Notes on construction:

Let \(f: X \to Y \) be a map of cell complexes. Suppose \(Y \) connected \(\Rightarrow \) simplify, let \(y_0 \) be a base point of \(Y \). Let \(F = \text{homm fibre of } f \text{ over } y_0 = \text{space of pairs } (x,a) \) \(\Rightarrow \) a path joining \(f(x) \) to \(y_0 \). Let \(\tilde{Y} \) be the universal covering of \(Y \).

Proposition: TFAE

(i) \(F \) acyclic (i.e., \(\tilde{H}_*(F, \mathbb{Z}) = 0 \))

(ii) \(\forall \) local system \(L \) on \(Y \), we have \(\tilde{H}_*(X, f^*L) = H_*(Y, L) \)

(iii) \(X \times \tilde{Y} \to \tilde{Y} \) induces injective, integral homology.

Proof: (i) \(\Rightarrow \) (ii). Consider spectral sequence

\[
E_{pq}^2 = H_p(Y, H_q(F, E)) \Rightarrow H_{pq}(X, E)
\]

for \(E \) any local system on \(X \). Take \(E = f^*L \), where \(f^* \) is trivial on \(F \), so \(\tilde{H}_*(F f^*L) = \mathbb{Z} L \) (use univ. coeffs.)
Thus spec. seq. degenerates yielding (ii).

(ii) \(\Rightarrow \) (iii). Have

\[
\begin{array}{ccc}
\tilde{X} \times \tilde{Y} & \to & \tilde{Y} \\
\downarrow & & \downarrow \\
X & \to & Y
\end{array}
\]

where vertical maps are principal covering groups \(\pi_1 Y \).
Thus have

\[
\begin{align*}
H_*(\tilde{X} \times \tilde{Y}, \mathbb{Z}) & \to H_*(\tilde{Y}, \mathbb{Z}) \\
H_*(X, \mathbb{Z}[\pi_1 Y]) & \to H_*(Y, \mathbb{Z}[\pi_1 Y])
\end{align*}
\]

so clear.

(iii) \(\Rightarrow \) (i). Since homotopy fibre doesn't change under pulling back via \(Y \to Y \), we can suppose \(Y \) simply-connected.

Now observe at the spectral seq.

\[
E_{pq}^2 = H_p(Y, H_q(F, \mathbb{Z})) \to H_{pq}(X, \mathbb{Z}).
\]
Def: such a map will be called acyclic.

Corollary: Acyclic maps are stable under composition (use ii) homotopy base change, & homotopy colimit change.

Proof: As for last suppose have cocart.

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow & & \downarrow \\
X' & \xrightarrow{f'} & Y'
\end{array}
\]

with \(f \) acyclic + a cofibration. Then \((ii) \Rightarrow H_*(Y, X; L) = 0 \) for all local systems on \(Y \). Since \(H_*(Y, X; L) \cong H_*(Y, X; F^*) \) (consider cellular chains), one gets \(f' \) is acyclic.

Cor. 2: If \(f \) is acyclic, then \(\pi_1(f) : \pi_1 X \to \pi_1 Y \) is onto and its kernel is perfect. \(f \) is a hop \(\Rightarrow \pi_1(f) \) is an isomorphism.

Proof: \(\pi_0(f) = 0 \Rightarrow \pi_1(f) \) onto. \(F \) acyclic \(\Rightarrow H_*(F) = \pi_* F^* = 0 \Rightarrow \pi_1(f) \) perfect \(\Rightarrow \ker \pi_1(f) \) perfect. If \(\pi_1(f) \) is an isom, then \(X_y Y = X \), so by Whitehead \(\Rightarrow X \to Y \) is a hop \(\Rightarrow \pi_1(X) \to \pi_1(Y) \) all \(\geq 2 \). Thus \(f \) is a hop.

From now on, simplify, suppose.

From now on, work with connected ptsd CW eks. and put \([X, Y]\) for ptsd. homot. classes.

Proposition: Let \(f : X \to Y \) be acyclic. Then

\[
f^*: [Y, Z] \to \{ \text{deg} [X, Z] \mid \ker \pi_1(f) \subset \ker \pi_1(f) \}
\]
Proof: Surjectivity. Can suppose \(f \) is a cofibration.

Given \(g: X \to Z \) and \(\text{ Ker } \pi_1(f) \subseteq \text{ Ker } \pi_1(g) \).

![Diagram]

By van Kampen, \(\pi_1(Y \cup Z) = \pi_1 Y \times_{\pi_1 X} \pi_1 Z \subseteq \pi_1 Z \). But + acyclic \(\Rightarrow f' \) acyclic. \(\Rightarrow f' \) has and so \(g \) factors thru \(f' \).

