More Schweninger. Consider a harmonic oscillator with "source" term:

\[H = \frac{p^2}{2} + \frac{1}{2} \omega^2 q^2 - J(t)q. \]

and let's rapidly review the formula for \(\langle 0 | s | 0 \rangle \).

Use actual time so that

\[\frac{\partial}{\partial t} \langle s | u(t, t') \rangle = -i \left[H(t) \langle s | u(t, t') \rangle + \delta H(t) \langle u(t, t') | 0 \rangle \right]. \]

One has

\[\delta \log \langle 0 | s | 0 \rangle = -i \int_{t_m}^{t_f} \frac{\langle 0 | u(t, t') \rangle \delta H(t) \langle u(t, t') | 0 \rangle}{\langle 0 | u(t, t') | 0 \rangle} dt \]

\[= +i \int_{t_m}^{t_f} \langle s | q(t) \rangle dt \]

where

\[\frac{d^2}{dt^2} \langle q(t) \rangle = -\omega^2 \langle q(t) \rangle + J(t) \]

so that

\[\langle q(t) \rangle = \int \overline{G_0(t, t')} J(t') dt' e^{-i\omega |t-t'|} \]

\[= -\frac{1}{2i\omega} \]

Hence

\[\log \langle 0 | s | 0 \rangle = \frac{1}{2} i \int dt \int dt' J(t) G_0(t, t') J(t') \]

Let's consider now \(J(t) = c S(t) \). Recall that to solve for \(u(0^+, 0^-) \) one spreads time out around \(0 \).

\[dy = -i \left(H dt \right) y = -i (H_0 - c S(t)q) dt y \]

Use new parameter \(s \) with \(ds = S(t) dt \) for \(t \) between
and so we see that
\[U(0^+, 0^-) = e^{i\gamma} \]

Check: For \(J(t) = c \delta(t) \) the above formula for \(\langle 0 | s | 0 \rangle \) gives
\[\log \langle 0 | s | 0 \rangle = \frac{1}{2} i \gamma^2 \frac{1}{-2i\omega} = -\frac{\gamma^2}{4\omega}. \]

But also,
\[\langle 0 | s | 0 \rangle = \langle 0 | e^{i\gamma} | 0 \rangle = \frac{\int e^{i\gamma - \frac{1}{2} \alpha^2 \gamma^2} d\gamma}{\int e^{-\frac{1}{2} \alpha^2 \gamma^2} d\gamma} = e^{-\frac{\gamma^2}{4\omega}}. \]

Schwinger uses this as follows. He wants to find the S-matrix \(\langle n | S | n' \rangle \) in the occupation number representation \(H \) in the case of a general source \(J \). One has the above formula on page 98 for \(\langle 0 | s | 0 \rangle \) in terms of \(J \). Suppose \(J \) supported inside \((t_{in}, t_f)\) one can add \(\delta \) function sources located at \(t = t_{in} \) and \(t_f \). Let
\[\tilde{J} = J + c \delta(t-t_f) + c' \delta(t-t_{in}) \]

Then \(\langle 0 | \tilde{s} | 0 \rangle \) will essentially be \(\langle \psi | s | \psi' \rangle \) where \(\psi, \psi' \) are states of the form
\[e^{i\gamma} | 0 \rangle = e^{i\gamma} e^{-\frac{1}{2} \alpha^2 \gamma^2} \]

Notice that \(\sqrt{2\omega} a = \left(\frac{d}{d\gamma} + \omega \gamma \right) \) applied to this gives
\[e^{-\frac{1}{2} \omega q^{2}} e^{\left(\frac{1}{\hbar} \omega q^{2} \frac{d}{dq} + \omega q\right)} e^{-\frac{1}{2} \omega q^{2}} e^{icq} = ic \left(e^{icq} e^{-\omega q^{2}} \right) \]

Thus \(e^{icq} \) is an eigenvector for \(a \) with eigenvalue \(\frac{ic}{\sqrt{2\omega}} \), hence it is a so-called coherent state. In the polynomial repn. \(\alpha^* = \alpha, \alpha = \frac{d}{dq} \), the eigenvectors for \(a \) are

\[e^{\lambda z} = \sum_{n \geq 0} \frac{\lambda^n z^n}{n!} = \sum_{n \geq 0} \frac{\lambda^n}{\sqrt{n!}} |n\rangle. \]

Consequently by the use of \(S \)-functions: sources at the initial and final times are computed the \(S \) matrix elements between coherent states and then use this as a generating function for the \(S \) matrix elements between occupation number states.

So

\[\tilde{S} = e^{i[t_f - t_i]H_0} + \tilde{F}(t) + e^{i[t_f - t_i]H_0} \]

\[\tilde{U}(t_f, t_i) = e^{icq} U(t_f, t_i) e^{icq} \]

\[S = e^{i[t_f - t_i]H_0} \tilde{U}(t_f, t_i) e^{-i[t_f - t_i]H_0} \]

\[\tilde{S} = e^{i[t_f - t_i]H_0} \tilde{U}(t_f, t_i) e^{-i[t_f - t_i]H_0} \]

\[= e^{i[t_f - t_i]H_0} e^{icq} e^{-i[t_f - t_i]H_0} S e^{icq} e^{-i[t_f - t_i]H_0} \]

So I want to compute
\[e^{i t H_0} e^{i c \phi} e^{-i t H_0} |0\rangle = e^{i t (H_0 - E_0)} e^{i c \phi} |0\rangle \]

\[\frac{d}{dz} \sum_{n_\infty} \frac{\lambda^n}{n!} e^{i n \omega z} = \text{const.} \sum_{n_\infty} \frac{\lambda^n}{n!} e^{i n \omega z} \]

\[= \text{const.} e^{(e^{i c t} z)} = \text{const.} e^{i (e^{i c t} z)^{\alpha}} |0\rangle \]

To determine the constants one can proceed as follows. \[e^{i c \phi} |0\rangle = e^{i c \phi} e^{-\frac{1}{2} \omega z^2} / \sqrt{2\pi \omega} \]

so \[\langle 0 | e^{i c \phi} |0\rangle = e^{-c^2 / 4\omega} \]

as we saw above.

But also we have \[e^{i c \phi} |0\rangle = C e^{\lambda z} |0\rangle \]

\[\lambda = \frac{ic}{2\omega} \]

\[\langle 0 | e^{i c \phi} |0\rangle = C \langle 0 | e^{\lambda z} |0\rangle \]

\[C = e^{-c^2 / 4\omega} \]

\[e^{i c \phi} |0\rangle = e^{-c^2 / 4\omega} \frac{ic}{2\omega} a^\dagger |0\rangle \]

Thus \[e^{i c \phi} |0\rangle = e^{-c^2 / 4\omega} \frac{ic}{2\omega} a^\dagger |0\rangle \]

and so \[e^{i t H_0} e^{i c \phi} e^{-i t H_0} |0\rangle = C e^{i e^{i c t} c \phi} |0\rangle \]

\[e^{-c^2 / 4\omega} = C \cdot e^{-2it c^2 / 4\omega} \]

\[C = e^{-\frac{1}{4\omega} (c^2 - e^{2it c^2})} \]

\[e^{i t H_0} e^{i c \phi} e^{-i t H_0} |0\rangle = e^{-\frac{1}{4\omega} (c^2 - e^{2it c^2})} e^{i e^{i c t} c \phi} |0\rangle \]
\[\langle 0 | \tilde{s} | 0 \rangle = \langle e^{i \frac{t}{\hbar} \hat{H}_0} e^{-i \frac{t}{\hbar} \hat{H}_0} e^{-i \frac{t}{\hbar} \hat{H}_0} | S | e^{i \frac{t}{\hbar} \hat{H}_0} e^{i \frac{t}{\hbar} \hat{H}_0} e^{-i \frac{t}{\hbar} \hat{H}_0} \rangle \]

\[= e^{-\frac{1}{4\omega} (\tilde{c}^2 - e^{-2i\frac{t}{\hbar} \tilde{c}^2})} e^{-i e^{it} \tilde{c}^2 | 0 \rangle \langle 0 | e^{i e^{it} \tilde{c}^2} \]
Consider a forced harmonic oscillator
\[H = \frac{p^2}{2} + \frac{\omega^2 q^2}{2} - J(t)q \]
where \(J(t) \) is periodic, say \(J(t+1) = J(t) \). Let \(U(t,t') \) be the propagator for the quantum-mechanical motion:
\[
i \frac{\partial}{\partial t} U(t,t') = H(t) U(t,t')
\]
\[U(t,t') = I \]
It follows that \(U(t+1, t'+1) = U(t,t') \) and hence
\[U(t+1,0) = U(t+1,1) U(1,0) = U(t,0) U(1,0) \]
\[U(t+n,0) = U(t,0)^n U(1,0)^n \]

\(U(1,0) \) is a so-called Floquet matrix. Its eigenvectors give rise to quasi-periodic solutions
\[\psi(t+1) = \mathcal{F} \psi(t) \]
(Check \(\psi(t+1) = U(t+1,0) \psi(0) = U(t,0) U(1,0) \psi(0) \))
\[\psi(t+1) = \mathcal{F} \psi(t) \]
where \(|\mathcal{F}| = 1 \). These are the analogues of constant energy states.

