October 11, 1974:

Given \(U_1 < U_2 < U_3 < U_4 \) with \(\dim U_2/U_1 = \dim U_4/U_3 = 1 \), we associate a Schubert cell

\[C(U_1,\ldots,U_4) = \{ A \in G_2 V \mid A \cap U_1 < A \cap U_2 = A \cap U_3 < A \cap U_4 = A \} \]

If \(U_2 = U_3 \), then this cell depends only on \((U_1, U_4) \) and we use the notation

\[C(U_1, U_4) = \{ A \in G_2 V \mid A \cap U_1 = U_4 \} \].

I want to determine the various inclusions which hold between these cells.

Suppose \((U_1,\ldots,U_4) \in L_1(V) \) and \((W_1, W_2) \in L_2(V) \) and \(C(U_1,\ldots,U_4) \subset C(W_1, W_2) \). \(C(U_1,\ldots,U_4) \) is set of planes of the form \(A = L_1 \oplus L_2 \), where \(L_1 \in PU_2 - PU_1 \) and \(L_2 \in PU_4 - PU_3 \). Such lines \(L_2 \) span \(U_4 \) so \(U_4 \subset W_2 \). Since any \(A \) in \(C(W_1, W_2) \) contained in \(U_4 \) belongs to \(C(U_1,\ldots,U_4) \), we have

\[C(U_1,\ldots,U_4) \subset C(U_4 \cap W_1, U_4) \]

Put \(V = U_4 \cap W_1 \).

If \(V < U_3 \), then we can find \(L_2 \in PU_2 \cap V - PU_3 \) whence \(A = L_1 \oplus L_2 \) (any \(L_1 \) is not ind. of \(V \)). Thus \(V < U_3 \).
\[(PU_2 - PU_1) \cap PV = \emptyset \Rightarrow PU_1 = PU_2 \cap PV\]

\[\Rightarrow U_1 \supset U_2 \cap V, \text{ hence } U_1 = U_2 \cap W \text{ as the intersection is at most of codim 1. Thus we get the picture}\]

\[
\begin{array}{c}
W_2 \\
\downarrow \quad U_2 \\
\downarrow \\
U_1 = U_4 \cap W_1 \\
\end{array}
\]

\[
\text{Prof. of } \quad C(U_1, U_4) \subset C(W_1, W_2), \text{ then } U_1 \subset W_1, \quad U_4 \subset W_2, \quad \text{and } U_4 \cap W_1 \subset U_3
\]

\[
(U_1, U_2) \preceq (U_4 \cap W_1, U_3).
\]

Suppose now that \(C(W_1, W_2) \subset C(U_1, \ldots, U_4)\), then for every choice of \(V\),

\[
\begin{array}{c}
W_2 \\
\downarrow \quad U_2 \\
\downarrow \\
U_1 \subset V
\end{array}
\]

\(W_1, W_2 \subset (V \cup U_4)\). It follows that \(W_1 \cup U_1\).
Thus what's happening is that we take \((W_1, W_2)\) and break it into \((W_1, W_2 \cup U_3)\) and \((W_2 \cup U_3, W_2)\) and map these to \((U_1, U_2)\) and \((U_3, U_4)\). So

\[
\text{Prop: If } C(W_1, W_2) < C(U_1, U_2, U_3, U_4), \text{ then there is a unique } W_1 < H < W_2 \text{ such that } (W_1, H, H, W_2) < (U_1, U_2, U_3, U_4) \text{ in } L_{11}(V).
\]

Finally suppose \(C(W_1, W_2, V_3, V_4) < C(U_1, U_2, U_3, U_4)\).

Assuming \(V_2 < V_3\), \(U_2 < U_3\), I want to prove \((V_1, V_2, V_3, V_4) \leq (U_1, U_2, U_3, U_4)\) in \(L_{11}(V)\). We know already that \(V_4 < U_4\), \(V_1 < U_1\), so we can assume \(V_1 = 0\), \(U_4 = V\). This means that

\[
C(V_1, V_2, V_3, V_4) = \{ V_2 \oplus L_2 \mid L_2 \in P(V_4) - P(V_3) \}.
\]

Now for any such thing \(V_2 \oplus L_2 \rightarrow U_4 / U_3\), I want to show \(V_2 < U_3\). Assume not, i.e.

\[
V_2 \geq U_4 / U_3.
\]

Then

\[
(V_2 \oplus L_2) \cap U_2 \geq U_2.
\]

Try to show \(V_3 < U_3\). Note that \(V_4 \rightarrow U_4 / U_3\) and \(V_3, V_4 \cap U_3\) are hyperplanes in \(V_4\). If \(V_3 \neq V_4 \cap U_3\) can find \(L_2 \in P(V_4) - P(V_3)\), whence \(V_2 \oplus L_2 \rightarrow U_4 / U_3\).
showing that \(V_2 \to U_4/U_3 \). But then we know \((V_2 \oplus L_2) \cap U_3 = L_2 \), so \(L_2 \) must be a complement for \(U_1 \) in \(U_2 \). Thus

\[
P(V_4 \cap U_3) - PV_3 \subset PU_2 - PU_1
\]

\[\text{Check: } V_4 \to U_4/U_3 \Rightarrow V_4 \cap U_3 \text{ is a hyperplane in } V_4. \text{ If this hyperplane differs from } V_3, \text{ then I can find } L_2 \in P(V_4 \cap U_3) - PV_3. \text{ Then taking } A = L_1 \oplus L_2, \text{ any } L_1 \in PV_2 - PV_1 \text{ I get}
\]

\[L_1 \oplus L_2 \to U_4/U_3\]

\[\text{So } L_1 \to U_4/U_3 \Rightarrow PV_2 - PV_1 \subset PU_4 - PU_3 \Rightarrow (V_1, V_2) \leq (U_3, U_4)\]

But more: I know \(A \cap U_2 = A \cap U_3 = L_2 \) is a complement for \(U_4 \) in \(U_2 \). Thus

\[
P(V_4 \cap U_3) - PV_3 \subset PU_2 - PU_1
\]
\((V_3 \cap U_3, V_4 \cap U_3) \leq (U_1, U_2) \)

\[\Rightarrow V_4 \cap U_3 = V_4 \cap U_2 \quad V_3 \cap U_3 = V_3 \cap U_1 = V_4 \cap U_1 \]

Somehow (assuming \(V_1 = 0 \) again so \(L_1 = V_2 \)), the point is that if \(V_2 \Rightarrow U_4/U_3 \), then any plane \(A = V_2 \oplus L_2 \) has a canonical choice for \(L_2 \), namely \(A \cap U_3 = A \cap U_2 \) which is a line in \(V_4 \cap U_2 \).

Normally on \(C(V_1, V_4) \) there is no canonical way of splitting the exact sequence

\[0 \rightarrow V_2/V_1 \rightarrow A \rightarrow V_4/V_3 \rightarrow 0. \]

But the complement \(U_3 \) for \(V_1 \) does this. But then the A's I get will be in \(V_2 \oplus V_4 \cap U_2 \) so we will have to have

\[V_2 \oplus (V_4 \cap U_2) = V_4 \]

\[V_4 \cap U_2 = V_4 \cap U_3 \quad \text{codim 1} \]

So what I have managed to finish is

\[C(V_1, V_2, V_3, V_4) \subset C(V_4 \cap U_1, \leq V_4 \cap U_2 = V_4 \cap U_3 \leq V_4) \]
So \(C(V_1, V_2, V_3, V_4) \subseteq C(V_4 \cap U_1, V_4) \subseteq C(U_1, U_4) \).

This inclusion results from

\[V_4 \]

\[V_2 \quad V_3 \]

\[V_1 \quad V_4 \cap U_1 \]

So the first inclusion implies \(V_4 \cap U_1 \) is comp. to \(V_2 \) in \(V_3 \). Can this happen? Seems so.

