September 3, 1970

cancellation

Suppose \(P \oplus A \sim Q \oplus A \) and we want to prove \(P \cong Q \). Look at this as follows.
We have a bundle \(E \) and two non-vanishing (everywhere) sections \(s_1 \) and \(s_2 \) with \(E/A_{s_1} = P, \ E/A_{s_2} = Q \). Suppose \(s_1, s_2 \) are everywhere independent, i.e. \((s_1, s_2) : A^2 \to E \) is a direct injection. Then we have exact sequences

\[
0 \to A \overset{\alpha_1}{\to} E/A_{s_1} \to E/A_{s_1} + A_{s_2} \to 0
\]

\[
0 \to A \overset{\alpha_2}{\to} E/A_{s_2} \to E/A_{s_1} + A_{s_2} \to 0
\]

so

\[P \cong A \oplus R \cong Q \]

where \(R = E/A_{s_1} + A_{s_2} \). In fact this isomorphism of \(P \) and \(Q \) is unique up to an automorphism of \(P \) inducing the identity on \(A_{s_2} \) and \(R \). (\(\Theta \) is an elementary automorphism of \(P \).)

Thus if \(s_1 \) and \(s_2 \) are connected in the unimodular complex of \(E \), i.e. in the same component, then by choosing a path one obtains an isomorphism of \(E/A_{s_1} \) and \(E/A_{s_2} \) unique up to elementary auto of \(E/A_{s_1} \).
The document contains mathematical expressions and diagrams involving groups and homology groups. Here is a transcription:

\[\text{GL}_2(\mathbb{F}_2) \text{ begins dim 1} \]
\[\text{GL}_3(\mathbb{F}_2) \text{ begins dim 2} \]

\[\Sigma_2 \]

\[H_2(\Sigma_3) \leq H_2(\Sigma_4) \]
\[H_n(\Sigma_{2n-1}) < H_n(\Sigma_{2n}) \]

Fibre has dimension \(n-1 \).

\[\text{GL}_4(\mathbb{F}_2) \]

\[\Sigma_{15} \]

Regular repn of \(A \)

Thus have group acting on \(\mathbb{P}^3 \)

and have repn on \(k^3 \)

\[H^4(\Sigma_{15}) \]
\[H^5(\Sigma_{31}) \]
\[H^6(\Sigma_{63}) \]

Class degree 4.

\[2 \]
\[\text{GL}_{n-1} \cdot \text{GL}_n \]

\[3 \cdot 4 \]

\[2(n-1) \text{ GL}_{n-1} \text{ GL}_n \]

\[2n-1 \]

E, projective A-module of rank larger than the dimension of the maximum spectrum of A. To show E has an everywhere non-vanishing section.

$\text{rank } E \geq 1$. Let $X = \bigcup X_i$ be the irreducible components and choose $x_i \in X_i \setminus \bigcup X_j$. Then by Chinese remainder theorem at x_i, can find a section s of E with prescribed values at x_i. Since $E(x_i) \neq 0$ for all i, can find $s \equiv s(x_i) \neq 0$ for all i. Then the dependency set $D(s)$ is closed in X and doesn't contain any x_i, hence is of codim ≥ 1.

$\text{rank } E \geq 2$. Let s_1 be such that $D(s_1)$ has codim ≥ 1. Choose s_2 independent of s_1 at the points x_i and at a similarly selected set of points in $D(s_1)$. Then $D(s_1, s_2)$ has codim ≥ 1. Choose g to be non-zero on the irreducible component of $D(s_1)$ and to be zero-somewhere on the irreducible component of $D(s_1, s_2)$ not in $D(s_1)$. Then $D(s_1 + gs_2)$ has codim ≥ 2. Indel OKAY over $D(s_1, s_2)$ and on $D(s_1, s_2) - D(s_1)$ OKAY by vanishing of g, while in $D(s_1)$ OKAY as $g, s_2 \neq 0$.

$\text{rank } E \geq 3$. Suppose s_1, s_2 chosen so that $D(s_1, s_2)$ has codim ≥ 1, $D(s_1)$ codim ≥ 2 (possible by preceding). Choose s_3 ind of (s_1, s_2) at some interior point of the irreducible components of X ind of (s_1, s_2) at some interior point of each irreducible component of $D(s_1, s_2)$.
and indep of s_1 at some interior point of each

irred component of $D(s_1)$. Choose g to be
gen. non-zero in $D(s_1, s_2)$ and $D(s_1)$ and
zero at some interior point of irred. components of

$D(s_1, s_2, s_3)$ outside of $D(s_1, s_2)$. Then

\[\text{cod } D(s_1, s_2 + g s_3) \geq 2. \]

and $s_1, s_2 + g s_3$ never vanish simultaneously, because

$s_1 = 0 \Rightarrow g s_3 \neq 0$ and s_2.

So can assume $D(s_1, s_2)$ codim > 2 and

$s_1, s_2 \neq 0$ never simultaneously vanish. Now-
choose $g = 0$ at "gen" points of $D(s_1, s_2)$ where $s_1 \neq 0$
and $g = 1$ at $s_1 + g s_2$. Thus

\[\text{cod } D(s_1 + g s_2) \geq 3. \]
September 5, 1971:

Recall that a map is called acyclic if its homotopy-theoretic fibres are acyclic, hence acyclic maps are closed under composition and base change. Moreover, given

\[X \xrightarrow{f} Y \xrightarrow{g} Z \]

then \(gf, f \) acyclic \(\Rightarrow \ g \) acyclic.

Question: In the homotopy category, acyclic maps permit calculus by right fractions. No:

So we want to consider all maps \(Y \rightarrow X \) with \(X \) fixed. For the equalization axiom we would need to know that \(Y \rightarrow Y \times_X Y \) was acyclic, however, when \(X = \text{pt} \) this isn't the case as the map in fundamental groups is not surjective.
Killing perfect subgroup of fundamental group

Pointed spaces $[X,Y]$ homotopy classes of basepoint-preserving maps

X (pointed) CW complex

$\pi_0 X = 0$

$\pi_1 X$ perfect $H_1 X = 0$

$\bigvee_{S^1 \times I} f = \Sigma_i f_i$ $\quad \rightarrow \quad X \quad \rightarrow \quad X'$

Assume class f_i generate $\pi_1 X$

Van Kampen $\Rightarrow \quad \pi_1 X' = 0$

$H_3 X \rightarrow H_3 X'$

$0 \rightarrow H_2 X \rightarrow H_2 X'$

$\oplus \mathbb{Z} \rightarrow 0$

$H_6 X \overset{\sim}{\rightarrow} H_6 X'$ if $g \neq 2$

and

$0 \rightarrow H_2 X \rightarrow H_2 X' \rightarrow \oplus \mathbb{Z} \rightarrow 0$

Choose a splitting and maps $g_i : S^2 \rightarrow X'$ with $\partial(\text{class } g_i) = e_i$
\[\sqrt{S^2} \xrightarrow{I} X' \xrightarrow{I} X'' \]

van Kampen \Rightarrow \Pi_1 X'' = 0

\[0 \xrightarrow{I} H_3 X' \xrightarrow{I} H_3 X'' \]

\[\oplus \mathbb{Z} \xrightarrow{I} H_2 X' \xrightarrow{I} H_2 X'' \]

Thus \[H_2 X' = \text{Im} H_2 X + \text{Im} \lambda \]

and \[\text{Ker} \{ H_2 X' \to H_2 X'' \} = \text{Im} \lambda \]

\[H_2 X \xrightarrow{\sim} H_2 X' \quad \text{and we obtain} \]

Proposition 1. If \(\Pi_0 X = 0 \), \(\Pi_1 X \) perfect, then there is an embedding \(i : X \to X^+ \)

with \(X^+ \) obtained by attaching \(2+3 \) cells, such that \(\Pi_1(X^+) = 0 \) and

\[H_* X \xrightarrow{\sim} H_* X^+ \]

Proposition 2. (Universal property of \(X^+ \)) Given \(f \\
X \xrightarrow{f} Y \)

There is a unique \(g : X^+ \to Y \) such that \(\pi_1(f) = 0 \) and \(\pi_1(g) = 0 \). Moreover \(g \)

unique up to homotopy.
Remark A: \[X^+ = \mathbb{Z}_\infty (X) \quad \text{because} \]
\[
\begin{array}{c}
X \\
\downarrow \\
X^+ \\
\cong \\
\pi_1 X^+ = 0
\end{array}
\xrightarrow{\pi_0} \begin{array}{c}
\mathbb{Z}_\infty (X) \\
\cong \\
\mathbb{Z}_\infty (X^+)
\end{array}
\]
(ask Ken why \(X \rightarrow \mathbb{Z}_\infty (X) \) induces ses. on homology.)

