May 5, 1978:

\[
\begin{pmatrix}
 a_1 \\
 b_1 \\
\end{pmatrix} \rightarrow \begin{pmatrix}
 a_2 \\
 b_2 \\
\end{pmatrix} = \begin{pmatrix}
 \alpha & \beta \\
 \gamma & \delta \\
\end{pmatrix} \begin{pmatrix}
 a_1 \\
 b_1 \\
\end{pmatrix}
\]

\[
S(z) \text{ is analytic in } |z| < 1 \text{ and unitary on the boundary } |z| = 1, \text{ and of norm } < 1 \text{ inside } S'.
\]

Example from Schrödinger equation:

\[-u'' + gu = k^2 u\]

with \(g\) of compact support. Then any solution has the asymptotic description:

\[a_1 e^{ikx} + b_1 e^{-ikx} \leftrightarrow a_2 e^{-ikx} + b_2 e^{ikx}\]

If \(A, B\) are defined by

\[Ae^{ikx} + Be^{-ikx} \leftrightarrow e^{ikx}\]

\[\bar{B}e^{ikx} + \bar{A} e^{-ikx} \leftrightarrow e^{-ikx}\]

(Here \(k \in \mathbb{R}\), otherwise \(\bar{B}(k)\) should be replaced by \(\bar{B}(-k)\)).

Then we have

\[
\begin{align*}
 a_1 &= Ab_2 + \bar{B}a_2 \\
 b_1 &= Bb_2 + \bar{A}a_2
\end{align*}
\]

\[
\begin{pmatrix}
 a_1 \\
 b_1 \\
\end{pmatrix} = \begin{pmatrix}
 A & B \\
 \bar{B} & \bar{A}
\end{pmatrix} \begin{pmatrix}
 a_2 \\
 b_2 \\
\end{pmatrix}
\]

\[
T(k) = \begin{pmatrix}
 A(k) & B(-k) \\
 B(k) & A(-k)
\end{pmatrix}
\]

\[
\begin{align*}
 A(-k) &= A(k) \\
 B(-k) &= B(k)
\end{align*}
\]

and this is analytic for all \(k\) except possibly \(k = 0, \infty\).

In this example the scattering matrix \(S\) is found to be
Now notice that this is analytic provided $A(k) \neq 0$. For $\text{Im}(k) > 0$ this means that there are no bound states for the Schrödinger equation. So we have to assume no bound states if we want $S(k)$ to be analytic in the UHP.

$$\det S(k) = \frac{BB}{A^2} - \frac{1}{A^2} = \frac{A^2}{A^2} - \frac{A}{A} = \frac{A(-k)}{A(k)}$$

In the UHP $S(k)$ fails to be invertible when $A(-k) = 0$ which means that we have

$$B(k) e^{ikx} \leftrightarrow e^{-ikx}$$

grows as $x \to \infty$ grows as $x \to -\infty$.

The time dependence of this solution is e^{ikx} so this represents a radiating state; you see waves travelling outward.

Example: Recall that a δ function potential leads to a transfer matrix of the form

$$\begin{pmatrix} e^{-ikd} & 0 \\ 0 & e^{ikd} \end{pmatrix} \begin{pmatrix} a & b \\ \bar{b} & \bar{a} \end{pmatrix} \begin{pmatrix} e^{ikd} & 0 \\ 0 & e^{-ikd} \end{pmatrix} = \begin{pmatrix} a & be^{-2ikd} \\ be^{2ikd} & \bar{a} \end{pmatrix}$$

$\in \text{SU}(1,1)$

The corresponding scattering matrix is

$$S^{\circ} = \begin{pmatrix} \frac{be^{-2ikd}}{a} & \frac{1}{a} \\ \frac{1}{a} & -\frac{be^{2ikd}}{a} \end{pmatrix}$$
This blows up as \(k \to + \infty \) because we have not arranged for the incoming and outgoing spaces to be orthogonal.

Be more careful. Suppose we have a 8-function potential supported at \(x = 0 \):

\[-u'' + c \delta(x) u = k^2 u\]

