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The K-theory associated to a finite field: I

by Daniel Quillen

One of the by-products of the ideas used in the proof of the Adams con-

Mtf %
jecture [3] is awrather-eonvineing argument showing what the groups K, ]Fq for

i>0 s«lmﬂad be in the ''correct'' extension of the algebraic K- theory of Bass and
Milnor to higher (positive) dimensions. In this series of papers I plan to develop

this argument and give a definition of higher K-groups such that the formulas

=0
KZi]F‘q

Koia® :“®11
1~ q q -1

hold for i> 0, where pu denotes the group of m-th roots of unity in an
m

algebraic closure of E‘q. T

In general given a ring A we shall construct an H-space BA whose
cohomology classes are essentially the same as characteristic classes of

virtual representations of groups acting on finitely generated projective A-modules

and whose homotopy group = B, will be the group KiA for i > 1, In the case
i z

A
A = ]F‘q, the lifting of a representation over ]F‘q to a virtual complex represen-

tation furnished by the theory of Brauer provides a map of B

A
Ev? which is the fibre of the endomorphism od _id of BU in the sense of

to the space

homotopy theory, By cohomology calculations I shall show that BE“ and

q
E\Ifq are thereby homotopy equivalent, and so obtain the above formulas,

14
The paper presents the part involving the cohomology of B or

E‘ b
q
more precisely since this space is not defined here, it is devoted to studying

the characteristic classes of representations over }F‘q, The principal result
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is the computation of the mod £ cohomology of GLHI’E‘Cl where £ is a prime
number not dividing g. Because the writing was easier, I have used where
possible the elementary method introduced in the Adams conjecture paper
for getting at this cohomology instead of the more powerful technique
utilizing etale cohomology and the Lang isomorphism G/G(]Fq) = G which will
be presented in [4]. However, the elementary approach has the disadvantage of
not working in the exceptional case £ =2 and gq =3 (mod 4), so to finish the
calculation for £ = 2, I have had to appeal to the results of [4],

Section 1 contains the construction of certain characteristic classes in
mod £ cohomology for representations over IF‘q which I call its arithmetic
Chern classes, In part II of this series another definition of these classes will

be given by applying certain universal cohomology classes of Eo?

to the Brauer
lifting of the representation, but here I have derived their existence from the
general Chern classes for representations defined by Grothendieck [1]. In the
second section the cohomology I—I*(GLnE‘q, Z/1) is computed by showing that it
restricts injectively to the cohomology of a subgroup c™ analogous to the
maximal torus, and then by proving that the subring of "Weyl group' invariants
in the cohomology of c™ s generated by the restrictions of the arithmetic
Chern classes of the canonical representation of the general linear group

(£ odd), Needed for this is a (probably known) result presented in §3 determining
®A[dxl, cee, dx ]

n

X

the subring of elements of the de Rham complex A[Xl, v oo

o
invariant under the action of the symmetric group.

Sections 4 and 5 are devoted to generalities about characteristic classes,
which although trivial in some sense, furnish strong intuition for algebraic
K-theory of higher dimensions. In particular it 1sclear that there should be
two kinds of K-groups KiA and K'iA, coinciding for i =0, 1, depending on
whether one works with the Grothendieck group RA(G) of virtual representa-
tions, which is generated by representations of G on finitely generated
projective A-modules with relations coming from exact sequences, or with

the larger Grothendieck group R‘A(G) of fine virtual representations having

the same generators with relations coming from direct sums. Formulas for



the groups KA ®@ Q and K'A ® @ in terms of characteristic classes in

i i
rational cohomology are given in 5,21, Finally, section 6 contains the results
on the characteristic classes of representations over ¥ , most of which are

easy consequences of the computation in §2, In particular we determine (6.9)

the structure of the Hopf algebra H>,<(GL(]Fq), Z/1).

§1. Arithmetic Chern classes of representations over a finite field, Let

]Fq denote a finite field with q elements, let Eq be an algebraic closure of
E‘q, and for m relatively prime to q let b be the group of m-th roots of
unity in Eq, Let £ denote a fixed prime number not dividing q and let r be
the degree of the extension E‘q(pl); r is the least positive integer such that
q' -1 is divisible by .

Let H*(G, M) be the cohomology of the group G with coefficients in the
G-module M, and form the bigraded ring

S @k 3 ®i
(1.1) H(G w, )= & H@G, p, )
i,j>0
®i | . . s
where M, is the i-fold tensor product of the abelian group p, with itself

endowed with the trivial action of G. The ring structure comes from the cup

product and is anti-commutative with respect to the degree j. We denote by
>k ®>}<
(1.2) H(G, u, )]

the ring obtained from 1.1 by adjoining an element ¢ satisfying

2
e =0

ea = (-1)ae if a < H(G, w@l)
By a representation of G over ]Fq we mean a vector space E of
finite dimension over ]F‘q endowed with a linear action of G,

Theorem 1.3: To each representation E of a group G over B is
—o=0rein g —

canonically associated a collection of cohomology classes




2jr Y
!
et (E) e H7UG, b,

with the following properties:

1.3.1: These classes depend only on the isomorphism class of the

representation and behave functorially for the restriction homomorphisms

associated to a homomorphism of groups.

1.3.2: C_;I‘(E) =0 =c'"(E) if jr > the dimension of E,
Jr -
1.3.3: (Product formula.) If

0 > B! E En > 0
is an exact sequence of representations, then c(E) = c(E')c(E'") where
sk (B
(1.4) ¢(E)= = ¢ (E)+c!' (E)e e H (G, p, )]
i>0 jr jr £

with c'o(E) =1 and c‘O'(E) = 0, In other words

c.l (E)= 2 c (E')c (E") a, b>0
jr a+b=] ar br -
(1.5)
1 (E) = ! B 1 En I ! 1 B
GlB) = B BB ¢ e (e, ()
1.3.4. (Normalization.) Let C be the cyclic group n . - E‘q(pﬂ) ,

q -1
and let W be the natural representation of C on ]Fq(p,ﬂ) given by multipli-

cation, but viewed as a representation of dimension r over I ., Then
q

)r-l r r-1

c(W) =14+ (-1 (u +u ve)

where u ¢ HZ(C, M) 1is the class corresponding to the extension

£

i
(1.6) 0 My Mo - —> . > 0
L(q -1) q -1

1 .
and where v e H (C, p.ﬂ) is the class corresponding to the homomorphism




(1.7) (1-q")/L i | —>y,

g -1

(It is an easy consequence of theorem 2,2 (or 6, 8) below that the char-

acteristic classes C%r and c‘.'r are uniquely determined by properties 1.3, 1,
J

1.3.3, and 1.3.4,)

