November 4, 1970:

I would like to understand better something that came up in conversation with John Mather. The problem is to compute \(H^*(\text{GL}_n(\mathbb{R}), \mathbb{Z}/\mathbb{Z}) \) where \(\text{GL}_n(\mathbb{R}) \) has the discrete topology. Elements of this are characteristic classes which associate to a flat bundle \(E \to X \) a coh. class \(u(E) \in H^*(X) \) in a natural way, and which are stable: \(u(E \oplus 0) = u(E) \).

Now the idea is to consider the restriction mapping from such classes to classes for flat bundles with finite structural groups. In precise terms I want

\[
\text{Hom}_{\text{G a fin. gp.}} \left(\overline{R}_R(G), H^*(G, \mathbb{Z}/\mathbb{Z}) \right)
\]

and to compare this with

\[
\text{Hom}_{\text{G a gpo.}} \left(\overline{R}_R(G), H^*(G, \mathbb{Z}/\mathbb{Z}) \right)
\]

which I know to be

\[
\overline{H}^*(\text{GL}_n(\mathbb{R}), \mathbb{Z}/\mathbb{Z})
\]

by your deep(?) theorems.

Now I change \(\mathbb{R} \) to \(\mathbb{C} \). Now I can compute the first group I think. Choose \(p \neq 1 \) and let \(k = \mathbb{F}_p \), \(\phi: k^* \to \mathbb{C}^* \). Then we get maps

\[
\mathbb{R}_k(G) \xrightarrow{\phi} \mathbb{R}_c(G)
\]

(\(\phi \) defined all groups \(G \) but only for finite gpos.)

making \(\mathbb{R}_k(G) \) a natural direct summand of \(\mathbb{R}_c(G) \) in a
Lemma: Let $F : (\text{fin.gps})^\circ \to \text{sets}$. Then

$$\text{Hom}_{\text{fin.gps}}(F, H^\ast) \sim \text{Hom}_{\text{l-gps}}(F, H^\ast).$$

Proof:

\[
\begin{array}{ccc}
F(G) & \xrightarrow{\lim} & \lim_{P \to G} F(P) \\
\downarrow & & \downarrow \\
H^\ast(G) & \xleftarrow{\lim} & \lim_{P \to G} H^\ast(P)
\end{array}
\]

where P runs over the category of l-groups.

Influence of stability: see if you can use your good theorem. Now use structure provided by the Künneth formula, so I restrict attention to multiplicative spes $\Theta : R^\vee_A \to H^0(S, \cdot)$. Unfortunately the restriction map to elementary abelian l-subgps. H is not injective because over a finite field $A = F_p$ one has stable classes (the c_i^u) which vanish on elementary l-subgroups.

Question: Can you compute $\text{Hom}_{\text{abel. l-gps}}(R^\vee_A, H^\ast)$?
way compatible with products and Λ-operations.

So what I'm getting at is the maps

$$BGL(k)^+ \rightarrow BGL(C)^+ \rightarrow B^{\text{op}}GL(C)$$

and I know this composition induces an isomorphism on cohomology for all $l \neq p$.

$$\text{Hom}_{G \text{ finite}} \left(\frac{R_c(G)}{G^*}, H^*(G) \right) \cong \text{Hom}_{G \text{ fin.}} \left(\frac{R_k(G)}{G}, H^*(G) \right)$$

This diagram shows that ϕ^* must be surjective, hence $R_c(G)$ for G finite same as $R_k(G)$ as far as cohomology mod l goes.

General principle: Let A be a ring. Then we can consider either natural transformations from $\frac{R_A(G)}{G^*}$ to $H^*(G)$ where G is all gp's, or all finite groups.

$$\text{Hom}_{G \text{ gp}} \left(\frac{R_A}{G^*}, H^* \right) \cong \text{Hom}_{G \text{ fin. gp}} \left(\frac{R_A}{G}, H^* \right)$$

(see below)
Suppose G finite and A is a Dedekind domain such that l is a unit in A and let $G \to \text{Aut}(E)$ be a representation of an abelian l-group where E is a finitely generated projective A-module. Suppose E is indecomposable, and for simplicity that A is the ring of S-units in a number field K. Then $E \otimes K \cong K[\mu_\infty]$ where $\chi : G \to \mu_\infty$ is surjective. To the invariants of E consist of three characters, which is unique up to the Galois invariant groups and the class of the invertible $A[\mu_\infty]$ ideal E in $E \otimes K = K[\mu_\infty]$. Thus it seems that

$$R_{A}(G) = \text{free abelian group on}$$

$$\bigoplus_{n \geq 1} \text{Hom}_{G}(G, \mu_\infty) \times \text{Pic } A[\mu_\infty] / \text{Gal}$$

$$= \lim_{\text{lim}} \text{Hom}_{G}(G, \mu_\infty) \times \text{Pic } A[\mu_\infty]$$

where the limit is taken over the category of fields $K[\mu_\infty]$ and where Pic moves covariantly, i.e.
given \(K[\mu_{m}] \to K[\mu_{\infty}] \) we take the induced map
\[\text{Pic } A[\mu_{m}] \to \text{Pic } A[\mu_{\infty}] \].

If you take \(A = K \) so that \(\text{Pic } = 1 \) then this is
\[\text{Hom } (G, \mu_{\infty}) / \text{Gal} \]
and the homology of this functor is
\[H_{*} (\mu_{\infty}) / \text{Gal} \]
which if \(\mu_{\infty} \subset A \) is a divided power algebra with one generator of degree 2. So we've made a mistake.

To try \(A = K \). Then \(R_{A}\langle G \rangle \to R_{A} (G) / \text{Gal} \) where \(A = K[\mu_{m}] \) and \(B_{A}(G) = \mathbb{Z}[\hat{G}] / \text{Gal} \). Our mistake is in identifying \(\mathbb{Z}[\hat{G} / \text{Gal}] \) and \(\mathbb{Z}[\hat{G}] / \text{Gal} \) in the obvious way which is not functorial in \(G \).

Here's how to rectify things. Again write \(R_{A} (G) \) as a quotient of
\[\mathbb{Z} \left[\bigoplus_{n>0} \left(\text{Hom} (G, \mu_{\infty}^{n}) \times \text{Pic } A[\mu_{\infty}^{n}] \right) \text{Gal} \right] \]
but now we must identify
\[\mathbb{Z} \left[\text{Hom} (G, \mu_{\infty}^{m}) \times \text{Pic } A[\mu_{\infty}^{m}] \right] \to \mathbb{Z} \left[\text{Hom} (G, \mu_{\infty}^{m}) \times \text{Pic } A[\mu_{\infty}^{m}] \right] \]
The vertical map sends $\chi : G \to \text{Aut}_\Lambda^\vee (E)$, E an invertible $\Lambda[\mu_{p^n}]$-module into E regarded as a sum of invertible $\Lambda[\mu_{p^n}]$-invertible modules. You are being stupid about the Picard group also. The point somehow is that

$$Z[\text{Hom}(G, \mu_{p^n})] \otimes K_0(\Lambda) \to R^\Lambda_\Lambda(G)$$

if $\mu_{p^n} \subset \Lambda$ and exponent of G divides p^n. So now I want to write $R^\Lambda_\Lambda(G)$ as a quotient:

$$\bigoplus_{n \geq 0} Z[\text{Hom}(G, \mu_{p^n})] \otimes K_0(\Lambda[\mu_{p^n}]) \to R^\Lambda_\Lambda(G)$$

and it should be true that the equivalence relation is of form

$$\bigoplus \mathbb{Z} \left[\text{Hom}(G, \mu_{p^n}) \right] \otimes K_0(\Lambda[\mu_{p^n}]) \xrightarrow{p_1} \bigoplus \mathbb{Z} \left[\text{Hom}(G, \mu_{p^n}) \right] \otimes K_0(\Lambda[\mu_{p^n}])$$

where p_1 is induced by the given map $u : \mu_{p^n} \to \mu_{p^n}$, and where p_2 is induced by the norm

$$u_* : K_0(\Lambda[\mu_{p^n}]) \to K_0(\Lambda[\mu_{p^n}])$$

\[V_n : K(\Lambda[\mu_{e^n}]) \rightarrow H^0(\mu_{e^n}, S)^\times \]

which are compatible with restriction on the right and norm on the left and Galois:

Now:

\[s_0' = 1, \quad s_0'' = 0 \]

\[H^0(\mu_{e^n}, S)^\times = (S, [\theta_S])^\times = \left\{ (\sum_{i \geq 0} s^i x^i + s'' x^{-1} y) \right\} \]