Integrate over \([-\varepsilon, \varepsilon]\) and let \(\varepsilon \to 0 \)

\[- \left[u'\right]_0^\varepsilon + c u(0) = 0\]

so if \(A e^{ikx} + B e^{-ikx} \leftrightarrow e^{ikx} \) then \(u \) should be continuous at 0:

\[A + B = 1\]

and its derivative jumps by \(cu(0)\):

\[-[A ik + B(-ik)] + ik = c\]

or

\[A - B = 1 - \frac{c}{ik}\]

so

\[A = 1 - \frac{c}{2ik}, \quad B = \frac{c}{2ik}\]

and so

\[T = \begin{pmatrix}
1 - \frac{c}{2ik} & -\frac{c}{2ik} \\
\frac{c}{2ik} & 1 + \frac{c}{2ik}
\end{pmatrix}\]

\[S = \begin{pmatrix}
\frac{c}{2ik} & 1 - \frac{c}{2ik} \\
1 - \frac{c}{2ik} & 1 + \frac{c}{2ik}
\end{pmatrix}\]

\[T \times S = \begin{pmatrix}
\frac{c}{2ik} & 2ik \\
2ik & \frac{c}{2ik - c}
\end{pmatrix}\]

\[\begin{pmatrix}
\frac{c}{2ik} & 2ik \\
2ik & \frac{c}{2ik - c}
\end{pmatrix}\]
The scattering matrix has a pole where
\[k = \frac{c}{2i} \]
which for \(c > 0 \) is in the lower half-plane, hence there are no bound states when \(c > 0 \), which is of course intuitively clear as positive potentials have no bound states.

Another method which yields the same formula for \(T \) is to take a square well-potential and let it approach \(c \delta(x) \). Incidentally, this gives

\[
T = \begin{pmatrix} i & 1 \\ ik & -ik \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ -c & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ ik & -ik \end{pmatrix} = \begin{pmatrix} i & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -c/k & 1 \end{pmatrix} \begin{pmatrix} i & 1 \\ -i & 1 \end{pmatrix}
\]

which probably expresses the fact \(u' \) jumps by \(cu(0) \) translated to the \(e^{ikx}, e^{-ikx} \) description.

Here's a problem with the above examples which makes them confusing: you are looking at classical scattering matrices instead of the ones which result from 2-ports in the abstract sense.

Another example. Suppose we take a segment and use the natural exponentials normalized at the ends:

\[
e^{-ikm} e^{ikx} \leftrightarrow e^{ik(x - m)} \quad m > 0
\]

\[
A = e^{-ikm} \quad B = 0 \quad \text{so}
\]

\[
T(k) = \begin{pmatrix} e^{-ikm} & 0 \\ 0 & e^{+ikm} \end{pmatrix}
\]

Note that \(\text{Im}(k) > 0 \Rightarrow T(k) \) expands
In the example note that

\[
\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \left(\frac{z+i}{z-i} \right) = \frac{z+1}{z-1} = \lambda
\]

is the inverse of the Cayley transform

\[
\mathbb{Z} = -\frac{1}{2i} \begin{pmatrix} -i & 1 \\ -1 & i \end{pmatrix} \left(\begin{pmatrix} z \\ 1 \end{pmatrix} \right) = \frac{-i \lambda - 1}{-i \lambda + 1} = \frac{\lambda-i}{\lambda+i}
\]

so it maps the disk to the UHP. Also

\[
\begin{pmatrix} 1 & 0 \\ -\frac{c}{k} & 1 \end{pmatrix} \left(\begin{pmatrix} z \\ 1 \end{pmatrix} \right) = \frac{1}{\begin{pmatrix} c \\ k \end{pmatrix} + i} = \text{in UHP if } k \text{ is...}
\]

shrinks the LHP, so \(T(k) \) expands the disk for \(\text{Im}(k) > 0 \).

Suppose

\[
T = \begin{pmatrix} e^{-ikm} & 0 \\ 0 & e^{+ikm} \end{pmatrix}
\]

then

\[
S = \begin{pmatrix} 0 & e^{+ikm} \\ e^{-ikm} & 0 \end{pmatrix}
\]

which goes to \(0 \) as \(k \to i \infty \).

So it seems that for \(S(z) \) to be analytic for \(|z| < 1 \) corresponds to \(T(z) \) expanding the disk.
Yesterday I saw an example of a T-matrix was
\[
\begin{pmatrix}
1 & 1 \\
i & -i
\end{pmatrix} \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
1 & 1 \\
i & -i
\end{pmatrix}
\]
\[c > 0\]
and that it has the property of expanding the disk for \(\text{Im}(\lambda) > 0\). Recall the 2-port
\[
I_1 \rightarrow V_1 \rightarrow I_2 \\
V_1 \uparrow \quad \Rightarrow \quad I_2 \uparrow \quad \Rightarrow \quad V_2
\]
where
\[
C_{di} = i \\
\frac{dV}{dt} = i
\]
\[
CV_{\omega} = I \\
\frac{V}{I} = \frac{1}{c\omega}
\]

\[
\begin{pmatrix}
\tilde{V}_1 \\
\tilde{I}_1
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
\tilde{V}_2 \\
\tilde{I}_2
\end{pmatrix}
\]

shrinks UHP for \(\text{Im} \omega < 0\)

\[\therefore\] expands UHP for \(\text{Im}(\omega) > 0\).

