’ has degree —1
and satisfies d'0 + §d” = 0, Choose homotopy equivalences a : T — U", b: U’ — T",
and let T' be T" @ T" with differential d’ + d” 4 bfa. We then have a locally split short
exact sequence 1" — T' — T" in L(R, A) such that 7' homotopy equivalent to U, so
p(U) = o(U') + (U").

Consequently ¢ induces a homomorphism Kyl (R, A) - KoL(R, A), which is eas-
ily seen to be inverse to the obvious map going the other way. O

Theorem 4.2 1) KoL(R,A) is Morita invariant, i.e. it depends only on the adic
topology associated to A and in the situation of 3.1 there is a canonical isomorphism
KoL(R, A) >~ KoL(S, B).

2) Let A=Z @ A be the ring obtained by adjoining an identity to A. Then we have




an isomorphism I{O[z(ji, A) 5 KoL(R, A) induced by extension of scalars with respect
to the canonical unital ring homomorphism A — R. In particular, up to canonical
isomorphism KoL(R, A) depends only on the nonunital ring A.

Proof. 1) The part concerning adic topologies is clear from 2.3. For the rest it
suffices by 4.1 to produce a canonical isomorphism Kol (R, A) ~ KoU(S, B) in the
situation of 3.1. This follows from 3.1 and the definition of Ky, using the fact that

the functors POgr—, Q® s— respect homotopy equivalences and locallyjshort exact
sequences.

2) We apply 3.1 in the case of the Morita context

R R

A A
sitting inside 2 X 2 matrices over K. The functor Q® z— is extension of scalars
with respect to the canonical homomorphism A — R. Thus we have Kod(A,A) =

KoU(R, A) induced by extension of scalars. Then 2) follows using 4.1 and the fact
that extension of scalars preserves finitely generated projective modules. O

We now briefly mention the analogous result for n-dimensional chain complexes.
Let L*(R,A), U™(R, A) be the full subcategories of L(R,A), U(R, A) respectively
consisting of complexes U such that Uy =0 for k < 0 and &k > n. Corresponding to
4.1 we have

KoL™(R, A) 5 KoU™(R, A)

proved in the same way. The only new point is to observe that if U is an n-dimensional
chain complex which is homotopy equivalent to a finite projective complex T', then on
T' there is a homotopy operator A such that [d,h] =1 in degrees k < 0 and k > n,
and consequently we can split off contractible complexes from T and assume 7 is a
finite projective n-dimensional chain complex.

Corresponding to 4.2 we have the following with the same proof.

Theorem 4.3 1) K;E”(R, A) is Morita invariant.
2) There is an isomorphism KoLM(AA) = KoL™(R, A) induced by extension of
scalars with respect to the canonical homomorphism A — R.

§5. The category of all finite projective complexes over R is known to have the
same Grothendieck group as the subcategory of 0-dimensional chain complexes, i.e.

P(R). The analogous result for L(R, A) requires 1-dimensional chain complexes in
general. We shall prove

Theorem 5.1 The inclusion of L(R,A) in L(R,A) induces an isomorphism
KoL'(R,A) 5 KoL(R,A).



By 4.2, 4.3 it suffices to treat the case R = A. Let £! stand for 151(121, A) and
similarly for £. We begin by establishing surjectivity.

Given U in £, we put U# = A®z(UJAU). Since U/AU is a contractible finite
projective complex over Z, U# is a contractible finite projective complex over A. Note
that there is a canonical isomorphism U#JAU# = UJAU .

Lemma 5.2 There ezist maps of module complezes [:U* — U, g: U — U¥ which
cover the canonical isomorphism modulo A .

