March 29, 1978

The intelligent question: Consider the category of symmetric (1,1) operators without self-adjoint component. What are the automorphisms of such a gadget?

Fix \mathcal{H} and a isometric relation V on \mathcal{H} of type (1,1), that is, $V: \mathcal{H} \to \mathcal{H}$ is unitary, where \mathcal{H}_V and \mathcal{H}_V are closed subspaces of co-dim. 1. Assume V has no unitary component, i.e., there is no non-trivial closed subspace of \mathcal{H} on which V induces a unitary antiautomorphism.

Q: What are the autor of such a thing?

Other question: Let T be a contraction operator extending V, such that T^* extends V^{-1}. I saw before this means that $T(u_i) = \alpha u_i$ for some $|\alpha| < 1$. A canonical choice would be for $T(u_i) = 0$. What does the associated unitary operator: \tilde{T}, \tilde{U} look like in this case.

Let Θ be an automorphism of (\mathcal{H}, V). By multiplying Θ by a scalar we can suppose $\Theta(u_i) = u_i$. Since Θ is an auto of the setup

$\mathcal{H}_V \overset{V}{\longrightarrow} \mathcal{H}$

we can decompose \mathcal{H} into $\mathcal{H} = \ker(\Theta - 1)$ and its orthogonal complement. Denoting by a prime fixpts under Θ we have

$\mathcal{H}_V \otimes (Cu_i) = \mathcal{H}'$

$\mathcal{H}_V \otimes (Cu_{i-1})' = \mathcal{H}'$.
Case 1: \(\Theta u_{-i} = u_{-i} \). In this case \(V \) would induce a unitary transf on \(\mathcal{H} \otimes \mathcal{H}' \), hence because \(V \) has no unitary component we have \(\mathcal{H}' = \mathcal{H} \), so \(\Theta = \mathbb{1} \).

Case 2: \(\Theta u_{-i} = ju_{-i} \) with \(j \neq 1 \). Then on \(\mathcal{H}' \), \(V \) induces \(V' \) which is the inverse of an isometric embedding \((V')^{-1}: \mathcal{H}' \rightarrow \mathcal{H} \) with range of codimension 1. We have \(\mathcal{H} = H' \oplus H'' \) where \(H'' \) is the 1-eigenspace for \(\Theta \). On \(H'' \), \(V \) induces an isometric embedding \(V'' \) with range of codim 1. Thus \((H, V) \) is the direct sum of the shift: multiplication by \(z \) on \(H^2 \) and the anti-shift: multiplication by \(\bar{z} \) on \(H^2 \), followed by projection.

In this example, \(H \) is two copies of \(L^2(S^1) \) for the choice \(Tu_i = au_{-i}, \ a = 0 \). It seems one gets the same \(\mathcal{H} \) for any \(|a| < 1 \).

How can we characterize the particular \(V \) that occurs in Case 2. First we have that \((u_i, u_{-i}) = 0 \). To defined \(V^{-1}u_i \). Necessarily \((V^{-1}u_i, u_i) = 0 \), because we can always extend \(V \) to a unitary map with \(U(u_i) = u_{-i} \). Indly we have \((V^{-1}u_i, u_{-i}) = 0 \) so \(V^{-1}u_i \) is defined, and so forth. Similarly \(V^n u_i \) is defined for all \(n \geq 0 \) and \(\{ V^{-n}u_i, V^n u_i, n \geq 0 \} \) is an orthonormal basis for \(\mathcal{H} \). So we can character this case as the one such that any unitary extension \(U \) yields Lebesgue measure \(\frac{d\theta}{2\pi} \) on \(S^1 \).

The A-description involves Lebesgue measure on \(\mathbb{R} \). What are the possible \(\theta \)?
There is an interesting action of S^1 on the set of probability measures on S^1. Given $d\nu$ we can associate $H = L^2(S^1, d\nu)$ and the isometric relation V given by mult. z on $d\nu = \{ f \mid \langle f, z^m \rangle = 0 \}$. The possible extensions of V to a unitary operator on H form a torsor under S^1 and to each U belongs a probability measure $d\mu$ on S^1 such that $d\mu$ is uniquely determined by $\varphi(z)$.

$$\varphi(z) = \frac{1}{i} \int_{S^1} \frac{z + y}{z - y} \, d\nu(y)$$

and $d\nu$ is uniquely determined by $\varphi(z)$.

$$\text{Im} \, \varphi(z) = \int_{S^1} \frac{1 - |z|^2}{|z - y|^2} \, d\nu(y)$$

However, S^1 acts as automorphisms of UHP preserving i, so it acts on these probability measures.