Remark B: Let \(AX = \text{Fibre of } X \rightarrow X^+ \)
\[(*) \quad AX \rightarrow X \rightarrow X^+ \]
\[
\begin{array}{c}
\pi_0 AX = 0 \\
\pi_1 AX = \pi_1 X
\end{array}
\]

spectral sequence
\[
E^2 = H_p (X^+, H_q AX) \Rightarrow H_{p+q} (X)
\]
\[
H_p X^+ \otimes H_q AX \quad \text{if field coeffs.}
\]

one sees from s.c. that \(H_1 (AX, k) = 0 \) all fields \(k \)
hence \(AX \) is acyclic.

\[
AX \xrightarrow{\hat{\imath}} X \rightarrow \text{Con}(j) \xrightarrow{+} X^+
\]
\[
\pi_1 \text{Con}(j) = 0 \quad \text{van Kampen}
\]
\[
H_* \text{Con}(j) \cong H_* X^+ \Rightarrow \text{Con}(j) \cong X^+.
\]
Suppose $E \subset \pi_1 X$ is a perfect subgroup. Let $p: X' \to X$ be the covering space with $\pi_1 X = E$.

Thus X^+ obtained by attaching 2+3 cells to X.

van Kampen \Rightarrow $\pi_1 X^+ = \pi_1 X / N$ where N is the normal subgroup generated by E.

If L is any $\pi_1 X$-module, it defines local coefficient systems on the above four spaces and have

$$
\begin{array}{c}
\cdots \to H_*(X', L) \xrightarrow{i'_*} H_*(X'^+ L) \to H_*(X'^+, x'; L) \\
\to \cdots \to H_*(X, L) \to H_*(X^+ L) \to H_*(X^+, x; L) \\
\end{array}
$$

L_* is an iso, hence

$$i_*: H_*(X, L) \xrightarrow{\sim} H_*(X^+, L).$$
for all $\pi_1 X^+$-modules L.

Proposition 1: Let $E \in \pi_1 X$ be perfect and N the normal subgroup gen. by E. Then

1. embedding $i : X \to X^+$ such that
2. $\pi_1 X^+ = \pi_1 X/N$
3. $H_*(X, L) \to H_*(X^+, L)$ for all $\pi_1 X^+$-modules L.

Corollary: Given $f : X \to Y$, $\pi_1 f(E) = 0$ implies

$g : X^+ \to Y$ s.t. $gi = f$. Moreover

$k^* : [X^+, Y] \to \{x \in [X, Y] \mid \pi_1(x) \text{ kills } E\}$

Obstructions lie in $H^*(X^+, X; \pi_1 Y)$, $n \geq 2$

\[
\begin{array}{c}
X \\ \downarrow \\
X^+ \longrightarrow K(\pi_1 Y, 1)
\end{array}
\]

\(\pi_2 Y\) is a $\pi_1 X^+$ module by hypothesis.

(Corollary implies that any two spaces X^+ are homotopy equivalent.)
Notation: X/E for the space of Prop. 1. Reason:

$$\text{Hom}(Z, X) \rightarrow \text{Hom}(Z \cup pt, X) \rightarrow X$$

$\pi_1 X$ acts on $[Z, X]$ for any Z.
Hence $\pi_1 X$ acts on X as an objects of \mathcal{P}. Homotopy category.

$$X \xrightarrow{f} Y$$

Claim: $\pi_1(f)$ kills E \iff $f \tilde{f} = f$ all $x \in E$

\Rightarrow because $f \cdot \tilde{f} = \pi_1(f) \tilde{f}$, $f = f$

\Leftarrow because $\pi_1(\tilde{f}) (\cdot x) = \tilde{x} \cdot g^{-1}$ so

$\forall x \in f \tilde{f} = f \Rightarrow \pi_1(f)(x \cdot g^{-1}) = \pi_1(f)$

for all x \Rightarrow $\pi_1(f)$ kills $[E, E] = E$.

Remark: $X/E \rightarrow X/N$ is a hom.

Corollary: X_1, X_2, pointed connected $E_1 \subset \pi_1 X_i$ perfect. Then the canonical hom.

$$(X_1 \times X_2)/(E_1 \times E_2) \rightarrow (X_1/E_1) \times (X_2/E_2)$$
Let V be a vector space over a field k. Given a subspace W of V and a subset S of V, let $L(S,W)$ be the simplicial complex whose simplices are finite subsets $\{s_1, \ldots, s_m\}$ of S which are independent of W, i.e., $\dim(W+ks_1+\cdots+ks_m) = \dim W + m$. Observe that if $\sigma = \{s_1, \ldots, s_m\}$ is a simplex of $L(S,W)$, then

$$\text{Link}(L(S,W), \sigma) = L(S, W + ks_1 + \cdots + ks_m).$$

(\text{If } \tau = \{t_1, \ldots, t_n\} \text{ belongs to the links if } \tau, \sigma, W \text{ independent, i.e. if } \tau \text{ independent of } W + k \omega.)

Observe also that if $v \in L(S,W)$, then

$$L(S,W) = L(S-\{v\}, W) \cup \text{Cone}(L(S, W + k\omega)) - L(S, W + k\omega).$$

(In general, given a simplicial complex K, we have

$$K = (K-\bullet \cup \omega) \cup \text{Cone}(\text{Link}(K, \omega)).$$

(Open star of ω)
More generally have for \(\sigma \) a simplex in \(L(S, W) \)

\[
L(S, W) = L(S - \sigma, W) \cup \left(L(S, W + k\sigma) \times \sigma \right)_{\text{join}}
\]

Proposition (R. Reid): Assume that \(\dim L(S, W) \geq n \geq 0 \). Then \(L(S, W) \) is \((n-1)\)-connected (meaning \(\neq \emptyset \) for \(n-1 = -1 \)).

Proof: We may suppose \(S \) finite. Can argue by induction on \(n \), starting from \(n = 1 \), so assume \(n > 1 \) and the result true for smaller values of \(n \). Suppose \(S \) minimal counterexample.

Proof: Arguing by induction on \(n \), starting from \(n = 0 \) which is trivial, we can assume \(n > 0 \) and that the result is true for all \((S, W)\) and smaller values of \(n \). We can assume \(S \) finite. Let \((S, W) \) be a counterexample with \(S \) having fewest elements.

Case 1: There is more than one \(n \)-simplex in \(L(S, W) \). If this is so, we can find a vertex \(v \) belonging to one \(n \)-simplex, so that \(L(S, W + k\sigma) \) has \(\dim \geq n - 1 \), and also not belonging to some \(n \)-simplex, so that \(L(S - \{v\}, W) \) has \(\dim \geq n - 1 \).

By induction hypothesis, \(L(S, W + k\sigma) \) is \((n-1)\)-connected.
and by minimality of S

$L(S \setminus \{w\}, W)$ is $(n-1)$-connected

so it follows from the formula

$L(S, W) = L(S \setminus \{v\}, W) \cup \frac{1}{L(S, W + kv)}$

that $L(S, W)$ is $(n-1)$-connected.

Case 2: There is only one n-simplex in $L(S, W).$

Then we will show that $L(S, W)$ is this simplex.

Denote the simplex by $S = \{s_0, \ldots, s_n\},$ and v be another vertex of $L(S, W).$ Then $v \in W + kv,$ so let j be least such that $v \in W + k s_0 + \ldots + k s_j.$

By exchange condition

$$W + k s_0 + \ldots + k s_j = W + k s_0 + \ldots + k s_{j-1} + kv$$

hence $\{s_0, \ldots, s_{j-1}, v, s_{j+1}, \ldots, s_n\}$ is an n-simplex.

By uniqueness of the n-simplex, we have $v = s_j \in S$ as claimed. In this case it is clear that $L(S, W)$ is ∞-connected. q.e.d.

