Continuation of the descent problem for a Galois extension $F \subset E$ with Galois group π.

The naive hope is for a spectral sequence of the form

$$E_2^{pq} = H^p(\pi, K(E)) \Rightarrow K_{p-q}(F).$$

The motivation: Let $X \to Y$ be a Galois covering with group π and let h^\ast be a generalized cohomology theory. Then the canonical map

$$\varphi : P_\pi \times \pi X \to Y$$

is a sheaf (fibre bundle with fibre P_π), hence

$$h^\ast(Y) = h^\ast(P_\pi \times \pi X).$$

We can consider Y as being fibred (up to homotopy) over $B\pi$ with fibre X. Thus from skeletal decomposition of $B\pi$, we get a spectral sequence

$$E_2^{pq} = H^p(\pi, h^q(X)) \Rightarrow h^{p+q}(Y).$$

There might be convergence difficulties, but not if $B\pi$ is a finite dim. CW complex.

However: Let us consider cases which are known. Thus take $F = \varphi^\ast$, $E = F$. Then

$$\pi = \hat{\mathbb{Z}}.$$
and the E_2-term appears:

\[
\begin{array}{cccc}
\delta = 0 & Z & 0 & \mathbb{Q}/\mathbb{Z} \\
\delta = -1 & (K_1E)^T & 0 & 0 \\
\delta = -2 & 0 & 0 & 0
\end{array}
\]

\[H^1(\mathbb{Z}, \mathbb{Z}) = \text{Hom}(\mathbb{Z}, \mathbb{Z}) = \mathbb{Z} \]

\[H^2(\mathbb{Z}, \mathbb{Z}) = H^1(\mathbb{Z}, \mathbb{Q}/\mathbb{Z}) = \text{Hom}(\mathbb{Z}, \mathbb{Q}/\mathbb{Z}) = \mathbb{Q}/\mathbb{Z} \]

In other words, the \mathbb{Q}/\mathbb{Z}-term destroys the effect. Next suppose $F = \mathbb{F}_\delta$, $E = \mathbb{F}_\delta$ so that Π is cyclic of order d. Then we have

\[
\begin{array}{cccc}
\mathbb{Z} & 0 & \mathbb{Z}/d\mathbb{Z} & 0 \\
(K_1E)^T & (K_2E)^T & (K_3E)^T & (K_4E)^T \\
0 & 0 & 0 & 0
\end{array}
\]

by the periodicity of the cohomology of the cyclic group \mathbb{Q}/\mathbb{Z}.

\[H^1(\Pi, A) = \frac{\text{Ker} \{ N : A \to A \} }{\text{Im} \{ \sigma - 1 \} } \]

\[H^2(\Pi, A) = \frac{\text{Ker} \{ \sigma - 1 \} }{\text{Im} \{ N \} } \]

Now, for the K_i of finite fields we know that N is surjective onto the invariants, whence
$\sigma - 1$ must map onto the kernel of Δ. Thus everything is OK except for the $E_2^{2,0} = H^2(\mathbb{Z}/dz, \mathbb{Z}) = \mathbb{Z}/dz$ terms.
July 9, 1972.

Let \(k \) be an algebraically closed field of characteristic \(p \) and \(k_0 = \{ x \in k \mid x^p = x \} \) the finite subfield with \(q = p^d \) element. I wish to understand the non-commutative ring

\[
R = k[F]
\]

where \(F \) is an indeterminate \(\Rightarrow Fx = x^8F \) for all \(x \in k \).

Elements of \(R \) are uniquely expressible as polynomials

\[
a_0 + a_1 F + \ldots + a_n F^n \quad a_i \in k
\]

Thus \(R \) is a graded ring without zero divisors (consider the highest degree terms).

Ideal structure: If \(L \) is a non-zero left ideal in \(R \), let \(f \) be a monic polynomial of least degree contained in \(L \). Then \(L = Rf \) by division algorithm, so every left ideal is principal.

Conclude

1) \(R \) left month (every left ideal \(f,g \))
2) \(R \) left regular (every monogenic \(R \)-module of form \(R/Rf \), so either free, or of projective dim 1:

\[
0 \longrightarrow R \xrightarrow{f} R \longrightarrow R/Rf \longrightarrow 0
\]

as \(R \) has no zero divisors.

Thus \(R \) being a graded left regular ring \(\Rightarrow K(k) \xrightarrow{\phi} K(R) \).
(Remark: The preceding holds for any endomorphism \(\sigma \) of \(R \) instead of \(x \cdot x^1 \) and hence only used \(R \) field.

The preceding holds for right modules for an auto \(\sigma \). Otherwise, it is not possible to find a monic \(f \)

\[a_n F^n = F^n a_n \]

to get a monic \(F \).)

Suppose \(I \) is a 2-sided ideal. Then if \(f \) is a monic poly of minimal degree \(\text{in} \; I \), we have

\[I = Rf = fR \]

Let

\[f = F^n + a_{n-1} F^{n-1} + \cdots + a_0 \]

Then

\[x \cdot F^n = F^n + x \cdot a_{n-1} F^{n-1} + \cdots + x \cdot a_0 \]

so by uniqueness of \(f \), can conclude \(a_i = 0 \).

2-sided ideals are:

\[R \cdot F^n \quad n \geq 0 \]

Module structure: Let \(M \) be a finitely generated \(R \)-module and choose a presentation for \(M \)

\[R^p \longrightarrow R^q \longrightarrow M \longrightarrow 0 \]

\[\left(\begin{array}{c} a_{11} \\ a_{12} \\ \vdots \\ a_{nj} \end{array} \right) \]
with g minimal. Assuming M is not free, so that $a_{ij} \neq 0$, we can choose the presentation such that $a_{ij} \neq 0$ and such that the degree of a_{ij} is minimal. Can suppose a_{ij} is monic. Then necessarily by division algorithm

$$
\begin{pmatrix}
 a_{11} & a_{12} & \cdots \\
 a_{21} \\
 \vdots \\
\end{pmatrix}
$$

we must have $a_{ij} \in R_{a_{ij}}$, $a_{ij} \in a_{ij} R$, so performing these obvious row- and column operations, we can replace the matrix by

$$
\begin{pmatrix}
 a_{11} & 0 & 0 \\
 0 & \cdots & \cdots \\
 0 & \cdots & \cdots \\
\end{pmatrix}
$$

Whence $M = R/R_{a_{11}} \oplus M'$. Conclude

1. Every f.g. M sum of monogenic modules.
2. Every torsion-free f.g. M is free.

Torsion (means $\forall m, a_m$ annihilates nonzero) are the same as R-modules which are f.g. over k.

f.g. R-module
This is because for \(f \) monic of degree \(n \), \(R/\mathfrak{m}f \) is free of rank \(n! \) with basis \(1, \ldots, f^{n-1} \).

Structure of torsion module. A torsion \(R \)-module is simply a \(k \)-vector space \(V \) of finite dimension endowed with an operator \(F : V \to V \) satisfying

\[
F(xv) = x\delta Fv, \quad x \in k, v \in V.
\]

We have a decreasing sequence of \(R \)-submodules (recall \(RF \) is a 2-sided ideal)

\[
V > FV > F^2V > \ldots \ldots
\]

hence by Fitting's lemma, there is a unique splitting

\[
V = V' \oplus V''
\]

such that \(F \) is nilpotent (resp. bijective) on \(V' \) (resp. \(V'' \)).

Basic lemma: If \(V \) is a f.d. \(k \)-v.s. \(/ k \) with an \(F \) which is an auto, then

\[
k \otimes_k V^0 \sim V
\]

where \(V^0 = \{v^0 \mid Fv = 0\} \).

Proof. Bijectivity: Let \(e_i, i \in I \) be a basis for \(V^0 \) and let

\[
\sum x_i e_i = 0
\]

be a primordial relation (set of \(i \neq \sum x_i e_i = 0 \) is minimal + one \(x_i = 1 \)). Comparing this relation with its translate under \(F \), one
sees $\chi_i^0 = \chi_i$, contradicting independence of the χ_i.

Surjectivity: First we show $V \neq 0 \Rightarrow V^0 \neq 0$.

Can suppose V simple R-module, hence $V \simeq R/Rf$, where

$\mathbf{f} = \mathbf{f}^m + \cdots$ is a monic polynomial of degree n, say.

Claim $n=1,$ will show $\mathbf{f} = g(F-\lambda)$ for a suitable λ.

Have identity

$$F^m = (F^{m-1} + \lambda^i \delta^{m-1} F^{m-2} + \cdots + \lambda^i \delta^{m-1} \cdots \delta^0 F - \lambda) + \lambda^i \delta^{m-1} \cdots \delta^0$$

Hence if

$$\mathbf{f} = \sum_{m=0}^{n} a_m F^m$$

Then

$$\mathbf{f} = g(F-\lambda) + \left\{ \frac{\lambda^i \delta^{n-1} \cdots \delta^1}{a_{m-1} \delta^{m-2} \cdots \delta^1} + a_0 \right\}$$

Better we have that the remainder is

$$\pi(\lambda) = \lambda^i \delta^{n-1} \cdots \delta^1 + a_{n-1} \delta^{n-2} \cdots \delta^1 + \cdots + a_0$$

and since k is algebraically closed, there exists a root of this polynomial.

Thus must have $\mathbf{f} = F - \lambda$, so V is 1-dimensional.

