March 26, 1977 elliptic curves.

\[C = \text{elliptic curve over } k \text{ alg. closed}, \infty = \text{origin} \]
\[A = \Gamma(C - \infty, O_C). \]

Letting \(\text{GL}_2(A) \) act on the tree \(X \) of \(F^2 \) at \(\infty \), I have found the following orbit graph:

Now I want to use this to explain the structure of \(I(F^2) = I(A^2) \) as a \(\text{GL}_2(A) \)-module.

Recall
\[
\begin{array}{c}
\rightarrow I(F^2) \\
\rightarrow \bigoplus \mathbb{Z}_{\ell \in F^2}
\end{array}
\]

Now the idea I have is to assign to each line \(l \) a tree \(X_l \subset X \), such that \(X_l \) collapses to \(l \) and such that the different \(X_l \) are disjoint. Then I will have

\[
\begin{array}{c}
c \rightarrow \bigoplus C_1(X_l) \\
\rightarrow \bigoplus C_0(X_l) \\
\rightarrow \mathbb{Z} \rightarrow 0
\end{array}
\]

\[
\begin{array}{c}
c \rightarrow C_1(X) \\
\rightarrow C_0(X) \\
\rightarrow \mathbb{Z} \rightarrow 0
\end{array}
\]

\[
\begin{array}{c}
c_l \rightarrow C_1(X_1 \cup X_2) \\
\rightarrow C_0(X_1 \cup X_2)
\end{array}
\]
\[0 \to I(F^2) \to C_1(X, \mathcal{L}X_\varepsilon) \to C_0(X, \mathcal{L}X_\varepsilon) \to 0 \]

for for \(X \varepsilon \) take the inverse images of the following trees.

It should then be clear that \(I(F^2) \) is the direct sum of three parts:

1. \(\mathbb{Z}[GL_2A] \otimes \frac{I_2(k)}{Z[GL_2k]} \)
 - one for each \(L \Theta = L^* \)
 - where \(GL_2k \to GL_2A \) is obtained from an isomorphism \(L \oplus L^*_\infty \mathbb{A} \mathbb{A} \)
 - \(k^* = \text{center of } GL_2A \)
 - acts trivially on \(I_2(k) \)

2. \(\mathbb{Z}[GL_2A] \otimes \frac{I_2(k)}{Z[k^* \times k^*]} \)
 - one for each pair \((L, L^*)\)
 - \(L \oplus L^* \), where \(k^* \times k^* \to GL_2A \)
 - is obtained from an isomorphism \(L \oplus L^*_\infty \mathbb{A} \mathbb{A} \approx A^2 \).
March 27, 1974.

Curves.

C curve over k, E a vector bundle over C of rank n. Put $\mu(E) = \frac{\deg E}{\text{rank}(E)}$ and let

$$\mu_{\text{max}}(E) = \sup \{ \mu(E') \mid E' \text{ runs over subbundles of } E \neq 0 \}$$

One knows this is finite.

Recall E is called semi-stable if $\mu(E') \leq \mu(E)$ for all subbundles $E' \neq 0$.

Proposition: There exists a unique filtration of E by subbundles $0 < E_1 < \cdots < E_{p-1} < E_p = E$ such that $\forall i = 1, \ldots, p\ E_i/E_{i-1}$ is semi-stable of slope μ_i where $\mu_1 > \mu_2 > \cdots > \mu_p$.

Lemma: If $F_1, F_2 \subset E$ are subbundles $\neq 0$ of E such that $\mu(F_i) = \mu_{\text{max}}(E)$, then so is $F_1 \cap F_2$ (provided this is $\neq 0$) and $F_1 + F_2$.

Proof: Put $\lambda = \mu_{\text{max}}(E)$. Then we have

$$\deg(F_1 \cap F_2) \leq \lambda \text{ rank}(F_1 \cap F_2)$$

where

$$\deg(F_1) = \lambda \text{ rank}(F_1)$$

$$\deg(F_2) = \lambda \text{ rank}(F_2)$$

$$\deg(F_1 + F_2) \leq \deg(F_1 + F_2) \leq \lambda \text{ rank}(F_1 + F_2)$$

Adding as indicated we see all inequalities must be equal.

Cor. If largest subbundle E' of E with $\mu(E') = \mu_{\text{max}}(E)$, and E' is semi-stable.
Existence part of the proposition. Let \(E_1 \) be the largest subbundle of \(E \) with slope \(\mu_1 = \mu_{\text{max}}(E) \), \(E_2 \mid E_1 \) largest with slope \(\mu_2 = \mu_{\text{max}}(E/E_1) \), etc. Have to show \(\mu_1 > \mu_2 \). But if one has \(E_1 \leq F \subset E \), then
\[
\deg(E_1) = \mu_1 \cdot \text{rank}(E_1)
\]
\[
\deg(F) < \mu_1 \cdot \text{rank}(F) \quad \text{as } E_1 \text{ largest}
\]
\[
\implies \deg(F/E_1) < \mu_1 \cdot \text{rank}(F/E_1) \implies \mu_2 < \mu_1.
\]

Uniqueness. Given \(0 < E_1 < \cdots < E_p = E \) etc., it is enough to show that \(\mu_i = \mu_{\text{max}}(E) \) and that \(E_i \) is the largest subbundle of slope \(\mu_i \). Clearly \(\mu_i < \mu_{\text{max}}(E) \).

If \(F \) is a subbundle of \(E \), then one has an induced filtration \(0 < F \cap E, \cdots < F \cap E_{p-1} \subset F \), and as
\[
F \cap E_i / F \cap E_{i-1} \subset E_i / E_{i-1}
\]
one has \(\deg(F \cap E_i / F \cap E_{i-1}) \leq \mu_i \cdot \text{rank}(F \cap E_i / F \cap E_{i-1}) \).

So adding and using that \(\mu_i \leq \mu_i \), one gets
\[
\deg(F) \leq \mu_i \cdot \text{rank}(F)
\]
with equality only if \(F \subset E_1 \). Thus \(\mu_1 > \mu_{\text{max}}(E) \), and if \(F \) has this slope then \(F \subset E_1 \).
Now let us fix a point $\infty \in \mathcal{C}$ and put $\mathcal{C} = \{\infty\} = \text{Spec}(A)$, and let $M \in P(A)$ be of rank n, $\Gamma = \text{Aut}(M)$. Let X be the Tits Γ-building of $V = F \otimes_{A} M$ for the valuation at ∞. Vertices of X can be identified with extensions of M to a vector bundle E_n on \mathcal{C} modulo the identifications produced by $\text{E} \to \text{E} \otimes \mathcal{O}(1)$.

Given a proper subspace W of V define a full subcomplex Y_W of X as follows. Given a vertex v of X corresponding to a vector bundle E_n, this vertex will be in Y_W iff $\mu_{\text{min}} (\text{E} \otimes W) > \mu_{\text{max}} (\text{E}/\text{E} \otimes W)$. In other words if one takes the canonical filtration of E:

$$0 < E_1 < \cdots < E_p = \text{E}$$

as defined above then $E_i \otimes W = E_i$ for some i.

Next observe that given two proper subspaces W_1, W_2 one has that $Y_{W_1} \cap Y_{W_2} = \emptyset$ iff W_1, W_2 are related by inclusion. So therefore one finds that the nerve of the family $\{Y_W\}$ is just the Tits building of V.

Conjecture: For every $\sigma = (0 < W_1 < \cdots < W_p < V)$ in $T(V)$, $Y_{\sigma} = Y_{W_1} \cap \cdots \cap Y_{W_p}$ is contractible.

Consider first the case of Y_W. Recall that $E \in Y_W$ if $\mu_{\text{min}} (\text{E} \otimes W) > \mu_{\text{max}} (\text{E}/\text{E} \otimes W)$. Now I want to consider the following operation on vector bundles.

Since Ext_I has the exact sequence
Recall I have an exact sequence
\[0 \rightarrow O \rightarrow O(1) \rightarrow k(\infty) \rightarrow 0 \]
hence for any vector bundle F an embedding $F \rightarrow F(1)$. Thus given any vector bundle E I can define a new one by push-out:
\[
\begin{array}{c}
0 \rightarrow E \cap W \rightarrow E \rightarrow E/E \cap W \rightarrow 0 \\
E \cap W \downarrow \quad \downarrow \\
0 \rightarrow E \cap W(1) \rightarrow E^* \rightarrow E/E \cap W \rightarrow 0
\end{array}
\]
Since $\mu_{\text{min}}(\bullet \cap F(1)) = 1 + \mu_{\text{min}}(F)$

one sees that this operation carries Y_W into itself.