We shall call the classes C_%r(E) and CEi'T(E) the arithmétic Chern
classes of the representation E, for as we shall see in the proof of this theorem
they are special cases of the very general Chern classes introduced by
Grothendieck [1]. (The adjective "arithmetic' is used as in [1, §5]; strictly
speaking only the classes cé‘r(E) are of arithmetic nature since the classes
c',r(E) do not change if the scalars are extended to a larger field.) Another
c:‘onstruction of these classes will be given in Part II,

We turn now to the proof of the theorem. As the groups GLn(]Fq) are
finite, it suffices to restrict attention to representations of finite groups G,

We recall that Grothendieck [1, §5], using the etale cohomology of the projective
scheme MPE with G as operators, has defined (mod £) Chern classes
(1.8) c.(E) GHZi(Gxﬂ, p£®i)

1

where m is the Galois group of —]}—?‘_q over ]Fq and the cohomology is the con-
tinuous cohomology of the profinite group G x w with G acting trivially on My
Now w is a free profinite group with distinguished generator given by the

Frobenius automorphism QR Xq, hence one knows that

®i

B (m, b, ) =0 if either j>2 orif i#0 (mod r)

and that if i is divisible by r then

o @i @1
H (Trii I‘L£ ) - Hﬂ

1 Qi @i
H (TT, P"£ ) - H,ﬁ &

1
where zt—> z.¢ is the isomorphism of H° and H given by cup product with




1
the element ¢ of H (w, Z/f) corresponding to the homomorphism 7 —> Z/{

sending ¢ to 1 (mod £). Using the Kunneth formula

® _
G xm, b, )= ® WG, B, b, )

we find that

®;
H (G x T, b, =0 if i#0 (mod r)

and that if i is divisible by r then there is an isomorphism

@1

. ®; .
' ) —> 1 (G x T, by )

H(G, b, o1

i-1
)© H' (G,

B 4 *';‘ S
1a pl‘l 2. Pr_E€

(a, b) —> pr )

Therefore we conclude that
ci(E) =0 if i# 0 (mod r)
. 2jr Djr
and that there are unique elements CSr(E) e H" (G, M, ) and ¢ (E) ¢

2iT-1 ®jr T

(GS H[

) such that

10 . E _ sk v E Sk . E n sk :
(L. 9) CJI“( ) prchr( )+pr‘lcjr( ). PT,E

It is completely straighforward to verify properties 1,3.1 - 1.3, 3 using the
corresponding properties for the Chern classes 1,8 [1, 2.3].

To prove the normalization property 1,3, 4 will require some com-
putation, We first consider the case where f divides q-1, hence r = 1,
and we compute the class cl(W) where W 1is the representation of
C = Hq—l on E‘q given by multiplication, According to the general setup
of [1], we consider the topos of etale sheaves with C-action over the
scheme Spec E“q and associate to W an invertible sheaf of modules IL
whose first Chern class (mod £) is cl(W) by definition. This topos may

be identified with the category of sets on which C x m operates continuously,

and the structural ring ( of the topos is ﬁq with trivial C-action and



the obvious w-action., The invertible sheaf I associated to W is F  with
the obvious w-action, but with C acting by multiplication, The torsor for (J

associated to IL. is the abelian group Eq with (g, a) e C x v acting by
1 —
(g, a)h = g.a()), and the class of IL, cl(L) ¢ H @x , E‘q), is represented

by the crossed homomorphism

-1
h(g, a) = g.a(Mx
for any \ e Eq Taking A =1, we see that cl(IL) is represented by the
homomorphism h:Cx —%E‘-q given by h(g, a) = g.
By definition cl(W) = gcl(IL) where 3 is the coboundary operator for
the exact sequence of C x 7 modules
¥ —3k

0 ST > T 0
e q q

where C acts trivially., Recall that § is computed on the cochain level by

03

lifting the crossed homomorphism h to a continuous map h' : Cxnm—>F

q
£
such that (h')” =h and then taking the cocycle &h' whose values lie in My

Choose a morphism of sets s : C —> My with s(g)ﬂ = g; then we can

(q-1)

take h'(g, a) = s(g), so Cl(W) is represented by the 2-cocycle

\ -1 -1
(1.10) 8hilley, ap), (2,0 a))) ={asle,)s(e,)” I s(g,)s(g,8,)" s(g))]

The term in square brackets represents the inverse image under

pr, Cxm—> C of the extension 1, 6, hence it represents the element

3 2
priu of H (C xm, Hi)"
Consider the cocycle t given by the term of 1,10 in curly brackets.

It will be convenient in what follows to write the group operation of pﬂ(q )

)

additively; then t is the continuous function such that

Mgy @ ) (g @ = -Ds(g,)

if m, and m, are non-negative integers., This may be rewritten




m_-1
(1.11) (L+...+q & l@-1/e)Es(g,) = m [(a-1)/L.g,]

Now the map qpm —>m (mod £) extends by continuity to the homomorphism
1
representing the element ¢ of H (w, Z/f), while gr—>(1-q)/L.g is the

homomorphism v (1.7), hence 1,11 shows that t is a 2-cocycle representing

I,

the cup product - prze przv and so we conclude that

(1,12) c (W) = pr’pu + przv,przs

1 1

Thus c‘l(W) =u and c'l‘(W) =v, sol,3.41is proved in case { divides qg-1.
We consider now the general case where W denotes the representation
of C over I  obtained by restricting the scalars from the one-dimensional

representation I, given by the multiplication in IE'“q(p ). Let w, @', &' be

£
defined for the finite field E’q(pﬁ) in exactly the same way as w, @,¢

were defined for ¥ , Then w' 1is the profinite subgroup of w with generator
r

@' =¢ and

(1.13) res (g) = re!

where from now on res denotes the restriction map on cohomology from
to 7' (or from Cxw to Cxw')., Itis an immediate consequence of
Grothendieck's definition of the Chern classes 1,8 that their formation is

functorial with respect to extension of scalars, hence

res (¢(W)) = ¢c(W @__ I (uﬂ))

)it
q q
I a
=c(® L®q )
a=1
L a
= |l (1+aq cl(L))
a=1
-1
1+ (-1)" cl(L)r

where c¢ is the total Chern class and we have used the identity



X" -l=z |[[(X-qY) (mod £)
By the case of 1, 3,4 that has already been proved (1. 12) we have

