April 5, 1973

To understand Serre's theorem:

E vector bundle over \(X \) (affine, say). Want to construct a section \(s \) of \(E \) transversal to the zero section. Transversal means \(\forall x \) either \(s(x) \neq 0 \) or \(s(x) = 0 \) and the image of \(s \) in \[
m_x E / m_x^2 E = (m_x / m_x^2) \otimes E(x)
\]
gives rise to a surjective map
\[
(m_x / m_x^2)^* \twoheadrightarrow E(x).
\]

If this is the case then for each \(x \) where \(s(x) = 0 \), we have \(\dim (m_x / m_x^2) \geq \text{rank } E \), so \(\text{codim } (x) \geq \text{rank } E \).

Start by constructing sections \(s_1, s_2, \ldots, s_n \), inductively so that for all \(j \):
\[
\text{codim } \{ x \mid \text{rank } (s_1(x), \ldots, s_n(x)) \leq n-j \} \geq j
\]

\(n=1 \): Choose \(s_1 \) to be \(\neq 0 \) at generic points.

\(n=2 \): Having chosen \(s_1 \) we choose \(s_2 \) so that
\[
x \in X_0 \Rightarrow \text{rank } (s_1(x), s_2(x)) \geq 2
\]
\[
x \in X_1 \Rightarrow \text{rank } (s_1(x), s_2(x)) \geq 1.
\]

\(n=3 \): \[
x \in X_0 \Rightarrow \text{rank } (s_1(x), s_2(x), s_3(x)) \geq 3
\]
\[
x \in X_1 \Rightarrow \quad \geq 2
\]
\[
x \in X_2 \Rightarrow \quad \geq 1
\]
Inductive step: Assume \(a_1, \ldots, a_{n-1} \) chosen so that

\[\forall p \geq 0 \quad x \in X_p \implies \text{rank } (a_1(x), \ldots, a_{n-1}(x)) \geq n-1-p. \]

Consider closed set \(Z_p \) where \(\text{rank } (a_1(x), \ldots, a_{n-1}(x)) \leq n-1-p \).

It doesn't contain any \(x \in X_j, j < p \) so \(Z_p \cap X_p \) is finite and if \(A_n \) is chosen independent of \(a_1, \ldots, a_{n-1} \) at these points, then

\[x \in X_p \implies \text{rank } (a_1(x), \ldots, a_{n-1}(x)) \geq n-p \]

This gives you a finite set of open conditions at a finite set \(\bigcup Z_p \cap X_p \), so \(A_n \) can be chosen as desired.

But actually if we are working with a fixed space of sections over an alg. closed field, then one should think of the preceding as a 'flag', because replacing \(a_i \) by any combination \(a_i + \sum_{j<i} \lambda_j a_j \) doesn't not affect the conclusion.
The next step is to take a suitable linear combination.

\[\text{Rank } (E) \geq 2. \text{ We have chosen } a_1, a_2 \text{ so that} \]
\[\text{rank } (a_1, a_2) \geq 2 \text{ on } X_0 \]
\[\geq 1 \text{ on } X_1. \]

Then \(a_1 + a_2 \) is non-zero on \(X_0 \) and finitely many points of \(X_1 \). At the bad points we can choose \(a \) so that it doesn’t vanish, because \(a_1, a_2 \) do not simultaneously vanish on \(X_1 \).

\[\text{Rank } (E) \geq 3. \text{ We have chosen } a_1, a_2, a_3 \text{ so that} \]
\[\text{rank } (a_1, a_2, a_3) \geq 3 \text{ on } X_0 \]
\[\geq 2 \text{ on } X_1 \]
\[\geq 1 \text{ on } X_2. \]

By preceding step, we can assume \(s_1 \neq 0 \) on \(X_1 \). Then \((s_1, s_2 + a s_3) \) are dependent contains a finite subset of \(X_1 \) and because \(s_2 \) and \(s_3 \) are not simultaneously \(\text{ind.} \) on \(s_1 \), we can choose \(a \) so that \((s_1, s_2 + a s_3) \) are \(\text{ind.} \) on \(X_1 \). Thus we can find \(s_1, s_2 \) \(\text{ind.} \) on \(X_1 \) such that \(s_1 \neq 0 \) on \(X_1 \). Now then \(s_1 + bs_2 \) vanishes on finitely many points of \(X_2 \) but it might vanish identically.

So go back to the choice of \(a \). We have \(s_1 \neq 0 \) on \(X_1 \) and so can arrange \(a \) so that \(s_2 + a s_3 \) is \(\text{ind.} \) of \(s_1 \) on \(X_1 \). But \(s_1 \neq 0 \) on \(X_2 \), we know \(s_2, s_3 \) are not both zero, so we can arrange \(a \) so that \(s_2 + a s_3 \neq 0 \) on those points of \(X_2 \) where \(s_1 = 0 \). So can assume that \(s_1, s_2 \) are \(\text{ind.} \) on \(X_1 \) and that they have rank \(\geq 1 \) on \(X_2 \). Then we consider \(s_1 + bs_2 \), which vanishes only
at finitely many points of X_2.

So the result is to replace (a_1, a_2, a_3) by

$$(a'_1, a'_2, a'_3) = (a_1 + a_{12} a_2 + a_{13} a_3, a_2 + a_{23} a_3, a_3)$$

so that a'_1 non-zero on $X_{\leq 2}$,

a'_1, a'_2 independent on $X_{\leq 1}$

a'_1, a'_2, a'_3 ind. on $X_{\leq 0}$.
Given a vector bundle of rank n over a variety X over an alg. closed field k, suppose E generated by a space $V \to \Gamma(E)$. $X(E)$ the building (= simplicial complex associated to the ordered set of proper subbundles of E - assume X irreducible). Suppose K is a finite subcomplex of $X(E)$.

Better fix an integer d and consider $X_d(E)$ the subcomplex of $X(E)$ consisting of chains $0 < F_0 < \cdots < F_r \hookrightarrow E$ where $\text{rank}(F_r) \leq d$. Let K be a finite subcomplex of $X(E)$. Then for each vertex F of K, the vector bundle E/F is gen. by V, and so for a Zariski dense subset of $v \in V$, v spans a trivial subbundle of E transversal to F. (Forgot to say that we are assuming $d < \text{rank}(E) - \text{dim}(X)$ so that $\text{rank}(E/F) \geq \text{rank}(E) - d > \text{dim}(X)$). So it is clear that we can find v_1, v_2, \ldots, v_r spanning a trivial subbundle of rank r of E transversal to all F in K provided $d + r \leq \text{rank}(E) - \text{dim}(X)$.

Now having chosen v_1, v_2, \ldots, v_r let me consider the subcomplex of $X_d(E)$ consisting of those F which are well placed with respect to v_i in some sense.

Let $L \subset E$ be a line bundle. Call F a subbundle F well placed with respect to L if either $L \subset F$ or if $L \to E/F$ is a subbundle. Thus want

$$0 < L \cap F \subset L + F \subset E$$
Let H be a k-subbundle of rank d with respect to Y. Try to prove that F is an X-equivalent of rank $d+1$. If it is possible to use induction on d, then...

A local ring O_C is well-placed with respect to the flag. Let V be a fiber of F. We are concerned with the case $n=2$. Now let $Y \subset X(v)$. Denote the subbundle of V by V. To show that F is well-placed, we need to verify that F is well-placed with respect to V. Use induction on d. To show that F is well-placed with respect to V, conclude that...

To be a diagram of...
Let E be a vector bundle of rank n over X connected and let $0 \subset E_1 \subset \cdots \subset E_n = E$
be a full flag for E. Call a subbundle F of E
adapted to the flag if for each i, $E_i \cap F$ and $E_i + F$
are subbundles of E, equivalently $E/E_i + F$ is loc.
free (since one has exact sequences

$E_i \cap F \to E_i \to E_i + F \to E/E_i + F \to 0$)

Let $X(E)$ be the simplicial complex whose simplices
are chains of subbundles $F_0 < \cdots < F_n$ with $0 \neq F_0$,
$F_n \neq E$ and $X(E)'$ the full subcomplex whose vertices are
those F adapted to the flag. I want to show
that $X(E)'$ is a bouquet of $(n-2)$-spheres.

First point: suppose F is adapted to $\{E_i\}$ and
F' is a subbundle of F. Claim F' adapted to $\{E_i\}$ iff
F' adapted to $\{F \cap E_i\}$. Proof.

$$F' + (F \cap E_1) = F' + (F_n E_i)$$

$\text{F} \cap \text{F} \cap (F' + E_i) = F' + (F \cap E_i)$

shows that $F' + (F \cap E_i)$ is a subbundle of F iff $F' + E_i$
is a subbundle of E.
Now let \mathcal{H} be the set of F in $\mathcal{X}(E)'$ such that $F+E_i$ is not in $\mathcal{X}(E)'$. Note that if F is adapted to $\{E_i\}$ so is $F+E_a$ because $F+E_a+E_i = F+E_i$ for $i \geq a$. Thus if $F+E_1$ is not in $\mathcal{X}(E)'$ it must be that $F+E_1 = E$, and since E_1 is a line bundle and $F < E$, we must have $F \oplus E_1 = E$. Thus \mathcal{H} is the set of subbundles of E of rank $n-1$ which are adapted to $\{E_i\}$ and such that $F \oplus E_1 = E$.

Let $Y \subset \mathcal{X}(V)'$ be the full subcomplex having the vertices not in \mathcal{H}. Then for $F \in Y$ we have the retraction

$$F \leq F+E_1 \geq E_1$$

so Y is contractible.

Given $H \in \mathcal{H}$, what is its link? The ordered set of $0 < F < H$ which are adapted to $\{E_i\}$, or equivalently (by the preceding point) which are adapted to $\{E_i \cap H\}$. Now $O = E_1 \cap H \subset E_2 \cap H \subset \ldots \subset E_n \cap H = H$
is a full flag since H has rank $n-1$. Thus the link of H is the complex of proper subbundles in H adapted to the flag $\{E_{i+1} \cap H\}_{i=1}^{n-1}$. By induction the links will be a bouquet of $(n-3)$-spheres, so I can conclude as before that $\mathcal{X}(E)'$ is a bouquet of $(n-2)$-spheres.
Application: Let \(A \) be a local ring with an infinite residue field \(k \), and suppose \(A \) is a \(k \)-alg. \(E = A \otimes_k V \). To prove \(X(E) \) is a bouquet of \((n-2)\)-spheres \(n = \dim_k(V) \). Suffices to show any finite subset \(S \) of \(X(E) \) is adapted to some flag in \(E \), for then have
\[
S \subset X(E) \subset X(E)
\]
showing that \(X(E) \) has no non-trivial homotopy groups in degrees \(< n-2 \).

So let \(F \subset A \otimes_k V \) be a subbundle with quotient \(Q \).
Let \(0 \subset V_1 \subset \cdots \subset V_n = V \) be a full flag in \(V \). The generic situation is where the composite
\[
V_i \subset V \longrightarrow k \otimes_k Q
\]
is an isomorphism, \(q = \text{rank}(Q) \). If this is the case, then I claim \(F \) is adapted to the flag
\[
\{ A \otimes_k V_i \}.
\]
Recall that if elements \(z_1, z_2 \in Q \) are such that their images in \(k \otimes_k Q \) are independent, then \(A \longrightarrow Q \) is a subbundle (because can extend to a map \(A^g \longrightarrow Q \) which is an isom after \(k \otimes_k Q \), hence before).

Thus it follows that for \(i \leq q \)
\[
A \otimes_k V_i \longrightarrow A \otimes_k V \longrightarrow Q = A \otimes_k V / F
\]
is a subbundle injection, so \((A \otimes_k V_i + F) \) is a subbundle of \(A \otimes_k V \). For \(i \geq q \) it is pure, so \(A \otimes_k V_i + F = A \otimes_k V \).

Thus we can consider for each \(F \in S \) the subset of flags in \(V \) such that \(V_i \oplus k \otimes_k F = V \), \(q = n - \text{rank}(F) \), and these form a Zariski dense subset of all flags. Since
k is infinite, there exists a flag such that each F_i is adapted with respect to it.

But suppose now that A is local with residue field k infinite, and let E be a vector bundle of rank n. Given a finite set of subbundles F of E, we can since k is infinite, find a full flag $\{V_i\}$ in $k \otimes E$, such that

$$V_{\delta(r)} \oplus k \otimes F = k \otimes E$$

$$\delta(F) = n - \text{rank}(F).$$

for each F in S. Now lift the flag $\{V_i\}$ to a flag $\{E_i\}$ in E. Again it follows that

$$E_i + F$$

is a subbundle of E for each i, so F is adapted to $\{E_i\}$. Thus I seem to have proved

Proposition. If A is a local ring with infinite residue field (not nec. noeth. or commutative), then $X(A^n)$ has homotopy type of a bouquet of $(n-2)$-spheres.