Another version: Let A be a densely-defined symmetric (or) non-trivial operator with self-adjoint component. $S^1 \times S^1$ acts on possible choices for u_i, u_i^* hence on the self-adjoint extensions \tilde{A} of A. $S^1 \times S^1$ acts trivially so we get an action of $S^1 \times S^1 / AS^1 = S^1$ on the possible \tilde{A}. To each \tilde{A} belongs a unique measure $d\mu$ on \mathbb{R} with $\int_{\mathbb{R}} \frac{d\mu}{x^2 + 1} = 1$ hence we get an action of S^1 on these measures. It seems that we get any measure on \mathbb{R} with $\int_{\mathbb{R}} d\mu = \infty$ (so that
\(D_A \) is densely-defined. Somehow this seems to imply that \(D_V \) is a prob. measure on \(S^1 \) without point spectrum at \(z = 1 \), then none of the other measures in its orbit have point spectrum at \(z = 1 \) (assume 1 is in the spectrum).

Suppose \(H, V \) given, \(V \) type (1,1) isometric relation without unitary part.

A partial isometry \(V \) is the Cayley transform of a symmetric \(\tilde{A} \).

\[\Leftrightarrow \quad (1-V)D_V \text{ is dense in } H. \]

Proof: Recall that when \(V = (A+i)/(A+i)^{-1} \) we have

\[x = (A+i)(A+i)^{-1}x \quad x \in D_V = (A+i)D_A \]

\[Vx = (A-i)(A+i)^{-1}x \]

So

\[\left(\frac{1-V}{2i} \right)x = (A+i)^{-1}x \]

\[\left(\frac{1+v}{2} \right)x = A(A+i)^{-1}x \]

So

\[\left(\frac{1-V}{2i} \right)(A+i)y = y \quad y \in D_A \,
\]

In other words \(D_A = (1-V)D_V \) whence \(\Rightarrow \) is clear. Conversely suppose \((1-V)D_V \) dense in \(H \). First we show \(1-V \) injective. If \(Vh = h, \ h \in D_V \) then \(\forall f \in D_V \)

\[(h, (1-V)f) = (h, f) - (h, Vf) = (h, f) - (Vh, Vf) \]

\[= (h, f) - (h, f) = 0 \]

\[\therefore \ h = 0 \text{ as } (1-V)D_V \text{ is dense. Now define } A \text{ by } \]

\[A = \left(\frac{1+V}{2} \right) \left(\frac{1-V}{2i} \right) = \left(\frac{1-V}{2i} \right)^{-1} \quad \text{on} \quad (1-V)D_V \]

This is a well-defined operator on \((1-V)D_V\). One has

\[\Gamma_A = \left\{ \left(\frac{1-V}{2i} \right)x, \frac{1-V}{2i}y \right\} \quad x \in D_V \]

and

\[\left\| \frac{1-V}{2i}x \right\|^2 + \left\| \frac{1+V}{2}x \right\|^2 = \frac{1}{2} \left\{ \|x\|^2 + \|Vx\|^2 \right\} = \|x\|^2 \]

so \(\Gamma_A\) is closed. Symmetry:

\[4i \left\{ \left(\frac{1-V}{2i}x, \frac{1+V}{2}y \right) - \left(\frac{1+V}{2}x, \frac{1-V}{2i}y \right) \right\} \]

\[= (x, y) + (Vx, Vy) + (x+Vx, y-Vy) \]

\[= (x, y) + (Vx, Vy) + (x, y) - (Vx, Vy) = 0 \quad \text{QED} \]

Suppose \(V\) of type \((1,1)\) without unitary component. I've seen we can identify \(H\) with \(L^2(S^1, d\mu)\) where \(V\) is null. By \(z\) on \(D_V\) = \(\{ f \in H \mid \int z f d\mu = 0 \}\), suppose \(f \perp (1-V)D_V\). This means

\[(f, (1-z)g) = 0 \quad \forall g \in H \quad \text{and} \quad (g, \frac{z-1}{z}g) = 0 \]

\[(z-1)f, g \right) = (z-1)f, zg \]

hence \((z-1)f \perp \{ zg \in H \mid (g, 1) = 0 \}\). Thus

\[(z-1)f = c \quad \text{constant} \]

Assuming \(f \neq 0\) two cases are possible: \((z-1)f = 0\) whence \(1\) is an atom for \(d\mu\). If \(c \neq 0\), then \(\frac{1}{z-1} c \in L^2(S^1, d\mu)\).
It is clear that if \(1 \) is an atom for \(dv \) then \((1-V)dv \leq (1-U)h < h \) fails to be dense. If \(1 \) is not an atom, but \(\frac{1}{z-1} \in L^2(S^1, dv) \), then for \(g \neq 0 \)

\[
\left(\frac{1}{1-z}, (1-z)^g \right) = \left(\frac{1}{1-z} (1-z^{-1}), g \right) = - \left(1, zg \right) = 0
\]

so the above \((*)\) is \(\iff \). The interesting point is that although \(dv \) depends upon choosing a unitary extension of \(V \), the condition \((1-V)dv \) dense depends only on \(V \). And we have seen that it means \(V \) is the Cayley transform of a c.d.d. symm. op. \(A \).

