Problem: The space $L = \text{GL}_n(C[z, z^{-1}]) / \text{GL}_n(C[z])$, we have seen is a union of algebraic varieties, hence it has an etale homotopy type. The problem is to give an algebraic proof that $L \sim \Omega \text{GL}_n$.

Put $\Omega = \text{GL}_n(C[z, z^{-1}])$, so that we have a homotopy equivalence $\Omega \to L$. Then we have algebraic maps

$$\Omega \times \mathbb{G}_m \to \text{GL}_n \quad (\Omega \times 1) \to 1.$$

So if we give $S^1 \to (\mathbb{G}_m)_{et}$, then we ought to get a map

$$\Omega_{et} \times S^1 \to (\text{GL}_n)_{et}$$

which should give the desired homotopy equivalence $\Omega_{et} \to \Omega(\text{GL}_n)_{et}$.

Slight problem: Consider $n = 1$, whence $L = \mathbb{C}$. Then we would be trying to prove that $\Omega_{et} = \mathbb{C}$ which isn't true in the algebraic context. What in fact one has is

$$\mu_m \to \mathbb{G}_m \to \mathbb{G}_m$$

together with $\Omega = \mathbb{Z} \to \mathbb{Z}/m \to \mu_m$ given by a choice of primitive m-th root of unity.

The principal bundle of $A(\omega) = e^{2\pi i \omega} F(z)$ over GL_n I have constructed is not algebraic over GL_n. The problem is to somehow approximate
by an inverse system of algebraic gadgets.

Let us determine where

\[(*) \quad GL_n \rightarrow GL_n, \quad A \mapsto A^m\]

is étale. A tangent vector to GL_n at A is of the form $(I + \epsilon B)A$, $B \in M_n$.

\[
(I + \epsilon B)A]^m = (A + \epsilon BA)^m
= A^m + \epsilon \left[(BA)A^{m-1} + A(BA)A^{m-2} + \ldots + A^{m-1}(BA) \right]
\]

Right translate by A^{-m} to get a tangent vector at 0

\[
(I + \epsilon B)A]^mA^{-m} = I + \epsilon \left[B + ABA^{-1} + \ldots + A^{m-1}BA^{-(m-1)} \right]
= I + \epsilon \left[\frac{Ad(A)^m - 1}{Ad(A)} (B) \right]
\]

Thus we see by reasoning analogous to before that \((*)\) is étale at A if and only if no eigenvalue of

\[Ad(A)\]

is an m-th root of 1 $\neq 1$, hence if and only if no two eigenvalues of A have as ratios an m-th root of $1 \neq 1$.

Let A have eigenvalues \($\lambda_1, \ldots, \lambda_n$\) so that A^m has the eigenvalues \($\lambda_1^m, \ldots, \lambda_n^m$\). If

\[\lambda_i^m = \lambda_j^m\]

for some $i \neq j$, then $(\lambda_i^m \lambda_j^{-m})^m = 1$, and so if \((*)\) is étale at A, we must have $\lambda_i = \lambda_j$. Thus when we have an étale solution of $A^m = B$, the..
multiplicities of the eigenvalues \(\lambda \) of \(B \) equal the multiplicity of the eigenvalues \(\lambda^m \) of \(A_m \).
Moreover one has the following possibilities for \(A_m \).
If one breaks up \(\mathbb{C}^n \) according to the eigenspaces of \(B \), so that \(B \xi = \mu \xi \), then \(A_\xi = \lambda \xi \) where \(\lambda \) is one of the \(m \)-th roots of \(\mu \). Of course \(A_\xi = B_\xi^m \).
So we see any two etale solutions of \(A_m = B \) commute.

Summarizing.

\[
\text{Proposition:} \quad (i) \text{ The map } A \mapsto A^m \text{ from } GL_n \to GL_n \\
\text{is etale at } A \text{ if and only if for any two eigenvalues } \lambda, \lambda' \text{ of } A \text{ one has } \lambda^m = \lambda'^m \Rightarrow \lambda = \lambda'.
\]

\[(ii) \text{ Given } B \in GL_n, \text{ let } B \text{ have } k \text{ distinct eigenvalues } \mu_1, \mu_2, \ldots, \mu_k, \text{ say}
\]

\[
B_\xi = \sum_{i=1}^{k} \mu_i E_i
\]