Example of the inclusion.

\[
\begin{array}{ccc}
V_4 & V_4 & U_4 \\
V_2 & V_3 & U_2 - U_3 \\
V_1 & \Gamma & \Gamma = U_1
\end{array}
\]
Start again: Assume \(C(V_1, V_4) \subset C(U_1, U_4) \).

Then choosing \(T \subset V_4 \) suitably I have
\(C(V_1, T) \subset C(V_1, V_4) \), showing by my earlier work that \(V_1 \subset U_1 \).
Similarly, choosing \(W \subset U_3 \) suitably I have
\(C(U_1, U_4) \subset C(W, U_4) \), so again by earlier work I will have \(V_4 \subset U_4 \).

Since \(V_4 \rightarrow U_4/U_3 \), \(V_4 \cap U_3 \) is a hyperplane in \(V_4 \).

Case 1: \(V_3 \neq V_4 \cap U_3 \).

Then we can choose \(L_2 \in P(V_4 \cap U_3) - PV_3 \). If \(L_1 \) in any elt of \(PV_2 - PV_1 \), then \(L_1 + L_2 \in C(V_1, V_4) \), hence \(L_1 + L_2 \rightarrow U_4/U_3 \), \(L_1 \rightarrow U_4/U_3 \). Thus one has:

\[
\begin{align*}
V_2 &- V_4 - U_4 \\
V_1 &- V_4 \cap U_3 - U_3
\end{align*}
\]

In addition, we know
\(L_2 = (L_1 + L_2) \cap U_3 = (L_1 + L_2) \cap U_2 \).
This mod \(V_1 \), \(V_2 \) and \(V_4 \cap V_3 \) are complementary in \(V_4 \). This means that for every \(A \) in \(C(V_1, V_4) \)
\[
A = (V_4 \cap A) \oplus (U_3 \cap A) = (V_4 \cap A) \oplus (U_2 \cap A)
\]
where \(U_2 \cap A \in (PU_2 - PU_1) \cap P(V_4 \cap U_3) = P(U_2 \cap V_4) - P(U_1 \cap V_4) \)
Summary: Suppose that
\[C(V_1, \ldots, V_4) \subset C(U_1, \ldots, U_4). \]

Then \(V_1 \subset U_1, V_4 \subset U_4. \)

Case 1. \(V_3 \neq V_4 \cap U_3. \) In this case the inclusion factors
\[C(V_1, \ldots, V_4) \subset C(V_4 \cap U_1, V_4) \subset C(U_1, \ldots, U_4) \]

\[
\begin{pmatrix} V_4 \\ V_2 \\ V_3 \\ V_1 \end{pmatrix} \preceq \begin{pmatrix} V_4 \\ V_4 \cap U_1 \\ V_4 \cap U_3 \\ V_4 \cap U_1 \end{pmatrix} \preceq \begin{pmatrix} U_4 \\ U_2 - U_3 \\ U_1 \end{pmatrix}
\]

So what I would like to say is that in this case there is a unique interval in \(L_2(V) \) consisting of layers \((W_1, W_2) \) such that
\[C(V_1, \ldots, V_4) \subset C(W_1, W_2) \subset C(U_1, \ldots, U_4). \]

The least layer is \((V_4 \cap U_1, V_4) \), the largest \((U_1, V_4 + U_4) \).
Case 2: $V_3 = V_4 \cap U_3$. In this case one should have also that $V_2 + U_1 = U_2$, so that $(V_1, \ldots, V_4) \leq (U_1, \ldots, U_4)$ in $L_{11}(V)$.

I further hope that the poset of Schubert cells described the following category. Objects are of two kinds:

i) two lines L_1, L_2

ii) a 2-plane M

Following maps:

- isoms. $M \xrightarrow{\sim} M'$
- maps $(L_1, L_2) \xrightarrow{\sim} M$ for any exact sequence $0 \rightarrow L_1 \rightarrow M \rightarrow L_2 \rightarrow 0$

Finally a map $(L_1, L_2) \rightarrow (L'_1, L'_2)$ for any isomorphism $L_1 \oplus L_2 \rightarrow L'_1 \oplus L'_2$.
October 13, 1977.

Idea: The poset $S_{k_2}(V)$ of Schubert cells in $G_2(V)$ should be the classifying space of some category made up out of vector spaces, which I could construct as follows.

$$\mathcal{C}(W_1, W_2) \hookrightarrow W_2/W_1$$ 2 dim $v.s.$

$$\mathcal{C}(u_1, u_2, u_3, u_4) \hookrightarrow (u_2/u_1, u_4/u_3)$$ pair of lines

Then I want to define morphism so that I get a functor.

$$\mathcal{C}(W'_1, W'_2) \leq \mathcal{C}(W_1, W_2) \hookrightarrow W'_2/W'_1 \cong W_2/W_1$$

$$\mathcal{C}(u_1', ..., u_4') \leq \mathcal{C}(u_1, ..., u_4) \hookrightarrow \circ \rightarrow u_2/u_1 \rightarrow W_2/W_1 \rightarrow u_4/u_3 \rightarrow \circ$$

$$\mathcal{C}(W_1, W_2) \leq \mathcal{C}(u_1, ..., u_4) \hookrightarrow \circ \rightarrow u_2/u_1 \rightarrow W_2/W_1 \rightarrow u_4/u_3 \rightarrow \circ$$

$$\mathcal{C}(V_1, V_4) \leq \mathcal{C}(u_1, ..., u_4') \hookrightarrow \text{either } (V_2/V_1, V_4/V_3') = (u_1'/u_1, u_4'/u_3) \text{ or } (V_2/V_1, V_4/V_3) = (u_1, u_3, u_2, u_4)$$

A problem is that if I have $\mathcal{C}(W'_1, W'_2) \subset \mathcal{C}(u_1, u_2, u_3, u_4)$ and $\mathcal{C}(W_1, W_2)$, I then get

$$\circ \rightarrow u_2/u_1 \quad \rightarrow \quad W'_2/W'_1 \rightarrow \quad u_4/u_3 \rightarrow \circ$$

$$\circ \rightarrow W_2/W_1 \quad \rightarrow \quad u_4/u_3 \rightarrow \circ$$
and I can't seem to deduce the isomorphism \(W_2/W_1 \approx W_3/W_1 \). So something here doesn't work.

Question: I know that the subset \(\Sigma_2 \times (F^*)^2 \) of the classifying space for \(GL_2 \) is consisting of cells \(C(U_1, \ldots, U_4) \) with \(U_1 < U_2 < U_3 < U_4 \). Is the complement subset a classifying space for \(\Sigma_2 \times (F^*)^2 \)?

Alternative approach.

Try classifying Schubert cells close to a fixed one.

Every Schubert cell gives us a pair of integers \((i, j)\) with \(0 \leq i \leq j\). The integers associated to \(U_1 < U_2 < U_3 < U_4 \) are

\[
\begin{align*}
 i &= \dim U_1 = \dim PU_2 - PU_1 \\
 j &= \dim U_3 - 1 = \dim PU_4 - PU_3 - 1
\end{align*}
\]

and the dimension of the Schubert cell is \(i + j\). We have seen that \(C(U_1, \ldots, U_4) \subset C(V_1, \ldots, V_4) \Rightarrow U_4 \subset V_4 \).
hence \((i, j) \leq (i', j')\) for the product ordering.

It is natural to ask if by using simplices \(C_0 < \cdots < C_k\) with small distance we get a homotopy equivalent complex.
October 15, 1974

Still trying to prove the following conjecture:

\[
\begin{align*}
L_1^1(V) & \rightarrow L_2^2(V) \\
\downarrow & \downarrow \\
L_1^1(V) & \rightarrow S_h^2(V)
\end{align*}
\]

\[\dim V = \infty\]

is homotopy-cocartesian. Here \(L_2^2(V)\) is poset of layers \((W_1, W_2)\) in \(V\) with \(\dim (W_2/W_1) = 2\), \(L_1^1(V)\) is poset of layers \((U_1, U_2, U_3, U_4)\) with \(\dim U_2/U_1 = \dim U_4/U_3 = 1\), and \(L_1^1(V)\) is subposet with \(U_2 = U_3\).

