Let G be a finite group acting on a complex manifold X preserving the structure. Then there is an index map

$$f! : K_G(X) \longrightarrow K_G(pt)$$

where $f : X \to pt$, defined by taking an equivariant bundle E to $E \otimes (\mathcal{O})$ making a G-elliptic operator and taking index. It has the property that if E is an equivariant holomorphic bundle, then

$$f! [E] = \sum_i (-1)^i [H^i(X,E)]$$

where E denotes the sheaf of holomorphic E. Now we want a Riemann-Roch formula for the orbit variety X/G, stick to complex analytic case. That is, a formula for the map

$$Khol(X/G) \xrightarrow{\chi} \mathbb{Z}$$

$$E \in \mapsto \chi(X/G, E)$$

in terms of the characteristic classes of E. So we make some observations:

1) $H^*(X/G, E) = H^*(X, \pi^*E)^G$ where $\pi : X \to X/G$.

Indeed $\pi_* (\pi^*E)^G = E$ (local on X/G, hence can assume $E = \mathcal{O}$, whence it says that holomorphic functions on $X/G = \text{equivariant}$ holomorphic functions on X) and the two spectral sequences for equivariant cohomology degenerate because the coefficients are \mathbb{Q} and
\pi is finite.

Hence the map we want is

\[
\begin{array}{ccc}
K_{\text{hol}}^*(X/G) & \xrightarrow{\chi} & \mathbb{Z} \\
\downarrow \pi^* & & \uparrow \text{inner product with trivial rep} \\
K_G^*(X) & \xrightarrow{f_1} & R(G)
\end{array}
\]

Thus we can extend \(\chi \) to \(K(X/G) \) satisfies Poincare duality.

2) \(H^*(X/G) = H^*(X)^G \) hence the formula we want is of the form

\[
\chi(X/G, E) = (\text{ch}(E) \cdot \text{Todd})[X/G]
\]

\[
= \text{ch}(E) \cap \{\text{Todd}\}[X/G]
\]

So thus the problem is to find the homology class

\[
\text{Todd} \cap [X/G] \subset H^*_*(X/G)
\]

(rational coeffs.)

Our problem thus becomes the following. We have the map \(\chi \)

\[
K(X/G) \xrightarrow{\pi^*} K_G^*(X) \xrightarrow{f_1} R(G) \xrightarrow{S_G} \mathbb{Z}
\]

and want to express it in the form

\[
\chi(E) = \text{ch}(E) \cap \alpha \quad \text{for some } \alpha \in H^*_\text{ev}(X/G).
\]
Example: Take X to be the projective space $\mathbb{P}V$, V a representation of G. Then

$$H^e(X/G) \xrightarrow{\sim} H^e_G(X) \xrightarrow{\sim} H^e(X) = \mathbb{Q}[H]/H^d \quad d = \dim V$$

$H = c_1(\mathcal{O}(1))$. Now note that a G-vector bundle E on X is of the form π^*E iff the isotropy representations are trivial. Hence $\mathcal{O}(n)$ comes from X/G where n is the exponent of G. Now however one knows that $\text{ch}(\mathcal{O}(n) - 1) = e^{nH} - 1$ so the elements

$$\text{ch}(\mathcal{O}(n) - 1)^i \quad i = 0, \ldots, d - 1$$

form a \mathbb{Q}-basis for $H^e(X/G)$. It follows therefore that we ought to be able to compute χ, because χ is completely determined by the formulas

$$e^{inH} \cap \chi = \dim \{ S_{\chi}(V)^G \}$$

for all $i \geq 0$.

Suppose take G to be a cyclic group of order p and V a representation with the generator having eigenvalues. Computation should be manageable.
Let X be a polyhedron. A function on X will be called constructible if it is constant on each open simplex of some linear subdivision of X, and similarly for a sheaf. If we consider constructible sheaves of A-modules A a field, say, then the Grothendieck ring K of these sheaves may be identified with the ring of constructible integer-valued functions, the map assigning to a sheaf F, the function $x \mapsto \text{rank } F_x$. Let $R(X)$ be this ring.

There is a natural linear function $R(X) \to \mathbb{Z}$ which associates to F the Euler characteristic $\chi(X, F)$. In terms of functions it assigns the value $(-1)^i$ to the characteristic function of an open i-simplex. More generally given a map $f : X \to Y$ of polyhedra (piecewise-linear on some subdivision of X) then we have $f^! : R(X) \to R(Y)$ defined as usual.

We think of $F \mapsto \chi(X, F)$ as an intrinsic "measure" on constructible functions. Call a function f harmonic if for each point x

$$\sum (-1)^i \dim H^i_{f^!}(X, F) = f(x).$$

Suppose f constant on a given subdivision and let σ be the open simplex to which x belongs. Then a neighborhood of x is the product of σ and the cone on the link of σ and so $H^i_{f^!}(X, F)$ is the same as and F constant on the σ factor.
\[H_i \left(\text{Cone } L(\sigma), F \right), \quad x = \dim \sigma. \]

Using the exact sequence:

\[H^i \left(\text{Cone } L(\sigma), F \right) \rightarrow H^i \left(\text{Cone } L(\sigma), \tilde{F} \right) \rightarrow H^i \left(L(\sigma) \times \{0\}, \tilde{F} \right) \]

Together with the fact that \(\tilde{F} \) is constant along the generators of the cone, we see that

\[\chi(L(\sigma), \tilde{F}) = \tilde{F}(\sigma) \]

Now use the exact sequence:

\[H^i \left(\text{Cone } L(\sigma), F \right) \rightarrow H^i \left(\text{Cone } L(\sigma), F \right) \rightarrow H^i \left(L(\sigma) \times \{0\}, F \right) \]

Together with the fact that \(F \) is constant along the generators of the cone, one finds that

\[f(x) = \chi(L(\sigma), F) + \sum (-1)^d \chi(H^d_{x[x]}(L(\sigma), F)) \]

\[\dim F_x = \chi(L(\sigma), F) + (-1)^d \chi(H^d_{x[x]}(L(\sigma), F)) \]

For example, in an \(n \)-dimensional manifold with the function \(1 \) and a vertex, we have

\[1 = \chi(S^{n-1}) + (-1)^n \]

which is okay, so we see that mod 2 harmonic is
equivalent with the link of every simplex having Euler characteristic zero. Note that the function 1 on a manifold is harmonic iff the manifold has even dimension.