Suppose for simplicity that all the \(K\)-groups are \(\mathbb{Z}\), and take \(\theta\) to be a generator of the image of the Galois gp in \(Z^* = \text{Aut} [\mu_{e^n}]\). I assume \(\theta \equiv 1 \mod e\) and put \(a = \nu_e(\theta - 1)\). Then the degree of \(K[\mu_{e^n}]\) over \(K\) is least \(n \geq e^n | \theta - 1\). But

\[n = \nu_e(\theta - 1) = \nu_e(\theta) + \nu_e(\theta - 1) = \nu_e(\theta) + a \]

so degree \([K[\mu_{e^n}] : K] = n - a\). So what happens is that

\[
\begin{array}{ccc}
K_0(\Lambda[\mu_{e^{a+2}}]) & \rightarrow & Z \\
\downarrow{l} & & \downarrow{l} \\
K_0(\Lambda[\mu_{e^{a+1}}]) & \rightarrow & H^0(\mu_{e^{a+1}}, S) \\
\downarrow{l} & & \downarrow{l} \\
K_0(\Lambda[\mu_{e^a}]) & \rightarrow & H^0(\mu_{e^a}, S) \\
\downarrow{l} & & \downarrow{l} \\
K_0(\Lambda) & \rightarrow & H^0(\mu_{e^0}, S) \\
\end{array}
\]

Compatibility conditions

\[u_a = \text{res} u_{a+1} \]
Unfortunately

\[(\sum s_i x^i + s'' x^{i-1} y)^l = \sum (s'_i)^l(x^i)^l\]

so it seems that there should be too many possibilities for the \(s''\) and none for \(s'_i\). ??

This is confusing but perhaps not incorrect. The point is that you don't really have very much control over abelian groups of exponent \(> 1\). Precisely, suppose \(N = \mathbb{F}_p^d, \forall g \in \mathbb{F}_p, \langle g
angle = a > 1\). I define a map \(\Phi: R^1(G) \to H^1(G)\) for all abelian \(l\)-groups. Given an irreducible repn \(\Phi: G \to \mu_b\) well-determined up to Galois we associate the class \(G \to \mu_a \to \mu_b\) if \(b = a+1\) and zero otherwise. This defines \(\Phi\) for each \(G\); I claim it is natural: Suppose have \(G \to G\).

\[\text{Cases: } 1) b = a+1\]

and \(G \to \mu_b\) onto; then OKAY, 2) \(b > a+1\) and \(G \to \mu_b\) has image \(\mu_{a+1}\); in this case the representation of \(G\) is \(l\) times the \(\mu\) repn of \(G\), so both \(X\) and \(\Phi(X)\) pull-back to zero. 3) \(G \to \mu_b\) not surjective with image not \(\mu_{a+1}\); then both \(\Phi(X)\) and \(\Phi(X|G_2) = 0\). So it seems that the above is OKAY, and that we should not consider natural transformations on abelian \(l\)-groups.
November 5, 1970

Fix a field Λ, so that we have good control over $R_\Lambda(G)$ for G finite. Precisely, first suppose Λ of characteristic $p > 0$. Let $\Lambda_0 \subset \Lambda$ be the subfield algebraic over F_p. Then I claim that

$$R_{\Lambda_0}(G) \cong R_\Lambda(G) \quad \text{G finite.}$$

Indeed, I think we can show that

$$\begin{align*}
R_{\Lambda_0}(G) & \cong \text{Gal}(F_p, \Lambda_0) \\
R_{\Lambda \bar{F}_p}(G) & \cong \text{Gal}(\Lambda \bar{F}_p, \Lambda)
\end{align*}$$

The point somehow is that the extensions $\Lambda_0 \rightarrow F_p$, $\Lambda_0 \rightarrow \Lambda$ and $\Lambda \rightarrow \Lambda \bar{F}_p$ are separable, hence the only thing that can happen to an irreducible representation is that it splits into irreducibles corresponding to its endomorphism field splitting.

$$\Lambda_0 \rightarrow \Lambda$$

Every $\Lambda_0[G]$-module, $\text{End}(E) = \Lambda_1$ then Λ_1 is commutative, and by Galois nonsense $\Lambda_1 \cdot \Lambda$ is a field. Clear more or less.
November 13-19, 1970

Toward an understanding of Thompson's theorem.

G finite group, G_p a Sylow p-subgroup,

$J = J(G_p) =$ subgroup generated by abelian subgroups with maximal no. of generators.

$\text{rank } (A) = \text{dim } (G)$

Thompson's hypothesis: $N_G(J)$ has normal p-complement.

Idea: This implies that there is no fusion.

Suppose G has a normal p-complement.

$G = P \times K$

$P \triangleleft G$

K is a p'-Hall subgroup, normal.

Then there is no fusion for subsets of P. Indeed if $S_1, S_2 \subset P$ and $gS_1g^{-1} \subset S_2$, then write $g = kp$

and if $a \in S_1$, then

$g^{-1}ag = p^{-1}k^{-1}akp \in P$

$\Rightarrow a^{-1}k^{-1}ak \in P \cap K$ \hspace{1cm} (K0)

$\Rightarrow k$ centralizes S_1 and $p^{-1}S_1p < S_2$.
Consequently if we make the subsets of p-elements of G into a category, in which a morphism from S_1 to S_2 for $G_+ p$, then the categories are equivalent.

Conversely, there is no fusion of p-subgroups, then G has a normal p-complement.

Let's try p-subgroups: idea is to show $H^*(G) \to H^*(P)$ and then apply Tate's...外程起程

Start $g \in G$; we want to show that the two arrows $H^*(P) \to H^*(P \cdot g = P - 1)$ coincide.

However, we can consider $P = P \cdot g P^{-1}$ and the group Q as objects of the category of p-subgroups of G.

And then apply... However, the two subgroups $P \cdot g P^{-1}$ and $g^{-1} P g P$ of P are conjugate in G, hence conjugate in P.

coincide. But if $Q = P \cdot g P^{-1}$, then $Q \subseteq P$ and $g^{-1} Q g < P$, hence we have $g = kp$ where k centralizes...
Q, so the map is the same as \(g \mapsto g^{-1}bg \) from \(Q \) to \(P \) from \(Q \) to \(P \), whose effect on cohomology is the same as the inclusion \(g \mapsto g \).

I think it's also true that if there is no fusion of elements of \(P \), then \(P \) has a normal \(p \)-complement. My reason for believing this is Atiyah's claim that \(G \) has a normal \(p \)-complement when one knows that the map

\[
\text{Conj. classes of } P \rightarrow \text{Conj. classes of } G
\]

is bijective, that is when \(gxg^{-1} = y \) for \(x, y \in P \) \(\Rightarrow pxp^{-1} = y \) some \(P \).

(Does it follow from this that one can choose \(p \) so that \(gp^{-1} \) is a \(p' \)-element?)

First case: \(P \triangleleft G \). Then I want to prove that if \(g = pk = kp \) is the decomposition of \(g \) into its \(p \)-regular + \(p \)-singular parts, then \(g \mapsto p^{-1}gp \) is a homomorphism. However here if \(p \) is a \(p \)-elt + \(k \) is a \(p' \)-element, then they commute. Indeed \(k'pk \in P \) and as there is no fusion \(k'pk = p'pp' \). Thus \(p'k' \in \text{Cent } p \), so maybe can use induction?

Then are we define a map \(G \rightarrow P \) in general by sending \(g \) ?

Conjecture: No fusion for \([p] \)-subgroups \(\rightarrow \) normal \(p \)-complement
On normal p complements:

By Frobenius's theorem one has to understand p'-automorphisms of p-groups. So the question is to find manageable criteria which guarantee that a p'-automorphism Θ of a p-group P is trivial. This leads to

Problem: Determine those pairs (Θ, P) where Θ is a p'-automorphism of a p-group P which are minimal, i.e., any Θ-stable $P' < P$ is such that Θ acts trivially on P'.

This forces $L_2(p^2)P$ to be trivial and $gr_1 P = P/L_2(p^2)P$ to be an irreducible representation of $\mathbb{Z}/m\mathbb{Z}$ with generator Θ of order m. Now $gr_2 P$ is a quotient of $L_2 gr_1 P$ (if odd) which by Schur's lemma has invariant at most one invariant. Thus dim $gr_2 P \leq 1$ and $gr_3 P$ being a quotient of $gr_1 P \otimes gr_2 P$ will necessarily be zero. Thus P will either be abelian or an extra-special p-group without an element of order p^2 because the operation is linear from $gr_1 P$ to $gr_2 P$ when P is odd.