Injectivity. Assume we have \(g_1, g_2: Y \to Z \Rightarrow g_1 f' = g_2 f' \).

By HET can homotop \(g_2 \) until \(g_1 f = g_2 f \); call this map \(g' \).

\(g_1, g_2 \) induce maps \(h_1, h_2: Y \cup Z \Rightarrow g_1 = h_1 g_{\ast} \). But \(f' \) is a bug and \(h_1 f' = id \Rightarrow h_4 = h_2 \Rightarrow g_1 = g_2 \).

Core: Given \(N \) perfect \(\subseteq \pi_1(X) \), \(f: X \to Y \) acyclic with \(\text{ Ker } \pi_1(f) = \text{ Ker } \pi_1(f') \), then \(\exists \) hom \(h: Y \to Y' \Rightarrow hf = f' \).

This is clear. \((Y \text{ and } Y' \text{ both represent the same functor})\).

Proph. Given \(N \) perfect \(\subseteq \pi_1(X) \), \(\exists f: X \to Y \) acyclic with \(\text{ Ker } \pi_1(f) = N \).

Proof: First suppose \(\pi_1(X) \) is perfect. Then choose
element $a_i \in H_1(X)$ which normally generate $H_1^2(X)$ and let X' be the result of attaching 2 cells to kill the a_i. Then X' is simply-connected by van Kampen and

$$V S^1 \xrightarrow{\alpha} X \xrightarrow{\alpha} X' \xrightarrow{\alpha} V S^2$$

$$H_i(X) \rightarrow H_i(X') \rightarrow 0 \rightarrow H_i(X)$$

Thus $H_2(X')$ is free with base a_i, $i \in I$. Since

$$H_2(X') \rightarrow H_2(X, X)$$

is onto, we can find $b_i \in H_2(X')$ such that β_i goes to a_i. Thus define Y by

$$V S^2 \xrightarrow{\beta} X' \xrightarrow{\beta} Y$$

$$H_2(X) \rightarrow H_2(X') \rightarrow H_2(Y) \rightarrow 0$$

so $H_2(X) \cong H_2(Y)$. It follows then that $H_n(X) \rightarrow H_n(Y)$ for all n. This proves the proof when $N = H_1(X)$.

Now in the general case, let X' be the covering space of X with $\pi_1 X' = N$, let $X' \xrightarrow{f} Y'$ be acyclic with $\pi_1 Y' = 0$, and form the pushout

$$\xymatrix{ X' \ar[r]^{f'} \ar[d] & Y' \ar[d] \\
X \ar[r]^{f} & Y }$$

Then f' acyclic $\Rightarrow f$ acyclic. Also Van Kampen \Rightarrow

$$\pi_1(Y) = \pi_1(X) \ast_N e = \pi_1(X)/N.$$

done.
Remark: Clear from the proof that if N is normally generated by a finite number of elements, it is necessary to attach only a finite number of $2 + 3$ cells to get Y. Actually if N has a finite no. of gen. as a normal subgroup of G, this remains true. One has to go back to the proof but use cellular chains on the universal covering. (Thus set $X = \text{covering corrept. to } N$. Then $0 \to H_2(X) \to H_2(X') \to \bigoplus \mathbb{Z} \left[\pi_1 X/N \right] \to 0$ so again can find $\beta_i \in \pi_2(X')$ mapping onto a basis for $H_2(X, X')$. etc.)

Let N be the largest perfect subgroup of $\pi_1 X$. (A group gen. by perfect subgps. is perfect - consider a homo. to any abelian group.) The acyclic map in this case will be denoted $X \to X^+$. It is universal for maps to spaces having no perfect subgps. etc.

Formula:

$$(X \times Y)^+ = X^+ \times Y^+$$

because the product of two acyclic maps is acyclic.

Deleq's question: Given a fibration, can the plus construction be performed fibrewise.
Let $F 	o E 	o B$ be a fibration (of comm. lptd. spaces as always) and suppose we have a map of fibrations

\[
\begin{array}{ccc}
F & \to & E \\
\downarrow & & \downarrow \\
F' & \to & E' \\
\end{array}
\]

with $F \to F'$ acyclic. Then from homology spectral sequences, one can see $E \to E'$ is acyclic, hence it is determined by a perf. normal subgps N of $\pi_1(E)$ which goes to 0 in B. Now we know $\pi_2 B$ maps into the center of $\pi_1(F)$, hence $\pi_1(F)$ is a central extension of its image in $\pi_1(E)$, and one knows there is a unique perf. subgp. M of $\pi_1(F)$ mapping onto N, namely the commutator subgp. of the inverse image of N.