(Observe: lemma at stake here is that if $\{s_0, \ldots, s_n\}$ is independent in a vector space (V/W here) and if $v \neq 0$ and $v \in \text{span} \{s_0, \ldots, s_n\},$

then for some $j \{s_0, \ldots, s_{j-1}, v, s_{j+1}, \ldots, s_n\}$ is independent.)
Consider now the situation where V is a projective A-module, W is a direct summand of V, and A is a local ring with residue field k. For any subset S of V define $L(S,W)$ to be the simplicial complex whose simplices are subsets $\{s_0, \ldots, s_m\}$ of S such that the images of s_0, \ldots, s_m in $(V/W) \otimes_A k$ are independent. Then

$$\text{link} \left(L(S,W), \sigma \right) = L(S, W + A\sigma);$$

in effect τ is in the link iff τ independent of $W + A\sigma$.

I claim the preceding proposition holds. Case 1 clear, so check case 2. Suppose $\sigma = \{s_0, \ldots, s_n\}$ is the only n-simplex of $L(S,W)$. However given σ in $L(S,W)$ then there is a j such that $s_0, \ldots, s_j, \ldots, s_n, \sigma$ is again an n-simplex in $L(S,W)$. The point is that independence is measured within $(V/W) \otimes_A k$, so that it is enough to note that given an independent set over a field, and something in its span, then for some j $\{s_0, \ldots, s_j, \ldots, s_n, \sigma\}$ is independent. So in the case that $L(S,W)$ has a unique n-simplex, we see $L(S,W)$ is an n-simplex.

So Reid's proposition holds for a local ring.
September 16, 1971: Serre's theorem

Mike wants to prove Serre's theorem as follows:

Let \(E \) be a \(\mathbb{P} \) projective \(A \)-module which is a quotient of \(A^n \). Then to split off a trivial bundle of \(E \) means we must find a section of

\[
\text{Spec } A[x_1, \ldots, x_n] \overset{\sim}{\longrightarrow} \text{Spec } A
\]

\((x_i) \mapsto a_i \)

which does not meet the closed subschemes of affine \(n \)-space defined by the kernel of \(A^n \rightarrow E \). This idea consists in choosing \(a_1, a_2, \ldots \) inductively so that the dimension of

\[
\mathbb{Z} \cap \{ x_1 = a_1, \ldots, x_n = a_n \}
\]

goes down each time. If \(d = \dim (A) \), and \(r = \text{rank}(E) > d \), then \(\mathbb{Z} \) has dimension \(d + (n - r) \).

So if one can do this \(v = n - d + 1 \) steps one is done for the intersection is empty. Now by Serre's theorem, Mike's program has to work.
Mike's problem: Let A be a noetherian ring and C a closed subset of $\text{Spec } A[X_1, \ldots, X_n]$. Assume that for every closed point of $\text{Spec } A$ one can find a rational point of the affine space over the fibre $\text{Spec } A/m [X_1, \ldots, X_n]$ which does not lie in C. Assume also that $\dim C < n$.

Then one can find a section of the affine space $X_i = q_i$ not meeting C.

Special case: Suppose A semi-local and let $J = (f_1(X), \ldots, f_m(X))$ be the ideal of polynomials vanishing on C. If m is a maximal ideal of A, then there exists, by hypothesis, a $\lambda \in A^m$ such that some $f_j(\lambda) \neq 0$ in A/m. Since A has finitely many maximal ideals, Chinese R.T. says we can find $a \in A^n$ such that for each m there exists a j with $f_j(a) \notin m$.

But

$$f_j(a) = -\sum_{i=1}^n g_{ji}(x)(X_i - a_i) + f_j(x) \in (x - a) + (f_1(x), \ldots, f_m(x)) \subset A[x]$$
Thus
\[J + (x-a) \cap A \supset (f_1(a), \ldots, f_m(a)) \]

and the latter = A because it does so at each closed point of $\text{Spec}(A)$. Thus $J + (x-a)$ is the unit ideal, so we have a section not meeting C.

Remark: The preceding shows that every section which does not

Remark: The preceding amounts to the fact that given a section s, its bad set is closed in $\text{Spec}(A)$, hence it meets $\text{Max}(A)$.

When A is semi-local, CRT guarantees we can find a section good on $\text{Max}(A)$, hence good everywhere.
Suppose all of the residue fields of A are infinite. We claim $\exists q_i \in A$ such that $x_i = a_i$ doesn't contain any irreducible component of C. Indeed, if p_i are the prime ideals belonging to the irreducible components of C, then we want a_i such that

$$x_i - a_i \notin \bigcup p_i$$

But

$$x_i - a_i \in p_i \iff a_i \in x_i + p_i$$

so if a_i doesn't exist we have

$$A = \bigcup (x_i + p_i) \cap A$$

But $(x_i + p_i) \cap A$ is a torus for $p_i \cap A$, so we have

$$(x)\quad A = \bigcup (a_i + q_i)$$

for $a_i \in A$ and q_i prime ideals in A. Claim (x)

Impossible: Can assume q_i maximal, if $q_i \in \{q_i\}$ then A/q_i is infinite by hypothesis, so $\exists q_i$ distinct mod q_i from all q_i with $q_i = q_i$. By CRT $\exists a_i \equiv a_i \mod q_i$,

Then $a \notin (x + q_i)$ for all i.

Thus by induction we can find a_1, \ldots, a_n such that

$$\dim C \cap \{x_1 = a_1, \ldots, x_n = a_n\} \leq \dim C - n$$
and hence a section not meeting C if \(\dim C < n \).
Cor: Let G be a nilpotent group. Then the group of automorphisms of G, inducing the identity on G^{ab} is nilpotent.

Proof. If θ induces id on G^{ab}, then it induces the identity on $gr(G)$ which is generated as a Lie algebra by G. Then θ stabilizes the lower central series of G, and the group of these is nilpotent by the Kurokawa theorem.

Remark:

$$[[A,B],C] \leq \text{normal subgroup generated by } [[A,C],B] \text{ and } [A,[B,C]].$$
Suppose A is a ring of characteristic p such that $F: A \rightarrow A$ is a finite free map of rank p^d. For example, if A is an imperfect field such that $[A:A^p]$ is finite. Then on the K-groups $K_n A$ we have maps

$$ K_n A \xrightarrow{V} K_n A \xleftarrow{F} $$

where V is the transfer or trace with respect to F. Now

$$ VF = p^d $$

because as an A-module $A_F \cong A^{p^d}$. On the other hand, FV is determined by the map

$$ E \rightarrow A \otimes_{A^{(p)}} A = (A \otimes_{A^{(p)}} A) \otimes_{A} E. $$

What should be true is that

$$ \text{gr} (A \otimes_{A^{(p)}} A) = \text{Sym}^A (\Omega^1_{A/F_P})/(x^p = 0) $$

(restricted symmetric algebra). Thus if I filter

$$ A \otimes_{A^{(p)}} A \supset I \supset I^2 \supset \cdots \supset I^{d+1} = 0 $$

this will be a filtration by $(A \otimes A)$-modules and

$$ \text{gr} (A \otimes_{A^{(p)}} E) = \bigoplus I^k \otimes_A E / I^{k+1} \otimes_A E = \text{gr} (A \otimes_{A^{(p)}} A) \otimes E $$
will be multiplication by the element
\[p^d = [A \otimes A] \in K_0 A \]
(Note: tensoring with an \(A \otimes A \)-bimodule as an operation from \(K_* A \) to \(K_* A \) is not usually the same as multiplying by an element of \(K_* A \), e.g. in the case of a Galois extension it amounts to taking the sum of the conjugates.) Thus have

\[FV = p^d \]

Now the idea I have is to try to use this together with that \(K^n A \) should have high \(\mathcal{F} \)-filtration for \(n \) large. So consider the essential case.

Lemma: Let \(M \) be an abelian group endowed with two endos, \(F, V \) such that
\[FV = VF = p^d \]
and
\[F(x) = p^{d+n} x, \quad r > 0. \]
Then
\[M = M' \oplus M'' \]
where
\[M' = p^d M \] is the largest \(p \)-divisible subgroup
\[M'' = (p^d)^* M \] is the \(p \)-torsion subgroup.

Thus \(M \) is the direct sum of a \(\mathbb{Z}p^d \)-module and a group of exp. \(p^d \).
Proof: \(p^d x = F V x = p^{d+r} V x \)
so \(p^d (x - p^r V x) = 0. \)
Thus \(\text{Im} \ (1-p^r V) \subseteq (p^d)^M \).