Question: Is the spectrum of \(U(1,0) \) discrete? Example: If \(J = 0 \), then
\[U(1,0) = e^{-iH_0} \]
has a discrete spectrum, since \(H \) does. The eigenvalues of \(H \) are \((n+\frac{1}{2})\omega\), \(n \geq 0 \), so \(U(1,0) \) has the eigenvalues \(e^{-i(n+\frac{1}{2})\omega} \). The same
example holds if T is constant, because this amounts to a different origin for the oscillator.

Actually one can ask whether $U(t,0)$ has discrete spectrum for any source T. It seems reasonable especially since $U(0,0)$ is supposed to be of trace class for β in the block direction.

Let's review yesterday's calculations:

$$a = \frac{1}{\sqrt{2\omega}} (ip + \omega q)$$

I want to compute the matrix element

$$\langle e_\alpha | U(t,0) | e_\alpha \rangle$$

where e_α denotes the coherent states:

$$e_\alpha = \sum_{n=0}^{\infty} \frac{x^n e^{i n \theta}}{\sqrt{n!}} = e^{\lambda \alpha^*} |0\rangle$$

$$a e_\alpha = \lambda e_\alpha \quad (\alpha = \frac{d}{dx}, \alpha^* = \bar{z}).$$

Let's use the Schwinger method changing T by δT.

$$\delta \log \langle e_\alpha | U(t,0) | e_\alpha \rangle = i \int_0^t \frac{\langle e_\alpha | U(t,1) \delta T(t) U(t,0) | e_\alpha \rangle}{\langle e_\alpha | U(t,0) | e_\alpha \rangle} \, dt,$$

$$= i \int_0^t \delta T(t_1) \langle g(t_1) \rangle \, dt,$$

The point is that $\langle g(t) \rangle$ satisfies the same DE

$$\left(\frac{d^2}{dt^2} + \omega^2 \right) \langle g(t) \rangle = \delta(t_1) \quad 0 \leq t_1 \leq t$$

except the boundary conditions are different:

$$\frac{d}{dt} \langle g(t_1) \rangle = \langle p(t_1) \rangle$$
\[
\frac{1}{\sqrt{2\omega}} \left(i \frac{d}{dt} + \omega \right) \langle \varphi(t_1) \rangle = \langle \left(\frac{ip + \omega q}{\sqrt{2\omega}} \right)(t_1) \rangle \\
= \frac{\langle e_{\alpha'} \mid U(t_1, 0) a U(t_1, 0) \mid e_{\alpha} \rangle}{\langle e_{\alpha'} \mid U(t_1, 0) \mid e_{\alpha} \rangle} = \lambda \\
\text{at } t_1 = 0
\]

Similarly,
\[
\frac{1}{\sqrt{2\omega}} \left(-i \frac{d}{dt} + \omega \right) \langle \varphi(t_1) \rangle \bigg|_{t_1 = t} = \tilde{\lambda}
\]

solve the DE for \(\langle \varphi(t_1) \rangle \) first for \(T = 0 \).

\[
\langle \varphi(t_1) \rangle = Ae^{-i\omega t_1} + Be^{-i\omega t_1}
\]

\[
\left. \frac{1}{\sqrt{2\omega}} \left(i \frac{d}{dt} + \omega \right) \langle \varphi(t_1) \rangle \right|_{t_1 = 0} = B \frac{1}{\sqrt{2\omega}} \left(i(-i\omega) + \omega \right) e^0 = \sqrt{2\omega} B
\]

\[
\left. \frac{1}{\sqrt{2\omega}} \left(-i \frac{d}{dt} + \omega \right) \langle \varphi(t_1) \rangle \right|_{t_1 = t} = A \frac{1}{\sqrt{2\omega}} \left(-i(\omega + \omega) \right) e^{i\omega t} = \sqrt{2\omega} e^{-i\omega t} A
\]

so
\[
\langle \varphi(t_1) \rangle = \frac{1}{\sqrt{2\omega}} \left(\bar{\lambda} e^{-i\omega t + i\omega t_1} + \lambda e^{-i\omega t_1} \right)
\]

In general we have
\[
\langle \varphi(t_1) \rangle = \frac{1}{\sqrt{2\omega}} \left(\bar{\lambda} e^{-i\omega(t - t_1)} + \lambda e^{-i\omega t_1} \right)
\]

\[
+ \int_0^t G(t, t') J(t') dt'
\]

\[
= \frac{e^{-i\omega |t_1 - t'|}}{2i\omega}
\]

Now multiply by \(iST(t_1) dt \), and integrate; then integrate \(S \) and you get
\[
\log \frac{\langle e_\lambda \mid u(t_0, 0) \mid e_\lambda \rangle}{\langle e_\lambda \mid e_\lambda \rangle} = \frac{i}{2} \int_0^t \int_0^t dt_1 dt_2 \ J(t_1) \ G(t_1, t_2) \ J(t_2)
\]

\[
\psi_0(t, 0) = e^{-it\omega} + \frac{i \lambda}{\sqrt{2\omega}} \int_0^t \ J(t_1) e^{-i\omega t_1} \ dt_1
\]

\[
+ \frac{i \lambda'}{\sqrt{2\omega}} \int_0^t \ J(t_1) e^{-i\omega (t-t_1)} \ dt_1
\]

Let's check this result by taking \(J(x) = \cos(x) \) and \(t = 0^+ \). We saw that

\[
\psi(t, 0) = e^{icq}
\]

so we want to compute \(\langle e_\lambda \mid e^{icq} \mid e_\lambda \rangle \). Recall

\[
e^{A+B} = e^A e^B e^{-\frac{1}{2}[A,B]}
\]

where \([A,B] \) commutes with \(A, B \).

\[
icq = \frac{i c}{\sqrt{2\omega}} (a + a^*)
\]

\[
\langle e_\lambda \mid e^{icq} \mid e_\lambda \rangle = \langle e_\lambda \mid e^{iax} e^{ia} \mid e_\lambda \rangle
\]

\[
= e^{-\frac{1}{2} s^2 [a^2, a]} \langle e_\lambda \mid e^{ia\lambda} e^{ia} \mid e_\lambda \rangle
\]

\[
= \frac{1}{\langle e_\lambda \mid e_\lambda \rangle} \langle e_\lambda \mid e^{ia\lambda} e^{ia} \mid e_\lambda \rangle
\]

So

\[
\frac{\langle e_\lambda \mid e^{icq} \mid e_\lambda \rangle}{\langle e_\lambda \mid e_\lambda \rangle} = e^{\frac{ic}{\sqrt{2\omega}} \left(\frac{q^2}{2} + x(a + \lambda) \right)}
\]

which agrees with the above.

We want to be able to use the formula at the top of the page:

\[
\frac{1}{2} \frac{q^2}{\omega} = \frac{c^2}{4\omega}
\]

\[
= \frac{i}{2} \frac{c^2}{2 \sqrt{2\omega}}
\]

\[
= \sqrt{\frac{1}{2}} \frac{c^2}{2 \sqrt{2\omega}}
\]
in order to compute \(U(t,0) \), and see its spectrum.

\[
e^{-itH_0} \psi = e^{-itH_0} \sum \frac{\lambda^n (\alpha^n)}{n!} |\psi\rangle
\]

\[
= \sum \frac{\lambda^n}{n!} e^{-it\omega} (\alpha^n) |\psi\rangle
\]

\[
= e^{\lambda e^{-it\omega}}
\]

hence

\[
\langle \psi | U(t,0) | \psi \rangle = \langle \psi | e^{-itH_0} | \psi \rangle
\]

\[
= e^{-it\omega} \overline{\lambda}
\]

Hence we find

\[
\log \langle \psi | U(t,0) | \psi \rangle = \lambda \overline{\lambda} e^{-it\omega} + \lambda \alpha
\]

\[
- \overline{\lambda} e^{-it\omega} \overline{\lambda} + \beta
\]

where

\[
\alpha = \frac{i}{\sqrt{2\omega}} \int_{-\infty}^{t} J(t_1) e^{-i\omega t_1} dt_1
\]

\[
\beta = \frac{i}{2} \int_{-\infty}^{t} dt_1 \int_{-\infty}^{t} dt_2 J(t_1) G(t_1,t_2) J(t_2) dt_2
\]

are constants.
Yesterday we found a formula for $\langle e^\chi | e^{-iH_0} | e^\chi \rangle$. Notice that $e^{iH_0} e^\chi = e^{iH_0} \sum \frac{\lambda^n}{n!} z^n = \sum \frac{\lambda^n}{n!} e^{i\lambda t} z^n = e^{i\lambda t} e^\chi$, where $\lambda = \omega Q^* e^\chi$. Hence

$$\langle e^\chi | e^{-iH_0} | e^\chi \rangle = \langle e^{iH_0} e^\chi | e^\chi \rangle$$

$$= \langle e^\chi e^{i\lambda t} | e^\chi \rangle = e^{i\lambda \chi} e^{-i\lambda t}$$