When $p = 2$, $gr_2 P$ is a quotient of $S_2(gr_1 P)$ which again will be one-dimensional by Schur's lemma and again $gr_3 P$ will be zero so again P will be
So go back to the original question and let Θ be a P'-auto of a p-group P. Now form a composition series stable under Θ

$$0 < N_1 < N_2 < \cdots$$

so N_1 is a minimal Θ-stable subgroup of P and N_2 is a minimal Θ-stable subgroup of P/N_1.

So now given a P'-automorphism Θ of a p-group P let M be a minimal Θ-stable subgroup of P on which Θ acts non-trivially. If fact we should argue this way: Let M be a minimal member of the set of normal Θ-stable subgroups in which Θ acts non-trivially. Then subgroup $[P, M]^{p^r} \leq M$ and is stable under Θ and normal in P, so has trivial Θ action. Any subgroup M' of M containing $[P, M]$ will be normal in ΘP, hence conclude that Θ acts irreducibly on $M/[P, M]^{p^r}$.

If M is a minimal Θ-stable subgroup, then for p odd at least Θ moves the $[p]$-subgroups of M around because every element is of order p. Now all I have to do is to see somehow that these motions won't be conjugate within P.
Let $0 \leq N_i C \ldots$

where N_1 is a minimal normal subgroup of P stable under Θ, $N_2/N_1 \subseteq \text{P/N}_1$ under Θ, etc. Then $V_\Theta = N_i/N_{i+1}$ is a representation of $(\Theta \times P)$ over $\mathbb{Z}/p\mathbb{Z}$ which is irreducible.

Claim P acts trivially on V. Indeed if I is the augmentation ideal of $\mathbb{Z}/p\mathbb{Z}[V]$, then $> IV > \ldots$ is a $(\Theta \times P)$-filtration and $I^n V = 0$ for n large as V is a p-gp. Thus $IV = 0$. Thus Θ acts irreducibly on V.

Now let M be a minimal member of

the set of Θ-stable normal subgroups of P on which Θ acts non-trivially. Conclude.
False but contains an idea about extra-special p-groups - symmetry.

Proposition: Let Θ be a p'-automorphism of a p-group P such that Θ acts trivially on a $[p]$-subgroup A which it leaves stable. Then if p is odd, Θ acts trivially on P.

Proof: Using induction on $|P|$, we can assume that Θ acts trivially on any proper subgroup which it leaves stable. (Classical language: centralizes any proper subgroup it normalizes). In particular it acts trivially on the Frattini subgroup $P^{(p)}$, so the fixed subgroup P^Θ is normal and P/P^Θ is an irreducible representation of Θ over $\mathbb{Z}/p\mathbb{Z}$.

Counterexample: Assume $\mathbb{Z}/p\mathbb{Z}$ acts irreducibly on a $[p]$-group A, and $\Lambda^2 A$ has an invariant. This will happen when $\left[[F_p[F_p,F_p] : F_p] = 2 \right.$ is even. Indeed if I generates F_p, then have eigenvalues $j, j^p, \ldots, j^{p^{r-1}}$

and as $p^{1/2} \equiv -1 \pmod{p}$, have $j \cdot j^{p^{1/2}} = 1$.

Consequently if we form a central extension

$$1 \rightarrow \mathbb{Z}/p\mathbb{Z} \rightarrow G \rightarrow A \rightarrow 1$$

using an invariant element of $\Lambda^2 A^Y \rightarrow H^2(A,\mathbb{Z}/p\mathbb{Z})$, then we get a counterexample, because $\mathbb{Z}/p\mathbb{Z}$ is the only invariant $[p^{-1}]$.
cohomology theories of symmetric product type

Recall the Dold-Thom theorem:

$$
\pi_k \left(\bigcup_{n} \Sigma^n X \right) = H_k(X, \mathbb{Z}) \quad X \text{ ptld. connected}
$$

and your (and everybody else) theorem

$$
\pi_k \left(\left(\bigcup_{n} \Sigma^n X \right)^o \right) = \pi_k \psi(X)
$$

The idea is to interpolate other cohomology theories in between these.

Idea: \(SP^n(X) = X^n/\Sigma^n \)

\(ES^n \times X^n = (E \Sigma_n \times X^n)/\Sigma_n \)

So what I want to do is to find a pleasant family of spaces \(Q_n \) with \(\Sigma_n \) action and maps

\[\mu_{m,n}: Q_m \times Q_n \to Q_{m+n} \quad \text{equivariant for} \]

\[\Sigma_m \times \Sigma_n \to \Sigma_{m+n} \]

Requirements:

- associativity
- commutativity

\[Q_m \times Q_n \xrightarrow{\mu_{m,n}} Q_{m+n} \]

\[Q_n \times Q_m \xrightarrow{\mu_{m,n}} Q_{m+n} \]
where \(T \) is the element of order 2 interchanging \(1 \cdots m \) and \(m+1 \cdots n \). Note that this diagram should be homotopy commutative. Note that if we take \(Q_m = \Sigma_m \) with left translation action, then this isn't the case because

\[
\begin{array}{ccc}
\Sigma_m \times \Sigma_n & \xrightarrow{T} & \Sigma_{mn} \\
\downarrow & \downarrow & \downarrow \\
\Sigma_n \times \Sigma_m & \xrightarrow{\sigma \times \sigma^{-1}} & \Sigma_{m+n}
\end{array}
\]

and \(\sigma x \sigma^{-1} \neq \sigma x \).

Examples:
1) Let \(Q_m \) be the set of conjugacy classes of elements in \(\Sigma_m \) i.e. partitions \(\alpha = (x_1 \geq x_2 \geq x_3 \cdots) \) with \(\Sigma x_i \leq m \). Then commutativity is clear.

2) Conjugacy classes of subgroups.

3) Conjugacy classes of subsets of \(m \) elements in \(\Sigma_m \); take this to be \(Q_m \).

The above examples all have \(Q_m \) a trivial \(\Sigma_m \)-set, and hence contain the trivial example \(Q_m = \{ x \} \) for all \(m \), instead of \(\sigma x \neq x \) for \(x \neq 1_i \).

(Actually as part of associativity one needs to have...
It is probably possible to classify the above examples as being built up out of the trivial examples $Q_m = pt$ for $m = 0$. But in practice there is a distinguished suspension element in Q_1 permitting one to put $Q_m \rightarrow Q_{m+1}$. Thus the only examples of this type are essentially trivial. In fact

$$Q_n \times \Sigma^n X \cong Q_n \times \left(S^p X \right)$$

so our theory is

$$\pi_* \{ Q_\infty \times S^p \left(X \right) \}$$

the same as homology.

More sophisticated examples: suppose we take Q_m to be the classifying space of some category of subgroups e.g. abelian subgroups. Thus

$$\begin{align*}
(\text{ab. subgps)} & \times (\text{ab. subgps)} \\
\text{of } \Sigma^m & \rightarrow (\text{ab. subgps)} \\
\text{of } \Sigma^m & \rightleftharpoons \text{conj} \text{ by } \sigma
\end{align*}$$

$$\begin{align*}
(\text{ab. subgps)} & \times (\text{ab. subgps)} \\
\text{of } \Sigma^n & \rightarrow (\text{ab. subgps)} \\
\text{of } \Sigma^{m+n} & \rightleftharpoons \text{conj} \text{ by } \sigma
\end{align*}$$
To keep from being confused consider the category with a single object, namely the torsor Σ_m acting on itself from the right. Then μ_{mn} is the functor associating to Σ_m, Σ_n, Σ_{m+n} and to a left operation on Σ_m and Σ_n the induced left operation on Σ_{m+n}.

$$
\begin{array}{ccc}
(S_m, pt) \times (S_n, pt) & \longrightarrow & (S_{m+n}, pt) \\
\downarrow & & \downarrow \\
(S_n, pt) \times (S_m, pt) & \longrightarrow & (S_{m+n}, pt)
\end{array}
$$

Thus in the case of abelian subgroups

$$
\begin{array}{ccc}
A \subset \Sigma_m, \ B \subset \Sigma_n & \longrightarrow & A \oplus B \subset \Sigma_{m+n} \\
\downarrow & & \downarrow \text{conj. by } \sigma \\
B \subset \Sigma_m, \ A \subset \Sigma_n & \longrightarrow & B \oplus A \subset \Sigma_{m+n}
\end{array}
$$

so you want to see that conjugation by σ is isomorphic to identity. Precisely the functor

$$
A \subset G \longmapsto \sigma^{-1} A \sigma \subset G
$$

from subgps to subgps is isomorphic to the identity the isomorphism being

$$
A \longmapsto \sigma^{-1} A \sigma.
$$
Thus to Σ_m I associate the category of homogeneous spaces Σ_m/A with specified isotropy groups.

