Using inequalities.

Let X be a finite poset and μ a probability measure on X given by a function: $\mu(\{x\}) = U(x)$. One wants to prove correlation inequalities:

$$\sum_{x \in X} f(x) g(x) U(x) \geq \left(\sum_{x \in X} f(x) U(x) \right) \left(\sum_{x \in X} g(x) U(x) \right)$$

when f, g are monotone real-valued functions on X. (Note that one has equality when f, g are independent, so this means monotone functions tend to behave non-independently.)

Note that any monotone function on X is a non-negative linear combination of characteristic functions of subsets closed under specialization (I call them open); specifically, suppose the range of f is

$$\{a_0 < \cdots < a_n\}.$$ Then

$$f(x) = a_0 + \sum_{i=1}^{n} (a_i - a_{i-1}) \cdot \chi_{ \{x \mid f(x) > a_i\} }.$$
Therefore (1) is equivalent to
\[\mu(A \cap B) \geq \mu(A) \mu(B) \]
if \(A, B \) are open subsets of the poset \(X \).
(Recall two subsets \(A, B \) are independent if \(\mu(A \cap B) = \mu(A) \mu(B) \); this is the same as \(X_A \) and \(X_B \) being independent).

Other versions of (1): Consider the space of real functions on \(X \) with mean: \(\sum f(x) u(x) = 0 \). On this space one has the inner product \((f, g) = \sum f(x) g(x) u(x) = E(fg) \).

Note that the monotone functions form a convex cone with non-empty interior. Condition (1) is equivalent to \((f, g) \geq 0 \) if \(f, g \) are in this cone, i.e. the angle between two vectors in the cone is \(\leq 90^\circ \).

Observe that (2) holds if \(X \) is a chain because then either \(B \subseteq A \) or \(A \subseteq B \).

FKL theorem asserts (1) holds if \(X \) is a distributive lattice and \(u \) satisfies
\[u(x \lor y) u(x \land y) \geq u(x) u(y) \]
for example \(u(x) = e^{-h(x)} \) with
\[h(x \lor y) + h(x \land y) \leq h(x) + h(y). \]
Thm. (Simon's book p. 280)

Let \(\mathbb{R}^n \) be given the product order; let \(d\nu_1, \ldots, d\nu_n \) be measures on \(\mathbb{R} \) and \(U(x_1, \ldots, x_n) \) a strictly positive function >

(1) \[U(xy) U(xy) \geq U(x) U(y) \]

\[d\mu = U(x_1, \ldots, x_n) d\nu_1(x_1) \cdots d\nu_n(x_n) \]

Put \(\langle f \rangle = \int f \, d\mu / S d\mu \). If \(f, g \) are monotone then

(2) \[\langle fg \rangle \geq \langle f \rangle \langle g \rangle. \]

Assume the \(d\nu_i \) have compact support; other cases can be handled by passing to the limit.

Proof by induction on \(n \). If \(n=1 \), (1) is trivial and (2) follows from

(3) \[\int (f(x) - f(y))(g(x) - g(y)) \, d\mu(x) \geq 0 \]

\[2(\int fg \, d\mu)(\int d\mu) - 2(\int f \, d\mu)(\int g \, d\mu) \]

and the fact that the integrand in (3) is always \(\geq 0 \) when \(f, g \) are monotone.

Write \(x \in \mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^n \) as \((p, s) \) and

\[\int (f(x) - f(y))(g(x) - g(y)) \, d\mu(x) d\nu(x) = \int \beta(s, t) \, d\nu_1(s) \, d\nu_n(t) \]

\[\beta(s, t) = \int (f(p, s) - f(q, t))(g(p, s) - g(q, t)) \, U(p, s) U(q, t) \prod_{i=1}^{n-1} d\nu_i(p) d\nu_i(q). \]

It suffices to prove \(\beta(s, t) \geq 0 \) and since \(\beta(s, t) = \beta(t, s) \)
we can suppose \(s \leq t \). Put

\[
F(s) = \int f(p, s) \ U(p, s) \prod_{i=1}^{n-1} \, d\nu_i(p_i)
\]

\[
G(s) = \int g(p, s) \ U(p, s)
\]

\[
H(s) = \int f(p, s) g(p, s) \ U(p, s)
\]

\[
Z(s) = \int \ U(p)
\]