Then any solution of \(A_m = B \) which is etale (i.e., a "simple" root) is of the form \(A = A_\xi A_n \) where

\[
A_n = (B_n)^{1/m}
\]

\[
A_\xi = \sum_{i=1}^{k} \lambda_i E_i \quad \text{where } \lambda_i^m = \mu_i
\]

In particular there are \(mk \) etale solutions and all these solutions commute with each other.
Notation: \(\Omega = \text{GL}_n(\mathbb{C}[z, z^{-1}])', \quad \Omega^{(m)} = \text{GL}_n(\mathbb{C}[z^m, z^{-m}])'. \)

\(\mathcal{P} = \) holomorphic maps \(\omega \mapsto A(\omega), C \rightarrow \text{GL}_n \)
of the form \(e^{2\pi i \omega} X F(e^{2\pi i \omega}) \)
where \(X \in \text{gl}_n \), \(F \in \Omega \).

\(\mathcal{P} \) is a principal \(\Omega \)-bundle over \(\text{GL}_n \)
the map \(\mathcal{P} \rightarrow \text{GL}_n \) being \(A \mapsto A(1) \).

Introduce an equivalence relation in \(\mathcal{P} \).
Call \(A_1(\omega) \) and \(A_2(\omega) \) equivalent if \(A_1(\omega)A_2(\omega)^{-1} \in \Omega^{(m)} \).
Because \(\Omega^{(m)} \) is a group, this is an
equivalence relation. Let \(\mathcal{P}_m \) denote the set of
equivalence classes. Observe that

\[A_1 \sim A_2 \implies A_1 F \sim A_2 F \text{ for any } F \in \Omega \]

hence \(\Omega \) acts to the right on \(\mathcal{P}_m \).
Observe also that \(A_1 \sim A_2 \) means

\[A_1(\omega) = \prod F(z^m) A_2(\omega) \quad \text{with} \quad z = e^{2\pi i \omega} \]

\[\implies A_1(1) = F(1) A_2(1) = A_2(1) \]

hence \(A_1 \sim A_2 \implies A_1 A_2 \) lie in the same fibre over \(\text{GL}_n \).
Thus we have an induced map

\[\mathcal{P}_m \rightarrow \text{GL}_n \]

Let \(C \in \text{GL}_n \), and choose \(X \in \text{gl}_n \) so that

\[e^{2\pi i \frac{1}{m}} X = C \]
If \(e^{2\pi i \frac{1}{m} Y} = C \) also, then we have seen that
\[
e^{2\pi i w X} e^{-2\pi i w Y} = e^{2\pi i (mw) \frac{1}{m} X} e^{-2\pi i (mw) \frac{1}{m} Y}
\]
Thus \(e^{2\pi i w X} \sim e^{2\pi i w Y} \). Thus we have a section

\[
\begin{array}{c}
\text{GL}_n \\
\downarrow m \\
\rho_m \longrightarrow \text{GL}_n
\end{array}
\]

\[
\begin{array}{c}
\text{e}^{2\pi i \frac{1}{m} X} \\
\downarrow m \\
\text{e}^{2\pi i X}
\end{array}
\]

I next want to compute the fibres of \(\rho_m \) over \(\text{GL}_n \). Fix \(C \in \text{GL}_n \), and choose \(X \) so that \(e^{2\pi i w X} = C \). Then since \(\Omega \) acts transitively on the fibre of \(\rho_m \) over \(C \), this fibre is \(\sigma \backslash \Omega \) where \(\sigma \) is the stabiliser of a point in the fibre, e.g. \(e^{2\pi i w X} \).

But \(F \in \sigma \iff \)
\[
e^{2\pi i w X} \sim e^{2\pi i w X} F
\]
\[
\iff F(e^{2\pi i w X}) = e^{2\pi i w X} F
\]
\[
\iff F \in e^{-2\pi i w X} \backslash \Omega(m) e^{2\pi i w X}
\]

Thus \(\sigma = \Omega \cap e^{-2\pi i w X} \backslash \Omega(m) e^{2\pi i w X} \) which shows that \(\rho_m \) isn't a fibre bundle over \(\text{GL}_n \), probably i.e. if \(f(w) = e^{-2\pi i w X} F(z) e^{2\pi i w X} \) then
\[
f(w+1) = C^{-1} f(w) C
\]
won't usually be periodic, so this makes me lose confidence in \(F_m \).

Let \(V \) be the open subset of \(\text{GL}_n \) consisting of matrices such that no two eigenvalues have as ratio an \(m \)-th root \(\lambda \neq 1 \); equiv., \(V \) is the open set where the \(m \)-th power map \(\text{GL}_n \to \text{GL}_n \) is etale.