As before this gives a stability result for the A-category.
April 9, 1973. (more stability)

A local ring residue field \(k \), \(E \) a free \(A \)-module of rank \(n \), \(X(E) \) the ordered set of proper subbundles \(F \) of \(E \). To show \(X(E) \sim V S^{n-2} \).

\(n=2 \), \(X(E) \) discrete.
\(n=3 \), have to check \(X(E) \) connected. But given two lines \(L_1, L_2 \) we know that either \(L_1 \) and \(L_2 \) are independent or that we can find \(L_3 \) independent of \(L_1, L_2 \) separately. Precisely, look at the lines \(L_1 \otimes k, L_2 \otimes k \) in \(E \otimes k \), choose an independent line and lift it to \(L_3 \).

\(n \geq 4 \). Fix a line \(L \) and let \(\mathcal{H}_L \) be the set of complementary "hyperplanes," and let \(Y \) be the full subcategory of \(X(E) \) consisting of \(F \) not in \(\mathcal{H}_L \). Then drawing a picture we have the picture

\[\text{Link}(H) \]

where \(\text{Link}(H) = X(H) \). By induction I know that \(\text{Link}(H) \sim V S^{n-3} \) whence from

\[\begin{align*}
\bigwedge H_{n-2} \big(\text{Link}(H) \big) & \rightarrow H_{n-2} (Y) \\
& \rightarrow H_{n-2} (X) \xrightarrow{\delta} H \big(\bar{H}_{n-3} \big(\text{Link}(H) \big) \big) \\
& \rightarrow 0
\end{align*} \]

This \(X \sim V S^{n-2} \) (at least ignoring \(\pi_1 \)).

Now let \(Y' \subset Y \) consist of \(F \) such that \(F \) is not independent of \(L \), i.e. \(\not\exists k \otimes \mathcal{H}_L \).
(Observe that H_1 depends only on k. Thus $H \otimes k$ is complementary to $k \otimes k \otimes k$.) The same is true for λ. Now we can retract Y to Y' by sending F

$F \leq F' \quad \text{if} \quad F \in Y'$

$F \leq F + L \quad \text{if} \quad F \in Y' \setminus Y$

This is well-defined because if $F_1 \leq F_2$?

Doesn't work, because we can have F_2 dependent on L, F_1 independent, and $F_1 + L \not\leq F_2$.

Wait: $\text{Link}(H) = X(H)$ contracts within Y because $F \leq F + L$ ($F \subset H \Rightarrow E/F + L \cong H/F$ so $F + L$ is a sub-bundle). Thus we know that $\text{Link}(H) \to Y$ is null-homotopic, and so

$X \cong V^S S^{n-2} \iff Y \cong V S^{n-2}$
April 10, 1973 (more stability)

Example: Let S be a set and consider the simplicial complex $K(S, n)$ whose simplices are

$$(s_0, i_0), \ldots, (s_q, i_q)$$

with $0 \leq i_0 < \ldots < i_q \leq n$. Claim $K(S, n)$ is $(n-1)$-connected (begins in dim. n).

Use induction on n. For $n = 0$, it is clear. For $n = 1$ we have a connected graph so it is also clear.

Fix $s_0 \in S$. The link of $(s_0, 0)$ is clearly $K(S, n-1)$. The result of removing all the vertices $(s_0, 0)$ for $s \neq s_0$ is a cone with vertex $(s_0, 0)$. Thus

$$K(S, n) = \bigvee_{s \neq s_0} K(S, n-1)$$

so the induction works.

$$\text{rank } \tilde{H}_n(K(S, n)) = (m-1) \cdot \text{rank } \tilde{H}_n(K(S, n-1))$$

$$\implies \text{rank } \tilde{H}_n(K(S, n)) = (m-1)^{n+1}$$

Check Euler char:

no. of $0 < \ldots < i_q$\hspace{1cm} \frac{(n+1) \ldots (q)}{(q+1)!} = \binom{n+1}{q+1}

no. of q-simplices is\hspace{1cm} \binom{n+1}{q+1}(m-1)^{q+1}

So

$$\chi = -\sum_{q=0}^{\infty} (-1)^q \frac{(n+1)^q (m-1)^{q+1}}{(q+1)!} = +1 - \frac{(1-m)^{n+1}}{1+1} = 1 + (-1)^m \binom{m-1}{m+1}$$

Let $M = \prod_{n \geq 0} BG_n$ be a top monoid associated to the family GL_n or Σ^n in Grp, and e the base point of BG_1. Multiplying by e on the left or right defines an embedding $BG_{n-1} \to BG_n$ unique up to homotopy (more or less) and so we can speak of the cofibre BG_p/BG_{p-1}.

Have the spectral sequence

$$E_{pq} = H_{p+q}(BG_p/BG_{p-1}) \Rightarrow H_n(BG_{\infty})$$

which results from filtering BG_{∞} via BG_p. This spectral sequence has products because the H-space structure on BG_{∞} induces maps

$$(BG_p/BG_{p-1}) \wedge (BG_q/BG_{q-1}) \to BG_{p+q}/BG_{p+q-1}$$

Example: $BG_p = BU_p$. Then

$$BG_p/BU_{p-1} = MU_p$$

since BU_{p-1} is the canonical sphere bundle over BU_p.

In general it does not seem to be the case that BG_p/BG_{p-1} forms a spectrum in a natural way. However it does once one fixes a map

$$S^i \to BG_e/BG_{e-1}$$

for some e, i. The question becomes whether one gets
any interesting cohomology theories in this way.

Question: From the calculations for a finite field, one leads to conjecture that the fibres

\[\mathbb{B}G_{n-1}^+ \to \mathbb{B}G_n^+ \]

is a Moore space of type \(\mathbb{Z}/(q^{n-1})\mathbb{Z}, 2n-1 \)?

Recall that the \(\mathbb{Q} \) category is an \(H \)-space with multiplication given by direct sum. Clearly we get

\[\mathbb{Q}_p \times \mathbb{Q}_q \to \mathbb{Q}_{p+q} \]

for each \(p, q \) hence we get maps

\[(\mathbb{Q}_p/\mathbb{Q}_{p-1}) \wedge (\mathbb{Q}_q/\mathbb{Q}_{q-1}) \to (\mathbb{Q}_{p+q}/\mathbb{Q}_{p+q-1}) \].

Now recall that \(\mathbb{Q}_1/\mathbb{Q}_0 = \bigoplus p \mathbb{Q}/\mathbb{Q}_p \), hence there is a canonical map

\[S^1 \to \mathbb{Q}_1/\mathbb{Q}_0 \]

so that \(\{\mathbb{Q}_p/\mathbb{Q}_{p-1}\} \) is a spectrum in a canonical way, in fact a ring spectrum.

Now recall that we have a co-cart. square

\[
\begin{array}{ccc}
\Sigma X_n G_n & \to & G_n \\
\downarrow & & \downarrow \\
Q_{n-1} & \to & Q_n
\end{array}
\]
so that Q_n/Q_{n-1} is the Thom space of the bundle over BG_n with fibre the suspension of X_n, which is a wedge of $(n-1)$-spheres.

Now it should be possible to exhibit a $G_p \times G_q$ equivalent map

$$\Sigma X_\ell \vee \Sigma X_\delta \longrightarrow \Sigma X_{\ell+\delta}$$

in fact given vector spaces V let $J'(V)$ be the ordered set of proper layers in V, and $J'(V)$ the ordered set of all layers. Then

$$J'(V) \times J'(W) \longrightarrow J'(V \oplus W)$$

$$(V_0, V_i), (W_0, W_i) \longrightarrow (V_0 \oplus W_0, V_i \oplus W_i)$$

carries $J(V) \times J(W) \cup J'(V) \times J(W)$ into $J(V \oplus W)$, so it induces a map

$$\frac{J'(V)}{J(V)} \vee \frac{J'(W)}{J(W)} \longrightarrow \frac{J'(V \oplus W)}{J(V \oplus W)}.$$

Since $J'(V)$ is contractible, this is a map

$$\Sigma J(V) \vee \Sigma J(W) \longrightarrow \Sigma J'(V \oplus W).$$

Better one has only to note that

$$J(V) \times J'(W) \cup J'(V) \times J(W) = J(V) \ast J(W)$$

$$\frac{J(V) \times J(W)}{J(V) \times J(W)}.$$
up to homotopy.

In particular we have

\[J(V) \times J'(k) \cup J'(V) \times J(k) \]

\[J(V) \times J(k) \]

\[\overset{\cong}{\longrightarrow} \]

\[J(V) \times I \cup CJ(V) \times I \]

\[J(V) \times I \]

is hom to \(\Sigma J(V) \):

\[\begin{array}{c}
\text{I} \\
\end{array} \quad \longrightarrow \quad \begin{array}{c}
\text{J(V)} \\
\end{array} \]
The \mathbb{Q}-category in classical K-theory: I recall that it is a simplicial groupoid:

$$M \times M \rightleftarrows M \rightleftarrows \text{pt}$$

where

$$M = \coprod_{n \geq 0} BG_n$$

so it is

$$\coprod_{a, b \geq 0} BG_{a,b} \rightleftarrows \coprod_{a} BG_a \rightleftarrows \text{pt}$$

Filtering by the total degree as before we see that Q_p/Q_{p-1} is the simplicial space

$$\begin{array}{ccc}
\text{pt} & \downarrow & \text{pt} \\
\coprod_{a+b=p} BG_{a,b} & \rightleftarrows & BG_p \\
\end{array}$$

whose homology we can compute dimensionwise as before. Thus

$$\bigoplus_p H_*(Q_p/Q_{p-1}) \leftarrow \text{Tor}_{Z}^R(Z, Z)$$

where

$$R = \bigoplus_{n \geq 0} H_*(B G_n).$$

Now take $G_n = BU_n$, and recall

$$\bigoplus H_*(BU_n) = Z[b_0, b_1, \ldots]$$
where $b_i \in H_{2i}(BU_1)$ is the dual basis to c_i^*. Thus

$$\text{Tor}^R_q(\mathbb{Z}, \mathbb{Z}) = \Lambda [\tilde{b}_0, \tilde{b}_1, \ldots]$$

where $\tilde{b}_i \in \text{Tor}^R_1(\mathbb{Z}, \mathbb{Z})_{2i}$ is the image of b_i in the indecomposable space of R. So this means that

$$Q_1/Q_0 = \Sigma^1 BU_1$$

has the generators. Precisely we can say that

$$\bigoplus_{p>0} H_x(Q_p/Q_{p-1})$$

is an exterior algebra with generators $\tilde{b}_0, \tilde{b}_1, \ldots$ where $\tilde{b}_i \in H_{2i+1}(Q_1/Q_0)$.

Note that the least degree element of $H_x(Q_p/Q_{p-1})$ is $\tilde{b}_0 \ldots \tilde{b}_{p-1}$ which has degree $\sum_{i=0}^{p-1} (2i+1) = 2 \frac{p(p-1)}{2} + p = p^2$.

The spectrum $\{Q_p/Q_{p-1}\}$ has homology

$$\lim_{\vec{p}} H_x(Q_p/Q_{p-1}) = 0$$

and so it represents the trivial genus homology theory.
April 14, 1973

Let k be a field $G = PGL_2(k) = \text{group of } \text{automorphism of } P^1_k$. I want to compute the low dimensional homology C_2 of G.

Let G act on P^1_k and consider the complex of chains on P^1_k considered as a simplicial complex in which every finite non-empty subset is a simplex. We get an exact sequence of G-modules.

$\longrightarrow C_2 \longrightarrow C_1 \longrightarrow C_0 \longrightarrow \mathbb{Z} \longrightarrow 0$

\[C_0 = \mathbb{Z}[G/B] \] $B = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ fixes $z = \infty$.

$C_1 = \mathbb{Z}[G] \otimes_{\mathbb{Z}[N]} \mathbb{Z}^{\text{sign}}$ modulo scalar.

$N = \text{normalizer of } \text{torus } T = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$ modulo scalar.

$C_2 = \mathbb{Z}[G] \otimes_{\mathbb{Z}[\Sigma_3]} \mathbb{Z}^{\text{sign}}$

G acts transitively on triples of points in P^1_k.

The stabilizer of $0,1,\infty$ is Σ_3 generated by the transpositions $z \mapsto 1-z$, $z \mapsto \frac{1}{z}$.
\[C_3 = \prod_{\{z_0, \ldots, z_3\}} \mathbb{Z} \]

\(G \) doesn't act transitively on 3-simplices. Let \(\tilde{C}_3 \) be the group of linear combinations of ordered 3-simplices. Thus
\[\tilde{C}_3 \cong \mathbb{Z} \left[\mathbb{Z}^4 \right] \]

\[\tilde{C}_3 = \bigoplus_{i \neq 0,1} \mathbb{Z}[G] \]

because any \((z_0, z_1, z_2, z_3)\) is uniquely \(G \)-conjugate to one of the form \((0, 1, \infty, z)\).