2
Cl(L) zu+ve' e H (Cxm', Hl)

where we have suppressed the pr; to save writing. Hence

Using 1,13 and the fact that res is injective because [m:7]=r is prime to £

5

we obtain

c (W) = 1" T e ]

which proves 1.3, 4 and concludes the proof of the theorem.,

§2. Computation of H*(GLn(]F‘q), Z/%). To simplify the writing, we
abbreviate H*(G9 Z/1) to H>‘<(G) and we fix a generator { of By using the
cup product isomorphism

(2.1) N Tarrey z/1) —s u'(q, w@i)

to identify the arithmetic Chern classes cér(E), c',‘r(E) of a representation E
over ]Fq with elements of H>'<(G),

Let n be a fixed positive integer and denote by En the canonical

n
representation of GLn(]Fq) on IF‘q., Set n=mr + e with 0 <e<r,

Theorem 2, 2; HqP(GLn(IFq)) has a basis over Z/{ consisting of the
monomials
“1 “ Bl BIn

m
2, "(E veo.C! " ea.cC!! =
(2.3) Cr( n) Cmr(En) Cr(En) Cmr(En) CLi z 0, Bi 0 °r L

If either £ isoddor £ =2 and q=1 (mod 4), then H*(GLH(]Fq)) as a ring




10

ig the tensor product of the polynomial ring with generators Cgir(En)’ 1 <j<m,

and the exterior algebra with generators c!' (E ), 1 < j< m,
jrn - =

(The last statement isn't true if £ =2 and g = 3 (mod 4), in fact in

this case the ring H*(GLn(]Fq)) has no nilpotent elements, For example,

ofe
K

when n = 1, the Sylow 2-subgroup of E“q is cyclic of order 2, so H>'<(]Fq)

is a polynomial ring with one generator c;l'(El), )

For the proof of 2,2 we will need a conjugacy class of subgroups of

GLn(IF‘ ) which for the mod £ cohomology play a role similar toc maximal tori

in compact connected Lie groups, Let C be as in 1.3.4, and let " ¥ Z/r

£
actions of C and m_oon B (Hﬂ) we obtain a representation over ]Fq of the

denote the Galois group of the extension E‘q(p, ) of ]Fq. Combining the obvious
- ~ m e .

semi-direct product m X C. Let V = ]Fq(uﬂ) @ ]Fq; the symmetric group Zm

acts naturally on the first summand and GLe(]Fq) acts on the second. Combining

these with the action of T X C in each of the E‘“q(}.l.ﬂ) - factors, we obtain a

representation of the group

o

(2.4) N=[2 X(r XC
T 0]

7] X GL ()

as I -linear transformations of V, This representation is faithful, so upon
choosing a basis for V we can regard N and its normal subgroup c™ as
subgroups of GLn(IF‘q), wnill-defined up to conjugacy. It is easily verified that
N is the normalizer of C in GLn(lF‘q) and that the "Weyl group, "' i, e. the

group of automorphisms of c™ produced by inner automorphisms in N is

(2.5) W =3 §<“wzn

acting in the obvious way on Cm. We denote by

(2.6) R : H>'<(GLn(ET‘q)) — s u ™Y
the homomorphism induced by the restriction from GLn(]Fq) to Cm.

Theorem 2,7: The homomorphism R is injective. E £ is odd,

then it is an isomorphism. (It is definitely not an isomorphism if £ = 2




11

and n>2.)
Remark 2, 8: This theorem shows that the multiplicative structure in
the exceptional case £ = 2, g = 3 (mod 4) can, at least in principle, be worked

1

out by computing in H*(Cm); the same goes in genefal for the action of the
Steenrod algebra,

We now take up the proofs of 2.2 and 2, 7. It will be convenient to
exclude the case £ =2 and g =3 (mod 4) until the end. We begin by showing
that R is injective by the method used in [3].

Let N' denote the subgroup Z)m >’\<JCH1 of N andlet £° be the highest
power of { dividing qr-l. As the mod £ cohomology of C is detected by
abelian subgroups of exponent 2 (i.e. a cohomology class is zero if it restricts
to zero on all such subgroups), the same is true for the wreath product

~ o IX1 z
meC by [3, 35] But

1

n .
qn(nnl)/z_T(ql—l)

j=1

GL ()|

IN'| =m! (q" -1)™

and q, qi-l for i% 0 (mod r), and (qu_l)/j(qr-l) are [-adic units (here
is where £ =2 and q =3 (mod 4) must be excluded); hence N' is of index
prime to £ and so the mod £ cohomology of GLn(E‘q) is detected by N,
hence by abelian subgroups of exponent ﬂa. But any such subgroup A is
conjugate to a subgroup of c™ as one sees immediately by using the fact
that any non-trivial irreducible representation of A over F is the re-

).
4
Therefore C detects the mod £ cohomology of the general linear group

striction of scalars of a one-dimensional representation over I (u

and R is injective,
Next we find formulas for the images of the arithmetic Chern classes
of En under R, Let W, u, and v beasinl,3.4 except that u and v

are to be regarded as elements of H*(C) by means of 2,1, The cohomology

of the cyclic group C 1is known to be
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(2.9) H(C) = S[u] ® A[v]

The group ™ is generated by the Frobenius automorphism @ which acts on

H (C) by ¢™(uw) =qu, ¢ (v) = qv, hence

S w
H (C) = S[x] ® Aly] where
x = cl (W) = 1) T
y=enw) = (-1 "y

Denoting by a subscript i the inverse image under the i-th projection

pr, : ct—» C, we have

. 10) H>'<(C ) = 8[x X ®A[y1, s Y 1,

m] m

so the right side of 2, 6 is the ring of invariants of this for the natural action
of Zm. The restriction of En to C™ is isomorphic to the direct sum of the

Wi and a trivial representation of rank e, hence by the product formula 1, 3.3

m m
R(C(En)) = f l C(Wi) = ! '(1 + x, + yie) 50
1 1
(2.11) R(c! (E ) = > x ... x,
e PSP T Y
1 T
R(c! (E )) = = X, Q el XY
TR« <i 'k Yok
<<y
1<k<j

where the roof means the factor is omitted.
Let ¢! (resp. c','r) be indeterminates of degrees 2jr (resp.
Jr J

2jr-1) for 1< j<m and let

(2.12) F: S[c‘r, ey c'mr] @ A[c'r', cees c;ﬂr]———e H (GLn(]Fq))

be the map of vector space over Z/{ which sends the monomial
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al a 61 B
(2.13) (ct) " (e ) m(c;) RIS m

to the monomial 2, 3, Let us consider the right side of 2.10 as the de Rham
complex of S[Xl, o e Xm] with dXi =Y, and the left side of 2, 12 as a de Rham
complex with dc! =c¢!". From 2,11 we have that d[RF(CEir)] = RF(Célr)’

Jr Jr
hence the composition

=

@A[ylg...,y 1} m

(2.14) RF : S[c',...,c' ]® Afc",...,c"
r mr r m

mr]——> {S[Xl’ R S

)
is essentially the homomorphism of de Rham complexes associated to the inclusion
of the symmetric polynomials in S[Xl’ ce ,xm]. Since R is injective and RF is
a ring homomorphism it follows that F is a ring homomorphism., In the next
section we shall show (3.2) that RF is injective and even an isomorphism if {

is odd. Consequently when £ is odd both R and F must be ring isomorphisms,
which proves 2.2 and 2.7 in this case. We have also proved that when £ =2

and g =1 (mod 4), then F is an injective ring homomorphism.