But \(1-p^r V \) is an automorphism of \((p^d)^M \), hence
\[
M = \text{Ker} (1-p^r V) \oplus (p^d)^M.
\]

Clearly \(p^d M \subseteq \text{Ker} (1-p^r V) \)

But \(x = p^r V x = p^{r+1} V^2 x = \ldots \in p^d M \),
so they are equal and \(p^d M = p^s M \) for all \(s > d. \)
Thus \(p^d M \) is the divisible subgroup. Also-
\[
p^{d+r} x = 0 \implies VF x = 0 \implies p^d x = 0
\]
so \(p^d M \) is the \(p \)-torsion subgroup. Thus the lemma is proved.

So if I suppose that \(K_n A \) is of \(\Gamma \)-filtration \(> d \), so that it admits a filtration
\[
o \subseteq \text{Ker} (F - p^{d+1}) \subseteq \text{Ker} (F - p^{d+2}) (F - p^{d+1}) \subseteq \ldots \subseteq K_n A
\]
it follows that \(K_n A \) is direct sum of a \(\mathbb{Z} [p^{-1}] \)-module and group of exponent \(p^d \).
If \(\text{rank}(P) \geq k \), there exist \(x_1, \ldots, x_r \in P \) such that
\[
\text{Codim } D_j(x_1, \ldots, x_r) \geq r-j
\]
where
\[
D_j(x_1, \ldots, x_r) = \{ x | \text{rank } \{ x_1(x), \ldots, x_r(x) \} \leq j \}.
\]

Proof: Assume true for \(n-1 \), whence \(\exists x_1, \ldots, x_{n-1} \)
\[
\text{codim } D_j(x_1, \ldots, x_{n-1}) \geq r-1-j \quad \forall j \geq 0
\]

Let \(C \) be an irreducible component of \(D_j(x_1, \ldots, x_{n-1}) \) of codimension \(r-1-j \). Then \(C \neq D_{j-1}(x_1, \ldots, x_{n-1}) \) can find a finite set \(S_j \subset D_j(x_1, \ldots, x_{n-1}) \) not meeting \(D_{j-1}(x_1, \ldots, x_{n-1}) \) and meeting each irreducible component of codimension \(r-1-j \). Now arrange \(x_r \) to be independent of \(x_1, \ldots, x_{n-1} \) at each point of \(U_{S_j} \). Then possible because multiplicity
\[
D_j(x_1, \ldots, x_r) \subset D_j(x_1, \ldots, x_{n-1}) - S_j
\]
because at a point of \(S_j \) the rank of \(x_1, \ldots, x_{n-1} \) is \(j \), hence \(x_1, \ldots, x_r \) has rank \(j+1 \) there. Thus
\[
\text{codim } D_j(x_1, \ldots, x_r) \geq r-j
\]

Suppose \(\text{Codim } D_j(x_1, \ldots, x_r) \geq k-j \) \(\forall j, 0 \leq j < n \)
\[
\Rightarrow \exists \beta_i = x_i + a_i x_r \quad 1 \leq i < n \quad \exists \epsilon > 0
\]
\[
\text{Codim } D_j(\beta_1, \ldots, \beta_{n-1}) \geq k-j \quad \forall j, 0 \leq j < n-1.
\]
Proof: Assume $0 \leq j < n$.

$$D_{j-1}(x_1, \ldots, x_n) \subset D_j(x_1, \ldots, x_n)$$

so no irreducible component C of $D_j(x_1, \ldots, x_n)$ contained in D_{j-1}, hence $\exists S_j$ meeting each C not meeting D_j. At each point of S_j, x_1, \ldots, x_n have rank $j < r$ hence can find a_i at m so that

$$\beta_i = x_i + a_i x_r \quad 1 \leq i < n$$

have rank j at m. Then

$$D_{j-1}(\beta_1, \ldots, \beta_{j-1}) \subset D_j(x_1, \ldots, x_n)$$

and doesn't meet S_j because the β's have rank j there. Thus

$$\text{Codim } D_{j-1}(\beta_1, \ldots, \beta_{j-1}) \geq k-j+1 \quad 0 \leq j < n$$

$$\text{Codim } D_j(\beta_1, \ldots, \beta_{j-1}) \geq k-j \quad 0 \leq j < n-1.$$
September 25, 1971: Burnside ring

If G is a finite group, then the Burnside ring $B(G)$ is the Grothendieck group of finite G-sets. This is the naive K-functor associated to the family of symmetric groups.

$B(G)$ is a free \mathbb{Z}-module with basis the iso. classes of transitive G-sets, which may be identified with conjugacy classes of subgroups of G.

Given a subgroup H of G, the map

$$X \mapsto \text{card}(X^H)$$

transforms sums to sums and products to products, hence it induces a ring homomorphism

$$\varphi_H : B(G) \longrightarrow \mathbb{Z}$$

which clearly depends only on the conjugacy class of H.

Let k be a field and consider the composite homomorphism

$$B(G) \longrightarrow \mathbb{Z} \longrightarrow k$$

In fact, take k to

Let l be a prime number not dividing $|G|$, and suppose H, H' are two subgroups such that

$$\varphi_H \equiv \varphi_{H'} \pmod{l}.$$

Then as
\[(G/H)^H = N/H \quad N = \text{normalizer of } H \text{ in } G\]

has cardinality prime to \(l\), we have

\[\varphi_H(G/H) \equiv 0 \pmod{l}\]

so

\[(G/H)^{H'} \neq \emptyset \quad H' \times H = xH\]

i.e.

\[H' \subset xHx^{-1} \quad \text{for some } x \in G.\]

Similarly, \(H\) is conjugate to a subgroup of \(H'\) and so \(H\) and \(H'\) are conjugate subgroups.

This shows that the homomorphisms \(\varphi_H\) mod \(l\) are distinct, and so by comm. algebra we know that

\[\left(\varphi_H\right)_{H \in I} : \mathbb{B}(G) \rightarrow \prod_{H \in I} \mathbb{Z}\]

(I = reps. for conjugacy classes of subgroups) becomes an isomorphism after inverting order of \(G\).

Next suppose \(G\) is a \(p\)-group. In this case \(\text{card}(X) \equiv \text{card}(X^H) \pmod{p}\) for all subgroups, so all the \(\varphi_H\) mod \(p\) coincide with the mod \(p\) augmentation. I claim the augmentation ideal of \(\mathbb{B}(G) \otimes \mathbb{Z}/p\mathbb{Z}\) is nilpotent. This ideal is generated by \([G/H]\) with \(H < G\). Assume we know \([G/H]\) belong to the nilideal for all \(H'\) with \(|H'| < |H|\). Then by double coset formula...
\[
\left[\frac{G}{H}\right] \times \left[\frac{G}{H}\right] = \left[\frac{N}{H}\right] \left[\frac{G}{H}\right] + \sum_i \left[\frac{G}{H_i}\right]
\]

where \(H_i = H \cap g_i H g_i^{-1} < H \). In a p-group \(N > H \) so this formula shows that \([G/H]^2\) belongs to the nil-ideal, and so have

Prop. If \(G \) is a p-group, then the augmentation ideal of \(B(G) \otimes \mathbb{Z}/p\mathbb{Z} \) is nilpotent.