Now I will work with coefficients such that 2, 3 are invertible. Look at coefficients such that \(B, T \) have same homology. Then
\[H_*(G, C_0) = H_*(T) \]
\[H_*(G, C_1) = H_*(\mathbb{Z} \otimes \mathbb{Z} \otimes N, \mathbb{Z} \otimes \mathbb{Z} \otimes \mathbb{Z}) = \left(H_*(T) \otimes \mathbb{Z} \otimes \mathbb{Z} \right)^{\mathbb{Z}_4_2} = \{ x \in H_*(T) \mid \omega x = -x \} \]

and so the map
\[H_*(G, C_1) \to H_*(G, C_0) \]
is the inclusion of the anti-invariant elements of \(H_*(T) \).
and so the cokernel must be the coinvariants.

\[H^*_G(G, C_2) = H^*_G(\Sigma_3, \mathbb{Z}^{\otimes n}) = 0. \]

What are the orbits of \(G \) on 3-simplices \(\{z_1, z_2, z_3, z_4\} \)? On ordered sets get \((0, 1, \infty, z) \) with \(z \neq 0, 1, \infty \). Have then an action of \(\Sigma_4 \)

\[
z 1 \rightarrow \frac{z - z_1}{z - z_3} \cdot \frac{z_2 - z_3}{z_2 - z_1}
\]

so then \(z_4 \rightarrow \frac{z_4 - z_1}{z_4 - z_3} \cdot \frac{z_2 - z_3}{z_2 - z_4} = \gamma \)

Now permute \(z_1, z_2, z_3, z_4 \) and see how \(\gamma \) changes

\[
\begin{align*}
(0, -1, \infty, z) & \rightarrow z \\
(0, 1, z, \infty) & \rightarrow 1 - z \\
(0, \infty, 1, z) & \rightarrow \frac{z}{z - 1} \\
(0, z, 1, \infty) & \rightarrow \frac{z - 1}{z} \\
(0, \infty, z, 1) & \rightarrow \frac{1}{1 - z} \\
(0, z, \infty, 1) & \rightarrow \frac{1}{z} \\
\end{align*}
\]
Thus the Klein group acts trivially. (This well-known, I think. Thus Attijah told me one gets a surjection \(\Sigma_4 \rightarrow \Sigma_3 \) with kernel the Klein group by letting \(\Sigma_4 \) act on line pairs

\[
\begin{align*}
(1 & 0 & \infty & z) \rightarrow 1 - z \\
(1 & 0 & z & \infty) \rightarrow z \\
(0 & 1 & z & \infty) \rightarrow \\
(z & 0 & 1 & \infty) \rightarrow \\
(\infty & 0 & 1 & z) \rightarrow \\
(\infty & z & 0 & 1) \rightarrow z \\
(0 & \infty & 1 & z) \rightarrow z \\
(z & \infty & 1 & 0) \rightarrow z \\
(z & 0 & \infty & 1) \rightarrow z
\end{align*}
\]

Thus the cross-ratio changes into

\[
\frac{x-1}{1-z} = \frac{x-1}{x} \cdot \frac{x}{z-1}
\]
and there should be an invariant function of degree \(G\) in \(z\): (at least one by Luroth, and all others are related by \(G\))

\[
(z - \lambda)(\frac{1}{z} - \lambda)(1-z - \lambda)(1-\frac{1}{z} - \lambda)(\frac{1}{1-z} - \lambda)(\frac{2}{z-1} - \lambda)
\]

I don't know if there is a particularly simple one.

In any case let's go back to \(H_k(\mathbb{Z}, C_3)\). We have that this is a direct sum \(\mathbb{Z}_3\) over \(k = \{0, 1, 2\}\) modulo \(\Sigma_3\) of the cohomology of the stabilizer of \((0, 1, \infty, z)\) which is at least the Klein group. The bad points for the \(\Sigma_3\) action are \(z\)

\[
z = \frac{1}{2}, \quad z = \pm 1, \quad z = \frac{1}{3}, \quad z = \frac{1}{2}, \quad z = \frac{3}{2}, \quad z = \frac{1 + \sqrt{3}}{2}, \quad z = \frac{3}{2}
\]

One orbit is \([-1, \frac{1}{2}, 2]\) and stabilizer \(\mathbb{Z}/2\). Other is \([\frac{1 + \sqrt{3}}{2}, \frac{1 - \sqrt{3}}{2}]\) and stabilizer is \(\mathbb{Z}/3\).
Also \([0,1,\infty]\) stabilizer \(\mathbb{Z}/2\).

The simplest perhaps is
\[
\omega = \frac{(z^2 - z + 1)^3}{z^2(z - 1)^2}
\]

has triple zeroes at \(\frac{1 + \sqrt{3}}{2}, \frac{1 - \sqrt{3}}{2}\) and double poles at \(0, 1\).

Clearly \(\omega\) is unchanged under \(z \rightarrow 1 - z, z \rightarrow \frac{1}{z}\) hence under \(\Sigma_3\) as these transpositions generate.

By sending \(z \rightarrow \omega\) I get a bijection of the \(\Sigma_3\) orbits on \(k - \{0,1\}\) with \(k - \{0,1\}\).

Now when \(z = 2\), \(\omega = \frac{(4 - 2 + 1)^3}{4} = \frac{27}{4}\).

The stabilizer is \(\Sigma_2\) which acts non-trivially on the sign representation. So this doesn't contribute to the cohomology. When \(z = \frac{1 + \sqrt{3}}{2}\), \(\omega = 0\) and the stabilizer is \(\mathbb{Z}/3\) which acts trivially on the sign rep. Thus \(\omega = 0\) contributes along with all \(\omega \neq \frac{27}{4}\). So this suggests we change \(\omega\) to
\[
\overline{\omega} = \frac{(z + 1)^2 (z - \frac{1}{2})^2 (z - \frac{\sqrt{3}}{2})^2}{z^2(z - 1)^2}
\]

Thus it seems that
\[
H_*(G, C_3) = \frac{1}{\omega \neq 0} A [0,1]
\]

where \(A\) is the coefficient group (assuming 2,3 invertible).
Tuples $(z_1, z_2, z_3, z_4, z_5)$ and try to understand relations between cross-ratios.

$(0, 1, \infty, a, b)$

$(1, \infty, a, b) \quad \mapsto \quad \frac{b-1}{b-a}$

$(0, \infty, a, b) \quad \mapsto \quad \frac{b}{b-a}$

$(0, 1, a, b) \quad \mapsto \quad \frac{b}{b-a} \cdot \frac{1-a}{1}$

$(0, 1, \infty, b) \quad \mapsto \quad b$

$(0, 1, \infty, a) \quad \mapsto \quad a$

$(a, 0, 1, \infty, b)$

$(0, 1, \infty, b) \quad \mapsto \quad b$

$(a, 1, \infty, b) \quad \mapsto \quad \frac{b-a}{1-a}$

$(a, 0, \infty, b) \quad \mapsto \quad \frac{b-a}{-a}$

$(a, 0, 1, b) \quad \mapsto \quad \frac{b-a}{b-1} \cdot \frac{1}{a}$

$(a, 0, 1, \infty) \quad \mapsto \quad \frac{\infty-a}{\infty-1} \cdot \frac{1}{a} = \frac{1}{a}$

TOO COMPLICATED.
Explore more abstractly:

The point perhaps to keep in mind is that what I am trying to do is to understand the cohomology of $GL_2(k)$ via that of the algebraic group GL_2 which is known. Thus suppose $k = \mathbb{C}$ and we have mod ℓ coefficients. Then the subgroups B, T have the same cohomology as the corresponding algebraic groups. This takes care of the dimensions 0, 1, 2, but once one hits dim. 3 there appears to be a problem.

$GL_n(k[t])$ of vector bundles on curves

Let k be a field, $\Gamma = GL_n(k[t]) = \text{Aut}(M)$, $M=k[t]^n$ and let X be the building at ∞ of $k(t) \otimes_{k[t]} M = V$. Thus X is the simplicial complex whose g-simplices are chains of lattices

$$L_0 \prec \cdots \prec L_g$$

in V for the d.v.r. $\mathcal{O}_x = k[t]_{\infty}^x$, $m_{L_\infty} = \frac{1}{t}$, such that $m_{L_\infty}|_{L_0} = 0$ (equivalently $L_\infty \subset L_0$). Can also think of such a lattice as an extension of M to a vector bundle E of rank n on P^1.

We know X is contractible, hence the chains on X form a Γ-resolution of \mathbb{Z}, and we obtain a spectral sequence relating the homology of Γ with the homology of X/Γ with coefficients in the local system of isotropy homology. We now have to compute the Γ-orbits on the g-simplices and the stabilizers.

Can think of \mathcal{L} as a pair $(E, M \to j^*E)$.

The (E_0^x) (E_∞^x) are Γ-conjugate means that

We think of $L \subset V$ as $E_\infty \subset V$ with $M = \Gamma(M^1, E) \subset E_{\infty} = V$. For L, L' to be Γ-conjugate means the vector bundles E, E' are isom.
and the stabilizer of \(L \) is simply the group of automorphisms of the bundle \(E \).

We know every vector bundle \(E \) on \(\mathbb{P}^n \) is isomorphic to
\[
\mathcal{O}(k_1) \oplus \cdots \oplus \mathcal{O}(k_n)
\]
with \(k_1 \leq \ldots \leq k_n \). Let
\[
\lambda_i(E) = k_{i+1} - k_i
\]
for \(i = 1, \ldots, n-1 \); these are roots in some sense.

I want now to compute the group of automorphs of this bundle. Now I know that if I write
\[
E = \bigoplus_{k} \mathcal{O}(k)^{n_k} \quad \sum n_k = n
\]
then the subbundle \(\bigoplus_{k \neq p} \mathcal{O}(k)^{n_k} = F_p E \) is intrinsic.

Better,
\[
\text{End}(\mathcal{O}(k_1) \oplus \cdots \oplus \mathcal{O}(k_n)) = \text{ring of matrices } \{ \text{Hom}(\mathcal{O}(k_i), \mathcal{O}(k_j)) \}
\]
\[
= \left\{ \begin{array}{c} \Gamma(\mathcal{O}(k_i - k_j)) \end{array} \right\}
\]
\[
= \begin{pmatrix} M_{n_p}(k) \\ \vdots \\ \vdots \\ \vdots \end{pmatrix}
\]
I need some notation. Thus given $k_1 < \cdots < k_n$, I need to know the size of the blocks, and the jumps. Thus I want to know the blocks and the degrees. So suppose we put

$$d_1 = \cdots = d_1 < d_2 = \cdots = d_2 < \cdots = d_n = k_1 < \cdots < k_n$$

So that

$$\DeclareMathOperator{End}{End} \End \left(O(k_1) \oplus \cdots \oplus O(k_n) \right) = \begin{pmatrix} 1 \end{pmatrix}$$

where (i,j)-th block consists of polynomials of degree $d_j - d_i$ and of size $s_i \times s_j$

and the auto group is the set of matrices such that the diagonal entries are invertible.

Observe that

$$\text{Aut}(E) \longrightarrow \text{Aut}(E \otimes K(\infty)) = GL_n(K)$$

Next we want to compute the homo-

$$\text{Aut}(E) \longrightarrow \text{Aut}(E \otimes K(\infty))$$

so we first have to understand
\[\Gamma(\mathcal{O}(k)) \rightarrow \Gamma(\mathcal{O}(k) \otimes k(\infty)) \]

The former is homog. polys of degree \(k \) in \(t_0, t \), where \(t = t_1/t_0 \). At \(z = \infty \), \(t_0 \) is zero and we set \(t_k \) as the base of \(\Gamma(\mathcal{O}(k) \otimes k(\infty)) \). Thus, if we think of \(\Gamma(\mathcal{O}(k)) \) as polys in \(z = t^{-1} \) of degree \(\leq k \), the above map takes the constant term. So it is now clear that

\[
\text{Aut}(E) \rightarrow \text{Aut}(E \otimes k(\infty)) \cong GL_n(k)
\]

simply evaluate the polynomial matrices at \(z = 0 \). It is therefore clear that

\[
\text{Im} \left(\text{Aut}(E) \rightarrow \text{Aut}(E \otimes k(\infty)) \right) = \text{the parabolic subgroup fixing the canonical filtration of } E \otimes k(\infty)
\]

i.e. matrices

\[
\begin{pmatrix}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{pmatrix}
\]

At this point we understand the \(\Gamma \)-classes of vertices and their stabilizers. Now I recall that a \(g \)-simplex \(L_0 < \cdots < L_g \) is simply a vertex \(L \) together with the flag

\[0 = L_0 < L_1 < \cdots < L_g = L/t^{-1} L \]

Thus a \(g \)-simplex is simply a vector bundle \(E \) with
a flag \(F: 0 \leq E_0 < \cdots < E_8 = E \otimes k(\infty) \).