In the case £ =2 and q =3 (mod 4) formula 2,10 must be replaced by

m

H*(C ) = S[Y1: v ’Ym]

and the formulas 2,11 are still valid with X, = yiz. Filtering by the powers of
the ideal (Xl, cees xm) the associated graded ring is

sk m
gr H (C )_S[Xl,...,xm]®A[y1,...,ym]

and the images of the elements RF(c&r) and RF(c&'r) in the associated graded
ring are again given by the formulas 2. 11, Thus the images of the monomials
2,13 in H*(Cm) are independent since they remain independent in the
associated graded ring by what we have already proved. Therefore for £ = 2
and any q we know that RF is injective,

To finish the proof we appeal to the results of [4] which show that there
is a spectral sequence converging to H*(GLn(}F )} whose E2 term is of the

form S[c.,...,c [®Afle ,...,e ] where c. has degree 2i and e. has
1 n 1 n i i
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degree 2i-1, This spectral sequence shows that the cohomology of the general
linear group is at most as big as the source of F, so F is bijective and R is
injective, proving 2,2 and 2.7,

For the sake of completeness we sketch the construction of the spectral
sequence just mentioned, Let G be the algebraic group GLn over Eq and
regard G(]Fq) = GLn(]Fq) as being the fixed points of the Frobenius endomorphism
g of G Which raises the coordinates of a matrix to the g-th power. Let BN be
the Grassmannian variety over Eq of n-planes in N-space, and let
fN : PN —> BN be the principal G-bundle furnished by the n-frames in N-space,
One can show that the mod £ cohomology of PN, in the sense of the etale
topology, is zero in a range of dimensions increasing with N, hence from the

spectral sequence of the covering P _—> PN/G(]Fq) one finds

N

H (G(}F‘q)) = 1_1_)m H (PN/G(]Fq))

By Lang's theorem there is an isomorphism of varieties

G/G(F ) =G
/G )

XG(]Fq) —> x(gx)

hence PN/G(]Fq) _— BN is a locally trivial fibre bundle with fibre G. The

associated Leray spectral sequence can be shown to be of the form

2P - 5B ) @ H(G) —> H*(PN/G(E‘q))

so letting N go to infinity and using the standard formulas for the cohomology

of G and the Grassmannians, one obtains the required spectral sequence

R cn] ® A[el, e en] —>H (GLn(qu))

§3. Appendix. Symmetric invariants in the de Rham complex, Let A

be a commutative ring, let C = A[x e xn] be a polynomial ring over A,

17



A

15

and let the symmetric group Zn act on C by permuting the X, Let B be
the subring of invariant elements of C for this action; it is well-known that
B is a polynomial ring: B = A[cl, v cn], where < is the i-th elementary
symmetric function of the X The inclusion u: B—> C induces a map of
de Rham complexes relative to A

(3.1) U:A[cl,...,cn]®A[dcl,...,dcn]~——>{A[xl,...,xn]®A[dx1,.,.,dx 1}

n

where Ale ..,e_] denotes the exterior algebra over A with generators
n

e ., € . For example
n

1’
U—(Cl) = ZXi U(dcl) = dei
u(CZ) = ,Z.Xixj U(dcz) = _Z,Xidxj
i<j i#j

Proposition 3.2: The homomorphism U is injective. If 2 is nota

zero-divisor in A, then U is an isomorphism.

Remark 3,3: If 2 is a zero-divisor in A, then U will not be an
isomorphism for any n > 2.
The rest of this section will be concerned with the proof of 3,2, Let J

be the Jacobian of the < with respect to the x5 by using unique factorization

in Z[Xl’ ce ,Xn] one sees easily that
T=+ T (x-x)
i<j ]

2 - -

hence J ¢ B. Set C' = C[J l} and B' = B[(Jz) l] and let u' : B'—> C' be
induced by wu; then u' (or more precisely the associated map of spectra) is a
principal covering with Galois group z [2, SGA 1960-61, V, 2.7]. As w
is etale one has

' ® . ~ o

© ®g 2,97 9% /a

where @' denotes the de Rham complex, and by Galois descent [2, SGA
1960-61, VIII] one knows for any B'-module M that
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M 2 (C' @_ M)
Bl

Combining these we have that u' induces an isomorphism
Z:n

QB /A~
2

But this map is what one obtains by localizing U with respectto J , hence we

have shown

Lemma 3.4: U becomes an isomorphism after localizing with respect to JZ.

As J is a non-zero divisor (it is a product of the non-zero divisors

-x, -x, in C), it follows that U is injective.

1 J
Let o = f(x)dx1 v dxn be an invariant form of highest degree; then f
is an anti-invariant polynomial, i, e, c"‘(f) = (-1)Uf for ¢ge Zn. Let V be the
set of orbits of the symmetric group on the set of monomials
a, a
=% = x) cen X n. Then we can write f = Z‘fv, veV, where f is the sum of
v
those terms of the polynomial f involving the monomials in the orbit v, Clearly
fv is anti-invariant, Fixa v eV suchthat f #0, let x* be a monomial in the
v

orbit v, and let H be the subgroup of the symmetric group fixing x%, If s is
~a

the coefficient of x* in fv, then s = (-1)0s if oeH and
a

where T runs over left coset representatives for H in Za' So now assume that
a 1
2 is a non-zero divisor in A, Then the function grH—> (-1)9 is identically one on
Ha’ hence f =3 s_8 with s ¢ A, where g is an anti-invariant polynomial with +1
v v . v -

coefficients. Bgﬁ using unique factorization in Z[xl, ooy xn], one sees that

g =h J where h 1is a symmetric polynomial, Therefore with b =3Xs h

v v v v v
we have

w=bJdx_,.. dx = U(bdc. ...dc )
1 n 1 n

proving that U is surjective, hence an isomorphism, on forms of highest degree,
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Suppose next that , is an invariant p-form. By 3,4 there is an integer