Then

\[
Z(s) Z(t) \beta(s, t) = Z(s) Z(t) \left[H(s) Z(t) + Z(s) H(t) - F(s) G(t) - F(t) G(s) \right]
\]

\[
= Z(s)^2 \left[Z(t) H(t) - F(t) G(t) \right]
\]

\[
+ Z(t)^2 \left[Z(s) H(s) - F(s) G(s) \right]
\]

\[
+ \left[Z(s) F(t) - Z(t) F(s) \right] \left[Z(s) G(t) - Z(t) G(s) \right]
\]

Now

\[
Z(t) H(t) \geq F(t) G(t)
\]

namely apply induction to \(f(\cdot, t) \ g(\cdot, t) \ U(\cdot, t) \)

and \(d\nu_1 \ldots d\nu_{n-1} \). Similarly the second term is \(\geq 0 \).

Next

\[
p \mapsto \frac{U(p, s)}{U(p, t)}
\]

is increasing. Hence by induction

\[
F(s) Z(t) = \int f(s, q) U(s, q) \prod_{i=1}^{n-1} \, d\nu_i(q) \int \frac{U(t, s)}{U(s, t)} U(t) \prod_{i=1}^{n-1} \, d\nu_i(t)
\]

\[
\leq \int U(s) \int f(s, s) U_t \leq \int U(s) \int f(s, s) U_t = Z(s) F(t)
\]
because \(f_s \leq f_t \). Similarly, \(G(s)Z(t) \leq G(t)Z(s) \), so the proof is complete.

Another version of the proof in the special case \(X = S \times Y \) where \(S = \{0, 1\} \) and \(X \) is finite. Put

\[
F(s) = \sum_{y \in Y} f(s, y) U(s, y)
\]

and define \(G(s), H(s), Z(s) \) similarly. We want to prove:

\[
\sum_{s} H(s) \sum_{s} Z(s) \geq \sum_{s} F(s) \sum_{s} G(s)
\]

By the induction assumption \(\frac{F(s)}{Z(s)} \geq \frac{G(s)}{Z(s)} \) are increasing. Note that if \(f, g \) are increasing and \(s \leq t \)

\[
(*) \quad f(s)g(s) + f(t)g(t) \geq f(o)g(t) + f(t)g(s)
\]

because the difference is \((f(s) - f(t))(g(s) - g(t)) \geq 0\).

Thus

\[
(H(0) + H(1))(Z(0) + Z(1)) \geq \left(\frac{F(0)G(0)}{Z(0)} + \frac{F(1)G(1)}{Z(1)} \right)(Z(0) + Z(1))
\]

\[
\geq F(0)G(0) + F(1)G(1) + \frac{F(0)G(0)}{Z(0)} Z(0) Z(1) + \frac{F(1)G(1)}{Z(1)} Z(0) Z(1)
\]

\[
\geq F(0)G(0) + F(1)G(1) + \left(\frac{F(1)G(0)}{Z(0)} + \frac{F(0)G(1)}{Z(1)} \right) Z(0) Z(1)
\]

\[
= (F(0) + F(1))(G(0) + G(1))
\]
Better proof: Assume \(H(s)Z(s) \geq F(s)G(s) \) with \(Z(s) > 0 \) and that \(\frac{F(s)}{Z(s)} \), \(\frac{G(s)}{Z(s)} \) are increasing.

Then
\[
\sum H(s)Z(s) \geq \sum \frac{F(s)}{Z(s)} \frac{G(s)}{Z(s)} Z(s) \sum Z(s)
\]
\[
\geq \sum \frac{F(s)}{Z(s)} Z(s) \cdot \sum \frac{G(s)}{Z(s)} Z(s)
\]
\[
= \sum F(s) \sum G(s)
\]
because of what we know for monotone functions on a chain.

Note the same formula will hold \(\circ \) under the weaker assumption that \(Z(s) > 0 \) but that \(Z(s) = 0 \Rightarrow F(s) = G(s) = H(s) = 0 \); namely you delete these from \(S \).