We are therefore interested in determining the classes of such flags under \(\text{Aut}(E) \). This leads to

Problem: Given an \(n \)-dimensional vector space \(V \) over \(k \) with a filtration
\[
V > W_1 > W_2 > \cdots > W_k = 0
\]

having jumps \(s_i = \dim (W_i / W_{i-1}) \), \(i = 1, \ldots, k \)

let \(P \) be the corresponding parabolic subgroups of \(\text{Aut}(V) \). Classify the classes of flags
\[
0 \leq V_0 < V_1 < \cdots < V_8 = V
\]

under the action of \(P \).

Change notation. Start with

\[(\star) \quad 0 < V_1 < \cdots < V = V \quad \text{dim} \ V = n \]
given and fixed, and \(P = \text{Aut}(0 < V_1 < \cdots < V_{k-1} < V) \). Now suppose given a subspace \(W \) of dimension \(p \). To determine its \(P \)-class one has only to give the dimensions of the filtration

\[
0 \leq V_1 \cap W \leq \cdots \leq V_k \cap W = W
\]

Thus if the jumps in (\star) are \(s_1, s_2, \ldots, s_k \)
then the P-class of a subspace is a sequence of jumps t_1, \ldots, t_k with $0 \leq t_i \leq 2^i$.

To simplify things take the case where all $\beta_i = 1$. Then a subspace is determined by a sequence $t_i = 0$ or 1, and a flag

$0 \leq W_0 < W_1 < \cdots < W_8 = V$

is determined by an increasing family

$t(0) \leq t(W_0) < t(W_1) < \cdots < t(W_8) = t(V)$

where

$t(W) = \text{the sequence } (\dim(W \cap V_1), \dim(\frac{W \cap V_2}{W \cap V_1}), \ldots)$

Thus it seems that what we are getting is that any P class of simplices may be identified with a simplex in the following simplicial complex: It has for vertices sequences $\vec{r}_0, \ldots, \vec{r}_n$ and a simplex is an increasing sequence $\vec{r}_0 < \cdots < \vec{r}_n$ for the product ordering such that each component of $\vec{r}_n - \vec{r}_0$ is either 0 or 1.

Thus what this seems to be is the product of the ordered simplicial complex

\[\cdots \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad \cdots \]

divided out by the action of Σ_n.
So the next point is to understand the stabilizers. Thus given a q-simplex I want to understand its stabilizer.

Again consider the case where all $x_i = 1$. The stabilizer of $\text{Aut}(E)$ maps onto the Borel subgroup of $\text{Aut}(E \otimes k(x))$. Now one knows that the mod l cohomology of $\text{Aut}(E)$ is the same as that of the torus. Thus it seems that all of the simplices with top vertex E have same mod l stabilizer homology. But now when we come to higher x_i the situation is even messier.
Proposition: Let \(C \) be a complete n.s. curve of genus \(g \) over \(k \) alg. closed, and let \(E \) be a vector bundle of rank \(n \) over \(C \). Assume \(E \) has a flag
\[
(*) \quad 0 < E_1 < \cdots < E_n = E
\]
with quotients \(L_i = E_i / E_{i-1} \) satisfying
\[
\deg(L_{i-1}) - \deg(L_i) > 0
\]
Then (*) is the unique maximal flag in \(E \).

Proof. Recall that a maximal flag is one such that \(E_1 \) is a line bundle of maximum possible degree in \(E \), \(E_2 / E_1 \) is of max. deg. in \(E / E_1 \), etc.
Suffices to show that if \(L \) is a sub-line bundle of \(E \) of maximum degree, then \(L = E_1 \). (Induction on \(n \)).
But then \(\deg(L) \geq \deg(E_1) > \deg(L_i) \) for all \(i \geq 2 \).
so one sees that the map
\[
L \rightarrow E_n \rightarrow E_n / E_{n-1} \quad \text{is zero}
\]
so \(L \leq E_{n-1} \), etc. until finally that \(L \leq E_1 \), whence \(L = E_1 \) as the degrees are equal. DONE
Given a vector bundle E over C, we consider
\[\mu_1(E) = \sup \left\{ \frac{\deg(F)}{\text{rank}(F)} \mid 0 < F \leq E \right\} \]
where F runs over subbundles of E. Actually, we shall maybe eventually want to consider the polygon obtained by plotting the points $(\deg(F), \text{rank}(F))$ in the plane and taking the shaded area.

So we get a sequence of slopes.
\[\mu_1 > \mu_2 > \ldots \]

Suppose that we consider two subbundles (non-zero) F_1, F_2 with slope $= \mu_1(E)$. Then have an exact sequence of vector bundles:
\[0 \rightarrow F_1 \cap F_2 \rightarrow F_1 \oplus F_2 \rightarrow F_1 + F_2 \rightarrow 0 \]

hence
\[\text{deg}(F_1 \cap F_2) + \text{deg}(F_1 + F_2) = \text{deg}(F_1) + \text{deg}(F_2) \]
\[\text{rank}(F_1 \cap F_2) + \text{rank}(F_1 + F_2) = \text{rank}(F_1) + \text{rank}(F_2) \]
Let \(F_1 + F_2 \) be the smallest subbundle of \(E \) containing \(F_1 + F_2 \), whence
\[
d(F_1 + F_2) \leq d(F_1 + F_2)
\]
with equality iff the two are equal, and
\[
r(F_1 + F_2) \leq r(F_1 + F_2).
\]

Then by assumption,
\[
d(F_1 \cap F_2) \leq \mu_1(E) r(F_1 \cap F_2)
\]
\[
d(F_1 + F_2) \leq d(F_1 + F_2) \leq \mu_1(E) r(F_1 + F_2)
\]
so adding get
\[
d(F_1) + d(F_2) \leq \mu_1(E) (r(F_1) + r(F_2)) = d(F_1) + d(F_2)
\]
since \(F_1 \cap F_2 \) have slope \(\mu_1(E) \). Thus all the preceding inequalities must be equalities and so we see that
\[
d(F_1 \cap F_2) = \mu_1(E) r(F_1 \cap F_2)
\]
\[
F_1 + F_2 = \overline{F_1 + F_2} \text{ is a subbundle of } E
\]
\[
F_1 + F_2 \text{ has slope } \mu_1(E).
\]

So if \(F_1 \) is a \(\mu_1 \)-subbundle with slope \(\mu_1(E) \) having the maximum rank, then \(F_2 \subset F_1 \). Thus get

Proposition: There is a unique \(\mu_1 \)-subbundle of \(E \) maximal of slope \(\mu_1(E) \), and it is semi-stable of that slope.
Proposition: \(\text{If } E \text{ is semi-stable and } \deg(E) < 0, \) then \(H^0(E) = 0. \)

Proof: If \(H^0(E) = 0 \), then \(E \) has a sub-line bundle of degree \(\geq 0 \), contradicting \(\frac{\deg(L)}{1} \leq \frac{\deg(E)}{\text{rg}(E)} < 0. \)

Cor: \(E \) semi-stable and \(\deg(E) > \text{rg}(E) \cdot (2g-2) \) \(\Rightarrow H^1(E) = 0. \)

Proof: \(\mathcal{O} \otimes E^v \) is also semi-stable. (Check: Any subbundle of \(E^v \) is of the form \(F^\perp \) for some subbundle \(F \) of \(E \), and \(F^\perp = (E/F)^v \).

\[
\begin{align*}
\deg(F^\perp) &= \deg(F) - \deg(E) \\
\text{rg}(F^\perp) &= \text{rg}(E) - \text{rg}(F)
\end{align*}
\]

\[
\mu(E) = \frac{\deg(E)}{\text{rg}(E)} \quad \mu(E^v) = \frac{-\deg(E)}{\text{rg}(E)} = -\mu(E).
\]

\[
\mu(F^\perp) = \frac{\deg(F^\perp)}{\text{rg}(F^\perp)} = \frac{\deg(F) - \deg(E)}{\text{rg}(F^\perp)}
\]

\[
\leq \frac{\mu(E) \text{rg}(F) - \mu(E) \text{rg}(E)}{\text{rg}(E) - \text{rg}(F)} = -\mu(E) = \mu(E^v)
\]

so OK. Actually the way to see this is to note that \(E \) semi-stable is equivalent to \(\mu(E/F) \geq \mu(E) \) for any proper quotient bundle.
\(\mu(E)\)
\[\mu(E/F) \leq -\mu(E) = \mu(E)\]
and hence
\[\mu(E^\vee) = -\mu(E/F) \leq -\mu(E) = \mu(E)\]
as desired. So \(\Omega \otimes E^\vee\) is semi-stable with
\[\deg(\Omega \otimes E^\vee) = rg(E)(2g-2) - \deg(E) < 0\]
so
\[H^1(E)\text{ dual to } H^0(\Omega \otimes E^\vee) = 0.\]

Proposition: If \(\mu_1(E) < 0\), then \(H^0(E) = 0\).
and if \(\mu_{\min}(E) > 2g-2\), then \(H^1(E) = 0\).

Recall that \(\mu_1(E) \geq \mu_2(E) \geq \ldots \geq \mu_{\min}(E)\).
The same proof works as before. Thus, by definition
for any line bundle \(L \subseteq E\), we have
\[\deg(L) \leq \mu_1(E)\]
so \(\deg(L) < 0\) if \(\mu_1(E) < 0\). Similarly

\[\mu_\min\]

for any \(F\) we have
\[\frac{\deg(E/F)}{rg(E/F)} \geq \mu_{\min}(E)\]
so if this is > \(\deg(2) = 2g - 2\), then can't have \(H^0(\Omega \otimes 2) \neq 0\).
For a consistent notation put
\[\mu_{\text{max}}(E) = \mu_1(E) \]
so that
\[\mu_{\text{max}}(E) \geq \mu(E) \geq \mu_{\text{min}}(E) \]
with equalities for semi-stable bundles.

Recall that \(H^1(E) = 0 \) and \(E \) is gen. by \(H^0(E) \)
if \(H^1(E(-P)) = 0 \) for all points \(P \). Thus we see
that if
\[\mu_{\text{min}}(E(-P)) = \mu_{\text{min}}(E) - 1 > 2g - 2 \]
then \(H^1(E) = 0 \) and \(E \) is gen. by \(H^0(E) \). Thus we get

Proposition: If \(\mu_{\text{min}}(E) \geq 2g - 2 \), then
\(H^1(E) = 0 \) and \(E \) is generated by \(H^0(E) \).

Corollary: If the ground field is finite, then there are only finitely many isomorphism classes of vector bundles with given rank, \(\mu_1 \) and \(\mu_{\text{min}} \).

Proof. Tensoring with a line bundle we can suppose \(\mu_{\text{min}} \) large enough so the preceding proposition applies. Thus we know \(H^0(E) \) by Riemann-Roch, and so it suffices to show that \(\mu_{\text{grass}} \) over \(C \) have finitely many rational points of given degrees. This must be usual Hilbert scheme nonsense.

Can do directly as follows. Choose a very ample line bundle \(L \) e.g. \(O(2g + 1) \).
Then if $H^1(E \otimes L^{-1}) = 0$, we have α by general regularity considerations and exact sequence

$$L^{-1} \otimes k_0 T_1(E) \to O \otimes k_0 T_0(E) \to E \to 0$$

with

$T_0(E) = H^0(E)$

$T_1(E) = H^0(\text{Hom}(L^{-1} \otimes k_0 T_0(E), E))$

and if E is sufficiently positive

so suppose $H^1(E \otimes L^{-1}) = 0$. Then E is regular with respect to the embedding defined by L, so we have

$$0 \to Z \to O \otimes H^0(E) \to E \to 0$$

and

$$O \otimes H^0(Z \otimes L) \to Z \otimes L \to 0$$

exact. Moreover we know the dimensions of $H^0(E)$ and $H^0(Z \otimes L)$ from the dimensions of $H^0(E \otimes L)$ which can be determined by R-R. Thus we have a presentation:

$$L^{-1} \otimes k_0 T_1(E) \to O \otimes k_0 H^0(E) \to E \to 0$$

where the dimensions of $T_1(E)$ and $H^0(E)$ are known, hence there are only finitely many possibilities for α, the result is now clear.
Corollary: There are only finitely many stable vector bundles of given rank and degree, when the ground field is finite.

Proposition: Let E_v be a sequence of vector bundles of the same rank and degree. TFAE
a) $\mu_{\text{max}}(E_v) \to \infty$
b) $\mu_{\text{min}}(E_v) \to -\infty$
c) Let $\delta(E_v)$ be the maximal degree of a sub-line bundle of E_v. Then $\delta(E_v) \to +\infty$.