Hence 2-ports will give T-matrices expanding UHP for \(\text{Im}(\omega) > 0\).

Corresponding disk-form is
\[
\frac{1}{2} \begin{pmatrix}
1 & -i \\
i & -i
\end{pmatrix} \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
1 & -i \\
i & -i
\end{pmatrix} = \frac{1}{2} \begin{pmatrix}
1+iC\omega & -i \\
i & -i
\end{pmatrix} \begin{pmatrix}
1 & -i \\
i & -i
\end{pmatrix}
\]
\[
= \frac{1}{2} \begin{pmatrix}
2-iC\omega & -iC\omega \\
iC\omega & 2+iC\omega
\end{pmatrix}
\]

\[T(\omega) = \begin{pmatrix}
1-iC\omega & -iC\omega \\
iC\omega & 2+iC\omega
\end{pmatrix}
\]

Put \(C = 2\) and shift from \(\omega\) to \(z = \frac{\omega-i}{\omega+i}\)
\[\omega = \frac{1}{i} \frac{z+1}{z-1} \quad 1 - i \omega = 1 - \frac{z+1}{z-1} = \frac{-2}{z-1} \]

\[1 + i \omega = 1 + \frac{z+1}{z-1} = \frac{2z}{z-1} \]

\[T(z) = \frac{1}{z-1} \begin{pmatrix} -2 & z-1 \\ z+1 & 2z \end{pmatrix} \quad \text{analytic \& invertible for all } z \neq 1 \text{ including } z = \infty \]

\[S(z) = \begin{pmatrix} \frac{z+1}{2} & \frac{z-1}{2} \\ -2 & -2 \\ \frac{z-1}{2} & \frac{z+1}{2} \end{pmatrix} \]

\[-S(z) = \begin{pmatrix} \frac{z+1}{2} & -\frac{z-1}{2} \\ -2 & -2 \\ \frac{z-1}{2} & -\frac{z+1}{2} \end{pmatrix} \quad \text{analytic for all } z \neq \infty \]

\[\det(-S) = z \]

not invertible for \(z = 0 \).

\[S(z) \text{ analytic for } |z| \leq 1 \text{ and } 0 \leq \|u\| \leq 1 \text{ on } S^1 \]

\[\| (S(z)u, v) \| \leq \| S(z)u \| \| v \| \leq \| u \| \| v \| \]

for \(|z| = 1 \) and hence for all \(|z| < 1 \) by maximum modulus. Thus \(|S(z)| \leq 1 \) in the disk. If \(S(z) \) is an operator in a finite-dimensional space and \(\|S(z)\| = 1 \) at an interior point then we can find unit vectors with \((S(z)u, v) = 1 \) at \(z_0 \), hence \((S(z)u, v) = 1 \) for all \(z \), hence \(S(z)u = v \). On the unit circle \(S(z) \) carries \(<u>^1 \) into \(<v>^1 \) and this follows for all \(z \) by Cauchy. Thus if one can't split off a line on which \(S(z) \) is constant we must have \(\|S(z)\| < 1 \) for \(|z| < 1 \).

Notice also that for \(\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} = T \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} \)

\[\begin{align*}
\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} &\to \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} \\
\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} &\to \begin{pmatrix} a_2 \\ b_2 \end{pmatrix}
\end{align*} \]
we have
\[(a_1^2 - 1 b_1^2) \geq (b_2^2 - 1 a_2^2) \quad \text{for } |z| < 1 \]

because \(\|S(z)\| \leq 1 \) and \((b_2) = S(a_2) \). Then for \(|z| < 1 \)
\(T \) expands the unit disk.

Note that multiplying by a scalar of modulus 1
on \(S' \) changes \(S \) as follows
\[
S = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \rightarrow \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \begin{pmatrix} j/2 & \beta \\ \gamma & \delta \end{pmatrix}
\]

Suppose \(S(z) \) is rational in \(z \) and analytic in \(|z| \leq 1 \).
Then \(\beta \) and \(\gamma \) are rational functions analytic in \(|z| \leq 1 \)
with \(|\beta|^2 = 1 - |\alpha|^2 = 1 \gamma^2 \) on \(S' \).

So it follows that \(\rho = \beta \gamma \) is a rational function of \(z \)
of modulus 1 on \(S' \), and hence is a product of Blaschke factors
\[
\frac{z - h}{1 - \overline{h} z}
\]
or their inverses. Suppose \(p(h) \neq 0 \). Then I take \(j^{-1} \)
to be this Blaschke factor \(j^{-1} \) is analytic inside \(|z| \leq 1 \) so
\(j^{-1} \) remains analytic, and also
\[
\beta(h) = (p \rho)(h) = 0.
\]

is analytic because \(p \) is analytic in \(|z| < 1 \).