Diagram chasing shows that $\text{Ker}(\pi_1 F \to \pi_1 F')$ maps onto N. Hence $\text{Ker}(\pi_1 F \to \pi_1 F') = M$.

Thus we see that we can kill any perfect normal subgp. of $\pi_1 F$ whose image in $\pi_1(E)$ is normal, or equiv. which is stable under the action of $\pi_1(B)$ on $\pi_1(F)$ mod. inner auto.

Proof: Given $F \to E \to B$ and a perf. normal $M \subset \pi_1 F$ stable under the $\pi_1 B$-action, there exists a map of fibrations \square over B.
where \(f: F \to F' \) is acyclic with \(\ker \pi_1(f) = N \), and \(g \) is acyclic with \(\ker \pi_1(g) = \text{Image of } N \) in \(\pi_1(E) \).

(Clearer: Given \(E \to B \) with fibre \(F \), those acyclic maps \(E \to E' \) over \(B \) are classified by perf. normal subgroups \(N \) of \(\ker \pi_1(E) \to \pi_1(B) \).

If \(F' = \text{Fibre of } E' \) over \(B \), then \(E \cong F \otimes_{E'} E \) and as we can suppose \(E \to E' \) is a fibre, we have

\[
\begin{array}{c}
F \\
\downarrow f \\
F' \\
\downarrow g \\
E' \\
\end{array}
\]

is h-cart. \(\therefore f \) is acyclic and \(\pi_1(F) \to \pi_1(F') \times_{\pi_1(E')} \pi_1(E) \),

so \(\ker \pi_1(f) \to \ker \pi_1(g) \). But as \(\pi_1(F) \) is a central extension of \(\ker(\pi_1(E) \to \pi_1(B)) \), \(\ker \pi_1(f) \) is the unique perf. subgroup of \(\pi_1(F) \) with image \(N \). Conversely, given \(M \) perf. \(\triangleleft \) in \(\pi_1(F) \) stable under \(\pi_1(B) \) action, taking \(N = \text{Im } M \) in \(\pi_1(E) \), this process \(\triangleright \) kills \(N \) in the fibre.)
We begin by recalling a standard construction in homotopy theory introduced in Serre's thesis.

Let $K(A,n)$ be an Eilenberg-MacLane space with $n > 2$. From the Hurewicz theorem we have the formulas:

$$H_i(K(A,n)) = \begin{cases}
0 & i = 0 \\
0 < i < n \\
A & i = n \\
0 & i = n+1
\end{cases}$$

(last follows because $\pi_{n+1} K(A,n) \to H_{n+1} K(A,n)$ is onto.)

Lemma 1: There exists a map $X \to K(H_n X, n)$ which induces the canonical isomorphism $\theta : H_n X \cong H_n (K(H_n X, n))$. If $H_{n-1} X = 0$, this map is unique.

Proof: Start with the U.C. formula

$$0 \to \text{Ext}^1(H_{n-1} X, A) \to H^n(X, A) \to \text{Hom}(H_n X, A) \to 0$$

where $[X, K(A,n)] \sim H^n(X,A)$ and $f \mapsto f^*(u_n)$

where $u_n \in H^n(K(A,n), n)$ is the unique class such that $\varphi(u_n)$ is the canonical isomorphism $\theta : H_n (K(A,n)) \cong A$. It follows that φ is isomorphic to the map

$$[X, K(A,n)] \to \text{Hom}(H_n X, A)$$

and so the latter is always surjective and injective when $H_{n-1} X = 0$. Taking $A = H_n X$, the lemma follows.

Lemma 2: Assume $H(X) = H_{n-1}(X) = 0$, $n > 2$, and let F be the homotopy fibre of the map $v : X \to K(H_n X, n)$ of Lemma 1. Then $H_i(F) \cong H_i(X)$ for $i \leq n-1$, and $H_n F = 0$.
Proof: Put \(B = K(H_nX, n) \) and consider the spectral
\[
E^2_{pq} = H_p(B, H_qF) \Rightarrow H_{p+q}X
\]

which gives \(H_iF \xrightarrow{\sim} H_iX \) \(i \leq n-2 \) and an exact sequence

\[
0 \leftarrow H_{n-1}X \leftarrow H_{n-1}F \leftarrow H_nB \leftarrow H_nX \leftarrow H_nF \leftarrow 0
\]

(the last 0 results from the fact that all \(E^2 \) terms of total degree \(n \) are zero except for \(E^2_{0n} = H_nF \)). Now using the fact that \(H_{n-1}X = 0 \), and that \(H_nX \xrightarrow{\sim} H_nB \) the lemma follows.

