February 19, 1978

Consider again $\Delta u = \lambda u$ on the modular tree or rather a branch of it.

The calculation done yesterday amounts to looking for a solution depending on the distance from the left vertex, i.e.

$$u = \alpha^d$$

It is, so to speak, a radial solution. What one gets by using the retraction onto an apartment associated to a chamber. The condition that this be a solution is

$$1 + 2x^2 - 3x = \lambda x$$

and for it to be an L^2 solution means that

$$1^2 + |x|^2 + 2|x|^4 + 4|x|^6 + \cdots < \infty$$

i.e.

$$2|x|^2 < 1 \text{ or } |x| < \frac{1}{\sqrt{2}}.$$

So if we rewrite the above

$$\frac{1}{x} - 3 + 2x = \lambda$$

or

$$\frac{\sqrt{2}}{(\sqrt{2}x)} - 3 + \sqrt{2}(\sqrt{2}x) = \lambda \quad \frac{1}{2}\left(\sqrt{2}x + \frac{1}{\sqrt{2}x}\right) = \frac{3 + 1}{2\sqrt{2}}$$

we see the unit circle $|\sqrt{2}x| < 1$ gets mapped isomorphically onto the region in the λ plane which is the complement of the slit $-1 \leq \frac{3 + \lambda}{2\sqrt{2}} \leq 1.$
For each \(\lambda \) outside the slit we can construct the corresponding Green's function with unit source at \(y \):

\[
G(x, y, \lambda) = \text{const.} \frac{d(x, y)}{\lambda}
\]

where the constant \(c \) is chosen so that

\[
(\Delta - \lambda)G(x, y, \lambda) = -\frac{\partial^2}{\partial y^2}, \quad \text{hence}
\]

\[
c(3\alpha - 3 - \lambda) = -1
\]

\[
c = \frac{-1}{3\alpha - (1 + 2\alpha)} = \frac{-1}{\alpha - \frac{1}{2}} = \frac{1}{\frac{1}{2} - \alpha}
\]

Check: Take \(\lambda = 0 \) where \(\alpha = \frac{1}{2} \) and \(c = \frac{1}{2 - \frac{1}{2}} = \frac{2}{3} \).

So

\[
G(x, y, \lambda) = \frac{1}{\frac{1}{2} - \alpha} d(x, y)
\]

This should be the kernel for the operator \((\Delta - \lambda)^{-1}\).

However, at the moment I don’t know if this kernel gives a bounded operator on \(L^2 \), although this seems likely.

Spherical functions: Fix a vertex \(0 \) and consider functions on the vertices which are radial, i.e. depend only the distance from \(0 \). Let \(f \) be a radial eigenfunction for \(\Delta \) with eigenvalue \(\lambda \). Then at \(0 \) we have

\[
\Delta f(0) = 3 f(1) - 3 f(0) = 2 f(0)
\]

and at other values of \(r \) we have

\[
f(r-1) + 2 f(r+1) = 3 f(r) = \lambda f(r)
\]
One sees from these equations that there is a unique radial eigenfunction with given value \(f(0) \) and eigenvalue \(\lambda \). Moreover it has the form

\[
f(r) = c_1 r^{\lambda_1} + c_2 r^{\lambda_2}
\]

where \(\lambda_1, \lambda_2 \) are the roots of the characteristic equation

\[
\lambda^{-1} + 2 \lambda = (\lambda + 3)
\]

it should be

Now, clear that bounded eigenfunctions, in fact polynomial growth eigenfunctions, do not exist except for \(\lambda \) in the cut \([-3 - 2\sqrt{2}, -3 + 2\sqrt{2}]\). For if we had an eigenfunction \(u \neq 0 \), choose the origin to be a point where \(u \neq 0 \), then average over the compact group of automorphisms of the tree preserving \(0 \) and you get a radial eigenfunction \(f(r) \neq 0 \) with polynomial growth. But there can't be any \(\lambda \) off the cut, but one would have to have \(f(r) = c_2 r^{\lambda_2} \) where \(\lambda_2 \) is the small root (in modulus < \(\frac{1}{2} \)). This would mean that

\[
(\lambda + 3) f(0) = \lambda_2 (\lambda + 3) c_2
\]

and also

\[
(\lambda + 3) f(0) = 3 f(1) = 3 c_2 \lambda_2
\]

so

\[
\lambda_2 = \lambda + 3 \quad \text{and} \quad \lambda_2 = -1
\]

which is impossible.