For the new scattering matrix
we have
\[
\frac{j \beta}{j^{-1} \gamma} = \gamma \cdot \beta \\
\frac{j \gamma}{j^{-1} \gamma} = \gamma \\
\frac{j \beta}{j^{-1} \gamma} = \frac{\gamma \cdot \beta}{\gamma}
\]

So in this way by scalar multiplication we can change
the order of zeroes of \(p = \frac{f}{g} = \det T \) to either 0 or 1. If \(p(h) = \infty \), take \(f' \) to be \(\frac{z-h}{1-hz} \).
Then \(f' \) is analytic in the closed disk, so is \(f \beta \). And also \(f^{-1} \beta \) is analytic because \(\nu(h) = 0 \).
Similarly, we can make the order of the poles of \(p \) either 0 or 1.

May 7, 1978:
Suppose that \(f \) is an analytic function for \(|z| < 1 + \varepsilon \) and \(g \) is another such function such that \(|f| = |g| \) for \(|z| = 1 \) and such that \(f, g \) have the same zeroes counted with multiplicity for \(|z| < 1 \). From \(|f| = |g| \) on \(S^1 \) we see \(f, g \) have same zeroes on \(S^1 \), hence \(\frac{f}{g} \) is analytic for \(|z| \leq 1 \) and of modulus 1 on \(S^1 \) so

\[
|\frac{f}{g}| < 1
\]

in the closed disk. Interchanging \(f, g \) we see that \(\frac{f}{g} \) is a constant of modulus 1.

Next note that \(f \) has finitely many zeroes \(\in D = \{ |z| < 1 \} \), so there is a finite Blaschke product \(p \) with \(h = \frac{f}{p} \) analytic on \(\overline{D} \) and without zeroes in \(D \). So

\[
f = ph
\]
is the canonical factoring of \(f \) into an inner factor \(p \) and the outer factor \(h \). When \(f \) is rational, so are \(p \) and \(h \).
We describe a 2-port by the rational matrix $T(z)$ such that for $|z| < 1$ it expands the disk at for $|z| > 1$ it contracts the disk, and we consider only z for which $T(z)$ is defined and invertible. We know that T corresponds to a scattering matrix $S = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ which is analytic for $|z| < 1$ by the formula

$$T(z) = \begin{pmatrix} \frac{1}{\beta} & -\frac{\delta}{\gamma} \\ \frac{\alpha}{\gamma} & \frac{\beta \alpha - \alpha \delta}{\gamma} \end{pmatrix}$$

$$\det T = \frac{\beta}{\gamma}$$

from which we see immediately that the singularities of $T(z)$ for $|z| < 1$ are those z such that either $\delta(z) = 0$ or $\beta(z) = 0$.

To find the singularities outside of S^1 we consider the inverse of S: Put

$$S^{-1} = \begin{pmatrix} \alpha_1 & \beta_1 \\ \gamma_1 & \delta_1 \end{pmatrix} = \frac{1}{\alpha \delta - \beta \gamma} \begin{pmatrix} \delta - \beta \\ -\gamma \alpha \end{pmatrix}$$

and recall that because S is unitary, for $|z| = 1$ we have

$$S^{-1} = S^* = \begin{pmatrix} \bar{\alpha} & \bar{\beta} \\ \bar{\gamma} & \bar{\delta} \end{pmatrix}$$

on S^1. Hence by Schwarz reflection

$$S^{-1} = \begin{pmatrix} \frac{\alpha(z^*)}{\beta(z^*)} & \frac{\beta(z^*)}{\delta(z^*)} \\ \frac{\beta(z^*)}{\delta(z^*)} & \frac{\alpha(z^*)}{\beta(z^*)} \end{pmatrix}$$

and $z^* = \frac{1}{z}$ for all z. This shows S^{-1} is analytic for $|z| > 1$. In terms of the entries of S^{-1} the matrix T can be written

$$T(z) = \begin{pmatrix} \frac{\beta \gamma - \alpha \delta}{\gamma_1} & \frac{\alpha_1}{\gamma_1} \\ \frac{\gamma_1}{\delta_1} & \frac{\beta_1}{\delta_1} \end{pmatrix}$$

$$\det T = \frac{\beta_1}{\gamma_1}$$
This shows the singularities of T for $|z| > 1$ are those ζ such that $\alpha(\zeta) = 0$ or $\beta(\zeta) = 0$. Hence

$$\gamma(\zeta) = \frac{\beta(\zeta)}{\beta(\zeta)^*}$$

the zeroes of γ are the reflections through S' of the zeroes of β. So it's clear that one has:

Prop: Let $T(z)$ be the transfer matrix belonging to the scattering matrix $S(z) = (x \ y \ z \ s)$. Then the poles of $T(z)$ are the roots of γ in D and the reflections of the roots of β in \overline{D}. The poles of $T(z)^{-1}$ are the roots of β in D and the reflections of the roots of γ in \overline{D}.