Proof. Since U is projective, the exact sequence
0= AU* — U* - U¥/4U* 5 ¢
gives rise to an exact sequence of mapping complexes
0 — Hom; (U, AU#) — Hom (U, U*) — Horm(U, U*JAU#) = 0

The mapping complex on the left is contractible because AU# is contractible. It fol-
lows that the cycle in the mapping complex on the right, which is represented by the
map U — U/AU = U#/A#U, can be lifted to a cycle in the middle complex. This
yields the desired map g, and f is obtained by a similar argument. O

Let f: U#* — U as above, and let C' be the mapping cone on f, that is, C, =
U¥ & U, with differential ( ‘Od g )

Let F7,C be the subcomplex made of U,f& and U for £ < n. These subcomplexes
form a locally split filtration of C such that F,C/F,_1C is the n-th suspension of
fu : U¥ — U, considered as an object of £!. Hence we have [C] = Z(=D)"[f,] in
KoL, showing that [C] lies in the image of KyL!. On the other hand, U and C are
homotopy equivalent because U# is contractible, so [U] = [C], proving surjectivity.

Our next task is to refine the preceding argument to produce a homomorphism
KoL — KoL'. We first prove two lemmas which are valid when R is any unital ring
containing A as ideal.

Observe that an object U of L1(R, A) is the same as a map f: P — Q in P(R),
which is an isomorphism modulo A. We write [f] for the element [U] of KoLY(R, A).

Lemma53 If f: PP — P, g: P — Q are maps in P(R) which are isomorphisms
modulo A, then [gf] = [f] + [g] in Ko LY R, A).

Proof. There are short exact sequence in £1 (R, A)

0 - P -5 PP L, p g
Il gfe@ll gl

!

0—>P—"/—>Q@PL+Q—>O

with i = (3), j=(f 1), =(3),and /' = (1 —g). Hence [f]+[g] = [¢f @ 1] =
lgf]. O




Lemma 5.4 Let f:U =V, g:V =W be maps of finite projective complezes over
R which are isomorphisms modulo A, and define

X(f) =2 2(=1)"[fa] € KoL'(R, A)

n

and similarly for g. Then

1) x(9f) = x(f) + x(9),
2) If both U and V are contractible, then x(f)=0.

Proof. 1) follows immediately from the preceding lemma.
2) As U, V are contractible, we have a map of short exact sequences in P(R)

0 — Z,U - U, = Lo U — 0

Znf | fad Znaf
0 = ZV = V, = Z..V =0

where Z, denotes the kernel of d in degree n. Since each f, is an isomorphism mod-
ulo A, the same holds for each Z,f by induction. Thus [fn] = [Zaf) + [Zn_if] in
KoL (R, A), s0 T, (=1)*[f.] =0. O

Returning now to the situation R = A, let f:U* -U,g:U — U#* as in 5.2.
By 5.4 the elements x(f), x(g) in KoL' satisfy X(f)+x(g) = x(gf) =0, since U# is
contractible. Thus x(f) = —x(g) is independent of the choice of I

So for any U in £ we have a well-defined element x(U) of KoL given by x(U) =
x(f), where f: U#* — U is any lifting of the canonical isomorphism modulo A. We
will show that U = x(U) satisfies the defining relations for Kj (£), and hence induces
a homomorphism KL — Ko£!.

First we verify that x is additive for short exact sequences in £. Consider

0 — U* — U¥ o y#t 4
Il fi "

0 = U — U = U = 0

where the bottom row is exact in £, and the top row is obtained from it by applying
#. We want to construct liftings f/, f, f of the canonical isomorphisms modulo A
such that this diagram commutes. In this case | Ja] = [fi] 4+ [f] in KoL* for each n,
and so x(U) = x(U") + x(U").

Now the top row splits by the contractibility of either U# or U"#  hence there is
a subcomplex K such that U# @ K = U#. We choose f's f and then replace f by
the sum f' on U’ and the restriction of f to K. Then f' and f are compatible, and
they induce the desired map f”.

Next we check that x(U) = x(V) when U,V are homotopy equivalent. If s: I/ —
V' is a homotopy equivalence, then one knows that the mapping cylinder M of s splits:
M =U®aC(s) = C(ly) ® V, where the mapping cones C(s),C(1y) are contractible.

10




Now 5.4 implies x(C) = 0 when C is contractible, so using the additivity of y we
have x(U) = x(V).

At this point we have defined a homomorphism Kof — KoL sending [U] to x(U).
We consider

KoL' — KoL — KoLt (3)

where the left map is already known to be surjective. In order to show that both maps
are isomorphisms inverse to each other, it suffices to check that the composition is the
identity.