Let σ be a simplex and let U_σ be its star, i.e. points with positive coordinates at each vertex of σ. Then the

$$H^*(U_\sigma, F) = \begin{cases} \circ & * > 0 \\ F_\sigma & * = 0 \end{cases}$$
and \(H_c^*(U_\sigma, F) = H^*_{\text{barycenter of}}(X, F) \). By hypothesis then

\[
\chi(U_\sigma, F) = \chi_c(U_\sigma, F).
\]

Now given a subcomplex \(A \) of \(X \), consider the covering by \(U_\sigma \) where \(\sigma \) runs \(\bigwedge \) over vertices. Then

\[
\chi_A(\bigwedge X, F) = \chi_c(\text{star}(A), F) = \sum_{\sigma \in A} (-1)^{\dim \sigma} \chi_c(U_\sigma, F)
\]

and similarly

\[
\chi(A, F) = \chi(\text{star}(A), F) = \sum (-1)^{\dim \sigma} \chi(U_\sigma, F)
\]

(these are both consequences of Mayer-Vietoris)

Thus \(F \) harmonic \(\Rightarrow \)

\[
\chi(A, F) = \chi_A(X, F) \quad \text{A closed}
\]

\[
\chi(X, F) - \chi_c(X-A, F) \quad x(X, F) - x(X-A, F)
\]

hence

\[
\chi(U, F) = \chi_c(U, F) \quad U \text{ open}
\]

(immediate and simpler from Mayer-Vietoris relation.)
October 4, 1970

The relation \(X(U, F) = X_c(U, F) \) for a harmonic function is very reasonable if you think of the constant function 1 on an even dimensional manifold. Then one knows by duality that \(H^*_c(U) \) and \(H^*(U) \) have a non-singular pairing into \(H^{2n}_c(X) = \mathbb{R} \) and hence have same Euler Characteristic.

If \(f: X \to Y \), then \(f_! \) carries harmonic functions to harmonic functions, because

\[
X(V, f_! F) = X(f^{-1}V, F)
\]

\[
X_c(V, f_! F) = X_c(f^{-1}V, F)
\]

by Leray spectral sequence.

However harmonic functions are not closed under inverse image even when \(X, Y \) are manifolds. Indeed suppose in the plane \(= Y \) we take \(F \) to be the constant function on the graph of a function \(0 \) for \(x < 0 \)

\[
\begin{array}{c}
X \\
\end{array}
\]

and \(X = \text{x-axis} \). Then pull-back is the function
which is clearly not harmonic as the link is wrong. Just as a check we compute the cohomology of the sheaf $$\mathbb{Z}_{(-\infty,0]}$$ at 0.

\[
\begin{align*}
H^*_{\{0\}}(\mathbb{Z}_{(-\infty,0]}) & \rightarrow H^*(\mathbb{Z}_{(-\infty,0]}) \rightarrow H^*(\mathbb{R}-0, \mathbb{Z}_{(-\infty,0]}) \\
H^*_{(-\infty,0], \mathbb{Z})} & \rightarrow H^*(-\infty,0], \mathbb{Z})
\end{align*}
\]

Thus the local cohomology at the point 0 is 0 so the $$x \neq 0$$ value at zero.

So what we want to prove is that the inverse image of a harmonic function $$F$$ by a map $$f: X \rightarrow Y$$ is again harmonic provided $$f$$ and $$F$$ are transversal in a sense to be made precise.

Suppose $$f$$ is a smooth map of manifolds, and $$F$$ is constant on the open simplices of a triangulation of $$Y$$. Suppose $$f$$ is transversal to the simplices of the triangulation. Then there is an induced stratification of $$X$$ and I claim that the inverse image of $$F$$ is harmonic on $$X$$. It's enough to worry about an embedding. Take $$x \in X$$ and suppose $$f(x) \in \sigma$$.

\[\sigma\]
By transversality locally near \(x \), \(Y \) is \(L(\sigma) \times \sigma \) and \(X \) is \(L(\sigma) \times (X \cap \sigma) \) and \(F \) is constant in the \(\sigma \) direction. Thus the link condition remains the same and so \(F|_X \) is harmonic. The point to remember is that the normal structure of the strata around \(X \cap \sigma \) is exactly the same as the link of \(\sigma \).

Of course there is a dimension shift, so when working with integral valued harmonic functions it is necessary to require that the relative dimension of \(f \) be even.

Suppose now that \(F \) is a constructible function on \(X \) transversal to a submanifold \(Y \) of codimension \(1 \) and that \(Y \) has an interior \(Z \), \(\partial Z = Y \). Then

\[
\int_Y F = 0
\]

because it is the difference of \(x(\mathbb{Z}, F) \) and \(x(\mathbb{Z}, F) \), which are the same by harmonicity. (To do anything cobordism - theoretically we have to work mod 2. In
effect you want to start with the function 1 on an even dimensional manifold, restrict to odd dimensional submanifolds (so the cobordism can be used), and then take X which of course gives zero.

Now work mod 2 and suppose F is a harmonic function on a manifold X. Define now a map

$$\eta_*(X) \longrightarrow \mathbb{Z}_2$$

by

$$[Z \to X] \longmapsto \int f^*(F) \mod 2$$

As we've proved that transversal inverse images are harmonic and that integral vanishes on a boundary, it follows that this map is well-defined. On the other hand, if M is a compact manifold, then this map associates to $[M \times \mathbb{Z} \to X]$ the number $\chi(M) \cdot \int f^*(F)$ so that it factors

$$\mathbb{Z}_2 \times \eta_*(X) \longrightarrow \mathbb{Z}_2$$

Now the significance of Deligne's question becomes apparent because he wanted to check that there is an isomorphism

$$\mathbb{Z}_2 \otimes \eta_*(X) \cong H_*(X)$$
Let A be an elementary abelian subgroup of G (compact Lie gp.), N its normalizer, $p_A \subset H^*_G$ and $q_A \subset H^*_N$ the associated prime ideals. Claim that if A is maximal among $[p]$-gps fixing points of X, then

\[
H^*_G(X)_{p_A} \sim \cdots
\]