Paradox: If f is a finite Blaschke product, i.e. a rational function with $|f| = 1$ on ∂D, then multiplying T by f does not affect the fractional linear transformation associated to T, hence fT should also be a transfer matrix. But this changes S as follows:

$$S = \left(\begin{array}{cc} x & \beta \\ \gamma & s \end{array}\right) \quad \rightarrow \quad \left(\begin{array}{cc} x & f\beta \\ f^{-1}\gamma & s \end{array}\right)$$

and this can introduce singularities to S inside ∂D, so something is wrong.

I still do not understand what a transfer matrix is. Somehow those T coming from a scattering matrix S are not all the possible T one should consider.

Consider again potential scattering
\[Ae^{ikx} + Be^{-ikx} \rightarrow e^{ikx} \]
\[Be^{ikx} + \overline{A}e^{-ikx} \rightarrow e^{-ikx} \]
\[a_1 e^{ikx} + b_1 e^{-ikx} \rightarrow b_2 e^{ikx} + a_2 e^{-ikx} \]

\[T = \begin{pmatrix} A & \overline{B} \\ B & A \end{pmatrix} \]

This \(T \) is an entire function of \(k \). If the potential is a sum of \(S \) functions supported at integral points, the \(T \) is Laurent polynomial matrix in \(e^{ik} = z \), hence \(T(z) \) has singularities only at \(z = 0, \infty \). Such a matrix does not have the shrinking property.

Unfortunately, the kind of \(T \) has possibly singularities at \(k = 0 \).

Suppose \(T(z) \) is matrix of Laurent polynomials whose inverse is also (hence \(\det T(z) = c z^n \) some \(c \neq 0 \) and \(n \)). Suppose that for \(0 < |z| \leq 1 \), \(T(z) \) expands the disk and for \(1 \leq |z| < \infty \) it contracts the disk. Then I can put \(z = e^{i\lambda} \) and obtain a Nevanlinna matrix (or its inverse).
Let P denote a hermitian form of signature $(+,-)$ on a 2-dimensional complex vector space V. The isotropic lines for P form a circle in the Riemann sphere $\mathbb{P}V$ dividing it into open disks in which P is >0 and <0.

Let Q be another such form. If $P < Q$, then clearly $P(\omega) > 0 \Rightarrow Q(\omega) > 0$ so that the P-positive disk is contained in the Q-positive disk. In fact the P-circle is contained in the interior Q-positive disk. Conversely suppose the P-positive closed disk is contained in the open Q-positive disk.

I have seen that by a limiting process of successive reflections two non-intersecting circles in the Riemann sphere determine a pair of points which is placed at $z=0$ and $z=\infty$ then the circles become concentric circles around zero. So in this way we can identify $V = \mathbb{C}^2$ so that P is given by the matrix $(\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix})$ and Q is given by a real diagonal matrix $(\begin{smallmatrix} \lambda & 0 \\ 0 & \mu \end{smallmatrix})$. The P-circle is $|z|=1$. We have

$$|z|^2 - 1 \geq 0 \Rightarrow 1/|z|^2 + \mu > 0$$

hence $\lambda > 0$, $\mu < 0$. $Q - P$ is the form:

$$\begin{pmatrix} z \\ 1 \end{pmatrix}^*(Q-P)\begin{pmatrix} z \\ 1 \end{pmatrix} = (\lambda - 1)|z|^2 + (1+\mu)$$

no $Q > P$ when $\lambda > 1$ and $-\mu < 1$. So I assume in addition that $\det(Q) = \lambda \mu = -1$ or

$$\lambda (-\mu) = 1$$

Then we should have $Q > P$. To be sure we are given
\[\lambda > 0, \lambda > (-\mu) \text{ and } \lambda (-\mu) = 1. \] It follows that \(\lambda > 1 \) and \((-\mu) = \lambda^{-1} < 1 \) so indeed \(Q > P \).

Next consider the case where the closed \(P \)-positive disk is contained in the closed \(Q \)-positive disk but the \(P \)-circle and \(Q \)-circle are tangent at one point.