Thus, must have $\mathbf{f} = \mathbf{F} - \lambda$, so V is 1-dimensional.

For some $i \neq 0$, $Fv_i = \lambda v_i$. Now changing v to $x v_i$ and arranging x so that $F(x v_i) = \lambda (x v_i)$, i.e. $x \delta^1 = \lambda,$ we see $\mathbf{V}^0 \neq 0.$
Suppose then that \(W = k \otimes_k V^0 < V \). As \((V/W) \neq 0\) we have a \(v \in V, v \notin W\), such that \(Fv - v = \omega_\psi = \sum \gamma_i e_i \) where \(e_i \) is a basis of \(W^0 = V^0 \). To find

\[
F(v - \sum x_i e_i) = v - \sum x_i e_i
\]

i.e. \(Fv - v = \sum (x_i - x_\psi) e_i \).

\[Fv = \sum \gamma_i e_i,\]

Can be done since \(x_i - x_\psi = y_i \) has roots. Done with basic lemmas.

Remark: Above holds for \(k \) separably closed and probably for any strictly local ring in char. p.

(Yes, see Oct. 18, 1971 report attached below.)

Cor. Category of f.g. (resp. arbitrary) \(R = k[F] \)-modules on which \(F \) acts invertibly is equivalent to the category of f.g. (resp. arb.) \(k \)-modules.

Cor. Any torsion \(R \)-module on which \(F \) acts invertibly is an injective \(R \)-module.

Proof. Have to show

\[
\text{Hom}_R(R, V) \rightarrow \text{Hom}_R(L, V)
\]

for any left ideal \(L \) in \(R \). Can suppose \(V \) f.g. and \(L \neq 0 \), whence \(L = RF \). Can suppose \(V = k \) with \(Fx = x^2 \). Then have
But the bottom sequence splits \(\cong \) by the equivalence with \(k_0 \)-modules, so \(\varphi \) extends.
July 14, 1972

Homotopy of sets, again

Let C be a small category such that (*) the only endos. and isos. in C are the identity maps. (Equivalently: for any diagram

$$
\begin{array}{ccc}
 X & \xrightarrow{f} & Y \\
 \downarrow{g} & & \downarrow{g}
\end{array}
$$

in C we have $Y = X$ and $f = g = \text{id}_X$.)

Let us consider a simplex in $\text{New}(C)$

$$
X_0 \longrightarrow \cdots \longrightarrow X_p
$$

For this to be non-degenerate means none of the arrows are the identity. If two of the vertices coincide, say $X_j = X_k$ with $j < k$, then (*) can't hold. In effect, if $k = j + 1$ then the arrow $X_j \to X_k$ would be an endo-, hence the identity; and if $k \geq j + 2$ we have maps

$$
X_j \longrightarrow X_{j+1} \longrightarrow X_k
$$

so $X_j \to X_{j+1}$ would be the identity. Thus

(*) \Rightarrow all vertices of a non-degenerate simplex are distinct.

The converse is also true since

$$
X \xrightarrow{f} X \text{ would be non-degenerate if } f \neq \text{id}_X
$$

$$
X \xrightarrow{f} Y \xrightarrow{g} X \text{ if } f \neq \text{id}_X \neq g.
$$
Conclude: Suppose \(C \) satisfies (*) Then.

The category \((\Delta/\text{New\,}C)^{nd}\) of \(\Delta/\text{New\,}C\) consisting of non-degenerate simplices is an ordered set, and it is fibred over \(\Delta^+\) (= subset of injective maps in \(\Delta\)).

Observe that the last vertex map

\[
(\Delta/\text{New\,}C)^{nd} \longrightarrow C
\]

is cofibred, and the fibre has an initial element.

Deligne's construction: Given \(C \) satisfying (*), Deligne considers finite subcategories \(F \) of \(C \) having final objects. These form an ordered set under inclusion and there is a functor

\[
I \longrightarrow C
\]

sending \(F \) to its final object. The functor is pre-cofibred, the fibres being ordered sets with initial element. Note that non-degenerate simplices are special cases of such functors \(F \), i.e.,

\[
(\Delta/\text{New\,}C)^{nd} \subset I
\]

Advantage of Deligne's construction: The ordered set \(I \) is directed when \(C \) is filtering.
The way to replace a category C' by a C satisfying (*) is to let C' be the subcategory of $C \times \mathbb{N}$ with same objects where

$$
\text{Hom}_{C'}((X',m'),(X,m)) = \begin{cases}
\emptyset & m' > m \\
\{ \text{id}_X \} & m' = m, X' \neq X \\
\text{Hom}(X',X) & m' = m, X' = X \\
 & m' < m
\end{cases}
$$

Then $C' \to C$ is pre-cofibred. Given (X,m)

$$
X \xrightarrow{f} Y
$$

then $f^*_X(X,m) = \begin{cases}
(X,m) & \text{if } f = \text{id}_X \\
(Y,m+1) & \text{if } f \neq \text{id}_X
\end{cases}
$

The fibre over X is \mathbb{N} which has an initial object. Thus $C^\mathbb{N} \to C'$ is a bg.

Now let $C^\mathbb{N}$ be an arbitrary small category and let I be the set of diagrams in $C \times \mathbb{N}$ of the form

$$
(X_0,n_0) \to (X_1,n_1) \to \ldots \to (X_p,n_p)
$$

with $n_0 < n_1 < \ldots < n_p$. Then I is an ordered
set and we have a functor

\[I \rightarrow C \]

given by the last vertex. The functor is pre-cofibred and fibres have initial elements.

Given \(C \) let \(\text{Sd}(C) \) be the cofibred category over \(C^0 \times C \) defined by the functor \((x,y) \mapsto \text{Hom}(x,y) \). The objects are arrows \(u: X \rightarrow Y \) and a map \((u: X \rightarrow Y) \rightarrow (u': X' \rightarrow Y') \) is a diagram

\[
\begin{array}{ccc}
X & \xrightarrow{u} & Y \\
\uparrow & & \downarrow \\
X' & \xrightarrow{u'} & Y'
\end{array}
\]

Then \(\text{Sd}(C) \) is cofibred over \(C \) (and over \(C^0 \)) with fibres having initial objects.

Suppose \(E \rightarrow C \) is cofibred and the fibres have initial objects; \(\phi_x \in E_x \). Then we define \(\phi_x \in \text{Sd}(C) \) and \(u \phi_x \rightarrow E \) as

\[
\begin{array}{ccc}
\text{Sd}(C) & \rightarrow & E \\
\downarrow & & \downarrow \\
C & \rightarrow & C
\end{array}
\]
This is a functor:

\[\phi_{X'} \rightarrow w_i \phi_X \rightarrow (w_i \phi_{X'}) \rightarrow u_i \phi_{X'} \]

\[\phi_X \rightarrow w_i \phi_X \rightarrow (w_i \phi_X) \rightarrow u_i \phi_{X'} \]

\[X' \xrightarrow{w} X \xrightarrow{u} Y \xrightarrow{v} Y' \]

It is a co-cartesian functor (the arrow \(w \rightarrow w' \) is co-cartesian when \(w : X' \rightarrow X \)).

Reason for the notation \(\text{Sd}(C) \). I conjecture \(C \rightarrow \text{Sd}(C) \) analogous to barycentric subdivision of a simplicial complex. Hopefully it will be more suited to categories.

If \(C \) is an ordered set, then \(\text{Sd}(C) \) is the ordered set of layers \((X, Y)\), \(X \leq Y \) in \(C \) where

\[(X', Y') \leq (X, Y) \]

means \(X \leq X' \leq Y' \leq Y \).

Examples:

\(C : \ 0 \leq 1 \)

\(\text{Sd}(C) : \ (0, 0) \leq (0, 1) \geq (1, 1) \)

\(\text{Sd}^2(C) \)
Conjecture: \((C, C') \mapsto \lim_{n} \text{Hom}(\text{Sd}^nC, C')\)

carries higs into isomorphisms. (probably need C finite).

Question: Does \(C \mapsto \text{Sd}C\) have a right adjoint \(\text{Ex}\)?

If so then

\[
\text{Ob}\{\text{Ex}(C')\} = \text{Hom}_{\text{cat}}(e, \text{Ex}(C'))
= \text{Hom}_{\text{cat}}(\text{Sd}(e), C') = \text{Hom}_{\text{cat}}(e, C')
= \text{Ob}\{C'\}
\]

and

\[
\text{Ar}\{\text{Ex}(C')\} = \text{Hom}(0 \leq 1, \text{Ex}(C'))
= \text{Hom}(\overset{\longrightarrow}{e}, C')
\]

and

\[
\text{Ar}^2\{\text{Ex}C\} = \text{Hom}(\overset{\longrightarrow}{\overset{\longrightarrow}{e}}, C')
\]

Answer: \(\text{NO}\)
Let \(f : X \to Y \) be a map of spaces (CW-complexes say). Suppose that for every finite complex \(K \) we have that the induced map of fundamental groupoids

\[
\pi \text{Hom}(K, X) \to \pi \text{Hom}(K, Y)
\]

is an equivalence of categories. Then \(f \) is a homotopy equivalence, in effect, taking \(K = pt \) we see the fundamental groupoids of \(X \) and \(Y \) are equivalent. By Whitehead's theorem, we want to show that \(\pi_k(X,x) \to \pi_k(Y,fx) \) for all \(k \) and \(x \). But if \(K \) has a basepoint \(*_{K}\), then

\[
\text{Hom}(K, Y) \to \text{Hom}(*, Y) = Y
\]

is a fibration with fibre \(\text{Hom}(K, x)(y, y) \) over \(y \in Y \). Thus we have a fibration of groupoids

\[
\pi \text{Hom}(K, Y) \to \pi Y
\]

whose fibre is a groupoid with components \(\pi_0 \text{Hom}(K, x)(y, y) \) over \(y \in Y \). Thus the hypothesis implies

\[
[(K, x), (X, x)] \to [(K, x), (Y, fx)],
\]

so done.