Suppose we replace \(L^2(S^1, dv) \) with the isomorphic space \(L^2(\mathbb{R}, dp) \) where \(1 = a-i \) in the former goes to \(\frac{2i}{z-1} \) in the latter. Then

\[
\frac{2i}{z-1} \rightarrow (x+i) \cdot \frac{1}{x+i} = 1
\]

Hence for the \(A \) arising from \(L^2(\mathbb{R}, dp) \) where \(dp \) is a measure \(\Rightarrow \int \frac{dp}{x^2+1} = 1 \) we have

\(\text{D_A dense} \iff \int dp = \infty \).

(Check: \(\Rightarrow \) obvious, for otherwise \(1 \in L^2 \) and \(1 \notin \text{D_A} \). \(\iff \))

Let \(f \notin \text{D_A} \), i.e., \((f,g) = 0 \) for all \(g \in L^2 \). \(xg \in L^2 \) and \(\int g = 0 \). Restricting \(f \) to a finite interval \([a,b] \) we have \((f,g) = 0 \) for all \(g \) with support in \([a,b] \) \(\Rightarrow \int g = 0 \), hence \(f \) has to be const.
on $[a,b]$, hence constant globally, so $\int a < \infty$ if $f \neq 0$.

Possible consequence of the above. First note that replacing V by $J^{-1}V$ with $|J| = 1$ we can conclude

$$(1 - J^{-1}V)\delta_v \text{ dense in } \mathcal{H} \iff \text{ for any } \psi \text{ belonging to }$$

and $\frac{1}{1 - \varphi^{-1}z} \in L^2(\mathcal{H};dv)$.

This somehow amounts to a characterization of continuous spectrum in some sense.
March 30, 1978

The idea of a partial isometry $D_V \overset{in}\hookrightarrow \mathcal{H}$ reminds one of Waldhausen's way of treating π_1 for a manifold X and a codimension 1 submanifold Y. Two cases according to whether Y disconnects X. If $X = X^+ \cup_Y X^-$, then in the free product situation

$$\pi_1(X) \leftarrow \pi_1(X^+) \times_{\pi_1(Y)} \pi_1(X^-).$$

But if $X - Y$ is connected one has the following. One assumes the normal line bundle loop Θ giving two ways of joining y_0 to ∞ of Y in X is trivial, so that we have two ways of pushing Y into $X - Y$.

$$\begin{array}{ccc}
\pi_1 Y & \overset{+}{\longrightarrow} & \pi_1 (X - Y) \\
\downarrow & \Theta & \downarrow \\
\pi_1 (X - Y) & \longrightarrow & \pi_1 (X)
\end{array}$$

What this suggests is looking for a Hilbert space \mathcal{H} with a unitary operator U and an isometric embedding $i : \mathcal{H} \rightarrow \tilde{\mathcal{H}}$ such that

$$U i(x) = i(Ux) \quad \forall x \in D_V :$$

i.e.

$$\begin{array}{ccc}
D_V & \overset{in}\hookrightarrow & \mathcal{H} \\
V & \overset{U}\longrightarrow & \tilde{\mathcal{H}} \\
\mathcal{H} & \overset{i}\longrightarrow & \tilde{\mathcal{H}}
\end{array}$$

commutes.
For example, if \(\mathcal{V} \) is an isomorphism, then we have simply a unitary operator on \(\mathcal{H} \) extending \(\mathcal{V} \).

Examples:

1) Suppose \(\mathcal{D}_\mathcal{V} = \mathcal{H} \) so that \(\mathcal{V} \) is an isometric embedding. Then there seems to be a unique possibility for \(\mathcal{H} \), namely \(L^2(S^1, N) \) where \(N = \mathcal{H} \ominus \mathcal{D}_\mathcal{V} \mathcal{H} \). In fact, we know

\[
\mathcal{H} = H^2(S^1, N) = \bigoplus_{n \geq 0} V^n N
\]

and if this is embedded in \(\tilde{\mathcal{H}} \) then \(\{ U^n N \mid n \in \mathbb{Z} \} \) have to be orthogonal subspaces.

2) Next suppose \(\mathcal{R}_\mathcal{V} = \mathcal{H} \) so that \(\mathcal{V}^{-1} \) is an isometric embedding. Then

\[
\tilde{\mathcal{H}} = L^2(S^1, N) \quad N = \mathcal{H} \ominus \mathcal{D}_\mathcal{V}
\]

\[
\mathcal{H} = H^2(S^1, N) = \bigoplus_{n \geq 0} V^n N
\]

Recall from studying Waldhauser that given a diagram

\[
\begin{array}{ccc}
F_{-1} & \xrightarrow{\alpha} & F_0 \\
\beta & \downarrow & \\
& & \end{array}
\]

of vector spaces over \(k \) with \(\alpha \) injective we get a \(k[T] \)-module \(M \) with an exact sequence

\[
0 \to k[T] \otimes F_{-1} \to k[T] \otimes F_0 \to M \to 0.
\]

