§1. Generalization of Thm of Narasimhan–Seshadri:

\[Y \text{ alg. curve, } s : \pi_1(Y) \to SU(2) \text{ irreducible, } \] get holomorphic v.r. a \ Y

Thm: This bundle is stable and all stable bundles of rank 2 and deg 0 arise from a unique repn. up to equivalence.

Def: \(E \) is stable \((\text{rank } 2, \deg E = 0) \Leftrightarrow \) for all \(L \) with \(L \to E \) one has \(\deg L < 0 \).

Prop (i) Stable, parametrized by a Hausdorff moduli space

(ii) Stability an open condition

For line bundles, Jacobian = reps. \(\pi_1(Y) \to U(1) \).

§2. Extension to alg. surfaces.

\[X \hookrightarrow \mathbb{CP}^N \]

Again have notion of stable bundle over \(X \), same definition with degree defined by restricting to a curve, which is a generic hyperplane section.

Given any holm. v.r. with metric \(F \) unique connection: \(\bar{\partial}_A = \partial_A + \bar{\partial}_A \quad \bar{\partial}_A s = 0 \Leftrightarrow s \text{ holm.} \)

Give \(X \) a Kähler metric consistent with the embedding, e.g. induced from \(\mathbb{CP}^N \).

Thm: A stable bundle \(E \) over \(X \) \((\text{rank } 2, \Lambda^2 E = 0) \) has a unique consistent anti-self dual \(SU(2) \)-connection w.r.t. the Kähler metric.

\[\Lambda^2 T_X^+ = \Lambda_+^2 \oplus \Lambda_-^2 \text{ so any connection } \]

For Riemann \(M^4 \) \(SO(4) \sim SO(3) \times SO(3) \).
\[\text{So}(4) \sim \text{So}(3) \times \text{So}(3) \]
\[\uparrow \quad \uparrow \quad \rightarrow \quad \rightarrow \]
\[\text{U}(2) \sim \text{U}(1) \times \text{So}(3) \]

\(\Lambda^2 \) splits into Kahler form + canonical bide.

In Kahler case
\[F_\pm = \hat{F} \omega + \left(F_0^{0,2} + F_0^{0,0} \right) \]
\[\text{these vanish for a holom. bundle} \]

Thus thm. says you can kill \(\hat{F} \).

Equiv to \(F_\pm \omega = 0 \).

General conjecture relating stable bundles to hermitian-Einstein connections. *essentially Ricci zero.*

Example: On CP\(^2\), moduli space of bundles as above and \(c_2 = 2 \) is equivalent to space of non-singular conics in \(P^*_2 \).

Compactify by adding pairs of lines to \(P^*_2 \) (= degen. conics) or pairs of points in \(P^*_2 \).

\[\times \quad \times \]

\[P^*_2 \]

\[\times \quad \times \]

\[P^*_2 \]

§3. General theory of stability

\[G, G^c \text{ on } A \subset CP^n \]

via a repn. \(G \longrightarrow \text{SL}_{n+1}(\mathbb{C}) \).
Given $x \in \mathbb{P}^n$ choose x' over it $\in C^{n+1}$. x stable $\iff G^c \rightarrow C^{n+1}$ is proper.

Criteria of Kempf + Ness: Choose norm on C^{n+1}. Then an orbit in C^{n+1} is stable iff it contains a point of minimal norm, (and then this is unique up to the action of the compact gp. G, assuming metric fixed under G.)

Metric gives symplectic structure on \mathbb{CP}^n hence there are moment maps. The gradient of $\log |x|^2$ given by the moment map. That is, if $u \in G^c$

$$\mu_p \log |x|^2 = (\mu, iu)$$

Hence a point of minimal norm $= \text{zero of moment map}$. Thus in f.d. case \exists good representative in the orbit picked out by the orbit.

§ 4. Application to our problem

Fixed C^∞ bln. + metric E over X.

A = all connections on E.

$
\text{Subset } A^{(1,1)} \text{ of ones with (1,1)-curvature.}$

I.e. ∇_A part has square zero \Rightarrow holom. structure.

Gauge gp. G^c acts on $A^{(1,1)}$.

G^c acts on holom. structures.

$$g : \nabla_A \mapsto g \nabla_A g^{-1}, \quad \nabla_A \mapsto (g^*)^{-1} \nabla_A g^+$$
Two integrable connections give same holom. bdls if lie in same \mathbb{G}_c orbit.

Now carry over the f.d. machinery.

Symplectic structure on $\mathcal{A}^{(\mathbb{S})}$. Tangent vectors are $\text{End}(E)$ valued 1-forms:

$$(a, b) = \int_X \text{Tr} (ab) \wedge \omega$$

The moment map for action of \mathbb{G} is

$$A \mapsto F_A \wedge \omega$$

so that anti-self-duality condition \Leftrightarrow this is zero.

Want analogue of \mathbb{C}^{n+1} = a line bundle L over $\mathcal{A}^{(\mathbb{S})}$ acted on by \mathbb{G}_c with metric preserved by \mathbb{G}. Then the connections we want lie under points in the orbits of minimal distance from 0 section.

Note everything goes fairly for Riemann surface, even simpler.

All we really want is the "height" functional. that is, given A, B in same orbit want $M(A, B)$ such that $e^{M(A, B)}$ is the multiplier of the lengths

Familiar picture. You have a fixed holom. bundle and are varying the metric. Thus are working with space \mathbb{G}_c/\mathbb{G} which parametrizes the connections.
up to isomorphism on a given holom. ball.

\[M(H,K) = \text{functional of two metrics} \]
\[\text{on same holom. ball } E. \]

\(M(H,K) \) is a convex functional on the space of metrics, so one deduces the uniqueness of a minimum pt. if it exists.

§5. Method of proof.

To find critical points of height is to follow gradient flow. Also gives path for the Yang-Mills flow.

\[\frac{\partial M(H_t,H_0)}{\partial t} = \mathbf{0} - \|F\|^2 \]

So if \(M \) is bounded below, then \(F \rightarrow 0 \).

Then use analysis of last term to get critical point.

Criterion: \(E \) over \(X \) is stable \(\Rightarrow \) \(E|Y \) is semi-stable for \(Y \in \ln H! \).

\[M(H,K) = M(H|Y, K|Y) + \int \frac{1}{2} \text{Tr} (F_H^2 - F_K^2) X \]

\(Y = n\omega + i\partial \bar{\partial} \psi \)

\(\psi \) has a mild singularity along \(Y \).