The formula becomes simpler if $e^{i\lambda t}$ is replaced by $e^{i\lambda t}$. Then

$$\frac{\langle e^\chi | e^{-iH_0} U(t, \phi) | e^\chi \rangle}{\langle e^\chi | e^{-iH_0} | e^\chi \rangle} = \frac{\langle e^\chi | e^{-iH_0} e^{iH_0} U(t, \phi) | e^\chi \rangle}{\langle e^\chi | e^{-iH_0} | e^\chi \rangle} = \frac{\langle e^\chi | S | e^\chi \rangle}{\langle e^\chi | e^\chi \rangle}$$

$$S = e^{iH_0} U(t, \phi)$$

Thus we find

$$\langle e^\chi | S | e^\chi \rangle = \exp \left\{ i\beta + \frac{i}{\lambda^2} \overline{\lambda^2} + \frac{i}{\lambda^2} \overline{\lambda^2} \right\}$$

$$\alpha = \frac{i}{\sqrt{2\omega}} \int_{0}^{t} J(t) e^{-i\omega t} dt$$

$$\beta = \frac{i}{2} \int_{0}^{t} dt_{1} \int_{0}^{t} dt_{2} J(t_{1}) G(t_{1}, t_{2}) J(t_{2})$$

We ought to see if β and α are connected in some way in order that a unitary transformation S can be defined by (x).

First review the way the e^χ are the joint-evaluators for the holomorphic representation. Recall
This representation consists of entire functions $f(z)$ with finite norm

$$
|f|^2 = \int \frac{|f(z)|^2}{|z|^2} \frac{dxdy}{\pi}
$$

and

$$
|0\rangle = 1, \quad \alpha = \frac{d}{dz}, \quad a^* = z
$$

Then

$$
f(\omega) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(0) \omega^n = \sum_{n=0}^{\infty} \left(a^n f, 1 \right) \omega^n
$$

$$
= \sum \left(f, \frac{1}{n!} \omega^n \bar{z}^n \right) = \left(f, e^{\bar{z} \omega} \right)
$$

so we see that e^z is the point evaluator at \bar{z}. Moreover, we have (interchanging ω, z)

$$
f(z) = \int f(\omega) e^{\bar{z} \omega} e^{-|\omega|^2} \frac{dwd\omega}{2\pi i}
$$

or

$$
f = \int e^{\bar{z} \omega} f(\omega) e^{-|\omega|^2} \frac{dwd\omega}{2\pi i}
$$

which expresses f in terms of the e^z.

Suppose we want to define a linear operator S by giving its effect Se_λ on the coherent states. Clearly we want $(Se_\lambda)(z)$ to be analytic in both λ and z. Since

$$
f = \int e^{\bar{z} \lambda} f(\lambda) d\lambda,
$$

$d\lambda = Gaussian$

we must have

$$
Sf = \int S e^{\bar{z} \lambda} f(\lambda) d\lambda.
$$

In order to use this to define Sf we need to know that

$$
Se_\lambda = \int Se_{\bar{\lambda}} e^{\lambda \bar{z}} d\lambda.
$$
which will be the case if \((S_{\lambda})(z)\) as a function of \(\lambda\) is in the Hilbert space. So it's clear that we need to know \((S_{\lambda})(w)\) is analytic in \(\lambda, w\) and separately for each variable with the other one fixed in the holomorphic function Hilbert space. So the formula

\[
\langle e_{\lambda''} | S | e_{\lambda'} \rangle = e^{i\lambda} \left\{ c_1 + c_2 \lambda + c_3 \overline{\lambda'} + c_4 \lambda' \overline{\lambda''} \right\}
\]

with arbitrary constants will define an operator in the holomorphic Hilbert space.

Our next problem will be to understand when we get a unitary operator. It should be that we get the transformations coming from the metaplectic representation.

Example: Translation \(f(z) \rightarrow f(z+a)\) can be made into a unitary operator:

\[
\|f\|^2 = \int |f(z+a)|^2 e^{-|z|^2} \, dV = \int |f(z+a)|^2 e^{-z\overline{z} - 2\overline{a}z - a\overline{a} - a\overline{a}} \, dV
\]

\[
= \int |f(z+a) e^{-\overline{a}z - \frac{1}{2}|a|^2}|^2 e^{-|z|^2} \, dV = \|T_a f\|^2
\]

where

\[
(T_a f)(z) = e^{-\overline{a}z - \frac{1}{2}|a|^2} f(z+a)
\]

Then

\[
(T_a e_{\lambda})(z) = e^{\lambda z + \overline{\lambda} a - \overline{a}z - \frac{1}{2}|a|^2}
\]

\[
\langle e_{\lambda'} | T_a | e_{\lambda''} \rangle = e^{-\frac{1}{2}|a|^2 + a\lambda - \overline{a}\lambda' + a\overline{\lambda'}}
\]
So from this formula it is clear that the transformation \(S = e^{i \theta \hbar} U(t, 0) \) is a scalar of modulus 1 times \(T_0 \) where

\[
\alpha = \frac{i}{\sqrt{2 \omega}} \int_0^t dt_1 e^{-i \omega t_1} J(t_1)
\]

We should next see what this scalar is, i.e. compare \(i \beta \) with \(-\frac{1}{2} |\alpha|^2\).

\[
+ \alpha \bar{\alpha} = \frac{1}{2 \omega} \int dt_1 \int dt_2 J(t_1) e^{-i \omega t_1} J(t_2) e^{i \omega t_2}
\]

\[-2i \beta = -2 \frac{1}{2} \int dt_1 \int dt_2 J(t_1) e^{-i \omega |t_1 - t_2|} J(t_2) \]

\[
= \frac{1}{2 \omega} \int dt_1 \int dt_2 J(t_1) e^{i \omega |t_1 - t_2|} J(t_2)
\]

Clearly both have the same real part, but \(i \beta \) has a possibly non-trivial imaginary part.

\[\text{Im}(i \beta) = + \frac{1}{2} \frac{1}{2 \omega} \int dt_1 \int dt_2 J(t_1) J(t_2) \sin \omega |t_1 - t_2|\]

We should now be in a position to determine if

\[U(t, 0) = e^{-i \theta \hbar} S\]

has discrete spectrum by using the explicit formulas we have in the holomorphic representation. We ignore the scalar factor and replace \(S \) by \(T_0 \). We know

\[(e^{-i \theta \hbar} f)(z) = f(e^{-i \theta t} z)\]
\((U(t,0)f)(z) = (T_f)(e^{-i\omega t}z)\)
\[= f(e^{-i\omega t}z + \alpha) e^{-\alpha e^{-i\omega t}z - \frac{1}{2} |\alpha|^2}\]

Put \(f = e^{-i\omega t}\) and look for eigenfunctions for \(U(t,0)\):
\[f(z + \alpha) e^{-\frac{1}{2} |\alpha|^2} = \mu f(z)\]

Look at the fixed point \(z + \alpha = z \implies z = \frac{\alpha}{1-\xi}\) (assume \(\xi \neq 1\)).

Simpler way to proceed: Take
\[U(t,0) = e^{-i\theta H_0 T_d}\]

and conjugate with \(T_\beta\)
\[T_\beta U(t,0) T^{-1}_\beta = e^{-i\theta H_0} e^{i\theta H_0} T_\beta e^{-i\theta H_0} T_{\beta} T^{-1}_{\beta}\]

Now
\[(e^{i\theta H_0} T_\beta e^{-i\theta H_0} f)(z) = (T_\beta f)(e^{i\omega t}z)\]
\[= (e^{-i\theta H_0}f)(e^{i\omega t}z + \beta) e^{-\beta e^{i\omega t}z - \frac{1}{2} |\beta|^2}\]
\[= f(z + e^{-i\omega t} \beta) e^{-\beta e^{i\omega t}z - \frac{1}{2} |\beta|^2}\]
\[= (T_{e^{-i\omega t} \beta} f)(z)\]

\[[(T_{\theta} T_{\theta}' f)](z) = (T_{\theta}' f)(z + \alpha) e^{-\alpha z - \frac{1}{2} |\alpha|^2}\]
\[= f(z + \alpha + \theta) e^{-\theta(\theta + \alpha) - \frac{1}{2} |\theta|^2} e^{-\theta z - \frac{1}{2} |\theta|^2}\]
\[
= f(z + x + \delta) e^{-i(x+\delta)z - \frac{1}{2} |x|^2} e^{\frac{1}{2} (x\overline{\delta} + \overline{x}\delta)} - zJ
\]

\[
= e^{\frac{1}{2} (x\overline{\delta} - \overline{x}\delta)} (T_{\alpha + \delta} f)(z)
\]

And \(\frac{1}{2} (x\overline{\delta} - \overline{x}\delta) = i \text{Im}(x\overline{\delta})\) so it vanishes when \(Re = Re\). In particular

\[
T_{\beta}^{-1} = T_{-\beta}
\]

and we see that

\[
e^{-i\lambda_{\alpha}} T_{\beta} e^{-i\lambda_{\alpha}} T_{\alpha} T_{\beta}^{-1} = \text{scalar}. \quad T_{e^{-i\omega t} = \alpha - \beta}
\]

If we choose \(\beta\) so that

\[
e^{-i\omega t} \beta + \alpha - \beta = 0 \quad \Rightarrow \beta = \frac{\alpha}{1 - e^{-i\omega t}}
\]

it follows that

\[
T_{\beta} U(t, 0) T_{\beta}^{-1} = e^{-i\lambda_{\alpha}}. \text{ scalar}
\]

and hence the spectrum of \(U(t, 0)\) is discrete. All this assumes that

\[
e^{i\omega t} \neq 1.
\]

Notice that the eigenvalues of \(U(t, 0)\) are those of \(e^{-i\lambda_{\alpha}}\) shifted around the unit circle by a fixed scalar of modulus 1.