N such that

2N
(3.5) J w=ZU(b.dc) b_eB
I 1 I
where I runs over the set of sequences 1 < il <...<i_<n and
dec_=dc, ... dc,
I 1 i
1 P

Suppose N 1is the least non-negative integer such that a formula of this kind

holds. If I' denotes the sequence of length n-p complementary to I, then

2N
J wU(ch‘) =+ U(bIdcl, . .dcn)

and on the other hand wU(ch') is an invariant n-form, hence by what we have
just proved there is a g in B such that wU(ch‘) = U(gIdcl. .. dcn); thus

JZNgI =+ bI for all I. Putting this back into 3.5 and using that J is a non-
zero divisor, we see that N must be zero by its minimality, hence (, is in

the image of U. Thus U is surjective and the proof of 3,2 is complete.

§4. Some generalities about characteristic classes with field coefficients,

In this section and the next M, = (M')'>O will denote a non-negatively graded
i'i
P-module where P is a field (we use the dot notation o avoid an epidemic of

stars). If G is a group let H.G be its homology with coefficients in P,

and set

(4.1) %G, M.) = JTuYG, M)
>0 !

By the universal coefficient formula there is a canonical isomorphism

(4,2) H%(G, M.) = Hom(H.G, M.)

where on the right is the set of degree zero homomorphisms of graded

P-modules, This isomorphism is determined by the element




18

(4. 3) W ¢ H°(G, H.G)

corresponding to the identity homomorphism of H. G.

The Kunneth formula gives a canonical isomorphism
(4. 4) HG®H.G' = H. (G xG'")
in terms of which one defines the cup product
o o o
(4.5) H(G M. )X H((G, M.")—>H (GxG', M. @ M.")

by associating to a pair (u, u') the composition of u ® u' and 4. 4.

Let ( be the category of '"groups up to inner autornorphisms''; it is the
category having groups for its objects with a morphism from G to G' defined
to be an orbit of the set of group homomorphisms from G to G' under the
conjugation action of G'. The homology and cohomology of a group are
naturally functors on (! with values in P-modules. Let (" be the category
of functors R : ( ° > Sets, and identify C with a full subcategory of (" by
associating to X the functor I—IornC (?, X). (We leave to the reader to supply
the necessary modifications of this language to avoid set theory paradoxes, e, g,
by restricting to functors R having a generating set; this will be true for the
functors R appearing in the applications,) We extend the cohomology functor
to (" by setting
R, M.) = Homcl\ (R, H(?2, M.))

Such a natural transformation will be called a characteristic class for R

(4.6) H

with coefficients in M,., The homology H.R is defined so as to generalize

4,2; thus recall that

R(G) = lim Hom(G, X)
C/R

where the inductive limit is taken over the category of arrows X —> R in ("



19

with X an object of ( , hence

(4.7) HO(R, M.) = Lim Hom (H,X, M.) = Hom
X

P(H° R, M.)

where
H.R =1lim H. X
57
C/R

Put another way the homology H.R comes with a canonical natural transformation

(4. 8) wp ¢ R(G) —> 1°(G, H.R)

which is a universal characteristic class in the sense that any characteristic
class for R with coefficients in M. is induced from Vo by a unique

homomorphism H.R —> M. of graded P-modules,

Given two classes u e I—IO(RD M.) and u' ¢ HO(R', M.'), we define their

cup product to be the composition

' | 4.5
R(G) x R'(G) === 17(G, M.) x HY(G, M.") —=> > %G x G, M. ® M. ")

A o
—> H (G, M. ® M, )
By the universal property of Wo there is a canonical homomorphism

(4.9) H({(RxR')—=>H,R ® H,R'

inducing this cup product,

Lemma 4,10: The map 4.9 is an isomorphism,

Proof, A homomorphism
(4.11) HR®@HR —>M,
is the ""same' as a homomorphism

H.R —> Hom_ (H.R', M, )

@ 2

P
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where

H M., M."). =[] M., M! .
omp( )5 = || Homp, (M, i+j)
120
This is the same as a natural transformation
R(G) —> HomP(H. G, HomP(HD R', M,).) = HomP(H,R', HomP(H. G, M.).)

with variable G, or again the same as a natural transformation

R(G) x R'(G'") — Hom _(H.G!', I—IomP(H. G, M.).)

P
= HomP(Ho G@®H.G', M,) = HO‘mP(H, (G xG'), M.)

with variable G and G', where we have used the Kunneth isomorphism 4, 4,

But the latter is easily seen to be the same as a natural transformation

R(G) x RY(G) —> I—IOInP(H° G, M.,)
which is the same as a homomorphism
(4.12) H.(RxR')y—>M, ,

so we have established a bijection between homomorphisms 4.11 and 4. 12,
proving the lemma,

Suppose now that R is endowed with a commutative monoid structure,
Using the lemma, the operation R X R —> R gives rise to a product on H.R
making it a graded anti-commutative algebra. One sees immediately from the
definitions that the canonical map 4.8 is a homomorphism of monoids, where
the right side is endowed with the operation given by cup product. In general
if S, is a graded P-algebra (anti-commutative is to be understood unless

stated otherwise) then by an exponential characteristic class for R with

coefficients in S, (exponential class for short), we mean a natural trans-

formation v : R —> HO(?, S.) which is a monoid homomorphism for the
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cup product operation on the right, i.e.

v(0) =1
(4.13)
v(x +y) = v(x)v(y)

The following results immediately from the definition of the algebra structure on

H.R and the universal property of W

Proposition 4. 14: The algebra structure of H.R is characterized by the

requirement that Wa (4.8) be an exponential characteristic class., Moreover w

is a universal exponential class in the sense that any other with coefficients in S,

is induced from Vo by a unique homomorphism H.R —>S. of graded

P-algebras,

If M. is a graded P-module then by an additive characteristic class for

R with coefficients in M. (additive class for short) we mean a natural transfor-
mation a : R —> HO(?, M.) which is a monoid homomorphism for the addition
operation on cohomology. Clearly such a natural transformation is additive if

and only if 1 + a: R—> HO(?, P & M.) is an exponential class, where P @& M.

is the algebra with (M. )2 = 0. Let H.R be the augmentation ideal of H,R
and let

= = _ .2
(4. 15) p:H.R—> JH.R = H.R/(H.R)

be the projection onto the augmentation ideal followed by the canonical map to
the space of indecomposables, Since algebra homomorphisms from H,R to
P ® M. are in one-one correspondence with module homomorphisms from
JH.R to M. , We obtain