First of all the localization theorem says

\[
H^*_G(X)_{p_A} \sim H^*_G(GX^A)
\]

because the third side of the triangle is a module over $H^*_G(X-GX^A) = 0$ since A fixes no points of $X-GX^A$ hence the spectrum of this ring is \emptyset. Hence

\[
(A \triangleleft G \Rightarrow H^*_G(X)_{p_A} = H^*_G(X^A)_{p_A})
\]

This special case applied to N shows that

\[
H^*_N(X^A)_{q_A} = H^*_N(X)_{q_A}
\]

hence will give an exact sequence when applied to the diagram

\[
X \leftarrow X \times F \leftarrow X \times F \times F.
\]

So this reduces us to the case where the isotropy groups...
are all $[p]$-groups, $X = GX^A$. It follows that

$$G \times ^N X^A \overset{\sim}{\rightarrow} X$$

and N/A acts freely on X^A. (Any isotropy groups will contain a conjugate $x Ax^{-1}$ and as N/A is a $[p]$-group and A is maximal it will follow that it coincides with this conjugate.) Then

$$H^*_G(X) \overset{\sim}{\rightarrow} H^*_N(X^A)$$

If $B = xAx^{-1} \subset N, x \in G$, and $B \neq A$, then

$$H^*_N(X^A)_{\mathfrak{q}_B} = H^*_N(N \cdot (X^A)_B)_{\mathfrak{q}_B} = 0$$

because $AB > A$ is not a $[p]$-group. Hence the only prime in the support of $H^*_N(X^A)$ over \mathfrak{p}_A is \mathfrak{q}_A. So

$$H^*_G(X)_{\mathfrak{p}_A} = H^*_N(X^A)_{\mathfrak{p}_A} = H^*_N(X^A)_{\mathfrak{q}_A}$$

which finishes the proof of:

Theorem: If A maximal $[p]$-group normalizer N, and A determines \mathfrak{p}_A in H^*_G and \mathfrak{q}_A in H^*_N, then

$$H^*_G(X)_{\mathfrak{p}_A} = H^*_N(X^A)_{\mathfrak{q}_A}.$$
The fundamental problem is to attach an Euler characteristic to $H^*_G(X)_{\mathcal{F}_A}$. The above thm. reduces this problem to a normal in G. The following example shows that the value of the Poincaré series at $t = -1$ is not additive.

$G = \mathbb{Z}/p^2\mathbb{Z}$, $\mathcal{F}_A = \mathbb{Z}/p\mathbb{Z}$, replace the map $G/\mathcal{F}_A \to \text{pt}$ by an inclusion $Y = G/\mathcal{F}_A \to \text{disk in a faithful repn. of } G/\mathcal{F}_A = X$. Then have

$$
\xymatrix{
\mathcal{S} \ar[r]^\delta & H^*_G(X, Y) \ar[r] & H^*_G(X) \ar[r] & H^*_G(Y) \ar[r] & \\
& H^*_G(Y) \ar[r]^-\text{res} & H^*_A
}
$$

$$
\xymatrix{
0 \ar[r] & k \ar[r]^\iota & k \ar[r]^-\cong & k \\
& k \ar[r]^-\cong & k \ar[r]^-\text{res} & k \\
& k \ar[r]^-\cong & k \ar[r]^-\iota & k \\
& k \ar[r]^-\iota & k \ar[r]^-0 & 0
}
$$

So

- $H^*_G(X) = \frac{1}{1-t}$
- $H^*_G(Y) = \frac{1}{1-t}$
- $H^*_G(X, Y) = \frac{t}{1-t}$

\[\frac{t}{1-t} = \frac{1}{2} \quad \text{at } t = -1\]

P.S. $\frac{1}{1-t} = \frac{1}{2}$ at $t = -1$

P.S. $\frac{t}{1-t} = -\frac{1}{2}$

and this isn't additive.
When $A < G$, and $X = X^A$, then we have Hochschild – Serre

$$E_2 = H^*(G/A, H^*_A \otimes H^*(X)) \Rightarrow H^*_G(X)$$

If A maximal, then $H^*(G/A) \rightarrow H^*_G$ is zero in large degree, hence for k large one expects E_{2k} to be bounded horizontally. It perhaps is reasonable to conjecture that $H^*_G(X)$ might be a free module over a subring \mathbf{P} of H^*_G such that H^*_A is also free over \mathbf{P}, possibly after localizing. If so one might then be able to define

$$\chi \left\{ H^*_G(X) : H^*_A \right\} = \frac{\chi \left\{ H^*_G(X) : \mathbf{P} \right\}}{\chi \left\{ H^*_A : \mathbf{P} \right\}}$$

It seems that one always has a spectral sequence

$$E^{p, q}_2 = R^p \lim_A \left\{ H^q_A \right\} \Rightarrow H^{p+q}_G$$

But there doesn't seem to be any reason for $E^{p, q}_2 = 0$ for $p \geq q$. This spectral sequence arises from a composite functor

$$\lim \left. M^A \right|_A = M^G.$$
October 13, 1970: On Thom's theorem realizing rational classes.

Let $x \in H^q(X)$ be a manifold. Thom's theorem asserts that $n \cdot x$ can be realized by an oriented submanifold of codimension q for some n.

In terms of his realizability criterion, this means that $MSO_q \rightarrow K(Z, q)$ given by Thom class admits a section in the rational homotopy category. If q is odd this is trivial as $S^q = K(Z, q)$, so one can realize x by a framed submanifold. If $q = 2p$ we show $MU_p \rightarrow K(Z, 2p)$ admits a section.