Generalize: Suppose I have a map of posets \(p: X \rightarrow S \) where \(S \) is a chain. If \(s \leq t \) in \(S \), then
\[
F(t)Z(s) = \sum_{x \in X_t} f(x)U(x) \sum_{y \in X_s} U(y) \geq \sum \frac{f(y)x}{U(y)} U(x) \sum \frac{U(y)}{y \in X_s} U(y)
\]
\[
= \sum \frac{f(y)}{y \in X_s} \sum_{x \in X_t} U(x) \cdot \sum \frac{U(y)}{y \in X_s} U(y)
\]
\[
\geq \sum \frac{f(y)U(y)}{y \in X_s} \cdot \sum \frac{U(x)}{x \in X_t} = F(s)Z(t)
\]
Here \(\varphi : X_t \to X_s \) is some sort of pull-back map satisfying:

\[
\begin{align*}
\text{a) } & \quad \varphi(x) \leq x \\
\text{b) } & \quad y \leq y' \implies \frac{\sum_{x \in \varphi^{-1}(y')} U(x)}{U(y)} \leq \frac{\sum_{x \in \varphi^{-1}(y')} U(x)}{U(y')}
\end{align*}
\]

Note b) holds if one has a map \(\varphi : X_t \to X_t y' \) embedding \(\varphi^{-1}(y) \) in \(\varphi^{-1}(y') \) and if

\[U(x \cup y') U(y) \geq U(y') U(x). \]

So now if \(H(s) = \sum_{x \in X_s} f(x) g(x) U(x) \), then assuming \(H(s) Z(s) \geq F(s) G(s) \) on each fibre, we get

\[
\begin{align*}
\sum_{s} H(s) \sum_{s} Z(s) & \geq \sum_{s} F(s) G(s) Z(s) \sum_{s} Z(s) \\
& \geq \sum_{s} F(s) Z(s) \sum_{s} G(s) Z(s) \\
& = \sum_{s} F(s) \sum_{s} G(s).
\end{align*}
\]
Next I want to allow \(U \) to be zero sometimes. To simplify return to the case

\[
X = \{ s \times y \}.
\]

For \(s \leq t \)

\[
F(t) Z(s) = \sum_y f(t, y) U(t, y) \sum_y u(s, y).
\]

\[
\geq \sum_y f(s, y) \frac{U(t, y)}{u(s, y)} U(s, y) \sum_y u(s, y).
\]

Note that the function \(y \mapsto \frac{U(t, y)}{u(s, y)} \) defined on the set of \(y \) such that \(U(s, y) > 0 \) is increasing.

\[
U(s, y) U(t, y') \geq U(s, y') U(t, y)
\]

and \(U(s, y), U(s, y') > 0 \)

\[
\Rightarrow \frac{U(t, y')}{U(s, y')} \geq \frac{U(t, y)}{U(s, y)}
\]

But \(\{ y \mid U(s, y) > 0 \} \) is a sublattice.

Suppose next that \(L \) is a finite distributive lattice. Let \(J \) be the set of irreducibles in \(L \), so that \(L \) is isomorphic to the lattice of closed subset of \(J \). Let \(U : L \to \mathbb{R}^\geq \) satisfy \(U(x \cup y) U(x \cap y) > U(x) U(y) \), and let \(f, g \) be monotone functions on \(L \). To prove

\[
\sum' f(x) g(x) U(x) \sum' u(x) \geq \sum' f(x) U(x) \sum g(x) U(x)
\]
I want to prove this by induction on \(\text{card}(L) \).

First note that we can enlarge \(L \) to the lattice of all subsets of \(T \). In effect we extend \(U \) to \(2^T \) by zero outside of \(L \). The inequality \(U(x \cup y) U(x \cap y) \geq U(x)U(y) \) still holds because if either \(x, y \notin L \) then the right side is zero. (Notice that the support of \(U \) is a sublattice of \(L \)). Next one can extend \(f \) from \(L \) to \(2^T \) by defining \(f(x) = f(\overline{x}) \); \(x \leq x' \Rightarrow \overline{x} \leq \overline{x'} \), etc. So it suffices to prove the theorem when \(L = 2^T \), but where \(U \) is allowed to have the value zero.

Then I would try induction on \(\text{card}(T) \). So write \(L = S \times Y \) and put

\[
F(s) = \sum_{y \in Y} f(s, y) U(s, y) = \sum_{y \in L_s} f(s, y) U(s, y)
\]

where \(L_s = \{ y \in Y \mid U(s, y) > 0 \} \). Note \(L_s \) is a sublattice of \(Y = 2^{T'} \), \(T' = T - \text{some } S \). If \(S \subseteq T \), then the function

\[
\frac{U(s, y)}{U(s, y)}
\]

defined on \(L_s \) is monotone, hence it can be extended to all of \(Y \) to be a monotone function (its value at \(y \) is the value at the smallest element of \(L_s \geq y \)). Thus we can argue...
\[F(t) \mathcal{Z}(s) = \sum_y \frac{h(t, y)}{u(s, y)} u(s, y) \] \[\sum \quad ? ? \]

I seem to run into trouble if \(L_0 \) doesn't contain the largest element of \(\mathcal{Y} \).