Let X be a space, and A, \mathcal{V} two subspaces. Call \mathcal{V} a halo nbhd. of A if \exists continuous function $\tau: X \to [0,1]$ such that $\tau(A) = 1$, $\tau(X-\mathcal{V}) = 0$.

Observe that if X is normal, then by Urysohn's lemma every neighborhood of a closed set is a halo neighborhood, and conversely.

Call a sheaf of sets F over X soft if for any $A \subseteq X$ we have surjectivity $F(X) \to \lim_{U \supseteq A} F(U)$

where U runs over the halo neighborhoods of A. It is enough to consider only A which are closed since a halo nbhd. of A and \overline{A} are the same thing.

Observe that this agrees with the Godement definition when X is paracompact. Indeed the inductive limit above is $F(A)$ for any closed set A. (Coh I, p. 151) hence the condition becomes $F(X) \to F(A)$ for all closed A.

Dold's principal technical result is the following, which generalizes Godement's 3.4.1 (p. 151).
Theorem: Let \(\{ U_i \} \) be a numerable covering of \(X \) (numerable means \(\exists \) refinement of form \(g^{-1}(T, U) \) where \(g \) is a locally-finite partition of \(1\mathbb{Z} \)), and assume that \(F|U_i \) is soft for each \(i \). Then \(F \) is soft.

Examples: Let \(E \xrightarrow{f} X \) be a space over \(X \) and \(F \) the sheaf of its sections. Call \(E \) soft over \(X \) if \(F \) is soft.

Claim: If \(f \) is a fibre-homotopy-equivalence (over \(X \)), \(\exists s: X \to E \) s.t. \(fs = id_E \) and \(sf = \pi \times id_E \) then \(E \) is soft over \(X \).

Proof: Given a halo nbhd. \(U \) of \(A \subset X \) and a section \(t \) of \(f \) over \(U \) we must show that \(t \) restricted to some smaller nbhd. extends to all of \(X \). Picture

The dotted arrow gives the desired extension over \(U' \).
Converse: Assume $E \xrightarrow{f} X$ universally soft (remains soft after any base change; e.g. example above) then f is a fibre homotopy equivalence over X.

Proof: First of all, soft $\Rightarrow F(X) \neq \emptyset$ since $F(\emptyset) = \emptyset$ pt (observe $\emptyset \subset \emptyset$ is a halo nbd.), hence f has a section s. Now want to construct a dotted arrow in

$$
\begin{array}{ccc}
E \times I & \xrightarrow{sf + id} & E \\
\downarrow & & \downarrow f \\
E \times I & \xrightarrow{f \circ \text{pr}_1} & X
\end{array}
$$

Since f is universally soft, $(f \circ \text{pr}_1)^*(-E)$ is soft over $E \times I$, hence all we need now is extend the section s over $E \times I$ to a halo nbd. But this is clearly possible using constant homotopies near 0 and 1.

Note: We do not require that the vertical homotopy $sf \sim_X E$ preserve the section s. Thus $s(X)$ is not necessarily a strong deformation retract of E over X. In good cases one might to be able to arrange this by extending the map $E \times I \cup X \times I \to E$? Here is a soft map which is not a fibration:

$$
\begin{array}{c}
\text{fiber}
\end{array}
$$
Weak covering homotopy property: We say that \(f : E \to X \) has the WCHP if given \(\alpha : K \to E \) and a homotopy \(K \times I \to X \) starting from \(f \alpha \), there is a lifting \(K \times I \to E \) whose initial position is vertically homotopic to \(\alpha \). Example:

\[
\begin{array}{c}
\begin{array}{c}
K \\
\downarrow \\
K \times I \\
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\to E \\
\downarrow f \\
\to X \\
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\to E \\
\downarrow p \\
\to B \\
\end{array}
\end{array}
\]

Lemma: Let \(f : E' \to E \) be a map of spaces over \(B \) such that there exists \(g : E' \to E \) with \(gf \sim_B \text{id} E' \). If \(E \to B \) has the WCHP, then so does \(E' \to B \).

Proof: Given

\[
\begin{array}{c}
K \times I \\
\downarrow \\
K \times I \\
\end{array}
\begin{array}{c}
\to E' \\
\downarrow f \\
\to E \\
\end{array}
\begin{array}{c}
\to B \\
\to B \\
\end{array}
\]

Consider \(H : K \times I \to E \) covering \(\beta \) as \(H \alpha \sim_B \Rightarrow gH : K \times I \to E' \) covers \(\beta \) and

\(gH \alpha \sim_B \Rightarrow \alpha \)

g.e.d.

Proposition: Let \(f : E' \to E \) be a map of spaces over \(B \) such that both \(p' : E' \to B \) and \(p : E \to B \) have the WCHP. If \(f \) is a homotopy equivalence \(\heartsuit \), then it is a fiber homotopy equivalence.
Note the maps with the WCHP are stable under composition and base change. The point is that $E \to B$ has WCHP iff the dotted arrow exists in
\[
K \times 0 \to X \\
\downarrow \quad \downarrow \\
K \times I \quad \beta \to Y
\]
provided β is a constant homotopy in some interval $K \times [0, e]$.

Next suppose E', E are spaces over B with the WCHP, and let $f : E' \to E$ be a map.

\[
\begin{array}{ccc}
E' \times E & \overset{\pi_2}{\longrightarrow} & (E/B) \\
\downarrow \quad \downarrow (d_0, d_1) & & \\
E' \times_{B} E & \overset{f \times id}{\longrightarrow} & E \times_{B} E \\
\downarrow \pi_2 & & \\
E & & \\
\end{array}
\]

Since E'/B has the WCHP the lower π_2, does.

Unpleasant feature: suppose $E \to B$ has the WCHP but not the CHP, i.e. $E^I \to E \times_{B} E^I$ doesn't have a section. Then as $E^I \to E \times_{B} E^I$ is a leg (both spaces have E as strong def. retract), it cannot have the WCHP, or otherwise by the preceding proposition it would have a section.
The preceding proposition is proved by a covering homotopy type argument which might run as follows: provided we knew that
\((E/B)^I \rightarrow E \times_B E \) has the WCHP when \(E \rightarrow B \) does.

(This is alright when \(B \) is paracompact and locally contractible.)

Under this condition we may factor \(f \) in the customary way, and the second map \(g \) has the WCHP by

\[
\begin{align*}
E' \xrightarrow{i} & E' \times_E (E/B)^I \xrightarrow{g} E \\
\downarrow \text{id} & \downarrow \text{id} \xrightarrow{f \times \text{id}} E \times B \xrightarrow{E \times \text{id}} E \times E \\
\end{align*}
\]

\(\text{id} \) has WCHP

Thus if \(f \) is a homotopy equivalence, the map \(g \) will be a homotopy equivalence with the WCHP. Such a map has a section:

\[
\begin{array}{ccc}
B & \xrightarrow{s} & E' \\
\downarrow{h} & & \downarrow{w} \text{ WCHP} \\
B \times I & \xrightarrow{h} & B
\end{array}
\]

where \(h: \text{id}_B \times \text{id}_E \) is any homotopy constant near \(0 \).

Since \(g \) has a section, it follows that \(f' : E \rightarrow E' \)
such that $f' f' \sim_B \text{id}_E$. Applying the same reasoning to f' we find $f''': E' \to E'$ such that $f'' f' \sim_B \text{id}_E$.

Then one has that $f'' \sim_B f$, so f is a fibre-homotopy equivalence.

Remark: If X is a space of the homotopy type of a CW complex, then its sheaf-theoretic and singular cohomology coincide. In effect both are homotopy invariants, hence reduces to case of a CW complex, where equality follows from fact that CW complexes are paracompact and locally-contractible.

Gold shows that over paracompact contractible spaces that a WCMP space same as a space locally fibre-homotopy equivalent with a product space.
Let I be an ordered set. Its realization $\text{BI} = |\text{New}(I)|$ is the ordered simplicial complex whose simplices are chains $X_0 < \ldots < X_p$ in I. (ordered s.s.x. = s.s.x. + ordering on vertices > each simplex is lin.ordered). $\text{Sd}(I)$ is the ordered set of layers of I. I want to interpret $B\text{Sd}(I)$ as a subdivision of BI.

Example 1. $I = \{0 \leq 1\}$. Then

$\text{Sd} I = \{ 0 \leq 0.1 \leq 1 \}$

so geometrically we have

$\text{BI}: \quad \begin{array}{c}
\text{Sd}(I)
\end{array}$

$\begin{array}{c}
\text{Sd}(I)
\end{array}$

Example 2. Suppose C' is a full subcat. of C. Then $\text{Sd} C'$ is the full subcat. of $\text{Sd} C$ consisting of arrows $u: X \to Y$ such that $X, Y \in C'$. Thus, if I' is a subcat of I endowed with the induced ordering, $\text{Sd} I'$ is a sub-ordered set of $\text{Sd} I$. BI' is the subcomplex of BI consisting of the simplices $X_0 < \ldots < X_p$ with all X_i in I', $B\text{Sd} I'$ is a subcomplex of $B\text{Sd} I$.