So this shows that \(B(G) \) is split etale off \(p \) and totally ramified at \(p \). It also implies that

\[I^N < pI \]

\(I \) = aug. ideal of \(B(G) \). Note quite generally that

\[[G] \cdot [S] = [G] \cdot \text{card}(S) \]

Whence \([G] \cdot I = 0 \) so

\[|G| \cdot I = (|G| - [G])I < I^2 \]

Thus for a p-group, the \(I \)-adic topology on \(I \) and the \(p \)-adic topology on \(I \) coincide implying that

\[\lim_{n \to \infty} \frac{I}{I^n} = I \otimes_{\mathbb{Z}} \mathbb{Z}_p \]
Suppose now that \(p \) divides the order of \(G \). If \(H \triangleleft H' \) and \(H'/H \) is a \(p \)-group, then
\[
\text{card } X^{H'} = \text{card } (X^H)_{H'/H} \equiv \text{card } X^H \pmod{p}
\]
so \(\phi_H \equiv \phi_{H'} \pmod{p} \). Now starting with \(H \) we can form groups
\[
H_0 \subset H \subset H_1
\]
where \(H_0 \) is the char. subgroup of \(H \) gen. by the \(p' \)-elements and where \(H_1 \) is a Sylow \(p \)-subgroup of the normalizer of \(H_1 \). The indices are powers of \(p \) and \(H_1 \) is of index prime to \(p \) in its normalizer. Any subgroup \(H' \) of \(G \) conjugate to a subgroup between \(H_0 \) and \(H_1 \) satisfies
\[
\phi_{H'} \equiv \phi_{H_0} \equiv \phi_H \pmod{p}
\]
On the other hand, if \(H \) is already of \(p' \)-index in its normalizer, then
\[
\phi_H \equiv \phi_{H'} \pmod{p}
\]
\[
\Rightarrow \phi_{H'}(G/H) \equiv \text{card } N/H \not\equiv 0 \pmod{p}
\]
so \((G/H)^{H'} \not= \emptyset \) and \(H' \rightarrow H \). Similarly if \(H' = H_1 \), then we have \(H' \approx H \). It follows that we get all the different \(\phi_H \), when we let \(H \) range over a set \(\mathcal{J} \) of representatives for subgroups \(H' \) of \(H \) up to conjugacy (or of \(p' \)-index in their normalizers).
Conjecture:

\[(\varphi_H) : \mathbb{B}(G) \otimes \mathbb{Z}/p\mathbb{Z} / \text{rad} \rightarrow \prod_{H \in \mathcal{F}} \mathbb{Z}/p\mathbb{Z} \]

We know this map is onto. It only remains to produce enough nilpotent elements.

Lemma: If the index of \(H \) in its normalizer is divisible by \(p \), then \([G/H]\) is nilpotent.

First we show for any subgroup \(K \) that
\[\varphi_K([G/H]) = 0 \mod p. \]
We may assume that \(K \) is generated by its \(p' \)-elements. Then consider the principal \(H/H_0 \)-bundle

\[G/H_0 \rightarrow G/H \]

where \(H/H_0 \) acts on the right, hence commutes with the action of \(K \) on the left. If \(xH \in (G/H)^K \) then
\[x^{-1}Kx < H \]
and as \(K^p \) is gen. by its \(p' \)-elements
\[x^{-1}Kx < H_0. \]
Thus

\[(G/H_0)^K \rightarrow (G/H)^K \]

is a principal \(H/H_0 \)-bundle, so

\[\varphi_K[G/H_0] = [H : H_0] \varphi_K[G/H] \]

Taking \(H = H_1 \) gives

\[\varphi_K[G/H_0] = [H_1 : H_0] \varphi_K[G/H_1] \]
\[\varphi_K[G/H] = [H_1:H] \varphi_K[G/H_1] \]

for these special \(K \). Therefore if \(H \triangleleft H_1 \), \(\varphi_K[G/H] \equiv 0 \pmod{p} \) for all subgroups \(K \).

It follows that for any subgroup \(K \),

the number of elements equal to \(K \) in \(G/H \) with isotropy group \(\equiv 0 \pmod{p} \). This is a

Möbius inversion type formula: specifically one has

\[
X^K = \prod_{K' \supseteq K} X^{K'}
\]

\(X^{\{K\}} \) points with

isot grp. \(K \)

and so if one knows that \(X^K \) for \(K' \supset K \) have card \(\equiv 0 \pmod{p} \), it follows \(X^{\{K\}} \) has card \(\equiv 0 \pmod{p} \).

Now

\[
[G/H] \bullet [G/H] = \sum_{H \times H} [G/H \cap H \times H^{-1}]
\]

The number of double cosets are the orbits of \(H \) on \(G/H \). We break these orbits up into orbit types.

Suppose that any orbit \(H/K \) occurs \(d \) times. Then the number of elements of \(G/H \) with isotropy group \(K \)

is

\[d \cdot \text{card } (H/K)^K = d \cdot |N/K| \]

where \(N \) is the normalizer of \(K \) in \(H \). Since this is \(\equiv 0 \pmod{p} \), either \(d \equiv 0 \pmod{p} \) whence the orbit type \(H/K \) contribution is 0, or \(|N/K| \equiv 0 \pmod{p} \) whence we know by an induction hypothesis that \([G/K] \) is nilpotent.
This proves the lemma, and with it the conjecture at the top of page 5.
September 29, 1971: Theorem of Kaloujnine

Thm. Let \(G = G_0 \supset G_1 \supset G_2 \supset \cdots \) be a sequence of normal subgroups of a group \(G \), and let \(A_{r \cdot} \), \(r \geq 0 \), be the group of automorphisms of \(G \) which induce the identity on \(G_i / G_{i+r} \) for each \(i \geq 0 \). Then \(A_0 \supset A_1 \supset A_2 \supset \cdots \) is a filtration of the group \(A_0 \), i.e., \([A_0, A_0] < A_0\).

\[\text{Proof.} \text{ In the semi-direct product } A_0 \rtimes G, \text{ the subgroups } G_i \text{ are normal, hence } \]

\[[A_0, G_i], A_0 \] is a subgroup of \(A_0 \).

\[[G_i, A_{r \cdot}], A_{r \cdot}] \] is a subgroup of \(G_i \rtimes G_{i+r} \) for all \(i \).

So working in the group \(A_0 \rtimes G / G_{i+r} \) and applying the three subgroup lemma, we have

\[[A_{r \cdot}, A_{r \cdot}], G_i] \] is a subgroup of \(G_i \rtimes G_{i+r} \) for all \(i \).

Hence \([A_0, A_0] < A_0\), q.e.d.
Tate’s theorem: Let G be a finite group such that
$$H^1(G, \mathbb{Z}/p) \cong H^1(P, \mathbb{Z}/p),$$
where P is a Sylow p-subgroup. Then G is p-nilpotent.

Proof. Let G' be the p-completion of G. Then P maps onto G', as all Sylow groups map onto Sylow groups for surjective homomorphisms. One has in general
$$H^1(G) \cong H^1(G'),$$
$$H^2(G) \subset H^2(G').$$
Indeed if an extension of G by \mathbb{Z}/p lifts to a trivial extension over G, then one has a homomorphism $G \to E$ which factors through G' as E is a p-group. Let $N = \text{Ker } \{ P \to G' \}$, so that we have an exact sequence
$$0 \to H^1(G') \to H^1(P) \to H^1(N) \to H^2(G) \to H^2(P).$$
Since $H^2(G) \to H^2(P)$ by transfer, the last map is injective, so we conclude $H^1(N) = 0$.

Thus $H^i(N) = 0$ and $N = 0$, so G is p-nilpotent.
October 3, 1971: Cohomology theories and Σn

I want to understand why

$$\Omega B \left(\prod_{n \geq 0} P \Sigma_n \times \Sigma^n X^n \right) \cong \Omega^\infty S^\infty (X \cup \infty).$$

The important thing seems to be to understand why the Σ^n on the left transforms cofibrations to fibrations.

Work semi-simplicially. Given a set X form simplicial monoid

$$M(X) = \prod_{n \geq 0} P \Sigma_n \times \Sigma^n X^n$$

which is the nerve of the category whose objects are finite sequences (X_1, \ldots, X_n) and permutations for morphisms. Basic fact:

$$P \Sigma_n \times \Sigma^n (A \amalg B)^n \cong \prod_{i \leq n} (P \Sigma_i \times \Sigma_i A^i) \times (P \Sigma_{n-i} \times \Sigma_{n-i} B^{n-i})$$

because the category defined by Σ^n acting on $(A \amalg B)^n$ is equivalent to the disjoint union of the full subcategory with objects $A^i \times B^{n-i}$ and the latter is the category defined by $\Sigma_i \times \Sigma_{n-i}$ acting on $A^i \times B^{n-i}$. Consequence:

$$M(A \amalg B) \leftrightarrow M(A) \times M(B)$$

$$\text{in}_1(X) \cdot \text{in}_2(Y) \quad (X, Y)$$

is a weak equivalence (note: it is not a monoid homomorphism).
Now I denote by $\Gamma(X)$ an intelligent group completion of $M(X)$. Thus we can choose a functorial free monoid resolution

$$P(M(X)) \longrightarrow M(X)$$

\[\Gamma(X) = \overline{P(M(X))} \quad (\text{group completion})\]

Then we have a commutative diagram

$$\begin{array}{ccc}
M(A) \times M(B) & \longrightarrow & M(A \cup B) \\
\uparrow & & \uparrow \\
PM(A) \times PM(B) & \longrightarrow & PM(A \cup B) \\
\downarrow & & \downarrow \\
\Gamma(A) \times \Gamma(B) & \longrightarrow & \Gamma(A \cup B)
\end{array}$$

Because $M(A)$ is homotopy commutative, it follows that the group completion theorem applies to it, hence the map

$$H_\ast(M(A)) \leftarrow H_\ast(\overline{P(M(A)}) \longrightarrow H_\ast(\Gamma(A))$$

is localization with $\Pi_0 M(A) = \amalg \bigwedge SP^n(A) = \text{free commutative monoid gen. by } A$. Consequently, we see that

$$\Gamma(A) \times \Gamma(B) \longrightarrow \Gamma(A \cup B)$$

is a homotopy equivalence of s. sets by Whitehead thm.
because both s-sets are simple.