Consider \(\Delta = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \) on the UHP. We have

\[
y^{-1/2} (\Delta + \frac{1}{4}) y^{1/2} = y^2 \frac{\partial^2}{\partial x^2} + y^2 \left(\frac{\partial}{\partial y} + \frac{1}{y} \right)^2 + \frac{1}{4} = y^2 \frac{\partial^2}{\partial x^2} + \frac{y^2}{2} \frac{\partial^2}{\partial y^2} + y^2 \frac{\partial}{\partial y} + \frac{1}{4}
\]
Thus
\[\Delta + \frac{1}{4} = y^2 \frac{\partial^2}{\partial x^2} + y^{1/2} \left(y \frac{\partial^2}{\partial y} \right)^2 y^{-1/2} \]

\[\left(\Delta + \frac{1}{4} \right) u, v = \int \left(y^2 \frac{\partial^2 u}{\partial x^2} + y^{1/2} \left(y \frac{\partial^2}{\partial y} \right)^2 (y^{-1/2} u) \right) \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} \]

\[= \int \frac{\partial^2 u}{\partial x^2} u \, dx \, dy + \int \left(y \frac{\partial^2}{\partial y} \right)^2 (y^{-1/2} u) \cdot (y^{-1/2} v) \, dx \, dy \]

If \(u \) has compact support we can integrate by parts to get

\[= -\int \left(\frac{\partial u}{\partial x} \right)^2 \, dx \, dy - \int \left[\left(y \frac{\partial}{\partial y} \right)^2 (y^{-1/2} u) \right] \, dx \, dy \]

\[\leq 0 \]

Consequently
\[\Delta + \frac{1}{4} \leq 0. \]

Formula for spherical functions in the UHP case:
Recall that in geodesic polar coordinates the Laplacian for the upper half plane is

\[\Delta = \frac{1}{\sinh(s)} \frac{\partial}{\partial r} \left(\sinh(s) \frac{\partial}{\partial r} \right) + \frac{1}{\sinh^2(s)} \frac{\partial^2}{\partial \theta^2} \]

A radial eigenfunction satisfies the DE

\[\frac{1}{\sinh(s)} \frac{d}{dr} \left(\sinh(r) \frac{du}{dr} \right) = \lambda u \]

This should be compared with

\[\frac{1}{r} \frac{d}{dr} \left(r \frac{du}{dr} \right) = \lambda u \]
which is Bessel's DE of order 0 essentially: \[-\lambda + k^2 r^2 u = 0. \]

The only solution regular at \(r = 0 \) is \(J_0(kr) \) up to scalar factors. The same should be true for the sinh \(r \) case so one sees there is a unique - up-to-scaler-factors radial eigenfunction.

To find it we can start with the eigenfunction \(y^* \) for \(\Delta \) and average it over the rotation group

\[
\left(\frac{\cos \theta \sin \theta}{-\sin \theta \cos \theta} \right)^* y = \frac{y}{|\cos \theta - 2\sin \theta|^2}
\]

hence we are interested in

\[
y^* \int_0^{\pi} |\cos \theta - 2\sin \theta|^{-2s} d\theta
\]

Restrict this to the \(y \) axis and recall \(y = e^r \) on this axis,

\[
y^* \int_0^{\pi} \left[(\cos \theta)^2 + (\sin \theta)^2 \right]^{-2s} d\theta
\]

\[
= \text{const} \int_0^{\pi} \left[(1 + \cos 2\theta) + \frac{y(1 - \cos 2\theta)}{2} \right]^{-2s} d\theta
\]

\[
= \text{const} \int_0^{2\pi} \left(\cosh r - \sinh r \cos \theta \right)^{-2s} d\theta
\]

which agrees with what's in Helgason's book except for the exponent \(-2s\).
February 15, 1978

Let the tree, \(K \) finite subtree. One has an exact sequence in real cohomology

\[
\begin{array}{cccc}
H^0(X) & \to & H^0(X-K) & \to & H^1(X, X-K) & \to & H^1(X) \\
\uparrow & & \uparrow & & \uparrow & & \uparrow \\
\mathbb{R} & \to & \text{Map}(\pi_0(x-K), \mathbb{R}) & \to & & & \\
\end{array}
\]

\(H^1(X, X-K) \) is constructed out of 1-cochains on \(X \) with support in the set of 1-simplices not in \(X-K \), i.e. which touch \(K \). Given such a cochain \(\alpha \), since \(X \) is contractible we get \(\alpha = \delta f \) where \(f \in C^0(X) \) is unique up to constants. Since \(\delta f = 0 \) vanishes on \(X-K \), \(f \) is locally constant on \(X-K \), hence constant on each component.