Note that:

$$H^*(K(Z, p)) \rightarrow H^*(MU_p)$$

is a free map, consequently in the spectral sequence of $MU_p \rightarrow K(Z, 2p)$ the E_2-term is taken in the rational homotopy category. But

$$BU_p \rightarrow \prod_{i=1}^{p} K(Z, 2i)$$

is a rational equivalence and

$$BU_p \rightarrow MU_p \rightarrow \frac{K(Z, 2p)}{U}$$

so it's clear.
Actually we must be careful of Mumford's objection—all we get this way is a map $X \to \text{MU}_p \otimes \mathbb{Q}$. So what must be proved is that when dimension of X is odd, n can be found so dotted arrow exists in

$$
\begin{align*}
X & \longrightarrow K(n\mathbb{Z}, 2p) \\
\downarrow & \\
\text{BU}_p & \longrightarrow K(\mathbb{Z}, 2p).
\end{align*}
$$

More precisely, given k we want to find n so section

$$
\begin{align*}
K(n\mathbb{Z}, 2p) & \longrightarrow K(\mathbb{Z}, 2p) \\
\text{BU}_p & \longrightarrow \text{BU}_p
\end{align*}
$$

If F is the fibre of $\text{BU}_p \to K(\mathbb{Z}, 2p)$, consider the Lustikov system of the map.

Better work with the map

$$
\text{BU}_p \to \prod_{i=1}^{p} K(\mathbb{Z}, 2i)
$$

and try for

$$
\prod_{i=1}^{p} K(n\mathbb{Z}, 2i) \longrightarrow \prod_{i=1}^{p} K(\mathbb{Z}, 2i)
$$

Now the homotopy groups of the fibre are finite, so
so what one needs to know is

\[
\lim_{n \to \infty} H^m(\prod_{i=1}^{p} K(n\mathbb{Z}, 2i), A) = 0 \quad m > 0
\]

Lemma: For any finite abelian group A

Proof: By dêvissage, one can assume $A = \mathbb{Z}/p\mathbb{Z}$, by Kunneth, one can worry about $\{K(n\mathbb{Z}, 2j)\}$, and then by the spectral sequence one can use induction on j. For $j = 1$

\[
H^*(K(n\mathbb{Z}, 1), \mathbb{Z}_p) \quad \text{OKAY.}
\]

In geometrical terms what we have just proved is that given $u \in H^{2p}(X, \mathbb{Z})$, then E bundle E such that $c_p(E) = n \cdot u$, n universal depending on $\dim X$.
October 13, 1970.

Need to understand the exponential map for $GL_n(\mathbb{C})$.

$$ A \mapsto e^A = \sum_{n>0} \frac{A^n}{n!} $$

$$ \exp: \text{gl}_n \rightarrow GL_n. $$

We begin by finding the singular values of \exp.

$$ \frac{d}{dt} e^{(A+\varepsilon B)t} = (A+\varepsilon B) e^{(A+\varepsilon B)t} $$

$$ = Ae^{(A+\varepsilon B)t} + \varepsilon Be^{At} \quad \varepsilon^2 = 0 $$

$$ \frac{d}{dt} \left[e^{-At} e^{(A+\varepsilon B)t} \right] = \varepsilon e^{-At} Be^{At} $$

$$ = \varepsilon \sum_{n>0} (\text{ad } (-A))^n \cdot B \frac{t^n}{n!} $$

$$ \left[\frac{d}{dt} (e^{-At} Be^{At}) = [-A, e^{-At} Be^{At}] \right] $$

so if $e^{-At} Be^{At} = \sum t^n \alpha_n$

$$ n \alpha_n = [-A, \alpha_{n-1}] \Rightarrow \alpha_n = \frac{1}{n!} (\text{ad } (-A))^n \alpha_0 $$

Then integrating

$$ e^{-At} e^{(A+\varepsilon B)t} = I + \varepsilon \sum_{n>0} (\text{ad } (-A))^n \cdot B \frac{t^n}{(n+1)!} $$

$$ \Rightarrow e^{A+\varepsilon B} = e^A + \varepsilon e^A \sum_{n>0} \frac{(\text{ad } -A)^n \cdot B}{(n+1)!} \quad \varepsilon^2 = 0 $$
\[e^A de^A = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)!} [A^{n+1} + A^{n+2} + \cdots] \quad B = dA. \]

\[\text{tr} e^{-A} de^A = \text{tr} dA = d(\text{tr} A) \]

which agrees with formulæ

\[e^{\text{tr} A} = \det(e^A) \]

\[e^{\text{tr} A} \cdot \text{tr} dA = \text{tr}(e^{-A} de^A) \cdot \det A. \]

For what values of \(A \) is this transformation singular?

Suppose \(A \) diagonal eigenvalues \(\{\lambda_i\}_{i=1}^n \), then

\[[A, e_{ij}] = (\lambda_i - \lambda_j) e_{ij} \]

\[\sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)!} (\det A)^n \cdot (e_{ij}) = \begin{cases} 1 - e^{\frac{\lambda_i - \lambda_j}{\lambda_i - \lambda_j}} e_{ij} & \text{if } \lambda_i \neq \lambda_j \\ 0 & \text{if } \lambda_i = \lambda_j \end{cases} \]

with understanding that the coefficient is 1 if \(\lambda_i = \lambda_j \)

\[de^{\left[\lambda_1, \lambda_n \right]} + e e_{ij} = e^{\lambda_i - e^\lambda_j} e_{ij} \]

Therefore, the exponential map is singular at a diagonal matrix if two eigenvalues differ by \(2n\pi \) in each \(n \in \mathbb{Z} \) and \(n \neq 0 \).
We want to start with a Bott cocycle and reconstruct the bundle it came from. Take a 2-cocycle. If we work with SL_2-bundles then the Bott 4-cocycle should determine the bundle up to torsion.

So we are given

$$h_{uvw} \in \Gamma(U \cap V, \Omega^2)$$

alternating,

$$k_{uv} \in \Gamma(U \cap V, \Omega^3)$$

so $\delta h = 0$, $dh = \delta k$, $dk = 0$.