What this conjecture says is

\[
B S_h^2(V) = B T_2(k) \cup B GL_2(k) \cup B B_2(k)
\]

\((k = \text{field under consideration})\).

So to prove this conjecture, it is undoubtedly necessary to understand more about inclusions between Schubert cells.

Case 1: \(C(W'_1, W'_2) \subset C(W_1, W_2)\). Then \\
\(W'_2 \subset W_2\).
are of codim 2 in \(W_1 \). If \(W' \neq W_2 \cap W_1 \), then \(\exists L \in (PW_2' \cap PW_1) \setminus PW_1 \). \(L \) can be extended to \(A \in C(W_1' W_2') \) not in \(C(W_1, W_2) \). Thus \(W_1' = W_2' \cap W_1 \).

Therefore
\[
C(W_1', W_2') \subset C(W_1, W_2) \iff (W_1', W_2') \subset (W_1, W_2)
\]

Case 2: \(C(U_1, U_2, U_3, U_4) \subset C(W_1, W_2) \). Again \(U_4 \subset W_2 \). Since \(U_4 \to W_2 / W_1 \), one has \((U_4 \cap W_1, U_4) \subset (W_1, W_2) \) and \(C(U_1, U_2, U_3, U_4) \subset C(U_4 \cap W_1, U_4) \).

If \(U_4 \cap W_1 \neq U_3 \), then we can find \(L_1 \in PU_2 \cap PW_1 - PU_1 \) so for any \(L_1 \in PU_2 - PU_1 \), we have \(L_1 \oplus L_2 \subset C(U_4 \cap W_1, U_4) \) but \(L_1 \oplus L_2 \in C(U_4 \cap W_1, U_4) \). Thus \(U_4 \cap W_1 \subset U_3 \).

If \(U_4 \cap W_1 = U_3 \), then taking any \(L_1 \) and \(L_2 \), we would have \(L_1 \oplus L_2 \subset C(U_4 \cap W_1, U_4) \). Thus \(U_2 \cap U_4 \cap W_1 \) is a hyperplane in \(U_3 \).

If \(U_2 \cap U_4 \cap W_1 \), then \(\exists L_1 \in PU_2 \cap PW_1 - PU_1 \) so for any \(L_2 \), we have \(L_1 \oplus L_2 \subset C(U_4 \cap W_1, U_4) - C(W_1, W_2) \). Thus \(U_2 \cap W_1 \subset U_1 \). Since \(U_2 \cap W_1 = U_2 \cap (U_4 \cap W_1) \) and \(U_4 \cap W_1 \) is a hyperplane in \(U_3 \), it follows that \(\text{cod}(U_2 \cap W_1 \subset U_1) \leq 1 \). \(\therefore U_2 \cap W_1 = U_1 \). So we find the picture.
Case 3: \(C(W_1, W_2) \subseteq C(U_1, U_2, U_3, U_4) \). Again, consider the filtration \(W_2 \cap U_1 \subseteq W_2 \cap U_2 \subseteq W_2 \cap U_3 \subseteq W_2 \cap U_4 \). As \(W_2 \to U_4/U_3 \), \(W_2 \cap U_3 \) is a hyperplane in \(W_2 \), since for \(A \in C(W_1, W_2) \), \(A \cap U_2 \to W_2 \cap U_2/ U_2 \cap U_1 \to U_2/ U_1 \) is an isomorphism, it follows \(W_2 \cap U_1 \) is a hyperplane in \(W_2 \cap U_2 \).

As \(W_2 \cap U_3 \) is a hyperplane in \(W_2 \), if \(W_2 \cap U_4 \), then we can find \(A \in C(W_1, U_3, W_2 \cap U_3) \subseteq C(W_1, W_2) \), and then \(A \to U_4/U_3 \) is zero, contradiction. Thus \(W_1 \subseteq W_2 \cap U_3 \), so \(W_1 \) is a hyperplane in \(W_2 \cap U_3 \).

Fix \(L \in P(W_2) - P(W_2 \cap U_3) \); then if \(L \in P(W_2 \cap U_3) - P(W_1) \) and \(L \cap L' \in C(U_1, \ldots, U_4) \)

\[\text{ then } (L \cap L') \cap U_2 = (L \cap L') \cap U_3 = L. \]

Thus \(W_2 \cap U_3 \) is a hyperplane in \(W_2 \cap U_3 \), so for dimensional reasons \(W_2 \cap U_2 = W_2 \cap U_3 \). Thus we
get the picture

Case 4a: \(C(V_1, V_2, V_3, V_4) \subset C(U_1, U_2, U_3, U_4) \)

If one chooses a \(W_2' \) and \(W_1 \) so that

\[
\begin{array}{c}
W_2' \\
V_2 \\
V_1
\end{array} \quad \begin{array}{c}
V_4 \\
V_3 \\
V_1
\end{array} \quad \begin{array}{c}
U_2 \\
U_3 \\
W_1
\end{array}
\]

then we have \(C(V_1, W_2') \subset C(V_1, V_4) \subset C(U_1, U_4) \subset C(W_1, U_4) \), hence \((V_1, W_2') \leq (W_1, U_4) \). Thus we will get by using all possible choices for \(W_2' \) that \(V_4 \subset U_4 \), and by using all possible choices for \(W_1 \) that \(V_1 \subset U_1 \).

Consider the map \(V_2/V_1 \rightarrow U_4/U_3 \)

Case 4a: This map is zero, i.e. \(V_2 \subset U_3 \).
If \(L_1 \in PV_2 - PV_1 \), \(L_2 \in PV_4 - PV_3 \), then \(L_1 \oplus L_2 \in C(V_1 \cap V_4) < C(U_1 \cap U_4) \), hence \(L_1 \oplus L_2 \rightarrow u_4 / u_3 \Rightarrow (L_1 \oplus L_2) \cap U_3 = L_1 \).

But \((L_1 \oplus L_2) \cap U_3 = (L_1 \oplus L_2) \cap U_2\), so we have

\[
P V_2 - PV_1 \subset PU_2 - PU_1
\]

\[
P V_4 - PV_3 \subset PU_4 - PU_3
\]

\[
\Rightarrow (V_1, V_2) \leq (U_1, U_2) \quad \text{and} \quad (V_3, V_4) \leq (U_3, U_4).
\]

Case 4b: \(V_2 / V_1 \rightarrow U_4 / U_3 \). Consider the filtration \(V_1 \cap U_1 \subset V_4 \cap U_2 \subset V_4 \cap U_3 \subset V_4 \). I know \(V_4 \cap U_3 \) is a hyperplane in \(V_4 \) different from \(V_3 \).

Take any \(A \in C(V_1, \ldots, V_4) \). Define \(A \cap V_2 \rightarrow u_4 / u_3 \)

\[
A_2 / U_1 \rightarrow u_2 / U_1
\]

hence we can write \(A \) in the form

\[
A = L_1 \oplus L_2 \quad \text{where} \quad L_1 \in PV_2 - PV_1 \quad \text{and} \quad L_2 \in PV_4 - PV_3
\]

where any \(L_1, L_2 \) occur.

\[
L_2 = (L_1 \oplus L_2) \cap U_3 = (L_1 \oplus L_2) \cap U_2
\]

we see that

\[
P (U_3 \cap V_4) - P (U_3 \cap V_3) \subset PU_2 - PU_1
\]

\[
\Rightarrow (U_3 \cap V_3, U_3 \cap V_4) \leq (U_1, U_2)
\]
Thus $U_3 \cap V_4 < U_2 \implies V_4 \cap U_2 = V_4 \cap U_3$. Since $U_2 < V_4 \cap U_2$ met in $V_4 \cap U_1$, it follows that $(V_4 \cap U_1, V_4 \cap U_2) < (U_1, U_2)$.