Example 1: If you take the trivial homogeneous space, you get Σ_m/Σ_m and the functor is then

$$X \mapsto \Sigma^\infty(X)$$

2) If you take the principal homogeneous space you get

$$E\Sigma_n \times \Sigma^n(X^n).$$

So now you would like to understand some intermediate categories if possible.
November 26, 1970: K of a local field (cont.)

Some basic remarks about crystalline Chern classes:

Let $\mathbf{Z} \rightarrow \mathbf{X}$ be a nilpotent extension with divided powers and E a vector bundle on \mathbf{Z}. Then I would like formulas for Chern classes

$(*) \quad c_i(E) \in H^{2i}(I^i)$

where I is the ideal defining \mathbf{Z}, and cohomology is taken over \mathbf{Z} or \mathbf{X}, there's no difference. For line bundles these are obtained from

$$
1 \rightarrow 1 + I \rightarrow \mathcal{O}_X^* \rightarrow \mathcal{O}_Z^* \rightarrow 1 \quad \text{log}
$$

and coboundary $H^1(\mathcal{O}_Z^*) \xrightarrow{\delta} H^2(1 + I)$. The point is that $(*)$ are the restriction to the open set \mathbf{X} of the crystalline topos of \mathbf{Z} of the absolute crystalline Chern classes. Roughly they should be definable by taking the projective bundle $\mathcal{P}E$ over \mathbf{Z} and computing its crystalline cohomology relative to \mathbf{X}, which roughly should be the same as an extension of $\mathcal{P}E$ over \mathbf{X} which needn't exist except cohomologically, then using standard "coefficient of relation" formulas.

I would love to be able to define $(*)$ using some non-commutative logarithm for matrices.
1 \rightarrow GL_n(O_X, I) \rightarrow GL_n(O_X) \rightarrow GL_n(O_Z) \rightarrow 1.

But this seems difficult. Look at the easier problem of defining the images

\((**)\) \quad c_i(E) \in H^{2i}(I^i/I^{i+1}).

There are two (probably equivalent) ways of getting such classes. First suppose \(Z\) smooth over \(k\) and then we have exact sequence

\[0 \rightarrow I/I^2 \rightarrow \Omega_{X/k}^1 \rightarrow \Omega_{Z/k}^1 \rightarrow 0\]

and Atiyah classes

\[c_i^A(E) \in H^i(\Omega_{Z/k}^i).\]

The classes \((**)\) should be obtained from the Atiyah classes using

\[0 \rightarrow I^i/I^{i+1} \rightarrow \cdots \rightarrow \Omega_X^i \rightarrow \Omega_Z^i \rightarrow 0\]

secondly there should be a canonical element in

\[K \in H^2(I/I^2 \otimes \text{End} E)\]

such that

\[c_i(E) = \varphi_i(K)\]

\(\varphi_i : \text{End}(E) \rightarrow O_Z^i\) is the symmetric fn. of eigenvalues, \(\text{i.e. } \text{tr}(I^i)\).
Now consider a ring situation
\[1 \to I/I^2 \otimes \text{gl}_n(A/I) \to \text{GL}_n(A/I^2) \to \text{GL}_n(A/I) \to 1 \]
which gives us a canonical element in
\[H^2(\text{GL}_n(A/I), I/I^2 \otimes \text{gl}_n(A/I)) , \]
and hence leads to Chern classes
\[c_k \in H^{2k}(\text{GL}_n(A/I), I^k/I^{k+1}) . \]
If \(I \) has divided powers these should generalize to classes
\[c_k \in H^{2k}(\text{GL}_n(A/I), I^k) . \]

Next we try to compute cohomology for \(\mathbb{Z}_p = A \). We know there should be crystalline classes
\[c_k^{(m)} \in H^{2k}(\text{GL}(\mathbb{Z}_p^n), \mathbb{p}^{nk}\mathbb{Z}_p) \]
I conjecture this class lifts back to a canonical
\[\beta c_k^{(m)} \in H^{2k-1}(\text{GL}(\mathbb{Z}/p^n), \mathbb{p}^k\mathbb{Z}_p/\mathbb{p}^{nk}\mathbb{Z}_p) \]
satisfying \(\beta c_k^{(m)} = c_k^{(m)} \), \(\beta \) being the relevant Bockstein.
Now the existence of some \(c_k^{(m)} \) is clear as follows: One must show \(c_k^{(m)} \) is killed by \(\mathbb{p}^{nk}\mathbb{Z}_p \to \mathbb{p}^k\mathbb{Z}_p \). But
The class K should be the image of the class in $H^1(\Omega^1 \otimes \text{End}(E))$ represented by Atiyah ext.

$$0 \rightarrow \Omega^1 \otimes \text{End}(E) \rightarrow \text{Hom}(E, J_1 E) \rightarrow \text{End}(E) \rightarrow 0$$

by the coboundary operator of the exact sequence

$$0 \rightarrow I/I^2 \rightarrow \Omega^1_{X/k} \rightarrow \Omega^1_{Z/k} \rightarrow 0.$$

Given

$$1 \rightarrow I/I^2 \otimes \text{gl}_n(\mathcal{O}_Z) \rightarrow \text{GL}_n(\mathcal{O}_X/I^2) \rightarrow \text{GL}_n(\mathcal{O}_Z) \rightarrow 1$$

$[E] \in H^1(\text{GL}_n(\mathcal{O}_Z))$.

Somehow K is the cup product of these 1-dimensional classes.

If we are given a G-torsor $P \rightarrow X$ and an $E_\mathbb{Z}$-extension

$$0 \rightarrow M \rightarrow G' \rightarrow G \rightarrow 0$$

where M is a G-module, does this lead to an element of $H^2(X, \mathbb{Z} \times_\mathbb{Z} P \times_\mathbb{Z} M)$? Topologically, the extension gives an element of $H^2(BG, M)$ and the torsor gives a map $X \rightarrow BG$ so you pull the class back. This is clear in principle.
The formation of classes should be compatible with the morphism \[A/I^n \to A/I^m. \] Thus \(c_k^{(n)} \) and \(c_k^{(m)} \) are compatible. But then for \(m = 1 \) one knows there are no stable \(p \)-torsion classes. Now taking the direct limit under inflation gives element in

\[
\lim_{\to N} \lim_{\to n} H^{2k-1}(\text{GL}(\mathbb{Z}/p^n\mathbb{Z}), \mathbb{P}^k\mathbb{Z}_p'/p^n\mathbb{Z}_p)
\]\
\subseteq H^{2k-1}(\text{GL}(\mathbb{Z}_p), \mathbb{P}^k\mathbb{Z}_p).
\]
November 27, 1970.

Problem: To define classes

\[c_k' \in H^{2k}(GL_\mathbb{Q}(\mathbb{Z}_p), \mathbb{Z}/p\mathbb{Z}) \]
\[c_k'' \in H^{2k-1}(GL(\mathbb{Z}_p), \mathbb{Z}/p\mathbb{Z}) \]

satisfying the analogues of the formulas you have proved for finite fields. Thus

\[c(E) = \sum (c_k'(E) + c_k''(E) \varepsilon^k) \varepsilon^k \varepsilon \neq 0 \]

should satisfy a product formula and for a one dimensional representation \(G \rightarrow \mathbb{Z}_p^* \)

I conjecture there exist basic classes

\[c_k'' \in H^{2k-1}(GL(\mathbb{Z}_p), \mathbb{Z}/p\mathbb{Z}) \]

integral classes which are primitive and which come from \(GL(\mathbb{Q}_p) \). Moreover \(c_k'' \) reduced in \(\mathbb{Z}/p\mathbb{Z} \)
comes from \(GL(\mathbb{Z}/p^n\mathbb{Z}) \). It is not yet clear to me whether these conjectures are reasonable, except I can check them for \(k = 1 \). Then

\[c'_1 : GL(\mathbb{Z}_p) \rightarrow \mathbb{Z}_p \]

is the homomorphism \(A \rightarrow \log (\det A) \) where one removes off the \(\mathbb{Z}/p^{-1}\mathbb{Z}^*/ \) before taking the logarithm, i.e.

\[\frac{1}{p-1} \log (\det A)^{p-1}. \]
November 25, 1970.

Let \(\lfloor F: \mathbb{Q}_p \rfloor < \infty \). I want to determine the p-primary part of \(K_i(F) \). Now I am going to assume that it is possible to talk about continuous cohomology of \(\text{GL}_n(F) \) and to define continuous \(K \) groups \(K_i(F) \). For example

\[
K_1(F) = F^*
\]

is a locally compact group. In addition I will assume that Grothendieck construction of Chern classes produces continuous cohomology classes \(\mathcal{C}_i \in H^2i(\text{GL}_n(F) \times \text{Gal}(F/F), \mu_{m}^{\otimes i}) \)

and I want to compute the groups

\[
\lim_{\frac{0}{\Delta}} H^i(\text{Gal}(F/F), \mu_{m}^{\otimes i}),
\]

using local class field theory, or better Tate duality.

