August 11, 1975

Compactifying the space

\[X = G/K, \quad \rho = k \oplus \rho. \]

Let \(S\rho \) be the set of rays in \(\rho \):

\[S\rho = \mathbb{R}^n \left(0 - 0 \right). \]

If \(u \in S\rho \) can be topologized so as to be a disk. We
have an isomorphism

\[\rho \rightarrow \rho. \]

so we can define \(\overline{X} = X \cup S\rho \). The problem
is to make \(G \) act on this compactification \(\overline{X} \),
or rather to show-the set-theoretic action
I have is continuous. This doesn't
seem to work. The compactification is not \(X \cup S\rho \).

Example: \(G = \text{GL}_n(\mathbb{C}) \). \(X \) can be identified with
the set of inner products on \(\mathbb{C}^n \). Specifically a
point of \(X \) is a function \(Q: \mathbb{C}^n \rightarrow \mathbb{R} \) such
that \(Q(\lambda x) = |\lambda|^2 Q(x) \), \(Q \) is smooth at \(0 \),
\(Q(x) \geq 0 \) with \(= \iff x = 0. \) On polarization
we get from \(Q \) a hermitian form \(\overline{Q}(x,y) \). If I
fix an inner product on \(\mathbb{C}^n \) e.g. the usual one,
then \(\overline{Q} \) may be identified with a positive definite
hermitian matrix \(A : \overline{Q}(x,y) = \langle Ax, y \rangle \) and \(A = e^3 \)
for a unique \(i \in \rho = \text{hermitian matrices}. \)

The obvious limit points to add to \(X \) are the
following, which one might call forms allowed to take on the value ∞. Specifically I mean a pair consisting of a subspace W of \mathbb{C}^n and hermitian form $Q : W \rightarrow \mathbb{R}_{\geq 0}$. In the presence of a fixed inner product such a thing can be written:

$$Q(x) = \int_{0}^{\infty} \lambda(E_\lambda x, x) d\lambda$$

where E_λ is a projection valued measure on $[0, \infty]$. In other words $Q(x) = \langle Ax, x \rangle$ where A is an unbounded self-adjoint operator ≥ 0.

So it's clear now what \overline{X} has to be. Normally X consists of pos. def. A with g acting: $g A = g A g^*$. So I extend A to include possibly unbounded operators ≥ 0, but with the same G-action.

To describe \overline{X} as a space, recall that one defines unbounded operators using their graphs. Hence we associate to A the subspace

$$\Gamma_A = \{ (x, y) \in V \times V \mid Ax = y \}$$

which has the same dimension as V.

$$\Gamma_A^\perp = \{ (u, v) \mid \langle Ax, u \rangle + \langle v, Ax \rangle = 0 \}$$
\[= \{ (u,v) \mid u + A^*v = 0 \} = \{ (0, -A^*u, u) \}. \]

So if \(J \) is the operator \(J(x,y) = (-y, x) \) on \(V \times V \), we have
\[(\Gamma_A)^\perp = J \Gamma_A^* \]

so

A hermitian \(\iff \quad (J \Gamma_A, \Gamma_A) = 0. \]

On \(V \times V \) we have the sesqui-linear form
\[\langle J(x,y), (u,v) \rangle = \langle (-y, x), (u,v) \rangle = -\langle y, u \rangle + \langle v, x \rangle \]

which is skew-hermitian:
\[\langle J(x,y), (u,v) \rangle = -\langle y, u \rangle + \langle v, x \rangle \]
\[\langle J(u,v), (x,y) \rangle = -\langle v, x \rangle + \langle u, y \rangle \]

not necessarily bounded

Hence, hermitian operators correspond to isotropic subspaces for this skew-hermitian form.

I need the G-action, \(g \cdot A = gA^* \)
\[\Gamma_{gA} = \{ (x, gA^*x) \mid x \in V \} = \{ (g^*-y, gAy) \mid y \in V \}. \]
Hence \(\Gamma_{g^*} = (g^* - 1 g)^\Gamma \). So I make

\[
G \text{ act on } \mathbf{V} \times \mathbf{V} \text{ by } \quad g \cdot (x, y) = (g^* - 1 x, g y).
\]

Since

\[
\langle J(g \cdot (x, y)), g \cdot (u, v) \rangle = \langle (g^* - 1 y, g^* - 1 x), (g^* - 1 u, g v) \rangle
\]

\[
= \langle -g y, g^* - 1 u \rangle + \langle g^* - 1 x, g v \rangle
\]

\[
= -\langle y, u \rangle + \langle x, v \rangle
\]

the skew-hermitian form is preserved. Hence \(G \) acts on isotropic subspaces.

Now \(\mathcal{X} \) is an invariant open set in the space of maximal isotropic subspaces of \(\mathbf{V} \times \mathbf{V} \) for the \(J \)-form. Hence the closure \(\overline{\mathcal{X}} \) will be compact and \(G \overline{\mathcal{X}} \) will act continuously on it.

So the idea seems to be this. \(\mathcal{X} \) consists of hermitian positive (possibly unbounded) forms on \(\mathbf{V} \).

Somehow here is the picture. Let \(\mathcal{X} \) be the symmetric space. If I give a point \(\mathfrak{p} \mathcal{X} \) I can identify \(\mathcal{X} \) with the spherical compactification of the space \(\mathfrak{p} \mathcal{X} \). So I have the disk bundle of the tangent bundle to \(\mathcal{X} \).
and an exponential map ϕ of this disk bundle \tilde{X}. Thus I should be able to describe \tilde{X} as some sort of quotient of D. So each point of \tilde{X} occurs once for each element of X. In some way

$$ D = X \times \tilde{X} $$

$$ T_X \to X \times X $$

$$ G \times K/\rho $$

Precisely:

$$ T = G \times K/\rho $$

$$ D = G \times K/\rho $$

Now one has

$$ G \times K/\rho \to X $$

$$ \text{endpoint} $$

$$ \text{initial pt.} $$

Natural stratification of $\rho \approx k^-$; Given elements ξ, η in k^- let's say they belong to the same stratum if

$$ K_\xi = k^s + t(\eta - \xi) \text{ for } 0 \leq t \leq 1 $$

This condition forces ξ and η to commute

$$ (k_\xi = k_\eta \implies \eta \in k_\xi) $$. Hence we can find a maximal
abelian subspace E^- of k^- containing both.