Let \(V \) be a 2-dimensional complex vector space. If \(P \) is a hermitian form on \(V \) with signature \((+, -)\), then the isotropic lines for \(P \) form a circle in \(PV \) which determines \(P \) up to a real non-zero multiplicative constant. To see this one can suppose \(P \) is the form on \(C^2 \) given by \((1, -1)\) whence the circle in \(PC^2 = \text{Riemann sphere} \) is described by

\[(2)(1, 0)(2) = 12i^2 - 1 = 0. \]

If the hermitian form \((a, b)\) given by \((\alpha, \beta)\) has the same circle, then for all \(z \) with \(|z|^2 = 1 \) one has

\[(2)(a, b)(2) = a + zb + \bar{z}b + d = 0 \]

hence \(b = 0 \), \(a + d = 0 \) so that \(Q \) is a multiple of \(P \), say \(Q = aP \), \(a \in \mathbb{R}^* \). Notice also that \(a > 0 \) iff the \(P \)-positive disk, i.e., the set of \(z \) with

\[(2)P(2)^* > 0 \]

is the same as the \(Q \)-positive disk.

Now suppose \(P, Q \) are two hermitian forms of signature \((+, -)\).
on \(V \). The associated circles can be disjoint, tangent, or intersecting in 2 points.

Case 1: The \(P,Q \) circles are disjoint. We know that two disjoint circles in the Riemann sphere can be made concentric circles about the origin by a fractional linear transformation. (Successively reflect to find the points that should be sent to \(0,\infty \). Suppose then the \(P,Q \) circles are resp. \(|z|=1, |z|=p \) and that the positive \(P \)-disk is \(|z|>1 \). By a scalar change \(\alpha \) on \(V \) we can suppose \(P \) is given by \((1,0) \). It follows that \(Q \) is given by

\[
\left(\frac{a}{d} \quad 0 \right) \\
\left(0 \quad d \right)
\]

where \(\frac{a}{d} = -p \). This is a basic canonical form for the pair \((P,Q) \) under the action of \(\text{Aut}(V) \).

If we know that the discriminant of \(Q \) relative to \(P \), i.e. \(\det P^t Q \), is 1, then \(ad = -1 \). If also

\[
\left(z^k \right) P \left(\frac{1}{z} \right) \Rightarrow \left(z^k \right) Q \left(\frac{1}{z} \right) = a|z|^k + d > 0
\]

then we have \(a > 0 \) and \(a + d = a - \frac{1}{a} > 0 \), so \(a > 1 \) and hence

\[
P = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \preccurlyeq \left(\begin{array}{cc} \frac{a}{d} & 0 \\ 0 & -\frac{1}{a} \end{array} \right) = Q.
\]

Case 2: The \(P,Q \) circles are tangent. We use a fractional linear transformation to put the point of tangent at \(\infty \) and to make the \(P \)-circle the real axis, and the \(P \)-positive disk the LHP. Hence

\[
\frac{1}{z} \left(\frac{1}{z} \right) \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \left(\frac{1}{z} \right) = \frac{z - \frac{1}{z}}{i} = -2 \text{Im} z
\]
P must be a positive multiple of \(\frac{1}{i} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) which I can assume to be one by a scalar change of variable.

The Q-circle is a line \(\text{Im}(z) = a \), so \(Q \) must be a non-zero real multiple of

\[
\begin{pmatrix} 1 & 0 \\ i & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -2i \end{pmatrix} = \frac{1}{i} \begin{pmatrix} 1 & 0 \\ i & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 2i \end{pmatrix} = \frac{1}{i} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 2a \end{pmatrix}
\]

If \(\det(P^{-1}Q) = 1 \) we then have the canonical form

\[
P = \frac{1}{i} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad Q = \frac{1}{i} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 2a \end{pmatrix}.
\]

If we know the \(P \)-positive disk is contained in the \(Q \)-positive disk, then since

\[
(\frac{z^*}{1})^*P(\frac{z}{1}) = -2 \text{Im} z \quad (\frac{z^*}{1})^*Q(\frac{z}{1}) = (2 \text{Im} z + 2a)
\]

we see the + sign holds and also \(a > 0 \), hence \(P \leq Q \).

Case 3: The \(P, Q \) circles intersect in 2 points. We put these points at \(0, \infty \) and put the \(P \)-positive disk on the LHP and arrange that

\[
P = \frac{1}{i} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
\]

\[
Q = 0, \quad Q \gg 0, \quad P > 0
\]
θ is the angle between the \(p > 0, q > 0 \) half-planes, then we have \(Q \) must be a multiple of

\[
\begin{pmatrix}
e^{i\theta} & 0 \\
0 & 1
\end{pmatrix}
\frac{1}{i}
\begin{pmatrix}
0 & i \\
-i & 0
\end{pmatrix}
\begin{pmatrix}
e^{-i\theta} & 0 \\
0 & 1
\end{pmatrix} = \frac{1}{i}
\begin{pmatrix}
0 & e^{i\theta} \\
e^{-i\theta} & 0
\end{pmatrix}
\]

Above calculation shows:

Prop: Let \(P, Q \) be hermitian forms of __signature\((+, -)\) on a 2-dimensional complex vector space \(V \).