Tate duality: Let \(M \) be a finite Galois module. Then \(H^i(M) = H^i(\text{Gal}(F/F), M) \) is finite and cap product

\[
H^i(M) \times H^{2d-i}(\text{Hom}(M, F^*)) \rightarrow H^{2}(F^*) \xrightarrow{\text{can}} \mathbb{Q}/\mathbb{Z}
\]

is a perfect duality. (In particular \(H^i(M) = 0 \) \(i > 2 \))

One must always think of this along with
Tate – Riemann - Roch:
\[
\frac{h^0(M) h^2(M)}{h^1(M)} = \text{normalized absolute value of } \text{card}(M) \text{ in } F
\]
\[
= \frac{1}{\text{card} \{ \mathfrak{p} | \text{card}(M) \mathfrak{p} \}}
\]

It seems to me that this duality theorem implies the reciprocity law. Indeed, in dimension 1 it says that for a trivial finite Gal-module
\[
H^1(M) = \text{Hom}(\text{cent}(\text{Gal}_{ab}, M))
\]

is isomorphic to
\[
\text{Hom}(H^1(\otimes \text{Hom}(M, F^*)), \mathbb{Q}/\mathbb{Z})
\]

Now write \(M \)
\[
0 \rightarrow P_i \rightarrow P_0 \rightarrow M \rightarrow 0
\]
where \(P_i \) are free f.t. abelian groups and we have by Hilbert th 90
\[
H^1(F^*) = 0
\]
\[
0 \leftarrow H^1(\text{Hom}(M, F^*)) \leftarrow \text{Hom}(P_i, F^*) \leftarrow \text{Hom}(P_0, F^*)
\]
\[
0 \leftarrow H^1(M) \leftarrow \text{Hom}(F^*, P_i \otimes \mathbb{Q}/\mathbb{Z}) \leftarrow \text{Hom}(F^*, P_0 \otimes \mathbb{Q}/\mathbb{Z})
\]
\[\text{Homcont } (\text{Gal}_{ab}(F), M) \cong \text{Hom} (F^*, M) \]

Thus \((F^*)^\wedge \cong \text{Gal}_{ab} \), which seems to be both the reciprocity law and the existence theorem.

Recall that inverse limits are exact for inverse systems of finite groups, hence I can extend cohomology continuously to profinite Galois modules.

Let \(\chi : \text{Gal}(F/F) \to \mathbb{Z}/p^\infty \) be the Tate character on the \(p \)-th power roots of unity. Instead of \(\mu^\infty \) we write \(\mathbb{Z}/p^\infty \). Then we set

\[H^i(\mathbb{Z}/p^j) = \varprojlim_n H^i(\mathbb{Z}/p^{jn}) \]

and as remarked already the exact sequence

\[0 \to \mathbb{Z}/p^j \xrightarrow{P^m} \mathbb{Z}/p^j \to \mathbb{Z}/p^m \to 0 \]

gives rise to a long exact sequence in cohomology:

\[0 \to H^0(\mathbb{Z}/p^j) \xrightarrow{P^m} H^0(\mathbb{Z}/p^j) \to H^0(\mathbb{Z}/p^m) \]

\[\to H^1(\mathbb{Z}/p^j) \xrightarrow{P^m} H^1(\mathbb{Z}/p^j) \to H^1(\mathbb{Z}/p^m) \]

\[\to H^2(\mathbb{Z}/p^j) \xrightarrow{P^m} H^2(\mathbb{Z}/p^j) \to H^2(\mathbb{Z}/p^m) \to 0 \]
"General" case: \(\mu_p \subset K \), \(\text{Im } \chi = 1 + p^d \mathbb{Z}_p \) and we assume \(d \geq 2 \) if \(p = 2 \). Take \(m=1 \)

\[
H^0(\mathbb{Z}/p) = \mathbb{Z}/p \cong H^2(\mathbb{Z}/p) \quad \text{because } \mu_p \cong \mathbb{Z}/p
\]

\[
H^1(\mathbb{Z}/p) = H^1(\mu_p) \cong F^*/(F^*)^p
\]

Now

\[
F^* = \mathbb{Z} \times \mathfrak{o}^* \cong \mathbb{Z} \times \mu(F) \times \mathbb{Z}_p^{[K:\mathbb{Q}_p]}
\]

so

\[
F^*/(F^*)^p \text{ has rank } 2 + [K:\mathbb{Q}_p]
\]

Conclude \(H^2(\mathbb{Z}/p(1)) \), being pro-\(p \)-abelian with \(\otimes \mathbb{Z}/p \) of rank 1, is cyclic. In fact

\[
H^2(\mathbb{Z}/p(1)) = \varprojlim H^2(\mathbb{Z}/p^n(1))
\]

is dual to \(\varprojlim H^0(\mathbb{Z}/p^n(1-j)) = H^0(\mathbb{Q}_p/\mathbb{Z}_p(1-j)) \)

Elements of Galois are acting on \(\mathbb{Q}_p/\mathbb{Z}_p(1-j) \) by multiplying by \(\chi(\sigma)^{-j} \), hence acting by \((1 + p^d \mathbb{Z}_p)^{-j} \).

Thus invariants cyclic

\[
H^2(\mathbb{Z}_p(1))^v \cong H^0((\mathbb{Q}_p/\mathbb{Z}_p)(1-j)) \cong \mathbb{Z}_p \left[1/p^d + \mathbb{Z}_p^{(g-1)} \right]/\mathbb{Z}_p
\]

so

\[
H^2(\mathbb{Z}_p(1)) \cong \mathbb{Z}_p \left. \right|_p \left[1/p^d + \mathbb{Z}_p^{(g-1)} \right]/\mathbb{Z}_p
\]
Similarly

\[H^0(\mathbb{Z}/p^m \hat{\otimes} \mathbb{Z}_p(j)) \cong \begin{cases} \mathbb{Z}/p^m & m \leq d+v_p(j) \\ \mathbb{Z}/p^{d+v_p(j)} & m > d+v_p(j) \end{cases} \]

do from the exact sequence we see that

\[H^1(\mathbb{Z}_p(j)) \cong \begin{cases} \mathbb{Z}/p^{d+v_p(j)} \oplus \mathbb{Z}_p & j \neq 0, 1 \\ \mathbb{Z}_p^{1+[K:Q_p]} & j = 0 \\ \mathbb{Z}_p \oplus \mathbb{Z}_p^{1+[K:Q_p]} & j = 1 \end{cases} \]

Indeed if \(j \neq 1 \), then \(H^2(\mathbb{Z}_p(j)) \) has a subgroup of order \(p \) so \(H^1(\mathbb{Z}_p(j)) \) has rank \(\{H^1(\mathbb{Z}_p)\} - 1 = 1 + [K:Q_p] \) generators. Otherwise \(2 + [K:Q_p] \) generators. Its torsion subgroup is non-trivial for \(j \neq 0 \) and has order \(p^{d+v_p(j)} \).

I conjecture that the etale character induces an isomorphism of the pro-\(p \) completion of \(K_2(F) \) with etale cohomology. Thus

\[\mathbb{Z}_p^2 + \mathbb{Z}/p^{d+v_p(j)} \cong K_2(F)^\wedge \overset{c_1^\#}{\longrightarrow} H^1(\mathbb{Z}_p(1)) \cong \mathbb{Z}_p^{d+v_p(j)} \]

OKAY

\[K_2(F)^\wedge \overset{c_2^\#}{\longrightarrow} H^2(\mathbb{Z}_p(2)) \cong \mu_p^d \]

OKAY

\[K_3(F)^\wedge \overset{(2!)^{-1}c_3^\#}{\longrightarrow} H^3(\mathbb{Z}_p(3)) \cong \mathbb{Z}/p^{d+v_p(3-j)} \oplus [K:Q_p] \mathbb{Z}_p \]
Now let's show these maps are onto modulo torsion. The point is that we have

$$\sum_n x(K^*)^n \cong GL_n(K)$$

as the normalizer of the maximal elementary abelian p-subgroup $(\mu_p)^n$. Now the K-theory associated to the first group is stable cohomotopy of

$$BK^* = B\mathbb{Z} \times B\mathbb{Z}/p^d \times B\mathbb{Z}_p^{[k:q]}$$

and the rational groups are non-trivial only in dimension 1. Nuts, but you are being stupid to expect the torus to generate the homotopy of BU, i.e. $BN \to BU$ pretty lousy on homotopy. However we can make sensible conjectures maybe in this direction.

