But we have a monoidal functor

\[S \rightarrow S' \]

\[S \rightarrow (\otimes, f_0, f_0 \otimes S, f_0 \otimes f_0(S)) = f_0(S) \]

which is an equivalence of \textit{mon.} strict. So we get as above a \textit{strict} functor

\[S \rightarrow S' \]

\section*{Uniqueness Lemma:}
Let \(S \xrightarrow{f} S' \) be an equiv. of monoidal cats with \(S' \) strict, let \(f_1, f_2 : S' \rightarrow U \) be strict mon. functors with \(U \) strict and suppose \(f_1 \circ f = f_2 \circ f \). Then \(f_1 = f_2 \) provided \(\text{Ob}(S) \) generates \(\text{Ob}(S') \).

\textbf{Proof:} Because \(f \) is an equivalence, \(\exists \) natural isom \(\Theta : f_1 \cong f_2 \) of monoidal functors.

\[\Theta : f \cong f \]

is the identity. Consider \(\{ x \in \text{Ob}(S') \mid \Theta x \cong \} \).

Since

\[\Theta_{x_1,x_2} : f_1(x_1 \otimes x_2) \cong f_2(x_1 \otimes x_2) \]

\[f_1(x_1) f_1(x_2) \cong f_2(x_1) f_2(x) \]

then \(\Theta_{x_1,x_2} \) follows this set is closed under product, so done.