On the other hand it is clear that $E \cap E^*$ will give a 1-simplex in X.

I want to check now that $E_1 \rightarrow E^*$ is a simplicial mapping from Y_W to itself. So I suppose that I am given a simplex map by

$E_0 \cap c E_p \quad \quad \quad E_p \cap E_0(1)$

and that each E_i belongs to Y_W.

I have to show that

$E_0 \cap c E_p \quad \quad \quad E_0 \cap c E^*_p \quad \quad \quad E \cap E^*$

is a map $\Delta(p) \times \Delta(1) \rightarrow Y_W$. So you need to have E_p^* /E_0 killed by μ_{min}. But

E_p^* /E_0
Better, I should remember that for the building consisting of lattices, and not homothety classes, I was able to contract this building by choosing a sequence of lattices \(\Lambda_0 < \pi^{-1}\Lambda_0 < \pi^{-2}\Lambda_0 < \cdots \) and considering the operations

\[\varphi_n : \Lambda \rightarrow \Lambda + \pi^{-n}\Lambda_0. \]

Then \(\varphi_n \) was simplicial and given a simplex

\[\Lambda_0 \leq \cdots \leq \Lambda_p \]

one has

\[\Lambda_0 + \pi^{-n}\Lambda_0 \leq \cdots \leq \Lambda_p + \pi^{-n}\Lambda_0 \]

\[\Lambda_0 + \pi^{-n-1}\Lambda_0 \leq \cdots \leq \Lambda_p + \pi^{-n-1}\Lambda_0 \]

with

\[\Lambda_p + \pi^{-n-1}\Lambda_0 / \Lambda_0 + \pi^{-n}\Lambda_0 \simeq \Lambda_p / \Lambda_0 \oplus \pi^{-n-1}\Lambda_0 / \pi^{-n}\Lambda_0. \]

Thus one has homotopies

\[\varphi_n \Rightarrow \varphi_{n+1} \Rightarrow \cdots \]

and for any \(\Lambda \)

\[\Lambda = \varphi_n(\Lambda) \quad n \ll 0 \]

\[\varphi_n(\Lambda) = \pi^{-n}\Lambda_0 \quad n >> 0 \]

Suppose now that I want to prove \(Y_n \) is contractible. I consider the map which associates to \(E \) the bundle \(E/E_0W \) in the building associated to the \(A \)-module \(M/M_0W \). This is a simplicial map from \(X(M) \) to \(X(M/M_0W) \). I want to show that this
induced map \(Y_n \to X(M/M \cap W) \), has contractible fibres. But this will be easy. For fix a bundle \(E_0 \) in \(M \cap W \), and consider the operation \(\varphi_n \) on \(X \) which sends

\[
\varphi_n(E) = E_0(n) + E
\]

(Observe that on restriction to \(C-\{\infty\} \), this gives \(M_n W + M = M \).)

hence what I am doing is to add \(\oplus \pi^{-n} E_0, \infty \) to \(E_\infty \).

Then as above, we see that there are homotopies

\[
\Rightarrow \varphi_n \Rightarrow \varphi_{n+1} \Rightarrow
\]

and for \(n \) large two bundles \(E_1, E_2 \) with the same image in \(X(M/M \cap W) \) will have \(\varphi_n(E_1) = \varphi_n(E_2) \).

\[\text{---}\]

\[\text{Idea: } \quad \text{Let } \mathcal{O} A \text{ be a d.v.n. with quotient field } F \quad \text{and let } V \text{ be a vector space over } F \text{ of dim } n, \quad \text{and} \]

\[\tilde{X}(V) \text{ the building of } A \text{-lattices in } V, \quad X(V) \text{ the building of lattices modulo homothety.} \quad \text{If } H \text{ is a hyperplane in } V, \quad \text{one has a simplicial map } \tilde{X}(V) \to \tilde{X}(V/H), \]

compatible with \(\pi \) action of \(\pi \). Thus every simplex of \(\tilde{X}(V) \), say \(L_0 < \ldots < L_m \), \(\pi L_p < L_0 \) determines a simplex of \(\tilde{X}(V/H) \).

\[\text{Assertion: } \quad X(V) \text{ may be identified with the subcomplex of } \tilde{X}(V) \text{ mapping onto a fixed lattice } \Lambda \text{ in } V/H. \]

This is fairly clear - one replaces \(L_0 < \ldots < L_m \) by

\(\pi L_0 < \ldots < \pi L_m < \Lambda \) so that the image is a vertex.

Get a new proof of the contractibility of \(X(V) \) this way.
so it should now be clear that I can prove the conjecture on page 3. This tells me that if I now take U/W where W ranges over all proper subspaces of $V = F \otimes_{\mathbb{A}} M$, then I get a complex which is of the homotopy type of $T(V)$.

Thus as a $\Gamma = \text{Aut}(M)$-module,

$$I(V) = \tilde{H}_{n-1}(X, U/W)$$

and the other homology groups are zero.

Variation for Z: Here M is a free abelian group of rank n and \tilde{X} is the space of pos. definite quadratic forms on $R \otimes_{\mathbb{Z}} M$. \bar{X} is the quotient of \tilde{X} by homothety and if we want we can identify \bar{X} with the part of \tilde{X} having a fixed discriminant.

Given $g: M \to R$ I first need the analogue of the canonical filtration. The degree of the vector bundle (M, g) is defined to be the volume of the ball $B \subset M$ with respect to the volume on $R \otimes_{\mathbb{Z}} M$ normalized so that the lattice M has volume 1. Thus

$$\left\{ m \mid g(m) \leq t^2 \right\} \sim \frac{\text{vol}(\mathbb{B}) \cdot t^n}{t^{2n}} \quad \text{as} \quad t \to \infty.$$
and \(\text{vol}(E) \leftrightarrow \varphi \deg(E) \).

Set

\[
\Theta(M, g) = \sum_{m \in M} e^{-\pi g(m)}
\]

(The physicists' way of computing the number of lattice points in the ball determined by \(g \)).

Then we have the functional equation for \(\Theta \)

\[
\frac{\Theta(M, g)}{\Theta(M^*, g^*)} = \frac{1}{\text{disc}_M(g)}
\]

where

\[
(M, g)^* = (M^*, g)
\]

\[
M^* = \{ v \in \mathbb{R}^M \mid b(v, m) \in \mathbb{Z} \quad \forall m \in M \}
\]

\[
b(x, y) = y(x)
\]

and where

\[
\text{disc}_M(g) = \det \{ g(e_i, e_j) \}
\]

Think of \(\Theta(M, g) \) as the analogue of \(\varphi \) \(h^0(E) \).

whence \(\Theta(M, t^{1/2} g) \) is analogous to \(\varphi \) \(h^0(E) \) as \(t \to 0^+ \).

Think of this as \(t \to \infty \) whence \(\frac{1}{t^{1/2} g} \leq 1 \Rightarrow t \cdot \frac{1}{t^{1/2} g} \leq 1 \).

Clearly \(\Theta(M, t^{1/2} g) \to 1 \) very fast. And we get the pleasant estimate

\[
\Theta(M, t^{1/2} g) \sim \frac{1}{\text{disc}_M(g)} \cdot t^n
\]
Enough recall.

Suppose now that ρ is given $M \to \mathbb{R}$, q pos. definite. I want now the analogue of the canonical filtration of a vector bundle. (Notice that given $M' \to V' \to V \to V'' \to 0$ one gets a canonical isom $\Lambda^nV \cong \Lambda^p V' \otimes \Lambda^{n-p}V''$. Thus given volumes on V', V'' one gets a volume on V in a well-defined way. In particular the volume on M depends only on the volumes in M' and M'', so to compute the discriminant we can split the above sequence and assume q is the direct sum of q' and q'' with respect to this splitting, in which case the formula

$$\text{disc}_M(q) = \text{disc}_{M'}(q') \text{disc}_{M''}(q'')$$

becomes obvious.

Now that we have a good notion of degree we can start looking at sub-bundles of maximal degree. So put

$$\deg E = \log \left\{ \text{disc}_M(q)^{-1} \right\} \quad \text{disc}_M(q) = \text{vol} \left(M \otimes q \right)$$

and define slope as usual. I need next to
check that there exists a largest subbundle of the maximum slope.