Suppose l is a prime $\neq p$ with $\mu_l \subset K$, i.e. $l \mid q - 1$ where $q = \text{card (res. field)}$. Then we conjecture that the l-primary components are finite and are given by

$$K_{2j}^*(K) \to K_{2j-1}^*(k) = (\mathbb{Z}/l^j \alpha_i)^{(l)} = \mathbb{Z}/l^{j+\alpha_i}$$

$$K_{2j-1}^*(K) \to K_{2j-1}^*(k) = \mathbb{Z}/l^{d_x + \alpha_j}$$

where $d_x = \epsilon(q - 1)$ or $\text{Im } x = (1 + l^{d_x})^x$. Consistent pattern.
"Special" cases include $p=2$, $\mu_4 \not\in F$ which we shall ignore and concentrate instead on p odd and $\mu_p \not\in F$. The image of $X: \text{Gal} \rightarrow \mathbb{Z}_p^*$ is again cyclic; denote a generator of the image by g, and let r be the least integer $> 0 \Rightarrow g^r \equiv 1 \pmod{p}$; $r \mid p-1$. We are assuming that $r > 2$.

\[h^0(\mathbb{Z}/p\mathbb{Z}(j)) = 1 \iff j = 0 \pmod{r} \]
\[h^2(\mathbb{Z}/p\mathbb{Z}(j)) = h^0(\mathbb{Z}/p(1-j)) = 1 \iff j = 1 \pmod{r} \]

and
\[h^1(\mathbb{Z}/p\mathbb{Z}(j)) = [K: \mathbb{Q}_p] + h^0(\mathbb{Z}/p(j)) + h^2(\mathbb{Z}/p(j)) \]

where h^i denotes the length of H^i.

\[H^2(\mathbb{Z}_p(j)) = \lim_{n \to \infty} H^2(\mathbb{Z}/p^n(j)) \]

dual to \[\lim_{n \to \infty} H^0(\mathbb{Z}/p^n(1-j)) \]

\[= H^0(\mathbb{Q}_p/\mathbb{Z}_p(1-j)) \]

\[\cong Z_\rho \cdot \frac{1}{q^{d-1}} \bigg/ Z_\rho \]

So

\[H^2(\mathbb{Z}_p(j)) \cong \mathbb{Z}_\rho / (q^{d-1} - 1) \]
We have then

\[
H^1(\mathbb{Z}_p(j)) = \begin{cases}
\mathbb{Z}_p / \theta^j - 1 + \mathbb{Z}_p & j \leq 0 \\
\mathbb{Z}_p [K : \mathbb{Q}_p] & j = 1 \\
\mathbb{Z}_p (K : \mathbb{Q}_p) & j > 1 \\
\mathbb{Z}_p [K : \mathbb{Q}_p] & j \geq 0, 1
\end{cases}
\]

so we have the following uniform formulas:

Theorem: Assume image of \(\chi : \text{Gal} \rightarrow \mathbb{Z}_p^* \) is cyclic generated by \(\theta \). Then for \(j > 1 \) we have

\[
\begin{align*}
H^1(\mathbb{Z}_p(j)) &\cong \mathbb{Z}_p / (\theta^j - 1) + \mathbb{Z}_p [K : \mathbb{Q}_p] \\
H^2(\mathbb{Z}_p(j)) &\cong \mathbb{Z}_p / (\theta^{j-1} - 1)
\end{align*}
\]

\[
\begin{align*}
H^1(\mathbb{Z}_p(1)) &\cong \mathbb{Z}_p / (\theta - 1) + \mathbb{Z}_p [K : \mathbb{Q}_p] + 1 \\
H^2(\mathbb{Z}_p(1)) &\cong \mathbb{Z}_p
\end{align*}
\]
so we conjecture in general that

\[j > 1: \quad K_{2j}(F)_\rho \xrightarrow{(j+1)! c_{2j+1}^\#} H^2(Z_{p}(j+1)) = \mathbb{Z}/(q^{j+1}) \]

\[j > 1: \quad K_{2j-1}(F)_\rho \xrightarrow{(j-1)! c_{2j}^\#} H^1(Z_{p}(j)) = \mathbb{Z}/(q^{j-1}) + \mathbb{Z}_{p}[K: Q_{p}] \]

are isomorphisms for \(j > 1 \). (I expect this anomaly in dimension 1 to disappear by taking the building without \(\det \) piece, and I hope that it is unnecessary to take the \(p \)-completion, i.e. that the groups \(K_i(F) \) except for the \(K_2(F) \) are already profinite.)

\[\text{Idea:} \quad K_i(\mathcal{O}) \otimes \mathbb{Q} \rightarrow K_i(F) \otimes \mathbb{Q} \]

and \(K_i(\mathcal{O}) \otimes \mathbb{Q} \) can be computed via Lazard. In fact Lazard shows that the cohomology of \(GL_n(\mathcal{O}) \) tensored with \(\mathbb{Q}_p \) over \(\mathbb{Z}_p \) is the same as the cohomology of the Lie algebra which one knows via Koszul is an exterior algebra with generators of degrees \(1, 3, \ldots, 2n-1 \). Therefore we see quite clearly that this can be made into a proof that

\[K_{2j-1}^{\text{top}}(\mathcal{O}) \otimes \mathbb{Q} = F \]

\[K_{2j}^{\text{top}}(\mathcal{O}) \otimes \mathbb{Q} = 0 \]
It is reasonable to expect the Hodge type classes to give these rational K-groups.
November 29, 1970.

Gran conjecture. Let \(l \) be a prime number which is invertible over \(A \). By the Kunneth formula

\[
H^* (\text{Spec} A, G; \mu^\otimes_i) = H^* (G, H^* (\text{Spec} A; \mu^\otimes_i))
\]

one can associate to each linear function \(\Lambda : H^* (\text{Spec} A; \mu^\otimes_i) \rightarrow \mathbb{Z} \) of cohomology class \(\Lambda (c_i (E)) \in H^{2i-1} (G, \mathbb{Z} / l \mathbb{Z}) \), if \(E \) is a representation of \(G \) over \(A \). The conjecture asserts that \(H^* (\text{GL}(A), \mathbb{Z} / l \mathbb{Z}) \) is generated by these Chern class components.

Thus if \(A \) is a strictly local ring the conjecture asserts that

\[
H^* (\text{GL}(A), \mathbb{Z} / l \mathbb{Z}) = \mathbb{Z} / l \mathbb{Z} [c_1, \ldots]
\]

In particular for \(A \) an algebraically closed field.

F field to fix the ideas. Then we get a "Rogul" group scheme affine over \(\mathbb{Z} / l \mathbb{Z} \)

\[
H^* (\text{Spec} S) = \text{rep. classes of rep. over } F \text{ coeff. in } S
\]

\[
= \text{Hom}_{\text{rep. g.p. functors}} (R_F (?), H^* (? , S))
\]

\[
= \text{Hom}_{\text{Z/2Z-algs, graded anti-comm.}} (H^* (\text{GL}(F)), S)
\]
Then to a field extension $u: F_1 \to F_2$ is associated extension of scalars:

$$
\begin{array}{ccc}
R_{F_1}(G) & \xrightarrow{u^*} & R_{F_2}(G) \\
\downarrow{u_*} & & \\
R_{F_2}(G) & \xleftarrow{u_*} & R_{F_1}(G)
\end{array}
$$

restriction of scalars:

If u finite such that

$$u_*(u^* x) = [F_2:F_1] x$$

$$u^*(u_* y) = \sum_{\sigma \in Gal(F_2/F_1)} \sigma^* y \quad \text{if } F_2/F_1 \text{ is Galois.}$$

Then u^* induces a homomorphism of group schemes which we denote

$$G_{F_2} \xrightarrow{u_*} G_{F_1}$$

and similarly u_* for u finite induces a homomorphism

$$G_{F_1} \xrightarrow{u_*} G_{F_2}$$

such that the same formulas hold.

Thus these group schemes behave covariantly with respect to $\mathcal{O}_{\text{Spec}(F)}$.
Now the Galois cohomology functor assigns to F the graded anti-commutative \(\mathbb{Z}/l \mathbb{Z} \)-algebra

\[\bigoplus_{i \geq 0} H^{2i-k} (\text{Gal}(F_0/F), \mu_l^{\otimes i}) = C^*_k(F) \]

whose "affine spectrum" will be denoted C_F. The total Chern class $c = \sum_{i \geq 0} c_i$ is an exponential class hence gives a map

\[C_F \longrightarrow \mathcal{S}_F \]

which is functorial in $\text{Spec } F$. There probably is little hope in connecting up this map with the restriction-of-sheaves without coming to grips with Chern classes of induced reps.
\[F \] again a finite extension of \(\mathbb{Q}_p \). Assume \(\mu_l \subset F \) and \(l \neq p \) to fix the ideas.