Moreover \(F_{-1} \otimes F_0 \subset M \) is the beginning of a filtration with

\[
F_p = F_0 + TF_0 + \cdots + T^p F_0
\]

such that \(\text{null.} \) by \(T \) gives an isomorphism \(F_p/F_{p-1} \cong F_{p+1}/F_p \).
for $p > 0$.
So it clear now how to obtain $\tilde{\mathcal{H}}$ from $D_V \supseteq \mathcal{H}$

a universal $(\tilde{\mathcal{H}}, U)$ with U invertible extending V.
$\tilde{\mathcal{H}}$ will be given by an exact sequence

$$0 \rightarrow \mathbb{C}[u, u^{-1}] \otimes D_V \xrightarrow{U \otimes \text{id} \otimes V} \mathbb{C}[u, u^{-1}] \otimes \mathcal{H} \rightarrow \tilde{\mathcal{H}} \rightarrow 0$$

This $\tilde{\mathcal{H}}$ is purely algebriaic. Its positive part $\sum_{n \geq 0} u^n \mathcal{H}$ has a filtration

$$F_p(\tilde{\mathcal{H}}^+) = \sum_{n \geq p} u^n \mathcal{H}$$

and $\mathcal{H}/D_V \xrightarrow{\sim} F_p/F_{p-1}$. In other words, in order to obtain $\tilde{\mathcal{H}}^+$ one adds to \mathcal{H} new elements $u^n(u_i)$, $n \geq 1$. To get $\tilde{\mathcal{H}}$ one adds to \mathcal{H} independent elements $u^n(u_i)$, $n \geq 1$ and $u^{-n}(u_i)$ for $n \geq 1$.

This algebriaic $\tilde{\mathcal{H}}$ doesn't come with a unique inner product such that U is unitary. For example if $\mathcal{H} = \mathbb{C}$, with $D_V = 0$, then $\tilde{\mathcal{H}} = \mathbb{C}[u, u^{-1}]$ and we can define an inner product using any prob. measure on S^1. There is an obvious choice for inner product if it works, to require these new basis elements to form an orthonormal basis for the orthogonal complement to \mathcal{H} in $\tilde{\mathcal{H}}$.
March 31, 1978:

Let's go back to a contraction \mathcal{P} on \mathcal{H}, with unitary extension $\tilde{\mathcal{P}}$ on $\tilde{\mathcal{H}}$, and try again to calculate the scattering operator. Put

$$
\tilde{T}_p = \begin{cases}
T^p & p > 0 \\
T^\ast \cdot p & p < 0
\end{cases}
$$

and recall that $\tilde{\mathcal{H}}$ is obtained by completing the space of Laurent polynomials $\sum z^ax^n$ with coeff. in \mathcal{H} with respect to the norm

$$
\| \sum z^ax_n \|_{\tilde{\mathcal{H}}}^2 = \sum_{n,m} (T_{n-m}a_n, a_m)_{\mathcal{H}}
$$

$$
= \int_{S^1} \left(\sum_p \tilde{T}_p z^{-p} \cdot \sum_n z^ax_n, \sum z^mx_m \right)_{\mathcal{H}} \frac{d\Theta}{2\pi}
$$

where I suppose that $\| \tilde{T} \| < 1$ so that the following series converges

$$
\sum_p \tilde{T}_p z^{-p} = \sum_{p > 0} T_p z^{-p} + \sum_{p < 1} T^\ast p z^p
$$

$$
= (1 - z^{-1}T)^{-1} + zT^\ast (1 - zT^\ast)^{-1}
$$

$$
= (1 - z^{-1}T)^{-1} \left[1 - T^\ast + \frac{T^\ast}{(1 - zT^\ast)(1 - zT^\ast)^{-1}} \right] (1 - zT^\ast)^{-1}
$$

$$
= (1 - z^{-1}T)^{-1} \left[1 - T T^\ast \right] (1 - zT^\ast)^{-1}
$$

Put

$$
\varphi(z) = (1 - T T^\ast)^{1/2} (1 - zT^\ast)^{-1}
$$

Then we have an isomorphism

$$
L^2(S^1; \mathcal{H}) \sim \tilde{\mathcal{H}}
$$

$$
\varphi(z) \varphi(z) \longleftrightarrow 1 \times \varphi(z)
$$
Compatibly with multiplication by \(z \). With respect to this isomorphism, the canonical embedding \(i : \mathcal{H} \to \mathcal{H} \) becomes
\[
i(h) = \varphi(z) h.
\]
Thus
\[
(i \ast \beta, h) = (\beta, i h) = (\beta, \varphi h) = (\varphi \ast \beta, h)_\mathcal{H}
\]
hence
\[
i^n \beta(z) = \int \varphi^n(z) \beta(z) \frac{d\theta}{2\pi}.
\]
So
\[
i^n u^n i(h) = \int \varphi^n(z) \varphi(z) \frac{d\theta}{2\pi} (h)
\]
\[
= \int \sum T_p \varphi^p \varphi(z) \frac{d\theta}{2\pi} (h) = T_n \mathcal{H}(h)
\]
as it should be.