First note that if M' is of finite index in M and g is a form on $\frac{M'}{M}$, one has

$$\text{vol}_g(\frac{M'}{M}) = [M:M'] \text{vol}_g(\frac{M'}{M})$$

Hence

$$\text{deg}(M,g) = \text{deg}(M,\frac{g}{g}) + \log [M:M']$$

Next suppose given two sub-bundles E_1, E_2 of $E = (M,g)$ corresponding to subspaces W_i of M. Let $E_1 + E_2$ denote the subbundle of E corresponding to the subspace $W_1 + W_2$. I wish to prove that

$$\text{deg}(E_1 + E_2) + \text{deg}(E_1 \cap E_2) \leq \text{deg}(E_1) + \text{deg}(E_2)$$

and

$$[M_1(W_1,W_2) : m_1W_1 + m_2W_2]$$

Let $M_1 = M \cap (W_1 + W_2)$, $M_1 = W_1 \cap M$. One has

$$0 \to M_1 \cap M_2 \to M_1 \to M_1/M_1 \cap M_2 \to 0$$

$$0 \to M_2 \to M_1 + M_2 \to M_1 + M_2/M_2 \to 0$$

and the quadratic form g induced forms on $W_1/W_1 \cap W_2$ and $W_1 + W_2/W_2$. The only thing to be proved is that two volumes correspond under the isomorphism $W_1/W_1 \cap W_2 \cong W_1 + W_2/W_2$ for if that is true one has

$$\text{deg}(E_1 \cap E_2) = \text{deg}(E_1)$$

$$\text{deg}(E_2) = \text{deg}(E_1 + E_2) = \text{deg}(E_1 + E_2/E_2)$$

etc.
Suppose $E = (M, g)$ is a vector bundle, and let E_1, E_2 be sub-bundles corresponding to subspaces W_i of M. Put $M_i = M \cap W_i$, $M_{12} = M \cap (W_1 + W_2)$, and denote by $E_1 + E_2$ the sub-bundle corresponding to the subspace $W_1 + W_2$.

Lemma: $\text{deg}(E_1 + E_2) + \text{deg}(E_1 \cap E_2) \geq \text{deg}(E_1) + \text{deg}(E_2)$.

Proof: One has exact sequences:

$$0 \rightarrow M_1 \cap M_2 \rightarrow M_1 \rightarrow M_1 / M_1 \cap M_2 \rightarrow 0$$

Thus if I equip $M_1 / M_1 \cap M_2$ with the quotient form and call $E_1 / E_1 \cap E_2$ the resulting bundle, I have

$$\text{deg}(E_1) = \text{deg}(E_1 \cap E_2) + \text{deg}(E_1 / E_1 \cap E_2).$$

Similarly if I tentatively define $E_1 + E_2$ to be $M_1 + M_2$ with the induced form, I will have

$$\text{deg}(E_1 + E_2) = \text{deg}(E_2) + \text{deg}(E_1 + E_2 / E_2).$$

Since $\text{deg}(E_1 + E_2) = \text{deg}(E_1 + E_2) + \log [M_{12} : M_1 + M_2]$, the lemma will follow once I show

$$\text{deg}(E_1 + E_2 / E_1) \geq \text{deg}(E_1 / E_1 \cap E_2).$$

Now we have a canonical isomorphism

$$\Theta: W_1 / W_1 \cap W_2 \sim W_1 + W_2 / W_2,$$

which preserves the lattices. What does it do to the forms? **Claim:** Θ decreases distances.
In effect, if \(C = \text{orthogonal complement of } W_1 \cap W_2 \text{ in } W_1 \) and \(C' \) is the orthogonal complement of \(W_2 \) in \(W_1 + W_2 \), then identifying \(C \) with \(W_1 / (W_1 \cap W_2) \), \(C' \) with \(W_1 + W_2 / W_2 \), the forms become the restriction of \(g \), and \(\Theta \) becomes orthoprojection onto \(C' \) parallel to \(W_2 \).

Therefore \(\Theta \) is distance decreasing. \(\text{It follows that the unit ball in } W_1 + W_2 / W_2 \text{ contains more lattice points than the unit ball in } W_1 / (W_1 \cap W_2), \) so

\[
\deg (E_1 + E_2 / E_2) \geq \deg (E_1 / E_1 \cap E_2)
\]

as was to be shown.

\[\text{Refinement: One has } \deg (E_1 + E_2) + \deg (E_1 \cap E_2) = \deg E_1 + \deg E_2 \]
\[\text{if and only if } (i) \ M_1 + M_2 = M \cap (W_1 + W_2) \text{ and } (ii) \ W_1 \text{ and } W_2 \text{ intersect orthogonally.}\]

This is clear from the preceding proof. Equality forces \(M_2 = M_1 + M_2 \) and also it forces \(\Theta \) to be volume-preserving. But one has only to check that a distance-decreasing volume preserving \(\Theta : C \to C' \) is an isometry. To see this, one can view
\(\emptyset\) as the identity, and that \(C\) is given
two form \(q, q'\) with \(q \leq q'\), simultaneously
diagonalization lets us write \(q = \sum t_i^2\), \(q' = \sum t_i^2\) with
\(1 \leq t_i\). Since volumes are equal \(\prod t_i = 1\)
\(\Rightarrow\) all \(t_i = 1\).

Consequences:

Canonical filtration of a vector bundle \(E = (M, g)\).

Define

\[
\mu_{\text{max}}(E) = \sup \left\{ \mu(W \cap E) \mid 0 < W \subset M_\emptyset \right\},
\]

If now \(E_1, E_2\) are sub-bundles with
\(\mu(E_i) = \mu_{\text{max}}(E)^2\), then from above we get

\[
\deg(E_1 + E_2) + \deg(E_1 \cap E_2) \leq \mu \left[\text{rank} (E_1 + E_2) + \text{rank} (E_1 \cap E_2) \right]
\]

\[
\deg(E_1) + \deg(E_2) = \mu \left[\text{rank} E_1 + \text{rank} E_2 \right].
\]

which forces \(E_1 \cap E_2, E_1 + E_2 = E_1 + E_2\) to have the maximal slope.

Thus one sees that one has a largest sub-bundle of the maximum slope which is semi-stable.

To show that I have a canonical filtration of any vector bundle with the same properties I must show that if \(0 < E_1 < \ldots < E_p = E\) with \(E_i/E_{i-1}\) semi-stable of slope \(\mu_i\),
\(\mu_1 > \ldots > \mu_p\), then \(\mu_i = \mu_{\text{max}}(E_i)\) and \(E_1\) is the largest subbundle of slope \(\mu_1\). But given \(0 < F < E\) of slope \(\mu_{\text{max}}(E)\), assume \(F\) least \(\not\subset FCE_1\). Then \(E_1 - F \subset E_1 + F \subset E_1\) so as
$E_j | E_{j-1}$ is semistable of slope μ_j, we have

$$\deg(F + E_{j-1}) - \deg(E_{j-1}) \leq \mu_j [rg(F + E_{j-1}) - rg(E_{j-1})]$$

$$\mu_j \left[rg(F) - rg(F \cap E_{j-1}) \right]$$

$$\deg(F) - \deg(F \cap E_{j-1}) \geq \mu_{\max}(E) \left[rg(F) - rg(F \cap E_{j-1}) \right]$$

But $\deg(F) - \deg(F \cap E_{j-1}) \geq \mu_{\max}(E)$ and as j is least $\Rightarrow F \cap E_{j-1} \leq F$. Thus get $\mu_j \geq \mu_{\max}(E)$, which implies $\mu_{\max}(E) = \mu_j, j = 1$. Done.

Now that I have the canonical filtration for vector bundles, I can try to describe the corners on the symmetric space.

So let $\tilde{X} = GL_n(\mathbb{R})/O_n$ be the symmetric space of positive definite forms on $(\mathbb{R}^n)^* \otimes \Gamma = GL_n(\mathbb{Z})$. Given a proper subspace W of $V = \mathbb{Q}^n$, let $\tilde{\tilde{W}}$ be the subset of \tilde{X} consisting of all \tilde{q} such that W is part of the canonical filtration of $E = (M, \tilde{q})$. In other words, such that the slope of $E \cap W$ should be larger than the maximum slope of $E/E \cap W$.

Conjecture: $\tilde{\tilde{W}}$ is open in \tilde{X}, also $W \cap \tilde{X}$ open in \tilde{X}.

Here $X = \tilde{X}/\mathbb{R}^*_+$.

Example: $n = 2$. Here we can identify a vector bundle with a lattice Λ in the plane \mathbb{R}^2. Up to a rotation and homothety we can assume $z = 1$ is a minimal length vector in Λ, and there is then a unique other basis...
element τ in the fundamental domain $\text{Im}(\tau) > 0$, $\cos \text{Re}(\tau) \leq \frac{1}{2}$, $|\tau| > 1$.