So we have $V_4 \cap U_1 < V_4 \cap U_2 = V_4 \cap U_3 < V_4$, and any A in V_4 and $A \in C(U_1, \ldots, U_4)$, is in $C(V_4 \cap U_1, V_4)$. Thus we have

$$C(U_1, \ldots, V_4) \subseteq C(V_4 \cap U_1, V_4) \subseteq C(U_1, \ldots, U_4)$$

so what we have found above shows us that we get the picture

Thus in this case we factor the inclusion into

$$C(V_1, \ldots, V_4) \subseteq C(V_4 \cap U_1, V_4) \subseteq C(U_1, V_4 + U_3) \subseteq C(U_1, U_4)$$
Take functor \(j: L_2(V) \rightarrow \mathcal{H}_2(V) \). Given \(C(U_1, U_4) \in \mathcal{H}_2(V) \), we have seen that \(C(W_1, W_2) \leq C(U_1, U_4) \iff (W_1, W_2) \leq (U_1, T) \), where \(T/U_2 \oplus U_3/U_2 = U_4/U_2 \):

\[
\begin{array}{c}
W_2 \\
\downarrow \quad T \\
U_2 \\
\downarrow \quad U_4 \\
W_1 \\
\downarrow \quad U_1 \\
U_3
\end{array}
\]

Therefore \(j/C(U_1, U_4) \) is homotopy equivalent to the set of such \(T \).

Let \(F(U_1, U_4) = \{ T | T/U_2 \text{ comp. to } U_3/U_2 \text{ in } U_4/U_2 \} \)

\[
= \{ T | (U_2, T) \leq (U_3, U_4) \}
\]

Then \(F \) is a covariant functor from \(\mathcal{H}_2(V) \) to sets, and \(L_2(V) \) is homotopy equivalent to the cofibred category \(\mathcal{H}_2(V)_F \).

Similarly, \(C(U_1, U_4) \backslash j \) is homotopy equivalent to the set of complements to \(U_2/U_1 \in U_3/U_1 \).

Take \(j': L_{1,1}(V) \rightarrow \mathcal{H}_2(V) \). Given \(C(V_1, V_4) \leq C(U_1, U_4) \), we have either \(V_2/V_1 \rightarrow U_4/U_3 \) is zero or an isom, thus distinguishing components of \(j'/C(U_1, U_4) \). If this map is zero, there is a unique arrow \((U_1, U_4) \rightarrow (U_1, U_4) \) in \(L_{1,1}(V) \). If this arrow is \(\neq 0 \), then one
has a unique arrow \(\delta \) in \(L_{1,1}(V) \) to an object \((U_1, Z, Z, T) \) where \(T/U_2 \) is comp. to \(U_3/U_2 \) in \(U_4/U_2 \), and \(Z/U_1 \) is comp. to \(U_3/U_1 \) in \(T/U_1 \), i.e. \(Z/U_1 \oplus U_3/U_1 = U_4/U_1 \) and \(T = \mathbb{Z} \oplus U_2 \)

Thus we get the functor which assigns to \((U_1, U_2, U_3, U_4)\) the union of a point and the set of lines in \(U_4/U_1 \) complementary to \(U_3/U_1 \), (except when \(U_2 = U_3 \), when we get the set of lines in \(U_4/U_1 \).

Similarly, \(L'_{1,1}(V) \) is homotopy equivalent to the cofibred cat. over \(S^2(V) \) defined by the functor assigning to \((U_1, U_2, U_3, U_4)\) the pairs \((L, T)\) consisting of \(T = T/U_2 \oplus U_3/U_2 = U_4/U_2 \) and \(L \) a line \(L \in T/U_1 \). The map \(L'_{1,1}(V) \to L_2(V) \) forgets \(L \); the map \(L'_{1,1}(V) \to L_{1,1}(V) \) collapses all \((L, T)\) with \(L = U_2/U_1 \) to a point.

Now let me fix \((U_1, \ldots, U_4)\) and compute the map...
\[\mathbb{Z} \{ (T, L) \} \longrightarrow \mathbb{Z} \{ \frac{N}{N+U_2} \} \otimes \mathbb{Z} \{ T \}. \]

Here \((T, L)\) runs over all pairs: \(T/U_2 \oplus U_3/U_2 = U_4/U_2\), \(L/U_4 = \text{a line in } T/U_4\). The map goes into the first factor. The kernel is \(\text{generated by elements of the form } (T, (U_2/U_4)) - (T_0, U_2/U_4)\), as \(T\) ranges over the complements to \(U_3/U_2\) in \(U_4/U_2\). This hits exactly the augmentation zero part of \(\mathbb{Z}[T]\). Hence we can conclude working with covariant functors.

\[
\begin{array}{ccc}
L_{b'}(V) & \xrightarrow{a} & L_2(V) \\
b & \downarrow & j' \\
L_{b''}(V) & \xrightarrow{j'} & SH_2(V)
\end{array}
\]

That \(L_+ j'! \mathbb{Z} = L_+ j! \mathbb{Z} = L_+(ga)! \mathbb{Z} = 0\) and that

\[
0 \rightarrow (ga)! \mathbb{Z} \rightarrow j_*\mathbb{Z} \otimes j'_* \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0
\]

is exact, whence \((\ast)\) is homotopy-cocartesian.
I now want to generalize the preceding, in order to understand the poset \(\text{Sh}_p(V) \) of Schubert cells in \(G_p(V) \).

What is a Schubert cell? Take a full flag

\[0 = V_0 < V_1 < V_2 < \cdots \text{ in } V, \quad \dim V_i = i, \quad \text{and a sequence} \]

\[0 < i_1 < i_2 < \cdots < i_p. \]

The corresponding Schubert cell is

\[\{ A \in G_p(V) \mid \dim (A \cap V_j) = j, \quad j = 1, 2, \ldots, p \}, \]

\[\dim (A \cap V_0) = 0. \]

The cell is perhaps best described using filtrations

\[U_1 \subset U_2 \subset \cdots \subset U_{2p} \]

such that \(\dim (U_{2i-1} / U_{2i-2}) = 1 \) for \(1 \leq i \leq p \). The corresponding Schubert cell is

\[C(U_1, U_{2p}) = \{ A \in G_p(V) \mid 0 = A \cap U_1 < A \cap U_2 < \cdots < A \cap U_{2p} = \ldots \} \]

Observe that if \(U_{2i} = U_{2i+1} \) for some \(i \) then the cell \(C(U_1, U_{2p}) \) depends only on

\[U_1, U_{2i-1}, U_{2i+2}, \ldots, U_{2p}. \]

So therefore it would be better to give a filtration

\[U_1 < U_2 < \cdots < U_{2p} \]

with \(p = \sum \dim U_{2i} / U_{2i-1} \), \(1 \leq i \leq p \).
and to define \(C(U_1, \ldots, U_9) \) as the set of \(A \) in \(G_p(V) \) such that

\[
A \cap U_{2i} + U_{2i-1} = U_{2i}, \quad 1 \leq i \leq 9
\]

(Note: this implies \(A \cap U_{2i}/A \cap U_{2i-1} = U_{2i}/U_{2i-1} \), hence by dimensional considerations that \(A \cap U_{2i-1} = A \cap U_{2i} \)).

Suppose we have \(a_1 + \cdots + a_9 = p \) with \(a_i > 0 \). Then we define \(L_{a_1, \ldots, a_9}(V) \) to be the subset of \(L_{a_1}(V) \times \cdots \times L_{a_9}(V) \) consisting of

\[
(U_1, U_2), (U_3, U_4), \ldots, (U_{2p-1}, U_{2p})
\]

such that \(U_2 \subset U_3, U_4 \subset U_5, \ldots \). Previous argument should generalize to show that \(L_{a_1, \ldots, a_9}(V) \) is a classifying space for \(BGL_{a_1} \times \cdots \times BGL_{a_9} \).