The outgoing subspace generated by \(i \mathcal{H} \) is
\[
D_0 = \left\{ \varphi(z) \alpha(z) \middle| \alpha(z) = \sum_{n \geq 0} z^n \alpha_n \right\} = \varphi \mathcal{H}^2(S^1, \mathcal{H})
\]
because \(\varphi \) is holomorphic and invertible for \(|z| < 1 \).

We have
\[
D_0 = \varphi \mathcal{H}^2 = \mathcal{H}^2
\]
Hence
\[
D_1 = D_0 \ominus i \mathcal{H} = \left\{ \alpha \in \mathcal{H}^2 \mid i \ast \alpha = \int \varphi \ast \alpha \frac{d\theta}{2\pi} = 0 \right\}
\]

Better: What you've done with \(\varphi(z) = (1 - Tz^*) \frac{1}{i} (1 - zT^*)^{-1} \) is to get an isomorphism
\[
L^2(S^1, \mathcal{H}) \overset{\sim}{\to} \mathcal{H}
\]
\[
\varphi(z) \alpha(z) \overset{\sim}{\leftrightarrow} \alpha
\]
such that \(D_0 \) goes to \(\mathcal{H}^2 \). In other words, you have constructed the outgoing spectral representation. But if you use
\[\psi(z) = \left(1 - T^*T\right)^{1/2}(1 - z^{-1}T)^{-1} \]

then you get an isomorphism
\[L^2(S^1; \mathcal{H}) \cong \tilde{\mathcal{H}} \]

such that \(D_0 = \sum u_i^* \tilde{H} \) goes to \(H^2 \). This is the incoming spectral representation. The scattering matrix is the operator
\[L^2(S^1; \mathcal{H}) \cong \tilde{\mathcal{H}} \cong L^2(S^1; \mathcal{H}) \]

\[\alpha \longmapsto \psi(z)^{-1} \alpha \longmapsto \phi(z) \psi(z) \alpha \]

\[S(z) = \phi(z) \psi(z)^{-1} = \left(1 - TT^*\right)^{1/2} \left(1 - z T^*\right)^{-1} \left(1 - z^{-1}T\right) \left(1 - T^*T\right)^{-1/2} \]

This has unitary values on \(S^1 \) because
\[S(z)^{-1} = \psi(z) \phi(z)^{-1} \quad S(z)^* = (\phi(z)^{-1})^* \psi(z)^* \]

and
\[\phi(z)^* \phi(z) = \left(1 - z^{-1} T^*\right)^{-1} \left(1 - T^*T\right) \left(1 - z^{-1}T\right)^{-1} \]
\[\phi(z)^* \phi(z) = \left(1 - z T\right)^{-1} \left(1 - TT^*\right) \left(1 - z T^*\right)^{-1} \]

are equal by the basic calculation of \(\sum T_p z^{-p} \).
April 1, 1978

Suppose V is a partial isometry on H with deficiency indices (1, 1), let \(u_i \) be a unit vector orthogonal to \(D_V \) and \(u_i \) a unit vector orthogonal to \(R_V \). Let \(T \) be the contraction operator on V given by

\[
\begin{align*}
T(x) &= Vx \quad \text{if } x \in D_V \\
T(u_i) &= 0
\end{align*}
\]

Let \((\tilde{H}, U, i) \) be the unitary operator generated by \(T \).

I claim that \(\{ U^n(u_i), U^{-n}(u_i) : n \geq 1 \} \) is an orthonormal basis for \(\tilde{H} \ominus iH \).

We have \(*U^n_i = T^n \) for \(n \geq 0 \), hence

\[
*U^n(u_i) = T^n u_i = 0 \quad \text{for } n \geq 1
\]

so that \(U^n(u_i) \perp iH \) for \(n \geq 1 \). It follows that

\[
(U^{n+1}(u_i), U^n(u_i)) = (U^n(u_i), u_i) = 0
\]

for \(n \geq 1 \) showing that the set \(U^n(u_i), n \geq 1 \) is orthonormal and \(1 \in iH \). A similar thing holds for \(U^{-n}(u_i), n \geq 1 \).

Finally (note: \(f^* u_i = 0 \))

\[
(U^n(u_i), U^{-m}(u_i)) = (U^{n+m}u_i, u_i) = 0
\]

The above shows that \((\tilde{H}, U, i) \) (= unitary operator generated by \(T \)) is in some sense the simplest unitary extension of \((H, V) \) in a larger Hilbert space.
Next I should understand a little better the unitary operator generated by a contraction operator such that its spectrum is inside S^1. For example if T has no unitary components then T has no eigenvalues (discrete spectrum) on S^1, hence if $\dim(H) < \infty$ the spectrum of T is inside S^1. Also if $T^n \to 0$, or equivalently if $\|T^n\|_{1,k}$ for some $n \geq 1$, then its spectrum lies inside S^1.