The lattice is semi-stable if on choosing a line L through 0 passing through a lattice point, say $\lambda L = \mathbb{Z} \lambda$ then the degree of L which is $\log \frac{1}{|\lambda|}$ should be \leq slope of λ which is $\frac{1}{2} \log \frac{1}{\text{Im}\lambda}$. Thus one wants

$$|\lambda| \geq \sqrt{\text{Im}\lambda}$$

for all $\lambda \in \Lambda$.

In particular taking $\lambda = 1$, we must have $\text{Im}\, \tau \leq 1$.

If $\text{Im}\, \tau \leq 1$, then as $|\lambda| \geq 1$ for all λ, it's OK. Thus the lattice is semi-stable iff $\text{Im}\, \tau \leq 1$. So the semi-stable iso. classes look as follows.
March 30, 1974. Siegel formula

Let C be a curve over a finite field k with q elements, and let L be a line bundle on C. One considers vector bundles E of rank n equipped with an isomorphism $\varphi : \Lambda^n E \cong L$ and forms the sum (following Eisenstein)

$$\sum \frac{1}{\text{aut}(E, \varphi)}$$

where the sum is taken over the isomorphism classes, and aut denotes the order of the group of autors. The Siegel formula expresses this sum in terms of values of the L function of C.

Example 1) Let $C = \mathbb{P}^1_k$, and take $\Lambda^n L = 0$. The isomorphism classes of vector bundles E are represented by $\mathcal{O} \otimes \mathcal{O}$, $\mathcal{O}(a) \otimes \mathcal{O}(-a)$, $a \geq 1$

and $\text{Aut} \left[\mathcal{O}(a) \oplus \mathcal{O}(-a) \right] = \begin{pmatrix} k^* & H^0(\mathcal{O}(2a)) \\ 0 & k^* \end{pmatrix}$

$\dim H^0(\mathcal{O}(2a)) = 2a + 1$

The sum in question is

$$\frac{1}{|SL_2(k)|} + \sum_{a \geq 1} \frac{1}{(q-1) \cdot q^{2a+1}} = \frac{1}{(q^2-1)(q)} + \frac{1}{(q-1)q} \cdot \frac{q^{-2}}{1-q^{-2}}$$

$$= \frac{1}{(q^2-1)(q)} \left[1 + \frac{1}{q-1} \right]$$

$$= \frac{1}{(q-1)(q^2-1)}$$

2) $C = \mathbb{P}^1_k$, $n=2$, $L = \mathcal{O}(1)$. Then the different isomorphism classes are $\mathcal{O}(a+1) \oplus \mathcal{O}(a)$, $a \geq 0$
and the sum to evaluate is

\[
\sum_{a > 0} \frac{1}{(g-1) g^{2a+2}} = \frac{1}{(g-1) g^2 (1-g^{-2})} = \frac{1}{(g-1) (g^2-1)}
\]

Example 3. Let \(C \) be an elliptic curve with \(\infty \) as origin, take \(L = \Theta(1) \) corresponding to divisor at \(\infty \), \(n = 2 \). Then I have the following iso classes:

\[
\begin{array}{ccc}
\text{unique ext non-trivial} & \text{auto } g^1 \times \ & \text{contribution} \\
\delta & E & \Theta(1) \\
\end{array}
\]

\[
\begin{array}{c}
\forall L \in J \ \\
L^2 = 0 \ \\
a \geq 0
\end{array}
\]

\[
L(a+1) \oplus L(-a)
\]

\[
\begin{pmatrix}
 k^* \\
0
\end{pmatrix}
\]

\[
\frac{1}{(g-1) g^{2a+1}}
\]

\[
\begin{array}{c}
\forall L \in J \ \\
L^2 \neq 0 \ \\
a \geq 0
\end{array}
\]

\[
L(a+1) \oplus L(-a)
\]

\[
\begin{pmatrix}
k^* \\
0
\end{pmatrix}
\]

\[
\frac{1}{(g-1) g^{2a+1}}
\]

So the sum is

\[
1 + (\text{card } J) \sum_{a > 0} \frac{1}{(g-1) g^{2a+1}} = 1 + (\text{card } J) \frac{g}{(g-1)(g^2-1)}
\]

\[
= \frac{1 + (-1-g + \text{card } J) g + g^3}{(1-g)(1-g^2)}
\]

But recall that \(f_\mathcal{C} \) is of the form

\[
\frac{1 - (-x^2 \overline{z} - g \overline{z}^2)}{(1-g \overline{z})(1-g^2 \overline{z})}
\]

where \(-(-x^2) = -1-g + \text{card } J \)

So this seems to check out.
Next take $L = O$, and try to calculate the sum. Here the structure of the semi-stable bundles of degree zero is more complicated. We have the following classes:

1) $L \oplus L^*$ for each $\{L, L^*\} \in J(k)$, $L \neq L^*$.

2) $L \oplus L$ for each $L \in J(k)$, $L = L^*$.

3) $\phi: L \rightarrow L$ nontrivial

$G_{L^2}(k)$

$\text{Aut} \phi = k^*$

4) For each element not in the image of the Weierstrass map $x: J(k) \rightarrow \mathbb{P}_1(k)$, i.e. a pair $\{L, L^*\}$ of conjugate bundles defined over a quadratic extension of k, we will get a stable bundle of degree zero, which becomes $L \oplus L^*$ over the quadratic extension. $\text{Aut} \phi = k^*$

Count: $x: J(k) \rightarrow \mathbb{P}_1(k)$. Let $a_i = \text{number of } L \in J(k)$ such that $L = L^*$. Then

$$\text{card}(\text{Im } x) = \frac{\text{card} J - a}{2} + a = \frac{1}{2} \text{card} J + \frac{1}{2} a$$

Contributions:

1) $\frac{\text{card} J - a}{2} \quad 1$

2) $a \quad \frac{1}{8 - 1}$

3) $\frac{1}{8}$

4) $(8 + 1 - \frac{\text{card} J + a}{2}) \frac{1}{8 + 1}$
\[1 + \text{card } J \left[\frac{1}{2} \frac{1}{g-1} - \frac{1}{2} \frac{1}{g+1} \right] + d \sum_{g \geq 1} \left[-\frac{1}{2} \frac{1}{g-1} + \frac{1}{g} \frac{1}{(g-1)g} + \frac{1}{2} \frac{1}{g+1} \right] \]
\[= 1 + \frac{\text{card } J}{g^2 - 1} \]

Now for the unstable bundles one has
\[\text{card } J \sum_{g \geq 1} \frac{1}{(g-1)g^{2a}} = (\text{card } J) \frac{1}{(g-1)g^{2}} \]

So the total is again
\[1 + (\text{card } J) \frac{g}{(g-1)g^{2}} \]

\textbf{Note:} For an finite field \(\overline{\mathbb{F}_q} \), one has the following description for the quotient graph. Put
\[h = \text{card } J = \text{card } C(\overline{\mathbb{F}_q}) \]
and let \(a = \text{number of points of order 2 in } C(\overline{\mathbb{F}_q}) \).
Then one has

\[\text{one for each point in } P_k - \text{Im}(\chi(J)), \quad \text{number } = g + 1 - \frac{1}{2}(h+2) \]

\[\text{one for each } l \in J, \quad \text{number } = a \]
Siegel formula: If C is a curve over \mathbb{F}_q, and $\alpha \in \text{Pic}(C)$, then as E runs over representatives for the isomorphism classes of bundles of rank 2 with $c_1(E) = \alpha$, one has

$$\sum \frac{1}{\text{aut}(E)} = \frac{1}{q-1} \gamma_C(q)$$

(Have checked this is the right answer for \mathbb{P}^1 and elliptic curves).

Let now C be a curve over a finite field k with q elements, ∞ a rational point, X the tree associated to a rank 2 bundle \mathcal{M}. Let Γ be a subgroup of $\text{Aut}(\mathcal{M})$ of finite index. I claim that the sum

$$\sum_{\sigma} \frac{(-1)^{\sigma}}{\text{card} \Gamma(\sigma)}$$

makes sense and moreover is essentially a finite sum. Here σ runs over the simplices of X and $(-1)^{\sigma} = (-1)^{\dim \sigma}$.

Picture:
and on a cusp one has

$$L(n) \otimes L^* = L(n+1) \otimes L^*$$

$$\text{Aut}(L(n) \otimes L^*) = \left(\mathbb{F}^* \right) / H^0(L^2(n))$$

$$\dim H^0(L^2(n)) = n + 1 - g \quad \text{for } n \text{ large.}$$

So by absolute convergence of

$$\Sigma \frac{1}{g}$$

one gets convergence for the sum. Next thing to notice is that because on a cusp the stabilizer of an edge is the same as its smallest vertex, we have cancellation of terms in the sum. Thus the sum is really being taken over the finite core.