When \(e^{i\omega t} = 1\), then \(e^{-i\lambda_{\alpha}} = I\) and so \(U(t, 0) = T_\alpha\). In this case the spectrum is continuous, in fact I think that \(T_\alpha\) is equivalent to a shift on \(L^2(\mathbb{R})\).
Recall for the forced oscillator

$$H = \frac{1}{2} p^2 + \frac{1}{2} \omega^2 q^2 - J(t) q$$

one has two formulas for the ground-ground amplitude

$$\langle 0 | s | 0 \rangle = \exp \left(\frac{i}{2} \int_0^t J(t') G(t', t') J(t') \, dt' \right)$$

From the latter it follows that

$$\langle 0 | s (0) \rangle = i^n \langle T(q(t_1), \ldots, q(t_n)) \rangle,$$

But notice that if you wanted to find the coefficient of $x_1 \cdots x_n$ in the Taylor series expansion of

$$e^{\frac{1}{2} \sum a_{ij} x_i x_j},$$

you can write

$$e^{\frac{1}{2} \sum a_{ij} x_i x_j} = \prod_{i < j} e^{a_{ij} x_i x_j} \prod_{i} e^{\frac{1}{2} a_{ii} x_i^2}.$$

Now it is crystal clear that to get a product $x_1 \cdots x_n$ where these are assumed distinct, you have to partition $1, \ldots, n$ into pairs (hence n must be even) and then take the product of the a_{ij} for each pair, then add up over all partitions. This is Wick's sum over all possible pairwise contractions, and it obviously works even for thermal averages.

I want to understand the corresponding situation.
for fermions, like the Dirac field. Let's consider
the simpler boson situation:

\[H = \omega a^* a + \tilde{T}a + \tilde{T}a^* \]

where \(\tilde{T} \) is to have compact support. Then

\[\delta \log \langle 0 | s | 0 \rangle = +i \int \langle \delta \tilde{T}(t) a(t) + \delta \tilde{T}(t) a^*(t) \rangle dt \]

\[= +i \int \left[\delta \tilde{T}(t) \langle a(t) \rangle + \delta \tilde{T}(t) \langle a^*(t) \rangle \right] dt \]

\[\frac{d}{dt} \langle a(t) \rangle = \langle [iH, a]\rangle(t) \]

\[[H, a] = [\omega a^* a + \tilde{T}^2, a] = \omega [a^* a] + \tilde{T} [a^* a] \]

\[= -\omega a^* \tilde{T} \]

\[[H, a^*] = [\omega a^* a + \tilde{T}^2, a^*] = \omega a^* \tilde{T} \]

Thus we have

\[\left(\frac{d}{dt} + i\omega \right) \langle a(t) \rangle = +i \tilde{T} \]

\[\left(\frac{d}{dt} - i\omega \right) \langle a^*(t) \rangle = -i \tilde{T} \]

Since \(\langle a(t) \rangle = 0 \) for \(t < 0 \), \(\langle a^*(t) \rangle = 0 \) for \(t > 0 \) we have

\[\langle a(t) \rangle = \int_{-\infty}^{+\infty} e^{-i\omega(t-t')} (i \tilde{T}(t')) dt' \]

\[\langle a^*(t) \rangle = \int_{-\infty}^{+\infty} e^{-i\omega(t-t')} (i \tilde{T}(t')) dt' \]

So changing the signs doesn't help anything.

Reestablish notation:
\[H = \omega a^* a + \tilde{\omega} a + \tilde{\omega} a^* \]

\[8 \log \langle 0 | s | 0 \rangle = -i \int \left[8 \tilde{\omega} \langle a(t) \rangle + 8 \tilde{\omega} \langle a^*(t) \rangle \right] dt \]

\[\langle a(t) \rangle = \int e^{-i\omega(t-t')} (i\tilde{\omega}(t')) dt' \]

\[\langle a^*(t) \rangle = \int e^{i\omega(t-t')} (-i\tilde{\omega}(t')) dt' \]

So

\[8 \log \langle 0 | s | 0 \rangle = (-1) \int dt \left[8 \tilde{\omega}(t) \int e^{-i\omega(t-t')} \tilde{\omega}(t') dt' \right] + \]

\[(-1) \int dt \left[8 \tilde{\omega}(t) \int e^{i\omega(t-t')} \tilde{\omega}(t') dt' \right] \]

In the second integral reverse the order of integration

\[\int dt \int dt' = \int dt' \int dt \]

Then interchange \(t, t' \) and you get

\[8 \log \langle 0 | s | 0 \rangle = \int dt \int dt' \left[8 \tilde{\omega}(t) e^{-i\omega(t-t')} \tilde{\omega}(t') + \tilde{\omega}(t) e^{i\omega(t-t')} \tilde{\omega}(t') \right] \]

or integrating out the \(\delta \)

\[\log \langle 0 | s | 0 \rangle = \int dt \int dt' e^{-i\omega(t-t')} \tilde{\omega}(t) \tilde{\omega}(t') \]

Check: Put \(\tilde{\omega} = \tilde{\omega} = \frac{-i\tilde{\omega}}{\sqrt{2\omega}} \) so that \(a + a^* \tilde{\omega} = -i\tilde{\omega} \). You get

\[\log \langle 0 | s | 0 \rangle = \frac{i}{2} \int \int e^{-i\omega(t-t')} \tilde{\omega}(t) \tilde{\omega}(t') \]

which agrees with our earlier result.
Let's return to the Dyson expansion
\[
\langle 0 | s | 0 \rangle = 1 - i \int < H(t) > dt_1 + \frac{(i)^2}{2!} \int \int < TH_2(t_1) H_2(t_2) > dt_1 dt_2
\]
where
\[
H_2 = \tilde{F}a + F a^\dagger
\]
This is a big expansion, think of it as a power series expansion in the variables \(J(t), \tilde{F}(t)\) and we can ask for the coefficient of the monomial
\[
J(t_1) \cdots J(t_p) \tilde{F}(t_{p+1}) \cdots \tilde{F}(t_n)
\]
where \(t_1, \ldots, t_n\) are assumed distinct. This means you have to go to the \(n\)-th term in the Dyson expansion which is
\[
\frac{(i)^n}{n!} \int \int \int < TH_2(t_1) \cdots H_2(t_n) > dt_1 \cdots dt_n
\]
Let us order times so that \(t_1, \ldots, t_n\) occurs in order. In other words the above integral can be taken over any "chambre", so let's use the chambre where the given \(t_1, \ldots, t_n\) are in order. Then it is clear that the coefficient is
\[
\frac{(i)^n}{n!} \langle T a^\dagger(t_1) \cdots a^\dagger(t_p) a(t_{p+1}) \cdots a(t_n) \rangle
\]
or in other words
\[
\delta_{n} \frac{\partial^n}{\partial J(t_1) \cdots \partial J(t_p) \partial \tilde{F}(t_{p+1}) \cdots \partial \tilde{F}(t_n)} \langle 0 | s | 0 \rangle =
\]
But we've seen that \(\langle 0 | s | 0 \rangle = \exp \int \int J(t') G(t,t') \tilde{F}(t)\)
where \(G(t,t') = -e^{-i \omega(t-t)}\)
Now if you want the coefficient of $x_i \cdots x_n y_1 \cdots y_n$ in
\[
\sum_{ij} x_i a_{ij} y_j = \prod_{ij} e^{x_i a_{ij} y_j}
\]
it is the sum over all ways ($n!$ in all) of attaching each x variable to a y variable and you multiply the corresponding a_{ij}. So again one sees how Wick's theorem holds in this case.