Example 3. $\text{Sd}(C \times C') \rightarrow \text{Sd}(C) \times \text{Sd}(C')$. In
\textit{effect}

\[\text{Ob} \{ \text{Sd} C \} = \text{Ar} C = \text{Hom}((0 \leq 1), C) \]

\[\text{Ar} \{ \text{Sd} C \} = \text{Ar}_3 C = \text{Hom}(0 \leq 1 \leq 2 \leq 3 \leq C) \]

and these functors commute with products, in fact with arbitrary inverse limits, so we have

\[\text{Sd} \left(\lim_{\longrightarrow} C \right) = \lim_{\longrightarrow} \text{Sd} C \]

\textbf{Example 4.} \(I = (0 \leq 1 \leq 2) \). This can be embedded as a sub-ordered set of \((0 \leq 1) \times (0 \leq 1) = \overline{I} \):

\[\begin{array}{ccc}
\downarrow & < & \downarrow \\
B I & < & B \overline{I}
\end{array} \]

so \(B \text{Sd} I < B \text{Sd} \overline{I} = (B \text{Sd} (0 \leq 1))^2 \)

\textbf{Example 5.} \(I = [n] = (0 \leq 1 \leq \ldots \leq n) \) which we will embed in \([1]^n\) as the sequence

\[(0, \ldots, 0) \leq (1, 0, \ldots, 0) \leq (1, 1, 0, \ldots) \leq \ldots \leq (1, 1, \ldots, 1) \]
Then $Bsd I$ is a subcomplex of $(sd[I])^n$.

Example 6: An ordered set, we have $Bsd(I)$ is a simplicial complex whose vertices are layers $x \leq y$ in I. Define a map

$$h_t: Bsd(I) \longrightarrow BI$$

$$h_t(x \leq y) = tx + (1-t)y \quad 0 \leq t \leq 1$$

To show this map is well-defined, we need only show that the image of the vertices of a simplex lie in a simplex. But a simplex in $sd(I)$ is of the form:

$$x_0 \leq \cdots \leq x_i \leq (x_0 \leq y_0) \leq (x_1 \leq y_1) \cdots \leq y_p$$

and

$$tx_0 + (1-t)y_0 \leq \cdots \leq tx_p + (1-t)y_p$$

all lie in the simplex $(x_0 \leq \cdots \leq y_p)$.
The preceding examples seem to establish the

Assertion: For any ordered set I, we have a map

$$h: \text{BSd}(I) \times [0, 1] \rightarrow BI$$

$$(x \leq y), t \rightarrow tx + (1-t)y$$

such that

i) for $0 < t < 1$, h_t is a homeomorphism

ii) $h_1: \text{BSd}(I) \rightarrow BI$ is the map induced by the target functor $\text{Sd}(I) \rightarrow I$.

iii) h_0 is the map induced by source $\text{Sd}(I) \rightarrow I^o$ followed by the homeomorphism $BI^o = BI$.

If I is finite, the subdivisions

$$\cdots \rightarrow \text{BSd}''(I) \xrightarrow{h_t} \text{BSd}'(I) \xrightarrow{h_t} BI$$

become arbitrarily fine for any $0 < t < 1$.

Now I want to apply the simplicial approx. thm. Suppose I, J are two ordered sets, with I finite, and let

$$f: BI \rightarrow BJ$$

be a map of the associated polyhedra BJ.

Note: BJ has a canonical open covering - open stars of vertices $j \in J$.

For n suff. large, the composed map

$$f: \text{BSd}''(I) \rightarrow BJ$$
has the property that for every vertex, the open star of every vertex is contained in the inverse image of an open star of \(\beta J \). Then we get a simplicial map

\[N Sd^n(I) \rightarrow N J \]
July 18, 1972

The relation between what you are trying to do for categories and Kan's \(\text{Ex}^\infty \) theory:

Suppose \(C \) is a contractible category. Then I can solve the extension problem for the map

\[
\begin{align*}
\text{sd}^n \{0 \leq 1\} & \to [0 \leq 1] \\
\downarrow & \downarrow \\
\text{sd}^n \{0 \leq 1\} & \to C
\end{align*}
\]

provided I subdivide enough. Precisely, suppose I have given \(f \)

\[
\begin{align*}
\text{sd}^n \{0 \leq 1\} & \to \{0, 1\} \\
\downarrow & \downarrow \\
\text{sd}^n \{0 \leq 1\} & \to C
\end{align*}
\]

Then \(g \) exists for \(n \) sufficiently large.

Generalization: Suppose I have maps

\[
\begin{align*}
\text{sd}^n \{0 \leq 1\} & \to C \\
\text{sd}^n \{1 \leq 2\} & \to C \\
\text{sd}^n \{0 \leq 2\} & \to C
\end{align*}
\]

which are compatible. Then \(m \) can I enlarge \(n \) so as there exists an extension

\[
\begin{align*}
\text{sd}^n \{0 \leq 1 \leq 2\} & \to C
\end{align*}
\]
Question: Let K be a finite simplicial complex, let L be a subcomplex, and let C be a contractible category. Given a functor $\text{Cat}(L) \to C$, does there exist a subdivision K' of K rel L so that f extends:

$$\text{Cat}(L) \xrightarrow{f} C$$

$$\cap$$

$$\text{Cat}(K') \xrightarrow{?}$$

Better questions: Given an ordered finite simplicial complex K, and a subcomplex L, we then have an inverse system of maps

$$\text{Sd}^m L \xrightarrow{f} \text{Sd}^n K$$

and we can ask if given $\text{Sd}^m L \to C$, does there exist $n > m$ and an extension

$$\text{Sd}^m L \xrightarrow{?} \text{Sd}^m L \xrightarrow{?} C$$

$$\cap$$

$$\text{Sd}^n K$$

Assume the answer to the preceding is Yes. Define a functor on ordered simplicial complexes by

$$F(K) = \lim_{m} \text{Hom}(\text{Sd}^m(K), C)$$
Then we are asking that \(F(K) \rightarrow F(L) \) if \(L \leq K \). In particular if we take
\[
\begin{align*}
K &= \Delta(n) \\
L &= \Delta(n)
\end{align*}
\]
then we see that the simplicial set
\[
\text{in } n \mapsto F(\Delta(n))
\]
is a contractible Kan complex. Now-
\[
\text{Hom} \left(\text{Sd}^m(\Delta(n)), C \right)
\]
should roughly be the same as
\[
\text{Hom} \left(\Delta(n), \text{Ex}^m(\text{New} C) \right).
\]
This suggests that I am roughly aiming for a version of \(\text{Ex}^m \) using the elementary subdivision rather than barcyclic subdivisions.

\textbf{Conjecture:} Let \(C \) be a contractible category. Then the simplicial set
\[
\text{in } n \mapsto \lim_m \text{Hom} \left(\text{Sd}^m([n]), C \right) = X(C)
\]
is a contractible Kan complex.
Observe that if we used barycentric subdivising, then this limit would be $\operatorname{Ex}^\infty(\operatorname{Nerve} C)$, so the conjecture would be clear.

Variations on the preceding conjecture:

1. \(C \xrightarrow{f} C' \) cofibred with contractible fibres. Then
\[
X(C) \longrightarrow X(C')
\]
is a Kan fibration with contractible fibres.

2. \(C \xrightarrow{f} C' \) cofibred such that all colimit change functors are hog's. Then
\[
X(C) \longrightarrow X(C')
\]
is a Kan fibration (with fibre \(X(C_y) \) over \(Y \) for all \(Y \in \operatorname{Ob}(C') \); observe if vertices of \(X(C) \) same as objects of \(C \)).

List all things that can be proved about $K_*(\mathbb{Z})$ using results about $K_*(\mathbb{F}_p)$ and the J-homomorphism.

Claims:

$J \{ \pi_{4d-1} \to \infty \} \to K_{4d-1} \mathbb{Z}$

cyclic of order denoted (B_0/A_0).

Proof. Diagram

\[
\begin{array}{ccc}
B\Sigma^+ & \to & F \\
\downarrow & & \downarrow \\
BGL(\mathbb{Z})^+ & \to & BO = BGL(\mathbb{R}) \\
\downarrow (ch_{2i})_{i \geq 1} & & \downarrow \\
\prod K(\mathbb{Q}, 2i) & i \geq 1 & \\
\end{array}
\]

F is the fibre of $(ch_{2i})_{i \geq 1}$. Since Chern classes of a representation of a discrete group are torsion, the dotted arrow exists. Thus we get a diagram:

\[
\pi_{4d-1} A = \pi_{4d-1} B\Sigma^+ \to \pi_{4d-1} F = \mathbb{Q}/a_0 \mathbb{Z}
\]

$a_0 = \begin{cases}
1 \text{ even} \\
2 \text{ odd}
\end{cases}$
I will show below that \(J \{ \pi_{q-1} SO \} \xrightarrow{e} e(\frac{q}{4}) \subset \mathbb{Z}/4\mathbb{Z} \)

so the claim will follow.