So if the covering consists of two elements U, V then all we have is a single form $\omega \in \Omega^3(U \cap V)$ which we want to put in the form

$$\omega = tr(A^{-1}dA)^3$$

where $A : U \cap V \to SU_2 = S^3$. But $tr(A^{-1}dA)^3$ is a closed form on S^3, the invariant ω volume and so our problem is to construct a map $A : U \cap V \to S^3$ such that $\omega = A^*(\text{volume})$. Since any volume is locally $dx_1dx_2dx_3$, it's clear that this can't always be done, since there exist indecomposable closed 3 forms.

$$\dim \text{ Gr}_3(\mathbb{R}^n) = 3(n-3)$$

$$\dim \mathbb{P}(\Lambda^3(\mathbb{R}^n)) = \binom{n}{3} - 1$$
So unlike line bundles the form must be modified, and we see that the critical case is to understand the map

\[[X, S^3] \longrightarrow H^3_{DR}(X), \]

which we know induces an isomorphism

\[[X, S^3] \otimes \mathbb{C} \sim \longrightarrow H^3_{DR}(X) \]

(\(\otimes\) in the sense of Malcev, actually the non-abelian-ness is small since \(\pi_6(S^3) = \mathbb{Z}_{12}\).)

It seems reasonable to consider more generally the map

\[[X, U(n)] \longrightarrow \prod_{i=1}^{\frac{n}{2}} H^{2i-1}_{DR}(X). \]

given by the map

\[A \longrightarrow \text{tr} \ (A^{-1} dA)^{2i-1} \]
Let \(q \) be a power of \(p \) and \(l \) a prime \(\neq p \). Then I want to compute

\[
\lim_{\nu} H^*(\text{GL}_n(\mathbb{F}_q^\nu), \mathbb{Z}/l\mathbb{Z})
\]

Let \(r \mid l-1 \) be the order of \(q \) in \((\mathbb{Z}/l\mathbb{Z})^* \). Then \(r \) is the same for \(q^\nu \) since \(l \) is prime to \(l-1 \). We know that

\[
H^*(\text{GL}_n(\mathbb{F}_q^\nu), \mathbb{Z}/l\mathbb{Z}) \rightarrow H^*(\{\mathbb{F}_{q^\nu}(\mu_l)^*\}^m, \mathbb{Z}/l\mathbb{Z})
\]

\[
m = \left[\frac{m}{r} \right].
\]

Now:

\[
\mathbb{F}_q(\mu_l)^* \rightarrow \mathbb{F}_{q^\nu}(\mu_l)^* \rightarrow \mathbb{F}_{q^2}(\mu_l)^* \rightarrow \cdots
\]

cyclic order \(q \rightarrow q^2 \rightarrow q^4 \rightarrow \cdots \)

cyclic order \(q \rightarrow q^2 \rightarrow q^4 \rightarrow \cdots \)

cyclic order \(q \rightarrow q^2 \rightarrow q^4 \rightarrow \cdots \)

and

\[
\nu_{\mathbb{F}_q(\mu_l)}(q^\nu(\nu - 1)) = \nu_{\mathbb{F}_{q^\nu}(\mu_l)}(\nu) + \nu_{\mathbb{F}_{q^2}(\mu_l)}(\nu - 1)
\]

since

\[
\nu_{\mathbb{F}_{q^\nu}(\mu_l)}(q^\nu - 1) \geq 1
\]

and say \(l \neq 2 \). Okay once you take \(q^2 \).

So it seems then that

\[
\lim_{\nu} H^*(\{\mathbb{F}_{q^\nu}(\mu_l)^*\}^m, \mathbb{Z}/l\mathbb{Z}) = \mathbb{Z}/l\mathbb{Z}[x_1, \ldots, x_m]
\]

whence all the \(c_n(\mu_l) \) disappear in the limit.
October 14, 1970

Still want to understand

$$[X, S^3] \rightarrow H^3_{DR}(X).$$

The result is that if $\omega \in \Omega^3(X)$ is closed with integral periods, then for some n, $n\omega - d\eta = A^*V$, where $A : X \rightarrow S^3$ and V is the volume element on S^3. Right invariant.

On S^3 there are three forms $\omega_1, \omega_2, \omega_3$ which satisfy the Maurer-Cartan formulas

$$d\omega_i = \sum_{jk} c_{ijk} \omega_j \wedge \omega_k,$$

where c_{ijk} are the structural constants for the Lie algebra.

So the map $A : X \rightarrow S^3$ gives three one-forms on X whose product is non-zero and which satisfy the Maurer-Cartan formulas.

Conversely, given $\lambda_i \in \Omega^3(X)$, $i=1,2,3$ satisfying M-C relations, we consider $X \times S^3$ and the ideal I in the exterior algebra generated by $\mathfrak{pr}_1^*(\lambda_i) - \mathfrak{pr}_2^*(\lambda_i)$. This ideal will be stable under d, so defines a codimension 3 foliation of $X \times S^3$, which is taken over X as the ω_i span the cotangent space of S^3 at each point. Note that foliation is right invariant under S^3 multiplication.

Consequently an integral leaf will be a covering space of X mapping to S^3.

Conclusion: If $\pi_1(X) = 0$, then $\text{Map}(X, S^3)/S^3$ right multiplies is same as forms $\lambda_1, \lambda_2, \lambda_3 \in \Omega^3(X)$ satisfying M-C formulas.
Need to understand non-commutative integration a bit. Suppose G is a nilpotent Lie group and connected. Then I claim that there are natural maps

$$G \times \cdots \times G \longrightarrow G$$

right equivariant which assigns to $\sum t_i g_i$ the appropriate center of gravity. Indeed, by induction using exact sequence

$$0 \longrightarrow \mathbb{R}^n \longrightarrow G \overset{T}{\longrightarrow} G' \longrightarrow 0$$

and we have

$$G \times \cdots \times G' \longrightarrow G'$$

which saying fixing g_1, \ldots, g_n gives us $\sum t_i \Pi(\xi_i)$. Now have to check

$$\{0, \ldots, n\} \longrightarrow E \overset{F}{\longrightarrow} G \downarrow \Delta(\mathbb{R}^n) \longrightarrow G'$$

that if f is an "affine" \mathbb{R}^n-bundle over $\Delta(\mathbb{R}^n)$ and if you give the liftings of the vertices then there is a canonical section. Need that transition functions are constant affine transformations.
Problem: To find out what is happening in the proof that $\chi: K(X) \otimes \mathbb{Q} \rightarrow H^\alpha(X, \mathbb{Q})$.