More generally, suppose we have a functor \(\Gamma \colon (\text{sets}) \to \text{s.groups} \) :

i) \[\Gamma(A) \times \Gamma(B) \to \Gamma(A \sqcup B) \]

ii) \(\Gamma \) commutes with filtered lim. ind.

Then given a simplicial set \(X \) I get a bisimplicial group \(\Gamma(X) \) and the claim is that

\[\pi_\ast(\Delta \Gamma(X)) = h_\ast(X; \Gamma) \]

is a generalized homology theory. To prove this we prove the Mayer-Vietoris axiom:

Lemma: Let \(A, B \subset C \) be sets, and let \(\Gamma(A \sqcup B) \) act on the right of \(\Gamma(A) \times \Gamma(B) \) by

\[(x, \beta) \cdot y = (x \cdot y, y^{-1} \beta) \]

(Observe that \(A \leq A' \Rightarrow \Gamma(A) \subset \Gamma(A') \) because \(\exists \chi : A' \to A \) retraction.) Then

\[\Gamma(A) \times \Gamma(B) / \Gamma(A \cap B) \to \Gamma(A \cup B) \]

\[(x, \beta) \quad \mapsto \quad x \beta \]

is a homotopy equivalence of simplicial sets.
This lemma shows that if A, B are simplicial subsets of X, then we have a principal fibration

$$\Gamma(A \cap B) \rightarrow \Gamma(A) \times \Gamma(B) \rightarrow \Gamma(A \cup B)$$

and hence a long exact Mayer-Vietoris sequence.

Proof. By hypothesis the vertical maps in

$$\Gamma(A) \times \Gamma(B) \xrightarrow{(x, y)} \Gamma(A \cup B)$$

are leg's. The bottom arrow is a principal right $\Gamma(A \cap B)$-bundle with action

$$(x, z', z''y) \cdot y = (x, z'z''y^{-1}z'', y)$$

so done.

The relation with Anderson's chain functors. Suppose X, Y are pointed. Then we claim canonical map

$$\Gamma(X \vee Y) \rightarrow \Gamma(X) \times \Gamma(Y)$$

is a leg. It suffices to show that
\[
\Gamma(X) \times \Gamma(Y) / \Gamma(\text{pt}) \to \Gamma(X) \times \Gamma(Y)
\]

\[
(a, \beta) \quad \mapsto \quad (a \circ \varepsilon(\beta), \varepsilon(a)\beta)
\]

is bijective, where \(\varepsilon: \Gamma(\text{pt}) \to \Gamma(\text{pt})\) is the augmentation. Clear.

Thus if we set

\[
\overline{\Gamma}(X) = \text{Ker} \left\{ \Gamma(X) \to \Gamma(\text{pt}) \right\}
\]

for a pointed set, we have that

\[
\overline{\Gamma}(X \times Y) \to \overline{\Gamma}(X) \times \overline{\Gamma}(Y)
\]

is a breq., hence a chain functor à la Anderson.
Observation: Segal introduces category $Γ$ consisting of finite sets, where a map $T_1 \rightarrow T_2$ is a partition of a subset of T_2 indexed by T_1, i.e., a family of disjoint subsets of T_2 indexed by T_1. Such a thing is the same as a function

$$\overline{T}_1 \leftarrow \overline{T}_2$$

where $\overline{T} = T \cup \text{pt}$. Thus $Γ$ is dual to the category of finite pointed sets. Hence Segal's special $Γ$-spaces and Anderson's chain functors are essentially the same thing.
Recall that Lang's theorem: $G/G(F_0) \to G$ for the general linear group amounts to the following. Let k be a separably closed field of char. p and let V be a finite-dim. vector space over k endowed with a semi-linear automorphism $F: V \to V$ satisfying $F(\lambda v) = \lambda^p F(v)$. Then

\[k \otimes V^F \to V. \]

I want now to understand this result over a general ring A of characteristic p.

Proposition 1: Let M be a finitely presented A-module provided with an isomorphism

\[F: M \otimes \overset{\circ}{A} \to M, \]

where $M \otimes \overset{\circ}{A} = \begin{array}{c} A \otimes M \end{array} \overset{\sigma(a)}{\to} A$.

Then M is a projective A-module.

Proof. Can suppose A finitely generated over \mathbb{Z}/p, hence can suppose A noetherian. We can suppose A local, let

\[A^i \to A^i \to M \to 0 \]

be a minimal resolution. To prove $j = 0$, we can
enlarge A by a faithfully flat extension A'. This as in appendix to spectrum paper, Part II, can suppose A with algebraically closed residue field k. Now one has that $M \otimes_k k' = k' \otimes_k (M \otimes_k k')^F$ should observe that A is canonically a k-algebra since Teichmüller section is an isomorphism. Suppose we find $m \in M$ such that

$$F(m) - m \in \mathfrak{m}^e M$$

where $\mathfrak{m} = \text{max. ideal of } A$. Then

$$F(F(m)) - F(m) \in \mathfrak{m} \otimes M$$

hence sequence $F^m \in M$ converges to an element $m^* \in M^F$. This shows that M^F generates M over A, because of the theorem for a field. Also $M^F \otimes \mathfrak{m}M = 0$; thus we have a minimal surjection

$$A \otimes M^F \xrightarrow{\pi} M \xrightarrow{\pi} 0$$

Now apply same argument to the kernel of π; it will be generated by elements of $K^F \subseteq M^F \otimes \mathfrak{m}M = 0$.

Thus π is an isomorphism and we are finished.
General idea now is given M over A with an F as in the proposition, it is locally free. To obtain a generating subspace M^F, it is necessary to make an etale covering of A. Thus first make covering

$$A \otimes_{\overline{F}} F \leftarrow A$$

and assuming A over \overline{F}, we have a map

$$Sp \ A \longrightarrow GL_n \leftarrow GL_n / GL_n(F_{\overline{F}})$$

which gives us a principal covering of A with group $GL_n(F_{\overline{F}})$.

Point from June 3, 1971 omitted above: Given $A \in GL_n$, to write $A = B(B^\sigma)$, define F on $V = k^n$ by

$$F(e_i) = \sum_j a_{ji} e_j$$

Then if $\{e_i\}$ is a basis for V,

$$e_i = \sum_j a_{ji} e_j$$

we have

$$\sum k_{ij} a_{ji} = \sum e_j a_{ji} = F(e_i) = \sum w_{ji} b_{ji}$$

so $BA = B^\sigma$ as desired.
Summary of problems.

1. Group-completion theorem for topological monoids; what is a torsor for a top. monoid?
2. Good point of view simultaneously explaining the group-completion theorem, quasi-fibrations
 Segal's lemma on when $X \to Y$ is a h-fibration, and Sullivan's theory of rational h-type,
 and Friedlander's problem. One produces a cohomology theory over the space B, and the
 point is to check the homotopy axiom, and this can be done locally.
3. Stable splitting of exact sequences theorem, nice model for $EGL(n)^+$, stability,
 exterior power the descent problem and the \mathbb{Z}_2 exact sequence, products and Σ operations in
 exact sequence K-theory. Models for the gamma-filtration (Segal's suggestion).
 The Moore theorem-reduction of problem to representation of a cyclic group C; nice
 formula for the gamma j-element of $\pi_{2n-1}(\Omega^c)$. Steinberg homology; any relation
 between this and gamma filtration K-theory of the dual numbers, and of curves
4. Configurations and iterated loop spaces, braid groups, Barratt theorem, Tornehave
 problem, why $\overline{\Omega}(\text{loop} S^2)^n$ has the homotopy type of $BG(k^{-1})$ roughly.
A ring with 1
\[\text{GL}(A) = \bigcup_n \text{GL}_n(A) \]
\[E_n A \subset \text{GL}_n(A) \quad \text{gen. by} \]
\[\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \quad a \in A. \]
\[E(A) = \bigcup E_n(A). \]

One knows
\[E(A) = (E(A), E(A)) = (\text{GL}(A), \text{GL}(A)). \]

Defn:
- \(K_0 A = \) Groth group proj f.g. \(A \)-modules
- \(K_1 A = \) rel \(\text{GL}(A)/E(A) = H_1(\text{GL}(A), \mathbb{Z}) \)
- \(K_2 A = H_2(E(A), \mathbb{Z}) \).