Recall the definition of the e-invariant. Given an element of \(\pi_{4q-1}^s \), represent it by a map

\[f : S^{8k+4q-1} \longrightarrow S^{8k} \]

and let \(X \) be its mapping cone. Then

\[0 \longrightarrow \tilde{K}^0(S^{8k}) \xrightarrow{\alpha} \tilde{K}^0(X) \xrightarrow{\alpha} \tilde{K}^0(S^{8k+4q}) \xrightarrow{\alpha} 0 \]

so if we choose \(x \in \tilde{K}^0(X) \) mapping to the distinguished generator of \(\tilde{K}^0(S^{8k}) \), the top component of the character of \(x \)

\[ch_{8k+4q}(x) \in H^{8k+4q}(X; \mathbb{Q}) \cong H^{8k+4q}(S^{8k+4q}; \mathbb{Q}) \]

\[\cong \mathbb{Q} \]

is a rational number determined up to \(ch_{8k+4q}(\tilde{K}^0(S^{8k+4q})) = a_n \mathbb{Q}. \) (Observe if \(q \) is even, then real e-invariant = complex e-invariant, since \(\tilde{K}^0(S^{8k}) = K(S^{8k}) \))

Recent the preceding. Let \(BO^{8k} \longrightarrow BO \)

\[F_{8k} \longrightarrow BO^{8k} \xrightarrow{(ch_i)_{i>2k}} \prod K(\mathbb{Q}, i) \]

with \(BO^{8k} \), \((8k-1) \)-connected, and define
Then we have
\[
S^{8k+4i-1} \xrightarrow{f} S^{8k} \xrightarrow{\text{gen.}} X \xrightarrow{\text{ch}_{8k+4i}(x)} BO\langle S^k \rangle \xrightarrow{i>2k} \prod_{i>2k} K(Q,4i)
\]
from which we see that
\[e(f) = \text{Toda bracket of}\]
\[
S^{8k+4i-1} \xrightarrow{f} S^{8k} \xrightarrow{\text{gen.}} BO\langle S^k \rangle \xrightarrow{i>2k} \prod_{i>2k} K(Q,4i)
\]
and hence if we choose maps on the other side
\[
S^{8k+4i-1} \xrightarrow{f} S^{8k} \xrightarrow{\text{gen.}} BO\langle S^k \rangle \xrightarrow{i>2k} \prod_{i>2k} K(Q,4i)
\]
we know the arrow at the left is \(e(f)\) mod indeterminacy, so we find the following alternate description of the \(e\)-invariant.
\[e(f) = -f^*(\alpha) \in \prod_{i>2k} K(Q,4i) \hookrightarrow Q/a_\infty\mathbb{Z}\]
where \(\alpha\in \pi_{8k}(F_{8k})\) is the unique element mapped to the generator of \(\pi_{8k}(BO\langle S^k \rangle)\).
Now take $8k$-fold loop spaces

$$
\begin{array}{ccc}
\Omega^s S^8k & \rightarrow & \Omega^s B(S^2k) & \rightarrow & \prod_{i \geq 1} K(Q, 4i) \\
\downarrow & & & & \\
S^1 & \rightarrow & Z \times BO & \rightarrow & \prod_{i \geq 1} K(Q, 4i)
\end{array}
$$

Thus it follows that the various S^8k induce the map

$$\lim_{s \to \infty} \Omega^s S^8k \rightarrow Z \times F$$

which covers

$$\downarrow$$

$$Z \times BO$$

and so it is now easy to see that the map on homotopy induced by F in degree $4s-1$ is simply the e-invariant.

How about dimensions $8k, 8k+1$? According to Adams the picture is that π_n^s contains the direct summands

![Diagram showing the direct summands](image-url)
\[\mathcal{J} \{ \pi_{8k} \text{SO} \} \cong \mathbb{Z}/2 \quad \text{in} \quad \pi_{8k}^S \]
\[\mathcal{J} \{ \pi_{8k+1} \text{SO} \} \oplus \langle \eta_{8k+1} \rangle \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2 \quad \text{in} \quad \pi_{8k+1}^S \]
\[\langle \eta_{8k+2} \rangle \cong \mathbb{Z}/2 \quad \text{in} \quad \pi_{8k+2}^S. \]

and that moreover \(\eta_{8k+i} \) maps non-trivially to the generator of \(\pi_{8k+i}^S \text{BO} \), \(i = 1, 2 \). Thus we have direct summands
\[\mathbb{Z}/2 \quad \text{in} \quad K_{8k+1} \mathbb{Z} \]
\[\mathbb{Z}/2 \quad \text{in} \quad K_{8k+2} \mathbb{Z}. \]

(\text{It should be true that the image \(\mathcal{J} \) goes to zero in} \(\pi_k \text{BO} \), because of the fibration)

\[\text{SO} \rightarrow \text{Im} \mathcal{J} \rightarrow \text{BO} \xrightarrow{\mathbb{Z}/2-1} \text{BSO} \]
\[\downarrow \mathcal{J} \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]
\[\text{SG} = \text{SG} \rightarrow \ast \rightarrow \text{BSG} \]

This is in fact a proof provided

\[\text{SO} \xrightarrow{\mathcal{J}} \text{Im} \mathcal{J} \]
\[\text{J} \quad \text{SG} \xleftarrow{\quad (\text{QSO})} \quad \text{commuted} \]
Now bring in finite fields. The diagram:

\[
\begin{array}{cccc}
B \Sigma^+_n & \longrightarrow & BGL_n \mathbb{Z} & \longrightarrow & BGL_n(\mathbb{Z}/p) \\
\downarrow \text{Braverman} & & & \downarrow \text{braverman} \\
\Sigma^*_n & \longrightarrow & BU & \quad & \\
\end{array}
\]

doesn't commute, however, it does if we restrict to a finite skeleton of \(B \Sigma^+_n\) and localize with respect to \(p^n\).

The diagram of the homotopy groups:

\[
\begin{array}{cccc}
\Sigma^+_n & \longrightarrow & BGL(\mathbb{Z}/p) & \cong & F \mathbb{P}^p \\
\downarrow & & \downarrow & & \downarrow \\
F & \longrightarrow & BU & \overset{\pi_{1-p}}{\longrightarrow} & BU \\
& & & & & \overset{\text{ch}}{\longrightarrow} \pi_{1-p} K(\mathbb{Q}, 2i) \\
& & & & & \overset{\text{ch}_i}{\longrightarrow} \pi_{1-p} K(\mathbb{Q}^+, 2i) \\
\end{array}
\]

so we get a homomorphism:

\[
\pi_{2i-1}(B \Sigma^+) \longrightarrow \pi_{2i-1} \left(F \mathbb{P}^p\right) = K_{2i-1}(\mathbb{Z}/p)
\]

with relation:

\[
\mathbb{Z}/p^{i-1} \mathbb{Z} \cong \mathbb{Q}/\mathbb{Z}
\]

complex e-invariant
Some number theory

\[m(2) = \text{denom} \left(B_2/4 \right) = \prod_{l \text{ prime}} m_l(2) \]

where for \(l \) odd we have

\[m_l(t) = \nu_l(p^t - 1) \quad \text{if } p \text{ gen. } \mathbb{Z}_l^* \]

\[= \begin{cases} 0 & \text{if } (l-1) \nmid t \\ \nu_l(2^t) + 1 & \text{if } (l-1) \mid t \end{cases} \]

and for \(l = 2 \)

\[m_2(t) = \nu_2(3^t - 1) \]

\[= \begin{cases} 1 & t \text{ odd} \\ \nu_2(t) + 2 & t \text{ even} \end{cases} \]

Note that the topologist's \(B_0 = B_{2n} \) in Borevich-Shaf

Examples

\(s = 1 \), \(m(2) = 2^3 \cdot 3 = 24 \), \(\frac{B_1}{4} = \frac{1}{4.6} \)

\(s = 2 \), \(m(4) = 2^4 \cdot 3 \cdot 5 \Rightarrow \frac{B_2}{8} = \frac{1}{8 \cdot 30} = \frac{1}{16 \cdot 3 \cdot 5} \)

\(s = 3 \), \(m(6) = 2^3 \cdot 3^2 \cdot 7 \Rightarrow \frac{B_3}{12} = \frac{1}{12 \cdot 42} = \frac{1}{8 \cdot 7 \cdot 7} \)

\(s = 4 \), \(m(8) = 2^5 \cdot 3 \cdot 5 \Rightarrow \frac{B_4}{16} = \frac{1}{16 \cdot 30} = \frac{1}{32 \cdot 3 \cdot 5} \)

\(s = 5 \), \(m(10) = 2^3 \cdot 3 \cdot 11 \Rightarrow \frac{B_5}{20} = \frac{1}{20 \cdot 6} = \frac{1}{8 \cdot 3 \cdot 11} \)
July 21, 1972

Observation which perhaps is important.

Let $f: C \to C'$ be cofibred, and suppose that each fibre C_y, $y \in C'$, is connected. Given objects

$$X', X \quad \text{in } C$$

and an arrow

$$f_{X'} \Rightarrow f_X \quad \text{in } C'$$

we would like to lift u to a map from X' to X.