Proof: From the picture

\begin{center}
\begin{tikzpicture}
\draw[->] (0,0) -- (3,0) node[midway,above] {μ_{max}};
\draw[->] (0,0) -- (1,2) node[pos=0.5,above] {$(1,\mu_{\text{max}})$};
\draw[->] (0,0) -- (2,3) node[pos=0.5,above] {$(\text{rg } E, \text{deg } E)$};
\end{tikzpicture}
\end{center}

one sees that the polygon contains the point $(1, \mu_{\text{max}})$, hence

$$\mu_{\text{min}} \leq \frac{\text{deg } E - \mu_{\text{max}}}{\text{rg } E - 1}$$

whence a) \Rightarrow b). Converse similar.

c) \Rightarrow a) because $\delta(E) \leq \mu_{\text{max}}(E)$.
a) \Rightarrow c). Recall from Serre’s course the
Lemma: If \(L_1, \ldots, L_n \) are the quotients of a maximal flag in \(E \), then
\[
\deg(L_i) - \deg(L_i) \leq 2g.
\]

Proof: Enough to consider the case \(n = 2, i = 1 \), since tensoring \(E \) with a line bundle doesn't change \(\deg(L_2) - \deg(L_1) \), so can suppose
\[
\deg(E) = 2g - 1 + \varepsilon \quad \varepsilon = 0 \text{ or } 1
\]
Then \(\Omega \Rightarrow \)
\[
h^0(E) \geq \deg(E) + 2(1-g) = 1 + \varepsilon \geq 1
\]
so \(E \) has a sub-line-bundle of degree \(> 0 \), so
\[
\deg(L_1) \geq 0
\]
Thus
\[
\deg(L_2) - \deg(L_1) = \deg E - 2 \deg(L_1)
\]
\[
\leq \deg(E) = 2g - 1 + \varepsilon \leq 2g
\]
as claimed.

Thus once we give \(\deg(L_i) \) in a maximal flag, we get \(\delta(E) \). Then for any subbundle \(F \), \(\delta(F) \leq \delta(E) \), and so if \(F \) has a maximal flag with quotients \(L_1, \ldots, L_n \), the best the degree of \(F \) can be is...
\[\deg(L_i) = \left[\deg(L_i) - \deg(L_{i-1}) \right] + \cdots + \left[\deg(L_2) - \deg(L_1) \right] + \delta(F), \]
\[\leq (i-1)2g + \delta(F). \]
\[\deg(F) = \sum_{i=1}^{r} \deg(L_i) \leq 2g \sum_{i=1}^{r} (i-1) + r \delta(F) \]
\[\deg(F) \leq 2g \frac{r(r-1)}{2} + r \delta(F) \]
\[\frac{\deg(F)}{r} \leq g(r-1) + \delta(F) \]

which shows that if \(\delta(E_v) \) remains bounded so does \(m_{\max}(E_v) \), whence (a) \(\Rightarrow \) (c).

Suppose \(C \) is of genus 1. Then

Now I want to understand the limiting behavior of a sequence \(E_v \) of the same rank and degree which go to infinity.
Proposition: Given an exact sequence
\[0 \to E' \to E \to E'' \to 0. \]

if \[\mu_{\min}(E') \geq \mu_{\max}(E'') + 4g \]
then the sequence splits.

Proof: Recall \[\mu_{\min}(E' \otimes L) = \mu_{\min}(E') + \deg L, \]
and whether the sequence splits or not is unchanged by tensoring with a line bundle. Since
\[\mu_{\min}(E') - 2g \geq \mu_{\max}(E'') + 2g \]
we can by tensoring with a suitable line bundle assume that
\[\mu_{\min}(E') \geq 2g \]
\[\mu_{\max}(E'') + 2g - 2 < 0 \]

The first inequality implies that \(E' \) is generated by \(H^0(E') \), hence \(\mathcal{O}^n \to E'' \) so
\[\text{Ext}^1(E'', \mathcal{O}^n) \to \text{Ext}^1(E'', E'). \]

But \(\text{Ext}^1(E'', \mathcal{O}) = H^1(E'', \mathcal{O}) \) dual to \(H^0(E'' \otimes \mathcal{O}) \)
and
\[\mu_{\max}(E'' \otimes \mathcal{O}) = \mu_{\max}(E'') + 2g - 2 < 0 \]
so \(H^0(E'' \otimes \mathcal{O}) = 0 \) and the sequence splits as claimed.
Suppose now that E is indecomposable of rank n with slopes $\mu_1 > \mu_2 > \ldots > \mu_n$. Then

$$\mu_1 - \mu_2 \leq 4g - 1$$

\[\mu_{r-1} - \mu_r \leq 4g - 1 \]

$$\mu_1 - \mu_{n-1} \leq n(4g-1) \leq n(4g-1)$$

$$\mu_1 \leq n(4g-1) + \mu_n \leq n(4g-1) + \frac{\deg E}{n}$$

Thus concludes

Proposition: The set of vector bundles of a given rank and degree form a limited family. So for a finite no. when the ground field is finite.

The $4g - 1$ can be improved to $2g - 2$. The point:

$$\text{Ext}^1(E', E') \neq 0 \iff \text{Hom}(E', E' \otimes \Omega) \neq 0 \Rightarrow \exists f : E' \to E' \otimes \Omega \neq 0 \Rightarrow$$

$$\mu_{\min}(E') \leq \mu(Coinf) \leq \mu(I\text{nf}) \leq \mu(E' \otimes \Omega) = \mu_{\max}(E') + 2g - 2.$$
April 18, 1973. Localization

Let \(A \) be a Dedekind domain with quotient field \(F \), let \(\mathfrak{m} \) be a maximal ideal, and let \(B \) be the Dedekind ring obtained by removing \(\mathfrak{m} \) from \(A \). Then \(B = \bigcap A_{\mathfrak{m}'} \subseteq F \).

Let \(M \) be a vector bundle over \(B \), let \(X \) be the building consisting of \(A_{\mathfrak{m}} \)-lattices \(L \) in \(F \otimes_B M \). Equivalently, \(X \) is the building of extensions of \(M \) to a vector bundle \(E \) over \(A \). Formulas:

\[
E = M \otimes A \subseteq F \otimes_B M
\]
\[
L = E_{\mathfrak{m}} = A_{\mathfrak{m}} \otimes A E
\]
\[
M = B \otimes A E
\]

Then \(\Gamma = \text{Aut}(M) \) acts on \(X \) which is contractible.

The \(\Gamma \)-classes of vertices of \(X \) are the same as iso. classes of \(E \) extending \(M \). One knows that a vector bundle over a Dedekind domain is determined by its rank and first Chern class. Thus

iso. classes of \(E \) = \{ \alpha \in \text{Pic}(A) \mid \alpha \rightarrow c(M) \in \text{Pic}(B) \}

In virtue of the exact sequence

\[
0 \rightarrow A^* \rightarrow B^* \otimes A \rightarrow \mathbb{Z} \rightarrow \text{Pic}(A) \rightarrow \text{Pic}(B) \rightarrow 0
\]

the iso classes are the cosets in \(\text{Pic}(A) \) for the cyclic group \([m] \). This cyclic group is finite iff \(\exists f \in m \cap B^* \), which
is the case in the standard arithmetic examples.

A \(q \)-simplex in \(X \) is the same as a lattice \(L_\mathfrak{g} \) together with a filtration

\[
0 \leq \bar{L}_0 < \bar{L}_1 < \cdots < \bar{L}_\mathfrak{g}
\]

where \(\bar{L}_\mathfrak{g} = L_\mathfrak{g} \otimes \mathbb{A}^{\mathfrak{m}} \), \(k = A/m \). Thus a \(\Gamma \)-class of lattices in the \(q \)-simplexes is the same as an isom. class of pairs \((E,F) \) where \(E \) is a bundle over \(A \) extending \(M \), and where \(F \) is a filtration

\[
0 \leq \bar{E}_1 < \cdots < \bar{E}_i < \bar{E} = A/m \otimes E
\]

Thus to determine the \(\Gamma \)-classes we have to determine the action of \(\text{Aut}(E) \) upon the set of such flags.

Now we know that

\[
\text{Aut}(E) \cong GL_n(k)
\]

and that \(SL_n(k) \) acts transitively on flags with same dimension, so what we want is

Lemma: \(\text{Aut}(E) \to \text{Aut}(\bar{E}) \) is onto the elementary subgroup.

Assuming this it follows that as \(\Gamma \)-class of \(q \)-simplexes is described by an \(x \in \text{Pic}(A) \) over \(\mathbb{C} \), together with a sequence of positive integers

\[
\begin{align*}
&n_1, \ldots, n_{\mathfrak{g}-1} \\
&\mathfrak{E}_1 < \cdots < \mathfrak{E}_{\mathfrak{g}-1} < \mathfrak{E}
\end{align*}
\]

such that \(\sum n_i \leq n = \text{rank}(M) \).
To prove the lemma, suppose given an exact sequence
\[0 \to k \to E \to W \to 0 \]
Now, modifying slightly the same theorem, one can find a section \(s \) of \(E \) such that \(s(k) = k \) and such that \(s \) is unimodular whence we get an exact sequence
\[0 \to A \to E \to E' \to 0 \]
which reduces to (1) modulo \(m \). Splitting (2) we have

\[\text{Act}(2) \xrightarrow{\text{red. mod } m} \text{Act}(1) \]

\[
\begin{pmatrix}
A^* \\ O
\end{pmatrix}
\begin{pmatrix}
E' \\ \text{Aut}(E')
\end{pmatrix}
\to
\begin{pmatrix}
k^* \\ O
\end{pmatrix}
\begin{pmatrix}
W \\ \text{Aut}(W)
\end{pmatrix}
\]

and since \(E' \to W \), it is clear that every elementary automorphism in \(\text{Aut}(E) \) lifts to one in \(\text{Aut}(E) \). **DONE**.

So now have an explicit description of the \(\Gamma \)-orbits on the simplices of \(X \). It is clear that the stabilizer of
\[E_0 < \ldots < E_g \]
corresponding

is simply the parahorique subgroup of $\text{Act}(E)$.

Now this situation to which we arrive I considered before when trying to compute the mod p cohomology of GL_n of a local field of res. char.p. Instead of getting a “clear” relation between the cohomology of $\text{GL}_n(F)$, $\text{GL}_n(k)$, $\text{GL}_n(A)$ as we do in the localization theorem, we get this confused picture with the parahorique groups.
Splitting then.

A ring, \(W \) fixed f.t. \(A \)-module, \(E_w \) the groupoid of epis \(P \to W, \ Q \in \text{Epi}(A) \), with iso over \(W \). Then have a forgetful functor

\[
k : E_w \to E_0 \quad (P \to W) \mapsto P.
\]

Also have an action of \(E_0 \) on \(E_w \) compatible with \(k \)

\[
\text{Q} \# (P \xrightarrow{u} W) = (Q \oplus P \xrightarrow{0+u} W).
\]

Let \(\mathcal{S} \) be the monoid \(\pi_0 E_0 \); it acts on \(H_*(E_w) \) and \(H_*(E_0) \). To prove:

Thus:

\[
\tilde{k} : \mathbb{I}^{-1} H_*(E_w) \to \mathbb{I}^{-1} H_*(E_0).
\]

Put \(\pi_0 E_w = \mathbb{S} J \), so

\[
H_*(E_w) = \frac{H}{j \in J} H_*(\text{Aut}(E_j))
\]

where \(E_j \) is a rep for \(j \in J \). The action of \(\mathbb{S} \) on \(H_*(E_w) \) is as follows. If \(\lambda \) is rep by \(\mathbb{S} Q_i \), then multip. by \(i \) \(\lambda \) (denoted \(\lambda_i \)) is

\[
H_*(\text{Aut}(E_j)) \to H_*(\text{Aut}(Q_i \# E_j))
\]

\[
\lambda_i \to H_*(\text{Aut}(E_{i \# j}))
\]

was last map induced by any isom of \(Q_i \# E_j \) with \(E_{i \# j} \).

Thus to invert \(\mathbb{I} \), what we are doing is this:

\[
\mathbb{I}^{-1} H_*(E_w) = \lim_{\text{trans}(I)} \{ i \mapsto H_*(E_w), (i \mapsto i') \mapsto \lambda_{i'} \}
\]
But we can form over $\text{Trunc}(\mathbf{I}) = \langle \mathbf{I}, \mathbf{I} \rangle$ the cofibred cat $\langle \mathbf{I}, \mathbf{I} \times \mathbf{J} \rangle$, and we have

$$I^{-1}H^*_x(E_W) = \lim \{(i,j) \mapsto H^*_\mathbf{I}(\text{Aut}(E_i))\}_{(i,j) \in \langle \mathbf{I}, \mathbf{I} \times \mathbf{J} \rangle}$$

Let $I^{-1}J = \prod_0 \langle \mathbf{I}, \mathbf{I} \times \mathbf{J} \rangle = \text{set of couples}$

Then clearly

$$I^{-1}H^*_x(E_W) = \prod_{x \in I^{-1}J} \lim \{(i,j) \mapsto H^*_\text{Aut}(E_i)\}_{(i,j) \in \langle \mathbf{I}, \mathbf{I} \times \mathbf{J} \rangle}$$

Recall I operates in E_W.