Let U= (d:U; = Up) bein L', and choose f:
v &
il I fo

no Ly,

1

lifting the canonical isomorphism modulo A. The composition (3) sends [U] = [d] to
[fo] = [Ai]. Now [fo] = [fod#] = [dfi] = [f1] + [d], since d* is an isomorphism. This
shows the composition is the identity, finishing the proof of Theorem 5.1. 0

We next derive the analogous result for n-dimensional chain complexes.
Theorem 5.5 One has KoL'(R, A) 5 KoL™M(R,A) forn > 1.

Proof. As before we can suppose R = A. The injectivity is already clear from 5.1,
so we need only prove surjectivity. We will modify our surjectivity argument above.
Let U be in L™(R, A), and let f : U# — U be as in 5.2. Since U#* is contractible,
it splits into the direct sum of the elementary complex consisting of U#¥ in degrees
n—1,n and an (n — 1)-dimensional contractible chain complex V. Let f/: V - U
be the restriction of f, let C’ be its mapping cone. Then C’ is in L™(R, A) and is
homotopy equivalent to U.

Furthermore ¢ has a filtration F,C", 0 < p<n, where F,C' = C' and F,C" for
p < n s the subcomplex made of Vi, U, for k < p. The successive quotients of this
filtration are suspensions of complexes in LY (R, A), hence [U] = [C"] in KoL(R,A) is
a sum of elements coming from KoL'(R, A). O -

§6. Define the group K’A for a nonunital ring A by
K{A = KoLY (A, A)

We have seen that KjA maps isomorphically to KoL*(R, A) for n > 1 and to
‘0L(R, A) whenever A is embedded as an ideal in the unital ring R.
Recall that KoA can be defined using K, for unital rings by

KoA = KoA/KyZ

11




It is the group of stable isomorphism classes of finitely generated projective A-modules.
There is a canonical surjection

K\A — K,A

sending [U], where U is a complex U; — U, in L(A,A), to [Ug] — [U1] in KyA. To
see that this map is surjective, let P be in P(A), and choose f: P#¥ — P lifting
the canonical isomorphism modulo A4, where P# — fl@z(P/AP). Since P/AP isin
P(Z), we have P/AP =2 Z" and P#* = A" for some n, hence [P#] =0 in KyA. Thus
[f] in K{A maps to [P] in KoA.

In general KoA does not have the Morita invariance property we have established
for KA, e.g. Ko(A?) can be different from KoA. So it is of interest to examine when
the canonical map above is an isomorphism.

Proposition 6.1 One has K{A 3 Ky A if for all n and o € M, A the map 1+ a :
A" — A" represents zero in K} A.

Proof. The necessity is clear. Conversely, assuming the second condition we will
define a homomorphism KyA — K{A inverse to the canonical map going the other
way. Given P in P(A), we choose f: P# — P and g : P — P# lifting the canonical
isomorphism modulo A. Since P# = A" for some n, gf has the form 1+a : A® — Ar,
and so [f] +[g] = [1+a] =0 in KjA by our hypothesis. Consequently [f] = ~[g] is
independent of the choice of f and depends only on P. It is then easy to check that
P+ [f] induces a homomorphism KyA — KyA inverse to the canonical map. O

We now discuss some situations where K{A 5 KyA. The first covers the case
where A has ‘local identities’.

Proposition 6.2 Assume for any a € A there ezists b € A such that ba = a, (resp.
ab=4a). Then K}A 5 KyA.

Proof. Using the fact that the set of 1 —b in A with b € A is closed under
multiplication, one sees by induction that for any di,---,an In A thereissucha bec A
with (1 —0)a; = 0 for all 7. Now let ¢ = (a;;) € M, A, and choose b so that bas; = a;;
for all ¢, 7. Then we have (1—b)(14a) = 1—b in 1+My, A, hence [1—b]+[1+a] = [1—b]
in KgA,so [14+a]=0. O

Proposition 6.3 If A is C*-algebra, then KA S Ky A.

Proof. Given a € M, A, we will show that 1+« represents zero in K{A by using
the functional calculus for self-adjoint elements in a C* algebra.