Conversely, given \(f \in H^0(X-K) \subset C^0(X-K) \), we can extend \(f \) to a function \(\tilde{f} \) on the vertices of \(K \), say by \(0 \) for example. Then \(\alpha = \delta \tilde{f} \) is a 1-cochain with support off \(X-K \) whose class depends only on \(f \). \(\tilde{f} \) is unique up to functions on the vertices of \(K \) and it is natural \(\delta \) in the \(L^2 \)-context to minimize \(\| \delta \tilde{f} \|^2 \). If \(\tilde{f} \) is the minimum then \((\delta \tilde{f}, \delta g) = 0 \) for all \(g \in C^0(K) \) and so \(\delta^* \delta \tilde{f} = 0 \). Thus we are solving the Dirichlet problem, i.e. finding a function \(\tilde{f} \) on \(K \cup \partial K \), \(\partial K = \text{vertices joined to } K \) by edges, such that \(\Delta \tilde{f} = 0 \) in the interior. Physically we can think of \(f \) on \(\partial K \) as being applied external voltages, and then \(\tilde{f} \) is the resulting voltage internally.

Now we want to let \(K \) expand but keeping \(f \in H^0(X-K) \) fixed. In the limit we should get a harmonic function \(\tilde{f} \) on the vertices such that \(\tilde{f} = f \). But I have already analyzed the voltage...
distribution on a branch of the tree

which tends to zero as we go →, and I found the branch
to have a resistance of 2 ohms. So it's more or less
clear to find the limiting voltage distribution at a point
inside K. If I replace each branch issuing from K by
a resistance of 2 ohms in series with a voltage given
by the value of f on that branch.

In this manner it seems possible to associate to each
locally constant function on the space of ends of X a harmonic
function f on X having f as its boundary values.
In other words we can solve the Dirichlet problem for locally
constant boundary values.

Denote by $C^i_2(X) \subset C^i(X)$ the subspace of l^2-cochains.
Assuming Δ bounded away from zero on $C^0_2(X)$, I know
that $\delta: C^0_2(X) \rightarrow C^1_2(X)$ has a closed range so that
the cohomology

$$H^1_2(X) = \frac{C^1_2(X)}{\delta C^0_2(X)}$$

is a Hilbert space. Here's a simple proof that the
canonical map

$$H^1_c(X) \rightarrow H^1_2(X)$$

is injective. Let $\alpha \in C^1_c(X)$ be an l^2-coboundary $\alpha = \delta g$
with $g \in C^0_c(X)$. Then g is constant far out, hence
as it is square integrable, it must be zero far out, hence
$g \in C^0(X)$, and so α represents 0.

Because $C^1_c(X)$ is dense in $C^1(X)$.
February 16, 1978

Yesterday I saw that given a locally constant function f on ∂X, one could solve the Dirichlet problem: find a harmonic \tilde{f} on X such that \tilde{f} has the boundary value f. This should imply that for each vertex y, if there is a Poisson measure μ_y on ∂X associated to y, then, which represents $f \mapsto \tilde{f}(y)$.

By rotational symmetry around y, it's clear that since μ_y is a probability measure (the constant functions are harmonic) that for any x the subset of ends $\{y : d(y,x) = d\}$ on the other side of x from y should have measure $\frac{1}{3} \cdot \frac{2}{2d(y,x)}$

We can prove this by showing that for any harmonic u, $u(y) =$ average of $u(x)$ as x runs over the circle C_d of radius d. Clear for $d = 1$. Next observe that for $d \geq 2$

$$\sum_{d(x,y) = d+1} u(x) + 2 \sum_{d(x,y) = d-1} u(x) = 3 \sum_{d(x,y) = d} u(x)$$

so that

$$\frac{1}{2} \sum_{d(x,y) = d+1} u(x) - \sum_{d(x,y) = d} u(x) + \sum_{d(x,y) = d-1} u(x) - \frac{1}{2} \sum_{d(x,y) = d} u(x) = 0$$

zero by induction
by induction if we know the averages over \(C_{d-1}, S_d \) are the same we can get the average of \(C_{d+1} \) to be the same, this for \(d \geq 2 \). Finally you should check for \(d = 1 \).

\[-3 \sum_{c_1} u + \sum_{c_2} u + 3 \sum_{c_3} u = 0 \quad \Rightarrow \quad \frac{\sum_{c_2} u}{c_2} = 6 u(0) \quad \text{OK.}\]

Finally let us fix an origin \(O \), whence we get a definite measure \(d\mu_0 \) on \(\partial X \), and then compute the other Poisson measures \(d\mu_y \) in terms of \(d\mu_0 \) and a function on \(\partial X \).