Now use this lemma as follows. Given a space \(X \) such that \(H_1X = 0 \) and an integer \(n \geq 2 \) such that \(H_{n-1}X \) we construct recursively a tower of spaces

\[
\rightarrow X_{n+2} \rightarrow X_{n+1} \rightarrow X_n = X
\]

such that

\[
H_i(X_p) \xrightarrow{\sim} H_i(X) \quad \text{for} \quad i < n
\]

\[
= 0 \quad \text{for} \quad i \geq n
\]

by letting \(X_{p+1} \) be the fibre of the canonical arrow

\[
X_p \rightarrow K(H_pX_p, p) \quad \text{of lemma 1.}
\]

Put \(X = \text{hull}(X_p) \). Since

fibre of \(X_\infty \rightarrow X_p \) becomes increasingly connected with \(p \), we have

\[
H_i(X_\infty) \rightarrow H_i(X) \quad \text{for} \quad i < n
\]

\[
= 0 \quad \text{for} \quad i \geq n-1
\]
\[X_{p+1} \rightarrow X_p \rightarrow K(H_pX_p, p) \]

\[\Rightarrow \pi_i(X_{p+1}) \rightarrow \pi_i(X_p) \]

iso \(i < p-1 \)

onto \(i = p-1 \)

(\text{meaning: fibre begins in dim } p-1). \quad \text{(system)}

Put \(X' = \text{holim} \ x \leftarrow \ X_p \). Then because the \(\pi_i(X_p) \) is essentially constant, one has for each \(p \)

\[\pi_i(X') \rightarrow \pi_i(X_p) \]

iso \(i < p-1 \)

onto \(i = p-1 \)

\[\Rightarrow H_i(X') \Rightarrow H_i(X_p) \]

\[\text{so we have proved:} \]

\[\text{Proposition: Let } X \text{ be a space with } H_1X = 0 \]

and \(n \) an integer \(\geq 2 \) such that \(H_{n-1}X = 0 \). Then

there exists a map \(X' \rightarrow X \) such that

\[i) \quad \pi_i X' \rightarrow \pi_i X \]

iso \(i < p-1 \)

onto \(i = n-1 \)

\[ii) \quad H_i X' = 0 \quad i \geq n-1 \]

\[\Rightarrow H_i X \quad i \leq n-1 \]

\[\text{Examples: 1) If } \pi_1X = 0 \text{ and } n = 2, \text{ then the tower } \]

\(X_p \) is just the Postnikov tower of \(X \), so \(X' \sim pt. \)

2) \(X = K(A, m), \ m \geq 2, \ n = m+2. \quad \text{Then } X' \text{ is a Moore space } M(A, m). \quad (H_{m+1}(K(A, m)) = 0) \]

Now consider the general case \(n = 2 \):
Proof: Let X be a space with $H_n(X) = 0$ (i.e. $\pi_n X$ perfect). Then the map $X' \to X$ constructed above starting with $n = 2$ is a universal map from an acyclic space to X.

Proof: Clearly the space X' is acyclic. If now Y is an acyclic space, one has $[Y, X_{n+1}] \to [Y, X_n]$ as $[Y, K(A, p)] = 0$ for all $p \geq 1$, and A abelian. Thus passing to the limit $[Y, X'] \to [Y, X]$ proving the assertion.

Cor. $X' \to X$ is the fibre over $X \to X^+$. Proof: If F is this fibre, then we know it is acyclic (first prop.), and $[F, F'] = 0$. Also for Y acyclic we have $[Y, X^+] = 0$ (universal property for $Y \to pt$). Thus from $[Y, X^+] \to [Y, F] \to [Y, X^0] \to [Y, X^+]$ one concludes that $[Y, F] \to [Y, X]$. Thus $F \to X$ has the universal property of $X' \to X$.