Corollary 4.16: The composition

W P,
R———R———>Ho(?, H.R) H(2, QH.R)

is a universal additive characteristic class with coefficients in a graded

P-module.
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Let i : M., —> Sym(M.) be a universal arrow to the underlying module
of a graded anti-commutative algebra; clearly the composite

p>‘<W i>,'<
(4.17) R— B 10 m.Rr)——>u°%2, Sym(Q H.R))

is a universal additive class with coefficients in (the underlying module of) a

P-algebra, Suppose that P is of characteristic zero and that R is connected,

by which we mean that HOR = P, or equivalently that R(e) = 0 where e is the

single element group. If v is an exponential class with coefficients in S., then

the series

logv =23 (-1) “(v-1)/n
n>1
converges in the natural topology of the product 4.1 and is an additive class;
one obtains in this way a one-one correspondence between exponential and
additive classes, the inverse being given by the exponential series. Consequently

the homomorphism which induces the additive class log WR from 4,17
(4,18) Sym(Q H.R) o R

is an algebra isomorphism; in fact it is a Hopf algebra isomorphism as log
is a homomorphism for the abelian group structures on the sets of exponential
and additive classes. (This isomorphism is of course well-known in the

theory of Hopf algebras [5].)
Remark 4,19: We have not used the explicit nature of ( , in fact the

above discussion is completely formal once given the functor H. and the

Kunneth isomorphism 4. 4.

§5. Characteristic classes of virtual and fine virtual representations,

We continue with the notations of the preceding section. Fix a ring A, which

need not be commutative; by a representation of a group G over A we mean

a projective finitely generated A-module endowed with an A-linear action of

G. The Grothendieck group R, (G) (resp. RA(G)) is defined as the target of

A
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a universal arrow, denoted E > [E], from the set of isomorphism classes of

representations of G over A to an abelian group such that the relation

[E] = [E'] + [E"] holds whenever

(5.1) 0 —>E' —> E E" >0

is an exact sequence of representations (resp. a split exact sequence), There is
an evident surjection

(5.2) RA(G)——-%R (G)

A

Elements of RA(G) and R'A(G) will be called virtual and fine virtual represen-
tations of G over A, respectively.

Note that the group homomorphisms e —> G —> e, where e is the
single element group, give rise to splittings
R,(G) =K A@®R, (G)

R, (G) =K A &R, (G)

(5.3)

where KOA is the Grothendieck group of projective finitely generated A-modules.
Elements of the barred groups will be called reduced virtual and fine virtual
representations., For the rest of the section all representations are to be under-
stood as being over A unless mentioned otherwise, and we abbreviate RA to
R, etc.

Let GLn(A) be the group of automorphisms of the A-module A" and
let GL(A) be the union of these under the inclusion maps furnished by the
canonical isomorphisms A" DA = An+1, (We abbreviate these groups by GL,Q
and GL when no confusion is possible,) Let InG denote the set of isomorphilsm
classes of representations E of G whose underlying A-module is isomorphic

n
to A, so that there is a functorial isomorphism

(5. 4) I G=Hom (G, GL )
n n

C
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The direct sum of representations gives morphisms of functors

(5. 5) I xXI —>1
m n m+n

and taking the direct sum with the trivial representation 1 of G on A

furnishes maps In —> Irl permitting us to form the inductive limit

+1°
IG=1IImI G
S n

whose elements will be called stable representations of G. From 5.5, IG

inherits a natural commutative monoid structure, and there is a functorial

monoid homomorphism
(5.6) IG —> R'(G)

sending an element E of InG to [E] - n[L].

Lemma 5, 7: R_‘(G) is the abelian group generated by IG, 1i,e, the

arrow 5, 6 is a universal homomorphism from IG to the underlying monoid

of an abelian group,

Proof, One sees easily that R'(G) is isomorphic to the abelian group
generated by the monoid of all isomorphism classes of representations of G,
hence we may identify elements of R'(G) with equivalence classes of pairs

(E, F) of representations with the equivalence relation
(5.8) (E, F) =(E', F') iff E4 F'+Q=E'+F +Q

for some representation Q. The subgroup -R_'(G) consists of classes of
pairs (E, F) such that the underlying A-modules of E and F are
isomorphic, On the other hand, elements of the abelian group U generated
by IG may be identified with equivalence classes of pairs (E, F) where E
and F are representations on isomorphic free A-modules with the same
kind of equivalence relation 5.8, but with Q free as an A-module. Now the

map from U to R'(G) induced by 5.6 is surjective because given any pair
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(E, F) representing an element of E‘(G), there is a projective finitely
generated A-module Q with trivial G-action such that E+ Q and F + Q
are isomorphic free A-modules. Similarly one can assume that the Q in
5.8 is free over A, sothe map U -—>—R_'(G) is injective and the lemma is
proved,

We shall now discuss the characteris{:ic classes of stable, virtual, and
fine virtual representations with coefficientk‘sggzraded modules and algebras over
the field P, Because of the splittings 5,3 and lemma 4. 10, there are Hopf

algebra isomorphisms

H.R = P[K A]® H.R
(5.9) _
H.R' = P[K_A] ® H.R'

where P[KOA] is the group algebra of KOA over P, In other words any
exponential class u for R can be uniquely written as a product u = ULy
where v, depends only on the underlying A-module of a representation (i. e,
it factors through the projection of R onto KOA), and where uy is an
exponential class for R, Moreover 5,9 shows that all characteristic classes
for R can be expressed in terms of those for i; similar comments hold for
R' and R'.

For stable representations we have

IG = lim Hom , (G, GL )
— C n
n
hence
(5.10) H.I=lim H.GL = H.GL
-I—1-> n

More precisely, there is a unique natural transformation
(5.11) w: IG —> H (G, H.GL)

such that if E is a stable representation and G —> GL is the associated

:
I
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map, then w(E) is the element corresponding under the isomorphism 4.2 to
the induced map on homology; moreover w is a universal characteristic

class for I, Since I is a monoid-valued functor, we know by 4, 14 that H,GL
has a unique algebra structure such that w is an exponential class, Now I

is connected, hence any exponential class for I with coefficients in S, takes
its values in the group of units of HO(?, S.) reducing to 1 in HO(?, SO), and
so by lemma 5,7 such a class extends uniquely to R'. Therefore exponential

classes for I and R' are the same, i.e. 5.6 induces a Hopf algebra isomorphism
(5.12) H.GL —> H, R’

As characteristic classes are just linear maps from homology, this proves the
following:

Proposition 5, 13: Any characteristic class for stable representations

with coefficients in M. (this may be identified with an element of I—IO(GL, M. ))

extends uniquely to a characteristic class for R'.