Lemma:

$s_1 + s_2 = k s_1 \# s_2$

Proof: s_i rep by $u_i : P_i \to W$. Then $s_1 + s_2$ rep by $P_1 \oplus P_2 \xrightarrow{u_1 + u_2} W$

$k s_1 + s_2$ --- $P_1 \oplus P_2 \xrightarrow{0 + u_2} W$

so want $P_1 \oplus P_2$

\[
\begin{array}{ccc}
\text{(id + 0, id + id)} & \downarrow \\
P_1 \oplus P_2 & \xrightarrow{u_1 + u_2} & W \\
\end{array}
\]

\[
\begin{array}{ccc}
P_1 \oplus P_2 & \xrightarrow{0 + u_2} & W \\
\end{array}
\]

$u_2 \varphi = u_1$

now $u_1 \varphi$ exists as P_1 is proj and u_2 onto.
The problem now is this: Given $f_0 + f = f'$ there are two maps

$$H_\ast(\text{Aut } E_j) \rightarrow H_\ast(\text{Aut}(E_j'))$$

The former is induced by $\# k f_0$, the latter with $- f_0$.

And although I see that the objects $(Q \oplus P \xrightarrow{0+u\chi} E)$ and $(Q \oplus P \xrightarrow{u+\chi} W)$ are isom., I don't see that these representations are conjugate, no matter how big Q is. In fact they aren't, since the former has no invariant mapping into the latter.

Therefore your generalization doesn't work.

Take a vector bundle M over \mathbb{Z} of rank n and form the formal series

$$\sum_{L \in M} \frac{1}{\text{card}(M/L)^s}$$

where L runs over all lattices contained in M.

Problem: Compute this series.

Now the first thing to notice is that M/L can be split into its primary components, hence we get an Euler product:

$$\sum_{L \in M} \frac{1}{\text{card}(M/L)^s} = \prod_p \sum_{M/L} \frac{1}{\text{card}(M/L)^s}$$

and that lattices such that M/L is a p-group may be identified with lattices in $M \otimes \mathbb{Z}_p$ contained within $M \otimes \mathbb{Z}_p$. Thus we are down to a local problem.

Local problem: Let A be a discrete valuation ring with quotient field F and residue field k. Assume k has q elements. Calculate the sum:

$$\sum_{L \subset A} \frac{1}{\text{card}(A/L)^s}$$
To avoid biasing things, fix a lattice M in F^n. Want to compute the lattices $L \subset M$ with given $\text{card}(M/L)$. Let π generate the maximal ideal of A. Any lattice $L \subset M$ determines π.

Try $n = 2$. Then let p be greatest such that $L \subset \pi^p M$ and q least such that $\pi^{p+q} M \subset L$.

The integers p, q being given, one sees that L is completely determined by giving a line in $M/\pi^p M$, that is, the line $\pi^{-p} L/\pi^p M \subset M/\pi^p M$. $\sim (A/\pi^p A)^2$.

How many such lines? No of unimodular vectors is $(q^2 - 1)(q^4)^{n-1}$.

Number of units is $(q^2 - 1) q^{n-1}$ if $n \geq 1$.

Thus get

$$\frac{q^2 - 1}{q - 1} q^{n-1} = q^2 + q^{n-1}$$ if $n \geq 1$.

and it seems I want

$$\sum_{p \geq 0, n \geq 1} \frac{q^2 - 1}{q - 1} q^{n-1} \cdot (q^{2p} \cdot q^r)^{-1} + \sum_{p \geq 0} (q^{2p})^{-1} = \left[(1 - q^{-1})(1 - q^{1-r})\right]^{-1}$$.
Better method: Let M have the basis e_1, e_2 and consider the trace of the filtration

$$0 < Ae_1 < A^2$$

on L: $0 < L e_1 < L$. Then we get a basis for L of the form

$$\prod^1 e_1, \quad \alpha_1 e_1 + \prod^1 e_2$$

where the class of α in $A/\prod^1 A$ is unique. Thus we are interested in the sum

$$\sum_{j, k \geq 0} q^j (q^{j+k}-1) = \left[(1-q^{-1})(1-q^{-2})^{-1}\right]^{-1}$$

as before.

In general, if $M = A e_1 + \ldots + A e_n$ are filters:

$$0 < A e_1 < A e_1 + A e_2 < \ldots < M$$

$$0 < L_1 < L_2 < \ldots < L$$

and find a basis

$$\prod^k e_1$$

$$\prod^k e_2 + \alpha_{21} e_1$$

$$\prod^k e_n + \alpha_{n-1} e_{n-1} + \ldots + \alpha_{n1} e_1$$

where α_{ij} is determined in $A/\prod^k A$, and one can compute that the sum is

$$\frac{n!}{\prod_{i=0}^{n-1} (1-q^{-i-1})^{-1}} \quad (Weyl's \ book, \ p. \ 194)$$

Cohomology computations

k finite field, $q = \text{card } k$, l prime $l \neq q$.

I want to compute

$$H_*(\text{GL}_n(k), st(k^n))$$

where $st(k^n)$ is the Steinberg module mod l.

If X is the building of k^n we have an exact sequence

$$0 \rightarrow st(k^n) \rightarrow C_{n-2}(X) \rightarrow \cdots \rightarrow C_0(X) \rightarrow \mathbb{F}_l \rightarrow 0$$

with $C_p(X) \equiv \text{mod } p$ defines on X. This exact sequence holds for $n = 1$ if we define $st(k^1) = \mathbb{F}_l$. Since

$$C_{p-1}(X) = \prod_{0 < w_1 < \cdots < w_p < V} \mathbb{F}_l$$

we have

$$H_*(\text{GL}_n, C_{p-1}(X)) = \prod_{\sum d_i = n, \quad d_i > 0} H_*(\text{GL}_{d_1, \ldots, d_{p+1}})$$

where $\text{GL}_{d_1, \ldots, d_{p+1}}$:

```
 \begin{array}{cccc}
   x & x & x & x \\
   x & x & x & x \\
   x & x & x & x \\
\end{array}
```

Since $l \neq q$ we have

$$H_*(\text{GL}_{d_1, \ldots, d_{p+1}}) = H_*(\text{GL}_{d_1}) \otimes \cdots \otimes H_*(\text{GL}_{d_{p+1}}).$$
This on applying $H_\ast(GL_n)$ to the complex

$$K_n: e \rightarrow C_{n-1}(X) \rightarrow \ldots \rightarrow C_0(X) \rightarrow F_e \rightarrow 0$$

degrees: n 1 0

we get

$$\ldots \rightarrow \bigoplus_{a+b=n} H_\ast(GL_a) \oplus H_\ast(GL_b) \rightarrow H_\varepsilon(GL_n) \rightarrow 0$$

which is the degree n part of the bar construction

$$\ldots \rightarrow \mathbb{R} \otimes \mathbb{R} \otimes \mathbb{R} \rightarrow \mathbb{R} \otimes \mathbb{R} \rightarrow \mathbb{R} \rightarrow 0$$

where

$$R = \bigoplus_{n>0} H_\varepsilon(GL_n), \quad \overline{R} = \bigoplus_{n>0} H_\varepsilon(GL_n)$$

Now we have seen

$$R = P[\varepsilon, \xi_0, \xi_1, \ldots] \otimes \wedge [\eta_1, \ldots]$$

where ε base for $H_\varepsilon(GL_1)$

ξ_j base for $H_{2j-1}(GL_n)$ $j \geq 1$

η_j base for $H_{2j}(GL_n)$ $j \geq 1$

The homology of the above bar construction is

$$\text{Tor}_R^R(k,k) = \wedge [\varepsilon, \xi_1, \ldots] \otimes \mathbb{R}[\overline{\eta}_1, \ldots]$$
where $\overline{e}, \overline{e}_1, \ldots, \overline{e}_i, \ldots$ is the obvious base for

$$\text{Tor}^R(k, k) = \frac{R}{R^2}$$

\[\text{If } r = 1, \text{ any monomial } \overline{e}^\alpha \overline{e}_1^\beta \]

is of degree $(|\alpha| + |\beta|) n$. Thus Tor_1 occurs only in degree 1. The point is that R is a graded algebra and its generators are homogeneous of degree 1. Thus Tor_1 is homogeneous of degree β, so we find that given n, the complex

\[0 \rightarrow H_\ast(Gl_n, C_{n-2}) \rightarrow \ldots \rightarrow H_\ast(Gl_n) \rightarrow 0\]

has exactly one homology group which is in degree n. But we have

$$K_n \cong \text{st}(k^\ast)[a]$$

so there is a spectral sequence.

$$E^1_{pq} = H_q(Gl_n, (K_n)_p) \Rightarrow H_{p+q}(Gl_n, \text{st}(k^\ast))$$

0 for $p \neq n$

so the spectral sequence degenerates, yielding an
isomorphism \(\Phi \)

\[H_x(\text{GL}_n, \text{st}(k^n)) = T\Omega^R_n(k, k) \]

monomials of degree \(n \) into \(\frac{\bar{x}}{\bar{y}} \).

Example: \(n = 1 \), where

\[H_x(\text{GL}_1, \text{st}(k^1)) = H_x(\text{GL}_1) \]

has base \(\frac{\bar{x}}{\bar{y}}, \frac{2i}{\bar{y}i}, \frac{2i-1}{\bar{y}i} \).

Then one has a product

\[H_x(\text{GL}_1, \text{st}(k^1)) \otimes H_x(\text{GL}_1, \text{st}(k^1)) \rightarrow H_x(\text{GL}_2, \text{st}(k^2)) \]

and maybe divided powers whereby one generated the latter.
April 24, 1973

Localization via Serre's methods

Let \(A \) be a complete discrete valuation ring with residue field \(k \) and quotient field \(F \). Let \(l \) be a prime no. \(\neq \text{char}(k) \). I want to understand the continuous homology of \(\text{Gl}_n(F) \) mod \(l \).

If \(V \) is a vector space over \(F \), let \(\mathcal{J}(V) \) be the ordered set of layers \((L_0, L_1) \) in the ordered set of lattices in \(V \) such that \(mL_1 \subset L_0 \). Let \(\text{Aut}(V) \) act on \(\mathcal{J}(V) \) and form the associated cofibered category over \(\text{Aut}(V) \).

We may identify this with the category of pairs \((L_0, L_1) \) of lattices free \(A \)-modules such that \(L_1/L_0 \) is a \(k \)-mod with maps \((L_0, L_1) \xrightarrow{\phi} (L_0', L_1') \)
defined to be an embedding \(L_1 \leftarrow \phi \leftarrow L_1' \)

\[L_0' \subset \phi L_0 \subset \phi L_1 \subset L_1' \]

Category to be denoted \((\mathcal{J}(V), \text{Aut}(V)) \). Now there is an evident functor

\[(\mathcal{J}(V), \text{Aut}(V)) \twoheadrightarrow \mathbb{Q} \subset \mathbb{Q}(k\text{-mod}) \]

\[(L_0, L_1) \twoheadrightarrow L_1/L_0 \]

where \(n = \text{rank}(V) \). This functor is fibred, the fibre over a \(k \)-module \(W \) being the groupoid of surjections \(L \twoheadrightarrow W \).
where L is a free A-module of rank n, and their isomorphisms. Thus we get a spectral sequence

$$E^2_{pq} = H_p(Q_n, W) \longrightarrow H_q(GL_n(F))$$

where \(\begin{pmatrix} \equiv 1 & \equiv 0 \\ * & * \end{pmatrix} \) \subset GL_n(A) is the subgroup of matrices of A which induce the identity on k^n/k^{n-d}. Actually it should be the group

\[
\begin{pmatrix}
* & \equiv 0 \\
\equiv 1 & *
\end{pmatrix}
\]

So now the question to ask is whether it might be the case that as \(n \to \infty \) the group

\[
\begin{pmatrix}
\equiv 1 & * \\
\equiv 0 & *
\end{pmatrix}
\]

has the same homology as $GL_n(A)$.
Fix a \(k \)-module \(W \) and let \(L_W \) denote the groupoid consisting of surjections

\[
E \xrightarrow{p} W
\]

where \(E \) is a free \(A \)-module (f.g.). Let \(L \) be the groupoid of free \(A \)-modules. \(L_W \) has operation

\[
(E \xrightarrow{w} W) \downarrow (E' \xrightarrow{w'} W) = (E \times E' \xrightarrow{w \times w'} W)
\]

(Also one has \(E \oplus E' \xrightarrow{w} W \)). The kernel functor

\[
k : L_W \longrightarrow L
\]

\[E \times W \longrightarrow \ker(p)\]

is compatible with the operations. In addition \(L \) acts on \(L_W \) by

\[
L \times (E \xrightarrow{p} W) = (L \oplus E \xrightarrow{p \oplus 0} W)
\]

and

\[k(L \times E) = L \oplus kE.\]

We have the basic identity

\[
(E) \downarrow (E) = (E \times E \xrightarrow{w} W)
\]

\[= kE \times E\]

Hence if we fix \(E_0 \), we have
\[E \perp E \perp E_0 \cong (kE \times E) \perp E_0 \]
\[\cong kE \times (E \perp E_0) \]
\[\cong kE \times (E_0 \perp E) \]
\[\cong (kE \times E_0) \perp E \]

so if \(\theta \) is an exponential char. class for representations over \(LW \) we have

\[\theta(E) \theta(E) \theta(E_0) = \theta(kE \times E_0) \theta(E) \]

and so if \(\theta(E) \) is invertible, then

\[\theta(E) = \theta(kE \times E_0) \theta(E_0)^{-1} \]

so it is now clear that \(k \) induces a map

\[H_\ast(LW) \longrightarrow H_\ast(L) \]

which becomes an isomorphism after localization.