So let's try selecting an irreducible \(p \in \mathcal{T} \) and considering the map \(L \rightarrow \{0, 1\} \) \(x \mapsto 0, 1 \) according as \(p \not\preceq x \) or \(p \preceq x \). Assume \(p \) maximal. Then \(L_0 = \{ x \in L \mid p \not\preceq x \} \) = all closed subsets of \(\mathcal{T} \) not containing \(p \). Clearly \(L_0 \) contains the largest element of \(\mathcal{Y} \) in this case, and the same is true for \(L_1 \).

Try again this time using induction on card \(\mathcal{T} \).

Suppose then \(L \) is the lattice of closed subsets of the finite poset \(\mathcal{T} \) and that \(U : L \rightarrow \mathbb{R}_{>0} \) satisfies \(U(x \cup y) U(x \cap y) \geq U(x) U(y) \) and that \(f, g \) are monotone functions on \(L \). Then pick a maximal element \(p \) of \(\mathcal{T} \). We then have

\[
\sum_{x \in L} F(x) U(x) = \sum_{p \not\preceq x} F(x) U(x) + \sum_{p \preceq x} F(x) U(x)
\]

Put \(L_0 = \{ x \in L \mid p \not\preceq x \} \) = closed subsets of \(\mathcal{T} - \{ p \} \) and \(L_1 = \{ x \in L \mid p \preceq x \} \) = closed subsets of \(\mathcal{T} - \mathcal{T} - \{ p \} \). Thus

\[
\sum_{x \in L} F(x) U(x) = F(0) + F(1) \quad F(d) = \sum_{x \in L} F(x) U(x)
\]
As before put \(Z(a) = \sum_{x \in L_0} u(x) \)
Then
\[
F(1) = \sum_{y \in L_1} f(y) u(y)
= \sum_{x \in L_0} f(x \cup \{p\}) \frac{u(x \cup \{p\})}{u(x)} u(x)
\]
where by convention \(f(x \cup \{p\}) = f(\overline{x \cup \{p\}}) \) and \(u(x \cup \{p\}) = 0 \) if \(x \cup \{p\} \) is not closed. Now if \(x \leq x' \) and \(x \cup \{p\} \) is not closed, then \(x \cup \{p\} \) is not closed (for \(x' \cup \{p\} = (x \cup \{p\}) \cup x' \)), hence we have
\[
\frac{u(x \cup \{p\})}{u(x)} \leq \frac{u(x' \cup \{p\})}{u(x')}
\]
in all cases. Thus
\[
F(1) Z(0) = \sum_{x \in L_0} f(x \cup \{p\}) \frac{u(x \cup \{p\})}{u(x)} u(x) \sum_{x \in L_0} u(x)
\geq \sum_{x \in L_0} f(x \cup \{p\}) u(x) \sum_{x \in L_0} u(x \cup \{p\})
\geq F(0) Z(1)
\]
so
\[
\sum_{a} H(a) \sum_{a} Z(a) \geq \sum_{a} \frac{F(a)}{Z(a)} G(a) Z(a) \sum_{a} Z(a)
\geq \sum_{a} F(a) \sum_{a} G(a)
\]
as before.
Let L be a finite distributive lattice. I want to understand the different kinds of functions $U: L \to R_{\geq}$ such that

1. $U(x \lor y) \geq U(x) U(y)$

Put $H(x) = -\log U(x)$; then (1) becomes

2. $H(x \lor y) + H(x \land y) \leq H(x) + H(y)$.

Call a function satisfying (2) semi-modular.