Let

$$k = \eta + \sum_{\alpha \in \Delta^-} k^{\pm \alpha} \quad \eta \in k^-_E$$

be the root space decomposition of k with respect to E^-. One has

$$k_\xi = \eta + \sum_{\alpha \in \Delta^-} k^{\pm \alpha} \quad \alpha(\xi) = 0$$

hence $k_\xi = k_\eta$. This means $\alpha(\xi) = 0 \iff \alpha(\eta) = 0$. The condition $k_\xi = k_\xi + t(\eta, \xi)$ for $0 \neq \xi$ means that for each $\alpha \in \Delta^-$, $\alpha(\xi)$ has the same sign $(+, -)$ or 0) as $\alpha(\eta)$.

One sees from the above description that a stratum in k^- is the same thing as a stratum in a maximal abelian subspace of k^-. Another description: As ξ is in the center of k_ξ, $\xi \in k_\eta$ implies ξ is in the center of k^-. Take ξ and let σ_ξ denote the center of $k_\xi \cap k^-$. Let E^- be a maximal abelian subspace of k^- containing ξ. Then $\sigma_\xi \subset E^-$, so using the formula $k_\xi = \eta + \sum_{\alpha \in \Delta^-} k^{\pm \alpha} \quad \alpha(\xi) = 0$, one sees that σ_ξ is the subspace of E^- killed by all $\alpha \in \Delta^-$ with $\alpha(\xi) = 0$.
So it is clear now that the stratum of \(\xi \) is the chamber inside \(\alpha_\xi \) containing \(\xi \). So

Proposition: Given \(\xi \in \mathfrak{p}^- \), let \(\alpha_\xi \) be the center of \(K_\xi \) intersected with \(K^- \). (If \(\xi \) is in \(E^- \), then \(\alpha_\xi \) is the intersection of the root hyperplanes containing \(\xi \)). Let \(\Sigma_\xi \) be the strata in \(\alpha_\xi \) containing \(\xi \) (for the roots of \(K \) with respect to \(\alpha_\xi \), say, or if one wants, for the roots of \(K \) with respect to \(E^- \)). Then \(\Sigma_\xi \) is the stratum of \(\xi \) in the sense of the bottom of page 5.

Recall \(B_\xi = G_\xi \times B_\xi^u \), where \(G_\xi \) is the centralizer of \(\xi \). Here \(G \) is a real reductive group and now \(\xi \in \mathfrak{p}^- \) but first discuss the case where \(G \) is the complexification of \(K \). Then \(G_\xi \) has Lie algebra \(\mathfrak{g}_\xi = \mathfrak{k}_\xi \otimes \mathbb{C} \), and the center of \(\mathfrak{g}_\xi \) is the center of \(\mathfrak{k}_\xi \otimes \mathbb{C} \).

\[
\mathfrak{z}_\xi = \mathfrak{h} + \sum_{\alpha \in \Phi} \mathfrak{z}_\alpha
\]

Thus \(\xi \) and \(\eta \) are in the same stratum \(\Rightarrow \) \(B_\xi = B_\eta \). Conversely if \(B_\xi = B_\eta \), then intersecting with
K, we have \(K_x = K_y \), so \(x \) and \(y \) commute and hence can be put in a maximal abelian subspace \(E \) of \(p \). Then we have \(x(\xi) \geq 0 \iff x(\eta) \geq 0 \), showing that \(x(\xi) \) has the same sign as \(x(\eta) \).

Let \(A_x = \exp(\alpha_x) \subset G_x \). If \(W \) is the center of \(G_x \), then \(W_{\alpha_x} \) is a torus, so \(W = (W \cap K) \times A_x \). Let \(M_x \) be the subgroup of \(G_x \) with Lie algebra \([g_{\alpha_x}, g_{\alpha_x}] + i\alpha_x \). Then one has \(G_x = M_x \times A_x \) and

\[
B_x = M_x \times A_x \times B_x^u.
\]

This decomposition is called the Langlands decomposition of \(B_x \). The philosophy here is that in arithmetic questions, the fundamental invariant is the degree. It is the point of major interest.

Assume \(K \) is not connected. Still we have an action of \(K \) on \(E \) preserving the root stratification. Let \(E \) be a maximal abelian subspace of \(\mathfrak{k} \) and \(C \) a chamber of \(E \). Each \(K \) orbit on \(\mathfrak{k} \) intersects \(E \) in a \(W \) orbit. Let \(W^{(0)} \) be the Weyl group of \(E \) with respect to \(K^{(0)} = \text{identity comp} \), and let \(W \subset W \) be the stabilizers of \(C \). Then because
$W^{(0)}$ acts simply transitively on the chambers $W^{(0)} \rightarrow W/W'$. Since $W^{(0)}$ is generated by reflections thru root hyperplanes, and these hyperplanes are preserved by W, it follows $W^{(0)}$ is normal in W. Thus

$$W \cong W' \times W^{(0)}$$

Let N be the normalizer of E in K, and Z the centralizer, so that $W = N/Z$. Given $k \in K$, kE is another max. ab. subspace of k hence $I \in K^{(0)}$ with $k^{-1}k \in N$. This shows we have ontoess in

$$1 \rightarrow N \cap K^{(0)} \rightarrow N \rightarrow \pi_0 K \rightarrow 1$$

Now $Z \cap K^{(0)} = T = \exp(E)$ so we get

$$1 \rightarrow W^{(0)} \rightarrow N/T \rightarrow \pi_0 K \rightarrow 1$$

$$1 \rightarrow \mathbb{Z}/T \rightarrow N/T \rightarrow W \rightarrow 1$$
Consider the G-action on K. I claim it preserves strata. Recall ξ, η are in the same stratum if $B^\xi \cap G^{(0)} = B^\eta \cap G^{(0)}$, so this is evidently invariant.

The finite group W' leaves fixed an interior point ξ of C. The stabilizer of ξ in G, namely B^ξ, contains Z the centralizer of E in K and W' so it should meet every component of K.

Better we know that each G-orbit on K meets E in a W-orbit and meets C in a W'-orbit. Moreover by the Morse theory, the W'-orbit is identifiable with the components of the G-orbit. So if ξ is an interior point of C invariant under W', then $G/B^\xi = G/\xi$ is connected so it is clear that $G^{(0)}/B^{(0)} = G/B^\xi$.
August 18, 1975.