Under this assumption the operators $(1-zT^*)^{-1}$ and $(1-z^{-1}T)^{-1}$ are analytic on S^1, and the calculations

$$\sum T^p z^{-p} = (1-zT^*)^{-1}(1-T^*T)(1-z^{-1}T)^{-1}$$

$$= (1-z^{-1}T)^{-1}(1-T^*T)(1-z^*)^{-1}$$

are valid as analytic functions defined near S^1.

Note: The spectral radius of T is $\lim \|T^n\|^{1/n} = \inf \|T^n\|^n$, so that for the spectrum of T to be inside S^1 is equivalent to $\|T^n\| < 1$ for some $n \geq 1$, or that $T^n \to 0$ as $n \to \infty$.

Review the construction of \tilde{H}. We start with $A(S^1,H) = \{\text{analytic functions } \alpha(z) = \sum a_n z^n \text{ on } S^1 \text{ with values in } H \}$, and equip this with the inner product

$$\|\alpha\|_H^2 = \int (\sum T_p z^{-p} \alpha(z), \alpha(z))_H \frac{d\Theta}{2\pi}$$

and complete to get \tilde{H}. Let $\tilde{f} : \tilde{H} \to \tilde{N}_1$ be the
Completion of \mathcal{H} with respect to the inner product

$$\|x\|_{\mathcal{H}}^2 = \langle (1-T^*)x, x \rangle_{\mathcal{H}}$$

Then we have

$$\|x\|_{\mathcal{H}}^2 = \int \| (1-zT^*)^{-1} \alpha(z) \|_{\mathcal{H}}^2 \frac{d\theta}{2\pi}$$

Now $1-zT^*$ acts invertibly on $A(S_j^1, \mathcal{H})$.

$$A(S_j^1, \mathcal{H}) \xrightarrow{1-zT^*} A(S_j^1, \mathcal{H}) \xrightarrow{\int (1-zT^*)^{-1}} L^2(S_j^1, \mathcal{N})$$

The point is that $A(S_j^1, \mathcal{N})$ is dense in $L^2(S_j^1, \mathcal{N})$ so because we have:

$$A(S_j^1, \mathcal{H}) \xrightarrow{\text{dense}} A(S_j^1, \mathcal{N})$$

$$A(S_j^1, \mathcal{H}) \xrightarrow{\text{dense}} L^2(S_j^1, \mathcal{N})$$

So we get an isomorphism of \mathcal{H} with $L^2(S_j^1, \mathcal{N})$ which sends $\alpha(z) \in A(S_j^1, \mathcal{H})$ to $\int (1-zT^*)^{-1} \alpha(z)$. Moreover this isomorphism carries $A_0(S_j^1, \mathcal{H})$ to $H^2(S_j^1, \mathcal{N})$ and hence it is the outgoing spectral representation.

Better: Define $i : \mathcal{H} \to L^2(S_j^1, \mathcal{N})$ by

$$i(h) = \int (1-zT^*)^{-1}h = \sum_{n \geq 0} z^n \langle T^n h \rangle$$
Then
\[(i^* U^n i h, h') = (U^n i h, i h') = (z^n \mathfrak{p} (1 - z T^*)^{-1} h, \mathfrak{p} (1 - z T^*)^{-1} h) = \mathcal{L}^2(S^1, \mathcal{H}) \]
\[= \left(z^n \sum_{l = 0}^{1} T_p z^{-p} h, h' \right) = (T_n h, h'). \]

So by the defining property \(\tilde{\mathcal{H}} \) induces an embedding
\[\tilde{\mathcal{H}} \to \mathcal{L}^2(S^1, \mathcal{H}) \]
which is an isomorphism because as \((1 - z T^*)\) is invertible one has
\[\sum_{n \geq 0} z^n \| H \| = H^2(S^1, \mathcal{H}). \]

Similarly if \(p_2 : \mathcal{H} \to \mathcal{N}_2 \) is the completion of \(\mathcal{H} \) with respect to the norm \(\| x \|_{\mathcal{N}_2}^2 = \|(1 - T^* T) x, x\| \), we can use the embedding
\[\mathcal{H} \overset{p_2}{\to} \mathcal{L}^2(S^1, \mathcal{N}_2) \]
\[h \mapsto p_2 (1 - z^{-1} T)^{-1} h \]
to obtain an isomorphism
\[\tilde{\mathcal{H}} \overset{\sim}{\to} \mathcal{L}^2(S^1, \mathcal{N}_2) \]
with
\[\sum_{n \geq 0} z^n H \overset{\sim}{=} H^2(S^1, \mathcal{N}_2) \]