Alternative interpretation. To each line l in \mathbb{F}^2 we have attached the sub-complex X_l consisting of unstable bundles whose big sub-line bundle is given by l. This gives me then an exact sequence

$$0 \rightarrow H_1(X, \Pi X_l) \rightarrow \bigoplus \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0$$

which shows $H_1(X, \Pi X_l)$ is the Steinberg module $I(\mathbb{F}^2)$.

Observe that the vertices in X can be put over $n = -1, 0, 1, 2, \ldots$ as follows. A vertex v gives a vector bundle E of rank 2, whose degree we can assume is either $0, 1, 2, \ldots$.
If \(E \) is instable, then it has a subbundle \(L \) so the quotient \(E/L \) has smaller degree, i.e.

\[
0 \rightarrow L \rightarrow E \rightarrow E/L \rightarrow 0
\]

\[\deg(L) > \deg(E/L).\]

It follows then that \(L \) is uniquely determined. Now the difference \(\deg(L) - \deg(E/L) \) is the thing to consider. This will be the integer I attach to \(E \).

If \(E \) is semi-stable, attach to \(E \) the integer \(-1\) or \(0\) depending on whether the degree of \(E \) is odd or even.

Note that what sits over \(n = -1 \) are the stable bundles of degree \(1 \), and Harder tells me he can easily compute their number from the Siegel formula.

Suppose I have now an instable bundle

\[
0 \rightarrow L \rightarrow E \rightarrow E/L \rightarrow 0
\]

with \(n = \deg(L) - \deg(E/L) > 0 \), and that I have a 1-simplex issuing from this vertex, i.e.

Then there are two cases: If \(L \rightarrow E \rightarrow k(\infty) \) is zero, then \(E' \) is an extension of \(L \) by \(E/L(-1) \), so it is more instable. Otherwise \(E \) is an extension of \(L(-1) \) by \(E/L: \)

\[
0 \rightarrow L(-1) \rightarrow E' \rightarrow E/L \rightarrow 0
\]
and if \(n \geq 2 \), \(E' \) is unstable. If \(n=1 \), then one has \(\deg L(-1) = \deg (E/L) \), so \(E' \) is semi-stable.

In any case for an unstable vertex, there is exactly one way to go to become more unstable, and this is the contraction toward the curve.

Suppose that \(E \) is stable of degree 0, and we have a vertex \(E' \subset E \). Then \(E \) has no sub-line-bundles of degree 0, so neither does \(E' \), and as \(E' \) has \(\deg -1 \) this means \(E' \) is stable of degree -1. So we get the picture:

\[
\begin{array}{c}
\text{(semi-stable)} \\
\text{(deg 0)} \\
\downarrow \\
\text{(stable)} \\
\text{(deg -1)} \\
\downarrow \\
\text{(instable)} \\
\end{array}
\]

\[
\begin{array}{c}
-1 \quad 0 \quad 1 \quad 2
\end{array}
\]

In the elliptic curve over alg cl. \(k \) there were no stable line-bundles of degree 0, but over a finite field there could be.

Next note that if \(E \) is semi-stable of degree 0, then either \(E \) has a unique line bundle \(L \) of degree 0, or else, it is decomposable. (Recall semi-stable bundles of a given slope form an artinian category). In the former case if \(E' \subset E \) is an edge, then either

\[
\begin{array}{c}
\bullet \rightarrow L(-1) \rightarrow E' \rightarrow E/L \rightarrow \bullet \rightarrow E' \text{ stable deg } -1.
\end{array}
\]

\[
\begin{array}{c}
\bullet \rightarrow L \rightarrow E' \rightarrow E/L(-1) \rightarrow \bullet \rightarrow E \text{ unstable}.
\end{array}
\]
So again we have a unique * instable edge starting from E.

When $E = L_1 \oplus L_2$, $L_2 \neq L_1$ there are two edges leading to the instable region. When $L_1 = L_2$ all edges lead to the instable region.

What do these facts tell us about the Steinberg module?

Before we wrote the instable region of X as a disjoint union of trees X_l for each line l in F^2. Now for each l such that the corresponding L in T is such that $L = L^*$, we will get extremal edges.

\[
\begin{array}{c}
L \oplus L \\
L \oplus L^*
\end{array}
\]

and thus for each element of order 2 in $\text{Pic}(A)$, we get a direct summand in $I(F^2)$ of the form $\mathbb{Z}[G_2 A] \otimes \mathbb{Z}[G_2 k] I(k^2)$, the embedding $G_2 k \rightarrow G_2 A$ being obtained from an isom. $L \otimes L \cong A^2$ over C^∞.

We add to the instable region those semi-stable bundles of degree 0 having a unique subbundle of degree zero. Then in the complement of the instable region I have the following types:

\[
\begin{align*}
\text{stable degree} & \quad \text{stable deg-1} \\
0 & \quad (\text{stable}) \\
\end{align*}
\]

\[
\begin{cases}
L \oplus L^* & L \neq L^* \text{ in } T \\
L \oplus L & L = L^* \text{ in } T
\end{cases}
\]
I am now ready to interpret the data.

Let us define an associated bundle as the pullback along f of the bundle corresponding to the invertible sheaf $F = GL(n)$ acting on the stack X. I have seen that $H^i(X, F)$ vanishes for $i > 0$, whereas $H^i(X, F)$ is nontrivial for $i < 0$. This means that the characteristic class of F vanishes outside a finite set of points on X. The image appears to be a table.
Note that what has been left after removing the part that can be pushed to \(\infty \) (infinite bundles and semi-stable bundles of degree 0 which are indecomposable), \(\mathcal{I} \) is the subcomplex of stable bundles and decomposable semi-stable bundles.

Denote by \(\mathcal{X}_{\text{inst}} \) the subcomplex of unstable bundles, so that \(\mathcal{X}_{\text{inst}} = \bigsqcup X_{\mathcal{E}}, \ \mathcal{E} \) a tree), and

\[
I(F^2) = H_1(X, \mathcal{X}_{\text{inst}})
\]

Denote by \(\mathcal{X}_{\text{semist}} \) and \(\mathcal{X}_{\text{st}} \) the subcomplex consisting of the semi-stable, respectively bundles. Finally, let \(Y \) denote the subcomplex consisting of \(\mathcal{X}_{\text{inst}} \), plus the indecomposable semi-stable bundles of degree zero, plus for each pair \(L \oplus L^* \) add an edge in the vertices isomorphic to \(L \oplus L^* \) and the edge \(L \oplus L^* \subset L(1) \oplus L^* \).

Picture:

Have to choose in each \(\{ L, L^* \} \) a representative. The point is that for each vertex isomorphic to \(L \oplus L^* \) we have two edges leading to the unstable region, and we pick one.

Then \(Y \) deforms into \(\mathcal{X}_{\text{inst}} \), so

\[
I(F^2) = H_1(X, \mathcal{X}_{\text{inst}})
\]
Let \mathcal{L} be a set of rep. for pairs $\{L, L^*\}$ in \mathcal{J}, $L \neq L^*$, and for each $L \in \mathcal{L}$, let Z_L denote the set of vertices in X isomorphic to $L \oplus L^*$. Let \mathcal{T} be the set of $L \in \mathcal{J}$, $L = L^*$, i.e., $\mathcal{T} = \mathcal{J} \setminus \{L \neq L^*\}$, and

$$\mathcal{T} = \mathcal{L} \cup \mathcal{Z}_L \cup \mathcal{T}$$

Z_L for $L \in \mathcal{T}$ is the set of vertices isomorphic to $L \oplus L$. Then it is clear we have

$$H_1(X \mid Y) = H_1(X_{\text{ext}}, X_{\text{ext}} - X_{\text{ext}})$$

$$\left(\bigoplus_{L \in \mathcal{L}} Z_L \right) \oplus \left(\bigoplus_{L \in \mathcal{T}} Z_L \right) \oplus I(k^2)$$

so now one is reduced to the case of the stable bundles.

Can one decide which stable bundles of deg -1 are joined to semi-stable bundles of degree 0?

Let E be stable of degree 1 and $E' \subset E$ an edge with E' semi-stable of degree 0, i.e., E' has a sub-line-bundle of degree 0. Notice that if L is of degree zero, then $H^0(L, E)$ is at most dim. 1. For if one has two sections of $L \otimes E$, they cannot be everywhere.
independent (for then $0^2 = \mathbb{L}^{-1} \otimes E$ impossible as degree $\mathbb{L}^{-1} \otimes E = 1$), thus there must be a section which is non-zero and which vanishes in some fibre, hence E would contain a subbundle of degree > 0, which is impossible. (This works also if k not alg. closed: First if $0^2 \rightarrow E' = E \otimes \mathbb{L}^{-1}$ is not injective, the image would be a line subbundle of E' of pos. degree. If $0^2 \rightarrow E'$ is injective, then as degree $(E') = 1$, the cokernel would have k-dim 1, hence would be supported at a rational point P where the two sections become dependent, etc.)