Let p(t) be the continuous function on the nonnegative reals equal to 1 on [0,1],
2—1 on [1,2], and zero for ¢ > 2. Note that p(2t)p(t) = p(2t) and p(t)% < 2.

~
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Since p(0) = 1, the functional calculus applied to aa* in the C* algebra M, A defines
elements p(saa*) € 1 + M, A for s > 0 satisfying

p(2s5aa”)(1 + a) = p(2saa™)(1 + p(saa*)a)

It suflices to show for suitable s that the last factor is invertible, for it then represents
zero in K, hence 1 + a also represents zero.
Now with z, = p(saa*)a we have

oIl = llzs231l = [lo(saa®)(saa™)||s™* < 257

Thus for s > 2, we have ||z,|| < 1, hence 14z, is invertible, concluding the proof. O
As an application we deduce the following variant of ([A], 2.6.1).

Theorem 6.4 Let X be a compact Hausdorff space, and Y a closed subspace. Then
the Grothendieck group of complezes of complez vector bundles on X which are acyclic
over Y can be identified with the topological K -theory group K°(X,Y) = I;’O(X/Y).
Proof. Let R = C(X) the ring of continuous complex-valued functions on X, and
let A be the ideal of functions vanishing on Y, so that R/A = C(Y) by the Tietze
extension theorem. By the Serre-Swan theorem P(R) is equivalent to the category of
complex vector bundles on X, and similarly for R/A and Y. Moreover P+ P/AP
corresponds to restricting a vector bundle to Y. We see then that L(R,A) is equivalent
to the category of complexes of vector bundles on X which are acyclic over Y. Thus
KA is the Grothendieck group of the latter category up to canonical isomorphism.
Now KyA can be identified with K°(X/Y), starting with KoC(X/Y) = K°(X/Y)
by Serre-Swan, and splitting off the summand K,C = K°(pt) to obtain the reduced

>

groups. Finally we have K{A = KyA, since A is a C*-algebra. O

§7. We next present an example where K{A # KyA.

Proposition 7.1 Let A an ideal in regular noetherian commutative ring R. Then
KyA is isomorphic to the Grothendieck group of the abelian category C of finitely
generated R-modules' M such that M/AM = 0.

For example, let A be the ideal mZ in R = Z. Then C is the category of finite
abelian groups of order prime to m, so Ky(mZ) is a free abelian group with one
generator for each prime number not dividing m. On the other hand from

Ki1Z — K1(Z/mZ) — Ko(mZ) — KoZ — Ko(Z/mZ)

one obtains

Ko(mZ) = (Z/mZ)* /{£1}

13



Using 8.1 below one can show that K}(mZ) — Ko(mZ) sends the generator corre-
sponding to the prime p to the image of p in the latter group.

We now prove the proposition. Let M, denote the localization of the R module
M at a prime ideal z of R, and let Z be the closed subset of Spec(R) consisting of
all prime ideals containing A. We recall that M = 0 iff M, = 0 for all prime ideals
z, hence M/AM = 0 iff (M/AM), = M,/A.M, = 0 for all z € Z. Moreover, for
M finitely generated and = € Z, we have M, /A:M; = 0 iff M, =0 by Nakyama’s
lemma. Thus C consists of all finitely generated M such that M, =0 forall z € Z
(in other words, the support of M is disjoint from 7). Since M — M, is exact and
R is noetherian, it follows that C is an abelian category.

Lemma 7.2 4 finite projective complex U over R is in L(R,A) iff its homology
HU) =, H,(U) is in C. '

Proof. As H(U) is finitely generated we know that H(U) isin C iff H(U), =
H(U;) vanishes for all = € Z. On the other hand H(U/AU) = 0 iff H({U/AU), =
H(U,/A;U,) vanishes for all z € Z. Thus it suffices to show for any = € Z that U,
is acyclic iff U,/A,U, is acyclic.