Review construction on pg. 1. Let \(P = G_\infty C/U_n \) pos. def. hermitian matrices. \(\overline{P} = \text{unbounded hermitian operators} \ A \geq 0 \). The problem is to generalize the construction \(\overline{P} \) to other \(G \).

Example: \(SL_n \subset GL_n \). Let \(SP_n \subset P_n \) denote those pos. def. matrices of determinant \(1 \). Then \(\overline{SP_n} \subset \overline{P_n} \) consists of unbounded \(A \geq 0 \) such that i) \(0 \leq A \leq \infty \) i.e. \(A \in SP_n \) or ii) both \(0, \infty \) occur as eigenvalues of \(A \).

This example indicates to me that \(\overline{SP_n} \) is not the gadget I seek for \(SL_n \). Given an eigenvalue sequence \(0 \leq \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \leq \infty \) I want all the simple roots \(\lambda_{i+1}/\lambda_i \) to be defined, i.e. \(\lambda_i \) to be a definite number in \([1, \infty]\). Recall the intuition.

Now \(GL_n \) acts on \(P_n \) by \(g(A) = gAg^* \) which means that if we interpret \(A \) as the form \(b(x,y) = \langle Ax, y \rangle \), then \((g(b))(x,y) = \langle gAg^*x, y \rangle = \langle Ag^*x, g^*y \rangle = b(g^*x, g^*y) \). Now we want to compactify the space \(P_n \) by adding in
points which correspond to limits of forms. The basic invariants of a form are the eigenvalues and eigenspaces. Let \(b_k(x,y) = \langle A_k x, y \rangle \) be a sequence of positive definite forms. For each \(A_k \), we consider its eigenvalue sequence

\[
0 < \lambda_1^k \leq \lambda_2^k \leq \cdots \leq \lambda_n^k < \infty
\]

or better we should arrange them:

\[
\infty > \lambda_1^k \geq \lambda_2^k \geq \cdots \geq \lambda_n^k > 0
\]

so that \(\lambda_i^k / \lambda_{i+1}^k > 1 \). Replacing \(A_k \) by a subsequence we can assume convergence

\[
\lambda_i^k / \lambda_{i+1}^k \to a_i \in [1, \infty]
\]

for each \(i = 1, \ldots, n-1 \). Then it follows that \(\lambda_i^k / \lambda_j^k \) converges for each \(i < j \). Suppose \(a_i > 1 \) so that \(\lambda_i^k > \lambda_{i+1}^k \)

for large \(k \); we can suppose for all \(k \) if we want. Then it makes sense to talk of the subspace \(W_i^k \) of \(V \) invariant under \(A_k \) having eigenvalues \(\lambda_1^k, \ldots, \lambda_i^k \). By extracting a subsequence again we can suppose \(W_i^k \) converges to \(W_i \) for each \(i \) such that \(a_i > 1 \).

This gives one the picture of the compactification for the \(SL_n \) case. What one wants is a
G-space whose K-orbits are described by $[1, \infty)_{n-1}$. Thus you have
\[
\{ \lambda_1 \geq \cdots \geq \lambda_n \mid \prod \lambda_i = 1 \} \sim \frac{n-1}{n} \{ a \geq 1 \}
\]
and you wish to compactify it by allowing a_i to be $+\infty$.

It's clear I ought to be able to write down a K-space of the sort, in fact you could pull $[1, \infty]$ down into a finite interval.

But I want a G-space, so what I want to do is to embed P in a suitable compact G-space so as to get these roots. Adjoint representation of SL_n will carry a positive matrix with eigenvalues λ_i to a matrix with eigenvalues λ_i/λ_j.

General construction. Let $\rho : G \to \text{Aut}(V)$ be a representation. Fix an inner product on $V \otimes \rho(k)$ is in the unitary group. Then $\rho \theta = \theta \rho$, hence ρ carries $P = \{ g \rho(g)^{-1} \}$ into $P_v = \text{pos. def. hermitian operators on } V$. Now we can consider the closure of $\rho(P)$ in the
unbounded operators. If \mathcal{F} is faithful this gives us a compactification of P.

Take the case where G is a torus, whence $P = \exp P$ where $\rho = \text{Hom}(\mathbb{G}_m, G) \otimes \mathbb{R}$. The representation is a sum of characters

$$V = \bigoplus L_i$$

orthogonal direct sum

where $g = \text{mult. by } X_i(g)$ on L_i

$$X_i : G \to \mathbb{G}_m$$

Then $\rho(P)$ consists of operators of the form

$$A = \sum \chi_i^{(P)} E_i$$

where $E_i = \text{proj. in } L_i$. Thus $\overline{\rho(P)}$ can be identified with the closure of the map

$$\phi : X_i \to \prod_i \mathbb{R} \cup \{\pm \infty\}$$

In the general case, P is the union:

$$P = \bigcup_{k \in K} kA_k^{-1}$$

$$P = \bigcup_{k \in K} kA_k$$
so \[\varphi(p) = \bigcup_{k \in K} \varphi(k) \varphi(A) \varphi(k)^{-1} \]

But \[\bigcup_{k \in K} \varphi(k) \varphi(A) \varphi(k)^{-1} \] is closed in \(P \)

as \(K \) is compact, therefore

\[\overline{\varphi(p)} = \bigcup_{k \in K} \overline{\varphi(k) \varphi(A) \varphi(k)^{-1}} \]

Notice in this argument since \(p = \bigcup_{k \in K} \varphi(k) \)

I can replace \(A \) by \(\exp C \).

This argument gives me a compact \(G \)-space having the correct \(K \)-orbit structure.
Taking the adjoint representation with \(G \) semi-simple

\(C \) is described by \(\lambda_1, \ldots, \lambda_k \geq 0 \).

Since any root \(\alpha \) is a sum \(\sum_{i} n_i \alpha_i \) with \(n_i \geq 0 \)

once we specify the values of \(\lambda_1, \ldots, \lambda_k \)
in \([0, \infty] \), then the values of all the roots are known. This shows

\[\overline{\varphi(\exp C)} \cong \prod_{i=1}^{k} [1, \infty] \]

as I want.

Therefore I get a \(G \)-space compactifying

the symmetric space whose \(K \)-fundamental domain is

\[\overline{C} = \prod_{i} [0, \infty] \] .

I should carefully check that this procedure works
for \mathbb{SL}_n and that it gives me the compactification I want.
August 19, 1975. Representations of U_m.