Thus if E can be joined to a semi-stable bundle, E contains a line subbundle of deg 0. Conversely if E contains L of degree zero, one has

$$0 \rightarrow L \rightarrow E \rightarrow L'(1) \rightarrow 0$$

and so E contains $0 \rightarrow L \rightarrow E' \rightarrow L' \rightarrow 0$ which is semi-stable.

Now we have now reached the point where we see that the essential part of the Steinberg homology comes from the stable vector bundles.
April 1, 1974: Siegel formula

Let A be the ring of integers in a number field F. If $x \in A, x \neq 0$, one can define $N x = \text{card}(A/\langle x \rangle)$; it is a theorem that this gives the norm \mathbb{n} of x relative to the extension F/Q.

Suppose we are interested in the solutions to $N x = n$ with $x \in A$. Observe first that A^* acts freely on these solutions. We would like to show that there are finitely many A^*-orbits. Such an orbit is the same thing as a principal ideal \mathfrak{a} in A such that $N \mathfrak{a} = \text{card}(A/\mathfrak{a}) = n$. So we get a bigger number by considering all ideals \mathfrak{a} in A with $N \mathfrak{a} = n$. Note that there are only finitely many such ideals because there are only finitely many \mathbb{Z}-lattices between A_n and A.

Next we can introduce the generating function

$$f_A(s) = \sum_{\mathfrak{a}} \frac{1}{(N\mathfrak{a})^s} = \sum_{n=1}^{\infty} \frac{1}{n^s} (\text{no. of } a \geq N\mathfrak{a} = n)$$

for the enlarged problem. (One reason for doing this is that we have an Euler formula

$$f_A(s) = \prod_{\mathfrak{p}} \frac{1}{1-(N\mathfrak{p})^s}$$

which relates our problem to the arithmetic in A.) Also we have the generating function for the initial problem

$$g(s, x) = \sum_{\mathfrak{a} \in A} \frac{1}{(N\mathfrak{a})^s} = \sum_{n=1}^{\infty} \frac{1}{n^s} (\text{no. of } a \geq N\mathfrak{a} = n)$$
where \(\mathcal{I} \) is a given ideal class.

So what I want to understand is the asymptotic behavior of \(\text{card}\{a \in \mathcal{I} | Na = n\} \) as a function of \(n \). The philosophy of generating functions is that this should be reflected in the singularities of the \(\mathcal{I} \)-function.

Example: 1) \(\mathbb{A} = \mathbb{Z} \), here \(\text{card}\{a | Na = n\} = 1 \), and on the other hand \(\mathcal{I} \) has a simple pole at \(s = 1 \) with residue 1. Reason: \(\sum \frac{1}{n^s} \sim \int_{1}^{\infty} \frac{dt}{t^s} = \frac{t^{1-s}}{1-s} \bigg|_{1}^{\infty} = \frac{1}{s-1} \).

2) \(\mathbb{A} = \mathbb{Z}[i] \). This is also a P.I.D. and

\[
\text{card}\{a | Na = n\} = \text{no. of solutions of } x^2 + y^2 = n \quad \text{divided by 4}.
\]

\(\mathcal{I} \) has a simple pole at \(s = 1 \), residue \(\frac{\pi}{4} \).

To determine this, let

\[
p(r) = \text{card}\{(x,y) \in \mathbb{Z}^2 | x^2 + y^2 \leq r\}
\]

so that

\[
\zeta(s) = \frac{1}{4} \int_{1}^{\infty} \frac{dr}{r^s} \quad \text{d}p(r)
\]

\[
= \frac{1}{4} \int_{1}^{\infty} \frac{dr}{r^s-1} p(r) \quad \text{d}r \quad p(r) \sim \pi r
\]

\[
\sim \frac{\pi}{4} \int_{0}^{1} r^{s-2} \pi \text{d}r \sim \frac{\pi}{4} \frac{1}{s-1} \quad \text{as } s \to 1
\]
Before going on recall the formulas

\[\Theta(t) = \sum_{n \in \mathbb{Z}} e^{-\pi n^2 t^2} \quad \Theta(t) = \frac{1}{t} \Theta\left(\frac{1}{t}\right) \]

\[\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} \, dt \quad \forall \Gamma(s) = \Gamma(s+1) \quad \Gamma(1) = 1 \]

\[\pi^{-s/2} \Gamma(s/2) \Gamma(s) = 2 \int_0^\infty e^{-\pi t^2} t^{s/2} \, dt \quad \Gamma(n) = (n-1)! \]

and the functional equation for \(\zeta(s) \):

\[\pi^{-s/2} \Gamma(s/2) \Gamma(s) = \sum_{n \geq 1} \frac{1}{n^s} \quad 2 \int_0^\infty e^{-\pi n^2 t^2} \frac{e^{-t}}{t^s} \, dt \]

\[= \int_0^\infty [\Theta(t)-1] \frac{t^s \, dt}{t} \]

\[= \int_0^1 [\Theta(t)-1] \frac{t^s \, dt}{t} + \int_1^\infty [\Theta(t)-1] \frac{t^s \, dt}{t} \]

\[= \int_1^\infty [\Theta(t)-1] \frac{t^s \, dt}{t} \quad \text{entire as } \Theta(t)-1 \text{ rapidly decreasing} \]

\[= \int_1^\infty [\Theta(t)-1] t^{1-s} \frac{dt}{t} + \int_0^1 [\Theta(t)-1] t^s \frac{dt}{t} + \int_{1/2}^1 \frac{(t-1)^{s-1} \, dt}{t} \]

\[= \frac{1}{\Gamma(1-s)} + \frac{1}{\Gamma(1-s) \cdot \Gamma(1)} \]

This is symmetric under \(s \mapsto 1-s \) so one gets the functional equation for \(\zeta(s) \).
Temporary digression: One can generalize the above \(f \) function as follows. Let \(M \) be a vector bundle over \(A \) and consider the sum

\[
\sum_{\alpha} \frac{1}{[m: \alpha]^2}
\]

where \(\alpha \) runs over all \(A \)-submodules of finite index in \(M \). By Chinese Remainder theorem, this is a product of local factors

\[
\sum_{\Lambda \leq A^n} \frac{1}{[A^n: \Lambda]} \quad n = \text{rank}(M)
\]

where \(\Lambda \) runs over all lattices inside of the d.v.r. \(A^n \).

Lemma: Let \(\mathcal{O} \) be a d.v.r., \(\pi \) uniformizer, \(\Lambda \) a lattice contained in \(\mathcal{O}^n = \mathcal{O}e_1 + \ldots + \mathcal{O}e_n \). Then \(\Lambda \) has a basis consisting of

\[
\frac{a_1}{\pi} e_1 + b_1 e_1 + \pi^{a_2} e_2 + \ldots + b_{n-1} e_1 + \pi^{a_n} e_n
\]

where the \(a_1, \ldots, a_n \geq 0 \) are uniquely determined integers, and where \(b_{ij} \in \mathcal{O} \) is unique modulo \(\pi^{a_i} \).

For example: \(n = 2 \). \(\Lambda \cap \mathcal{O}e_1 = \mathcal{O} \pi^{a_1} e_1 \), and projecting \(\text{Im}[\Lambda \rightarrow \mathcal{O}e_2] = \mathcal{O} \pi^{a_2} e_2 \), whence \(\Lambda \) has basis \(\pi^{a_1} e_1, b_1 e_1 + \pi^{a_2} e_2 \). Then \(b_2 \) can be modified by any element of \(\mathcal{O} \pi^{a_2} \).
Thus if O^H_0 has g elements
\[
\sum_{\Lambda \subset \delta_n} \frac{1}{(\text{card } \delta_n)^\Lambda} = \sum_{q_1, \ldots, q_n \geq 0} \frac{1}{(g^{\delta_n})^\Lambda} \left(g^{q_1} a_1^{h-1} \right) \cdots \left(g^{q_n} a_n^{h-1} \right)
\]
\[
= \sum_{a_1, \ldots, a_n \geq 0} \left(g^{-(s+n-1)q_1} \right) \left(g^{-s+n-2} a_2 \right) \cdots \left(g^{-1} a_n \right)
\]
\[
= \frac{1}{(1-g^{-s})(1-g^{-s+1}) \cdots (1-g^{-s+n-1})}
\]

Thus it is the g-function of \mathbb{P}^{n-1}.
\[
\frac{1}{(1-z)(1-gz) \cdots (1-g^{n-1}z)}
\]
April 2, 1974

Suppose C is a curve over $k = \mathbb{F}_q$. Consider the series where E_0 is a fixed bundle of rank N

$$\sum_{E \in E_0} \frac{1}{(\text{Card } E_0/E)^d} = \sum_{E \in E_0} z^{\text{deg}(E) - \text{deg}(E)}$$

where E is a sub-k module in E_0 such that E_0/E is torsion. The above sum has an Euler product expression with local factors

$$\sum_{\Lambda \subseteq E_0} \frac{1}{\text{Card}(\Lambda^* \otimes E_0/\Lambda)^d}$$

which we found to be

$$\frac{1}{(1 - (NP)^{-d}) \cdots (1 - (NP)^{-d+n-1})}$$

$NP = \text{Card } k(P) = q^{\deg(P)}$. Thus (\ast) is the product

$$\zeta(s) \zeta(s+1) \cdots \zeta(s-n+1)$$

which shows it is independent of E_0.