So now here is Dror method for proving the existence of an acyclic map $f: X \to Y$ killing $\text{perf. } N \triangleleft \pi_n X$. He constructs $\tilde{X} = \text{covering corresponding to } N$ and then the universal acyclic space $A(\tilde{X}) \to \tilde{X}$ which has the property that its π_n maps on N. Then be forms pushouts

\[
\begin{array}{ccc}
\tilde{X} & \longrightarrow & \tilde{X}/A(\tilde{X}) = \tilde{X}^+ \\
\downarrow & & \downarrow \\
X & \longrightarrow & Y
\end{array}
\]
Lemma 1: \(H_n X = 0, \quad H_{n-1} X = 0. \)

i) \(\exists ! \) map \(X \rightarrow K(H_n X, n) \) inducing the canon. iso.
\(H_n X \cong H_n K(H_n X, n) \).

ii) If \(F \) is fibre of \(u_0 \), then
\(\pi_i F \rightarrow \pi_i X \)
iso. \(i \leq n-1 \)
onto \(i = n-1 \)

\[H_{n-1} F = H_n F = 0 \]

Dror's tower of a space \(X \quad H_1 X = 0. \) Let
\[
X_{p+1} \rightarrow X_p \rightarrow \cdots \rightarrow X_4 \rightarrow X_3 \rightarrow X_2 = X
\]

Has to be generalized!!

Properties:
(i) \(\tilde{H}_i(X_p) = 0 \quad i < p \)
(ii) \([Y, X_p] \rightarrow [Y, X] \) if \(\tilde{H}_i(Y) = 0 \quad i < p \).
(iii) \(\pi_i(X_{p+1}) \rightarrow \pi_i(X_p) \)
iso. \(i < p-1 \)
onto \(i = p-1 \).

Put: \(X_\infty = \varinjlim X_p \)
(i) \(\tilde{H}_i(X_\infty) = 0 \)
(ii) \([Y, X_\infty] \rightarrow [Y, X] \) if \(\tilde{H}_i(Y) = 0 \)

Thus \(X_\infty \twoheadrightarrow X \) universal map from an acyclic space to \(X \)

Cor: \(X_\infty = \) fibre of \(X \twoheadrightarrow X^+ \).
Example: \(X = BG \) \(G \) perfect.

Claim: \(X_3 = BG \) \(\widetilde{G} \) - covering group of \(G \).

Proof: From homotopy sequence finds \(\pi_3 X_3 = \pi_3 BG = 0 \) \(g \geq 2 \)
hence \(X_3 = BG' \) \(G' = \pi_1 X_3 \). Also get central ext.
\[
1 \rightarrow H_2 G \rightarrow \pi_1 X_3 \rightarrow G \rightarrow 1
\]

Finally \(H_1(G') = H_2(G') = 0 \) \(\Rightarrow G = \widetilde{G} \) by theory of Shur mult...

Next one sees inductively: since \(\pi_2 X_2 = 0 \) \(g \geq 2 \) that
\[
\pi_i X_p = \begin{cases}
G' & i = 1 \\
H_{i-1} X_{i+1} & 2 \leq i \leq p-2 \\
0 & p-1 \leq i
\end{cases}
\]

so
\[
\pi_i X_\infty = \begin{cases}
G' & i = 1 \\
H_{i-1} X_{i+1} & i \geq 2
\end{cases}
\]

Now look at fibration
\[
X_\infty \rightarrow BG \rightarrow BG^+
\]
and one gets
\[
\pi_8(BG^+) = H_8 X_8
\]

In particular
\[
\pi_2(BG^+) = H_2 G \\
\pi_3(BG^+) = H_3 \widetilde{G}
\]

Proposition: Let \(\widetilde{G} \) \(G \) be a perfect group and
let \(\{X_g\} \) be the Shur tower over \(BG \).

(i) \(X_3 = BG \) where \(\widetilde{G} \) is the universal covering group in the sense of the Shur mult. theory.

(ii) \(\pi_0(BG^+) = H_0(X_0) \).

(iii) \(\pi_2(BG^+) = H_2(G) \), \(\pi_3(BG^+) = H_3(G) \).
Complements: Given X connected but \(H_1X \) not necessarily zero, let \(N \) be the maximal perfect subgroup of \(\pi_1X \), and put
\[X_2 = X \]
\[\pi_1X_2 = N \]
\[X_2 = \text{covering of } X \text{ with } \pi_1X_2 = N. \]

Then extend the

\[X_\infty \longrightarrow X \]

universal map from an acyclic space to \(X \)

\[X_\infty = \text{Fibre} \{X \longrightarrow X^+\} \]

\[X^+ = \text{Cone} \{X_\infty \longrightarrow X\} \]

Last formula gives another construction of \(X^+ \).
I will begin by proving a basic result on infinite matrix groups which has many applications in algebraic K-theory.