If U, is acyclic, then being right-bounded projective it is contractible, so U, /AU,
1s also contractible and hence acyclic. Conversely, if U,/A,U, is acyclic, then 2.2 in
the case of R, A;,U, yields a homotopy operator A on U, such that [d,h] =1 — f
with f(U;) C A U,. As A, is contained in the maximal ideal of the local ring R, it
follows that 1 — f is invertible, so U, is contractible with contraction (1—f)"'h, and
hence acyclic. O

From this lemma we obtain a homomorphism
a: KgA = KoL(R,A) = KoC (U] = > (—1)"[H.(U)]

On the other hand, because R is regular noetherian any M in C has a finite projec-

tive resolution V' which is unique up to homotopy equivalence. This gives rise to a
homomorphism

B KoC — KA
sending [M] to [V]. | |
Clearly af = 1. To prove Sa = 1, it is enough to check this relation on classes
[U] with U in £Y(R, A). Let P be a finite projective resolution of H;(U). Then Q:

...—>P1—+P0—>U1——>Uo
is a finite projective resolution of Ho(U ), and there is a short exact sequence U/ —»

Q@ — P[2], so that [U] = [Q] — [P] in K,A. Then BalU] = B[Ho(U)] — B[H,(U)] =
[Q] — [P] = [U], finishing the proof. O

14




§8. So far we have described the canonical surjection K{A — KyA by means
of finitely generated projective modules over A. Suppose now that A is embedded
as an ideal in a unital ring R. We would like to understand this map in terms of
finitely generated projective R-modules. We begin by reviewing the usual R-module
description of KyA.

Recall ([M], §4) that associated to the canonical surjection R —s R/A there is a
relative Grothendieck group Ko(R — R/A) fitting into an exact sequence

KiR — Ki(R/A) = Ko(R — RJA) — KoR — Ko(R/A) (4)

which is defined by
Ko(R — R/A) = KoD/A(KoR)
where D = R Xg/4 R is the double of R along A, and A : R — D is the diagonal
embedding.
By [M], §2, P(D) is equivalent to the category of triples (P, Q,w) such that P,Q
are in P(R) and w : P/AP 5 Q/AQ is an isomorphism in P(R/A). The finitely
generated projective D-module corresponding to (P, @, w) is given by the fibre product

M(P,Q,w) =P XQ/AQ Q

of the maps P — P/AP %% Q/AQ and Q — Q/AQ. We write [(P,Q,w)] for the class
in Ko(R — R/A) represented by M(P,Q,w).

It is then clear that Ko(R — R/A) is the abelian group generated by the elements
[(P,Q,w)] for each such triple, subject to the relations guaranteeing that the function
(P,Q,w) = [(P,Q,w)] equalizes 1somorphic triples, is additive with respect to direct
sum, and is such that [(P, P,1p/4p)] = 0 for all P in P(R).

Applying [B], IX, 5.4 to the cartesian square

A = R
\J \J
Z — R/A

we obtain an excision isomorphism
Ko(A— Z) 3 Ko(R — RJA)
On the other hand, (4) gives an exact sequence
|

0 — Ko(A = Z) = KoA = KoZ — 0

hence ) 5
Ko(A—Z) 3 KoA/KoZ = Ky A
Thus KoA and Ko(R — R/A) are canonically isomorphic, which achieves the desired
description of KoA in terms of finitely generated projective R-modules.
We have seen that K}A and KoL'(R,A) are canonically isomorphic, and that

LY(R, A) is the category of maps f : P —s Q) in P(R) such that the induced map
J: P/AP — Q/AQ is an isomorphism.
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Proposition 8.1 The functor sending f : P — Q to (P,Q, f) induces a surjection
KoL (R, A) = Ko(R — R/A) (5)
which agrees up to canonical isomorphism with the map KgA — KoA of §6.

We first prove two lemmas.

) = (P",Q",w") is a short ezact sequence of

, W

[(P/) Ql, wl)] + [(P/I7 Q//7 w//)] .

Proof. The fibre product M(P,Q, w) is part of an evident short exact sequence
M(P,Q,w) =+ P& Q — Q/AQ

and similarly with  and . The nine lemma then gives a short exact sequence in P(D)

Lemma 8.2 If (P',Q",w') — (P,Q
triples as above, then [(P,Q,w)] =

M(P',Q",w")y = M(P,Q,w) — M(P", Q" w")
which necessarily splits, whence the result. O

Lemma 8.3 Let U = (d: Uy — Up) and U’ = (d' : Ui — Uj) be homotopy equivalent
I-dimensional chain complezes. Then U & C' = C @ U', where C = (1y, : Uy — Up)
and similarly for C'.