The scattering operator can be understood as follows. Start from the basic identity
\[\left(1 - z^* T \right)^{-1} (1 - T T^*) (1 - z T^*)^{-1} = (1 - z T^*) (1 - T^* T) (1 - z T)^{-1} \]
which yields for \(x, y \in \mathcal{H} \) and \(z \in S^1 \).
\[(1-TT^*)(1-zT^*)^{-1}x, (1-zT^*)^{-1}y) = ((1-T^*)T^{-1}T^{-1}\delta, (1-z^{-1}T^{-1}T^{-1})^{-1}y)\]

using the fact that \(1-z^{-1}T\) is invertible on \(\mathcal{H}\) we get

\[\begin{pmatrix} (1-TT^*)S(z)x, S(z)y \end{pmatrix} = \begin{pmatrix} (1-T^*)\delta, x, y \end{pmatrix}\]

where

\[S(z) = (1-zT^*)^{-1}(1-z^{-1}T^{-1})\]

It follows that for \(|z| = 1\), \(S(z)\) induces an isomorphism between \(N_2 = \text{completion wrt } 1-T^T\) and \(N_1 = \text{completion wrt } 1-T^T\).

It might be more natural to multiply \(S(z)\) by \(z\) so as to get

\[zS(z) = (1-zT^*)^{-1}(z-T)\]

which is evidently holomorphic in the disk. This scattering operator corresponds to the one transforming

\[D = \sum u_i^{*}u_i\mathcal{H} \text{ to } D\otimes i\mathcal{H}.
\]

Can any of this be applied to \(T\), the \(T\) associated to a partial isometry \(V\) of type \((1,1)\)? The problem seems to be whether \(T\) has its spectrum inside \(S\). If \(\mathcal{H}\) is finite-dimensional, there is no problem on this score.

Let us see how much sense we can make out of \(S\)!

\[T = V\text{ except on }\langle u_i\rangle, \text{ consequently } 1-T^T = 0\text{ on }\mathcal{D}V, \text{ in fact } 1-T^T = \text{projection on }\langle u_i\rangle,\text{ so }\]

\[N_2 = \mathcal{H}/\mathcal{D}V = \langle u_i\rangle \quad N_2 = \mathcal{H}/\mathcal{D}V = \langle u_i\rangle\]
For a finite-dimensional space, we know that for any \(z \in \mathbb{C} \) the operator \(z - \mathbf{V} \) has image of codim 1. Precisely, \((z - \mathbf{V})\mathbf{D}_V\) is a hyperplane in \(\mathbf{H} \). In effect if \(h \in \mathbf{D}_V \) and \((z - \mathbf{V})h = 0\), then because \(h \) is isometric \(|z|=1\) and so \(\langle h \rangle \) would be a unitary component of \(\mathbf{V} \). Thus \((z - \mathbf{V})\mathbf{D}_V\) is a hyperplane.

I want to compute \(S(z)u_i \). Since \(T(u_i) = 0 \)

\[
S(z)u_i = (1-zT^*)^{-1}u_i \text{ projected onto } \langle u_{-i} \rangle
\]

hence I want

\[
(S(z)u_i, u_{-i}) = ((1-zT^*)^{-1}u_i, u_{-i}).
\]

Assume \(z \) such that \((z - \mathbf{V})\mathbf{D}_V\) is closed of codim 1 and let \(e_z \) be a unit vector orthogonal to this hyperplane. Then

\[
0 = ((z - \mathbf{V})\mathbf{D}_V, e_z) = ((z - T)\mathbf{D}_V, e_z)
\]

\[
= (\mathbf{D}_V, (z^{-1} - T^*)e_z)
\]

hence

\[
(z^{-1} - T^*)e_z = c u_i, \quad c = \text{constant}
\]

or

\[
e_z = c (z^{-1} - T^*)^{-1} u_i.
\]

We have used \(z \in \mathbb{C} \setminus \{0\} \).

Better: Let \(e_z \perp (z - \mathbf{V})\mathbf{D}_V \). Then

\[
0 = ((z - \mathbf{V})\mathbf{D}_V, e_z) = ((z - T)\mathbf{D}_V, e_z) = (\mathbf{D}_V, (z - T^*)e_z)
\]

so

\[
e_z = c (z - T^*)^{-1} u_i \quad \text{assuming } (z - T^*)^{-1} \text{ exists.}
\]
This argument is reversible and seems only to use that T is a contraction operator extending V. In any case what it shows is that $(1-zT^*)^{-1}u_i$ is perpendicular to $(1-zV)V$:

$$
(1-zV)D_V, (1-zT^*)^{-1}u_i) = (1-zT)D_V, (1-zT^*)^{-1}u_i) = (D_V, u_i) = 0.
$$

Therefore the scattering matrix

$$(S(z) u_i, u_{-i}) = ((1-zT^*)^{-1}u_i, u_{-i})$$

is the analytic function one obtains by taking the z-line in $<u_i> \oplus <u_{-i}>$ and composing its coefficients.

Important thing to examine:

1) The above seems to be valid for any contraction T extending V. S seems not to depend on the choice of T.

2) How do singularities of V affect things? Better: It seems that there's a connection between those z on S^1 where $(1-zV)D_V$ is not closed and with the spectrum of T.