Applied to the transformation w we find:

Proposition 5. 14: There is a unique natural transformation

o' : R'(G) —> H (G, H.GL)

such that if E is a representation of G on a free A-module and f: G—> GL

is the associated map in (¢, then 6'[E] is the element corresponding to the

map on homology induced by f under the isomorphism 4.2, Moreover

1) ' is a universal characteristic class for R' with coefficients in

a graded P-module,

2) There is a unique algebra structure on H.GL such that 6' is an

exponential class, and with respect to this algebra structure ©' is a

universal exponential characteristic class with coefficients in a graded

P-algebra.
Finally we consider the characteristic classes of reduced virtual

representations, Let JmnG be the set of isomorphism classes of exact
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sequences 5,1 of representations of G where E' (resp. E') is isomorphic

to A™ (resp. An); then

(5.15) J nG = Hom

o (G, GL__ _(A)

C ,n

where GLm n(A) is the group of automorphisms of A™ @ A" preserving the

first summand, The direct sum of exact sequences gives natural transformations

J X J
n m

taking the direct sum with the exact sequences of
m

'n' m+n, m'+n'’
trivial representations

gives rise to transformations J —>7J SO we
n

m m+l,n m, n+l’
can form the set of stable isomorphism classes of exact sequences

and J —> T
mn

JG = lim J G
— mn
m,n

and endow it with a monoid structure in the natural way. By passage to the

limit we have
(5.16) H.J = H.GL (A)

where GL (A) (GL~ for short) denotes the group of automorphisms of
A° @& A% preserving the first summand whose matrix with respect to the
obvious basis is almost everywhere equal to the identity matrix, Define

natural transformations of monoid functors

u
—— t -
(5.17) J - I—> R

such that tu = tv, where t is the composition of 5,6 and 5,2, and where u
(resp. v) associates to an exact sequence such as 5. 1 the representation E

(resp. E' @ E"), Passing to homology we get morphisms of ‘I—Iopf algebras
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u
sk t
K —— Sk —_
(5.18) H. GL H.GL ——> H.R
v'<

Proposition 5,19: The diagram 5.18 is exact in the category of

P-modules, hence also in the categories of algebras and Hopf algebras over P,

Exactness here means that t, is a categorical cokernel for the pair

Uy Vo The exactness of 5,18 in the categories of algebras or Hopf algebras is
an immediate consequence of the characterization of these algebras in terms of
exponential classes (4, 14) and the fact that the diagram of abelian groups
associated to 5,17 is exact, which results immediately from the definitions.

Let h:I—>J be the natural transformation which associates to a represen-

tation E the exact sequence

then h induces an algebra homomorphism h* : H,GL —> I-I.GL>:< satisfying
u*h* = v*]c1>1< = id, from which one sees easily that the image of u, -V, is an
ideal in H.GL., This shows that the cokernels of u, v in the categories of
P-modules and P-algebras coincide, completing the proof of the proposition.

Corollary 5,.20: A characteristic class 6 for stable representations

extends to R if and only if O(E) = 6(E' © E'") for any exact sequence of

representations,

Immediate, since characteristic classes are linear maps from homology.
Remark 5.21: In another paper we plan to produce connected H-spaces
BA and B‘A whose homology Hopf algebras with coefficients in P are
canonically isomorphic to the Hopf algebras H'EA and HPt‘A respectively,
and whose homotopy groups, denoted by
KA =718 i>1
i TiTA 1z
TA = Bt "
Ki ™. By s

are natural candidates for higher dimensional groups in algebraic K-theory.
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If P=Q, then by a theorem of Milnor and Moore [5, appendix]

= 1 > 1
KA®Q (PHiA 1>

KIA® Q= AHR' = PHGL(A) "
1 i A i
where @ denotes the primitive subspace, which is canonically isomorphic to
the indecomposable space, Consequently if we set K'OA = KOA as in 5,3, then
the rational K-groups are determined by the fact that they come with canonical
natural transformations
R, (G) —> H°(G, K.A ® @)

R (G) —> HO(G, KIA © Q)

which are universal additive characteristic classes with coefficients in a graded

module over ©@.

§6. Characteristic classes of virtual representations over ¥ . In this
section we consider only representation of groups over a given finite field }F‘q
of characteristic p and we abbreviate R]F , GLn(ET‘q) to R, GLn’ etc.,

q

where convenient, We study characteristic classes of virtual and fine virtual
representations, i.e. natural transformations from R and R' to H*(?, M)
where M is an abelian group. As the groups GLn are finite, any element of
R(G) or R'(G) comes from a finite quotient group of G, so for the study of
characteristic classes we can restrict attention to finite groups., Since the
rational cohomology of a finite group is trivial, it is clear that any character-
istic class with coefficients in a @-module is trivial, i.e. it depends only on

the dimension of the virtual or fine virtual representation.

Proposition 6. 1: If M is a module over Z

.(p)_’

the local ring of the

integers at the prime ideal (p)

b

Fepkesentaticonsowein ] «ammi-f-h“anawﬂ' i enbsdneMe—re ta!‘ir'\e}a,—ma . -
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A
¢ M i=0

It suffices to show that if u 1is such a characteristic class and if
x ¢ R(G), then wu(x) = u(0). If Gp is a Sylow p-subgroup of G, then the re-

striction homomorphism
H'(G, M)——%Hl(Gp, M)

is injective by transfer theory, so we may suppose G is a p-group, Butin
this case R—(G) = 0, since irreducible representations of a p-group in charac-
teristic p are trivial, so the proposition follows,

Remark 6,2: I doh't know whether there are any non-trivial characteristic
classes E)r fine virtual representations with coefficients mod p, i.e. whether
Hi(GL(]Fq), Z/p) # 0 for some i >0,

-1
Proposition 6, 3: If M is a Z[p ~]-module, then any natural transfor-

mation u : R' —> Hl(?, M) extends uniquely to R,

Since R' maps surjectively to R, it suffices to show thatif x and vy
are two elements of R'(G) which become equal in R(G), then u(x) =u(y). For
each prime number £ #p let GJZ be a Sylow [-subgroup of G; then by

transfer theory the map given by the restriction homomorphisms

H(a, M) —> [ Hi(Gi, M)
L#p

is injective, so it suffices to consider the case where G is an f-group. But
in this case R'(G) = R(G) as representations are completely reducible
(theorem of Maschke), so the proposition follows.