As a consequence of Peter-Weyl thm. + Weierstrass theorems, etc. I know

$$C[X_{ij}, (\det X)^{-1}] \cong A(U_m)$$

Review the steps in the proof:

1) Injectivity: If f is a holomorphic function on GL_m vanishing on U_m, then $f|_{GL_m}$ is a holomorphic function on $GL_m = U_m \otimes \mathbb{C}$ vanishing on U_m, \Rightarrow $f|_{GL_m} = 0$.

2) Because $U_m \subset C^{m^2}$, via functions X_{ij} one knows the alg. of functions on U_m generated by X_{ij}, and X_{ij} is dense in $C(U_m)$. But for a unitary matrix $A^* = (A^*)^{-1} = (\det A)^{-1} \text{cof}(A)^*$. Thus as functions on U_m, we have

$$\overline{X} = (\det X)^{-1} \text{cof} (X^*)$$

so now we know $C[X_{ij}, (\det X)^{-1}]$ has dense image inside $C(U_m)$.

3) Let $A' \subset A(U_m)$ be the image of $C[X_{ij}, (\det X)^{-1}]$. A' is a $U_m \times U_m$-module, so from the formula $A(K) = \bigoplus V_i^* \otimes V_i$ if $A' \subset A$, then there is an $f \in A$ orthogonal to all of A'.
Impossible by density.

Preceding shows simply that representations of GL_m are the same as alg. reps. of GL_m. So from now on take algebraic viewpoint. Let $A(\text{GL}_m) = \mathbb{C}[x_{ij}, d^{-1}]$ where $d = \det(x)$.

Let $V = \mathbb{C}^m$ with standard action of GL_m:

$$g e_i = \sum_j g_{ji} e_j$$

i.e. action is given by comodule structure map

$$V \rightarrow V \otimes A(\text{GL}_m)$$

$$e_i \rightarrow \sum_j e_j \otimes X_{ji}$$

Thus the map

$$\otimes \quad V \otimes V \rightarrow A(\text{GL}_m)$$

$$\lambda \circ \otimes \rightarrow (g \mapsto \lambda(g \cdot 0))$$

is the map sending

$$e_j^* \otimes e_i \mapsto (g \mapsto e_j^*(g e_i)) = X_{ji}$$
Recall the operators R_g and L_g on $A(G)$ giving right and left regular representation

$$(R_g f)(x) = f(xg)$$

$$(L_g f)(x) = f(g^{-1}x)$$

Thus

$$(R_g X_{ij})(x) = (xg)_{ij} = \sum_k x_{ik} g_{kj}$$

$$= \left(\sum_k X_{ik} g_{kj}\right)(x)$$

$$(L_g X_{ij})(x) = (g^{-1}x)_{ij} = \sum_k (g^{-1})_{ik} x_{kj} = \sum_k (g^{-1})_{ik} X_{kj}$$

So

\[
\begin{align*}
R_g X_{ij} &= \sum_k X_{ik} g_{kj} \\
L_g X_{ij} &= \sum_k (g^{-1})_{ik} X_{kj}
\end{align*}
\]

Return to

(\star)

$V^* \otimes V \longrightarrow A(G_{im})$

$e_i^* \otimes e_j \longrightarrow X_{ij}$
Then the image of $V \otimes V$ is simply the linear polynomials in the X_{ij}. I can think of these as linear functions of an invertible matrix. So from our formula for $A(GL_m)$ we see that $A(GL_m)$ is the localization with respect to d of

$$\bigoplus_{n \geq 0} S^n(V^* \otimes V)$$

which I can think of as polynomial functions of a matrix.

What is $S^n(V^* \otimes V)$? We have

$$S^n(V^* \otimes V) = \sum_n (V^* \otimes V)^{\otimes n} = \sum_n (V^*)^{\otimes n} \otimes V^{\otimes n}$$

$$= \sum_n (V^{\otimes n})^* \otimes V^{\otimes n}$$

We are thinking of $V^* \otimes V$ as the dual of $\text{End}(V)$. Hence I ought to think of $(V^{\otimes n})^* \otimes V^{\otimes n}$ as the dual of $\text{End}(V^{\otimes n})$, and hence

$$S^n(V^* \otimes V) = \text{dual of } \text{End}_{\Sigma_n}(V^{\otimes n}).$$
This identification proceeds as follows: For each \(A \in \text{End}(V) \) we have \(A \otimes n \in \text{End}_{\mathbb{Z}_n}(V \otimes n) \), in fact this map

\[
\text{End}(V) \longrightarrow \text{End}(V \otimes n) = (\text{End}(V))^{\otimes n}
\]

is just the embedding: \(A \mapsto A \otimes n \). Thus an element of \(\text{End}_{\mathbb{Z}_n}(V \otimes n)^* \) is a polynomial function on \(\text{End}(V) \), of "degree n", i.e. in \(S^n(V^* \otimes V) \).

Assertion: If we make the identification

\[
\text{End}(V)^{\otimes n} \sim \text{End}^n(V) \]

then the map

\[
\text{End}(V) \longrightarrow \text{End}^n(V \otimes n) \quad A \mapsto A \otimes n
\]

can be identified with the "diagonal" map

\[
\mathfrak{f}_n(W) \longrightarrow \mathfrak{f}_n(W) \quad \text{for } W = \text{End}(V).
\]

Consequently

\[
(\text{End}_{\mathbb{Z}_n}(V \otimes n))^* \sim \text{poly functions of degree n on } \text{End} V
\]

\[
= S^n(\text{End}(V))^* = S^n(V^* \otimes V).
\]

Next we want the structure of \(S^n(V^* \otimes V) \) as a \(GL_m \times GL_m \) - module. Maybe there is a point to introducing an isomorphic copy \(W \) of \(V \). Thus I am now interested in isomorphisms \(V \) with \(W \), so I replace
\(GL_m \subset \text{End}(V) \) with \(\text{Isom}(V, W) \subset \text{Hom}(V, W) \), and I denote by \(W^* \otimes V \) the linear functions on \(\text{Hom}(V, W) \), whence I will have as before:

\[
\begin{cases}
\text{Hom}_\Sigma^n (V \otimes^n, W \otimes^n) = \Gamma_n \text{Hom} (V, W) \\
\text{Hom}_\Sigma^n (V \otimes^n, W \otimes^n)^* = \text{Poly functions degree } n \\
\text{on } \text{Hom}(V, W) = S^n (W^* \otimes V)
\end{cases}
\]

Moreover these formulas do not require \(W, V \) to be isomorphic.