For later reference the formulas are
\[
\langle T a(t) \bar{a}(t') \rangle = \begin{cases} e^{-i \omega (t-t')} & t > t' \\ 0 & t < t' \end{cases}
\]
\[
= \Theta(t-t') e^{-i \omega (t-t')}
\]
July 29, 1972

I still haven't deciphered what Schwinger is doing with sources in the fermion situation. Again consider a space W (finite-diml complex Hilb space) in which we have H_0: $H_0 \varphi_k = E_k \varphi_k$ where the φ_k are orthonormal. Extend H_0 to ΛW where

$$H_0 = \sum E_k \varphi_k^* \varphi_k$$

with $\varphi_k = \varphi(\varphi^*_k)$, $\varphi_k^* = \varphi(\varphi_k)$. The ground state for H_0 on ΛW is $|0\rangle = \varphi_1 \cdots \varphi_p$ where $E_1, \ldots, E_p < 0$ and the rest are >0. For simplicity let us take $|0\rangle = 1$, i.e., assume all $E_i > 0$. In this case the Green's function for the operator $\frac{\partial}{\partial t} + i H_0$ on W

is

$$G(t,t') = \begin{cases} e^{-iH_0(t-t')} & t > t' \\ 0 & t < t' \end{cases}$$

We use the Green's function with positive frequencies for positive times and negatives frequencies for negative times. Our problem is to interpret Schwinger's formula

$$\langle 0 | S | 0 \rangle = \exp \left\{ i \int_{-\infty}^{\infty} \eta(t) G(t,t') \eta(t') \ dt \ dt' \right\}$$

that is, to find $H = H_0 + H_1$ which gives this formula for the ground-ground amplitude. My guess is that $\eta(t)$ should be an element of W and that $\overline{\eta}(t) \in W^*$ and

$$H_1 = e(\eta) + i(\overline{\eta})$$
so that if $\bar{\eta} = \eta^\dagger$ then H_1 is self-adjoint.

Let's try computing the Dyson series

$$
\langle 0 | s | 0 \rangle = 1 - i \int \langle (e^\eta + i \bar{\eta}) (t) \rangle + \frac{(-1)^2}{2!} \int \langle (e^\eta + i \bar{\eta}) (t_1) \rangle \langle \bar{\eta} (t_2) \rangle
$$

Look at the second order term

$$
\sum_{k,l} \langle (\eta_K (t_1) a_k^\dagger + \bar{\eta}_K (t_1) a_k) e^{-i H_0 t_1} e^{-i H_0 t_2} (\eta_K (t_2) a_l^\dagger + \bar{\eta}_K (t_2) a_l) \rangle
$$

$$
= \sum_{k,l} \eta_K (t_1) \eta_K (t_2) \langle 0 | a_k^\dagger e^{-i E_k t_1} e^{-i E_k t_2} a_k^\dagger | 0 \rangle
$$

$$
= \sum_{k} \eta_K (t_1) \eta_K (t_2) e^{-i E_k (t_1 - t_2)}
$$

Look at fourth order. \[\hat{H}_1 (t) = \sum_k \left(\eta_K (t) e^{i E_k t} a_k^\dagger + \bar{\eta}_K (t) e^{-i E_k t} a_k \right) \]

To get something $\neq 0$ in fourth order

$$
a_k^\dagger a_k a_m a_m^\dagger a_n
$$

There are three possibilities:

$$
\langle 0 | a_k^\dagger a_k a_m a_m^\dagger 10 \rangle = 1
$$

$$
\langle 0 | a_k^\dagger a_e a_e a_k^\dagger | 0 \rangle = 1 \quad l \neq k
$$

$$
\langle 0 | a_k^\dagger a_e a_e a_k^\dagger | 0 \rangle = -1 \quad l \neq k
$$

which give the following

$$
\sum_{k,j,m} \eta_K (t_1) \eta_K (t_2) \eta_j (t_3) \eta_j (t_4) e^{-i E_k (t_1 - t_2)} \eta_m (t_3) \eta_m (t_4) e^{-i E_m (t_3 - t_4)}
$$

$$
+ \sum_{k+l} \eta_K (t_1) \eta_K (t_2) \eta_k (t_3) \eta_k (t_4) e^{-i E_k t_1 - i E_k t_2 + i E_k t_3 + i E_k t_4}
$$

$$
- \sum_{k+l} \eta_K (t_1) \eta_K (t_2) \eta_k (t_3) \eta_k (t_4) e^{-i E_k t_1 - i E_k t_2 + i E_k t_3 + i E_k t_4}
$$
which can be written
\[F(t_1, t_2) F(t_3, t_4) + F(t_1, t_4) F(t_2, t_3) - F(t_1, t_3) F(t_2, t_4) \]

where
\[F(t_1, t_2) = \sum_k \eta_k(t_1) \eta_k(t_2) e^{-iE_k(t_1-t_2)} \]

\[= \eta(t_1) G(t_1, t_2) \eta(t_2) \]

It seems that the - sign on the last term fouls things up. Compute the 2nd order term in \(\exp(i \int \bar{\eta}(t_1) G(t_1, t_2) \eta(t_2)) \) you get (-1) times

\[\frac{1}{2!} \int \int \int \int F(t_1, t_2) F(t_3, t_4) = \frac{1}{2!} \left(\int + \int \right) \]

We have the possibilities six in all:

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 3 & 2 & 4 \\
1 & 3 & 4 & 2 \\
3 & 1 & 4 & 2 \\
3 & 1 & 2 & 4 \\
3 & 4 & 1 & 2 \\
\end{array}
\]

Now
\[\int F(t_3, t_4) F(t_1, t_2) = \int F(t_3, t_4) F(t_1, t_2) \]
\[t_3 > t_1 > t_4 > t_2 \]
\[t_1 > t_3 > t_2 > t_4 \]

so interchanging \(1 \leftrightarrow 3, 2 \leftrightarrow 4 \) reduces us to 3 possibilities:

\[
\begin{align*}
\int F(t_1, t_2) F(t_3, t_4) &+ \int F(t_1, t_2) F(t_3, t_4) + \int F(t_1, t_2) F(t_3, t_4) \\
&= t_1 > t_2 > t_3 > t_4 & t_1 > t_3 > t_2 > t_4 & t_1 > t_3 > t_4 > t_2
\end{align*}
\]
which differs from the expression at the top of the preceding page by a = signs.

So we see that we have to do something else in order to interpret Schrödinger's source. Try the following. Let's take the basic space \(W \) and enlarge it by adjoining some extra basis elements to \(W \oplus W' \). Then

\[
\Lambda(W \oplus W) \cong \Lambda W' \otimes \Lambda W
\]

can be interpreted as enlarging our number system from \(\mathbb{C} \) to \(\Lambda W' \). Now we consider the Hamiltonian

\[
H = \sum E_k a_k^* a_k + \sum (a_k^* \gamma_k + \tilde{\gamma}_k a_k)
\]

where \(\gamma_k(t), \tilde{\gamma}_k(t) \) are functions with values in \(W' \) interpreted as exterior multiplication operators. Now let's compute \(\langle 0 | S | 0 \rangle \) by variation

\[
\delta \log \langle 0 | S | 0 \rangle = -i \int \langle 0 | (\delta H(t)) | 0 \rangle dt.
\]

I should be more careful:

\[
\frac{\partial}{\partial t} U(t,t') = -i H(t) U(t,t')
\]

\[
\frac{\partial}{\partial t} (e^{iH_0 t} U(t,t')) = e^{iH_0 t} (e^{iH_0 t} U(t,t')) H(t) U(t,t')
\]
\[-ie^{-iH_0 t} \frac{\hat{H}_1(t) e^{-iH_0 t}}{\hat{H}_1(t)} e^{iH_0 t} U(t, t')\]

There should be no problem with the scattering formalism, because there is nothing unusual with the Hamiltonian \(H\). So

\[\delta \log \langle 0 | S | 0 \rangle = -i \int \sum_k \langle \delta \eta_k a_k + a_k^* \delta \eta_k \rangle(t) \, dt\]

\[\frac{d}{dt} \langle \delta \eta_k a_k \rangle(t) = i \langle [H_3 \delta \eta_k, a_k] \rangle(t)\]

\[[H_3 \delta \eta_k a_k] = [H_3 \delta \eta_k] a_k + \delta \eta_k [H_3 a_k]\]

I claim that \([H_3 \delta \eta_k] = 0\). Check:

\[[a_k^* \eta \delta \eta_k] = a_k^* \{ \eta, \delta \eta_k \} - \{ \delta \eta_k, \eta \} \eta_k = 0\]

e tc. Also

\[[H_3 a_k] = \sum_k (\varepsilon_k [a_k^* a_k] a_k + [a_k^* \eta + \eta a_k] a_k) + [\varepsilon_k a_k^* + a_k \eta] a_k]\]

\[= -\varepsilon_k a_k^* a_k - \eta_k\]

There is a problem with interpreting \(\langle a_k \rangle\). What one wants to do is to use the basis for \(\mathcal{W} \oplus \mathcal{W}'\) as a module over \(\Lambda \mathcal{W}'\) and take the 1-1 matrix element. If we do this it is clear that

\[\langle (\delta \eta_k a_k + a_k^* \delta \eta_k) \rangle(t) \]

\[= \delta \eta_k \langle a_k(t) \rangle + \langle a_k^*(t) \rangle \delta \eta_k(t)\]

because we've seen that \([H_3 \delta \eta_k] = 0\), so \(\delta \eta_k, \delta \eta_k\) remain...
\[\frac{d}{dt} \langle a_k(t) \rangle = -i E_k \langle a_k(t) \rangle - i \gamma_k \]

\[\langle a_k(t) \rangle = 0 \quad \text{for} \quad t \ll 0 \]

So

\[\langle a_k(t) \rangle = \int_{-\infty}^{t} e^{-iE_k(t-t')} \gamma_k(t') \, dt' \]

Hence just as in the boson case we should get

\[\langle 0 \mid s \mid 0 \rangle = \exp \left\{ -\sum_k \int_{t' < t} \gamma_k(t') e^{-iE_k(t-t')} \gamma_k(t) \right\} \]
July 30, 1979

Let's review path integrals. In the case of 1-dimensional motion with Hamiltonian

\[H = \frac{p^2}{2} + U(q) \]

we saw that the propagator is expressed as a path integral

\[\langle \bar{q}' | U(t, 0) | \bar{q} \rangle = \int [d\bar{q}] e^{i\bar{q}L} \]

The path integral is taken over all paths \(\bar{q} : [0, t] \rightarrow \mathbb{R} \) with \(\bar{q}(0) = \bar{q} \), \(\bar{q}(t) = \bar{q}' \), and it represents the average of the amplitude \(e^{i\bar{q}L} \) where \(L = \frac{1}{2} \bar{q}^2 - U(\bar{q}) \) is the Lagrangian.