The analogous subset \(U \subset \text{GL}_n \) is defined to be where \(e^{2\pi i t} \) is etale, thus on \(U \) no two eigenvalues differ by an integer \(\neq 0 \). Given two points in \(U \) with the same image \(C \in \text{GL}_n \), their difference is a semi-simple matrix with integer coeffs.

Given \(A, B \in V \) with \(A^m = B^m = C \), we know that \(A, B \) commute and that \(A^{-1}B \) is a matrix of order \(m \), i.e. a homomorphism \(\mathbb{Z}/m\mathbb{Z} \to \text{GL}_n \).
November 22, 1974.

Problem: Find the universal group G equipped with a continuous map $\varphi: \{ A \in GL_n \mid A^m = 1 \} \to G$ such that $\varphi(AB) = \varphi(A) \varphi(B)$ if A, B commute. As an example of such G, we have

$$G = \prod_{i=1}^{n-1} GL_n \quad \varphi(A) = (A^i)$$

but the hope is that the universal G is somehow richer.

Analogous problem: Find the universal map

$$\varphi: \{ X \in oGL_n \mid \exp(2\pi i X) = 1 \} \to G$$

such that $\varphi(X+Y) = \varphi(X) \varphi(Y)$ if $(X,Y) = 1$

Example: $G = G_n \left(\mathbb{C} I_3 2^{-1} \right)'$, $\varphi(X) = z^X$. I hope this is universal.

$$\{ X \mid e^{2\pi i X} = 1 \} \to G$$

whence we find that Ω is a normal subgroup generated by z^X, $e^{2\pi i \frac{1}{m} X} = 1$ is the universal group for the mod m problem. It seems fairly certain that the subgroup of Ω generated by z^X with $e^{2\pi i \frac{1}{m} X} = 1$, is $\Omega^{(m)} = GL_n (C[z, z^{-m}])$, and that $\Omega^{(m)}$ would have to
Let N be the normal subgroup of Ω generated by $\Omega^{(m)}$. Then since $\Omega^{(m)}$ is stable under conjugation by constant matrices, so must N be, hence N is normal in $\Omega \rtimes \text{GL}_n = \text{GL}_n(\mathbb{C}[z, z^{-1}])$. Now Bass has proved, I think, that normal subgroups of $\text{GL}_n(\mathbb{C}[z, z^{-1}])$ are all congruence subgroups essentially, hence it should follow that $N = \ker \{ \text{GL}_n(\mathbb{C}[z, z^{-1}]) \to \text{GL}_n(\mathbb{C}[z]/(z^{n-1})) \}$. Therefore the mod m universal group should be

\[
\text{image of } \text{GL}_n(\mathbb{C}[z, z^{-1}]) \rtimes_\mu \prod_{i=1}^{m-1} \text{GL}_n = \text{GL}_n(\mathbb{C}[z, z^{-1}]/(z^m))
\]

functions $\{ \mu_n \to \mathbb{C} \}$

Conclusion: This isn't going to work.

So far we have tried to form over GL_n a fibre bundle with fibre Ω mod m which would be algebraic. One might also examine the restriction of P to the points of order M in GL_n. This restriction is the subset of P consisting of $A(\omega)$ such that $A(1)^m = A(\omega)^m = 1$, i.e. $A(\omega + m) = A(\omega)$, which means $A(\omega) = B(e^{2\pi i \frac{\omega}{2^n}}) = B(2^k \omega)$. Call this restriction $P^{(m)}$. Thus

$P^{(m)} \subseteq \Omega^{(m)}$

and for $B(y) \in \Omega^{(n)}$,y^{2^n}
to be in $\mathfrak{p}^{(m)}$ means that $B(5y) = B(5)B(y)$,

Assertion: $\Omega/\Omega^{(m)}$ is fiber of $m: GL_n \rightarrow GL_n$.