It might be better to think of \(a_1 + \cdots + a_9 = p \) as a subset of simple roots. (The simple roots for \(SL_p \) are pairs \((i, i+1) \), \(1 \leq i \leq p-1 \).) So here the simple roots are \((a_1, a_1+1), (a_1+a_2, a_1+a_2+1), \ldots, (a_1+\cdots+a_{p-1}, p) \). Thus \(\sigma \) is a subset of \(1, \ldots, p-1 \). Use the notation \(L_{a}(V) \) for \(L_{a_1, \ldots, a_9}(V) \). \(\sigma \) is allowed to be the empty subset, whence we get \(L_p(V) \).
If now \(\tau \subset \sigma \subset \{1, \ldots, p-1\} \), then we let \(L_{\sigma, \tau}(V) \) be the subset of \(L_{\sigma}(V) \) consisting of \(U_1 \subset \cdots \subset U_{2k} \) such that \(U_{2i} = U_{2i+1} \) for each element of \(\sigma \) not in \(\tau \).

Maybe a better notation would be to label \(\sigma \) as \(1 \leq i_1 < \cdots < i_8 \leq p \). Then the filtration is

\[
U_{2i-1} < U_{2i} < U_{2i-1} < U_{2i} < \cdots < U_{2i-1} < U_{2i} < \cdots < U_{2i_8}
\]

\(\iota_1 \quad \iota_2 \quad \iota_3 \)

\(\sigma \subset \{1, \ldots, p-1\} \). \(\sigma = \{i_1 < i_2 < \cdots < i_{8-1}\} \). \(L_{\sigma}(V) \) consists of flags

\[
U_i' < U_i'' < U_i' < U_i'' < \cdots < U_i' < U_i'' < U_i' < U_i''
\]
i.e., a succession of layers of dimensions \(i_1, i_2, i_3, \ldots, p-i_8 \).

If \(\tau \subset \sigma \), it is clear what I mean by \(L_{\tau \subset \sigma}(V) \) namely the subset of \(L_{\sigma}(V) \) such that for each minimal interval \(j < j' \) in \(\tau \), the refining \(\sigma \) layers are squeezed together.
Start by trying to understand inclusions:
Given \((U_{1}, \ldots, U_{2p})\), \(\dim U_{2i}/U_{2i-1} = 1\), \(i \leq p\), one first wants to understand an inclusion
\[C(W_{1}, W_{2}) \subset C(U_{1}, \ldots, U_{2p}) \]
The conjecture is that one has the picture:
\[\begin{array}{c}
\vdots \\
W_{2} \\
\downarrow \\
W_{1}
\end{array} \]
So we consider the induced filtration \(W_{2} \cap U_{j}\)
\(1 \leq j \leq 2p\). Fixing \(A \in C(W_{1}, W_{2})\), we know
\[A \cap U_{2i}/A \cap U_{2i-1} \twoheadrightarrow U_{2i}/U_{2i-1} \quad \text{dim} \; 1 \]
\[\text{hence} \quad W_{2} \cap U_{2i}/W_{2} \cap U_{2i-1} \twoheadrightarrow U_{2i}/U_{2i-1}. \]
\[\text{Claim:} \quad W_{1} + W_{2} \cap U_{2} > W_{1} \quad \text{is of codim} \; 1, \text{ since} \]
\(\text{any} \; A \in C(W_{1}, W_{2}) \text{ has} \; A \cap U_{2} = L_1 \neq W_1.\)
\[\text{Claim:} \quad W_{1} + W_{2} \cap U_{2} = W_{1} + W_{2} \cap U_{3}. \; \text{If not,} \; F \]
\[L_2 \in P(W_2 \cup U_3) - P(W_1 + W_2 \cup U_2). \] Fix \(L_1 \in P(W_2 \cup U_2) - PW_1 \) and extend \(L_1 + L_2 \) to an \(A \in C(W_1, W_2) \). Then

\[L_1 + L_2 \not\in A \cap U_3 \quad \text{contradiction.} \]

Continuing, one sees that

\[W_i = W_i + W_2 \cup U_1 < W_i + W_2 \cup W_2 = W_i + W_2 \cup U_3 < \]

etc. Counting dimensions, it follows that \(W_2 \cap U_3 \) has the same codimension in \(W_2 \) as does \(W_i \), thus \(W_i = W_2 \cap U_3 \).

Next consider an inclusion \(C(U_1, \ldots, U_2) \subseteq C(W_1, W_2) \), where we want the picture

Here we have \(U_2 \rightarrow W_2 \cup W_1 \) and so we can as well suppose \(U_2 = W_2 \). What I want to show is that

\[U_i \subseteq C(W_1) \]

\[W_i \cap U_{2i-1} = W_i \cap U_{2i} \]

\[W_i \cap U_{2i+1}/W_i \cap U_{2i} \rightarrow U_{2i+1}/U_{2i} \]

so I will consider the filtration
\[W_1 \subset U_1 + W_1 \subset U_2 + W_1 \subset \ldots \subset U_{2g} + W_1 = W_2. \]

If \(U_{2g-1} + W_1 = W_2 \), then \(\exists L \in PW_1 - PU_{2g-1} \).

So if \(L_i \in PU_{2i-1} - PU_{2i-1} \), \(i = 1, \ldots, g-1 \), then

\[A = L_1 + \ldots + L_g \in C(U_1 \ldots U_2) \]

but \(A \notin C(W_1, W_2) \). This contradiction shows \(U_{2g-1} \supset W_1 \).

If \(U_{2g-3} + W_1 = U_{2g-2} + W_1 \), then \(\exists L_{g-1} \in PU_{2g-2} \cap PW_1 - PU_{2g-3} \).

If for some \(i \), \(U_{2i-1} + W_1 = U_{2i} + W_1 \), then

\[\exists L_i \in PU_{2i} \cap PW_1 - PU_{2i-1}. \]

Then with any other \(L_1, \ldots, L_i \), \(i \), we have

\[A = L_1 + \ldots + L_g \in C(U_1 \ldots U_2) \]

but \(A \notin C(W_1, W_2) \). Thus conclude

\[W_1 \subset U_1 + W_1 \subset U_2 + W_1 \subset \ldots \subset U_{2g-1} + W_1 \subset U_{2g} + W_1 = U_2 \]

so dimension-counting shows that \(W_1 = U_1 + W_1 \)

\[\Rightarrow U_1 \subset W_1 \]

and that \(U_{2i} + W_1 = U_{2i+1} + W_1 \). So we do get the picture

\[
\begin{array}{c}
\text{W} \\
\mid \\
\text{W}_1
\end{array}
\]

that we expected.
Suppose \(C(W_1, W_2) \subset C(U_1, \ldots, U_{2p}) \), where \(\dim(U_i/U_{i-1}) = 1 \) \(i = 1, \ldots, p \). I consider the filtration of \(W_2/W_1 \) induced by \(U_1 \subset \cdots \subset U_{2p} \). Recall

\[
\frac{W_1 + (W_2 \cap U_j)}{W_1 + (W_2 \cap U_{j-1})} = \frac{W_2 \cap U_j}{W_1 U_j} + W_2 \cap U_{j-1}
\]

Choose \(A \in C(W_1, W_2) \), so that

\[
0 = A \cap U_1 < A \cap U_2 = A \cap U_3 < A \cap U_4 = \ldots
\]

Then

\[
\frac{A \cap U_k}{A \cap U_{k-1}} \sim \rightarrow U_{2i}/U_{2i-1}
\]

so \(W_2 \cap U_{2i-1} < W_2 \cap U_{2i} \).
October 20, 1974. Schubert cells

Given a flag of fin. dim. subspaces of V

$$U_1 < U_2 < \cdots < U_{2p}$$

with $\dim U_{2i}/U_{2i-1} = 1$ for $1 \leq i \leq p$, we put

$$C(U_1, \ldots, U_{2p}) = \left\{ A \in G_p(V) \mid 0 = A \cap U_1 < A \cap U_2 = A \cap U_3 < \cdots \right\}$$

such a subset of $G_p(V)$ we call a Schubert cell, and we let $S_p(V)$ be the poset of Schubert cells, ordered by inclusion.