For example start with formula

$$\left[X, \mathbb{C}P^\alpha \right] \rightarrow H^2(X, \mathbb{Z})$$

But

$$\left[X, \mathbb{S}P^\alpha(\mathbb{C}P^3) \right]$$

What makes this result true? For example suppose we have a complex-analytic manifold X. Then an analytic map $X \rightarrow \mathbb{S}P^\alpha(\mathbb{C}P^3) = \mathbb{C}P^n$ is a line bundle together with $n+1$ generating sections. Thus the proof of this formula requires something about C^∞ functions.

A better understanding is achieved by use of sheaf theory. Thus one looks at

$$0 \rightarrow \mathbb{Z} \rightarrow \mathcal{O}_X \xrightarrow{\exp 2\pi i} \mathcal{O}_X^* \rightarrow 0$$

and gets a long exact sequence

$$H^1(X, \mathcal{O}_X) \rightarrow H^1(X, \mathcal{O}_X^*) \xrightarrow{\delta} H^2(X, \mathbb{Z}) \rightarrow H^2(X, \mathcal{O}_X)$$

where the ends vanish by partitions of unity. This proves the isomorphism for $X \cong C^\infty$ and of course it works to do the analytic case also.
Symmetric product

The basic idea: \(H^*(X, \mathbb{C}(Y)) = [X, \mathbb{S}P^\infty(Y)] \) ignoring basepoint

Barry's formulation: An element of

\[
[X, \mathbb{S}P^\infty(Y)] \otimes \mathbb{Q} = \prod_{i} \text{Hom}(H_i(X), H_i(Y))
\]

map of degree zero from \(X \) to \(Y \).

Can you algebraically define a map from

\[
H^*(Y) \longrightarrow H^*(X)
\]

for each map \(X \rightarrow \mathbb{S}P^\infty(Y) \).

From the rational point of view this is easy because

\[
H^*(\mathbb{S}P^\infty(Y)) = S[H^*(Y)] \quad \text{as Hopf algebras}
\]

\(\mathbb{S} \) being the geometric Pontrjagin ring.

\[
H^*(X) \leftarrow \text{ring hom} \quad S[H^*(Y)] \quad \leftarrow \quad H^*(Y)
\]

So the correspondence is fairly clear.

Bott has produced a formula for the Chern classes of a vector bundle in terms of the transition functions for the bundle, which I want to understand.

The idea: start with $E \to X$ a complex bundle over a manifold or scheme. Then form the bundle Y over X whose sections are connections, i.e. the bundle of splittings of

$$0 \to E \otimes T^* \to J_1(E) \to E \to 0$$

Let $f: Y \to X$ be the canonical map. Then $f^*(E)$ has a canonical connection and so global De Rham classes representing the Chern classes. Now if we are given local trivializations

$$s_u: U \times \mathbb{C}^n \to E$$

for some covering U, then over each U we have a canonical section D_U of $f^*(E)$, hence can pull back these classes. For example $\text{tr} \{K^n_U\}$ pulls back to give an element in $\mathcal{C}^o(U, \Omega^{2n}_X)$ (which is zero because D_U is flat). On $U \cap V$, then we have a family $t_0 D_U + t_1 D_V$ of connections, hence a formula

$$\text{tr} \{K^n_U\} - \text{tr} \{K^n_V\} = d \int_{t_0}^{t_1} \{\star \omega\} = d h_{U,V}^{\mathcal{A}^4}$$
and the \(h^{(n)}_{uvw} \) define an element of \(\mathcal{C}^1(V, \Omega^{2n-1}_X) \). On \(U \cap V \cap W \) we get the family \(t_0D_u + t_1D_v + t_2D_w \) of connections which should produce an element \(h^{(n)}_{uvw} \in \Gamma(U \cap V \cap W, \Omega^{2n-2}_X) \) such that

\[
dh^{(n)}_{uvw} = h^{(n)}_{vw} - h^{(n)}_{uw} + h^{(n)}_{uv}.
\]

In general one gets by this process a Čech cochain \(h^{(n)}_i = \{ h^{(n)}_{u_0 \cdots u_i} \} \in \mathcal{C}^i(V, \Omega^{2n-i}_X) \), satisfying

\[
dh^{(n)}_i = \delta h^{(n)}_{i-1}.
\]

It's more or less clear that (still needs proof to be sure)

\[
h^{(n)}_{u_0 \cdots u_i} = \int_{t_i + t_{i+1} \leq 1} \{ tr(K^n_t) \}
\]

where

\[
K_t = d\Theta_t + \Theta_t \Theta_t
\]

\[
\Theta_t = \sum_{j=1}^{\# t} t_j g^{-1}_{u_ju_0} du_ju_0
\]

(Here I recall that \(s_u = s_v g_{uv} \) and that the connection \(D_v \) is given relative to
the connection D_u by the form θ^D_u determined by

$$D_v s_u = s_u \theta^D_v$$

$$D_v(s_v g_{vu}) = s_v d g_{vu} = s_u g^{-1} u d g_{vu}$$

i.e.

$$\theta^D_u = g^{-1} u d g_{vu}$$

so that family joining the D_u is relative to D_0 given by the connection form

$$\theta^D_t = \sum_{j=1}^i t_j g^{-1} u_j d g_{u_j} u_0.$$
Computations for $n=1,2$ ignoring signs.

\[h^{(1)}_{uv} = \text{tr} \left\{ A^{-1}dA \right\} \quad A = g_{uv} \]

\[\begin{cases}
 h^{(2)}_{uv} = \frac{1}{3} \text{tr} \left(A^{-1}dA \right)^3 \\
 h^{(2)}_{uvw} = \text{tr} \left\{ A^{-1}dA \cdot B^{-1}dB \right\} \quad A = g_{uv}, B = g_{uw}
\end{cases} \]

\[\text{d} h^{(2)}_{uv} = -\text{tr} \left(A^{-1}dA \right)^4 = 0 \]

\[\text{d} h^{(2)}_{uvw} = h^{(2)}_{vw} - h^{(2)}_{uw} + h^{(2)}_{uv} \]

\[(A^2 2BA') = A \left[B' A - A' B \right] A' \]