Proof: We have a map of fibrations

$\Omega \rightarrow P \rightarrow GL_n$

$\downarrow \quad \downarrow \quad \downarrow m$

$\Omega \rightarrow P \rightarrow GL_n$

$\alpha_m : A \mapsto A(m \omega)$

and $\Omega/\Omega^{(m)} = \Omega^{(m)}$. Thus one has a fibration

$\Omega/\Omega^{(m)} \rightarrow P/\Omega^{(m)} \rightarrow GL_n$

β^2 leg as P, $\alpha_m P$ are contractible

$s_m P/\Omega^{(m)}$

$P/\Omega = GL_n$

and the induced map lifts $C \in GL_n$ to $A \in P$, $A(\omega) = C$, which goes into $s_m A = A(m \omega)$, which projects to $A(m) = C^m$ in GL_n. Q.E.D.
This raises the question of whether I can algebraically map \(\Omega/\Omega^{(m)} \) into \(GL_n \), and homotop the composition to the basepoint.

\[
\begin{array}{ccc}
\Omega & \to & P \\
\alpha & \mapsto & ? \\
\alpha & \mapsto & GL_n
\end{array}
\]

Example: Suppose we have an element of \(\Omega \) given by a 1-parameter subgroup \(\alpha: \mathbb{G}_m \to GL_n \). Then the element of \(GL_n \) I want is \(\alpha(1) \), \(\alpha = \exp(2\pi i \frac{m}{n}) \). Yes, because the image of \(\alpha \) actually sits in \(\alpha \cdot GL_n \). \(\alpha \cdot GL_n \) is the set of \(A \in GL_n \) such that \(A(\alpha) = A(\alpha') \cdot A(\beta) \) and this includes 1-parameter subgroups.

Problem: To define "algebraically" a map \(\Omega/\Omega^{(m)} \to GL_n \) whose comp. with \(\alpha \) is homotopically trivial. In the case \(n=1 \) this amounts to giving a \(\mathbb{G}_m \) generating \(\mu_m \).

Example: If \(F \in \Omega \) satisfies \(F(\alpha^2) = CF(\alpha) \) (so \(C = F(1) \)), then we want to map \(F \) to \(F(\alpha) \).

One thing you might try is to take \(F \in \Omega \) send it to \(F(\alpha) \), then use the universal homotopy \(F(\alpha^m) \simeq F(\alpha)^m \).
Another thing to try is the following. As we've done before let us identify a path $I \to \text{GL}_n$ with a continuous map $\omega \mapsto f(\omega)$ from I to GL_n such that $f(\omega + 1) = f(1)f(\omega)$. Then for any $\lambda \in \mathbb{R}$, we have

$$\omega \mapsto f(\omega + \lambda)f(\lambda)^{-1}$$

satisfies

$$f(\omega + 1 + \lambda)f(\lambda)^{-1} = f(1)f(\omega + \lambda)f(\lambda)^{-1}$$

$$= [f(1 + \lambda)f(\lambda)^{-1}]f(\omega + \lambda)f(\lambda)^{-1}$$

hence $f \mapsto f(1 + \lambda)f(\lambda)^{-1}$ is a map of the path space of GL_n to itself, which covers the identity map of GL_n. Thus the induced map on the fibre BGL_n must be homotopic to the identity. Thus we have proved:

Assertion: The map $F(\zeta) \mapsto F(1 + \zeta)F(\zeta)^{-1}$ from I to itself is homotopic to the identity map. Here $\zeta \in \mathbb{C}^*$.

Direct proof: Pick a path ζ_t joining ζ to 1. Then clearly $F(1 + \zeta)F(\zeta)^{-1}$ is the path we need. Another version:

$$A(\zeta) \mapsto A(\zeta + \lambda)A(\lambda)^{-1} \quad \lambda \in \mathbb{C}$$

maps P into itself:

$$(e^{2\pi i (1 + \zeta)}F(e^{2\pi i (1 + \zeta)}F(1 + \zeta)^{-1}2\pi i \zeta)$$

$$e^{2\pi i \zeta}F(e^{2\pi i \zeta})$$

and covers the identity map of GL_n.
Thus we know that $F \Rightarrow F(sz)F(s)^{-1}$ is homotopic to the identity. Hence
\[F \rightarrow F(z), \ F(sz)F(s)^{-1}, \ F(s^2z)F(s)^{-2}, \ldots, \ F(s^mz)F(s)^{-m} \]
are homotopic, giving a canonical homotopy of $F(s)^m$ to 1.
Nov. 24, 1979 - Review.

Over \mathbb{C} I can show that $\Omega = \text{GL}_n(\mathbb{C}[x, x^{-1}])$ is homotopy equivalent to ΩGL_n by exhibiting a principal bundle:

$$\Omega \rightarrow P \rightarrow \text{GL}_n$$

with P contractible. P is a holomorphic gadget which is trivialized by $\exp 2\pi i : \text{GL}_n \rightarrow \text{GL}_n$. ($P$ can probably be described algebraically, but not the map $P \rightarrow \text{GL}_n$.)