Notice that if $U_{2j} = U_{2j+1}$, then $C(U_1, \ldots, U_{2p})$ doesn't depend upon $U_{2j} = U_{2j+1}$, in fact we have

$$C(U_1, \ldots, U_{2p}) = \left\{ A \in G_p(V) \mid \dim (A \cap U_{2i-1}) = \dim (A \cap U_{2i}) = i \right\}$$

for $1 \leq i \leq p$, $i \neq j$.

(The point is that the conditions $\dim A \cap U_{2i-2} = i - 1$
$\dim A \cap U_{2i+2} = i + 1$, $\dim U_{2i+2}/U_{2i-2} = 2$ force
$\dim A \cap U_{2i} = i$.) When this happens, we write

$$C(U_1, \ldots, U_{2j}, U_{2j+1}, \ldots, U_{2p})$$

for $C(U_1, \ldots, U_{2p})$. In this
way we define $C(W_1, \ldots, W_{2k})$ for any flag $W_1 < \cdots < W_{2k}$
such that $W_{2i-1} < W_{2i}$, $1 \leq i \leq k$, and

$$\sum_{i=1}^{k} \dim (W_{2i}/W_{2i-1}) = p$$
Suppose $C(W_1, W_2) \subset C(U_1, \ldots, U_2p)$. If $W_1 \notin W_2 \cup U_1$,
exists $L_1 \in P(W_2, U_1) - PW_1$, which can be extended to
$A \in C(W_1, W_2)$; but $A \cap U_1 \cap L_1 \neq \emptyset$ so $A \notin C(U_1, \ldots, U_2p)$,
a contradiction. Thus $W_1 \cap W_2 \cup U_1$, i.e. $W_1 = W_1 \cap (W_2 \cup U_1)$.

If $W_1 + W_2 \cap U_{2i-2} \subset W_1 + W_2 \cap U_{2i-1}$, \exists $L_i \in P(W_2 \cap U_{2i-1}) - P(W_1 + W_2 \cap U_{2i-2})$. Choose $A \in C(W_1, W_2)$ so that
$A \cap U_{2i-2}$ has dim $i-1$. Then $L_i + A \cap U_{2i-2}$ can be extended to $A' \in C(W_1, W_2)$; but $A' \cap U_{2i-1} \supset L_i + A \cap U_{2i-2}$
which has dim i, a contradiction. Thus
$W_1 + W_2 \cap U_{2i-2} = W_1 + W_2 \cap U_{2i-1}$ for $i = 1, \ldots, p$.

By dimensional considerations, it follows that
$W_1 + W_2 \cap U_{2i-1}$ is a hyperplane in $W_1 + W_2 \cap U_{2i}$, $1 \leq i \leq p$.

If $W_1 \cup U_2 < W_2 \cup U_3$, for some $i < j < p$, then
\[L_i \in P(W_2 \cap U_{2i+1}) - P(W_2 \cap U_{2i}) \] hence

Can I show $W_2 \cap U_2 = W_2 \cap U_3$?

\[
\begin{array}{cccccc}
0 & \rightarrow & \frac{W_1 \cap U_3}{W_2 \cap U_1} & \rightarrow & \frac{W_2 \cap U_3}{W_1} & \rightarrow & \frac{W_1 + W_2 \cap U_1}{W_1} & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \sim & & \downarrow \\
& & \frac{W_2 \cap U_2}{W_2 \cap U_1} & & & & & & \\
\end{array}
\]

Thus you see that if $W_2 \cap U_2 < W_2 \cap U_3$, then we can
find a line in $W_2 \cap U_3$ not contained in the hyperplanes $W_2 \cap U_2$, $W_1 \cap U_3$. (Use the fact that projective space has ≥ 3 elements).

Continue: Assuming we know $W_2 \cap U_{2i} = W_2 \cap U_{2i+1}$ for $i < j$, assume $W_2 \cap U_{2j} < W_2 \cap U_{2j+1}$ for some $j < p$.

Choose $L_j^+ \in \mathbb{P}(W_2 \cap U_{2j+1}) - \mathbb{P}(W_2 \cap U_{2j}) - \mathbb{P}(W_1 + W_2 \cap U_{2j}^-)$

This is possible. Combining this with $A \cap U_{2j-1}$ to get $L_j + A \cap U_{2j-1}$, we can extend this to $A' \in C(W_1, W_2)$. But then $A' \cap U_{2j+1} = L_j + A \cap U_{2j+1}$, which has dimension $\geq j$, hence $A \cap U_{2j+1} = 1 + A \cap U_{2j+1}$.
But then $A' \cap U_{2j+1}$ contains j, which is not.

But then $A' \cap U_{2j+1} > L_j + A_0 U_{2j-1}$ which has dimension $j \Rightarrow A' \cap U_{2j+1} = L_j + A_0 U_{2j-1}$. But $A' \cap U_{2j} \neq A' \cap U_{2j+1}$ as $L_j \notin A' \cap U_{2j}$. Contradiction, so we find $W_2 \cap U_2 = W_2 \cap U_{2i+1}$ for $1 \leq i \leq p-1$.

Now by counting we find that $W_i = W_2 \cap U_1$.

Thus we have proved.

Prop: If $C(W_1, W_2) < C(U_1, \ldots, U_{2p})$, then $(W_1, W_2) \leq (U_1, W_2 + U_1)$, where $W_2 + U_1 / U_1 \in C(U_1 / U_1, \ldots, U_{2p} / U_1)$.

Have picture:

```
   u_2p
  /   /
 W_2 /   /
   /   /
 W_1 /   u_1
```
Suppose now that $C(U_1, \ldots, U_{2p}) \subset C(W_1, W_2)$ and consider the flag

$$W_1 \subset U_1 + W_1 \subset U_2 + W_2 \subset \cdots \subset U_{2p} + W_1 = W_2$$

Suppose $U_{2i-1} + W_1 = U_{2i} + W_1$ for some i, $1 \leq i \leq p$. Then $U_{2i-1} + W_1 \cap W_1 = U_{2i}$, hence $E i \in PU_{2i} \cap W_1 - PU_{2i-1}$.

Choosing $L_j \in PU_{2j} - PU_{2j-1}$ for $1 \leq j \leq p$, $j \neq i$, we have $A = L_1 + \cdots + L_p \in C(U_1, \ldots, U_{2p})$, but $A \notin C(W_1, W_2)$, a contradiction. Thus $U_{2i-1} + W_1 \neq U_{2i} + W_1$ for $1 \leq i \leq p$.

Since W_1 is of codim p in W_2, this forces $W_1 = U_1 + W_1$ (hence $U_1 < W_1$) and $U_{2i} + W_1 = U_{2i+1} + W_1$, $1 \leq i \leq p - 1$, so we get the picture:
Prop. If \(C(U_1, \ldots, U_2) \subset C(W_1, W_2) \), then one has:

\[
\begin{align*}
U_1 &
\subset W_1, \quad U_2 \subset W_2 \\
U_{2i} + W_1 &= U_{2i+1} + W_1, \quad 1 \leq i \leq p-1 \\
U_{2i} \cap W_1 &= U_{2i-1} \cap W_1, \quad 1 \leq i \leq p.
\end{align*}
\]

Next let us consider an inclusion

\(C(V_1, \ldots, V_2) \subset C(U_1, \ldots, U_2) \)

Choose \(C(W'_1, W'_2) \subset C(V_1, \ldots, V_2) \) with \(W'_1 = V_j \)

and \(C(U_1, \ldots, U_2) \subset C(W_1, W_2) \) with \(W_2 = U_{2p} \)

One then has \((W'_1, W'_2) \leq (W_1, W_2)\) showing that \(V_1 \subset U_1, \quad V_{2p} \subset U_{2p} \).