1) If \(P \leq Q \), then the \(P \)-positive disk in \(PV \) is contained in the \(Q \)-positive disk.

2) If \(\det(p^{-1}Q) = 1 \), then the converse to 1) holds.

Cor: Let \(T \in \text{GL}_2(\mathbb{C}) \) and \(P = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \).

1) If \(P \leq T^*PT \), then \(T \) as a fractional linear transformation of the Riemann sphere expands the unit disk: \(|z| > 1 \Rightarrow |T(z)| > 1 \).

2) If \(|\det T| = 1 \), then the converse to 1) holds.

What is a 2-port? I give three equivalent descriptions.

1) Grassmannian description: Let \(C^4 \) be equipped with the hermitian form

\[
P: \begin{pmatrix} a_1 \\ a_2 \\ b_1 \\ b_2 \end{pmatrix} \rightarrow |a_1|^2 + |a_2|^2 - |b_1|^2 - |b_2|^2
\]
Then a 2-port is a rational map
\[
\mathbb{CP}^1 \longrightarrow \text{Grass}_2 (\mathbb{C}^2) \quad z \longmapsto W_z
\]
such that
\[
|z| < 1 \implies P \geq 0 \quad \text{on} \quad W_z
\]
\[
|z| \geq 1 \implies P \leq 0
\]

2) Scattering matrix description: Recall that a Zariski open subset of Grass_2 (\mathbb{C}^2) is given by subspaces
\[
\mathcal{M} = \left\{ \left[\begin{pmatrix} a_1 \\ a_2 \\ b_1 \\ b_2 \end{pmatrix} \right] \mid (b_1) = S(a_1) \right\}
\]
where S runs over the affine space of 2×2 matrices. This open set consists of all subspaces W intersecting
\[
\{ \left[\begin{pmatrix} 0 \\ 0 \\ 0 \\ \ast \end{pmatrix} \right] \}
\]
trivially. Those subspaces W which are isotropic for P are of the form \(\mathcal{M}_S \) where \(S \in U(2) \). Also any subspace W on which P \(\geq 0 \) is in the Zariski open set.

Hence given a rational map \(z \longmapsto W_z \) as in 1) we get a rational map
\[
z \longmapsto S(z) \quad \mathbb{CP}^1 \longrightarrow \mathbb{M}_{2 \times 2} (\mathbb{C})
\]
such that \(S(z) = W_z \). Moreover \(S(z) \) has poles outside the unit circle and it has unitary values on \(S^1 \).

Conversely if one is given \(z \longmapsto S(z) \) analytic matrix-valued function on \(|z| \leq 1 \) with unitary values on \(|z| = 1 \) then one can extend \(S(z)^{-1} \) analytically to \(|z| \geq 1 \) via
Then one gets a holomorphic map \(W : \mathbb{CP}^1 \rightarrow \text{Grass}_2(\mathbb{C}^2) \) which one knows is algebraic (GAGA). The next point is that maximum modulus implies that \(\|S(z)\| \leq 1 \) for \(|z| \leq 1 \). In effect given vectors \(a, b \) in \(\mathbb{C}^2 \) one has

\[
|\langle S(z)a, b \rangle| \leq \|S(z)a\| \cdot \|b\| = \|a\| \cdot \|b\|
\]

for \(|z| = 1 \) because \(S(z) \in U(2) \). Thus for \(|z| \leq 1 \) this holds by maximum modulus for all \(a, b \) so \(\|S(z)\| \leq 1 \). Similarly \(\|S^{-1}(z)\| \leq 1 \) for \(|z| \geq 1 \) and so it is clear that the holomorphy map \(W \) is a 2-port in the sense of defn. 1).

3) Transfer matrix description. Here we describe a Zariski-open subset of the Grassmannian consisting of subpace

\[
\Gamma' = \left\{ \left(\begin{array}{c} a_1 \\ a_2 \\ b_1 \\ b_2 \end{array} \right) \mid (a_1) = T(b_2) \right\}
\]

where \(T \) is a 2x2 matrix. We get all subspaces intersecting the subspace

\[
\left\{ \left(\begin{array}{c} x \\ 0 \\ 0 \\ 0 \end{array} \right) \right\}
\]

trivially.