But the connected components are easily seen to be

\[\begin{array}{ccc}
1 & \longrightarrow & GL_\infty(A) \\
\cong 0 & \longrightarrow & GL_\infty(A) \\
L \longrightarrow & L \times E_0 \\
H_\ast(L)[\pi_0 L]^{-1} \longrightarrow & H_\ast(LW)[\pi_0 L]^{-1} \longrightarrow & H_\ast(L)[\pi_0 L]^{-1} \\
L \times E_0 \longrightarrow & L \oplus kE_0
\end{array} \]
Thus we can conclude that the inclusion

$$GL_n(A) \xrightarrow{\subset} \left\{ \begin{array}{c}
\equiv 1 \\
\equiv 0
\end{array} \right\}$$

induces an isomorphism in the limit as $n \to \infty$.

Alternative proof. Define operation on L_W

$$(E_{P_1} \Rightarrow W) \oplus (E_{P_2} \Rightarrow W) = E \oplus E \xrightarrow{P+P'} W$$

and the functor

$$t: L_W \longrightarrow L$$

$$(E_{P_1} \Rightarrow W) \longmapsto E$$

compatible with operation and with the action

$$L \times (E_{P_1} \Rightarrow W) = L \otimes E \xrightarrow{P+P'} W.$$

Have

$$0 \rightarrow E \xrightarrow{(id,-id)} E \oplus E \xrightarrow{\oplus} E \xrightarrow{\sim} 0$$

$$\xrightarrow{\circ} \downarrow_{P+P'} \xrightarrow{P} W$$

giving a canonical isomorphism in L_W

$$E \oplus E \cong \pm E \times E$$

It follows that we have for any invertible
exponential char. class Θ that

$$E \oplus E \oplus E_0 \cong (tE \times E) \oplus E_0$$

$$\cong E \oplus (tE \times E_0)$$

so

$$\Theta(E) = \Theta(tE \times E_0) \Theta(E_0)^{-1}$$

To finish we notes that

$$\Theta \longmapsto (L \longmapsto \Theta(L \times E_0) \Theta(E_0)^{-1})$$

makes inv. exp. classes Θ for L_w to those for L and that

$$\Phi \longmapsto (E \longmapsto \Phi(tE))$$

goes the other way, and clearly these are inverses of each other. (Check:

$$\Theta(L_1 \times E_0) \Theta(E_0)^{-1} \cdot \Theta(L_2 \times E_0)^{-1}$$

$$= \Theta((L_1 \times E_0) \oplus (L_2 \times E_0)) \Theta(E_0)^{-1}$$

$$= \Theta((L_1 \oplus L_2) \times E_0 \oplus E_0) \Theta(E_0)^{-2} = \Theta((L_1 \oplus L_2) \times E_0) \Theta(E_0)^{-1}$$

OKAY.)

It would seem that we also have a new proof of the splitting theorem for exact sequences.
Now given a k-module W we consider the groupoid of surjections

$$E \twoheadrightarrow W$$

and all automorphisms including auto. of W. We can operate:

$$L \times (E \twoheadrightarrow W) = (L \oplus E \xrightarrow{ppr} W)$$

as before, and hence stabilize, getting the group

$$\Gamma_{d,\infty} = \left(\begin{array}{c|c} \ast & \ast \\ \hline \equiv 0 & \ast \\ \end{array} \right)$$

Now I have a homomorphism over $GL_d(k)$

$$\Gamma_{d,\infty} \longrightarrow GL_{d+\infty}(A) \times GL_d(k)$$

$$\downarrow$$

$$GL_d(k)$$

hence to show the horizontal arrow induces a bijection it suffices to show the inclusion

$$\left(\begin{array}{c|c} \equiv 1 & \ast \\ \hline \equiv 0 & \ast \\ \end{array} \right) \subset GL_{d+\infty}(A)$$

is a homology isomorphism, which I have proved above.
Thus it is clear that we can define the transfer in this situation, namely we lift the representation in $\text{GL}_d(k)$ to Γ_d^n, so as to be trivial in $\text{GL}_{d+\infty}(A)$, and then look at the map to the kernel.

So in the limit we get a spectral sequence

$$E^2_{pq} = H_p(Q(k), H_q(\text{GL}(A))) \Longrightarrow H_{p+q}(\text{GL}(F))$$

which is what one expects. Can you make a proof out of this construction for the localization theorem?
April 28, 1973

Problem: Given a commutative ring \(A \), I know how to decompose \(K_i: A \otimes \mathbb{Q} \), \(i \geq 0 \) into eigenspaces for the Adams operations. The problem is to explicitly construct a space representing the K-theory of \(A \) of a given weight.

Let \(k = \overline{F} \) and let \(l \) be a prime number \(\neq p \). Then \(\overline{F}^p \) is base extension by Frobenius in characteristic \(p \). We can consider the effect of Frobenius on the different spaces we have been led to consider in the K-theory of \(k \). In this situation we have that \(B(k)^p \) is the \(\mathbb{Q}/\mathbb{Z} \)-version of \(BU_{1/p}^l \):

\[
B(k) \longrightarrow BU_{1/p}^l \longrightarrow BU_{\mathbb{Q}}.
\]

So we expect that \(\text{gr}_i B(k)^p \) should be an Eilenberg–Maclane space of type \((\mathbb{Q}/\mathbb{Z}, 2i-1)\). Thus its mod \(l \) homology should be fairly complicated, and not so easy to recognize.

Classical approach: form connected K-theory with periodicity operator \(\beta \), then take the relative term of multiplying by \(\beta \).

Suppose \(f: E \to B \) is a proper submersion of smooth manifolds. The key point is to define a transfer map

\[
\eta^0(E) \to \eta^0(B)
\]

for any GCT \(\eta \). In the case where \(f \) is orientable for \(\eta \), this transfer coincides with the map

\[
\eta \mapsto f_* \left(\eta(\tau_f) \cdot \eta \right) \quad \forall \eta \in \eta^0(E).
\]

Definition of (i). Choose an embedding

\[
\begin{array}{ccc}
E & \xymatrix{ \ar[r]^-i & } & B \times \mathbb{R}^N \\
& \downarrow f & \\
& B & \ar[ll]^-{p = p^1}
\end{array}
\]

and choose tubular nbds \(N \) for \(j, i \) so that we get a diagram

\[
\begin{array}{ccc}
E & \xymatrix{ \ar[r]^-\iota & } & B \times \mathbb{R}^N \\
& \downarrow f & \\
& B & \ar[ll]^-{p = p^1}
\end{array}
\]

\[
\begin{array}{ccc}
E & \xymatrix{ \ar[r]^-{j \times \text{id}} & } & B \times \mathbb{R}^N \\
& \downarrow f & \\
& B & \ar[ll]^-{p = p^1}
\end{array}
\]
Choose a splitting of the vector bundle surjection where we have

$$ E \xrightarrow{\text{0-section}} E \times \mathbb{R}^N \leftarrow \text{subbundle surjection} \quad \nu \xrightarrow{\text{framed}} B $$

and thus

$$ h^0(E) \xrightarrow{\text{susp} \nu} h^N_{p/B}(E \times \mathbb{R}^N) \xrightarrow{\text{res}.} h^N_{p/B}(\nu) \rightarrow h^N_{p/B}(B \times \mathbb{R}^N) \cong h^0(B) $$

When the map f is orientable for h^0, then we have

$$ h^0(E) \xrightarrow{\sim} h^d_{p/B}(\mathcal{E}) \xrightarrow{\sim} h^N_{p/B}(\nu) \xrightarrow{\sim} h^0(B) $$

with $\mathcal{E} = E \times \mathbb{R}^N$.
Another version: Suppose to simplify that \(f: E \to B \) is a differentiable fibre bundle with compact fibres. Let \(S \) be a generic section of the tangent bundle along the fibres and \(Z \) its zero submanifold. Then have

\[
\begin{array}{c}
Y \xrightarrow{i} E \\
\downarrow g \downarrow \downarrow f \\
\downarrow B
\end{array}
\]

\[v_i = \tau_f \]

and so \(g \) is canonically framed. Hence we get

\[\text{tr: } h^0(E) \xrightarrow{i^*} h^0(Y) \xrightarrow{g_*} h^0(B) \]

and we have the formula

\[g_* i^* (f^* b) = g_* 1 \cdot b \quad \forall b \in h^0(B) \]

where \(g_* 1 \in h^0(B) \) is a class which augments to \(X(F) \), \(F \) the fibre of \(f \).

Now for the Adams conjecture one considers a contractible principal \(G \)-bundle (\(G \) compact Lie group) \(P \to B \), and forms the associated bundle

\[P/N \to B \]

where \(N \) is the normalizer of a maximal torus \(T \) in \(G \). One knows (classically) \(X(G/T) = \text{order of } W \).
hence \(X(G/N) = 1 \), and so applying the preceding transfer theory we find that

\[
h^0(B) \rightarrow h^0(P/N)
\]

image is a direct summand for any GCT. Now since spherical fibrations lead to a GCT by Boardman-Vogt, this reduces the Adams conjecture to the case of a bundle with axes, where it can be done by Adams' methods.

Strong splitting principle: Given a vector bundle \(E \) over \(X \), there exists a space \(f: Y \rightarrow X \) such that in the \(S \)-category \(X \) is a direct factor of \(Y \), and such that \(f^*(E) \) has axes.

General case: Suppose we have \(f: E \rightarrow B \) proper and we choose an embedding

\[
E \hookrightarrow B \times \mathbb{R}^N
\]

Then we have defined \(f_1: h^0(E) \rightarrow h^0(B) \) which is \(h^0(B) \)-linear, hence

\[
f_1 f^*(b) = f_1 1 \cdot b \quad f_1 1 \in h^0(B).
\]
and it would seem from the definition that \(f^* \) would be compatible with transversal basechange, which implies that \(f^* \) augments to \(X(\mathbb{G}_m) \) for every regular point \(b \in B \). This implies that the Euler classes of the different fibres of \(f \) are the same, which one knows isn't the case.

Conclude this construction makes sense only for fibre bundles and not for a proper map between manifolds. What is missing is that we need to take a generic section along the fibres of the tangent bundle along the fibres. For a general map this bundle is only a virtual bundle, so it doesn't have an Euler class (except mod 2).
April 26, 1973

K-theory for $\mathbb{Z} \times \mathbb{R}$

Recall that we decided long ago while looking at the Γ function that a vector bundle E over $\mathbb{Z} = \mathbb{Z} \times \mathbb{R}$ should be a vector bundle M over \mathbb{Z} together with a positive definite quadratic form q on M. One sets

$$\Theta_E = \sum_{x \in M} e^{-\beta \pi \theta(x)}$$

to measure the "number" of sections of E.