Let \(J \) be an end and \(0 \) an origin. It makes sense to talk about vertices equally distant from \(J \).

\[
\begin{align*}
\text{In want we can define a function } \\
h(x, y) &= \lim_{z \to J} d(x, z) - d(y, z)
\end{align*}
\]

Then you get the following picture for vertices equally distant from \(J \).
Moreover we get a harmonic function:

$$\eta(y) = \frac{1}{2} \int \frac{d\gamma}{\gamma(x,0)} = \lim_{z \to y} \frac{2}{2 \pi i} \frac{d\gamma(x,\bar{z})}{d(x,\bar{z})}$$

The choice of origin suffices to normalize \(\eta_0(x) \) to be 1 at \(x = 0 \).

Classical version: The harmonic function \(y = \text{Im}(z) \) in the UHP when considered on the disk \(|w| < 1 \) via the transformation

$$w = \frac{2-i}{z+i} = \left(\frac{1-i}{1+i} \right) (z) \quad z = \left(\frac{1+i}{-1+i} \right) \left(\frac{w-i}{w+i} \right)$$

becomes

$$\text{Im} \left(i \frac{1+w}{1-w} \right) = \text{Re} \left(\frac{1+w}{1-w} \right) = \frac{1-|w|^2}{|1-w|^2}$$

This blows up at \(w = 1 \) but vanishes at other points of \(|w| = 1 \). Rotated so that the singularity occurs at \(z \) it becomes

$$\frac{1-|w|^2}{|z-w|^2}$$

The Poisson measure on \(|w| = 1 \) belonging to \(w = 0 \) in

$$\frac{d\gamma}{2\pi i a} = \frac{d\omega}{2\pi i w} \quad \omega - \frac{b}{a}$$

becomes

$$\omega = \frac{1}{2\pi i (aw+b)(bw+a)} \frac{d\omega}{d\Theta} = \frac{1}{2\pi i (ae^{-i\Theta} + b)(ae^{i\Theta} + a)}$$

$$\frac{1}{a^2 - |b|^2} = \frac{1}{2\pi} \frac{d\Theta}{|ae^{i\Theta} + b|^2} = \frac{d\Theta}{2\pi} \frac{(1-|b|^2)}{|e^{i\Theta} + \frac{b}{a}|^2}$$
Hence the Poisson measure belonging to the point \(w = w_0 = -\frac{b}{a} \) is

\[
\frac{1 - |w|^2}{|w_0|^2 - 2i} \int_{\mathbb{C}} \frac{d\Theta}{|e^{i\Theta} - w|^2}
\]

so it maybe it's clear that the Poisson kernel for the tree \(X \) with origin \(O \) is

\[
\frac{1}{2 \rho_1(\rho_0)} \, d\mu_0(\rho).
\]

There seems to be an interesting inner product on \(H_c^1(X) \), namely the one obtained from the embedding

\[
H_c^1(X) \hookrightarrow H_2^1(X)
\]

Note that because \(C_c^1 \) is dense in \(C_c^1(X) \), it follows the the above embedding is dense. The inner product can be described as follows. Given \(f \) locally constant on \(\partial X \), let \(\tilde{f} \) be its harmonic extension. Then \(\|f\|_2^2 = \|\tilde{f}\|_2^2 \). Put another way, you replace an \(L^2 \)-cochain with compact support by its harmonic equivalent and you take the norm.

Return to \(\Delta \) on UHP. Using the Dirichlet problem we can identify smooth functions on \(S^1 \) with harmonic functions in the disk. Mod-ifying by constants this should be an irreducible representation of \(\text{PSL}_2(\mathbb{R}) \). Hence there should be a unique invariant inner product up to scalars.
Because we've seen that \(\Delta \leq -\frac{1}{4} \) on \(L^2(\text{UHP}) \) the irreducible representation of functions on \(S^1 \) described above does not occur as an eigenspace of \(\Delta \). In other words if \(L^2(\text{UHP}) \) is written as an integral of irreducible representations then only \(\lambda = s(s-1) \) occurs for \(\lambda \leq -\frac{1}{4} \), i.e. \(s \in \frac{1}{2} + i\mathbb{R} \). It seems that the space of harmonic functions on the disk with Dirichlet norm and constant is the irreducible representation belonging to \(s = 1 \), whereas to \(s = 0 \) belongs the trivial representation.

