J. P. Serre Nov. 1982 Number of points on curves

\[\frac{\mathbb{F}_q}{\mathbb{F}_q^*} \]

curve \(\mathcal{X} \) of genus \(g \) / \(\mathbb{F}_q \) \((\text{proj. n.s.}) \)

\(N = \text{number of rational pts.} \quad \)
\(g = 0 \quad \mathcal{X} = \mathbb{P}^1 \)

\[N(g, \mathbb{F}_q) = \text{stays} \quad N(X) \quad \text{for} \quad g \]

\(N = g + 1 \quad \text{only possibility} \)

Weil: \[|N(X) - (g+1)| \leq 2g\sqrt{q} \]

We are interested in \(g \) small \(\quad g \) large. First \(g = 2 \)

<table>
<thead>
<tr>
<th>(g)</th>
<th>(N(g, \mathbb{F}_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
</tr>
</tbody>
</table>

Direct attack on low genus by genus method

\(g = 1 \quad \) all. curve

\[y^2 + y = x^3 + x \]

\(\leq 5 \quad \text{clear} \)

the bound 5 achieved by

\(g = 2 \quad \text{hyperelliptic} \)

\[y^2 + y = \frac{x^2 + x}{x^3 + x + 1} \quad \text{works.} \]
$g = 3$ \quad \text{hyperellip.} \quad N \leq 6

\text{non-hyperell.} \quad X \to P_2 \quad \text{non-sing. quartic}

7 \text{ points} \quad \therefore \quad N \leq 7

$g = 4$ \quad \text{hyperell.} \quad N \leq 6

\text{intersection of a quadric in } P_3 \quad \text{cubic}

\text{get } N \leq 9 \quad \text{instead of 8}

\text{D. Mumford, Curves and their Jacobians - for high } g
\text{no systematic description of curves of genus } g

\text{Game started 2 years ago with remark by Goppa (Russian in coding theory)}

\text{linear code } (F_2)^N \supset V \text{ subspace}

V \text{ "large"}

2 \text{ words in } V \text{ not too similar}

\text{if } u \neq v \in V \quad d(u) = \text{no. of zeroes in } u \quad \forall \text{ all } v

d(v) \leq \delta

\mathbb{F}_2^N \rightarrow V' \quad \text{auto}

P_1, \ldots, P_N \in \mathbb{P}_{d-1} (F_2)

\text{no hyperplane contains more than } \delta \text{ pts.}

\text{C \quad N rational pt.}

\text{C} \rightarrow \mathbb{P}_{d-1}

\text{so can construct codes from curves}

\text{if could realize Weil bound, then you would}
\text{get improved codes. e.g. over } F_{47}

\text{Interest: asymptotic properties as } g \to \infty

\limsup_{g \to \infty} \frac{N(g)}{g} = A(g)
Weil
\[N(g, g) \leq 1 + g + 2g\sqrt{g} \]
\[\Rightarrow A(g) \leq 2\sqrt{g} \quad \text{8.9} \]

Drinfeld
\[V h a l d u t \quad \Rightarrow \quad A(g) = \sqrt{g} - 1 \quad \text{0.91} \]

Vladut
\[\Rightarrow \quad A(g) = \sqrt{g} - 1 \]
when \(g \) is square curves you take if \(g = p^2 \) are modular curves \(X_0(N) \) and use \(\exists \) "supersingular" pts which are all over \(\mathbb{F}_{p^2} \) (Shimura curves)

In general for \(g \) not square, here we can prove
\[
\begin{align*}
A(g) & > 0 \\
A(g) & > c \log g \quad \text{for} \quad c > 0 \\
A(2) & = \sqrt{2} - 1 = 0.414.. \\
A(2) & > 0.205..
\end{align*}
\]

Ideas of the proof. Assume it has \(N \) rdl pts.

To prove \(g \geq \ldots ? \)

Analogy with number fields
disc. \(\geq \ldots \)

Minkowski, Rogers, Stark, Odlyzko
disc. \(\geq \) degree
genus \(\leftrightarrow \) discriminant
\(\# \) rdl pts. \(\leftrightarrow \) degree
galois theory \(\leftrightarrow \) genus of nos.

Geometry of nos. involves \(\ldots \), but Stark, Odlyzko use \(f \) and get better story.
\[N_n = \text{no. of pts over } \mathbb{F}_q^n = 1 + q^n - \sum_{i=1}^{3^n} \omega_i \cdot n \]

Pfaff's formula

\[N_n = 1 + q^n - q^{n/2} \sum_{\alpha=1}^{q^2} 2 \cos(n \varphi_{\alpha}) \]

How to use this to see Weil not optimal

\[\text{over } \mathbb{F}_q \]

\[\text{over } \mathbb{F}_q^2 \]

Thus Weil's idea realized: \[N_{2n} = 1 + q^2 - 2g \cdot q^2 < 0 \]

for \(g \) large

(This same as Hadamard that \(f(s) \neq 0 \) \(\text{Res } s = 1 \))

Let \(f(q) = 1 + 2 \sum_{n=1}^{\infty} c_n \cos n \varphi \)

1. \(f(q) > 0 \) for all \(\varphi \)
2. \(c_n > 0 \) for all \(n \)

\[c_n = \left\{ \begin{array}{ll}
1 + \cos \varphi \\
\frac{1}{2} (\alpha_0 + \alpha_1 \cos \varphi + \cdots + \alpha_n \cos^n \varphi) \\
(1+\cos \varphi)^{n-1}
\end{array} \right. \]

Thus: If \(f \) as above, then \(g \geq \sum c_n g^{-\frac{n}{2}} - \sum_{n=1}^{N_n} q^{n/2} \)

Lef: \(g \geq 2 \sum \cos(n \varphi_\alpha) > 0 \)

\[g + \sum c_n g^{n/2} - \sum c_n (N_n - 1) g^{-n/2} \]
\[g > \sum c_n (N_n - 1) f^{-n/2} - \sum c_n g^{-n/2} \]

But \(N_n - 1 > N - 1 \).

The above is an analogue of an explicit formula.

Take \(f = 1 \), \(c_n > 0 \) \(\Rightarrow \) \(g > 0 \)

\(f = 1 + c_n \phi \) \(\Rightarrow \) Weil's bound

J. Costerlé found optimal \(f \) \((N, g \text{ fixed}) \).

This handles \(g = 2 \), \(N \leq 10 \) but not for \(g = 7 \).

This method uses by Drinfel'd Vladut.

Other direction: Make fields with small discriminant

Class field this is a very efficient way to construct fields without wanting generator. To construct a \(g = 50 \) with 40 pts.

Start with \(g = 1 \), \(N = 5 \) ell. curve \(y^2 + y = x^3 + x \)

\[\times \]

+ deg \(8 \) group \((2, 2, 2) \)

Choose pt, with deg \(d = 7 \). Look for abelian covering type \(2, 2, 2 \) ramified only at \(\mathbb{Q} \) with conductor = 2. Get one with \([\mathbb{Q} : \mathbb{Q}(2, \ldots, 2)] = 8 \) copies. Then \(\phi_i \mapsto \phi_i \) for \(i = 1, \ldots, 5 \), so you can take quotient to get covering \((2, 2, 2) \).

Compute \(g \) using Hurwitz

\[d^g - 2 = 2d((d - 1)(d - 7) - 1) \]

\[d = 50. \]