I am interested in \(S^n (W^* \otimes V) \) as a \(\text{Aut}(W) \times \text{Aut}(V) \)-module. Essentially this is equivalent to the structure of the dual module \(\text{Hom}_\Sigma^n (V \otimes^n, W \otimes^n) \).

Now suppose we let \(\pi_{i_1} \ldots \pi_{i_l} \) be the different irreducible repsns. of \(\Sigma^n \).

\[V \otimes^n = \bigoplus_{i=1}^l \text{Hom}_{\Sigma^n} (\pi_{i_1} \ldots \pi_{i_l}, V \otimes^n) \otimes \pi_{i_1} \ldots \pi_{i_l} \]

So

\[\text{Hom}_\Sigma^n (V \otimes^n, W \otimes^n) = \bigoplus_{i=1}^l \text{Hom} \left(\text{Hom} (\pi_{i_1} V \otimes^n), \text{Hom} (\pi_{i_1} W \otimes^n) \right) \]

Hence, if \(V = W \), this is a sum of matrix rings.
We know that in \(A(K) \) each irreducible repn. of \(K \times K \) occurs at most once. Thus if \(V = W \), we know that \(S^n(V \otimes V) \) contains each irreducible representation of \(GL_m \times GL_m \) at most once, and more precisely we have

\[
S^n(V \otimes V) = \bigoplus_{i=1}^r V_i^* \otimes V_i
\]

where \(V_1, \ldots, V_r \) are distinct irreducible repns. of \(GL_m \).

Combine the formulas above to get:

\[
S^n(W^* \otimes V) = \bigoplus_{i=1}^l \text{Hom}_{\Sigma_n} (\pi_i, W^{\otimes n})^* \otimes \text{Hom}_{\Sigma_n} (\pi_i, V^{\otimes n})
\]

\[
\text{Hom}_{\Sigma_n} (V^{\otimes n}, W^{\otimes n}) = \bigoplus_{i=1}^l \text{Hom}(\text{Hom}_{\Sigma_n} (\pi_i, V^{\otimes n}), \text{Hom}_{\Sigma_n} (\pi_i, W^{\otimes n}))
\]

Now apply result on structure of \(S^n(V^* \otimes V) \) and you get
Theorem: If π_i is an irreducible representation of Σ_n which occurs in $V^\otimes n$, then $\text{Hom}_G(\pi_i, V^\otimes n)$ is an irreducible representation of GL_m. In this way we get a 1:1 correspondence between irreducible representations of GL_m and Σ_n which occurs in $V^\otimes n$.

Corollary: Every representation of $\Sigma_n \times \text{GL}_m$ has multiplicity ≤ 1 in $V^\otimes n$.

Remark: If W is a representation of G, then $\text{End}_G(W) = \bigoplus_i \text{End}_G(\text{Hom}(\pi_i, W))$ as π_i runs over the irreducible reps. of G. Thus $\text{End}_G(W)$ is commutative \iff multiplicities are ≤ 1.

Weyl's argument: Inside $\text{End}(V^\otimes n) = \text{End}(V)^\otimes n$ the centralizer of Σ_n is $\Gamma_n \text{End}(V)$ which is spanned by $A^\otimes n$, $A \in \text{End}V$, and by density $A \in \text{GL}_m$. Thus if R is the subring generated by $A^\otimes n$, one has $R = \text{centralizer of G}[\Sigma_n]$.
whence because reps. of $C[\Sigma_n]$ are completely reducible, the density theorem says $C[\Sigma_n]$ is the centralizer of R.

But the centralizer of $C[\Sigma_n]$ is a sum of matrix rings, one for each irreducible rep. of Σ_n occurring in $V \otimes^n$. Thus the irreducible reps. of R are in 1-1 correspondence with those of Σ_n occurring in $V \otimes^n$ etc. But irreducible reps. of R and GL_m inside $V \otimes^n$ are the same.

Essentially this is the same argument as I have given except this one seems simpler.

Suppose I try to reconstruct Atiyah's analysis of $\bigoplus R(\Sigma_n)^n$ which is to end up as a ring of operations on K-theory. It is made into a ring using the restriction homomorphism:

$$R(\Sigma_{p+q}) \rightarrow R(\Sigma_p \times \Sigma_q) = R(\Sigma_p) \otimes R(\Sigma_q)$$

Next one takes the torus T with generic element t_1, \ldots, t_m inside GL_m and looks at $V \otimes^n$.

If e_1, \ldots, e_m is the standard basis of V, then $V \otimes^n$ has basis $e_1 \otimes \cdots \otimes e_1 \otimes \cdots \otimes e_1$, $1 \leq i_1, \ldots, i_n \leq m$, on which T acts via the character $t_1^{i_1} \cdots t_m^{i_n}$. The
This procedure gives a homomorphism

\[\bigoplus_{n \geq 0} R(\Sigma_n) \rightarrow \mathbb{Z}[t_1, \ldots, t_m]^{\Sigma_m} = \mathbb{Z}[A_1, \ldots, A_m] \]

where \(t_i \) is the \(i \)-th elementary symmetric function of \(t_1, \ldots, t_m \). This homomorphism preserves the grading with \(\deg(t_i) = 1 \) and \(\deg(\tau_i) = i \). The claim is (*) is an isomorphism in degrees \(\leq m \). Onto: the image contains \(\tau_i \) for \(1 \leq i \leq m \). But take the inner product \(\chi_i \) on \(\tau_i \). In degrees \(\leq m \). Rank of \(R(\Sigma_n) \) is number of conjugacy classes in \(\Sigma_n \). Number of partitions \(\pi \vdash n \) with \(\leq m \) pieces \(n \leq m = \text{rank of the degree } n \text{ part of } \mathbb{Z}[A_1, \ldots, A_m] \).