Because f is cofibred, we can lift u to a cartesian arrow

$$X' \to u_* X',$$

which is such that

$$\text{Hom}(X', Z) \to \text{Hom}(u_* X', Z)$$

for all $Z \in C_{fx}$. Thus u lifts to a map $X' \to X$ iff there is an arrow $u_* X' \to X$ in C_{fx}.

But we are given only that C_{fx} is connected, so all we have is a chain of arrows

$$u_* X' \Rightarrow \cdots \Rightarrow X$$

in C_{fx}. But recall that $\text{Sp}^m[1]$
is the category

\[\cdots \]

with \(2^m \) arrows, and that the functor \(\text{Sd}^m [1] \to [1] \) sends all the objects except 0 to 1.

Therefore for \(m \) sufficiently large we can find a commutative diagram

\[
\text{Sd}^m \{0,1\} \xrightarrow{(x,x)} C \xrightarrow{f} C'\]

(\(f \) may be useful later to note that the dotted arrow may be chosen so that the first arrow \(f \) goes into a cocartesian arrow relative to \(f \). The point is that \(\text{Sd}^m [1] \to [1] \) is cofibred. In effect \(\text{Sd} C \to C \) is cofibred. Thus the dotted arrow is a cocartesian functor.)
July 23, 1972

On hom

Homotopy type of categories.

Up to now, I have been trying to understand the homotopy groups of a small category C, in the following way: Given a finite complex X, I want to find the set \([X, BC]\). To do this, I tried to construct a category \(T(X, C)\) such that

\[
\pi_0 T(X, C) = [X, BC]
\]

Here are some potential candidates for \(T\):

1) \(X\) compact space, then
\[
T(X, C) = \text{Tors} (X, C) = \text{Homtop} (\text{Top}X, C^\vee)
\]

2) \(X\) polyhedron
\[
T(X, C) = \lim_{K} \text{Hom} (\text{Cat} K, C)
\]

where \(K\) runs over all the admissible triangulations of \(X\).

3) \(X\) small category
\[
T(X, C) = \lim_{m} \text{Hom} (\text{Sd}^m X, C)
\]
What is going on here?

Here is an interpretation: For 3) we have

\[T(Y, T(X, C)) = T(Y \times X, C) \]

so that

\[[Y, B T(X, C)] = [Y \times X, B C] = [Y, B C^X]. \]

In other words, the category \(T(X, C) \) is playing the role of the function space

\[BC^X = \text{Hom}(X, BC) = \Gamma(X \times BC/X). \]

Recall Grothendieck's \(\mathcal{T} \times S \) formalism. Suppose \(f: X \to S \) is a map and \(Z \) is over \(X \). Then Grothendieck denotes by \(\mathcal{T} \times S \) what I would write \(f_* Z \). It has the property

\[\text{Hom}_{/S}(T, f_* Z) = \text{Hom}_{/X}(f^* T, Z) \]

For example, if \(C \) is over \(S \), then

\[\text{Hom}_{/S}(T, f_* f^* C) = \text{Hom}_{/X}(X_S \times T, X_S \times C) = \text{Hom}_{/S}(X_S \times T, C). \]
\[
= \text{Hom}_{\mathcal{S}}\left(T, \text{Hom}_{\mathcal{S}}\left(X, C \right) \right)
\]

So

\[
f_x f^* C = \text{Hom}_{\mathcal{S}}\left(X, C \right)
\]

The picture: suppose we take seriously the philosophy that homotopy theory is to be constructed out of small categories. Over any \(X \) we consider the 2-category of cofiber categories over \(X \) with cocartesian functors as morphisms.

\[
\text{Hom}_X(Y, Z) = \text{Hom}_{\text{Cofat}/X}^{\text{cocart}}(Y, Z)
\]

Then given \(f: X \rightarrow S \) we have

\[
f^* : \text{Cofat}/S \rightarrow \text{Cofat}/X
\]

and perhaps an \(f_* \) functor which when \(S = e \) reduces to

\[
\Gamma(Z/X) = \text{Hom}_{\text{Cofat}/X}^{\text{cocart}}(X, Z).
\]

In effect one knows that a cocart. functor

\[
\begin{array}{ccc}
X \times T & \xrightarrow{f} & Z \\
\downarrow & & \downarrow \\
X & & \\
\end{array}
\]
is the same as a functor

\[T \rightarrow \Gamma(Z/X). \]

Now what you need to do is form the homotopy category of Cofcat/\(X \) by inverting the fibre-homotopy-equivalences. Then you wish to construct the derived functor

\[Rf_x^* : \text{Ho}(\text{Cofcat}/X) \rightarrow \text{Ho}(\text{Cofcat}/S) \]

for a map \(f : X \rightarrow S \). In particular, if one takes \(f : X \rightarrow pt \), and \(C \) over \(pt \), then

\[Rf_x^* C = T(X, C). \]

Now perhaps you might want to use a specific construction for \(Rf_x^* = \text{holim} \) such as

\[Rf_x^*(Z) = \lim_{m} \text{Hom}(Sd^m X, Z). \]
July 26, 1972. To understand holim.

Let \(F \to S \) be a fibred category. I want to understand holim \(\frac{F}{S} \).

Example: suppose \(F \) is the fibred category in groupoids defined by a complex of abelian group functors of length 2

\[
K^*: K^0 \to K^1 \to 0.
\]

Compute \(\lim_{\to S} \frac{F}{S} \), i.e., the category of cartesian sections of \(F/S \). Now since the fibres are groupoids, every arrow is cartesian. Thus we want sections of \(F/S \) such a thing consists of

\[
\text{Ob-}S \ni y \mapsto s(y) \in \text{Ob}(F_y) = K^1(y).
\]

\[
\text{As } S \ni (u: y \to y') \mapsto t(u) \in \text{Hom}(s(y'), u^*s(y)) = K^0(y')
\]

\[
dt(u) = o(y') - u^*o(y)
\]

such that for \(y' \leftarrow y'' \xleftarrow{u} y \) we have

\[
t(vu) = t(v) + v^*t(u).
\]

Thus a section of \(F/S \) is a 1-cocycle in the complex.
\[\mathcal{C}^0(S, K^0) \overset{\delta}{\rightarrow} \mathcal{C}^1(S, K^0) \overset{\delta}{\rightarrow} \mathcal{C}^2(S, K^0) \]

where \[\mathcal{C}^0(S, F) = \prod_{y \in S} F(y) \]

Thus it is clear that \(\lim_{\longrightarrow} F \) is the category belonging to the complex

\[(\mathcal{C}^i(S, K^i))^0 \overset{\delta}{\rightarrow} \cdots \]

What should the homotopy-inverse limit be? According to Kan, one wants an object \(s(y) \) over \(y \), \(y \in S \), and for every arrow \(a : y^{\prime} \rightarrow y \)

a path from \(s(y^{\prime}) \) to \(a \circ s(y) \), etc. Since the fibres of \(F \) are groupoids, it follows that every path must be an isomorphism. Thus in general we have

\[\underset{S}{\lim} F \xrightarrow{\sim} \operatorname{holim} F \]

when \(F \rightarrow S \) is fibred in groupoids.
July 26, 1972

Dear Jack,

As I wrote you earlier, the assertion in your note that I can prove the injectivity of the map

\[J(\pi_1^0) \subset \pi_1^s \longrightarrow K_1 \mathbb{Z} \]

is inaccurate with respect to the 2-torsion. Unfortunately, the corrections I sent are also incorrect. Since Kervaire has requested some details, I am sending the following account of what I know about the above map, in order to clear the confusion.

1. First consider the dimensions \(i = 8k, 8k+1 \), where \(J(\pi_1^0) = \mathbb{Z}/2 \). I do not know whether this group injects into \(K_1 \mathbb{Z} \), and suspect that it does not, except of course when \(k = 0 \).

However, Adams has produced elements of order 2, \(\eta_j \in \pi_j^s \), \(j = 8k+1, 8k+2 \), closely related to the image of \(J \) in the preceding dimensions, which do map non-trivially into \(K_1 \mathbb{Z} \). To see this, consider the square

\[
\begin{array}{c}
\mathcal{B}F_{\infty}^+ \\
\downarrow \delta \\
\mathcal{B}GL(\mathbb{Z})^+ \\
\end{array} \longrightarrow \begin{array}{c}
\mathcal{B}O \\
\mathcal{B}GL(\mathbb{H}) \\
\end{array}
\tag{1}
\]

induced by the various group inclusions. Passing to homotopy groups, we obtain homomorphisms \(\pi_j^s = \pi_j \mathcal{B}F_{\infty}^+ \longrightarrow K_j \mathbb{Z} \longrightarrow \pi_j \mathcal{B}O \) whose composition is the degree map for \(KO \)-theory. Since Adams has shown that the degree map carries \(\eta_j \) to the generator of \(\pi_j \mathcal{B}O = \mathbb{Z}/2 \), the image of \(\eta_j \) in \(K_j \mathbb{Z} \) is non-trivial. In fact, we have

\[K_j \mathbb{Z} = \mathbb{Z}/2 \oplus ? \quad j = 8k+1, 8k+2 \]

I should mention that this observation appears already in one of Gersten's papers.

2. Next consider the dimension \(i = 4s-1 \), where \(J(\pi_1^0) \) is cyclic of
order $\text{denom}(B_5/4s)$. I shall prove the injectivity:

$$J(\pi_{4s-1}^s) \hookrightarrow K_{4s-1}Z$$

by showing that the Adams e-invariant on π_{4s-1}^s, which detects $J(\pi_{4s-1}^s)$, comes from an invariant defined on $K_{4s-1}Z$.