Work of Bass, Tate + others shows there are interesting invariants
General definition of \(K_n A \), \(n \geq 0 \):
Acyclic maps
Will work only with pointed conn. sp. ~ CW comp.

Defn: X acyclic if

$$H_i(X, Z) = \begin{cases} \mathbb{Z} & i = 0 \\ 0 & i > 0 \end{cases}$$

Poincaré: $H_1(X, Z) = \pi_1(X)/[\pi_1(X), \pi_1(X)]$

so $\pi_1 X = (\pi_1(X), \pi_1(X))$. Such groups called perfect.

$\pi_1 X = 0$ means $X \simeq \mathbb{C}$ Whitehead.

Given map $f: X \to Y$,

\[\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow & & \downarrow \\
\overline{f} & & \overline{f}
\end{array}\]

Defn: f acyclic if fibres of f

are acyclic spaces.

$F \to X \xrightarrow{f} Y$
\[\pi_1 F \rightarrow \pi_1 X \rightarrow \pi_1 Y \rightarrow \pi_0 F \]

so \(\pi_1(f) \) surjective +

Ker \(\pi_1(f) \) perfect.
Prop 1: (i) \(f : X \to Y \) acyclic
(ii) for all \(\ell \) in \(Y \), \(f^* \to \)
(iii) commutes \(\Rightarrow \)
\[
\begin{array}{ccc}
X \times Y & \to & Y \\
\downarrow & & \downarrow p \\
X & \to & Y
\end{array}
\]
universal covering
is cart., then \(f' \) commutes induces iso. in homology.

(i) \(\Rightarrow \) (ii) \(F \to X \to Y \). Then
\[
E_2^{p,b} = H^p(Y, H^b(\#_Y f^* L)) \Rightarrow H_{p+b}(X, \#_Y f^* L)
\]
\[
\begin{cases}
0 & b > 0 \\
\#_Y & b = 0.
\end{cases}
\]

(ii) \(\Rightarrow \) (iii)
\[
\begin{array}{ccc}
H^*(Y, \mathbb{Z}) & \to & H^*(X \times Y, \mathbb{Z}) \\
\downarrow & & \downarrow \\
H^*(Y, p_* \mathbb{Z}) & \to & H^*(X, f_* p_* \mathbb{Z})
\end{array}
\]
(iii) \Rightarrow (i): $\pi_1 \tilde{Y} = 0$

fiber of f' must be acyclic.

fiber of f.

Cor. 1: If

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow & & \downarrow \\
X' & \xrightarrow{f'} & Y'
\end{array}
\]

is cocartesian with f cofibrant, and f' acyclic, then f' is acyclic.

Proof: For any L on Y'

\[H^*(Y';X'; L) \Rightarrow H^*(y, x; L) = 0\]

so done from.

\[H^*(x, L) \Rightarrow H^*(y, L) \Rightarrow H^*(x, L)\]
Cor 2: Given

\[X \rightarrow Y \rightarrow Z \]
\[f \uparrow \hspace{1cm} \uparrow \]
\[g \hspace{1cm} h \]

If acyclic \(f \), then \(\pi_1 g (\text{Ker } \pi_1 f) = 0 \)

then \(\exists \ h \) unique up to

\[h f \sim g \]

Proof: May assume \(f \) cofibration.

\[X \rightarrow Y \rightarrow Z \]
\[f \uparrow \hspace{1cm} \uparrow f' \]
\[g \hspace{1cm} h \rightarrow Z' \]

Then \(f' \) acyclic. Van Kampen

\[H(Z) \cong \mathbb{Z} \]

\[\pi_1 Z \sim \pi_1 (Y) \times_{\pi_1 X} \pi_1 Z \sim \pi_1 Z' \]

\(f' \) hes by Whitehead
Theorem: Given X and $N \subset \pi_1 X$ a perfect normal subgroup, there exists a $f: X \to Y$ acyclic if $\pi_1(f) = N$. f unique up to \sim.

- Uniqueness clear from Cor 2.
- Existence: Let $p': X' \to X$ be covering with group $\pi_1(X') = N$. If can find $f: X' \to Y'$ acyclic, $\pi_1 Y' = 0$ done. So can assume $N = \pi_1 X$.

(Ded)

\[\begin{array}{c}
X_3 \\
\downarrow \\
X_2 \to K(H_3 X_2, 3) \\
\downarrow \\
X = X_1 \to K(H_2 X_1, 2)
\end{array} \]
Assume have constructed \(X_n \to X \) \(n \geq 1 \)

\[
\begin{align*}
&\text{(i)} \quad \pi_1 X_n \to \pi_1 X \\
&\text{(ii)} \quad H_i X_n = 0 \quad 1 \leq i \leq n \\
\end{align*}
\]

\(\check{H}^{n+1}(X_n, A) \cong \check{H}_n(H_{n+1} X_n, A) \)

\(\chi \in \check{H}^{n+1}(X_n, H_{n+1} X_n) = [X_n, K(H_{n+1} X_n, n+1)] \)

Def.:

\[
\begin{align*}
X_{n+1} & \to X_n \to X \to K(H_{n+1} X_n, n+1) \\
H_{n+2} X_n & \to 0 \\
\end{align*}
\]

\[
\begin{align*}
\leftarrow H_{n+1} X_{n+1} & \to H_{n+1} X_n \overset{\sim}{\to} H_{n+1} X_n \\
0 & \to
\end{align*}
\]

\(X_\infty = \lim X_n. \quad X_\infty \text{ acyclic} \)

\(\pi_1 X_\infty \to \pi_1 X \)

set \(X_\infty \to X \overset{f}{\to} X/X_\infty = Y \)

\(f \text{ acyclic} \quad \pi_1 Y = 0 \quad \text{van Kampen} \)
\[BGL(A) = K(GL(A), 1) \]

Classifying space

\[\pi_1 BGL(A) = GL(A) \to E(A) \]
Perfect normal

\[\exists! \text{ acyclic map} \]

\[f : BGL(A) \to BGL(A)^+ \]

\[\exists \ker \pi_1(f) = E(A). \]

Defn: \[K_i(A) = \pi_i BGL(A)^+ \quad i \geq 1. \]

Recall \[K_1(A) = \frac{GL(A)}{E(A)} \]

\[BE(A) \xrightarrow{f'} BGL(A)^+ \]

\[\text{homology} \quad \xrightarrow{\text{homology}} \quad \text{cover} \]

\[BGL(A) \xrightarrow{f} BGL(A)^+ \]

\[K_2 A = \pi_2(BGL(A)^+) = \pi_2(BGL(A)^+\sim) \]

\[\text{Hurewicz} \quad \text{Hurewicz} \]

\[H_2(BE(A)) \xrightarrow{\text{OKAY}} H_2(BGL(A)^+\sim) \]

Okay with Milnor.
\[k = \overline{F_p} \quad k_d < k \text{ subfield of degree } d \]

\[\bigcup \text{BGL}_n(k_d) = \text{BGL}(k) \]

Let \(G \) be a finite group acting on a finite-dimensional \(k \)-vector space \(V \) via \(\rho : G \to \text{Aut}_k(V) \).

Choose \(\varphi : k^* \to \mathbb{C}^* \).

Define \(\varphi_V : G \to \mathbb{C} \) by:

\[\varphi_V(g) = \sum \varphi(\lambda_i) \]

where \(\{\lambda_1, \ldots, \lambda_{\dim V}\} \) are the eigenvalues of \(\rho(g) \).