\[\begin{align*}
 \text{d} h^{(2)}_{uvw} &= \text{tr} \left((A^{-1}dA)^2 (B^{-1}dB) \right) - \text{tr} \left((A^{-1}dA)(B^{-1}dB)^2 \right) \\
 \text{d} h^{(2)}_{uvw} &= \frac{1}{3} \left[\text{tr} \left((BA^{-1})'d(BA^{-1}) \right)^2 \right] - \frac{1}{3} \text{tr} (B^{-1}dB)^3 + \frac{1}{3} \text{tr} (A^{-1}dA)^3 \\
 \text{d} h^{(2)}_{uvw} &= \frac{1}{3} \text{tr} \left(B^{-1}dB - A^{-1}dA \right)^3 \\
 \text{d} h^{(2)}_{uvw} &= \text{tr} \left((A^{-1}dA)^2 (B^{-1}dB) \right) - \text{tr} \left((A^{-1}dA)(B^{-1}dB)^2 \right) \\
 \text{d} h^{(2)}_{uvw} &= A = g_{u_1 u_6}, \quad B = g_{u_2 u_6}, \quad C = g_{u_3 u_6}
\end{align*} \]
\[A(B^{-1}dA - A^{-1}dA) \left(C^{-1}dC - A^{-1}dA \right) A^{-1} \]

\[\delta h^{(2)}_2 = \text{tr} \left[(BA^{-1})^{-1} \cdot (BA^{-1}) \cdot (CA^{-1})^{-1} \cdot (CA^{-1}) \right] \]

\[- \text{tr} \left[B^{-1}dB \cdot C^{-1}dC \right] \]

\[+ \text{tr} \left[A^{-1}dA \cdot C^{-1}dC \right] \]

\[- \text{tr} \left[A^{-1}dA \cdot B^{-1}dB \right] = 0 \]

The above shows that normalized group cocycles might be very ugly.

However in unnormalized term we have associated to the two simplex \((A_0, A_1, A_2)\) of PG the element

\[\text{tr} \left[(A_1A_0^{-1})^{-1} \cdot (A_1A_0^{-1}) \cdot (A_2A_0^{-1})^{-1} \cdot (A_2A_0^{-1}) \right] \]

\[= \text{tr} \left[(A_1^{-1}dA_1 - A_0^{-1}dA_0)(A_2^{-1}dA_2 - A_0^{-1}dA_0) \right] \]

\[= \text{tr} \left(A_1^{-1}dA_1 \cdot A_2^{-1}dA_2 \right) - \text{tr} \left(A_0^{-1}dA_0 \cdot A_2^{-1}dA_2 \right) \]

\[+ \text{tr} \left(A_0^{-1}dA_0 \cdot A_2^{-1}dA_2 \right) \]

The first formula makes visible the right invariance, and the last the fact it is a cocycle.
Quite generally in an exterior algebra we have the identity
\[
(\mathbf{z}_1 - \mathbf{z}_0) \wedge \cdots \wedge (\mathbf{z}_n - \mathbf{z}_0) = \sum_{i=0}^{n} (-1)^i \mathbf{z}_0 \wedge \cdots \wedge \hat{\mathbf{z}}_i \wedge \cdots \wedge \mathbf{z}_n
\]

(induction on \(n\):
\[
\sum_{i=0}^{n} (-1)^i \mathbf{z}_0 \wedge \cdots \wedge \hat{\mathbf{z}}_i \wedge \cdots \wedge \mathbf{z}_n \wedge (\mathbf{z}_{n+1} - \mathbf{z}_0)
\]
\[
\sum_{i=0}^{n} (-1)^i \mathbf{z}_0 \cdots \hat{\mathbf{z}}_i \cdots \mathbf{z}_{n+1} + \sum_{i=0}^{n} (-1)^i \mathbf{z}_0 \wedge \cdots \wedge \mathbf{z}_n
\]

Hence denoting by
\[
\varphi_n(\mathbf{z}_1, \ldots, \mathbf{z}_n) = \sum_{\sigma \in \Sigma_n} (-1)^{\pi_1(\sigma)} \mathbf{z}_{\sigma(1)} \cdots \mathbf{z}_{\sigma(n)}
\]
we have
\[
\varphi_n(\mathbf{A}_1^{-1} \mathbf{d}(\mathbf{A}_1), \ldots, \mathbf{A}_n^{-1} \mathbf{d}(\mathbf{A}_n))
\]
\[
= \varphi_n(\mathbf{A}_1^{-1} \mathbf{d} \mathbf{A}_1, \ldots, \mathbf{A}_n^{-1} \mathbf{d} \mathbf{A}_n)
\]
\[
= \sum_{i=0}^{n} (-1)^i \varphi_n(\mathbf{A}_0^{-1} \mathbf{d} \mathbf{A}_0, \ldots, \mathbf{A}_i^{-1} \mathbf{d} \mathbf{A}_i, \ldots, \mathbf{A}_n^{-1} \mathbf{d} \mathbf{A}_n)
\]

(Note that \(\varphi\) is a finitely exterior algebra because it vanishes if two \(z_i\) are equal). The first formula shows that \(\varphi_n\) is invariant under right multiplication and the last one shows it is a cocycle.
Question: Does there exist a relative K-group?

The conjecture to make is that for any R over K, the maps are isomorphisms, i.e.,

$$\chi_i : H^i (\Omega^i, \mathbb{K}) \to \mathbb{K}$$

for all $$i \geq 0$$.

Now the usual formula in that ring R they usually release

$$\chi_i \in H^i (\mathbb{K}, \mathbb{R} \to \mathbb{R}^{*})$$

And hence maps

$$\mathbb{K} \to H^i (\mathbb{K}, \mathbb{R} \to \mathbb{R}^{*})$$

Now this gives the Hodge components (up to scalars) of

$$\text{tr} (\Delta A^{-1} A \Delta A^{-1}) = \text{tr} (\Delta A^{-1} - A^{-1} \Delta A) \Delta A^{-1}$$

The next most important is the i^{th} component.
to realize algebraically the idea of the topology on $\text{GL}_n(R)$ forcing one to use a different kind of classifying space. So instead of thinking of $K_*(R)$ as related to $K(S \times R) \to H^*(S)$ where S is a variable topos we want to allow S to be an arbitrary k-scheme.
Recall the Dold-Thom theorem: Let X be a connected space with basepoint. Then
\[\pi_i \; SP^\infty(X) \cong \tilde{H}_i(X; \mathbb{Z}) \]
They prove this by showing that given a cofibration
\[Y \to X \to X/Y \]
(but both Y, X are pointed and connected) then
\[SP^\infty(X) \to SP^\infty(X/Y) \]
is a quasi-fibration with fiber $SP^\infty(Y)$, hence one gets a long exact sequence
\[\to \pi_i SP^\infty(Y) \to \pi_i SP^\infty(X) \to \pi_i SP^\infty(X/Y) \to \cdots \]