Spectrum T inside $S^1 \iff$ finite-dimensional? Yes, we've seen \Rightarrow: V^n is defined on a subspace of U^n, hence if $\|T^n\| \to 0$ one must have U finite-dimensional.
April 2, 1978

T = the contraction belonging to a partial space V of type (1, 0).
\((\mathcal{H}, U) \) the unitary operator generated by T.

I've seen that one has orthogonal decomposition

\[\mathcal{H} = \langle \ldots, \mathcal{H}^{n}, \mathcal{H}^{n} \rangle \oplus \mathcal{H}^{n} \oplus \langle u_{n+1}, u_{n+1}^{*} \rangle \cdots \]

\(e_2 \quad e_3 \quad e_1 \quad e_2 \)

hence we have two embeddings

\[L^{2}(S^{1}) \xrightarrow{\text{inc.}} \mathcal{H} \xleftarrow{\text{out}} L^{2}(S^{1}) \]

\(z^{n} \xrightarrow{} u^{n} u_{i}^{*} \Rightarrow u^{n} u_{i}^{*} \xleftarrow{} \mathbb{C}^{n} \)

and I'd like to understand when these are isom. and what the scattering operator is.

When \(T' \to 0 \) i.e. \(H \) finite-dimensional I have available the operator \((1 - zT^{*})^{-1} \) for \(z \) in \(S^{1} \), \(T T^{*} \) is the projection on \(\mathbb{R}V \), so \(1 - TT^{*} : h \mapsto (h, u_{i}) u_{i}^{*} \). Thus if we define \(i : H \to L^{2}(S^{1}) \) by

\[i(h) = ((1 - zT^{*})^{-1}h, u_{i}) \]

then \(i \) induces an isomorphism \(i_{#} : \tilde{\mathcal{H}} \to L^{2}(S^{1}) \) sending \(u_{i} \) to \(L^{2}(S^{1}) \). It follows that \(i_{#} \) is the inverse of the "out" map above. So so we get

\[\begin{array}{c}
\mathcal{H} \\
L^{2}(S^{1}) \\
\mathbb{C}^{n}
\end{array} \xleftarrow{\sim} \begin{array}{c}
\tilde{\mathcal{H}} \\
L^{2}(S^{1}) \\
\mathbb{C}^{n}
\end{array} \xrightarrow{\sim} \begin{array}{c}
\mathcal{H} \\
L^{2}(S^{1}) \\
\mathbb{C}^{n}
\end{array} \]

\[\begin{array}{c}
(1 - zT^{*})^{-1}h, u_{i} \\
(1 - zT^{*})^{-1}h, u_{i}^{*}
\end{array} \xrightarrow{\sim} \begin{array}{c}
\mathcal{H} \\
L^{2}(S^{1}) \\
\mathbb{C}^{n}
\end{array} \xrightarrow{\sim} \begin{array}{c}
\tilde{\mathcal{H}} \\
L^{2}(S^{1}) \\
\mathbb{C}^{n}
\end{array} \xrightarrow{\sim} \begin{array}{c}
\mathcal{H} \\
L^{2}(S^{1}) \\
\mathbb{C}^{n}
\end{array} \]
To get the scattering operator, we take \(h = u_i \)

whence

\[
(1 - z^{-1} T^{-1} u_i, u_i) \rightarrow \langle 1, u_i \rangle \rightarrow (1 - z T^x)^{-1} u_i, u_i \]

\[
(\langle 1, u_i \rangle = 1)
\]

hence

\[
S(z) = (1 - z T^x)^{-1} u_i, u_i
\]

Note this is an analytic function in \(z \) with the property

\[
S(u) u_i = u_i
\]

So far we have been assuming \(T^n \rightarrow 0 \), i.e. \(T \) finite-dimensional. What happens when this restriction is relaxed?

First point is that \((1 - z T^x)^{-1} u_i \) is analytic for \(|z| < 1\) in general and possibly analytically continues to points of \(S^1\). We have

\[
(1 - z V)^{-1} u_i, (1 - z T^x)^{-1} u_i = (1 - z V) u_i, (1 - z T^x)^{-1} u_i
\]

\[
= z V u_i = 0
\]

Also

\[
((1 - z T^x)^{-1} u_i, u_i) = \langle u_i, (1 - z T)^{-1} u_i \rangle = (u_i, u_i) = 1
\]

Thus we can describe \((1 - z T^x)^{-1} u_i \) as the unique element of \(\mathbb{H} \) perpendicular to \((1 - z V) u_i \) whose inner product with \(u_i \) is 1. Note that this description depends on \(V \) alone, and might be useful for other \(T \) extending \(V \).

There's no relation between invariant subspaces for \(T \) and the chain of invariant subspaces we want to find for
V. In effect one can have non-nilpotent T (the finite ones T correspond to polynomials with roots inside S' with one root 0) and then the invariant subspaces for T don't form a chain.