Now I want to understand better my conjecture that the mod \(l \) cohomology of \(\text{GL}_n(F) \) is detected on \((F^*)^n \). Let's begin by computing the subring of \(H^*(\mu_l)^n \) (mod \(l \) coeff.) generated by the Chern class components. Start with canonical isomorphism

\[F^* / (F^*)^l \cong H^1(\mu_l) \]

Choose a uniformizing \(\pi \) and a generator \(v \) for \(\mu_{ld} \subset F \), where \(\mu_{ld} \) is the \(l \)-primary part of \(\mu_l(F) \), equivalently

\[\text{Im} \, \chi = 1 + l^d \mathbb{Z}_l \subset \mathbb{Z}_l^* \]

where \(\chi : \text{Gal}(F/\mathbb{Q}) \rightarrow \mathbb{Z}_l^* \) is the Tate character. Then the images of \(\pi \) and \(v \) in \(F^*/(F^*)^l \) generate it.

Until we find a better notation, let \(c_1(\pi), c_1(v) \) denote the elements of \(H^1(\mathbb{Z}/l\mathbb{Z}) \) defined by the coboundary

\[C \rightarrow F^* \xrightarrow{S} H^1(\mu_l) \rightarrow 0 \]

is \(H^1(\mathbb{Z}/l\mathbb{Z}) \)

together with isomorphism furnished by \(S \). Thus

\[c_1(\pi) \cdot 1 = S(\pi) \quad c_1(v) \cdot 1 = S(v) \]
Moreover \(c_1(\pi), c_1(\mathcal{X}) \in H^2(\mathbb{Z}/\ell\mathbb{Z}) \cong \mathbb{Z}/\ell\mathbb{Z} \) is a generator of this group. Now there is a canonical map

\[H^2(\mu_\ell) = \mathbb{Z}/\ell\mathbb{Z} \]

given by the invariant, we have to check that \(\mathcal{X} \) and \(\pi \) are independent. The point is that we have two elements

\[\delta \pi, \delta \mathcal{X} \in H^2(\mu_\ell^3) \]

where \(\text{can} \) is the canonical class. Therefore having chosen \(\mathcal{X} \in \mu_\ell \) one wants to choose \(\pi, \mathcal{X} \) so that

\[\delta \pi \cdot \delta \mathcal{X} = 1 \cdot (\text{can}) \]

(a bit confused)

Now we have the basis

\[1 \in H^0(\mathbb{Z}/\ell\mathbb{Z}) \]

\[c_1(\pi), c_1(\mathcal{X}) \in H^1(\mu_\ell^3) \]

\[c_1(\pi), c_1(\mathcal{X}) \in H^2(\mu_\ell^3) \]

and to save writing we put \(c_1(\pi) = \alpha, c_1(\mathcal{X}) = \beta \). As cup product is skew-symmetric we have

\[\alpha^2 = \beta^2 = 0 \]

\[\alpha \beta + \beta \alpha = 0 \]

Perhaps it is reasonable to make the connection...
with the Hilbert symbol. Thus if \(\mu_m = \mu(\mathbb{F}) \) one has
\[
(a, b) \in \mu_m
\]
defined by
\[
(a, b) \cap = \delta a \cup \delta b \in H^2(\mathbb{F}, \mu_m \otimes \mathbb{Q}_2)
\]
or perhaps using
\[
\forall : H^2(\mathbb{F}, \mu_m \otimes \mathbb{Q}_2) \to \mu_m \otimes (\mathbb{Q}_2)^{-1}
\]

to denote the canonical map, we have
\[
(a, b) = \forall \delta a \circ \delta b
\]

For the tame symbol one composed with the surjection
\[
\mu_m \longrightarrow (\mathfrak{p} \text{-resfd})^*
\]
and it's known then that
\[
(a, b) = (-1)^{v(a) v(b)} \frac{a}{b^{v(a)}} \quad \text{reduced mod } \pi.
\]

So now that we understand the Galois cohomology, we can investigate the Chern classes.
Review of Kummer theory in the appropriate way.

Suppose \(\mu_m \subset F \), \((m, \text{char } F) = 1 \). Then there is a canonical element

\[
c_1 \in H^2(\mathbb{F}^* \times \text{Gal}(\overline{F}/F), \mu_m)
\]

which is the coboundary of the homomorphism

\[
\mathbb{F}^* \times \text{Gal}(\overline{F}/F) \rightarrow \mathbb{F}^* \subset \mathbb{F}^*
\]

for the exact sequence

\[
0 \rightarrow \mu_m \rightarrow \mathbb{F}^* \rightarrow [m] \mathbb{F}^* \rightarrow 0.
\]

I want to generalize my calculation for a finite field to the general case.

Proposition: Let \(\eta \in H^2(\mathbb{F}^*, \mu_m) \) be the canonical element represented by the extension

\[
0 \rightarrow \mu_m \rightarrow (\mathbb{F}^*)^{\mu_m} \xrightarrow{[m]} \mathbb{F}^* \rightarrow 0
\]

(\((\mathbb{F}^*)^{\mu_m} = \{\eta \in \mathbb{F}^* \mid \eta^m \in F \}\)). Equivalently, \(\eta \) is the geometric first Chern class of the canonical representation of \(\mathbb{F}^* \). Let \(K \) be the Kunneth isomorphism

\[
K : H^1(\mathbb{F}^*, H^1(\text{Gal}, \mu_m)) \rightarrow H^2(\mathbb{F}^* \times \text{Gal}, \mu_m)
\]

which in good cases, would be the composite...
Let \(c_{an} \in H^1(F^*, H^1(\text{Gal}, \mu_m)) \) be the canonical element furnished by the Hilbert map

\[
F^* \longrightarrow F^*(F^*)^m \longrightarrow H^1(\text{Gal}, \mu_m)
\]

Then the arithmetic Chern class is the sum

\[
c_1 = u + K(c_{an}).
\]

Proof is essentially obvious. As in your finite fields paper, the class \(c_1 \) is represented by the cocycle

\[
(\delta h')(g_1, x_1, g_2, x_2) = s(g_2)^{x_1 - 1} \frac{(\delta s)(g_1, g_2)}{u}
\]

where \(s(g_2)^e = g_2 \in F^* \). Thus

\[
s(g_2)^{x_1 - 1} = (v g_1)^{x_1 - 1}
\]

is the Hilbert pairing of \(\text{Gal} \) and \(F^* \) with values in \(\mu_m \).

Now we want to use this in our calculations when \(F \) is a local field, and \(m = e \) is \(\neq p \). Then
We choose \(\mathfrak{g} \) as a generator of \(H_1(\text{Gal}(\mu), \mathbb{Z}) \) and \(\mathfrak{h} \) the dual basis.

Actually we choose \(\mathfrak{g} \) and \(\mathfrak{h} \) dual bases of \(H_1(\text{Gal}(\mu), \mathbb{Z}) \).

We choose a generator \(F^{*}\mathfrak{g} \in H_2(\text{Gal}(\mu), \mathbb{Z}) \) and it is clear that \(F^{*}\mathfrak{g} \) is the dual basis of \(\mathfrak{g} \).

Since \(x, \mathfrak{g} \in H_2(\text{Gal}(\mu), \mathbb{Z}) \) and \(x, \mathfrak{h} \in H_1(\text{Gal}(\mu), \mathbb{Z}) \), we have the following diagram:

\[
\begin{array}{ccc}
\mathbb{Z} & \xrightarrow{\cdot x \cdot \mathfrak{g}} & \mathbb{Z} \\
\uparrow & & \downarrow \\
\mathbb{Z} & \xrightarrow{\cdot x \cdot \mathfrak{h}} & \mathbb{Z}
\end{array}
\]

where the vertical arrows are the dual bases.

And the element which is the image of the geometric Chern class is \(\sigma \in H^2(\text{Gal}(\mu), \mathbb{Z}) \xrightarrow{\cdot (\mathfrak{h} \cdot x)} H_2(\text{Gal}(\mu), \mathbb{Z}) \).

As we are assuming \(\mu \subset F \) and have a generator \(\mathfrak{h} \) we are looking at the element.

