\[K^*(X) \xrightarrow{\text{ch}} H^*(X) \]
any elliptic class
\[\mathbb{Z} \]
any homology class
\[\mathbb{C} \]
problem is that when you push forward you get something in open sets, which then has to be compared with Bott element.

\[-\frac{d^2}{dx^2} + V(x) = D \]
\[T^2 \]
quasi periodic

\[D \text{ not invertible mod smooth kernel} \]
\[D \text{ is invertible mod the algebra of the foliation} \]
\[DQ - 1 = S_0 \]
\[QD - 1 = S_1 \]

\[\mathbb{C}^*(V,F) \]

properties describing \(\mathbb{C}^*(V,F) \):
1) filtration: \(\mathbb{C}^*(V,F) \sim \mathbb{C}^*(V/F) \oplus k \)
2) local: \(W \subset V \Rightarrow \mathbb{C}^*(W,F_W) \subset \mathbb{C}^*(V,F) \)
3) functoriality.

Index: \(D \in K^0(\mathbb{C}^*(V,F)) \)

Index then for mean foliations
transverse measure \(\to \) \(\text{tr} \) on \(\mathbb{C}^*(V,F) \to \text{Ham}(K_0(\mathbb{C}^*(V,F),\mathbb{C})) \)

\[\langle \text{ch} \sigma_D, T_d \alpha V, [\alpha] \rangle \]
Ruelle-Sullivan current
two obvious questions arise.

If scalar curvature of leaves > 0 \(D = \text{Dirac} \Rightarrow \text{Index} \, D = 0 \)

leaf-wise h. e.g. \(\text{Signature of leaf} \in K_0(C^*(V, F)) \)

1) How to get info on \(K(C^*(V, F)) \)
2) How to pass from \(K \) to cohomology.

\[\frac{V}{F} \xleftarrow{\text{ch} \times p_i} \frac{P(c_i)}{Q(c_i)} \text{ GF classes, } [\gamma_i] \xrightarrow{\text{trans. oriented}} \]

Idea: to integrate \(\gamma \).

Results: If \(A(V) \neq 0 \), can't have foliation \(R > 0 \)

some signature result.

\[G \text{ graph of foliation } \rightarrow BG \]

\[\Gamma, V \rightarrow V \times E \Gamma = V_\Gamma \]

Main conjecture

\[K_{* 1} \left(BG \right) \xrightarrow{\mu} K(C^*(V, F)) \]

\[H^* (BG) \xrightarrow{\text{ch}} K_0(C^*(V, F)) \]

Thus: says \(\gamma \in \Gamma \) an
This theorem says you can integrate over the leaf space both in K-theory and cohomology.

Proof involves three steps:

1. \[C^0(V) \int f_0 df_1 \cdots df_n = \tau(f_0, \ldots, f_n) \]

 Based on Grassmann alg. — doesn’t work

 So need cyclic cohomology

 Lemma: \(\forall \tau \in \text{cyclic cocycle}, \text{then } e \in \text{Proj } K(A) \)

 \[\tau(e, \ldots, e) \text{ is a map } K(A) \to \mathbb{C}. \]

 Cyclicity in cohomology is the linearization of algebra

 \[A \xrightarrow{\text{Ext}} \text{Cyclic theory of } A. \]

 Derived functor of traces.

2. \(C^* \text{alg } A \supset A \rightarrow \text{cyclic cocycle } \tau \text{ defined on } A \)

 Problem is to show that map defined by cyclic cocycle on \(A \) extend to \(K(A) \)

 - cocycle: \(\text{When meaningful on } A \)?

 \[\tau(f_0, f_0) = \langle S(f_0), f_0 \rangle \]

 \(S: A \otimes A^* \to A^* \)

 \(S \) is a derivation

 \[\langle S(f_0), f_0 \rangle = -\langle d(f_0), f_1 \rangle \]

 So \(S(f) \) is closable

 Basic lemma says closure has same K-theory

 Banach alg. Thm.