Poisson summation formula:

$$\sum_{m \in M} f(x+m) = \sum_{\lambda \in \Lambda'} a_{\lambda} e^{2\pi i \langle x, \lambda \rangle}$$

where

$$a_{\lambda} = \frac{1}{\text{vol}(V/M)} \int_{M} \sum_{m \in M} f(x+m) e^{-2\pi i \langle x, \lambda \rangle} \, dx$$

$$= \frac{1}{\text{vol}(V/M)} \int_{V} f(x) e^{-2\pi i \langle x, \lambda \rangle} \, dx$$

$$f(\lambda)$$

so

$$\sum_{m \in M} f(x+m) = \frac{1}{\text{vol}(V/M)} \sum_{\lambda \in \Lambda'} f(\lambda) e^{2\pi i \langle x, \lambda \rangle}$$

Now, taking $f(x) = e^{-\pi \theta(x)}$ and $dx = dx_1 \cdots dx_n$, where

$$q(x) = \sum x_i^2$$
we know that \(f(\lambda) = e^{-\pi g(\lambda^*)} \)

where

if \(g(x) = b(x, x) \) then \(b(x, \lambda^*) = \langle x, \lambda \rangle \)

do we get

\[
\sum_{m \in M} e^{-\pi g(m)} = \frac{1}{\text{vol}_q(V/M)} \sum_{\lambda \in M'} e^{-\pi g(\lambda)}
\]

which is the analogue of the Riemann–Roch formula:

\[
\frac{\theta_E^{\lambda}}{\theta_{E^*}^{\lambda}} = d_E
\]

\[E = (M, g) \quad E^* = (M', g^*)\]

\[d_E = \frac{1}{\text{vol}(V/M)} \left(\uparrow \rightarrow \infty \quad \text{as} \quad g \downarrow 0 \right).\]

Exact sequence of vector bundles over \(\mathbb{Z} \):

An exact sequence of vector bundles over \(\mathbb{Z} \)

(1) \(0 \rightarrow E' \rightarrow E \rightarrow E'' \rightarrow 0 \)

is by definition an exact sequence

\(0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0 \)

of vector bundles over \(\mathbb{Z} \) together with an exact sequence of quadratic spaces.
\[(\ast) \quad 0 \rightarrow M'_R \rightarrow M''_R \rightarrow M^*_R \rightarrow 0\]

which means that \(\varrho \) on \(M_R \) induces \(\varrho' \) and \(\varrho'' \) in the evident way. Motivation for the definition is as follows. We know that

\[\text{GL}_n(\mathbb{Z}) \backslash \text{GL}_n(\mathbb{R})/O_n\]

is the set of isomorphism classes of rank \(n \) vector bundles. Thus

\[\text{GL}_{a+b}(\mathbb{Z}) \backslash \text{GL}_{a+b}(\mathbb{R})/O_a \times O_b\]

should be the set of isomorphism classes of exact sequences with ranks \(a, b \).

Notice that

\[\text{GL}_{a+b}(\mathbb{R})/O_a \times O_b \cong \text{GL}_{a+b}(\mathbb{R})/O_{a+b}\]

(think of triangular matrices with positive diagonal entries) hence an exact sequence \((\ast)\) really amounts to giving \(M'_R \) as the orthogonal direct sum of \(M^*_R \) and \(M''_R \).

Now suppose we are given an exact sequence \((\ast)\) of \(\mathbb{Z} \)-bundles of rank \(n \); and choose an isomorphism

\[M_R = \mathbb{R}^n \quad \varrho = \sum_{i=1}^{n} x_i^2\]

\[M'_R = \mathbb{R}^a \quad \varrho' = \sum_{i=1}^{a} x_i^2\]

Then I would like to compare \(\Theta_E \) with \(\Theta_E', \Theta_E'' \) and hopefully prove

\[\Theta_E \leq \Theta_E', \Theta_E''\].
Any \(m \in \mathcal{M} \) determines \(p m \in M'' \). \(p : \mathcal{M} \to M'' \).

\[
\Theta_E = \sum_{m \in \mathcal{M}} e^{-\pi g(m)} = \sum_{m'' \in M''} \sum_{m \in \mathcal{M}} e^{-\pi g(m)}
\]

Given \(m'' \) fix \(s(m'') \in \mathcal{M} \Rightarrow p s(m'') = m'' \). Then

\[
\Theta_E = \sum_{m'' \in M''} \sum_{m' \in \mathcal{M}} e^{-\pi g(s(m'') + m')}
\]

\[
= \sum_{m'' \in M''} e^{-\pi g(m'')} \sum_{m \in \mathcal{M}} e^{-\pi g(s(m'')) - m'' + m'}
\]

Since \(s(m'') - m'' \in \mathcal{M}'_R \) what you want to know therefore is that \(\forall z \in \mathcal{M}'_R \)

\[
\sum_{m' \in \mathcal{M}'} e^{-\pi g(z + m')} \leq \sum_{m' \in \mathcal{M}'} e^{-\pi g(m')}
\]

(with equality iff \(z \in \mathcal{M}' \) maybe)
What happens on the line: \(M = \mathbb{Z} \).

\[
f(x) = \sum_{m \in \mathbb{Z}} e^{-\frac{\pi}{\alpha} (x+m)^2}
= \sum_{n} a_n e^{2\pi i \langle x, n \rangle}
\]

\[
a_n = \int_{0}^{1} \sum_{m} e^{-\frac{\pi}{\alpha} (x+m)^2} e^{-2\pi i n x} \, dx
= \int_{-\infty}^{\infty} e^{-\frac{\pi}{\alpha} x^2} e^{-2\pi i n x} \, dx
= \int_{-\infty}^{\infty} e^{-\pi \left(\frac{1}{\sqrt{\alpha}} x + \frac{i n}{\sqrt{\alpha}} \right)^2} \, dx
= e^{-\frac{\pi n^2}{\alpha}} \int_{-\infty}^{\infty} e^{-\pi \left(\frac{x}{\sqrt{\alpha}} \right)^2} \, dx
= \frac{e^{-\frac{\pi n^2}{\alpha}}}{\sqrt{\alpha}}
\]

\[
\sum_{m \in \mathbb{Z}} e^{-\frac{\pi}{\alpha} (x+m)^2} = \sum_{n \in \mathbb{Z}} \frac{e^{-\frac{\pi n^2}{\alpha}}}{\sqrt{\alpha}} \cos(2\pi n x)
\]

From this we see that

\[
f''(0) = -\sum_{n} \frac{e^{-\frac{\pi n^2}{\alpha}}}{\sqrt{\alpha}} (2\pi n)^2 < 0
\]

and so \(f \) has a local maximum at \(x = 0 \), which lends support to our contention.
Curiosity: Differentiate the Fourier expansion
\[\sum_{m \in \mathbb{Z}} e^{-\pi (x+m)^2} = \sum_{\lambda \in \mathbb{Z}} e^{-\pi \lambda^2} e^{2\pi i \lambda x} \]

\[\sum_{m \in \mathbb{Z}} e^{-\pi (x+m)^2} (-2\pi i)(x+m) = \sum_{\lambda \in \mathbb{Z}} e^{-\pi \lambda^2} 2\pi i \lambda e^{2\pi i \lambda x} \]

\[\sum_{m \in \mathbb{Z}} e^{-\pi (x+m)^2} [4\pi^2 (x+m)^2 - 2\pi] = \sum_{\lambda \in \mathbb{Z}} e^{-\pi \lambda^2} (2\pi i \lambda)^2 e^{2\pi i \lambda x} \]

Let \(x = 0 \)

\[\sum_{m \in \mathbb{Z}} e^{-\pi m^2} (4\pi^2 m^2 - 2\pi) = \sum_{\lambda \in \mathbb{Z}} e^{-\pi \lambda^2} (-4\pi^2 \lambda^2) \]

\[\sum_{m \in \mathbb{Z}} 4\pi^2 m^2 e^{-\pi m^2} = \pi \sum_{m \in \mathbb{Z}} e^{-\pi m^2} \]

\[\sum_{m \in \mathbb{Z}} e^{-\pi \delta(x+m)} \leq \sum_{m \in \mathbb{M}} e^{-\pi \delta(m)} \quad \forall x \in \mathbb{M} \]

with equality iff \(x \in \mathbb{M} \).

Proof: We have the Fourier expansion
\[\sum_{m \in \mathbb{M}} e^{-\pi \delta(x+m)} = \frac{1}{\text{vol}(\mathbb{M}/\mathbb{R})} \sum_{\lambda \in \mathbb{M}} e^{-\pi \delta(\lambda)} e^{2\pi i \langle x, \lambda \rangle} \]
Now take real parts
\[\sum_{m \in M} e^{-\pi \phi(x+m)} = \frac{1}{2\pi \phi(M R/M)} \sum_{\lambda \in M'} e^{-\pi \phi(\lambda)} \cos(2\pi \langle x, \lambda \rangle) \]

Let now use the fact that \(\cos(2\pi \langle x, \lambda \rangle) \leq 1 \) with equality for all \(\lambda \leftrightarrow \langle x, \lambda \rangle \in \mathbb{Z} \) all \(\lambda \leftrightarrow x \in M' = M \).

So returning to page 4 we find that
\[\theta_E = \sum_{m'' \in M''} e^{-\pi \phi(m'')} \sum_{m' \in M'} e^{-\pi \phi'(m') - m'' + m'} \]
\[\leq \sum_{m'' \in M''} e^{-\pi \phi''(m'')} \sum_{m' \in M'} e^{-\pi \phi'(m')} = \theta_{E''} \theta_E', \]
with equality iff \(\phi'(m') \in M' \), i.e. we could take \(m'' = m' \) which means that we can find for each \(m'' \in M'' \) a rep. \(s(m'') \in M \) with \(\phi(s(m'')) = \phi''(m'') \). Thus the sequence actually splits as an orthogonal direct sum.

Thus we have proved

\[\text{Prop. For any exact sequence (1) of } \mathbb{Z} \text{-bundles we have } \theta_E \leq \theta_{E''} \theta_E', \]
with equality iff the sequence splits, i.e. \(M_n(M_R) \xrightarrow{\phi} M'' \).
Remark: The above proposition is somewhat surprising from the finite field viewpoint, where
\[\Theta_E = 0 \]
and it is quite easy to have \(\Theta_E = \Theta_E', \Theta_E'' \) without the sequence splitting.

The preceding proposition ought to be true for a number fields.

Consider now what happens when we remove a prime \(p \) from \(\mathbb{Z} \). Bundles over \(\mathbb{Z} - \{p\} \) should be pairs consisting of a \(\mathbb{Z}[p] \)-module \(M \) (free fin.) and a \(g \) on \(M_R \). The notion of exact sequence should be the same as before.

Questions: To what extent do exact sequences of bundles over \(\mathbb{Z} - \{p\} \) split, and to what extent is a vector bundle determined by its rank and first Chern class?

Given
\[
0 \to M' \to M \to M'' \to 0
\]
vector bundles over \(\mathbb{Z}[p] \) and \(g \) in \(M \), we can choose a splitting \(s: M'' \to M_R \), \(ps = id \). Then we have the picture:
and $(M')^*$ can be interpreted as the graph of a map from $M'' \to M'_R$. Because we are over $\mathbb{Z}^{[\frac{1}{p}]}$, this map can be approximated by a map $M'' \to M'$ as close as one wants. Thus we can approximate the given exact sequence by split exact sequences, but not every sequence splits.

Similarly to any vector bundle E we can associate

$$\Lambda^n E = (\Lambda^* M, \Lambda^n q)$$

so that getting a line bundle whose isomorphism class is an element of

$$\text{Pic} = \mathbb{R}^+ / \{p^n | n \in \mathbb{Z}\}$$

Now choosing in M a vector of length close to 1, (i.e., a line which is close to being a trivial line bundle), then continuing the process to get a flag, we see that E is approximately an orthogonal direct sum of trivial line bundles $\oplus \Lambda^n E$. But another way
$G_n(\mathbb{Z}\left[\frac{1}{p}\right])$ acts densely on the fibres of the map

$$GL_n(R)/O(R) \xrightarrow{\text{disc}} R^+ \xrightarrow{} R^+/\{p^n\},$$

which is as close as we can get to having that a vector bundle up to isomorphism is determined by its rank and first Chern class.

In some sense, then we get a family of "virtual" subgroups of $G_n(\mathbb{Z}\left[\frac{1}{p}\right])$ in Mackey’s sense, since it is probably true that $G_n(\mathbb{Z}\left[\frac{1}{p}\right])$ acts ergodically on the fibres. The meaning of all this, especially the relation with $L_2(G\Gamma)$ deserves elaboration.

Real problem: If $M = \mathbb{Z}\left[\frac{1}{p}\right]^n$, I know that $\Gamma = \text{Aut}(M)$ acts "pseudo-transitively" on the set of possible extensions of M to a vector bundle on $\mathbb{Z}\left[\frac{1}{p}\right]$ with prescribed first Chern class. Can you find what might be thought of as the cohomology of the stabilizers of this "transitive" action.
Problems: If I believe that the correct gadget is a \mathbb{Z}-bundle M with pos. def. form g, then I want a localization situation.

What I lack at the moment is a way of going from a \mathbb{Z}-bundle M to $Q(pos. def. real$ quad. forms)$.

Thus we can consider the symmetric space X of all forms g on $M_\mathbb{R}$. The problem is to modify this so as to get a map to $Q(\infty)$.

Actually it may be unreasonable to expect there to be a $Q(\infty)$. Thus we have a cartesian situation

\[
\begin{array}{ccc}
\tilde{\mathbb{Z}} & \rightarrow & \mathbb{Z} \\
\downarrow & & \downarrow \\
\mathbb{O}_{\text{disc}} & \rightarrow & \mathbb{R}_{\text{disc}}
\end{array}
\]

and there is no obvious reason why the horizontal arrow is a localization, and hence has an identifiable relative term.

Question: Given g_1 and g_2 on a real vector space one can simultaneously diagonal them. Is the simplicial complex \mathcal{G} whose simplices are
chains \(q_0 \leq \cdots \leq q_n \) of simultaneously diagonalizable forms a contractible complex?