February 17, 1978

Dirichlet norm: On a Riemann surface let \(\omega \) be a 1-form. Then we get a 1-form \(\overline{\omega} \) by conjugating and a 2-form \(\omega \wedge \overline{\omega} \) which can be integrated to get a number. For example if \(\omega = f \, dz \) is of type \((1,0)\) then \(\overline{\omega} = \overline{f} \, d\overline{z} \) and

\[
\omega \wedge \overline{\omega} = |f|^2 \, dz \wedge d\overline{z} = |f|^2 \left[dxdy + i \, dx \wedge dy \right]
\]

\[
= |f|^2 (-2i) \, dx \, dy
\]

so \(\frac{i}{2} \omega \wedge \overline{\omega} \) is an intrinsic norm for forms of type \((1,0)\).

Take \(\omega = \frac{\partial f}{\partial z} \). Then

\[
\left\| \frac{\partial f}{\partial z} \right\|^2 = \frac{1}{2} \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \right)^2 = \frac{1}{4} \left(|\frac{\partial f}{\partial x}|^2 + |\frac{\partial f}{\partial y}|^2 + i \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} - i \frac{\partial f}{\partial y} \frac{\partial f}{\partial x} \right)
\]

\[
\left\| \frac{\partial f}{\partial \overline{z}} \right\|^2 = \frac{1}{4}
\]
Consequently for a function \(f \) on the Riemann surface the Dirichlet integral
\[
\iint \left(\left| \frac{\partial f}{\partial x} \right|^2 + \left| \frac{\partial f}{\partial y} \right|^2 \right) \, dx \, dy
\]
is invariant for biholomorphic maps, because it can be expressed in terms of
\[
\int \bar{f} \, df + \int \overline{df} \, f
\]
for now I consider all smooth functions on \(S' \) as a space on which \(G = \text{PSL}_2(\mathbb{R}) \) acts. Then to each \(f \) on \(S' \) we can associate the unique harmonic extension \(\tilde{f} \) of \(f \) to the disk and take its Dirichlet norm. In this way one gets an inner product which is \(G \)-invariant on the space of smooth functions on the circle modulo constants.

Notice that on \(S' \) functions and densities (i.e., 1-forms as the orientation is preserved) are dual. Hence the inner product maybe gives a method of associating to \(f \), a density \(dg \) of measure 0. It seems what I should look for is an operator on the space of smooth functions mod constants (perhaps the Hilbert transform) such that the norm I am after is
\[
\| f \|^2 = \iint_{S'} f \, d\bar{f}.
\]

Suppose \(u \) harmonic in the UHP with finite Dirichlet integral and that \(u \) is real-valued.
\[
\iint \left(\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right) \, dx \, dy = \iint \left(\frac{\partial u}{\partial x} \frac{\partial u}{\partial y} + \frac{1}{y} \right) \, dx \, dy = \iint u' \, du \, dx \, dy
\]
\[
\int_{x=-\infty}^{\infty} u \frac{\partial u}{\partial x} \, dy - u \frac{\partial u}{\partial y} \, dx = -\int_{-\infty}^{\infty} u^2 \frac{\partial u}{\partial y} \, dx
\]

Now if \(v \) is a conjugate harmonic function to \(u \), i.e., \(u+iv \) is analytic, then Cauchy-Riemann equations give

\[
\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}
\]

so we get

\[
\int \left\{ \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right\} \, dx \, dy = \int_{-\infty}^{\infty} u \, dv
\]

where \(v \) is the conjugate harmonic function to \(u \).

Let's understand the operator \(T: u \to v \) on \(S^1 \).

If \(f \) is analytic, with \(f = u + iv \), \(u, v \) real

\[
f(z) = \sum_{n=0}^{\infty} a_n z^n \quad \bar{f}(z) = \sum_{n=0}^{\infty} \bar{a}_n z^{-n} \quad \text{on} \ S^1
\]

then

\[
u = \frac{f + \bar{f}}{2} = \sum_{n=0}^{\infty} \frac{a_n}{2} z^n + \sum_{n=0}^{\infty} \frac{\bar{a}_n}{2} z^{-n}
\]

\[
v = \frac{f - \bar{f}}{2i} = \sum_{n=0}^{\infty} \frac{a_n}{2} z^n + \sum_{n=0}^{\infty} i \frac{\bar{a}_n}{2} z^{-n}
\]

Hence in general given

\[
u(z) = \sum_{n \in \mathbb{Z}} c_n z^n
\]

then

\[
T(u) = \sum_{n=0}^{\infty} \frac{1}{2} c_n z^n + \sum_{n<0} i c_n z^n
\]
which is well-defined modulo constants. Also it makes sense even when \(u \) is not real. Clearly \(T \) is a unitary operator in \(L^2(S^1, \frac{d\theta}{2\pi})/c \) with
\[
T^2 = -1.
\]

Note that because \(T^2 = -1 \), \(T \) will be unitary with respect to any inner product for which its \(+i \) and \(-i\) eigenspaces are orthogonal.