Thus the functor $F_*(X) = \pi_*(SP^\infty(X))$ for pointed connected spaces is a generalized homology theory, and the only thing left is to identify $SP^\infty(S^1)$. But S^1 being a topological abelian group one knows there are maps
\[S^1 \to SP^\infty(S^1) \to S^1 \]
which one would like to know are homotopy equivalence. Doesn't seem to be entirely trivial, however $SP^n(C^*)$ can be identified with monic polynomials $Z^n + q_1Z^{n-1} + \cdots + q_n$ where an is a unit. This gives a fibration $SP^n(C^*) \to C^n$.

October 24, 1970: On symmetric products.
whose fiber is a vector bundle of dimension n-1. So now everything is clear.

Next I want to see that

\[
[Y; \mathcal{SP}^\infty X]_0 = \text{Hom}_{D(\mathbb{A}^n)}(\tilde{\mathcal{C}}(Y), \tilde{\mathcal{C}}(X))
\]

enough to define the map really and that works this way

\[
[Y; \mathcal{SP}^\infty X]_0 \rightarrow \text{Hom}_{D(\mathbb{A}^n)}(\tilde{\mathcal{C}}(Y), \tilde{\mathcal{C}}(SP^\infty X))
\]

so we need a map

\[
\tilde{\mathcal{C}}(SP^\infty X) \rightarrow \tilde{\mathcal{C}}(X).
\]

But semi-simplicially this is obvious, namely you have dimension-wise a map

\[
SP^\infty(X) \rightarrow \tilde{\mathbb{Z}}X \quad (\tilde{\mathbb{Z}}X = \mathbb{Z}/\mathbb{Z}^*),
\]

which extends to

\[
\tilde{\mathbb{Z}} SP^\infty(X) \rightarrow \tilde{\mathbb{Z}}X
\]

in a canonical way.

To see if this can be understood geometrically. Thus if X is a space I want to define a map

\[
\tilde{H}^\mathbb{R}_*(SP^\infty X) \rightarrow \tilde{H}_*(X)
\]
This must be something like the transfer in the Borel book. I recall this.

Suppose G finite acts on X Hausdorff. Then for F on X/G we have

$$(f_x f^* F)_y = \prod_{x \in f^{-1}(y)} F_y$$

and we want to define a map

$$f_x f^* F \longrightarrow F.$$

The obvious thing to try is the sum map

$$\prod_{x \in f^{-1}(y)} F_y \longrightarrow F_y$$

$$(a_x) \longrightarrow \sum a_x$$

Unfortunately, if $F = \mathbb{Z}$, then we have that the composite map

$$\mathbb{Z} \longrightarrow f_x f^* \mathbb{Z} \longrightarrow \mathbb{Z}$$

is multiplication by $\text{card } f^{-1}(y)$ on fibers over y which won't be locally constant. Hence we need a multiplicity function $x \mapsto m(x)$ which gives the multiplicity of $x \mapsto$ in the fiber $f^{-1}(y)$.

Thus I need to have a continuous map

$$X/G \longrightarrow SP^n(X)$$
\[y \mapsto f^{-1}(y) \] counted with multiplicity which assigns to \(y \in X/G \) the divisor
\[\sum_{x \in f^{-1}(y)} m(x) \]

But if \(n = |G| \) then the obvious multiplicity function is
\[m(x) = \card G_x \]

but the most efficient multiplicity function it appears is when
\[n = \text{l.c.m.} \left\{ \card f^{-1}(y) : y \in Y \right\} \]

and then
\[m(x) = \frac{\card G_x}{\text{g.c.d.} \left\{ \card G_x \right\}} \]

Thus when \(X \) has one orbit type \(G/H \) we can take all \(m(x) = 1 \).

So now given a multiplicity fn. \(m(x) \) we define the trace
\[f \mapsto F \xrightarrow{\text{tr}} F \]

by
\[Ty \in X \mapsto F_y \quad \text{for} \quad \{ f \in \mathcal{F} : y \in f^{-1}(y) \} \]

\[(a_x) \mapsto \sum m(x) a_x . \]

To see this is well-defined we have to show
that it maps continuous sections of \(f^* F \) to continuous sections of \(F \). Work near \(y_0 \) and suppose we have elements \(a_x \in F_{y_0} \) for \(x \in f^{-1}(y_0) \). Then over some subnb. \(U \) of \(y_0 \) we get sections \(s_x \in \Gamma(U, F) \Rightarrow s_x(y_0) = a_x \) for \(x \in f^{-1}(y_0) \).

I want to show that

\[
\sum_{x \in f^{-1}(y)} m(x') s_x(y')
\]

is continuous for \(y' \) near \(y_0 \). However if \(y' \) is really close to \(y_0 \), then each \(x \) is closed to only one \(x' \) and then

\[
\sum_{x \text{ closed to } x'} m(x) = m(x)
\]

so this is all clear.

Conclusion: Whenever a finite group \(G \) acts on a space \(X \) there is a natural trace map on cohomology

\[
f_* : H^i(X; \Lambda) \longrightarrow H^i(X/G; \Lambda)
\]

satisfying \(f_* f^* = |G| \) \(f^* f_* = \sum_{g \in G} g^* \). The universal situation is to define

\[
H^i(X; \Lambda) \longrightarrow H^i(\# S^p(X); \Lambda)
\]

which is the equivariant sum \(u \mapsto \sum p_x^* u \).
Definition: Recall that
\[F \sim (f^*f^*)^G \]
and summing over the group defines a map
\[f^*F \sim (f^*f^*)^G F. \]
Thus one gets the required map
\[H^i(X; f^*F) \leftarrow H^i(X/G, f^*f^*F) \]
\[\xrightarrow{\sigma} \]
\[H^i(X/G, F) \]