Following Sullivan, consider the fibration

$$\begin{array}{ccc}
F & \longrightarrow & BO \\
& \longrightarrow & \prod_{i \geq 1} K(\mathbb{Q}, 4i)
\end{array}$$

where $K(\mathbb{Q}, j)$ is an Eilenberg-MacLane space and ch_j represents the j-th component of the Chern character. Since $B\Sigma_\infty^+$ has trivial rational cohomology, the degree map $B\Sigma_\infty^+ \longrightarrow BO$ lifts by obstruction theory, uniquely up to homotopy, to a map

$$B\Sigma_\infty^+ \longrightarrow F$$

which induces a homomorphism

$$\pi_{4s-1}^s \longrightarrow \pi_{4s-1}^s F \cong \mathbb{Q}/a_sZ$$

where a_s is 1 or 2 depending on whether s is even or odd.

I claim this homomorphism is the negative of the Adams e-invariant.

Assuming this for the moment, consider the diagram

$$\begin{array}{ccc}
B\Sigma_\infty^+ & \longrightarrow & BGL(\mathbb{Z})^+ \\
\downarrow w & & \downarrow \text{ch} \\
F & \longrightarrow & BO \\
\end{array}$$

with the map w obtained from (1). Since the Chern classes of representations of discrete groups are torsion classes, the map $(\text{ch})w$ is null-homotopic, and the dotted arrow exists. The induced map from $B\Sigma_\infty^+$ to F must be (2).

Thus we obtain a commutative diagram

$$\begin{array}{ccc}
\pi_{4s-1}^s & \longrightarrow & K_{4s-1}Z \\
\downarrow -e & & \\
\mathbb{Q}/a_sZ & \leftarrow & \end{array}$$

as desired.
3. To prove the claim about the e-invariant, consider the map

\[BO(8k) \longrightarrow \bigoplus_{i \geq 1} K(Q, 8k+4i) \]

with components \(ch_{8k+4i} \), where \(BO(8k) \) is the \((8k-1)\)-connected covering of \(BO \). Denote this map briefly by \(c : BO(8k) \longrightarrow \Sigma(8k) \) and let \(F(8k) \) be its fibre. Let \(b : S^{8k} \longrightarrow BO(8k) \) represent the generator of \(\pi_{8k} BO(8k) = \pi_{8k}^BO \) provided by Bott periodicity.

Now suppose given a map \(f : S^{8k+4s-1} \longrightarrow S^{8k} \) representing an element \(\bar{f} \) of \(\pi_{4s-1}^S \). We compute the Toda bracket \(\{ c, b, f \} \) by forming the diagram

\[
\begin{array}{cccc}
S^{8k+4s-1} & \xrightarrow{f} & S^{8k} & \longrightarrow \text{Cone } f & \longrightarrow & S^{8k+4s} \\
\downarrow{u} & & \downarrow{v} & & \downarrow{x} & & \downarrow{y} \\
\Omega S(8k) & \xrightarrow{b} & F(8k) & \longrightarrow BO(8k) & \longrightarrow & E(8k)
\end{array}
\]

in which the arrows \(x, y \) and \(v, u \) can be filled in as \(bf \) and \(cb \) are null-homotopic. By definition, the Toda bracket is the element represented by \(y \) in

\[\pi_{8k+4s} F(8k) / c_* \pi_{8k+4s} BO(8k) + f^* ch_{8k+4s} \Omega E(8k) = Q / a_s \mathbb{Z}. \]

Now Adams defines the e-invariant of \(\bar{f} \) by choosing an element \(z \) of \(\tilde{E}(\text{Cone } f) \) restricting to the generator of \(\tilde{E}(S^{8k}) \), and forming

\[ch_{8k+4s}(z) \in H^{8k+4s}(\text{Cone } f, Q) \cong H^{8k+4s}(S^{8k+4s}, Q) \cong Q. \]

The image of this rational number in \(Q / a_s \mathbb{Z} \) is then \(e(\bar{f}) \). Clearly \(z \) and \(ch_{8k+4s}(z) \) may be identified with the maps \(x \) and \(y \) in the diagram, hence we have the formula

\[e(\bar{f}) = \{ c, b, f \}. \]

On the other hand, from the theory of Toda brackets one knows that the map \(u \) in the diagram represents the negative of \(\{ c, b, f \} \). Thus we have the formula

\[e(\bar{f}) = -f^*(v_k) \in \pi_{8k+4s-1} F(8k) = Q / a_s \mathbb{Z}. \]
where \(v_k = v \) is the unique element of \(\pi_{sk} F(8k) \) mapping to the generator of \(\pi_{sk} B_0(8k) \). Now by periodicity we have \(\bigwedge^{sk} F(8k) \cong \mathbb{Z} \times F \). The maps \(v_k \) fit together to induce a map

\[
\nabla : \lim_{k} \bigwedge^{sk} F(8k) \longrightarrow F
\]

which covers the degree map into \(B_0 \). Thus \(\nabla \) is the map (2). The formula (3) shows that its effect on homotopy groups is the negative of the e-invariant, which proves the claim.

4. Additional information on the image of \(J(\pi_{4s-1} 0) \) in \(K_{4s-1} \mathbb{Z} \) can be obtained from the computation of the \(K \)-groups of finite fields as follows. Let \(p \) be a prime number and \(\mathbb{F}_p \) the field with \(p \) elements, and consider the obvious homomorphisms

\[
\pi_{4s-1}^s \longrightarrow K_{4s-1} \mathbb{Z} \longrightarrow K_{4s-1} \mathbb{F}_p .
\]

I will show below that this composition is essentially the part of the complex e-invariant which is prime to \(p \). More precisely, there is a commutative diagram

\[
\pi_{4s-1}^s \longrightarrow K_{4s-1} \mathbb{F}_p \cong \mathbb{Z}/(p^{2s-1}) \mathbb{Z}
\]

\[
\xrightarrow{\theta} \mathbb{Q}/\mathbb{Z} \longrightarrow \mathbb{Q}/\mathbb{Z}[1/p]
\]

where \(\theta \) is injective with image the unique subgroup of order \(p^{2s-1} \).

Here \(\mathbb{Q}/\mathbb{Z}[1/p] \) denotes the ring of rational numbers with powers of \(p \) in the denominator.

Assuming this, let \(\mathfrak{f} \) be an odd prime, and choose \(p \) to be a topological generator of the group \(\mathbb{Z}_\mathfrak{f}^* \) of \(\mathfrak{f} \)-adic units. According to Adams, the e-invariant is injective on \(J(\pi_{4s-1} 0) \), and the \(\mathfrak{f} \)-primary component \(J(\pi_{4s-1} 0)(\mathfrak{f}) \) is cyclic of order \(\mathfrak{f}^m \), \(n = v_\mathfrak{f}(p^{2s-1}) \), \(v_\mathfrak{f} = \mathfrak{f} \)-adic valuation. We have therefore an isomorphism

\[
J(\pi_{4s-1} 0)(\mathfrak{f}) \cong (K_{4s-1} \mathbb{F}_p)(\mathfrak{f}) .
\]
It follows that the odd part of $J(\pi_{4s-1}^0)$ is isomorphic to a direct summand of $K_{4s-1}\mathbb{Z}$.

Suppose now that $\gamma = 2$ and take $p = 3$. Using Adams work, both the source and target of the map

$$J(\pi_{4s-1}^0)_{(2)} \longrightarrow (K_{4s-1}\mathbb{F}_3')_{(2)}$$

are cyclic of order 2^n, $n = v_2(3^{2s-1})$; and the map is essentially multiplication by a_s. It follows that for s even, when $a_s = 1$, $J(\pi_{4s-1}^0)_{(2)}$ is isomorphic to a direct summand of $K_{4s-1}\mathbb{Z}$.

Finally, observe that the diagram (4) shows the unique element of order 2 of $J(\pi_{4s-1}^0)$, when s is odd, goes to zero in $K_{4s-1}\mathbb{F}_p$ for all p.

Summarizing:

Proposition: The homomorphism $\pi_{4s-1}^s \longrightarrow K_{4s-1}\mathbb{Z}$ induces an injection of $J(\pi_{4s-1}^0)$ into $K_{4s-1}\mathbb{Z}$. For even s, the image of $J(\pi_{4s-1}^0)$ is a direct summand. For odd s, the odd-torsion part of the image is a direct summand. For odd s, the unique element of order 2 of the image is in the kernel of the homomorphism $K_{4s-1}\mathbb{Z} \longrightarrow K_{4s-1}\mathbb{F}_p$ for all primes p.

I do not know whether or not the image of $J(\pi_{4s-1}^0)_{(2)}$ is a direct summand of $K_{4s-1}\mathbb{Z}$ when s is odd. The first case is $s=1$, where

$$\mathbb{Z}/24 = J(\pi_2^0) = \pi_2^2 \longrightarrow K_2^2 = H_2(\text{St}(\mathbb{Z}),\mathbb{Z})$$

Here $K_2\mathbb{F}_2 = \mathbb{Z}/8$ and the map $J(\pi_2^0) \longrightarrow K_2\mathbb{F}_2$ has a kernel of order 6.