A corollary is that \(R(\Sigma_n) \) has \(\mathbb{Z} \)-basis formed of the repres. \(\text{ind}_{\Sigma_n}^\Sigma \). Where \(\alpha \) is a partition of \(n \) say \(\alpha = \alpha_1 \geq \cdots \geq \alpha_i > 0 \), \(\Sigma \alpha \vdash n \), and
\[\Sigma^e = \Sigma_{a_1} \times \cdots \times \Sigma_{a_m}. \] This is because \(V \otimes \mathbb{C} \)
has basis \(e_1 \otimes \cdots \otimes e_m \) and so splits according to the \(\Sigma_m \) orbits of these monomials. \(\mathbb{C}[\alpha_1, \ldots, \alpha_n]_{\text{deg} \alpha} \)
has as basis the symmetrization of the monomials \(t_1^{\alpha_1} \cdots t_m^{\alpha_m} \) as \(\alpha \) ranges over partitions. Taking the coefficient of \(\Sigma^e \) is the map \(R(\Sigma_n) \to \mathbb{C} \)
corresponding to the representation \(\text{ind} \Sigma_2 \to \Sigma_n(1) \).

In more details, let \(V \) has basis \(e_1, \ldots, e_m \)
where \(t \cdot e_i = t_i e_i \). Then \(\mathbb{C}[\alpha_1, \ldots, \alpha_n] \)
has the basis \(e_1^{\alpha_1} \cdots e_m^{\alpha_m} \) with \(1 \leq \alpha_1, \ldots, \alpha_m \leq m \), and
\[
t(e_1^{\alpha_1} \cdots e_m^{\alpha_m}) = t_1^{\alpha_1} \cdots t_m^{\alpha_m} e_1 \cdots e_m.
\]

Let me fix a monomial \(t_1^{a_1} \cdots t_m^{a_m} \) with \(\sum_i a_i = n \).
The corresponding eigenspace comprises the monomials \(e_1^{\alpha_1} \cdots e_m^{\alpha_m} \) where \(a_i \) of the \(\alpha_i \)s are 1, \(a_2 \) are 2. These monomials form an orbit under \(\Sigma_n \) with isotropy group \(\Sigma_{a_1} \times \cdots \times \Sigma_{a_m} \).

Thus,
\[
V \otimes \mathbb{C} = \sum_{a_1 \geq \cdots \geq a_m \geq 0, \sum a_i = n} \text{ind} \Sigma_{a_1} \times \cdots \times \Sigma_{a_m} \to \Sigma_n(1) \otimes \text{1 diml repn. with character} t_1^{a_1} \cdots t_m^{a_m}
\]
\[
= \sum_{a_1 \geq \cdots \geq a_m \geq 0, \sum a_i = n} \text{ind} \Sigma_{a_1} \times \cdots \times \Sigma_{a_m} \to \Sigma_n(1) \otimes S_{a_1 \cdots a_m}(t).
\]
where \(S_{a_1 \cdots a_m}(t) \) is the symmetrization of \(t_1^{a_1} \cdots t_m^{a_m} \), i.e.
\[
S_{a_1 \cdots a_m}(t) = \sum_{\sigma \in \Sigma_m / \text{stabilizer of } (a_1, \ldots, a_m)} t^{a_{\sigma(1)}} \cdots t^{a_{\sigma(m)}}
\]
i.e. \(S_{a_1 \cdots a_m} \) is the sum of the monomials conjugate to \(t_1^{a_1} \cdots t_m^{a_m} \) under \(\Sigma_m \).

Now it is clear from the formula at the bottom of the preceding page that the bases
\[
in \Sigma_n \rightarrow \Sigma_n \quad \text{(1)}
\]
\[
\text{ind } S_{\alpha}(t) \quad \text{of } \quad \mathbb{Z}[\lambda_1, \ldots, \lambda_m]_{\deg=n}
\]
where \(\alpha \) ranges over partitions of \(n \), are dual.

Can I now calculate the representation ring of \(\text{GL}_m \)? Better: let \(M_m \) be the monoid \(\text{End}(V) \). We then have maps
\[
\bigoplus_{n \geq 0} R(\Sigma_n) \xrightarrow{\alpha} R(M_m) \xrightarrow{\beta} \mathbb{Z}[\lambda_1, \ldots, \lambda_m]
\]
where the former is the map we get by decomposing \(V \otimes_n \), and the latter by restricting to \(T \).

Because the irreducible reps for \(\Sigma_n \) and \(M_m \) occur.
in $V^\otimes n$ are in 1-1 correspondence, I know that α is onto. Here I use that all the representations of M_n are obtained by decomposing $V^\otimes n$ for each n.

On page 10, I showed $\ker \beta \alpha$ is the ideal generated by λ^n for $n \geq m$. Since these λ^n become 0 on GL_n, we win. So we get

Theorem: The representation Λ ring of the alg. monoid $\text{End}(C^m) = \text{End}(C^m)$ of M_n is $\mathbb{Z}[\lambda_1, \ldots, \lambda_m]$, where λ^i is the i-th exterior power of the standard representation. Moreover

$$R(GL_m) = \mathbb{Z}[\lambda_1^i, \ldots, \lambda_m^i][\lambda^i - 1]$$

$$= \mathbb{Z}[t_1, \ldots, t_m][t_1^{-1}, \ldots, t_m^{-1}] \Sigma_m$$

$$= R(T)^W.$$
August 15, 1975.

I want to work out the details of Deligne's \(\lambda \)-operation theory. He looks at the category of algebraic functors from finite dimensional \(k \)-vector spaces to itself. These gadgets in my opinion ought to be like representations of \(GL \), as they will be built out of representations of \(GL_n \) for various \(n \) by a stabilization process.

\[T \text{ is an algebraic functor if} \]
\[\text{Hom}(V, W) \rightarrow \text{Hom}(T(V), T(W)) \]

is algebraic. When \(k \) is finite one has to enrich things by giving the defining maps:

\[T(V) \rightarrow T(W) \otimes A(\text{Hom}(V, W)) \]

\[\overset{S(\text{Hom}(V, W)^*)}{{"}} \]

Any algebraic functor decomposes into homogeneous algebraic functors: \(T = T_0 + \ldots \)

Suppose then we consider functors of a fixed
The dual of \(S_d (\text{Hom}(V, W)^*) \) is \(\text{Hom}_{\Sigma_d} (V^\otimes d, W^\otimes d) \).

Let \(A' \) be the abelian category of finite type \(k[\Sigma_d]\)-modules, and \(A' \) the subcategory comprising the modules \(V^\otimes d \). The algebraic functor \(T \) provides us with homs:

\[
\text{Hom}_{\Sigma_d} (V^\otimes d, W^\otimes d) \rightarrow \text{Hom} (T(V), T(W))
\]

compatible with composition. Thus \(T \) can be interpreted as \(k \)-linear functor from \(A' \) to \(\text{Mod}_k (k) \).