Recall the following result: Let H, G be the subgroups

$$
\begin{pmatrix}
I_n & 0 \\
0 & G_{n\times n}(\mathbb{R})
\end{pmatrix},
\begin{pmatrix}
I_n & M_{n\times n}(\mathbb{R}) \\
0 & G_n(\mathbb{R})
\end{pmatrix},
$$

of $G_{n\times n}(\mathbb{R})$. Then $BH \rightarrow BG$ is a homotopy equivalence. Indeed BH is hom. equiv. to the assoc. fibre space over BG with fibre G/H, and G/H is contractible.

The analogue of this result in alg. K-theory goes as follows. Let A be a ring (always supposed assoc. with 1) and let $GL_n(A) = UGL_n(A), \ M_{n\times n}(A) = U \ M_{n\times n}(A)$ under the standard inclusions.

Thm: The inclusion

$$
\begin{pmatrix}
I_n \\
0
\end{pmatrix} \subset
\begin{pmatrix}
I_n & M_{n\times n}(A) \\
0 & GL_{n\times n}(A)
\end{pmatrix}
$$

induces isomorphisms on homology with coefficients in any abelian group Λ equipped with trivial action.

(Improvement: Further inclusion \mathbb{A} is satisfied

If Λ is an abelian gp, let $H_\ast(G, \Lambda)$ denote the hom. of G with coefficients in Λ equipped with the trivial G-action. Say that $H \rightarrow G$ induces iso. in homology with constant coefficients if $H_\ast(H, \Lambda) \rightarrow H_\ast(G, \Lambda)$ for every abel. gp. Λ.

It is enough to check this for $\Lambda = \mathbb{Z}$, or also for each of the fields \mathbb{Q}, \mathbb{F}_p (prime).
Before beginning the proof, recall that $H_*(GL_n(A), \Lambda)$ has a ring structure when Λ is a ring defined as follows. One starts with the homomorphism

$$GL_p(A) \times GL_q(A) \to GL_{p+q}(A)$$

$$x \otimes \beta = (x \otimes 1) \cdot (1 \otimes \beta)$$

which induce pairings

$$\mu_{pq}: H_*(GL_p(A), \Lambda) \otimes H_*(GL_q(A), \Lambda) \to H_*(GL_{p+q}(A), \Lambda)$$

Example to show $n=\infty$ is necessary.

$$H_*(\left(\frac{1}{F_p}, F_p \right) = H_*(\left(\frac{1}{F_p}, F_p \right), F_p)$$

trivial as finite order $\text{im}(p)$ prime to p.

and since inner auto's of a group are trivial in homology, one gets that μ_{pq} is commutative (assuming Λ commutative). Precisely, one has a comm. diag.

$$H_*(G_p) \otimes H_*(G_q) \to H_*(G_p \times G_q) \to H_*(G_{p+q})$$

where $\tau(x \otimes y) = \tau(x) \otimes \tau(y)$, so $\mu_{pq} \tau = \mu_{pq}$. The point is that because of this commutativity μ_{pq} is compatible with passing from p to $p+1$, q to $q+1$.

$$G_p \times G_q \to G_{p+q} \Delta$$

$$(a \otimes \epsilon) \otimes \beta \sim (a \otimes \beta) \otimes \epsilon$$
Have associativity

\[(\alpha \# \beta) \# \gamma = \alpha \# (\beta \# \gamma)\]

and unity

\[\alpha \# \text{id} = \text{id} \# \alpha = \alpha\]

and commutativity up to conjugacy

\[\alpha \# \beta \sim \beta \# \alpha\]

Thus if \(\varepsilon = (1)\), we have

\[
\begin{align*}
G_p \times G_q & \longrightarrow G_{p+q} \\
(\alpha, \beta) & \longmapsto \alpha \# \beta \\
G_{p+1} \times G_q & \longrightarrow G_{p+q+1} \\
(\alpha \# \varepsilon, \beta) & \longmapsto (\alpha \# \varepsilon) \# \beta
\end{align*}
\]

so we get that \(\{\mu_{pq}\}\) are compatible with stabilization and define in the limit a map

\[\mu: H_\ast(G_\infty) \otimes H_\ast(G_\infty) \longrightarrow H_\ast(G_\infty)\]

\(\mu\) has the following properties:

i) associativity \(\mu(\mu \otimes \text{id}) = \mu(\text{id} \otimes \mu)\)

ii) unity \(\mu(1 \otimes x) = x\), where 1 denotes the image of the basepoint in \(H_0(G_\infty)\), a canonical generator

iii) commutativity \(\mu \tau = \mu\).