Review the Birkhoff decomposition. Let \(Z \) be a vector space with a full flag \(0 = Z_0 < Z_1 < \cdots < Z_p = Z \) and let \(0 = F_0 < F_1 < \cdots < F_p = Z \) be another flag. Recall the Schreier isomorphism.
\[g^2_i(F_i / F_{i-1}) = \frac{Z_i \cap F_i + F_{i-1}}{Z_{i-1} \cap F_i + F_{i-1}} = \frac{Z_i \cap F_i}{Z_{i-1} \cap F_i + Z_i \cap F_{i-1}} \]

\[g^1_j(Z_i / Z_{i-1}) = \frac{Z_i \cap F_j + Z_{i-1}}{Z_i \cap F_{j-1} + Z_{i-1}} = \frac{Z_i \cap F_j}{Z_i \cap F_{j-1} + Z_{i-1} \cap F_j} \]

Therefore we get a unique permutation \(\sigma \) of \(\{1, \ldots, p\} \) such that \(g^2_i(F_i / F_{i-1}) \neq 0 \) for \(1 \leq i \leq p \).

Better, for each \(i \), \(1 \leq i \leq p \), \(\sigma_i \) is the unique index such that

\[\frac{F_{\sigma_i} / F_{\sigma_i-1}}{Z_{i-1} \cap F_{\sigma_i} + Z_i \cap F_{\sigma_i-1}} \sim \frac{Z_i}{Z_{i-1}} \]

so now given \(C(V_1, \ldots, V_p) \subset C(U_1, \ldots, U_2p) \), I want to associate a permutation to this inclusion.

Choose \(A \in C(V_1, \ldots, V_p) \) and consider the permutation associated to the two flags

\[A \cap V_{2i}, \quad A \cap U_{2i} \]

On the other hand we can choose \(C(U_1, \ldots, U_2p) \subset C(W_1, W_2) \), whence we get two flags in \(W_2/W_1 \)

\[\frac{V_{2i} + W_1}{W_1}, \quad \frac{U_{2i} + W_1}{W_1} \]
Since under the isomorphism \(A \rightarrow W_2/W_1 \), one has \(A \cap V_{2i} \cong V_{2i} + W_1/W_1 \), it follows that the permutations obtained by either choosing \(A \) or \((W_1/W_1) \) are the same, hence independent of these choices.

Let us consider the two extreme cases.

First suppose the permutation is the identity, i.e. \(A \cap V_{2i} = A \cap U_{2i}, \quad 1 \leq i \leq p \). Since we know \(U_1 \subset V_1 \), \(U_2 = A \cap U_2 \oplus U_1 \), \(V_2 = A \cap V_2 \oplus U_2 \), it follows that \(U_2 \subset V_2 \). Note that if \(A \in C(V_1, \ldots, V_2p) \), then \(A + V_2/V_2 \in C(V_3/V_2, V_4/V_2, \ldots, V_{2p}/V_2) \):

Moreover the resulting map \(C(V_1, \ldots, V_{2p}) \rightarrow C(V_3/V_2, \ldots, V_{2p}/V_2) \) is onto. Claim \(C(V_3/V_2, \ldots, V_{2p}/V_2) \subset C(U_3/V_2, \ldots, U_{2p}/V_2) \). Indeed take \(B \) in the former and lift it to \(A \in C(V_1, \ldots, V_{2p}) \), so \(B = A + V_2/V_2 \).

Then clearly \(A + V_2/V_2 \in C(U_3/V_2, \ldots, U_{2p}/V_2) \).

So we get \(V_3/V_2 \subset U_3/V_2 \), whence \(V_4 = V_3 + V_4 \cap A \subset U_3 + U_4 \cap A = U_4 \) and we can continue.
Prop. If the permutation assoc. to $C(V_{ij}, V_{kp}) \subseteq C(U_{ij}, U_{kp})$ is the identity, then $(V_{2i-1}, V_{2i}) \leq (U_{2i-1}, U_{2i})$ for $1 \leq i \leq p$.

Here's another proof. Let $L_i \in PV_{2i} - PV_{2i-1}$, so that $A = L_1 + \cdots + L_p \in C(V_{ij}, V_{kp}) \subseteq C(U_{ij}, U_{kp})$. We know $\bigcap U_{2i} = \emptyset$. $\bigcap V_{2i} = L_1 + \cdots + L_i$, hence $L_i \in PU_{2i}$. And we know $\bigcap U_{2i+1} = \bigcap U_{2i-2} = L_1 + \cdots + L_i$, so $L_i \in PU_{2i-2}$. Thus $PU_{2i} - PV_{2i-1} \subseteq PU_{2i} - PU_{2i-1}$, so $(V_{2i-1}, V_{2i}) \leq (U_{2i-1}, U_{2i})$.

Next extreme case is where the permutations or reverse the order: $\sigma(i) = p-i+1$. In this case we know that the filtrations $V_{2i} \cap A$ and $U_{2i} \cap A$ are complementary, i.e.

$$V_{2i} \cap A \oplus U_{2(p-i+1)} \cap A = A.$$

Or put another way, we have unique lines L_1, \ldots, L_p such that

$$V_{2i} \cap A = L_1 + \cdots + L_i$$

$$U_{2i} \cap A = L_{p-i+1} + \cdots + L_p$$
\[L_1 \text{ can be arbitrary in } \overline{PV_2 - PV_1} \]

\[L_2 \quad \frac{(PV_4 - PV_3) \cap PU_{2p-2}}{(PV_6 - PV_5) \cap PU_{2p-4}} \]

\[(PV_4 - PV_3) \cap PU_{2p-2} = (PV_4 - PV_3) \cap PU_{2p-1} \subset PU_{2p-2} - PU_{2p-3} \]

so \((V_3 \cap U_{2p-2}, V_4 \cap U_{2p-2}) = (V_3 \cap U_{2p-1}, V_4 \cap U_{2p-1}) \leq (U_{2p-3}, U_{2p-2}) \)

In general \(L_i \in (PV_{2i} - PV_{2i-1}) \cap PU_{2p-i} \)

so \((V_{2i-1} \cap U_{2p-2i+3}, V_{2i} \cap U_{2p-2i+3}) \leq (U_{2p-2i+1}, U_{2p-2i+2}) \)

First case would be for \(L_p \)

\((V_{2p-1} \cap U_3, V_{2p} \cap U_3) \leq (U_1, U_2) \)

Write this for \(p = 3 \).

\((V_5 \cap U_3, V_6 \cap U_3) \leq (U_1, U_2) \)

\((V_3 \cap U_5, V_4 \cap U_5) \leq (U_3, U_4) \)

\((V_1 \cap U_7, V_2) \leq (U_5, U_6) \)
The basic question is whether \(C(V_1, \ldots, V_6) \subseteq C(V_1, U_3, V_6) \) and need \(V_6 \cap U_4 = V_6 \cap U_5 \).
Generalize and consider also flag manifolds instead of Grassmannians.

\[G(\cdots, 1)(V) = \text{set of flags } 0 < A_1 < \cdots < A_p \text{ in } V \]

given in full flag \(V \) with \(\dim A_i/A_{i-1} = 1 \).

Let \(0 < V_1 < V_2 < \cdots \) be a full flag in \(V \).

For each \(1 \leq i \leq p \), there is a unique \(\lambda(i) \) such that \(A_i/A_{i-1} = V_{\lambda(i)}/V_{\lambda(i)-1} \) in the Schreier isomorphism.