Proof. Let z: U — U’ be a homotopy equivalence. Then the mapping cone on z
is contractible, i.e. the sequence

0= U U@ U, 25 UL =0

1=( ) 7= (20 d)

T1
1s split exact. A splitting of this sequence has the form

U+~ U UL+ U}

=) r=(hw)

where y : U’ — U is & map of complexes and h,h' are homotopy operators such that
l—yz=1[d,h], 1 —zy = [d ], and hyo + y1h’ = —21h + W'z = 0. Then

hel;, =5 Ul
doll {1ed
Up @ U} =0, Us ® Uj

— —d Yo —1_(‘"h Y1
al*(xl h') Y= zq d

\

where
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o= b )= (L ) (51
T\ oz I T —z9 1 0 1

is the desired isomorphism of complexes. O

We now prove the proposition. Let ¢ be the map sending f: P — Q to [(P,Q, f)].
A short exact sequence U' — U — U” in LY(R, A) is clearly carried to a short exact
sequence of triples, so o(U) = o(U’) + ¢(U") by the first lemma. In particular, ¢ is
additive for direct sums. Using the second lemma and the relation (P, P,1p/ap)] =0
we deduce that ¢(U) = ¢(U') when U, U’ are homotopy equivalent. Thus ¢ satisfies
the relations defining KoL'(R, A), so we obtain the desired map (5).

The surjectivity is clear since w : P/AP = Q/AQ lifts toamap f: P — Q as P
Is projective.

Finally the identification of (5) with the map KyA — KoA s easily checked in the
case R = A, and follows in general by naturality with respect to A — R together with
the excision assertions already mentioned. O

We end this section with another description of KoA = KoL (R, A), which seems

interesting because of the similarity to K;; compare Ranicki’s isomorphism torsion
R2].
L

Theorem 8.4 K,L'(R, A) is the abelian group generated by elements [f], where f is
any map in P(R) which is an isomorphism modulo A, subject to the relations:

DU :P=Q+[f P =Ql=[faf:POP - QaQ]

2) [f+P'= Pl+[g: P = Q)= [gf: P' = Q]

3) [f]=0 when f is an isomorphism.

Proof. Let (7 be the abelian group defined by these generators and relations, and
put Ky = KoL'(R, A). Note that K} and G have the same generators. Now 1) and
3) clearly hold in K, and 2) also does by 5.3. Thus we have to show that the relations
defining K}, namely:

a) additivity for short exact sequences
b) [U] = [U'] when U, U’ are homotopy equivalent
bold in G.

First we observe that 2) and 3) imply that [U] = [V] in G when U,V are isomor-
phic. Using 8.3 we see that b) holds in G.

Now consider a short exact sequence U’ — U — U” where U" is fi P — @, and
similarly for U,U”. To prove additivity in G for this sequence, we can replace U by
an isomorphic complex and assume P = P’ @ P", Q=Q @ Q", where

: o
f:(o f//)

with 6 : P — Q'. Then f factors

f___<1Q, o)<1Q, 0 )(f’ 0 )
O f” 0 1P/I O lpn
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and the middle factor is an isomorphism. Using 1)-3) we obtain [f] = 1@+ ®1] =
[f'1+[f] in G as desired. O ‘

§89. According to 5.1 any element of KoL(R, A) can be expressed in terms of classes

of 1-dimensional chain complexes. We now derive a Whitehead type formula doing this
explicitly.

Theorem 9.1 Let U be a complez in L(R,A), and let h be a homotopy operator
on U such that 1 — [d, k] maps U into AU. Let A, = [d, hln 2 Uy = Uy, and put
U+ = @j Uzj, U™ = @J U2]‘+1 . Then in [{6/1 = [{0£(R7 A) we have

>_(=1)"[Aq] =0 (6)

n

U] =[d+h:U" = U' - Zj([AZj] — [Agj41]) (7)

Furthermore, the image of [U] in KyA = Ko(R —+ RJA) is [(U,U*,d+1)].