Let us now consider a perturbation situation

\[H = H_0 + V(q, t) \quad \text{e.g.} \quad V = -Jq \]

Then

\[\langle \bar{q}' | U(t, 0) | \bar{q} \rangle = \int [d\bar{q}] e^{i\bar{q}L_0} e^{-i\int V} \]

Think of this as being the integral with respect to the measure \([d\bar{q}] e^{i\bar{q}L_0} \) of the function

\[q(t) \mapsto e^{-i\int V(q(t), t) dt} \]

In the case of \(V = -Jq \), it is just the Fourier transform of the measure \([d\bar{q}] e^{i\bar{q}L_0}\), where one thinks of \(J \) as being an element of the dual space to the space of paths.

Now if \(dq \) is a measure on \(\mathbb{R} \) say we have
\[
\int x^n d\mu = \left(\frac{d}{dt}\right)^n \int e^{i\lambda x} d\mu \bigg|_{\lambda = 0}
\]

and more generally for any polynomial

\[
\int f(x) d\mu = f\left(\frac{i}{\lambda} \frac{d}{dt}\right) \int e^{i\lambda x} d\mu \bigg|_{\lambda = 0}.
\]

So one has

\[
\langle q' | U(t, 0) | q \rangle = \int [d\gamma] e^{i S_{\gamma} - i \int L(q(t), \dot{q}) dt}
\]

\[
= \exp\left\{-i \int_0^t V \left(\frac{1}{\lambda} \frac{\delta}{\delta q(t)}, \dot{q} \right) dt\right\} \cdot \int [d\gamma] e^{i S_{\gamma} - i \int L_{\gamma}} \bigg|_{\lambda = 0}
\]
Recall that \(H = \frac{p^2}{2} + \frac{(\omega q)^2}{2} - J^2 \)

\[
\langle 0 | S^J | 0 \rangle = \exp \left\{ \frac{i}{2} \int \int J(t) \, G(t,t') J(t') \, dt \, dt' \right\}
\]

where \(G(t,t') = e^{-i\omega|t-t'|} \). Notice that the quadratic form

\[
(1) \quad J \mapsto \int \int J(t) \, G(t,t') J(t') \, dt \, dt'
\]

is symmetric and that its imaginary part is positive semi-definite. This is because for \(J \) real we know \(S^J \) is unitary, hence \(\langle 0 | S^J | 0 \rangle \leq 1 \). But we can also see this directly:

\[
\text{Re} \left\{ J(t) \, i \, G(t,t') \, J(t') \right\} = \text{Re} \left\{ J(t) \, \frac{e^{-i\omega|t-t'|}}{-2\omega} \, J(t') \right\}
\]

\[
= \text{Re} \left\{ \frac{-1}{2\omega} \, J(t) \, e^{-i\omega|t-t'|} \, J(t') \right\}
\]

\[
= -\frac{1}{2\omega} \text{Re} \left(J(t) \, e^{-i\omega t} \, J(t') e^{-i\omega t'} \right)
\]

Hence

\[
\int \int \text{Re} \left(J(t) \, i \, G(t,t') \, J(t') \right) \, dt \, dt'
\]

\[
= -\frac{1}{2\omega} \left(\int J(t) \, e^{-i\omega t} \, dt \right)^2
\]

Here \(J \) is a real function with compact support and

\[
J \mapsto \int J(t) \, e^{-i\omega t} \, dt
\]

is a complex linear functional; it follows that the real part of the quadratic form (1) has rank 2. Let's look at the Euclidean version. Here the
propagator for the Bloch equation is the path integral

\[\langle q' | U(t, 0) | q \rangle = \int [dq] e^{-\left(\frac{i}{\hbar} \dot{q}^2 + \frac{1}{2} \omega^2 q^2\right)} e^{i \int \dot{q} \cdot \gamma} \]

Better compute \(\langle 0 | s | 0 \rangle = 1 + \int \langle 0 | e^{i \omega t \cdot \gamma} e^{-i \omega t \cdot \gamma} | 0 \rangle + \ldots \)

\[\text{Slog} \langle 0 | s | 0 \rangle = \int \mathbb{F} [J(t)] \langle q(t) \rangle \, dt \]

\[\frac{d}{dt} \langle q(t) \rangle = \langle [H, q](t) \rangle = \frac{i}{\hbar} \langle p(t) \rangle \]

\[\frac{d}{dt} \langle p(t) \rangle = \frac{i}{\hbar} \langle \left[\frac{1}{2} \omega^2 q^2 - \int \dot{q} \cdot \gamma, p \right](t) \rangle \]

\[= \omega^2 \langle q(t) \rangle - J(t) \]

so

\[\langle q(t) \rangle = -\int e^{-\omega |t-t'|} \frac{\mathbb{F} [J(t) \, e^{-i \omega |t-t'|}]}{2\omega} \, dt' \]

so

\[\log \langle 0 | s | 0 \rangle = \frac{1}{2} \int \mathbb{F} [J(t)] \frac{\mathbb{F} [J(t) \, e^{-i \omega |t-t'|}]}{2\omega} \, dt \, dt' \]

Endeavour case

Now we know that on \(L^2 \)

\[\left(-\frac{d^2}{dt^2} + \omega^2\right)^{-1} \text{ has kernel } e^{-\omega |t-t'|} \]

so therefore the quadratic form

\[J \mapsto \mathbb{F} \int \mathbb{F} [J(t) \, e^{-i \omega |t-t'|} / 2\omega] \mathbb{F} [J(t')] \, dt \, dt' \]

is positive-definite. Notice that if \(J \) is replaced by \(iJ \) it becomes negative-definite.
From the path integral theory we get for
\[H = \frac{P^2}{2} + \frac{1}{2} \omega^2 q^2 + V \]
we get the formula

\[\langle 0 | S | 0 \rangle = \exp \left\{ -i \int V(\frac{\partial}{\partial \tilde{T}(t)}, t) dt \right\} \exp \left\{ \int \frac{i}{2} \left[\tilde{T}(t) \tilde{S}(t) \right] dt \right\} \]

which is the basis for the perturbation expansion, Feynman diagrams, etc.

I want to take the quadratic case \(V = \frac{1}{2} \epsilon(t) q^2 \)
in which case I get

\[\langle 0 | S | 0 \rangle = \exp \left\{ \int \frac{i}{2} \epsilon(t) \frac{\partial^2}{\partial \tilde{T}(t)^2} \right\} \exp \left\{ \int \frac{i}{2} \tilde{T}(t) \tilde{S}(t) \right\} \]

Let us look at a finite-dimensional analogue of this

\[\exp \left\{ \frac{i}{2} \sum m \frac{\partial^2}{\partial x_m^2} \right\} e^{-\frac{1}{2} \sum a_{mn} x_m x_n} \bigg|_{x=0} \]

Consider the simplest possible case

\[e^{aD^2} e^{bx^2} \bigg|_{x=0} \]

\[= \sum_1 \frac{a^m D^{2m}}{m!} \sum_1 \frac{b^n x^{2n}}{n!} \bigg|_{x=0} = \sum_1 \frac{a^m b^n}{m! n!} (2m)! \]

\[= \sum_0 \frac{1 \cdot 3 \cdots 2m-1}{m!} (2ab)^m \]

Now \((1 - u)^{-1/2} = \sum_0 \frac{1}{m!} \left(\frac{1}{2} \right) \left(\frac{3}{2} \right) \cdots \left(\frac{2m-1}{2} \right) u^m = \sum_0 \frac{1 \cdot 3 \cdots 2m-1}{m!} \left(\frac{u}{2} \right)^m \)
\[e^{aD^2}e^{bx^2} \bigg|_{x=0} = (1-4ab)^{-1/2} \]

and furthermore the perturbation series converges only for \(|4ab| < 1 \).

General case: To evaluate

\[e^{\frac{1}{2}D^tPD} e^{\frac{1}{2}x^tQx} \bigg|_{x=0} \]

where \(x = (x_i) \) \(D = (D_i) \) are column vectors with \(D x^t = I \).