Thus \(\lambda(i) \) is the unique integer \(\geq 1 \) such that

\[
\frac{A_i \cap V_{\lambda(i)}}{A_i \cap V_{\lambda(i)-1} + A_{i-1}} \neq 0
\]

iff

\[
\frac{A_i}{A_{i-1}} \quad \overset{\text{unique}}{\longrightarrow} \quad \frac{A_i \cap V_{\lambda(i)}}{A_i \cap V_{\lambda(i)-1} + A_{i-1} \cap V_{\lambda(i)}} \quad \overset{\text{unique}}{\longrightarrow} \quad \frac{V_{\lambda(i)}}{V_{\lambda(i)-1}}
\]
Here \(s: \{1, \ldots, p\} \rightarrow \{1, 2, \ldots, \dim V^2\}. \) Question: Fixing \(s, \) does the set of \((0 < s_1 < \ldots < s_p)\) belonging to a form a cell?

Suppose \(V=\{ke_1 + \cdots + ke_i^2\}; \) \(e_1, \ldots, \) basis for \(V. \)

Choosing a basis \(\mathbf{x}_i \) for \(A_p \) with \(A^2_i = ke_1 + \cdots + ke_p \)

we get a matrix \(A \) of size \(p \times \dim (V) \)

\[
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_p
\end{pmatrix}
\]

we are permitted to add multiples of \(x_i \) to \(x_j \)

for \(i \neq j. \) Resulting canonical form for the matrix is

\[
\begin{bmatrix}
 \star \star
\end{bmatrix}
\]

The 1's occur in positions \(s_1, s_2, \ldots, s_p. \) Below any \(= 1 \) are zeroes.

Notice that this cell depends only \(= \) on the layers \((V_0(p-1), V_0(p)) \ldots (V_0(p-1), V_0(p))\). So what seems to happen is that we have a flag \((U_1, \ldots, U_{2p})\) as before together with a permutation \(\sigma \) of \(\{1, \ldots, p\}. \) The
corresponding cell consists of pairs \((A, f)\) where \(A \in C(U_1, \ldots, U_{2p})\), and where \(f\) is a flag in \(A\) bearing the relation \(\sigma\) to the flag \(0 < U_2 \cap A < \cdots < U_{2p} \cap A = A\).

Infinite Grassmannian: Let \(V\) contain \(V_0\) such that \(V_0\) and \(V/V_0\) are of infinite dimension. Then we can consider \(A \subset V\) commensurable with \(V_0\), meaning that \(A/A \cap V_0\), \(V_0/A \cap V_0\) are finite dimensional. Call this set \(G(V, V_0)\). Each such \(A\) has an index \(= \dim (A/A \cap V_0) - \dim (V_0/A \cap V_0)\), so

\[
G(V, V_0) = \bigcup_{n} G_n(V, V_0)
\]

where \(G_n(V, V_0)\) consists of those \(A\) of index \(n\).

Clearly

\[
G_p(V, V_0) = \bigcup_{V_1 \subset V_0 \subset V_2} G_{p + \dim (V_2/V_1)}(V_2/V_1)
\]

where \(V_1, V_2\) run over subspaces such that \(V_2/V_0, V_0/V_1\) are finite dimensional. From now on concentrate on index 0.

What is a Schubert cell in \(G_0(V, V_0)\)? Suppose we have a flag which I will suppose to pass through
$V_0 \preceq \cdots \preceq V_i \preceq V_0 \preceq V_1 \preceq \cdots$ If I have $A \in G_0(V,V_0)$, then we get a set of n such that V_n/V_{n-1} appears in A, meaning that $V_{n-1} \cap A < V_n \cap A$.

It seems reasonable to suppose A contains V_N for some N; this would certainly be the case if I just took A with this property, which would still give me an infinite Grassmannian. Can suppose $A \subset V_N$, whence $[V_{n-1} \cap A < V_n \cap A] \subset [-N,N]$. So it is clear that fixing the flag $\{V_n\}$ and this finite set of integers the Schubert cell I am considering is just the image of a cell in $G(V_n/V_{n-1})$.

These cells can be described as follows: One gives $U_1 \subset \cdots \subset U_{2k}$, $\dim U_i/U_{i-1} = 1$, commensurable with V_0 and defines

$$C(U_1,U_2,\ldots,U_{2k}) = \{ A \in G_0(V,V_0) \mid \dim U_{2i} \cap A/U_{2i-1} \cap A = 1 \}$$

U_1 will have to have index $-k$.
Recall how one constructs BU classically. $G_p(C^n) < G_p(C^{n+1}) < \cdots G_p(C^{\infty})$ is a classifying space for U_p. Then one realizes $U_p \subset U_{p+1}$ by $G_p(C^n) < G_{p+1}(C^{n+1})$ etc. One obtains in the limit the set of subspaces of $\bigoplus_{n \geq n_0} C_n$ such that $\bigoplus_{n \geq n_0} C_n \subset A$ and such that the codimension of this inclusion is $-n_0$.

What seems to be at stake is that we have a space V with a flag $V = V_1 \subset V_2 \subset \cdots \subset V_n$, $n \in \mathbb{Z}$, and we are taking $\bigcup G_p(V_p/V_{p-1})$.

Variant: We have a Hilbert space V and a splitting $V = V_0 \oplus V_0^\perp$ into two infinite pieces. Then we consider closed subspaces A which essentially "coincide with A mod finite dimensional subspaces." Here are various possible meanings:

i) $\text{codim of } A \cap V_0 \text{ in } A$, V_0 is finite.

ii) If E_A and E_{V_0} are the ortho projectors, then $E_A - E_{V_0}$ is compact.

Concentrate on this: In the Caldeire alg, we fix a projector. Then we can consider the not equal to 1.
inverse image of e in $\text{End}(V)$, and inside of this we can consider the space of orthogonal projectors E in $\text{End}(V)$ such that $E \mapsto e$. It is this space of projectors which is the infinite Grassmannian. It should be possible to construct a contractible space over the set of projectors in C. Clear.

So the fibration I want is

\[
\begin{array}{c}
\text{inf. Grass.} \\
\text{of } E \mapsto e
\end{array}
\xrightarrow{\text{orth. proj. } E \text{ such that } \text{Im } E \text{ Im } (1-E) \text{ inf. dim.}}
\xrightarrow{\text{in } C \mapsto e \neq 0, 1}
\]

\[
\mathbb{R} \times \mathbb{R}/\mathbb{R} \times \mathbb{R}
\]
contractible

Next let us consider Fredholm operators. Consider the fibration

\[
\begin{array}{c}
C^* \\
\xrightarrow{\text{embeddings } C^* \to C \text{ with image } 2} \\
\text{direct summand End} \\
\text{kernel } = C.
\end{array}
\xrightarrow{\text{projectors } e \in C}
\text{e \neq 0, 1.}
\]
Lifted version

\[\left\{ \begin{array}{lcl}
\Theta: V \to V \\
\Theta^* \Theta = 1 \\
\Theta \Theta^* = \Lambda
\end{array} \right\} \rightarrow \left\{ \begin{array}{lcl}
\text{bounded operators} \\
\Theta: V \to V \\
\Theta^* \Theta = 1 \mod K \\
\text{Coker } \Theta \text{ infinite}
\end{array} \right\} \rightarrow \left\{ \begin{array}{lcl}
\text{self-adjoint}
\end{array} \right\}
\]

\[\lambda \text{ on } V \\
0 \leq \lambda \leq 1 \\
\text{ess. spectrum } 0, 1 \]

Can one relate the Grassmannian + Fredholm operators directly? For example, I can form over the space of E (with proj. to Im E, Im (1-E) inf), the space of pairs consisting of E, \Theta where \Theta : V \to \text{Im} E is a unitary isomorphism. Thus I could consider the space of \Theta : V \to V such that \Theta^* \Theta = \text{id}, which should be contractible.