Thm. (Brauer): \(\varphi_V \) is a \(\mathbb{Z} \)-combination of characters of \(G/\mathbb{F}_p \).

\[\varphi_V \in R(G) \]

\[\varphi_V : BG \to BU. \]
do for $GL_n(k_n!) < GL_n(k)$ acts on k^n

$\bigcup BGL_n(k_n!) \xrightarrow{\phi} BU$

$\phi^\#: BGL(k) \to BU$

Theorem

Adams conjecture paper

$\phi^#$ induces isom. on $H_* \big(\mathbb{Z}/\ell \mathbb{Z} \big)$

\[\ell \text{ prime } \neq p \]

2. $H_* (BGL(k), \mathbb{Z}/p \mathbb{Z}) = 0 \quad \ast > 0.$

[Diagram]

$\psi \quad F$

\downarrow

$BGL(k)$

\to

BU

\leftarrow

$BU \otimes \mathbb{Q} \xrightarrow{\text{ch. i} > 0} \prod K(\mathbb{Q}, 2i)$

ψ induces iso over $\mathbb{Z}[p^{-1}]$. by 1.
Serre - Whitehead

\[\pi_i \text{BGL}(k)^+ \xrightarrow{\sim} \pi_i F \quad \text{except for } p \text{-torsion} \]

\[i = 1 \Rightarrow \text{no } p \text{-torsion in } \pi_i \text{BGL}(k)^+ \]

Thm: \[K_i^*(k) \cong \begin{cases} \bigoplus_{\ell \neq p} \mathbb{Q}_\ell / \mathbb{Z}_\ell & i \text{ odd } \geq 1 \\ 0 & i \text{ even } \geq 1 \end{cases} \]
October 27, 1971

Let \(k \) be a field and suppose we consider the problem of proving the homotopy axiom: \(k \to k[\mathbb{Z}] \) induces an isomorphism on \(k \)-groups. Start with a representation of \(G \) on a f.t. proj. \(k[\mathbb{Z}] \)-module \(E \). We want to show that \(E \) comes from \(k \). Ideally we would like to produce a f.t. \(k \)-submodule \(L \) of \(E \) which is invariant under \(G \) and which generates. Replacing \(L \) by

\[
L + zL + \ldots + z^nL
\]

we can suppose that \(L \) is "involutive", i.e. that the conditions of the following hold.

Lemma: \(E \) finite type \(A[\mathbb{Z}] \)-module, \(A \) noetherian

(i) \(\frac{z^{-1}L}{L} \subset L \)

(ii) \(L \to A[\mathbb{Z}] \otimes_A (z^{-1}L) \to A[\mathbb{Z}] \otimes_A L \to E \to 0 \)

is exact.

(iii) \(L \) generates \(E \) over \(A[\mathbb{Z}] \) and \(A[\mathbb{Z},z^{-1}] \)-submodule of \(A[\mathbb{Z},z^{-1}] \otimes_{A[\mathbb{Z}]} E \) and \(\varphi(e) = 1 \otimes e \).

(iv) Set \(L^{(n)} = L + zL + \ldots + z^nL \). Then

\[
z^n: L^{(n-1)} \to L^{(n)} / L^{(n-1)} \quad n \geq 1
\]

where \(L^{(1)} = z^{-1}L \cap L \).
Assume that $z^{-1}L \subseteq L$. The map
\[L/zL \rightarrow L^{(n)}/(L^{(n-1)}) \quad n \geq 1. \]
is clearly surjective always. Suppose
\[z^n x = \sum_{i<n} a_i z^i \quad x, a_i \in L \]
Then
\[z \left(z^{n-1} x - \sum_{i<n} a_i z^{i-1} \right) = a_0 \]
so as $z^{-1}L \subseteq L$
\[z^{n-1} x \in \sum_{i<n} a_i z^{i-1} + L \subseteq L^{(n-2)} \]
so by induction $x \in z^{-1}L$. Thus (i) \Rightarrow (iv).

Conversely, given $z x \in L$, let n be least $\geq x \in L^{(n)}$, so that
\[x = \sum_{i<n} a_i z^i. \]
If $n \geq 1$, then because $L^{(n)}/L^{(n-1)} \overset{z}{\rightarrow} L^{(n+1)}/L^{(n)}$ follows that $x \in L^{(n-1)}$. \quad n = 0. Thus (iv) \Rightarrow (i).

Clearly (iii) \Rightarrow (i). Conversely, let $M = A[z^{-1}] q(L)$. If $q(x) \in M$, then $z^N x \in L$ for some N, so $x \in L$, hence $q_0(M) = L$.

(iv) \Rightarrow (ii) by filtering

(ii) \Rightarrow (iv) ?
If we can find an L f.t. over A, generating E and G-invariant, then we can suppose L involutive, and so by (ii)

$$0 \rightarrow A[z] \otimes_A (z^{-1}L) \rightarrow A[z] \otimes_A L \rightarrow E \rightarrow 0$$

which shows that E comes from L.

In general, we are going to have to choose an involutive L. Suppose $L' \leq L$. We have an $z^{-1}L \sim L' \leq L$. Then z^{-1} acts on L'/L'' and kills L/L'', we have an isomorphism.

Suppose L' and L are both involutive and that $L \cap L' \leq L + zL$. Then

$$L' \otimes_A z \rightarrow L'/zL' = L' + zL'$$

(onto because $(L + zL) + zL' \supset L' + zL'$, it's injective because $L' \cap z(L + zL) = L' \cap L = L$.)

This is nice because it shows that the inclusion of pairs
\[(L + zL, L) \rightarrow (L' + zL', L')\]
has contractible cokernel.

Conjecture 1: Consider the simplicial complex whose vertices are involutive \(L\) generating \(E\) and in which a \(q\)-simplex is a chain
\[L_0 \subset L_1 \subset \ldots \subset L_q\]
such that \(L_q \subset L_0 + zL_0\). I conjecture this complex is contractible.

Evidence from Bruhat - Tits: They show that if one identifies \(L\) with \(\text{L}_i\) for all \(i > 0\), then one obtains a contractible complex.

Conjecture 2: Let \(I\) be an ideal in \(A\) with \(I = 0\). If \(M\) is an \(A\)-module, consider the simplicial complex whose vertices are submodules \(M_q \subset M\) and whose simplices are chains
\[M_0 \subset M_1 \subset \ldots \subset M_q\]
of submodules such that \(IM_q \subset M_0\). Then this simplicial complex is contractible.
Reduction of conj. 1 to conj. 2: Let X_1 denote the complex of conj. 1. It may be identified with the subcomplex of f.g. $A[z^{-1}]$-modules in $A[z_0^+ z^{-1}] \otimes A[z]$ E such that $z^{-1} M$ generates M. Thus X_1 is the subcomplex of the complex of conjecture 2 associated to $A[z^{-1}]$ and the ideal generated by z^{-1}. Enough to show X_2 contractible. Indeed, given a finite subcomplex K of X_1, it contracts in X_2, so $z^n K$ contracts in X_1 for large enough n. Since $K \sim z^n K$??
Theorem: Let \(I \) be an ideal in a ring \(A \) and \(M \) an \(A \)-module such that \(IM^n = 0 \) for some \(n \). Let \(X(M) \) be the simplicial complex whose simplices are chains of \(A \)-submodules of \(M \)

\[M_0 \subset M_1 \subset M_2 \subset \ldots \subset M_8 \]

such that \(IM_8 \subset M_0 \). Then \(X(M) \) is collapsible to a point.

Proof: We collapse \(X(M) \) to \(X(IM) \). Given a submodule \(L \subset M \) send it to \(L \cap IM \). Claim it sends simplices to simplices:

\[L_0 \subset \ldots \subset L_8 \]

\[L_0 \cap IM \subset \ldots \subset L_8 \cap IM \]

and

\[L_8 \cap IM / L_0 \cap IM \rightarrow L_8 / L_0 \cap IM \]

and

\[L_8 / L_0 \cap IM \rightarrow L_8 / L_0 \times M / IM \]

Thus we have a simplicial map \(X(M) \rightarrow X(IM) \) which is a retraction, i.e. \(f \circ i = id \) where \(i: X(IM) \rightarrow X(M) \) is the inclusion. But actually we have a homotopy

\[X(M) \times \Delta(1) \rightarrow X(M) \]

\[L \xrightarrow{0} \begin{array}{c} L \cap IM \\downarrow i \\downarrow L_0 \cap IM \end{array} \]

\[L \subset 0 \subset L \cap IM \subset L \]
Remark: Proof shows more generally that $X_{A, I}(M)$ collapses to $X_{A, I}(M')$ where M/M' is killed by a power of I.