If we make a variable change \(x = Ax' \), then

\[D x'^t A^t = I \quad \text{so} \quad A^tD x^t = I \]

or \(D' = A^t D \) and \(D = (A^t)^{-1} D' \)

Then

\[D^t PD = D'^t A^{-1} P(A^t)^{-1} D' \]

\[x^t Q x = x'^t A^t Q A x' \]

so we are allowed the transformation

\[Q \mapsto A^t Q A \]

\[P^{-1} \mapsto A^t P^{-1} A \]

i.e., the simultaneous transformation of quadratic forms.

The general theory here says that at least generically, we can make \(P'=I \) and \(Q' \) diagonal. In this case \((*)\) becomes

\[\Pi (1-\delta_i)^{-1/2} = \det (I-P'Q')^{-1/2} = \det (I-PQ)^{-1/2} \]

where the \(\delta_i \) are diagonal entries of \(Q' \).
So we get the formula
\[e^{\frac{1}{2} \text{Tr} \Phi \Phi' \Phi' \Phi} e^{\frac{1}{2} x^T Q x} \bigg|_{x=0} = \left[\text{det} \ (1 - P Q) \right]^{-1/2} \]

This leads to the formula
\[\langle 0 | s | 0 \rangle = \text{det} \ (1 + 2G)^{-1/2} \]

which we found on March 3.

Notice that the quartic interaction expression
\[e^{a D^4} e^{b x^2} \bigg|_{x=0} = \sum_n \frac{a^n b^{2n}}{n! (2n)!} D^{4n} x^{4n} = \sum_n \frac{a^n b^{2n}}{n! (2n)!} (4n)! \]

diveses since if we apply the ratio test then
\[\frac{u_{n+1}}{u_n} = \frac{a b^2 (4n+4)(4n+3)(4n+2)(4n+1)}{(n+1)(2n+1)(2n+2)} \to \infty \]

Hence some other ideas will have to be used in order to handle a quartic potential such as
\[V(q) = \text{const} \ 8^4 \]

In the Euclidean case where we solve Block's equation
\[\frac{\partial \psi}{\partial t} = -H \psi \]

for the time evolution we get
\[\langle 0 | \int [d\sigma] e^{-\frac{1}{2} \omega^2 + \omega^2 \sigma^2} e^{\int \sigma d\sigma} \bigg| 0 \rangle = \exp \left\{ \frac{1}{2} \int J(t) \left[D(t, t') J(t') \right] dtdt' \right\} \]
\[\left[\frac{d^2 + \omega^2}{2\alpha} \right]^{-1/2} \]

means endpts of path weighted by \(e^{-\omega |t-t'|} \).
so that if we replace iJ by iJ we see that the Gaussian

$$\exp \left\{ -\frac{1}{2} \int J(t) D(t, t') J(t') \, dt \, dt' \right\}$$

is the Fourier transform of the path space measure.

Let's now try to understand diagrams for the perturbation expansion of

$$H = \frac{1}{2} p^2 + \frac{1}{2} \omega^2 q^2 + \varepsilon q^4$$

where $\varepsilon(t)$ has compact support. We have

$$\langle 0 \mid s \mid 0 \rangle = 1 - i \int \varepsilon(t) \langle g(t) g \rangle \, dt + \frac{(i)^2}{2!} \int \varepsilon(t_1) \varepsilon(t_2) \langle g(t_1) g(t_2) \rangle - x \
\times \, dt_1, dt_2.$$

Recall

$$\langle T g(t_1) g(t_2) \rangle = -i \, G(t_1, t_2) = \frac{1}{\omega} \, e^{-i \omega |t_1 - t_2|}$$

and that $\langle T g(t_1) \cdots g(t_n) \rangle$ is the sum over all possible pairwise contractions. For $n=4$ we have 3 possible ways of contracting

```
  o
 / \o
 /  \o
```

hence

$$\langle g(t)^4 \rangle = 3 \left(-i \, G(t, t) \right)^2 = \frac{3}{4 \omega^2}$$

hence

$$\langle 0 \mid s^{(1)} \mid 0 \rangle = -i \frac{3}{4 \omega^2} \int \varepsilon(t) \, dt$$

Next consider the 2nd order term. To compute
\[\langle T g(t_1)^4 g(t_2)^4 \rangle \text{ we make } 1 \cdot 3 \cdot 5 \cdot 7 = 105 \text{ contractions} \]

however \(\Sigma_4 \times \Sigma_4 \) acts on these leaving three types which we can represent by the diagrams

\[t_1, t_2 \]

with multiplicities (\(= \) index of stabilizer)

\[\frac{(4!)}{8^2} = 9 \quad \frac{(4!)}{8} = 3 \cdot 24 \quad \text{and} \quad \frac{(4!)}{4!} = 24 \]

(total \(9 + 72 + 24 = 105 \)). Thus

\[T \big(g(t_1)^4 g(t_2)^4 \big) = 9 \left(\frac{1}{2\omega} \right)^4 + 72 \left[\left(\frac{1}{4\omega} \right)^2 \left(\frac{e^{-i \omega |t_1 - t_2|}}{2\omega} \right) \right]^2 + 24 \left(\frac{1}{2\omega} \right)^4 e^{-i \omega |t_1 - t_2|} \]

hence

\[\langle 0 | S^{(2)} | 0 \rangle = \frac{-1}{2!} \frac{1}{(2\omega)^4} \int \delta(t_1) \delta(t_2) \left\{ 9 + 72 e^{-i \omega |t_1 - t_2|} + 24 e^{-i \omega |t_1 - t_2|} \right\} \]

\[\int \delta(t_1) \delta(t_2) \]
To understand Green's functions, suppose we have an oscillator
\[H = \frac{1}{2} p^2 + \frac{1}{2} m \omega^2 q^2 \]
or better
\[H = \sum \frac{1}{2} p_i^2 + \sum \frac{1}{2} m_i \omega_i^2 q_i^2 \].
Then the Green's function
\[\langle 0 | T \{ q_i(t) q_j(0) \} | 0 \rangle \]
is the probability amplitude for the system starting in the state \(q_i | 0 \rangle \) and being found at the latter time \(t \) in the state \(q_i | 0 \rangle \). (It would be nice in the case of lattice vibrations to interpret \(q_i | 0 \rangle \) as the state where the \(i \)-th atom has been excited one step above the ground state. This is perhaps reasonable.)

In the case of a general non-degenerate energy levels, it is not clear how \(q_i | 0 \rangle \) can be interpreted as an excited state.

Suppose one considers a many body problem with fermions:
\[H = \sum \omega_k a_k^a_k + \sum \omega_m \mu_k a_m^a_k \]
Suppose that \(| 0 \rangle \) is the ground state for \(H \) in \(\Lambda^W \). What is the significance of the average
\[\langle T \{ \psi(t) \psi(t') \} \rangle ? \]
Linear Response (Kubo):

Start with a system described by a Hamiltonian H. Assume it is initially in its ground state $|0\rangle$ and we perturb it by a small external field H_{ex}. In practice

$$H_{ex} = e \eta$$

where η is a particle density operator (i.e., $\eta = a^\dagger a$) and $e = e(t)$ is the applied field. We want to compute the change in density $\delta \langle n(t) \rangle$ resulting from the perturbation. Here

$$\langle n(t) \rangle = \langle 0 | U(0,t) \eta U(t,0) | 0 \rangle.$$

We have to first order in H_{ex}

$$\delta U(t,0) = -i \int_0^t U(t,t') H_{ex}(t') U(t',0) \, dt'$$

$$\delta U(0,t) = -U(0,t) \delta U(t,0) U(0,t)$$

so

$$\delta \langle n(t) \rangle = \langle 0 | \int_0^t U(0,t') \eta U(t',0) \eta U(t,0) \, dt' - i \int_0^t U(0,t') \eta U(t,t') H_{ex}(t') U(t',0) \, dt' | 0 \rangle$$

$$+ U(0,t) \tilde{H}_{ex}(t')$$

or

$$\delta \langle n(t) \rangle = i \int_0^t \langle [\tilde{H}_{ex}(t'), \eta(t)] \rangle \, dt'$$

When $H_{ex} = e \eta$ this becomes

$$\delta \langle n(t) \rangle = i \int_0^t e(t') \langle [n(t'), n(t)] \rangle \, dt'$$
\[\delta < n(t) > = \int_0^t -i < [n(t), n(t')] > \varepsilon(t') \, dt' \]

This expresses the linear response of the density \(< n(t) > \) to the applied field \(\varepsilon(t) \). The kernel is a so-called retarded Green's function:

\[G^R(t, t') = -i < [n(t), n(t')] > \Theta(t-t') \]

Now the Feynman-Dyson series computes the time-ordered Green's function

\[G^T(t, t') = -i < T n(t) n(t') >. \]

To relate \(G^T \) and \(G^R \) one uses the Lehmann representation.
Perturbation expansion of the Green’s function:
Begin with \(H = H_0 + V \). The Green’s function we want to compute is
\[
\langle T g(t') g(t) \rangle.
\]