Real line version. Let \(u(x) \) be a smooth function of rapid descent on \(\mathbb{R} \) and \(\hat{u}(\xi) \) its Fourier transform:
\[
u(x) = \int_{\mathbb{R}} e^{ix\xi} \hat{u}(\xi) \frac{d\xi}{2\pi}
\]
Define its Hilbert transform by
\[
Tu(x) = \int_{\mathbb{R}} e^{ix\xi} \hat{u}(\xi) \frac{d\xi}{2\pi} - \frac{1}{i} \int_{\mathbb{R}} e^{ix\xi} \hat{u}(\xi) \frac{d\xi}{2\pi}
\]
Note that
\[
u(x) + iTu(x) = 2\int_{0}^{\infty} e^{ix\xi} \hat{u}(\xi) \frac{d\xi}{2\pi}
\]
is analytic for \(\text{Re}(\xi) > 0 \) and it decays exponentially as \(\text{Im}(\xi) \to \infty \). \(T \) is a singular integral operator of order 0.

Formulas for the Hilbert transform: First we want the formulas giving \(f = u + iTu \). On the circle
\[
u = \sum_{n \in \mathbb{Z}} c_n e^{in\theta} \quad c_{-n} = \overline{c}_n \quad \text{if } u \text{ real}
\]
\[
f = e^{i\theta} \sum_{n \geq 1} 2c_n e^{in\theta} = \int_{0}^{2\pi} u(e^{i\theta}) \left(1 + 2 \sum_{n \geq 1} e^{-in\theta} \right) e^{i\theta} \frac{d\theta}{2\pi} = \int_{0}^{2\pi} u(e^{i\theta}) \frac{1 + e^{-i2\theta}}{1 - e^{-i2\theta}} \frac{d\theta}{2\pi}
\]
On the line
\[f(z) = \int_0^{\infty} e^{i\theta} \left(\int_{-\infty}^{\infty} e^{-ix^2} u(x) \, dx \right) \frac{d\theta}{2\pi} \]
\[= \int_{-\infty}^{\infty} \hat{u}(x) \left\{ \int_{-\infty}^{\infty} e^{i(x-z)^2} \frac{dx}{2\pi} \right\} \, dx \quad \text{for } \text{Im} \, z > 0 \]
\[= \int_{-\infty}^{\infty} \hat{u}(x) \left\{ \frac{i}{\pi} \frac{e^{-1/4}}{z-x^2} \right\} \, dx = \frac{i}{\pi} \int_{-\infty}^{\infty} \frac{u(x) \, dx}{z-x^2} \]

Check: assuming \(u \) real
\[\text{Re} \, f = \frac{1}{\pi} \int_{-\infty}^{\infty} u(x) \, dx \left(\frac{\text{Re} \left(\frac{1}{z-x^2} \right)}{|z-x^2|^2} \right) = \frac{1}{\pi} \int_{-\infty}^{\infty} u(x) \frac{\frac{z-x}{(z-x)^2+y^2}}{(z-x)^2+y^2} \, dx \]
\[\text{Im} \, f = \frac{1}{\pi} \int_{-\infty}^{\infty} u(x) \frac{\frac{x-z}{(z-x)^2+y^2}}{(z-x)^2+y^2} \, dx \]

Thus
\[Tu(x) = \lim_{y \to 0^+} \frac{1}{\pi} \int_{-\infty}^{\infty} u(x) \frac{x-z}{(z-x)^2+y^2} \, dx \]
\[= \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{u(x) \, dx}{x-z} \]

where \(P \) denotes the Cauchy principal value defined as follows: No problem with the definition if \(u(x) = 0 \) for then \(u(x) \) is divisible by \(x-x \). For constant functions you define the \(P \) value to be zero. The good definition for differentiable \(u \) is
\[\lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} + \int_{\varepsilon}^{\infty} \]