Begin by classifying semi-modular functions on $L \times \{0,1\}$. Think of L as the lattice of closed subsets of a poset J; then $L \times \{0,1\}$ is the lattice of closed subsets of $J \cup \{\emptyset\}$. First note any semi-modular H on $L \times \{0,1\}$ gives semi-modular functions H_i on $L_i = L \times \{i\}$ for $i = 1, 2$ such that

3. $x \preceq x' \in L_i \implies H_i(x' \lor \{p\}) - H_i(x \lor \{p\}) \leq H_i(x) - H_i(x)$

Conversely a pair H_i on L_i, $i = 1, 2$ satisfying (3) gives an H on $L \times \{0,1\}$. To verify (3) one can suppose $x \in L_0$, $y \in L_1$, say $y = x \lor \{p\}$. Then

\[H_0(x) + H_1(x, x_0, \{p\}) - H_1(x_0 x, \{x_1\}, \{p\}) - H_0(x_0 x_1) \]

\[\geq H_0(x_0 x_1) - H_0(x_1) - (H_1(x_0 x, \{p\}, \{p\}) - H_1(x, \{p\})) \]

\[\geq 0 \quad \text{by (3) applied to } x_1 \leq x_0 x_1. \]
Suppose now that L is the lattice of closed sets of a poset $J = J' \cup \{p\}$ where p is maximal in J. Then

$$L = L_0 \cup L_1,$$

where L_0 = closed subset of J' and $L_1 = \{ y \in L \mid p \in y \}$. By sending $y \in L_1$ to $y - \{p\} \in L_0$ we get an isomorphism

$$L_1 \xrightarrow{\sim} (L_0) \supseteq \omega \quad \omega = J \times p$$

Any semi-modular H on L determines H_i on L_i such that

$$(4) \quad w \leq x \leq x' \text{ in } L_0 \implies H_1(x' \cup \{p\}) - H_1(x \cup \{p\}) \leq H_0(x') - H_0(x)$$

Conversely given H_i on L_i, $i = 1, 2$ satisfying (4) I claim we get an H on L. To verify (2) one can suppose $x \in L_0$ and $y \in L_1$, say $y = x_1 \cup \{p\}$ with $w \leq x_1 \in L_0$. Then

$$H_0(x) + H_1(x_1 \cup \{p\}) - H_1(x \cup x_1 \cup \{p\}) - H_0(x \land x_1)$$

$$\geq H_0(x \cup x_1) - H_0(x_1) - (H_1(x \cup x_1 \cup \{p\}) - H_1(x_1 \cup \{p\}))$$

$$\geq 0.$$
Simplification of (2): Suppose we choose a maximal chain from \(x \land y \) to \(x \) and one from \(x \land y \) to \(y \).

Then

\[
H(y) - H(x \land y) = H(y_o) - H(y_0) = \sum_{i=1}^{p} H(y_i) - H(y_{i-1})
\]

note

\[
y_{i+1}(x \land y_i) = y_{i-1}
\]

\[
\geq \sum_{i=1}^{p} H(x \land y_i) - H(x \land y_{i-1}) = H(x \land y) - H(x)
\]

Hence if we know (2) holds when \(y \) covers \(x \land y \), then it holds in general. Similarly we see that (2) when \(x, y \) cover \(x \land y \) simply it works in general.

Problem: What is the height of an element of a finite distributive lattice \(L \)? Clearly, the card of the number of irreducibles \(\preceq x \), i.e., the cardinality of \(x \) as a subset of \(T \).

How to describe all semi-modular functions \(H \) on \(L \):

Construct them inductively with respect to height. First select \(H(f) \), then \(H(p) \) for all \(p \in T \). Then for each \(x \) of height 2 look at the two elements it covers; if \(x = \{p, q, \} \) with \(\{p, q, \} \subseteq \{q\} \) closed, then we have a condition

\[
H(x) \leq H(p) + H(q).
\]
if on the other hand \(x = \{ p, q \} \) with \(p < q \), then there is no condition on \(H(x) \). In general \(H(x) \) for \(x \) irreducible is completely arbitrary.

Note that the cone of semi-modular functions on \(L \) contains the subspace of "modular" functions, i.e. such that \(H(x \circ y) + H(x \circ y) = H(x) + H(y) \). Such an \(H \) can be identified with a function on \(J \) and a constant \(c \):

\[
H(x) = \sum_{p \in x} f(p) + c \quad \text{where } f(p) = H(J \leq p) - H(J < p).
\]

So we can normalize things by requiring that \(H(x) = 0 \) if \(x = \emptyset \) or if \(x \) is irreducible. For each reducible \(x \) one consider those elements it covers, i.e. \(x - \{ p \} \) for each \(p \) a generic point of \(x \). For each pair \(p, q \) of generic points of \(x \) with \(p \neq q \) one has a condition

\[
H(x) \leq H(x - \{ p \}) + H(x - \{ q \}) - H(x - \{ p, q \})
\]

so the possible choices for \(H(x) \) form a half-line \(\mathbb{R}_{\geq} \).