Let us consider the temperature Green’s function, where
\[
\langle A \rangle = \frac{\text{tr} \left(e^{-\beta H A} \right)}{\text{tr} \left(e^{-\beta H} \right)} \quad g(t) = e^{iHt} g e^{-iHt}
\]
then we are after
\[
G(t) = \frac{\text{tr} \left(e^{-\beta H} e^{iHt} g e^{-iHt} g \right)}{\text{tr} \left(e^{-\beta H} \right)}
\]
We want to write this in terms of thermal averages with \(H_0 \). Now
\[
\frac{Z}{Z_0} = \frac{\text{tr} \left(e^{-\beta H} \right)}{\text{tr} \left(e^{-\beta H_0} \right)} = \frac{\text{tr} \left(e^{-\beta H_0} e^{\beta H_0} e^{-\beta H} \right)}{Z_0} = \langle U(\beta, 0) \rangle
\]
where \(U(\beta, \sigma) = e^{\beta H_0} e^{-\beta H} e^{\sigma H} e^{-\sigma H_0} \) is the propagator in the interaction picture. Recall we have
\[
U(\beta, \sigma) = I - \int_0^\beta V(\tau) \, d\tau_1 + \frac{(-1)^2}{\sigma} \int_0^\beta d\tau_1 \int_0^\tau_1 d\tau_2 \, V(\tau_1) V(\tau_2) + \ldots
\]
\[
\langle U(\beta, 0) \rangle = 1 - \int_0^\beta <V(\tau)> + \frac{(-1)^2}{\sigma} \int_0^\beta d\tau_1 \int_0^\tau_1 d\tau_2 \, <V(\tau_1) V(\tau_2)> + \ldots
\]
The numerator can be written (after dividing by Z_0)

\[\frac{\text{tr} \left(e^{-\beta H} e^{iH} e^{-iH} \right)}{Z_0} \]

\[= \frac{1}{Z_0} \text{tr} \left(e^{-\beta H_0} e^{iH_0} e^{-\beta H} e^{iH} e^{-iH_0} e^{iH_0} e^{-iH} e^{iH} \right) \]

\[= \langle U(\beta, t) \varrho(t) U(t, 0) \varrho \rangle \]

\[= \sum \sum (-1)^n \int dt_1 \ldots dt_n \sum (-1)^{n'} \int dt'_1 \ldots dt'_n \langle V(t_1) \ldots V(t_n) \varrho(t) \times \]

\[V(t'_1) \ldots V(t'_n) \rangle \]

Now suppose you look at all terms involving p V-factors; you have one for each $n + n' = p$. Given $\beta > t_1 > \ldots > t_p > 0$, it belongs to the term where there are $n - t_i$'s bigger than t. So it's clear we have for the degree p contribution

\[(-1)^p \int \langle TV(t_1) \ldots V(t_p) \varrho(t) \rangle \varrho \rangle dt_1 \ldots dt_p \]

\[= \frac{(-1)^p}{p!} \int \int \langle TV(t_1) \ldots V(t_p) \varrho(t) \rangle \varrho \rangle \]

So we get the formula

\[G(t) = \frac{\sum (-1)^p \int \langle TV(t_1) \ldots V(t_p) \varrho(t) \rangle \varrho \rangle dt_1 \ldots dt_p}{\sum (-1)^p \int \langle TV(t_1) \ldots V(t_p) \rangle \varrho \rangle dt_1 \ldots dt_p} \]

Tomorrow we want to understand why this reduces to a sum over connected diagrams.
What I am missing is a feeling for the physical significance of the 1-particle Green's function. I think in the many-body problem one is able to write the Hamiltonian

\[H = E_g + \sum \varepsilon_k a_k^* a_k + \text{small term} \]

and somehow the Green's function tells me about the elementary excitations.

So let's consider an interacting system of fermions with

\[H = \frac{p_i^2}{2} + \sum U(q_i) + \frac{1}{2} \sum V(q_i, q_j) \]

\[H_0 \]

Find the eigenvectors for the 1-particle Hamiltonian

\[H_0 \phi_k = \omega_k \phi_k \]

and form Fock space \(\Lambda = \) exterior algebra on 1-particle Hilbert space with creation and annihilation operators \(a_k^* = e(\phi_k), a_k = i(\phi_k^*) \). On \(\Lambda \) we have

\[H_0 = \sum \omega_k a_k^* a_k \]

Now instead of the operators \(\phi_k, \phi_k^* \) it is sometimes useful to use the field operators

\[\psi(x) = \sum \phi_k(x) a_k \]

\[\psi(x)^* = \sum \overline{\phi_k(x)} a_k^* \]

(Here I assume the one-particle states are scalar...
functions of position. If \(\psi_k(x) = (\psi_{k\lambda}(x)) \) is a vector function, e.g. \(\lambda \) is a spin coordinate, then we have field operators \(\psi_k(x), \psi_k(x)^* \). If one thinks of Fock space as being the exterior algebra with basis \(|x\rangle = \delta(q-x) \) for different \(x \), then \(\psi(x) \) destroys a particle at \(x \) and \(\psi(x)^* \) creates a particle at \(x \). Then in the 1-particle space

\[
H_0 = \int |x\rangle \langle x| \left(-\frac{i}{2} \nabla^2 + U(x) \right) dx dx',
\]

so on Fock space

\[
H_0 = \int \psi(x)^* \langle x| \left(-\frac{i}{2} \nabla^2 + U \right) \psi(x') dx dx',
\]

Now \(\langle x| \left(-\frac{i}{2} \nabla^2 + U \right) |x'\rangle \) is sort of a diagonal matrix, which is why one sees written

\[
H_0 = \int \psi(x)^* \left(-\frac{i}{2} \nabla^2 + U(x) \right) \psi(x) dx
\]

Next let us consider the interaction

\[
H_1 = \frac{1}{2} \sum_{i \neq j} V(q_i q_j)
\]

or more generally suppose we are given a two-particle operator and we want to understand its extension to Fock space. Let's first look at the linear algebra.

Look at an operator \(V \) on \(L^2 \). Its matrix elements are

\[
\langle \phi_k | V | \phi_m \rangle
\]

so we can write \(V \) as
\[V = \frac{1}{4} \sum_{klnm} e(\varphi_k) e(\varphi_l) \langle \varphi_k^* \varphi_l^* \mid V \mid \varphi_m \varphi_n \rangle \tilde{a}^*(\varphi_m) \tilde{a}(\varphi_n) \]

\[= \frac{1}{4} \sum_{klnm} \langle \varphi_k^* \varphi_l^* \mid V \mid \varphi_m \varphi_n \rangle \tilde{a}_k^* \tilde{a}_l^* \tilde{a}_m \tilde{a}_n \]

at least on \(\Lambda^2 \). Now when you extend a 2-particle operator to Fock space just what do you do?

So suppose given \(V : \Lambda^2 W \rightarrow \Lambda^2 W \) where \(W \) is the 1-particle space.

Let us think of an element \(\omega \in \Lambda^n W \) as giving a function \(\psi_i \ldots \psi_n \) namely its components with respect to the basis \(\varphi_1 \wedge \ldots \wedge \varphi_n \). Thus \(\psi_i \ldots \psi_n \) is a skew-symmetric tensor, with

\[\langle \psi_i^* \psi_j \ldots \psi_n^* \psi_k \mid \omega \rangle = \omega_{ij} \ldots \omega_{kn} \]

and

\[\omega = \sum_{4k < i_n} \omega_{ij} \ldots \omega_{kn} \varphi_i \wedge \ldots \wedge \varphi_n \]

For example if we use the basis \(|x_1\rangle \), then \(\omega \) gives us a skew-symmetric function \(\omega(x_1, \ldots, x_n) \) of the coordinates. Moreover element \(\varphi_1 \wedge \ldots \wedge \varphi_n \) of \(\Lambda^n W \) corresponds to the function
\[
\langle x_1, \ldots, x_n | \psi_1, \ldots, \psi_n \rangle = \det (\langle \phi_i \chi_j \rangle).
\]

Now let \(V : \Lambda^2 W \rightarrow \Lambda^2 W \) be a 2-particle operator. Its effect on

\[\omega = \sum_{m<n} \omega_{mn} \psi_m \psi_n\]

is

\[V \omega = \sum_{k<l}^m \langle \psi_k | \psi_l \rangle \langle \psi_k, \psi_l | V | \psi_m, \psi_n \rangle \omega_{mn}\]

hence

\[(V \omega)_{kl} = \frac{1}{2} \sum_{m,n}^l V_{klnm} \omega_{mn} \]

Now when we extend \(V \) to \(\Lambda^N W \) we make it operate on each pair of components and then we add. So for

\[\omega = \sum_{i_1 < \cdots < i_N} \omega_{i_1, \ldots, i_N} \psi_{i_1} \cdots \psi_{i_N} = \frac{1}{N!} \sum_{i_1 < \cdots < i_N} \omega_{i_1, \ldots, i_N}\]

we have

\[V \omega = \sum_{1\leq a < b \leq N} \omega_{i_1, \ldots, i_N} \]

\[1\]