If we have a rational map \(z \mapsto Wz \) as in 1) which intersects this Zariski-open subset, then we get a rational map \(z \mapsto T(z) \) of \(\mathbb{CP}^1 \) to matrices such that

\[
Wz = \Gamma' T(z)
\]
The condition $P \geq 0$ on W_2 for $|z| \leq 1$ says that provided $T(z)$ is defined one has

$$|a_1|^2 - |b_1|^2 \geq |b_2|^2 - |a_2|^2 \quad \text{if} \quad (a_1') = T(b_2)$$

or equivalently that

$$T^*(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) T \geq \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad (z \text{ for } |z| \leq 1)$$

Conversely, if we are given a rational matrix function $T(z)$ such that

$$T^*(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) T \geq \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{for } |z| \leq 1 \quad \text{such that } T(z) \text{ is def.}$$

then it is clear we get a 2-port in the sense of 1).

Note that not all 2-ports can be described by transfer matrices. The ones that can't be are those such that W_2 contains a non-zero vector $(\begin{pmatrix} a_1 \\ b_1 \end{pmatrix})$ for each z. Taking $|z| = 1$ this implies for $S(z) = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$

we must have $\gamma = \delta = 0$, as $|a_1| = |b_1| \neq 0$. But then $\beta = \alpha = 0$ identically. So we see that the 2-ports, without transfer matrices, are those whose scattering matrices are diagonal.

So now I propose to study the set of 2-ports admitting transfer matrices, i.e. the set of rational matrices $T(z)$ such that $\quad \text{for } z \text{ for which } T(z)$
are defined one has
\[T^*(1, 0) T \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = P \]
if \(|z| \leq 1 \)
\[\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = P \]
if \(|z| \geq 1 \)

It is clear that it suffices to assume these conditions for a dense set of \(z \). The set of these transfer matrices forms a monoid under multiplication. In effect if \(T_1^* P T_1 \geq P \) and \(T_2^* P T_2 \geq P \), then one has
\[T_2^* T_1^* P T_1 T_2 \geq T_2^* P T_2 \geq P \]

etc.

For \(|z| = 1 \) when \(T(z) \) is defined we have
\[T^* P T = P \]
so that \(|\det T| = 1 \) and so \(T \) is invertible.

In fact we have
\[p^{-1} T^* P = T^{-1} \]
\[T^{-1} = \begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix} \]

If \(T = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \) this says that for \(|z| = 1 \)
\[\begin{pmatrix} \overline{A} & -\overline{C} \\ -\overline{B} & \overline{D} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} A & C \\ B & D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \frac{1}{AD-BC} \begin{pmatrix} +D & -B \\ -C & A \end{pmatrix} = \begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix} \]

Hence
\[A_1 = \overline{A(z^*)} \]
\[B_1 = -\overline{C(z^*)} \]
\[C_1 = -\overline{B(z^*)} \]
\[D_1 = \overline{D(z^*)} \]
which shows that the poles of T^{-1} are the reflections of the poles of T. So we see easily that the singularities of T are symmetric about $|z| = 1$.

\[\text{May 12, 1978} \]

Suppose we equip $C[z, z^{-1}]^2$ with the hermitian form

\[\tilde{P}: f \mapsto (Pf, f) = \int f^* Pf \frac{d\theta}{2\pi} \quad P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]

Let $T(z) \in \text{GL}_2(C[z, z^{-1}])$ such that $T^* PT = P$ on S'. Then clearly T gives an automorphism of $C[z, z^{-1}]^2$ preserving the hermitian form.

$L_0 = C[z]^2$ is a $C[z]$ lattice in $C[z, z^{-1}]^2$ with the property that zL_0 has the orthogonal complement C^2 in L_0 with respect to \tilde{P}. The image TL_0 of L_0 has the same property.

Conversely, given a lattice L such that one has an orthogonal decomposition

\[L = N \oplus zL \]

with respect to \tilde{P} such that \tilde{P} is non-degenerate on N.

For each $f \in N$ we can write

\[f = \sum \varphi_n(f) z^n \quad \varphi_n : N \rightarrow C^2 \]
and we have

\[
(\tilde{P}(z^k f), f) = (P z^k \sum q_n(f) z^n, \sum q_n(f) z^n)
\]

\[
= \sum (P q_{n-k}(f), q_n f)
\]

\[
= \sum (q_n^* P q_{n-k} f, f)
\]

where the last inner product is obtained by taking \(\Phi \) as orthonormal basis a basis for \(N \) such that the form \(\tilde{P} \) restricted to \(N \) has the matrix \(P \). The above vanishes for \(k \neq 0 \), hence we get

\[
\sum_n q_n^* P q_{n-k} = \begin{cases}
P & k = 0 \\
0 & k \neq 0
\end{cases}
\]

It follows that the Laurent poly. matrix

\[
T(z) = \sum q_n z^n
\]

satisfies

\[
T^* P T = P
\]

for \(|z| = 1 \).

The question now is what lattices correspond to \(T \)'s with the 2-port property: \(T^* P T \leq P \) for \(|z| \leq 1 \).