The identity map the two spaces being naturally dual.
\[c_1 = u + \hat{\alpha} \cdot \alpha + \hat{\beta} \cdot \beta \in H^2(F) \oplus H^1(F^*) \otimes H^1(\text{gal}) \]

Now recall

\[H^*(F^*) = \mathbb{Z}/l [\hat{\alpha}, \hat{\beta}, u] \]

\[H^*(\mathbb{F}^*)^n = \mathbb{Z}/l [\hat{\alpha}_i, \hat{\beta}_i, u_i] \]

and the total Chern class of the standard representation is

\[\prod_{i=1}^n \left(1 + u_i + \hat{\alpha}_i \cdot \alpha + \hat{\beta}_i \cdot \beta \right) \]

so what you need to recognize the subring of \(H^*(\mathbb{F}^*)^n \) generated by the coefficients of the various elements 1, \(\alpha \), \(\beta \), \(\alpha \beta \).
November 30, 1970. My education in group theory:

Sylow theorem:

\[N = \text{Norm}(Z) \text{ in } G. \]

Form the categories of \(p \text{-groups} \) in the usual way (morphisms are homomorphisms).

Then if \(G \) is \(p \text{-normal} \):

\[Z < gPg^{-1} \implies Z = gZg^{-1}, \]

we have

\[\text{Cat}(N) \longrightarrow \text{Cat}(G) \]

is an equivalence of categories.

Proof. One has to show that if \(g^{-1}Mg < P \) and \(M < P \), then \(\exists \ Y \in \text{Cent}(M) \) \(\implies Yg \in \text{Norm}(Z) = N \).

But

\[M < gPg^{-1} \implies gZg^{-1} \subset \text{Cent}(M) \]

\[M < P \implies Z \subset \text{Cent}(M) \]

and both being \(p \text{-groups} \) \(\exists Q \subset \text{Cent}(M) \) Sylow \(p \text{-subgroups} \) and \(Q \supset Z \), \(Z < Q \), \(gZg^{-1} \subset Y^{-1}QY \) so

\[Z, YgZ(Yg)^{-1} \subset Q \subset \text{Sylow grp of } G. \]

Hyp.

\[Z = YgZ(Yg)^{-1} \]

so we are done.

Remark 1: One must work in \(\text{Cent}(M) \) in order to keep category unchanged. Possibly in \(M \cdot \text{Cent}(M) \), but there is no diff. because \(M \subset N \).

It is enough to have \(Z \) central in \(P \) and "weakly closed" i.e. \(g^{-1}Zg < P \implies g^{-1}Zg = Z \).
Corollary: If N is the normalizer of a central weakly closed subgroup Z of P, then

$$H^*(G) \rightarrow H^*(N)$$

(p-torsion cohomology). Hence G has a normal p-complement iff N does (by Tate or Frobenius).

So now if G is a group such that P and G have same categories of elementary abelian p-subgroups, then take Z to be the elements of order p in the center of P. Then Z is central and weakly closed for there is no fusion of elementary abelian p-subgroups. So by Gr"{u}nn we can replace G by N if we wish to show p-nilpotence. Hence can assume $Z \triangleleft G$, whence Z is central in G.

Now can divide out by largest normal p-subgroup, whence can assume $\text{Center}(G) = \text{Center}(P)$. In more detail, the p' part of $\text{center}(G)$ is $\text{Center}(P)$, hence $\text{Center}(G) \leq \text{Center}(P)$, and any p'-element of $\text{Norm}\{\text{Center}(P)\}$ acts trivially on Z, the "bottom" of $\text{Center}(P)$.

Hence $\text{Norm}\{\text{Center}(P)\} = (\text{Center}(P))^P$.

So $Z = \text{Z}(G) < \text{Z}(G) < \text{Z}(P)$.

Proof that a maximal normal elem. ab. subgroup is maximal elem. abelian:

Let Θ be an automorphism of an abelian p-group A such that (i) $\Theta^p = 1$ (ii) $(\Theta - 1)$ kills $\Omega_1 A$. Then if p is odd $(\Theta - 1) A \leq \Omega_1 A$.

Proof: $1 = (1 + (\Theta - 1))^p$ \\

So $p(\Theta - 1) + \binom{p}{2}(\Theta - 1)^2 + \cdots + (\Theta - 1)^p = 0$.

Let d be largest such that $(\Theta - 1) \Omega_d A \subseteq \Omega_1 A$ assuming that $(\Theta - 1) A \not\subseteq \Omega_1 A$. Then $(\Theta - 1) \Omega_{d+1} A \not\subseteq \Omega_1 A$

so $\exists z \in \Omega_{d+1} A$ with $p(\Theta - 1)z \neq 0$, $p^2(\Theta - 1)z = 0$.

Now $(\Theta - 1) \Omega_1 A = 0$ \Rightarrow $(\Theta - 1) \Omega_{d+1} A \subseteq \Omega_d A$ \\
\Rightarrow $(\Theta - 1)^2 \Omega_{d+1} A \subseteq \Omega_1 A$ \\
$\Rightarrow \begin{cases} p(\Theta - 1)^2 \Omega_{d+1} A = 0 \\
(\Theta - 1)^3 \Omega_{d+1} A = 0 \end{cases}$ as $p \geq 3$

Hence $p(\Theta - 1)z = 0$ a contradiction.

In brief:

$p(\Theta - 1) \Omega_d A = 0$ \Rightarrow $(\Theta - 1) \Omega_d A \subseteq \Omega_1 A$ \\
\Rightarrow $(\Theta - 1)^2 \Omega_d A = 0$ \\
\Rightarrow $(\Theta - 1)^2 \Omega_{d+1} A \subseteq \Omega_1 A$ \\
\Rightarrow $(\Theta - 1)^3 \Omega_{d+1} A = 0$
Hence have \((\Theta - 1)^2\) and \(p(\Theta - 1)^2\) kill \(\Omega_{d+1}A\), so by identity
\[C = \Theta^p - 1 = (1 + (\Theta - 1))^p - 1 \equiv p(\Theta - 1) \mod (p(\Theta - 1)^2) \]
I have
\[p(\Theta - 1)^{d+1} = 0. \]
Thus by induction conclude that \(p(\Theta - 1)A = 0\).

Next step: A maximal normal abelian subgroup of the p-group \(P\), \(p\) odd. Claim that the elements of order 1 or \(p\) in \(\text{Cent}_p(A)\) form a subgroup. Suppose not and let \(x, y \in \text{Cent}_p(A)\) be such that \(x^p = y^p = 1\) but \((xy)^p \neq 1\) and such that \(<x, y>\) has least possible order. Then as \(<x, y>\) is not cyclic \(<y^{-1}x^{-1}yx, x^{-1}yx> < <x, y> \) so \(y^{-1}x^{-1}yx\) has order \(p\).

But \(x, y\) stabilize \(A \supset \Omega_1A \supset 1\) hence the commutator \(y^{-1}x^{-1}yx\) centralizes \(A\), so as \(A\) is maximal \(y^{-1}x^{-1}yx \in \Omega_1A\). Hence \(<x, y>\) is of class 2 so as \(p\) is odd every element of \(<x, y>\) is of order \(p\), a contradiction. This proves claim. We have proved:

Thus \(\Omega_1\text{Cent}_p(\Omega_1A)\) is of exponent \(p\) and if \(\Omega_1A\) is not a maximal elementary abelian group properly enlarge it to a maximal elementary abelian subgroup.

Prof. If \(A\) is a maximal normal abelian subgroup of \(P\), \(p\) odd, then \(\Omega_1\text{Cent}_p(\Omega_1A)\) is of exponent \(p\). Consequently if
$\Omega_1 A$ is a max. normal elem. ab. subgp. of P; then $\Omega_1 A$ is a max. elem. ab. subgp. of P.

Corollary. Any max. norm. elem. ab. subgp. of a p-gp, p odd, is a max. elem. ab. subgroup.

(These are the analogues of the Klein group in $(\mathbb{Z}/p)^n$)

If B is a max. norm. ab. subgroup, choose A max. norm. ab. $A > B$. Then $B = \Omega_1 A$ so

$$\Omega_1 \text{Cent}_P (B) = B$$

by the preceding proposition. So B is max elem. ab.

On the contrary the normalizer of the Klein group $(\mathbb{Z}/p)^n < \text{Syl}_p (\Sigma_p^n)$ has order

$$p^{n(n-1)/2} \prod_{i=1}^{n} (p^{i-1})$$

so isn't normal in P. The group $(\mathbb{Z}/p)^{p^{n-1}} c (\Sigma_p^n) c \Sigma_p^n$ has normalizers $\Sigma_{p^{n-1}}, S \mathbb{Z}/p$ whose order has

$$\nu_p \left(| \Sigma_{p^{n-1}}, S \mathbb{Z}/p | \right) = p^{n-1} + \nu_p (p^{n-1}) = p^{n-1} + \ldots + 1$$

$$= \nu_p (p^n)$$

and so it is normal in some Sylow group.