(Alg. description of P: Take pairs (X, F) with $X \in \text{gl}_n$, $F \in \Omega$. Introduce an equivalence relation $(X, F) \sim (X_1, F_1) \iff e^{2\pi i \omega X} F(z) = e^{2\pi i \omega X} F_1(z)$ as functions, i.e. if their Taylor power series at $\omega = 0$ coincide. For example, $e^{2\pi i \omega X} F(z) = 1$ \iff

$$\frac{1}{2\pi i} \frac{d}{d\omega} (e^{2\pi i \omega X} F(z)) = e^{2\pi i \omega X} (XF(z) + z F'(z)) = 0 \iff XF(z) + z F'(z) = 0.$$}

Basic problem: give an algebraic proof that $(\Omega)_{et}$ and $\Omega(\text{GL}_n)_{et}$ have the same profinite completions, or maybe even that $\Omega(\text{GL}_n)_{et}$ is the profinite completion of $(\Omega)_{et}$.

I know that the map $\Omega \rightarrow \Omega$, $F(x) \mapsto F(z^n)$ corresponds to looping the map $\text{GL}_n \rightarrow \text{GL}_n$, $A \mapsto A^n$.
If I write $\Omega^{(m)}$ for the image, then I know that $\Omega/\Omega^{(m)}$ is homotopy equivalent to the fibre of $\text{Gl}_n \to \text{Gl}_n$. So the point therefore is to show that one has $(\Omega/\Omega^{(m)})_\ast = \text{fibre of } m : (\text{Gl})_{\ast \text{et}} \to \mathbb{C}$.

Action of G_m on Ω:

$$(\varphi_\lambda F)(z) = F(\lambda z)F(\lambda)^{-1}$$

$$(\varphi_\lambda \varphi_\mu F)(z) = (\varphi_\mu F)(\lambda z)(\varphi_\mu F)(\lambda)^{-1}$$

$$= F(\mu \lambda z) F(\mu)^{-1} \left[F(\mu \lambda) F(\mu)^{-1} \right]^{-1}$$

$$= (\varphi_{\mu \lambda} F)(z).$$

So I am now interested in the action of μ_m on Ω.

Change notation:

$$(\varphi_\lambda F)(z) = F(\lambda)^{-1} F(\lambda z).$$

Now what are the fibres of μ_m?

$F(z) = (\varphi_\mu F)(\lambda z) = F(\lambda)^{-1} F(\mu z) = F(\lambda)^{-1} F(\mu z) = F(1)^{-1} F(z) \mu_m.$

This means:

$$0 \leq L \leq 1 \implies (\varphi_{1/L}) = F(1)^{-1} F(z).$$

Anyway, I know that the map $\Omega^{(m)} \to \Omega \to \Omega/\Omega^{(m)} \to \text{Gl}_n \to \text{Gl}_n$ is given by sending F to $F(1)$. Of course you
want to understand why composing with \(F(\delta) \to F(\delta)^m \) is null-homotopic.

Problem: Show: \(\Omega/\Omega(\mathfrak{m}) \xrightarrow{\delta} GL_n \to GL_n \) is null-homotopic.

Method:

\[
\Omega/\Omega(\mathfrak{m}) \xrightarrow{\delta} \mathcal{P}/\mathcal{P}(\mathfrak{m}) \xrightarrow{\text{hug}} GL_n \nabla GL_n
\]

So we have \(F \in \Omega \) and want to homotop it to something in \(\mathcal{P}(\mathfrak{m}) = \{ A \mid A(\omega + \frac{1}{m}) = A(\frac{1}{m}) A(\omega) \} \) and then take \(A(\frac{1}{m}) \).

Problem: I define a map \(\Omega/\Omega(\mathfrak{m}) \to GL_n \) in the homotopy category using

\[
\Omega/\Omega(\mathfrak{m}) \xrightarrow{\delta} \mathcal{P}/\mathcal{P}(\mathfrak{m}) \xrightarrow{\text{hug}} GL_n
\]

Show this map is given by \(F(\varepsilon) \Omega(\mathfrak{m}) \to F(\delta) \).

Prop: i) The action of \(C \) on \(\mathcal{P} \) by

If \(\alpha \in C \)

\[(\xi_\alpha A)(\omega) = A(\alpha)^{-1} A(\alpha + \omega) \]

ii) \(\mathcal{P}(\mathfrak{m}) = \{ A \mid \xi_\alpha A = A \} \).