 So a cyclic cocycle satisfying a weak continuity condition will pair with topology

 \[\| \tau(x^0 da_1 x^1 da_2 \cdots x^n da_n) \| \leq C_a^1 \cdots a^n \| x \| \]
(3) completely new non-comm. phenomenon

\[V \times \Gamma \rightarrow \sum f_g U_g \quad \sum \omega \hat{U}_g \quad \hat{U}_g \omega \hat{U}_g^{-1} = g^* \]

\[d \sum f_g U_g = \sum d f_g U_g \]

\[\int \sum \omega \hat{U}_g = \int \omega \hat{U}_g \]

like Tomita modular theory.

\[\omega \hat{U}_g \]

basis

\[f \omega \hat{U}_g = \sum \omega \hat{\Theta}_i (f) \]

turns out to be a dual action of GL(n, R)

But not a unitary repn. no invariant Heim. metric

General idea: Hyperbolic \(\rightarrow \) parabolic

\[\Gamma, V \quad \text{reduction of } TV \quad \text{to } \left[\begin{array}{cc} \mathfrak{so}(p) & 0 \\ \ast & \mathfrak{so}(q) \end{array} \right] \]

\[\Gamma \text{-invar. reduction} \]

Put ideas of Mackey, Zeeman, Kasparov

\[V \times \Gamma \rightarrow GL(n, R) \quad \text{1-frame bundle} \quad \mathcal{J}(V) / \mathfrak{so}(n) \rightarrow V \]

fibres are symmetric spaces GLn/\mathfrak{so}n

negative or zero curvature, so can apply Kasparov

\[1 \]

geodesics

angle goes to zero

\[\int \in KK_{\Gamma}(V, W) \]

action of \(\Gamma \) on \(W \) is

distal
\[K(V/\Gamma) \longrightarrow K(W/\Gamma) \]

This is exactly like passing from III to II by taking cross product with the modular auto group.

Where Gelf-Fuks classes come from. Consider

\[J_k(V)^+/SO(n). \]

Generalization of Tônita Takesaki modular theory to cyclic cocycles involving a dual action of GL_n^+. Physics
two new theorems about cocycles over amenable groups, applications to characteristic classes for foliations.

A foliated set whose leaves are C^∞ obstruction to foliated spaces having certain measure properties.

Problem: Classify all C^∞ foliations on a compact manifold

Def: Say two codim n foliations are concordant if \exists fol. a \mathbb{R}^n

Haefliger-Thurston: concordance classes = lifts $M \overset{\nu}{\to} \mathbb{R}^n \overset{\nu}{\to} S^{2n}$

with given ν

Remark 1: The direction ν is a great existence thm.

2. Uncountable types

Problem: Find another equiv. relation

(Corres: Are you interested in the longitudinal or transverse aspects.)

Hudson wants to pass to foliated space, and find equiv. relations.

What are the invariants of a foliation as a dynamical system?

So let X be a measurable union of leaves. C^∞.

For F/X ergodic have invariants

A. von Neumann type

I. $X/F = \text{standard}$

II. no type I component but has invariant transverse measure

III. what's left

B. Amenability

Thm. (Connes-Feldman-Weiss) F/X amenable $\iff F/X$ hyperfinite $\iff F/X$ is a limit of type I

Ex: Solvable Lie gp. action.
C. Growth rate of leaves.

D. Representations of virtual group \((X, F, \Gamma) \).

E. Properties of measure + C* algebra.

Secondary classes of \(F \):

\[
\text{WO}(n) \to A^*(M) \\
H^*(g_{L_\ell}, O_\ell) \otimes (R[Z_{-1}^n]/\text{deg} \geq 2n) \\
\otimes \mathcal{C}_f
\]

(Cinese - \(\text{WO}(n) \) is invariant differential forms on higher jet bundles)

If \(M \) is oriented, then \(\Delta (y_{\mathcal{E}_f}) \in H^p(M) = H^{n-p}(M)^* \)

Thm. (Heitsch - Huisken) If \(X \) is saturated, then \(y_{\mathcal{E}_f} \) gets full on \(H^{n-p}(M) \), \(\{ y_{\mathcal{E}_f} \} \to \int_X \Delta (y_{\mathcal{E}_f}) \wedge \phi \)

Thm: There is an operator \(X(y_{\mathcal{E}_f}) \) on \(X \) s.t. \(\Delta_k (y_{\mathcal{E}_f}) = X(y_{\mathcal{E}_f}) [e_f] \) and the operator \(X_k (y_{\mathcal{E}_f}) \) depends only on measurable coh. class of the normal \(GL_n \)-cocycle to \(F \)

The goal: There characteristic classes distinguish the different types A, B, C, D, E.