One should extend \(T \) to the full subcategory \(A'' \) consisting of direct summands of direct sums of objects in \(A' \). Then \(A'' \) is a Karoubian additive category.

If \(\text{Char} (k) = 0 \), then \(\dim V \geq d \Rightarrow V^\otimes d \) contains the regular representation of \(\Sigma_d \) as a direct summand. Thus \(A'' = A = \text{Mod}_k (k) \), and so one has an equivalence of categories between
the category of algebraic functors of degree d and representations of Σ^d. The formula giving the correspondence has to be

$$T(V) = \text{Hom}_{\Sigma_d}(V \otimes \delta, \eta)$$

What is the universal functor of degree d? Thus I seek a k-linear additive category P with a degree d functor $T : \text{Mod}(k) \to P$, which is universal. Answer: P is the full subcategory of $\text{Mod}(k[\Sigma_d])$ consisting of finite direct sums of $V \otimes \delta$. Not hard in making P Karoubian.

Is it possible to showing that $V \otimes \delta$ for $\dim V \geq d$ is a generator for P? If this is so then P becomes equivalent to finitely generated projective modules over $R = \text{End}_{\Sigma_d}(V \otimes \delta)$.

But look if $V = \bigoplus_{i=1}^{m} k e_i$, then as a Σ_d-module, we know that $V \otimes \delta$ is a direct sum of induced modules from the subgroups $\Sigma_{a_i} \times \cdots \times \Sigma_{a_m}$, $\sum a_i = d$.
Review: We have identified algebraic functors of degree \(d \), with \(k \)-linear functors \(\Sigma_d \) on the category of \(\Sigma_d \)-modules comprising ones of the form \(V \otimes \Sigma_d \).

Now we can decompose \(V \otimes \Sigma_d \) into modules induced from the subgroups \(\Sigma_x \) where \(x \) ranges over the partitions of \(d \).

So I should look at the preadditive category consisting of the modules over \(k[\Sigma_d] \)

\[
\text{ind}_{\Sigma_x} \Sigma_d \rightarrow \Sigma_d 1
\]

as \(x \) ranges over partitions of \(d \). Now this module is defined over \(\mathbb{Z} \),

\[
\text{Hom}(\text{ind}_{\Sigma_x} \rightarrow \Sigma_d 1, \text{ind}_{\Sigma_\beta} \rightarrow \Sigma_d 1)
\]

\[
= \text{Hom}(1, \text{ind}_{\Sigma_\beta} \rightarrow \Sigma_d 1)
\]

But we know something about

\[
\Sigma_x \rightarrow \Sigma_d, (\text{ind}_{\Sigma_\beta} \rightarrow \Sigma_d 1)
\]

in terms of the orbits of \(\Sigma_x \) on \(\Sigma_d / \Sigma_\beta \).
These formulas should work over \mathbb{Z}. In fact we get
\[
\sum_{x \rightarrow \Sigma \delta} \left(\text{ind}_{\Sigma \delta}^{\Sigma \delta} 1 \right) = \sum_{i \in \Sigma \alpha \setminus \Sigma \delta / \Sigma \beta} \text{ind}_{\Sigma \delta}^{\Sigma \delta} 1
\]

where $\Sigma \alpha$ is a finer partition than α.

It should be true that
\[
\text{Hom}_{k[\Sigma \alpha]} \left(1, \text{ind}_{\Sigma \beta}^{\Sigma \delta} 1 \right)
\]

\[\cong k[k[\Sigma \delta \setminus \Sigma \delta / \Sigma \beta]]\]

In fact I bet there is a Hecke algebra one can construct out of these double cosets which gives the game in question.

Suppose we go back to a degree d repn T of $\text{End}(V)$:

\[
T \rightarrow T \otimes S_d^{\ast} (\text{End}(V))
\]

or as I have seen T is just an R-module where

\[R = \text{End}_{\Sigma \delta} (V \otimes d).\]
Thus it appears that the category of representations of $\text{End}(V)$ of degree d is just the category of R-modules. But what exactly is the structure of R? As a Σ_d-module
$$V^d = k[x^d]$$
where X is a basis for V. Hence one wants the structure of $\text{End}_G(k[S])$ where S is a G-set.

$\text{Hom}_G(k[S], k[S']) = \text{Maps}_G(S, k[S'])$

free over k.

Analogy: To get the notion of algebraic functor of degree d you take vector spaces but with different morphisms, namely $T_d(\text{Hom}(V, W)) = \text{Hom}_{\Sigma_d}(V^d, W^d)$, and look at k-linear functors on this category.

On the other hand given a group G we can start with G-sets S and define a map from S to S' to be a G-map $k[S] \to k[S']$, and then we study k-linear functors on this category. I have a hunch I've seen this category before.
Suppose I look for "Frobenius" functors on G-sets. Such a functor consists of giving for every S an abelian group $F(S)$ and for every map $f: S \to S'$ two maps

$$f^*: F(S') \to F(S)$$
$$f_*: F(S) \to F(S')$$

satisfying some formal properties. What is the universal gadget of this type?

As usual, morphisms consist of correspondences with some type of equivalence relation depending on the axioms. To find the axioms which give $\text{Hom}_G(Z[S], Z[T])$ for the set of maps,

$$\text{Hom}_G(Z[S], Z[T]) = \text{Map}_G(S, Z[T])$$

Suppose $S = G/H$, $T = G/K$.

$$\text{Map}_G(G/H, Z[T]) = Z[T]^H \cong Z[H\backslash T]$$

The last isomorphism is given by associating to an H-orbit \mathcal{O} in T the corresponding cycle in $Z[T]$. How can I interpret such a cycle? If $\mathcal{O} = Ht_0$, then we have
Thus I see that the type of map I want from \(G/H \) to \(T \) is a \(\mathbb{Z} \)-linear combination of G orbits in \(G/H \times T \).

Claim: \(\text{Hom}_G(\mathbb{Z}[S], \mathbb{Z}[T]) \) is canonically the free abelian group generated by G orbits in \(S \times T \).

Remaining axiom is that \(f^* f^* = \text{mult} \), by degree \(f \), where degree \(f \) is a function on the base.