Proof. The last assertion follows immediately from (7) and the fact that A, induces
the identity on U, /AU,.

Let C' be the mapping cone of A = [d,h] : U — U. Then C has an increasing
filtration F,,C’' such that F.C/F,_1C is the n-th suspension of the 1-dimensional
chain complex A, : U, — U,. This lies in LY(R, A) for all n, so we have [C] =
2n(=1)"[A4]. On the other hand, there is a short exact sequence U — C' — U[1], so
[C]=[U] - [U] = 0, proving (6).

To prove the second formula we construct a suitable contractible complex W. Let

V' be the graded module defined by
V=UllleU2eU3)e...

where Ulp] denotes the graded module with Ulpln = Un-p. Thus V is the ‘total’
graded module associated to the bigraded module (Veg) such that V,, = U, for all
p>land g€ Z.

Define operators § and s on V by

—d -1 —h
d A h A?
§ = —-d -1 —h
| d A h A?
0
-1 0
s = 0
-1 0

18
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Here the 4, j-th entry gives the component U/ [7] = U[4] of the operator with respect
to the above direct sum decomposition of V.

Lemma 9.2 The operators §, s have degrees —1, +1 respectively, and they satisfy
=0, [§s]=1.

Define operators on V by
—d -1

—d -1

fa
il

Then d, s have degrees —1, 41 respectively, and they satisfy d* =0, [d,s] = 1. Also
g has degree 0 and is invertible. One readily checks that g~tdg = 4, g~lsg = s, which
proves the lemma. O

We now regard V' as @ an unbounded complex equipped with the differential §. It
is contractible with the contraction s.

Choose m so that U, = 0 for n > 2m+1, and let W be the bigraded submodule of
V consisting of the modules Vi = Uy such that ¢ < 2m+1—2k when p = 2k+1,2k+2,
k> 0. Thus W can be viewed as the following staircase region in V:

4 —d ld
Um = Uzn
4 —d dd
Urnet = Upnot ¢ Upnet €% Upns
$ —d tld L —d +d
Usm—g Uzm—2 & Usm—g Uzm—2
1 —=d id 1 —d $d
Uzm—3 L Urn-s +— Uzm—é & Uzm—s3 & Uzm—3 L Uzm-3
4 —d dd b —d 4 d 1 —d I d
p 1 2 3 4 ) 6
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Corresponding to the nontrivial diagonals in the matrix defining ¢ we can write
§=d+d' + d® + &3, where dog @ Vg — Vo-rgr<i)like differentials in a spectral
sequence. Now d° and d' are given by the vertical and horizontal arrows respectively
in the above diagram, while d?, = (=1)?h, and d2, is equal to h? for p odd and 0 for
p even. We see then that W is closed under ¢, hence W' is a subcomplex of V.

Moreover, the operator s is given by —1 in the opposite direction to each of the
~1 arrows above. Thus W is closed under 5,50 W is a contractible finite projective
complex.

Next let W’ be the bigraded submodule of V consisting of the modules V,,, = U,
such that ¢ < 2m + 1 for p = 1, and such that q<2m+1 -2k for p = 2k, 2k + 1,
k> 1. W’ can be viewed is the staircase region obtained by shifting W horizontally
one step to the left, and it is a subcomplex of W .

Now observe that W’ is made up of the column p =1 and all the A arrows inside
W. In fact we obtain an increasing filtration of W’ by subcomplexes starting with
the column p = 1, which is the suspension of U, then adding in order of Increasing ¢
the A arrows between the p = 2,3 columns, then the A arrows between the p=4,5
columns, etc.

As the successive quotients of this filtration are in L(R,A) we get

Wl=-[01+ > —1)UA0+ 3 (1)A]+---

= —[U] + .;:_ (m = 5)([Ag] = [Agjq1])

in Kdﬁ(R, A). By the choice of m the last sum can be taken over all 7, bence we have
W= -[U]- 223 ([Az] = [Agi1])
M

using (6).
Finally W/W’ consists of the even submodule U+ in degree 2m, the odd submodule
U~ in degree 2m + 1, and the map d + h between them, so
0=W]l=[W]+[d+h:U" - U]

proving (7). O
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