Demonstration of these. Put \(G_n = (\text{In Mon})\) and define

\[G_p \times G_q \stackrel{\tau}{\longrightarrow} G_{p+q}\]

\[
\begin{pmatrix} 1 & u \\ x & \beta \end{pmatrix} \circ \begin{pmatrix} 1 & v \\ \alpha & \gamma \end{pmatrix} = \begin{pmatrix} 1 & u + \alpha v \\ x & \beta + \gamma \end{pmatrix}
\]
This is assoc. + comm. up to conjugacy, so it induces a product on $H_*(G_\infty, \Lambda)$ as before.

\[
\begin{align*}
GL_n & \xrightarrow{\kappa_n} G_n & & \xrightarrow{\kappa_n} GL_n \\
\begin{pmatrix} \alpha & \end{pmatrix} & \mapsto \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} & & (1, \alpha) \mapsto \alpha \\
\end{align*}
\]

compatible with Θ, \perp hence induce alg. homos.

\[
\begin{align*}
H_*(G_\infty) & \xrightarrow{\kappa_*} H_*(G_\infty) & & \xrightarrow{\kappa_*} H_*(G_\infty) \\
\end{align*}
\]

\[
\begin{align*}
\eta_{\kappa_*} & = \text{id}. \\
\end{align*}
\]

Thus have to show that $\eta_{\kappa_*} \kappa_* = \text{id}$. Let $\eta_* \kappa_n = \psi_n$

\[
\begin{align*}
\psi_n \begin{pmatrix} 1 & u \\ x & 1 \end{pmatrix} & = \begin{pmatrix} 1 & \psi_n(u) \\ x & \psi_n(x) \end{pmatrix}
\end{align*}
\]

so that $\psi_* = \eta_* \kappa_*$. Identify:

\[
\begin{align*}
\begin{pmatrix} 1 & u \\ x & 1 \end{pmatrix} \begin{pmatrix} 1 & u \\ x & 1 \end{pmatrix} & \begin{pmatrix} 1 & u \\ x & 1 \end{pmatrix} \\
\end{align*}
\]

\[
\begin{align*}
\begin{pmatrix} 1 & u \\ x & 1 \end{pmatrix} \begin{pmatrix} 1 & u \\ x & 1 \end{pmatrix} & \begin{pmatrix} 1 & u \\ x & 1 \end{pmatrix} \\
\end{align*}
\]

\[
\begin{align*}
H_*(G) & \xrightarrow{\Delta} H_*(G) \otimes H_*(G) \\
\end{align*}
\]

\[
\begin{align*}
\xrightarrow{\text{id}} H_*(G) \times H_*(G) & \xrightarrow{\text{id}} H_*(G_\infty) \times H_*(G_\infty) \\
\end{align*}
\]

\[
\begin{align*}
\xrightarrow{\text{id}} H_*(G_\infty) \\
\end{align*}
\]

Reduce to case $\Lambda = \text{field}$ so that $H_*(X \times Y) = H_*(X) \otimes H_*(Y)$

and such that

\[
\Delta(x) = 1 \otimes x + \sum_i x_i \otimes x_i^{\text{deg}(x)}
\]

1 denoting a basepoint in $H_0(X)$.

Can pass to limit by yet

\[
\mu \Delta = \mu (\text{id} \otimes \psi_\ast) \Delta \quad \text{on} \quad H_*(G_\infty)
\]

so now can show $x = \psi_\ast(x)$ for $x \in H_*(G_\infty)$ by induction.
\[\chi + \sum \chi_i \mu(x_i^w) = \varphi(x) + \sum \chi_i \varphi(x_i^w) \]

Induction: \[\chi = \varphi(x) \]

Questions: Would this work for \(E(A) = U E_n(A) \)? Better \(SL_n(A) \)? Permutative category is a bit tricky.

Define exact sequence to consist of a normal exact sequence

\[0 \to V' \to V \to V'' \to 0 \]

such that

\[\Lambda^p V = \Lambda^p V' \otimes \Lambda^q V'' \]

\[\text{commutes.} \]

This is not a perm cat., because

\[V \oplus W \nRightarrow W \oplus V \]

is not compatible with orient.

\[v \to v^p \wedge \omega_5 \wedge \omega_6 \Lambda^p (V \oplus W) = \Lambda^p (W \oplus V) \]

\[v_i \to v_i^p \wedge \omega_5 \wedge \omega_6 \Lambda^p V \]

\[\omega \cdot \omega \wedge \Lambda^p V \]

\[\omega \cdot \omega \wedge \Lambda^p V \]

\[\omega \cdot \omega \wedge \Lambda^p V \]

\[(\omega \cdot \omega)_{(v_1 \wedge \cdots \wedge v_p \wedge \omega_5 \wedge \omega_6 \wedge \omega_7)} = (-1)^p \omega \cdot (v_1 \wedge \cdots \wedge v_p \wedge \omega_5 \wedge \omega_6 \wedge \omega_7) \]

\[(-1)^p \omega \cdot \omega
Maybe there is a moral here. It seems that the cat of vector spaces with volume is not a perm.

cat.