Notice also that by duality there is a 1-1 correspondence between $E_0 \subseteq E_0$ and $E_0^* \subseteq E_0^*(\eta)$. Thus we can have the situation
Prop: Let V be a vector space of dimension n over F, and let E_0 be a vector bundle over C with generic fibre V. (One might call E_0 a C-lattice in V). Then

$$\sum_{E_0 \leq E \leq V} \frac{1}{(\text{card } E/E_0)} = \prod_{c} \frac{1}{c} \cdot \frac{1}{c} \cdots \frac{1}{c}$$

or in terms of $z = q^{-1}$:

$$\sum_{E \geq E_0 < E \leq V} z^{\text{deg}(E) - \text{deg}(E_0)} = Z(z) \cdot Z(\otimes g z) \cdots Z(g^{n-1} z)$$

Now I want to break up the sum on the left over the isomorphism classes of E. Let T be a fixed bundle of deg n. I want to count the number of lattices E in V containing E_0 such that $E \cong T$. First change notation.

Let E denote a fixed bundle of deg n over C, let Λ_0 be a fixed lattice in V, and I want to count the number of lattices Λ in V containing Λ_0 such that Λ is isomorphic to E. Given such a Λ, if I pick an isom $\theta: \Lambda \rightarrow E$, I get a injection $\theta': \Lambda_0 \rightarrow E$.

Thus I get a map

$$\left\{ \text{set of } \Lambda \cong \Lambda_0 \right\} \rightarrow \text{Inj}(\Lambda_0, E) / \text{Aut}(E).$$

Note that $\text{Aut}(E)$ acts freely on $\text{Inj}(\Lambda_0, E)$ for if $\alpha i = i$ then α is the identity at the generic pt, hence α is identity.
Conversely given \(i : \Lambda_0 \to E \),

\[
\begin{CD}
\Lambda_0 @>>> E \\
\downarrow @. \downarrow \\
V = \Lambda_0(\eta) @>>> E(\eta)
\end{CD}
\]

hence there exists a unique map \(E \to V \) by \(\chi = \) inclusion of \(\Lambda_0 \) in \(V \). Assign to \(i \) the image of \(\chi \) which is a lattice containing \(\Lambda_0 \). This gives a map

\[
\text{Inj} \left(\Lambda_0, E \right) / \text{Aut}(E) \to \left\{ \text{set of } \Lambda \supset \Lambda_0 \right\}
\]

which is clearly inverse to the proceeding. Thus we obtain:

Lemma: \(\Lambda_0 \) a \(C \)-lattice in the \(F \)-vector space \(V \), \(E \) a vector bundle of rank \(k = \dim_F(V) \). Then

\[
\left(\text{set of lattices } \Lambda \in V \right) \left(\text{s.a. } \Lambda \supset \Lambda_0 \text{ and } \Lambda \approx E \right) \cong \text{Inj} \left(\Lambda_0, E \right) / \text{Aut}(E).
\]

and \(\text{Aut}(E) \) acts freely on \(\text{Inj} \left(\Lambda_0, E \right) \).

So putting together the above we have

\[
Z_c(\vec{z}) \cdots Z_c(\vec{g}^{k-1}\vec{z}) = \sum_{E} \frac{\mathrm{deg} E - \mathrm{deg} \Lambda_0}{\text{card} \left(\text{Inj} \left(\Lambda_0, E \right) \right)} \frac{1}{\text{aut}(E)}
\]

where the sum is taken over the iso. classes of bundles of rank \(k \).
Take \(\Lambda_0 = O_c^{m} \subset F^m = V \) so that \(\deg(\Lambda_0) = 0 \). Break up the preceding sum according to \(c_i(E) \). Denote by \(\Sigma_n(\alpha, \nu) \) the set of iso classes of vector bundles \(\Lambda \) of rank \(\nu \) with vanishing determinant.

If \(\alpha \in J \), let \(\Sigma_n(\alpha, \nu) \) denote the set of iso classes of bundles of rank \(\nu \) such that \(\Lambda^\alpha E \approx \alpha(\nu) \). One fixes a line bundle \(O(1) \) of degree one. Then the preceding sum can be broken up.

\[
\sum_{\alpha \in J} \sum_{\nu} \frac{z^n}{\nu} \sum_{E \in \Sigma_n(\alpha, \nu)} \frac{\text{card } \{ \text{Inj}(\Lambda_0, E) \}}{\text{aut}(E)}
\]

Next we must know something about \(\text{card } \{ \text{Inj}(\Lambda_0, E) \} \).

Now take \(n = 2 \), \(\Lambda_0 = O_c^2 \).

\[
\text{Inj}(O_c^2, E) \subset H^0(E)^2
\]

So
\[
\text{card}\{\text{Inj}(O_c^2, E)\} \leq \left[q^{2(\deg E + 2(1-g))} \right]^2
\]

and there is a possibility that the difference might be of smaller growth as \(\deg E \to \infty \).

Example: On an elliptic curve take \(E = O(n) \oplus O(n) \). Then I wish to compute a lower bound for \(\text{card } \{ \text{Inj}(O_c^2, E) \} = \text{no of pairs } s_1, s_2 \in H^0(E) \) which are generically independent. Now \(s_1 \) can be
chosen in \((\text{card } H^0(E)) - 1 = \frac{h^0(E)}{2} - 1 = \frac{g^{2n} - 1}{2} \) ways.

Once \(s_1\) is chosen, it determines a sub-line-bundle \(\overline{Os}_1 \subset E\) and \(s_2\) can be any section of \(E\) not a section of \(\overline{Os}_1\). But

\[
\begin{align*}
\deg(\overline{Os}_1) &\leq n, \\
h^0(\overline{Os}_1) &\leq \deg(\overline{Os}_1) + 1 - g \\
ho(\overline{Os}_1) &\leq n.
\end{align*}
\]

so the no. of choices for \(s_2\) is \(\frac{g^{2n}}{g^{h^0(\overline{Os}_1)}} \geq g^{2n - n}\). Thus we get the bounds

\[
\left(\frac{g^{2n} - 1}{2} \right) \left(\frac{g^{2n} - 1}{2} \right) \leq \text{card}\{\text{Inj}(O^{2}_2 E)\} \leq \left(\frac{g^{h^0(E)}}{2}\right)^2 = g^{4n}.
\]

In particular in this case we see that as \(n \to \infty\)

\[
\frac{\text{card}\{\text{Inj}(O^{2}_2 E)\}}{\left(\frac{g^{h^0(E)}}{2}\right)^2} = \left(1 - \frac{1}{2}e^{-2n}\right)(1 - \frac{1}{2}e^{-3n}) \to 1.
\]

Example: Take \(E\) to be a rank 2 vector bundle over \(\mathbb{C}\)arbitrary, and let \(\lambda\) be the maximum degree of a sub-line-bundle of \(E\). Given \((s_1, s_2) \in \text{Inj}(O^{2}_2 E(n))\), \(s_1\) can be chosen in \(\left(\frac{g^{h^0(E(n))}}{2} - 1\right)\) ways. Then \(\deg(\overline{Os}_1) \leq \lambda n + 1 - g\) so

\[
h^0(\overline{Os}_1) \leq \lambda n + 1 - g
\]

And so once \(s_1\) is chosen, \(s_2\) can be chosen in \(\left(\frac{g^{h^0(E(n))}}{2} - 1\right)\) ways. Thus

\[
\text{card}\{\text{Inj}(O^{2}_2 E(n))\} \geq \left[\frac{g^{h^0(E(n))}}{2} - 1\right] \left[\frac{g^{h^0(E(n))}}{2} - 1\right] \left(\frac{g^{h^0(E(n))}}{2} - 1\right) \lambda n + 1 - g
\]
But for n large, $h^0(E(n)) = \deg E + 2n + 2(1-g)$.