Be careful: \(f(z) \) is defined only for \(\text{Im} \, z > 0 \) but will have an analytic continuation if \(u \) is analytic. The integral
\[
\frac{1}{\pi} \int \frac{u(z)dz}{z-\lambda}
\]

will not represent this analytic continuations. Let us take \(f \) to be what is given by the integral. Then we have \(\bar{f}(\lambda) = -f(\lambda) \) so that on approaching the \(x \)-axis we have

\[
f^+(x) = u(x) + iTu(x)
\]

\[
f^-(x) = -u(x) + iTu(x)
\]

Also we have

\[
\frac{\partial}{\partial x} (z) = f'(z) = \frac{1}{\pi i} \int \frac{u(x)dx}{(z-x)^2}
\]

and

\[
\frac{\partial f^+}{\partial x} = \frac{\partial u}{\partial x} + i \frac{\partial Tu}{\partial x}
\]

\[
\frac{\partial f^-}{\partial x} = -\frac{\partial u}{\partial x} + i \frac{\partial Tu}{\partial x}
\]

Since

\[
\int_{-\infty}^{\infty} \frac{\partial u}{\partial x} \, dx = \int_{-\infty}^{\infty} \frac{\partial (\frac{u^2}{z})}{\partial x} \, dx = 0
\]

it follows that we can evaluate from either side:

\[
\int_{-\infty}^{\infty} u \frac{\partial}{\partial x} (Tu) \, dx = \int_{-\infty}^{\infty} u \, dx \frac{\partial f^+}{\partial x} \bigg|_i
\]

\[
= \lim_{\gamma \to 0} \int_{-\infty}^{\infty} u(x) \, dx \int_{-\infty}^{\infty} \frac{u(\lambda) \, d\lambda}{(x+iy-\lambda)^2} \left(-\frac{1}{\pi} \right)
\]

\[
= -\frac{1}{\pi} \int_{-\infty}^{\infty} u(x)u(\lambda) \, dx \, d\lambda
\]

\[
- \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{u(x)u(\lambda)}{(x-\lambda)^2}
\]
Circle approach. Different approaches to the Dirichlet norm: On a Riemann surface define \(* \) on the real cotangent bundle to be the transpose of multiplication by \(\frac{1}{i} \) on the tangent bundle. Thus
\[
*dx = d\Re \frac{1}{z} z = dy
\]
\[
*dy = d\Im \frac{1}{z} z = -dx
\]
Extend \(* \) conjugate linearly to complex 1-forms. Then
\[
du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy
\]
\[
*du = \frac{\partial u}{\partial x} dy - \frac{\partial u}{\partial y} dx
\]
\[
du * du = \left(\left| \frac{\partial u}{\partial x} \right|^2 + \left| \frac{\partial u}{\partial y} \right|^2 \right) dx dy
\]
and so \(\iint du * du \) is the Dirichlet norm. Let's use this in polar coordinates:
\[
*dr = r d\theta
\]
\[
*rd\theta = -dr
\]
\[
du = \frac{\partial u}{\partial r} dr + \frac{1}{r} \frac{\partial u}{\partial \theta} r d\theta
\]
\[
*du = \frac{\partial u}{\partial r} r d\theta + \frac{1}{r} \frac{\partial u}{\partial \theta} (-dr)
\]
\[
\iint du * du = \iint \left(\left| \frac{\partial u}{\partial r} \right|^2 + \frac{1}{r^2} \left| \frac{\partial u}{\partial \theta} \right|^2 \right) r dr d\theta
\]
Suppose we're given a harmonic function (say real-valued)
\[
u = \sum_{n \neq 0} \lambda^n (e_n e^{i\theta} + \overline{e_n} e^{-i\theta}) + \text{const}
\]
The conjugate harmonic function is

\[v = \sum_{n > 0} n^n (-i c_n e^{in\theta} + i \overline{c}_n e^{-in\theta}) + \text{real} \]

I expect the Dirichlet norm of \(u \) to be

\[\iint \nabla u \cdot \nabla u \, dV = \iint (\nabla (u \nabla u) - u \Delta u) \, dV \]

\[= \oint u \nabla u \cdot n \, ds \quad \text{n outward normal} \]

\[= \int_0^{2\pi} u \frac{\partial u}{\partial r} \, d\theta \quad \text{Cauchy-Riemann:} \]

\[\frac{\partial u}{\partial \theta} = \frac{1}{i} \frac{\partial v}{\partial r} \]

\[= \int_0^{2\pi} u \frac{\partial v}{\partial \theta} \, d\theta \]

\[\frac{\partial v}{\partial \theta} = \sum_{n > 0} n^n \left(n c_n e^{in\theta} + n \overline{c}_n e^{-in\theta} \right) \]