$SL_p \quad SL_q \quad SL_{p+q}$

What this example shows is that one cannot kill the K_1 without first killing K_0.

$K_2F \quad K_1F \quad K_0F$

$F^* \quad \mathbb{Z}$

Thus the problem is to construct a model for the theory beginning in dim 2.

Applications:

Cor. 1:

$H_\ast(Gl_\ast(A)) \simeq H_\ast(Gl_\ast(A)) \quad \text{mod } \quad M_{r\infty}(A)$

Proof:

Let G'

$\begin{array}{c}
1 \rightarrow H' \rightarrow G' \rightarrow Gl_r \rightarrow 1 \\
\downarrow \quad \quad \quad \downarrow \quad \quad \quad \downarrow \\
1 \rightarrow H \rightarrow G \rightarrow Gl_r \rightarrow 1
\end{array}$

$E_2^{pq} = H_p(Gl_r, H_q(H')) \Rightarrow H_{p+q}(G')$

$E_1^{pq} = H_p(Gl_r, H_q(H)) \Rightarrow H_{p+q}(G)$

Preceding $\Rightarrow H_\ast(H') \simeq H_\ast(H)$.

Cor. 2:

$H_\ast(Gl_\ast) \Rightarrow H_\ast(Gl_\ast)$
Remark: \[\text{GL}_n\left(\begin{array}{cc} A & A \\ 0 & A \end{array}\right) \cong \left(\begin{array}{cc} \text{GL}_n(A) & M_{m \times n}(A) \\ 0 & \text{GL}_n(A) \end{array}\right) \]

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cong \begin{pmatrix} e & f \\ g & h \end{pmatrix}
\]

\[\text{GL}_n(\mathbb{C}) = \text{Aut}(A \otimes A^*) \cong \text{Aut}(A^* \subset A^* \otimes A^*) \]

\text{Cor. 3: } H_*(\text{GL}_n(\begin{array}{cc} A & A \\ 0 & A \end{array})) \leftarrow H_*(\text{GL}_n(A))

Claim that to \(G \to \text{Aut}(P) \) \(P \in P(A) \), one has \(f^*: H_*(G) \to H_*(\text{GL}(A)) \),

such that \(\psi_1^* = \psi_2^* \quad \psi_1 \otimes \psi_2 = \psi_2 \otimes \psi_2 \)

\(\mathbb{E}_1, \mathbb{E}_2 \) trivial reps. In effect

\[
\text{rep}(G, A) = \bigoplus_{P} \text{Hom}(G, \text{Aut}(P))_{\text{iso. classes.}}
\]

\[
\text{proj}(G, A) = \lim_{\longrightarrow} \text{Hom}(G, \text{Aut}(P))_{\text{limit is taken over trans. cat.}}
\]

\[
= \lim_{\longrightarrow} \text{Hom}(G, \text{GL}(A))_{\text{cofinality}}
\]

\[
\longrightarrow \text{Hom}(\text{GL}(G), H_*(\text{GL}(A)))
\]

In down-to-earth terms, one chooses \(Q + P \otimes Q \to A^* \) and lets \(G \) act trivially on \(Q \), hence getting \(G \to \text{GL}(A) \).
Cor. 4: Let ρ be a repn. of G on P and suppose G leaves stable a flag $0 = P_0 \subset P_1 \subset \cdots \subset P_n = P$ s.t. $P_i/P_{i-1} \in \mathcal{P}(A)$. Let f_i be the ind. repn. of G on P_i/P_{i-1}. Then $f_* = (f_1 \oplus \cdots \oplus f_n)_*$.

Proof: Induction reduces me to $n=2$: if $f' = \text{id. repn. on } P_{n-1}$, then $f_* = f'_*(f_1 \oplus f_n)_* = (f_1 \oplus \cdots \oplus f_{n-1} \oplus f_n)_*$. Can suppose $n=2$, $P_1 = A^\lambda$, $P_2 = A^{\lambda + n}$.

Cor. 5: $H_i(G_{\infty}(F_q), F_p) = 0$, $q = p^d$, $i > 0$.

Proof: Sylow subgroup of $G_{\infty}(F_q)$ enough to show this is zero.