So at this point it is clear that we have

$$\text{card } \text{Inj}(E_0, E(n)) \xrightarrow{n \to \infty} 1$$

$$\text{card } \text{Hom}(E_0, E(n))$$

in fact this should hold for $\text{rank } (E_0) \leq \text{rank } (E)$.

Proof. Let $0 \to \text{rank } (E_0) \to \text{rank } (E), n \to \text{rank } (E)$, choose

$0 \to E_1 \to E_0 \to L \to 0$

with L a line bundle. For n large we have

$0 \to \text{Hom}(L, E(n)) \to \text{Hom}(E_0, E(n)) \to \text{Hom}(E, E(n)) \to 0$

Since $x \in \text{Inj}(E_1, E(n))$, E_1 is a subbundle of $E(n)$ of

rank $d-1$, hence

$$\deg \left(\frac{E_1}{E_0} \right) \leq \mu_{\max}(E)(d-1).$$

In any case assuming this, return to

$$\mathbb{Z}_C(z) \cdots \mathbb{Z}_C(z^{d-1}z) = \sum_{\alpha \in \mathcal{F}} \sum_{n} z^{n} \sum_{E \in \Sigma_{E}(\alpha, n)} \frac{\text{card Inj}(E^\alpha, E)}{\text{aut}(E)}$$

and use the isom. $E \to E(1)$ between $\Sigma_{\mathcal{E}}(\alpha, n)$ and $\Sigma_{\mathcal{E}}(\alpha, n+1)$

to write this as

$$\sum_{\alpha} \sum_{\phi \in \Sigma_{E}(\alpha, i)} \sum_{n} z^{i+hn} \frac{\text{card Inj}(E_0^\alpha, E(n))}{\text{aut}(E)}$$
Lemma: Let \(\frac{P(z)}{Q(z)} = \sum_{n=0}^{\infty} a_n z^n \) be a rational function of \(z \) with complex coefficients such that \(\lim_{n \to \infty} a_n = 0 \). Then all poles of \(\frac{P(z)}{Q(z)} \) are outside \(|z| = 1 \).

Proof: Let \(\lambda \) be a pole of \(P(z)/Q(z) \); whence \(Q(z) = (z-\lambda) Q_0(z) \). Multiplying \(\sum_{n=0}^{\infty} a_n z^n \) by \((z-\lambda) \) replaces \(a_n \) by \(a_{n-1} - \mu a_n \), which still goes to zero. Thus one sees \(Q_0(z) P(z)/Q(z) = P(z)/(z-\lambda) \) has the coefficients of its Taylor series going to zero. But

\[
\frac{1}{z-\lambda} = -\frac{1}{\lambda (1-\frac{z}{\lambda})} = -\frac{1}{\lambda} \sum \frac{(z/\lambda)^n}{n!
}
\]

and \(P(z)/(z-\lambda) = \text{poly} + P(\lambda)/\lambda - 1 \) has essentially the same coefficients \(\frac{1}{n!} \) in large degrees. Thus \(|\lambda| > 1 \).

Lemma: Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) be a rational function such that \(\frac{a_n}{1^n} \to \alpha \) as \(n \to \infty \). Then \(f(z) \) has no poles with \(|z| \leq \lambda^{-1} \) except for a simple pole at \(z = \lambda^{-1} \) with residue \(\alpha \).

Proof: \(f\left(\frac{z}{\lambda}\right) = \sum_{n=0}^{\infty} \frac{a_n}{\lambda^n} z^n \)

\[
f\left(\frac{z}{\lambda}\right) - \frac{\alpha}{1-z} = \sum_{n=0}^{\infty} \left(\frac{a_n}{\lambda^n} - \alpha\right) z^n
\]

has no poles in \(|z| \leq 1 \), hence

\[
f(z) - \frac{\alpha}{1-\lambda z} \text{ has no poles for } |z| \leq \lambda^{-1}.
\]
Now let me return to the formula

\[Z_C(z) \cdots Z_C(q^{n-1}z) = \sum_{x \in J} \sum_{i=0}^{h^0(E(n))} \sum_{E \in \Sigma_n(x,i)} \frac{z^{i+m} \text{card}(\text{Inj}(\Delta^r, E(n)))}{\text{aut}(E)} \]

and let me use my asymptotic formula

\[\frac{\text{card}(\text{Inj}(\Delta^r, E(n)))}{h^0(E(n)) \cdot q^{\deg(E)}} \rightarrow 1 \quad \text{as} \quad n \rightarrow \infty. \]

\[h^0(E(n)) = \deg(E) + nr + n(1-g) \]

Let

\[f(z) = \sum_{n=0}^{\infty} \sum_{x=0}^{h^0(E(n))} \sum_{E \in \Sigma_n(x,i)} \frac{q^{2g(-g)}}{\text{aut}(E)} \text{card}(\text{Inj}(\Delta^r, E(n))) \]

so it seems we get that

\[f(z) \sim \frac{1}{1 - (q^{-g}z)^n} \sum_{i=0}^{h^0} Z_i q^r(1-g) \sum_{x \in \Sigma_n(x,i)} \frac{1}{\text{aut}(E)} \]

But

\[f(z) = Z_C(z) \cdots Z_C(q^{n-1}z) \]

\[= \frac{P(z) P(qz) \cdots P(q^{n-1}z)}{(1-z)(1-qz)^2 \cdots (1-q^{n-1}z)^2 (1-q^r z)} \]

Actually I should run the proof backward. Because \(f(z) \) is rational with no poles for \(|z| < q^{-2}\) except for a simple pole at \(z = q^{-n} \) with residue \(-x\) I know that if \(f(z) = \sum a_m z^m \), then

\[\frac{a_m}{q^m} \rightarrow -x \quad \text{as} \quad m \rightarrow \infty. \]
But if \(m = i + r n \), then

\[
a_{i+rn} = \sum_{\alpha \in J} \sum_{E \in \Sigma_n(\alpha, i)} \frac{\text{card}(\text{Inj}(\mathcal{G}_E, E(n)))}{\text{aut}(E)}
\]

\[
a_{i+rn} \left(q^{i+rn} \right)^r = \sum_{\alpha \in J} \sum_{E \in \Sigma_n(\alpha, i)} \frac{\text{card}(\text{Inj}(\mathcal{G}_E, E(n)))}{\text{aut}(E)} q^{i+rn} r
\]

So what is \(\alpha? \) Recall

\[
Z(z) = \sum_{L} z^{\deg(L)} \frac{g^{h_0(L)} - 1}{g - 1}
\]

\[
= \text{poly} + \sum z^n \frac{g^{n+1-g} - 1}{g - 1} . h
\]

\[
= \text{poly} + \frac{h \ g^{1-g}}{g - 1} \frac{1}{1 - (1 - z)} \frac{1}{g - 1} \frac{1}{1 - z}
\]

Thus it seems I get the residue

\[
Z(\frac{1}{g - 1}) \ldots Z(\frac{1}{g - 2}) \frac{h \ g^{1-g}}{g - 1} = \sum_{\alpha \in J} \sum_{E \in \Sigma_n(\alpha, i)} \frac{1}{\text{aut}(E)} \frac{h_0^2(i, g)}{g - 1}
\]

or

\[
\sum_{\alpha \in J} \sum_{E \in \Sigma_n(\alpha, i)} \frac{1}{\text{aut}(E)} = Z(\frac{1}{g - 2}) \ldots Z(\frac{1}{g - h}) \frac{h \ g^{(n+1)(g-1)}}{g - 1}
\]

With more work I might be able to get that all the sums over \(J \) are the same. Hence

\[
\sum_{E \in \Sigma_n(\alpha, i)} \frac{1}{\text{aut}(E)} = \frac{h_0^2(i, g)}{g - 1} \frac{h \ g^{(n+1)(g-1)}}{g - 1} Z(\frac{1}{g - 2}) \ldots Z(\frac{1}{g - h})
\]
Functional equation for J^2

$$Z_c(z) = (q z^2)^{g-1} Z_c\left(\frac{1}{q z}\right)$$

(to remember recall
$$Z_c(z) = \frac{1 + \cdots + q^g z^{2g}}{(1-z)(1-q z)}$$

Plugging this in one gets the Siegel formula

$$\sum_{E \in \Sigma_n(g, i)} \frac{1}{\text{aut}(E)} = \frac{1}{g-1} \prod_{i=0}^{g-1} Z_c(q^n)$$

Agrees with what I calculated for $n=2$, and curves of genus 0, 1.