Let's see if we can make sense out of the following generalization: Up to now I have considered algebraic functors \(T \) which I can view as being given by maps:

\[
T(V) \rightarrow T(W) \otimes A(\text{Hom}(V,W))
\]

where \(A(\text{Hom}(V,W)) = S(\text{Hom}(V,W)^*) \) is the ring of algebraic functions on \(\text{Hom}(V,W) \). The idea will be to generalize to non-algebraic functions. Here \(T(V) \) will now be some kind of good topological vector space, and \(A \) will be replaced by
some kind of functions say C^∞ functions, or maybe distributions.

First ingredient is that T is some sort of topological functor, i.e. given $x \in T(V)$ and $A \in \text{Hom}(V, W)$

$$T(A)x$$

is some sort of map from $\text{Hom}(V, W)$ into $T(W)$. So we have a function

$$\text{Hom}(V, W) \longrightarrow T(W)$$

and the first thing to ask about is its degree, or rather to decompose it into homogeneous functions.

Note that we have a nice action C^* on T. Since we have a good harmonic analysis for abelian groups C^* we must be able to decompose T according to the characters of C^*. But a character $\phi : C^* \rightarrow C^*$ extends smoothly to $\phi : C \rightarrow C$ iff it is of the form $\phi(z) = z^n$ $n \geq 0$. Thus the function T will be a sum
of homogeneous functors. Similar argument shows that if we want \(T(A)x \) to be smooth at the origin then \(T(A) \) is a polynomial in \(A \). Thus we get nothing new this way.
August 31, 1975.

What is the relation between the two vector fields on \(\mathfrak{D} = K \eta \) \(\eta \in K \) given by the gradient of the function \(\varphi, \psi \) and the vector field tangent to the flow \(e^{it} \) * (?).

Compute the gradient of the function \(f(x) = (x, \psi) \), \(x \in \mathfrak{D} \) at a point \(\eta \). The tangent space to \(\mathfrak{D} \) at \(\eta \) may be identified with \([K, \eta]\). df applied to a tangent vector \([x, \eta]\) is

\[
\text{df} (\left[x, \eta \right]) = \left([x, \eta], \psi \right)
\]

hence the gradient of this function is the projection of \(\psi \) onto \([K, \eta]\). Now

\[
k = K + \gamma [K, \eta] = k_{\eta} + \sum_{x(\eta) > 0} k_{x_{a}}
\]

orthogonal

so if \(\xi = \xi_{0} + \sum \xi_{a} \) is the decomposition of \(\xi \), the gradient is \(\sum \xi_{a} \).

Now \(e^{it} \ast \eta \) is isomorphic to the image of \(e^{it} \ast B \) in \(G/B \xrightarrow{\pi} K/K_{\eta} \). Its derivative is \(i \varphi \mod b_{\eta} \) in \(G/B \xrightarrow{\pi} K/K_{\eta} \xrightarrow{\gamma} [K, \eta] \). Thus I want to take
and take its image under multiplication by \(i \) for the complex structure on \(\mathbb{C}/\mathbb{R} \).

\[
[\xi, \eta] = -[\eta, \xi] = -\sum \alpha \chi(\eta) \xi_x
\]

so up to sign the vector field obtained has the value

\[
\sum_{\chi(\eta) > 0} \alpha \chi(\eta) \xi_x
\]
at \(\eta \), whereas the gradient has the value

\[
\sum_{\chi(\eta) > 0} \xi_x
\]

Thus these two are not the same.

However, \(\left(\sum_{\chi(\eta) > 0} \alpha \chi(\eta) \xi_x, \xi \right) = \sum_{\chi(\eta) > 0} \alpha \chi(\eta) |\xi_x|^2 > 0 \)

provided \([\xi, \eta] \neq 0\). Thus the vector field associated to \(e^{it} \xi \) is always pointing so as to increase the function \(f \) except at critical points.

Consider next the set of limit points of \(e^{it} \xi \eta \) where \(\eta \) is not a critical point: \([\xi, \eta] \neq 0\). As \(f(e^{it} \xi \eta) \) is monotone increasing and bounded, \(A = \lim_{t \to \infty} f(e^{it} \xi \eta) \) exists. Clearly \(f(S) = A \). Also \(S \) is stable under \(e^{it} \xi \), thus \(S \subset f(S) \).
Now let $\eta \in \mathcal{F}$. I suppose known that $\mathcal{B}^u_{-\eta} \xrightarrow{\sim} \mathcal{B}^{*\eta}_{\eta}$ is an open nbhd of η in $G\eta$.

If this is known then we have a nbhd of η in $G\eta$ invariant under $e^{t\hat{s}}$ and moreover this nbhd is isomorphic to $\mathcal{B}^u_{-\eta}$ with $e^{t\hat{s}}$ acting via the adjoint action. Break up $\mathcal{B}^u_{-\eta}$ according to the eigenspaces of \hat{s} and you immediately see what points have η as limit point, namely $\mathcal{B}^u_{-\eta} \cap \mathcal{F}$.
Let M be a compact manifold, f a Morse function on M, and let X be a gradient-like vector field with respect to f (this means $Xf > 0$ away from the critical points of f and maybe also that X vanishes at the critical points). Using X we get through each critical point an incoming and outgoing manifold which meet transversally. Picture:

For each $x \in C =$ set of critical points, let W_x be the incoming manifold. We have $\dim W_x =$ index of the critical point x.

Question: If the critical points are arranged in order of increasing index, say x_1, \ldots, x_n, then is
The closure of W_x is contained in the union of the W_j with $j < i$. Better: Is UW_x closed?

Take a point y in M and follow its path $e^{tx}y$ as $t \to \pm \infty$. If $y \notin C$, then $f(e^{tx}y)$ is strictly increasing and bounded so it has a limit L. If S is the set of limit points of $e^{tx}y$ as $t \to \pm \infty$, then S is stable under the flow and $f(S) = L$, hence $S \subset C$. Again local analysis at a critical point y shows that S consists of a single point x and that y is in W_x.

I can consider all closed subspaces Z of M invariant under e^{tx} for $t \leq 0$, i.e. such that $e^{tx}Z \subset Z$ for $t \leq 0$. For example, W_x is such a Z. Better, consider the closed sets $\overline{W_x}$ as x ranges over critical points. These sets are stable under e^{tx} for all t because W_x is.

Suppose the situation is like the Schubert cell decomposition of a flag manifold. Then the W_x form the cells of a CW decomposition, and so we get a chain complex.
by filtering by dimension. Maybe it is always possible to construct a gradient-like vector field which produces a CW decomposition from a Morse function.