5. It remains to construct the diagram (4). Consider the diagram
\[
\begin{align*}
F & \longrightarrow BO \xrightarrow{ch} \prod_{i \geq 1} K(q_{i,4i}) \\
\downarrow & \quad \downarrow \quad \downarrow \\
F' & \longrightarrow BU[p^{-1}] \xrightarrow{ch} \prod_{j \geq 1} K(q_{2j}) \\
\uparrow & \quad \uparrow \quad \uparrow \quad ((p^{j-1})^{-1} \text{ch}_{2j}) \\
\mathbb{F}_p & \longrightarrow BU[p^{-1}] \xrightarrow{\mathbb{F}_p} BU
\end{align*}
\]

where F' and \mathbb{F}_p are defined so that the rows are fibrations. Here $BU[p^{-1}]$ is the localization of BU which represents the functor $K(\ast) \otimes \mathbb{Z}[p^{-1}]$. Examining the homotopy sequences of these fibrations, we obtain isomorphisms

\[
\begin{align*}
\pi_{4s-1} F & \cong \mathbb{Q}/a_s \mathbb{Z} \\
\downarrow & \quad \downarrow \\
\pi_{4s-1} F' & \cong \mathbb{Q}/\mathbb{Z}[p^{-1}] \\
\uparrow & \quad \cup \\
\pi_{4s-1} \mathbb{F}_p & \cong (p^{2s-1})^{-1} \mathbb{Z} / \mathbb{Z}
\end{align*}
\]

where the maps at the right are the obvious ones.

From the computation of the K-groups of a finite field, there is a homotopy equivalence

\[
\text{BGL}(\mathbb{F}_p)^+ \cong \mathbb{F}_p
\]

induced by lifting representations of finite groups over \mathbb{F}_p to virtual complex representations by means of the Brauer theory. I claim that the diagram

\[
\begin{align*}
\text{BGL}(\mathbb{F}_p)^+ & \longrightarrow \text{BGL}(\mathbb{F}_p)^+ \cong \mathbb{F}_p \\
\downarrow & \quad \downarrow \\
BO & \longrightarrow BU[p^{-1}]
\end{align*}
\]

is commutative. The upper right path is obtained by lifting the obvious representation of \sum_n on \mathbb{F}_p^n to a virtual complex representation, while the lower right path comes from the obvious action of \sum_n on \mathbb{C}^n.
These two virtual representations are not the same in general. However, it is known that their characters agree on elements of \(\Sigma^I_n \) of order prime to \(p \), because both the representations \(\mathbb{W}_n^I \) and \(\mathbb{E}^n \) come from the integral representation \(\mathbb{Z}^n \). Thus the two virtual representations agree on the Sylow \(I \)-subgroups \(\Sigma^I_n \) for all primes \(I \neq p \). By a standard transfer argument, one has
\[
\left[B \Sigma^I_n, BU[p^{-1}] \right] \xrightarrow{\mathcal{I} \neq p} \bigcap_{I \neq p} \left[B \Sigma^I_n, BU[p^{-1}] \right].
\]
Consequently, the above diagram commutes as claimed.

Since \(B \Sigma^+_{\infty} \) has trivial rational cohomology, it follows by obstruction theory that the diagram
\[
\begin{array}{ccc}
B \Sigma^+_{\infty} & \to & B GL(F)^{+} = \mathbb{R}^P \\
\downarrow & & \downarrow \\
F & \to & F'
\end{array}
\]
is commutative, where the vertical arrow at the left is the one inducing minus the \(e \)-invariant. The desired commutative diagram (4) now results by taking homotopy groups, and using the isomorphisms (5).

This concludes the account of the map \(J(\pi_0) \to K_* \mathbb{Z} \). To the best of my knowledge, nothing more is known about \(K_* \mathbb{Z} \) beyond what this and Borel's theorem provide.

Best wishes,

Evan Miller
July 31, 1972. On stability

Let k be a field and consider $M = \text{Mod}_k(k)$. Let C_n be the full subcategory of $Q(M)$ consisting of M of dimension $\leq n$.

Let $f: C_{n-1} \rightarrow C_n$ be the inclusion. Then f/V is equivalent to the ordered set of layers in V of dimension $\leq n-1$. This clearly has a final object if $\dim V < n$, so suppose $\dim V = n$.

Let $X(V)$ be the simplicial complex whose simplices are chains $0 < W_0 < \cdots < W_p < V$ such that W_p/W_0 is of dim $< n$, i.e., either $W_0 > 0$ or $W_p < V$. Then $X(V)$ is clearly the suspension of the building $X(V)$.

Thus since we know:

\[X(V) \text{ is } (n-3) \text{- connected} \]
\[\Rightarrow X(V) \text{ is } (n-2) \text{- connected.} \]

But if I_V is the ordered set equivalent to f/V, then I_V is the ordered set of 1-simplices in $X(V)$ and we have a homotopy equivalence:

\[\text{Cat } [X(V)] \rightarrow I_V \]

Let I_V be the ordered set above which is equivalent to f/V, i.e., the ordered set of 1-simplices in the ordered simplicial complex $X(V)$. Then

\[(W_0 < \cdots < W_p) \rightarrow (W_0, W_p) \]

is a homotopy equivalence.
(cofibre: \(W_0 \cdots \leq W_p \) + \((W_0, W_p) \leq (W', W'') \) \(\mapsto \) \(W' \leq W_0 \cdots \leq W_p \leq W'' \) which is clearly the smallest simplex with ends \(W', W'' \) + which contains \(W_0 \cdots \leq W_p \). fibre is contractible has initial object.)

(General Lemma: Let \(X \) be a simplicial complex, with a [partial] ordering on vertices such that each simplex is linearly ordered, and such that any chain is a simplex provided its bottom and top form a 1-simplex. Then (i)1-simplexes in \(X \) form an ordered set \(I_X \) (ii)

\[
\begin{align*}
\text{Cat}(X) & \rightarrow I_X \\
(x_0 \cdots \leq x_p) & \mapsto (x_0, x_p)
\end{align*}
\]

is a homotopy equivalence (iii) the nerve of \(I_X \) is a subdivision of \(X \).

Thus we can conclude that \(f/V \) is \((n-1)\)-conn. for each \(V \in C_n \). And further that the h-fibre of

\[C_{n-1} \rightarrow C_n \]

is \((n-2)\)-connected. Thus the h-fibre of

\[C_n \rightarrow Q(M) \]

has homotopy groups beginning in dimension \(n \). (e.g. \(n=0 \), the fibre is \(Q(M) \) which begins in dim 0)
Suppose now that A is a Dedekind domain with fraction field K. Let $M = PA$, and define again the filtration
\[C_{n-1} \subseteq C_n \subseteq Q(M) \]
by: C_n consists of M of rank $\leq n$. Again if $f: C_{n-1} \rightarrow C_n$ is the inclusion, then f/M is the ordered set of admissible layers in M of rank $\leq n$. But, there is a 1-1 correspondence between subbundles of M and subspaces of $M \otimes K$:
\[N \subseteq M \Rightarrow M/N \text{ is in } PA \iff N = M \cap (N \otimes K) \subseteq M \otimes K \]
Therefore the fibres f/M are all $(n-1)$-connected.

Suppose A is the ring of integers in a number field K, whence it is known that the groups $\text{Gal}(A)$ have finitely generated homology in each degree. I want to try now to prove that C_n has finitely generated homology in each degree. Then by the above stability considerations, we have that $Q(M)$ has f.g. homology and so, as it is an H-space, its homotopy groups are finitely generated.

Another way of thinking about C_n. Consider the fibred category over Δ whose fibre over $[p]$ is the groupoid of p-filtered objects.
of \(P_A \) such that \(\text{rank}(M_p) \leq n \). Call this cat. \(F_n^* \). Then we have a functor

\[f: F_n^* \rightarrow C_n \]

and \(f/M \) is the fibrled cat. \(\Delta \) consisting of

\[0 < M_1 < \cdots < M_p < M \]

i.e. it is the simplicial set of

\[M_0 < M_1 < \cdots < M_p \]

which is contractible.

Thus we can use \(F_n^* \) to calculate the homology of \(C_n \). We get usual seq. sequence

\[E^2_{pq} = H_p(U \mapsto H_q(F_n(U), \Lambda)) \implies H_{p+q}(C_n, \Lambda) \]

But observe: \((F_n)_\Lambda \) is the groupoid of \(\Lambda \)-filtered vector bundles

\[0 < M_1 < \cdots < M_p \]

with \(\text{rank } M_p \leq n \). Thus the non-degenerate part occurs with \(\nu \leq n \), and \(E^2_{pq} = 0 \), \(p > n \). But also, \(\text{rank } \Lambda \), the isom. classes of sequences \((\ast) \) is finite (finiteness of class number), and the group of automorph. has f.g. homology. Thus \(E^2_{pq} \) is f.g., and we conclude \(H_q(C_n, \Lambda) \) is f.g.
(Checkable case: \(A \) a P.I.D. Then every projective is free, and a filtered object is determined up to isomorphism by the ranks of \(M_i/M_{i-1}, V_i \). The group of automorphisms is then an arithmetic group.

\[
\text{Conclusion: } K \text{ number field, } S \text{ finite set of places including the arch. ones, } A = \text{ ring of } S\text{-integers. Then } K_i; A \text{ is finitely generated for each } i \geq 0.
\]