In the rest of the section we shall use the results of §2 to describe
the characteristic classes with coefficients in the prime field P = Z/f, { # p.
We restrict ourselves to the reduced groups R and R'; by 6. 3 natural
transformations from R and R' to Hi(?, P) are the same, and by 5,13

they may be identified with elements of HI(GL, P)., By thecrem 2.2 and
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letting n go to infinity, there is a ring isomorphism

(6.4) H (GL, P) = S[cr, el ,,.,]!X)A[cr, ch s veo ]

except when £ =2, g 23 (mod 4) when it is only an additive isomorphism. (In
this isomorphism the indeterminates er and cj‘r correspond to the
characteristic classes which associate to a virtual representation x its
arithmetic Chern classes cgr(x) and cj],'r(x) regarded as elements of the

cohomology in P via the isomorphisms 2.1,) The cohomology 6.4 is a Hopf

algebra with coproduct obtained from the product formula 1.5

Act = T ¢ Q¢!

T . ar br
(6. 5) J atb=j
Acl! = X ¢ Qc!' +c' @ c!
. ar br ar br
atb=j

and we now describe the structure of the dual Hopf algebra.

Al

By 2.2, H’l\(GLr, P) has the basis 1, < XJ_ly for j>1 where

x = c'r(Er) and vy = c‘I:(Er), hence given a characteristic class with coefficients

in a graded P-module M,

t : R(G) —> HO(G, M.)

we may define elements § (t) ¢ M and 7M. (t) e M for j> 1 by the

2jr j 2jr-1
formula
j j-1
(6.6) tfE =1+ Z x £ (t) +x "y.n.(t)
f i>1 ]

where the dot denotes the cup product homomorphism (isomorphism for G

finite)
H (G, P)® M, —> H (G, M,)

Let
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(6.7) 6 : R(G) —> H (G, H.GL)
be the universal characteristic class of 5, 14, where 6.3 has been used to
replace R by R.

Theorem 6.8: Associating to an exponential characteristic class t the

family (§j(t), gl (t)),>1 gives a bijection of the set of exponential characteristic

_
classes of R with coefficients in S, and the set of sequences (gj, nj)“>1 with
2 iz
h =
E,j € Ser and nj € Ser-l such that (nj) 0.

Corollary 6,9: The Hopf algebra H, GL(E‘q) is the tensor product of the

polynomial ring with generators E,J = gj(e) of degree 2jr and the exterior

algebra with generators nj = nj(e) of degree 2jr-1 for each j> 1, with co-

product given by

Agj

fl

5ot ®E (8, >0, ¢ =1, 70 =0)
(6.10) 2+b=]
A’r]j: b °§a®nb+na®§b 1
atb=j

except if £ =2 and q = 3 (mod 4) when the first formula must be replaced by

(6.11) AE. = X & @&+ > 7n ®n
. a . a b
atb=j atb=j+1
This follows immediately from the theorem using the universal property
of H.GL as an algebra. The coproduct formulas express how the family
associated to a product t't" of exponential classes is computed from the
families associated to t' and t'; the difference in the exceptional case

2 2
results from the fact that y =x instead of y = 0,

Corollary 6.12: Given elements m!'! (resp. mg') of degree 2jr (resp.

2jr-1) of a graded P-module M. for each j> 1, there is a unique additive

characteristic class t: R —> Ho(?, M. ) such that ﬁj(t) = 1n3 and nj(t) = m&‘.

This is straightforward using 4, 16,

We now turn to the proof of the theorem,

2
Lemma 6,13: If t is an exponential class, then n.(t)" = 0,
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If £ is odd this follows immediately from the anti-commutativity of
the algebra of coefficients of t, since nj(t) is of odd degree; the proof for

£ =2 will be given below,

According to the lemma there is a graded ring homomorphism

T:S8[E., €&, ...10 A[n

& ...]—>H.GL

1 Mg
sending the indeterminates §, and 7, of degrees 2jr and 2jr-1 respectively
to £.(8) and 1. (6) respectivjely, Tonrove the theorem it suffices to show T is
an isJo:rtn.orphisrxig and in fact only that T is surjective since the target of T has
the same Poincaré series as the source by 6.4. For this it is enough to prove that
the augmentation ideal of H,GL is generated by the £.(8) and m.(8), or
equivalently that any exponential class t for R such tJha,t t[Er] i 1 satisfies
t[En] =1 for all n. But the restriction homomorphism on cohomology from
GLn to Cm is injective (2,7) and En restricted to G is a direct sum of
r-dimensional representations and a trivial representation, so this is clear and
the theorem is proved,

It remains to prove the lemma when £ = 2, hence r = 1, Let R

denote the restriction homomorphism from CT‘L2 to C2 as in section 2, Then

R(’c{EZ]) = t[Ll]t[LZ]

It
™
= '—‘:x'*"
yre
+
Pt
—
o
i
_ =3
M
b
uyn
+
™
T
]
3

f

ny
B
X

+ 3 (x.x )j'1 2
A VYoM

where i, j> 0 and §O =1, n, = 0 and we have abbreviated £ (t) to £., etc,
- J J

We know that this sum lies in the subring
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TT #ow,, s) cTT #i(c?, s))

i>0 i>0 !

where S. is the coefficient ring of t, and also that H*(GLZ) is the subring
L3 2
of H (C ) generated by the elements

H
gl
-+
tad

i =
GG T LTV tY,
(6.15)

1 = o o=
Cp T 1% Sy T EY, T EY

Consider first the case g =1 (mod 4) and let A be the composition of

the unique S[Xl, xz]-module homomorphism

e 2
H (C )_ S[Xl’ Xz] ®A[Y19 Yz]——és[xl’ x

]

2

sending 1, Yy and Yy to 0 and vy
S[x

e to 1, followed by the ring homomorphism
X Xz] —> S[x] sending %, and x, to x. It is easy to check that A kills the
image of H*(GLZ)’ hence applying A to the equation 6, 14 we obtain
2j-2 2 T i
0=xx" n, in || x'S .
. ) 21
J i>0

showing that 'r]jz = 0,

In the case g =3 (mod 4), let A be the ring homormorphism

H (C%) = S[y,, v,] —>S[y]

sending vy and Yy to y; then A(c'l) :A(c'l') :A(C;Z‘) =0 and A(c‘z) :y4,

so A carries the cohomology of GL2 into the subring of polynomials in y .

Applying A to 6.14 yields

2
showing that nj = 0. Therefore the lemma and the theorem are proved.
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