Hence

\[\int_0^{2\pi} u \frac{\partial v}{\partial \theta} \, d\theta = 4\pi \sum_{n > 0} n |c_n|^2 = \text{Dirichlet norm of } u. \]

Also

\[\frac{\partial u}{\partial r} = \sum_{n > 0} n^n \left(n c_n e^{in\theta} + n \overline{c}_n e^{-in\theta} \right) \]

\[\int_0^l dr \int_0^{2\pi} \left(\frac{\partial u}{\partial r} \right)^2 \, d\theta \]

\[= \int_0^l dr \cdot 2\pi \cdot n^2 n^{2n-2} \left(|c_n|^2 + |\overline{c}_n|^2 \right) \]

\[= 4\pi n^2 |c_n|^2 \int_0^l r^{2n-1} \, dr = 2\pi n |c_n|^2 \]

\[\frac{\partial u}{\partial \theta} = \sum_{n > 0} n^n \left(nc_n e^{in\theta} - in \overline{c}_n e^{-in\theta} \right) \]

\[\int_0^l dr \int_0^{2\pi} \left(\frac{\partial u}{\partial \theta} \right)^2 \, d\theta \]

\[= \int_0^l dr \sum_{n > 0} \frac{n^{2n} 2n^2 |c_n|^2}{2\pi} = 2\pi n |c_n|^2 \]

So we get again \[4\pi \sum_{n > 0} n |c_n|^2 \] for \(\iint \text{div}(u) \, dV \).
February 18, 1978:

If \(u = \sum c_n e^{i\theta} \) is a function on \(S^1 \), then its unique harmonic extension to the disk is \(u = \sum c_n r^n e^{i\theta} \).

\[
\frac{\partial u}{\partial r} = \sum_n n^2 c_n r^{n-1} e^{i\theta} \quad \frac{\partial u}{\partial \theta} = \sum_n c_n r^n e^{i\theta}
\]

\[
\int_0^{2\pi} \int_0^1 \left[\left(\frac{\partial u}{\partial r} \right)^2 + \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta} \right)^2 \right] d\theta = 2\pi \int_0^1 \left\{ \sum_n n^2 r^{n-2} |c_n|^2 + \sum_n |c_n|^2 r^{2n-2} \right\}
\]

\[
= 2\pi \sum_{n \in \mathbb{Z}} |n| |c_n|^2
\]

Write this in terms of a kernel on \(S^1 \).

\[
\int d\theta_1 d\theta_2 \sum_n c_n e^{i\theta_1} \sum_n \overline{c}_n e^{-i\theta_2} \sum_n |n| e^{i(n\theta_2 - \theta_1)} \frac{1}{2\pi}
\]

so the kernel is the distribution

\[
\frac{1}{2\pi} \sum_n |n| e^{i(n\theta_2 - \theta_1)}
\]

Now

\[
\sum_{n>0} n e^{i\theta} = \frac{d}{dz} \sum_{n=0}^\infty z^n = \frac{d}{dz} \frac{1}{1-z} = \frac{z}{(1-z)^2}
\]

\[
= \frac{e^{i\theta}}{(1-e^{i\theta})^2} = \frac{1}{(e^{i\theta} - e^{-i\theta})^2} = \frac{1}{-4 \sin^2 \frac{\theta}{2}}
\]

for \(\text{Im} \theta > 0 \). Hence it seems that

\[
\sum_n |n| e^{i\theta} = \frac{1}{-2 \sin^2 \frac{\theta}{2}} \quad \text{for } \theta \neq 0
\]

At \(\theta = 0 \) it is a distribution of some sort. Notice the same peculiar negative which means the zero part is very positive.
Remark: There is a nice description of the ends of the modular tree. Suppose you define Dedekind cut (incorrectly) as a partition of the rational numbers: $R = A + Q - A$ such that every member of A is less than every member of $Q - A$. Then each rational number r defines two of these cuts depending on whether $r \in A$ or $r \in Q - A$, and an irrational number determines exactly one such cut. Such a cut can be identified with an end of the modular tree. Note that at ∞ belong the two cuts $A = \varnothing$ and $A = Q$ which correspond to the 2 ways of getting to ∞.

Notice also that if an end is fixed then the other ends form a linearly ordered set. Moreover if the 2 ends belonging to ∞ are removed, then $\mathbb{Z} = \langle T \rangle$ acts nicely on the rest of the ends.